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Introduction 

In recent times, chemists have put sincere efforts to develop methods to use alternative energy as 

a source of energy-input for chemical transformations. The solution based traditional synthesis is 

extremely useful, however they are associated with certain disadvantages. For example, generation 

of waste by-products due to overheating, uses of large quantity of solvents which causes 

environmental hazard.1 To triumphs over these issues, chemists have mainly focused to develop 

environmentally benign and energy-efficient technologies to ensure that the next generation of 

synthetic protocols for chemical synthesis are more sustainable and greener.2 Therefore, non-

conventional energy sources, such as microwave, ultrasound, mechanical grinding and visible light 

are becoming popular.3 In addition, minimizing waste and developing recyclable methodology is 

an important aspect for doing chemical synthesis in a greener fashion. 

 

Scope and Organization of the Present Thesis  

In this thesis, attempts have been made to introduce sustainable methods by implementing the 

following: targeting atom economy, enabling less hazardous and safer methodologies, facilitating 
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 Synopsis 

energy efficient approaches, etc. Our efforts to develop more viable and efficient synthetic 

protocols using ball milling and ultrasound is mainly described here in addition to historical and 

mechanistic perspective of mechanochemistry. The present thesis has been organized in five 

chapters and the contents of each chapter have been summarized as follows:  

 

CHAPTER 1: Historical Development and Mechanistic Insight of Mechanochemistry  

This chapter mainly focuses on brief introduction of mechanochemistry and its green chemistry 

aspects. Basically it consists of two different parts; (1) solvent-free synthesis using ball milling 

and (2) ultrasound-triggered chemical reactions. The summarizing details of history and 

development of both approaches have been highlighted. Apart from this, details mechanistic 

insight of mechanochemistry is documented that is, how low energy excitation can cause chemical 

reactions which in general requires very high energy. Also, we have made an attempt to present 

some of the important published articles as a comprehensive review on chemical reactions using 

nonconventional energy sources. Finally this chapter concludes with conferring the aim of present 

thesis.      

 

CHAPTER 2: IBX Works Efficiently under Solvent free Conditions in Ball Milling 

(Ref: T. K. Achar, S. Maiti and P. Mal, RSC Adv. 2014, 4, 12834-12839) 

This chapter represents the efficiency and synthetic utility of 2-iodoxybenzoic acid (IBX) under 

solvent free milling conditions.4 IBX (2-iodoxybenzoic acid), discovered in 1893 by Hartmann 

and Meyer5, is metal free, mild and non-toxic organo-oxidant in synthetic chemistry whose 

extensive use is impeded by its explosiveness at high temperature and poor solubility in common 

organic solvents except dimethyl sulfoxide (DMSO). Since the discovery of Dess-Martin 
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Periodinane6 in 1983, IBX has experienced several modifications to be useful to chemists. On the 

contrary, these modified IBXs are most often complicated due to involvement of tedious synthetic 

procedure in non-economical way.7 Therefore the modification approach has not been converged 

and is still in demand for better methods. However, under ball milling condition, IBX turned out 

to be compatible with various organic functionalities at ambient temperature and under solvent 

free conditions. Also, the waste IBA (2-iodosobenzoic acid) produced from the reactions was in 

situ oxidized to IBX in following step using oxone and thus reused for multiple cycles by 

conserving its efficiency (only ~6% loss after 15 cycles). In this work, we have demonstrated an 

outline of a highly economical synthetic methodology which overcomes the problems of using 

IBX for large scale (gram scale) synthesis in a non-explosive way. 

 

 

Figure 1. Scope of reactions with IBX under solvent free milling conditions 
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CHAPTER 3: An Organocatalytic Solvent free Cross Coupling using TBAI-TBHP: 

Oxidative Amidation of Aldehydes and Alcohols with N-Chloramines via C-H Activation 

(Ref: T. K. Achar and P. Mal, J. Org. Chem. 2015, 80, 666-672) 

A solvent and metal free cross-coupling method for oxidative amidation of aldehydes and alcohols 

via radical pathway has been demonstrated in Chapter 3.  This methodology using TBAI-TBHP 

combination works efficiently to do metal free C-H activation of aldehydes under neat (50 °C) or 

ball milling (room temperature, 21 Hz) condition.8 This TBAI (tetrabutylammonium iodide) – 

TBHP (tert-butyl hydroperoxide) combination is mild, non-toxic and produces the amide  

 

 

 
Figure 2. Oxidative amidations of aldehydes and alcohols with N-chloramines. 

 

derivative in very good yield. Generally, TBHP has been extensively used for amidation in 

presence of various metals like Cu, Fe, Ag, Zn etc. To avoid the expensive metal leaching process 

and to introduce environmental friendly reagents9, we have used organocatalyst, TBAI for the 

amidation reactions. This cross coupling reaction of the aldehydes and N-chloramine was 

confirmed to proceed via radical pathway by trapping acyl radical with 2,2,6,6-Tetramethyl-1-

piperidinyloxy (TEMPO) and established for an example of metal free C-H activation. 
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CHAPTER 4. Transformation of Contact-Explosives Primary Amines and Iodine(III) into a 

Successful Chemical Reaction  

(Ref: T. K. Achar and P. Mal, Adv. Synth. Catal. 2015, 357, 3977-3985)  

This Chapter describes a method to transform an explosive mixture into a productive chemical 

reaction for synthesis of organic compounds at maximum contacts of the reactants. Generally, any 

synthetic transformation using contact-explosives primary amines and hypervalent iodine(III) 

(phenyliodine diacetate) in a constrained media is practically impossible. Here the presented 

method describes the diverting of explosive mixture into a successful cross dehydrogenative 

coupling (CDC) reaction for C-N bond amidation of aldehydes via C-H activation.10 An acid-salt 

sodium bisulphate was used to control contact-explosive primary 

   

 

 
Figure 3. NaHSO4 mediated explosion free cross dehydrogenative coupling for amide synthesis. 

 

amines-phenyliodine diacetate for a successful mechanochemical cross dehydrogenative coupling 

(CDC). Probable mechanistic pathway has been proposed with the account of several control 

experiments. An isothermal titration calorimetric (ITC) study was carried out to understand the 

role of NaHSO4 by determining the enthalpy changes during the reactions before and after addition 

of NaHSO4.     
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CHAPTER 5. Input Controlled Mechano-Responsive C-C Bond Scission on 

Benzocyclobutenols 

(Ref: T. K. Achar, R. Maji, J. Bhattacharjee and P. Mal, Submitted) 

In this section we have demonstrated the possibility for small molecules to host the exotic 

mechano-responsive bonds that are amenable to scission upon low-energy mechanical excitation 

like sonication at ultrasonic frequencies, a mechanism well-known to be active only in polymers.11  

Centrally, we report sonication induced C-C bond scission in benzocyclo butenols (CB) of low 

molecular weight (Mw: 198). We have shown that the observed mechano-response is a direct 

consequence of a close contest between covalent interaction, and a plausible   

 

Figure 5. Photo-initiated transformation (left to right) of o-alkyl aromatic aldehydes (AL) to the 

corresponding CBs via 1,4-biradical (BR) and followed by (E)-enol.12 In turning around (CB to AL 

conversion as conventionally expected).13 

 

combination of intermolecular hydrogen bonding interactions facilitated intermolecularly. The 

observed mechano-responsivity, can be switched through intra-molecular control like suitable  
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Figure 6. a) Sonochemical conversion of CBs to ALs with release of heat energy; b) CBs used for present 

study. 

 

substituents and intermolecular effects like solvent polarity and supramolecular interactions. It was 

established that intermolecular hydrogen bonding interaction between multiple adjacent molecules 

bring down the dissociation barrier of the non-aromatic C-C bond for effective low energy 

mechanical excitation. We have also confirmed that C-C bond scission is not due to overheating 

caused during sonication. Cleavage of such C-C bonds lead to release of energy which may initiate 

further ring opening of other molecules, i.e. triggers the possible chain reaction. Details UV-Vis, 

IR, NMR and DFT studies were carried out to derive mechanistic understanding of the effects of 

substituents, solvents or additives which will enable designing new chemical reactions in micro-

environment.  
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CHAPTER 1 

Mechanochemistry: Fundamentals and Application in 

Synthesis  

 

1.1 ABASTRACT 

This section mainly focuses on approach of sustainable synthesis via mechanochemistry and 

collection of significant literature reports. Mainly it consists of two different parts; (1) solvent-free 

synthesis using ball mill and (2) ultrasound-triggered chemical reactions. Also, details mechanistic 

insight of mechanochemistry is discussed to understand how low energy excitation can cause 

chemical reactions which in general requires very high energy.  In addition, we have made an 

attempt to uncover the relevancy of chemical reactions using nonconventional energy sources. 

Finally this chapter concludes with conferring the aim of present thesis. 

 

 

1.2 INTRODUCTION 

Recently, the field of organic synthesis have experienced significant changes towards achieving 

the goal of more efficient and sustainable processes. Thus a new branch of chemistry termed as 

“Green Chemistry” have become a part of research interest by the Chemists. Green chemistry 

covers a wide range of research area and generally deals with 12 principles like mainly preventing 

the use of volatile and toxic solvents, reducing the quantity of catalyst and reagents, using 

environmentally benign chemicals, atom-economical synthesis, minimizing chemical-

waste/energy, etc.1  
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Nonconventional energy sources for chemical reactions such as microwave, mechanical mixing, 

visible-light and ultrasound are becoming surge of interest to the chemist as an alternative energy 

sources in laboratories. By imposing these techniques innumerable chemical transformations have 

been achieved and thereby developing many existing protocols with superior results are further 

expected.  

The commonly used techniques in mechanochemistry are mainly traditional hand grinding, 

mechanical milling or ultrasonication. Hand grinding is usually performed in a mortar and pestle, 

while mechanical milling is generally conducted in a vibration mill or planetary mill at frequency 

of 5 – 60 Hz. Mechanochemically, formation of carbon–carbon,2 carbon–heteroatom,3 metal–

ligand coordination bonds,4 non-covalent interactions5 such as hydrogen bonds or π--π arene 

stacking interactions are reported in literature. A comprehensive review on mechano-milling as 

synthetic tool in organic synthesis have been presented.   

 

1.3 MECHANOCHEMISTRY  

Mechanochemical methods deals with the chemical transformation induced by mechanical energy, 

such as compression, shear, or friction.6 According to IUPAC, mechano-chemical reaction is a 

‘Chemical reaction that is induced by the direct absorption of mechanical energy’ with a note that 

‘Shearing, stretching, and grinding are typical methods for the mechano-chemical generation of 

reactive sites, usually macroradicals, in polymer chains that undergo mechano-chemical 

reactions’.7 In the past decade, mechanochemical reactions have been developed on the 

methodologies into different areas of chemistry for example, from supramolecular chemistry and 

organic synthesis to metal–organic frameworks and nanoparticle synthesis. In addition, 
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mechanochemistry could be subdivided into four different areas, e.g. tribochemistry (the chemistry 

of surfaces in contact), trituration (chemistry induced by grinding and milling), macromolecular 

mechanochemistry (from breakage of polymer chains to molecular motors and biological motion), 

and sonochemistry (the chemistry generated from the mechanical consequences of sound). There 

are several advantages of mechanochemistry, over solution-based methods8 and thus receiving 

significant attention in Chemical methods and process development.  

Figure 1.1 An overview of different areas in mechanochemistry. 

 

1.3.1 Mechanochemistry: A Historical Overview  

Wilhelm Ostwald, a Russian-German chemist who received the Nobel Prize in 1909, mentioned 

the term “mechanochemistry” as a branch of physical chemistry like thermochemistry, 

photochemistry and electrochemistry. According to Ostwald “Mechanochemistry is a branch of 
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chemistry which is concerned with chemical and physico-chemical changes of substances of all 

states of aggregation due to the influence of mechanical energy”.9 However, the chemical 

application of mechanical activation can be traced back to prehistoric times. Theophrastus of 

Eresus, Aristotle’s student and successor at the helm of the Lyceum, wrote a short booklet titled 

‘‘On Stones’’ in 315 B.C.,10 in which he mentioned the reduction of cinnabar to mercury by 

grinding in a copper mortar with a copper pestle. Probably that was the first time in human history 

that a metal in the elemental form was extracted from a chemical compound under the area of 

mechanochemical reaction. Despite of this early finding, development of mechanochemistry was 

very slow. Following, in 1820, Faraday described the reduction of silver chloride by grinding with 

zinc, tin, iron and copper in a mortar.11 He termed the technique as the “dry way” of inducing 

reactions.  However, W. Spring in 1880s from Belgium and American scientist M. Carey Lea from 

Philadelphia, Pennsylvania in 1890s independently carried out the first extensive investigation of 

mechanochemical reactions. Spring’s metathesis reaction (Scheme 1.1) induced by repeated 

compression and pulverization was the first large scale mechanochemical synthesis.12 Lea’s 

systematical investigation on decomposition of mercury and silver halides to their elements 

revealed that mechanochemical reactions could lead to different outcome than thermal ones.13  

 

Scheme 1.1 Mechanochemical reactions discovered by W. Spring and M. Carey Lea.  

 

In 1893, Ling and Baker reported first solvent-free organic mechanochemical reaction, probably a 

cocrystallization reaction.14 Application of mechanochemistry to inorganic materials (e.g., 

minerals and metals) has been known since ancient times.15 Contrastingly, organic 
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mechanochemistry has remained undeveloped until the pioneering explorations by Toda16 and 

Kaupp in 1980s.17   

 

1.4 Ball Milling 

The simplest technique of mechanochemical synthesis is traditional grinding using a mortar and 

pestle. Although this technique has been extensively used but having limitations in controlling 

reaction conditions for air and moisture sensitive substances.18 In contrast, programmed electrical 

milling system facilitate mechanochemical reactions within a sealed vessel which is agitated in a 

controlled manner. The sealed vessel (milling jar) can be either very fine metal or ceramic 

particles, allowing for thorough mixing and high frictional heating.19 The milling balls can be made 

of different materials for example, stainless steel, tungsten carbide, zirconia, agate etc.  

 

1.4.1 Mechanistic Aspects  

Mechanistic understanding of mechanochemistry is still unclear. A single idea could not be 

conceived due to the diversity of reaction types, reaction conditions and reactive materials. In 

conventional chemical synthesis at solution phase, the energy dispersion and the transport of 

chemicals are well assured. However, under solvent free system in traditional hand grinding, the 

mass and energy transport are imbalanced. Contrastingly, the efficient mixing process in ball mills 

overcome these problems to initiate effective solid phase reactions.2-3, 16a, 20 There are several 

processes take place during mechanical grinding of solids such as:21,2, 6, 22  

 Comminution of the particles to a very small size, resulted large surface area 

 With formation of point defects and dislocations in the crystalline structure, helps to 

transform phase in polymorphic materials 

 Decomposition, oxidation–reduction, complex and adduct formation etc. of chemicals 



 

 
 

40 Mechanochemistry: Fundamentals and Application in Synthesis 

 

Figure 1.2 Mechanochemical versus traditional solution phase synthesis 

 

Based on the observations discussed above, several models have been proposed23 and among them 

hot spot and “magma – plasma model” are the most preferred ones.   

Hot spot theory: Hot spot theory developed upon considering frictional processes between two 

surfaces sliding against each other, proposed by Bowden, Tabor and Yoffe.24 Small swellings 

cause plastic distortions associated with intense raising of local (within ca. 1 µm2) temperatures to 

above 1000 °C within short periods (10-3-10-4 s). More brittle (less plastic) materials would be 

disposed to crack under strain.25 However, in brittle materials, hot spots can also be expected at 

the tips of propagating cracks. 

Magma – Plasma Model: The “magma- plasma model”, was introduced by Thiessen in 1967.26 

In magma – plasma model, the mechanical impact upon grinding releases a large quantity of energy 

(local temperatures greater than 104 °C) which helps the formation of a transient plasmatic state 

and also facilitate to eject energetic species including free electrons.  
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Figure 1.3 Magma-plasma model: E – exo-electrons, N – undeformed solid, D – highly deformed surface 

layer, P – plasma. (Adopted from Chem. Soc. Rev. 2013, 42, 7571 with permission of The Royal Society 

of Chemistry) 

 

Other models like spherical model,28 dislocation and phonon theory,29 short-live-active center 

theory,30 kinetic and impulse model31 are also proposed. Nevertheless, due to the complex and 

diversified nature of mechanochemical reactions, this subject is still challenging and seek more 

attention to both experimental and theoretical chemists.  

 

1.4.2 Ball Milling in Organic Synthesis 

In mechanochemical synthesis using ball milling, pioneering works were reported by the groups 

of Toda16a, 32 and Kaupp17. They have reported comprehensive work on the stoichiometric 

conversion of organic compounds in solid state reaction. Basically ball milling technique has been 

applied to influence efficient mixing of two solid reagents under solvent-free condition.33   
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Scheme 1.2 Oxidative homocoupling of 2-naphthol 

 

Toda and coworkers reported the oxidative homocoupling of 2-naphthol to 1,1׳-bi-2-naphthol in 

presence of FeCl3
.6H2O under solvent free conditions (Scheme 1.2).32 While doing the reaction 

traditionally using an agate mortar and pestle, 93% of binaphthol was isolated after 144 h at room 

temperature.  However, the reaction time could be reduced to 1 h using Planetary Milling (PM) at 

ambient temperature (yield was 87%)34 and to 8 min using high-speed vibration mill (MM) at 

speed of 3000 rpm (50 Hz) (yield 95%).35  

 

Palladium catalyzed coupling reactions. The palladium-catalyzed Suzuki coupling reaction is 

one of the most extensively investigated metal catalyzed reaction.36 In 2000, Peters and coworkers 

first reported the palladium catalyzed Suzuki coupling reaction under ball-milling condition.37 In 

this reaction, by milling the mixtures of aryl halide (1equiv), phenylboronic acid (2 equiv), K2CO3 

(3 equiv) and Pd(PPh3)4 (5 mol%) in a Fritsch Planetary Micro Mill Pulverisette for 30-60 min 

afforded the desired coupled products in up to 96% yield (Scheme 1.3).   The NaCl was used as 

additives to make the reaction mixture sufficiently powdery for uniform mixing.   
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Scheme 1.3 Mechanochemical Suzuki reaction. 

 

Frejd and co-workers first applied the ball milling technique to perform Heck reaction.38 (E)-

Stillbene derivatives were synthesized by the Heck reaction of styrenes with aryl bromides or 

aryl chlorides by Su and coworkers (Scheme 1.4).39 

 

Scheme 1.4 Mechanochemical Heck reaction 

 

The Pd-catalyzed Sonogashira coupling were reported by Mack and co-workers (Scheme 1.5), in 

which aryl halides were coupled with phenylacetylene or trimethylsilylacetylene in the presence 

of CuI-K2CO3 at  17.7 Hz for 17 h under aerobic conditions to afford the product in excellent 

yields.40 

 

Scheme 1.5 Sonogashira coupling under milling conditions 
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Cu-catalyzed mechanochemical reactions. Stolle and co-workers developed ligand and solvent 

free methods for the Huisgen 1,3-dipolar cycloaddition (click reaction) reactions of alkynes with 

azides catalyzed by Cu(OAc)2 using planetary ball mill at 800 rpm for 10 min (Scheme 1.6).41 This 

technique was also successfully applied to carry out a click polymerization under milling 

conditions.    

 

Scheme 1.6 Mechanochemical click reaction 

 

Copper has proved to be highly active in oxidative cross-dehydrogenative coupling (CDC) 

reactions and 2,3-dichloro-5,6-dicyanoquinone (DDQ) has been investigated as an efficient 

oxidative agent for oxidative carbon-carbon bond formation reactions. Recently, Su and co-

workers reported the mechanochemical CDC reaction of tetrahydroisoquinolines with alkynes and 

indoles using copper balls (Scheme 1.7).42 

 

Scheme 1.7 Copper catalyzed cross-dehydrogenative coupling (CDC) reaction under mechano-milling    
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Ruthenium-catalyzed mechanochemical reaction. Solvent free olefin metathesis was first 

observed by the Wagner group in which sprinkling solid ruthenium-based catalyst onto 

polystyrene led to slow liquefaction of the solid polymer.43 Recently, Friščić and co-workers 

reported an efficient mechanochemical approach using Ru-based Hoveyda–Grubbs catalyzed 

olefin metathesis including cross-metathesis and ring-closing metathesis reactions (Scheme 1.8).44 

Advantageously this methodology was applicable for both solid and liquid olefins.     

 

Scheme 1.8 Mechanochemical ruthenium-catalyzed olefin metathesis reaction. 

 

Rhodium-catalysed C–H bond functionalization. Recently, Bolm and co-workers have reported 

rhodium(III)-catalyzed directing group assisted selective C–H bond functionalization under 

mechanomilling conditions (Scheme 1.9).45  

 

Scheme 1.9 Rhodium(III)-catalyzed C – H bond functionalization under mechanochemical conditions. 

 

In presence of catalytic amount of Cu(OAc)2, the mechanochemical activation  led to formation of 

an active rhodium species that enabled oxidative Heck-type of cross-coupling where molecular 
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oxygen was the terminal oxidant. This simple protocol resulted in a powerful and environmentally 

sustainable alternative to the common solution based protocol by avoiding organic solvent and 

high reaction temperature.     

 

Aldol reaction. In 2000, Raston and co-workers first reported the aldol condensation reaction 

using veratraldehyde, 4-phenylcyclohexanone and 1-indanone in the presence of NaOH in a 

vibrating ball mill for 10 min (Scheme 1.10).46 Single cross aldol condensation products were 

isolated in high yield (up to 98%) and ruled out for the formation of any other possible product.  

 

Scheme 1.10 Mechanochemical aldol condensation reactions. 

 

Guillena, N´ajera and co-workers studied the asymmetric version of aldol condensation reaction. 

Reaction between various ketones and aldehydes under solvent free condition were performed 

using the combination of (S)-binam-L-Pro (A, 5 mol%) and benzoic acid (10 mol%) as a 

organocatalyst (Scheme 1.11).47     

 

Scheme 1.11 Enantioselective organocatalyzed aldol reactions under mechano milling. 
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Michael addition. Michael addition of 1,3-dicarbonyl compounds to α,β-unsaturated ketones are 

usually done in organic solvents using strong bases such as NaOH, KOH, Ba(OH)2 and NaOEt as 

catalyst. Wang and coworkers first reported mechanochemical Michael reaction in 2004 for the 

addition of 1,3-dicarbonyl compounds to chalcones and azachalcones catalyzed by weak base 

K2CO3 (Scheme 1.12). Upon high-speed vibration mill (HSVM) at a rate of 58.3 Hz for 10-60 min, 

Michael adducts were isolated in 76-99% yields in the presence of 10 mol% K2CO3.  

 

Scheme 1.12 Mechanochemical Michael reaction 

 

Morita-Baylis-Hillman reaction. The Morita-Baylis-Hillman reaction (MBH) employs an 

electron-deficient olefin, a tertiary amine catalyst and an electrophile like aldehyde to produce a 

multifunctional product. Generally, MBH reaction is very slow, takes days to weeks to afford the 

products in moderate yields. Mack et al. found a significant rate enhancement of the MBH reaction 

by ball milling (scheme 1.13).48 The reaction of methyl acrylate with different p-substituted aryl 

aldehydes in the presence of 20% 1,4-diazabicyclo[2.2.2]octane (DABCO) catalyst in a Spex 

CertiPrep 8000 M mixer mill for 0.5-45 h yielded the MBH products in 28-98%.       

 

Scheme 1.13 Mechanochemical Morita-Baylis-Hillman (MBH) reaction. 
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Wittig Reaction. Pecharsky and coworkers reported the solvent-free mechanochemical synthesis 

of phosphonium salts49 and also synthesized phosphorus ylides50 in the presence of weak base 

K2CO3 in the solid state. They utilized this mechanochemical preparation of phosphorus ylide to 

solvent-free Wittig reaction in one-pot process starting with triphenylphosphine, an organic halide 

and an aldehyde or ketone in the presence of K2CO3 (Scheme 1.14).50   

 

 

Scheme 1.14 Mechanochemical Wittig reactions. 

 

Buckybowl Chemistry. Komatsu et al. found that a C120 [2 + 2] –adduct was formed when C60 

fullerene was ball milled with KCN under solvent-free conditions (Scheme 1.15).51  

 

 

Scheme 1.15 KCN promoted synthesis of C120 [2 + 2] adduct of C60 under ball milling. 

 

Recently, Cheng et al., described the oxidative addition of 1,3-dicarbonyls to C60 to obtain 

dihydrofurane-fused derivatives (Scheme 1.16).52 Ceric ammonium nitrate, as an oxidant, is more 

prone to selective formation of heterocyclic over Mn(OAc)3. 
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Scheme 1.16 Oxidative addition of 1,3-dicarbonyl to C60 

 

Electrophilic Halogenation of Arenes. A straightforward and efficient protocol of chemo- and 

regio-selective aryl halogenations were encountered by our group, using respective N-

halosuccinamides under solvent-free ball milling conditions53. Electrophilic aryl-iodination of 

electron-rich arenes were carried out using I2-Oxone mixture under milling conditions at room 

temperature54. It was also shown that electron-rich arenes could couple to biaryl in presence of I2 

(Scheme 1.17). 

 
Scheme 1.17 Electrophilic aryl halogenations under mechano-milling 
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1.4.3 Ball Milling in Supramolecular Chemistry 

Synthesis of rotaxanes and cage compounds. Chiu and coworkers reported a mechanochemical 

reaction for the synthesis of both [2]- and [4]rotaxanes in high yields under solvent-free 

conditions (Scheme 1.18).55 Using 1,8-diaminonaphthalene as building blocks [2]- and 

[4]rotaxanes were prepared.  

 

Scheme 1.18 Synthesis of rotaxane 

 

In addition, Chiu group described the mechanochemical synthesis of the smallest rotaxane. They 

utilized the Diels-Alder reaction of 1,2,4,5-tetrazine with the terminal alkyne unit of a 21-crown-

7 (21C7)-based [2]pseudorotaxane to produce pyridazine end groups as stoppers in a 21C7-

containing [2]rotaxane in 81% yield (Scheme 1.19).56 

 

 

Scheme 1.19 Mechanochemical synthesis of smallest rotaxane 
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Molecular nanostructures by multicomponent condensation reactions were encountered in ball 

milling by Severin and co-workers. Upon milling of 4-formylphenylboronic acid with 

pentaerythritol and 1,3,5-trisaminomethyl-2,4,6-triethylbenzene for 1 h at 20 Hz, 94% of the cage 

compound was obtained (Scheme 1.20).57 

 

            

Scheme 1.20 Mechanochemical synthesis of molecular nanostructure. 

 

Recently, subcomponent synthesis of metallosupramolecular complexes have been conveyed 

under solvent-free ball milling conditions by our group (Scheme 1.21)58. 38 different components 

have been self-sorted to three distinct iron(II) complexes in one pot at room temperature. 

Furthermore, they have demonstrated that the complexes could be transformed to their more stable 

counterparts upon subcomponent substitution based on the thermodynamic stability of the 

complexes. 
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Scheme 1.21 Solvent-free subcomponent synthesis 

 

1.4.4 Advantages over other methods 

The most obvious thing to do is to compare the method of ball milling with conventional synthesis. 

Accomplishment of any reaction in ball mill is more advantageous over solution based synthesis 

with respect to reproducibility, efficiency, economical and safer handling of reagents etc.38a, 59  

Tullberg et al. investigated the Mizoroki–Heck reaction between iodobenzene and the methyl ester 

of N-Boc-protected aminoacylate under different conditions of energy entry (Scheme 1.20 and 

Table 1).38a Experiments opened that each thermal, pressure or refinement processes alone do not 

account for the yield found in the ball milling experiment. Rather a cooperative effect of these and 

further strains are responsible for the observed results. Scheme 1.22 and Table 1 represent how 

different mode of activation (technique) can alter the efficiency of a reaction.       

 

Scheme 1.22 Mizoroki–Heck reaction of aminoacrylates with aryl halide in a ball mill 
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Table 1.1 Effect of mode of activation on the Mizoroki–Heck reactiona between iodobenzene 

and the methyl ester of N-Boc-protected aminoacrylate (Scheme 1.22) in a planetary ball mill.38a 
(Reproduce from Chem. Soc. Rev. 2011, 40, 2317 with permission of The Royal Society of Chemistry.) 
 

Technique Yield (%) 

Planetary ball mill (stainless steel, 13.3 Hz) 77 

Heating in a test tube (80 °C) 18 

Heating and stirring in a test tube (80 °C) 33 

Hydraulic press with preheated anvil (80 °C, 19.6 MPa) 13 

 
a 5 mol%Pd(OAc)2, 2.5 equivalents NaHCO3, 0.2 equivalents HCO2Na, 1.2 equivalents nBu4NCl, NaCl; reaction 

time = 60 min. 

 

1.4.5 Limitation of Ball Milling system  

Despite the advantages of ball milling in chemical synthesis still there are some disadvantages 

over solution phase systems. Two of the most important parameters in synthetic chemistry like 

temperature and pressure cannot be regulated using ball mill.  Handling low boiling liquids, doing 

the reactions in heterogeneous systems are also disadvantageous in ball milling systems. 

 

1.5 SONOCHEMISTRY  

Another important area under mechanochemical systems is Sonochemistry. In general, activation 

energy for a chemical reaction is gained from conventional heating. Quite often overheating causes 

damaging of certain substances. Therefore low energy excitation of the compounds are always in 

demand to promote non-conventional techniques such as mechanical grinding, ultrasound etc. 

These non-conventional techniques proved to be better in terms of reaction time, selectivity and 

operational simplicity. Many reactions can be carried out at ambient condition by applying 

ultrasound irradiation and characteristic of ultrasonic energies are now discussed in Figure 1.4. 
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Figure 1.4 Ultrasound range diagram (Reproduced from Chem. Soc. Rev. 2012, 41, 1559 with permission 

of The Royal Society of Chemistry.).  

 

Ultrasound can be subdivided into three main regions: (1) low frequency-high power ultrasound 

(20–100 kHz) (2) high frequency-medium power ultrasound (100 kHz–1 MHz) and (3) high 

frequency-low power ultrasound (1–10 MHz). The frequency range from 20 kHz to ~1 MHz is 

used in sonochemistry and in medical or diagnostic applications frequencies ranges are above 1 

MHz. The study of sonochemistry is concerned with the understanding the effect of sonic waves 

and wave properties on chemical systems.60 As proposed by Suslick and Price, chemical effects of 

ultrasound can be defined into three different categories like homogeneous sonochemistry of 

liquids, heterogeneous sonochemistry of liquid-solid systems and sonocatalysis which make an 

overlap between the first two.61 

1.5.1 The sonochemical-mechanochemical connection  

Sonochemistry is outcome of mechanical effects of sound on liquids which generally develops 

from acoustic cavitation bubbles in liquids (Figure 1.5).62 During collapsing of bubble creates 
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strong compressional heating within the bubble and creates extreme transient conditions in the 

resultant hot spots that may create a temperature up to 5000 K with pressures exceeding 1000 

atmospheres. This process is popularly known as hot spot theory.63 These conditions are entirely 

different from the conventional synthetic techniques e.g. photochemistry, wet chemistry or 

hydrothermal synthesis. However, the physical effects of sonochemistry can be considered as an 

example of mechanochemistry and similar effects like ball milling may be observed.  

 

Figure 1.5 Schematic design of the development of acoustic cavitation (Adopted from Faraday Discuss. 

2014, 170, 411 with permission of The Royal Society of Chemistry.) 

 

1.5.2 Ultrasound-assisted organic Synthesis 

1.5.2.1 Coupling Reactions: 

Heck Reaction. Srinivasan and co-workers first reported the Heck reaction which was carried out 

at room temperature in ionic liquids (IL) under ultrasound irradiation. Aryl iodides were coupled 

with alkenes in good yields, less reaction time and high selectivity. They also showed that the 

sound wave activation was essential as no conversion of the starting materials was observed in 

absence of sonication (Scheme 1.23).65   
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Scheme 1.23 Sonochemical Heck reaction 

 

Later on, Samant and co-workers have demonstrated that Pd/C can be used as recyclable catalyst 

for Heck reaction using ultrasonic irradiation.66 

 

Sonogashira coupling. Ultrasound-mediated Pd nanoparticle-catalyzed cross-coupling reaction 

between aryl iodides or bromides and terminal acetylenes was reported by Srinivasan and 

coworkers.67 They have also reported a copper-ligand free one-pot synthesis of benzo[b]furans via 

palladium acetate catalyzed tandem Sonogashira coupling towards 5-endo-dig cyclization under 

ultrasonic irradiation at ambient temperature.68 By using the same protocol 2-substituted indoles 

were synthesized via Sonogashira coupling and 5-endo-dig cyclization (Scheme 1.24).69  

 

Scheme 1.24 Ultrasound-assisted one-pot Sonogashira coupling and 5-endo-dig cyclization 

 

Ullmann coupling. Condensation of 2-chlorobenzoic acid and 2-aminopyridine derivatives in 

N,N-dimethylformamide (DMF) using ultrasound has been reported for the synthesis of 11H – 

pyrido[2,1-b]quinazolin-11-one and derivatives. The reaction was carried out in the presence of 
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anhydrous potassium carbonate and copper powder. The derivatives were prepared in good yield 

and in short reaction time (ca. 20 min).70    

 

Scheme 1.25 Ultrasound-assisted Ullmann coupling reaction 

 

Reformatsky reaction. The zinc-induced β-hydroxyesters synthesis from α-haloesters and 

aldehydes or ketones is known as the Reformatsky reaction. Due to low reactivity of zinc dust, it 

is necessary to activate the zinc dust for reaction initiation. Ross and Bartsch have reported the 

synthesis of β-hydroxyesters via the ultrasound promoted Reformatsky reaction using ‘non-

activated’ zinc dust and a catalytic amount of iodine (Scheme 1.26).71  

 

 

Scheme 1.26 Sonochemical Reformatsky reaction using ‘unactivated’ zinc dust 

 

Michael addition reaction. S-J, Li and co-workers have reported ceric ammonium nitrate (CAN) 

catalyzed Michael addition of indole to α,β-unsaturated carbonyl ketones for alkylation of indole 

under ultrasonic irradiation. The corresponding adducts were achieved in excellent yields (Scheme 

1.27) with selective substitution on the indole ring exclusively at the 3-position and no N-alkylation 

products were obtained.72 
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Scheme 1.27 Ultrasound-assisted Michael addition reaction 

 

Baylis–Hillman reactions. Fernando and coworkers have studied the ultrasound mediated 1,4-

diazabicyclo[2.2.2]octane (DABCO) catalyzed Baylis–Hillman reaction of several aldehydes 

(aromatics and aliphatics) and different α,β-unsaturated reactants (Scheme 1.28).73  

 

Scheme1.28 DABCO catalyzed Baylis-Hillman reactions 

 

Sonochemical Switching’ Reaction. Ando and Kimura showed a unique example under 

ultrasound chemistry. Their aim was to produce benzyl cyanide by nucleophilic displacement of 

the bromine by supported cyanide.74 When the suspension of benzyl bromide and alumina-

supported potassium cyanide in toluene was stirred, the reaction provided diphenylmethane 

products via a Friedel–Crafts reaction. In contrast, sonication of the same constituents produced 

only the substitution product i.e. benzyl cyanide (Scheme 1.29).  

 

Scheme 1.29 Reaction of benzyl bromide with alumina-supported potassium cyanide. 
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Dickens and Luche described that 4-nitrobenzyl bromide reacts with 2-lithio-2-nitro-propane via 

a polar mechanism to give 4-nitrobenzaldehyde as a final product. However, sonication changes 

the normal course of the reaction and gave preferentially dinitro compound (Scheme 1.30).75 

 

Scheme 1.30 Reaction of 4-nitrobenzyl bromide with 2-lithio-2-nitropropane. 

 

1.5.3 Advantages over other Methods 

Villacampa and coworkers perceived that the ultrasound irradiation accelerates hetero Diels– 

Alder reactions between 1-dimethylamino-1-azadienes and electron-deficient dienophiles 

(Scheme 1.31).76 In addition to the shorter reaction times and increased yields, the sonicated 

reactions decrease the side reactions.  

 

Scheme 1.31 Diels-Alder cycloaddition reactions 

 
Table 1.2 Comparison of ultrasound-assisted Diels-Alder reactions (scheme 1.31) with that of the 

conventional approach 

 

 

Product

Ultrasound Heating

Conditions Yield (%) Conditions Yield (%)

1 Neat, 50 oC, 37 h 87 Benzene, 100 oC, 264 h 68

2 Neat, 50 oC, 50 h 56 Acetonitrile, 100 oC, 211 h

(sealed tube)

70
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1.6 Conclusions and Future Prospects 

Mechanochemistry has made significant advancement during the last decade owing to their 

improvement of environmentally sustainable and more selective processes. Here, mainly we have 

summarized historical background, available theoretical mechanistic consideration, in addition to 

the application of mechanochemistry in organic synthesis. Further, there is still a long way to go 

to realize the elucidation of the mechanism of the reactions, scale-up developments of 

mechanochemistry especially in the field of nanomaterial and to achieve sustainable goals. 

 

1.7 Notes and References 

1. Baig, R. B. N.; Varma, R. S., Chem. Soc. Rev. 2012, 41, 1559. 

2. Rodríguez, B.; Bruckmann, A.; Rantanen, T.; Bolm, C., Adv. Synth. Catal. 2007, 349, 

2213. 

3. Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Buriol, L.; Machado, P., Chem. Rev. 

2009, 109, 4140. 

4. Garay, A. L.; Pichon, A.; James, S. L., Chem. Soc. Rev. 2007, 36, 846. 

5. Friščić, T.; Jones, W., Cryst. Growth Des. 2009, 9, 1621. 

6. James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; 

Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; 

Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C., Chem. Soc. Rev. 2012, 41, 

413. 

7. IUPAC Compendium of Chemical Terminology, 2nd ed. (the ‘‘Gold Book’’). Compiled 

by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). 

XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. 



 

 
 

61 Mechanochemistry: Fundamentals and Application in Synthesis 

Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. 

doi:10.1351/goldbook, http://goldbook.iupac.org/MT07141.html.  

8. (a) Constable, D. J. C.; Jimenez-Gonzalez, C.; Henderson, R. K., Org. Process Res. 

Develop. 2007, 11, 133; (b) Walsh, P. J.; Li, H.; de Parrodi, C. A., Chem. Rev. 2007, 107, 

2503; (c)Sheldon, R. A., Green Chem. 2005, 7, 267. 

9. W. Ostwald, Die chemische Literatur und die Organisation derWissenschaft, in 

Handbuch der allgemeinen Chemie, ed. W. Ostwald and C. Drucker, Akademische 

Verlagsgesellschaft. m. b. H. Leipzig, 1919, pp. 70 and 77. 

10. L. Takacs, J. Mineral Met. Mater. Soc. 2000, 52, 12. 

11. (a) M. Faraday, Q. J. Sci., Lit., Arts, 1820, 8, 374. ; (b) L. Takacs, J. Therm. Anal. 

Calorim., 2007, 90, 81. 

12. W. Spring, Bull. Soc. Chim. Fr. 1885, 44, 166. 

13. (a) M. C. Lea, Am. J. Sci. 1893, 46, 413.; (b) L. Takacs, J. Mater. Sci., 2004, 4987. 

14. Ling, A. R.; Baker, J. L., J. Chem. Soc., Trans. 1893, 63, 1314. 

15. Takacs, L., Chem. Soc. Rev. 2013, 42, 7649. 

16. (a)Tanaka, K.; Toda, F., Chem. Rev. 2000, 100, 1025; (b) Toda, F., Acc. Chem. Res. 

1995, 28, 480. 

17. Kaupp, G., Top. Curr. Chem. 2005, 254, 95. 

18. Cincic, D.; Brekalo, I.; Kaitner, B., Chem. Commun. 2012, 48, 11683. 

19. Fang, Y.; Salame, N.; Woo, S.; Bohle, D. S.; Friscic, T.; Cuccia, L. A., CrystEngComm 

2014, 16, 7180. 

20. Kaupp, G., CrystEngComm 2009, 11, 388. 



 

 
 

62 Mechanochemistry: Fundamentals and Application in Synthesis 

21. (a) G. Heinicke, Tribochemistry, Akademic-Verlag, Berlin, 1984.; (b) K. Tkacova, 

Mechanical Activation of Minerals, Elsevier, Amsterdam,1989. 

22. (a) Boldyrev, V. V., Solid State Ionics 1993, 537, 63–65,; (b) Kaupp, G., J. Phys. Org. 

Chem. 2008, 21, 630; (c) Stolle, A.; Szuppa, T.; Leonhardt, S. E. S.; Ondruschka, B., 

Chem. Soc. Rev. 2011, 40, 2317. 

23. (a) P. Bala´ zˇ , Mechanochemistry in Nanoscience and Minerals Engineering, Springer-

Verlag, Berlin Heidelberg, 2008; (b) P. G. Fox, J. Mater. Sci., 1975, 10, 340. 

24. (a)F. P. Bowden and A. Yoffe, Cambridge University Press, Cambridge, 1952; (b) F. P. 

Bowden and A. Yoffe, Butterworths, London 1958; (c) Tabor, F. P. B. a. D., Clarendon 

Press, Oxford 1958. 

25. P. G. Fox, J. Mater. Sci., 1975, 10, 340. 

26. P. A. Thiessen, K. M. a. G. H., Akademie-Verlag, Berlin 1967. 

27. Balaz, P.; Achimovicova, M.; Balaz, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J. 

M.; Delogu, F.; Dutkova, E.; Gaffet, E.; Gotor, F. J.; Kumar, R.; Mitov, I.; Rojac, T.; 

Senna, M.; Streletskii, A.; Wieczorek-Ciurowa, K., Chem. Soc. Rev. 2013, 42, 7571. 

28. Butyagin, P. Y., Usp. Khim. 1971, 40. 

29. (a) Gutman, E. M., Metallurgiya, Moscow (in Russian) 1974; (b)Razumovskaya, G. M. 

B. a. I. V., Fiz. Chim. Mech. Mater. 1969, 5, 60. 

30. Butyagin, P. Y., Vses. Chim. obsˇcˇ. D. Mendelejeva, 1973, 18, 90. 

31. (a) Boldyrev, V. V., Kinet. Catal. 1972, 13, 1411; (b) Lyachov, N. Z., Folia Montana 

1984, 40; (c) Boldyrev, V. V., Proc. Indian Natl. Sci. Acad., Part A 1986, 52, 400. 

32. Toda, F.; Tanaka, K.; Iwata, S., J. Mater. Chem. 1989, 54, 3007.   



 

 
 

63 Mechanochemistry: Fundamentals and Application in Synthesis 

33. (a) Kaupp, G., CrystEngComm 2003, 5, 117; (b) Rothenberg, G.; Downie, A. P.; Raston, 

C. L.; Scott, J. L., J. Am. Chem. Soc. 2001, 123, 8701. 

34. Rasmussen, M. O.; Axelsson∗, O.; Tanner, D., Synth. Commun. 1997, 27, 4027. 

35. K. Shayesteh, J. M., M. Haghighi and; H. Eskandari, Asian J. Chem. 2010, 22, 2106. 

36. Alonso, F.; Beletskaya, I. P.; Yus, M., Tetrahedron 2008, 64, 3047. 

37. Nielsen, S. F.; Peters, D.; Axelsson, O., Synth. Commun. 2000, 30, 3501. 

38. (a) Tullberg, E.; Peters, D.; Frejd, T., J. Organomet. Chem. 2004, 689, 3778; (b) 

Tullberg, E.; Schacher, F.; Peters, D.; Frejd, T., Synthesis 2006, 1183. 

39. Zhu, X.; Liu, J.; Chen, T.; Su, W., Appl. Organomet. Chem. 2012, 26, 145. 

40. Fulmer, D. A.; Shearouse, W. C.; Medonza, S. T.; Mack, J., Green Chem. 2009, 11, 

1821. 

41. Thorwirth, R.; Stolle, A.; Ondruschka, B.; Wild, A.; Schubert, U. S., Chem. Commun. 

2011, 47, 4370. 

42. Su, W.; Yu, J.; Li, Z.; Jiang, Z., J. Org. Chem. 2011, 76, 9144. 

43. Watson, M. D.; Wagener, K. B., Macromolecules 2000, 33, 1494. 

44. Do, J.-L.; Mottillo, C.; Tan, D.; Štrukil, V.; Friščić, T., J. Am. Chem. Soc. 2015, 137, 

2476. 

45. Hermann, G. N.; Becker, P.; Bolm, C., Angew. Chem. Int. Ed. 2015, 54, 7414. 

46. Raston, C. L.; Scott, J. L., Green Chem. 2000, 2, 49. 

47. (a) Guillena, G.; del Carmen Hita, M.; Nájera, C.; Viózquez, S. F., Tetrahedron: 

Asymmetry 2007, 18, 2300; (b) Guillena, G.; Hita, M. d. C.; Nájera, C.; Viózquez, S. F., 

J. Org. Chem. 2008, 73, 5933. 

48. Mack, J.; Shumba, M., Green Chem. 2007, 9, 328. 



 

 
 

64 Mechanochemistry: Fundamentals and Application in Synthesis 

49. Balema, V. P.; Wiench, J. W.; Pruski, M.; Pecharsky, V. K., Chem. Commun. 2002, 724. 

50. Balema, V. P.; Wiench, J. W.; Pruski, M.; Pecharsky, V. K., J. Am. Chem. Soc. 2002, 

124, 6244. 

51. Wang, G.-W.; Komatsu, K.; Murata, Y.; Shiro, M., Nature 1997, 387, 583. 

52. Cheng X., W. G.-W., Murata Y. Komatsu K. , Chin. Chem. Lett. 2005, 16, 1327. 

53. Bose, A.; Mal, P., Tetrahedron Lett. 2014, 55, 2154. 

54. Maiti, S.; Mal, P., Synth. Commun. 2014, 44, 3461. 

55. Hsueh, S.-Y.; Cheng, K.-W.; Lai, C.-C.; Chiu, S.-H., Angew. Chem. Int. Ed. 2008, 47, 

4436. 

56. Hsu, C.-C.; Chen, N.-C.; Lai, C.-C.; Liu, Y.-H.; Peng, S.-M.; Chiu, S.-H., Angew. Chem. 

Int. Ed. 2008, 47, 7475. 

57. Içli, B.; Christinat, N.; Tönnemann, J.; Schüttler, C.; Scopelliti, R.; Severin, K., J. Am. 

Chem. Soc. 2009, 131, 3154. 

58. Giri, C.; Sahoo, P. K.; Puttreddy, R.; Rissanen, K.; Mal, P., Chem. Eur. J. 2015, 21, 6390. 

59. (a) Trotzki, R.; Hoffmann, M. M.; Ondruschka, B., Green Chem. 2008, 10, 767; (b) 

Achar, T. K.; Maiti, S.; Mal, P., RSC Adv. 2014, 4, 12834. 

60. (a) Luque de Castro, M. D.; Priego-Capote, F., Talanta 2007, 72, 321; (b) Davidson, R. 

S.; Safdar, A.; Spencer, J. D.; Robinson, B., Ultrasonics 1987, 25, 35; (c) Mason T. J., L. 

J. P., Wiley-VCH Verlag Gmbh, Weinheim 2002. 

61. Suslick, K. S.; Price, G. J., Annu. Rev. Mater. Sci. 1999, 29, 295. 

62. (a) Xu, H.; Zeiger, B. W.; Suslick, K. S., Chem. Soc. Rev. 2013, 42, 2555; (b) Suslick, K. 

S., Science 1990, 247, 1439. 



 

 
 

65 Mechanochemistry: Fundamentals and Application in Synthesis 

63. (a) Flannigan, D. J.; Suslick, K. S., Nature 2005, 434, 52; (b) Flannigan, D. J.; Suslick, 

K. S., Nature Phys. 2010, 6, 598; (c) McNamara, W. B.; Didenko, Y. T.; Suslick, K. S., 

Nature 1999, 401, 772; (d) Didenko, Y. T.; Suslick, K. S., Nature 2002, 418, 394. 

64. Suslick, K. S., Faraday Discuss. 2014, 170, 411. 

65. Deshmukh, R. R.; Rajagopal, R.; Srinivasan, K. V., Chem. Commun. 2001, 1544. 

66. Ambulgekar, G. V.; Bhanage, B. M.; Samant, S. D., Tetrahedron Lett. 2005, 46, 2483. 

67. Gholap, A. R.; Venkatesan, K.; Pasricha, R.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V., 

J. Org. Chem. 2005, 70, 4869. 

68. Palimkar, S. S.; Harish Kumar, P.; Lahoti, R. J.; Srinivasan, K. V., Tetrahedron 2006, 62, 

5109. 

69. Palimkar, S. S.; More, V. S.; Srinivasan, K. V., Ultrason. Sonochem. 2008, 15, 853. 

70. Docampo Palacios, M. L.; Pellón Comdom, R. F., Synth. Commun. 2003, 33, 1777. 

71. Ross, N. A.; Bartsch, R. A., J. Org. Chem. 2003, 68, 360. 

72. Ji, S.-J.; Wang, S.-Y., Synlett 2003, 2074. 

73. Coelho, F.; Almeida, W. P.; Veronese, D.; Mateus, C. R.; Silva Lopes, E. C.; Rossi, R. 

C.; Silveira, G. P. C.; Pavam, C. H., Tetrahedron 2002, 58, 7437. 

74. T. Ando and T. Kimura, Ultrasonic organic synthesis involving nonmetal solids, 

Advances in Sonochemistry, JAI Press, London, 1991, vol. 2, p. 211. 

75. Dickens, M. J.; Luche, J.-L., Tetrahedron Lett. 1991, 32, 4709. 

76. Villacampa, M.; Pérez, J. M.; Avendaño, C.; Menéndez, J. C., Tetrahedron 1994, 50, 

10047. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

IBX Works Efficiently under Solvent free Conditions in Ball 

Milling 

 

2.1 ABSTRACT 

 

IBX (2-iodoxybenzoic acid), discovered in 1893, is metal free, mild and non-toxic organo-oxidant 

in synthetic chemistry whose extensive use is impeded by its explosiveness at high temperature 

and poor solubility in common organic solvents except DMSO. Since the discovery of Dess-Martin 

Periodinane in 1983, IBX has experienced several modifications to be useful to chemists. 

However, under ball milling condition, IBX works perfectly with various organic functionalities 

at ambient temperature under solvent free conditions. Also, the waste IBA (2-iodosobenzoic acid) 

produced from the reactions was in situ oxidized to IBX in following step using oxone and thus 

reused for multiple cycles by conserving its efficiency (only ~6% loss after 15 cycles). This work 

describes an overview of a highly economical synthetic methodology which overcomes the use of 

commercially available IBX efficiently in gram scale and via non-explosive way. 
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2.2 INTRODUCTION  

With rising public concern over renewable energy and global warming, it is important to trim down 

the usage of chemicals, eliminate waste, and possibly recycle them to obtain better results in 

greener fashion compared to routine chemical synthesis.1 The metal free reagents are very popular 

in pharmaceutical industries to avoid metal contamination in drugs which cause side effects.2 

Generally, IBX (2-iodoxybenzoic acid) is a mild, easy accessible hypervalent iodine(V) reagent, 

has been preferred for metal free oxidative transformations3 in synthesis. This intensifying interest 

in hypervalent iodine reagents is due to the mild and chemoselective oxidizing properties of the 

organo-iodine reagents, combined with their benign environmental nature and commercial easy 

accessibility. Although journey of IBX started in 1893 by Hartmann and Meyer4 but its 

industrial/laboratory scale use was restricted due to explosiveness at higher temperature5 and poor 

solubility in common organic solvents except DMSO.6 In solvent DMSO, the large scale (gram 

quantities) syntheses using IBX have practical difficulties in isolation and purification. The limited 

solubility and explosive nature of IBX has encouraged many investigators to reach more practical 

experimental conditions, addition to modified-IBX. After the first report on modified IBX i.e., 

Dess-Martin Periodinane7 in 1983 (DMP), several modified IBX (Figure 2.1)8 which include 

pseudo-IBX9, solid-supported IBX10 are reported in literature to overcome the constraint of using 

IBX as utile oxidant.  

2.3 RESULTS AND DISCUSSIONS 

These modified IBXs are most often complicated due to involvement of tedious synthetic 

procedure in non-economical way.8g Therefore the modification approach has not been converged 

and is still in demand for better methods via recyclable methodology.12 We  envisioned that 

mechano-milling (ball-milling) methodology13 may possibly be used not only to make IBX  
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Figure 2.1. Selected and updated information on modified-IBX from 1893, and the abbreviated names are 

from the references shown in bracket. 

 

compatible with various organic functionalities but also leading to discovery of a Green-Organo-

Oxidant. In this context we are revisiting the potential use of IBX14 under solvent free, milling 

condition at room temperature to the following reactions: mainly oxidation of primary/secondary 

alcohols to corresponding carbonyl compounds,15 amine to imine,16 conversion of olefins to α-

bromo/iodoketones,17 sulfide to sulfoxide,18 dithianes deprotection16 and synthesis of 

benzimidazoles from primary alcohols19 etc. Advantageously, this methodology has long-range 

working window of 10 mg to 2.5 grams20, the waste 2-iodosobenzoic acid (IBA) was recyclable 

to multiple cycles by in situ oxidative regeneration of IBX21, survives under non-aqueous workup, 
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avoids chromatographic purification and can be highly cost effective to be successfully used in 

pharmaceutical/chemical industry.  

 

Figure 2.2. Oxidation of alcohols to carbonyls 

 

In Figure 2.1, selective examples of modified IBXs are shown. Now, we are highlighting few 

shortcomings of these modified systems. The Dess-Martin Periodinane is soluble in common 

organic solvents but seeks anhydrous condition for storing the reagent.7 Besides, CF3-IBX8a 

undergoes rapid ligand exchange with water-acetonitrile solution, water soluble mIBX8b is non-

reactive towards non-allylic/benzylic alcohols, FIBX8d have influence on acid sensitive reactions 

and, AIBX8e and Bis-IBX8g are synthetically challenging, obtained via multistep synthesis. 

Polymer supported IBX10 which can work under heterogeneous media, easily separable by 
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filtration, are generally expensive.22 However, IBX is also known to works in ionic liquids,23 in 

aqueous medium with β-cyclodextrin (β-CD) as catalyst through the formation of host-guest 

complexes24 and in solid state at elevated temperature (70-90 ºC) which associated with 

explosiveness, uncontrollable over-oxidation of primary alcohols to acids.25 

Primarily, we have tested our methodology on oxidation of alcohols to carbonyls26 and the results 

are depicted in Figure 2.2. The oxidized products of primary, secondary and aliphatic alcohols 

were obtained in very good to excellent yield in relatively smaller time. Comparing our method, 

as representative examples, 2e (Figure 2.2) was prepared in 45 min using IBX under ball-milling 

than 8 h using IBX-CH3CN-AcOH (traditional) method.26 Furthermore, with Bis-IBX (Figure 2.1), 

2w (Figure 2.2) was prepared in 11.5 h in MeCN/H2O
8g and under milling it is done in 1 h. The 

supramolecular system like cucurbit[8]uril catalyzed oxidation of alkyl alcohols 2p to 

corresponding aldehyde with IBX in aqueous solvent is reported to be < 5%,27 however our 

methods resulted the same aldehyde in 77% yield. Thus, primary alcohols are efficiently and 

selectively converted to the corresponding aldehydes and not leading to over oxidized side   

 

Figure 2.3. Oxidation of amine to imine 
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products. The results shown in Figure 2.2 are the product of a significantly improved methodology 

by ball-milling process compared to literature known systems. This fact clearly establishes that the 

disadvantages associated with poor solubility of IBX are now overcome. 

 

 

Figure 2.4. Synthesis of benzimidazole  

 

The efficiency and convenience of this methodology on alcohol oxidations have also encouraged 

us to further explore the scope to verify other IBX-mediated literature reported reaction systems.  

As described in Figure 2.3 – 2.5, these examples are amine to imine (Figure 2.3),16 conversion of 

olefins to α-bromo/iodoketones (Figure 2.5a),17 sulfide to sulfoxide (Figure 2.5c),18 dithianes 

deprotection (Figure 2.5b)16 and synthesis of benzimidazoles from primary alcohols (Figure 2.4)19. 
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Figure 2.5. (a–c) Methods tested on different reaction schemes; only isolated yields are shown. 
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Figure 2.6 represents the efficiency and recycling ability of this methodology. Waste IBA i.e., the 

reduced product of IBX after reaction, was isolated by paper filtration and subsequently in situ 

oxidized to IBX21 with inexpensive oxone in following recycling step. Importantly, towards waste 

management via recycling, in oxidation of benzhydrol to benzophenone (yield 94%, 1 h), after 15 

cycles no significant loss (~ 6%) of IBA was observed. However, oxone in absence of IBA could 

not efficiently oxidize benzhydrol (conversion < 15%, 5 h) under milling condition (Figure 2.7). 

On the other hand, oxidized products were isolated after filtration, did not demand any 

chromatographic purification, and were found to be sufficiently pure to be used for synthetic 

applications.   

 

Figure 2.6. a) Efficiency: the methodology is efficient for the transformation of benzhydrol to 

benzophenone, up to 1 g substrate was successfully oxidized in 1 h. b) Cost effectiveness: overview of 

recycling performance conducted on the following step using waste IBA and oxone. 
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Figure 2.7. Waste management via recycling of in situ generated IBX from IBA with Oxone 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Comparative statement on economic benefit may be obtained from our methodology over 

traditional one. Using 25 mL of ZrO2 jar, 2.5 g of (2-bromophenyl)methanolwas successfully oxidized 
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The reaction shown in Figure 2.8 is truly advantageous in terms of cost effectiveness. Per gram 

synthesis of 2-bromo benzaldehyde from (2-bromophenyl)methanol using IBX, in a single step 

using ball-milling, we could save nearly 48% of the estimated cost (Figure 2.8, electricity, 

manpower costs are excluded). However in recycling the same reaction with IBA and oxone, 

additional 31% could be saved after one recycle (Figure 2.8). 

 

2.4 CONCLUSIONS 

In summary, we anticipate that a broad range of substrates is compatible with this operationally 

simple organo-oxidant IBX which works under solvent free condition, at room temperature, non-

explosive way and also avoids aqueous workup. This methodology adapts in to milder reaction 

condition and is highly economical, time saving and reducing waste through smarter recycling. 

Therefore, this methodology may serve as an important addition not only to the synthetic field but 

also to industries. Thus, after 120 years of its discovery IBX may quench the thrust of Modified-

IBX and has a huge potential in solving a long-standing problem of organic chemistry. Our study 

will certainly be of interest to other researchers working not only on the development of 

hypervalent iodine mediated oxidation methodologies but also to chemists looking for better 

methodologies under the research area of organic mechanochemistry.28 

 

2.5 EXPERIMENTAL SECTION 

All milling experiments were performed in Retsch MM 200 high speed vibration milling 

instrument (21 Hz), NMR spectra were recorded on Bruker AV 400 MHz instrument and high-

resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF-Q II, ESI TOF (time of 
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flight) mass spectrometer. The compounds were characterized by 1H NMR, 13C NMR, IR and 

HRMS analysis. Purity of the compounds was determined using 1H NMR. NMR are reported in 

parts per million (ppm) with respect to residual chloroform (7.26 ppm for 1H and 77.16 for 13C) in 

the deuterated solvent, unless otherwise stated. Melting points of the compounds were determined 

by using a WISWO digital melting point apparatus and are uncorrected.  

Preparation of 2-iodoxybenzoic acid (IBX)14 

 

2-Iodobenzoic acid (6.0 g, 24.2 mmol) and oxone (19.9 g, 31.5 mmol) were taken in a 500 mL 

round bottom flask and deionized water (200 mL) was added. The suspension was placed on a 

preheated oil-bath (70 ºC) for 3 h, cooled to room temperature and filtered through sintered-glass 

funnel followed by repeatedly washing with water. After vacuum drying 5.42 g (80%) white solid 

was obtained.   

Procedure for (2-bromophenyl)methanol oxidation under ball-milling 

(2-Bromophenyl)methanol (100 mg, 0.53 mmol) and IBX (162 mg, 0.58 mmol) were transferred 

into a ball milling ZrO2 jar (10 mL) and followed by one 15 mm diameter ZrO2 grinding ball was 

placed. The progress of the reaction under milling condition was monitored by thin layer 

chromatography (TLC) and 1H NMR spectroscopy. After completion of the reaction, the reaction 

mixture was then transferred into 30 mL of dichloromethane (DCM), followed by product was 

isolated as filtrate upon paper filtration and waste IBA as precipitate.  The resulting filtrate were 
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concentrated invacuo to isolate 85 mg (yield: 87%) of 2-bromobenzaldehyde (2e) as colorless 

liquid. 

Optimization of gram scale reaction under ball-milling with (2-bromophenyl)methanol 

(2-Bromophenyl)methanol (2.5 g, 13.4 mmol) and IBX (4.12 g, 14.7 mmol) were transferred to a 

milling 25 mL ZrO2 jar containing one 15 mm diameter ZrO2 grinding ball. After completion of 

reaction at 1 h, the product 2-bromobenzaldehyde  isolated by following the procedure as presented 

above (2.10 g, yield: 85%). 

 

Spectral Data of the Compounds 

 
4-Methylbenzaldehyde (2a)29:Yield: 87%;1H NMR (400 MHz, CDCl3): δ 9.95 (s, 1H), 7.77-7.75 

(m, 2H), 7.33-7.31 (m, 2H), 2.42 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 192.12, 145.66, 134.31, 

129.96, 129.82, 21.97. 

 

2-Methylbenzaldehyde (2b, 10a)2:Yield: 89%; 1H NMR (400 MHz, CDCl3): δ 10.25 (s, 1H), 

7.79-7.77 (m, 1H), 7.48-7.44 (m, 1H), 7.36-7.33 (m, 1H), 7.25-7.24 (m, 1H), 2.66 (s, 3H); 13C 

NMR (100 MHz, CDCl3): δ 192.88, 140.68, 134.24, 133.72, 132.12, 131.85, 126.40, 19.64. 

 

2,4,6-Trimethylbenzaldehyde (2c)30:Yield: 94%; 1H NMR (400 MHz, CDCl3): δ 10.55 (s, 1H), 

6.89 (s, 2H), 2.57 (s, 6H), 2.31 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 193.10, 143.94, 141.59, 

130.61, 130.02, 21.56, 20.60. 
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3-Bromobenzaldehyde (2d)31: Yield: 89%; 1H NMR (400 MHz, CDCl3): δ 9.94 (s, 1H), 7.99 (d, 

J = 0.4 Hz, 1H), 7.81-7.73 (m, 2H), 7.43-7.39 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 190.90, 

138.05, 137.42, 132.44, 130.74, 128.50, 123.46. 

 

2-Bromobenzaldehyde (2e, 10b)32: Yield: 87%; 1H NMR (400 MHz, CDCl3): δ 10.24 (s, 1H), 

7.80-7.78 (m, 1H), 7.54-7.52 (m, 1H), 7.36-7.32 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 191.85, 

135.32, 133.83, 133.39, 129.78, 127.88, 127.03. 

 

4-Bromobenzaldehyde (2f)2: Yield: 93%; mp 54-56 oC; 1H NMR (400 MHz, CDCl3): δ 9.98 (s, 

1H), 7.75-7.72 (m, 2H), 7.68-7.66 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 191.23, 135.14, 

132.54, 131.08, 129.89. 

 

3,5-Dibromo-2,4,6-trimethylbenzaldehyde (2g):Yield: 88%; mp 193-196 oC; 1H NMR (400 

MHz, CDCl3): δ 10.46 (s, 1H), 2.73 (s, 3H), 2.55 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 194.12, 

142.54, 137.70, 135.07, 127.72, 26.92, 20.42. 

 

2-Chloro-6-methylbenzaldehyde (2h): Yield: 94%; mp 37-39 oC;1H NMR (400 MHz, CDCl3): 

δ 10.68 (s, 1H), 7.41-7.33 (m, 2H), 7.21-7.19 (m, 1H), 2.62 (s, 3H); 13C NMR (100 MHz, CDCl3): 

δ 192.53, 142.52, 139.05, 133.54, 130.70, 128.30, 126.92, 21.25. 

 

2-Bromo-5-fluorobenzaldehyde (2i)33: Yield: 91%; mp 53-55 oC; 1H NMR (400 MHz, CDCl3):  

10.31 (d, J = 2.9 Hz, 1H), 7.61-7.66 (m, 2H), 7.18-7.23 (m, 1H);  13C NMR (100 MHz, CDCl3): δ 

190.76, 162.15, 135.32, 134.82, 122.73, 121.17, 116.34. 
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10-Chloroanthracene-9-carbaldehyde (2j): Yield: 91%; mp 213-216 oC; 1H NMR (400 MHz, 

CDCl3): δ 11.45 (s, 1H), 8.91 (d, J = 8.8 Hz, 2H), 8.62-8.60 (m, 2H), 7.72-7.63 (m, 4H); 13C NMR 

(100 MHz, CDCl3): δ 193.06, 137.16, 132.13, 129.23, 128.56, 127.14, 125.87, 124.70, 123.92. 

 

3,4-Dimethoxybenzaldehyde (2k)34: Yield: 97%; mp 40-42 oC; 1H NMR (400 MHz, CDCl3): δ 

9.85 (s, 1H), 7.47-7.45 (m, 1H), 7.41 (d, J = 1.6 Hz, 1H), 6.98 (d, J = 9.6 Hz, 1H), 3.97 (s, 3H), 

3.94 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 191.09, 154.66, 149.79, 130.29, 127.04, 110.54, 

109.11, 56.33, 56.16. 

 

4-Nitrobenzaldehyde (2l)35: Yield: 99%; mp 104-106 oC; 1H NMR (400 MHz, CDCl3): δ 10.15 

(s, 1H), 8.36 (d, J = 8.4 Hz, 2H), 8.07 (d, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3): δ 190.43, 

151.26, 140.17, 130.60, 124.43. 

 

Phthalaldehyde (2m)36: Yield: 86%; mp 53-56 oC; 1H NMR (400 MHz, CDCl3): δ 10.52 (s, 1H), 

10.51 (s, 1H),  7.98-7.94 (m, 2H), 7.78-7.75 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 192.46, 

136.51, 133.87, 131.21. 

 

3-Phenylbutaraldehyde (2n)37: Yield: 81%; 1H NMR (400 MHz, CDCl3): δ 9.71 (s, 1H), 7.34-

7.31 (m, 2H), 7.25-7.20 (m, 3H), 3.42-3.33 (m, 1H), 2.79-2.63 (m, 2H), 1.33 (d, J = 6.8 Hz, 3H); 

13C NMR (100 MHz, CDCl3): δ 201.98, 145.52, 128.74, 126.82, 126.60, 51.77, 34.33, 22.23. 

 

2-Methylpent-2-enal (2o)38: Yield: 79%; 1H NMR (400 MHz, CDCl3): δ 9.34 (s, 1H), 6.45-6.41 

(m, 1H), 2.35-2.28 (m, 2H), 1.68 (s, 3H), 1.08-1.04 (m, 3H); 13C NMR (100 MHz, CDCl3): δ 

195.50, 156.40, 138.82, 22.36, 12.85, 9.05. 
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Decanal (2p)39: Yield: 77%; 1H NMR (400 MHz, CDCl3): δ 9.79 (t, J = 1.8 Hz, 1H), 2.46-2.35 

(m, 2H), 1.65-1.58 (m, 2H), 1.37-1.24 (m, 12H), 0.90 (t, J = 6.5 Hz, 3H); 13C NMR (100 MHz, 

CDCl3): δ 203.16, 101.83, 34.54, 32.02, 29.65, 29.50, 29.44, 23.70, 22.81, 14.23. 

 

5-Nitrofuran-2-carbaldehyde (2q)40: Yield: 89%; mp 38-40 oC; 1H NMR (400 MHz, CDCl3): δ 

9.82 (s, 1H), 7.41 (d, J = 4 Hz, 1H), 7.34 (d, J = 3.6 Hz, 1H); 13C NMR (100 MHz, CDCl3): δ 

178.45, 151.09, 118.92, 111.86. 

 

Pyridine-2-carbaldehyde (2r)41: Yield: 88%; 1H NMR (400 MHz, CDCl3): δ 10.01 (s, 1H), 8.74-

8.72 (m, 1H), 7.92-7.89 (m, 1H), 7.84-7.83 (m, 1H), 7.82-7.80 (m, 1H), 7.49-7.46 (m, 1H); 13C 

NMR (100 MHz, CDCl3): δ 193.46, 152.79, 150.24, 137.13, 127.94, 121.75.  

 

2-Chloro-6-methoxyquinoline-3-carbaldehyde (2s)42: Yield: 90%; mp 150-152 oC; 1H NMR 

(400 MHz, CDCl3): δ 10.54 (s, 1H), 8.63 (s, 1H), 7.96 (d, J = 9.2 Hz, 1H), 7.52-7.49 (m, 1H), 7.18 

(d, J = 2.4 Hz, 1H), 3.95 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 189.36, 158.80, 147.63, 145.75, 

138.66, 129.86, 127.76, 126.59, 126.40, 106.42, 55.77. 

 

Propiophenone (2t)43: Yield: 95%; 1H NMR (400 MHz, CDCl3): δ 7.94-7.91 (m, 2H), 7.53-7.48 

(m, 1H), 7.43-7.39 (m, 2H), 2.95 (q, J1 = J2 = 7.2 Hz, 2H), 1.19 (t, J1 = J2 = 2.4 Hz); 13C NMR 

(100 MHz, CDCl3): δ 200.79, 136.90, 132.86, 128.54, 127.95, 31.75, 8.22. 

 

1-Phenylbutan-1-one (2u)44: Yield: 93%;1H NMR (400 MHz, CDCl3): δ 7.94-7.92 (m, 2H), 7.53-

7.49 (m, 1H), 7.44-7.39 (m, 2H), 2.93-2.89 (m, 2H), 1.79-1.70 (m, 2H), 1.00-0.96 (m, 3H); 13C 

NMR (100 MHz, CDCl3): δ 200.34, 137.12, 132.85, 128.54, 128.02, 40.48, 17.76, 13.88. 
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1-Phenylpentan-1-one (2v)45: Yield: 85%;1H NMR (400 MHz, CDCl3): δ 7.97-7.94 (m, 2H), 

7.56-7.52 (m, 1H), 7.47-7.43 (m, 2H), 2.96 (t, J1 = J2 = 7.2 Hz, 2H), 1.75-1.68 (m, 2H), 1.45-1.36 

(m, 2H), 0.95 (t, J1 = J2 = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 200.74, 137.22, 132.97, 

128.66, 128.17, 38.45, 26.61, 22.60, 14.05. 

 

Benzophenone (2w)8: Yield: 94%; mp 48-50 oC; 1H NMR (400 MHz, CDCl3): δ 7.81-7.79 (m, 

2H), 7.60-7.56 (m, 1H), 7.50-7.46 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 196.89, 137.72, 

132.53, 130.17, 128.39. 

 

Cyclohexane-1,4-dione (2x)46: Yield: 97%; mp 75-77 oC; 1H NMR (400 MHz, CDCl3): δ 2.67 

(s, 4H); 13C NMR (100 MHz, CDCl3): δ 208.51, 36.73. 

 

N-(2,4,6-trimethylbenzylidene)prop-2-en-1-amine (4a):Yield: 98%; 1H NMR (400 MHz, 

CDCl3): δ 8.61 (s, 1H), 6.88 (s, 2H), 6.17-6.07 (m, 1H), 5.30-5.16 (m, 2H), 4.30-4.29 (m, 2H), 

2,42 (s, 6H), 2.30 (s, 3H); 13C NMR (100 MHz, CDCl3): 162.08, 138.75, 137.49, 136.47, 131.23, 

129.38, 115.68, 64.82, 21.18, 20.68. 

 

N-(2-nitrobenzylidene)-1-phenylmethanamine (4b)47:Yield: 98%; mp 45-46oC;  1H NMR (400 

MHz, CDCl3): δ 8.83 (s, 1H), 8.12-8.10 (m, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.67-7.63 (m, 1H), 7.58-

7.54 (m, 1H), 7.38-7.30 (m, 4H), 7.29-7.27 (m, 1H), 4.89 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 

157.71, 148.84, 138.44, 133.43, 131.15, 130.69, 129.82, 128.56, 128.08, 127.19, 124.25, 65.20. 
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N-(4-methylbenzylidene)-1-phenylmethanamine (4c)48: Yield: 91%; mp  1H NMR (400 MHz, 

CDCl3): δ 8.37 (s, 1H), 7.71 (d, J = 8 Hz, 2H), 7.37-7.24 (m, 7H), 4.83 (s, 2H), 2.40 (s, 3H); 13C 

NMR (100 MHz, CDCl3): δ 162.04, 141.12, 139.52, 133.64, 129.42, 128.56, 128.37, 128.06, 

127.02, 65.08, 21.60 

 

(E)-N-(4-chlorobenzylidene)-1-phenylmethanamine (4d): Yield: 96%; 1H NMR (400 MHz, 

CDCl3): δ 8.38 (s, 1H), 7.79 (d, J = 8 Hz, 2H), 7.54-7.24 (m, 7H), 4.89 (s, 2H); 13C NMR (100 

MHz, CDCl3): δ 160.45, 139.01, 136.60, 134.55, 129.42, 128.79, 128.49, 127.94, 127.04, 64.84. 

 

N-(3-bromobenzylidene)-1-phenylmethanamine (4e): Yield: 99%; 1H NMR (400 MHz, 

CDCl3): δ 8.33 (s, 1H), 8.01 (d, J = 1.6 Hz, 1H), 7.69-7.67 (m, 1H), 7.57-7.55 (m, 1H), 7.41-7.38 

(m, 4H), 7.32-7.27 (m, 2H), 4.85 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 160.11, 138.82, 138.06, 

133.49, 130.74, 130.01, 128.46, 127.91, 127.03, 126.96, 122.82, 64.85. 

 

1-(4-methoxyphenyl)-N-(2-methylbenzylidene)methanamine (4f):Yield: 95%; 1H NMR (400 

MHz, CDCl3): δ 8.71 (s, 1H), 7.96-7.94 (m, 1H), 7.35-7.20 (m, 5H), 6.94-6.90 (m, 2H), 4.81 (s, 

2H), 3.82 (s, 3H), 2.53 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 160.33, 158.74, 137.71, 134.25, 

130.87, 130.37, 129.18, 127.71, 126.27, 114.06, 114.00, 65.09, 55.37, 19.43. 

 

2-(2-bromophenyl)-1H-benzo[d]imidazole (6a)49:Yield: 82%; mp 142-143 oC; 1H NMR (400 

MHz, CDCl3): δ 8.07-8.04 (m, 2H), 8.02-7.99 (m, 2H), 7.46-7.42 (m, 2H), 7.22-7.17 (m, 2H); 13C 

NMR (100 MHz, CDCl3): 170.26, 142.07, 133.60, 133.43, 132.12, 128.17, 94.83; HRMS observed 

273.0021 (required for C13H9BrN2 [M + H]+ 273.0022) 
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2-(p-tolyl)-1H-benzo[d]imidazole (6b)50: Yield: 88%; mp 275 oC; 1H NMR (400 MHz, CDCl3): 

δ 9.51 (s, 1H), 8.03 (d, J = 8 Hz, 1H), 7.98 (dd, J1= J2= 0.8 Hz, 1H), 7.88 (dd, J1= J2= 1.6 Hz, 1H), 

7.50-7.39 (m, 2H), 7.14-7.08 (m, 2H), 6.942 (d, J = 8 Hz, 1H), 2.16 (s, 3H); 13C NMR (100 MHz, 

CDCl3): δ 172.28, 148.84, 143.36, 141.18, 137.74, 132.21, 130.91, 130.05, 128.08, 125.02, 119.70, 

114.35, 94.14, 21.76; HRMS observed 209.1074 (required for C14H12N2 [M + H]+ 209.1073). 

 

2-(2-chloro-6-methylphenyl)-1H-benzo[d]imidazole (6c): Yield: 85%; mp 247-248 oC; 1H 

NMR (400 MHz, CDCl3): δ 7.50-7.47 (m, 2H), 7.27-7.11 (m, 4H), 7.11-7.09 (m, 1H), 2.06 (s, 3H); 

13C NMR (100 MHz, CDCl3): δ 149.05, 140.94, 138.17, 134.56, 130.75, 129.98, 128.67, 127.03, 

122.86, 115.36, 20.32; HRMS observed 243.0672 (required for C14H11ClN2 [M + H]+ 243.0684). 

 

2-(2-bromo-5-fluorophenyl)-1H-benzo[d]imidazole (6d): Yield: 86%; mp 139-143 oC; 1H NMR 

(400 MHz, CDCl3) δ 8.05 (dd, J = 9.5, 3.1 Hz, 1H), 7.71 – 7.68 (m, 2H), 7.63 (dd, J = 8.8, 5.2 Hz, 

1H), 7.37 – 7.30 (m, 2H), 7.04 (ddd, J = 8.8, 7.3, 3.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 

162.1 (d, 1JCF = 247 Hz), 148.6, 148.6, 135.6, 135.5, 132.3 (d, 3JCF = 8 Hz), 123.69, 119.79, 119.54, 

118.6 (d, 2JCF = 22 HZ), 114.4 (d, 4JCF = 3 Hz); HRMS observed 290.9960 (required for 

C13H8BrFN2 [M + H]+ 290.9928). 

 

2-Mesityl-1H-benzo[d]imidazole (6e)51:Yield: 82%; mp 208 oC; 1H NMR (400 MHz, CDCl3): δ 

7.57-7.58 (m, 2H), 7.20-7.22 (m, 2H), 6.87 (s, 2H), 2.28 (s, 3H), 2.06 (s, 6H); HRMS observed 

237.1383 ( required for C16H16N2 [M + H]+ 237.1386). 
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2-(3,5-dibromo-2,4,6-trimethylphenyl)-1H-benzo[d]imidazole (6f): Yield: 79%; mp 290-292 

oC; 1H NMR (400 MHz, CDCl3): δ 7.57 (s, 1H), 7.32-7.28 (m, 4H), 2.74 (s, 3H), 2.07 (s, 6H); 13C 

NMR (100 MHz, CDCl3): δ 150.92, 139.78, 137.29, 130.63, 125.86, 123.15, 26.30, 22.28; HRMS 

observed 392.9604 (required for C16H14Br2N2 [M + H]+ 392.9597). 

2-Bromo-1-phenylethanone (8a)52: White solid, Yield: 86%; mp: 48-50 oC ; 1H NMR (400 MHz, 

CDCl3): δ 8.00 (d, J = 8 Hz, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 4.46 (s, 2H); 

13C NMR (100 MHz, CDCl3): δ 191.42, 134.17, 129.08, 129.00, 31.11. 

 

2-Bromo-2,3-dihydro-1H-inden-1-one (8b)53: Yield: 83%; 1H NMR (400 MHz, CDCl3): δ 7.84-

7.81 (m, 1H), 7.69-7.64 (m, 1H), 7.46-7.40 (m, 2H), 4.65 (dd, J1 = 7.5 Hz, J2 = 3.2 Hz, 1H), 3.84 

(dd, J1 = 18.1 Hz, J2 = 7.5 Hz, 1H), 3.42 (dd, J1 = 18.1 Hz, J2 = 3.2 Hz, 1H);  13C NMR (100 

MHz, CDCl3): δ 199.51, 151.16, 135.92, 133.57, 128.24, 126.48, 125.00, 44.08, 37.91. 

 

2-Bromocyclohexanone (8c)54: Yield: 81%; 1H NMR (400 MHz, CDCl3): δ 4.49-4.39 (m, 1H), 

3.33-2.90 (m, 1H), 2.41-2.12 (m, 3H), 2.11-1.61 (m, 4H); 13C NMR (100 MHz, CDCl3): δ 203.52, 

53.47, 37.91, 36.72, 27.66, 22.18. 

 

2-Iodo-1-phenylethanone (8d)55: Yield: 89%; 1H NMR (400 MHz, CDCl3): δ 8.00-7.91 (m, 2H), 

7.59-7.43 (m, 3H), 4.31 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 192.81, 133.72, 133.48, 130.02, 

128.81, 1.68. 

 

2-Iodo-2,3-dihydro-1H-inden-1-one (8e)56: Yield: 85%; 1H NMR (400 MHz, CDCl3): δ 7.50 (m, 

4H), 4.92 (dd, J1 = 7.5 Hz, J2 = 3 Hz, 1H), 3.90 (dd, J1 = 18 Hz, J2 = 7.5 Hz, 1H), 3.45 (dd, J1 = 

18 Hz, J2 = 3 Hz, 1H). 
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2-Iodocyclohexanone (8f)27: Yield: 86%; 1H NMR (400 MHz, CDCl3): δ 4.67-4.49 (m, 1H), 3.33-

3.17 (m, 1H), 2.36-2.14 (m, 2H), 2.11-1.91 (m, 4H), 1.82-1.67 (m, 1H); 13C NMR (100 MHz, 

CDCl3): δ 204.51, 37.48, 36. 41, 32.82, 26.66, 22.63. 

 

2-Nitrobenzaldehyde (10c)5: Yield: 88%; mp 42-44 oC; 1H NMR (400 MHz, CDCl3): δ 10.41 (s, 

1H), 8.12-8.10 (m, 1H), 7.95-7.93 (m, 1H), 7.81-7.73 (m, 2H); 13C NMR (100 MHz, CDCl3): 

188.31, 149.69, 134.22, 133.84, 131.45, 129.75, 124.62. 

 

Cyclohexanecarbaldehyde (10d)5: Yield: 83%; 1H NMR (400 MHz, CDCl3): δ 9.59 (s, 1H), 2.24-

2.19 (m, 1H), 1.90-1.20 (m, 10H); 13C NMR (100 MHz, CDCl3): 205.17, 50.07, 26.08, 26.02, 

25.12. 

 

4-Chlorobenzaldehyde (10e)2: Yield: 93%; mp 46-48oC; 1H NMR (400 MHz, CDCl3): δ 9.98 (s, 

1H), 7.82 (d, J = 8.4, 2H), 7.51 (d, J = 8.4, 2H); 13C NMR (100 MHz, CDCl3): 191.04, 141.13, 

134.85, 131.70, 131.06, 129.61, 129.03. 

 

2,4-Dimethoxy-6-methylbenzaldehyde (10f)57:Yield: 87%; mp 67-69 oC; 1H NMR (400 MHz, 

CDCl3): δ 10.47 (s, 1H), 6.63 (s, 2H), 3.87 (s, 3H), 3.85 (s, 3H), 2.57 (s, 3H); 13C NMR (100 MHz, 

CDCl3): δ 190.68, 165.30, 164.55, 144.85, 117.45, 108.87, 95.88, 55.87, 55.56, 22.46. 

 

Sulfinyldibenzene (12a)58: Yield: 81%; 1H NMR (400 MHz, CDCl3): δ 7.62 (d, J = 7.3 Hz, 4H), 

7.35-7.30 (m, 6H); 13C NMR (100 MHz, CDCl3): δ 145.11, 130.48, 128.76, 124.05. 
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(Ethylsulfinyl)benzene (12b)30:Yield: 85%; 1H NMR (400 MHz, CDCl3): δ 7.61 (d, J = 7.2 Hz, 

2H), 7.51-7.49 (m, 3H), 2.95-2.86 (m, 1H), 2.80-2.71 (m, 1H), 1.18 (t, J = 7.4 Hz, 3H); 13C NMR 

(100 MHz, CDCl3): δ 142.94, 130.62, 128.84, 123.82, 49.90, 5.62.  

 

(Methylsulfinyl)ethane (12c)59:Yield: 85%; 1H NMR (400 MHz, CDCl3): δ 2.79-2.66 (m, 2H), 

2.53 (s, 3H), 1.23 (t, J = 8 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 46.96, 36.83, 6.53. 

 

(Ethylsulfinyl)ethane (12d)30: Yield: 87%; 1H NMR (400 MHz, CDCl3): δ 2.74-2.67 (m, 4H), 

1.34 (t, J = 7.5 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 44.82, 6.74. 
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1H and 13C NMR Spectra of newly synthesized compounds 

 
Figure 2.9 1H NMR spectrum of 3,5-Dibromo-2,4,6-trimethylbenzaldehyde (2g). 

 

Figure 2.10 13C NMR spectrum of 3,5-Dibromo-2,4,6-trimethylbenzaldehyde (2g). 
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Figure 2.11 1H NMR spectrum of N-(2,4,6-trimethylbenzylidene)prop-2-en-1-amine (4a). 

 

Figure 2.12 13C NMR spectrum of N-(2,4,6-trimethylbenzylidene)prop-2-en-1-amine (4a). 
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Figure 2.13 1H NMR spectrum of (E)-N-(4-chlorobenzylidene)-1-phenylmethanamine (4d). 

 

Figure 2.14 13C NMR spectrum of (E)-N-(4-chlorobenzylidene)-1-phenylmethanamine (4d). 
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Figure 2.15 1H NMR spectrum of N-(3-bromobenzylidene)-1-phenylmethanamine (4e). 

 

Figure 2.16 13C NMR spectrum of N-(3-bromobenzylidene)-1-phenylmethanamine (4e). 
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Figure 2.17 1H NMR spectrum of 1-(4-methoxyphenyl)-N-(2-methylbenzylidene)methanamine         

(4f). 

 

Figure 2.18 1H NMR spectrum of 1-(4-methoxyphenyl)-N-(2-methylbenzylidene)methanamine         

(4f). 
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Figure 2.19 1H NMR spectrum of 2-(2-chloro-6-methylphenyl)-1H-benzo[d]imidazole (6c). 

 

Figure 2.20 13C NMR spectrum of 2-(2-chloro-6-methylphenyl)-1H-benzo[d]imidazole (6c). 
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Figure 2.21 1H NMR spectrum of 2-(2-bromo-5-fluorophenyl)-1H-benzo[d]imidazole (6d). 

 

Figure 2.22 13C NMR spectrum of 2-(2-bromo-5-fluorophenyl)-1H-benzo[d]imidazole (6d). 



 

 
 

99 Chapter 2: IBX Works Efficiently under Solvent-free Conditions in Ball Milling 

 

 

Figure 2.23 1H NMR spectrum of 2-(3,5-dibromo-2,4,6-trimethylphenyl)-1H-benzo[d]imidazole 

(6f). 

 

Figure 2.24 13C NMR spectrum of 2-(3,5-dibromo-2,4,6-trimethylphenyl)-1H-

benzo[d]imidazole (6f).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 

  

Radical-Induced Metal and Solvent-Free Cross-Coupling 

Using TBAI−TBHP: Oxidative Amidation of Aldehydes and 

Alcohols with N‑Chloramines via C−H Activation 

 
3.1 ABSTRACT  
 

 
 

 

A solvent-free cross-coupling method for oxidative amidation of aldehydes and alcohols via a 

metal-free radial pathway has been demonstrated. The proposed methodology uses the TBAI-

TBHP combination which efficiently induces metal-free C−H activation of aldehydes under neat 

conditions at 50 °C or ball-milling conditions at room temperature.  

 

 

3.2 INTRODUCTION  

Amide functionality is well known in peptides and proteins. During protein synthesis in living 

systems most amide bonds are created by the complex molecular machine like ribosomes. Due to 

stability, high polarity and conformational diversity, the amide bond became one of the most 

abundant motifs in biologically active naturally occurring compounds, pharmaceutically active 

small molecules, agrochemicals and polymers etc.1 Few examples of medicinally important amide 

containing bio-active molecules are shown in Figure 3.1. In 2007 the American Chemical Society   
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Figure 3.1 Medicinally important molecules containing amide linkage (highlighted in blue color). 

 

(ACS), Green Chemistry Institute (GCI) including several pharmaceutical corporations developed 

the ACS GCI Pharmaceutical Roundtable who voted ‘amide formation avoiding poor atom 

economy reagents’ as the top challenge for organic chemistry.2 Consequently the development of 

facile and expedient methodology for amide functionality under catalytic, metal free, waste free 

and chemoselective condition are in great demand. The most common methods  

 

Scheme 3.1 Amide synthesis; (a) conventionally amide synthesis from carboxylic acid with amine, (b) 

activating agents and (c) N,N'-Diisopropylcarbodiimide (DIC) mediated amide synthesis 
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for the synthesis of amide include either the coupling of carboxylic acids and amines in presence 

of a coupling agent3,4 or acylation of amines with activated carboxylic acid derivatives (Scheme 

3.1).5,6 These strategies has been shown to be efficient for synthesis of small molecules but 

unpopular due to usage of very hazardous reagents, unavailability of activated acid derivatives and 

poor atom economy.4 Therefore handful of alternatives have been reported such as Staudinger 

reaction,7,8 Schmidt reaction,9 Beckmann rearrangement,10,11 aminocarbonylation of 

haloarenes,12,13 direct synthesis from alcohols with amines14 and oxidative amidation of 

aldehydes15-23 etc. (few examples have been shown in Scheme 3.2). Among other popularly known 

methods, direct oxidative amidation of aldehyde is an advantageous approach. Recently, transition 

metal catalyzed aldehyde amidation via oxidation of intermediate carbinolamines have been   

 

 
Scheme 3.2 Alternative approaches for amide synthesis 
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reported (Scheme 3.3a).18,24-26 Instead, N-heterocyclic carbenes (NHC)27,28 NHPI29 and NHSI30 

have also been efficiently used as catalyst for the amidation of aldehydes through formation of 

active esters. 

In addition to the above mentioned methods, the radical pathways where acyl- and   nitrogen-

centered radicals couple to construct amide have recently become very popular (Scheme 3.3b).15,22 

Lidia de Luca and co-workers have reported Cu(II) and Fe(II) catalyzed synthesis of amide starting 

from aldehyde and N-chloramines via radical reaction.15,17 In addition, the metal free reagents are 

very popular in pharmaceutical or medicinal industries in order to minimize toxic metal 

contamination in drugs, to avoid the expensive metal leaching process and also to introduce 

environmental friendly reagents.31,32 

 

 

Scheme 3.3 Synthesis of amide from aldehyde (a) through carbinol amine intermediate and (b) through 

radical (acyl and amino) pathway 

       

Herein we present an organcatalytic solvent free cross coupling reaction for oxidative amidation 

of alcohols and aldehydes with N-chloramines under either neat or ball milling condition. In neat 

condition, the substrates were mixed and the reactions were executed at elevated temperature (50 
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°C) but under ball milling (frequency 21 Hz) the working temperature was 27 °C (room 

temperature). Thus we demonstrate an unprecedented example of TBAI (tetrabutyl ammonium 

iodide)-TBHP (tert-butyl hydroperoxide)22, 33 mediated C–H activation34 of aldehydes. 

 

3.3 RESULTS AND DISCUSSIONS 

We have performed the reactions on 4-chlorobenzaldehyde, N-benzyl-N-chloro-1-

phenylmethanamine in presence of TBAI (catalyst), TBHP (oxidant) under solvent free condition 

(neat) at 50 ºC. After which as a product, the N,N-dibenzyl-4-chlorobenzamide was isolated in 

68% yield (Table 3.1, entry 1). To optimize the condition, we have done screening of the same 

reaction in presence of various catalysts and the results are shown in Table 3.1. First of all, oxidants 

like H2O2 (hydrogen peroxide), oxone, PIDA (phenyliodine diacetate), AgNO3 (silver nitrate), 

(NH4)2S2O8 (ammonium persulfate) etc. are found to be less efficient compare to TBHP (Table 

3.1, entry 1-6). Secondly, in absence of either catalyst or oxidant no expected product was 

identified (entry 7, 11). We have also established the role of counter ions by comparing TBAI with 

different catalyst. KI (potassium iodide), tetrabutyl ammonium bromide (n-Bu4NBr) were used to 

understand the role of anions and NIS (N-iodosuccinimide) for cation. It is found that with KI, 

NIS (Table 3.1, entry 12, 15) and n-Bu4NBr (Table 3.1, entry 13) the reaction did not lead the 

expected product in reasonably good yields.  Similarly changing solvent (entry 20, 21), varying 

temperature (entry 22) and introducing other reagents like I2 (entry 14), KI/I2 (entry 16) were also 

not showing any encouraging improvements.  

Under optimized condition, aldehydes (1.0 equivalent), N-chloramine (2 equivalent), TBAI (20 

mol%) and TBHP (2 equivalent) worked efficiently to produce best results under neat  
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Table 3.1 Optimization for reaction conditions  

 

Entry   Cat. (mol%) Oxidant (equiv) Yield (%)a 

1 TBAI (25) TBHP (1.5) 68 

2 TBAI (25) H2O2 (1.5) Trace 

3 TBAI (25) Oxone (1.5) --- 

4 TBAI (25) PIDA (1.5) Trace 

5 TBAI (25) AgNO3 (1.5) --- 

6 TBAI (25) (NH4)2S2O8 (2) --- 

7 TBAI (25)    ---- --- 

8 TBAI (25) TBHP (1) 59 

9 TBAI (25) TBHP (2) 77 

10 TBAI (25) TBHP (2.5) 75 

11 ---- TBHP (2) --- 

12 KI (25) TBHP (2) 53 

13 TBAB (25) TBHP (2) Trace 

14 I2 (25) TBHP (2) 23 

15 NIS (25) TBHP (2) 38 

16 KI/I2 TBHP (2) 45 

17 TBAI (10) TBHP (2) 64 

18 TBAI (15) TBHP (2) 73 

19 TBAI (20) TBHP (2) 78 

20b TBAI (20) TBHP (2) 56 

21c TBAI (20) TBHP (2) 62 

22d TBAI (20) TBHP (2) 41 

 

Unless specified the reactions were carried out at 50 °C; aisolated yield; bsolvent THF csolvent acetonitrile; 

dneat at 30 °C 
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(solvent free) condition at 50 °C. Synthesis of various amide derivatives in reasonably good yields 

was achieved and the results are depicted in Figure 3.2. This methodology is efficient and   amide 

derivatives were obtained in good yields with aldehydes having electron donating (3b, 3e),  

electron withdrawing like nitro (3m), trifluoromethyl (3d), chloro (3a, 3i), bromo (3g) and fluoro 

(3o) substituents etc. Furthermore, this methodology was also working well with hetero aromatic 

aldehyde (3f), aliphatic aldehydes (3q) and thus proved to be an important synthetic methods in 

the amide synthesis. On the other hand, various N-chloramines systems e.g., primary (N-chloro-1-

phenylmethanamine) and secondary (N-chloro-N-methyl-1-phenylmethanamine, N-benzyl-N-

chloro-1-phenylmethanamine) derivatives were also affording good yields in amide synthesis. 

 

 

 

Figure 3.2 Results of amidation of aldehydes with N-chloramines under neat conditions. 
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The efficiency and convenience of this methodology have also encouraged us to further explore 

the scope of multistep organic synthesis.35  The oxidative amidation of primary alcohols with N-

chloramines in presence of TBHP (3 equivalent) and TBAI (2 equivalent) under neat condition 

was performed (Table 3.2, Figure 3.3). The products were isolated in relatively good yields after 

the two step process. In this reaction we assumed that, out of three equivalents of TBHP, one 

equivalent was consumed to do oxidation of alcohol to the aldehyde.  

 

Table 3.2 Optimization for oxidative amidation of alcohols with N-chloramine 

 

Entry TBAI (mol%) TBHP (equiv) Time (h) Yielda (%) 

1 20 2 1.5 36 

2 20 3 1.5 46 

3 15 3 1.5 41 

4 25 3 1.5 43 

5 20 3 2.5 59 

6 20 3 3 58 

aisolated yield. 

 

After the successful execution of the solvent free synthesis under neat condition, we have also 

explored ball milling condition. The ball milling (mechanochemical) synthesis36-39 has drawn a 

significant interest due to its advantages over traditional solution-based method.40,41 Major benefit 

of this process is solvent free condition and avoids any traditional workup.41,42 This process has 

high impact on ecology, proved to be time saving and economical. Higher conversion of reaction, 
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Figure 3.3 Metal-free oxidative amidation of alcohols and N-chloramines. 

 

 

less by products and minimum/no purification bring extra importance to this procedure.43,44 Under 

ball milling the reactions were done at solvent free and room temperature condition. The 

progresses of the reactions were monitored either by TLC or 1H NMR study. The products were 

isolated by dissolving the reaction mixture in ethyl acetate or dichloromethane and purified by 

chromatographic methods. It is shown in Table 3.3 that our methodology worked well under ball 

milling condition and equally efficient like neat condition (Figure 3.2). 
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Table 3.3 Results for Amidation Aldehyde and N-Chloramines under Ball-Milling Conditions 

entry product yield (%) entry product yield (%) 

1 3c 72 6 3i 75 

2 3e 75 7 3k 69 

3 3f 63 8 3o 62 

4 3u 66 9 3z 71 

5 3v 64 10 3aa 68 

 

The X-ray crystal structure of the core (3p) of a potential antiemetic drug Tebamide (Figure 3.1) 

and compound 3c is shown in Figure 3.4.  These compounds were synthesized using our method.  

 

Figure 3.4 X-ray structure of (a) 3c (CCDC 1013915) and (b) 3p (CCDC 1016504).  

 

To understand the mechanism of the amidation reaction, we have performed some control 

experiments (Scheme 3.4). Under neat reaction condition when benzylamine was used as an 

alternative of N-chloramine, no amide was obtained (Scheme 3.4a) due to the formation of imine. 

However, secondary amine led to only 11% of amide formation (Scheme 3.4b).  As shown in 

Scheme 3.4c, TBAI, TBHP, benzaldehyde and TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxy 

radical) led to the  TEMPO adduct. These results clearly indicate that the reaction proceeds via 

radical pathway. 

(a) (b) 
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Scheme 3.4 (a,b) N-Chloramine Established To Be Essential for This Reaction and (c) Formation of a 

TEMPO Adduct with an Aldehyde Radical 

 

Based on the results shown in Scheme 3.4, we have proposed a plausible mechanism (Scheme 3.5) 

for oxidative amidation reaction (Scheme 3.5a). It has been established that the reaction goes via 

radical pathway (Scheme 3.4c). In the first step, TBAI and TBHP could generate active radicals 

like tert-butoxyl and tert-butylhydroperoxide (Scheme 3.5b). These radicals subsequently generate 

acyl radical17,22 and amino radicals45 from the aldehyde and N-chloramine, respectively. Finally, 

these radicals combine to lead the amide (Scheme 3.5c). 
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Scheme 3.5 (a) Amidation Reaction, (b) Generation of tert-Butoxyl and tert-Butylhydroperoxide Radicals, 

and (c) Formation of Acyl Radical and Amino Radical Followed by Recombination to the Final Product 

  

3.4 CONCLUSIONS 

In summary, we have developed a mild, efficient and economical organocatalytic method for the 

synthesis of amides from alcohols and aldehydes using TBHP-TBAI combination under solvent 

free conditions. The cross coupling reaction of the aldehydes and N-chloramine could be 

demonstrated as an example of metal free C–H activation. Furthermore, this methodology shows 

good functional group compatibility which also uses cheap and widely accessible starting 

materials. Performing the reactions under ball milling condition may be considered an important 

addition in mechanochemical synthesis. Hence, we foresee that our study may draw significant 

attention to the chemists working not only on the development of synthetic methodologies but also 

to researchers considering for better methods under the area of organic mechanochemistry.46 
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3.5 EXPERIMENTAL SECTION 

General Methods. The ball milling (21 Hz) experiments were executed under open atmosphere. 

Normal phase column chromatography was performed using silica-gel (mesh 100-200) and 

hexane-ethylacetate mixture as eluent unless otherwise specified. NMR spectra were recorded on 

400 MHz instrument at 25 ⁰C. The chemical shift values are reported in parts per million (ppm) 

with respect to residual chloroform (7.26 ppm for 1H and 77.16 for 13C). High-resolution mass 

spectra (HRMS) were recorded on ESI-TOF (time of flight) mass spectrometer. Infrared spectral 

data are reported in wave number (cm-1). Melting points of the compounds were determined using 

digital melting point apparatus and are uncorrected.  

 

Preparation of N-Chloramine (Caution!!) derivatives:15   

 

In a representative procedure, dibenzylamine (10.4 mmol) was added to 10 mL of tetrahydrofuran 

followed by addition of N-chlorosuccinimide (11.4 mmol). The reaction mixture was allowed to 

stir at room temperature for 1 h. After that tetrahydrofuran was evaporated under reduced pressure 

and compound was extracted with 50 mL of dichloromethane after successively washed with 

water. The organic phase was dried over anhydrous Na2SO4 and solvent was evaporated under 

reduced pressure to isolate the desired product N-benzyl-N-chloro-1-phenylmethanamine (2.3 g, 

96%). 1H NMR (400 MHz, CDCl3) δ 7.45-7.34 (m, 10H), 4.19 (s, 4H); 13C NMR (100 MHz, 

CDCl3) δ 137.1, 129.2, 128.5, 127.9, 67.2. 
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Safety issues (Caution!!):  

N-chloramine. A number of N-chloramines have been conveyed to be explosive.47 However, none 

of the N-chloramine used in this paper showed any of these properties. PPEs (personal protective 

equipment’s) should be used during preparation and use of N-chloramines. N-chloramines were 

stable up to few weeks when stored at -20 ⁰C without sign of decomposition.   

TBHP. As TBHP is a potential shock sensitive chemical, precautions like PPEs should be used 

during handling and reactions under ball milling.  Herein, the TBHP was used as 70% in water and 

the reaction was continued for 3 h (additional 1.5 h after completion) for synthesis of 0.96 g of 3e. 

Notably, we did not observe any explosion or decomposition of the materials during the reaction.   

Procedure for preparation of amides under neat condition. In a typical experimental procedure, 

N-benzyl-N-chloro-1-phenylmethanamine (0.7 mmol) was added to a 25 mL round bottom flask 

charged with magnetic stirring bar and 4-chlorobenzaldehyde (0.35 mmol). TBAI (n-Bu4NI, 20 

mol%) and TBHP (70% in water, 0.7 mmol) were added to the mixture and the round bottom flask 

was kept at 50 °C (preheated oil bath). The reaction was monitored by thin layer chromatography 

(TLC). After completion of the reaction, the mass was dissolved in dichloromethane and purified 

by column chromatography to obtain N,N-dibenzyl-4-chlorobenzamide48 (93 mg, 78%). 1H NMR 

(400 MHz, CDCl3) δ 7.51-7.29 (m, 12H), 7.14 (br s, 2H), 4.71 (br s, 2H), 4.40 (br s, 2H); 13C NMR 

(100 MHz, CDCl3) δ 171.3, 135.9, 134.6, 129.7, 128.9, 128.6, 128.3, 127.8, 126.8, 51.6, 47.2. 

 

Procedure for the preparation of amides under ball milling. Benzaldehyde (0.29 mmol), N-

benzyl-N-chloro-1-phenylmethanamine (0.59 mmol), TBAI (20 mol%), TBHP (70% in water, 0.59 

mmol) and one grinding ball (15 mm diameter, ZrO2) were placed in a 10 mL ZrO2 milling jar. 

Progress of the reaction under milling condition was checked by thin layer chromatography (TLC) 
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or 1H NMR. After which the reaction was started and this operation time was excluded from the 

reported reaction time. Once the reaction was completed, the mixture was dissolved in ethyl acetate 

or dichloromethane and compound (N,N-dibenzylbenzamide, yield 72%) was purified by column 

chromatography.  

Trapping of acyl radical by TEMPO. TEMPO (0.54 mmol) was added to a 25 mL round bottom 

flask charged with magnetic stirring bar and 4-chlorobenzaldehyde (0.36 mmol). TBAI (n-Bu4NI, 

20 mol%) and TBHP (70% in water, 0.72 mmol) were added to the mixture and the round bottom 

flask was kept at 50 °C. The reaction was monitored by thin layer chromatography (TLC). After 

completion of the reaction, the mass was dissolved in dichloromethane and purified by column 

chromatography to obtain 2,2,6,6-tetramethylpiperidin-1-yl 4-chlorobenzoate (5). yield: 86% (91 

mg); Rf = 0.40 (diethyl ether/hexane = 0.25:4.75); Reddish white solid; mp. 80-82 °C; 1H NMR 

(400 MHz, CDCl3) δ 8.05 (d, J = 8 Hz, 2H), 7.47 (d, J = 8 Hz, 2H), 1.85-1.45 (m, 6H), 1.30 (s, 

6H), 1.15 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 164.8, 138.6, 130.2, 128.1, 127.4, 59.7, 38.3, 

31.2, 20.1, 16.2; IR (KBr) ~  3457 (w), 2973 (s), 2935 (s), 1746 (m), 1633 (m), 1252 (m), 1071 

(m), 754 (s) cm-1; HRMS (ESI-TOF) calculated for C16H23ClNO2 (M + H+) 296.1412, found 

296.1432. 

Procedure for large scale use of TBHP (Caution!!) under ball milling  

 

In a typical procedure, 4-methoxy benzaldehyde (0.5 mL, 4.1 mmol), N-benzyl-N-chloro-1-

phenylmethanamine (1.9 g, 8.2 mmol), TBAI (0.3 g, 20 mol%), TBHP (70% in water, 1.1 mL, 8.2 

mmol) and one grinding ball (15 mm diameter, ZrO2) were placed in a 25 mL ZrO2 milling jar. 
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After continuous milling of 3 h, the mass was dissolved in dichloromethane and compound (N,N-

dibenzyl-4-methoxybenzamide, yield 71%) was purified by chromatography. Spectral data 

matches with the characterization data provided for 3e. 

 

Compound characterization data 

N,N-dibenzyl-4-chlorobenzamide (3a). Rf = 0.17 (ethyl acetate/hexane = 0.25:4.75); White solid; 

yield: 78% (93 mg); mp. 102-104 °C (lit.48 103-104 °C); 1H NMR (400 MHz, CDCl3) δ 7.45-7.42 

(m, 2H), 7.39-7.29 (m, 10H), 7.14 (br s, 2H), 4.70 (br s, 2H), 4.39 (br s, 2H); 13C NMR (100 MHz, 

CDCl3) δ 171.3, 135.9, 134.6, 129.0, 128.9, 128.6, 128.4, 127.8, 127.0, 51.6, 47.3; IR (KBr) ~

3459 (w), 3030 (w), 2925 (w), 1637(s), 1450 (m), 1420 (m), 1258 (m), 1089 (m), 750 (m), 700 

(m) cm-1; HRMS (ESI-TOF) calculated for C21H19ClNO (M + H+) 336.1150, found 336.1182.  

 

N,N-dibenzyl-4-methylbenzamide (3b.)49 Rf = 0.20 (ethyl acetate/hexane = 0.25:4.75); White 

solid; yield: 84% (112 mg); mp. 87-90 °C (no literature report on melting points); 1H NMR (400 

MHz, CDCl3) δ 7.43-7.28 (m, 10H), 7.19 (d, J = 8 Hz, 4H), 4.71 (br s, 2H), 4.44 (br s, 2H), 2.36 

(s, 3H); 13C NMR (100 MHz, CDCl3) δ 172.6, 144.3, 139.9, 133.2, 130.2, 129.2, 128.8, 127.6, 

126.9, 51.7, 47.0, 21.4; IR (KBr) ~  3440 (w), 3028 (w), 2923 (w), 1633 (s), 1449 (m), 1419 (m), 

1259 (m), 751 (m) cm-1; HRMS (ESI-TOF) calculated for C22H22NO (M + H+) 316.1696, found 

316.1716. 

 

N,N-dibenzylbenzamide (3c). Rf = 0.20 (ethyl acetate/hexane = 0.25:4.75); White solid; yield: 

73% (108 mg); mp. 113-115 °C (lit.50 114-115 °C); 1H NMR (400 MHz, CDCl3) δ 7.52-7.31 (m, 

13H), 7.16 (br s, 2H), 4.72 (br s, 2H), 4.42 (br s, 2H); 13C NMR (100 MHz, CDCl3) δ 172.3, 136.2, 



 

 
 

117 Chapter 3: Radical Induced Metal and Solvent-free Cross Coupling for Amide Synthesis      

 

129.7, 128.9, 128.8, 128.7, 128.6, 128.5, 128.5, 127.7, 127.6, 127.1, 126.8, 51.6, 46.9; IR (KBr) 

~  3442 (w), 1633 (s), 1494 (m), 1451(m), 1261 (m), 697 (s) cm-1; HRMS (ESI-TOF) calculated 

for C21H20NO (M + H+) 302.1539, found 302.1532. 

 

N,N-dibenzyl-4-(trifluoromethyl)benzamide (3d).49 Rf = 0.35 (ethyl acetate/hexane = 0.5:4.5); 

White solid; yield: 73% (99 mg); mp. 88-91 °C (no literature report on melting points); 1H NMR 

(400 MHz, CDCl3) δ 7.60-7.53 (m, 4H), 7.33-7.20 (m, 8H), 7.08 (br s, 2H), 4.67 (br s, 2H), 4.30 

(br s, 2H); 13C NMR (100 MHz, CDCl3) δ 171.0, 139.8, 136.7, 136.0, 131.8 (q, 2JFC = 65.1 Hz), 

129.1, 128.9, 128.6, 128.0, 127.9, 127.2, 127.0, 125.8 (q, 3JFC = 7.4 Hz), 123.8 (d, 1JFC  = 271 Hz), 

51.5, 47.2; IR (KBr) ~  3473 (w), 3063 (m), 3031 (m), 2927 (m), 1640 (s), 1451 (m), 1425 (m), 

1326 (s), 1261 (m), 1167 (s), 1128 (m), 1065 (s), 850 (s), 747 (m) cm-1; HRMS (ESI-TOF) 

calculated for C22H19F3NO (M + H+) 370.1413, found 370.1440. 

 

N,N-dibenzyl-4-methoxybenzamide (3e) Rf = 0.30 (ethyl acetate/hexane = 1:4); White solid; yield: 

82% (112 mg); mp. 118-120 °C (lit.15 120-122 °C); 1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 8 

Hz, 2H), 7.38-7.23 (m, 10H), 6.88 (d, J = 8 Hz, 2H), 4.66 (br s, 2H), 4.49 (br s, 2H), 3.80 (s, 3H); 

13C NMR (100 MHz, CDCl3) δ 172.3, 160.8, 137.0, 128.8, 128.7, 128.3, 127.6, 113.9, 55.4, 51.8, 

47.2; IR (KBr) ~  3440 (w), 2054 (w), 1632 (s), 1451 (m), 1420 (m), 1249 (s), 1029 (m), 992 (m), 

839 (m), 699 (m) cm-1; HRMS (ESI-TOF) calculated for C22H22NO2 (M + H+) 332.1645, found 

332.1665. 

 

N,N-dibenzylthiophene-2-carboxamide (3f) Rf = 0.24 (ethyl acetate/hexane = 0.5:4.5); White 

solid; yield: 76% (125 mg); mp. 46-47 °C (lit.50 48-50 °C); 1H NMR (400 MHz, CDCl3) δ 7.45 (d, 
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J = 8 Hz, 1H), 7.39-7.27 (m, 11H), 6.96 (dd, J1 = J2 = 4 Hz, 1H), 4.73 (s, 4H); 13C NMR (100 

MHz, CDCl3) δ 165.2, 137.8, 136.7, 129.5, 128.9, 128.7, 127.7, 127.0, 126.8, 51.7, 49.2; IR (KBr) 

~  3444 (w), 2880 (m), 1620 (s), 1615 (s), 1452 (m), 1427 (m), 1252 (m), 975 (s), 735 (m) cm-1; 

HRMS (ESI-TOF) calculated for C19H18NOS (M + H+) 308.1109, found 308.1093. 

 

N-benzyl-4-bromo-N-methylbenzamide (3g).51 Rf = 0.22 (ethyl acetate/hexane = 0.5:4.5); 

Colorless oil; yield: 74% (61 mg); 1:1 mixture of rotamers ;  1H NMR (400 MHz, CDCl3) δ 7.59-

7.44 (m, 4H), 7.39-7.30 (m, 12H), 7.16 (br s, 2H), 4.74, 4.50 (two singlets for two rotamers, 4H), 

3.03, 2.86 (two singlets for two rotamers, 6H); 13C NMR (100 MHz, CDCl3) δ 169.9, 133.5, 131.8, 

130.2, 128.9, 128.5, 128.3, 127.8, 124.1, 55.3, 51.0, 37.1, 33.5; IR (KBr) ~  3466 (w), 3062 (m), 

3030 (m), 2924 (s), 2854 (s), 1714 (s), 1633 (m), 1453 (m), 1402 (s), 1264 (s), 1073 (s), 1012 (s), 

836 (s), 734 (m), 699 (m) cm-1; HRMS (ESI-TOF) calculated for C15H15BrNO (M + H+) 304.0332, 

found 304.0358. 

 

N-benzyl-N-methylbenzamide (3h).52 Rf = 0.27 (ethyl acetate/hexane = 1:4); Colorless oil; yield: 

81% (180 mg); 1:1 mixture of rotamers;  1H NMR (400 MHz, CDCl3) δ 7.55-7.27 (m, 18H), 7.17 

(br s, 2H), 4.77, 4.51 (two singlets for two rotamers, 4H), 3.04, 2.86 (two singlets for two rotamers, 

6H); 13C NMR (100 MHz, CDCl3) δ 172.4, 171.7, 137.0, 136.5, 136.1, 133.0, 130.2, 130.0, 129.7, 

128.8, 128.4, 128.3, 128.2, 127.6, 127.0, 126.8, 55.2, 50.8, 37.0, 33.2; IR (KBr) ~  3468 (w), 3060 

(m), 3029 (m), 2923 (m), 1631 (s), 1450 (m), 1401 (s), 1264 (m), 1070 (s), 717 (m), 698 (m) cm-

1; HRMS (ESI-TOF) calculated for C15H16NO (M + H+) 226.1226, found 226.1223. 
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N-benzyl-4-chloro-N-methylbenzamide (3i)52 Rf = 0.38 (ethyl acetate/hexane = 1:4); Colorless 

oil; yield: 77% (70 mg); 1:1 mixture of rotamers;  1H NMR (400 MHz, CDCl3) δ 7.47-7.29 (m, 

16H), 7.17 (br s, 2H), 4.76, 4.51 (two singlets for two rotamers, 4H), 3.03, 2.86 (two singlets for 

two rotamers, 6H); 13C NMR (100 MHz, CDCl3) δ 172.4, 171.7, 137.0, 136.6, 136.2, 135.7, 131.3, 

129.7, 128.7, 128.6, 128.5, 128.2, 127.9, 127.6, 127.1, 127.0, 126.8, 126.6, 55.2, 50.9, 37.0, 33.2; 

IR (KBr) ~  3449 (w), 3062 (m), 3029 (m), 2925 (s), 2855 (m), 1717 (m), 1632 (s), 1478 (m), 

1451 (m), 1401 (s), 1263 (m), 1090 (s), 1069 (s), 734 (m), 700 (s) cm-1; HRMS (ESI-TOF) 

calculated for C15H14ClNNaO (M + Na+) 282.0656, found 282.0687. 

 

N-benzyl-3-bromo-4-methoxy-N-methylbenzamide (3j). Rf = 0.20 (ethyl acetate/hexane = 1:4); 

Colorless oil; yield: 78% (60 mg); 1:1 mixture of rotamers;  1H NMR (400 MHz, CDCl3) δ 7.69 

(s, 1H), 7.42-7.18 (m, 6H), 6.89 (br s, 1H), 4.69, 4.58 (two singlets for two rotamers, 2H), 3.90 (s, 

3H), 2.94 (br s, 3H); 13C NMR (100 MHz, CDCl3) δ 170.7, 157.0, 136.8, 132.6, 129.6, 128.9, 

128.2, 128.0, 128.0, 127.7, 111.6, 111.4, 56.4, 55.4, 51.1, 37.2, 33.6; IR (KBr) ~  3459 (w), 2924 

(s), 2853 (s), 1632 (m), 1600 (s), 1454 (m), 1402 (m), 1293 (s), 1262 (m), 1052 (m), 816 (m), 730 

(m), 698 (m) cm-1; HRMS (ESI-TOF) calculated for C16H17BrNO2 (M + H+) 334.0437, found 

334.0453. 

 

N-benzyl-3-bromo-N-methylbenzamide (3k).53 Rf = 0.40 (ethyl acetate/hexane = 1:4); Colorless 

oil; yield: 82% (107 mg); 1:1 mixture of rotamers;  1H NMR (400 MHz, CDCl3) δ 7.60-7.52 (m, 

4H), 7.45-7.28 (m, 12H), 7.23-7.15 (m, 2H), 4.74, 4.49 (two singlets for two rotamers, 4H), 3.02, 

2.85 (two singlets for two rotamers, 6H); 13C NMR (100 MHz, CDCl3) δ 170.6, 169.9, 138.1, 

136.6, 136.1, 133.2, 132.7, 130.1, 130.0, 128.9, 128.8, 128.3, 128.2, 127.7, 126.7, 125.6, 125.2, 
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122.6, 55.2, 50.9, 37.0, 33.3; IR (KBr) ~  3459 (w), 3063 (m), 3030 (m), 2925 (m), 1713 (m), 

1633 (s), 1562 (m), 1495 (m), 1452 (m), 1400 (m), 1255 (m), 1077 (m), 735 (m), 699 (m) cm-1; 

HRMS (ESI-TOF) calculated for C15H15BrNO (M + H+) 304.0332, found 304.0363. 

 

N-benzyl-3-nitrobenzamide (3l). Rf = 0.20 (ethyl acetate/hexane = 1:4); White solid; yield: 71% 

(60 mg); mp. 100-103 °C (lit.54 100-101 °C); 1H NMR (400 MHz, CDCl3) δ 8.60 (s, 1H), 8.36-

8.33 (m, 1H), 8.18-8.16 (m, 1H), 7.63 (t, J = 8 Hz, 1H), 7.38-7.28 (m, 5H), 6.73 (br s, 1H), 4.655 

(d, J = 4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 165.1, 148.3, 137.6, 136.0, 133.4, 130.0, 129.0, 

128.1, 128.0, 126.2, 121.9, 44.6; IR (KBr) ~  3322 (w), 3087 (m), 1720 (m), 1644 (s), 1528 (s), 

1350 (s), 1322 (m), 1080 (m), 911 (m), 815 (m), 719 (m) cm-1; HRMS (ESI-TOF) calculated for 

C14H13N2O3 (M + H+) 257.0921, found 257.0948. 

 

N-benzyl-4-nitrobenzamide (3m). Rf = 0.25 (ethyl acetate/hexane = 1:4); White solid; yield: 68% 

(58 mg); mp. 134-137 °C (lit.55 136-137 °C); 1H NMR (400 MHz, CDCl3) δ 8.29 (d, J = 8 Hz, 

2H), 7.95 (d, J = 8 Hz, 2H), 7.39-7.37 (m, 5H), 6.46 (br s, 1H), 4.67 (d, J = 8 Hz, 2H); 13C NMR 

(100 MHz, CDCl3) δ 165.4, 149.8, 140.0, 137.5, 129.1, 128.3, 128.2, 128.1, 124.0, 44.6; IR (KBr) 

~  3449 (w), 2923 (s), 2848 (s), 1638 (m), 1344 (s), 1018 (s), 703 (s) cm-1; HRMS (ESI-TOF) 

calculated for C14H13N2O3 (M + H+) 257.0926, found 257.0912. 

 

N-benzyl-4-methoxybenzamide (3n). Rf = 0.20 (ethyl acetate/hexane = 1:4); White solid; yield: 

69% (61 mg); mp. 128-131 °C (lit.56 129-130 °C); 1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8 

Hz, 2H), 7.36-7.28 (m, 5H), 6.92 (d, J = 8 Hz, 2H), 6.33 (br s, 1H), 4.635 (d, J = 4 Hz, 2H), 3.84 

(s, 3H); 13C NMR (100 MHz, CDCl3) δ 167.0, 162.3, 138.5, 128.9, 128.9, 128.0, 127.7, 126.7, 
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113.9, 55.5, 44.2; IR (KBr) ~  3521 (w), 3294 (m), 1633 (s), 1538 (m), 1505 (s), 1255 (s), 1180 

(m), 846 (m), 726 (m), 696 (m) cm-1; HRMS (ESI-TOF) calculated for C15H16NO2 (M + H+) 

242.1176, found 242.1189. 

 

N-benzyl-4-fluorobenzamide (3o).  Rf = 0.30 (ethyl acetate/hexane = 1:4); Off white solid; yield: 

73% (79 mg); mp. 140-141 °C (lit.57 143-144 °C); 1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8 

Hz, 2H), 7.33 (br s, 5H), 7.08 (d, J = 8 Hz, 2H), 6.59 (br s, 1H), 4.61 (s, 2H); 13C NMR (100 MHz, 

CDCl3) δ 166.5, 164.8 (d, 1JFC = 250.4 Hz), 138.2, 130.6 (d, 4JFC = 3.1 Hz), 129.5 (d, 3JFC = 8.8 

Hz), 128.9, 128.0, 127.7, 115.7 (d, 2JFC = 21.8 Hz), 44.3; IR (KBr) ~  3323 (m), 3068 (s), 2927 

(s), 2848 (s), 1639 (m), 1544 (s), 1421 (s), 1360 (s), 1255 (s), 1057 (s), 854 (s), 723 (s) cm-1; 

HRMS (ESI-TOF) calculated for C14H13FNO (M + H+) 230.0981, found 230.0954.    

 

N-benzyl-3,4,5-trimethoxybenzamide (3p). Rf = 0.20 (ethyl acetate/hexane = 1:4); White solid; 

yield: 72% (55 mg); mp. 139-140 °C (lit.58 141 °C); 1H NMR (400 MHz, CDCl3) δ 7.37-7.29 (m, 

5H), 7.02 (s, 2H), 6.38 (br s, 1H), 4.645 (d, J = 4 Hz, 2H), 3.89 (s, 6H), 3.87 (s, 3H); 13C NMR 

(100 MHz, CDCl3) δ 167.1, 153.3, 141.1, 138.3, 129.9, 128.9, 128.1, 127.8, 104.5, 61.0, 56.5, 

44.4; IR (KBr) ~  3321 (w), 2941 (m), 2838 (m), 1697 (m), 1644 (s), 1585 (s), 1500 (s), 1463 

(m), 1415 (s), 1334 (s), 1232 (s), 1127 (s), 1002 (s), 764 (m), 699 (m) cm-1; HRMS (ESI-TOF) 

calculated for C17H20NO4 (M + H+) 302.1392, found 302.1407.  

 

N-benzyldecanamide (3q). Rf = 0.33 (ethyl acetate/hexane = 1:4); White solid; yield: 64% (75 

mg); mp. 60-61 °C (lit.59 60-62 °C); 1H NMR (400 MHz, CDCl3) δ 7.35-7.28 (m, 5H), 5.74 (br s, 

1H), 4.445 (d, J = 4 Hz, 2H), 2.21 (t, J1 = J2 = 8 Hz, 2H), 1.67-1.64 (m, 2H), 1.29-1.26 (m, 12H), 
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0.88 (t, J1 = J2 = 8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 173.2, 138.4, 128.8, 128.0, 127.6, 43.8, 

37.0, 32.0, 29.5, 29.4, 29.4, 29.4, 25.9, 22.8, 14.2; IR (KBr) ~  3438 (w), 2919 (m), 2850 (m), 

1633 (m), 695 (w) cm-1; HRMS (ESI-TOF) calculated for C17H28NO (M + H+) 262.2165, found 

262.2189.  

 

N,N-dibenzylcyclohexanecarboxamide (3r). Rf = 0.34 (ethyl acetate/hexane = 1:4); White solid; 

yield: 53%  ; mp. 118-120 °C; 1H NMR (400 MHz, CDCl3) δ 7.39 – 7.27 (m, 6H), 7.25 – 7.15 (m, 

4H), 4.58 (s, 2H), 4.46 (s, 2H), 2.58 – 2.52 (m, 1H), 1.81-1.63 (m, 7H), 1.30 – 1.19 (m, 3H); 13C 

NMR (100 MHz, CDCl3) δ 177.0, 137.7, 137.0, 129.0, 128.6, 128.1, 127.7, 127.3, 126.5, 77.4, 

77.1, 76.8, 49.7, 47.8, 40.9, 29.8, 25.8; IR (KBr) ~  3059 (s), 3029 (s), 2927 (m), 2854 (m), 1643 

(m), 1494 (s), 1450 (m), 1359 (s), 1244 (s), 1205 (m), 1176 (s), 1079 (s), 1028 (s), 948 (s), 731 (s) 

cm-1; HRMS (ESI-TOF) calculated for C21H26NO (M + H+) 308.2009, found 308.2026.  

 

N-benzylcyclohexanecarboxamide (3s). Rf = 0.30 (ethyl acetate/hexane = 1:4); White solid; yield: 

58%; mp. 110-114 °C (lit.60 113 °C); 1 : 4 mixture of rotamers (data for major isomer); 1H NMR 

(400 MHz, CDCl3) δ 7.37-7.27 (m, 10H), 7.25 (s, 1H), 5.73 (br s, 1H), 4.43 (d, J = 4 Hz, 2H); 

2.18-2.05 (m, 1H), 1.99-1.85 (m, 2H), 1.84-1.75 (m, 2H),  1.73-1.61 (m, 2H),  1.54-1.39 (m, 2H), 

1.35-1.15 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 176.0, 138.6, 128.8, 127.8, 127.5, 45.7, 44.3, 

43.5, 29.8, 25.8; IR (KBr) ~ 3286 (m), 3085 (s), 3028 (s), 2927 (m), 2851 (s), 1639 (m), 1543 

(m),  1492 (s), 1449 (s), 1311 (s), 1258 (s), 1219 (s), 1140 (s), 1079 (s), 991 (s) cm-1; HRMS (ESI-

TOF) calculated for C14H20NO (M + H+) 218.1539, found 218.1545.     
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N,N-dibenzyl-4-isopropylbenzamide (3t). Rf = 0.30 (ethyl acetate/hexane = 0.5:4.5); White solid; 

yield: 78% (89 mg); mp. 80-83 °C; 1H NMR (400 MHz, CDCl3) δ 7.41 (d, J = 8 Hz, 2H), 7.34-

7.28 (m, 4H), 7.24-7.18 (m, 6H), 7.13 (br s, 2H), 4.66 (br s, 2H), 4.40 (br s, 2H), 2.95-2.78 (m, 

1H), 1.19 (d, J = 8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 172.5, 150.8, 137.1, 136.7, 133.6, 

128.9, 128.8, 128.5, 127.7, 127.5, 127.1, 127.0, 126.7, 51.7, 46.9, 34.1, 23.9; IR (KBr) ~  3442 

(w), 3031 (m), 2961 (m), 1633 (m), 1452 (m), 1417 (m), 1258 (m), 1148 (m), 993 (m), 842 (s), 

733 (m), 699 (s) cm-1; HRMS (ESI-TOF) calculated for C24H26NO (M + H+) 344.2009, found 

344.2042. 

 

N,N-dibenzyl-2-bromobenzamide (3u).61 Rf = 0.30 (ethyl acetate/hexane = 0.5:4.5); White solid; 

yield: 69% (70 mg); mp. 130-134 °C (no literature report on melting points); 1H NMR (400 MHz, 

CDCl3) δ 7.54-7.51 (m, 2H), 7.40-7.30 (m, 10H), 7.17 (br s, 2H), 4.73 (s, 2H), 4.42 (s, 2H); 13C 

NMR (100 MHz, CDCl3) δ 172.3, 136.2, 129.7, 128.9, 128.7, 128.6, 128.4, 127.7, 127.6, 127.1, 

126.7, 51.6, 46.9; IR (KBr) ~  3436 (w), 3081 (s), 3059 (s), 3028 (s), 2923 (s), 1637 (m), 1420 

(m), 1248 (m), 1144 (s), 1027 (s), 990 (s),732 (m) cm-1; HRMS (ESI-TOF) calculated for 

C21H19BrNO (M + H+) 380.0650, found 380.0629. 

 

N,N-dibenzyl-4-cyanobenzamide (3v). Rf = 0.40 (ethyl acetate/hexane = 1:4); White solid; yield: 

62% (76 mg); mp. 115-117 °C (lit.50 114-116 °C); 1H NMR (400 MHz, CDCl3) δ 7.675 (d, J = 12 

Hz, 2H), 7.57 (d, J = 8 Hz, 2H), 7.39-7.30 (m, 8H), 7.11 (br s, 2H), 4.72 (br s, 2H), 4.34 (br s, 2H); 

13C NMR (100 MHz, CDCl3) δ 170.3, 140.6, 136.5, 135.8, 132.5, 129.2, 128.9, 128.6, 128.1, 

127.9, 127.5, 126.9, 118.1, 113.6, 51.5, 47.4; IR (KBr) ~  3442 (w), 2927 (s), 2229 (s), 1638 (m), 
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1425 (s),1261 (s), 1077 (s), 991 (s), 847 (s), 750 (s) cm-1; HRMS (ESI-TOF) calculated for 

C22H19N2O (M + H+) 327.1497, found 327.1482. 

 

N-benzyl-4-chlorobenzamide (3w). Rf = 0.27 (ethyl acetate/hexane = 1:4); White solid; yield: 67% 

(58 mg); mp. 158-160 °C (lit.62 162 °C); 1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 8 Hz, 2H), 

7.39 (d, J = 8 Hz, 2H), 7.36-7.30 (m, 5H), 6.46 (br s, 1H), 4.625 (d, J = 4 Hz, 2H); 13C NMR (100 

MHz, CDCl3) δ 166.5, 138.0, 137.9, 132.8, 131.6, 128.9, 128.5, 128.0, 127.8, 44.3; IR (KBr) ~  

3317 (w), 1634 (m), 1416 (m), 1093 (s), 849 (s), 711 (m) cm-1; HRMS (ESI-TOF) calculated for 

C14H13ClNO (M + H+) 246.0686, found 246.0672. 

 

N-benzylbenzamide (3x). Rf = 0.3 (ethyl acetate/hexane = 1:4); White solid; yield: 71% (69 mg); 

mp. 105-107 °C (lit.52 106 °C); 1H NMR (400 MHz, CDCl3) δ 7.79 (d, J = 8 Hz, 2H), 7.52-7.27 

(m, 8H), 6.49 (br s, 1H), 4.645 (d, J = 4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 167.5, 138.3, 

134.5, 131.6, 128.9, 128.7, 128.0, 127.7, 127.0, 44.2; IR (KBr) ~  3329 (w), 1641 (s), 1577 (m), 

1547 (m), 1418 (m), 1258 (m), 727 (m), 692 (m) cm-1; HRMS (ESI-TOF) calculated for C14H14NO 

(M + H+) 212.1070, found 212.1065. 

 

N-benzyl-4-bromobenzamide (3y). Rf = 0.40 (ethyl acetate/hexane = 1:4); White solid; yield: 58% 

(45 mg); mp. 157-160 °C (lit.63 160-162 °C); 1H NMR (400 MHz, CDCl3) δ 7.66 (d, J = 8 Hz, 

2H), 7.56 (d, J = 8 Hz, 2H), 7.38-7.29 (m, 5H), 6.37 (br s, 1H), 4.635 (d, J = 4 Hz, 2H); 13C NMR 

(100 MHz, CDCl3) δ 166.5, 138.0, 133.3, 131.9, 129.0, 128.7, 128.1, 127.9, 126.4, 44.4; IR (KBr) 

~  3437 (w), 2918 (s), 1634 (m), 1550 (m), 1257 (s), 846 (s), 731 (s), 701 (s) cm-1; HRMS (ESI-

TOF) calculated for C14H13BrNO (M + H+) 290.0181, found 290.0164.  
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N-benzyl-4-cyano-N-methylbenzamide (3z).64 Rf = 0.20 (ethyl acetate/hexane = 1:4); Colorless 

oil; yield: 73% (67 mg); 1:1 mixture of rotamers;  1H NMR (400 MHz, CDCl3) δ 7.71-7.64 (m, 

4H), 7.54 (d, J = 8 Hz, 4H), 7.38-7.28 (m, 8H), 7.12 (d, J = 8 Hz, 2H), 4.74, 4.44 (two singlets for 

two rotamers, 4H), 3.05, 2.82 (two singlets for two rotamers, 6H); 13C NMR (100 MHz, CDCl3) δ 

170.3, 169.6, 136.4, 132.4, 129.1, 128.9, 128.8, 128.2, 128.0, 127.8, 127.7, 127.5, 126.5, 118.1, 

113.4, 55.0, 50.9, 36.8, 36.4; IR (KBr) ~  3454 (w), 3085 (s), 3063 (s), 3028 (s), 2925 (m), 2230 

(m), 1633 (m), 1451 (m), 1402 (m), 1264 (m), 1070 (s), 850 (s), 702 (s) cm-1; HRMS (ESI-TOF) 

calculated for C16H15N2O (M + H+) 251.1184, found 251.1201.  

 

N-benzyl-2-iodo-N-methylbenzamide (3aa).65 Rf = 0.40 (ethyl acetate/hexane = 1:4); Colorless 

oil; yield: 67% (60 mg); 1:1 mixture of rotamers;  1H NMR (400 MHz, CDCl3) δ 7.47-7.29 (m, 

16H), 7.18 (br s, 2H), 4.77, 4.52 (two singlets for two rotamers, 4H), 3.03, 2.86 (two singlets for 

two rotamers, 6H); 13C NMR (100 MHz, CDCl3) δ 172.5, 171.7, 139.3, 137.1, 136.7, 136.2, 133.2, 

130.1, 129.7, 128.9, 128.7, 128.5, 128.4, 128.3, 127.9, 127.6, 127.3, 127.1, 126.9, 55.3, 50.9, 37.1, 

33.3; IR (KBr) ~  3459 (w), 3061 (m), 3029 (m), 2923 (m), 1631 (s), 1479 (m), 1450 (m), 1400 

(m), 1264 (m), 1069 (s), 718 (m), 698 (s) cm-1; HRMS (ESI-TOF) calculated for C15H15INO (M + 

H+) 352.0193, found 352.0165. 
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1H and 13C NMR Spectra  

 

Figure 3.5 1H NMR spectrum of N-benzyl-N-chloro-1-phenylmethanamine 

 

Figure 3.6 13C NMR spectrum of N-benzyl-N-chloro-1-phenylmethanamine 
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Figure 3.7 1H NMR spectrum of N,N-dibenzyl-4-chlorobenzamide (3a). 

 

 

Figure 3.8 13C NMR spectrum of N,N-dibenzyl-4-chlorobenzamide (3a). 
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Figure 3.9 1H NMR spectrum of N,N-dibenzyl-4-methylbenzamide (3b). 

 

Figure 3.10 13C NMR spectrum of N,N-dibenzyl-4-methylbenzamide (3b). 
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Figure 3.11 1H NMR spectrum of N,N-dibenzylbenzamide (3c). 

 

Figure 3.12 13C NMR spectrum of N,N-dibenzylbenzamide (3c). 
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Figure 3.13 1H NMR spectrum of N,N-dibenzyl-4-(trifluoromethyl)benzamide (3d). 

 

Figure 3.14 13C NMR spectrum of N,N-dibenzyl-4-(trifluoromethyl)benzamide (3d). 
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Figure 3.15 1H NMR spectrum of N,N-dibenzyl-4-methoxybenzamide (3e). 

 

Figure 3.16 13C NMR spectrum of N,N-dibenzyl-4-methoxybenzamide (3e). 
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Figure 3.17 1H NMR spectrum of N,N-dibenzylthiophene-2-carboxamide (3f). 

 

Figure 3.18 13C NMR spectrum of N,N-dibenzylthiophene-2-carboxamide (3f). 
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Figure 3.19 1H NMR spectrum of N-benzyl-4-bromo-N-methylbenzamide (3g). 

 

Figure 3.20 13C NMR spectrum of N-benzyl-4-bromo-N-methylbenzamide (3g). 

1:1 mixture of rotamers 
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Figure 3.21 1H NMR spectrum of N-benzyl-N-methylbenzamide (3h). 

 

Figure 3.22 13C NMR spectrum of N-benzyl-N-methylbenzamide (3h). 

1:1 mixture of rotamers 
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Figure 3.23 1H NMR spectrum of N-benzyl-4-chloro-N-methylbenzamide (3i). 

 

Figure 3.24 13C NMR spectrum of N-benzyl-4-chloro-N-methylbenzamide (3i). 

1:1 mixture of rotamers 
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Figure 3.25 1H NMR spectrum of N-benzyl-3-bromo-4-methoxy-N-methylbenzamide (3j). 

 

Figure 3.26 13C NMR spectrum of N-benzyl-3-bromo-4-methoxy-N-methylbenzamide (3j). 

1:1 mixture of rotamers 
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Figure 3.27 1H NMR spectrum of N-benzyl-3-bromo-N-methylbenzamide (3k). 

 

Figure 3.28 13C NMR spectrum of N-benzyl-3-bromo-N-methylbenzamide (3k). 

1:1 mixture of rotamers 
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Figure 3.29 1H NMR spectrum of N-benzyl-3-nitrobenzamide (3l). 

 

Figure 3.30 13C NMR spectrum of N-benzyl-3-nitrobenzamide (3l). 
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Figure 3.31 1H NMR spectrum of N-benzyl-4-nitrobenzamide (3m). 

 

Figure 3.32 13C NMR spectrum of N-benzyl-4-nitrobenzamide (3m). 
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Figure 3.33 1H NMR spectrum of N-benzyl-4-methoxybenzamide (3n). 

 

Figure 3.34 13C NMR spectrum of N-benzyl-4-methoxybenzamide (3n). 
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Figure 3.35 1H NMR spectrum of  N-benzyl-4-fluorobenzamide (3o) 

 

Figure 3.36 13C NMR spectrum of  N-benzyl-4-fluorobenzamide (3o) 
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Figure 3.37 1H NMR spectrum of N-benzyl-3,4,5-trimethoxybenzamide (3p). 

 

Figure 3.38 13C NMR spectrum of N-benzyl-3,4,5-trimethoxybenzamide (3p). 
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Figure 3.39 1H NMR spectrum of N-benzyldecanamide (3q). 

 

Figure 3.39 13C NMR spectrum of N-benzyldecanamide (3q). 



 

 
 

148 Chapter 3: Radical Induced Metal and Solvent-free Cross Coupling for Amide Synthesis 

 

Figure 3.39 1H NMR spectrum of N,N-dibenzylcyclohexanecarboxamide (3r). 

 

Figure 3.40 13C NMR spectrum of N,N-dibenzylcyclohexanecarboxamide (3r). 
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Figure 3.41 1H NMR spectrum of N-benzylcyclohexanecarboxamide (3s). 

 

Figure 3.42 13C NMR spectrum of N- benzylcyclohexanecarboxamide (3s). 

1:4 mixture of rotamers 
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Figure 3.43 1H NMR spectrum of N,N-dibenzyl-4-isopropylbenzamide (3t). 

 

 

Figure 3.44 13C NMR spectrum of N,N-dibenzyl-4-isopropylbenzamide (3t). 
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Figure 3.45 1H NMR spectrum of N,N-dibenzyl-2-bromobenzamide (3u). 

 

Figure 3.46 13C NMR spectrum of N,N-dibenzyl-2-bromobenzamide (3u). 
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Figure 3.47 1H NMR spectrum of N,N-dibenzyl-4-cyanobenzamide (3v). 

 

Figure 3.48 13C NMR spectrum of N,N-dibenzyl-4-cyanobenzamide (3v). 
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Figure 3.49 1H NMR spectrum of N-benzyl-4-chlorobenzamide (3w) 

 

Figure 3.50 13C NMR spectrum of N-benzyl-4-chlorobenzamide (3w) 
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Figure 3.51 1H NMR spectrum of N-benzylbenzamide (3x). 

 

Figure 3.52 13C NMR spectrum of N-benzylbenzamide (3x). 
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Figure 3.53 1H NMR spectrum of N-benzyl-4-bromobenzamide (3y). 

 

Figure 3.54 13C NMR spectrum of N-benzyl-4-bromobenzamide (3y). 
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Figure 3.55 1H NMR spectrum of N-benzyl-4-cyano-N-methylbenzamide (3z). 

 

Figure 3.56 13C NMR spectrum of N-benzyl-4-cyano-N-methylbenzamide (3z). 

1:1 mixture of rotamers 
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Figure 3.57 1H NMR spectrum of N-benzyl-2-iodo-N-methylbenzamide (3aa). 

 

Figure 3.58 13C NMR spectrum of N-benzyl-2-iodo-N-methylbenzamide (3aa). 

1:1 mixture of rotamers 
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Figure 3.59 1H NMR spectrum of 2,2,6,6-tetramethylpiperidin-1-yl 4-chlorobenzoate (5). 

 

Figure 3.60 13C NMR spectrum of 2,2,6,6-tetramethylpiperidin-1-yl 4-chlorobenzoate (5). 



CHAPTER 4 

Transformation of Contact-Explosives Primary Amines and 

Iodine(III) into a Successful Chemical Reaction  

 

4.1 ABSTRACT 

 

Any synthetic transformation using contact-explosives primary amines and hypervalent iodine(III) 

(phenyliodine diacetate) in constrained media (extreme condition) is practically impossible. 

Herein, we report a method of controlling the explosion into a successful chemical reaction using 

acid-salt NaHSO4. As a proof-of-concept, we considered mechanochemical (ball-milling) cross 

dehydrogenative coupling (CDC) reaction for amidation of aldehydes via C–H activation. The 

isothermal titration calorimetric (ITC) study was helpful to understand enthalpy changes during 

the reactions before and after addition of NaHSO4. 

 

4.2 INTRODUCTION  

The behavior of chemical systems is known to be controlled by environment. In 1867, to reduce 

safety problems of transporting nitroglycerine, Alfred Nobel mixed absorbent clay ‘Kieselguhr’ 

with nitroglycerine to diminish the sensitivity.1  Encapsulation within a cavity of a container 

molecule, known to stabilize of reactive species like cyclotrisiloxane2, benzyne3, cyclobutadiene4 

or 1,2,4,6-cycloheptatetraene5 (Figure 4.1a). Also, we reported with Nitschke that white 

phosphorus was air-stable upon incarceration within tetrahedral metallo-supramolecular capsule 
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(Figure 4.1b).6 Not only stabilization of reactive intermediates, also microenvironment could lead 

to direct the reaction pathway, e.g., highly selective [2 + 2] cross-photodimerization of olefins was 

observed in crystalline encapsulated state (Figure 4.1c)7; on the contrary selectivity in the 

uncapsulated solution state was very poor. Rebek and coworkers tailored a molecular receptor 

which could stabilize the energetically unfavorable hemiaminal for minutes to an hour (Figure 

4.1d)8. Iodine-ammonia combination is known as contact explosive9  in constrained media. 

Similarly, hypervalent iodines as oxidizer10 form charge transfer complex with fuel-amines11 and 

 

Figure 4.1. Controlling the chemical behaviour by micro-environment. Original artworks from the 

corresponding references with permissions from corresponding publishers.   

 

cause highly exothermic reactions. Under solvent free condition (constrained media) reactants 

experience maximum possible contacts among themselves and create an extreme situation for 

contact-explosives. Therefore, violent exothermic reaction takes place for hypervalent iodine(III) 

reagents and electron rich amines under solvent free condition. To the best of our knowledge, no 

b) White phosphorus air stable

c) Cavity-directed synthesis

d) Hemiaminal stabilization 

a) Stabilization of  reactive species
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synthetic applications using hypervalent iodine(III) reagents and primary amines in a constrained 

media is reported, if any. 

Recently, ball-milling mechanochemistry,12-14 has gained significant interest as an alternative 

technologies in organic synthesis.15-17 This mechanochemical methodology has huge significance 

to green processes, time efficient, environmentally benign and shown to be economical. Towards 

quantitative conversion, less by products and minimum purification bring extra importance to this 

method.18-21 The mechanochemical syntheses of small organic molecules,16, 20 including 

hypervalent iodine mediated synthesis22, 23 are well explored.  

4.3 Results and Discussions:  

We report here a mechanochemical cross dehydrogenative coupling (CDC)24-30 for oxidative 

amidation31-33 of aryl aldehydes via C–H activation34-39 using phenyliodine diacetate (PIDA)40-42 

and benzyl amines. An acid-salt sodium bisulphate (NaHSO4) was used to control the reactivity of 

contact-explosive (Figure 4.2).  

 

Figure 4.2. Mechanochemical cross dehydrogenative coupling (CDC); (a) Uncontrollable reaction in 

absence of NaHSO4. (b) NaHSO4 mediated explosion free and successful reaction. (c) Photographs of 

reaction mixture after explosion (left) and subsequent to making explosion free (right).   
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The CDC reaction has proven to be a powerful and atom-economic approach for C-N bond 

construction. Making C–N bond is an important transformation in organic synthesis as it 

constitutes the structural backbone of proteins and peptides through amide linkage. Common 

methods for oxidative amidation involve: coupling of carboxylic acids and amines in presence of 

a coupling agent,43 acylation of amines with activated carboxylic acids etc.44 We have also reported 

metal and solvent free oxidative amidation of aldehydes with N-chloramines via C–H activation 

under neat and ball-milling condition using TBAI (tetra-butyl ammonium iodide)-TBHP (tert-

butyl hydroperoxide) combinations.45  

For C–N bond constructions, hypervalent iodines are also considered as useful reagents.46, 47 

However, immediate explosion was observed and reaction mixture became brownish during 

mixing of benzaldehydes, benzyl amines and PIDA under solvent free ball-milling (Caution!!, see 

Caution paragraph in Experimental Section) (Figure 4.2c, left). Consequently, acetic acid 

generated (from PIDA) could control the reactivity of the amine through protonation and 47% of 

the amide was obtained (Figure 4.2a). The same reaction was found to be explosion free in 

presence of externally added acetic acid (yield 41%, Table 1). Likewise, an acid-salt NaHSO4 

(Figure 4.2b) as additive yielded 84% of 3a.  

Table 4.1 represents the optimization of reaction condition.  Mechanochemical CDC for 

synthesis of N-benzyl-4-bromobenzamide (3a) was done successfully using 4-bromobenzaldehyde 

(1.0 equiv, 1a), benzyl amine (1.1 equiv, 2a), PIDA (2.0 equiv) and NaHSO4 (2.0 equiv). During 

optimization, progress of the reaction was monitored using thin layer chromatography (TLC) or 

1H NMR spectroscopy. 
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Table 4.1. Optimization of reaction condition for synthesis of 3a. 

 

entry PIDA (equiv) Additiuve (equiv) Yield (%)b 

1 1.1 NaHSO4 (1) 44 

2 2.0 NaHSO4 (2) 84 (67) 

3 1.1 NaH2PO4 (1) 15 

4 1.1 NaCl (1) Trace 

5 1.1 NaHCO3 (1.2) 23 

6 2 KH2PO4 (2) 19 

7 2 AcOH (2) 41 

8 2 H2SO4 (2) 11 

9 2 PTSA (2) < 5 

10 2 TBAHS (2) ~ 5 

aReactions were performed with 1.0 equiv of 1a and 1.1 equiv of 2a. bIsolated yields (based on recovered aldehydes 

after chromatographic purification) are shown.  

 

Amide derivatives were obtained in good to excellent yields (Figure 4.3) under optimized 

condition. Higher yields of amides were observed with the aromatic aldehydes containing electron 

withdrawing (3a-3c, 3f-3o, 3q-3s, 3u-3x, 3z and 3aa) than electron donating groups (3d, 3e, 3t, 

3y). Amides from halogen substituted benzaldehydes (3a, 3f, 3h, 3j, 3n, 3o, 3r and 3w) were also 

isolated in convincing yields. Accordingly, various amines like benzyl amine (3a-h, 3o,p), 4-

fluorobenzyl amine (3i-k and 3aa), 2-phenylethanamine (3q-u), 2-chlorobenzyl amine (3l-n) and 

(3,5-bis(trifluoromethyl)phenyl)methanamine (3v-z) derivatives also facilitated excellent yields. 

In addition, reactions were performed under solvent free condition and therefore highly volatile 

aliphatic amines were not considered for this study.  
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Figure 4.3. Compounds identification number and isolated yields are shown for the synthesized 

compounds.  

 

Control experiments (Figure 4.4) were performed to shed some light on mechanism of the reaction. 

Reaction of 4-nitrobenzaldehyde (1b) with secondary amine (dibenzyl amine, 4) led to 

corresponding amide in 13% yield (Figure 4.4a) and majority of aldehydes remained unreacted. 

More reactive secondary amine possibly destroyed PIDA and the reaction became uncontrollable 

using NaHSO4. Oligomeric iodosyl benzene sulfate 6 [(PhIO)3SO3)]n
48 is known to be synthesized 

from grinding of PIDA and NaHSO4.
49 Mechanochemical milling of 6 and imine 5 (synthesized 

separately from 1a and 2a) did not results any amide (Figure 4.4b). Separately, 1a, 2a and 6 under 

ball-milling also led to explosion (Caution!!) (Figure 4.4d). More examples of unsuccessful one 

pot milling reactions were: (a) imine 5, PIDA, NaHSO4 and K2CO3 (14%, Figure 4.4c) (b) imine 

5 and PIDA (0%, Figure 4.4e), because PIDA was unable to perform oxo transfer reactions (c) 5, 

NaHSO4 and PIDA (5%, Figure 4.4f). From these observations, it was rationalized that the 
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iodosylbenzene sulfate 6 [(PhIO)3SO3)]n was not the active reagent and imine 5 was not the 

intermediate50 for this transformation. Expectedly, the oxidative amidation proceeded via 

hemiaminal intermediate (Figure 4.5a).51 

 

Figure 4.4. (a) – (f) Controlled experiments to understand the mechanism of the reaction.  

 

The role of NaHSO4 towards successful and explosion free mechanochemical CDC reactions was 

understood. The acid-salt NaHSO4 is widely used in the poultry industry to decrease basic-

ammonia and bacterial levels in litter52. In aqueous solution, NaHSO4 acts as a medium-strong 

acid. A solution of 1.0 M NaHSO4 in water shows pH < 1.0 and the bisulphate anion has pKa ~ 

1.99. The pKa of benzyl amine is 9.38 (through dissociation of -NH+) and that of comparable to 

ammonia (9.21)53. Ammonia generally reacts with NaHSO4 to form salts (2NaHSO4 + 2NH4OH 
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→ (NH4)2SO4 + Na2SO4 + 2H2O).52 Similarly, NaHSO4 may form acid-base complex with basic 

amines to make explosion free oxidative amidation. Also, in presence of conc. H2SO4, benzyl 

amine did not react with either aldehyde or PIDA. Stronger protic acid H2SO4 (pKa -10) could 

completely deactivated the amine upon -NH+ protonation. However, using weaker organic acid p-

toluenesulfonic acid (pKa -2.8), the amide (3a) was isolated in < 5% yield. Pyrrolidine (pKa 11.27 

of conjugate acid in water) or 4-methoxy benzyl amines are stronger base than benzyl amine and 

the explosion could not be controlled using NaHSO4. Following, no amidation products were 

isolated using pyrrolidine or 4-methoxy benzylamine (3ab-3af, Figure 4.5b). Also, gram scale 

synthesis of amide was done successfully using the proposed methodology.  

 

 

Figure 4.5. (a) Plausible mechanism for the CDC reaction. (b) Unsuccessful amidation under optimized 

condition. (c) Determination of enthalpy changes from the reaction of benzyl amine and PIDA, both in 

absence and presence of acetic acid (AcOH) 

 

Isothermal titration calorimetric (ITC) analysis were performed to estimate the enthalpy of reaction 

(∆H) from the reaction of PIDA and benzylamine in acetonitrile both in absence (∆H1) and 
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presence (∆H2) of acetic acid (Figure 4.5c, 4.6). The acetic acid could control the reaction and 

∆∆H (∆H1 - ∆H2) of the reaction was 3.26 × 105 kcal/mol. 

 

Figure 4.6. 2.08 × 10-7 M of benzylamine was titrated with 1.36 × 10-7 M of PIDA. (a) without any acid; 

(b) benzylamine was mixed with 2.08 × 10-7 M of acetic acid and then titrated with PIDA. 

 

          Amidation reactions using primary-amine and iodine(III) reported by Tiwari and co-workers 

were done in ionic liquid50. Higher concentration of primary-amine destroyed PIDA during fast 

addition and that resulted in poor yield of amides. Two-fold increase in yield of amide was 

achieved upon drop-wise addition of amine with constant stirring to PIDA solution in ionic liquids. 

High polarity of ionic liquids and high-dilution effect, cooperatively could stop the immediate 

explosion of primary amines and iodine(III). However, in this work under solvent-free ball-milling 

condition maximum possible concentration putting the system under high stress and thus it could 

a) b)
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lead to uncontrollable oxidation more easily. As a result the explosion was observed immediately 

in absence of NaHSO4.  

 

4.4 CONCLUSIONS 

In summary, the presented work is an unprecedented approach in which either an acid or acid-salt 

(NaHSO4) could transform an explosive reaction mixture into a successful chemical reaction. A 

concept is proposed in which, by selecting an appropriate condition it is now possible to perform 

a highly exothermic reaction at ambient laboratory atmosphere. We anticipate that stopping an 

explosion of contact-explosives primary amines-phenyliodine diacetate and the safety benefits of 

using them are substantial: (a) a new research area can be initiated using this concept; (b) this 

approach could be used directly to diffuse dangerous chemical weapons; (c) environment can be 

protected through the sequestration of hazardous substances. This study also highlights the 

progress of C–H bond activation chemistry for the formation of amides and should find wide 

application in the context of both natural product synthesis and pharmaceuticals using 

mechanochemistry.  

 

4.5 EXPERIMENTAL SECTIONS  

General Methods. The ball milling (21 Hz) experiments were performed at open atmosphere. 

Column chromatographic purifications of compounds were done using silica-gel (mesh 100-200) 

and hexane-ethylacetate mixture as eluent, unless otherwise mentioned. NMR spectra were 

recorded on 400 MHz instrument at 25 °C. The chemical shift values are reported in parts per 

million (ppm) and referred to the residual chloroform (7.26 ppm for 1H and 77.16 for 13C) and 

deuterium oxide (4.79 ppm for 1H). High-resolution mass spectrometry (HRMS) was conducted 
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on ESI-TOF (time of flight) mass spectrometer. Isothermal titration calorimetric (ITC) experiment 

was performed in MicroCal iTC200 isothermal titration calorimeter. Infrared spectral data are 

reported in wavenumber (cm−1). Melting points of the compounds were determined using digital 

melting point apparatus and are uncorrected. 

Caution: When PIDA and primary amines were mixed under solvent free condition, immediate 

explosion was observed. In presence of NaHSO4, no explosion was observed under similar 

condition. Still, general safety concern at laboratory should be carefully exercised and highly 

recommended that all reactions should be carried out in a well-ventilated fume hood behind a blast 

shield. 

Large scale synthesis: Recommended loading of the reactant materials should be less than one 

third of jar volume. In a 25 mL stainless steel milling jar two balls (15 mm dia), PIDA (1.74 gm, 

5.4 mmol), NaHSO4 (746 mg, 5.4 mmol), 4-bromobenzaldehyde (500 mg, 2.7 mmol) and 

benzylamine (324 µL, 2.9 mmol) added sequentially and milled 2 h. Workup and followed by 

purification (SI) led to 167 mg of 4-bromobenzaldehyde (1a) and product 3a (406 mg, yield 78%). 

Isothermal Titration Calorimetric (ITC) study: In a typical procedure, 200 µL of 2.08 × 10-7 M 

of benzylamine and 40 µL of 1.36 × 10-7 M of PIDA in acetonitrile solution were taken into cell 

and syringe, respectively. Then benzylamine was titrated with PIDA by following the bellow 

specified experimental design.  

 

Cell temperature 25 ºC; Initial delay 60 Sec; Stirring speed 600 rpm; Injection volume 0.5 µL (40 

times); Duration of injection 3 Sec; Spacing between two injection 120 Sec. 
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Synthesis of oligomeric iodosylbenzene sulfate [(PhIO)3SO3]n (6):54 

 

Phenyliodine diacetate (400 mg, 1.24 mmol) was added to NaHSO4∙H2O (176 mg, 1.03 mmol) in 

an agate mortar. Then the mixture was grinded for 10 min and the resulting mass was transferred 

to a beaker and dissolved in 5 mL of water. After 5 min, clear yellow solution was formed and 

allowed to settle for 2 h. After that yellow precipitate was filtered off and washed with cold water 

and dried to afford yellow crystalline compound (135 mg). The filtrate kept for slow evaporation 

and an additional 92 mg of compound was isolated. Total 227 mg (74%) of 6 was isolated. 1H 

NMR (400 MHz, D2O) δ 8.09 (d, J = 8 Hz, 2H), 7.71 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.8 Hz, 

2H).13C NMR (100 MHz, D2O) δ 134.3, 133.1, 131.5, 123.5. 

General procedure for the preparation of amides under ball-milling: In a 10 mL stainless steel 

milling jar, benzylamine (65 µL, 0.59 mmol) was added to the mixture of 4-bromobenzaldehyde 

(100 mg, 0.54 mmol), PIDA (348 mg, 1 mmol), NaHSO4 (149 mg, 1 mmol) and one grinding ball 

(15 mm diameter, Stainless Steel). The progress of the reaction under milling condition was 

monitored by thin layer chromatography (TLC) or 1H NMR. After complete the reaction, the 

mixture was dissolved in dichloromethane and compound (N-Benzyl-4-bromobenzamide) was 

purified by column chromatography. Isolated materials: 20 mg of 4-Bromobenzaldehyde (1a) was 

recovered as unreacted material and 3a (105 mg, yield 84% based on recovered 1a). 
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Compound characterization data.  

The isolated yields (after column chromatography) were calculated based on recovered starting 

material. However, in parenthesis the yields are calculated based on aldehydes used for the 

reaction. 

N-Benzyl-4-bromobenzamide (3a): Rf = 0.30 (ethyl acetate/hexane  = 1:4); white solid; yield 

84% (73 mg, 67 %); mp 155−159 °C (lit.55 160−162 °C); 1H NMR (400 MHz, CDCl3) δ 7.66 (d, 

J = 8 Hz, 2H), 7.56 (d, J = 8 Hz, 2H), 7.35-7.31 (m, 5H), 6.42 (br s, 1H), 4.63 (d, J = 8 Hz, 2H); 

13C NMR (100 MHz, CDCl3) δ 166.5, 138.0, 133.3, 131.9, 129.0, 128.7, 128.1, 127.9, 126.4, 44.4; 

IR (KBr) ν̃ 3308 (m), 3081 (s), 2919 (s), 2848 (s), 1640 (m), 1548 (m), 1416 (s), 1256 (s), 847 (s) 

cm−1; HRMS (ESI-TOF) calcd for C14H13BrNO (M + H+) 290.0175, found 290.0176. 

N-Benzyl-4-nitrobenzamide (3b): Rf = 0.32 (ethyl acetate/hexane  = 1:4); white solid; yield 92% 

(87 mg, 73%); mp 141−144 °C (lit.56 142 °C); 1H NMR (400 MHz, CDCl3) δ 8.26 (d, J = 8 Hz, 

2H), 7.94 (d, J = 8 Hz, 2H), 7.37 – 7.34 (m, 5H), 6.60 (br s, 1H), 4.65 (d, J = 8 Hz, 2H); 13C NMR 

(100 MHz, CDCl3) δ 165.4, 149.7, 140.0, 137.5, 129.0, 128.3, 128.1, 128.1, 123.9, 44.6; IR (KBr) 

ν̃ 3280 (m), 2922 (m), 2839 (s), 1633 (m), 1597 (m), 1515 (m), 1345 (m), 1105 (s), 870 (s), 697 

(s) cm−1; HRMS (ESI-TOF) calcd for C14H13N2O3 (M + H+) 257.0921, found 257.0924. 

N-Benzyl-4-cyanobenzamide (3c): Rf = 0.32 (ethyl acetate/hexane  = 1:4); white solid; yield 89% 

(89 mg, 71%); mp 154−156 °C (lit.57 150−151 °C); 1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 8 

Hz, 2H), 7.69 (d, J = 8 Hz, 2H), 7.37 – 7.29 (m, 5H), 6.67 (br s, 1H), 4.62 (d, J = 4 Hz, 2H); 13C 

NMR (100 MHz, CDCl3) δ 165.7, 138.3, 137.6, 132.5, 129.0, 128.0, 128.0, 127.8, 118.0, 115.2, 

44.4; IR (KBr) ν̃ 3316 (w), 2923 (s), 2218 (s), 1643 (m), 1550 (s), 1422 (s), 1311 (s), 864 (s), 721 

(s) cm−1; IR (KBr) ν̃ 3315 (w), 3090 (s), 3064 (s), 3028 (s), 2923 (s), 2231 (s), 1644 (s), 1547 (m), 
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1496 (m), 1286 (m), 857 (m), 697 (m) cm−1; HRMS (ESI-TOF) calcd for C15H13N2O (M + H+) 

237.1022, found 237.1041. 

N-benzyl-4-methylbenzamide (3d): Rf = 0.40 (ethyl acetate/hexane  = 1:4); white solid; yield 

72% (77 mg, 59%); mp 133−136 °C (lit.55 131−134 °C); 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J 

= 8.1 Hz, 6H), 7.37 – 7.27 (m, 16H), 7.21 (d, J = 8.0 Hz, 6H), 6.58 (s, 3H), 4.61 (d, J = 5.6 Hz, 

7H), 2.39 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 167.43, 142.02, 138.47, 131.63, 129.31, 128.83, 

128.65, 127.97, 127.65, 127.61, 127.10, 77.48, 77.16, 76.84, 44.12, 21.53; IR (KBr) ν̃ 3311 (m), 

3085 (s), 3054 (s), 3028 (s), 1639 (m), 1546 (m), 1420 (s), 1323 (s), 1058 (s), 841 (s), 721 (s) cm−1; 

HRMS (ESI-TOF) calcd for C15H16NO (M + H+) 226.1226, found 226.1247. 

N-Benzyl-4-methoxybenzamide (3e): Rf = 0.20 (ethyl acetate/hexane  = 1:4); white solid; yield 

74% (69 mg, 56%); mp 118−121 °C (lit.58 124−126 °C); 1H NMR (400 MHz, CDCl3) δ 7.76 (d, J 

= 8 Hz, 2H), 7.40 – 7.28 (m, 5H), 6.92 (d, J = 8 Hz, 2H), 6.31 (br s, 1H), 4.64 (d, J = 8 Hz, 2H), 

3.84 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 166.9, 162.3, 138.5, 128.9, 128.9, 128.0, 127.7, 126.7, 

113.9, 55.5, 44.2; IR (KBr) ν̃ 3521 (w), 3295 (m), 3054 (s), 1633 (m), 1537 (m), 1505 (s), 1256 

(s), 846 (m), 726 (m) cm−1; HRMS (ESI-TOF) calcd for C15H16NO2 (M + H+) 242.1176, found 

242.1198. 

N-Benzyl-4-chlorobenzamide (3f): Rf = 0.25 (ethyl acetate/hexane  = 1:4); white solid; yield 79% 

(76 mg, 62%); mp 157−162 °C (lit.55 163−166 °C); 1H NMR (400 MHz, CDCl3) δ 7.79 (d, J = 8 

Hz, 2H), 7.43 (d, J = 8 Hz, 2H), 7.37 – 7.27 (m, 5H), 6.51 (br s, 1H), 4.645 (d, J = 4 Hz, 2H). 13C 

NMR (100 MHz, CDCl3) δ 167.5, 138.2, 134.4, 131.6, 128.9, 128.7, 128.0, 127.7, 127.1, 44.2; IR 

(KBr) ν̃ 3324 (m), 3059 (s), 3030 (s), 2928 (s), 1643 (s), 1603 (s), 1576 (s), 1542 (m), 1452 (s), 

1418 (s), 1312 (s), 1259 (s), 1028 (s), 727 (s), 694 (m), 666 (s) cm−1; HRMS (ESI-TOF) calcd for 

C14H13ClNO (M + H+) 246.0686, found 246.0672.  
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N-Benzyl-3-nitrobenzamide (3g): Rf = 0.17 (ethyl acetate/hexane  = 1:4); white solid; yield 87% 

(81 mg, 68%); mp 99−102 °C (lit.59 95−96 °C); 1H NMR (400 MHz, CDCl3) δ 8.60 (s, 1H), 8.34 

(d, J = 8 Hz, 1H), 8.17 (d, J = 8 Hz, 1H), 7.63 (dt, J = 11.7, 6.0 Hz, 1H), 7.36 – 7.31 (m, 5H), 6.75, 

6.65 (br s, 1H), 4.655 (d, J = 4 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 165.0, 148.3, 137.6, 136.1, 

133.4, 130.0, 129.0, 128.1, 128.0, 126.2, 121.9, 44.6; IR (KBr) ν̃ 3301 (w), 3086 (s), 2926 (s), 

1642 (m), 1528 (m), 1349 (m), 1159 (s), 1081 (s), 909 (s), 814 (s), 699 (m) cm−1; HRMS (ESI-

TOF) calcd for C14H13N2O3 (M + H+) 257.0921, found 257.0931. 

N-Benzyl-3-bromobenzamide (3h):60 Rf = 0.30 (ethyl acetate/hexane  = 1:4); white solid; yield 

76% (69 mg, 63%); mp 112−116 °C; 1H NMR (400 MHz, CDCl3) δ 7.93 (s, 1H), 7.71 (d, J = 8 

Hz, 1H), 7.62 (d, J = 8 Hz, 1H), 7.38 – 7.27 (m, 6H), 6.43 br (s, 1H), 4.635 (d, J = 4 Hz, 2H). 13C 

NMR (100 MHz, CDCl3) δ 166.1, 137.9, 136.4, 134.6, 130.3, 130.3, 129.0, 128.1, 127.9, 125.7, 

122.9, 44.4; IR (KBr) ν̃ 3320 (m), 3063 (s), 3028 (s), 2925 (s), 1638 (m), 1562 (m), 1542 (m), 

1471 (s), 1454 (s), 1315 (s), 1071 (s), 996 (s), 894 (s), 744 (m), 698 (m) cm−1; HRMS (ESI-TOF) 

calcd for C14H13BrNO (M + H+) 290.0175, found 290.0189. 

4-Cyano-N-(4-fluorobenzyl)benzamide (3i): Rf = 0.20 (ethyl acetate/hexane  = 1:4); white solid; 

yield 92% (100 mg, 74%); mp 109−111 °C; 1H NMR (400 MHz, CDCl3) δ 7.88 (d, J = 8 Hz, 2H), 

7.72 (d, J = 8 Hz, 2H), 7.31 (dd, J = 10, 6 Hz, 2H), 7.03 (dd, J = 12, 5 Hz, 2H), 6.59 (br s, 1H), 

4.60 (d, J = 8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 165.7, 162.5 (d, 1JCF = 245 Hz), 138.2, 

133.5 (d, 4JCF = 3 Hz), 132.6, 129.8 (d, 3JCF = 8 Hz), 127.8, 118.0, 115.9 (d, 2JCF = 21 Hz), 115.3, 

43.7; IR (KBr) ν̃ 3265 9m), 3094 (m), 2922 (m), 2852 (s), 2230 (m), 1633 (m), 1556 (m), 1512 

(m), 1428 (s), 1251 (s), 1220 (m), 1154 (s), 1059 (s), 861 (m), 840 (m), 807 (m), 731 (s), cm−1; 

HRMS (ESI-TOF) calcd for C15H12FN2O (M + H+) 255.0928, found 255.0925.     
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4-Bromo-N-(4-fluorobenzyl)benzamide (3j): Rf = 0.35 (ethyl acetate/hexane  = 1:4); white solid; 

yield 83% (80 mg, 69%); mp 128−131 °C; 1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 8.5 Hz, 2H), 

7.53 (d, J = 8.5 Hz, 2H), 7.28 (dd, J = 8.3, 5.5 Hz, 2H), 7.01 (t, J = 8.6 Hz, 2H), 6.65 (br s, 1H), 

4.55 (d, J = 5.7 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 166.6, 162.4 (d, 1JCF = 244 Hz), 133.9 (d, 

4JCF = 3 Hz), 133.1, 131.9, 129.7 (d, 3JCF = 8 Hz), 128.7, 126.4, 115.7 (d, 2JCF = 21 Hz), 43.5; IR 

(KBr) ν̃ 3315 (m), 3081 (s), 1638 (m), 1548 (m), 1227 (s), 841 (s), 801 (s), 711 (s) cm−1; HRMS 

(ESI-TOF) calcd for C14H12BrFNO (M + H+) 308.0081, found 308.0099.     

N-(4-fluorobenzyl)-4-nitrobenzamide (3k): Rf = 0.30 (ethyl acetate/hexane  = 1:4); white solid; 

yield 86% (85 mg, 67%); mp 129−132 °C; 1H NMR (400 MHz, CDCl3) δ 8.27 (d, J = 8 Hz, 2H), 

7.94 (d, J = 8 Hz, 2H), 7.33 (s, 2H), 7.04 (t, J = 8.1 Hz, 2H), 6.57 (br s, 1H), 4.625 (d, J = 4 Hz, 

2H); 13C NMR (100 MHz, CDCl3) δ 165.4, 162.5 (d, 1JCF = 245 Hz), 149.8, 139.9, 133.4 (d, 4JCF 

= 3 Hz), 129.9 (d, 3JCF = 9 Hz), 128.3, 124.0, 115.9 (d, 2JCF = 22 Hz), 43.8; IR (KBr) ν̃ 3271 (m), 

3077 (s), 2923 (m), 2853 (m), 1644 (m), 1600 (m), 1548 (m), 1510 (m), 1349 (m), 1219 (m), 1156 

(s), 1064 (s), 981 (s), 824 (m), 723 (m) cm−1; HRMS (ESI-TOF) calcd for C14H12FN2O3 (M + H+) 

275.0826, found 275.0829.   

N-(2-chlorobenzyl)-4-nitrobenzamide (3l): Rf = 0.45 (ethyl acetate/hexane  = 1:4); white solid; 

yield 87% (93 mg, 69%); mp 163−166 °C; 1H NMR (400 MHz, CDCl3) δ 8.27 (d, J = 8 Hz, 2H), 

7.93 (d, J = 8 Hz, 2H), 7.48 – 7.38 (m, 2H), 7.29-7.25 (m, 2H), 6.69 (br s, 1H), 4.745 (d, J = 4 Hz, 

2H); 13C NMR (100 MHz, CDCl3) δ 165.3, 149.6, 139.8, 134.9, 133.8, 130.8, 129.7, 129.5, 128.2, 

127.3, 123.8, 42.5; IR (KBr) ν̃ 3331 (m), 3063 (s), 2920 (m), 2857 (s), 1644 (m), 1598 (m), 1523 

(m), 1345 (m), 1300 (m), 1015 (s), 752 (s) cm−1; HRMS (ESI-TOF) calcd for C14H12ClN2O3 (M + 

H+) 291.0531, found 291.0537.  
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N-(2-chlorobenzyl)-4-cyanobenzamide (3m): Rf = 0.30 (ethyl acetate/hexane  = 1:4); white solid; 

yield 88% (92 mg, 64%); mp 132−135 °C; 1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 8.3 Hz, 2H), 

7.72 (d, J = 8.2 Hz, 2H), 7.51 – 7.43 (m, 1H), 7.43 – 7.36 (m, 1H), 7.30 – 7.25 (m, 2H), 6.70 (s, 

1H), 4.73 (d, J = 5.9 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 165.67, 138.29, 135.10, 133.94, 

132.61, 130.83, 129.86, 129.55, 127.86, 127.43, 118.09, 115.36, 77.48, 77.16, 76.84, 42.54; IR 

(KBr) ν̃ 3415 (w), 2923 (s), 2848 (s), 2230 (s), 1648 (m), 1543 (s), 1288 (s), 858(s), 750 (m) cm−1; 

HRMS (ESI-TOF) calcd for C15H12ClN2O (M + H+) 271.0632, found 271.0640. 

4-Bromo-N-(2-chlorobenzyl)benzamide (3n): Rf = 0.37 (ethyl acetate/hexane  = 1:4); white 

solid; yield 84% (83 mg, 68%); mp 138−139 °C; 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8 Hz, 

2H), 7.56 (d, J = 8 Hz, 2H), 7.46 (dd, J = 6, 4 Hz, 1H), 7.39 (dd, J = 8, 4 Hz, 1H), 7.27 – 7.24 (m, 

2H), 6.56 (br s, 1H), 4.72 (d, J = 8 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 166.5, 135.4, 133.9, 

133.2, 132.0, 130.7, 129.8, 129.3, 128.7, 127.4, 126.4, 42.3; IR (KBr) ν̃ 3320 (m), 3068 (s), 1633 

(m), 1590 (s), 1539 (m), 1482 (m), 1318 (m), 1070 (s), 1009 (s), 847 (s), 749 (m) cm−1; HRMS 

(ESI-TOF) calcd for C14H12BrClNO (M + H+) 323.9785, found 323.9794.     

N-Benzyl-2,3,4,5,6-pentafluorobenzamide (3o): Rf = 0.45 (ethyl acetate/hexane  = 1:4); white 

solid; yield 78% (63 mg, 59%); mp 215 °C; 1H NMR (400 MHz, CDCl3) δ 7.38 – 7.29 (m, 5H), 

6.42 (br s, 1H), 4.61 (d, J = 8 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 157.5, 145.7–145.4 (m), 

143.9–143.5 (m), 143.2–142.9 (m), 141.3–141.0, 139.2–138.8 (m), 136.7–136.3 (m), 129.0, 128.1, 

127.8, 111.7–111.3 (m), 44.5; IR (KBr) ν̃ 3235 (m), 3068 (m), 2953 (m), 1652 (m), 1566 (s), 1494 

(m), 1059 (s), 988 (m), 875 (s), 746 (s) cm−1; HRMS (ESI-TOF) calcd for C14H9F5NO (M + H+) 

302.0599, found 302.0588. 

N-benzylpyrene-1-carboxamide (3p): Rf = 0.32 (ethyl acetate/hexane  = 1:4); white solid; yield 

81% (49 mg, 48%); mp 105 °C; 4:3 mixture of rotamers;1H NMR (400 MHz, CDCl3) δ 8.57 (dd, 
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J = 9.2, 3.5 Hz, 1H), 8.28 – 8.16 (m, 2H), 8.16 – 7.93 (m, 6H), 7.84 – 7.71 (m, 3H), 7.52 – 7.37 

(m, 8H), 7.37 – 7.27 (m, 8H), 6.60 (s, 1H), 6.49 (s, 1H), 4.87 – 4.73 (m, 2H), 4.71 – 4.54 (m, 3H). 

13C NMR (100 MHz, CDCl3) δ 169.9, 167.4, 138.3, 138.3, 134.4, 132.6, 131.6, 131.2, 130.8, 

130.8, 128.9, 128.9, 128.8, 128.7, 128.6, 128.1, 128.0, 127. 8, 127.7, 127.2, 127.1, 126.4, 125.9, 

125.8, 124.8, 124.6, 124.5, 124.4, 77.9, 77.2, 76.8, 44.8, 44.2; IR (KBr) ν̃ 3288 (m), 3063 (s), 3030 

(s), 2923 (s), 1635 (m), 1537 (m), 1490 (s), 1291 (m), 848 (s), 695 (m) cm−1; HRMS (ESI-TOF) 

calcd for C24H18NO (M + H+) 336.1383, found 336.1393.     

4-Cyano-N-phenethylbenzamide (3q): Rf = 0.18 (ethyl acetate/hexane  = 1:4); white solid; yield 

94% (91 mg, 68%); mp 115−117 °C; 1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 8 Hz, 2H), 7.70 

(d, J = 8 Hz, 2H), 7.35 – 7.32 (m, 2H), 7.28 – 7.22 (m, 3H), 6.21 (br s, 1H), 3.76 – 3.71 (m, 2H), 

2.95 (t, J = 6.9 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 165.8, 138.6, 132.5, 128.9, 128.9, 127.6, 

126.9, 118.1, 115.1, 41.4, 35.6; IR (KBr) ν̃ 3306 (w), 3085 (s), 2923 (s), 2852 (s), 2228 (s), 1633 

(m), 1543 (m), 1497 (s), 1313 (s), 857 (s), 753 (s) cm−1; HRMS (ESI-TOF) calcd for C16H15N2O 

(M + H+) 251.1178, found 251.1192.  

4-Bromo-N-phenethylbenzamide (3r): Rf = 0.35 (ethyl acetate/hexane  = 1:4); white solid; yield 

87% (71 mg, 62%); mp 113−116 °C (lit.61 143−144 °C); 1H NMR (400 MHz, CDCl3) δ 7.55 (s, 

4H), 7.35 – 7.32 (m, 2H), 7.27 – 7.22 (m, 3H), 6.08 (br s, 1H), 3.71 (dd, J = 12, 8 Hz, 2H), 2.93 

(t, J = 6.9 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 166.6, 138.8, 133.5, 131.9, 131.8, 128.9, 128.5, 

126.8, 126.2, 41.3, 35.7; IR (KBr) ν̃ 3419 (w), 2923 (s), 2848 (s), 1639 (m), 1542 (s), 1482 (s), 

1317 (s), 1068 (s), 1009 (s), 755 (s) cm−1; HRMS (ESI-TOF) calcd for C15H15BrNO (M + H+) 

304.0331, found 304.0348.   

4-Nitro-N-phenethylbenzamide (3s): Rf = 0.20 (ethyl acetate/hexane  = 1:4); white solid; yield 

93% (95 mg, 76%); mp 152−156 °C (lit.62 151 °C); 1H NMR (400 MHz, CDCl3) δ 8.24 (d, J = 8 
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Hz, 2H), 7.83 (d, J = 8 Hz, 2H), 7.34 – 7.22 (m, 5H), 6.31 (br s, 1H), 3.74 (dd, J = 12, 6 Hz, 2H), 

2.96 (t, J = 6.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 165.6, 149.6, 140.3, 138.6, 128.9, 128.8, 

128.1, 126.9, 123.9, 41.5, 35.5; IR (KBr) ν̃ 3328 (m), 3063 (s), 2923 (s), 1643 (m), 1597 (m), 1541 

(m), 1517 (m), 1452 (s), 1352 (s), 1193 (s), 867 (s), 753 (s) cm−1; HRMS (ESI-TOF) calcd for 

C15H15N2O3 (M + H+) 271.1077, found 271.1077. 

4-Methyl-N-phenethylbenzamide (3t): Rf = 0.25 (ethyl acetate/hexane  = 1:4); white solid; yield 

79% (99 mg, 71%); mp 82−84 °C (lit.63 76−77 °C); 1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8 

Hz, 2H), 7.33 (d, J = 8 Hz, 2H), 7.27 – 7.21 (m, 5H), 6.15 (br s, 1H), 3.72 (dd, J = 12, 8 Hz, 2H), 

2.94 (t, J = 6.8 Hz, 2H), 2.39 (s, 3H). 13CNMR (100 MHz, CDCl3) δ 167.5, 141.9, 139.1, 131.9, 

129.3, 128.9, 128.8, 126.9, 126.7, 41.2, 35.8, 21.5; IR (KBr) ν̃ 3313 (m), 3026 (s), 2937 (s), 1637 

(m), 1534 (m), 1307 (m), 1199 (s), 836 (s), 749 (s), 697 (m) cm−1; HRMS (ESI-TOF) calcd for 

C16H17NNaO (M + Na+) 262.1202, found 262.1211.    

3-Nitro-N-phenethylbenzamide(3u): Rf = 0.20 (ethyl acetate/hexane  = 1:4); white solid; yield 

90% (97 mg, 78%); mp 118−120 °C; 1H NMR (400 MHz, CDCl3) δ 8.51 (s, 1H), 8.35 (d, J = 8 

Hz, 1H), 8.08 (d, J = 8 Hz, 1H), 7.63 (t, J = 8 Hz, 1H), 7.32 (dt, J = 17, 7.8 Hz, 5H), 6.28 (br s, 

1H), 3.77 (dd, J = 12, 6 Hz, 2H), 2.98 (t, J = 6 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 165.1, 

148.3, 138.6, 136.4, 133.1, 130.0, 128.9, 128.9, 126.9, 126.1, 121.8, 41.5, 35.6; IR (KBr) ν̃ 3305 

(m), 3085 (s), 3032 (s), 2923 (s), 1644 (m), 1530 (m), 1350 (m), 1322 (m), 906 (s), 814 (s), 719 

(s) cm−1; HRMS (ESI-TOF) calcd for C15H15N2O3 (M + H+) 271.1077, found 271.1088.     

N-(3,5-bis(trifluoromethyl)benzyl)-4-cyanobenzamide (3v): Rf = 0.32 (ethyl acetate/hexane  = 

1:4); white solid; yield 85% (143 mg, 72%); mp 166−170 °C; 1H NMR (400 MHz, CDCl3) δ 7.91 

(d, J = 8 Hz, 2H), 7.82 – 7.81 (m, 3H), 7.77 (d, J = 8 Hz, 2H), 6.70 (br s, 1H), 4.775 (d, J = 4 Hz, 

2H); 13C NMR (100 MHz, CDCl3) δ 166.0, 140.5, 137.6, 132.8, 132.4 (q, JCF = 79.5 Hz), 128.1 
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(d, JCF = 3 Hz), 127.9, 123.3 (q, JCF = 543 Hz), 122.0 (q, JCF = 7 Hz), 117.9, 115.8, 43.5; IR (KBr) 

ν̃ 3407 (w), 3249 (m), 3050 (s), 2920 (s), 2851 (s), 2234 (s), 1642 (m), 1543 (m), 1307 (s), 1278 

(m), 1160 (s), 1116 (m), 985 (s), 703 (s) cm−1; HRMS (ESI-TOF) calcd for C17H11F6N2O (M + 

H+) 373.0770, found 373.0770.   

N-(3,5-bis(trifluoromethyl)benzyl)-4-chlorobenzamide (3w): Rf = 0.40 (ethyl acetate/hexane  = 

1:4); white solid; yield 83% (124 mg, 65%); mp 137−141 °C; 1H NMR (400 MHz, CDCl3) δ 7.80 

(s, 3H), 7.75 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 6.58 (s, 1H), 4.76 (d, J = 6.0 Hz, 2H). 

13C NMR (100 MHz, CDCl3) δ 166.7, 140.9, 138.5, 132.3 (q, JCF = 66 Hz), 132.1, 129.2, 128.6, 

128.0 (d, JCF = 3 Hz), 123.3 (q, JCF = 542 Hz), 121.8 (q, JCF = 8 Hz), 43.4; IR (KBr) ν̃ 3286 (w), 

3076 (m), 2927 (s), 1640 (s), 1538 (m), 1487 (m), 1278 (s), 1173 (s), 1132 (s), 845 (m), 705 (s) 

cm−1; HRMS (ESI-TOF) calcd for C16H11ClF6NO (M + H+) 382.0428, found 382.0451.   

N-(3,5-bis(trifluoromethyl)benzyl)-4-nitrobenzamide (3x): Rf = 0.27 (ethyl acetate/hexane  = 

1:4); white solid; yield 89% (133 mg, 73%); mp 165−167 °C; 1H NMR (400 MHz, CDCl3) δ 8.32 

(d, J = 8 Hz, 2H), 7.98 (d, J = 8 Hz, 2H), 7.82 (s, 3H), 6.72 (br s, 1H), 4.795 (d, J = 4 Hz, 2H); 13C 

NMR (100 MHz, CDCl3) δ 165.8, 150.1, 140.4, 139.2, 132.4 (q, JCF = 66 Hz), 128.4, 128.2 (d, JCF 

= 3 Hz), 123.2 (q, JCF = 542 Hz), 124.2, 122.0 (q, JCF = 8 Hz), 43.6; IR (KBr) ν̃ 3298 (m), 3056 

(s), 2989 (s), 2929 (s), 2851 (s), 1644 (m), 1600 (m), 1519 (m), 1352 (m), 1282 (m), 1124 (m), 

985 (s), 896 (s), 870 (s), 738 (m) cm−1; HRMS (ESI-TOF) calcd for C16H11F6N2O3 (M + H+) 

393.0668, found 393.0673.   

N-(3,5-bis(trifluoromethyl)benzyl)-4-methylbenzamide (3y): Rf = 0.40 (ethyl acetate/hexane  = 

1:4); white solid; yield 82% (147 mg, 70%); mp 107−108 °C; 1H NMR (400 MHz, CDCl3) δ 7.95 

– 7.54 (m, 5H), 7.23 (s, 2H), 6.91 (s, 1H), 4.72 (s, 2H), 2.39 (s, 3H). 13C NMR (100 MHz, CDCl3) 

δ 167.8, 142.7, 141.4, 132.1 (q, JCF = 67 Hz), 130.9, 129.5, 127.9, 127.1, 123.3 (q, JCF = 542 Hz), 
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121.5 (q, JCF = 7 Hz), 43.2, 21.5; IR (KBr) ν̃ 3303 (w), 3047 (s), 2934 (s), 1634 (m), 1538 (m), 

1505 (m), 1380 (m), 1355 (m), 1278 (m), 1173 (m), 1133 (m), 889 (m), 837 (m), 705 (m), 682 (m) 

cm−1; HRMS (ESI-TOF) calcd for C17H14F6NO (M + H+) 362.0974, found 362.0986. 

N-(3,5-bis(trifluoromethyl)benzyl)-3-nitrobenzamide (3z): Rf = 0.27 (ethyl acetate/hexane  = 

1:4); white solid; yield 88% (138 mg, 76%); mp 152−155 °C; 1H NMR (400 MHz, CDCl3) δ 8.63 

(s, 1H), 8.40 (d, J = 8 Hz, 1H), 8.21 (d, J = 8 Hz, 1H), 7.83 (s, 3H), 7.69 (t, J = 8 Hz, 1H), 6.82 (br 

s, 1H), 4.805 (d, J = 4 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 165.3, 148.4, 140.5, 135.3, 133.5, 

132.4 (q, JCF = 66.5 Hz), 130.3, 128.2 (d, JCF = 3 Hz), 126.7, 123.3 (q, JCF = 536 Hz), 122.0 (q, 

JCF = 10 Hz), 43.7; IR (KBr) ν̃ 3315 (w), 3087 (m), 2924 (m), 2853 (s), 1645 (m), 1531 (s), 1351 

(s), 1278 (s), 1174 (m), 1133 (m), 898 (s), 705 (s) cm−1; HRMS (ESI-TOF) calcd for C16H11F6N2O3 

(M + H+) 393.0668, found 393.0680.        

N-(4-fluorobenzyl)-3-nitrobenzamide (3aa): Rf = 0.20 (ethyl acetate/hexane  = 1:4); white solid; 

yield 84% (93 mg, 73%); mp 119−121 °C; 1H NMR (400 MHz, CDCl3) δ 8.59 (s, 1H), 8.36 (d, J 

= 7.3 Hz, 1H), 8.18 (d, J = 7.1 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.34 (s, 2H), 7.05 (t, J = 7.5 Hz, 

2H), 6.57 (brs, 1H), 4.64 (d, J = 4.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 165.0, 162.5 (d, 1JCF 

= 245 Hz), 148.3, 135.9, 133.5 (d, 4JCF = 3 Hz), 133.4, 130.0, 129.9 (d, 3JCF = 8 Hz), 126.4, 121.9, 

115.9 (d, 2JCF = 21 Hz), 43.8; IR (KBr) ν̃ 3290 (w), 3087 (s), 1640 (m), 1557 (m), 1525 (s), 1509 

(s), 1350 (s), 1320 (m), 1216 (m), 1157 (s), 1095 (s), 820 (m), 673 (s) cm−1; HRMS (ESI-TOF) 

calcd for C14H12FN2O3 (M + H+) 275.0826, found 275.0829.  
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1H and 13C NMR Spectra 

 

Figure 4.7 1H NMR spectrum of N-Benzyl-4-bromobenzamide (3a). 

 

Figure 4.8 13C NMR spectrum of N-Benzyl-4-bromobenzamide (3a) 
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Figure 4.9 1H NMR spectrum of N-Benzyl-4-nitrobenzamide (3b) 

 

Figure 4.10 13C NMR spectrum of N-Benzyl-4-nitrobenzamide (3b) 
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Figure 4.11 1H NMR spectrum of N-Benzyl-4-cyanobenzamide (3c) 

 

Figure 4.12 13C NMR spectrum of N-Benzyl-4-cyanobenzamide (3c) 
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Figure 4.13 1H NMR spectrum of N-Benzyl-4-methylbenzamide (3d) 

 

Figure 4.14 13C NMR spectrum of N-Benzyl-4-methylbenzamide (3d) 
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Figure 4.15 1H NMR spectrum of N-Benzyl-4-methoxybenzamide (3e) 

 

Figure 4.16 13C NMR spectrum of N-Benzyl-4-methoxybenzamide (3e) 
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Figure 4.17 1H NMR spectrum of N-benzyl-4-chlorobenzamide (3f) 

 

Figure 4.18 13C NMR spectrum of N-benzyl-4-chlorobenzamide (3f) 
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Figure 4.19 1H NMR spectrum of N-benzyl-3-nitrobenzamide (3g) 

 

Figure 4.20 13C NMR spectrum of N-benzyl-3-nitrobenzamide (3g) 
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Figure 4.21 1H NMR spectrum of N-Benzyl-3-bromobenzamide (3h) 

 

Figure 4.22 13C NMR spectrum of N-Benzyl-3-bromobenzamide (3h) 
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Figure 4.23 1H NMR spectrum of 4-Cyano-N-(4-fluorobenzyl)benzamide (3i) 

 

Figure 4.24 13C NMR spectrum of 4-Cyano-N-(4-fluorobenzyl)benzamide (3i) 
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Figure 4.25 1H NMR spectrum of 4-Bromo-N-(4-fluorobenzyl)benzamide (3j) 

 

Figure 4.26 13C NMR spectrum of 4-Bromo-N-(4-fluorobenzyl)benzamide (3j) 
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Figure 4.27 1H NMR spectrum of N-(4-fluorobenzyl)-4-nitrobenzamide (3k) 

 

Figure 4.28 13C NMR spectrum of N-(4-fluorobenzyl)-4-nitrobenzamide (3k) 
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Figure 4.29 1H NMR spectrum of N-(2-chlorobenzyl)-4-nitrobenzamide (3l) 

 

Figure 4.30 13C NMR spectrum of N-(2-chlorobenzyl)-4-nitrobenzamide (3l) 
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Figure 4.31 1H NMR spectrum of N-(2-chlorobenzyl)-4-cyanobenzamide (3m) 

 

Figure 4.32 13C NMR spectrum of N-(2-chlorobenzyl)-4-cyanobenzamide (3m) 
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Figure 4.33 1H NMR spectrum of 4-Bromo-N-(2-chlorobenzyl)benzamide (3n) 

 

Figure 4.34 13C NMR spectrum of 4-Bromo-N-(2-chlorobenzyl)benzamide (3n) 
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Figure 4.35 1H NMR spectrum of N-Benzyl-2,3,4,5,6-pentafluorobenzamide (3o) 

 

Figure 4.36 13C NMR spectrum of N-Benzyl-2,3,4,5,6-pentafluorobenzamide (3o) 
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Figure 4.37 1H NMR spectrum of N-benzylpyrene-1-carboxamide (3p) 

 

Figure 4.38 13C NMR spectrum of N-benzylpyrene-1-carboxamide (3p) 



 

 
 

200 Chapter 4: Contact-Explosives into a Successful Chemical Reaction 

 

Figure 4.39 1H NMR spectrum of 4-Cyano-N-phenethylbenzamide (3q) 

 

Figure 4.40 13C NMR spectrum of 4-Cyano-N-phenethylbenzamide (3q) 
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Figure 4.41 1H NMR spectrum of 4-Bromo-N-phenethylbenzamide (3r) 

 

Figure 4.42 13C NMR spectrum of 4-Bromo-N-phenethylbenzamide (3r) 



 

 
 

202 Chapter 4: Contact-Explosives into a Successful Chemical Reaction 

 

Figure 4.43 1H NMR spectrum of 4-Nitro-N-phenethylbenzamide (3s) 

 

Figure 4.44 13C NMR spectrum of 4-Nitro-N-phenethylbenzamide (3s) 
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Figure 4.45 1H NMR spectrum of 4-Methyl-N-phenethylbenzamide (3t) 

 

Figure 4.46 13C NMR spectrum of 4-Methyl-N-phenethylbenzamide (3t) 



 

 
 

204 Chapter 4: Contact-Explosives into a Successful Chemical Reaction 

 

Figure 4.47 1H NMR spectrum of 3-Nitro-N-phenethylbenzamide (3u) 

 

Figure 4.48 13C NMR spectrum of 3-Nitro-N-phenethylbenzamide (3u) 
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Figure 4.49 1H NMR spectrum of N-(3,5-bis(trifluoromethyl)benzyl)-4-cyanobenzamide (3v) 

 

Figure 4.50 13C NMR spectrum of N-(3,5-bis(trifluoromethyl)benzyl)-4-cyanobenzamide (3v) 



 

 
 

206 Chapter 4: Contact-Explosives into a Successful Chemical Reaction 

 

Figure 4.51 1H NMR spectrum of N-(3,5-bis(trifluoromethyl)benzyl)-4-chlorobenzamide (3w) 

 

Figure 4.52 13C NMR spectrum of N-(3,5-bis(trifluoromethyl)benzyl)-4-chlorobenzamide (3w) 
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Figure 4.53 1H NMR spectrum of N-(3,5-bis(trifluoromethyl)benzyl)-4-nitrobenzamide (3x) 

 

Figure 4.54 13C NMR spectrum of N-(3,5-bis(trifluoromethyl)benzyl)-4-nitrobenzamide (3x) 
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Figure 4.55 1H NMR spectrum of N-(3,5-bis(trifluoromethyl)benzyl)-4-methylbenzamide (3y) 

 

Figure 4.56 13C NMR spectrum of N-(3,5-bis(trifluoromethyl)benzyl)-4-methylbenzamide (3y) 
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Figure 4.57 1H NMR spectrum of N-(3,5-bis(trifluoromethyl)benzyl)-3-nitrobenzamide (3z) 

 

Figure 4.58 13C NMR spectrum of N-(3,5-bis(trifluoromethyl)benzyl)-3-nitrobenzamide (3z) 
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Figure 4.59 1H NMR spectrum of N-(4-fluorobenzyl)-3-nitrobenzamide (3aa) 

 

Figure 4.60 13C NMR spectrum of N-(4-fluorobenzyl)-3-nitrobenzamide (3aa)



CHAPTER 5 

Input Controlled Mechano-Responsive C–C Bond Scission 

on Benzocyclobutenols 

 

5.1 ABSTRACT 

 

Mechanochemical scission of C–C bond, as occurs in polymers, is terra incognita for small 

molecules. Unprecedentedly, here we report robust on-set and quenching of mechano-

sensitivity of benzocyclobutenols due to substitutions by cyano and bromo, respectively. First 

principle calculations suggest substantial reduction in dissociation barrier of the non-aromatic 

C–C bond possibly due to intermolecular hydrogen bonding interaction between the hydroxyl-

H and cyano-N involving multiple adjacent molecules. The consequent large dilation of O–H 

bond reduces the non-aromatic C–C bond dissociation energy below 3 kcal/mol. The 

polymeric assembly suggested by –CN substituted benzocyclobutenols supports their 

observed lack of crystallinity and facilitates absorption of energy from low 

frequencies mechanochemical excitations. The observed mechano-activity can be altered 

by solvent polarity, additives, or electronic control. These results and the proposed mechanism 

thus suggest the possibility to turn small molecules into mechanophores by tuning them intra- 

or intermolecularly.  
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5.2 INTRODUCTION  

Mechanical force induced scission of thermodynamically stable and kinetically inert C–C 

single bonds1 in polymeric assemblies are well documented in literature2-7. However, the 

possibility of a similar mechanism in small molecules has remained largely unexplored8. 

Herein, we discuss robust and switchable mechano-response of substituted benzocyclobutenols 

(CBs)9, demonstrated through exergonic scission of the C–C single bond of the cyclobutene 

ring in cyano substituted CBs upon sonication at ultrasonic frequencies. In addition to 

intramolecular substituents, mechano-responsivity could also be influenced by external factors 

like solvent polarity, ionic substrates as additives, and reagents facilitating hydrogen bonds.  

We focus primarily on how intramolecular substitutions influence mechano-response and the 

generality of the mechanism in order to prescribe a systematic pathway en route to 

programmable functional molecules for mechanochemically activated smart materials10.  

 

5.3 RESULTS AND DISCUSSIONS 

Synthetically important CBs11, obtained photochemically from o-tolualdehydes12 can 

thermally isomerize to o-quinodimethanes13 via electrocyclic (4πe) ring opening14. Such 

opening of ring can also be initiated through PET (Photoinduced Electron Transfer)15, 

catalyzed by base16 or promoted by exposure to X-ray radiation17. However, under optimized 

conditions benzocyclobutenes display high thermal stability up to 700 °C18, calling for a 

suitable methodology to activate the cycloreversion process at ambient temperature in non-

hazardous environment. Pertinently, in this work we find that mechanical force (ultrasound)19,20 

may possibly be used to achieve the same in small molecules with appropriate 

functionalization. Indeed, under ultra-sonication (US, 27 kHz), we find the Csp3–Csp3 bond of 

certain CBs to cleave at 30 ⁰C. However, in the straightforward pathway proposed in Figure 

5.1a, the formation of intermediate 1,4-biradical (BR) may contradict the Woodward Hoffmann 
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rule of conservation of orbital symmetry of 4πe systems21. Alternately, first-principle 

calculations suggest an energetically more favorable pathway depicted in Figure 5.8 where the 

cleavage of the C–C single bond is preceded by stretching of the hydroxyl OH due to 

intermolecular interactions involving possibly more than two molecules.  

 

Figure 5.1| (a) Photo-initiated transformation (left to right) of o-alkyl aromatic aldehydes (AL) to the 

corresponding CBs via 1,4-biradical (BR) and followed by (E)-enol12. In turning around (CB to AL 

conversion as conventionally expected)22: Mechanically scission of Csp3-Csp3 bond of CB yielded BR 

followed by intermediate (Z)-enol22 before generation of AL. The Csp3-Csp3 bond of CB’s is shown as 

thick line. (b) The CBs used for present study; regio-isomers of 5-CB (5-CB') and 6-CB (6-CB') were 

used as mixture. 

Aldehydes, pentamethyl-benzaldehyde (4-AL) was commercially available and used as 

received. However, aldehydes 1-AL, 2-AL, 5-AL and 6-AL (Figure 5.2) were synthesized by 

following known procedure available in literature12. Aldehyde 3,5-dichloro-2,4,6-trimethyl-
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benzaldehyde (3-AL) was synthesized by di-chlorination of 2,4,6-trimethyl-benzaldehyde 

using N-chloro succinimide. Solid state photolysis of the ALs led to CBs (Figure 5.3)12. A 

straightforward hypothesis for the synthesis of CBs are proposed in Figure 5.1a, although first 

principle calculations suggests alternate pathway. Single isomers were used for CBs like 1-CB 

to 4-CB, and regio-isomers of 5-CB (5-CB') and 6-CB (6-CB') were used as mixture. 

 

 

Figure 5.2| Synthesis of aldehydes (ALs) 

The results of mechanochemical conversion of CBs (1-CB and 2-CB) to ALs shown in Figure 

5.4a unambiguously imply a higher degree of mechanochemical activation of 2-CB than that 

of 1-CB.  Results also reflect the effect of solvents from dimethyl sulfoxide (DMSO or DMSO-

d6) to chloroform (CHCl3 or CDCl3) and additives like DDQ and AgBF4.  DMSO is a well-
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known hydrogen bond (H-bond) acceptor likely to form O-H…O hydrogen bond with the OH 

at C7 of CBs (Figure 5.4b). Charge transfer interaction was also observed for CB-DDQ using 

IR and UV-Visible studies (Figure 5.6). Furthermore, solvent dependent 1H NMR shift of OH 

proton (Δδ ~ +3.0 ppm in C6D6 to DMSO-d6) also confirm H-bonding (Figure 5.5).  Notably, 

O-H…O hydrogen bonding with the OH at C7 of CBs (Figure 5.4b)  leads to weakening of the 

C7-C8 bond on account of the partial negative charge developed in the process on Hydroxyl-O. 

Thus the marked enhancement in mechano-response of the CBs observed by changing the 

solvents from CDCl3 (non H-bond participant) to DMSO-d6 gives us an early hint that inter-

molecular H-bonding might hold the key to the underlying mechanism.      

 

 

Figure 5.3| Photochemical synthesis of benzocyclobutenols (CBs) 
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Figure 5.4| (a) Mechanochemical effect for the conversion of CBs to ALs. Solvents effect and effect 

of additives are shown for 1-CB and 2-CB. In bracket, the conversion in absence of ultrasound are 

shown; *inconclusive. (b) Hydrogen bonding of DMSO with CBs are also shown. c) X-ray crystal 

structure of 1-CB; intermolecular O-H…O hydrogen bonding among two 1-CBs are shown. 

 

To rationalize the role of AgBF4 we note that coordination of Ag+ ion with the hydroxyl-O of 

CBs (Figure 5.7) via ion-dipole interaction23 may also possibly lead to weakening of the C7-C8 

bonds. However, since both the CBs have same number of Hydroxyl group, they should allow 

the inter-CB or solvent assisted O-H...O hydrogen bonding, as well as the ion-dipole 

interactions, on similar footing. In fact, X-ray crystal structure of 1-CB (Figure 5.4c) shows 
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Figure 5.5| 1H NMR spectra for solvent dependent shift of –OH (→) and –CH2 (*) peaks of 1-CB. 

 

 

 

 

 

 

 

 

 

 

Figure 5.6| a) IR and b) UV-vis spectra of 2-CB and in presence of DDQ.  

 

* *

* *
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intermolecular O-H…O hydrogen bonding and dilation of the C7-C8 of the H-bond donor to 

1.67 Å compared to 1.61 Å for H-bond acceptor. However, the lack of mechano-response of 

1-CB suggests that the marginal dilation of the O–H bond due to the O-H...O interaction is 

expectedly not sufficient to facilitate dissociation of the C7-C8 bond.  

 

 

Figure 5.7| Change in 1H NMR chemical shift of –OH peak (1-CB) in presence of AgBF4 in C6D6 

(equilibration time 1 h). (A) 1H NMR Spectrum of 1-CB after addition of AgBF4. (B) before addition 

of AgBF4 in C6D6 at 25 ⁰C. 

 

That the observed mechano-responsivity of the CBs are indeed in addition to the thermal 

effects, is clearly established from the studies shown in Figure 5.4a, where the results obtained 

without ultrasound while having other conditions identical to those with ultrasound, are shown 

within bracket. Even after 96 h, at 60 °C, negligible amount of conversion from 1-CB to 1-AL 

was observed (< 1%), thus ruling out the possibility of C7-C8 bond scission due to only thermal 

effect.  

A

B
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The mechanochemical response of the CBs are shown in Table 5.1. The cyano substituted CBs 

(2-CB, 5-CB and 6-CB) systematically show better mechano-responsivity than non-cyano 

substituted derivatives (1-CB, 3-CB and 4-CB). 

 

Table 5.1 Mechanochemical response of CBs to ALs. 

 

That the observed mechano-responsivity of the CBs are not due to thermal effects, is clearly 

established from the studies shown in Table 5.2. Even after 96 h, at 60 °C, negligible amount 

of conversion from 1-CB to 1-AL was observed (< 1%). Similar observations were made for 

other CBs as well. Interestingly, no significant variation of chemical shift in Variable 

Temperature - 13C NMR spectra (25 to 40 °C) was observed. These observations rule out the 

possibility of C7-C8 bond scission due to thermal effect. 
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Table 5.2 Thermoresponce of CBs to ALs. 

 

Entry CB Condition (Δ) Conv. (%) 

1 1-CB: R1 = R2 = Br 60 ⁰C, CDCl3, 96 h  < 1 

2 5-CB: R1 = Br, R2 = CN 60 ⁰C, CDCl3, 96 h  15 

3 2-CB: R1 = R2 = CN 60 ⁰C, CDCl3, 96 h 42 

4 3-CB: R1 = R2 = Cl 60 ⁰C, CDCl3, 96 h 1 

5 4-CB: R1 = R2 = -CH3 60 ⁰C, CDCl3, 96 h <1 

6 6-CB:  60 ⁰C, CDCl3, 96 h 15 

 

 

To investigate the reason behind the observed contrasting outcome of sonication of the two 

substituted CBs, we resort to exploring possible pathways and their energetics from first 

principles using density functional theory (DFT).30 We use a planewave based 

implementation31  of DFT and approximate the many-electron exchange-correlation interaction 

by a gradient corrected PBE32 functional which is well known to be appropriate for isolated 

systems. Total energies and forces are converged respectively up to plane-wave cut off over 

1000 eV and below 0.0001 Ryd/Bohr. Formation energy of the conventionally expected 

intermediates – the BRs proposed in Figure 5.1a, are found to be higher by about 14 kcal/mol 

and 10 kcal/mol for 1-CB and 2-CB, respectively. Such BRs preventing the conversion from 

CBs to ALs through BRs, in agreement with the comparable energetics of the BRs offers no 

clue to the contrasting mechano-response of the CBs, rather, also appears to suggest that there 
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Figure 5.8| (a) 

Intermolecular interaction 

potentials between CBs 

along O-H…Br-C and O-

H…N-C alignment. (b) 

Interaction potential of a 

hydroxyl-H as a function of 

O-H distance in a 2-CB in 

presence of another 2-CB. 

(c) Three possible 

geometries of interaction 

between hydroxyl-H of a 2-

CB and cyano-N of adjacent 

two, three and four 2-CBs. 

(d) 2D plot of activation 

barrier for dilation of -O-H 

bond as function of 

intermolecular N-N 

distance (d) and height (h) 

of O from basal line or plane 

as shown in Fig 3c. (e) 

Dilated O–H bond length as 

functions of N-N distance 

and h. (f) Net interaction 

potential of the hydroxyl-H 

as a function of O-H 

distance corresponding to 

the minimum activation 

barrier, plotted for one value of the leading term in the     Morse potential for (2-CB)N...N(2-

CB) steric repulsion. 
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could be large activation barriers in conversion of CBs to inconsistency of formation BRs with 

the Woodward-Hoffman rule of electrocyclic ring opening for 4πe system. Among the other 

possibilities, inter-molecular O-H...O interaction cannot be the reason for cleavage of the C7-

C8 bond, since it should then be possible with both CBs, as already discussed. However, in 

addition to the  O-H...O interaction,  the 2-CBs should allow intermolecular  O-H...N  

interactions as well, as evident from the negative interaction potential between two 2-CBs 

along O-H...N-C plotted  in Figure 5.8a.  Accordingly, we next explore in details the effects of 

this enhanced scope of intermolecular interactions among the 2-CBs over that among the 1-

CBs, and argue it to be possibly responsible for the strikingly different physiochemical 

properties of the two CBs, reflected by the lack of mechano-response of 1-CB and 

crystallization of 2-CB.   

The potential energy of an H-atom between the hydroxyl-O and a cyano-N of two adjacent 2-

CB molecules 3Å apart, plotted in Figure 5.8b in red, reveals an activation barrier of about 

63.56 kcal/mol, beyond which, the potential varies slowly over a distance of about 0.5 Å. 

Although the implied activation energy for dilation of the O-H bond is far too large for 

mechanical excitations to be effective, the extended plateau of the interaction potential 

indicates the possibility of larger dilation of the O-H bond, if the dissociation barrier could be 

reduced, so that the consequent increase in charge withdrawn on hydroxyl-O could reduce the 

dissociation barrier of the C7-C8 bond substantially. Noting that the depth of the -OH and -N...H 

interaction potentials (in black and blue in Figure 5.8b) are of same order in magnitude, we 

explore the possibility of reduction of the O-H dissociation barrier in the eventuality of multiple 

O-H…N interactions amounting to multi-centered O-H...nN H-bonding.33-35  Such proximity of 

more than one cyano-N in the vicinity of a hydroxyl-H may not be implausible given the 

imbalance in the number of H-bond donor (the hydroxyl-H) and acceptor (two cyano-N and 

the hydroxyl-O) per 2-CB molecule. In fact, we show latter with CH3OH and CH3CN that 



 

 
 

223 Chapter 5: Input Controlled Mechano-Responsive C-C Bond Scission on Benzocyclobutenols 

assemblies leading to O-H...nN, with even n = 3, can even be barrier less. We consider few 

representative configurations depicted in Figure 5.8c involving more than two 2-CBs to test 

our hypothesis.  Given the computational enormity of the unit-cell with the chosen 

configurations, we estimate the net interaction potential in these scenarios by adding the Morse 

potential fits to the first principles estimates of – (1) the OH interaction in 2-CB, (2) interaction 

of an H atom with a cyano-N of 2-CB, and (3) the (2-CB)N...N(2-CB) steric repulsion. The net 

interaction is estimated as function of the vertical distance (h) of the hydroxyl-O of a 2-CB 

from the line or plane of the cyano-N atoms, one each from two or more 2-CB molecules, and 

the distance (d) between the nearest neighboring cyano-N atoms. The activation barrier for 

displacement of hydroxyl-H away from the hydroxyl-O towards the center of mass of the 

cyano-N atoms, and the degree of such displacement (the second minimum from O in the net 

interaction potential of H), plotted in Figure 5.8d and 5.8e respectively, clearly indicates the 

possibility of large dilation of the OH bond with more than two cyano-N, particularly with 

three of them approaching the hydroxyl-H symmetrically. Red and blue regions respectively in 

Figure 5.8d and 5.8e marks values of h and d for which the OH bond can be stretched beyond 

1.5 Å with potential barrier in the order of 1 kcal/mol or less, conducive for the low energy 

mechanical excitations to be effective.  In Figure 5.8f we plot the interaction potential 

corresponding to the lowest activation barrier for O–H bond dilation for minimum steric 

repulsion between appropriately oriented adjacent 2-CB molecules indicating the possibility of 

O–H bond dilation at room temperature. Reduced steric repulsion due to smaller H-bonding 

reagents like DMSO is thus expected to facilitate the O–H bond dilation process at ambient 

conditions, in agreement with observations. 

In Figure 5.9, we present the energy profile indicating the intake or release of energy per 

molecule for steps envisaged for mechanically activated conversion of 2-CB to 2-AL. With 

60% dilation of O–H bond the amount of charge retained by the hydroxyl-O in 2-CB is about 
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0.4e.  For dilation to increase further towards dissociation of the O–H bond, the average uptake 

of energy required per molecule is of the order of 10 kcal/mol, which is less than the energy 

released upon exergonic conversion of the intermediates B to C (Figure 5.9d,e). We consider a 

2-CB with 0.4e excess charge with the O–H bond completely dissociated, and estimate the 

activation barrier for scission of the C7-C8 bond using the nudged elastic band (NEB)31 

approach. With 0.4e charge on the dissociated hydroxyl-O, NEB calculations suggest a 

dissociation barrier of about 3 kcal/mol for the C7-C8 bond, which decreases further with 

increase in charge withdrawn on O above 0.4e. Since 0.4e charge on the hydroxyl-O occurs 

with 60% dilation of the O-H bond, with completely dissociates O–H bond we naturally expect 

the charge on O to increase further leading thus to further reduction in the C7-C8 dissociation 

barrier. Energetics of the next step (Figure 5.9f) suggests chemisorption of the dissociated H-

atom on the under-coordinated carbon atom of the intermediate D to form 2-AL. Notably, the 

net uptake of energy  to overcome the barriers in the primary rate-limiting steps, which is the 

dilation of the O–H bond leading to dissociation, appears to be less than the net release of 

energy by about 20 kcal/mol or more, which in turn is close to the net uptake itself, thus  

promising the possibility of cascading chain reaction. In fact, according to Figure 5.9, even 

with one cyano-N interacting with the hydroxyl-H the net uptake of energy required to 

overcome all the activation barriers is close to the net release of energy in steps Figure 5.9d, 

Figure 5.9e and Figure 5.9f. Thus the, multi-centered H-bonding proposed to facilitate 

dissociation of the O–H bond through low energy mechanical excitations, is in principle 

required only to initiate the reaction, which can be there-after be energetically self-sustaining.  
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Figure 5.9| (a) Energy profile per molecule with reference to an isolated 2-CB describing. (b) Release 

of energy upon cohesion of two 2-CBs. (c)  Barrier for dilation of O–H bond and (d) Its subsequent 

dissociation, followed by (e) The activation barrier and release of energy upon dissociation of the non-

aromatic C–C bond, and (f) Subsequent formation of 2-AL. 

 

To rationalize the model potential based proposal made above for dilation of the O-H bond 

from first principles we choose smaller representative molecules CH3OH and CH3CN as H-

bond donor and acceptor respectively and calculate the interaction potential in the same 

configurations for the hydroxyl-O and cyano-N atoms as depicted in Figure 5.8c. As evident 

in Figure 5.10a-c, we find the lowest activation barrier for O–H bond dilation to be possible 

with three cyano-N acceptors interacting with the hydroxyl-H in tetrahedral configuration with 

values of d and h in the range of 1.5Å to 2Å, which is consistent with predictions from model 

potential.  Interestingly in Figure 5.10b the distance (r) of the second minima from O is larger 

than h, implying complete dissociation of the O–H bond since the H atom would pass through 
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the N-N-N triangle to the other side and find a local potential minimum at about 0.6Å away 

from the NNN plane as shown in Figure 5.10e. Thus the steps c to d in Figure 5.9 might actually 

be barrier less. To substantiate the possibility of assembly of three CH3CN molecules to 

constitute the N-N-N triangle, we show in Figure 5.10d that indeed the three molecules, driven 

by the O-H...(3)N multi-centered H-bonding interaction, can overcome their mutual steric 

repulsion and simultaneously approach a CH3OH molecule without any barrier up to  proximity 

of about 3.5Å of each other, after which the dilation of the O-H bond would  facilitate further 

proximity of the cyano-N atoms. However Figure 5.10e also suggests that once the O-H bond 

is completely dissociated, the H atom then can possibly be held hostage by the three cyano-N 

atoms, which is consistent with the finite barrier of about 20 kcal/mol for the H to be free 

(profile shown in black in Figure 5.10d), thus facilitating cleavage of the C7-C8 bond. In Figure 

5.10f we plot the difference between the total charge density and the sum of the charrge 

densities of the isolated CH3OH and CH3CN molecules. The quantum mechanical nature of the 

interaction between the hydroxyl-H and the cyano-N atoms are evident from the +ve (red) iso-

surfaces between them pointing towards the H atom. The red and blue iso-surfaces on the O-H 

bond reveals electron withdrawal towards the hydroxyl-O.  

 

In support of the observed lack of crystal structure of 2-CBs, we note that with three H-bond 

acceptor (one hydroxyl-O and two cyano-N)  and one H-bond donor (hydroxyl-H), 

supplemented by the possibility of multi-centered H-bonding with one H-bond donor engaging 

more than one H-bond acceptor, the 2-CB molecules  are likely to be entropically driven to 

self-assemble into extended fractal-like polymeric36 assemblies, for example the rheologically 

important Cayley tree polymers.37-39 Advantageously, the large number of intermolecular H-

bonding interactions responsible for each extended assembly of 2-CBs would allow a wide 

range of low frequency vibrational modes through which mechanical energy can be absorbed 
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through resonance. The 1-CBs on the other hand, with one each of strong H-bond donor 

(hydroxyl-H) and acceptor (hydroxyl-O), are able to passivate both of them into stable H-

bonding configurations, which, along with to Vander Waals interactions, would lead to their 

easy crystallization, as observed. 

 

 

Figure 5.10| Interaction potential of a hydroxyl-H as a function of O-H distance for  different h and d 

= 2.0 Å of the three configurations: (a) O–H...2N, b) O–H...3N, c) O–H...4N (as shown in Figure 5.8c). 

(d) Interaction potential between an isolated H or CH3OH and two to three CH3CN with the cyano-N 

atoms oriented towards the isolated or hydroxyl-H as shown in Figure 5.8c, as function of d for different 

H position. (e) Interaction potential of single H atom and three CH3CN molecules with d=2.0 Å and (f) 

3D Iso-surface of charge density difference (Total - 3 Isolated CH3CN – Isolated CH3OH). 
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5.4 CONCLUSION 

In summary, through demonstration of ultrasonically induced scission of the Csp3-Csp3 bond in 

appropriately substituted CBs, mechanical excitation has been shown to be a probable source 

of energy to control reactivity of small molecules, if they are functionalized to support 

intermolecular interactions up to an appropriate level, such that, they can collectively compete 

with covalent interactions and substantially reduce dissociation barrier selectively of certain 

bonds, and can also entropically lead to polymeric self-assembly of molecules enabling 

absorption of mechanical energy through a wide range of low energy vibrational modes. 

Calculated energetics suggests release of energy of about 10-20 kcal/mol upon the 

mechanically initiated exergonic bond scission leading to conversion from CB to aldehyde 

(AL). Given that the CBs were photochemically synthesized from ALs, the mechano-

responsive CBs thus promise a new class of  molecules for absorption and storage of light 

energy,40 and their subsequent controllable release at ambient conditions, through a 

energetically self-sustaining pathway.41 The derived mechanistic understanding will facilitate 

designing new chemical reactions by promoting mechano-response through  intra- or 

intermolecular control.42 In wider perspective, our results can also add a new dimension 

towards understanding the effect of clinical ultrasound on strained proteins.43  

 

5.5 EXPERIMENTAL SECTION 

Methods. NMR spectra were measured on a Bruker AV 400 (400 MHz) at room temperature 

mainly in deuterated solvents. UV-Visible and IR spectra were recorded on PerkinElmer 

(Lambda 750) and PerkinElmer FT-IR Spectrometer, respectively. X-ray data collection was 

performed on Bruker SMART APEX CCD-based X-ray diffractometer system equipped with 

a Mo-target X-ray tube (λ = 0.71073 Å) operated at 50kV and 40mA at 100 K. Data reduction 
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and absorption correction were done by program SAINT and SADABS respectively. Solid-

State photolysis were carried out in Luzchem reactor (λmax = 350 nm). The sonochemical 

irradiation44, 45 was performed in Sineo UWave-1000 and 27 kHz frequency was used for the 

irradiation. 

 

Preparation of 3,5-Dibromomesitaldehyde (1-AL). To a solution of 1 (1.0 g, 6.7 mmol) in 

trifluoroacetic acid (TFA, 3 mL) was added 6 mL conc. H2SO4 (98%). To this reaction mixture, 

N-bromosuccinimide (NBS, 3.0 g, 16.9 mmol) was added and stirred at room temperature for 

12 h. After that, the contents were poured into crushed ice and the solution was made alkaline 

with 10% NaOH. The organic matter was extracted with chloroform. The combined extracts 

were washed with water, dried over anhydrous Na2SO4, filtered and solvent removed in vacuo. 

The residue was washed with absolute ethanol and dried under high vacuo to get 1.75 g  (85%) 

of 3,5-dibromomesitaldehyde 1-AL as a colorless crystalline solid. 1H NMR (CDCl3, 400 

MHz) δ 10.45 (s, 1H), 2.72 (s, 3H), 2.55 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 193.9, 142.3, 

137.5, 134.9, 127.5, 26.7, 20.2. 

 

Preparation of 3,5-dicyanomesitaldehyde (2-AL) and 3-cyano-5-bromomesitaldehyde (5-

AL). To a solution of CuCN (0.7 g, 7.8 mmol) in 5 mL of DMF was added 3,5-

dibromomesitaldehyde 1-AL (1.0 g, 3.3 mmol) and the resultant mixture was heated at reflux 

(140-150 ⁰C) for 8 h, then cooled to room temperature. After that a solution of FeCl3 (24.0 g 

in 32 mL of 2.4 N HCl) was added. The mixture was heated at 70-80 ⁰C for 25 min and cooled. 

The organic matter was extracted with chloroform, washed with water, dried over anhydrous 

Na2SO4 and the solvent removed in vacuo. The residue was subjected to column 

chromatography (4% EtOAc/Hexane) to obtain 0.285 g (44%) of 3,5-dicyanomesitaldehyde 2-
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AL and 0.437 g (53%) of 3-Cyano-5-bromomesitaldehyde 5-AL as a colorless crystalline 

material.  

2-AL: 1H NMR (CDCl3, 400 MHz) δ 10.53 (s, 1H), 2.84 (s, 6H), 2.82 (s, 3H); 13C NMR 

(CDCl3, 100 MHz) δ 190.6, 149.9, 147.9, 132.5, 115.4, 115.0, 20.9, 18.8. 

 

5-AL: 1H NMR (400 MHz, CDCl3) δ 10.50 (s, 1H), 2.72 (s, 2H), 2.70 (s, 1H), 2.69 (s, 1H); 

13C NMR (100 MHz, CDCl3) δ 192.4, 146.3, 144.4, 142.1, 133.8, 128.1, 116.4, 114.9, 24.2, 

20.7, 18.3.   

 

Preparation of 3,5-dichloromesitaldehyde (3-AL). To a solution of 1 (0.5 mL, 3.4 mmol) in 

trifluoroacetic acid (TFA, 2 mL) was added 5 mL conc. H2SO4 (98%). To this reaction mixture, 

N-chlorosuccinimide (NCS, 1.8 g, 13.5 mmol) was added and stirred at room temperature for 

24 h. After that, the contents were poured into crushed ice and the solution was made alkaline 

with 10% NaOH. The organic matter was extracted with chloroform. The combined extracts 

were washed with water, dried over anhydrous Na2SO4, filtered and solvent removed in vacuo. 

The residue was washed with ethanol and dried under high vacuo to get 0.648 g (88%) of 3,5-

dichloromesitaldehyde 3-AL as a colorless crystalline solid. 1H NMR (400 MHz, CDCl3) δ 

10.52 (s, 1H), 2.57 (s, 3H), 2.55 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 193.6, 139.3, 135.6, 

134.7, 134.2, 19.9, 16.8. 

 

2,3,4,5,6-Pentamethylbenzaldehyde (4-AL). Commercially available, CAS No. 17432-38-1  

 

Preparation of 3-formyl-6-methoxy-2,4-dimethylbenzonitrile (6-AL).  

General Procedure for bromination of 3,5-dimethylanisole derivatives using NBS. To a 

solution of 3,5-dimethylanisole (2.0 mmol) in 4.0 mL of CH3CN was added NBS (2.2 mmol) 
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and the reaction mixture was stirred at room temperature for 2 h (48 h for 4-methoxy-2,6-

dimethylbenzonitrile with 4.0 equiv of NBS). After completion of the reaction as monitored by 

TLC, the solvent was removed in vacuo and water was added to the resulting residue. The 

organic matter was extracted with ethyl acetate, washed with water, dried over anhyd Na2SO4 

and the solvent removed in vacuo. The organic material was subjected to silica-gel column 

chromatography (EtOAc/pet. ether) to isolate the pure product.  

 

Reduction of cyano derivative. A 10 mL solution of 3-bromo-4-methoxy-2,6 

dimethylbenzonitrile (1.5 g, 6.25 mmol) in dichloromethane was taken in a 25 mL 2-necked 

round bottom flask under a nitrogen gas atmosphere and cooled to 0 C in an ice bath. After 10 

min, 5.36 mL (7.5 mmol, 1.4 M in toluene) of DIBALH in toluene was slowly introduced into 

the reaction flask. The reaction mixture was gradually allowed to attain room temperature. 

After stirring for 10 h, it was quenched with dil HCl and the contents heated at reflux for 30 

min. Subsequently, the reaction mixture was extracted with dichloromethane, dried over anhyd 

Na2SO4, filtered and solvent removed in vacuo. The crude product was subjected to silica-gel 

column chromatography (10% EtOAc/pet. ether) to obtain 1.25 g (82%) of 3-bromo-2,6-

dimethyl-p-anisaldehyde as a colorless crystalline solid.   

Cyanation of 3-bromo-2,6-dimethyl-p-anisaldehyde by following the same procedure for 

synthesis of 2-AL, 3-formyl-6-methoxy-2,4-dimethylbenzonitrile 6-AL was synthesized as a 

colorless crystalline solid in 83% yield. 1H NMR (400 MHz, CDCl3) δ 10.52 (s, 1H), 6.78 (s, 

1H), 3.95 (s, 3H), 2.76 (s, 3H), 2.57 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 190.7, 165.1, 

149.7, 146.55, 121.8, 117.0, 110.9, 108.2, 56.3, 22.2, 19.3.     
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Solid-State Photolysis of the Aldehydes (AL).12 A generalized procedure as follows: ca. 50 

mg of the well-grounded crystals of an aldehyde were dispersed in a quartz tube and closed 

with a rubber-septum followed by purged with flow of N2 for 15 min. The solid sample was 

irradiated in a Luzchem reactor (λ ~ 350 nm) for 24 h. Finally, the irradiated mixture (CBs) 

was purified through silica-gel column chromatography and characterized. 

 

1-CB: IR (KBr) cm-1 3331, 2922; 1H NMR (CDCl3, 400 MHz) δ 5.23 (dd, 1H, J1 = 8.2 Hz, J2 

= 4.4 Hz), 3.46 (dd, 1H, J1 = 14.6 Hz, J2 = 4.8 Hz), 2.87 (dd, 1H, J1 = 14.8 Hz, J2 = 1.6 Hz), 

2.58 (s, 3H), 2.29 (s, 3H), 2.08 (d, 1H, J = 8.8 Hz); 13C NMR (CDCl3, 100 MHz) δ 144.92, 

141.46, 138.45, 133.45, 127.29, 116.80, 68.95, 42.18, 24.33, 18.40. 

 

2-CB: IR (KBr) cm-1 3458, 2921, 2228; 1H NMR (CDCl3, 400 MHz) δ 5.35 (s, 1H), 3.73 (dd, 

1H, J1 = 16 Hz, J2 = 4.4 Hz), 3.20 (d, 1H, J = 1.6 Hz), 2.77 (d, 1H, J = 1.2 Hz), 2.73 (s, 3H), 

2.52 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 150.55, 147.95, 145.38, 142.57, 115.86, 114.68, 

114.40, 107.59, 69.71, 42.35, 20.51, 16.49. 

 

3-CB: 1H NMR (400 MHz, CDCl3) δ 5.24 (s, 1H), 3.53 (dd, J = 14.5, 4.4 Hz, 1H), 2.94 (dd, J 

= 14.5, 1.3 Hz, 1H), 2.45 (s, 3H), 2.28 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 144.8, 137.6, 

135.5, 134.9, 130.8, 127.1, 69.4, 40.9, 18.1, 15.3. 

 

4-CB: 1H NMR (400 MHz, CDCl3) δ 5.23 (d, J = 3.8 Hz, 1H), 3.49 (dd, J = 13.9, 4.4 Hz, 1H), 

2.86 (d, J = 13.9 Hz, 1H), 2.21 (s, 3H), 2.19 (s, 3H), 2.17 (s, 2H), 2.11 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 143.2, 138.1, 136.6, 134.6, 129.4, 129.1, 69.9, 40.8, 16.2, 15.8, 15.1, 14.8. 
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 5-CB (5-CB'): 1:1 isomeric mixture; 1H NMR (400 MHz, CDCl3) δ 5.31 (s, 1H), 5.25 (s, 1H), 

3.63 (dd, J = 15.2, 4.4 Hz, 1H), 3.54 (dd, J = 15.3, 4.5 Hz, 1H), 3.05 (dd, J = 15.2, 1.7 Hz, 1H), 

2.98 (dd, J = 15.3, 1.6 Hz, 1H), 2.61 (s, 3H), 2.59 (s, 3H), 2.41 (s, 3H), 2.38 (s, 3H); 13C NMR 

(100 MHz, CDCl3) δ 147.9, 145.3, 144.9, 144.5, 143.2, 143.0, 139.9, 136.6, 127.3, 117.0, 

116.9, 115.8, 114.2, 107.2, 70.0, 68.4, 42.6, 41.5, 23.3, 21.7, 18.9, 15.6. 

 

6-CB (6-CB'): 1:3 isomeric mixture; NMR data for major isomers, 1H NMR (400 MHz, 

CDCl3) δ 6.58 (s, 1H), 5.25 (d, J = 2.6 Hz, 1H), 3.88 (s, 3H), 3.61 (dd, J = 15.2, 4.4 Hz, 1H), 

3.03 (dd, J = 15.2, 0.9 Hz, 1H), 2.33 (s, 3H), 1.63 (d, J = 17.2 Hz, 1H); 13C NMR (100 MHz, 

CDCl3) δ 162.7, 147.1, 141.0, 138.9, 111.5, 104.4, 94.6, 69.5, 56.3, 41.3, 17.6.  

 

Procedure for Sonochemical conversion of CBs to ALs. In a typical experiment, ca. 5 mg 

of the CBs (2 equiv. of additive, wherever it was necessary) were dissolved in the appropriate 

solvent in a j-young NMR tube. Then the tube was closed and was purged with a stream of 

nitrogen gas for 10 min. After that the tube was subjected to ultrasound irradiation. The reaction 

was monitored and the yield of the aldehyde was calculated by 1H NMR analysis. 

 

Computational Details. To calculate energetics of the possible intermediate states we use a 

plane-wave implementation (QUANTUM ESPRESSO)48 of density functional theory (DFT)49, 

50 along with a gradient corrected PBE51 functional for exchange-correlation used in ultra-soft52 

pseudopotentials. Relaxed (energy minimized) structures have been obtained within the 

BFGS53 scheme for energy minimization, wherein a structure is updated using the Hellmann-

Feynman forces calculated from the ground state electronic structure converged up to plane-

wave cutoff over 1000 eV. Forces have been converged below 10-4 Rydberg/Bohr. 
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Nudged Elastic Band (NEB) method. To calculate energy barrier and reaction pathway we 

have used Nudged Elastic Band (NEB) method as implemented in PWneb48 package of 

QUANTUM ESPRESSO. For this calculation we use 12 intermediate images between 2-CB  

and 2-AL, both without their hydroxyl-H, in simulation box size 16×16×16 Å3 and total charge 

-0.4e with plane-wave cutoff over 1000 eV(~100 Ry). The amount of charge on the molecule 

is estimated by adding Lowdin charges of atoms obtained through projection of wave-functions 

on atomic orbitals. In the NEB calculations we   have used the Broyden algorithm and allowed 

positions of only the relevant atoms to be updated.  
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1H and 13C NMR Spectra 

 
Figure 5.11. 1H NMR spectra of 1-AL at 25 ⁰C in CDCl3. 

 

 
Figure 5.12. 13C NMR spectra of 1-AL at 25 ⁰C in CDCl3. 
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Figure 5.13. 1H NMR spectra of 2-AL at 25 ⁰C in CDCl3. 

 

 

Figure 5.14. 13C NMR spectra of 2-AL at 25 ⁰C in CDCl3. 
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Figure 5.15. 1H NMR spectra of 3-AL at 25 ⁰C in CDCl3. 

 

 

Figure 5.16. 13C NMR spectra of 3-AL at 25 ⁰C in CDCl3. 
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Figure 5.17. 1H NMR spectra of 5-AL at 25 ⁰C in CDCl3. 

 

 

Figure 5.18. 13C NMR spectra of 5-AL at 25 ⁰C in CDCl3. 
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Figure 5.19. 1H NMR spectra of 6-AL at 25 ⁰C in CDCl3. 

 

 

Figure 5.20. 1H NMR spectra of 6-AL at 25 ⁰C in CDCl3. 
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Figure 5.21. 1H NMR spectra of 1-CB at 25 ⁰C in CDCl3. 

 

 

Figure 5.22. 13C NMR spectra of 1-CB at 25 ⁰C in CDCl3. 
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Figure 5.23. 1H NMR spectra of 2-CB at 25 ⁰C in CDCl3. 

 

 

Figure 5.24. 13C NMR spectra of 2-CB at 25 ⁰C in CDCl3. 
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Figure 5.25. 1H NMR spectra of 3-CB at 25 ⁰C in CDCl3.  

 

Figure 5.26. 13C NMR spectra of 3-CB at 25 ⁰C in CDCl3.  
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Figure 5.27. 1H NMR spectra of 4-CB at 25 ⁰C in CDCl3.  

 

 

Figure 5.28. 13C NMR spectra of 4-CB at 25 ⁰C in CDCl3.   
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Figure 5.29. 1H NMR spectra of 5-CB at 25 ⁰C in CDCl3.  

 

 

Figure 5.30. 13C NMR spectra of 5-CB at 25 ⁰C in CDCl3.  
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Figure 5.31. 1H NMR spectra of 6-CB at 25 ⁰C in CDCl3.  

 

 

Figure 5.32. 13C NMR spectra of 6-CB at 25 ⁰C in CDCl3.  
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253 Crystallographic Data 

 Crystallographic Data for 3c (Chapter 3, figure 3.3); CCDC 1013915  

 
 

 

 

 

 

 

 

 

 

 

 

 

Empirical formula  C21 H19 N O 

Formula weight  301.37 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 5.7438(3) Å α = 90°. 

 b = 18.2969(10) Å β = 90.528(4)°. 

 c = 15.3844(8) Å γ = 90°. 

Volume 1616.74(15) Å3 

Z 4 

Density (calculated) 1.238 Mg/m3 

Crystal size 0.16 x 0.14 x 0.12 mm3 

Final R indices [I > 2sigma(I)] R1 = 0.0438, wR2 = 0.0969 

R indices (all data) R1 = 0.0779, wR2 = 0.1122 
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 Crystallographic Data for 3l (Chapter 3, figure 3.3); CCDC 1016504  

 

 

 

Empirical formula  C17 H19 N O4 

Formula weight  301.33 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 22.9995(8) Å α = 90°. 

 b = 5.0912(2) Å β = 95.103(3)°. 

 c = 12.9419(5) Å γ = 90°. 

Volume 1509.43(10) Å3 

Z 4 

Density (calculated)  1.326 Mg/m3 

Crystal size 0.12 x 0.11 x 0.09 mm3 

Final R indices [I > 2sigma(I)] R1 = 0.0399, wR2 = 0.0970 

R indices (all data) R1 = 0.0576, wR2 = 0.1090 
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 Crystallographic Data for 1-CB (Chapter 5, figure 5.3); CCDC 1016504  

 

 

 

Empirical formula  C10 H10 Br2 O 

Formula weight  306 g/mol  

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 8.0928(3) Å α = 90°. 

 b = 31.2023(9)Å β = 116.276(2)°. 

 c = 9.0462(3)Å γ = 90°. 

Volume 2048.26(12) Å3 

Z 8  

Density Diffrn 1.985 g/cm3 

Crystal size 0.2 × 0.2 × 0.1 mm3  

Final R indices [I > 2sigma(I)] R1 = 0.0552, wR2 = 0.1341 

R indices (all data) R1 = 0.0895, wR2 = 0.1535 
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 Crystallographic Data for 3-CB (Chapter 5, figure 5.3); CCDC 1414986  

 

 

 

Empirical formula  C10 H10 Cl2 O 

Formula weight  217.08 g/mol  

Crystal system  Monoclinic 

Space group  P12 (1) /c1 

Unit cell dimensions a = 14.259(3) Å α = 90°. 

 b = 15.594(4) Å β = 98.118(15)°. 

 c = 9.089(2) Å γ = 90°. 

Volume 2000.7(8) Å3 

Z 8  

Density Diffrn 1.441g/cm3 

Crystal size 0.22 × 0.16 × 0.14 mm3 

Final R indices [I > 2sigma(I)] R1 = 0.1062, wR2 = 0.2576 

R indices (all data) R1 = 0.1891, wR2 = 0.2973       


