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SYNOPSIS

Supplying safe and uninterrupted energy to the society has always been a challenging
issue and has been of major concern particularly in recent times. Worldwide energy demands
are drastically increasing day by day due to improved standard of living along with industrial
revolutions. At present, nearly 80% of the energy used comes from the fossil fuels like coal,
oil and gas which are expected to get depleted with time.>? If this same trend of fossil fuel
usage continues, all the available reserves will be depleted soon and future generations may
not have the chance of using fossil fuels for energy applications. Renewable energy is the
energy obtained from inexhaustible sources like solar power, wind power, tidal power, etc.
The main feature of this renewable energy is that it will not release any polluting gases to the
atmosphere.>* At present nearly 75% of the carbon dioxide emissions are fossil fuel-related,
and if there is no proper action taken for changing the energy policy, it may become worse in
future, thereby ruining the atmosphere.®

All these above mentioned facts clearly indicate that new alternative energy sources
are required to supplement and eventually replace the fossil fuels. Hydrogen is considered to
be a potential alternative to the existing fossil fuels and expected to play a major role in
future energy scenario. As nearly 70% of earth's surface is covered with water, we have
unlimited source of hydrogen if it can be generated from water. As a fuel, hydrogen has the
highest gravimetric energy density of 142 MJ/kg which is at least three times more than that
of gasoline (~47 MJ/kg). Another attractive feature of hydrogen energy is its environmental
advantages over fossil fuels. With water as the final product of this energy conversion,
hydrogen energy can be considered as clean and sustainable energy. However, as it is

mentioned, hydrogen is only an energy carrier, but not a source and its cleanness depends on



the technologies used to produce it. One of the important and well explored concepts is the
utilization of solar energy to produce hydrogen and use this hydrogen as an energy source.”®
The so called hydrogen economy covers three functional areas: production, storage,
and usage and each of the area have lots of scientific and technological challenges. Nearly
95% of the today's hydrogen is produced from steam reforming technique which is proven to
be the cheapest commercial technology for hydrogen production on a large scale.”® Another
technique used in the initial times to generate hydrogen from fossil resources is the
gasification of coal. However, both these methods are not green as they emit the carbon
dioxide. An ideal way is to generate hydrogen through water splitting using the sunlight.*°
Hydrogen being very light in weight, the energy density per unit volume is rather less. The
two ways of physical storage commonly practised are the storage at high pressure as a gas
and liquid hydrogen storage which requires cryogenic temperatures. In gaseous form, even
at a pressure of 700 bar, the energy density is just 4.4 MJ/L. On liquefying, the energy
density can go to a maximum of 8.0 MJ/L and in both the ways the volumetric energy density
is very less as compared to that of gasoline (~36 MJ/L). Apart from energy density, these
two methods are neither safe nor cost effective. Another important way is through the
adsorption of hydrogen on some solid material with high gravimetric and volumetric
densities.”"™ Hydrogen can be directly used as a fuel in cars through a combustion engine.
Another more efficient way is through fuel cells which combine hydrogen and oxygen to
produce electricity and water.***" The main obstacle to a better performance of the fuel cells
is the slow kinetics of the oxygen reduction reaction (ORR) at the cathode. Although
platinum (Pt) based catalysts are the best know catalyst for ORR, limited availability and
high cost of Pt make the fuel cell very expensive and there is a need to find an alternate non-

platinum based catalyst for large scale commercialization of fuel cells.*®*°



In the present study, we have focussed on these three important aspects of the
hydrogen economy as discussed above. Using the first principles based electronic structure
calculations, we have designed a photo-catalyst based on porous carbon nitride for hydrogen
generation through water splitting. For hydrogen storage, we have designed different
molecules and materials especially the light metal decorated materials which can adsorb
hydrogen in molecular form. We have also designed new catalyst materials for the oxygen
reduction reaction. The overall thesis is composed of ten chapters and the brief discussion of

each chapter is given below.

Chapter 1: This chapter deals with a general introduction about the current energy scenario,
need of alternate energy source, hydrogen economy, hydrogen generation, hydrogen storage
and fuel cells. It also includes discussion on the theoretical background and the computational

methods used throughout the thesis.

Chapter 2: This chapter deals with the studies on designing a photo-catalyst for hydrogen
generation by water splitting using the sunlight. Graphitic carbon nitride (g-C3Ng4) is
proposed to be one of the possible metal-free catalysts for visible light driven water
splitting.”> However, this material is reported to have a very poor quantum yield of ~0.1%
which is attributed to the high recombination rate of electron-hole pairs. In this study, we
have explored another carbon nitride, hexagonal carbon nitride with 1:1 stoichiometry (g-CN)
as a new photo-catalyst for solar water splitting. The calculated band structure results have
shown that though the hydrogen oxidation and oxygen reduction potentials are within the
band gap, the band gap is large and not useful for adsorption of the visible portion of the solar
spectra. We have tried to tune the band gap of this material through doping of foreign

elements. We have carried out two different kinds of doping viz. (1) substitutional doping



with non-metal elements like oxygen, sulphur and phosphorus and (2) doping with different

metal atoms which can induce some intermediate energy levels thereby decreasing the band

gap.

Chapter 3: This chapter is concerned with studies on the hydrogen adsorption properties of
small organic molecules decorated with alkali metal atoms, C,H,-M.?*** We found that the
simple van der Waals surfaces are not capable of holding the molecular hydrogen. However,
the presence of an ionic site is found to enhance the hydrogen adsorption energy by many
folds. We have taken CgHg as the model system since it is the main building unit in all the
carbon nanomaterials and decorated with alkali metal ions. We have demonstrated that
creating a charged surface on the model system by doping the alkali metal cations can
improve the hydrogen adsorption energy significantly. We have also shown that,
introduction of a functional group in the model system affects the hydrogen adsorption and
the binding of the alkali metal cations to the organic system significantly, due to the
electronic induction effects. Further, we have extended the present single hexagonal ring
model study to the planar as well as curved coronene carbon surface and it was observed that
the ionic surface with a significant degree of curvature enhances the hydrogen adsorption
significantly. Apart from CgHs, we have also studied other systems like C4H4, CsHs and
CgHs. Being electron deficient with respect to the corresponding Huickel aromatic systems,
these molecules are found to bind the alkali metal atoms more strongly and the metal site
becomes cationic in nature indicating an electron transfer from metal to the carbon surface.

These metal sites are found to adsorb hydrogen more efficiently.

Chapter 4: This chapter includes the results of studies on hydrogen adsorption properties on

23-24

alkali metal decorated boron hydrides. For achieving high gravimetric densities of
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adsorbed hydrogen, materials made up of low molecular weight systems like carbon, boron,
etc. are more suitable. Chemistry of boron hydrides is relatively new in comparison to
hydrocarbon chemistry. B;Hg is the boron analogue of ethane which is a well known electron
deficient molecule.  Lithium complexes of dihydrodiborate dianion (B;H;Li,) and
tetrahydrodiborate dianion (B,H4Li,) have been considered and it was found that in both these
complexes, the Li sites are cationic in nature, and thus can bind molecular hydrogen through
ion-quadrupole and ion-induced dipole interactions. We have also modelled a one-
dimensional nanowire with CgH4B,L.i, as the repeating unit, which was found to adsorb three
hydrogen molecules resulting into a gravimetric density of 9.68 wt% of hydrogen. In another
study, We have shown that the hexaborane (6) dianion (BgHs?) can form a stable complex
(salts) with a highly electropositive alkali metal cation (Li*). Each Li is found to adsorb a
maximum of three hydrogen molecules which corresponds to a gravimetric density of 12 wt
%. We have also designed a model three-dimensional material with lithium-doped borane as
the building block and -C=C- as a linking agent. The molecular hydrogen adsorption in this

designed material corresponds to a gravimetric density of around 7.3 wt %.

Chapter 5: This chapter deals with the interpretation of new aluminium hydrides that are
analogues of boron hydrides.® Alkali metal alanates are found to be attractive for hydrogen
storage which undergo dehydrogenation in the temperature range of 200-300°C to give
aluminium metal and the corresponding alkali metal hydrides along with hydrogen.
Although aluminum and boron belong to the same group in the periodic table, there is a large
difference in the chemistry of their hydrides. Aluminum hydride chemistry is limited to very
few systems such as AlHs, its dimer Al;Hg, its polymeric form (AlHs),, AlH, , and its alkali
alanates like LiAIH,4, whereas boron has a great history of its hydride chemistry. AlHj; can be

a potential hydrogen storage material as it contains 10% hydrogen and has a theoretical

\"



hydrogen density of 148 g/L. We have carried out a systematic study on the electronic
structure and properties of these aluminum hydrides. Here, we have studied different classes
of hydrides, viz., closo (AlyHq+2), nido (AlHq+4), and arachno (Al,Hn:e), similar to the
boranes. All these clusters have considerably large HOMO-LUMO gaps, low electron
affinities, large ionization potentials, and also large enthalpy and free energy of atomization.
These exceptional properties can be indicative of their pronounced stability, and hence it can

be expected that these complexes can indeed be observed experimentally.

Chapter 6: In this chapter, we have discussed our results on the hydrogen adsorption on
metal decorated fullerenes. In one of the studies, we have demonstrated the effect of
curvature present in the carbon fullerenes on the reactivity towards the alkali metals and
hydrogen adsorption in these metal decorated fullerenes.?®  For this study, we have
considered fullerenes of different sizes, viz. Cy, Czs, Cs2, C36, Ceo, and Cyo and the results
reveal that the metal binding energy is high in the fullerenes with high curvature. The higher
reactivity of the surface, associated with the maximum curvature, has been attributed to the
weakening of the z-conjugation due to bending of the carbon surface which forces the system
to have a quasi-sp’-sp> hybridization. In another study, we have considered the transition
metal decorated porphyrin-like porous fullerene, C»4N24 for hydrogen adsorption. Transition
metal decorated carbon materials like fullerenes and nanotubes have been studied extensively
for hydrogen adsorption applications. However, the weaker metal binding energy in these
materials makes them unsuitable for making a stable hydrogen storage material. Here, we
have designed a new porous fullerene generated through truncated substitutional doping of 24
carbon atoms in Cgy by 24 nitrogen atoms, and the resulting fullerene contains six Ny
cavities.?” This fullerene is found to bind with transition metal atoms (Sc, Ti, and V) very

strongly, and the binding energies are found to be considerably larger than (nearly double)
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the corresponding metal cohesive energies. These transition metal sites are found to adsorb
molecular hydrogen through well-known Kubas-type interactions. The calculated adsorption
energies of molecular hydrogen around the different metal sites are found to be in the range
of —9.0 to —3.0 kcal/mol, which is considered to be the enthalpy range required for hydrogen

storage under ambient condition.

Chapter 7: This chapter deals with the studies on two-dimensional carbon materials and their
energy storage properties. We have carried out detailed studies on the newly emerging 2D
carbon allotropes, viz. Graphyne and graphdiyne.”® Our results reveal that the band gap in
these conjugated carbon materials can be tuned by changing the length of the acetylenic
linking chain. We could show that both graphyne and graphdiyne can host a large amount of
lithium with considerably higher lithiation potentials and specific capacities, which indicates
that these materials can be used to design efficient anode materials for lithium batteries. Each
lithium atom in these metal-dispersed materials is found to carry nearly one unit positive
charge and bind molecular hydrogen with considerably improved adsorption energies. We
have also investigated expanded porous two-dimensional conjugated microporous polymers
(CMPs) based on benzene, 1,3,5-triethynyl (CMP-1) and benzene, 1,3,5-tributadiyne

(HCMP-1) decorated with lithium metal for efficient hydrogen adsorption.

Chapter 8: In this chapter we have elaborated the studies on three-dimensional (3D) porous
materials as efficient hydrogen storage materials. Among the many materials investigated,
porous materials like MOFs and COFs are found to be promising materials for hydrogen
storage because of their porous and robust nature and also exceptionally high specific surface
areas as well as pore volumes. In these materials, hydrogen binds through van der Waals

interaction and the adsorption enthalpies are typically in the range of 1.0 to 1.5 kcal/mol.
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Various approaches have been pursued for improving the hydrogen adsorption characteristics
in these materials. One such strategy that has been of recent interest is the metal ion
decoration and in fact Li-decorated MOF-5 has been shown to have significant improvement
in hydrogen adsorption. The Li atom is positioned on top of the six-membered carbon rings
and because of the aromatic nature of the ring, the binding energy of the metal atom is poor.
We have proposed that the binding energy of metal with MOF-5 can be improved by
disturbing the aromatic nature of the linker group through the substitution of its two carbon
atoms with two boron atoms, thus making it electron-deficient.?® In another study, we have
modelled super-cubane based three-dimensional carbon allotropes with different pore sizes
and densities.*® The basic supercubane structure is expanded through the insertion of
acetylinic and diacetylinic units between both inter- and intra-cubane C—C bonds leading to
more variety of porous carbon materials. As these designed structures are associated with
high porosity and reactive carbon sites, we have investigated their hydrogen adsorption
properties and it is observed that the expanded supercubanes can adsorb hydrogen with a

gravimetric density of ~2.0 wt %.

Chapter 9: This chapter deals with the design of a new catalyst for the oxygen reduction
reaction (ORR). The ORR at the cathode of the fuel cell is known to be the main limiting
factor in the fuel cells especially at low temperature. Though the platinum (Pt) based
catalysts are the best know catalyst for ORR, limited availability and high cost of Pt make the
fuel cell very expensive and there is a need to find an alternate non-platinum based catalyst
for large scale commercialization of fuel cells. We have studied the catalytic activity of the
transition metal (Fe, Co and Ni) decorated graphyne towards the ORR. The calculated results
revel that the Fe and Co complexes are active whereas the Ni decorated system is almost

inert. Between the Fe and Co decorated systems, Fe decorated system is more reactive. In

viii



acid medium, both Iron and Cobalt decorated systems are observed to follow a more efficient
four electron path. In alkaline medium, the reduction on Iron decorated system is through a
four electron path while in Cobalt system it is through a two electron path with the formation
of hydroperoxide anion. In another study, we have shown that the silicene, silicon analogue
of graphene can be a metal free catalyst for ORR. We have studied the step by step
mechanism of ORR on both the single layer and bi-layer silicene. The calculated results

show that silicene can be an effective metal free catalyst for ORR.

Chapter 10: This chapter consists of conclusions and discussion on future directions. This
gives a brief outline about the possible outcomes and future directions that can be charted out
from the present studies on designing new materials for hydrogen energy applications which

have been discussed in the present work.
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