Assignment 1: Basics of Neutron Scattering

- 1. Define a thermal neutron. What are the properties of a thermal neutron that makes it attractive for studying condensed matter?
- 2. What are the sources of thermal neutrons?
- 3. Given the temperature of a moderator 330 K, where will the Maxwellian distribution for the thermal neutrons peak?
- 4. What is the justification for a nuclear potential to be a δ -function?
- 5. What do you understand by form factor in x-ray diffraction. Does it have a counterpart in neutron diffraction?
- 6. Define coherent and incoherent scattering length for thermal neutrons. What is the origin of coherent and incoherent scattering lengths in thermal neutrons?
- 7. For hydrogen b^+ is 1.04×10^{-14} m and b^- is -4.74×10^{-14} m (symbols with usual meaning) calculate σ_{coh} and σ_{incoh} for hydrogen.
- 8. What is the effect of temperature on the diffraction pattern with respect to a rigid lattice at $0 \, \text{K}$
- 9. Can we get an estimate of strain from a neutron diffraction pattern?
- 10. Do you anticipate any order in a liquid or in an amorphous solid or a glassy material?

Give brief answers