Problem 1:

Let $\lambda i=1 \AA$; Phonon $\mathrm{E}=33 \mathrm{~cm}^{-1}$
Find λf
Calculate Q, assuming the scattering angle $=90^{\circ}$

Problem 2:

Monochromator Cu (111); assume $\mathrm{a}=4 \AA$
Calculate the resolution $\mathrm{dE}_{\mathrm{i}} / \mathrm{E}_{\mathrm{i}}$ for (a) $\mathrm{E}_{\mathrm{i}}=20 \mathrm{meV}$ and (b) 80 meV
Analyser PG (002); assume c= $7 \AA$
Calculate the resolution $\mathrm{dE}_{f} / \mathrm{E}_{\mathrm{f}}$ for
(a) $\mathrm{E}_{\mathrm{f}}=20 \mathrm{meV}$ and (b) 80 meV

Problem 3:

Calculate the structure factors for
(a) diffraction $\mathrm{S}(\mathrm{G})$ and (b) one-phonon scattering $\mathrm{F}(\mathrm{Q})$, for NaCl , assume $\mathrm{b}_{\text {coh }}(\mathrm{Na})=2$ $\mathrm{fm}, \mathrm{b}_{\text {coh }}(\mathrm{Cl})=1 \mathrm{fm}$; for LA, TA, LO, TO phonons at $\mathrm{q}=(0.01,0,0)$, and $\mathrm{G}=(2,0,0)$, $(4,0,0),(1,1,1),(2,2,2)$
Hint: NaCl has face-centred cubic structure.

Problem 4:

Assume $g(E)$ in the range $E=0$ to 80 meV .
Calculate the typical range of Q. Assume $\left\langle u^{2}\right\rangle / 3=0.01 \AA 2$ along one direction Estimate relative contributions of one-phonon and multi-phonon intensity at the above calculated Q values.
Hint:one-phonon $2 W(Q)=Q^{2}<u^{2}>/ 3$
two-phonon $\sim\left(Q 2<u^{2}>/ 3\right) 2 / 2$! etc.

Problem 5:

Assume that the phonon frequency of hydrogen atom is 20 THz . Calculate the value of the wave-vector transfer Q for which the neutron inelastic scattering intensity for a polycrystalline sample will be the maximum at (a) 0 K , (b) 300 K , and (c) 1000 K . Calculate the mean-squared displacement $\left\langle u^{2}\right\rangle / 3=(n+1 / 2) \hbar /(\mathrm{mw})$ along one direction. Hint: Intensity is proportional to $Q^{2} \exp \left(-Q^{2}<u^{2}>/ 3\right)$.

Problem 6:

Assume jump diffusion of atoms in a solid, with average jump length of $3 \AA$, and average residence time of 10 ps . Estimate the range of momentum transfer Q and energy transfer E for measurement of quasi-elastic neutron scattering. What is the typical energy resolution required for the experiment?
Hint: Use the expression for a jump-diffusion model.

Problem 7:

In a molecular dynamics simulation, assume the starting position of an oxygen atom at origin. Calculate its starting velocity, assuming its initial kinetic energy of 600 K . Assume the direction of the velocity to be along x-axis. Estimate a reasonable time-step, assuming a typical vibrational frequency of 10 THz .
Find the position at time-step 1 and 2 . Assume a force $F=-k \mathbf{u}$.
Hint: The vibrational frequency $=(\mathrm{k} / \mathrm{m})^{1 / 2}$

Problem 8:

Assume jump diffusion of atoms in a solid, with average jump length of $3 \AA$, and average residence time of 10 ps at 600 K . Calculate the diffusion coefficient at 600 K .
Assume an activation energy for jumps of 0.5 eV .
Calculate the diffusion coefficient at (a) 900 K , and (b) 1200 K .

