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SYNOPSIS 

        An understanding of the phenomena of nucleation and interfacial properties is of 

importance in a number of areas of research in chemistry, physics, materials science and 

allied subjects [1-4]. Nucleation is a process of formation of a nucleus from a bulk phase and 

usually involves the crossing of a free energy barrier known as the nucleation energy barrier. 

The dynamics of this first order phase transition depends on the finite nucleation energy 

barrier and therefore, an understanding of the nucleation barrier and the investigation of the 

effect of various parameters on this barrier is a very important and interesting topic of 

research.  

     The theory developed originally by Becker,  Doring , Volmar , Farkas, and later modified 

by Zeldovich for the study of nucleation from vapor to liquid phase has been traditionally 

referred to as the classical nucleation theory (CNT) [5-8] based on the capillarity 

approximations which make the theory simple but introduce a considerable error in the 

results . Basic CNT has thus been modified and a number of improved theoretical techniques 

have been proposed from time to time to overcome this error  for investigating the problem of 

vapor to liquid homogeneous nucleation [9-15] and heterogeneous nucleation phenomenon 

on flat as well as spherically curved solid surfaces [ 16-23] .  

      In this work, the phenomena of vapor-liquid nucleation has been systematically 

investigated from the most specified homogeneous nucleation phenomena to the more 

general and natural heterogeneous nucleation on spherically curved surfaces of different 

sizes. The theory applied in this work is the density functional theory (DFT) along with a 

model exponential density profile (diffuse density at the interface) and model Helmholtz free 

energy density functional. The conventional CNT has been also presented in the framework 
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of the present density functional formalism but with the use of step like density profile and 

equilibrium interfacial energy for a planar interface of the bulk fluid interface.  

        Interfacial properties such as surface tension, inhomogeneous density profile, surface 

thickness etc. are of immense scientific as well as technological importance in connection 

with various phenomena and processes ranging from macroscopic to microscopic length 

scales. In particular, the interfaces play a crucial role in some of the very important 

phenomena such as nucleation and hence in the fabrication of nanostructured materials. 

Although the experiment can be performed for bulk sized system (i.e, for planar interface), in 

order to get an idea of the interfacial properties for small sized systems (i.e, for curved 

interfaces), theoretical predictions are of crucial importance.  

 The density functional theory (DFT) is found to be the most versatile theory among the 

different theories and simulations for the interfacial properties of a planar interface [2-4,24-

26] as well as spherically curved interface [27-31].   

          In the present work, the problem of interfacial properties have been addressed for both 

vapor-liquid planar interface as well as vapor-liquid droplet spherical interface using DFT 

along the lines of van der Waals and Cahn-Hilliard [32-33] density functional formalism for 

the inhomogeneous interface with the use of a model local Helmholtz free energy density for 

the two phase system and a model diffuse density profile at the interface. Analytical solutions 

to the problem of surface properties of planar as well as spherical interface have been derived 

here. The theory has been successfully applied to systems with model interaction potential as 

well as some real fluids such as water, heavy water and argon for a wide range of temperature 

ranging from the triple point to critical point. 

        The present work has also provided a simple way of evaluation of the size-dependent 

surface tension and temperature density (T-ρ) curve for the liquid droplet-vapor equilibrium 
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analytically. The size dependent theory is then applied to the Lennard-Jones (L-J) fluid 

system and various interfacial properties such as surface tension, density profile, thickness of 

the interface etc. have been evaluated.   

 

 CHAPTER I 

         An appropriate introduction related to the work in the present thesis as well as a general 

introduction of the vapor to liquid nucleation and interfacial phenomena have been discussed 

in this chapter (chapter I). The background of the DFT used in the present work has also been 

briefed here. The earlier works (both theory and molecular simulations) by different authors 

on the same problem have been briefly reviewed. A number of methods and analytical 

instruments developed for the experimental measurement of the nucleation rate have been 

briefly discussed.  The scope and motivation of the present work have then been outlined in 

this chapter. 

 

CHAPTER II 

        Homogeneous nucleation involving vapor to liquid transition of the L-J fluid have been 

investigated here by employing DFT along with a model density profile (diffuse density at 

the interface) and a model Helmholtz free energy density functional [34]. The problem has 

also been investigated using CNT in the framework of the proposed DFT method but instead 

of diffuse density (in DFT method), a step density profile has been used. The model density 

profiles can be expressed as  

ρ(r)DFT = ρL –(1/2)( ρL- ρV) exp[a(r-Rav)] and ρ(r)CNT = ρL for  0≤ r ≤ Rav and ρ(r)DFT = ρV 

+(1/2)( ρL- ρV) exp[-a(r-Rav)] and ρ(r)CNT = ρV for  r > Rav . Here, Rav is the distance from the 

centre, where the density is the average of the bulk liquid (ρL) and vapour (ρV) densities (i.e. 



Synopsis  

xv 

 

 

ρ(Rav) = (1/2)( ρL+ ρV). The Helmholtz free energy of the final phase of the nonuniform 

density can be expressed by using DFT with square gradient approximation as Ff = ∫ [f (ρ(r)) 

+ K(ρ(r))
2 

]dr. The Helmholtz free energy density functional, f(ρ(r)) has been expressed as 

Taylor series expansion with respect to the uniform fluid, retaining, for simplicity, terms up 

to first order, as  f(ρ(r)) = f(ρ(r)) ρ(r)=ρu  + [d f(ρ(r))/ d ρ(r)] ρ(r)=ρu  (ρ(r) – ρu ), where the 

subscript U refers to the uniform fluid. Thus, one has   ρU= ρL for r ≤ Rav   and ρU = ρV for r > 

Rav. 

The expression of the free energy of formation of a droplet of any arbitrary size has been 

obtained analytically in this work and is given as  

3
av

2
avav av 0

2 3 3
0 0 0 0

2
22 av

av0 03 3
0 0 0
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 where a0 is the value of the parameter a (present in density profile),  for which ΔG given by 

the above  expression is minimum and Δμ = μV - μL and Δρ = ρL – ρV  (the subscript L and V 

stands for liquid and vapor phase).  

The classical droplet approximation is retained at the large value limit of the parameter a, for 

which the expression obtained for the free energy of formation is ΔGR(MCNT) = –(4π/3) R
3 

ρLΔμ +4π R
2
γMCNT, where γMCNT = γ[(Δρ)

2
/(Δρ0)

2
] , and the theory is called here the  

modified classical nucleation theory (MCNT). 

Temperature-density diagram (T-ρ) using WCA perturbation scheme for the L-J fluid has 

been obtained. The formation free energy as a function of size and supersaturation ratio, 

density profile of the nucleating droplet, nucleation barrier and critical cluster size as a 
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function of supersaturation ratio and finally the comparison of the CNT, MCNT and DFT 

results  have been presented in this chapter. 

 

CHAPTER III 

        It is well known that the presence of a foreign body acting as a substrate has 

considerable influence on the process of nucleation. Accordingly, the vapor to liquid 

heterogeneous nucleation of L-J fluid on a flat solid substrate forms the subject matter for 

investigation in this chapter [35]. Density functional theory has been applied to investigate 

such heterogeneous nucleation on a flat solid surface, by invoking a model free energy 

density functional along with an exponential density model. The well-known CNT has been 

also employed within the framework of the present DFT method for the same investigations. 

The liquid droplet on the flat solid surface at a given contact angle (C) has been presented as 

a spherical cap model. The effects of supersaturation of the vapor and the strength of the 

solid-fluid interaction on the nucleation barrier have been investigated for L-J fluid with 12-6 

fluid-fluid and 9-3 solid-fluid interaction model.  

         The Helmholtz free energy of the final phase of the nonuniform density (liquid drop on 

the solid surface covered by the vapor phase) has been expressed by using DFT with square 

gradient approximation as Ff = ∫ f (ρ(r,))dv + ½ K ∫(ρ(r,))
2 

dv + ∫ρ(r,) Vsf
 
(z) dv.             

The form of the density profile ρ(r,) and the Helmholtz free energy density functional 

f(ρ(r,)) are similar to those used in the chapter II. The solid-fluid interaction Vsf(z)   has been 

obtained by considering the wall-fluid model [4 ]. In the case of L-J interaction, the total 

interaction energy experienced by each fluid particle due to the solid surface is given by the 

9-3 potential as Vsf(z)= 4πεsf ρw σsf
3
[(1/45)( σsf /z)

9
-(1/6) (σsf /z)

3
], where εsf  is the depth of the 
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wall-fluid interaction,  σsf  is the collision diameter ( distance of zero potential) between fluid 

and solid and z is the perpendicular distance of the fluid particle from the wall.  

Therefore the free energy of formation of a droplet of a given volume on a solid substrate, 

given by  ΔGV
het

(DFT) = Gf – Gi , can be expressed, after simplification , as 

2

2 3 3

22

0

( )2

2

0 0

3 1 2 2 2exp( )
( )

2 4

1 exp( 2 ) 1 ( )
sin( ) ( )

2 4 ( )

 2 sin( ) ( )   ,                                     
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C R d

C C R d

d V z r dr







 
   


  

 

   

 
          


  

 

 
 
 

    
    

    


         

 

where C is the parameter present in the density profile given by ρ(r,θ)DFT = ρL –(1/2)( ρL- ρV) 

exp[C(r/R(θ)av-1)] for  0≤ r ≤ R(θ)av and ρ(r,θ)DFT = ρV +(1/2)( ρL- ρV) exp[-C(r/ R(θ)av-1)] for  

r > R(θ)av with which the free energy is minimized and R(θ) is the polar radius in the 

spherical cap model which has been derived as  R(θ) = - rS cos(θ) cos(θC) + rS ( cos
2
(θ) 

cos
2
(θC) + sin

2
(θC))

1/2
 . 

The Gibbs free energy of formation of a droplet of volume VL on a solid planar surface, 

within the framework of CNT, is given by  

2

( )2
2

0 0

(CNT) 2 (1 cos( ))  

 +2 sin( ) ( )     .

LV L L S

R

sf

G V r

d V z r dr




    

   

     

  
 

The shape, density profile and the free energy of formation of droplets of any arbitrary 

size have been obtained in this work. The spinodal decomposition of the vapor has been 

observed at higher supersaturation or at higher strength of the solid-fluid interaction.  
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CHAPTER IV 

        Vapor to liquid homogeneous and heterogeneous nucleation on flat solid surface have 

been discussed in the previous two chapters. A more general and natural nucleation 

phenomena that is, vapor to liquid heterogeneous nucleation on spherically curved solid 

surface for example, of a seed particle has been investigated in this chapter [36]. The 

methodology used for this purpose is similar to those described in the earlier two chapters. A 

double spherical cap model has been proposed to handle the problem of a liquid droplet on 

the spherical surface of solid substrate at any arbitrary contact angle. In addition to DFT, the 

problem has been solved by applying the well- known CNT method within the present model. 

A general solid –fluid interaction energy between the fluid particle and the spherical solid of 

any arbitrary size has been derived here. The Helmholtz free energy of the final phase (Ff ), 

density profile ρ(r,) and the Helmholtz free energy density functional f(ρ(r,)) are similar to 

those used in the last two chapters (ChapterII  and Chapter III). The solid-fluid interaction 

Vsf(z0)  has been derived as Vsf(z)= 4πεsf ρwσsf
3
[(σsf

9
/45){1/z0

9
-1/(z0+2RS)

9
}-(σsf

6
/6){1/z0

3
-

1/(z0+2RS)
3
}-(σsf

9
/20a1){1/z0

8
-1/(z0+2RS)

8
}+(σsf

3
 /2a1){1/z0

2
-1/( z0+2RS)

2
}], where a1=2(z0+RS) 

with z0 as the distance of any fluid particle from the surface of the solid sphere and RS is the 

radius of the solid sphere. The solid-fluid interaction, Vsf(z0) = 0 when RS= 0 (homogeneous 

system), whereas for flat surface, the limit RS    results into  the well-known 9-3 potential 

for flat wall. The free energy of formation of a droplet of a given volume VL on a seed surface 

can be expressed, after simplification, as 
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where RL is the radius of curvature of the liquid drop on the spherical solid surface and RL(θ) 

and RS(θ) are the  two polar radii for the double spherical cap model and have been shown in  

Chapter III. Here I2 is given by 

23 3
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The Gibbs free energy of formation of a droplet of volume VL on a spherical solid surface, 

within the framework of CNT, is given by 

( )2
2 2

0

0 ( )

(CNT) 2 (1 cos( )) +2 sin( ) ( )
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The shape (i.e. contact angle) and formation free energy of droplets of any arbitrary size have 

been optimized in this work. The change of the shape (optimized) with variation of the size of 

the liquid droplet as well as the size of the solid substrate have been observed, which predicts 

the shape-size relationship in the course of vapor to liquid heterogeneous nucleation on a 

spherical solid substrate of any particular size. The spinodal decomposition of vapor has been 

also observed at higher strength of the solid-fluid interaction. The results have been compared 

with the results of the conventional classical nucleation theory (CNT). The extreme limiting 

cases of the seed size leads to the results of the particular nucleation phenomena, such as 
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homogeneous nucleation when the size of the seed is zero and heterogeneous nucleation on 

flat surface when the seed is infinitely large. 

 

CHAPTER V 

        A new scheme to calculate the surface tension of real fluids at a wide range of 

temperature (from the triple point to the critical point) is proposed, the input being only the 

known value of surface tension at the triple point [37]. The calculation is based on the density 

functional theory with square gradient correction along the lines of van der Waals and Cahn 

and Hilliard density functional formalism of the interface which is known to be a successful 

theory for the study of interface with slowly varying density.  A double well type Helmholtz 

free energy density functional and a slowly varying model density profile have been proposed 

here. The methodology has been used for the calculation of surface tension of different fluids 

such as water, heavy water as well as liquid argon and very good agreement between the 

calculated and experimental values is observed.  The advantage of this approach is that the 

surface tension of the real fluids can be accurately and analytically obtained without handling 

the detailed microscopic features of the fluids. The proposed density profile for the planar 

interface given as ρ(z) = ρL –(1/2)( ρL- ρV) exp(az)  for  - ≤ z ≤ 0 and ρ(z) = ρV +(1/2)( ρL- ρV) 

exp(-az)  for 0 ≤ z ≤  , where ρL and ρV are the coexistence densities of the liquid and vapor 

phases. A double well type Helmholtz free energy density has been proposed, which is 

written as f(ρ(z))=f0 +μ0(ρ(z)- ρ0) - d2(ρ(z)- ρ0)
2
+ d4(ρ(z)- ρ0)

4
. The surface tension of the 

planar interface (  ) obtained in the present DFT work is expressed as γ =(11/96)
1/2 

(d2K)
1/2

(Δρ)
2
. This equation after applying suitable approximation for d2 has been simplified 

to calculate the surface tension of real fluids quite accurately, and can be expressed as 
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Since Δρ = (ρL-ρV)  (Tc − T)
1/2 

when the temperature approaches the critical point [3] , one 

has the  result  γ   (Tc − T)
3/2

, which is also predicted by the mean field theory. 

 

CHAPTER VI 

        The theory of interfacial phenomena is well studied for planar interface, but for many 

instances particularly for the problem of nucleation, the theory for the interfacial properties of 

small droplet is essential. This has already been discussed in the earlier chapters and the DFT 

for size dependent surface tension of L-J fluid has been presented in this chapter [38]. The 

density profile and Helmholtz free energy density functional used in this work are similar to 

those used in the case of planar interface (Chapter V). The problem has been solved 

analytically. The total interfacial energy of the droplet-vapor system has been obtained  as  
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The surface tension at the equimolar dividing surface e, can be obtained by dividing the 

above equation  by the interfacial area (4πRe
2
) , i.e. e = (Re)/ (4πRe

2
). The results of the 

planar interface can be retained by considering the limit Re = . The problem has been solved 

numerically in order to obtain the surface tension of the spherical droplet with an exact 

density profile using the free energy model. The thickness of the interface in the present 
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model has been obtained as D = -2 ln(0.2)/a. The various size dependent interfacial properties 

such as surface tension, density profile, thickness of the interface and also the size dependent 

temperature-density (T-ρ) diagram have been obtained analytically in the present work. 

 

CHAPTER VII 

        The over- all outcome (summary) and conclusions of the work reported in this thesis 

have been given in this chapter. The drawback and limitations have also been discussed. The 

scope of application of the present proposed methodology to other different kinds of systems 

(such as liquid to solid transition, precipitation etc.) has been discussed.  
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Fig.6.5: Thickness of the spherical interface ( Rav = 5)  as a function of temperature. Present 
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CHAPTER 1 

       Nucleation Phenomena: An overview 

        Matter exists in different phases, the most common ones being gas, liquid and   solid 

phases. The transition from one phase to another has been one of the most interesting and rich 

subject of investigation. Here, we first discuss nucleation in the context of metastability 

followed by the theory of nucleation. 

1.1 Metastability and nucleation 

       When the density or the composition of a given phase of any system remains unaltered 

over a long period of time, then the phase of the system is either in the stable state or in 

metastable state depending upon the extent of stability of the phase [1]. If the phase change 

takes place due to a small perturbation in the state variable (density, composition etc.), the 

system is said to be in metastable state else it is in stable state (Fig.1.1). In the case of one-

component system, the density of the phase can be regarded as a unique state variable. The 

density of a stable phase (or state) at a given temperature is called equilibrium density of that 

phase at that particular temperature.  If the density is shifted from the equilibrium value, then 

the system (partly or completely) tries to attain the density of the nearest new equilibrium 

situation (i.e. the new phase) leading to a first order phase transition. The extent of the shift 

of   density from the equilibrium value controls the kinetics of phase transition (1
st
 order). 

The stability of matter can be quite well presented by the P-V isotherm corresponding to van 

der Waals equation of state (EOS) shown in Fig.1.2, where the equilibrium vapour and liquid 

densities (or equilibrium molar volumes VV,eq and VL,eq) lie on the line known as binodal line 

below the critical temperature (TC). The two humps of each of the P-V isotherm show the 

highest possible vapour density and lowest possible liquid density (or molar volume). The 
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line connecting these two humps of each isotherm is termed as spinodal line and the region 

inside the spinodal line is therefore indicates the unstable state whereas the area in between 

the binodal line and the spinodal line represents the metastable state of the matter. When the 

density of any phase is shifted from its equilibrium density at any particular temperature 

(below TC) and falls in the region of metastability or unstability, a new phase is formed (first 

order phase transition) inside the bulk of the older phase and the densities of the coexisting  

phases lie on the two ends of the binodal line. Though the phase transition is a bulk 

phenomena, the mechanism is actually a microscopic event and  it starts through the 

formation of  a small droplet of liquid or solid (in case of vapour to liquid  and liquid to solid 

transition respectively) or through the formation of microscopic cavity or gas bubble (in case 

of liquid to vapour transition). When the density of any particular phase falls in the region of 

metastability, the phenomenon of formation of the embryo of the new phase is called 

nucleation and the subsequent growth of the nucleated entity leads to the bulk of the new 

phase. Therefore, the phenomenon of nucleation involves the formation of an embryo of the 

new phase, larger than a particular size, the so called critical size, beyond which it can grow 

irreversibly resulting into the bulk new phase. Nucleation is therefore the process of crossing 

a free energy barrier known as the nucleation energy barrier. If the density of the older phase 

is not too far from equilibrium (i.e. in the metastable state), the finite nucleation energy 

barrier actually controls the dynamics of this first order phase transition. If the density of the 

older phase is far from the equilibrium (in the unstable region), there is no barrier to cross 

from older phase to new phase and the droplets or bubbles (bubble in case of liquid to vapor 

transition) grow irreversibly (from beginning) leading to the formation of the bulk of the new 

phase and the phenomenon is called spinodal decomposition.   
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Fig.1.1 Phase stability as a function of density. Stable, metastable and unstable states of 

phase I are shown in figure a, b and c respectively.   

 

 

 Fig.1.2. Pressure - volume  phase  diagram for one component system. The dome 

 shaped curve with solid line is binodal whereas the dome shaped curve with dashed 

 line is spinodal curve.The  horizontal dotted  line is a  true  isotherm (at temperature 

 T1) and the  intersections with  the  binodal dome showing  the  equilibrium pressure 

 and  volumes of the coexisting  vapor- liquid phases.  
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1.2 Diversity of nucleation phenomena 

        Nucleation is a widely spread phenomenon in various aspects of nature and technology 

including condensation, evaporation, crystal growth, deposition of thin film, phase change 

and segregation in alloys and in various soft mater and nanoparticles self-assemblies. The 

understanding of nucleation plays an important role in different areas of science and 

technologies such as in meteorology, the formation of rain drop from cloud and artificial 

production of rain by providing heterogeneity through the spray of seed of  the appropriate 

material; the initiation and production of the new phase in metallurgy; super cooling, super 

heating, supersaturation and precipitation by chemical means in the field of chemical 

engineering, etc. Most importantly, the phenomenon of nucleation is involved in the area of  

nano-technology which is widely used in almost all the fields of research in recent years. The 

fabrication of nano-sized materials of different size and shape such as nanoparticles, 

nanotubes, nanorods, thin film and different architecture etc. are very much important in 

nano-technology. The size, shape and kinetics of nano material synthesis can be controlled 

through an understanding of the nucleation phenomena involved therein. The phenomenon is 

also believed to be involved in different domains [2] such as irradiation-induced formation of 

voids in nuclear reactors, rupture of foam, membrane and emulsion bilayers, formation of 

electron-hole liquid in semiconductors, earthquake, appearance of turbulence in liquid 

crystals subjected to strong electric fields, formation of particulate matter in space, crack-

mediated fracture of stressed solids and various cosmological phase transitions.  
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1.3 Historical background and classical nucleation theory (CNT).  

         Nucleation phenomenon is of importance in a number of areas of research in chemistry, 

physics, material science and allied subjects [2]. In the previous section (1.1), it is already 

mentioned that the nucleation involves a process of crossing a free energy barrier known as 

the nucleation energy barrier. Since the present dissertation focuses on the investigation of 

vapor to liquid transition, therefore the discussion is being limited mainly to the vapor to 

liquid condensation phenomena. The nucleation barrier is affected only by the degree of 

supersaturation of the vapor phase when there is one component vapor and the process is 

called homogeneous vapor to liquid nucleation. Since most of the natural systems are 

heterogeneous, where many other components (like impurities, surface of the wall etc.) are 

also present in the system, the new phase formation is commonly initiated on the surface of 

such foreign substrates and the phenomena is known as heterogeneous nucleation (see 

Fig.1.3). The condensation rate is therefore strongly affected by the presence of such foreign 

(solid) substrates. The size, shape and the strength of the solid- fluid interaction of such solid 

substrates control the nucleation barrier, critical size and shape of the nucleus at a given 

temperature and supersaturation.  

        The first attempt to understand the nucleation phenomena by applying thermodynamics 

was due to Gibbs [3] and many theoretical models and approaches have been proposed from 

time to time. The theory developed originally by Becker, Doring, Volmar, Farkas, and later 

modified by Zeldovich for the study of homogeneous nucleation from vapor to liquid phase 

has been traditionally referred to as the classical nucleation theory (CNT) [4-7]. The CNT 

assumes the capillarity approximation which considers that the small nucleated liquid droplet 

inside the vapor phase is same as a drop of bulk liquid with a well-defined radius R, with 
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bulk liquid density inside and bulk vapor density outside,  corresponding to the assumption of 

a sharp interface between the vapor and the liquid drop. The free energy of this 

inhomogeneous state relative to the homogeneous vapor phase is expressed as a sum of two 

terms, viz. a negative contribution from the bulk free energy difference, proportional to the 

droplet volume and a positive contribution from the surface free energy, proportional to the 

surface area of the droplet of well-defined radius. The Gibbs free energy of formation of a 

droplet of radius R, in the conventional CNT ( see Fig.1.4) is therefore written as  ΔGR(CNT) 

= - (4π/3)R
3
ρLΔμ + 4πR

2
γ∞ , where Δμ = μV - μL (μ stands for chemical potential) is obtained in 

CNT by using the ideal gas equation, viz. Δμ so that Δμ = μV- μL=kBT ln(S), where S (= ρV / 

ρV
0
) is the supersaturation, with ρV as the density of the supersaturated vapor and ρV

0
 as the 

vapor density at liquid-vapor coexistence. The classical   theory assumes that the surface free 

energy is the same as that of the planar interface at coexistence at a given temperature. Thus 

at a given temperature, CNT uses the  surface  free energy corresponding to the vapor-liquid 

equilibrium state where the liquid drop is very large (resulting into  planar interface). But 

during nucleation, a tiny liquid drop (spherical) is surrounded by supersaturated vapor (i.e., 

there is a spherical interface between the liquid and supersaturated vapor) and hence the 

interfacial energy should correspond to the supersaturated vapor-liquid spherical interface 

rather than liquid-vapor equilibrium state with planar interface which is used in CNT. The 

radius of the critical cluster, RC as obtained through maximaisation of the free energy 

ΔGR(CNT), is given by RC = 2 γ∞ / (ρLΔμ) and the corresponding nucleation barrier, ΔG
*

CNT is 

expressed as ΔG
*

CNT = [(16π γ∞
3
)/(3(kBTρL ln(S))

2
)]. The free energy barrier to nucleation is 

then used in the transition state theory to calculate the nucleation rate, J, as given by J = A 

exp[-ΔG
*

CNT / kBT], where A  is the preexponential factor. 
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        The conventional classical theory developed for homogeneous nucleation is also applied 

to the process of heterogeneous nucleation, when a vapor starts condensing either on a flat 

solid surface or a curved solid surface. The first attempt initiated by Volmer, Fletcher (liquid 

nucleation on solid surface) and Turnbull (crystal nucleation on solid surface) for this 

purpose was of course through the classical theory of heterogeneous nucleation [8-12]. The 

same approximations as used in the case of homogeneous nucleation, were used, i.e. the 

properties of the tiny droplet were considered to be the same as that of the bulk liquid and the 

vapor-liquid interfacial energy was also treated as same as that of the planar interface at 

coexistence condition. The condensations on flat surfaces [8-10] as well as curved surfaces 

[11-12] of the solid substrate have been considered using the classical nucleation theory 

(CNT). The effect of particle size and surface properties on the nucleation efficiency was 

investigated by Fletcher [11]. A general result was derived in the framework of CNT, which 

is then applied to the case of condensation and sublimation. A rigorous thermodynamic 

formulation of Fletcher’s model using a novel analytical approach within CNT was derived 

by Qian and Jie [12]. The two drastic approximations in CNT (for both homogeneous and 

heterogeneous nucleation) lead to considerable error in the calculation of nucleation barrier 

height and hence also in the nucleation rate. Attempts have been made to overcome this 

problem by proposing various theoretical approaches bypassing these approximations which 

will be discussed in the next section. 
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Fig.1.3. Schematic description of homogeneous nucleation (labeled as a) and heterogeneous   

nucleation on flat surface and on spherically curved (convex) surface of solid substrate 

(labeled as b and c respectively). 
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                          Fig.1.4. Formation free energy vs size described by CNT 

 

1.4 Progress on the theory of vapor-liquid nucleation 

        The drawback of CNT in the prediction of nucleation barrier height and hence the 

nucleation rate is due to the use of two crude approximations which has been already 

mentioned in the previous section (1.2).The theory proposed and developed by Oxtoby and 

co-workers [13-18] is the density functional theory (DFT) based on microscopic molecular 

interaction, thereby avoiding the phenomenological capillarity approximation to nucleation of 

vapor-liquid phase transition. Their theory is thus a nonclassical theory which is used for 

various fluid systems (interacting with Lennard-Jones, Yukawa potential etc.) encompassing 

one component fluid as well as binary fluid mixtures. They have developed an iteration 

technique [13] to obtain the density profile of the critical cluster from the energy equation for 

the inhomogeneous fluid. The DFT based theory of Iwamatsu has investigated the problem of 

homogeneous nucleation [19] using a double and more recently a triple parabola model [20] 

RC R 

Volume term 

Surface term 

ΔGR 

ΔG
* 

  0 



Chapter 1  

10 

 

for the free energy functional. Recently Lutsko [21, 22] has also proposed a DFT of 

inhomogeneous liquids and considered an approach to nucleation in liquid-vapor transition. 

A non-mean-field DFT based approach to nucleation has also been reported [23].  

        A semi-phenomenological model, the so called mean-field kinetic nucleation theory, has 

also been proposed by Kalikmanov [24] and is known to be valid for all cluster sizes. 

Reguera and Reiss [25] have proposed a new phenomenological approach to nucleation based 

on an extended modified liquid drop model [26] and dynamical nucleation theory [27] which 

is able to predict successfully the free energy of formation of the critical nucleus, using only 

macroscopic thermodynamic properties. Another phenomenological approach to calculate the 

free energy of formation is the so-called diffuse interface model developed by Granasy [28] 

which assumes the center of the droplet to be bulk-like and the diffuse interface to have a 

size-independent thickness. Many other investigations using molecular simulation techniques 

have also been successful in predicting the nucleation in the context of vapor to liquid phase 

transition. The Monte Carlo (MC) simulation study of the formation free energy of clusters in 

vapor-liquid nucleation by Oh and Zeng [29], molecular dynamics (MD) simulation study of 

cluster evolution in suparsaturated vapor by Zhukhovitskii [30] and gas-liquid nucleation of 

Lennard-Jones (L-J) fluid by Laaksonen et.al.[31] are few examples of the development of 

molecular simulation on vapor to liquid homogeneous nucleation in the recent past. The 

classical theory, however, does not work well for the heterogeneous nucleation also and 

therefore several approaches have been developed within the frameworks of the widely used 

density functional theory (DFT) [32-37] as well as molecular simulation [38-46] based 

techniques to describe the various aspects of the phenomena of heterogeneous nucleation. 

Talanquer and Oxtoby employed DFT to calculate the rate of heterogeneous nucleation of the 

gas-to-liquid transition on a planar solid substrate [32] and to study the nucleation of gas–
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liquid transition inside a slit pore in which a fluid is confined between two flat surfaces [33]. 

While the effect of flat surface of the solid substrate on nucleation has been the major 

concern most often, there are density functional theories, where the effect of microscopic or 

mesoscopic solid substrate (providing curved surface to the liquid droplet) have been 

discussed. Lattice density functional theory (LDFT) with suitable constraints had been 

applied by X. Zhang et.al to investigate the shape of the critical nucleus and height of the 

nucleation barrier and by applying the LDFT method, the nucleation behavior of vapor-liquid 

transition in nanosquare pores with infinite length was studied [35]. They also use the 

constrained LDFT to investigate how nanoscale seed particles affect heterogeneous vapor-

liquid nucleation [36] i.e. the effects of the physical properties of nanoscale seed particles ( 

the seed size, the strength of seed-fluid attraction, and the shape of the seeds) on the structure 

of critical nuclei and nucleation barrier. A hybrid thermodynamic and density-functional 

theory for heterogeneous nucleation on mesoscopic wettable particles was developed by 

Bykov and Xeng [37]. Many molecular simulations have been carried out to study the 

heterogeneous nucleation on flat solid surface [38-40] as well as on the curved surfaces of 

small substrates [41-46]. 

        Though the CNT provides much inaccurate results as compared to the theories and 

simulations discussed in this section, it has a very good acceptability in the case of 

complicated systems due to the simplicity of this description and because the application of 

other theories is much more cumbersome. The CNT can be further modified by retaining the 

simplicity but providing a simple theory of interfacial phenomena of curved interface of two 

phases and therefore the research and development on the theory of size dependent interfacial 

phenomena are also an interesting topic. The overview of the theory of interfacial phenomena 

of both flat and curved surfaces will be introduced in the next section. 

http://publish.aps.org/search/field/author/Zhang_Xianren
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1.5 Kinetic theory of nucleation 

        Kinetic theory of nucleation obtains the cluster distributions and nucleation rate by 

calculating the rate constants of association and dissociation of the cluster (nucleus) and 

thereby avoiding the explicit evaluation of cluster formation energies and surface tension. But 

the first task however, is the identification of the nucleus itself. In case of condensation of 

liquid droplet from a low density vapor, or solid crystallization from dilute solution, it is easy 

to identify the cluster or nucleus from the sharp difference in density or composition from 

their immediate surroundings. But if the temperature is near critical point, then it is difficult 

to draw a boundary between the cluster and the surrounding (high density vapor) which is 

also true for a nucleated crystal in the melt. In these cases, the identification of number of 

particles associated with a nucleus at a given time is difficult.  

        Restricting the discussion to the simpler cases in which the number of particles can be 

assigned to a nucleus, the kinetics of nucleation then involves a set of rate equations such as 

association and dissociation by which clusters of different sizes gain or lose particles which 

involves an assumption about lack of memory i.e. the probability of a particular change in 

size of a given cluster during a time interval is independent of its past history. The use of rate 

constants involves the implicit assumption that the temperature does not change as clusters 

grow or shrink.  

Another assumption commonly considered is that the clusters grow or shrink by the 

attachment or loss of single particles and the other possibilities  such as fusions of pre-

existing clusters and fissions of clusters into two or more other clusters (i >1) are ignored. 

This is reasonable for condensation at low pressures, where almost all particles are isolated 

'monomers'.  
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A set of coupled rate equations for the number densities n(i, t) of clusters of size i at time t, as 

obtained by considering the above approximation have the form [47] 

                    (1.1)
( , )

( -1) ( 1, ) ( ) ( , ) ( ) ( , ) ( 1) ( 1, ) ,
n i t

i n i t i n i t i n i t i n i t
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      
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where α(i) and β(i) are the forward  and backward rate constant for the gain and loss of a 

monomer by a cluster of size i and n(i,t) is the number density of a cluster of size i at any 

particular time t.  The forward rate depends on the concentration of the monomers and can be 

considered to be proportional to that concentration.  

The net rate at which clusters of size i become clusters of size i + 1 is defined as a flux J( i + 

1/2) and expressed as  

                                                    (1.2)
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so that Eq.(1.1) can be rewritten as 

 

                                                                            (1.3)
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In the steady state, all fluxes are equal to a single constant flux J for all values of I and t, viz. 

                  (1.4) 
1

,                 
2

,                                              i tJ J
 
 
 
 

   

which is the  flux that is identified with the nucleation rate of interest in theory or experiment. 

A function f(i) is defined by the recursion relation as 

                                                                                    (1.5)( 1)     , 
( )

( )
( 1)

f i
i

f i
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with f(1) = 1. Dividing (1.2) by α(i) f ( i ) = β(i + l)f(i + 1) and after setting J to a 
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constant in the steady state, gives 

                                                                                (1.6)
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 Equation (1.6) can be summed from i = 1 to a limiting value i = imax ,leading to the results 
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                                                                              (1.7)
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In order to examine the dependence of f ( i ) on i, the function f ( i ) can be rewritten as 
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The ratio α(i-1) / β(i) is the ratio of the rate at which a cluster of size (i – 1) gains a particle to  

the rate at which the cluster of size i loses a particle. These rates are equal exactly at phase 

coexistence, in the thermodynamic limit of large enough value of i. But during nucleation 

which occurs in the metastable state of the old phase, the new phase however, is 

thermodynamically stable, which means that for large enough i this ratio must be larger than 

1 (i.e. the forward rate must be larger than the backward). Therefore f(i) must grow with i for 

large i, and  increasing by a factor larger than 1 for each increase in i by 1which  in fact 

corresponds to exponential growth of  f with i. Since it has been assumed that there is a  little 

depletion of monomer in the process of nucleation, one must clearly have n( imax) < n (1).  

The second term on the right side of (1.7) will then be negligible as compared to the first if  

imax is chosen to be large enough. Because α(i) is a smooth (at least for large i) and increasing 
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function of i, the sum on the left side of this equation can be extended to infinity, with 

convergence guaranteed by the exponential fall-off of 1/f(i). This leaves 

1

1

                                                                                     (1.9)   
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This equation gives a direct expression for the nucleation rate in terms of the forward and 

reverse rate constants. 

 

1.6 Overview of the theory of vapor-liquid interface 

        Interfacial properties such as surface tension, density profile, surface thickness etc. are 

very much important in science and technology in connection with various phenomena and 

processes ranging from macroscopic to microscopic length scales. In particular, the interfaces 

play a crucial role in controlling the kinetics of nucleation and hence in the fabrication of 

nanostructured materials. A new phase appears in the bulk of the old phase in the process of 

nucleation leading to a two phase system and hence an interface is developed.  The interfacial 

energy is actually guided by the density profile of the system and it is obvious that, higher the 

density difference, higher is the interfacial energy (on the other side, no density difference 

means no interface and hence no interfacial energy). In CNT, the liquid-vapor interfacial 

properties (density profile and thereby surface tension) is always considered as that of the 

bulk liquid-vapor interface at coexistence i.e. a planar interface with the sharpest density 

variation have been considered. But in actual case the droplet is tiny and therefore the 

interface is curved. Also since the vapor is supersaturated in the process of nucleation, 
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therefore the density difference is less than that at coexistence. The use of the latter leads to 

erroneous results in CNT. Proper understanding and application of the interfacial phenomena 

(density profile, surface tension etc.) is therefore very much important in the investigation of 

the  phenomena of nucleation. 

        The liquid-vapor interface of classical fluids and related topics had been extensively 

discussed in the literature from time to time [48-50]. Different theories e.g. statistical 

mechanical theory [51-52], density functional theory (DFT) [53-57] etc. and molecular 

simulations [58-62], have been used for the investigation of interfacial properties of vapor 

liquid planar interface. It is found that the most versatile theory for this purpose is the DFT. 

While talking about the nanosized material, an idea of the interfacial properties for small 

sized systems (i.e, for curved interfaces) is needed, while most of the experiments are 

performed only for bulk sized system (i.e, for planar interface), the idea of considering a 

planar interface no longer works in the case of nanosized materials. For small liquid droplet-

vapor two phase system, it can be assumed that the interface is spherically curved. The 

curvature dependence of surface properties was first mentioned by Gibbs [63] and later 

developed by Tolman [64-66]. A simple relation between the surface tension  and the radius 

Rs of the surface of tension was derived by Tolman and a parameter  (known as Tolman 

length) was introduced which is the distance between this surface (Rs) and the equimolar 

dividing surface with radius Re, which divides the fluid into two homogeneous parts, the inner 

one with the liquid density and the outer one, with the vapor density. A statistical 

thermodynamical approach for spherical droplets was introduced by Plesner [67] to 

investigate the dependence of surface tension on the droplet size. The problem was 

numerically solved by Guermeur et.al [68] by describing the inhomogeneous interface with 
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the help of a stress tensor within the framework of gradient theory. A DFT for the spherical 

droplet was considered by Hadjiagapiou [69] to examine the effect of drop size on various 

interfacial properties. The thermodynamic properties of planar and spherical liquid-vapor 

interface was calculated by Osman [70] who presented the results at the coexistence 

condition for both type of interfaces. A double parabola model based DFT had been reported 

earlier by Iwamatsu [71] to calculate the surface tension and Tolman length of a droplet. A 

patching model for the surface tension of a spherical droplet using the framework of DFT had 

been reported by Bykov and Zeng [72]. Li and Wu [73] illustrated the applications of a non-

mean-field DFT to the ultra-small liquid droplets as formed during vapor-liquid nucleation, in 

which the size-dependence of surface tension had been examined. Many molecular 

simulation (Monte Carlo as well as molecular dynamics) strategies had also been developed 

to investigate the size dependence of interfacial properties [74-77]. Apart from the above 

literatures, many more studies have been reported, where the interfacial properties for both 

planar and spherical interfaces of one-component to multi-component systems of various 

fluid systems have been discussed. Although there have been a series of  publications on the 

size-dependent surface tension, in the present thesis, a simple way of evaluation of the size-

dependent surface tension and temperature density (T-ρ) curve for a droplet-vapor 

equilibrium  have been presented. 

 

1.7 Overview of DFT of inhomogeneous classical fluid  

        When a liquid droplet condenses inside the bulk of the vapor phase or a gas bubble 

forms inside the bulk of the liquid phase for one component system or in case of bulk vapor-

liquid coexistence condition , the system in CNT is treated as two distinct phases (i.e. liquid 
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and vapor phases) one component system. The system, however, is actually a single phase 

inhomogeneous fluid with a nonuniform density distribution (commonly diffuse density 

distribution) at the liquid-vapor interface, either for bulk system or for microscopic (droplet 

or bubble) system. It has been already mentioned (in section 1.3) that the consideration of the 

two phase system (i.e. the use of a well-defined radius for the nucleated droplet) introduces a 

significant error in the results of CNT. The most widely used and accepted theory for such 

system is the density functional theory of inhomogeneous classical fluid ( see Ref. [48,78-

80]) where the system is considered as a single inhomogeneous fluid phase with a diffuse 

density distribution at the interface instead of the two phase with sharp interface (as used in 

CNT). 

        The density functional theory was first time applied by van der Waals [81] to study the 

inhomogeneous liquid–gas interface in 1894 and later it was classified as a local density 

approximation [48]. The subject is then moved to the field of quantum theory by Thomas 

[82] and Fermi [83] in their seminal development of the theory of the electron gas. The 

celebrated variational principle based DFT for the ground state energy of (quantum 

mechanical) electrons was derived by Hohenberg and Kohn [84] in 1964 and one year later 

this was generalized to non-zero temperature by Mermin [85]. The density functional 

variational method was then applied to classical fluids (see e.g. the work of Ebner and Saam 

[86,87] and Yang et al [88]). A more detailed historical discussion on DFT of 

inhomogeneous fluid can be found in [89]. 

The classical density functional theory is based on the grand canonical free energy functional 

Ω[ρ(r)] of the one-particle density ρ(r) in the (one-component) system, which is expressed as  

            3[ ( )] [ ( )] ( ) ( )extr F r d r r V r       ,                                                  (1.10) 
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 where F[ρ(r)] is the total Helmholtz free functional, μ is the chemical potential and  Vext(r) is 

the external potential acting on the particles. The minimization of the functional (at fixed T 

and µ) with respect to one-particle density ρ(r) results into the equilibrium density 

distribution, ρ0(r), i.e.  
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which leads to the relation 

               

0( ) ( )

[ ]
( ) 0

( )
ext

r r

F
V r

r
 








  


                                                                   (1.12) 

and the corresponding value of the functional i.e. Ω[ρ0(r)]) is the equilibrium grand canonical 

energy. The Helmholtz free functional F(ρ(r)) is generally expressed as  

 

             [ ] [ ] [ ]exid
F F F       .                                                                                 (1.13) 

 

The exact Helmholtz free energy functional of the ideal gas is expressed as  

            3 3[ ] ( ) ln ( ) 1
id
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where Λ is the thermal wavelength of the particles and kB  is the Boltzmann’s constant. For 

an ideal gas, the excess part of the Helmholtz free energy Fex [ρ]= 0 and therefore the 

Helmholtz free energy density functional is known exactly for this system. For a non-ideal 

system, which is characterized by a non-vanishing inter particle interaction (e.g. by a pair 

potential Φ(r)), the excess part Fex[ρ] is not exactly known and various  approximations (see 
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ref 48,78-80,89) have been developed for calculation of this excess part. The relation 

between Fex[ρ] and the direct correlation function (c
(2)

(r,r
′
)) which is expressed as  
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is often made use of for approximating the Fex[ρ] , as well as testing its accuracy.  

The gradient expansion model of the Helmholtz free energy [32,48,57,78] is also used in 

many cases (nucleation, interfacial phenomena etc.), with the grand potential expressed as  

 
23 31
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 

   
 

      ,            (1.16) 

where f[ρ(r)] is the local Helmholtz free energy density and the local excess free energy 

density associated with any effect from density inhomogeneity of the system is described by 

the square-gradient term ((K/2)[ρ(r)]
2
). In the present thesis, the external potential Vext(r) 

describes the effect of substrate on the free energy of heterogeneous nucleation. Another way 

of expressing the Helmholtz free energy F[ρ(r)]  is [13,14],   

 

 3 33 1
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[ ( )] ( ) ( ') hf r d r d r r rF r d r r r      ,                           (1.17) 

 

where fh(ρ) is the Helmholtz free energy density of uniform hard sphere fluid of density ρ 

with an attractive perturbation contribution given by the second term in the equation.  

 

1.8 Nucleation experiments 

        A number of methods and analytical instruments have been developed from time to time 

(see review [90]) for the experimental measurement of nucleation rates in a broad range (span 
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more than 20 orders of magnitude) from 10
- 4

 to 10
17

 cm
-3

 s
-1

. The differences between the 

experimental methods are mainly related to the way of achieving a supersaturated state. In the 

study of one component vapor to liquid nucleation, the supersaturated state of the initial 

phase (vapor) is obtained by cooling the vapor phase using either adiabatic expansion or a 

temperature gradient whereas  in  multicomponent systems, the turbulent mixing of vapors 

followed by fast cooling or in-situ generation of one of the nucleating vapors (chemically or 

photochemically) is preferred. Early studies of nucleation was done by using diffusion and 

expansion cloud chambers where the critical supersaturation required to  attain the nucleation 

rate of unity (J = 1 cm
-3

 s
-1

) had been measured [91] to calculate the kinetics of nucleation. 

Various particle detection techniques have been developed and implemented in later studies 

and the counting of the number of nucleated particles and thereby the calculation of the 

formation rate  have been improved. The different approaches for the experimental study of 

vapor to liquid nucleation phenomena have been briefly discussed here.  

 

1.8.1. Adiabatic expansion method  

        In this method, the supersaturation of the vapor is achieved through the cooling of the 

vapor by rapid adiabatic expansion to initiate nucleation. The nucleation in a fast expansion 

cloud chamber starts when a piston is moved to produce an adiabatic expansion in the 

nucleating vapor. Nucleation rates, in the range from 10
2
 to 10

10
 cm

-3
 s

-1
 can be determined 

from the number of particles depending on the specific design of the chamber. This method 

has been used to measure nucleation rates in a large number of single-vapor systems [92-96] 

as well as binary mixtures [97]. Shock tube method is the example of another expansion-

based method of measurements of nucleation rates, consisting of two sections (driver and 
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driven sections) separated by a diaphragm. The driver section is maintained at higher pressure 

by vapor carrier gas mixture, whereas the driven section is maintained at low pressure. The 

adiabatic expansion from the driver to the driven section is produced by rupturing the 

diaphragm for making the vapor to be supersaturated and thereby initiating nucleation. 

Nucleation rates up to 10
17

 cm
-3

 s
-1

 can be obtained by this approach .The supersonic nozzle 

based method is also used for both single and binary vapor systems to achieve very high 

supersaturation by utilizing adiabatic expansion of a flowing nucleating vapor-carrier gas 

mixture [98]. The growth of the clusters (due to nucleation and condensation) occurs as the 

flow passes out of the throat region of the nozzle and the local pressure raises due to the 

latent heat of condensation which allows the detection of the location of cluster and 

nucleation rates are determined by measuring this pressure trace  and  the cluster size. The 

cluster size is determined by various technique e.g. small angle neutron scattering, small 

angle X-ray scattering, tunable diode laser absorption spectroscopy etc. In this method, a very 

high supersaturation is achieved and the nucleation rates higher than 10
16

 cm
-3

 s
-1

 are 

observed, which is much faster than the rates measured in other expansion techniques.  

 

1.8.2. Diffusion chamber 

        The expansion chamber, discussed so far produces short nucleation pulses whereas the 

diffusion chambers operate continuously. The supersaturation is produced by introducing a 

temperature gradient between two parallel plates in a diffusion chamber, named as upward 

diffusion chember . The bottom plate is kept warm and covered with liquid, whereas the top 

plate is cool and the vapor from the warm bottom plate diffuses toward the top cool plate so 

that both temperature and partial pressure of the vapor decrease almost linearly with the 

distance from the liquid surface to the top plate. The saturation vapor pressure of the fluid 
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however depends exponentially on temperature, and the supersaturation ratio goes through a 

maximum at about 3/4
th

 of the chamber height. The temperature gradient is adjusted in such a 

way that a maximum rate of homogeneous nucleation is achieved. The nucleated droplets 

grow  and settle down toward the bottom plate to be detected and counted with a laser beam. 

The desirable nucleation rate is obtained by adjusting the temperatures of the top and bottom 

plates. The rate is typically in the range of 10
-4

 to 10
3
 cm

-3
 s

-1
 in this upward diffusion 

method. This method can be used to measure critical supersaturations and nucleation rates of 

both single and mixed vapors, but it is most reliable for the one component systems.  

 

1.8.3. Laminar flow chamber 

        In this chamber, the supersaturated state of vapor is achieved by utilizing the 

thermodynamic and transport properties of gas which is also known as the laminar flow tube 

reactor [99-100]. This chamber has a hot saturator section where the carrier gas is made 

saturated with the nucleating vapor and a condenser section where the vapor is made 

supersaturated by abrupt cooling so that the vapor nucleates to form the droplets which are 

then optically detected. Nucleation rates that can be measured in this method is typically in 

the range from 10
2
 to 10

8
 cm

-3
 s

-1
. This method is particularly suitable for the vapors of high 

molecular weights. A transport model is required to calculate the temperature and saturation 

ratio which are then related to the measured nucleation rates. 

 

1.8.4. Turbulent mixing chamber  

        This method is different from the above diffusion and expansion chamber method and 

makes  use of turbulent mixing of two vapors and is therefore applicable to binary nucleation. 
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The turbulent mixing method is particularly useful for the systems where the applications of 

other techniques for the accurate measurement are difficult as for example, in case water-

strong acid (H2O-H2SO4) mixture which is important in the atmosphere. This chamber 

consists of turbulent mixing section and laminar nucleation section. The temperature of 

turbulent mixing section is maintained at similar or higher relative to the laminar section. 

Two or more gas flows, carrying the nucleating vapors, are rapidly mixed in the turbulent 

section and the system becomes supersaturated enabling nucleation immediately after mixing 

[101]. In case of hot mixing section, the supersaturated state is followed by nucleation and 

growth is achieved when the gas mixture enters the colder laminar section. In order to quickly 

reduce the gas temperature, a chilled carrier gas is also used in some designs. 

 

1.8.5 Comparison between the result of experiment and classical nucleation theories 

        Homogeneous nucleation of a large number of substances, including inert gases, vapors 

of metals and various inorganic and organic compounds [102] have been experimentally 

investigated. It has been found that, the nucleation rate J is a steep function of supersaturation 

ratio (S) for the vapors of all substances mentioned above. The nature of such strong 

dependence of nucleation rate on the supersaturation is not always predicted by the theory 

and a large disparities are often observed between theoretically predicted and experimentally 

measured nucleation rates. It is common to all nucleating systems that the critical 

supersaturation decreases with increasing temperature whereas the rate increases with 

temperature at a constant supersaturation. Though the dependence of the experimental 

nucleation rates on the supersaturation is often similar to the dependence predicted by CNT, 

the temperature dependences of experimental nucleation rate frequently differ from that of 

the theoretical nucleation rates. CNT typically underestimates the nucleation rates at low 
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temperatures and overestimates at high temperatures, with the errors of several orders of 

magnitude. 

 

1.9 Molecular simulations 

        Unlike laboratory experiment discussed in Section 1.7, computer experiment i.e. 

molecular simulations like molecular dynamics (MD) and Monte Carlo (MC) are also 

popular for the study of the nucleation phenomena. These simulations apply first principles to 

calculate the structure, density profile and free energy of cluster formation [103,104].The MC 

method is a stochastic method which simulates the evolution of an ensemble of molecules by 

sampling random molecular configurations, i.e., one molecule at a time, and it accepts or 

rejects the configurations depending upon the suitable criteria set for the system. The MD 

simulation on the other hand, uses Newton’s laws for each particle to simulate the trajectories 

of all particles in the system undergoing a phase transition. The trajectories are determined by 

imposing the initial positions and momenta of the particles and by the inter-particle potential.  

 The appearance of a cluster of the new phase is identified by the particle density, chemical 

potential of the particles in the new phase, or by using other properties [105] which are used 

to calculate the association and decomposition rate coefficients, utilized to determine the 

nucleation rates. In case of direct MD simulations, the preparation and time evolutions of a 

metastable system continue until nucleation occurs [31], which is very much computationally 

expensive ( true not only for molecular dynamics but also for the stochastic Monte Carlo 

simulation) due to the lack of analytical solution to the many body problem, necessary for 

solving for the interaction among numerous molecules. Due to this limitation, there is a 

constraint on the number of molecules that can be treated, the size of the spatial domain, and 
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the integration times. Since density fluctuations leading to nucleation are rare events on the 

simulation time scale, direct simulation of nucleation is therefore highly unusable. In order to 

overcome such difficulties a feasible alternative to the direct simulation is provided by biased 

sampling methods. Umbrella sampling method [106] is one such method first introduced into 

the field of nucleation by Frenkel and co-workers [107] which is widely used later. This 

method forces the metastable system to cross the free-energy barrier reversibly along a 

reaction coordinate in a manageable amount of time by means of biasing potential. The 

knowledge of the inter-particle potential is essential for both the classical MC and MD 

simulations. The model Lennard-Jones (LJ) potential function is  the most widely used one 

which has been successfully applied to simple atoms and their mixtures particularly for inert 

gasses and sometimes also for other fluids with the suitable corrections.  

 

1.10 Motivation of the thesis 

        The main objective of this thesis is to develop a simple theoretical methodology to 

investigate the nucleation phenomena beyond the conventional CNT by incorporating a more 

realistic density model for the vapor-liquid interface. Density functional theory has been 

found to be the most suitable tools for such problem where the liquid-vapor system can be 

considered as an inhomogeneous fluid with a continuous density distribution and thereby 

consideration of a sharp interface with the bulk value of density (of the liquid droplet) and 

consequent interfacial energy approximated in CNT could be avoided. Therefore a diffuse 

density profile model, which is quite realistic for liquid–vapor interface for microscopic as 

well as macroscopic interfaces and a simple Helmholtz free energy density functional for the 

inhomogeneous fluid have been approximated to obtain a simplified version of DFT for the 
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purpose of  theoretical investigation of nucleation and interfacial phenomena. The theory 

(DFT) developed for the homogeneous nucleation phenomena is then extended to the case of 

heterogeneous nucleation on flat solid surface (normally on the surface of the container or 

wall) and also on the more general spherically curved surface of the solid substrate which 

may be the most common  means of vapor to liquid condensation in nature. Motivated by the 

importance of the theory of interfacial phenomena, specially the size-dependent interfacial 

properties, which are very much significant while dealing with nucleation, a simplified 

version of both planar and size-dependent interfacial properties (that can be used for the 

replacement of the bulk interfacial energy term in the expression of CNT) of L-J system has 

been introduced. Though there are many theories available to calculate the surface tension of 

different model fluids, a detailed microscopic knowledge and rigorous calculations are 

required to obtain the surface tension of a real fluid (e.g. water) accurately over a wide range 

of temperature. In order to obtain a general expression for the surface tension of a real fluid a 

scheme has been proposed, in this thesis, to calculate the surface tension of real fluids 

without any detailed microscopic knowledge and calculations. This approach has been 

employed for calculating the surface tension of water, heavy water and liquid argon over a 

wide range of temperature from triple point to critical point with a significant accuracy. 

 

1.11 Scope of the thesis 

        The thesis is organized as follows. In chapter 2, an analytical route of obtaining the 

properties of homogeneous nucleation phenomena for vapor to liquid transition of Lennard-

Jones fluid using classical DFT with square gradient approximation along the lines of van der 

Waals [81] and Cahn and Hilliard [108] has been introduced [109]. An exponential density 
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profile model (with a parameter which measures the degree of diffuseness) and a model 

Helmholtz free energy functional which has been expressed as Taylor series expansion with 

respect to the uniform fluid have been proposed here. The free energy is variationaly 

minimized with respect to that parameter and the equilibrium density profile and 

corresponding free energy, which is the free energy of formation of droplet of a given radius, 

have been evaluated analytically. The problem has also been solved by using CNT in the 

frame of the present DFT. A modification of CNT has been introduced by applying the sharp 

interface approximation of CNT (through the large limit of the parameter in the model 

density profile) into the result of the DFT and the modified version has been named here as 

modified classical nucleation theory (MCNT). Temperature-density diagram (T-ρ) using 

Weeks, Chandler and Anderson (WCA) perturbation scheme for L-J fluid has been obtained. 

Formation free energy as a function of size and supersaturation ratio, density profile of the 

nucleating droplet, nucleation barrier and critical cluster size as a function of supersaturation 

ratio and finally the comparison of CNT, MCNT and DFT have been presented in this 

chapter.  

        The methodology is then applied to the vapor to liquid heterogeneous nucleation on flat 

solid surface [110] as presented in chapter 3. The liquid droplet on the flat solid surface at a 

given contact angle (C) has been presented as spherical cap model. The well-known CNT 

has been also applied in the framework of the present DFT method for the same 

investigations. The effects of supersaturation of the vapor and the strength of the solid-fluid 

interaction on the nucleation barrier have been investigated for Lennard-Jones fluid with 12-6 

fluid-fluid and 9-3 solid-fluid interaction model. The shape, density profile and the free 

energy of formation of droplets of any arbitrary size have been obtained in this work. The 
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spinodal decomposition of vapor has been observed at higher supersaturation or at higher 

strength of the solid-fluid interaction.  

        The vapor to liquid nucleation phenomena discussed in the last two chapters 2 and 3 

however, are particular cases of the phenomena. The possibility of a more general situation 

viz. the heterogeneous nucleation on a spherical solid surface which can also be called seed 

mediated nucleation [111] has been discussed in chapter 4 where, in addition to the solid–

fluid interaction energy, the effect of the size of the seed has also been examined. The scheme 

of the work is similar to the methodology described in chapters 2 and 3. A double spherical 

cap idea has been proposed to model the liquid droplet on the spherically curved (convex) 

solid surface and solid-fluid interaction for such solid (spherical)-liquid system has been 

derived. The problem has been investigated by applying CNT as well and the outcome of 

both the theories (DFT and CNT) has been compared with the results of earlier proposed 

theories. The shape (i.e. contact angle) and formation free energy of droplets of any arbitrary 

size have been optimized in this work. The change of the shape (optimized) with the variation 

of the size of the liquid droplet as well as with the size of the solid substrate have been 

observed, which predicts the shape-size relationship in the course of vapor to liquid 

heterogeneous nucleation on a spherical solid substrate of any particular size. The spinodal 

decomposition of vapor has been also observed at higher strength of the solid-fluid 

interaction. The results have been compared with the results of the conventional CNT.  

        Since interfacial properties of fluids are inherently associated with (and also influence) 

the phenomena of nucleation, it is relevant to formulate a simple analytical theory to 

investigate the properties of interfacial phenomena in general. A new scheme of obtaining the 

interfacial properties of a planar interface by adopting the density functional formalism of 
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van der Waals and Cahn and Hilliard for the interface has been proposed in chapter 5. A 

double well type Helmholtz free energy density functional model and a slowly varying model 

density profile have been proposed here. The methodology has been used for the calculation 

of surface tension of different real fluids such as water, heavy water as well as argon [112] 

over a wide range of temperature (from the triple point to the critical point), the input being 

only the known value of surface tension at the triple point. A very good agreement between 

the calculated and experimental values is observed. The result near the critical point obtained 

in this work is γ   (Tc − T)
3/2

 which is identical with the prediction of the mean field theory.  

        The above formulation is then generalized to obtain the size-dependent properties of 

interfacial phenomena [113] which have been presented in chapter 6. The size-dependent 

surface tension is very much significant in nucleation phenomena and can improve the result 

of CNT by replacing (γ ) by the size dependent surface tension (γR) in the bulk interfacial 

energy term. The various size-dependent interfacial properties such as surface tension, 

density profile, thickness of the interface and also the size-dependent temperature-density (T-

ρ) diagram, obtained analytically have been presented in this chapter.  

        The summary and conclusions of the work reported in this thesis have been given in 

chapter 7. The drawback and limitations have also been discussed. The scope of the 

application of the present proposed methodology to other different kinds of systems and 

phenomena (such as liquid to solid transition, precipitation etc.) have been pointed out.  
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CHAPTER 2 

Vapor to liquid homogeneous nucleation of Lennard-Jones fluids  

 

2.1 Introduction. 

        The understanding of the nucleation phenomenon is of importance in a number of areas 

of research in chemistry, physics, material science and allied subjects [2]. This phenomenon 

was first treated by Gibbs by applying thermodynamics and thereafter the theory was further 

developed by Becker, Doring, Volmar, Farkas, and Zeldovich for the study of homogeneous 

nucleation from vapor to liquid phase which has been traditionally referred to as the classical 

nucleation theory (CNT) [3-6]. The CNT assumes the bulk density approximation for the 

small nucleated droplet and also the surface free energy to be the same as that of the planar 

interface at coexistence at a given temperature. But during nucleation, a tiny liquid drop 

(spherical) is surrounded by supersaturated vapor (i.e., there is a spherical interface between 

the liquid and supersaturated vapor) and hence the interfacial energy should correspond to the 

supersaturated vapor-liquid spherical interface rather than liquid-vapor equilibrium state with 

planar interface which is used in CNT. The CNT has been simple because of these two 

approximations but a considerable error in the calculation of nucleation barrier height and 

hence also in the nucleation rate has been introduced. Attempts have been made to overcome 

this problem by proposing various theoretical approaches bypassing these approximations. 

The widely used DFT for this purpose was developed by Oxtoby and co-workers [13-18] and 

later many DFT approaches have been proposed [19-23]. There are also semi-

phenomenological [24] and phenomenological [25-27] approaches which have been 

developed for this purpose. Many other investigations using simulation techniques [29-31] 
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have also been successful in predicting the nucleation in the context of vapor to liquid phase 

transition. It is interesting to have a theory which deals with the microscopic nature of the 

fluid and also can provide a simple scheme for calculating the properties of vapor to liquid 

nucleation phenomena.  

         In the present chapter DFT with square gradient approximation along the lines of van 

der Waals and Cahn and Hilliard [81, 108] has been used to solve the problem analytically 

with the use of a diffuse interface model to represent the density instead of a sharp interface 

considered in CNT and the actual density profile of the drop is obtained through variational 

minimization of the free energy functional. Thus, all the approximations in CNT have been 

dropped in this work. The theory is applied to the Lennard-Jones (L-J) fluid and the 

supersaturation is calculated by constructing the phase diagram of the L-J fluid. An analytical 

expression for the free energy of formation of the droplet of any arbitrary size has been 

derived. The sharp interface limit of this expression results into CNT but with a modification 

of the surface tension term which is now supersaturation dependent. This modification leads 

to better result than CNT in barrier height calculation and is referred to here as the modified 

classical nucleation theory (MCNT). 

 

2.2. Classical nucleation theory (CNT) 

        The main features of the conventional CNT is the assumption of a sharp boundary 

between the liquid drop and vapor with a well-defined radius R and the density within the 

drop is same as the bulk liquid density. The model thus consists of two bulk fluids (liquid and 

vapor) on two sides of a sharp and planar interface (Fig.2.1). The fluid density profile ρ(r) 

across the interface is thus given by  

                       ( )   for  0 Lr r R                                                                        (2.1a) 
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                        and 

                      ( )   for  Vr r R      ,                                                                         (2.1b) 

where ρL and ρV are the densities of the bulk liquid and supersaturated vapor respectively. 

Here the CNT has been expressed within the framework of DFT with the use of a sharp 

density profile (Eq.2.1) and due to which the Helmholtz free energy of the final state, i.e. a 

nucleated liquid droplet of radius R surrounded by the vapor of the same component, is 

expressed as 

                      2 2 2

0

4 4 4
R

L Vf
R

F f r dr f r dr R     


                                      (2.2) 

where f (ρL) and f (ρV)  are the Helmholtz free energy density of the bulk liquid  and
 
bulk 

vapor phase respectively and γ∞ is the interfacial energy (surface tension) of a planar interface 

at coexistence. The Helmholtz free energy density can be written as, f = ρ μ – P, where P and 

μ denote respectively the pressure and chemical potential of the fluid of interest. Equation 

(2.2) can thus be written as 

                2 2 2

0

4 ( ) 4 ( ) 4
R

L L L V V Vf
R

F P r dr P r dr R       


                        (2.3) 

which, on using the relations 2 3

0

4
4

3

R

Lr dr R V


     and     24 V

R

r dr V


  ,  where VL 

and VV  are the volume of liquid drop of radius R and the volume of vapor phase respectively, 

can be rewritten as 

              24L L L L L V V V V VfF V P V V P V R           .                                       (2.4) 

Here μL and  PL denote the chemical potential and pressure for the liquid phase while μV and  

PV denote the same for the vapor phase. 
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The corresponding equation in terms of the Gibbs free energy (G) can also be written by 

using the relation G = F + PV and the Gibbs free energy of the final phase is thus given by 

                  24L L L V V VfG V V R          .                                                           (2.5) 

The total number of monomers (fluid particles), N can be written as 

( ) L L V VN r d V V     r . 

The Gibbs free energy of the initial uniform vapor phase (Gi ) is thus given by 

                  i V L L V V V VG N V V       .                                                                   (2.6) 

 Hence the Gibbs free energy of formation of a droplet of radius R, within the framework of 

CNT, is given by 

                  3 24
Δ ( ) Δ 4

3R L
G CNT R R

    
 
 
 
 

                                          (2.7) 

where Δμ = μV - μL. CNT uses the ideal gas equation to obtain Δμ so that Δμ = μV- μL= kBT 

ln(S), where S (= ρV / ρV
0
) is called supersaturation ratio or simply  the supersaturation, with 

ρV as the density of the supersaturated vapor and ρV
0

 as the vapor density at liquid-vapor 

coexistence. 

The term (4π/3) R
3
 ρL Δμ in Eq. (2.7) represents the volume energy of nucleation whereas the 

term 4πR
2
γ∞ stands for the surface energy. Here, the volume energy term is negative and the 

surface energy term is positive, but since the surface to volume ratio is high at the beginning 

of nucleation when the drop size is very small, the free energy of formation of the droplet is 

positive and increases initially with size, passes through a maximum and then decreases. The 

maximum in the formation free energy determines the nucleation barrier and the cluster with 

this maximum free energy is called the critical cluster. The radius of the critical cluster, RC as 



Chapter 2 

35 

 

obtained from Eq. (2.7) through maximaisation of the free energy with respect to R is given 

by RC = 2 γ∞ / (ρL Δμ) and the nucleation barrier, ΔG
*

CNT is given by 

                     

3
*

2

16

3( ln( ))
CNT

B L

G
k T S




      .                                                                  (2.8) 

The free energy barrier to nucleation as obtained from Eq. (2.8) is then used in the transition 

state theory to calculate the nucleation rate, J, as given by  

                    
*

exp
B

CNT

k T

G
J A

 
 
 


  ,                                                                                (2.9) 

where A  is the preexponential factor, the  derivation of which has been discussed elsewhere 

[5]. 

As mentioned earlier (chapter I), the interfacial energy (γ∞) used in CNT is the interfacial 

energy obtained at coexistence condition for the bulk system and therefore it does not depend 

on the supersaturation, S. The barrier height, predicted by Eq. (2.8) therefore vary incorrectly 

with the variation of supersaturation and never vanishes at  finite supersaturation, i.e, no 

spinodal decomposition can be predicted  at finite supersaturation, within the framework of 

this theory. 

 

2.3 Modeling of the density profile 

        A continuous density profile for the one component spherical liquid droplet suspended 

in the supersaturated vapor phase has been modeled instead of the step like profile as used in 

CNT. A parameter has been used in the density expression which is a measure of the degree 

of diffuseness and is determined by minimizing the free energy of formation of the droplet of 

any size, with respect to the variation of this parameter.  The density profile described by the 

proposed model, is given by 
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 

 

a a

                             (2.10b)a a

                               (2.10a)

 

and

( ) exp( ( )) , for 0  
2

( ) exp( ( )) , for  
2

L V
v vL

L V
v vV

r a r R r R

r a r R r R

 
 

 
 


    




   

 

corresponding to the final inhomogeneous phase. Here, ρV is the bulk density of the initial 

homogeneous supersaturated vapor phase and ρL is the bulk density of the liquid phase at 

coexistence and Rav is the distance from the center of the drop where the density is the 

average of the bulk liquid and vapor densities. In Fig.2.1, the density profile for this work is 

shown for specific value of the parameter a = 0.5 and Rav = 5. Thus, the density profile that 

has been assumed here is a continuous function of r and the expression for  ρ(r) and its  first 

derivative with respect to r at r = Rav, as obtained from either of the Eqs.(2.10), are given 

respectively by  

                 
 

( )
2

L V
r

 



              at  r =Rav                                                             (2.11a) 

                  and 

                
 ( )

2

L Vad r

dr

  
       at r = Rav .                                                           (2.11b) 

Clearly an inhomogeneous density profile is obtained (instead of the bulk density value) for a 

drop of any arbitrary size. The relation between Rav and the radius R of the corresponding 

sharp interface droplet (as used in CNT) which is also called radius of equimolar dividing 

surface or equimolar radius, can be obtained from the conservation of density normalization, 

as given by   
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               2 2 2

0 0

( )     
R

L V

R

r r dr r dr r dr  
 

     .                                                         (2.12) 

For the given density profile ρ(r) of Eqs. (2.10), the expression for R is given by  

              
av

1
3

3av av
2 3

2 exp( )
3  

R aR
R R

a a

  
   
  


    .                                                       (2.13) 

This equimolar radius  R, which is thus determined by the density profile, is considered here 

to be a measure of size of the droplet. 
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Fig.2.1. Density profile ρ(r) of a liquid droplet. Solid line representing a model considered in  

CNT and dashed line is for the model used in the present DFT work with Rav= 5 and an 

arbitrary value of a = 0.5. Reduced units are used for the plot. 

 

2.4 Density functional theory for vapor to liquid homogeneous nucleation 

        The Helmholtz free energy of the final phase of the nonuniform density i.e. liquid 

droplet suspended in the bulk of the supersaturated vapor  (one component system) can be 

expressed by using DFT with square gradient approximation [48, 81] as 



Chapter 2 

38 

 

            21
( ( )) ( ( ))

2fF f r d K r d    r r ,                                                            (2.14) 

where f (ρ(r)) in the first term, is the local Helmholtz free energy density and the second term 

represents the square gradient correction. Equation (2.14) can be rewritten as 

         

     

     

av av

av av

2
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f r r dr K r r dr
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   
 

  

  

 

 

                                       (2.15) 

The free energy density functional contribution given by the first term of Eq.( 2.14) is 

unknown in general for an inhomogeneous density distribution. However, it is often known 

for some model system at homogeneous density and this knowledge can be used for 

evaluating this quantity for inhomogeneous density through some suitable weighted density 

approximation or a perturbative approach, since local density approximation has been known 

to be unsuitable for such systems.  

A perturbative approach has been proposed to express f (ρ(r)) as Taylor series expansion with 

respect to the uniform fluid, retaining for simplicity terms up to first order, as 

                
 

  
 

 
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 


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



 
 
 
  

                          (2.16) 

where the subscript U stands for the uniform fluid and therefore , one has   ρU= ρL for r ≤ Rav 

and ρU = ρV for r > Rav. 

Using Eqs. (2.10) and (2.16), Eq.( 2.15) can be written as 

             

av av
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where fL = f(ρL) , fV = f(ρV) and Δρ = ρL – ρV . 

Using the relation,  f = ρµ - P ,  Eq.( 2.17) can be further rewritten as  

2 2
1 1

2 2
2 2

2 ( , ) ( ) (2 , )

2 ( , ) ( ) (2 , ),               (2.18)
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where the integrals denoted by I1 and I2 are given by 
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Equation (2.18) can be expressed in terms of the Gibbs free energy by using the relation G = 

F + PV, as 

2 2
1 1

2 2
2 2

2 ( , ) ( ) (2 , )

2 ( , ) ( ) (2 , ).                          (2.19)
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  

      

      

 

Since the total number of monomers (individual fluid particles), N, is conserved, one has   

( )N r d  r = constant. Thus, the Gibbs free energy of the initial uniform vapor phase can 

be written as Gi = N µV, i.e.  

       ( )i VG r d   r    ,                                                                                                        (2.20) 

which on using Eq. (2.10) leads to the expression 
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2 2

0 0

2 2 ,                                  (2.21)
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that can be further written as  

      av av1 22 I ( , ) 2 I ( , ) .i L L V V V V V VG V a R V a R                              (2.22) 

The difference in free energy between the final and initial states, ΔG = Gf – Gi , is thus given 

by  

     

3
1

2 2
1 2

4
2 ( , )

3

( (2 , ) (2 , ) ) ,                                           (2.23)
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which, on minimization with respect to the parameter a, provides ΔGR , the free energy of 

formation of a fluid droplet of radius R. The final expression of ΔGR is given 

by

3

2
0

2 3 3
0 0 0 0

2
22

0 03 3
0 0 0

4

3

2exp( )2 2
2

2 1 1
exp( 2 )  ,                               (2.24)
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where a0 is the value of the parameter a,  for which ΔG as given by Eq.(2.23), is minimum. 

Here ∆μ= μV – μL and ∆ρ=ρL - ρV, with ρL, representing the equilibrium bulk density of liquid 

at a given temperature and ρV denoting the density of supersaturated vapor i.e, ρV = ρV
0
S , 

where S is the supersaturation. The liquid and vapor densities at coexistence, ρL and ρV
0
 are 
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obtained from the phase diagram. The coefficient of the square gradient term, K, in Eq. (2.14) 

can be approximately written as [114,115] 

                 21
 d

12
K r r

 
 
 

   r                                                                                  (2.25) 

where Φ(r) denotes the attractive potential, and for the L-J fluid system, one has  

             
12 6

4r
r r

 

    
    
     

      ,                                                                           (2.26)  

which is attractive in the range of r ≥ σ .   

Equations (2.10)-(2.24) thus provide a scheme for obtaining the free energy of formation as 

the difference between the droplet and initial supersaturated vapor phase as a function of the 

droplet size at any chosen temperature.      

 

2.5 Modified classical nucleation theory (MCNT) 

        The value of interfacial energy used in CNT is the value, obtained at coexistence 

condition of vapor and liquid bulk system though the vapor is supersaturated in the process of 

vapor to liquid nucleation (already mentioned in section 2.1). In the present work, the 

supersaturation term has been introduced in the expression of surface tension by considering 

a large limit of the parameter a (present in the density profile see Eq.(2.10)) in the result 

obtained by the DFT (Eq.(2.23), and obtained another simplified version of the theory, which 

we call MCNT. The density profile will approach the sharp interface limit (like CNT) for
 

large value of a, and one can neglect (1/a) terms in Eqs. (2.13) and (2.23), and have the 

expression for the free energy difference given by 
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3 2 ,                                                         (2.27)
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which is identical in form with the expression of CNT (Eq. (2.7)), except that the bracketed 

quantity in the last term which can be identified as the  interfacial energy is not constant but 

is supersaturation dependent, viz.  

                            
2( )

4

K a



 .                                                                                     (2.28) 

In CNT, the surface tension used is the one at coexistence when supersaturation S=1 and thus 

0

0L V         , which indicates that on substituting Δρ0 in Eq. (2.28), one has γ = γ∞ , 

viz. 

                              

2
0( )

4

K a



                                                                                 (2.29) 

From  Eqs. (2.28) and (2.29), one obtains the relation 

                          
2

2
0

( )

( )MCNT


 








  .                                                                            (2.30) 

Therefore a supersaturation dependence of surface tension has been obtained though it has a 

size-dependence as well. The investigation of a proper size-dependence of the surface tension 

in presence of supersaturation is an interesting problem in itself.   

The expression for γ given by Eq.(2.30) therefore can be used to obtain nucleation free 

energy in the form of MCNT given by 

          3 24
( ) 4

3R L MCNTG MCNT R R


   
 
 
 

      .                                           (2.31) 

An analogous modification was earlier arrived at by Lutsko [21] through a different 

approach. 
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The free energy barrier obtained From Eq. (2.31), is expressed as  

         

3
*

2

16 ( )

3( ln( ))
MCNT

MCNT

B L

G
k T S

 


    .                                                                            (2.32) 

 These two equations (2.31) and (2.32) are the results corresponding to MCNT and can be 

compared with  Eqs. (2.7) and (2.8) of CNT.  

 

2.6 Calculation of temperature-density diagram (phase diagram) of L-J fluid 

 The vapor to liquid bulk phase transition followed by microscopic nucleation or spinodal 

decomposition occurs when the vapor is supersaturated. The height of the nucleation barrier 

is controlled by the extent of supersaturation, which may be vanished at very high value of 

supersaturation when the densities of the vapor enter to the spinodal region (see Fig.2). It has 

been seen that (earlier sections of chapter 2) the knowledge of supersaturation ratio is 

essential to calculate the nucleation free energy and therefore one has to calculate the 

coexistence densities    temperature-density diagram). At a given temperature the coexistence 

bulk densities of liquid and vapor ( ρL and ρV
0
 ) are obtained by solving the following  

simultaneous equations involving equalization of the pressure and chemical potential of the 

two phases,viz. 

pL (ρL) = pV (ρV
0),  μL(ρL) = μV(ρV 

0) ,  p = ph - ½αρ2,  μ = μh – αρ, with α = − ∫Φ(r) dr. (2.33)  

Here,  ph and μh are the hard sphere pressure and chemical potential represented, for example 

by Carnahan-Starling form of the equation of state [116] , with ph=ρkBT(1+η+ η2 – η 3)/(1- 

η)3 , where η=(π/6)ρd3 is the packing fraction. The chemical potential is obtained by solving 

the equation (∂ph/∂ρ) = ρ(∂μh/∂ρ), which gives µh= kBT[ln η + (8η - 9 η2 +3 η3)/(1- η)3]. Thus, 

the phase diagram can easily be obtained by plotting temperature vs. density of both the 

phases, obtained from the solution of Eq. (2.33). The proposed formalism is implemented 
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here by considering application to a model L-J system, whose interatomic potential (see 

Eq.(2.26)) is given by ΦL-J(r) = 4ε [(σ/r)12- (σ/r)6 ] with ε and σ as the characteristic energy 

and length parameters of the L-J system. Hence for convenience, these two parameters are 

used to express the temperature and density in reduced units, viz., the reduced temperature T* 

= kBT /ε, and the reduced density ρ* = ρσ3. For the calculation of temperature-density 

diagram, which provides  the ρL and ρV
0

 values at any given temperature, the conventional 

Weeks, Chandler and Anderson (WCA) perturbation scheme has been employed, where the 

repulsive term, Φ1(r)WCA = 0 for r ≥ rmin and Φ1(r)WCA =  ΦL-J(r) +ε  for r < rmin   and the 

attractive term, Φ2(r)WCA = ΦL-J(r) for r ≥ rmin and Φ2(r)WCA =- ε  for  r < rmin , where rmin = 

21/6σ is the distance at which ΦL-J(r) is minimum.  The repulsive term Φ1(r)WCA is replaced by 

that of an equivalent system of hard sphere with temperature-dependent diameter d(T) = σ 

(a1T + b)/(a2T + a3 ) ,with  a1 = 0.56165 kB /ε, a2 = 0.60899 kB /ε , a3 = 0.92868 kB /ε and  

b=0.9718. 

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

1.6

 

 

T
*

*

 

Fig. 2.2. Vapor-liquid coexistence phase diagram and spinodal curve of L-J fluid.  

          The triangles are for coexistence and the squares are for spinodal curve. 
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        At a given temperature, the hard sphere term in pressure and chemical potential 

expression is obtained from the repulsive term of the WCA perturbation scheme and hence 

from the temperature-dependent diameter mentioned above. The attractive part in pressure 

and chemical potential of L-J fluid denoted by α and  is obtained from the attractive term of 

the WCA perturbation scheme. The spinodal curve has been obtained by solving the equation  

  
  0

p






 .                                                                                                 (2.34) 

The calculated phase diagram for the L-J system in reduced unit is shown in Fig.2.2.
              

 

   

2.7  Results and discussions 

 As already mentioned, the formation free energy at a given supersaturation and for a 

given size can be obtained by minimizing Eq.(2.24) with respect to the parameter a which also 

yields the optimized density profile. The parameter a for a given size R, determines the 

diffuseness of the density, with larger a corresponding to sharper density profile. Here, the 

density of the small drop is not forced to be equal to the bulk liquid density (even at the 

center), as is used in CNT and the density of the drop, which is inhomogeneous, can take any 

value within the range of bulk liquid to bulk vapor density so as to yield the minimum value 

for the formation free energy. The procedure is followed to calculate the various quantities of 

interest for L-J fluid system for different values of the system parameter.  From the plot of the 

calculated (optimized) density profiles in Fig.2.3, it is observed that as the droplet size 

increases, the sharpness of density at the interface also increases and as its size decreases, the 

density even at the center of the drop becomes less than the bulk liquid density which is in 

agreement with observation in other earlier works [13, 117].  
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Fig. 2.3. Density profiles of liquid drops of different sizes (R*=R/) at T*=0.7 and S=4.0. 

   Indicated as ρL
* 
denotes the value of  bulk density of liquid. 
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Fig. 2.4. Formation free energy as a function of size at different Supersaturation (S) at 

T*=0.7, as calculated using the present model. 
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        The free energy of formation of various sized clusters has then been calculated at a 

given temperature for different supersaturation by evaluating Eq.(2.24) with optimized value 

of the parameter a in each case. This equation can be used for any size of the droplet although 

the evaluation is not needed beyond the critical size for calculating the nucleation rate. In 

Fig.2.4, free energy profiles at different supersaturations have been plotted. Both the critical 

size and the barrier height are found to decrease as the supersaturation increases. It is also 

interesting to note that for a given size, the optimized value of the parameter a increases 

slowly with supersaturation. Since the barrier height and its dependence on supersaturation 

plays a crucial role in the investigation of nucleation phenomena, it will be of interest to 

study the nature of this dependence in further details.  
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Fig. 2.5.  Comparison of the calculated nucleation barrier vs vapor density at T*=0.67 with 

simulation work reported by Oh and Zeng [29]. The squares correspond to results obtained 

from the present study and the circles refer to the Monte Carlo data from Ref. 29. 
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        Therefore, in Fig.2.5, we have plotted the barrier height as a function of the density of 

the supersaturated vapor phase for better insight into this aspect. It is found that the plot is 

almost linear in the supersaturation range investigated. For comparison, we have also 

included the Monte Carlo simulation results of Oh and Zeng [29]. It may be noted that the 

dependence of the present calculated nucleation barrier on density is very similar to that 

obtained from simulation, although the calculated results are consistently slightly (≈ 4%) 

higher, which is in fact a very good agreement.  

        Another quantity of interest is the size of the critical cluster (liquid droplet) in 

nucleation.  The cluster is associated with a continuously varying density profile (r)   which 

is extended over a long distance and hence the definition of size is somewhat nonunique, and 

is usually based on a partitioning of the space into the liquid droplet domain and vapor 

domain.  In order to obtain the number of particles belonging to the liquid droplet, one has to 

integrate the density profile up to a certain suitable distance RN, which is chosen here such 

that the integral of the decaying density profile equals the integral of a step like density with 

=(0)   for  r≤RN  and =V  for r>RN. The number (N
*
) of particles belonging to the critical 

liquid droplet, as obtained from the present density profile using this consideration, are 

shown in Figs. 2.6(a)  and 2.6(b) and are compared  with the results of  simulation by Oh and 

Zeng [29] and other DFT (both mean-field and non-mean-field) [23] as well as simulation 

results reported earlier. It is again clear that the results obtained from the present theory 

compare quite well with simulation and other DFT results. 
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 Fig. 2.6. (a) Plot of critical size vs vapor density at reduced temperature T*=0.67.The 

squares denote present DFT results and the circles refer to the Monte Carlo simulation data of 

Oh and Zeng [29]. (b) Plot of critical size vs  Supersaturation at reduced temperature T*=0.7. 

The squares denote present DFT results, circles and triangles refer respectively to mean- field 

and non mean-field DFT results [23], and open circles and open triangles denote simulation 

results [31], as reported in Ref.[23].  



Chapter 2 

50 

 

        It will also be of interest to compare the present results with the prediction of CNT as 

well as the modified version MCNT, which is proposed here. Therefore, we have plotted, in 

Fig. 2.7, the free energy profile calculated based on the present DFT prescription as well as 

MCNT and have compared the results with those of CNT. From the plots, it is clear that the 

present DFT results show much lower energy barrier and larger critical size as compared to 

CNT. It is gratifying to note that the simulation results of Oh and Zeng [29], when compared 

with the CNT prediction, also show the same trend. 
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Fig. 2.7.  Formation free energy vs particle size at T*=0.7 and at S=10 using different 

theories. The γ∞ value used for both CNT and MCNT based calculation is 1.24 /
2  

(from  

Zeng and Oxtoby [14] ).
 

 

         This is clearly a consequence of the fact that two of the major approximations used in 

CNT are avoided here and thus the result for free energy barrier is expectedly much better 

than that obtained from CNT. In CNT, the effect of supersaturation comes through the 
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volume term only and not the surface term whereas in the present work, the supersaturation 

affects both the terms. Thus, the effect of supersaturation is more pronounced here than in 

CNT. The modified classical nucleation theory as proposed in Eq. (2.31) leads to lowering of 

the free energy barrier but the result is not as good as the one predicted by density functional 

theory with our model. The MCNT, however, considers the surface tension in a more realistic 

way because here the surface tension is not calculated at coexistence (as in CNT) but at 

supersaturated state and hence the supersaturation affects the surface term as well.  

According to CNT, the free energy barrier as given by Eq.(2.8) is zero only at infinite 

supersaturation which is a totally unphysical situation but in MCNT, the barrier (Eq.(2.32)) is 

zero at finite supersaturation but still it is incorrect. But if we don’t consider the extreme 

spinodal condition and concentrate at lower supersaturation, then MCNT results are better 

than CNT without loss of the simplicity of calculation.  

 

2.8. Conclusion 

        A new theoretical approach for vapor to liquid homogeneous nucleation using DFT with 

square gradient approximation for the free energy functional has been presented, which is 

rather common for the study of nonuniform fluids, interfaces and spinodal decomposition. 

The analytical model for the density profile and expressing the free energy at any density by 

Taylor expansion with respect to the bulk density have made it simpler to perform the 

evaluation analytically. The procedure of variational minimization of the free energy 

functional using a parametric expression for the density profile has been advantageous in 

comparison to the numerical solution of the corresponding Euler equation. Besides leading to 

analytical expressions, the variational approach is shown to be particularly useful when the 

free energy functional used is rather approximate, since the boundary conditions or physical 
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features of the interfacial density can be easily built in through a proper choice of the density 

expression. Thus, the optimized density inside the nucleated small droplet is predicted to be 

lower than the bulk liquid in consistency with the other earlier works. Also, the calculated 

results demonstrate that the supersaturation effect is much better and realistically represented 

as compared to CNT, in good agreement with simulation and other results. The simple 

MCNT prescription is shown to predict the spinodal condition at finite supersaturation  and  

also a supersaturation dependence in the  surface tension,  in contrast to CNT. 

 

 

 

 

 

 

 

  

 

 

 



Chapter 3 

53 

 

CHAPTER 3 

Vapor to liquid heterogeneous nucleation of Lennard-Jones  

 fluids on flat surface of solid substrate 

 

3.1. Introduction. 

        The theory for the phenomena of nucleation was first introduced by Gibbs [3], 

developed further by Becker, Doring , Volmar , Farkas, and later modified by Zeldovich for 

the study of homogeneous nucleation from vapor to liquid phase. These approaches already 

discussed in Chapters 1 and 2, form the basis of what is known as the classical nucleation 

theory (CNT) [4-7]. As we know, nucleation involves a process of barrier crossing 

phenomena (nucleation barrier), and therefore, an understanding of the nucleation barrier and 

the effect of various parameters on this barrier is very important and needs to be explored. 

The degree of supersaturation is the only parameter that can affect the nucleation process, 

when the system is homogeneous. But most of the natural systems are heterogeneous, where 

many other components (like impurities, surface of the wall etc.) are also present in addition 

to the main component of interest. Therefore, apart from the supersaturation, the presence of 

such foreign substances can also affect the nucleation barrier and thereby control the 

condensation rate. The nucleation in such case can begin on the surface of a substrate and the 

nucleation barrier, critical size and shape of the nucleus at a given temperature and 

supersaturation will thus be governed by the shape and size of the substrate and the strength 

of substrate- fluid interaction.  

         As was the case for homogeneous nucleation, the first attempt to understand 

heterogeneous nucleation phenomena also was through the classical theory of heterogeneous 

nucleation [8-12] based on those approximations (see chapter 2) as used in CNT of 
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homogeneous nucleation. Since those approximations have been found to lead to significant 

error in calculating the nucleation properties (i.e. nucleation barrier, critical size etc), several 

approaches have been developed within the framework of density functional theory (DFT) 

[32-37] and several investigations have been carried out using  molecular simulation [38-46] 

based techniques to describe the various aspects of the phenomena of heterogeneous 

nucleation.  

        In the present chapter, the effect of a flat solid substrate on the properties of vapor to 

liquid nucleation (i.e. heterogeneous nucleation on the flat surface of a solid substrate) has 

been discussed. Along the lines of treatment for homogeneous nucleation, a density 

functional theory with square gradient approximation for the free energy functional has been 

proposed here to investigate the heterogeneous nucleation of vapor to liquid phase transition 

of Lennard-Jones (L-J) fluid on a flat solid surface [110]. The density profile and the local 

Helmholtz free energy density have been modeled in a way similar to that used for 

homogeneous nucleation [109]. The standard 9-3 interaction (which corresponds to L-J 

potential) energy between a fluid particle and the flat solid substrate (L-J system) has been 

used to incorporate the effect of flat solid surface on the free energy of the fluid. The free 

energy of formation of a given volume of a liquid drop on the solid surface has been 

minimized with respect to both the contact angle and the parameter present in the density 

profile. Therefore, the optimized shape, density profile and free energy of formation of a 

droplet of any given volume can be obtained. The strength of the wall-fluid interaction as 

well as the extent of  supersaturation control the nucleation barrier significantly and also 

make it vanish (spinodal) at their large values. The CNT for such system has also been 

presented within the framework of the proposed DFT and the results have been compared 

with the results of DFT. 
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3.2 Spherical cap model for the liquid drop on the flat surface of a solid substrate 

        The liquid droplet placed on the flat surface of a solid substrate, which makes a contact 

angle with the surface, is considered for simplicity to be part of a sphere. This model, called a 

spherical cap, is shown in Fig 3.1, where the solid, liquid and vapor regions are denoted by 1, 

2 and 3 respectively. As shown in the figure, in the present model the origin of the sphere is 

its center O', whereas the origin for defining the coordinates of the spherical cap is O (the 

center of the interface of the solid and liquid phase), which will be mainly used for the 

calculation in the present work. The radius of the sphere (i.e. the radius of curvature of the 

cap) is denoted by rs and R(θ) is the polar radial vector with respect to origin at O (distance of 

the droplet surface from O) which is a function of the polar angle θ. The contact angle 

between the liquid and the solid surface is θC. Since the origin (point O) of the spherical cap 

will be used for the calculation, it is essential to have an expression for R(θ), which has been 

obtained here from simple geometrical consideration. 

In Fig 3.1, P is an arbitrary point on the surface of the spherical cap. Due to the cylindrical 

symmetry the problem can be considered in two dimensions and therefore one can consider X 

and Z axis only.   

                            (3.1)  sin( )  ;   '   cos( ) ;    (1 cos( )) S C S C S COA r OO r OB r       
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Fig3.1 A liquid droplet (2), formed on a flat solid surface (1) with a contact 

angle θC, and surrounded by the vapor phase (3). 

The X coordinate of the point P with respect to the two origins are XSC = R(θ) 

sin(θ) and     XS = rS sin(θ
׳
), where the subscript S stands for spherical case, i.e. 

with respect to the origin at O
׳
 and SC denotes spherical cap, i.e. with respect to 

the origin  at O . Since XSC = XS, one has  

                                                                                    (3.2) sin( ')   ( ) sin( )Sr R    

 

Analogously one has ZSC = R(θ) cos(θ)  and ZS = rS cos(θ
׳
). Since ZS = ZSC  + O

׳
O, 

one obtains 

   

                                                        (3.3) ( ) cos( )  cos( )  cos( ')   S C SR r r       

 

Equation (3.2) can be rewritten as  
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       2 2 2
                                                                (3.4) cos( ')  ( ) sin ( )       S Sr r R     

Using Eq.(3.4) in Eq.(3.3), one has R(θ) cos(θ) + rS cos(θC)   = (rS
2
 - R(θ)

2
 sin

2
(θ))

1/2
, which 

on  squaring  and after some rearrangement, leads to the result 

2 2 2 0                                             (3.5) ( ) 2 ( ) cos( )cos( )  sin ( )   .C SS CR R r r           

The solution of  Eq.(3.5) for the variable R(θ) is given by 

 2 2 2 sin  ,                            (3.6) ( ) cos( )cos( )  cos ( )cos ( ) ( )C C CS SR r r        

 

which can be used to calculate the polar radius R(θ) as a function of the polar angle θ.  

The volume of the spherical cap as obtained by using this expression of R(θ) is given by the 

expression 

2
3

0

( )2 2
2

0 0 0

   

2
( )sin( )

3
                                                         

sin( )

  .

R

R d

V d d r dr







  

 



 



  
                        (3.7) 

Another expression for the volume of the spherical cap which is commonly employed, using 

the radius of the sphere as rS, is  

3 2

 .   
4 ( ( ) 1)  (c ( ) 2)

            
3 4

S C Cr cos os
V

    
  

 
              (3.8) 

 Since the radius of the spherical cap for a given volume varies with the contact angle, the 

volume (and not the radius) is used as the size of the droplet in case of heterogeneous 

nucleation. In the present work, the radius (rs), for a given volume (V) of the droplet on solid 

surface with contact angle (θC) can be obtained from Eq.(3.8) and will be used in Eq.(3.6) to 
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calculate R(θ).  The calculated R(θ) for different values of the contact angle has been plotted  

in Fig 3.2. 
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            Fig 3.2 Plot of   R(θ) in 2-D for a given volume V=10σ
3
 (σ is a parameter in  the 

            Lennard- Jones potential)  at different values of the contact angle. Please note that 

            only half of the droplet surface profile in the xz-plane is shown for convenience 

 

3.3 Classical nucleation theory of vapor to liquid heterogeneous nucleation on a flat  

        surface of solid substrate. 

        Heterogeneous vapor to liquid nucleation for the droplet formation on the planar surface 

of a solid substrate along the lines conventional CNT has been considered here. According to 

CNT, there is a sharp boundary (interface of the regions 2 and 3 in Fig. 3.1) between the 

liquid drop (region 2 on the surface of the substrate 1) and vapor (region 3 covering the liquid 

drop 2) with a well-defined polar radius R(θ), so that the density within the drop is same as 

the bulk liquid density and outside the drop, it is same as that of supersaturated vapor.  The 
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fluid density profile ρ(r, θ) (see Fig. 3.3) in the present spherical cap model, is thus written as 

( , )   for  0 ( ) (3.9)

and

( , )   for  ( ) , (3.10)
V

Lr r R

r r R

   

   

  

 

                                                                 

                                                                     

 

 for all values of θ  ranging from 0 to π/2 , where  ρL  and  ρV  are the densities of the bulk 

liquid and supersaturated vapor respectively.      

The Helmholtz free energy of the final phase is expressed as 

   
( )2

22 2

0 0 ( )

( )2
2 2

0 0 ( )

2 sin( ) 2 (1 cos( ))   

2 sin( ) ( ) ( )    ,                   (3.11)

R

L V Sf
R

R

L Vsf sf
R

F d f r dr f r dr r

d V z r dr V z r dr











       

    







 
 
 
 

 
 
 
 

    

 

  

  

 

where f (ρL)  and  f (ρV)  in the first term (volume energy term)  are the Helmholtz free energy 

density of the one-component bulk liquid  and
 
bulk vapor phase respectively, and γ∞  in the 

second term ( vapour- liquid surface energy term) is the surface tension  of the vapour-liquid  

planar interface at coexistence. The third term in Eq.(3.11) is the energy due to solid-fluid 

interaction, where Vsf (z) is the interaction energy experienced  by each fluid particle due to 

the solid substrate at a distance z from the surface of the solid plane and z can be replaced byz 

= r cos(θ) + σW  (where σW  is the collision diameter between fluid and solid) in the present 

model. A standard 9-3 model for the L-J interaction potential between the solid wall and  

fluid particles  has been used in this work. 
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The Helmholtz free energy density can be written as, f = ρμ – P, where P and μ denote 

respectively the pressure and chemical potential of the fluid of interest. Equation (3.11) can 

thus be written as 

( )2
22 2

0 0 ( )

( )2
2 2

0 0 ( )

2 sin( ) ( ) ( ) 2 (1 cos( ))  

2 sin( ) ( ) ( )   .                                     (3.12)
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L L L V V V Sf
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R
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F d P r dr P r dr r

d V z r dr V z r dr
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    







 
 
 
 

 
 
 
 

      

 

  

  

 

Using the relations 
( )2

2

0 0

2 sin( )
R

Ld r dr V




       and 
2

2

0 ( )

2 sin( ) V

R

d r dr V





  


   (see 

Eq.(3.7)) , where VL   and VV  are the volume of the liquid droplet on the solid substrate and 

the volume of vapor phase respectively, Eq.(3.12) can be rewritten as 

2

( )2
2 2

0 0 ( )

 .                        (3.13)

2 (1 cos( ))   

2 sin( ) ( ) ( )   

L L L L L V V V V V Sf

R

L Vsf sf
R

F V P V V P V r

d V z r dr V z r dr






      

    



 
 
 
 

     

   
 

Here μL and PL denote the chemical potential and pressure for the one-component liquid 

phase, while μV  and  PV denote the same for the one-component vapor phase. One also has 

the relation ( , ) L L V VN r d V V      r  , where N denotes the total number of monomers 

(fluid particles). 

The corresponding equation for the Gibbs free energy (G) can also be written, on using the 

relation G = F + PV. The Gibbs free energy of the final phase is thus given by 
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2

( )2
2 2

0 0 ( )

2 (1 cos( ))  

2 sin( ) ( ) ( )   .     (3.14)
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G V V r
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The Gibbs free energy of the initial uniform vapor phase Gi , can similarly be expressed as 

the sum of the free energy of one-component vapor phase and the solid-fluid interaction 

experienced by all the vapor particles as the perturbative  term. The initial Gibbs free energy 

Gi, is thus given by 

( )2
2 2

0 0 ( )

,2 sin( ) ( ) ( )   

                                                                                                                  (3.15)

R

i L L V V V V V Vsf sf
R

G V V d V z r dr V z r dr






        
 

 
 
 

        

which is written in a form analogous to the expression of Gf as given by Eq.(3.14). 

Hence, the Gibbs free energy of formation of a droplet of volume VL on a solid planar 

surface, within the framework of CNT, is given by 

 

2

( )2
2

0 0

(CNT) 2 (1 cos( ))  

 +2 sin( ) ( )   (3.16)   ,         

LV L L S

R

sf

G V r

d V z r dr




    

   

     

  
   

where  Δμ = μV  - μL  and Δρ = ρL – ρV .Within CNT, one  uses the ideal gas equation to obtain 

Δμ  so that Δμ = μV - μL=kBT ln(S), where S is the supersaturation ratio, S = ρV / ρV
0
, with  ρV 

and ρV
0
 denoting  the density of the supersaturated vapor and  the vapor density at liquid-

vapor coexistence respectively.  
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3.4 Modeling of the density profile for heterogeneous nucleation on a flat surface 

        The density profile model proposed for homogeneous nucleation (section 2.3 in chapter 

2) has been implemented here with some modification related to the polar angle () 

dependent distance of the boundary (R()) from the center in the present case  instead of a 

constant value of R in the case of homogeneous droplet model. The density profile for the 

final nonuniform state, as described by the proposed model, is given by 

             

 

 

av

av

av

av

,  for 0 (                          

and

(3.17a)( , )  - exp   - 1
2 (

( , ) + exp   - 1 , for  > (                      (3.17b)
2 (

L V

L

L V

V

r R
r

r C
R

r
r C r R

R


 

  


 
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

 
   

   
  

   
   

  

)
)

)
)

 

Here, ρV is the bulk density of the initial homogeneous supersaturated vapor phase and ρL is 

the bulk density of the liquid bulk phase at coexistence and R(θ)av  is the distance from the 

centre of the drop on the solid surface (i.e, point O in Fig. 3.1), at any particular polar angle θ 

(see Eq.(3.6)), to a point on the liquid-vapor interface where the density is the average of 

densities of the bulk liquid and the vapor. The parameter C is a measure of the diffuseness of 

the density at the interface.  The density at the origin, i.e., at r=0 (at point O in Fig.3.1) is      

ρ (0,) = ρL – (ρL- ρV)/2 exp(-C) clearly independent of . Since the density at the origin has to 

be same for all values of the polar angle , at a given contact angle C, the parameter C is 

therefore constant (independent of ) at any particular contact angle (C). 

In Fig.3.3, the model density profile for a droplet of volume V= 400 σ
3
 placed on a flat 

surface with a contact angle θC= π/6 is shown for specific value of the parameter C = 4 at two 

different values of the polar angle θ = 0 and      θ =π/2. The expressions relating the radius of 
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curvature ( rS )  of the droplet on the planar surface    (origin O
'
) and the  polar angle (θ) 

dependent radius (R(θ)) (origin O) for a given volume (V) of the liquid drop on a planar 

surface have already been discussed in section 3.2.  
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Fig.3.3.  Density profile ρ(r,θ)  of a liquid droplet of an arbitrary volume V=400σ
3 

 on a flat 

surface of the solid substrate. Solid and dash-dot-dash lines correspond to the model for the 

present work for the polar angle θ= 0 and π/2 respectively, while dash and dot lines are 

densities corresponding to  CNT for the polar angle θ= 0 and π/2 respectively. 

 

The density profile assumed here is a continuous function of r  and the expression for  ρ(r,θ)  

and its  first derivative with respect to  r at  r = R(θ)av, as obtained from either of Eqs.(3.17), 

are given respectively by  
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a
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∣  

∣ 

 

 

Therefore, the proposed model provides an inhomogeneous density profile (instead of the 

bulk density value) for a drop of any arbitrary size. For the sake of simplicity, the R(θ)av, 

hereafter,  will be denoted as R(θ).  

 

3.5 Density functional theory of vapor to liquid heterogeneous nucleation               

        The Helmholtz free energy of the final phase of the nonuniform density (liquid drop on 

the solid surface covered by the vapor of the same component) can be expressed by using 

DFT with square gradient approximation [32] as 

3 2 3

3
 

1
( ( , )) ( ( , ))  

2

( , )                                                        (3.19)

f

sf

F f r d r K r d r

r V d r

   

 

  



 


  

 where  f (ρ(r, θ)),  in the first term,  is the local Helmholtz free energy density,  while the 

second term represents the square gradient correction to it  and the third term arises from 

solid wall- fluid interaction, with the quantity Vsf (z) denoting the interaction energy 

experienced by each fluid particle due to the solid substrate. The third term will be calculated 

here by considering the drop as a classical drop with the sharp density at interface, i.e. the 

contribution by the solid surface is considered to be the same for both CNT and DFT 

methods.  
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Equation (3.19) can be further written as 
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The form of the local Helmholtz free energy density f (ρ(r,θ)) used here is  expressed (see 

also Eq.(2.16) in chapter 2) as Taylor series expansion with respect to the uniform fluid up to 

1
st
 order [109], as 

     
 

  
 
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, , ,     (3.21)
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where the subscript U refers to the uniform fluid and therefore  ρU = ρL  for  r ≤ R(θ)   and ρU 

= ρV for r > R(θ). 

The square gradient term for such density is written as 

  
2 2
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,  .                                         (3.22)
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The Helmholtz free energy of the final nonuniform phase is obtained by substituting Eqs 

(3.21) and (3.22) into Eq.(3.20), and can be expressed as  
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Using the model density given by Eqs.(3.17) in Eq.(3.23), one has the result 
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where  fL ≡ f(ρL) , fV ≡ f(ρV) and Δρ = ρL – ρV . 
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Using the relations 
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Eq.(3.7)) and   f = ρµ - P ,  Eq.(3.24) can be used to express the  Gibbs free energy of the 

final phase as 
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Since the total number of monomers (individual fluid particles), N, is conserved, one has  

( , )N r d   r = constant. The free energy of the initial uniform phase can be expressed as 

the sum of the free energy of the one component pure vapor and the solid- vapor perturbative 

term, as 
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Using the relations given by Eqs. (3.7) for VL and VV and Eqs.(3.17), Eq.(3.26) can be 

rewritten as, 
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Therefore, the free energy of formation of a droplet of a given volume on a solid substrate, as 

given by  ΔGV
het

 (DFT) = Gf – Gi , can be expressed, after simplification , as 
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which, on minimization with respect to the parameter C, provides ΔGV
het

(DFT) , the free 

energy of formation of a fluid droplet of volume V.  

 Here ∆μ= μV – μL   and ∆ρ=ρL - ρV, with ρL, representing the equilibrium bulk density of 

liquid at a given temperature and  ρV  denoting the density of supersaturated vapor,  i.e., ρV = 

ρV
0
S , where S is the supersaturation ratio. The liquid and vapor densities at coexistence, ρL 
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and ρV
0
 are obtained from the phase diagram. The coefficient of the square gradient term, K 

used in Eq.(3.19) is given by  in Eq. (2.25) of chapter 2. 

The solid-fluid interaction Vsf(z)   has been obtained by considering the wall-fluid model [50]. 

In the case of L-J interaction, the total interaction energy experienced by each fluid particle 

due to the solid surface is given by the 9-3 potential, 

              

9 3
3 1 1

( ) 4   ,                       (3.29)
45 6

w w
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z z
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where εsf  is the depth of the solid-fluid interaction potential curve,  σW  is the collision 

diameter between fluid and solid and z is the perpendicular distance of the fluid particle from 

the wall. In the present model, z is written as z = r cos(θ) + σW , where θ is the polar angle. 

Therefore, the minimum distance (z) between the particle and wall is now σW   and not zero, 

so that the integral in Eq.(3.28) can be run from r = 0. The density of the solid at the wall (ρw) 

has been considered here for simplicity as unity so that ρw
3
=1 and the depth the solid-fluid 

interaction εsf is expressed as the ratio of the depth of the solid-fluid to fluid-fluid (εsf / εff) 

interaction potential.     
  

 

3.6 Results and discussions 

        The present formalism is applied to a model L-J system, with interatomic potential   

ΦL-J(r) = 4ε [(σ/r)
12

- (σ/r)
6
 ] with  ε  and  σ  as the characteristic energy and length parameters 

of the L-J system (see Eq.(2.26)). The coexistence densities of vapor and liquid of L-J system 

at any particular temperature which are required for the calculation of degree of 
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supersaturation has been obtained from the temperature-density diagram (see Fig.2.2) shown 

in section 2.6 of chapter 2.            

        In order to obtain the optimized density profile for a given volume of droplet on the 

solid surface, the parameter C (in Eq.(3.17)) has to be evaluated, which has been obtained by 

minimizing the free energy of heterogeneous nucleation (Eq.(3.28)) with respect to this 

parameter. The minimized free energy is thus the free energy of formation of that droplet and 

the corresponding C is used to calculate the optimized density profile as shown in Fig.3.4. 

From the plot, it is observed that as the polar angle increases, the sharpness of density at the 

interface decreases and the density even at the centre of the drop becomes less than the bulk 

liquid density which is commonly observed in the case of tiny droplet .  
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Fig.3.4. Density profiles of liquid drops of volume V=400σ
3
 on the solid surface with contact 

angle θC = π/6 at T*=0.7 and S=2.0 for different values of the polar angle θ. 

 

        The free energy of formation of the droplets of different volumes at different conditions 

such as supersaturation and strength of the solid-fluid interaction has been obtained. It has 
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been observed that the contact angle for the minimum free energy of formation of the droplet 

decreases as the volume of the droplet increases. The free energy of heterogeneous nucleation 

using the present DFT at different supersaturation has been plotted in Fig.3.5 at reduced 

temperature T*=0.7. The free energy of both heterogeneous and homogeneous nucleation at 

T*=0.7 and S=5 using classical nucleation theory (CNT) is also shown in Fig.3.6. Form Figs. 

3.5 and 3.6, it is clear that, although the nucleation barrier is much less  in the case of 

heterogeneous nucleation, as compared to the same for  homogeneous nucleation, as 

predicted by CNT, the barrier predicted by the present DFT method is still lower. The 

spinodal decomposition is also observed at higher supersaturation as shown in Fig. 3.5. The 

effect of substrate on the free energy of heterogeneous nucleation has been shown in Fig. 3.7, 

where the free energy of heterogeneous nucleation using both CNT and DFT have been 

plotted at different values of εsf. The nucleation barrier is found to vanish with increase in εsf. 

From Figs. 3.5, 3.6 and 3.7, it is clear that the nucleation is favoured on the surface of the 

substrate. It has been observed that, even at a given εsf , the optimized shape of the droplet on 

the solid surface varies with  the different volumes of the droplet. In Fig. 3.8, the shape of the 

droplet on the flat surface, i.e. the contact angle has been plotted against the volume of the 

droplet. The contact angle is found to sharply fall with increase of the volume when the 

droplet is very small and then it varies slowly to reach a constant value when it becomes a 

macroscopic droplet.  
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  Fig. 3.5.  Formation free energy as a function of volume at different supersaturation (S) at 

  T*=0.7 with εsf =1.0, as calculated using the present model. 
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Fig. 3.6.Comparison of classical heterogeneous and homogeneous nucleation at T*=0.7, S= 5 

with εsf = 1.0. The γ∞ value used for both types of nucleation  is 1.24 /
2
, as

  
obtained from 

DFT  by Zeng and Oxtoby [14]. 



Chapter 3 

73 

 

0 3 6 9 12 15
-5

0

5

10

15

 

 

 sf = 1

 sf = 2

 sf = 4


G

/

V/3

 

Fig. 3.7.  Heterogeneous nucleation with different values of εsf at T*=0.7 and  S=2. The  

symbols denote results of CNT, while the symbols connected with line denote results of DFT,  

in the present model. 
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Fig. 3.8  Optimised contact angle vs volume at T*=0.7, S=1.5 and  εsf = 1.0. 
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3.7 Conclusions 

        A method for the calculation of the free energy of heterogeneous nucleation for the 

vapor to liquid phase transition of L-J fluid using DFT with square gradient approximation 

for the free energy functional has been introduced. This type of DFT is commonly used for 

the study of nonuniform fluids, interfaces and spinodal decomposition. Although the present 

work is not completely analytical, with the use of a simple numerical integration, the 

formalism is   overall simple due to the consideration of a model for the density profile and 

evaluation of the free energy at any density by Taylor expansion with respect to the  bulk 

density.  The free energy has been minimized variationaly with respect to the parameter 

present in the density profile as well as the contact angle to obtain the minimum free energy 

of formation of a drop on the surface of the substrate. Therefore, this method can be used to 

predict the shape, density profile and free energy of a given volume of the droplet including a 

critical droplet which provides an idea about the kinetics of nucleation. Spinodal 

decomposition is observed either by increasing supersaturation or by increasing the strength 

of the solid-fluid interaction.  
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CHAPTER 4 

  Vapor to liquid heterogeneous nucleation on spherical solid substrate: 

Seed mediated vapor condensation  

 

4.1 Introduction 

        In chapter 3, vapor to liquid heterogeneous nucleation on the flat surface of a solid 

substrate has been discussed. The phenomenon of droplet formation on flat surface is a 

particular case of droplet formation on a spherically curved surface with infinite radius of 

curvature. Nucleation on curved surface is therefore a general case of heterogeneous 

nucleation which is also known as seed mediated nucleation. The zero value of the radius of 

the solid substrate (foreign particle or seed) corresponds to the homogeneous nucleation 

(chapter 2) while the infinite radius of curvature corresponds to the heterogeneous nucleation 

on flat surface (chapter 3). In the present chapter the features of vapor to liquid heterogeneous 

nucleation on convex surface of solid substrate has been discussed. The theory is then applied 

to the case of  Lennard-Jones fluid. 

        The conventional classical theory with the well-known approximations for density and 

interfacial energy has been applied earlier [10-12] for such heterogeneous nucleation. The 

effect of particle size and surface properties upon nucleation efficiency was investigated by 

Fletcher [11]. A general result was derived in the framework of  CNT which was then applied 

to condensation, sublimation etc. A rigorous thermodynamic formulation of Fletcher’s model 

using a novel analytical approach within CNT was derived by Qian and Jie [12]. The classical 

theory, however, does not work well because of the use of unrealistic approximations, and 

therefore several approaches have been developed to solve the problem in a more realistic 
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manner. Density functional theory (DFT) [35-37] as well as molecular simulation [41-46] 

based techniques have been employed to describe various aspects of the phenomena of 

heterogeneous nucleation on curved solid surface. Lattice density functional theory (LDFT) 

with suitable constraints had been applied by  Zhang et.al to investigate the shape of the 

critical nucleus as well as the height of the nucleation barrier corresponding to the nucleation 

behavior of vapor-liquid transition in nanosquare pores with infinite length [35]. They have 

also used the constrained LDFT to investigate how nanoscale seed particles affect 

heterogeneous vapor-liquid nucleation[36], i.e. the effects of the physical properties of 

nanoscale seed particles ( the seed size, the strength of seed-fluid attraction, and the shape of 

the seeds) on the structure of critical nuclei and nucleation barrier. A hybrid thermodynamic 

and density-functional theory for heterogeneous nucleation on mesoscopic wettable particles 

was developed by Bykov and Xeng [37].  

         In the present work, the effect of the size and surface properties of seed on the 

nucleation of Lennard-Jones (L-J) fluid has been investigated by employing DFT with square 

gradient approximation for the free energy functional. The well-studied exponential density 

profile model which has been known to work quite well in the case of liquid droplet- vapor 

system [109-110,112-113] and a model Helmholtz free energy density for the local part of the 

free energy density functional have been employed in the present work. Homogeneous 

nucleation has been obtained in the limiting condition of the seed size equal to zero (i.e. no 

seed particle) whereas the infinite radius of seed size provides the heterogeneous nucleation 

on flat solid substrate. The present work is therefore the generalization of our earlier work on 

homogeneous [109] and heterogeneous nucleation on flat surface [110], discussed in chapter 

2 and 3 .Unlike the standard 9-3 interaction (corresponds to L-J potential) energy between 

each fluid particle and the flat solid substrate (radius of seed = ) in case of heterogeneous 

http://publish.aps.org/search/field/author/Zhang_Xianren
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nucleation on flat surface, a general formula for the interaction between each fluid particle 

and the spherical substrate has been derived. Minimization of the free energy of formation of 

a liquid drop on the spherical solid surface (of given radius) with respect to both contact 

angle as well as the parameter present in the density profile has been carried out for a given 

volume of the drop. This leads to the optimized shape and free energy of formation of a 

droplet of any given volume. The dependence of the optimized shape of the liquid droplet on 

the size of the solid substrate (spherical) at constant volume of the liquid and also on the 

volume (size) of the liquid droplet at constant size of the solid substrate  have been studied 

using both CNT and DFT, which has been mentioned here as shape-size relation. This shape-

size relation gives an idea of shape wise mechanistic pathway of growing droplets. The 

strength of the wall-fluid interaction as well as the size of the solid substrate controls the 

nucleation barrier significantly. The spinodal decomposition has also been observed at 

different conditions. The unconstrained density profile used in the present DFT gives 

different results  as compared to the results obtained by the approximation of  step like 

constraint  density profile used in CNT, which is an additional achievement of this DFT 

based study as compared to the earlier work of Fletcher [11] and Qian [12]. The size of the 

seed of any particular material for the lowest nucleation free energy barrier can also be 

predicted by the present formalism. 
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4.2 A Double Spherical cap model for the liquid drop on a spherically curved surface  

                             

 

The liquid droplet placed on the spherical surface of a solid substrate, which makes a contact 

angle (θC) with the surface, is considered here as a spherical cap and denoted as CAPL. The 

cap is constructed by the portion of the solid substrate covered by the CAPL and denoted as 

CAPS. This model which has been called here as a double spherical cap model is shown in 

Fig. 4.1, where the vapor, liquid and solid regions are denoted by 1, 2 and 3 respectively. The 

CAPL and CAPS are therefore part of two different spheres with the origin of the solid 

sphere at OS, whereas the origin of the liquid droplet on the solid surface is at OL, in the 

present model. The origin of both the spherical caps (CAPS and CAPL) is chosen to be at the 

C 
θC

 
θ 

1 

 3 
 

   

θS
 

θL
 

OL
 

OS
 

O 

RS
 

RL
 

2 R(θ) 

3 

Fig.4.1 Double spherical cap model representing the liquid drop formation on a 

spherical solid substrate. Vapor, liquid and solid phases are denoted by region 1,2 and 3 

respectively in the figure. 
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point O, which will be used for the calculation in the present work. The radius of the solid 

sphere (i.e. the radius of curvature of the CAPS) and the liquid droplet (i.e. the radius of 

curvature of the CAPL) are denoted by RS and by RL respectively. R(θ) is the polar radial 

vector with respect to origin at O (distance of the surface of the cap from O) which is clearly 

a function of the polar angle θ. R(θ) is actually  RL(θ) when CAPL is considered and  RS(θ) 

in case of CAPS.   The contact angle between the liquid and the solid surface is θC. Since the 

origin of the spherical cap (O) will be used for the calculation, it is essential to have the 

expressions for RL(θ) and  RS(θ). In order to obtain the expressions of these radii, the two 

caps can be treated separately so that the calculation can be done by considering the single 

spherical cap model as used in section 1, Chapter 3 and the expressions are therefore given by 

 2 2 2 sin                           (4.1) ( ) cos( )cos( )  cos ( )cos ( ) ( )S S S SS SR R R         

 2 2 2 sin                           (4.2) ( ) cos( )cos( )  cos ( )cos ( ) ( )L L L LL LR R R         

Equations (4.1) and (4.2) can be used to calculate the polar radius R(θ) as a function of the 

polar angle θ for both solid and the liquid caps from origin O. The volume of the liquid 

droplet on the surface of the solid is therefore the difference in volume between CAPL and 

CAPS and can be written as  

( )2 2
2

0 0 ( )

 .                                                                   (4.3)sin( )
L
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R

R

V d d r dr



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Another expression for the volume of the liquid droplet on a spherical solid surface in terms 

of the radius of the spheres as RS and RL, is given by  
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In the present model θC, θL, θS and RL, RS are related as  
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From the above relations, it is clear that for a particular volume (V) of the liquid droplet, 

there are only two unknown parameters in Eq.(4.4), viz. the  radius of the solid substrate (RS) 

and the contact angle (θC).  Since the radius of the spherical cap, for a given volume, varies 

with the contact angle, the  volume is used here as the size of the droplet and not the radius in 

this  case of heterogeneous nucleation.  

4.3. Effect of seed size and surface properties on the vapour to liquid nucleation  

4.3.1   Solid fluid interaction energy 

        It is essential to derive an expression for the solid-fluid interaction energy in order to 

investigate the effect of solid substrate on the nucleation of vapor. The widely used solid-

fluid interaction energy due to the interaction between a fluid particle and a solid object with 

flat surface (both are L-J system) which is also known as wall-fluid interaction is the well-

known 9-3 interaction potential. Since in the present system, liquid is placed on the surface of 

a spherical seed, it is necessary to derive a general interaction energy expression for the 

interaction energy between each fluid particle with the whole seed substrate.  
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Fig.4.2. A fluid point particle labeled as L, placed at a distance z0 from the surface of the 

solid sphere of radius RS. Here S is an arbitrary point particle of the solid sphere. 

 

The problem has been solved by using cylindrical coordinate. From Fig. 4.2, it is clear that, r2 

= z2 + ρ2, where z and ρ are the two cylindrical coordinates of the point S with respect to the 

point L. Here, ρm, i.e. the maximum value of ρ can be written as ρm=[RS
2-(z0+RS-z)2]1/2. For 

L-J system, the interaction potential is written as Φ(r)=4ε[(σ/r)12- σ/r)6]. Total interaction 

energy experienced by each fluid particle by the spherical solid substrate (Vsf (z0)) is therefore 

expressed as 
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where ρS is the density of the solid substrate , εsf  is the depth of the solid-fluid interaction 

potential and  σsf  is the collision diameter between fluid and solid and z0 is the minimum 

distance of the fluid particle from the surface of the solid. 
 

After simplification, the 

expression of Vsf (z0) becomes 
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where 2( )Sa z R 

                                                                

For a flat surface, RS  , and Eq.(4.7) becomes the well-known 9-3 potential as 

9 3

3
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In order to make the problem simple the collision diameter sf has been considered to be the 

same as   and the density of the solid (ρs) has been considered here as unity so that ρs
3
=1. 

The depth the solid-fluid interaction εsf is expressed as the ratio of the depth of the solid-fluid 

to fluid-fluid (εsf / εff) interaction potential. 

 

4.3.2: A general theory of seed mediated vapor to liquid nucleation (0   RS  ) 

4.3.2A. Classical nucleation theory 

        The phenomenon of seeding is first investigated here by applying the conventional CNT 

approach. The liquid droplet is formed on the spherically curved surface of the available seed 

particles has been considered in the present work. Following the CNT, a sharp boundary 

(interface of region 1 and 2 in Fig. 4.1) between the liquid drop (region 2 on the surface of 
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the seed 3) and the vapor (region 1 covering the liquid drop 2) with a well-defined polar 

radius RL(θ) has been considered. In the present double spherical cap model, the density 

within the drop is same as the bulk liquid density while outside the drop, the density  is the  

same as that of supersaturated vapour and have the fluid density profile ρ(r, θ) of the drop, is 

given by   

( ) ( ) 0                                              (4.9a)
2

and

( ) 0                                                 
2

( , )        ,  for  ,   

( , )        ,  for   ,            

L LS

V L

r R r R

r r R


  


 

  

  

    
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where  ρL  and  ρV  are the densities of the bulk liquid and supersaturated vapor respectively. 

The Helmholtz free energy of the final phase can thus be expressed as 
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where the total energy has been divided into three energy terms. The first term is the volume 

energy term with  f (ρL)  and  f (ρV)  being  the local Helmholtz free energy density of the one-

component bulk liquid  and bulk vapor phase respectively. The second term is the vapor-

liquid surface energy term which involves the surface tension γLV of the vapour-liquid planar 

interface at coexistence. The third term is the energy due to solid-fluid interaction, where 

Vsf(z0) is the interaction energy experienced  by each fluid particle due to the solid substrate  

at a distance z0 from the spherical surface of the seed (see Eq. 4.7 and Fig. 4.2).  
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  The Helmholtz free energy density can be written as, f = ρμ – P, where P and μ denote 

respectively the pressure and chemical potential of the fluid of interest. Equation (4.10) can 

thus be written as 
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Equation (4.11), on using the relations of volume of liquid and vapor part ( see Eq. (4.3)) can 

be rewritten as 

2
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with μ and P, the chemical potential and pressure for the one-component fluid ( subscripts L 

and V stand for the  liquid and vapor phases respectively).  

Total number of monomer (fluid particles)  N in the classical drop model can be expressed as 

( , ) L L V VN r d V V      r
 

The Gibbs free energy of the final phase (Gf) , on using the relation G = F + PV, is given by 

2

( )2
2 2

0 0
0 ( ) ( )

   .        

2 (1 cos( ))   

2 sin( ) ( ) ( )              (4.13)
L

LS

L L L V V V L L LVf

R

L Vsf sf
R R

G V V R

d V z r dr V z r dr




 

      

    
 

 
 
 

   

   
 



Chapter 4 

85 

 

   The Gibbs free energy of the initial uniform vapor phase Gi , can be expressed as the free 

energy of one-component vapor phase ( μV N) with the perturbation by the solid-fluid 

interaction experienced by all the vapor particles. The initial Gibbs free energy Gi, can be 

expressed in a form analogous to the expression of Gf as given by Eq. (4.13) and is  therefore, 

written as 
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    (4.14)

The Gibbs free energy of formation of a droplet of volume VL on seed surface, within the 

framework of CNT, is given by 
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0
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                                                                                                                       (4.1
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5)

  where  Δμ = μV  - μL  and Δρ = ρL – ρV . Within CNT, the term Δμ is obtained by using the 

ideal gas equation so that Δμ = μV - μL=kBT ln(S), where S is the supersaturation ratio, S = ρV / 

ρV
0
, with  ρV and ρV

0
 denoting  the density of the supersaturated vapor and  the vapor density 

at liquid-vapor coexistence respectively. 

                                                          

       Fig.4.3 A liquid droplet covering a solid sphere (seeding)of radius RS, while the radius of  

       the liquid  including the solid is RL.  

RL RS 
O 
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When the liquid completely covers the seed particle (Fig. 4.3), the contact angle becomes 

zero (θC = 0) , and the phenomenon  corresponds to complete wetting  .  

The Gibbs free energy of formation of liquid drop of volume VL due to complete wetting 

(Fig. 4.3) is written along  the lines of CNT as 

0
2 2         (4.16)     ( ) 4  4 ( )wet

L

L
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R

V L L L LV sf
R

G CNT V R V z r dr             

4.3.2B   Density functional theory  

        Unlike a sharp density profile in CNT, a slowly varying continuous density profile of a 

liquid droplet on the surface of the seed has been modeled here, which is one of the main 

features of this thesis. The fluid system, i.e. the droplet on the seed surface covered by the 

vapor phase is treated as a nonuniform liquid. The free energy of such an inhomogeneous 

fluid with slowly varying density has been expressed through the framework of density 

functional theory using square gradient correction. The density profile and the local part of 

the Helmholtz free energy density that are being used here correspond to an  extension of our 

earlier work on nucleation [Chapter 2 and Chapter 3]. The degree of diffuseness of the 

density is determined by a parameter present in the density expression which is optimized by 

minimizing the free energy of formation of the droplet of any size, with respect to the 

variation of this parameter.  The density profile for the final nonuniform state in the proposed 

model is expressed as  
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Here, ρV and ρL are the bulk density of the initial homogeneous supersaturated vapor phase 

and that of the liquid bulk  phase respectively at coexistence and RL(θ)av  is the distance from 

the point O (in Fig. 4.1) at any particular polar angle θ, where the density is the average of 

the bulk liquid and vapor densities. The model density profile for a droplet of volume V= 200 

σ
3
 placed on the surface of a seed with a contact angle θC= π/5 is shown in Fig. 4.4 for 

specific value of the parameter C = 4  at two different values of the polar angle θ = 0 and  θ 

=π/3.  
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Fig.4.4 Density profiles of liquid drops of volume V=200σ
3
 on the spherical solid surface 

with  contact angle θC = π/5  at T*=0.7 and S=2.0 for different values of the polar angle θ. 

 

The model density profile ρ(r,θ),which is thus a continuous function of r, and its  first 

derivative with respect to  r at  r = RL(θ)av, as obtained from Eqs. (4.17), are given 

respectively by  



Chapter 4 

88 

 

 

 

a

a

( )

( )
a

       .                                             

( , )                                                                        (4.18a)
2

and

( , )
 

( ) 2

vL

vL

L V

r R

L V

r R
vL

r

d r C

dr R





 
 

  











 

  

  

∣  

∣          (4.18b)

 

The proposed model, therefore, provides an inhomogeneous density profile for a drop of any 

arbitrary size. For sake of simplicity, the quantity RL(θ)av, denoting the distance 

corresponding to angle , at which ρ(r,θ) = (ρL+ ρV)/2   hereafter,  will be denoted as RL(θ). 

        The final phase of the nonuniform density thus corresponding to the liquid drop on the 

spherical solid surface covered by the vapor of the same component. The Helmholtz free 

energy of this phase can now be expressed by using DFT with square gradient approximation 

as 

2
0

1
( ( , )) ( ( , ))  ( , ) ( )                      (4.19)
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The quantity f (ρ(r, θ)) in the first term and Vsf (z0) in the third term are already mentioned 

while discussing about CNT and the second term represents the square gradient correction to 

first term.    Equation (4.19) based on the present density model can be further written as 
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The local Helmholtz free energy density f (ρ(r,θ)) which has been proposed earlier [Chapter 2 

and Chapter 3],  has been expressed as Taylor series expansion with respect to the uniform 

fluid up to 1
st
 order term as  
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where the subscript U refers to the uniform fluid and therefore  ρU = ρL  for  RS(θ) ≤r ≤ RL(θ)   

and ρU = ρV for r > RL(θ). 

The square gradient term for the present density is written as,     
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The Helmholtz free energy of the final nonuniform phase is obtained by substituting Eqs 

(4.21) and (4.22) into Eq. (4.20) and can be expressed as 
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Using the model density given by Eqs.(4.17) in Eq.(4.23), one has the result 
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where  fL ≡ f(ρL) , fV ≡ f(ρV) and Δρ = ρL – ρV  and  
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The expression for the Gibbs free energy, can thus be written as                         
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In analogy to the present version of CNT, the Gibbs free energy of the initial uniform phase 

has been expressed as the sum of the free energy of the one-component pure vapor ( μV N) 

and the solid- vapor perturbative term, as 

 

( )2
2 2

0 0
0 ( ) ( )

,( , ) 2 sin( ) ( ) ( ) (4.27)
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which can be rewritten by applying Eqs.(4.17))  as 

 

( )2
2

0 ( )

2
2

0 ( )

( )2
2 2

0 0
0 ( ) ( )

sin( ) exp 1
( )

 sin( ) exp 1
( )

2 sin( ) ( ) ( )

L

S

L

L

LS

R

i L L V V
LR

V V V V
LR

R

V Vsf sf
R R

r
G V d C r dr

R

r
V d C r dr

R

d V z r dr V z r dr













 

  


  


    





  
  

  
  

  
  

  
  






     

      

 

 

 

          .                  (4.28)





 

 

The free energy of formation of a droplet of a given volume on a seed surface, given by  

ΔGV
Seed

 = Gf – Gi , can be expressed, after simplification , as 
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                                            (4.29)
 

which is then minimized  with respect to the parameter C to obtain  ΔGV
het

 , i.e. the free 

energy of formation of a fluid droplet of volume V.  

                                                                                    

The problem becomes simple when the liquid phase completely covers the seed (i.e. θC=0), 

which is also known as complete wetting and can be considered as the nucleation due to 

seeding effect by the substrate (see Fig. 4.3).  Due to the spherical symmetry of the seeding 

condition the density can be simply modeled as 
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where, a  is a parameter which is the  measure of the degree of diffuseness of density at the 
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interface which is related to the parameter C present in the density profile model (Eqs.(4.17)) 

by C = aRL.
 

The Helmholtz free energy of the final phase due to the completing seeding (wetting) can 

also be expressed by using DFT with square gradient approximation as
 

2
0

1
( ( )) ( ( ))  ( ) ( )                                (4.31)

2f sfF f r dv K r dv r V z dv         

Substituting Eqs.(4.30) and Eq.(4.21) into Eq.(4.31) and after simplification and elimination 

of the free energy of the initial phase, the free energy of formation of a given volume of 

liquid on a solid seed particle of radius RS can be written as 
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The above scheme (from Eq. (4.17) to Eq.(4.32) ),  therefore,  can be used to obtain the free 

energy of heterogeneous nucleation on a spherical solid substrate for any contact angle 

ranging from θC= 0180. 

In the present model (Fig.4.1), the parameter z0 in the expression of Vsf(z0), can be replaced 

by r is given as 

1
22 2 2

0                                     (4.33)( 2 cos( )cos( ) cos ( ))  .S S S S Sz r rR R R         
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Therefore, the minimum distance (z0) between the particle and surface of the solid is now σ 

and not zero, so that the integral in Eq.(4.29) can be run from r = RS() (see Fig.4.1).While 

considering the wetting phenomena, the replacement of z0 by r is given as z0 = r- RS +,  so 

that the integral can be run from r = RS in Eq.(4.32). 

 

4.3.3   Nucleation in absence of solid substrate (RS =0) 

        The nucleation without solid substrate can be alternatively represented by the seeding 

phenomena where the radius of the solid substrate (RS) has been reduced to zero. It is clear 

from Eq.(4.7), that the solid fluid interaction energy term Vsf(z0) = 0 when RS = 0. The 

nucleation free energy of seeding by CNT (Eq.(4.16 )) can therefore be written as 

2
                                                           (4.34) ,  ( ) 4  

LV L L L LV
G CNT V R      

which is nothing  but the expression of nucleation free energy for homogeneous nucleation 

described  by CNT. 

The free energy of nucleation without substrate in the present DFT method can be obtained 

by applying the solid fluid interaction energy term Vsf(z0) = 0 at RS = 0 into Eq. (4.32) which 

is now expressed as  
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The results of both CNT and DFT of nucleation without substrate obtained from the present 

general formulation are exactly identical with the results of the earlier work [see Chapter 2] 

on the theory of homogeneous nucleation.  
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4.3.4   Nucleation on spherical solid substrate of infinite radius (RS = ) 

         It is clear from Fig.4.1 that  the angle S = 0 as RS   and therefore RS( ) = 0 and   θL 

= θC (see Eq.(4.1)). The double spherical cap model is therefore converted to single spherical 

cap, where the cap is constructed only by the liquid and the polar radius vector RL() can be 

simply written as R( ). The volume of the droplet, thus can be written as 

( )2 2
2

0 0 0

,                                                          (4.36a)sin( )
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V d d r dr


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3 31
(2-3cos( ) cos ( ))                                                       (4.36b)

3 L C CV R   

 

The solid fluid interaction energy term Vsf(z0), derived  for spherical solid substrate  becomes 

the well-known 9-3 potential while considering RS   ( see Eq.(4.8)) which is expressed as 
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Equation (4.15) representing the Gibbs free energy of formation of a droplet of volume VL on 

a spherical solid surface, within the framework of CNT, is then expressed as 
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0
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                                                                                                                        (4.38)
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which is actually the Gibbs free energy of heterogeneous nucleation of a droplet of volume VL 

on a flat surface of solid substrate with 9-3 solid-fluid interaction energy potential for Vsf(z0). 

 Equation (4.25) can be simplified due to the consequences of  RS   as  
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The free energy of heterogeneous nucleation on the solid substrate of infinite radius can be 

obtained from Eq.(4.29) which is written as  
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  The above equations (Eq.(4.38) and (4.40)), obtained from the general expressions are the 

same as the one obtained directly in the case of heterogeneous nucleation on flat solid 

substrate [see Chapter 3]. 

 

4.4 Results and discussions 

        The present formalism is applied to a model L-J system and the coexistence densities 

and spinodal densities which predict the extent of supersaturation and metastibility limit of 

the fluid have been obtained from the temperature-density diagram shown in section 2.6 of 

chapter 2.  

        The optimized density profile for a given volume of droplet on the solid surface can be 

obtained by evaluating the parameter C (in Eq.(4.17)) through minimization of the  free 
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energy of heterogeneous nucleation (Eq.(4.29)) with respect to this parameter. This 

minimized quantity represents the free energy of formation of the droplet.  

        The free energy of formation of the droplets of different volumes at different conditions 

such as size of the seed and strength of the solid-fluid interaction has been obtained by using 

both CNT and present DFT methods. The results of the size effect of seed on nucleation and 

the heterogeneous nucleation on convex solid surface by applying CNT  are available in the 

earlier work of Fletcher [11] and Qian et.al [12], but the results reported by them corresponds 

to the critical cluster and nucleation barrier only. The strong attraction between the solid and 

the liquid was introduced only by considering the contact angle zero, which is very nice and 

ideal approach but not quantitative to differentiate the cases of two different and  strongly 

adsorbing liquid on the solid surface. In our work, the solid-fluid interaction can be tuned by 

the parameter sf present in the expression of Vsf(z0) and therefore the free energy of 

formation of two different liquids can be quantitatively distinguished. In addition to this, the 

shape of the nucleus (i.e. the contact angle) of any arbitrary size (from subcritical to 

supercritical) during the course of nucleation has been obtained, which gives an idea of the 

shape profile with the variation of size of the liquid as well as the solid sphere. Our results on 

the effect of the size of the solid sphere (RS) and strength of solid-fluid interaction (sf) at 

supersaturation S=4 in the framework of CNT have been plotted in Fig.4.5 and the same 

obtained through the present DFT method have been shown in Fig.4.6. From Fig.4.5, one can 

see that the nucleation is favored by some intermediate contact angle (C ≈ 90
o
) when the 

solid-fluid strength is not high i.e. sf =1 to 2 in case of CNT, though the seeding effect 

(C=0) becomes favorable at higher size (supercritical nucleus). The seeding effect is 

significant when the value of sf is high. In Fig. 4.5g - 4.5i, one can see that the droplet 
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formation is initiated at higher contact angle and then the nucleation and growth is favored by 

the seeding effect. From the results of CNT (Fig.4.5), it is clear that the seeding is not 

favored even at higher value of sf, if the volume of the liquid is less. This is obvious, because 

of the bulk density and sharp density profile approximations considered in CNT, so that if the 

small volume of liquid completely covers the solid, then the liquid-vapor surface area to 

volume (actual volume of the liquid only) ratio is high and therefore seeding is not favored 

for low volume liquid in CNT. This observation is different in the present DFT (see Fig.4.6) 

with the chosen values of the parameters (RS and sf), where a diffuse density model has been 

considered and the liquid is free to reconstruct its density profile (unlike a constrained step 

like density in CNT). Though the liquid-vapor surface area to volume ratio is still high when 

the volume of the liquid is less, but due to the diffuseness of the interface, the positive surface 

energy unlike CNT cannot lead over the total negative energy due to the volume as well as 

the solid-fluid interaction energy and therefore the seeding is favored even in case of small 

droplet also within the chosen range of the parameters RS and sf. The vapor-liquid interfacial 

energy considered in CNT is γLV =1.24/
2
, which has been obtained from ref [14]. In case of 

CNT, (see Fig. 5c,5f and 5i), spinodal decomposition observed when the solid-fluid 

interaction is high enough (i.e. in case of sf = 4, not at sf = 1 or 2). Similarly in case of DFT 

also, the barrier has been vanished when the value of  sf >2   (see Fig. 6a,6d and 6g) and  

also there is no barrier for larger seed size  even at low sf value (i.e. sf = 1 or 2 ).   
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                                                                          (i) 

Fig4.5. Plot of the free energy of formation as obtained by CNT as a function of the volume 

of the liquid drop at a  given solid-fluid strength (sf) and at  different sizes of the solid sphere 

RS . The results at sf =1 and Rs=1, 2 and 4 are plotted in Figs. 4.5a, 4.5b and  4.5c 

respectively. Figures 4.5d, 4.5e and 4.5f  are for sf =2 and Rs=1, 2 and 4 respectively and  

the results at sf =4 and Rs=1, 2 and 4 are plotted in  Figs. 4.5g, 4.5h and 4.5i respectively. 
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Fig4.6. Plot of the free energy of formation as obtained by DFT as a function of the volume 

of the liquid drop at a given solid-fluid strength (sf) and at  different sizes of the solid sphere 

RS . The results at sf =1 and Rs=1, 2 and 4 are plotted in  Figs. 4.6a, 4.6b and  4.6c 

respectively. Figures 4.6d, 4.6e and 4.6f  are for sf =2 and Rs=1, 2 and 4 respectively and  

the results at sf =4 and Rs=1, 2 and 4 are plotted in  Figs. 4.6g, 4.6h and 4.6i respectively. 
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4.5   Conclusions 

        A general theory for the size effect of the seed on the vapor to liquid nucleation of L-J 

fluid using DFT with square gradient approximation for the free energy functional have been 

presented here. The present methodology, though not completely analytical, with the use of 

some simple numerical integration, has been made overall simple by proper modeling of 

density and Helmholtz free energy density. The results of homogeneous nucleation have been 

obtained at one end of the seed size (zero size limit) whereas the heterogeneous nucleation on 

the flat surface is obtained on the other side (when the radius of the seed is infinity). A 

variational minimization of the free energy expression with respect to the parameter present 

in the density profile as well as the contact angle leads to the free energy of formation of the 

drop on the surface of the substrate. This method can thus be used to predict the shape, 

density profile and free energy for a given volume of the droplet including critical droplet, 

which provides an idea about the kinetics of nucleation. Spinodal decomposition has been 

observed either by increasing the strength of the solid-fluid interaction or by changing the 

size of the seed. The change of shape (i.e. contact angle) of the nucleating particle at different 

solid-fluid interaction energy and different size of the seed particle have been observed, 

which gives an idea of the shape profile in the course of nucleation. The effect of constrained 

(CNT) and unconstrained (DFT) density profile on the seeding effect has been also observed. 
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CHAPTER 5 

Interfacial properties of vapor-liquid planar interface: Application to 

model and real fluid 

 

5.1 Introduction 

        Surface tension is one of the most important properties of a fluid from the viewpoint of 

scientific and technological interest. The interfaces play a crucial role in some of the very 

important phenomena such as nucleation and hence in the fabrication of nanostructured 

materials. Therefore, the determination (experimental) and calculation (theoretical) of the 

surface tension have been of interest for a long time. The topic of understanding surface 

tension and other interfacial properties of fluid systems have been extensively discussed in 

the literature from time to time [48-50]. Although different theories viz, statistical mechanical 

theory [51-52], density functional theory (DFT) [53-57] etc. and molecular simulations [58-

62], have been used for the investigation of interfacial properties of vapor liquid planar 

interface, it is found that the most versatile theory for this purpose is the DFT. 

        In the present work, DFT with square gradient correction with a model density and 

Helmholtz free energy density has been applied to investigate the interfacial properties of the 

vapor-liquid interface at coexistence condition along the lines of van der Waals and Cahn and 

Hilliard density functional formalism of the interface [81, 108]. The density at the planar 

interface has been modeled in a way similar to that used in the case of curved interface of 

liquid droplet-vapor system discussed in Chapter 2-4. A double well type model for the local 

part of the Helmholtz free energy density has been proposed here. The proposed method has 
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been applied to L-J fluid and various interfacial properties such as surface tension, density 

profile, width of the interface etc. have been predicted. The problem has also been solved 

numerically to obtain the exact density profile and surface tension for L-J fluid. 

        The knowledge of surface tension of real fluids (e.g. water) is very important from both 

scientific and industrial consideration and obtaining the experimental value at any arbitrary 

temperature is not always feasible. Therefore, an accurate theoretical prediction of surface 

tension of real fluids is important and useful. Limiting the discussion to the most versatile 

theory for interfacial phenomena, viz. DFT, a gradient theory of inhomogeneous fluids for the 

prediction of the surface tension of water was proposed by Guerrero and Davis [118] and an 

approximate closed-form solution to the DFT approach has been presented by Mon and 

Stroud to calculate the surface tension of simple liquids, which was applied to liquid metals 

[119]. Sanchez derived a new equation relating the surface tension to isothermal 

compressibility and mass density, which was based on a generalized square-gradient 

approximation for the free energy density of a nonuniform fluid and was applied to various 

organic compounds as well as elemental and simple polyatomic fluids [120]. An extended 

mean-field density-functional theory of the liquid-vapour interface of water has been 

described by Yang and coworkers [121], while an extended van der Waals theory along the 

lines of square gradient DFT has been proposed by Muhlbacher to calculate the interfacial 

properties of water [122]. Jackson and coworkers [123] and also Gross [124] proposed a 

statistical associating fluid theory based DFT to investigate the interfacial properties of 

vapor- liquid interface.  Molecular dynamics simulation has been carried out by Dhir and 

coworkers [125] to calculate the density and surface tension of water. The accurate 

calculation of the surface tension of water or other real fluids by the methodologies discussed 

above, however, requires a detailed microscopic knowledge of the fluids and related 
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calculations. It is found to be difficult to arrive at a simple and general expression for the 

surface tension through these theories and simulations. 

        In the present work, a general method of calculating the surface tension of real fluids has 

been proposed with the use of some suitable approximations [112]. The method has been 

applied on two types of liquids, viz  i) water and heavy water and ii) argon and the results  are 

found to be quite accurate throughout the temperature range from triple point to the critical 

point. The densities of water and heavy water at different temperature have been collected 

from Refs. [126] and [127], which are found to be very close to the experimental values. The 

experimental results of surface tension of light water and heavy water have been taken from 

Refs. [128] and [127] respectively. The experimental densities and surface tension of argon 

are taken from the work of Lee and Barker [129] and Ref.  [130]. The results obtained in the 

present work are found to be quite close to the experimental values. 

 

5.2 Density functional theory of surface tension 

A diffuse density model at the liquid - vapor interface (as used in Ref. [109-111] in our works 

on nucleation) with the density profile  

 

 

( )   exp( ),   for      0                                    (5.1 )  
2

and

( )   exp( ),   for  0                                         (5.1 )  
2

L V

L

L V

V

z az z a

z az z b

 
 

 
 


    


     

have been considered , where ρV is the density of the vapor phase, ρL is the density of the 

liquid phase and the parameter a in the density expression is a measure of the degree of 
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diffuseness which  is determined by minimizing the surface free energy of the liquid-vapor 

interface with respect to this parameter variationaly. The density profile given by Eq. (5.1) is 

shown in Fig. 5.1 in arbitrary units. The present density profile is a continuous function of z 

and the expression for ρ(z) and its first derivative with respect to z at z = 0 as obtained from 

either of Eqs. (5.1), are given, respectively, by 

                          
 

( )    at  z = 0 
2

L V
z

 



  and 

   ( )
 -   at  z = 0 

2

L V ad z

dz

  
 . 

                          

-2 -1 0 1 2

z)

V

z

L

 

Fig.5.1 Density profile at the liquid – vapour interface in arbitrary units 

 

The surface tension of the planar interface (  ) within the framework of density functional 

theory with square gradient approximation can be expressed as, 

  0  

2

   0

                       (5.2)
1

 ( ( ))  ( ( ))           ,  
2

       L Vf z dz K z dz f dz f dz 
     



     

          
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where f((z)) is the local Helmholtz free energy density of the nonuniform system and fL and 

fV are the free energy density of the uniform liquid and vapor phase respectively and K is the 

coefficient of the square gradient term. A double well type Helmholtz free energy density has 

been proposed here for the term f((z))  which is written as, 

       
2 4

0 0 0 2 0 4 0 (5.3)( ) ( ) ( ) ( ) ,f z f z d z d z             
 

where μ0 is the chemical potential of any of the phases (μL = μV = μ0, at equilibrium) and the 

parameters ρ0, f0, d2   and d4 are evaluated from the thermodynamics of the fluid phase. The 

first derivative of f (ρ(z)) with respect to density is the chemical potential μ as given by 

   
3

0 2 0 4 0              (5.4) 2 4      .  d d         
 

From the thermodynamics of two phase equilibrium system, μ should be equal to μ0 at ρ = ρV 

and ρ = ρL which leads to the relations ρ0 = (ρL+ ρV)/2, i.e., the average density, ρav and a 

relation between d2  and d4 as  

 
22

V

4

                                                     (5.5) 
1

  .       
2

L

d

d
  

 

Similarly the Helmholtz free energy density f (ρ(z)) should satisfy the boundary conditions 

f(ρ(z)) = f(ρL ) at ρ = ρL  and f(ρ(z)) = f(ρV ) at ρ = ρV , which again leads to another relation 

between f0 and d4 given by 

 
44

aV0                                 (5.6)  +                   ,   
16

vL

d
f f  

 

where fav = (f (ρL ) + f (ρV ))/2. The model free energy density of the two phase region has 

been shown in Fig. 5.2 (in arbitrary unit). 
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Fig.5.2. The dashed curve corresponds to the model free energy density for the two phase 

region used in the present work. The solid line is a linear interpolation between fL ≡ f(L)  and 

fV ≡ f(V)  at densities ρL and ρV, respectively.  

 

From the above relations ( Eqs. (5.5) and (5.6)), it is clear that there is only one unknown 

parameter in Eq. (5.3) which has to be obtained for the evaluation of free energy density of 

the two phase regions f (ρ(z)), with respect to that of the one phase regions (i.e., f(ρL ) and f(ρV 

)). This parameter can be chosen to be f0 in Eq.(5.3), which represents the free energy density 

at the average density ρav, and is proposed to be obtain by evaluating the free energy density 

using suitable equation of state evaluated at ρav. 

Using the model density profile (Eqs.(5.1)) and model free energy density functional 

(Eq.(5.3)) in the interfacial energy expression (Eq.(5.2)), Eq. (5.2) can be rewritten as  

0  

2 2

 0

       (5.7)
1 1

 ( ( )) ( ( ))  -   ( ( )) ( ( ))  -   .
2 2

L Vf z K z f dz f z K z f dz   
 



 

   
         

   
 
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Using the model density profile (Eqs.(5.1)), the model free energy density functional 

(Eq.(5.3))  and the relations obtained in Eqs. (5.5) and (5.6), in the above interfacial energy 

expression (Eq.(5.7)) and simplification, one can obtain the surface tension as  

4 2

4
11  ( ) ( )

  ,                                                    (5.8)
96 8

 
d Ka

a

 


 
  

 
 
 

 

where, Δρ = (ρL- ρV) and the  parameter  a  can  be  obtained  by  minimizing Eq. (5.8) with 

respect to a, so that  dγ ∞ /da = 0, and  the expression for the parameter a is obtained as 

 

1 1

2 2
4

 =                                                 (5.9)
11

12
  .   a

d

K


   
   
   

 

Using Eq.(5.9) in Eq. (5.8) , the expression of surface tension is obtained as 

 
1

2
4

3
  .                                                                     (5.10)33 

1
( )

24
Kd 


    

Equations (5.1)-(5.10) thus provide a scheme for obtaining the surface tension of a fluid 

provided the values of the coefficient of the square gradient term (K), the parameter d4 and 

vapor-liquid coexistence densities are known.  The coefficient of the square gradient term, K, 

in Eq. (5.10), can be approximately written as [114,115 ] 

  2
                                                 (5.11)

1
        

6
K r r d

 
   

 
 r

                                                                     

where Φ(r) denotes the attractive potential, which for  the L-J fluid system has been already 

mentioned in chapter 2.   

The present formalism when applied to the L-J fluid, the parameter d4 in the double well free 

energy density functional model has been calculated via Eq.(5.6) where the parameter  f0 is 
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obtained by evaluating the free energy density using the same equation of state ( i.e, 

Carnahan- Starling ) with L-J correction as f(ρ)  = fh(ρ) – (1/2) αρ
2
 evaluated at ρav. 

The thickness of the interface D, in 10-90 convention is the distance D = RV - RL , where RV 

and RL are  distances from the centre of the drop to the poitns, where ρ(RV) = ρV + 0.1(ρL -ρV) 

and ρ(RL) = ρV + 0.9(ρL -ρV) respectively. In our present model, RL and RV are obtained from 

Eqs. (5.1a) and (5.1b) and are, RL = ln(0.2)/a and RV = - ln(0.2)/a. The interface thickness 

thus can be written as  

                                                     (5.12)
2ln(0.2)

        
a

D

 

        While the discussion so far is based on the model density profile, we have also obtained 

the density profile as well as the surface tension numerically. For this purpose, the surface 

tension of the planar interface is first expressed in terms of the Helmholtz free energy as  

 ,

 

 

( )                                                                                       (5.13)        L Vf z f dz
 


 

    

where f(z) = f(ρ(z)) + ½ K (ρ)
2
 , is the Helmholtz free energy density of the liquid-vapor 

two phase system and f 
L,V

 is the Helmholtz free energy density on either side of the dividing 

surface (Superscript L stands for the liquid side and V for the vapor side). The local part of 

the free energy f (ρ(z)) is obtained from the present double well model (Eq.(5.3)). The density 

profile and surface tension have then been obtained by minimizing Eq.(5.13) and solving the 

resulting Euler-Lagrange equation numerically by using the suitable boundary conditions  i.e,  

ρ(-)= ρL and   ρ() = ρV and the Lagarange multiplier which in this case is the chemical 

potential of the vapor- liquid system. 
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5.3 Calculation of surface tension of real fluids 

        The formalism discussed in section 5.2 has been further manipulated to obtain the 

surface tension of real fluids by applying some suitable approximations. Using Eq.(5.5), 

Eq.(5.10) can be alternatively written as 

   

1
12 2
2

2                                        (5.14)
11

  K    . 
96

d 

 
 
 

  
 

Detailed calculations are, however, required to obtain K and d2, which is more difficult when 

the liquid is complex like water. The problem has been overcome in the present work with 

the use of some approximation and modeling as follows. 

The coefficient d2 can in general be temperature dependent. Since the depth of the well of the 

free energy density (Eq.(5.2)) is maximum at the triple point (Tt), the values of d2 and d4 are 

maximum at the triple point. Further the difference in density of the liquid and vapor is zero 

at the critical point (TC) i.e, Δ ρ = 0 at T = TC, and therefore it is clear from Eq.(5.5) that d2 = 

0 at T = TC. Thus we propose here, a linear dependence of d2 on the temperature in the range 

of triple point to critical point, as given by 

 
 2                                                           (5.15) 

 
    , 

C

tC

T T
d C

T T





 

where C is  the value of d2 at T = Tt . The surface tension at the triple point ( ,t) is thus 

   

1
12 2
2

,  , (5.16)                                        
11

 K  
96

t tC 

 
 
 

    

where, Δρt is the difference between the densities of the liquid and vapor at the triple point. 

The expression for C is thus given by 



Chapter 5 

113 

 

 

2

,

4

 96 1
                                                        (5.17)

11  

t

t

C
K 







 
 
 

  

Using Eqs. (5.15) and (5.17), Eq.(5.14) can be rewritten as 

 
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C

t

C tt

T T

T T


 


 

  
     

    

Equation (5.18) is the general expression for calculating the surface tension of a liquid, using 

the available data on the surface tension at the triple point and coexistence densities, at 

different temperatures. It is clear from Eq.(5.18), that no microscopic knowledge and details 

calculations are required provided  the surface tension at the triple point and coexistence 

densities are available.  

It will also be of interest to consider the temperature scaling of γ  as given by Eq.(5.18), as the 

temperature approaches the critical point. Considering the explicit temperature dependence (Tc 

− T)
1/2

, as well as an implicit temperature dependence of (Δρ)
2 

 through the well know relation 

[49,115] Δρ = (ρL-ρV)  (Tc − T)
1/2 

near  the critical point, one has the  result  γ   (Tc − T)
3/2

, 

which is also predicted by the mean field theory. 

 

5.4 Results and discussions  

        The formalism presented in section 5.2 is implemented here by considering application 

to a model L-J system. Equation (5.10) can be used to calculate the interfacial energy of 

vapor-liquid interface at coexistence condition. The coexistence densities are obtained from 

the temperature-density diagram shown in chapter 2. The surface tension of the planar 
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interface as obtained by using the model density (Eq.(5.10)) and by using the exact density 

profile obtained numerically, corresponding to minimization of Eq.(5.13), is found to be quite 

consistent for different temperature-ranges, as presented in Fig.5.3, and compared with the 

results of Monte-Carlo simulation and experiment [58] as well as  with the prediction of 

Oxtoby [14]. As the WCA scheme has been used to calculate the coexistence densities, which 

predicts the critical temperature [14] to be higher than its actual value, the present calculated 

surface tension vanishes at a temperature which is higher than the experimental result ( on 

real argon).  
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Fig.5.3   Surface tension of planar interface as a function of temperature. Present work 

(triangle), MF-DFT by Oxtoby [14] (dotted line), MC simulation from Ref [58] (open circle),  

Experimental results [58] (square) and exact numerical solution of the present work (open 

stars) 
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The optimized density profile obtained by implementing the optimized value of the parameter 

a (obtained from Eq. (5.9)) into Eqs. (5.1) is shown in Fig. 5.4 at different values of 

temperature. The optimized model density and the exact numerically obtained density at 

reduced temperature T*=0.7 have also been plotted in Fig. 5.5 and it is observed that the 

exact density is not much different from the model density for this particular choice of free 

energy density model. The thickness of the interface as calculated from Eq.(5.12) has been 

plotted in Fig. 5.6, where it is observed that the calculated thickness values based on different 

definitions of thickness are in good agreement with the predictions of the earlier theories and 

simulations. A very good agreement between the free energy density using the mean-field 

equation of state (EOS) (Carnahan-Starling form used for the hard sphere part in the present 

case) and same using the present optimized model free energy density  is observed as  shown 

in Fig. 5.7 at reduced temperature T* = 0.7.  

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

 

 




3

Z/

 T*=0.7

 T*=0.9

 T*=1.2

 T*=1.4

 

Fig 5.4   Density profile of planar interface at different values of reduced temperatures. 
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Fig.5.5 Model density profile and numerical density profile of planar interface at reduced  

 temperature T*=0.7.  
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 Fig.5.6 Thickness of the interface as a function of temperature. Present work for planar 

interface (open squares), for spherical interface (open triangles) and planar interface by  Telo 

da Gama[131] (open circles) considering 10-90 convention of thickness measurement.  

  The thickness defined as D = - (ρL- ρV )/ [dρ(z)/dz]z = z0  as reported by Chapela et al (Ref 

[59]) and compared with the present work (open diamonds), the results from MC and MD 

simulation are denoted by solid triangle (MC 255 molecules), stars (MD 255 molecules ), 

solid circles (MD 1020 molecules) and hexagon (MD 4080 molecules). 
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Fig. 5.7 The Helmholtz free energy density as a function of density of two phases equilibrium 

system at reduced temperature T*=1.0 . The dotted line is the optimized result of the present 

work and the solid line is obtained from equation of  state considered in the present work.. 

 

While considering the real fluids, Eq. (5.18) is implemented here by calculating the surface 

tension of ordinary water, heavy water and argon throughout the temperature range from 

triple point to the critical point. The surface tension at the triple point and the coexistence 

densities of vapor and liquid at any temperature are required for calculating the surface 

tension using the present prescription irrespective of the nature of the liquid. These values 

(i.e. surface tension at the triple point and the coexistence densities at any temperature) have 

been taken from the literature, viz. Refs.[126] and [128] for ordinary water and Ref.[127] for 

heavy water and Refs [129] and [130] for liquid Argon. The calculated surface tension of 

ordinary water as a function of temperature is shown in Fig. 5.8. The present calculated 

results have been compared with the experimentally measured surface tension (data from 
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Ref.[128]) and it is clear from the plot that the calculated surface tension is in very good 

agreement with the experimental results. The comparison between the calculated and 

experimental results on surface tension of heavy water is shown in Fig. 5.9. The experimental 

densities and surface tension of heavy water have been taken from Ref.[127]. The present 

approach is then applied to another type of fluid such as liquid argon and the results are 

plotted in Fig. 5.10. The experimental densities and surface tensions of argon have been 

taken from Refs. [129] and [130].  
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Fig.5.8 The surface tension of ordinary water as a function of temperature. The present 

calculated values are shown by square and the experimental values are denoted by the open 

circles.  
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 Fig.5.9 The surface tension of heavy water as a function of temperature. The present 

calculated values are shown by open circles and the experimental values are denoted by the 

solid squares.  
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Fig. 5.10 The surface tension of argon as a function of temperature. The present calculated 

values are shown by solid sphere and the experimental values are denoted by the open 

squares.  
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5.5 Conclusion 

        The interfacial properties such as interfacial energy (surface tension), density profile, 

interface thickness for the vapor-liquid planar interface at coexistence condition have been 

investigated here based on DFT with square gradient approximation for the free energy 

functional, which is commonly used for the study of nonuniform fluids, interfaces etc. A 

double well type Helmholtz free energy functional for the local part and a diffuse density 

profile at the interface, which are considered to be the suitable free energy and the density 

model respectively for the two phase system (coexistence), have been used in this work. 

Since the model free energy density is very close to that obtained from EOS, the present 

modeling is useful for one-component two-phase system. We have also proposed here a 

scheme to calculate the surface tension of real fluids quite accurately at any arbitrary 

temperature ranging from the triple point to the critical point by using DFT with square 

gradient approximation which is very common for the study of interfaces. A double well type 

Helmholtz free energy functional for the local part and an exponential density profile at the 

interface, which are found to be suitable for two phase equilibrium system, have been used in 

this work. The work is completely analytical and a simple and general expression for the 

surface tension has been arrived at, which requires the coexistence densities of liquid and 

vapor at the temperature of interest and surface tension data at the triple point temperature as 

input. The present approach, however, has been applied on a few real fluids such as ordinary 

water, heavy water and argon in this work, but it can be extended to calculate the surface 

tension of any other fluid system with the available coexistence and triple point data. This 

work is able to calculate the surface tension of real fluids with a significant accuracy, without 

any detailed microscopic knowledge and calculations. Therefore, this approach can be a 

useful simple approach for calculating the surface tension of such fluids.  
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CHAPTER 6 

Density functional theory of size-dependent interfacial properties of 

Lennard-Jones fluids 

 

6.1 Introduction 

        The importance of the knowledge of the interfacial properties of macroscopic and 

microscopic system in science and technology is well understood. In the context of the 

present thesis the interfacial properties play a crucial role in nucleation phenomena and 

thereby in the fabrication of nanostructured materials. Although the experiment can be 

performed for bulk sized system (i.e, for planar interface), in order to get an idea of the 

interfacial properties for small sized systems (i.e, for curved interfaces), theoretical 

predictions are of crucial importance. Different theories have been developed for the 

investigation of interfacial properties of vapor liquid planar interface (discussed in chapter 

5).  The idea of considering a planar interface no longer works when the system of interest is 

small in size. For such a system one has to consider a curved interface instead of a planar one 

and for liquid- vapor two phase system, it can be assumed that the interface is spherically 

curved. This curvature dependence of surface properties was first mentioned by Gibbs [63] 

and later developed by Tolman [64-66]. Tolman derived a simple relation between the 

surface tension  and the radius Rs of the surface of tension and introduced a parameter  

which is the distance between this surface and the equimolar dividing surface with radius Re, 

which divides the fluid into two homogeneous parts, the inner one with the liquid density and 

the outer one, with the vapor density. Density functional theory has been utilized time to time 

[69-73] for the investigation of interfacial properties of liquid droplet-vapor system. Many 
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molecular simulation (Monte Carlo as well as molecular dynamics) strategies had also been 

developed to investigate the size dependence of interfacial properties [74-77]. 

        Although there have been a series of  publications on the size-dependent surface tension, 

in the present work proposes a simple and analytical approach for evaluating the size-

dependent interfacial properties and temperature density (T-ρ) curve for a droplet-vapor 

equilibrium system. The methodology and the modeling of density profile ( exponential 

density) and local Helmholtz free energy density ( double well type) considered for the 

investigation of planar interface have been implemented here with suitable modification to 

obtain the surface tension of the stable droplet, i.e, at droplet-vapor coexistence and related 

coexistence densities of the liquid droplet and vapor phases. One of the conditions of the 

stable droplet is that, the system will obey Laplace relation as ΔP = 2 s/Rs, (where ΔP is the 

pressure difference between the liquid and vapor phases, Rs is the radius of surface of tension 

and s =  (Rs) is the associated surface tension. In the present work, we have considered zero 

value for the Tolman length (similar to ref [73,132]) so that the surface tension can be 

calculated at equimolar dividing surface Re, and the associated surface tension is e =  (Re). 

The consideration of the large droplet gives an analytical expression for the surface tension 

(corresponding to planar interface) and related density profile. The present theory is then 

applied to the L-J fluid and the results obtained in this work for planar as well as spherical 

interfaces are shown to be consistent with the other earlier works. 

   

6.2   Condition of liquid droplet-vapor equilibrium 

         The condition of mechanical stability of a drop of radius R (which can also be called as 

classical drop with well-defined radius R so that ρ(r) = ρL for 0 ≤ r ≤ R and ρ(r) = ρV   for r > 
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R , where ρL and ρV are the densities of the bulk liquid and vapor respectively) is expressed by 

the  Laplace law, i.e. PL (ρL) -  PV (ρV) = 2  / R, where P stands for the pressure of liquid and 

vapor denoted by subscript L and V respectively and   is the surface tension of the bulk 

system. Since in the present investigation, unlike a bulk liquid-vapor equilibrium system, a 

stable microscopic liquid drop suspended in its vapor, i.e. equilibrium between the tiny liquid 

droplet and its vapor phase has been considered, therefore the condition of the stability of the 

classical droplet may not work. In the case of a microscopic droplet, the definition of the drop 

radius (or the surface) is a difficult task because of the slowly decaying nature of the density 

at the interface and therefore different logic has been introduced for considering the surface 

of the droplet. Though the Laplace equation (PL (ρL) -  PV (ρV) = 2  / R) is only valid for a  

macroscopic drop with well-defined radius, Gibbs introduced the idea of surface tension and 

the radius of the droplet in such  a way that the Laplace equation retains its form for 

microscopic droplet as well, i.e. PL (ρL) -  PV (ρV) = 2 S / RS , where RS is the radius of the 

surface of tension and s =  (Rs) is the associated surface tension.  

The condition of equilibrium between a stable microscopic droplet and the vapor is therefore 

written as    

                   

( )  ( )                                                                                                         (6.1a)L L V Vµ µ 
 

                                                                                                                  (6.1b)
2

( ) ( )  
S

S
L L V VP

R
P


     

where µ and  P stand for the chemical potential  and pressure respectively for the  liquid (L) 

and vapor (V) phases at the corresponding densities ρL and ρV . As already mentioned, the   

Tolman length has been ignored here, and  thus s and Rs in Eq.(6.1b) can be replaced by the 
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corresponding terms which are related to equimolar dividing surface i.e, with e and Re and 

Eq.(6.1b) can be rewritten as 

   .                                                                                          (6.1c)
2

( ) ( )  
e

e
L L V VP

R
P


  

 

For the bulk system, the radius Re= , and the condition of equilibrium  becomes μL(ρL) = 

μV(ρV)  and PL (ρL) = PV (ρV).   

 

6.3   Density model for the vapor-liquid spherical interface 

        The liquid (droplet)-vapor two phase (one component) system resembles the vapor-

liquid homogeneous nucleation discussed in chapter1 except that in this case the droplet is in 

equilibrium with the vapor whereas nucleation involves a non-equilibrium phenomenon with 

metastable vapor phase (supersaturated). The density profile of the present droplet-vapor two 

phase equilibrium system has therefore been modeled in a similar way as done in DFT of 

homogeneous nucleation (see Eqs. (2.1) in chapter 2), which is expressed as   

       

 

 

a a

                                  (6.2b)a a

           (6.2a)                          

and

 

( ) exp( ( )) , for 0  
2

( ) exp( ( )) , for  
2

L V
v vL

L V
v vV

r a r R r R

r a r R r R

 
 

 
 


    




   
 

where ρV is the density of the vapor phase and ρL is the density of the liquid (droplet) phase at 

coexistence and Rav is the distance from the centre of the drop to the point where the density 

is the average of the liquid and vapor densities. The parameter a in the density expression 

which is a measure of the degree of diffuseness is determined by minimizing the surface free 

energy of the droplet-vapor interface with respect to the variation of this parameter. In Fig. 

6.1, the density profile given by Eq.(6.2) is shown for specific value of the parameter a = 0.5 



Chapter 6 

125 

 

and Rav = 5. The density profile that we assume here is a continuous function of r and the 

expression for  ρ(r) and its  first derivative with respect to r at r = Rav, as obtained from either 

of Eqs.(6.2), are given respectively by  

   
av                                  (6.3)

( )
( )    and        

2 2

L V L Vad r
r at r R

dr

   


 
      
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Fig. 6.1 Density profile ρ(r) of a liquid droplet. The solid line represents the equimolar  

division of liquid and vapor phases with equimolar radius Re and the dashed line is for the 

model used in the present work with Rav= 5 and an arbitrary value of a = 0.5. Reduced units 

are used for the plot.  

The relation between Rav and the equimolar radius Re can be obtained from the conservation 

of density normalization, as given by  

2 2 2

0 0

( )       .                                                            (6.4)
e

e

R

L V

R

r r dr r dr r dr  
 

   
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For the given density profile ρ(r) of Eqs.(6.2), the expression for Re is given by 

av

1
3

3av av
2 3

2 exp( )
3   ,                                  (6.5)e

R aR
R R

a a

  
  
  


  

 

and this radius Re is  used  here as a measure of the size of the droplet. 

 

6.4   Density functional theory of surface tension for vapor-liquid spherical interface 

The total Helmholtz free energy of the nonuniform two phase system including the interface, 

FINT, can be expressed by using DFT with square gradient approximation as 

21
( ( )) ( ( )) ,                                  (6.6)

2INTF f r d K r d    r r

                                                         

where f (ρ(r)) in the first term, is the local Helmholtz free energy density, while the second 

term represents the square gradient correction. Equation (6.6) can be rewritten on the basis of 

the present density model as 

     

     

av av

av av

2
2 2

0 0

2
2 2

4 2

4 2   .             (6.7)

R R

INT

R R

F f r r dr K r r dr

f r r dr K r r dr
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   
 

  

  

 

 

 

The total Helmholtz free energy (F0) of the same system, without consideration of the 

interface, can be expressed by the consideration of the equimolar dividing surface as 

   2 2
0

0

  .                                    (6.8)4 4
e

e

R

L V

R

F f r dr f r dr   


    

The total interfacial Helmholtz free energy,  , thus can be expressed as  

      

0                                                                           (6.9)   .      INTF F   
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Like planar interface ( see chapter 5) , a double well model for the local Helmholtz free 

energy density f (ρ(r)) has been proposed for using in Eq.(6.7), as 

       
2 4

0 0 0 2 0 4 0( ) ( ) ( ) ( )  ,                   (6.10)f r f r d r d r               

by considering an expansion around a density ρ0. Here µ0 is the chemical potential of any of 

the phases (µL = µV = µ0 at equilibrium) and ρav is the average of the liquid density (at the 

centre) and the vapor density. The parameters ρ0, f0, d2 and d4 in Eq.(6.10) are evaluated from 

the thermodynamics of the fluid phase. 

The derivative of f (ρ(r)) with respect to density is the chemical potential µ and is given by  

   
3

0 2 0 4 02 4    .                                                           (6.11)d d         

                                                                          

From the thermodynamics of fluids, µ should be equal to µ0 at ρ = ρV  and ρ = ρL which leads 

to the relations ρ0 =( ρL + ρV )/2,  i.e  the average density, and  

 
22

4

(6.12)
1

 .                                                         
2

L V

d

d
    

The Helmholtz free energy density f (ρ(r)) should satisfy the boundary conditions 

corresponding to the single phase region, viz f (ρ(r)) = f (ρL) at ρ = ρL and f (ρ(r)) = f (ρV) at ρ 

= ρV , which again leads to another relation between f0 and d4 given by 

   
44

a0    , (6.13)                                       
16

vL V

d
f f     

where fav = (f (ρL) + f (ρV)) /2. The model free energy density of the two phase region has been 

shown in Fig.5.2 (chapter 5).From Eqs.(6.12) and (6.13), it is clear that there is only one 

unknown parameter in Eq.(6.10) for the evaluation of free energy density of the two phase 

regions f (ρ(r)), with respect to that of the one phase regions (i.e, f (ρL) and  f (ρV)). This 

parameter can be chosen to be f0 in Eq.(6.10), which represents the free energy density at the 
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average density ρav, which we propose to obtain here by evaluating the free energy density 

using suitable equation of state evaluated at ρav. 

 The total interfacial energy , is obtained by implementing the model densities Eq.(6.2) and 

the model double well type free energy Eq.(6.10) in  Eq.(6.9) which can now be written as  
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where Δρ = ρL- ρV . On evaluation of the integrals, Eq.(6.14) can be rewritten as 
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where the integrals denoted by I1 and I2 are given by 
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After some algebra, Eq.(6.15) can be written in a simplified form and one can obtain the total 

interfacial energy as 

2
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which, on minimization with respect to the parameter a, provides (Re), the total interfacial 

free energy of a droplet (of radius Re)-vapor interface and  a0,  the value of the parameter a 

for which   is minimum. 

The surface tension at the equimolar dividing surface e, can be obtained by dividing 

Eq.(6.16) by the interfacial area (4πRe
2
) , i.e.     

2

)
                                                                          (6.17)
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In order to obtain e, one has to find the densities of the liquid droplet of radius Re and its 

vapor at coexistence. These coexistence densities can be obtained by solving two 

simultaneous equations (Eqs.(6.1a) and (6.1b)), which again requires the knowledge of e. 

The surface tension and coexistence densities for such a system can thus be obtained by 

solving these two equations self-consistently along with Eq.(6.17).  

    In order to obtain the surface tension of the spherical droplet with an exact density 

profile using the free energy model, however, one has to solve Eq.(6.6) numerically. The 
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density profile and surface tension have thus been obtained here by minimizing Eq.(6.6) and 

solving the resulting Euler-Lagrange equation numerically by using the suitable boundary 

condition  i.e, dρ(0)/dr = 0 and ρ()= ρV  and a suitable value for the Lagrange  multiplier 

representing the size-dependent  chemical potential of the concerned vapor-liquid system. 

In analogy to the planar interface (chapter 5), the thickness of the interface D ,within 10-90 

convention is the distance D = RV - RL , where RV and RL are  the distances from the centre of 

the drop to the poitns, where ρ(RV) = ρV + 0.1(ρL -ρV) and ρ(RL) = ρV + 0.9(ρL -ρV) 

respectively. In our present model, RL and RV are obtained from Eqs.(2a) and (2b) and are, 

RL = Rav + ln(0.2)/a and RV = Rav - ln(0.2)/a. The interface thickness thus can be written as  

,                                                      (6.18)
2ln(0.2)

       
a

D  

which is identical with that of the  planar interface in the present density model. 

 

6.5 Surface tension of the planar interface: A large radius limit of the drop 

        The expressions for the total interfacial energy (Eq.(6.16)) and the surface tension 

(Eq.(6.17)) obtained in section 6.4 are valid for a droplet of any arbitrary size ranging  from 

Re = 0 to . The interface of an infinitely large liquid drop-vapor interface can be considered 

to be a planar interface, which results from the bulk liquid- vapor equilibrium condition 

obtained by dropping the term (2e/Re) in Eq.(6.1b). i.e, µL(ρL
 
) = µV(ρV

 
) and PL(ρL

 
) = PV(ρV), 

where ρL and ρV are the equilibrium bulk densities of the liquid and vapor respectively. In the 

case of a planar interface, the problem becomes one dimensional as the density varies along 

the perpendicular axis (say, z). For simplicity, we consider that the equimolar dividing 

surface is located at z = 0 with the negative side of the z axis as the liquid region and the 
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positive side as the vapor phase (see Fig.5.1, chapter 5) and the present model of density 

profile for this planar case can be expressed as (identical to Eqs.5.1, chapter 5) 

 
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The equimolar dividing surface and the surface of average density for such density profile 

can be obtained from the following equations as 

 
a

0 0

( )        and   ( )   ,
2

   
e

e

v

z

L V

L V

z

z z
z dz dz dz z

 
   

 




     where, both the equimolar 

dividing surface and the average density are located at z = 0. In the context of the analogy of 

the planar interface with the spherical interface with infinitely large value of Re, one can 

consider that the location of the equimolar dividing surface and the surface of average density 

is the same, i.e, Re = Rav in the present model, which is also clear from Eq.(6.5). 

        The surface tension of a planar interface can now be obtained by dividing Eq.(6.16) by 

the interfacial area (4πRe
2
) and considering the limit of Re being  infinitely large. This leads to 

the surface tension of the planar interface γ , analytically expressed as 

4 2
4

     

 ( )11 ( )
  ,                                         (6.20)

96 8

d Ka

a

 


 
 
 

 
  

where the parameter a can be obtained by minimizing  Eq.(6.20) i.e, by considering   dγ /da 

= 0, which leads to an expression for the parameter a, given by 
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 This expression of a is then used in Eqs.(6.19) to obtain the density profile of the vapor-

liquid planar interface . 

The final expression for the surface tension of planar interface can thus be obtained from 

Eqs.(6.20) and (6.21), leading to the result  

 
1

2
4

333 

     

1
( )  .                                 (6.22)

24
d K   

  

Equations (6.20), 6.21) and (6.22) related to the interfacial properties of the planar interface 

as derived by considering  the large size limit of the drop of the DFT results for the surface 

tension of droplet are exactly identical (as it should be) with Eqs. (5.8), (5.9) and (5.10)  in 

chapter 5  exclusively  obtained for the surface tension of planar interface. 

 

6.6 Results and discussions 

         The present formalism is applied to the L-J fluid, with the parameter d4 in the double 

well free energy density functional model calculated via Eq.(6.13) where the parameter  f0 is 

obtained by evaluating the free energy density using the same equation of state ( i.e, 

Carnahan- starling ) with L-J correction as f(ρ)  = fh(ρ) – (1/2) αρ
2
 evaluated at ρav. In order to 

obtain the temperature-density diagram of the droplet-vapor equilibrium, the conventional 

Weeks, Chandler and Anderson (WCA) perturbation scheme, to calculate the pressure and 

chemical potential of the fluid (see section 2.6, chapter 2) has been employed and the 

coexistence densities are obtained by solving two simultaneous equations (Eqs.(6.1a) and 
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(6.1b)) self-consistently along with Eq.(6.17). The coefficient of the square gradient term, K, 

in Eq. (6.6) is calculated by using Eq.(2.25),chapter 2.  

In Fig.6.2, we have plotted the temperature-density curve for both bulk liquid-vapor 

equilibrium (planar interface) and spherical liquid drop (Rav=5σ)-vapor (spherical interface) 

equilibrium and it is found that the coexistence densities are higher for the spherical case 

which is consistent with the earlier observation of Osman [70].  
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Fig.6.2 Coexistence curve for planar (triangle) and spherical (stars) interface. 

The size-dependent surface tension, e, obtained in this work by using Eq.(6.17) has been 

presented in Fig.6.3  as the ratio  e/ and it is found that the surface tension of the small 

droplet is lower than that for the bulk phase, becomes larger at intermediate droplet size  and 

asymptotically reaches unity (corresponding to the bulk value of surface tension)  which 

agrees with the results of earlier works [72,77].  
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Fig.6.3 Size-dependent surface tension of spherical droplets. Surface tension predicted by 

using model density (solid circle) and using numerically obtained exact density (open circle). 
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  Fig .6.4  Density profile of spherical interface ( Rav = 5σ )  at different reduced 

   temperatures.  
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In Figs. 6.4, the density profiles obtained by the present work using the model density profile, 

for the spherical interface ( Rav = 5σ ) have been plotted for different values of the reduced 

temperatures.   The calculated thickness of the interface for the same value of Rav has also 

been plotted in Fig. 6.5, where it is observed that the calculated thickness based on different 

definitions of thickness is in good agreement with the predictions of the earlier theories and 

simulations. 

        The vapor and liquid densities of the droplet-vapor equilibrium system are different 

from that of the bulk values and it has been found that there is an increase in the densities of 

both the liquid and vapor phases with decrease of the droplet size. The vapor and liquid 

densities have been plotted as a function of the droplet size in Fig. 6.6a and Fig. 6.6b 

respectively and compared with the molecular dynamical simulation results reported in [74]. 

In Figs.6.7, the optimized model density and the exact numerically obtained density at 

reduced temperature T*=0.7 have been plotted and it is observed that the exact density is not 

much different from the model density for this particular choice of free energy density model 

and the agreement between the two density profiles becomes better with increase in size. 
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Fig.6.5 Thickness of the spherical interface ( Rav = 5) as a function of temperature. Present 

work for planar interface (open squares), for spherical interface (open triangles) and planar 

interface by  Telo da Gama [131] (open circles) considering 10-90 convention of thickness 

measurement .  

The thickness defined as D = - (ρL- ρV )/ [dρ(z)/dz]z = z0  as reported by Chapela et al (Ref 

(59)) and compared with the present work (open diamonds), the results from MC and MD 

simulation are denoted by solid triangle (MC 255 molecules), stars (MD 255 molecules), 

solid circles (MD 1020 molecules) and hexagon (MD 4080 molecules). 
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Fig.6.6(a): Vapour density vs radius of the equimolar dividing surface Re (b): Liquid density 

vs radius of the equimolar dividing surface Re. Solid squares (present work at T*=0.7) and 

solid circles (MD simulation results from Ref [74]) .Horizontal lines are the coexistence 

vapour densities for the planar surface in (a) and coexistence liquid densities for the planar 

surface in (b) 
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Fig.6.7 Model density profile and numerical density profile at reduced temperature  T*=0.7. 

for Spherical interface of Rav = 5 σ ,10 σ and 20 σ. 

 

6.7 Conclusions 

   We have investigated here the size-dependent interfacial properties such as interfacial 

energy (surface tension), density profile, interface thickness and temperature-density 

relationship for the vapor-liquid droplet coexistence condition based on DFT with square 

gradient approximation for the free energy functional, which is quite appropriate for problem 

with slowly decaying densities at interfaces. A double well type Helmholtz free energy 

functional for the local part and a diffuse density profile at the interface, which are supposed 

to be the suitable free energy and the density model respectively for the two phase system 

(coexistence), have been considered in this work. The size-dependent interfacial properties 

mentioned above have been obtained analytically in the present prescription and the results 

are quite similar to those from other theories and simulations. The consideration of the large 
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sized droplet corresponding to the planar interface are shown to predict the surface properties 

of the planar interface of the bulk system. The present prescription can be further extended to 

investigate the same for supersaturated vapor-liquid system so that a size- and 

supersaturation-  dependent surface tension can be obtained and the outcome will be helpful 

to modify the result of CNT by retaining its simplicity. 

 

 

 

 

 

 

 



Chapter 7 

140 

 

CHAPTER 7 

Conclusion 

        This thesis mainly deals with modeling of the vapor-liquid interface in terms of both 

density profile as well as the Helmholtz free energy density functional in a more realistic 

fashion and  in such a way that the problem of vapor to liquid nucleation and interfacial 

properties have been solved analytically using classical density functional theory (DFT). As a 

result of this study a new and improved theory compared to the conventional classical 

nucleation theory (CNT) of vapor - liquid transition has been developed. This proposed 

methodology of obtaining the vapor to liquid nucleation and interfacial phenomena is based 

on the classical thermodynamics as well as density functional theory with square gradient 

correction for slowly varying density at interface. An exponential density at the interface 

which is found to be realistic and a perturbative approach to express the Helmholtz free 

energy density as Taylor series expansion with respect to the uniform fluid for the problem 

of nucleation and a double well type Helmholtz free energy density for the problem of 

interfacial phenomena have been proposed and are shown to be suitable for obtaining a 

simple theory. A modified form of CNT has been arrived at by considering the sharp 

density model of CNT into the result obtained by the proposed DFT. In order to 

investigate the heterogeneous nucleation on flat as well as spherical solid surface, single 

spherical cap and double spherical cap model have been introduced. The well-known 9-3 

interaction model for the solid (wall)-fluid interaction corresponding to Lennard-Jones 

fluid has been considered for the heterogeneous nucleation on flat solid surface and the 

solid-fluid interaction for heterogeneous nucleation on spherical solid surface has been 

derived in this work. Therefore, the vapor to liquid nucleation has been thoroughly 
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investigated in the present thesis. The free energy of formation of the droplet, nucleation 

barrier, critical size, density profile of nucleating droplet, shape of the droplet, effect of 

various parameters on the shape, size and nucleation barrier etc. have been obtained in the 

present work and are found to lead to quite good results in comparison to the conventional 

CNT and several other earlier works. 

 Further extension and generalization of the work presented here is also possible. For 

example, the formulation of nucleation can be applied for the investigation of the reverse 

phenomena i.e. cavitation in liquid to vapor phase transition. The real system like water 

also can be investigated by the proposed methodology with the proper choice of local 

Helmholtz free energy density and the interaction potential. More appropriate free energy 

functional for inhomogeneous system can be proposed. The liquid-solid transition, 

precipitation etc. can also be studied. 

        The proposed theory when applied to the problem of interfacial phenomena, an 

analytical solution of the various interfacial properties such as surface tension, density 

profile, thickness of the interface etc. have been obtained for a model L-J fluid. The 

proposed theory has been applied to the problem of real fluid as well by incorporating 

some suitable approximations and the expression of surface tension has been obtained. The 

surface tension of a few real fluid systems have been obtained over a wide range of 

temperature from triple point to critical point, using the knowledge of the bulk densities 

along with a triple point surface tension data. The theory is applied to the real fluids like 

water, heavy water and argon and the resulting surface tension is fairly accurate, which is 

a significant achievement in the present work. The analytical solution to the problem of 

the size- dependent interfacial properties is another important achievement of this work. 

Since the experimental measurement of the surface properties of the small nucleating 



Chapter 7 

142 

 

droplet is a very difficult task, one has to depend on the theory of the size-dependent 

surface properties and therefore the present attempt is very significant for calculating the 

different properties of the interface like surface tension, density profile, thickness of the 

interface etc. analytically. The numerical solution with the exact density also supports the 

modeling of the present density profile. In the context of nucleation, the theory can be 

further developed to calculate the supersaturation dependent surface tension in addition to 

the size dependence. 

        The work in the present thesis is mainly based on DFT, and therefore it is a 

microscopic theory retaining the physical picture of the phenomena. Due to the 

incorporation of suitable and realistic approximations, the solution is however, mostly 

analytical and simple in nature. 
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