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SYNOPSIS

Energy is an important ingredient of life. Energy consumption has a major role 

to play in enhancing economic and civilization growth of human beings [1-2]. Energy 

consumption is often taken as the benchmark for quality life. The demand for energy 

has increased with phenomenal increase in human population followed by fast growing 

industrialization and urbanization [3]. Nearly 75 % of the world energy production has 

been predominantly catered by the fossil fuels such as coal, natural gas, and oil owing 

to their widespread availability [4, 5].The use of these fossil fuels leads to the 

generation of greenhouse gases, causing global warming [6].Therefore, to meet the 

world demand of electricity and to deal with the climate change objectives the usage of 

low carbon sources of electricity is essential [7]. Huge consumption of natural energy 

sources such as oil and gas, and limited technological progress in the development of 

renewable resources such as solar, tidal and wind etc., makes nuclear energy a proven 

source of low carbon electricity.Nuclear energy source is an inevitable option for the 

future energy demand. Currently nuclear energy contributes nearly 11% of the global 

electricity and 3% of total energy production in India[8]. The contribution of nuclear 

energy needs to be increased from the present 3 % to at least 25% in coming years to 

satisfy the future energy demand. According to the Indian nuclear three stage program 

[9], the first stage deals with the production of electrical energy through natural 

uranium fuelled pressurized heavy water reactors (PHWR). In the second stage, the 

depleted uranium and plutonium recovered from the spent fuels of PHWR would be 

used to fuel the fast breeder reactors (FBR) to generate electricity as well as to breed 

233U from thorium which is used as blanket. In the third stage, the fissile 233U will be 
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used in the 233U based thermal breeder reactors to produce electricity as well as to 

further breed 233U from thorium. The fuel discharged from reactor after energy 

production is called spent nuclear fuel (SNF). The spent nuclear fuel contains 

significant quantities of fissile elements, such as plutonium, depleted (unused) uranium, 

and several fission products formed during fission reaction. Therefore, it is necessary to 

reprocess the spent nuclear fuel for the recovery of the fissile elements for further use 

in the reactors as fuel to sustain the nuclear energy program in India.

Two major techniques based on aqueous and non-aqueous processes have been 

adopted for reprocessing of spent nuclear fuels. Among these, the aqueous process, 

namely PUREX (Plutonium Uranium Recovery by EXtraction) process has been 

widely used for the reprocessing of spent nuclear fuel [10, 11]. The PUREX process is 

a solvent extraction process, involving the dissolution of spent nuclear fuel in nitric 

acid medium and selectively extracting the fissile elements uranium(VI) and 

plutonium(IV) by 1.1 M tributyl phosphate (TBP) in n-dodecane. The aqueous product 

(PUREX raffinate) discarded after this process is kno

(HLLW).This HLLW solution comprises mixture of minor actinides, small amounts of 

unrecovered plutonium and uranium, lanthanides, other fission products, corrosion 

products arising from structural materials and process chemicals. Among the various 

elements present in HLLW, long-lived radiotoxic minor actinides (formed in small 

concentrations 0.1% ) such as 237Np, 241Am, 243Am, 244Cm, 245Cm, 243Cm and heat 

emitting fission products like  99Tc, 107Pd, 93Zr, 129I, 135Cs, 137Cs and 90Sr  contribute to 

the maximum level of radio-toxicity. Since the half-lives of these isotopes are in range 

between few years to several hundred years, HLLW poses long-term risks to the public 

health and the environmental safety [12]. Therefore, the future nuclear energy depends 
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on the safe management of HLLW. At present, the HLLW is vitrified in the form of 

borosilicate glass and is envisaged to be stored in deep geological repositories for long 

time [13-15]. However, such repositories require continuous long-term surveillance, 

due to the presence of these radiotoxic minor actinides as their half-lives are high. In 

case of accidental ground-water invasion into these repositories, the radiotoxic metal 

ions can be released into the environment owing to their significant solubility and 

higher mobility in aqueous medium. Therefore, the current disposal practice is a very 

expensive option. On the other hand, partitioning (P) of these minor actinides from 

HLLW and their subsequent transmutation (T) into stable or short-lived products by 

using fast reactors or accelerated driven systems (ADS) could reduce the radio-toxicity 

of HLLW [16]. Therefore, P&T strategy is a necessary option for the safe management 

of HLLW.

The partitioning of minor actinides from HLLW is one of the most challenging 

problems. The minor actinides separated from HLLW are accompanied by lanthanides, 

as the two groups of f-elements have very similar physical, chemical and extractive 

properties [17]. Currently, partitioning of trivalent actinides from HLLW is being 

carried out by a two-cycle approach namely (i) group separation of trivalent 

lanthanides and actinides together from HLLW, followed by the recovery using dilute 

nitric acid in the first-cycle, and (ii) mutual separation of lanthanides and actinides 

from dilute nitric acid medium in the second-cycle The presence of lanthanides along 

with actinides reduces the efficiency of actinide transmutation, due to the high neutron 

absorption cross section of lanthanides.Apart from this, lanthanides do not form solid 

solutions in metal alloys or in mixed oxide transmutation targets. As a result they 

segregate into separate phases with a tendency to grow under thermal treatment. Thus, 
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the minor actinides tend to concentrate in these phases and this will lead to an 

unacceptable non-uniform heat distribution in the transmutation fuel matrix under 

irradiation [18]. In view of these, complete separation of Ln(III) from An(III) is 

necessary prior to the actinide transmutation. 

For the first cycle, several methods and extractants have been proposed for 

co-extraction of trivalent An(III) and Ln(III) from HLLW, such as TRUEX, 

DIAMEX, DIDPA which employ octyl(phenyl)-N,N-

diisobutylcarbamoylmethylphosphineoxide (CMPO),N,Ndimethyl-N,N-

dibutyltetradecylmalonamide(DMDBTDMA), diisodecylphosphoric acid (DIDPA) 

and trialkyl phosphine oxide (TRPO) as the extractants [19]. Along with these 

-tetra-octyldiglycolamide 

-tetra-2-ethylhexyl diglycolamide (TEHDGA) have 

several advantages over other reagents [20]. In the second cycle lanthanide, actinide 

mutual separation was carried out by TALSPEAK (Trivalent Actinide Lanthanide 

Separation by Phosphorusreagent Extraction from Aqueous Komplexes) process. 

This process involves the selective separation of An(III) from lactate buffered 

diethylenetriaminepentaaceticacid (DTPA) solution using bis-(2-

ethylhexyl)phosphoric acid (HDEHP) in 1,4-diisopropylbenzene [21]. In recent 

decades, the extractants containing soft donor ligands capable of binding selectively 

actinides are being studied extensively for An(III)/Ln(III) separation.

In contrast to the two-cycle approach, single-cycle methods have been receiving 

much attention in the recent past, for the separation of trivalent actinides directly from 

HLLW.The literature showed that there are two approaches available for developing 

single cycle process. In one approach, actinides(III) can be directly extracted from 
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PUREXraffinate by using the extractant consisting of soft donor ligands. For example, 

1-cycle SANEX process for direct selective separation of actinides(III) from PUREX 

raffinate by using a mixture of tetramethyl-5,6,7,8-tetrahydro-benzo-[1,2,4]-triazin-3-

yl)-[2,2]-bipyridine (CyMe4BTBP) &tetraoctyldiglycolamide (TODGA) in a TPH/1-

octanol solution [22]. Another approach deals with the co-extraction of both An(III)+ 

Ln(III) from nitric acid medium by a suitable solvent(combined neutral and acidic 

extractant). The selective separation of actinides(III) alone from the loaded organic 

phase can be achieved using soft donor stripping agents [23].

Industrially, the separation methods are being widely used in actinide 

partitioning is based on solvent extraction mode. Though the liquid-liquid extraction is 

a promising technique, it has couple of limitations such as third phase formation and 

high solvent inventory [24]. To minimize these limitations solid phase extraction 

method was developed. In fact the solid phase extraction method (SPE) is an apt 

method for the separation of small quantities of trivalent actinides from a large volume 

of HLLW. Solid-phase extraction technique is a simple, rapid and low solvent 

inventory method, combines the selectivity of solvent extraction with the operational 

benifits of column chromatography [25]. Nevertheless, limited studies have been 

reported so far, for the separation of actinides by solid phase extraction (extraction 

chromatography) as compared to solvent extraction.

The aim of the present study is to develop a single cycle method for trivalent 

actinide partitioningby using a neutral extractant and an acidic extractant in solid phase 

separation mode. The extraction behaviour of Am(III) representing minor actinides and 

Eu(III) representing lanthanides from nitric acid medium was studied with solvent 



vi

impregnated resins (SIR) containing either CMPO or HDEHP and a combination of 

CMPO and HDEHP. In this case, both Am(III) and Eu(III) are extracted to organic 

phase using combined solvent system followed by the selective stripping of Am(III) 

using Diethylenetriaminepentaacetic acid (DTPA)-Citric Acid (CA) solution. The 

distribution coefficient of Am(III) and Eu(III) was measured in various combinations 

of impregnated resins from different nitric acid concentrations.

In the same way, the extraction behavior of Am(III) and Eu(III) from nitric 

acid medium was studied with TEHDGA or HDEHP and a combination of TEHDGA

and HDEHP impregnated resins. Mutual separation of Am(III) and Eu(III) was 

achieved with 0.005 M DTPA + 0.1 M CA + 1 M NaNO3. A simulated solution 

corresponding to the composition of HLLW originating from Fast Reactor (FR-

SHLLW) is proposed and the extraction behavior of metal ions present in FR-SHLLW 

was also studied extensively using 30% TEHDGA+10% HDEHP. The results indicate 

that 90% of trivalent lanthanides and Am(III) extracted in single contact of combined 

resin. 

The radiation stability of CMPO-HDEHP and TEHDGA-HDEHP solvent 

impregnated resins were studied. Adsorption behavior of Eu(III) on CMPO-HDEHP 

and TEHDGA-HDEHP systems were studied. Different isotherm models were fitted to 

find the maximum adsorption capacity of resins and the type of adsorption. 

The first chapter describes the role of electricity and nuclear energy for the 

sustainable development of nation. It explains about nuclear fission and the three-stage 

Indian nuclear energy programme. This chapter also deals with brief introduction to 
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nuclear fuel cycle and importance of spent nuclear fuel reprocessing to recover fissile 

and fertile materials to provide fresh fuel for the existing and future nuclear power 

plants. This chapter explains about Partitioning and Transmutation (P&T) strategy for 

the safe management of HLLW and provides the detailed literature survey on various 

methods proposed for the partitioning of actinides from HLLW and tells the need for 

mutual separation of lanthanides and actinides. It points out the merits and demerits of 

various processes and reagents proposed for the separation of long-lived radiotoxic 

actinides. This chapter also compares the single cycle and two cycle process for 

actinide partitioning. It also discusses the separation of actinides by different 

techniques. It explains about the merits of solid phase extraction technique over 

conventional liquid-liquid extraction used for actinide partitioning. 

This chapter deals with the details of various chemicals and reagents used for 

the present work. This also includes the detailed impregnation procedures on inert 

polymeric support. Methodologies adopted for the measurement of radioactivity of 

various radioisotopes using sodium iodide thalium NaI(Tl) detector is discussed. Usage 

of inductively coupled plasma-optical emission spectroscopy (ICP-OES) for the 

determination of concentration of various metal ions presents in FR-SHLLW, and 

thereby the distribution ratio measurements etc., are explained.

This chapter discusses the extraction behavior of Am(III) and Eu(III) by using a 

Chromatographic resin containing extractants such as octyl(phenyl)- , -

diisobutylcarbamoylmethylphosphineoxide (CMPO) or bis-(2-

ethylhexyl)phosphoricacid (HDEHP) or mixture of extractants (CMPO + HDEHP) in  
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ingle cycle solid phase separation mode.The extraction of Am(III) and Eu(III) was 

studied over a range of nitric acid concentration with this combined resin. The effect of 

various parameters such as concentration of nitric acid in aqueous phase and the 

concentration of CMPO and HDEHP in the resin phase was studied and the results 

were given in this chapter.  In a combined system, synergistic extraction was observed 

at lower nitric acid concentration (< 0.5M) and antagonism was observed at higher 

nitric acid concentration. The mechanism of extraction was probed by slope analysis 

method at 0.01 and 2M nitric acid concentrations. The recovery of Am(III) from the 

loaded organic phase was carried out by the optimized aqueous formulation composed 

of 0.001 M DTPA+0.1 M citric acid (CA) at pH 3.

This chapter deals with the development of single-cycle process for the 

separation of Am(III) and Eu(III) using solvent impregnated resins containing 

extractants such as tetra-bis(2-ethylhexyl)diglycolamide (TEHDGA) or bis-(2-

ethylhexyl)phosphoric acid (HDEHP) or mixture of TEHDGA + HDEHP. The rate of 

extraction of Am(III) and Eu(III) from 1 M nitric acid and the effect of various 

parameters, such as the concentration of nitric acid in aqueous phase and concentration 

of TEHDGA and HDEHP in resin phase was studied. The distribution coefficient of 

Am(III)and Eu(III) in HDEHP-impregnated resin decreased and that in TEHDGA-

impregnated resin increased, with increase in the concentration of nitric acid. In 

TEHDGA + HDEHP impregnated resin, synergistic extraction was observed at lower 

nitric acid concentration and antagonism at higher nitric acid concentration as similar 

to CMPO-HDEHP resin. The mechanism of Am(III) and Eu(III) extraction in the 

combined resin was investigated by slope analysis method. The extraction of various 
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metal ions present in the fast reactor simulated high-level liquid waste was studied. The 

extraction of Am(III) was accompanied by the co-extraction of all lanthanides and 

unwanted metal ions such as Zr(IV), Y(III), and Pd(II) from FR-SHLLW.  The co-

extraction of unwanted metal ions is minimized by adding trans-1,2-

diaminocyclohexane- -tetraacetic acid (CyDTA) to FR-SHLLW, prior to 

extraction. The separation factor of Am(III) over Eu(III) was studied using citrate-

buffered diethylenetriaminepentaacetic acid(DTPA) solution.

This chapter describes the radiolytic stability of CMPO-HDEHP and 

TEHDGA-HDEHP combined solvent impregnated resins (SIR) along with their 

individual extractant impregnated resin systems. The extractants to be employed for the 

separation of radiotoxic elements such as actinides and long-lived fission products 

invariably exposed to the high energetic radiation associated with them. Under these 

conditions, the covalent bonds in extractant may undergo cleavage to generate 

degradation products. Therefore, the reagents used for the actinide separations need to 

be strong with respect to high radiation.  The degree of degradation was assessed by 

measuring the distribution ratio of Am(III), Eu(III) with irradiated resins as a function 

of  absorbed dose of -radiation. Extraction behavior of irradiated systems at different 

dose rates were studied at both extraction and stripping conditions. 

This chapter explains about adsorption behavior of Eu(III) on CMPO-HDEHP 

and TEHDGA-HDEHP solvent impregnated systems. It describes the distribution of 

metals between the solid-liquid phases at equilibrium by using Langmuir, Freundlich, 

Temkin and Dubinin-Radushkevich (D-R) adsorption isotherm models.Adsorption 
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isotherms describe the relationship between the equilibrium concentration of metal ions 

Different 

concentrations of europium stock solutions were prepared and equilibrating with 

solvent impregnated resins to study the distribution of europium metal ion between 

solid-liquid phases. Results obtained were utilized to arrive the maximum adsorption 

capacity of the resins by applying the data on different adsorption isotherms models. 

The adsorption capacity values were compared with the irradiated systems. The 

Langmuir adsorption isotherm model described the adsorption of metal ions on 

homogeneous surface of an adsorbent. Each adsorptive site can be occupied only once 

in a one-to-one manner with constant adsorption energy without any interaction 

between the adsorbed ions. The Freundlich adsorption isotherm model is used to 

describe the adsorption of an adsorbate on a heterogeneous surface of an adsorbent by 

assuming multilayer adsorption. The temkin isotherm indicated that the heat of 

adsorption of all the molecules decreases linearly with coverage of adsorbent. It also 

gives the details about the type of adsorption process, like physisorption, 

chemisorptions or ion exchange based on adsorption energies calculated. D-R model 

expressed the adsorption mechanism with a Gaussian energy distribution onto a 

heterogeneous surface.

This Chapter provides the summary and conclusions of all the studies reported 

in the thesis. This chapter also discusses the scope for the future work in this field.
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