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Synopsis 

Metal nanoparticles offer excellent chemistry compared to its bulk equivalent 

because of the large surface area‐to‐volume ratio, large surface energies, specific 

electronic structure, plasmon excitation, quantum confinement, short range ordering, 

and increased number of kinks and low‐coordination sites such as corners & edges, 

having a large number of dangling bonds. There are two general approaches for 

synthesising metal nanoparticles. The first one is the “top down approach”, which 

begins with a pattern generated on a larger macroscopic initial structure, and then it 

reduces to nanoscale. Ball millings, photolithography, embossing and moulding, micro-

contact printing etc. are included in the top down approach. However, the applicability 

of this approach is limited by the high expenditure, broad particle size distribution and 

slow rate of production of metal nanoparticles. The other approach is the “bottom up 

approach”, which starts with atoms or molecules and builds up to nanostructures. This 

approach is much less expensive comparative to top down approach. The bottom up 

approach consists of two popular routes viz. gas (or vapour) and solution phase 

synthesis. Inert gas condensation, pulsed laser ablation, spark discharge generation, ion 

sputtering, chemical vapour synthesis, spray pyrolysis etc. are the gas (or vapour) 

phase synthesis route of bottom up approach. On the other hand, co-precipitation or 

colloidal synthesis, sol-gel processing, micro-emulsion, hydrothermal/solvothermal 

synthesis, bioreduction, electrodeposition, polyol method etc. are the solution phase 

synthesis route of bottom up approach. Among these processes, electrosynthesis is one 

of the promising techniques for preparing supported metal nanoparticles of controlled 

size, shape and crystallographic orientation. During electrosynthesis, the metal 

nanoparticles are prepared on the electrode surface by an external source of electrons to 

its precursor ions present in the solution. This is generally a room temperature process 



   Synopsis        Saurav K. Guin 

ii 

and gives better purity of the particles due to the absence of a vast number of auxiliary 

chemicals. 

Templating is one of the most important techniques for the controlled synthesis of 

nanostructured materials of well-defined size, shape and configuration. The general 

route for templated electrosynthesis of nanostructured materials includes the following 

steps: (1) template preparation, (2) directed electrosynthesis of target materials using 

the template, and (3) template removal. The bottle necks of the templated 

electrosynthesis are the first and the last steps. The preparation of templates of precise 

nanometer dimensions is itself a costly and delicate step. It requires sometimes 

sophisticated instruments. On the other hand, both physical methods such as dissolution 

and chemical methods including calcinations and etching are applied to remove the 

template after synthesis of the nanoparticles. Therefore, the property of metal 

nanoparticles may be altered due to the harsh conditions of using extensive corrosive 

acid or base in the template removal step. 

Hence the prime aim of the present thesis was to develop the strategies for 

electrosynthesis of metal nanoparticles without using any physical or chemical 

templates. The difficulties in controlling the size as well as size dispersion of metal 

nanoparticles are also addressed in the thesis. The work described in this thesis is 

divided into six chapters followed by the bibliography. 

Chapter 1: Introduction 

 This chapter gives a general introduction to the synthesis of metal nanoparticles. 

The fundamentals of electrodeposition of metals and electrochemical nucleation and 

growth are also discussed in this chapter. A brief discussion is presented on the 



Saurav K. Guin                  Synopsis 

iii 

development of the electrochemical nucleation and growth models for electrodeposition 

of metals at constant potential. Finally, the scope of the work is highlighted. 

Chapter 2: Experimental 

 This chapter gives the brief descriptions of the electrochemical workstation 

(potentiostat/galvanostat), electrochemical techniques, electrochemical quartz crystal 

microbalance (EQCM), spectroelectrochemistry, electrochemical impedance 

spectroscopy  (EIS), atomic force microscope (AFM), scanning electron microscope 

(SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and 

inductively coupled plasma mass-spectroscopy (ICP-MS) employed at different stages 

of present work. It also consists of a brief description of the chemicals, methodologies 

and computer based programs employed at different stages of present work. 

Chapter 3: Template-free Electrosynthesis of Lead Nanoparticles (PbNPs) by 

Potentiostatic Triple Pulse Strategy (PTPS) 

There is an increasing interest to synthesize PbNPs for various applications. 

Electrochemical deposition is advantageous because of the least requirement of the 

additives and absence of any interfering products generated during the 

electrodeposition of lead metal. It is interesting to note that the deposition of PbNPs on 

a supported material has not been attempted electrochemically in spite of the reversible 

electrode behavior of Pb(II)/Pb couple. This is the first effort for the electrosynthesis of 

PbNPs (without any adlayer of Pb) on a template free substrate and this necessitated the 

optimization of different parameters to achieve the desired quality of the PbNPs. In this 

context, it is therefore of interest to develop a strategy for the electrochemical synthesis 

of PbNPs on a template free substrate, their characterization and study on the influence 

of the electrochemical parameters on size and size distribution of PbNPs. 
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 An attempt was made for the electrosynthesis of PbNPs employing a 

potentiostatic triple pulse strategy (PTPS) where the first pulse employed is the 

perturbation pulse for the removal of the adsorbed Pb2+ ions from the electrode surface. 

The dual role of the first pulse is the restriction of pre-adsorption of Pb(II) on electrode 

surface and simultaneously providing the fresh surface for the nucleation and growth 

processes. The second and third pulses are responsible for the controlled nucleation and 

growth of PbNPs, respectively. This chapter is subdivided into two parts. The first part 

deals with the implementation of the PTPS for the electrosynthesis of PbNPs on gold 

surface, where gold facilitates the electrodeposition of Pb as the energy of Pb-Au 

interaction is much stronger for the first monolayer than that of the Pb-Pb interaction. 

The second part of this chapter deals with the implementation of the PTPS for the 

electrosynthesis of PbNPs on glassy carbon (GC) surface, where GC provides a low 

surface energy conductive substrate and exhibits weak metal-substrate interaction. 

The pulse potentials were chosen from cyclic voltammetry (CV) and 

electrochemical quartz crystal microbalance (EQCM) studies of Pb(II)/Pb couple in 0.1 

M HClO4. The electrodeposited PbNPs were characterized ex situ independently by 

XRD, XPS and AFM. The results obtained suggested the presence of chemisorbed 

oxygen on the surface of PbNPs. The influence of pulse parameters (viz. nucleation 

pulse duration, growth pulse duration and growth pulse potential) was investigated on 

the size, particle density and monodispersity of the deposited PbNPs. Figure S1 shows 

the (a) surface topography and (b) particle size histograms of PbNPs synthesised by 

PTPS employing first pulse at +0.2 V (E1) for 60 s (t1) followed by a nucleation pulse 

at -0.53 V (E2) for 0.06 s (t2) and a growth pulse at -0.455 V (E3) for 60 s (t3). The 

surface height distribution of the bare gold surface is also shown in the figure for 
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comparison purpose. The potentials mentioned here are with reference to the 

Ag/AgCl(Saturated KCl) electrode. 

 

Figure S1 The (a) surface topography and (b) particle size histograms of PbNPs 

synthesised by PTPS. E1= +0.2 V; t1 = 60 s; E2 = -0.53 V; t2 = 0.06 s; E3 = -0.455 V; 

t3= 60 s. 

The second part of this chapter deals with the implementation of the PTPS for the 

electrosynthesis of PbNPs on GC surface. GC does not provide any favorable 

interaction on Pb deposition i.e. Pb adatoms - adatoms interaction is stronger than the 

interaction of Pd adatoms with the GC surface. The PTPS was compared to the 

conventional potentiostatic double pulse strategy (PDPS). The final surface topography 

of the PbNPs/GC at the end of 70 s of the current transients is shown in Figure S2. The 

instantaneous nucleation and growth of PTPS resulted into discrete and monodispersed 

(average height 8±2 nm) tapped hemispherical PbNPs. However, the progressive 

nucleation and growth and prolonged induction time in PDPS resulted in small, 

overlapped and polydispersed (average height 5±5 nm) PbNPs. The optimized PTPS 

can electrochemically produce discrete and monodispersed capped hemispherical metal 

nanoparticles on a low surface energy conductive substrate. 
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Figure S2 The progressive (in PDPS) and instantaneous (in PTPS) types of nucleation 

and growth for the electrocrystallization on PbNPs during the last pulse. The surface 

topographies and particle size dispersions are shown along side. For PTPS, E1 = 0.4 V, 

t1 = 60 s, E2 = -0.7 V, t2 = 1 ms, E3 = -0.49 V, t3 = 70 s; for PDPS, E1 = 0.4 V, t1 = 60 s, 

E2 = -0.49 V, t2 = 70 s. 

Chapter 4: Template-free Electrosynthesis of Gold Nanoparticles (AuNPs) 

 Gold nanoparticles (AuNPs) are the most stable among all the metal 

nanoparticles and they also have fascinating material properties. Novel multiple 

potentiostatic pulse (MPP) and multiple galvanostatic pulse (MGP) strategies were 

developed for the template free electrosynthesis of AuNPs on a GC electrode with the 

objective of achieving better electroanalytical performance compared to that of the bulk 

metal electrode. The mechanism of electrocrystallization in the initial stages of metal 
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deposition was studied by cyclic voltammetry, chronoamperomentry, 

chronopotentiometry and in situ spectroelectrochemistry. The key parameters 

controlling the size dispersion of the metal nanoparticles in the template-free 

electrosynthesis of AuNPs were evaluated. 

In the MPP strategy, the tapped hemispherical gold nanoparticles (AuNPs(P)/GC) 

of average diameter of 250-300 nm and average height of 10-15 nm were deposited on 

a GC electrode covering about 61% of the effective surface area of the electrode. In the 

MGP strategy, the tapped hemispherical gold nanoparticles (AuNPs(G)/GC) of average 

diameter of 350-400 nm and average height of 25-30 nm were deposited on a GC 

electrode covering about 18% of the effective surface area of the electrode. 

 The synthesized AuNPs were utilized for different electrochemical applications 

which are subdivided into two sections. The first section represents the excellent 

sensitivity of AuNPs(P)/GC for the determination of Pb(II) by square wave anodic 

stripping voltammetry (SWASV) by virtue of the underpotential deposition of lead on 

the gold surface. The limits of detection of Pb(II) obtained with a bare GC, bare Au, 

AuNPs(G)/GC and AuNPs(P)/GC electrodes were calculated as 1.22 µg L-1 (5.86 nM), 

122 ng L-1 (587 pM), 86.4 ng L-1 (416 pM) and 57 ng L-1 (274 pM), respectively, at S/N 

= 3. The analytical response of the AuNPs(P)/GC electrode was found to be the best 

among the four electrodes. The concentrations of Pb(II) in some of the environmental 

samples were determined by SWASV at AuNPs(P)/GC electrode. The results showed a 

good agreement with the ICP-MS data for the same samples. 

 The second section represents the electrocatalytic reduction of U(VI) in 1 M 

H2SO4 at AuNPs(G)/GC. The supported gold nanoparticles (AuNPs) exhibited high 

electrocatalytic activity for CO oxidation and oxygen reduction. The oxygen reduction 
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on AuNPs occurs in the potential range -0.5 to -0.15 V vs. Ag/AgCl (saturated KCl) 

reference electrode, which is similar range of reduction potential of the uranyl (UO2
2+) 

complexes on mercury pool electrode. UVIO2
2+ is chemically robust due to the presence 

of trans-dioxo bonds around the uranium and it is highly oxidative in acidic solutions, 

exhibiting interesting and useful oxidation–reduction chemistry, which indeed requires 

more exploration. This is the first report on the electrocatalysis of UVIO2
2+ in 1 M 

H2SO4 at AuNPs supported on glassy carbon electrode (AuNPs(G)/GC) evidenced from 

the cyclic voltammetry (CV), differential pulse voltammetry and electrochemical 

impedance spectroscopy experiments. The molecular understanding of the 

electrocatalytic mechanism was evaluated by the relative stability of molecular orbitals 

of the most abundant U(VI) complex in sulphuric acid solution by quantum chemical 

calculations. 

 The rates of electron transfer reaction from the electrode to U(VI) were 

determined as 3.5×10-5, 5.0×10-5 and 5.4×10-3 cm s-1 at GC, Au and AuNPs(G)/GC, 

respectively. This indicates that heterogeneous charge transfer rate of AuNPs(G)/GC is 

much faster compared to Au and GC. Moreover, the average charge transfer 

coefficients (α; symmetry factor of the transition state) were determined as 0.14, 0.47 

and 0.83 at GC, Au and AuNPs(G)/GC, respectively, by cyclic voltammetric 

simulation, Tafel’s slope and analytical equation for irreversible reaction. Therefore, it 

can be speculated that the rate as well as the symmetry of the potential energy barrier of 

the heterogeneous electron transfer reaction from metal to U(VI) improves in the order 

GC < Au <AuNPs(G)/GC. 

 For molecular level understanding of electrocatalysis of U(VI) at AuNPs, 

quantum chemical calculations were performed to optimise the geometry of the most 

probable U(VI) species in sulphuric acid solution. [UVIO2(η1-OSO3)(η2-O2SO2), 
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2H2O]2-  was found to be the predominant species under the conditions studied. The 

nonadiabatic electron affinity of [UVIO2(η1-OSO3)(η2-O2SO2), 2H2O]2-  was calculated 

as -6.57 eV vs. vacuum in the aqueous phase without structural optimization of the 

reduced state using optimised structure of the oxidised form for the starting point of the 

electron/charge transfer. The energies of the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO) were calculated as -

7.01 and -5.84 eV vs. vacuum, respectively. It is interesting to note that the HOMO is 

comprised mostly of O(p)-orbitals of monodentate sulphate ion, whereas the LUMO is 

comprised of U 5f z(x2-y2) orbital. It shows that an interaction between filled p-orbital of 

oxygen atom of sulphate with that of vacant f orbital of uranium(VI) ion, indicating the 

f-orbital participation in bonding. 

 The heterogeneous electron transfer rates are dependent on the density of states 

(DOS) of the electrode material i.e. higher DOS means a higher probability of electrons 

of correct energy available for an electron transfer to a redox system. The DOS of the 

sp-band of GC depends on the energy range and it is very low (~2.2×10-3 states/eV) i.e. 

below -0.1 V vs. Ag/AgCl. Therefore, the heterogeneous rate of electron transfer to 

U(VI) was found to be the lowest at GC. Moreover, the weak interaction of LUMO 

(made of U-5f orbital) of [UVIO2(η1-OSO3)(η2-O2SO2), 2H2O]2- with carbon sp-band 

creates a virtual state (VS-LUMO) at -4.372 eV vs. vacuum (calculated from the 

formula; EVS-LUMO = -e[Ec + 4.65] eV vs. vacuum; where Ec is the onset potential vs. 

Ag/AgCl in the CV) for the heterogeneous electron transfer reaction to take place. The 

weak absorption of [UVIO2(η1-OSO3)(η2-O2SO2), 2H2O]2- on GC surface leads to the 

lowest charge transfer coefficient of the reaction. On the other hand, Gold has a DOS of 

0.28 states/eV and this value is relatively constant with energy. The metal 5d-band 

interacts comparatively strongly with the LUMO (U-5f orbital) of [UVIO2(η1-OSO3)(η2-



   Synopsis        Saurav K. Guin 

x 

O2SO2), 2H2O]2- creating VS-LUMO at -4.549 eV vs. vacuum. Moreover, the strong 

adsorption of [UVIO2(η1-OSO3)(η2-O2SO2), 2H2O]2- on Au improves the charge transfer 

coefficient of the cathodic reaction. In AuNPs(G)/GC, not only the DOS is expected to 

be increased, but also the 5d-band centre is to be lifted up towards the Fermi level. The 

highest observed value of the charge transfer coefficient and rate of electron transfer at 

AuNPs are attributed to the highest density of states of 5d-band of gold and its strong 

interaction with the LUMO contributed by U-5fz(x2-y2) orbital of [UVIO2(η1-OSO3)(η2-

O2SO2), 2H2O]2-,  predominant stable species of UVIO2
2+ in 1 M H2SO4. 

Chapter 5: The Effect of Surface Protecting Agent on Electrocrystallization of 

Silver Nanoparticles (AgNPs) 

Silver nanoparticles (AgNPs) have received considerable attention in the field of 

catalysis, biological and chemical sensors and surface-enhanced Raman spectroscopy. 

The cationic surfactant, cetyltrimethylammonium bromide (CTAB), is most extensively 

used as a stabilizer to fabricate positively charged bi-layer shell on AgNPs. In our 

previous studies, the template-free electrosynthesis of metal nanoparticles was well 

established. However, from the application point of view, the chemical stability of the 

synthesised nanoparticles in the absence of any surface stabilizing or protecting agent is 

often questioned. In this chapter, the mechanisms of electrocrystallization of AgNPs 

from its aqueous solution at selected constant potentials both in the presence and 

absence of surface protecting agent tetrabutylammonium tetrafluoroborate (TBABF4) 

are reported by cyclic voltammetry and chronoamperometry to understand the effect of 

the stabilizing agent on the formation and growth of AgNPs. 

The electrocrystallization of metal basically involves nucleation of metal adatoms 

on the active sites of the electrodes followed by three dimensional diffusion controlled 
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growth of the nuclei. Four popular electrocrystallization models viz. Scharifker and 

Hills (SH), Scharifker and Mostany (SM), Sluyters-Rehbach, Wijenberg, Bosco and 

Sluyters (SRWBS) and Heerman and Tarallo (HT) have been developed from the same 

nucleation rate law (of constant nucleation rate) and Avrami’s theorem of projecting 

diffusion flux. The aim of the study was to understand the influence of TBA+ ions on 

the electrocrystallization of AgNPs by evaluating the electrocrystallization parameters 

viz. initial current density (j0), decay constant (τ), diffusion coefficient (D) of Ag(I), 

number of active sites (N0) and nucleation rate (a). These were calculated by fitting the 

experimentally obtained current transients with the calculated current transients (from 

the models) using hybrid genetic algorithm (HGA). All the three models fitted well by 

HGA with each of the potentiostatic current transients with residual sum of squares 

(~4.6×10-7) and reduced χ2 (~1.2×10-10); but with different values of 

electrocrystallization parameters. 

 Irrespective of the differences in the numerical values of the 

electrocrystallization parameters, each of the models independently revealed that the 

surface protecting agent would make the kinetics of electrocrystallization sluggish due 

to induction of activation overpotential at the electrode-electrolyte interface and 

subsequently the number of nuclei on the electrode surface decreased in presence of 

TBA+ ions. However, the principal component analysis of the evaluated parameters 

(i.e. D, N0) and derived parameter (i.e. aN0) revealed that no correlation exists among 

the electrocrystallization parameters derived from the SH, SM, SRWBS and HT 

models; though they originated from the same nucleation law of electrocrystallization 

and Avrami’s theorem. In connection to this result, some of the important 

observations/comments on the validity of the nucleation law (of constant nucleation 
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rate), diffusion zones and Avrami’s theory, which are the foundations of the SH, SM, 

SRWBS and HT models of electrocrystallization were addressed. 

Chapter 6:  Summary of Key Findings 

      The important conclusions of the work are as follows: 

1. A novel potentiostatic triple pulse strategy (PTPS) was developed for the template-

free electrosynthesis of lead nanoparticles. This is the first effort for the 

electrosynthesis of PbNPs (without any adlayer of Pb) on a template free substrate. 

The electrodeposited PbNPs were characterized ex-situ independently by the XRD, 

XPS and AFM. The results obtained suggested the presence of chemisorbed oxygen 

on the surface of PbNPs. The influence of pulse parameters (viz. nucleation pulse 

duration, growth pulse duration and growth pulse potential) was investigated on the 

size, particle density and monodispersity of the deposited PbNPs. 

2. The systematic studies revealed, for the first time, the cause of improvement in the 

particle size and size dispersion in potentiostatic triple pulse strategy (PTPS) 

compared to conventional potentiostatic double pulse strategy (PDPS), and at the 

same time it also showed a prospect of PTPS for template-free electrosynthesis of 

metal nanoparticles. The instantaneous nucleation and growth of PTPS resulted into 

discrete and monodispersed (average height 8±2 nm) tapped hemispherical PbNPs. 

However, the progressive nucleation and growth and prolonged induction time in 

PDPS resulted in small, overlapped and polydispersed (average height 5±5 nm) 

PbNPs. 

3. Novel multiple potentiostatic pulse (MPP) and multiple galvanostatic pulse (MGP) 

strategies were developed for the template free electrosynthesis of AuNPs on a GC 

electrode with the objective of achieving better electroanalytical performance 
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compared to that of the bulk metal electrode. Excellent control of the particle size 

dispersion was achieved in both the routes of synthesis. 

4. The AuNPs(P)/GC showed excellent sensitivity and lowest limit (57 ng L-1 or 274 

pM) of detection for the determination of Pb(II) at ultratrace levels by square wave 

anodic stripping voltammetry (SWASV) by virtue of the underpotential deposition 

of lead on the gold surface. The stability, repeatability, reproducibility and accuracy 

of the analytical response were found to be satisfactory for the analytical purposes. 

5. The AuNPs(G)/GC showed excellent electrocatalytic reduction of U(VI) in 1 M 

H2SO4. This was the first report on the electrocatalysis of UVIO2
2+ in 1 M H2SO4 at 

AuNPs supported on glassy carbon electrode (AuNPs(G)/GC) evidenced from the 

cyclic voltammetry, differential pulse voltammetry and electrochemical impedance 

spectroscopy experiments. Molecular understanding of the electrocatalytic 

mechanism was evaluated by the relative stability of molecular orbital of the most 

abundant U(VI) complex in sulphuric acid solution by quantum chemical 

calculations. The highest observed value of the charge transfer coefficient and rate 

of electron transfer at AuNPs are attributed to the highest density of states of 5d-

band of gold and its strong interaction with the LUMO contributed by U-5fz(x2-y2) 

orbital of [UVIO2(η1-OSO3)(η2-O2SO2), 2H2O]2-, predominant stable species of 

UVIO2
2+ in 1 M H2SO4. 

6. The surface protecting agent, viz. tetrabutylammonium tetrafluoroborate (TBABF4) 

slowed down the kinetics of electrocrystallization of AgNPs because of the 

induction of activation overpotential at the electrode-electrolyte interface and 

subsequently the number of nuclei on the electrode surface decreased in presence of 

TBA+ ions. This study also revealed that enough artifacts may exist in the optimized 
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values of the number of nuclei; nucleation rate etc. following SH, SM, SRWBS, and 

HT models and it may be far off from the reality. Therefore, enough need exists to 

validate the compatibility of the nucleation law (of constant nucleation rate), 

diffusion zones and Avrami’s theory, which are the foundations of the SH, SM, 

SRWBS and HT models of electrocrystallization. 

In conclusion, the work reported in this thesis has led to the development of 

several new strategies for electrochemical synthesis of metal nanoparticles without 

using any additional structure directing agents. These synthesis strategies have 

immense potentials for development of new catalytic and sensor materials for various 

applications. 
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1.3. Electrochemical Nucleation and Growth  

The closely spaced metal adatoms join together on the electrode surface to form 

metal nuclei and this process is known as electrochemical nucleation. Once the nuclei 

are formed, they grow by the continuous attachment of the metal adatoms to the 

existing nuclei and this process is known as growth. The electrochemical nucleation 

and growth is the most important stage of electrosynthesis to control the size, shape, 

size distribution of the metal nanoparticles. 

It was shown in the previous section that, for an overpotential η, a thermodynamic 

driving force exists for the transformation of N’Mn+ ions to a metal nucleus of N’ atoms. 

However, the nucleation is not a spontaneous process. A thermodynamic energy 

barrier, known as ‘nucleation work’ (ΔG(N’,η)), guides the formation of new nucleus 

on the electrode surface (Eq. 1.17&1.18) [64-70] 

,ሺܰܩ∆ ሻߟ ൌ  െܰԢ∆ߤ ൅  ߮ሺܰሻ    (1.17) 

or   ∆ܩሺܰ, ሻߟ ൌ  ܰԢ݊ߟܨ ൅  ߮ሺܰሻ    (1.18) 

The first term of Eqs. 1.17 and 1.18 is negative, since it represents the energy gained 

by transforming N metal ions from higher electrochemical potential to N’ adatoms at 

lower electrochemical potential. However, the second term of Eqs. 1.17 and 1.18 is 

positive, because it represents the total excess energy in creating the new interfaces 

(nucleus-electrode and nucleus-solution interfaces) during nucleation. 

The nuclei can have either two-dimensions (2D, i.e. disc like) or three-dimensions 

(3D, i.e. particle like). However, discussion will be restricted only to the 3D nuclei, 

because no 2D nuclei formation was encountered in the present study. 

The variation of ΔG(N,η) with respect to N’ and η can be described by (1) classical 
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nucleation theory and (2) atomistic nucleation theory. 

1.3.1. Classical Nucleation Theory 

 The classical theory assumes φ(N’) to be a continuous function of N’. This 

assumption is macroscopically valid for the large cluster. Consider the formation of a 

3D heterogeneous spherical cap nucleus of radius of curvature R’ on the electrode 

(Figure 1.4). The contact angle of the nucleus with the substrate is θ’. The specific 

surface energies of the nucleus, substrate and nucleus-substrate interface are σ, σs and 

σi, respectively. Therefore, the actual volume (Vn) of the nucleus should be 

௡ܸ ൌ  ଵ
ଷ

Ԣଷሾ2ܴߨ െ 3 cos Ԣߠ ൅  Ԣሿ    (1.19)ߠଷݏ݋ܿ

 

 

 

 

 

 

 

Figure 1.4 3D heterogeneous spherical cap nucleus of radius of curvature R’ formed 

on the electrode (Substrate). 

Figure 1.5a shows the continuous variations of (i) N’Δµ, (ii) φ(N’) and (iii) 

nucleation energy as a function of N’ at constant overpotential η. Since ΔG(N’,η) is a 

continuous function of N’, and, therefore, it is a differentiable function. The size of the 

nucleus having a maximum nucleation work is known as the critical nucleus (N’
c) and 

the maximum nucleation work is known as critical energy (ΔGCrit). Therefore, one can 

write that 
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ቂௗሺ∆ீሺఎ,ேᇱሻ
ௗே

ቃ
ఎ,ேᇱୀேᇱ೎

ൌ 0     (1.20) 

For 3D heterogeneous spherical cap critical nucleus, r = rc and thus, 

Δܩ஼௥௜௧ ൌ  ଵ଺గఙయெమ

ଷ௡మఘమிమఎమ fሺߠԢሻ     (1.21) 

where,  ݂ሺߠሻ ൌ  ଵ
ସ

ሾ2 െ 3 cos Ԣߠ ൅ cosଷ  Ԣሿ   (1.22)ߠ

௖ݎ ൌ  ଶఙெ
ఘ௡ிఎ

       (1.23) 

NԢ௖ ൌ  ଷଶగఙయெమ

ଷ௡యఘయிయఎయ fሺߠԢሻ     (1.24) 

Therefore, rc is independent of the contact angle (Eq. 1.23). Further ΔGCrit, N’
c and 

rc decrease with increasing η (Eqs. 1.21, 1.23, 1.24). Figure 1.5b shows the nucleation 

work for three η, where η3> η2> η1. 

 

Figure 1.5 (a) (i) NΔµ and (ii) φ(N) and (iii) nucleation energy as a function of N at 

constant overpotential η. (b) the nucleation energies at three different η, where η3> η2> 

η1. 



Chapter 1: Introduction   Saurav K. Guin 

14 

1.3.2. Atomistic Nucleation Theory 

This theory assumes that ΔG(N’,η) can not be a continuous function of N’ for small 

size of nuclei. The ΔG(N’,η) versus N’ relationship is not a fluent curve but displays 

minima and maxima, depending on the structure and energy state of the cluster (Figure 

1.6). The highest maximum at a given supersaturation corresponds to the critical 

nucleus size. 

 

 

 

 

 

 

 

Figure 1.6 The atomistic approach of the nucleation energy, ΔG(η,N) as a function of 

N at constant overpotential η. 

1.3.3. Kinetics of Nucleation 

The nucleation work, ΔGCrit, is a measure of the thermodynamic barrier, which has 

to be overcome in order to transform N’
c number of Mn+ ions from the electrolyte 

solution into a nucleus of atoms N’
c on the electrode surface. Any nucleus of N’ < N’

c, 

will be dissolved into the solution. The probability of the formation of nuclei can be 

expressed by Eq. 1.25: 
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ܽ ൌ ௝ܣ exp ቀെ ୼ீ಴ೝ೔೟
௞ಳ்

ቁ     (1.25) 

Where, ‘a’ is the rate of nucleation (number of nuclei cm-2 s-1), AJ is the 

proportionality constant. Since, ΔGCrit is inversely proportional to the square of η (Eq. 

20), thus the rate of nucleation increases significantly with increasing η. 

Therefore, we can derive the relation (Eq. 1.26) between ‘a’ and η for 3D 

heterogeneous nucleation by Eqs. 1.21-1.25. 

ௗ ୪୬ ௔
ௗ|ఎ|

ൌ  െ ௡ி
ோ் ௖ܰ      (1.26) 

1.3.4. Energy State of the Electrode Substrate 

In all the above sections, it was assumed that the working electrode is inert and it 

provides isoenergic surface for the nucleation. However, in reality, the working 

electrodes provide active sites (may be crystal defect, dislocation, scratches etc.) at the 

atomic level on the electrode surface. The active sites are bonded to the nuclei in such a 

way that the free energy of bond formation leads to a pronounced decrease in ΔGCrit, so 

that the ‘a’ at these sites is considerably higher than at the surrounding locations. The 

theoretical models of electrocrystallization are developed on the time-dependent 

variation of the active sites under the electrodeposition condition. 

The total number of active sites (N0, cm-2) represents the theoretically possible 

maximum number density of nuclei on an electrode. The number of nuclei at time ‘t’ is 

represented by N (cm-2). Therefore, the nucleation rate law will be 

ௗே
ௗ௧

ൌ ܽሺ ଴ܰ െ ܰሻ      (1.27) 

If we assume, N = 0 at t = 0 (i.e. at the start of the nuclei), then the integration leads to 
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ܰ ൌ  ଴ܰሾ1 െ exp ሺെܽݐሻሿ     (1.28) 

The Eq. 1.28 is the general rate law of the number density of nuclei on the electrode 

surface at any time t. The value of ‘a’ will have two limiting cases: 

Case-I : Instantaneous Nucleation 

If ‘at’ is very large for very high rate of nucleation (i.e. high ‘a’ value), then Eq. 

1.27 can be expressed by a delta function of ‘t’ i.e., 

ௗே
ௗ௧

ൌ  ଴ܰߜሺݐሻ      (1.29) 

where, δ(t) = 1 at t = 0 and δ(t) = 0 for t > 0.   

Therefore,  ܰ ൌ ଴ܰ ׬ ௧ݐሻ݀ݐሺߜ
଴      (1.30) 

and   N = N0   (at t > 0)    (1.31) 

Therefore, at very fast rate of nucleation, the maximum number of nuclei is formed 

virtually immediately after the start of the perturbation from the equilibrium. This type 

of nucleation is known as ‘instantaneous nucleation’ (Figure 1.7a). 

Case-II : Progressive Nucleation 

If ‘at’ is very small for very slow rate of nucleation (i.e. small ‘a’ value), then Eq. 

28 can be expressed by Eq. 1.32. 

ܰ ൌ  ଴ܰܽ(1.32)       ݐ 

As.    ሾexpሺെݔሻ ൎ ሺ1 െ  ሻሿ;  (for small value of x)ݔ

Therefore,  ௗே
ௗ௧

ൌ  ܽ ଴ܰ     (1.33) 
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In this case, the number of nuclei grows with time and this type of nucleation is 

known as ‘progressive nucleation’ (Figure 1.7b). 

 

Figure 1.7 The schematic representation of (a) instantaneous and (b) progressive 

nucleations. 

1.4. Electrochemical Nucleation and Growth Models  for 

Electrodeposition at Constant Potential 

Let us assume that an isolated hemispherical nucleus of radius ‘r’ is growing under 

the linear diffusion flux of the metal ions Mn+ (Figure 1.8). Then the current i can be 

expressed as: 

݅ ൌ  (1.34)       ܣ"݇ܨ݊

Where, n is the charge transfer during the deposition, F is the Faraday’s constant (C 

mol-1), k” is the lattice incorporation rate constant (mol cm-2 s-1), ‘A’ is the surface area 

of the hemispherical nucleus (cm2). Here we assume that the coulombic efficiency of 

the electrodeposition is 100%, i.e. the charge transfer to the electrode is solely 
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responsible for the deposition of new phase on the electrode. Then, current ‘i’ should be 

equal to the rate of growth of the nucleus. Therefore, 

݅ ൌ ௡ிఘ
ெ

ௗ௏
ௗ௧

      (1.35) 

Where, ρ and V are the density and volume of the deposited phase, respectively, of 

molecular weight M. For hemispherical nucleus of radius r, 

ܣ ൌ  ଶ      (1.36)ݎߨ2

and   ܸ ൌ  ଶ
ଷ

 ଷ     (1.37)ݎߨ

From Eqs. 1.36 and 1.37, we can get, 

ௗ௏
ௗ௧

ൌ ܣ ௗ௥
ௗ௧

      (1.38) 

From Eqs. 1.34, 1.35, 1.38 we can get, 

ௗ௥
ௗ௧

ൌ  ெ௞"
ఘ

      (1.39) 

If we assume that r = 0 at t = 0, then from Eq. 1.39 we get 

ݎ ൌ  ெ௞"௧
ఘ

      (1.40) 

From Eqs. 1.34, 1.36, 1.40, we get 

݅ ൌ  ଶ௡ிగெమ௞"య

ఘమ  ଶ     (1.41)ݐ

Therefore, the current for growth of an isolated hemispherical nucleus is 

proportional to the square of the time from the birth of the nucleus [71]. 
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Figure 1.8 The schematic representation of the growth of a hemispherical nucleus 

under the control of linear diffusion of metal ions from the bulk of the solution. 

The concentration of Mn+ at the surface of the nucleus is governed by the Nernst 

equation (Eq. 1.42): 

஼ಾ
஼ಾ

כ ݌ݔ݁  ቂିሺఈିଵሻ௡ிఎ
ோ்

ቃ ൌ  
஼ಾ೙శ

బ

஼ಾ೙శ
כ exp ቂିఈ௡ிఎ

ோ்
ቃ   (1.42) 

where, CM and C*
M are the concentrations of the Mad at η and E∞, respectively. C0

Mn+ 

and C*
Mn+ are the concentrations of Mn+ at the surface and in the bulk, respectively. 

Therefore,  

ெ೙శܥ
଴ ൌ ெ೙శܥ 

כ ൤஼ಲ೒

஼ಲ೒
כ ൨ exp ቂ௡ிఎ

ோ்
ቃ    (1.43) 

For electrodeposition, η is negative. Therefore, the surface concentration of Mn+ 

becomes effectively zero just after the application of η. Therefore, current ‘i’ is 

governed by the transport of Mn+ by linear diffusion to the surface of the nucleus. 

Therefore, 
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݅ ൌ ெ೙శܥܣܨ݊
଴ ට ஽

గ௧
      (1.44) 

Where, D is the diffusion coefficient of the metal ions. From Eqs. 1.35, 1.38, 1.44, 

we can get 

ݎ ൌ  
ଶெ஼ಾ೙శ

బ

ఘ
ට஽௧

గ
      (1.45) 

From Eqs. 1.34, 1.41 and 1.45 we get, 

݅ ൌ  
଼௡ிெమ஼ಾ೙శ

బ ஽
య
మ

గ
భ
మఘమ

ݐ
భ
మ      (1.46) 

Therefore, the current responsible for the growth of the single hemispherical nucleus 

under the linear diffusion flux of metal ions is proportional to the square-root of time 

[72]. Practically, many nuclei form on the electrode depending on the rate of nucleation 

(Section 1.3.4). Therefore, nucleation and growth occur simultaneously and the total 

current is given by Eq. 1.47. 

݅ ൌ ׬  ݅ሺݑሻ ቂడே
డ௧

ቃ
௧ି௨

௧ݑ݀
଴      (1.47) 

Where, u is the age of the nucleus. Therefore, from Eqs. 1.29, 1.33, 1.46 and 1.47, we 

can get for ‘instantaneous nucleation’  

݅ ൌ  
଼௡ிெమ஼ಾ೙శ

బ ஽
య
మேబ

గ
భ
మఘమ

ݐ
భ
మ      (1.48) 

And for ‘progressive nucleation’ 

݅ ൌ  
ଵ଺௡ிெమ஼ಾ೙శ

బ ஽
య
మ௔ேబ

ଷగ
భ
మఘమ

ݐ
య
మ     (1.49) 
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The assumption of linear diffusion of metal ions was challenged by Hills et al. [73] and 

they modified the Eq. 1.44 by Eq. 1.50 on the basis of spherical diffusion (Figure 1.9). 

 ݅ ൌ
௡ி஺஼ಾ೙శ

బ ஽

௥
      (1.50) 

 

 

 

 

 

 

Figure 1.9 The schematic representation of the growth of a hemispherical nucleus 

under the control of spherical diffusion of metal ions from the bulk of the solution. 

Performing treatment as similarly was done for Eqs. 1.45 & 1.46, we get 

ݎ ൌ  ටଶ஽஼ಾ೙శ
బ ெ௧

ఘ
      (1.51) 

and    ݅ ൌ  
௡ிగቀଶ஽஼ಾ೙శ

బ ቁ
య
మெ

భ
మ

ఘ
భ
మ

ݐ
భ
మ    (1.52) 

Therefore, the current for the nucleation and growth through hemispherical diffusion 

by ‘instantaneous nucleation’ is 

݅ ൌ  
௡ிగቀଶ஽஼ಾ೙శ

బ ቁ
య
మெ

భ
మேబ

ఘ
భ
మ

ݐ
భ
మ    (1.53) 
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and for ‘progressive nucleation’ is  

݅ ൌ  
ଶ௡ிగቀଶ஽஼ಾ೙శ

బ ቁ
య
మெ

భ
మ௔ேబ

ଷఘ
భ
మ

ݐ
య
మ    (1.54) 

Therefore, the initial (i.e., just after the application of pulse) current is proportional 

to t1/2 and t3/2 for instantaneous and progressive nucleations, respectively. 

 

 

  

 

 

 

 

 

Figure 1.10 The schematic representation of current transient for an electrodeposition 

after applying a constant overpotential pulse at t = 0. The cathodic current is negative. 

 Figure 1.10 represents the current transient recorded for an electrodeposition 

experiment after applying a potentiostatic pulse at a fixed overpotential. The initial 

current decreases significantly at a time scales of 5-300 ms (Segment A), which is 

mainly attributed to the rearrangement of electrolyte species (ions/molecules) at the 

electrode-electrolyte interface. In the succeeding part of the transient, the current 

increases with time (Segment B) and passes through a maximum value followed by a 
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steady decrease (Segment C). The subsequent rise in current corresponds to the 

increase in the overall electroactive area due to increase(s) in the number of nuclei 

and/or size of nuclei, as described by Eq. 1.53 or 1.54 [74, 75]. The spherical diffusion 

zone around each nucleus (Figure 1.9) grows with time. The overlap of neighboring 

diffusion zones (Figure 1.11) is responsible for the current maxima (i = im) at t = tm 

(Figure 1.10). At the time corresponding to the current maxima, the spherical diffusion 

zones overlap and mass transfer becomes linear (Figure 1.11). The change in diffusion 

regime leads to a decrease in the current with increasing time obeying Cottrell equation 

(Segment C in Figure 1.10). 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 The schematic representation of the growth of the diffusion flux and 

transformation from the radial to linear diffusion flux. The diffusion zone column 

represents the effective boundary between the adjacent columns. 

Scharifker and Hills (SH) simplified the above situation by (1) assuming that the 

overlap of neighboring diffusion zone columns is equivalent to the overlap of the 
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circular patches on the electrode surface and (2) calculating the overall current by 

considering only the linear diffusion. The first simplification was adopted from the 

Avrami’s theory for kinetics of phase change [76, 77]. Figure 1.12 represents the 

circular patches on the working electrode originating from the projection of the 

diffusion zone columns on the electrode surface. The growth of the 3D nucleus with 

time increases the radius of its diffusion zone column. Thus, the radius of its patch on 

the electrode surface also increases with time. Under this condition, the growth current 

is expressed in terms of linear diffusion to the fraction of the electrode area contained 

within the circular perimeter of the growing diffusion zone. 

 

 

 

 

 

 

 

 

 

 

Figure 1.12 The schematic representation of the distribution of the circular patches of 

the diffusion zone columns of each nucleus. 

The radial velocity (δt) of the circular patch along the electrode is expressed by 

Eq. 1.55. 

௧ߜ ൌ  (1.55)      ݐܦ݇√ 
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Where, k is a material constant determined by the conditions of the experiment. 

The planar area (At) of a single diffusion zone at time t is expressed by Eq. 1.56. 

௧ܣ ൌ ௧ߜߨ
ଶ ൌ  (1.56)     ݐܦ݇ߨ 

If immediately following time t = 0, the nuclei number density becomes N (cm-2), 

then at time t, assuming no overlap, the fraction of the area covered by diffusion zones 

is θex.  

௘௫ߠ ൌ  (1.57)      ݐܦ݇ߨܰ

Since, the nuclei are randomly distributed on the electrode (Figure 1.12), thus 

there will be overlap and the actual fraction of area (θ) covered by diffusion zone is 

adopted from the Avrami’s theorem. 

ߠ  ൌ 1 െ  ௘௫ሻ     (1.58)ߠሺെ݌ݔ݁

Therefore, the radial flux density of metal ions through the boundaries of the 

diffusion zones will be given by the equivalent planar diffusion of metal ions to θ. 

Therefore, 

݅ ൌ  ௡ி஼כ஽
భ
మఏ

గ
భ
మ௧

భ
మ

ൌ  ௡ி஼כ஽
భ
మ

గ
భ
మ௧

భ
మ

ሾ1 െ  ሻሿ  (1.59)ݐܦ݇ߨሺെܰ݌ݔ݁

Where, C* is the bulk concentration of the metal ions. For shorter scale of time, 

 [1 - exp(- NπkDt)] ≈ NπkDt;    (for t  0)  (1.60) 

For ‘instantaneous nucleation’, thus N = N0 

݅ ൌ כܥܨ݊
଴ܰ݇ܦ

య
మߨ

భ
మݐ

భ
మ     (1.61) 

Comparing Eqs. 1.53 and 1.61, we get 

݇ ൌ  ට଼గ஼כெ
ఘ

      (1.62) 

For ‘progressive nucleation’, thus N = aN0t 

݅ ൌ  ଶ௡ி஼כ஽
భ
మ

గ
భ
మ௧

భ
మ

ቂ1 െ ݌ݔ݁ ቀെ ௔ேబగ௞ᇲ஽௧మ

ଶ
ቁቃ   (1.63) 
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Assuming aN0t  0 and comparing Eqs. 1.54 and 1.63, we get 

݇ᇱ ൌ ସ
ଷ ට଼గ஼כெ

ఘ
       (1.64) 

According to SH model, the Eqs. 1.59 and 1.63 describe the current transients for the 

instantaneous and progressive nucleations, respectively [78, 79]. The current transients, 

in practice, are presented by the dimensionless form by plotting (i/im)2 vs. t/tm (Figure 

1.13). The dimensionless plot of SH model is used for the diagnostic evaluation of 

potentiostatic current transients for 3D nucleation with diffusion controlled growth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13 The dimensionless plots of SH-model for the potentiostatic current 

transients for 3D nucleation with diffusion controlled growth under the instantaneous 

and progressive nucleations. 
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For instantaneous nucleation, 
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ቁ
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ൌ  ଵ.ଽହସଶ
ቀ ೟

೟೘
ቁ

ቄ1 െ ݌ݔ݁ ቂെ1.2564 ቀ ௧
௧೘

ቁቃቅ
ଶ
   (1.65) 

For progressive nucleation, 

ቀ ௜
௜೘

ቁ
ଶ

ൌ  ଵ.ଶଶହସ
ቀ ೟

೟೘
ቁ

൜1 െ ݌ݔ݁ ൤െ2.3367 ቀ ௧
௧೘

ቁ
ଶ

൨ൠ
ଶ
   (1.66) 

 

For progressive nucleation, the fractional area left uncovered continuously 

decreases with the growth of the diffusion zones. Therefore, an exclusion zone for the 

further nucleation is always developed around an already nucleated center and new 

nuclei will only form on parts of the electrode surface uncovered by diffusion zones. 

The saturation number density (Ns) of nuclei is given by Eq. 1.67. 

௦ܰ ൌ  ට ௔ேబ
ଶ௞ᇲ஽

     (1.67) 

Several efforts have been made to eliminate the analysis of two separate cases 

(i.e. instantaneous and progressive nucleation) by establishing a general model of 

electrochemical nucleation. Three general models namely Scharifker and Mostany 

(SM) [80-82]; Sluyters-Rehbach, Wijenberg, Bosco and Sluyters (SRWBS) [83] and 

Heerman and Tarallo (HT) [84-87] have been employed in the literature. They have 

been established from the same nucleation law and Avrami’s theorem used in the SH 

model, but with different assumptions on the heights of the diffusion zone columns 

around the nuclei with time. The major assumptions and related equations of these 

models are given in Table 1.1. 
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Table 1.1 The prime assumption, equations and limitations of SM, SRWBS and HT 

models. 

SM
 

Prime 
assumption 

The height of the diffusion zone column starts to grow from the moment 
that the nucleus is born. 

Equations 
݆ ൌ  ݆଴ expሺെ߬ݐሻ ൅

ܦܥܨݖ
భ
మ

ඥሺݐߨሻ
ሾ1 െ expሺെ ଴ܰ݇ߨᇱݐߠܦሻሿ 

ߠ ൌ 1 െ ቈ
1 െ expሺെܽݐሻ

ݐܽ ቉ 

 
(1.68) 
 
(1.69)

Limitations It does not predict the correct current density at very short time scale. 

SR
W

B
S 

Prime 
assumption 

The heights of all diffusion zone columns are equal irrespective of the 
age of the individual nucleus. The time as well as the height I calculated 
from the birth of the very first nucleus. 

Equations 

݆ ൌ  ݆଴ expሺെ߬ݐሻ ൅
ܦܥܨݖ

భ
మ

ඥሺݐߨሻ
ሾ1 െ expሺെ ଴ܰ݇ߨᇱݐ߮ܦሻሿ 

 

߮ ൌ 1 െ ൦
݁ି௔௧

ඥሺܽݐሻ
 න ݁ఒమ

ඥሺ௔௧ሻ

଴

 ൪ߣ݀

 

߮ ൌ 1 െ  
1

ඥሺܽݐሻ
൥

0.051314213 ൅ 0.47910725ඥሺܽݐሻ

1 െ 1.2068142ඥሺܽݐሻ ൅ 1.185724ሺܽݐሻ
൩ 

 

 
(1.70) 
 
 
 
(1.71) 
 
 
 
 
(1.72)

Limitations It overestimates θex with respect to SM model. 

H
T

 

Prime 
assumption 

The height of the diffusion zone column should be a function not only 
of time but also of the nucleation rate constant i.e. the birth rate of the 
nuclei. 

Equations 

݆ ൌ  ݆଴ expሺെ߬ݐሻ ൅
ܦܥܨݖ

భ
మ

ඥሺݐߨሻ
ቂ
߮
ቃߠ ሾ1 െ expሺെ ଴ܰ݇ߨᇱݐߠܦሻሿ 

 
߮
ߠ

ൌ  
ቂ0.520893ሺܽݐሻ െ  1.206814ሺܽݐሻ

య
ర ൅  1.185724ሺܽݐሻଶ െ 0.051314ඥሺܽݐሻቃ

ቂሼܽݐ െ 1 ൅ exp ሺെܽݐሻሽ ቄ1 െ 1.206814ඥሺܽݐሻ ൅ 1.185724ሺܽݐሻቅቃ
 

 

 
(1.73) 
 
 
 
 
(1.74)

Limitations 
It overestimates the current because of the inaccurate mass balance at 
individual diffusion zones born at different times. 
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1.5. Objective of This Thesis 

The discussions in the previous section give the fundamentals of the current 

transient response for the electrochemical phase formation under a constant potential 

pulse. The different number and sequence of potentiostatic pulses have been employed 

to electrochemically synthesize metal micro- or nano- particles.  

The most common electrochemical route for synthesis of nanoparticles is the 

single potentiostatic pulse, in which the working electrode is initially kept at the 

equilibrium with the aqueous solution of the metal salts and then a high cathodic 

constant overpotential is applied to deposit the nanoparticles. However, this 

methodology gives least control to the size, shape and morphology of the metal 

nanoparticles [75, 88-91]. Penner and Plieth introduced double potentiostatic pulse 

strategy to obtain narrow size distribution by uncoupling the nucleation and growth 

phenomena [92-97]. However, the size distribution of the deposited nanoparticles was 

not much improved. Adzic et al. developed a triple pulse strategy for electrochemically 

preparing metal nanoparticles. This pulse train consisted of a cathodic pulse to deposit 

metal nuclei, then an anodic pulse to dissolve them all, but a few, which then serve as 

sites for growth of metal nanoparticles in the third step [98]. However, it showed poor 

control over the particle size distribution of the metal nanoparticles. 

Therefore, the prime objective of this thesis was to develop new pulse strategies 

for controlling the size, shape, material composition and size distribution of 

electrochemically synthesized metal nanoparticles without using any templating agent. 

The pulse strategies were developed after detailed investigation of the mechanism of 

the electrocrystallization for each electrode-metal-electrolyte system. 


















































































































































































































































































































































