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BRAUER GROUPS OF ALGEBRAIC STACKS AND GIT-QUOTIENTS

JAYA NN IYER AND ROY JOSHUA

Abstract. In this paper we consider the Brauer groups of algebraic stacks and GIT quotients: the only
algebraic stacks we consider in this paper are quotient stacks [X/G], where X is a smooth scheme of finite
type over a field k, and G is a linear algebraic group over k and acting on X, as well as various moduli
stacks of principal G-bundles on a smooth projective curve X, associated to a reductive group G. We also
consider the Brauer groups of the corresponding coarse moduli spaces, which most often identify with the
corresponding GIT-quotients. One conclusion that we seem to draw then is that the Brauer groups (or
their ℓ-primary torsion parts, for a fixed prime ℓ different from char(k)) of the corresponding stacks and
coarse moduli spaces depend strongly on the Brauer group of the given scheme X.
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1. Introduction and the Main Results

The paper originated in an effort by the authors to study the Brauer groups of GIT quotients associated

to actions of reductive groups. While working on various examples, we realized that it is preferable to

adopt a more general framework and goal of studying also the Brauer groups of various algebraic stacks

that show up in this context.

Though, for the most part, we work over a fixed separably closed field k of arbitrary characteristic,

there are indeed some of our results that do not require this restriction and hold over any base field.

Therefore, we will adopt the following framework for considering the Brauer groups. We will start with

a base field k of arbitrary characteristic. Let ℓ denote a fixed prime different from char(k) and let X

denote a smooth scheme of finite type over k: we will always restrict to such schemes. Then one begins

with the Kummer sequence

(1) 1 → µℓn(1) → Gm
ℓn
→Gm → 1,

which holds on the (small) étale site Xet of X, whenever ℓ is invertible in k. (See [Gr, section 3] or [Mi,

p. 66].) Taking étale cohomology, we obtain corresponding long-exact sequence:

(2) → H1
et(X,Gm)

ℓn
→H1

et(X,Gm) → H2
et(X, µℓn(1)) → H2

et(X,Gm) → H2
et(X,Gm) → · · · ,

which holds on the étale site when ℓ is invertible in k.
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2 J. N. IYER AND R. JOSHUA

Definition 1.1. The cohomological Brauer group Br(X) is the torsion subgroup of the cohomology group

H2
et(X,Gm). In other words, Br(X) = H2

et(X,Gm)tors.

By Hilbert’s Theorem 90, and since X is assumed to be smooth, we obtain the isomorphisms:

(3) Pic(X) ∼= CH1(X) ∼= H1
et(X,Gm) ∼= H2,1

M (X,Z),

where H2,1
M (X,Z) denotes motivic cohomology (in degree 2 and weight 1) and CH1 denotes the Chow

group in codimension 1. Then one also obtains the short-exact sequence:

(4) 0 → Pic(X)/ℓn ∼= NS(X)/ℓn → H2
et(X, µℓn(1)) → Br(X)ℓn → 0,

where the map Pic(X)/ℓn = H2,1
M (X,Z/ℓn) → H2

et(X, µℓn(1)) is the cycle map, and therefore, Br(X)ℓn

identifies with the cokernel of the cycle map. Thus it follows that Br(X)ℓn is trivial if and only if the

above cycle map is surjective: our approach to the Brauer group adopted in this paper is to consider the

above cycle map from motivic cohomology to etale cohomology, and involves a combination of motivic

and étale cohomology techniques.

Let G denote a not-necessarily connected linear algebraic group, defined over k, and acting on a quasi-

projective scheme X. Next we recall the framework of Borel-style equivariant étale cohomology, and Borel-

style equivariant motivic cohomology. For this we form an ind-scheme {EGgm,m×
G
X|m} and then take its

étale cohomology, and also its motivic cohomology when X is also assumed to be smooth. One may consult

[Tot99], [MV99], and also section 2 for more details. Here BGgm,m is a finite dimensional approximation

to the classifying space of the linear algebraic group G, and EGgm,m denotes the universal principal G-

bundle over BGgm,m. In the terminology of Definition 2.1, EGgm,m = Um and BGgm,m = Um/G. We also

assume that such a BGgm,m exists, for every m ≥ 0, as a quasi-projective scheme over the given base field.

There are standard arguments to prove that that the cohomology of the ind-schemes {BGgm,m|m ≥ 0},

{EGgm,m ×G X|m ≥ 0} are independent of the choice of the admissible gadgets {Um|m ≥ 0} that enter

into their definition: see, for example, [CJ19, Appendix B].

Let ℓ denote a fixed prime different from char(k). Then we let H∗,•
G,M(X,Z/ℓn) denote the motivic

cohomology of {EGgm,m×
G
X|m} defined as the homotopy inverse limit of the motivic cohomology of the

finite dimensional approximations EGgm,m×
G
X, that is, defined by the usual Milnor exact sequence relating

lim1 and lim of the motivic hypercohomology of the above finite dimensional approximations. (When

∗ = 2i and • = i, for a non-negative integer i, these identify with the usual (equivariant) Chow groups.)

H∗
G,et(X, µℓn(•)) is defined similarly.

Recall that for each fixed integer i ≥ 0, one obtains the isomorphisms (for m chosen, depending on i):

H2i,i
G,M(X,Z/ℓn) ∼= H2i,i

M (EGgm,m×
G
X,Z/ℓn),m >> 0 and X smooth, and

H2i,i
G,et(X, µℓn) ∼= H2i

et(EG
gm,m×

G
X, µℓn(i)),m >> 0.

These show that one may define the G-equivariant Brauer group of a G-scheme X as follows:

Definition 1.2. BrG(X) = H2
et(EG

gm,m×
G
X,Gm)tors, for m >> 0, where the subscript tors denotes the

torsion subgroup. 1

1Here we remind the reader that, despite the similarity in appearance, the above equivariant Brauer groups are quite
different from what are called, invariant Brauer groups: see [Cao].
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Moreover, we obtain from the Kummer-sequence the short-exact sequence:

(5) 0 → Pic(EGgm,m×
G
X)/ℓn → H2

et(EG
gm,m×

G
X, µℓn(1)) → Br(EGgm,m×

G
X)ℓn = BrG(X)ℓn → 0 and

where

Pic(EGgm,m×
G
X)/ℓn = coker(Pic(EGgm,m×

G
X)

ℓn
→Pic(EGgm,m×

G
X)),

BrG(X)ℓn = the ℓn-torsion part of BrG(X).

The comparison theorem [J20, Theorem 1.6] shows that H∗
G,et(X, µℓn(•)) identifies with H∗

smt([X/G], µℓn),

which denotes the cohomology of the quotient stack [X/G] computed on the smooth site: see Proposi-

tion 2.6 below for further details. This motivates the the following definition.

Definition 1.3. Given an Artin stack S of finite type over k, we define its Brauer group to be H2
smt(S,Gm)tors,

where H2
smt(S,Gm) denotes cohomology computed on the smooth site, and the subscript tors denotes its

torsion subgroup. We denote this by Br(S). For a fixed prime ℓ 6= char(k), we let Br(S)ℓn denote the

ℓn-torsion part of Br(S).

Then our first result is the following, which shows the Brauer group of a quotient stack [X/G], so

defined, identifies with the G-equivariant Brauer group defined in Definition 1.2.

Theorem 1.4. Assume that X is a smooth scheme of finite type over the base field k, and provided with

an action by the linear algebraic group G. Then, assuming the above terminology,

Br([X/G])ℓn ∼= BrG(X)ℓn .

Therefore, BrG(X)ℓn is intrinsic to the quotient stack [X/G].

For the rest of the paper, we need to restrict to the case where the base field k is separably closed. Our

next main result is the following theorem and its corollary.

Theorem 1.5. Assume the base field k is separably closed. Suppose X is a smooth scheme, provided with

an action by the connected linear algebraic group G. Then the induced map

H2,1
G,M(X,Z/ℓn) → H2

G,et(X, µℓn(1))

is also an isomorphism under any one of the following hypotheses:

(i) The group G is a torus

(ii) k is perfect (which, in view of the assumption that it is separably closed, implies it is also algebraically

closed). The group G is special in the sense of Grothendieck (see [Ch]). If W denotes the Weyl

group associated to a maximal torus in G, |W| (which is the order of W) is relatively prime to ℓ,

and the cycle map induces an isomorphism

H2,1
M (X,Z/ℓn) → H2

et(X, µℓn(1)),

(iii) X = G/H, for a closed connected linear algebraic subgroup H of G, so that the torsion index of

the group H is prime to ℓ, where the torsion index of linear algebraic groups is discussed in [Gr58],

[Tot05, section 1].

Corollary 1.6. (i) Under the assumptions of Theorem 1.5(i) or (ii), if Br(X)ℓn = 0, so is Br([X/G])ℓn .

More generally, if X is a smooth scheme of finite type over a perfect field k and provided with the action

by a split linear algebraic group G that is special, and if Br(Xs)ℓn = 0, then so is Br([Xs/Gs])ℓn , provided
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|W| is prime to ℓ. Here, for a scheme Y over k, Ys denotes its base extension to the separable closure of

k and W denotes the Weyl group associated to a split maximal torus in G.

(ii) Assume the base field k is separably closed. If H is a connected linear algebraic group whose torsion

index is prime to ℓ, then Br(BH)ℓn = 0, where BH denotes the classifying stack of H, that is [Spec k/H].

Remark 1.7. Observe that if X is a projective smooth variety that is rational, then Br(X)ℓn = 0. The

Corollary then shows that, under the assumptions of Theorem 1.5(i), Br([X/G])ℓn = 0 as well. We will

show in section 4 that Corollary 1.6 provides a very quick proof of the triviality of the ℓn-torsion part of

the Brauer group of the moduli stack of elliptic curves, for any prime ℓ different from char(k), as long

as k is separably closed, and char(k) 6= 2, 3: see also see Theorem 1.10.

In case G is not connected, one has the following extension of Theorem 1.5. Let G → G̃ denote an

imbedding of G as a closed subgroup of a connected linear algebraic group. In particular, it applies to

the case when G is a finite group.

Theorem 1.8. Assume the base field k is algebraically closed. Suppose X is a smooth scheme, provided

with an action by the not-necessarily connected linear algebraic group G. Then the induced map

H2,1
G,M(X,Z/ℓn) → H2

G,et(X, µℓn(1))

is also an isomorphism under the following hypotheses:

|W̃| is relatively prime to ℓ and the cycle map induces an isomorphism

H2,1
M (G̃×G X,Z/ℓn) → H2

et(G̃×G X, µℓn(1)),

where G imbeds as a closed subgroup of the connected linear algebraic group G̃ which is also assumed to

be special, W̃ is the Weyl group of G̃, and |W̃| is the order of W̃.

Section 4 is devoted to considering various examples making use of the above theorems. We will

summarize here a few of these, and one may consult section 4 for additional examples and details.

Next let X denote a smooth projective curve of genus g over k, provided with a k-rational point. Then

one knows the isomorphism of stacks (see for example, [Wang, Proposition 4.2.5]):

(6) Bun1,d(X) ∼= BGgm
m ×Picd(X),

where BGgm
m = lim

n→∞
BGgm,n

m , Bun1,d(X) denotes the moduli stack of line bundles of degree d on X and

Picd(X) denotes the Picard scheme. In view of the above isomorphism of stacks, one may define the

Brauer group of the stack Bun1,d(X) to be the Brauer group of the stack BGgm
m × Picd(X). Then, we

obtain the following theorem.

Theorem 1.9. Assume the base field k is separably closed. Then, assuming the above situation, we

obtain the isomorphism:

Br(Bun1,d(X))ℓn ∼= Br(Picd(X))ℓn ∼= Br(Symd(X))ℓn .

In particular, Br(Bun1,d(X))ℓn ∼= 0 if X is rational.

Next we consider the moduli stack of elliptic curves, which has a nice presentation as a quotient stack

for the action of Gm: see [Ols].
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Theorem 1.10. Let M1,1 denote the moduli stack of elliptic curves over the base field k (which we

recall is separably closed). Assume that char(k) 6= 2, 3 and ℓ is a prime different from char(k). Then

Br(M1,1)ℓn = 0.

This theorem is essentially Theorem 4.4 and a quick proof of that theorem is discussed in section 4.

Next we shift our focus to the Brauer groups of GIT quotients for actions of connected reductive groups

G on smooth schemes, with the base field assumed to be algebraically closed of arbitrary characteristic p ≥

0. In this context, one recalls that such schemes admit a G-stable stratification (that is, a decomposition

into locally closed smooth and G-stable subschemes) based on stability considerations: see [Kir84] and

[ADK]. Of key importance to us is that the stratification of the above scheme X provides the long exact

sequences. We consider this is in a slightly more general context as follows. Let U ⊆ X denote an open

G-stable subscheme. Then one obtains the long exact (localization) sequences

(7) · · · → H2i,i
G,X−U,M(X,Z/ℓn) → H2i,i

G,M(X,Z/ℓn) → H2i,i
G,M(U,Z/ℓn) → H2i+1,i

G,X−U,M(X,Z/ℓn) → · · · ,

(8) · · · → H2i
G,X−U,et(X, µℓn(i)) → H2i

G,et(X, µℓn(i)) → H2i
G,et(U, µℓn(i)) → H2i+1

G,X−U,et(X, µℓn(i)) → · · · .

We are particularly interested in the situation when the above long exact sequences break up into short

exact sequences at i = 1, that is, where the maps

H2,1
G,M(X,Z/ℓn) → H2,1

G,M(U,Z/ℓn)(9)

H2
G,et(X, µℓn(1)) → H2

G,et(U, µℓn(1))

in both the above long exact sequences are surjections. This is not always the case with finite coefficients,

so our first result is to say, when in fact, one obtains the above results for suitable choice of finite

coefficients.

Let {Sβ|β} denote the stratification of the given smooth scheme X defined in [Kir84] based on stability

considerations in the context of geometric invariant theory. We will then adopt the following terminology

from [Kir84]: for each βǫB, let Yβ denote a locally closed subscheme of Sβ so that it is stabilized by a

parabolic subgroup Pβ, with Levi factor Lβ. Moreover, then Sβ ∼= G×
Pβ

Yss
β , and there is a scheme Zβ with

an Lβ-action and an Lβ-equivariant Zariski-locally trivial surjection Yss
β → Zss

β whose fibers are affine

spaces. Moreover, Zβ is a smooth locally closed Lβ -stable subscheme of X, so that it is a component

of the fixed point scheme for the induced action by a 1-parameter subgroup T′
β of Lβ. Finally, it is

important to observe that the normal bundle to the stratum Sβ in X is a quotient of the restriction of the

normal bundle to Zβ in X. If Sβ denotes a stratum on X for the stratification considered above (based

on stability), Wβ will denote the Weyl group corresponding to the Levi subgroup Lβ.

We will also let Sβo
denote any one of the strata in X − Xss which are of the highest dimension (and

hence open in X−Xss). We will denote the corresponding Weyl group in Lβo
by Wβo

.

Then the following are some of hypotheses we may impose on the given scheme X and the given action

by the linear algebraic group G.

(i) X is G-projective with a manageable G-linearized action on X in the sense of [ADK, Theorem

4.7]. (Observe that the condition on the action being manageable is automatically satisfied if

char(k) = 0).
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(ii) Alternatively, X is the affine space of representations of a fixed quiver Q with dimension vector d.

Theorem 1.11. Assume the base field k is algebraically closed, the reductive group G is connected, X is

a smooth G-scheme, and ℓ is a prime different from char(k). Assume further that one of the following

hypothesis also holds:

(a) U = Xss and codimX(X−Xss) ≥ 2 or

(b) we are in one of the two cases considered in (i) or (ii) above, U = Xss and if Sβo
denotes any

stratum in X−Xss of the highest dimension in X−Xss, then ℓ is relatively prime to |Wβo
|, which denotes

the order of the Weyl group Wβo
.

Then the maps in (9) are surjections.

We will let W denote the Weyl group in G and |W| will denotes its order.

Theorem 1.12. Assume that the cycle map, cycl : H2,1
M (X,Z/ℓn) → H2

et(X, µℓn(1)) is an isomorphism

(or equivalently, Br(X)ℓn = 0) and that the group G is special.

Then the cycle map cycl : H2,1
G,M(Xss,Z/ℓn) → H2

G,et(X
ss, µℓn(1)) is a surjection (or equivalently,

BrG(X
ss)ℓn = 0), provided |W| is relatively prime to ℓ, and one of the following additional hypotheses

holds:

(i) the assumptions as in case (a) of Theorem 1.11 holds or

(ii) the assumptions as in case (b) of Theorem 1.11 holds.

Theorem 1.13. Assume in addition to the hypotheses of the last theorem that one of the following holds:

(1) Xs = Xss, that is, the subscheme of semi-stable points on X is equal to the subscheme of stable

points on X, or

(2) codimX(X
ss −Xs) ≥ 2.

Then, Br(X//G)ℓn = 0, if ℓ is also prime to the orders of the stabilizers at points on Xs, where X//G =

Xs/G denotes the GIT quotient of X by G.

Section 6 discusses various examples where the above theorems are utilized.

Acknowledgment. The second author thanks the Institute for Mathematical Sciences, Chennai, for

supporting his visit during the summer of 2019 and for providing a pleasant working environment during

his visit. He also thanks Ajneet Dhillon for helpful discussions that have contributed to the paper.

2. Equivariant Brauer groups vs. Brauer groups of quotient stacks: Proof of

Theorem 1.4

The goal of this section is to prove Theorem 1.4. We begin discussing the construction of geometric

classifying spaces and Borel construction followed by the simplicial variant. Throughout this section, k

will denote any field.

2.1. Admissible gadgets. Let G denote a fixed linear algebraic group over k. We will define a pair

(W,U) of smooth varieties over k to be a good pair for G if W is a k-rational representation of G and

U ( W is a G-invariant non-empty open subset on which G acts freely and so that U/G is a variety. It

is known (cf. [Tot99, Remark 1.4]) that a good pair for G always exists.
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Definition 2.1. A sequence of pairs {(Wm,Um)|m ≥ 1} of smooth varieties over k is called an admissible

gadget for G, if there exists a good pair (W,U) for G such that Wm = W×m
and Um ( Wm is a G-

invariant open subset such that the following hold for each m ≥ 1.

(1) (Um ×W) ∪ (W ×Um) ⊆ Um+1 as G-invariant open subvarieties.

(2) {codimUm+1
(Um+1 \ (Um ×W)) |m} is a strictly increasing sequence,

that is,

codimUm+2
(Um+2 \ (Um+1 ×W)) > codimUm+1

(Um+1 \ (Um ×W)) .

(3) {codimWm (Wm \ Um) |m} is a strictly increasing sequence, that is,

codimWm+1
(Wm+1 \ Um+1) > codimWm (Wm \ Um) .

(4) Um has a free G-action, the quotient Um/G is a smooth quasi-projective variety over k and

Um → Um/G is a principal G-bundle.

Lemma 2.2. Let U denote a smooth quasi-projective scheme over a field K with a free action by the

linear algebraic group G so that the quotient U/G exists as a smooth quasi-projective scheme over K.

Then if X is any smooth G-quasi-projective scheme over K, the quotient U×
G
X ∼= (U ×

SpecK
X)/G (for the

diagonal action of G) exists as a scheme over K.

Proof. This follows, for example, from [MFK94, Proposition 7.1]. �

An example of an admissible gadget for G can be constructed as follows: start with a good pair

(W,U) for G. The choice of such a good pair will vary depending on G. Choose a faithful k-rational

representation R of G of dimension n, that is, G admits a closed immersion into GL(R). Then G acts

freely on an open subset U of W = R⊕n = End(R) so that U/G is a variety. (For e.g. U = GL(R).) Let

Z = W \ U.

Given a good pair (W,U), we now let

(10) Wm = W×m,U1 = U and Um+1 = (Um ×W) ∪ (W ×Um) for m ≥ 1.

Setting Z1 = Z and Zm+1 = Um+1 \ (Um ×W) for m ≥ 1, one checks that Wm \ Um = Zm and

Zm+1 = Zm × U. In particular, codimWm (Wm \Um) = m(codimW(Z)) and codimUm+1
(Zm+1) = (m +

1)d − m(dim(Z)) − d = m(codimW(Z)), where d = dim(W). Moreover, Um → Um/G is a principal

G-bundle and the quotient Vm = Um/G exists as a smooth quasi-projective scheme.

2.2. The geometric and simplicial Borel constructions. Given an admissible gadget {(Wm,Um)|m ≥

0} for the linear algebraic group G and a G-scheme X, we define

EGgm,m = Um, EGgm,m ×G X = Um ×G X, BGgm,m = Um ×G (Spec k), and(11)

πm : EGgm,m ×G X → BGgm,m.

The ind-scheme {EGgm,m ×G X|m ≥ 0} is the geometric Borel construction. We will often denote

lim
m→∞

{EGgm,m ×G X|m ≥ 0} by EGgm ×G X. We next consider EG×G X which is the simplicial scheme
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defined by Gn ×X in degree n, and with the structure maps defined as follows:

di(g0, · · · , gn, x) = (g1, · · · , gn, x), i = 0(12)

= (g1, · · · , gi−1.gi, · · · , gn, x), 0 < i < n

= (g1, · · · , gn−1, gn.x), i = n, and

si(g0, · · · , gn−1, x) = (g0, · · · , gi−1, e, gi, · · · , x)

where gi ∈ G, x ∈ X, gi−1.gi denotes the product of gi−1 and gi in G, while gn.x denotes the product of

gn and x. e denotes the unit element in G. This is the simplicial Borel construction. Then we obtain the

following identification, which is well-known.

Lemma 2.3. One obtains an isomorphism: EG×GX ∼= cosk
[X/G]
0 (X), where cosk

[X/G]
0 (X) is the simplicial

scheme defined in degree n by the (n + 1)-fold fibered product of X with itself over the stack [X/G], with

the structure maps of the simplicial scheme cosk
[X/G]
0 (X) induced by the above fibered products.

For each fixed m ≥ 0, we obtain the diagram of simplicial schemes (where p1 is induced by the

projection EGgm,m ×X → X and p2 is induced by the projection EG× (EGgm,m ×X) → EGgm,m ×X):

(13) EG×G (EGgm,m ×X)

p1

vv♠♠♠
♠♠♠

♠♠
♠♠♠

♠♠♠
♠

p2

))❘
❘❘❘

❘❘❘
❘❘❘

❘❘
❘❘

❘

EG×G X EGgm,m×
G
X

G acts diagonally on EG×G (EGgm,m ×X).

Proposition 2.4. (i) The map

p∗1 : H
1
et(EG×G X,Gm) → H1

et(EG×G (EGgm,m ×X),Gm) and the map(14)

p∗2 : H
1
et(EG

gm,m ×G X,Gm) → H1
et(EG×G (EGgm,m ×X),Gm), for m sufficiently large,

are isomorphisms.

(ii) The corresponding maps, for m sufficiently large, with ℓ 6= char(k),

p∗1 : H
2
et(EG×G X, µℓn(1)) → H2

et(EG×G (EGgm,m ×X), µℓn(1)), and(15)

p∗2 : H
2
et(EG

gm,m ×G X, µℓn(1)) → H2
et(EG×G (EGgm,m ×X), µℓn(1))

are isomorphisms.

Proof. The isomorphisms in (i) are rather involved, and therefore, we discuss the proof of (i) first. A key

to the proof is the observation that, over a base field k which is separably closed, H1
et(A

n,Gm) ∼= 0, for

any n ≥ 0. We consider the Leray spectral sequences associated to the maps p1 and p2:

Es,t
2 (1) = Hs

et(EG×G ×X,Rtp1∗(Gm)) =⇒ Hs+t
et (EG×G (EGgm,m ×X),Gm) and(16)

Es,t
2 (2) = Hs

et(EG
gm,m ×G ×X,Rtp2∗(Gm)) =⇒ Hs+t

et (EG×G (EGgm,m ×X),Gm).

Since s, t ≥ 0, both spectral sequences converge strongly.

The stalks of Rtp2∗(Gm) ∼= Ht(EG ×
Spec k

(SpecA),Gm), where A denotes a strict Hensel ring. (Strictly

speaking, in order to obtain the above identification, we need to make use of the simplicial topology as

in [J02] or [J20, 5.4]. But we will ignore this rather subtle point for the rest of the discussion.) Since
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EG ∼= coskSpec k0 (G), EG ×
Spec k

(SpecA) ∼= coskSpec A0 (G ×Spec k SpecA) is a smooth hypercover of SpecA.

Therefore, we obtain the isomorphism:

(17) Ht
et(EG ×

Spec k
(SpecA),Gm) ∼= Ht

smt(EG ×
Spec k

(SpecA),Gm) ∼= Ht(SpecA,Gm).

These groups are trivial for t = 1 (see, for example, [Mi, Lemma 4.10]). Therefore, it follows that for

t = 1, Rtp2∗(Gm)SpecA ∼= 0.

Next we observe the isomorphism, by taking t = 0 in (17):

(18) p2∗(Gm)SpecA ∼= H0(EG ×
Spec k

(SpecA),Gm) ∼= H0(SpecA,Gm),

where p2∗(Gm)SpecA denotes the stalk of the sheaf p2∗(Gm) at SpecA. Observing that Gm is in fact a

sheaf on the flat site, and therefore also on the smooth site, it follows that there is a natural map of

sheaves Gm → p2∗(Gm), where the Gm on the left (on the right) denotes the sheaf Gm restricted to the

étale site of EGgm,m×GX (the étale site of EG×G (EGgm,m ×X), respectively). The isomorphism in (18)

shows this map induces an isomorphism stalk-wise. It follows that the natural map Gm → p2∗(Gm) of

sheaves on the étale site is an isomorphism. This provides the isomorphism:

(19) E1,0
2 = H1

et(EG
gm,m ×G X,p2∗(Gm)) ∼= H1

et(EG
gm,m ×G X,Gm),m >> 0.

The stalks of Rtp1∗(Gm) ∼= Ht(EGgm,m ×
Spec k

(SpecA),Gm), where A denotes a strict Hensel ring, for all

t ≥ 0. Observe that this strict Hensel ring A is the stalk of the structure sheaf of (EG×G X)n = Gn ×X,

at a geometric point. Hence it is a filtered direct limit limiAi, with each Ai regular.

To determine the groups Ht(EGgm,m ×
Spec k

(SpecA),Gm), we consider the long exact sequence (with

EGgm,m = Um, which is assumed to be an open subscheme of the affine space Am, with Zm = Am−Um):

(20)

· · · → H0
Zm×Spec kSpecA,et(A

m ×Spec k SpecA,Gm) → H0
et(A

m ×Spec k SpecA,Gm) →

α
→H0

et(Um ×Spec k SpecA,Gm) → H1
Zm×Spec kSpecA,et(A

m ×Spec k SpecA,Gm)

→ H1
et(A

m ×Spec k SpecA,Gm)
β
→H1

et(Um ×Spec k SpecA,Gm) →

→ H2
Zm×Spec kSpecA,et(A

m ×Spec k SpecA,Gm) → · · ·

Next we observe the following isomorphisms for any smooth or regular quasi-projective scheme Y:

H1
et(Y,Gm) ∼= H1

Zar(Y,Gm) ∼= CH1(Y, 0) and(21)

H0
et(Y,Gm) ∼= H0

Zar(Y,Gm) ∼= Γ(Y,OY)
∗ ∼= CH1(Y, 1).

Therefore, the map denoted α (β) in the long exact sequence (20) identifies with the restriction

CH1(Am ×Spec k SpecA, 1) → CH1(Um ×Spec k SpecA, 1)

(CH1(Am ×Spec k SpecA, 0) → CH1(Um ×Spec k SpecA, 0), respectively)

forming part of the localization sequence for the higher Chow groups. In fact, the corresponding local-

ization sequence is given by:

(22)
· · · → CH1−c(Zm ×Spec k SpecA, 1) → CH1(Am ×Spec k SpecA, 1)

α′

→CH1(Um ×Spec k SpecA, 1)

→ CH1−c(Zm ×Spec k SpecA, 0) → CH1(Am ×Spec k SpecA, 0)
β′

→CH1(Um ×Spec k SpecA, 0) → 0

where c denotes the codimension of Zm in Am, which we assume is large. To see that one gets such a

localization sequence, one first replaces the strict Hensel ring A by one of the Ai, where A = limiAi, with
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each Ai a regular local ring. Clearly then the corresponding localization sequence exists and the groups

in (22) involving the Zm are trivial, as c is assumed to be large. At this point, one takes the direct limit

over the Ai: since the Chow groups are contravariantly functorial for flat maps, and filtered colimits are

exact, we obtain the localization sequence (22). Moreover, the groups appearing in (22) involving the Zm

are all trivial, thereby proving that the maps α′ and β′ in (22), and therefore, the maps α and β in (20)

are isomorphisms. This provides the isomorphisms for t = 0, 1:

Rtp1∗(Gm)Spec A ∼= Ht
et(Um ×Spec k SpecA,Gm) ∼= Ht

et(A
m ×Spec k SpecA,Gm)(23)

∼= Ht
et(SpecA,Gm).

Therefore, it follows that for t = 1, Rtp1∗(Gm)SpecA ∼= 0. Since Gm is a sheaf on the flat and hence on

the smooth topology, there is a natural map Gm → p1∗(Gm) of sheaves where the Gm on the left (on the

right) is a sheaf on the étale site of EG×G X (on the étale site of EG ×G (EGgm,m ×X), respectively).

The stalk-wise isomorphism in (23) for t = 0 shows that the natural map Gm → p1∗(Gm) of sheaves on

the étale site is an isomorphism. This provides the isomorphism:

(24) E1,0
2 (1) = H1

et(EG×G X,p1∗(Gm)) ∼= H1
et(EG×G X,Gm).

Moreover, observing that the differentials in the spectral sequences above go from Ep,q
r to Ep+r,q−r+1

r ,

one sees that

(25) E0,1
r (1) = E0,1

r (2) = 0 for all r ≥ 2 and that E1,0
2 (i) ∼= E1,0

r (i), for all r ≥ 2, i = 1, 2.

The last observation shows that E1,0
2 (i), i = 1, 2 is isomorphic to the abutment in degree 1, namely,

H1
et(EG ×G (EGgm,m × X),Gm), m >> 0. Therefore, the isomorphisms in (24) and (19) complete the

proof of (i).

Next we consider the proof of (ii). The key point is to consider the Leray spectral sequences for the

maps p1 and p2. In this case, one may readily compute the stalks of Rtpi∗(µℓn(1)) to be trivial for t = 1, 2

and ∼= µℓn(1) for t = 0, and for m >> 0. (See [J20, Theorem 1.6] for further details.) Therefore, the

conclusions in (ii) follow readily. �

Corollary 2.5. Assume the above context.

(i) Then we obtain an isomorphism

H1
et(EG

gm,m ×G X,Gm) ∼= H1
et(EG×G X,Gm) ∼= H1

smt([X/G],Gm), for m >> 0,

which is functorial in the G-scheme X.

(ii) Moreover, we obtain isomorphisms:

H2
et(EG

gm,m ×G X, µℓn(1)) ∼= H2
et(EG×G X, µℓn(1)) ∼= H2

smt([X/G], µℓn(1)) for m >> 0.

which are functorial in the G-scheme X, and where ℓ 6= char(k).

Here H1
smt([X/G],Gm) and H2

smt([X/G], µℓn(1)) denote the cohomology of the quotient stack [X/G] com-

puted on the smooth site.

(iii) One obtains an isomorphism BrG(X)ℓn ∼= Br([X/G])ℓn , thereby proving that BrG(X)ℓn is an in-

variant of the quotient stack [X/G], for any prime ℓ 6= char(k).

Proof. The first isomorphisms in both the statements (i) and (ii) are from Proposition 2.4. The second iso-

morphisms in (i) and (ii) follow from the isomorphism of the simplicial schemes: EG×GX ∼= cosk
[X/G]
0 (X)

and Proposition 2.6 discussed below. Next we consider the third statement.
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Recall the long exact sequence in étale cohomology obtained from the Kummer sequence:

(26)
→ H1

et(EG×G X,Gm)
ℓn
→H1

et(EG×G X,Gm)
δ
→H2

et(EG×G X, µℓn(1)) → H2
et(EG×G X,Gm)

ℓn
→H2

et(EG×G X,Gm) → · · ·

Then the cokernel(H1
et(EG ×G X,Gm)

ℓn
→H1

et(EG ×G X,Gm)) maps to H2
et(EG ×G X, µℓn(1)), by a map

induced by the boundary map δ: we will denote this map by δ̄. Then, in view of the isomorphisms in (i)

and (ii), the Brauer group BrG(X)ℓν identifies with the cokernel of the map δ̄.

In view of Proposition 2.6, the isomorphisms in (i) and (ii) and the long exact sequence (26), Br([X/G])ℓn

identifies with

kernel(H2
et(EG×G X,Gm)

ℓn
→H2

et(EG×G X,Gm)).

Again by Proposition 2.6, the isomorphisms in (i) and (ii) and the long-exact sequence (26), this identifies

with

cokernel((H1
et(EG×G X,Gm)/ℓ

n δ̄
→H2

et(EG×G X, µℓn(1))) ∼= BrG(X)ℓn .

This proves the third assertion and hence Theorem 1.4. �

Let S denote an algebraic stack, which we will assume is of Artin type and of finite type over the given

base field k, with x : X → S an atlas, that is, a smooth surjective map from an algebraic space X. We

let BxS = coskS0 (X) denote the corresponding simplicial algebraic space. Then we let Ssmt denote the

smooth site, whose objects are y : Y → S , with y a smooth map from an algebraic space Y to S , and

where a morphism between two such objects y′ : Y′ → S and y : Y → S is given by a map f : Y′ → Y

making the triangle

Y′
f

//

y′   
❅❅

❅❅
❅❅

❅❅ Y

y
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S

commute. The same definition defines the smooth site of any algebraic space. The smooth and étale sites

of the simplicial algebraic space BxS may be defined as follows. The objects of Smt(BxS ) are given by

smooth maps un : Un → (BxS )n for some n ≥ 0. Given such a un : Un → BxSn and vm : Vm → BxSm, a

morphism from un → vm is a commutative square:

Un

α′

//

un

��

Vm

vm
��

BxSn
α //

BxSm

where α is a structure map of the simplicial algebraic space BxS . The Étale site Et(BxS ) is defined

similarly. An abelian sheaf F on Smt(BxS ) is given by a collection of abelian sheaves F = {Fn|n} with

each Fn being an abelian sheaf on Smt(BxSn), so that it comes equipped with the following data: for

each structure map α : BxSn → BxSm, one is provided with a map of sheaves φn,m : α∗(Fm) → Fn so that

the maps {φn,m|n,m} are compatible. Abelian sheaves on the site Et(BxS ) may be defined similarly.

We skip the verification that the category of abelian sheaves on the above sites have enough injectives.

The n-th cohomology group of the simplicial object BxS with respect to an abelian sheaf F is defined as

the n-th right derived functor of the functor sending

(27) F 7→ kernel(δ0 − δ1 : Γ(BxS0,F0) → Γ(BxS1,F1)).
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Now we obtain the following Proposition.

Proposition 2.6. Let F denote an abelian sheaf on Smt(S). Then we obtain the following isomorphisms:

(i) H∗
smt(BxS , x

∗
• (F))

∼= H∗
smt(S ,F), where the subscript smt denotes cohomology computed on the

smooth sites and x• : BxS → S is the simplicial map induced by x : X → S.

(ii) H∗
smt(BxS , x

∗
• (F))

∼= H∗
et(BxS , α∗x

∗
• (F)), where the subscript et denotes cohomology computed on

the étale site and α : Smt(BxS ) → Et(BxS ) is the obvious morphism of sites.

Proof. Observe that x : X → S is a covering of the stack S in the smooth topology, so that

kernel(δ0 − δ1 : Γ(BxS0,F0) → Γ(BxS1,F1)) ∼= Γ(S ,F).

Since Hn
smt(S ,F) is the n-th right derived functor of the above functor, in view of (27), we see that

it identifies with Hn
smt(BxS , x

∗
• (F)). This provides the isomorphism in (i). The isomorphism in (ii) is

a straight-forward extension of a well-known result comparing the cohomology of an algebraic space

computed on the smooth and étale sites. �

3. Brauer groups of algebraic stacks: Proofs of Theorems 1.5 through 1.9

Proof of Theorem 1.5.

We proved a related result in [JP20, Corollary 1.16(ii)], which is weaker than the above theorem in

the following sense: in [JP20, Corollary 1.16(ii)], we assumed the cycle map for X is an isomorphism

in all degrees, whereas, here we are considering the more general case, where it is assumed to be an

isomorphism only in degrees less than or equal to 2. Therefore, we will provide full details of the proof.

However, we also make strong use of the motivic and étale Becker-Gottlieb transfer due to the second

author and Carlsson: see [CJ20]. Invoking this transfer and [JP20, Corollary 1.15], one observes the

isomorphisms, assuming |W| is relatively prime to ℓ:

H∗,•
G,M(X,Z/ℓn) ∼= H∗,•

T,M(X,Z/ℓn)Wand(28)

H∗,•
G,et(X,Z/ℓ

n) ∼= H∗,•
T,et(X,Z/ℓ

n)W.

Therefore, we reduce to the case where G is replaced by a split torus T. At this point, we observe that

a choice of BTgm,m = Πn
i=1P

m, if T = Gn
m.

In the above discussion, it is important to restrict to linear algebraic groups G that are special,

so that the construction of the transfer can be carried out on the Nisnevich site using the geometric

Borel construction {EGgm,m ×G X|m ≥ 0} as discussed in (11). If the group G is not special, then the

construction of the transfer has to be carried out on the étale site using the same gadgets followed by a

derived push-forward to the Nisnevich site. This will then not give the same Brauer group for the stack

as discussed in Definition 1.2: see also Corollary 2.5.

In view of the above reduction to the case where the group G is a split torus, following discussion now

proves both statements (i) and (ii). Observe that ETgm,m → BTgm,m is a Zariski locally trivial torsor

for the action T as T = Gn
m is a split torus, and hence is special as a linear algebraic group in the sense

of Grothendieck: see [Ch]. Taking n = 1, we see that πm : EGgm,m
m → BGgm,m

m is such a torsor, so that

there is a Zariski open cover {Uj|j = 1, · · · ,N} so that πm
|Uj

is of the form Uj ×Gn
m → Uj, j = 1, · · · ,N.

Let {V0, · · ·Vm} denote the open cover of Pm obtained by letting Vi be the open subscheme where

the homogeneous coordinates xi, (i = 0, · · · ,m) on Pm is non-zero. Without loss of generality, we may

assume the Uj refine the open cover {Vi|i = 0, · · ·m}. Finally the observation that the Picard groups of
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affine spaces are trivial, shows that one may in fact take N = m and Uj = Vj, j = 0, · · · ,m. Now one

may take an open cover of Πn
i=1P

m by taking the product of the affine spaces that form the open cover

of each factor Pm. We will denote this open cover of Πn
i=1P

m by {Wα|α}.

Let p : ETgm,m×
T
X → BTgm,m denote the obvious map, and let ǫ denote the map from the étale site

to the Nisnevich site. For any integer j ≥ 0, let Z/ℓn(j) denote the motivic complex of weight j on the

Nisnevich site of ETgm,m×
T
X. Then one obtains the identification (see [Voev11] or [HW]):

(29) Z/ℓn(j) = τ≤jRǫ∗ǫ
∗(Z/ℓn(j)).

Therefore, on applying Rp∗, we obtain the natural maps:

Rp∗(Z/ℓ
n(j))

≃
→Rp∗(τ≤jRǫ∗ǫ

∗(Z/ℓn(j))) → Rp∗Rǫ∗ǫ
∗(Z/ℓn(j))(30)

∼= Rp∗Rǫ∗µℓn(j)) ∼= Rǫ∗Rp∗µℓn(j)).

Next we make the following key observations:

(i) On taking sections over any Zariski open subset U of BTgm,m, and cohomology in degrees u ≤ v, we

obtain an isomorphism: Hu
M(p−1(U),Z/ℓn(v))

∼=
→Hu

et(p
−1(U), µℓn(v)) where p−1(U) = (ETgm,m ×T

X) ×
BTgm,m

U. This should be clear in view of the map of spectral sequences:

Es,t
2 = Hs

Nis(U,R
tp∗(τ≤jRǫ∗ǫ

∗(Z/ℓn(j)))) ⇒ Hs+t
Nis (p

−1(U),Z/ℓn(j))(31)

Es,t
2 = Hs

Nis(U,R
tp∗(Rǫ∗ǫ

∗(Z/ℓn(j)))) ⇒ Hs+t
Nis (p

−1(U),Rǫ∗ǫ
∗(Z/ℓn(j))) ∼= Hs+t

et (p−1(U), µℓn(j))

which induces an isomorphism on the E2-terms for 0 ≤ s+ t ≤ j, as s ≥ 0.

(ii) On taking the sections over each Zariski open set in the above cover Wα of BTgm,m, we obtain

a quasi-isomorphism, since affine-spaces are contractible for motivic cohomology and also étale

cohomology with respect to µℓn(j), with ℓ 6= char(k), as k is assumed to be separably closed.

Now a Mayer-Vietoris argument using the above open cover of BTgm,m completes the proof. Since the

iterated intersections of the affine spaces forming the open cover of BTgm,m are products of an affine

space with a split torus, one may invoke Proposition 3.2 to complete the proof of statements (i) and (ii)

in the theorem.

In order to prove the statement (iii) when X = G/H, we first observe that EGgm,m ×G G/H identifies

with BHgm,m, m >> 0. Therefore, statement (ii) follows from Proposition 3.5 proven below, once one

identifies EGgm,m ×G (G/H) with BHgm,m. �

Proof of Corollary 1.6. We will prove (i) under the assumption the base field is separably closed.

Then, we obtain the short exact sequences from the Kummer sequence:

0 → Pic(X)/ℓn → H2
et(X, µℓn(1)) → Br(X)ℓn → 0 and

0 → Pic(EGgm,m×
G
X)/ℓn → H2

et(EG
gm,m×

G
X, µℓn(1)) → Br(EGgm,m×

G
X)ℓn = BrG(X)ℓn → 0.

Now it suffices to observe that the maps:

Pic(X)/ℓn ∼= H2,1
M (X,Z/ℓn) → H2

et(X, µℓn(1)) and

Pic(EGgm,m×
G
X)/ℓn ∼= H2,1

M (EGgm,m×
G
X,Z/ℓn) → H2

et(EG
gm,m×

G
X, µℓn(1))

identify with the cycle maps

H2,1
M (X,Z/ℓn) → H2

et(X, µℓn(1)) and H2,1
G,M(X,Z/ℓn) → H2

G,et(X, µℓn(1))



14 J. N. IYER AND R. JOSHUA

which are both injective, with the cokernel of the first map (the second map) given by Br(X)ℓn (BrG(X)ℓn ,

respectively). Therefore, the triviality of Br(X)ℓn (BrG(X)ℓn) is equivalent to the first cycle map (the

second cycle map, respectively) being an isomorphism. Therefore, the corollary follows when the base

field is separably closed. The extension to the case when it is not is now clear, since we are still only

considering the Brauer group Br([Xs/Gs])ℓn . This completes the proof of (i).

The statement in (ii) now follows readily from (i), in view of Theorem 1.4. �

Proof of Theorem 1.8. This follows immediately from Theorem 1.5, once one observes the isomor-

phisms:

H∗,•
G,M(X,Z/ℓn) ∼= H∗,•

G̃,M
(G̃×G X,Z/ℓn) and

H∗
G,et(X, µℓn(•)) ∼= H∗

G̃,et
(G̃×G X, µℓn(•)).

Proof of Theorem 1.9. We first observe that BGgm
m

∼= lim
n→∞

Pn. Since each Pn is a linear scheme which

is projective and smooth, it follows from [J01, Theorem 4.5, Corollary 4.6] that one obtains isomorphisms

for any smooth scheme Y:

⊕iH
2i,i
M (BGgm

m ×Y,Z/ℓn) ∼= (⊕iH
2i,i
M (BGm,Z/ℓ

n))⊗ (⊕iH
2i,i
M (Y,Z/ℓn)) and(32)

⊕iH
2i
et(BG

gm
m ×Y, µℓn(i)) ∼= (⊕iH

2i
et(BGm, µℓn(i))) ⊗ (⊕iH

2i
et(Y, µℓn(i))).

Since the cycle map cycl : ⊕iH
2i,i
M (BGgm

m ,Z/ℓn) → ⊕iH
2i
et(BG

gm
m , µℓn(i)) is an isomorphism, the Brauer

group Br(Bun1,d(X))ℓn , which is the cokernel of cycle map, identifies with Br(Picd(X))ℓn . Finally the

isomorphism Br(Picd(X))ℓn ∼= Br(Symd(X))ℓn is proven in [IJ20, Theorem 1.2].

Recall that Br(Y) = 0 if Y is a connected projective smooth variety that is rational: this follows from

the well-known fact that the Brauer group is a stable birational invariant for connected projective smooth

varieties. The last statement follows from this observation. �

Lemma 3.1. Let p : X → Y denote a map of smooth schemes over k, so that it is Zariski locally trivial,

with fibers given by the scheme X satisfying the condition that the cycle map:

cycl : H2,1
M (X,Z/ℓn) → H2

et(X, µℓn(1))

is an isomorphism. Let U, V denote two Zariski open subschemes of Y so that X ×Y U ∼= U × X and

X ×Y V ∼= V ×X. Assume that the corresponding cycle maps

H2,1
M (X ×Y U,Z/ℓn) → H2

et(X ×Y U, µℓn(1)) and H2,1
M (X ×Y V,Z/ℓn) → H2

et(X ×Y V, µℓn(1))

are both isomorphisms and the cycle map

H2,1
M (X ×Y (U ∩V),Z/ℓn) → H2

et(X ×Y (U ∩V), µℓn(1))

is a monomorphism. Then the cycle map

H2,1
M (X ×Y (U ∪V),Z/ℓn) → H2

et(X ×Y (U ∪V), µℓn(1))

is an isomorphism.

Proof. For a subscheme W in Y, we will continue to let XW = X×YW. Now we consider the commutative

diagram with exact rows:

H1,1
M (XU,Z/ℓ

n)⊕H1,1
M (XV,Z/ℓ

n)
//

��

H1,1
M (XU∩V,Z/ℓ

n)
//

��

H2,1
M (XU∪V,Z/ℓ

n)

��

H1
et(XU, µℓn(1)) ⊕H1

et(XV, µℓn(1))
//
H1

et(XU∩V, µℓn(1))
//
H2

et(XU∪V, µℓn(1))
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//
H2,1

M (XU,Z/ℓ
n)⊕H2,1

M (XV,Z/ℓ
n)

��

//
H2,1

M (XU∩V,Z/ℓ
n)

��
//
H2

et(XU, µℓn(1)) ⊕H2,1
et (XV, µℓn(1))

//
H2

et(XU∩V, µℓn(1))

In view of the spectral sequence in (31) with j = 1, one may observe that the second vertical map is an

isomorphism. Therefore, Lemma 3.4(ii) applies to prove the required map is an isomorphism �

Proposition 3.2. Let p : X → Y denote a map of smooth schemes over k, satisfying the hypotheses of

Lemma 3.1. We will further assume the following: let Ui, i = 1, · · · ,n denote open subsets of Y, so that

the hypotheses of Lemma 3.1 holds with U, V denoting any two of these open sets. Assume further that

there exists an affine space AN so that each Ui
∼= AN and that each intersection Ui1 ∩Ui2

∼= Gm ×AN−1.

Then the following holds, where for a subscheme W in Y, we will let XW = X ×Y W, and cycl will denote

the higher cycle map:

(i) cycl : H2,1
M (X(U1∪···∪Un−1)∩Un

,Z/ℓn) → H2
et(X(U1∪···∪Un−1)∩Un

, µℓn(1)) is a monomorphism and

(ii) cycl : H2,1
M (X(U1∪···∪Un−1)∪Un

,Z/ℓn) → H2
et(X(U1∪···∪Un−1)∪Un

, µℓn(1)) is an isomorphism.

Proof. We will prove these using ascending induction on n. Observe that the case n = 2 is handled by

Lemma 3.3. We will first consider (i).

Assume next that (i) holds when Ui, i = 1, · · · , n are any open subsets of Y satisfying the hypotheses.

Let Ui, i = 1, · · · , n, n+1 be open subsets satisfying the hypotheses. Let W1 = (U1 ∪ · · · ∪Un−1)∩Un+1

and let W2 = Un ∩Un+1. Then we obtain the commutative diagram:

H1,1
M (XW1

,Z/ℓn)⊕H1,1
M (XW2

,Z/ℓn)
//

��

H1,1
M (XW1∩W2

,Z/ℓn)
//

��

H2,1
M (XW1∪W2

,Z/ℓn)

��

H1
et(XW1

, µℓn(1)) ⊕H1
et(XW2

, µℓn(1))
//
H1

et(XW1∩W2
, µℓn(1))

//
H2

et(XW1∪W2
, µℓn(1))

//
H2,1

M (XW1
,Z/ℓn)⊕H2,1

M (XW2
,Z/ℓn)

��

//
H2,1

M (XW1∩W2
,Z/ℓn)

��
//
H2

et(XW1
, µℓn(1)) ⊕H2,1

et (XW2
, µℓn(1))

//
H2

et(XW1∩W2
, µℓn(1))

Then the inductive assumption, together with Lemma 3.3 show the map H2,1
M (XW1

,Z/ℓn) → H2
et(XW1

, µℓn(1))

is a monomorphism while Lemma 3.3 shows the map H2,1
M (XW2

,Z/ℓn) → H2
et(XW2

, µℓn(1)) is a monomor-

phism. Observe that W1 ∪ W2 = (U1 ∪ · · · ∪ Un) ∩ Un+1. In view of the spectral sequence in (31)

with j = 1, one may observe that the first two vertical maps are isomorphisms. Therefore, now an

application of Lemma 3.4(i) then shows the cycle map H2,1
M (XW1∪W2

,Z/ℓn) → H2
et(XW1∪W2

, µℓn(1)) is a

monomorphism, thereby completing the proof of (i).

At this point (ii) follows readily from Lemma 3.1 by taking U = U1 ∪ · · · ∪ Un and V = Un+1 there.

Now observe that U ∩V = (U1 ∪ · · · ∪Un) ∩Un+1. (i) proved above shows that the cycle map

H2,1
M (X ×Y (U ∩V),Z/ℓn) → H2

et(X ×Y (U ∩V), µℓn(1))

is a monomorphism. The inductive assumption now shows that the cycle map

H2,1
M (X ×Y U,Z/ℓn) → H2

et(X ×Y U, µℓn(1))

is an isomorphism. Therefore, the hypotheses of Lemma 3.1 are satisfied, so that Lemma 3.1 applies to

complete the proof of (ii). �
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Lemma 3.3. Assume that X is a smooth scheme so that the cycle map

cycl : Hi,1
M (X,Z/ℓn) → Hi

et(X, µℓn(1))

is an isomorphism for all 0 ≤ i ≤ 2. Then the induced cycle map Hi,1
M (X×Gm,Z/ℓ

n) → Hi
et(X×Gm, µℓn(1))

is injective for for all 0 ≤ i ≤ 2.

Proof. In view of the observation (31) above, the above cycle map is an isomorphism for i = 0 or i = 1.

Therefore, it suffices to consider the case i = 2. This follows from the commutative diagram of localization

sequences:

H2,1
X×{0},M(X× A1,Z/ℓn)

//

��

H2,1
M (X×A1,Z/ℓn)

//

��

H2,1
M (X×Gm,Z/ℓ

n)

��

H2
X×{0},et(X× A1, µℓn(1))

//
H2

et(X× A1, µℓn(1))
//
H2

et(X×Gm, µℓn(1))

//
H3,1

X×{0},M(X× A1,Z/ℓn)

��

//
H3,1

M (X× A1,Z/ℓn)

��
//
H3

X×{0},et(X× A1, µℓn(1))
//
H3

et(X× A1, µℓn(1))

The map H3,1
X×{0},M(X× A1,Z/ℓn) → H3

X×{0},et(X× A1, µℓn(1)) identifies with the map

H1,0
M (X× {0},Z/ℓn) → H1

et(X× {0}, µℓn(0))

and H1,0
M (X×{0},Z/ℓn) ∼= CH0(X×{0},Z/ℓn;−1) ∼= 0. Therefore this map is clearly injective. The map

H2,1
X×{0},M(X×A1,Z/ℓn) → H2

X×{0},et(X× A1, µℓn(1)) identifies with the map

H0,0
M (X× {0},Z/ℓn) → H0

et(X× {0}, µℓn(0))

which is also an isomorphism. Now the required assertion follows from the following lemma. �

Lemma 3.4. Consider the commutative diagram

A′
f ′

//

α
��

B′
g′

//

β
��

C ′
h′

//

γ

��

D′ //

δ
��

E′

η

��

A
f

//
B

g
//
C

h //
D

//
E

with exact rows. Then the following hold:

(i) If α and β are isomorphisms and δ is a monomorphism, then the map γ is also a monomorphism.

(ii) If α is an epimorphism and η is a monomorphism, then

kernel(β) → kernel(γ) → kernel(δ) → cokernel(β) → cokernel(γ) → cokernel(δ)

is exact. In particular, if α is an epimorphism, η is a monomorphism and both β and δ are

isomorphisms, then so is γ.

Proof. The proof of the first statement is a straight-forward diagram-chase, making strong use of the

fact α and β are isomorphisms and δ is a monomorphism. Here is a an outline of a proof. Let c′ǫC ′

be such that γ(c′) = 0. Then δ(h′(c′)) = h(γ(c′)) = 0. As δ is assumed to be a monomorphism, it

follows h′(c′) = 0. By the exactness of the top row, there exists a b′ǫB′ so that g′(b′) = c′. Now

g(β(b′)) = γ(g′(b′)) = γ(c′) = 0, so that there exists an aǫA so that f(a) = β(b′). But as both α and

β are isomorphism, there exists an a′ǫA′ so that α(a′) = a and f ′(a′) = b′. But, then by the exactness
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of the top row, c′ = g′(b′) = g′(f ′(a′)) = 0. Thus γ must be a monomorphism, which proves the first

statement. The second statement is a variant of the Snake Lemma: see, [Iver, Snake Lemma 1.6]. �

We next recall the definition of the torsion index of connected linear algebraic groups from [Tot05,

section 1]. (Observe that since we assume the base field is separably closed, all linear algebraic groups we

consider are split.) Let H denote a fixed connected linear algebraic group with a chosen Borel subgroup

B and a chosen maximal torus T ⊆ B. Let N denote the dimension of H/B. For a linear algebraic group

G, we will let BGgm denote BGgm,m, for some m >> 0.

Next consider the diagram H/B → BBgm f
→BHgm, where f denotes the obvious map induced by

the inclusion B ⊆ H. Observe that BBgm ≃ BTgm, where ≃ denotes a weak-equivalence in the motivic

homotopy category. Then there exists a class aǫCHN(BBgm,Z/ℓn)(∼= H2N,N
M (BBgm,Z/ℓn)) so that f∗(a) =

t(H) ∈ CH0(BHgm,Z/ℓn) ∼= Z/ℓn. The class t(H) is the torsion index of H.

Next we consider the following diagram that commutes when the top and bottom rows denote maps

going in the same direction:

(33) H∗,•
M (BBgm,Z/ℓn)

f∗
//

cycl∼=
��

H∗,•
M (BHgm,Z/ℓn)

f∗

oo

cycl

��

H∗
et(BB

gm, µℓn(•))
f̄∗

//
H∗

et(BH
gm, µℓn(•))

f̄∗

oo

In view of the fact that the cycle map is an isomorphism in the left column, and since the cycle map

H0,0
M (BHgm,Z/ℓn) → H0

et(BH
gm, µℓn(0)) ∼= Z/ℓn is also an isomorphism, one may define the torsion index

similarly by starting with ā = cycl(a).

Proposition 3.5. (See [Tot05, section 1].) The kernel and cokernel of the cycle map

cycl : H∗,•
M (BHgm,Z/ℓn) → H∗

et(BH
gm, µℓn),

as well as the kernel of the restriction map

f∗ : H∗,•
M (BHgm,Z/ℓn) → H∗,•

M (BBgm,Z/ℓn)

are killed by t(H).

Proof. Define a map α : CHi(BBgm,Z/ℓn) ∼= H2i,i
M (BBgm,Z/ℓn) → CHi(BHgm,Z/ℓn) ∼= H2i,i

M (BBgm,Z/ℓn)

by α(x) = f∗(a.x). Then, α(f∗(x)) = f∗(a.f
∗(x)) = f∗(a).x = t(H).x . As BTgm identifies with BBgm,

the map f∗ identifies with the restriction homomorphism res : H∗,•
M (BHgm,Z/ℓn) → H∗,•

M (BTgm,Z/ℓn),

thereby proving that its kernel is killed by the class t(H). In view of the fact that cycle map forming the

left vertical map in (33) is an isomorphism, it follows that the kernel of the cycle map

(34) cycl : H∗,•
M (BHgm,Z/ℓn) → H∗

et(BH
gm, µℓn(•))

is contained in the kernel of f∗, and hence is killed by the class t(H).

We next show the cokernel of the cycle map in (34) is also killed by the class t(H). Therefore, let

x̄ ∈ H∗
et(BH

gm, µℓn(•)) denote a class. Then

t(H).x̄ = f̄∗(cycl(a).̄f
∗(x̄ )) = f̄∗(cycl(y)) = cycl(f̄∗(y))

for some class y ∈ H∗,•
M (BBgm,Z/ℓn). This shows the cokernel of the cycle map in (34) is also killed by

the class t(H), thereby completing the proof of the Proposition. �
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4. Examples

In this section, we discuss various examples making use of the techniques developed in the last section.

We remind the reader that the base field k is assumed to be separably closed, throughout.

Example 4.1. The Brauer groups of the classifying spaces of connected linear algebraic groups.

Theorem 4.2. Let H denote a connected linear algebraic group over k. Then Br(BH)ℓn = 0 for any ℓ

relatively prime to the torsion index t(H).

Proof. First we invoke Theorem 1.4 to obtain the isomorphism Br(BH)ℓn ∼= Br(BHgm,m), m >> 0. Next

we invoke Theorem 1.5(iii), after identifying EGgm,m×G (G×HX) with EHgm,m×HX, (with X = Spec k)

where G is a bigger group, and containing H as a closed subgroup. �

As examples, the torsion index for GLn and SLn are both 1. The torsion index for Sp2n and Sp2n+1

are powers of 2, and the same holds for the orthogonal groups. The torsion indices for other classical

groups are divisible only by the primes 2, 3, 5. See [Bor] for more details.

Example 4.3. The Brauer group of the moduli stack of elliptic curves. Then we obtain the following

result, which is a restatement of Theorem 1.10.

Theorem 4.4. Let M1,1 denote the moduli stack of elliptic curves over the base field k. Assume that

char(k) 6= 2, 3 and ℓ is a prime different from char(k). Then Br(M1,1)ℓn = 0.

Proof. We observe from [Ols, Proposition 28.6] or [Hart77, Chapter IV section 4] that the stack M1,1 =

[Y/Gm], where Y is the scheme Spec k[g2, g3][1/∆] ⊆ A2
k, where ∆ = g32 − 27g23 . The action of Gm is

given by g2 7→ u4g2, g3 7→ u6g3, u ∈ Gm.

Though Y being open in A2 is rational, it is not projective and therefore it takes a bit of effort to show

that Br(Y)ℓn = 0 for any ℓ 6= char(k). Once that is done, Theorem 1.4 and Theorem 1.5(i) with G = Gm

proves the triviality of the ℓn-torsion part of the Brauer group of the quotient stack [Y/Gm].

For the remainder of the proof, we will let x = g2, y = g3 and ∆̃ = Spec k[x, y]/(x3 − 27y2). We begin

with the commutative diagram of localization sequences:

//
H2,1

M,∆̃
(A2,Z/ℓn)

//

��

H2,1
M (A2,Z/ℓn)

//

��

H2,1
M (A2 − ∆̃,Z/ℓn)

��

//
H3,1

M,∆̃
(A2,Z/ℓn)

��

//

//
H2

et,∆̃
(A2, µℓn(1))

//
H2

et(A
2, µℓn(1))

//
H2

et(A
2 − ∆̃, µℓn(1))

//
H3

et,∆̃
(A2, µℓn(1))

//

Using the identification H3,1

M,∆̃
(A2,Z/ℓn) ∼= CH1,−1

∆̃
(A2,Z/ℓn), one sees that this term is trivial. Moreover,

one observes that

H2,1
M (A2,Z/ℓn) ∼= H2

et(A
2, µℓn(1)) ∼= 0.

In view of the commutative diagram above, therefore, now it suffices to show that H3
et,∆̃

(A2, µℓn(1)) is

trivial. For this, we consider the long-exact sequence:

(35)
//
H3

et,{0}(A
2, µℓn(1))

//
H3

et,∆̃
(A2, µℓn(1))

//
H3

et,∆̃−{0}
(A2 − {0}, µℓn(1))

α //
H4

et,{0}(A
2, µℓn(1))

//
H4

et,∆̃
(A2, µℓn(1))

//

Observe that curve corresponding to ∆ has an isolated singularity at the origin, which can be resolved

by taking the normalization as follows. Observe that ∆ corresponds to the plane curve with equation :
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(x/3)3 = y2. Therefore, we substitute (x/3) = t2 and y = t3, so that A = k[x, y]/((x3 − 27y2) ∼= k[t2, t3]

with function field k(t). This is because 1/t = t2/t3 = (x/3)/y = x/(3y). But k[t] is a unique factorization

domain, so is already integrally closed. Therefore, the integral closure of A in k(t) is k[t] = k[3y/x], which

corresponds to the affine line A1. This proves that the normalization of the curve ∆̃ is the affine line A1

and the normalization maps A1 − {0} isomorphically to the curve ∆̃ − {0}. Thus ∆̃ − {0} ∼= Gm and

therefore,

H3
et,∆̃−{0}

(A2 − {0}, µℓn(1)) = H3
et,Gm

(A2 − {0}, µℓn(1)) ∼= H1
et(Gm, µℓn(0)) ∼= Z/ℓn and

H4
et,{0}(A

2, µℓn(1)) ∼= Z/ℓn.

Observe that since the codimension of {0} in A2 is 2, H3
et,{0}(A

2, µℓn(1)) is trivial. Therefore, the long-

exact sequence (35) will show that

H3
et,∆̃

(A2, µℓn(1)) ∼= 0,

provided that H4
et,∆̃

(A2, µℓn(1)) ∼= 0, so that the map denoted α in (35) is an isomorphism. For this, we

consider the long-exact sequence:

(36)
//
H3

et(A
2 − ∆̃, µℓn(1))

//
H4

et,∆̃
(A2, µℓn(1))

//
H4

et(A
2, µℓn(1))

//

Since H4
et(A

2, µℓn(1)) ∼= 0, it suffices to show H3
et(A

2 − ∆̃, µℓn(1)) ∼= 0. For this observe that

H3
et(A

2 − ∆̃, µℓn(1)) ∼= H3
et((A

2 − {0}) − (∆̃− {0}), µℓn(1)) ∼= H3
et(A

2 − A1, µℓn(1)),

where the last isomorphism follows from the observation made earlier that the normalization of ∆̃ is the

affine line A1. Finally, the long-exact sequence

(37)
//
H3

et(A
2, µℓn(1))

//
H3

et(A
2 − A1, µℓn(1))

//
H4

et,A1(A
2, µℓn(1))

//

together with the isomorphism H4
et,A1(A

2, µℓn(1)) ∼= H2
et(A

1, µℓn(0)) ∼= 0 shows that H3
et(A

2− ∆̃, µℓn(1)) ∼=

H3
et(A

2 − A1, µℓn(1)) ∼= 0. This completes the proof of the theorem. �

Remark 4.5. Observe that our proof is much shorter and also works under the more general assumption

that the base field is only separably closed than the proof in [AM]. However, we require that the charac-

teristic of the base field be different from both 2 and 3 so that it is possible to identify M1,1 with [Y/Gm].

See also [Shi], who shows the Brauer group of M1,1 over an algebraically closed field of characteristic 2,

is Z/2.

Example 4.6. Further examples of moduli stacks of principal bundles. Here we consider the following

additional examples supplementing the discussion in Theorem 1.9. We recall the somewhat conjectural

formula for the (Voevodsky-)motive of the moduli stack Bunn,d(C) of rank n, degree d vector bundles on

a smooth projective curve C, with a k-rational point, as in [HL, Conjectures 1.3, 3.9]:

(38) M(Bunn,d(C)) = M(Picd(C))⊗M(BGgm
m )⊗⊗n−1

i=1 Z(C,Z(i)[2i])

where Z(C,Z(i)[2i]) = ⊕∞
j=0M(C(j)) ⊗ Z(ij)[2ij] and where ⊗ denotes the tensor product in the category

of motives. (Recall this corresponds to the product of schemes.) Here C(n) denotes the n-fold symmetric

power of the given curve. When L is a fixed line bundle on the curve C, BunLn,d will denote the moduli

stack of rank n, degree d vector bundles on C, with determinant isomorphic to L. Then, it is shown in

[HL] that (38) specializes to

(39) M(BunLn,d(C)) = M(BGgm
m )⊗⊗n−1

i=1 Z(C,Z(i)[2i]).
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Similarly, the formula in (38) specializes to give the following formula for the moduli stack of principal

SLn-bundles over C:

(40) M(BunSLn(C)) = ⊗n−1
i=1 Z(C,Z(i)[2i]).

Theorem 4.7. Assuming the above formulae for the motives of the above moduli stacks, and for a fixed

prime ℓ 6= char(k), we obtain the following:

Br(Bunn,d(C))ℓn ∼= ⊕∞
j1,··· ,jn−1=0Br(Pic

d(C)×C(j1) × · · ·C(jn−1))ℓn ,(41)

Br(BunLn,d(C))ℓn
∼= ⊕∞

j1,···jn−1=0Br(C
(j1) × · · ·C(jn−1))ℓn , and

Br(BunSLn(C))ℓn
∼= ⊕∞

j1,···jn−1=0Br(C
(j1) × · · ·C(jn−1))ℓn

Proof. The observation that BGgm
m = lim

n→∞
Pn, and the fact that each Pn is a projective smooth linear

scheme, shows that the Kunneth formula holds for the (usual) Chow groups of BGgm
m ×Y for any smooth

scheme Y: see [J01, Theorem 4.5, Corollary 4.6]. The corresponding statement also holds for étale

cohomology. Moreover, the cycle map is an isomorphism for BGgm
m . Therefore, the BGgm

m drops out

of the Brauer groups. Similarly, the factor Z(ij)[2ij] corresponds to the motive of a point shifted and

Tate-twisted. Therefore, it also drops out of the Brauer groups resulting in the formulae above. �

5. Brauer groups of GIT quotients: Proofs of Theorem 1.11 through 1.13

Proof of Theorem 1.11

First observe that the existence of the long-exact sequences (7) and (8) is purely formal. Therefore,

what needs to be shown is the surjectivity statements in (9). The reason one often restricts to X projective

(and smooth) is to ensure that various limits exits for actions of 1-parameter subgroups. It is shown in

[BJ12, Proposition 3.3, Theorem 3.4] that the required limits all exist in the case of quiver moduli.

Therefore, with this observation the proof of the theorem discussed below, applies to both the cases, that

is, where X is a smooth projective scheme and where X denotes the affine space of representations of a

fixed quiver Q with a fixed dimension vector d.

We first observe the existence of the long exact sequences:

(42) · · · → H2,1
G,X−U,M(X,Z/ℓn) → H2,1

G,M(X,Z/ℓn) → H2,1
G,M(U,Z/ℓn) → H3,1

G,X−U,M(X,Z/ℓn) → · · · ,

(43) · · · → H2
G,X−U,et(X, µℓn(1)) → H2

G,et(X, µℓn(1)) → H2
G,et(U, µℓn(1)) → H3

G,X−U,et(X, µℓn(1)) → · · · .

Under the identification of motivic cohomology with the higher Chow groups, the first long exact sequence

corresponds to the following long exact sequence:

(44) · · · → CH1−c
G (X−U, 0,Z/ℓn) → CH1

G(X, 0,Z/ℓ
n) → CH1

G(U, 0,Z/ℓ
n) → 0,

where c denotes the codimension of X−U in X, with

H2,1
G,M(X,Z/ℓn) ∼= CH1

G(X, 0,Z/ℓ
n) and H2,1

G,M(U,Z/ℓn) ∼= CH1
G(U, 0,Z/ℓ

n).

Therefore, the map

H2,1
G,M(X,Z/ℓn) → H2,1

G,M(U,Z/ℓn)

is always surjective irrespective of the codimension of X−U in X.
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Next we consider the proof of the theorem under the hypothesis in (a). Now it suffices to prove that

H3
G,X−U,et(X, µℓn(1)) ∼= 0

in case codimX(X − U) ≥ 2. This is proved in [J20, Lemma 6.1]. We will nevertheless sketch a proof

for the convenience of the reader. Since the base field is assumed to be perfect, one may find an open

sub-variety X0 of X so that Y0 = (X − U) ∩ X0 is smooth and nonempty. Now one has a long-exact

sequence in étale cohomology:

(45) · · · → Hj
Y1,et

(X, µℓn(1)) → Hj
Y,et(X, µℓn(1)) → Hj

Y0,et
(X0, µℓn(1)) → Hj+1

Y1,et
(X, µℓn(1)) → · · · ,

where Y = X − U, Y1 = Y − Y0. We may also assume without loss of generality that Y is irreducible.

Then

Hj
Y0,et

(X0, µℓn(1)) = H
j−2codimX0

(Y0)
et (Y0, µℓn(0)), if codimX0

(Y0) = 2(46)

= 0, otherwise,

by Poincaré duality in étale cohomology. Since we are working with mod-µℓn-coefficients, with ℓ 6=

char(k), the above groups are trivial for j − 2codimX0
(Y0) < 0, in particular for j = 3.

Since Y1 is of dimension strictly less than the dimension of Y, an ascending induction on the dimension

of Y enables one to assume Hj
Y1,et

(X, µℓn(1)) = 0 for all j < 2codimX(Y1). (One may start the induction

when dim(Y) = 0, since in that case Y is smooth.) Since codimX(Y) < codimX(Y1), the long exact

sequence in (45) now proves Hj
Y,et(X, µℓn(1)) = 0 for all j < 2codimX(Y). This completes the proof of

the theorem, under the hypothesis (a).

Next we will consider the proof of the theorem, under the hypothesis (b). In case codimX(X−Xss) ≥ 2,

we are in the situation already considered under the hypothesis (a) discussed in (a). Therefore, if

the highest dimensional strata in X − Xss have codimension 2 or higher, the conclusion follows. Let

{Sβo
|βo ∈ Bo} denote the strata in X − Xss of the highest dimension, which we may assume are all of

codimension 1. In case there are any remaining strata in X that are still unaccounted for, they are

contained in X− (Xss ∪⊔βo
Sβo

), so that the codimension of X− (Xss ∪⊔βo∈Bo
Sβo

) in X is at least 2: this

shows that the restriction map

H2
G,et(X, µℓn(1)) → H2

G,et(X
ss ∪ ⊔βo∈Bo

Sβo
, µℓn(1))

is surjective. In this case, let Xo = Xss ∪ ⊔βo∈Bo
Sβo

. Therefore, it suffices to show that the restriction

map

(47) H2
G,et(X

ss ∪ ⊔βoinBo
Sβo

, µℓn(1)) → H2
G,et(X

ss, µℓn(1))

is a surjection. In view of the long-exact sequence (43), now it suffices to show the map

H3
G,Xo−Xss,et(X

o, µℓν (1)) → H3
G,et(X

o, µℓν (1))

is injective. In view of the isomorphism

H3
G,Xo−Xss,et(X

o, µℓn(1)) ∼= ⊕βo
H1

G,et(Sβo
, µℓn(0)),

now it suffices to show that the composite map

H1
G,et(Sβo

, µℓn(0)) → H3
G,et(X

o, µℓn(1)) → H3
G,et(Sβo

, µℓn(1))

is injective, where the last map is the obvious restrictions to the stratum Sβo
. Moreover, the composite

map is multiplication by the equivariant Euler class of the normal bundle to the imbedding of the stratum

Sβo
in Xo.
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Now we recall from the introduction the following: let Yβo
denote a locally closed subscheme of Sβo

so

that it is stabilized by a parabolic subgroup Pβo
, with Levi factor Lβo

. Moreover, then Sβo
∼= G ×

Pβo

Yss
βo
,

and there is a scheme Zβo
with an Lβo

-action and an Lβo
-equivariant Zariski-locally trivial surjection

Yss
βo

→ Zss
βo

whose fibers are affine spaces. Moreover, Zβo
is a smooth locally closed Lβo

-stable subscheme

of X, so that it is a union of connected components of the fixed point scheme XTβo , where Tβo
is a

subtorus of G with centralizer Lβo
. (Here we need the assumption that the linearized action by G is

manageable as in [ADK, Theorem 4.7]: recall that this hypothesis always holds in characteristic 0.)

Then we also obtain the isomorphisms:

Hi
G,et(Sβo

, µℓn(j)) ∼= Hi
G,et(G×Pβo

Yss
βo
, µℓn(j))(48)

∼= Hi
Pβo ,et

(Yss
βo
, µℓn(j))

∼= Hi
Lβo ,et

(Zss
βo
, µℓn(j))

By a criterion of Atiyah and Bott (see [AB83, 1.4]), it suffices to show that the equivariant Euler class

of the normal bundle Nβo
to Sβo

in X is not a zero divisor in H∗
G,et(Sβo

, µℓn(•)). Under the above

isomorphisms, the equivariant Euler class of Nβo
identifies with that of the restriction Nβo

|Zss
βo
. But that

restriction is a quotient of the normal bundle N′
βo

to Zss
βo

in X, and the action of Tβo
on each fiber of N′

βo

has no non-zero fixed vector. By Lemma 5.1 below, it follows that the equivariant Euler class of N′
βo

is

not a zero divisor in H∗
Lβo

(Zss
βo
, µℓn(•)); thus, the same holds for the equivariant Euler class of Nβo

. The

condition on the order of the Weyl groups Wβo
is used in showing that the equivariant cohomology with

respect to Lβo
injects into the corresponding equivariant cohomology with respect to a maximal torus in

Lβo
, so that the hypotheses of Lemma 5.1 are satisfied.

This completes the proof that the map in (47) is a surjection and hence the proof of the theorem. �

Lemma 5.1. Let L be a linear algebraic group, Z an L-variety, and N an L-linearized vector bundle on

Z. Assume that a subtorus T of L acts trivially on Z and fixes no non-zero vectors in each fiber of N.

Then the equivariant Euler class of N is not a zero divisor in H∗
L,et(Z, µℓn(•)) provided |WL| is prime to

ℓ, where WL is the Weyl group associated to a maximal torus in L.

Proof. We adapt the argument of [AB83, 13.4]. Choose a maximal torus TL of L containing T. Then the

natural map H∗
L,et(Z, µℓn(•)) → H∗

TL
(Z, µℓn(•)) is injective as shown in Proposition 5.2 below. Thus, we

may replace L with TL, and assume that L is a torus. Now L ∼= T×T′ for some subtorus T′ of L. Therefore,

H∗
L,et(Z, µℓn(•)) ∼= H∗

et(BT, µℓn(•))⊗H∗
T′,et(Z, µℓn(•)), since T fixes Z point-wise. Moreover, N decomposes

as a direct sum of L-linearized vector bundles Nχ on which T acts via a non-zero character χ. Thus, we

may further assume that N = Nχ. Then the equivariant Euler class of N satisfies cLd (N) =
∏d

i=1(χ+αi),

where d denotes the rank of N, and αi its T′-equivariant Chern roots. This is a non-zero divisor in

H∗(BT, µℓn(•))⊗H∗
T′,et(Z, µℓn(•)) since χ 6= 0. �

Proposition 5.2. Let L denote a linear algebraic group with T denoting a maximal torus in L and with

W denoting the Weyl group of L. Let ℓ denote a fixed prime different from char(k). Let Y denote a

smooth scheme over k provided with an action by L. Then, if |W| is prime to ℓ, the restriction map

H∗
L,et(Y, µℓn(•)) → H∗

T,et(Y, µℓn(•))

is a split monomorphisms.
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Proof. Though this is discussed in [CJ20], we will briefly recall the proof here. We obtain the identifica-

tions:

H∗
L,et(Y, µℓn(•)) ∼= H∗

et(EL
gm,m ×L Y, µℓn(•)) and

H∗
T,et(Y, µℓn(•)) ∼= H∗

et(EL
gm,m ×L (L×T Y), µℓn(•)) ∼= H∗

et(EL
gm,m ×L (L/T×Y), µℓn(•)).

The last identification comes from the fact that since L acts on Y, there is a natural map L×TY → L/T×Y

that is an isomorphism compatible with action by L. Therefore, the transfer for L/T now provides the

required splitting to the map induced by the projection of L/T → Spec k. This proves the proposition. �

Proof of Theorem 1.12. A key point is to observe the commutative square:

(49) H2,1
G,M(X,Z/ℓn)

//

cycl

��

H2,1
G,M(Xss,Z/ℓn)

cycl

��

H2
G,et(X, µℓn(1))

//
H2

G,et(X
ss, µℓn(1)).

Under the assumptions of the Theorem, both the horizontal maps are surjections as shown by Theo-

rem 1.11. The left vertical map is an isomorphism as shown by Theorem 1.5(ii). Now the commutativity

of the above square shows the last vertical map is also a surjection, which proves the Theorem. �

Proof of Theorem 1.13.

The first observation is that, Br(X//G)ℓn = Br(Xs/G)ℓn ∼= BrG(X
s)ℓn under the hypotheses of the

corollary. Observe that the last isomorphism holds in view of the assumption that ℓ is prime to the

orders of the stabilizer groups at all points in Xs. This then readily proves the theorem under the first

hypothesis.

Next we assume that the second hypothesis in the theorem holds. Now one needs to observe that for any

finite degree approximation EGgm,m to EG, dim(EGgm,m ×G (Xss −Xs) = dim(BGgm,m) + dim(Xss −Xs)

while dim(EGgm,m ×G (Xss) = dim(BGgm,m) + dim(Xss) so that codimEGgm,m×G(Xss)(EG
gm,m ×G (Xss −

Xs)) ≥ 2. Therefore, in the long exact sequence

· · · → H2
et,G,Xss−Xs(Xss, µℓν (1)) → H2

et,G(X
ss, µℓν (1)) → H2

et,G(X
s, µℓν (1)) → H3

et,G,Xss−Xs(Xss, µℓν (1)) → · · ·

the end terms are trivial. This provides the isomorphism:

(50) H2
et,G(X

ss, µℓν (1))
∼=
→H2

et,G(X
s, µℓν (1)).

Next, one considers the commutative diagram:

0
//
Pic(EGgm,m×

G
Xss)/ℓn

��

//
H2

et(EG
gm,m×

G
Xss, µℓn(1))

//

��

Br(EGgm,m×
G
Xss)ℓn

//

��

0

0
//
Pic(EGgm,m×

G
Xs)/ℓn

//
H2

et(EG
gm,m×

G
Xs, µℓn(1))

//
Br(EGgm,m×

G
Xs)ℓn

//
0.

In view of the isomorphism in (50), a five Lemma argument readily shows that the last vertical map is

also surjective. Therefore, it follows that the triviality of BrG(X
ss)ℓn = Br(EGgm,m×

G
Xss)ℓn implies the

triviality of Br(EGgm,m×
G
Xs)ℓn ∼= BrG(X

s)ℓn ∼= Br(X//G)ℓn , thereby completing the proof of (ii). This

completes the proof. �
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6. Examples

The next class of examples we consider will be the Brauer groups of various GIT-quotients. Throughout,

we will assume the base field is algebraically closed.

Example 6.1. The first example we consider, in this context is that of a product of Grassmannians:

X =

m
∏

i=1

Gr(ri,n), L = ⊠
m
i=1OGr(ri,n)(ai)

where Gr(ri, n) denotes the Grassmannian of ri-dimensional linear subspaces of projective n-space, and

OGr(ri,n)(ai) denotes the ai-th power of the line bundle associated with the Plücker embedding; here

G = SLn+1 as in [Do03, 11.1] and r1, . . . , rm < n, a1, . . . , am are positive integers, with G acting diagonally

on X. Xss = Xs for general values of a1, . . . , am, that is if Σm
i=1ai(ri+1) and n+1 are relatively prime: see

[Do03, Section 11.1]. The geometric quotient X//G is called the space of stable configurations; examples

include moduli spaces of m ordered points in Pn.

One can readily see from [J01, Theorem 1.2] that the cycle map is an isomorphism for the product

of Grassmannians, so that Theorem 1.5(i) applies. One may conclude that BrG(X
ss)ℓn = 0 where ℓ is a

sufficiently large prime satisfying the above hypothesis. Similarly, under the assumption that Xss = Xs

and ℓ is prime to the orders of the stabilizers at points in Xs, one also concludes that BrG(X
s)ℓn ∼=

Br(X//G)ℓn = 0.

We continue to consider the various examples discussed in [Do03, 11.1], which will provide examples

that meet the hypotheses of Theorem 1.13.

(i) Take n = 2, each ri = 0 and each ai = 1. In this case a point (p1, · · · , pm) is semi-stable if and only

if no point is repeated more than m/3-times and no more than 2m/3 points are on a line. In this

case, Xss = Xs if 3 does not divide m. (This is example 11.2 in [Do03].)

(ii) Take n = 2, m = 6, each ri = 0 and each ai = 1. Then it is shown in the same example worked out

in [Do03] that dim(Xss/G) = 4, so that dim(Xss) ≥ 4 + dim(G), and that dim(Xss/G−Xs/G) = 1,

so that dim(Xss−Xs) ≤ 1+dim(G). Thus in this case codimXss(Xss−Xs) ≥ 2 and Xs is non-empty.

(iii) Take n = 3, each ri = 1 and each ai = 1. Then we are considering sequences (ℓ1, · · · , ℓm) of lines in

P3. The it is shown that Xs is empty if m ≤ 4. If m = 4, it is shown that the dimension of Xss is

at least 2. (In fact what is shown there is that the dimension of Xss/G ≥ 2, but this clearly implies

that the dimension of Xss is also at least 2.) Therefore, in this case, dim(Xs) = 0 (as Xs is empty)

and dim(Xss −Xs) = dim(Xss) ≥ 2.

Example 6.2. The next example we consider is that of Quiver moduli. A quiver Q is a finite directed

graph, possibly with oriented cycles. That is, Q is given by a finite set of vertices I (often also denoted

Q0) and a finite set of arrows Q1. The arrows will be denoted by α : i → j. We will denote by ZI the

free abelian group generated by I; the basis consisting of elements of I will be denoted by I. An element

d ∈ ZI will be written as d =
∑

i∈I di i.

Let Mod(FQ) denote the abelian category of finite-dimensional representations of Q over the finite

field F (or, equivalently, finite-dimensional representations of the path algebra FQ). Its objects are thus

given by tuples

(51) M =
(

(Mi)i∈I, (Mα : Mi → Mj)α:i→j

)

of finite-dimensional F-vector spaces and F-linear maps between them.
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The dimension vector dim(M) ∈ NI is defined as dim(M) =
∑

i∈I dimF(Mi) i. The dimension of M

will be defined to be
∑

i∈I dimF(Mi), i.e. the sum of the dimensions of the F-vector spaces Mi. This will

be denoted dim(M).

We denote by HomFQ(M,N) the F-vector space of homomorphisms between two representations

M,N ∈ Mod(FQ).

We will fix a quiver Q and a dimension vector d =
∑

i di i, and consider the affine space

X = R(Q,d) :=
⊕

α:i→j

HomF(F
di ,Fdj).

Its points M = (Mα)α obviously parametrize representations of Q with dimension vector d. (Strictly

speaking only the F-rational points of X define such representations; in general, a point of X over a field

extension k of F will define only a representation of Q over k with dimension vector d. We will however,

ignore this issue for the most part.)

The connected reductive algebraic group

G(Q,d) :=
∏

i∈I

GL(di)

acts on R(Q,d) via base change:
(

(gi) · (Mα)
)

α
= (gjMαg

−1
i )α:i→j.

By definition, the orbits G(Q,d) ·M in R(Q,d) correspond bijectively to the isomorphism classes [M] of

F-representations of Q of dimension vector d. We will set for simplicity G := G(Q,d) and X := R(Q,d).

For any F̄-rational point M of X, the stabilizer GM = AutF̄Q(M) is smooth and connected, since it is

open in the affine space EndF̄Q(M). Also, note that the subgroup of G consisting of tuples (t iddi)i∈I ,

t ∈ Gm, is a central one-dimensional torus and acts trivially on X; moreover, the quotient PG(Q,d) by

that subgroup acts faithfully. So one may replace G henceforth by PG(Q,d).

One may choose a linear function Θ : ZI → Z and associate to it a character

χΘ((gi)i) :=
∏

i∈I

det(gi)
Θ(d)−dim(d)·Θ(i)

of PG(Q,d). For convenience, we will call Θ itself a character. (This adjustment of Θ by a suitable

multiple of the function dim : (di) 7→
∑

i di has the advantage that a fixed Θ can be used to formulate

stability for arbitrary dimension vectors, and not only those with Θ(d) = 0. However, this notation is a

bit different from the one adopted in [Kin94].)

Associated to each character Θ, we define the slope µ. This is the function defined by µ(d) = Θ(d)
dim(d) .

With this framework, one may invoke the usual definitions of geometric invariant theory to define the

semi-stable points and stable points. Observe that now a point x ∈ R(Q,d) will be semi-stable (stable)

precisely when there exists a G-invariant global section of some positive power of the above line bundle

that does not vanish at x (when, in addition, the orbit of x is closed in the semi-stable locus, and the

stabilizer at x is finite). Since all stabilizers are smooth and connected, the latter condition is equivalent

to the stabilizer being trivial.

The corresponding varieties of Θ-semi-stable and stable points with respect to the line bundle Lχ will

be denoted by

R(Q,d)ss = R(Q,d)Θ−ss = R(Q,d)Θ−ss

and

R(Q,d)s = R(Q,d)Θ−s = R(Q,d)Θ−s.
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These are open subvarieties of X, possibly empty. The corresponding quotient varieties will be denoted

as follows:

MΘ−s(Q,d) = R(Q,d)Θ−s/G and MΘ−ss(Q,d) = R(Q,d)Θ−ss//G = X//G.

Observe that the variety MΘ−s(Q,d) parametrizes isomorphism classes of Θ-stable representations of Q

with dimension vector d.

Proposition 6.3. When every Θ-semi-stable point is Θ-stable, or if

(52) codimR(Q,d)Θ−ss(R(Q,d)Θ−ss − R(Q,d)Θ−s) ≥ 2,

Br(MΘ−s(Q,d))ℓn = 0 for ℓ sufficiently large. In particular, the above conclusion holds if gcd({di|i}) = 1.

Proof. In this case, observe that X is the affine space R(Q,d). Therefore, Corollary 1.13 applies to prove

that Br(MΘ−s(Q,d))ℓn = 0 for ℓ sufficiently large, when every Θ-semi-stable point is Θ-stable or if the

hypothesis in (52) holds. Observe that if gcd({di|i}) = 1, then every Θ-semi-stable point is Θ-stable. �

Remark 6.4. Here is a comparison of our result above with the results of [RS, Theorem 4.2]. Note that

in [RS, Theorem 4.2], they consider the hypothesis:

(53) codimR(Q,d)Θ(R(Q,d)Θ −R(Q,d)Θ−s) ≥ 2.

Then they say that the dimension vector d is an amply stable dimension vector. This hypothesis is

clearly stronger than the hypothesis (52) when R(Q,d)Θ−ss is non-empty. For then, R(Q,d)Θ−ss being

an open subscheme of R(Q,d)Θ has the same dimension as R(Q,d)Θ, and R(Q,d)Θ−ss − R(Q,d)Θ−s ⊆

R(Q,d)Θ − R(Q,d)Θ−s. It is shown in [RS, Theorem 4.2], that Br(MΘ−s(Q,d)) is cyclic of order

gcd({di|i} under the assumption that the hypothesis in (53) holds. In particular, if gcd({di|i}) = 1,

then R(Q,d)Θ−ss = R(Q,d)Θ−s, but still [RS, Theorem 4.2] seems to require that the hypothesis (53)

holds, in order to conclude that Br(MΘ−s(Q,d)) = 0. Our result above shows that Br(MΘ−s(Q,d))ℓn = 0

if either gcd({di|i}) = 1 or the hypothesis (52) holds, and without assuming the stronger hypothesis in (53)

holds, provided ℓ is sufficiently large.

Next we consider the assumptions made in Theorems 1.12 and 1.13, on the codimension of the unstable

locus X − Xss in X and whether Xss = Xs. The first observation is that there are numerous classical

examples in GIT, where Xss = Xs, that is, every semi-stable point is stable: in addition to the examples

considered in Example (6.1), a well-known example is that of binary forms of odd degree. (See [New, p.

110].)

Next we consider the codimension of the unstable locus. It is important to point out that, in general,

this depends on the choice of the G-linearizing line-bundle and varies along with the variation of GIT-

quotients. The following example illustrates this well.

Example 6.5. Unstable loci in flag varieties: see [ST]. Let G denote a complex reductive or semi-simple

group with B a Borel subgroup. Let Ĝ denote a semi-simple subgroup of G acting on the flag variety

X = G/B. Let Λ denote the character lattice of a maximal torus T ⊆ B. Then the ample line bundles

on the flag variety X are given by the set of strictly dominant weights denoted Λ++. Observe that

Pic(X) = Λ. The Ĝ-ample cone CĜ(X)R in Pic(X)R is given by the line bundles that admit non-constant

invariants in their section rings.

One then obtains an explicit description of the associated unstable locus for a line bundle L in CĜ(X)R

as well as a combinatorial formula for its co-dimension. It is shown that the codimension is equal to 1
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on the regular boundary of the cone CĜ(X)R, and grows towards the interior in steps by 1, in a way that

the line bundles with unstable locus of codimension q form a convex polyhedral cone.
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des schémas, Lecture Notes in Math, 305, Springer-Verlag, (1973).
[Shi] M. Shin, The Brauer group of the moduli stack of elliptic curves over algebraically closed fields of characteristic

2, JPAA, 223, (2019), no. 5, 1966-1999.
[ST] H. Seppänen and V. Tsanov, Unstable Loci in flag varieties and variation of quotients, arXiv:1607.04231v3

[math.RT] 11 Jan 2018.
[Tot99] B. Totaro, The Chow ring of a classifying space, Algebraic K-theory (Seattle, WA, 1997), 249-281, Proc. Symposia

in Pure Math, 67, AMS, Providence, (1999).
[Tot05] B. Totaro, The torsion index of Spin groups, Duke M. J, 129, (2005), 249-290.
[Vis] A. Vistoli, On the Cohomology and Chow ring of the classifying space of PGLp, J. reine angew. Math., 610,

(2007), 181-227.
[Voev11] Vladimir Voevodsky: On Motivic Cohomology with Z/ℓ-coefficients, Ann. Math, 174, (2011), 401-438.
[Wang] J. Wang, Moduli stack of G-Bundles, Undergraduate thesis (Harvard, 2011), math.arXiv:1104.4828v1 [math.AG]

26 Apr 2011.

The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India

Email address: jniyer@imsc.res.in

Department of Mathematics, The Ohio State University, Columbus, Ohio, 43210, USA

Email address: joshua.1@math.osu.edu

http://arxiv.org/abs/1607.04231
http://arxiv.org/abs/1104.4828

	1. Introduction and the Main Results
	2. Equivariant Brauer groups vs. Brauer groups of quotient stacks: Proof of Theorem  1.4
	3. Brauer groups of algebraic stacks: Proofs of Theorems  1.5 through  1.9
	4. Examples
	5. Brauer groups of GIT quotients: Proofs of Theorem  1.11 through  1.13
	6. Examples
	References

