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SYNOPSIS 
 

 
The objective of the current research is to develop a meshless method based on 

least squares to solve incompressible Navier-Stokes equations. The meshless 

method based on least squares depends on arbitrary distribution of points called 

cloud of points and it requires connectivity and neighbourhood information for 

every point in the cloud. The present study is aimed at applying an upwind 

differencing scheme in conjunction with pseudocompressibility method in mesh 

less framework. Recently meshless methods for many compressible flow 

algorithms have gained popularity. All meshless numerical methods share a 

common feature that no mesh is needed and the solver is capable of operating 

on an arbitrary distribution of points. For a multibody configuration, clouds of 

points are generated around every part or component of the body and these 

clouds around components are then merged to obtain a distribution of points 

around it. For carrying out numerical simulation of Navier-Stokes equations for 

complex multibody configuration, generation of a suitable grid becomes the most 

difficult job. The pseudocompressibility method was first introduced by Chorin  for 

solving complex incompressible flow problems. In this formulation, a time 

derivative of pressure is added to the continuity equation. Together with the 

momentum equations, these form a hyperbolic system of equations, which can 

be marched in pseudo-time to a steady state solution. In the present work an 

attempt has been made to use the artificial compressibility method with meshless 

least square based discretisation for solving incompressible Navier-Stokes 

equations. The advantage of this least square based meshless 

pseudocompressibility method is that it can be used to solve incompressible flow 

problem around complex geometry where the task of grid generation can be 

simplified by generation of cloud of points around the body and their connectivity 

information. 
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CHAPTER 1 

Introduction 
  
1.0 Objective of the current work 
 

 The objective of the current work is to find a suitable method of solution for 

the incompressible Navier-Stokes equations using meshless least square based 

method for flow past complex geometries. The present study is aimed at applying 

an upwind differencing scheme in conjunction with pseudocompressibility method 

in mesh less framework. The pseudocompressibility method was first introduced 

by Chorin (1968) and has been used extensively with much success by Kwak et 

al. (1986) for solving complex incompressible flow problems. In this formulation, 

a time derivative of pressure is added to the continuity equation. Together with 

the inviscid momentum equations, these form a hyperbolic system of equations, 

which can be marched in pseudo-time to a steady state solution. The method can 

also be extended to solve time dependent problems (Merkle et al. (1987)) by 

using sub iterations in pseudotime at every physical time step to ensure 

divergence-free velocity field. If only steady state solution to a problem is 

required, the pseudocompressibility method can be a very efficient formulation 

because it does not require that divergence–free velocity field be obtained at 

each iteration but only as the solution converges. The addition of the time 

derivative of pressure to the continuity equation creates a hyperbolic system of 

equations complete with artificial pressure waves of finite speed. When the 

solution converges to a steady state, a divergence free flow field is obtained. 

Hence many of the well-developed compressible flow algorithms can be utilized 

for this method. 

 

 Meshless methods, as promising numerical methods, have been 

developed and made a remarkable progress in the past few decades. It provided 

alternative and innovative ways to solve various kinds of problems in many fields. 
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As its name implies, there is no conventional grid used in the meshless method. 

This attractive feature has drawn many attentions from the scientists, engineers 

and researchers. Without the use of the conventional grid, meshless methods not 

only avoid mesh-related difficulties that often encountered in the conventional 

mesh-related method such as FEM, but also facilitate adaptive analyses. 

Refinement and coarsening process in the meshless adaptive analysis can be 

performed simply by inserting or removing node conveniently. Though the 

computational effort involved in such calculations is considerably more compared 

to the routine structured mesh calculations, the ever-increasing speed of the 

computers has made these computations more realistic. Grid-free methods also 

address the question of computation of flow past complex configurations. To 

approximate derivatives at any given node, all these methods require, is the 

information at a cloud of grid points around that node.  

 
           Meshless methods eliminate some or all of the traditional mesh-based 

view of the computational domain and rely on a particle view of the field problem. 

Meshless (or 'meshfree' as this is also used) methods seem attractive as 

alternative to FEM for the general engineering community, which consider the 

process of generating finite element meshes as more difficult and expensive than 

the remainder of analysis process. Recently meshless methods for many 

compressible flow algorithms have gained popularity (Mahendra (2003)). All 

meshless numerical methods share a common feature that no mesh is needed 

and the solver is capable of operating on an arbitrary distribution of points. For 

carrying out numerical simulation of Navier-Stokes equations for complex 

multibody configuration, generation of a suitable grid becomes the most difficult 

job.  In meshless methods this problem is addressed by obtaining arbitrary 

distribution of grid points around the multibody configuration (meshless method 

utilize connectivity set) using any method of grid generation (structured, 

unstructured, prismatic, Cartesian, chimera, hybrid etc.). The principal problem in 

any meshless method is to determine approximations to space derivatives in x 

and y direction at any node Po using data at neighbouring points. The node Po   is 

surrounded by points distributed arbitrarily (termed as cloud of points). We define 
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the set of points at the neighbourhood as the connectivity (also called stencil). 

The distribution of points can be obtained by many techniques. The connectivity 

or the set of neighbours once obtained is used to compute the discrete 

approximations to the space derivatives at the point Po using least squares. 

These in turn are used in the update formulae to obtain the solution at the next 

time level. In the present work least square based meshless method is used to 

solve incompressible Navier Stokes equations using pseudocompressibility 

method.  

 

1.1 Grid generation and meshless method 
 

 Mesh generation is a very important part of any computational fluid 

dynamics solution and it can be very time consuming task for the analyst. In 

traditional grid based method like finite element method the entire domain has to 

be meshed properly with triangular or quadrilateral elements. Also there should 

not be any overlapping and gaps between the elements. The connectivity 

information among all the elements has to be computed during mesh generation 

and the solver requires this information during simulation. The task may become 

even more tedious and computationally intensive for complex multibody 

configuration. In the multiblock approach for grid generation the computational 

domain is composed of several blocks. The grid lines at the block interfaces are 

either continuous (composite grids) or discontinuous (patched). Multiblock 

approach for complex geometries becomes very tedious, as the user has to 

define large number of blocks of different orientation and sizes and their 

interfaces. Difficulties associated with multiblock approach led to the 

development of more flexible method called chimera processing. In this method 

the body fitted grids are generated for each component of a multibody 

configuration and the grids are allowed to overlap. Difficulty in this approach is in 

transferring information between regions and maintenance of conservation in the 

overlapped regions. The idea of making grids structured near the boundary and 

unstructured elsewhere to resolve the viscous flows led to the development of 

hybrid grids. Hybrid grids consisting of triangles and quadrilaterals in two-
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dimension and tetrahedral and prisms in three-dimension provides the 

advantages of both structured and unstructured meshes. Ideally this mesh 

generation job can be fully automated but generally done by semi-automatic 

preprocessor packages that require the user to define zones of meshing, type of 

mesh elements (particularly near boundary) to be generated and different 

parameters like mesh clustering.  Triangulation is the most flexible way to create 

mesh elements and therefore used more frequently and it is also suitable for 

modeling complex geometry.  

       

            Since meshless methods were born with the objective of eliminating part 

of the difficulties associated with reliance on a mesh to construct the 

approximation in a finite element methodology, the advantages and 

disadvantages of these methods are compared generally in the literature within 

the framework of FEM. Nguyen (2008) listed some major advantages of 

meshless methods are (i) h-adaptivity is simpler to incorporate in meshless 

methods than in mesh-based methods, (ii) problems with moving discontinuities 

such as crack propagation, shear bands and phase transformation can be 

treated with ease, (iii) large deformation can be handled more robustly, (iv) 

higher-order continuous shape functions, (v) non-local interpolation character 

and (vi) no mesh alignment sensitivity. Beside these advantages, meshless 

methods are not without disadvantages. The meshless methods shape functions 

are rational functions, which requires high-order integration scheme to be 

correctly computed. The treatment of essential boundary conditions is not as 

straightforward as in mesh-based methods since the meshless methods shape 

functions are not interpolants. They do not satisfy the Kronecker delta property. 

In general, the computational cost of meshless methods is higher than one of 

FEM. 

 
   In meshless method the computation domain is represented by a set of 

arbitrary distributed nodes, as there is no need to use meshes or elements for 

interpolation of field points. These methods are a group of techniques useful for 

solving partial differential equations on irregular grids. Though this group of 
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methods originated from works in the field of finite element methods, they can 

treat an irregular distribution of points and require no costly mesh generation. In 

meshless methods for a multibody configuration, clouds of points are generated 

around every part or component of the body and these clouds around 

components are then merged to obtain a distribution of points around the 

geometry. The nodes are generated by using simple grid generation methods 

that are easily available for both two and three dimensions. The significance of 

the meshless method is that the human intervention in the process of node 

generation is minimum and the process can be almost fully automated. The node 

generation also can be done in a fully adaptive manner and thus the total time 

required for mesh generation can be reduced significantly. In addition, since 

meshless methods use arbitrary placements of points, the solution and its 

derivatives may be found directly where they are needed. On the other hand, 

meshless input data contain much less information compared with the grid or 

mesh structures required by the traditional finite difference / finite element 

methods.  The input data generation procedure for meshless codes are called 

‘node generation’ which can be obtained by one or many simple pre-processors. 

All that is required for meshless node generation is a small portion of the 

preprocessor to generate triangular elements and only the nodes of those 

elements are retained while the elements are discarded. The variety of problems 

that are now being addressed by the meshless methods continues to expand and 

the quality of the results obtained demonstrates the effectiveness of many of the 

methods currently available (Yagawa, (2002)). 

 

1.2 Discretization and meshless method 
 

    In computational fluid dynamics we discretize the governing differential 

equations based on discretized domains and a set of discrete simultaneous 

system of equations can be formulated from the original governing equations. 

These simultaneous equations are obtained based on four basic principles. The 

first is based on the principle of virtual work and the second is based on residual 

methods. Traditional grid based method of finite element method (FEM) is based 
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on these principles. The third discretization principle is based on the Taylor 

series, which has laid to the foundation of finite difference method (FDM). The 

fourth principle is based on the control of conservation laws in each finite volume 

in the domain. The finite volume method (FVM) was established following this 

approach. The first and the second principles are generally used predominantly 

for problems involving solids and structures while the third and fourth principles 

are routinely used more for fluid flow and heat transfer simulations. Most 

meshless method based on the first two principles are termed as weak form, and 

that based on the third principle is called strong form of implementation (Liu, 

(2003)) 

 
1.3 Various meshless methods and their advantages 
 

  Various methods belonging to this family of meshless methods include, 

Smooth Particle Hydrodynamics (SPH) methods by Lucy et. al. (1977) and 

Gingold and Monaghan, finite point method by Liszka and Orskisz (1980), Least 

Square Kinetic Upwinding Method (LSKUM) by Deshpande et. al. (1994), Diffuse 

Element Method (DEM) by Nayroles et al. (1992), Element Free Galerkin Method 

(EFG) by Belytschko et. al. (1994), Reproducing Kernel Particle Method (RKPM)  

and Moving Least Square Reproducing Kernel Method (MLSRKM) by Liu et. al. 

(1995), h(spatial partition)-p(degree of polynomial)-Clouds by Duarte and Oden 

(1996), Point Interpolation Method (PIM) by Liu and Gu (1999), Meshless Local 

Petrov-Galerkin Method (MLPG) by Atluri and Zhu (1998) and Atluri and Shen 

(2002). The main advantages of using meshless methods can be summarized as 

follows 

• The bottleneck of node generation for complex geometry can be 

bypassed 

• Any preprocessor available can be used for node generation for 

meshless methods 

• The data structure of the node information required by the meshless 

method is simple 
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• The node generation also can be done in a fully adaptive manner 

• The formulation is similar for two-dimension and three-dimensional 

problems 

• It does not involve numerical integration 

• Ease of coding 

• Cost effectiveness due to man-power reduction involved for the meshing  

 

1.3 Organization of Thesis 
 

This Thesis is organized in the following way. Chapter 2 contains General 

introduction about Artificial Compressibility Method (ACM). Details about different 

previous work in ACM have been included in this chapter. The mathematical 

model developed for meshless ACM has been described in chapter 3. A few 

benchmark test problems have been solved using the code developed are given 

in chapter 4. Chapter 5 describes detailed features of the code, steps followed by 

the code, conclusion and further work. This is followed by appendices A, B and 

references. 
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CHAPTER 2 

Incompressible Flow Simulation using Artificial 
Compressibility Method  

 

2.0 Introduction 
 
 In this work an algorithm is developed for simulating incompressible 

steady flow on two-dimensional unstructured meshes. The Navier-Stokes 

equations are briefly reviewed as the basic governing equation for fluid flow. 

Using this set of equations, in the limit of incompressible flow, the problem of 

imposing the time independent continuity equation on the momentum equations 

arises. This difficulty can be removed by employing the artificial compressibility 

approach. This approach modifies the continuity equation by adding a pseudo 

pressure time derivative. This modification makes the set of equations well 

conditioned for numerical solution. If the set of modified equations is used for the 

solution of the steady state problems, the added pressure derivative tends to 

zero. 

 

The two-dimensional continuity and momentum equation for any 

generalized flow field (assuming no body forces) can be expressed as,  
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The numerical solution of this system of equations present following 

problems: 

• The convective terms of the momentum equations contain 

nonlinear quantities. 

• All three equations are intricately coupled because every velocity 

component appears in each momentum equation and continuity 

equation. 

• The most complex issue to resolve is the role played by the 

pressure. It appears in both momentum equations, but there is 

evidently no (transport or other) equation for pressure. 

If the pressure gradient is known, the process of obtaining discretised equations 

for velocities from corresponding momentum equations is similar to that for any 

other scalar variable governed by convection-diffusion mechanism. But in 

general purpose flow computations, we wish to calculate the pressure field as 

part of the solution. So the pressure gradient is not known beforehand. If the flow 

is compressible the continuity equation can be used as a transport equation for 

density and, in addition to the Navier-Stokes equations, the energy equation is 

invoked as a transport equation for temperature. The pressure may then be 

obtained from the equation of state, ( )T,pp ρ= . However, if the flow is 

incompressible the density is constant with respect to both time and space (i.e. 

0=
ρ

Dt
D ), and hence by definition not linked to the pressure.  

 

Now, in the recent past compressible flow applications to aerodynamics 

have caused great deal of attention to be focused on development of methods for 

numerical solution of compressible flow equations. Therefore, it is of significant 

interest to be able to use some of these compressible flow algorithms for solving 

incompressible flow equations. The major difference between the equations of 

compressible and incompressible flows is their mathematical character. Hence if 

the methods for compressible flow are to be used to compute incompressible 

flow, the character of the equation will need to be modified. The difference in 

character between compressible and incompressible flows can be traced to the 
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lack of time derivative term in the incompressible continuity equation. The 

compressible version of the continuity equation contains the time derivative of 

density. The most straightforward means of giving the incompressible equations 

compressible character is to insert the time derivative of density into the 

continuity equations. Since density is constant for incompressible flows adding 

t∂
ρ∂  i.e. using compressible equation, is not possible. Also time derivative of the 

velocity component exist in momentum equations, so they are not suitable choice 

to fulfill the purpose. That leaves the time derivative of pressure as the clear 

choice. In the artificial compressibility method originally introduced by Chorin 

(1968) pressure p is related with artificial density ρ by the artificial equation of 

state 

    δρ=p           (2.4) 

with the objective of solving the steady state incompressible Navier-Stokes 

equations 
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τ is an auxiliary variable whose role is analogous to that of time in a compressible 
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where, δ is an arbitrary real positive parameter called artificial compressibility or   

pseudo-compressibility parameter whose value is key to the performance of the 

method. These two terms, artificial compressibility and pseudo-compressibility, 

are used interchangeably in the literature. As time t in equations (2.8) to (2.10) no 

longer represent a true physical time in this formulation, now onwards it is 

replaced with τ. With the above modification Chorin (1967) transformed the 

elliptic incompressible equations to a hyperbolic compressible system, which can 

be solved by standard, implicit time-marching methods (Madsen et. al., (2006)) 

usually applied for solving the compressible flow algorithm. 

 

 In the steady state formulation the above equations (2.8) to (2.10) are 

advanced in the artificial time dimension (pseudo time, τ) until the artificial time 

derivative goes to zero and the divergence of velocity in equation (2.8) converges 

to a specified tolerance.  When this happens the solution of the original continuity 

(2.5) and momentum equation (2.6) and (2.7) for incompressible flow is 

recovered. For an unsteady problem this must be done in every time step. The 

modified continuity equation does not exhibit any physical meaning until steady 

state is reached. Addition of a time derivative of the pressure to continuity 

equation means that we are no longer solving the true incompressible equations. 

As a result the time history generated cannot be accurate, but on convergence 

this time derivative becomes zero and the solution satisfies incompressible 

continuity condition. Chorin first proposed this approach and various versions 

have been adopted since then. 

   

2.1 Literature survey on artificial compressibility method 
 

A large volume of literature is available on the subject of Artificial 

Compressibility Method (ACM). However in this review the main aim is to restrict 

the discussion to relevant utility applications. 
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 Rizzi and Erikson (1985) have applied Chorin’s artificial compressibility 

method to strictly inviscid incompressible flow. The modified system of equations 

was solved by a time marching finite volume method using an explicit three-stage 

Runge-Kutta time stepping scheme. They also investigated the transient 

calculation as the artificial compressibility method approaches steady flow 

asymptotically in time. Their computed results include both irrotational and 

rotational solutions. The two dimensional examples include inviscid 

incompressible flow past a circular cylinder and NACA-0012 airfoil at 5º angle of 

attack. Incompressible flow around a 70º-swept wing of zero thickness and unit 

length at 20º angle of attack was presented as a three-dimensional solution test 

case.  

 

Chang et. al. (1988) have supported artificial compressibility method over 

other solution methods because of its efficiency in solving three-dimensional real 

world problems. 

 

          Gorski (1988 a, b, c) developed a third-order accurate upwind differential 

TVD (Total Variation Diminishing) scheme to discretize the convective terms 

coupled with standard central differences for the viscous diffusion terms of the 

two-dimensional Navier-Stokes equations using pseudo-compressibility. The 

equations were solved implicitly using approximate factorization with an implicit 

multi-grid technique for convergence acceleration. The value of artificial 

compressibility parameter was taken as unity. Results and convergence histories 

were presented for an idealized inviscid cascade, a turbulent flat plate cascade 

and the turbulent flow over a double circular cascade. 

 

Hirsch and Hakimi (1995) in their paper have shown how the general form 

of preconditioning equations can be reduced to the Chorin’s approach to artificial 

compressibility. Three example problems were demonstrated i.e. inviscid flow 

over a cylinder, a three-dimensional viscous flow in a 90 degree curved bend for 

low Mach number flows, lid-driven and buoyancy driven viscous flow in a square 
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cavity. The authors have used explicit Runge–Kutta time stepping and a central 

space discretization for computing both inviscid as well as viscous flows. 

 

 Rogers and Kwak (1987, 1990, 1991a, 1991b) have solved two-

dimensional incompressible Navier-Stokes equation using artificial 

compressibility method. They have performed sub-iterations in each pseudo time 

step to confirm continuity. An upwind differencing scheme based on flux-

difference splitting was used to compute the convective terms. Based on the sign 

of the local Eigen values of the relaxation scheme, the upwind differencing was 

used to solve the equations. A number of numerical tests were done to determine 

the suitable value of the artificial compressibility parameter. Good agreement 

between the computed solutions and the analytical test case results were 

observed. They have extended the methodology to three-dimensional problems 

also. The benchmark test problems that were successfully computed include 

steady state solution of flow through a square duct with a 90° bend, unsteady 

flow over a circular cylinder and unsteady flow through an artificial heart 

configuration with moving boundary. 

 

 Dick (1988) applied the flux vector splitting method to the convective part 

of the steady Navier Stokes equations. He has introduced partial up-wind 

differences in the first order part and central differences in the second order part 

of the equations. Thus a set of discrete equations were obtained and solved by 

the relaxation method. The flux vector splitting technique was used for the first-

order equations. An up-wind discretization of the split form was obtained when 

the positive terms were discretized by backward differences and the negative 

terms by forward differences. The value of artificial compressibility was chosen 

based on numerical test. A test problem for backward facing step has been 

solved and validated. 

   

 Kwak (1986) have developed an implicit finite difference code to solve the 

incompressible Navier-Stokes equation in a three-dimensional curvilinear co-

ordinate system. The pressure field solution was based on the artificial 
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compressibility approach of Chorin. The solution procedure employed was an 

implicit approximate factorization scheme. A fourth order explicit and a second 

order implicit smoothing term was required to make algorithm stable. Example 

problems demonstrated were flow past a circular cylinder, channel flow in two-

dimensional rectangular duct with 45º bend and flow in a three-dimensional 

annular duct with a 180º bend. 

   

 Several variations of the artificial compressibility method (ACM) have been 

reported in the literature. Stegar and Kutler (1977), Kwak et al. (1986,2005), and 

Rogers et al. (1990) used an implicit approximate factorization scheme by Beam 

and Warming (1976). Rogers et al. (1991) used higher-order flux splitting 

techniques. Ramshaw and Mousseau (1990) accelerated convergence of the 

ACM method by introducing an artificial bulk viscosity to dissipate the artificial 

sound waves more rapidly. Further, Turkel (1987) introduced artificial time 

derivatives in the momentum equations to allow for faster convergence. Fast 

implicit schemes developed for compressible flows, such as the approximate-

factorization scheme by Beam and Warming (1976) and the implicit lower upper 

symmetric Gauss-Seidel (LU-SGS or Lower Upper Symmetric Gauss Sieldel) 

scheme was implemented to solve the hyperbolic-parabolic system of equations 

in ACM methods. Various applications that evolved from this concept have been 

reported for obtaining steady state solutions i.e. Steger and Kutler (1977), Kwak 

et al. (1986), Chang et al. (1988), Choi and Merkel (1985,1993). Rosenfield and 

Kwak (1991) extended the ACM to solve unsteady problems. Merkle and 

Athavale (1987), Soh and Goodrich (1988) were some of the first to extend the 

ACM to the solution of the unsteady incompressible Navier-Stokes equations. 

Nithiarasu (2003) has presented an efficient artificial compressibility scheme 

based on the characteristics based split (CBS) method for incompressible flows 

using finite element method (FEM) framework. To obtain time dependent 

solutions using this method an iterative procedure can be applied in each 

physical time step such that the continuity equation is satisfied. Merkle and 

Athavale (1987) and Rogers and Kwak (1991) reported successful computations 

using this approach.  Kwak et. al. (1986) has been instrumental in developing the 
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INS2D and INS3D family of codes, which were based on the artificial 

compressibility method. 

 

2.2 Significance of artificial compressibility parameter δ 
 

Physically, equation (2.8) signifies that waves of finite speed are 

introduced into the incompressible flow field as a medium to distribute the 

pressure. For a truly incompressible flow, the wave speed is infinite, whereas the 

speed of propagation of these pseudo-waves depends on the magnitude of 

artificial compressibility. Additionally, in a true incompressible flow, the pressure 

field is affected instantaneously by any disturbances in the flow field, but with 

artificial compressibility, there is a time lag between the flow disturbance and its 

effect on the pressure field, Kwak (2005). Ideally, the value of the artificial 

compressibility is chosen to be as high as the particular choice of algorithm 

allows, so that the incompressibility is recovered quickly. This must be done 

without decreasing the accuracy and stability property of the numerical method 

implemented. On the other hand if, the artificial compressibility is chosen such 

that these waves travels too slowly, then the variation of the pressure field 

accompanying these waves will be very slow. Another way of looking at this is 

that as the Mach number goes to zero, the governing equations become the 

incompressible Navier-Stokes equations, which contain no time derivative of 

pressure. The method of artificial compressibility introduces a finite speed of 

sound into the incompressible Navier-Stokes equation, which has an infinite 

speed of sound. The artificial compressibility algorithm requires the selection of a 

parameter, which defines the artificially introduced speed of sound. The value of 

this parameter can vary by four orders of magnitude (Ramshaw (1990)) 

depending on the flow and the physical time step. Thus, the optimal value of this 

parameter has to be chosen by trial and error, and, given the large range of 

values that this parameter can take; several trial solutions must be attempted.  

This will interfere with the timely development of the viscous boundary layer. In 

viscous flow the behavior of the boundary layer is very sensitive to the 

streamwise pressure gradient, especially when the boundary layer is separated. 
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If separation is present, a pressure wave traveling with finite speed will cause a 

change in the local pressure gradient, which will affect the location of the flow 

separation. This change in separated flow will cause a feed back to the pressure 

field, possibly preventing convergence to a steady state. The test case of viscous 

flow on a backward step to understand the effect of δ on the flow separation zone 

has been planned. Especially for internal flow, the viscous effect is important for 

the entire flow field, and the interaction between the pseudo-pressure waves and 

the viscous flow field becomes very important. 

 

 Some literatures suggest a mathematical way to select δ (without doing 

trial and error), the only adjustable parameter required by the pseudo-

compressibility method. Since the convergence of the method is very sensitive to 

this parameter, selection of this parameter is quite critical. Dimensional analysis 

shows that δ is a function of square of speed. One of the early attempts to select 

δ was made by Turkel (1987). Turkel has suggested the value of the parameter δ 

to be  

 [ ]s
22

1 ,v,umaxk ε=δ         (2.11) 

where k1 is an arbitrary real positive constant and εs is introduced to avoid ill-

conditioning near stagnation points. The value of k1 for optimum convergence 

and for inviscid flow was suggested of the order of unity, Rogers (1991). The 

value of δ for viscous flow has been suggested by Hirsch and Hakimi  (1995, 

1997) as 

           (2.12) 
2
ref2uk=δ

where k2 is a real positive constant which depends on the Reynolds number. Uref 

can be taken as the free stream velocity for external flows whereas for internal 

flows it can be taken as the maximum inlet velocity. The value of k2 can be taken 

as order of unity for Reynolds number >1000. For lower value of Reynolds 

number k2 should increase as the Reynolds number decreases and this value of 

k2 can vary over several orders of magnitude as the Reynolds number decreases 

from thousand to one. Later Turkel (1987,1999) has modified his earlier definition 

of δ and suggested the value of ε of the order of unity. This value almost falls in 
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line with Hirsch and Hakimi (1995,1997) for external flows. Agarwal and Mandal 

(2001) has used the Turkels’s expression for inviscid computation and for 

viscous computation, the expression given by Hirsch and Hakimi (1995) to 

compute the value of artificial compressibility parameter δ. 

  

2.3 Values of artificial compressibility parameter δ 
 

 The artificial compressibility method has a significant drawback lying in the 

difficulty of choosing the value of artificial compressibility parameter δ, improper 

choice of which leads to slow convergence or even divergence. For acceptable 

performance, the artificial compressibility method requires trial and error 

adjustment procedure to determine the value of the artificial compressibility 

parameter, which is a time consuming process. In this section the different 

method to determine the value of this parameter available in the literature has 

been discussed. 

 

The incompressible modified continuity equation (2.8) due to artificial 

compressibility method and momentum equations (2.9) and (2.10) respectively 

can be written in primitive variable form extended to three-dimension as 
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where 
∞

∞

ν
=

LvReL being the Reynolds number and L=Characteristics length. In 

artificial compressibility method, the continuity equation is modified to include an 

artificial compressibility term, which vanishes when the steady state is reached. 
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Here ρ is an artificial density, equated to the product of inverse of artificial 

compressibility factor δ and pressure by the artificial equation of state (reference 

equation 2.4), 

                                                     (2.17) p1−δ=ρ

where, 0→
τ∂
ρ∂ at the steady state and τ is a fictitious time. Since this is an 

artificial equation of state, then δ1/2 plays the role of an artificial sound speed. 

Here it is important to note that at steady state the solution is independent of ρ 

and τ. Now substituting equation (2.17) into equation (2.13), we can apply a 

suitable numerical technique to the resulting equations and march the solution in 

τ to obtain a final steady-state incompressible solution. Obviously, this technique 

is applicable only to steady-flow problems, since it is not time accurate. 

  

Now we can write the incompressible Navier Stokes system of equations 

(2.13-2.16) along with the artificial equation of state (2.17) in the generalized 

form 
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Hence the equation (2.18) can be rewritten as 
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 Now in order to evaluate the eigenvalues of Ai   we put 

                 det 0IA ii =λ−                                                                                (2.23) 

where the eigenvalues of [Ai ](i=1,2,3) are  

( )δ+± 2uu,u,u , ( )δ+± 2vv,v,v , ( )δ+± 2ww,w,w                                 (2.24)         

respectively. The idea is to maintain low enough δ (close to the convective 

velocity) to overcome stiffness associated with a disparity in the magnitudes of 

the eigenvalues, but high enough such that pressure waves (moving with infinite 

speed at incompressible limit) be allowed to travel far enough to balance viscous 

effects. As a result, the conservation of mass or incompressibility condition is 

assured by means of an artificial compressibility. In this process it is possible to 

obtain the correct pressure distributions. Although the artificial equation of state 

suggests that δ1/2 is an artificial speed of sound, the eigenvalues above indicate 

that the effective acoustic wave speeds are really the quantities under the 

radicals in the eigenvalues above ( δ+2u , for example), which are functions of 

the velocity components as well as δ. From the point of view of linear algebra, the 

finite difference algebraic equations resulting from equation (2.18) are well 

conditioned (Chung (2002)) with a proper choice of δ. This is due to the well-

conditioned eigenvalues given by equation (2.24).   
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Artificial compressibility relaxes the strict requirement to satisfy mass 

conservation in each time step. Chang and Kwak (1988) reported details of 

artificial compressibility, and suggested some useful guidelines for choosing the 

artificial compressibility parameter. At first sight, it might appear that δ is relatively 

easy to choose. For instance, √δ could be chosen to be equal to some 

representative convective velocity as in Marx (1994). It is also possible for √δ not 

to be a constant over the entire flow field but instead chosen to be equal to a 

local velocity (Stegar (1977)). Computational experience has shown (McHugh 

(1995)) that this is not the case, and that δ can vary from 1 to 10000 depending 

on the flow and the pseudo and physical time step. If all else is kept constant, as 

δ is increased a smaller pseudo time step must be taken and the ratio of the 

momentum residuals to the residual of the continuity equation increases. Since 

time accuracy in pseudo time is of no concern, the time derivatives in equation 

(2.8-2.10) should be discretized using methods chosen to maximize efficiency 

and robustness. Local time stepping, in which the equation is advanced at 

different rates in pseudo time depending on spatial position, can be used. This 

improves the convergence rate by not restricting the global pseudo time step to 

the minimum required locally.   

 

From the eigenvalues obtained in equation (2.24) the transient solution of 

Navier-Stokes equations through ACM can be thought of as being decomposed 

into different modes of the form , etc. Thus for large values of δ, different 

modes will decay at significantly different rates and the system of equation (2.18) 

is said to be stiff. If an explicit algorithm were used to march equation (2.18) in 

time the stiffness associated with large values of δ would show up as a severe 

stability restriction on ∆t. This is avoided by using an implicit algorithm. However, 

Stegar and Kutler (1977) recommended that 

te 1λ−

                     
t

1
∆

<δ                    (2.25) 

to maintain first order time accuracy  in the implicit algorithm. If δ is made too 

small the continuity equation (2.13) will not be satisfied sufficiently accurately 
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with a destabilizing effect on the transient solution. Kwak et al. (1986) provide the 

following lower bounds for δ. For a simple channel flow the requirements of 

pressure waves to propagate much faster than the vorticity spreads, δ is given by 
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and for turbulent flow,   
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where, xL is the distance between inlet and outlet, xδ is half distance between two 

walls and xref is the reference length. Ret is the Reynolds number based on the 

turbulent eddy viscosity. Kwak et al. recommended 0.1 ≤δ≤ 10, for the example 

problem of flow past a circular cylinder at Re=40. 

 

The formulation of artificial compressibility method revives a structure 

resembling the compressible equations by inserting artificial compressibility in the 

derivative of density with respect to the pressure. Within the framework of a two-

dimensional analysis, the non-conservative form of the mass continuity equation 

(2.1) can be written as  
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Having relaxed the incompressibility constraint, the continuity equation is 

perturbed as 
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where ρ=ρ(p). Upon rearranging, equation (2.29) yields  
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where c is denominated herein as the artificial sound speed or perturbation 

parameter recognized by    
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Reverting to the justification of continuity modification, it can be immediately seen 

that the artificial sound speed must be sufficiently large to have a significant 

regularizing effect, and must be as small as possible to minimize perturbations 

on the incompressibility equation. To reconcile this criterion, c is estimated by 

Rahman  and Sikoken (2007)  
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ref
22 U

2
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where Uref  represents a reference velocity and δ is the compressibility parameter. 

Evidently, c depends on δ, influencing the convergence rate and stability of the 

solution method. Rahman and Sikoken (2007) have recommended values of δ in 

the range of 1-10, for better convergence to the steady state at which the mass 

conservation is enforced. 

 

2.4 Governing equations of ACM in flux form 
 

 Combining equation (2.8) with the momentum equation (2.9-2.10) for the 

incompressible Navier-Stokes equations results in the following system in 

Cartesian coordinates and replacing p’ with p for clarity 
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where p is the pressure. GXI and GYI are the x and y component of inviscid flux 

while GXV and GYV  are the x and y components of viscous flux respectively.  

 

2.5 Summary 
 
 In this chapter incompressible flow simulation using artificial 

compressibility method has been discussed, and a literature survey on the 

artificial compressibility method has been presented. Then the significance and 

value of the artificial compressibility parameter δ  has been discussed.  Finally 

the governing equation of artificial compressibility method in flux form has been 

presented. In the next chapter mesh less method have been discussed in details. 
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CHAPTER 3 

Meshless Code Development 
 

3.0 Literature survey on meshless methods 
 

In the past two decades considerable amount of research has been 

carried out in the field of meshless CFD, popularly referred to as ‘‘Gridless CFD’’ 

(MacCormack (1993)). One of the earliest works pertains to the paper on 

‘‘Generalized finite difference method’’ by Chung (1981). The fundamental idea 

explored in this work, related to the use of Taylor series expansion, for obtaining 

the discrete approximation of the derivatives at any given point, has not 

undergone any change. On the other hand, at the implementation level 

significant modifications have been experimented with, leading to the 

success/failure of the aforesaid procedure. As example we can cite the work of 

Deshpande et al. (1998) and Batina (1993). Both employ a least-squares 

procedure for solving the resulting over specified system of equations in contrast 

to the work of Chung (1981), where a stencil of grid points just adequate to solve 

for the derivatives appearing in the truncated Taylor series is employed. While 

the work of Deshpande et al. (1989) deals with an upwind implementation based 

on kinetic theory of gases, resulting in least-squares kinetic upwind method 

(LSKUM) (Deshpande et al. (1998)), that of Batina (1993) is based on a centered 

scheme using artificial dissipation. Particularly LSKUM has been applied for 

many two-dimensional inviscid flows (Ramesh (2001)) and was shown to yield 

notable solutions even for discontinuous flows. The LSKUM has also been 

extended to viscous flows. Mahendra (2003) have used the Chapman-Enskog 

distribution function in LSKUM to simulate viscous rotating flow. Sridar (2003) 

presented a new Least-Squares-based Upwind Finite Difference method 

(Balakrishnan (1999a, 1999b, 2000)) referred to as LSFD-U. The new method 

uses a global stencil of grid points. The method due to Sridar (2003) has the 

flexibility to choose between different flux formulas like Roe (1981), van Leer 
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(1982, 1991), KFVS (1994), AUSM (1993), etc. The other interesting 

development in this area is due to Morinishi (2000a, 2000b) and Lohner et. al 

(2002). They have used ‘‘weighted least-squares’’ approach to find the 

derivatives at a node. Other grid free methods outside the realm of finite 

difference method, for fluid flow computations, are Reproducing Kernel Particle 

Method (RKPM) due to Liu et al. (1995) and Meshless Local Petrov–Galerkin 

(MLPG) due to Atluri (2001). The RKPM is also a meshless particle (Lagrangian) 

method like Cubic Interpolation with Volume/Area co-ordinates (CIVA) due to 

Tanaka (1999). The CIVA uses cubic interpolation pseudo-particle (CIP) 

algorithm to obtain high accuracy. 

The following numerical methods are generally considered to fall within 

the general class of "meshless" methods. Acronyms are provided in parentheses. 

Smoothed-Particle Hydrodynamics (SPH) (Monaghan (1988)) is a 

computational method used for simulating fluid flows. It has been used in many 

fields of research, including astrophysics and oceanography.  It is a mesh-free 

Lgrangian method (where the co-ordinates move with the fluid), and the 

resolution of the method can easily be adjusted with respect to variables such as 

the density. The SPH method works by dividing the fluid into a set of discrete 

elements, referred to as particles. These particles have a spatial distance (known 

as the "smoothing length", typically represented in equations by h), over which 

their properties are "smoothed" by a kernel function. This means that any 

physical quantity of any particle can be obtained by summing the relevant 

properties of all the particles which lie within the range of the kernel.  

The Diffuse Element Method (DEM) (Nayroles (1992)), is a meshless 

method. It was developed by Nayroles, Touzot and Villon in 1992. It is in concept 

rather similar to the much older SPH. In the paper they describe a "diffuse 

approximation method", a method for function approximation from a given set of 

points. Using this function approximation method, PDEs and thus fluid dynamics 

problems can be solved. For this, they coined the term Diffuse Element Method 
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(DEM). Advantages over FEM are that DEM doesn't rely on a grid, and is more 

precise in the evaluation of the derivations of the reconstructed functions.  

The Particle-In-Cell (PIC)  method by Harlow (1964) refers to a technique 

used to solve a certain class of PDEs. In this method, individual particles (or fluid 

elements) in a  Lagrangian frame are tracked in continuous phase space, 

whereas moments of the distribution such as densities and currents are 

computed simultaneously on Eulerian (stationary) mesh points. PIC methods 

were already in use as early as 1955.  

The Material Point Method (MPM) (Sulsky (1994)) is an extension from the 

Particle-In-Cell (PIC) method in computational fluid dynamics to computational 

solid dynamics, and is FEM based particle method. It is primarily used for 

multiphase simulations, because of the ease of detecting contact without inter-

penetration. It can also be used as an alternative to dynamic FEM methods to 

simulate large material deformations, because there is no re-meshing required by 

the MPM. In the MPM, Lagrangian point masses, or material points, are moved 

through a Eulerian background mesh. At the end of each calculation cycle, a 

‘convective’ step occurs, in which the mesh is reset to its original position, while 

material points remain in their current positions. There are two key differences 

between the PIC and MPM. The first one is that the MPM is formulated in the 

weak form similar to that for the FEM so that the FEM and MPM could be 

combined together for large-scale simulations. The second one is that history-

dependent constitutive models could be formulated on the material points, which 

results in a robust spatial discretization method for multiphase and multi-physics 

problems. 

The Moving Particle Semi-Implicit (MPS) (Koshizuka (1996,2001)) method 

is a computational method for the simulation of incompressible free surface flow. 

It is a macroscopic, deterministic particle method (Lagrangian meshless method) 

developed by Koshizuka and Oka (1996). The MPS method applies simplified 

differential models solely based on a local weighted averaging process without 

taking the gradient of a kernel function. In addition, the solution process of MPS 
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method differs to that of the original SPH method as the solutions to the PDEs 

are obtained through a semi-implicit prediction-correction process rather than the 

fully explicit one in original SPH method. 

 

3.1 Least square based discretisation 
 

The present work uses Least squares based discretisation, which is a 

meshless or grid free method. In case of finite difference methods the above 

equation is solved by discretising the various derivatives along the co-ordinate 

directions. Finite volume method is based on integral form of governing 

equations. However if we are given an arbitrary distribution of points without any 

grid structure associated with these points, it will be difficult to discretise the  

 

 

 

         

 

             

  

              Figure 3.1: Typical connectivity around point Po  
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derivatives. With the least square approach spatial derivatives fx, fy of f can be 

discretised in terms of the data at the neighbouring points or nodes. If we 

consider arbitrary n points (in general it has been observed, for a 2D or 3D 

calculation a minimum of two neighbouring nodes per quadrant are required for 

the least square based discretization) surrounding a point Po as shown in figure 

3.1 the analysis due to Ghosh (1996) shows that the Taylor series expansion 

around “Po” for any quantity f gives ∆fi =∆xi fxo +∆yi fyo + h.o.t.  i=1,….,n, h.o.t= 

higher order terms where ∆xi = xi -xo , ∆yi = yi -yo  and  ∆fi = fi -fo . Here we can 

introduce weights based on the distance of a point from its neighbour. Hence 

square of error is given by 
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where, Σ represents the summation over all points in the neighbourhood N(Po) of  

Po. The formulae given in equation (3.2) can now be used to obtain the point 

values of fxo and fyo throughout the field. The formula to calculate second order 

accurate fxo and  fyo   is given in appendix A. 

 

3.2 Incorporation of upwind scheme 
  

In this section, how upwinding is enforced in least square based 

discretization method by stencil subdivision has been described. Consider a 2-D 

linear hyperbolic partial differential equation for scalar f. 
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The exact solution to this equation is given by 
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Figure 3.2: Stencil splitting for upwinding 

  

The propagation of information to node Po depends upon location of node Pi 

relative to Po and the signs of   u and v. If u> 0 then only the nodes to the left of 

Po will influence the solution at Po. Similarly If u< 0 then only the nodes to the 

right of Po will influence the solution at Po. Similar arguments show that for v> 0 

the node below Po and for v<0 the node above Po will influence the solution at Po. 

For developing any upwind scheme this signal propagation property should be 

taken into account. Hence the 2-D linear hyperbolic partial differential equation 

(3.3) for scalar f after enforcing upwinding becomes 
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Now replacing the spatial derivative in equation (3.5) by discrete least square 

approximation we get 
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to the left of Po i.e. based on sub stencil N1(Po) ), where i varies from 1 to 

maximum number of nodes in the  sub stencil N1(Po). A two-step formula to 

calculate second order accurate space derivatives used in the code has been 

elaborated in Appendix A. The expressions for the split fluxes are given in 

Appendix B, which are based on a ongoing work of Mahendra to be published 

shortly and preceded by the earlier research work of Junk and Rao (1999). In this 

work they have explored the relation between the lattice Boltzmann method for 

solving incompressible flow equations and the kinetic schemes, which are 

routinely used in computational fluid dynamics. Consequently a new discrete 

velocity method for the numerical solution of Navier–Stokes equations for 

incompressible fluid flow is presented by combining both the approaches. Junk 

and Rao (1999) have interpreted this as a pseudo-compressibility method.  

 . 

3.3 Detailed features of the code 
 
         The main features of the code developed during the current work can be 

listed as following 

• The code solves modified incompressible continuity and momentum 

(Navier Stokes) equations in two-dimensions using Chorin’s (1968) 

artificial compressibility method. 

• The grid information used by the code is a arbitrary distribution of grid 

points around any geometric configuration (popularly known as cloud of 

points) and connectivity set of each node using any method of grid 

generation (structured, unstructured, prismatic, Cartesian, chimera, 

hybrid, etc.) 

• The code employs meshless method of least square based discretization 

to determine approximations to first order accurate space derivatives of 

any function f (state variables in the present case), and )1(
xf

)1(
yf  at any 

node Po using data at neighbouring points. 

• A two-step formula to calculate second order accurate space derivatives 

of any function f at the point o,  and  has been used in the code. In )2(
xof )2(

yof
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the first step first order accurate  and the modified difference is 

determined. In the second step using this modified difference the second 

order accurate  is calculated. 

)1(
xof if

~∆

)2(
xof

• In determining the first or second order accurate space derivatives 

weighted least square based technique has been used where the 

weights are positive and given by 

                               
( )mi d

1w
∆

=   

 where ( ) ( )2
oi

2
o yyxd −+−=∆ ix is the distance between a point o      

and it’s neighbor i, and m=2,4,6…. 

• The addition of the time derivative of pressure to the continuity equation 

in the code creates a hyperbolic system of equations complete with 

artificial pressure waves of finite speed. When the solution converges to 

a steady state, a divergence free flow field is obtained. 

• The code employs flux form of the governing equations and separates 

the total flux into inviscid and viscous part in both x and y direction. 

• Derivatives of the inviscid fluxes at any node are calculated based on 

upwind stencil of neighbouring points while the derivatives of the viscous 

fluxes at any node are calculated based on full stencil of neighbouring 

points. 

• The time step used by the code is a function of minimum distance 

between a node and its neighbor 

)t(∆

)d(∆  and artificial compressibility 

parameter δ as given by Chorin (1968). 

                                                                                      (3.9) 2/1*d*6.0t δ∆=∆

• The optimal value of artificial compressibility parameter δ has been 

determined from a preliminary test computation using different models 

found in the literature. 

• The code has the capability to adapt a cloud of points inside a meshless 

grid by finding gradient of any variable in the computation domain and 

adding points to that part of the domain. 
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3.4 Code details 
 

           The main steps of the code developed has been described below: 
 
Step 1:  The code requires input parameter file, grid file, output data file, restart 

data file and residue file. 

 

Step 2:  The input parameter file is read. Here parameters like flow Reynolds 

number, initial density, temperature, value of artificial compressibility parameter, 

maximum number of iterations, weight factor, total number of iterations and 

relaxation parameter are read. 

 

Step 3: Grid information is read. Here x and y co-ordinate of each node, their 

connectivity information and location flag information are gathered. 

 

Step 4: The flow field is initialized with initial boundary conditions and initial 

values of pressure, density, temperature and velocities. Alternatively for restart 

case these data are read from the restart file and the flow field is initialized with 

these restart data.  

 

Step 5: The distance between each node and all it’s neighbors in x and y- 

directions are calculated and stored in an array for future references. 

 

Step 6: Inviscid split fluxes are calculated for all the points inside the domain. 

 

Step 7: Velocity derivatives are calculated at all the points inside the domain. 

 

Step 8: Unsplit viscous fluxes are calculated for all the points inside the domain. 

 

Step 9: First order accurate space derivatives of the inviscid split fluxes using 

upwind stencil and viscous fluxes using full stencil are calculated for all the points 

inside the domain. 
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Step 10: Field variables are updated at all the points inside the domain using the 

above first order accurate space derivatives. Boundary conditions like no slip 

boundary, inflow and outflow boundary etc. are implemented wherever applicable 

in this step.  

 

Step 11: This step is required for implementing second order accuracy. If some 

nodes exist inside the flow domain where second order accuracy of the space 

derivatives are required then for those nodes, second order accurate space 

derivatives of the inviscid and viscous fluxes are calculated and values of the 

field variables are updated using those derivatives. 

 

Step 12: Residue based on value of a field variable at previous and current time 

level is computed in this step. If  is the value of a field variable at iteration n at 

any node i, and is its value at iteration n+1 at the same node then residual 

n
iℵ

1+ℵn
i

                                   n
i

n
ii

max ℵ−ℵ=ℜ +1                                                        (3.10)          

Step 13: Latest output data file and restart data file are created. The output data 

file stores the data in a format that can readily be used for post processing and 

visualization 

 

Step 14: Steps 6 to 13 are repeated for given number of iterations and value of 

the residue is observed. When residual converges the looping can be terminated 

and the latest output data file becomes the final data file. 
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3.5 Schematic of code  
 

 The steps of the artificial compressibility code are described by the 

following figure. 

Open input files 

Read input parameters 
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Figure 3.3: Schematic of the code developed 
 

 
3.6 Summary 
 

 In this chapter meshless code development has been discussed. Initially a 

literature survey on the meshless method has been presented followed by a 

description of least square based discretisation technique. Next how upwinding is 

enforced in least square based discretization method by stencil subdivision has 

been described. Finally detailed features of the code have been described. 
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CHAPTER 4 

Code Validation 
 

4.0 Introduction 
 

          In this chapter the two-dimensional incompressible meshless solver based 

on artificial compressibility method has been validated with following test cases. 

1. Fully developed flow between two parallel plates 

2. External flow over a flat plate (Blasius Solution) 

3. Flow inside a lid driven cavity 

4. Flow past a circular cylinder 

5. Flow over a backward facing step 

6. Laminar axisymmetric sudden expansion flow 

  

4.1 Fully developed flow between two parallel plates 
 

In this test case, we apply the scheme to a Poiseuille flow in a section of 

length L between two parallel plates of infinite length (in x-direction) at a distance 

d. The system of equations (2.8-2.10) is solved in a domain D: 0≤ x≤ L, -d/2≤ y≤ 

d/2 (refer to figure 4.1a), with the boundary conditions 
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           This is a simple problem, designed to test our method. The domain D 
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The above flow problem is solved for different values of maximum Reynolds 

number (based on local u component of velocity and the characteristics 

dimension) varying between 100 and 1000. The aim of the simulation is to 

capture the parabolic velocity profile for a fixed pressure drop along the length. 

The distance between the plates in the y direction and the density of the fluid is 

taken as unity while the viscosity of the fluid is taken as 0.01. The method 

converged for all these values, although convergence is very slow for the higher 

values of Reynolds number. δopt decreases as Reynolds number increases. 

Figure 4.2 displays the variation of u component of velocity along the cross 

section of the flow area for values of maximum Reynolds number varying 

between 100 and 2000. Figure 4.2 also shows the residue plot with iterations in 

pseudo time. The residue is calculated at each pseudo time step using the 

norm given by equation (3.10). ∞l

 

  
a) Remax=100 

 

 
b) Remax=200 
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c) Remax= 400 

 
d) Remax=1000 

e) Remax= 2000 f) Residue plot 

Figure 4.2 Reynolds number contours and residue plot for flow between parallel plates 

4.2 Isothermal laminar Flow   

 In this category two benchmark problems have been solved. 

-External flow over a flat plate 

-Flow inside a lid driven square cavity 

 
4.2.1 External flow over a flat plate (Blasius solution) 
 
 Blasius in 1908 first treated the incompressible steady flow over a flat 

plate as an explicit solution of the Prandtl equations. The classical problem 
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Blasius considered, was a two-dimensional steady, incompressible flow over a 

flat plate at zero angle of incidence with respect to the uniform incoming stream 

of velocity uα. The fluid extends to infinity in all directions from the plate.  The 

physical problem is shown in figure 4.3. 

 
 
 
 
 
 
 
 
 

     uα 

 Figure 4.3 External flow over a flat plate 
 
Using ACM the modified Navier-Stokes equations (2.8- 2.10) has been 

solved over a flat plate at Reynolds number 10,000. For this problem an adapted 

unstructured grid has been used. The grid has been made highly clustered near 

the flat plate and adapted based on velocity gradient as shown in figure 4.4 in 

order to capture the boundary layer. The plate starts at x=0.5. At the entry length  

(x=0.0 to x=0.5) symmetry boundary condition is maintained. This entry length 

helps in capturing an undisturbed boundary layer over the flat plate free from any 

disturbance at the inlet. 

 
 
 
 

Figure 4.4 Grid used for Blasius problem 
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 The following boundary conditions have been used for the flow simulation. 

• No slip boundary condition on the flat plate surface (y=0 and x=0.5 to 1.5). 

• Symmetry boundary condition has been maintained at the zone x=0.0 to 

0.5. This treatment of the boundary condition corresponds to the physical 

assumption that, on the two sides of a node, the same physical processes 

exist. The variable values at the same distance from the boundary at the 

two sides are the same. The function of such a boundary is that of a mirror 

that can reflect all the fluctuations generated by the simulation region. 

Assume f(xb), are two adjacent boundary values,  )xx(f b ∆−

  

 

Figure 4.5 Reynolds number contour  
   

a typical set of symmetric boundary value is  

                                                )x(f)xx(f bb =∆+                               (4.4) 

                                                     )xx(f)xx(f bb ∆−=∆+ 2                                          (4.5) 
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• Uniform velocity u= uα has been maintained at the inlet (x=0.0). 

• Static pressure is kept constant at the exit (x=1.5). 

 

Figure 4.5 shows the Reynolds number contour near the flow exit, 

computed through the ACM based meshless code developed. The plot of 
x

uy
ν

∞  

vs. 
∞u

u  for the axial location x=1.48 are shown in figure 4.6a. These are 

matching well with the Blasius solution plotted in the same figure as obtained 

from Yuan (1969). It can be seen from the plot that the line asymptotically 

converges to the value one as for the case of Blasius. Figure 4.6b gives the 

residue plot for the same problem.  

 

 

Figure 4.6a Present and Blasius solution 

for flow over flat plate 

Figure 4.6b Residue plot for flow over 

flat plate 

 

4.2.2 Flow inside a lid driven cavity 
 
 The two-dimensional laminar incompressible flow in a lid driven square 

cavity of unit length whose top wall moves with a uniform velocity u in its own 

plane has been used rather extensively as a validation test case by many 

authors in the recent past. It has served as a benchmark problem for testing and 

evaluating numerical techniques for different Reynolds number. It provides a 
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good test case in that there is no primary flow direction and the boundary 

conditions are very simple to employ. Ghia et. al. (1982) presented extensive 

numerical study obtained from their multigrid vorticity–stream function formulation 

using very fine grids. They reported results, which agreed quite well with other 

computational efforts. Other recent computational work involving this particular 

geometry includes Schreiber and Keller (1983) who have used a vorticity-stream 

function formulation; Kim and Moin (1985) who have used a fractional-step 

method in primitive variables in conjunction with approximate factorization; Vanka 

(1986) who has used a multigrid technique in primitive variables; and Benjamin 

and Denny (1979) who have used a centrally differenced vorticity-stream function 

formulation in conjunction with an ADI scheme.  

    

 u=1 
v=0  

 

u=v=0 u=v=0 

u=v=0 

 
 

                                                                                                                    
Fig 4.7 Lid-driven cavity problem; nodes with boundary conditions 

The current code has been validated for lower range of Reynolds number, 

i.e. Re=100, Re=400 and Re=1000. For Reynolds number 100, 400 and 1000, 

the value of the artificial compressibility δ was set to 2.0, 1.0 and 0.5 respectively. 

The top lid has been specified at horizontal speed of unity while no slip boundary 

condition has been applied for other walls. In all the four boundaries normal 

pressure gradient is equated to zero. Figure 4.7 shows a domain with 14641 

nodes used for this problem.             
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 a) u-velocity distribution at x=0.5 

 

               
b) v-velocity distribution at y=0.5 

 
Figure 4.8 Predicted velocity distribution for the lid driven cavity problem at 

Re=100 
 

 

The velocity components on the lines passing through the geometric 

center of the cavity are compared to the results of Ghia et al. (1982). For 

quantitative validation, the horizontal velocity component (ug.c) along the vertical 

mid plane of the cavity and the vertical velocity component (vg.c) along the  
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a) u-velocity distribution at x=0.5 

 

       
  b) v-velocity distribution at y=0.5 

 
Figure 4.9 Predicted velocity distribution for the lid driven cavity problem at 

Re=400 
 
horizontal mid plane of the cavity are compared against the standard benchmark 

solution of Ghia et al. (1982), for Reynolds Number = 100, 400 and 1000.The 

results are given below.   

 

Figure 4.8 shows the velocity plots for Reynolds number = 100. Here we 

see that the computed values match well with the reference values. Figure 4.9 

shows results for higher Reynolds number of 400. Here also there is good 

agreement with the reference values. Both the plot of u and v component of 
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velocity along the geometric center of the cavity for a flow with Reynolds number 

of 400 show good match with the benchmark result. The result for flow with 

Reynolds number = 1000 is shown in figure 4.10. Comparing the results with 

those of the benchmark paper on driven cavity it has been observed that in this 

case also a good agreement between the result obtained by present code and 

that reported by the benchmark paper has been obtained. 

 

                               

 
a) Stream line plot (present code) 

 
b) Stream line plot from Ghia et. al. 

                              

 
c) u-velocity distribution at x=0.5 

 

 

 
d) v-velocity distribution at y=0.5 

 
  

 
Figure 4.10 Predicted Stream line plot and velocity distribution for the lid driven 

cavity problem at Re=1000 
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4.3 Flow past a circular cylinder 
 
 The capabilities of the present method are demonstrated by simulating the 

laminar flow over a circular cylinder. This flow has been computed extensively 

and used as a benchmark to examine the accuracy of new numerical methods 

for a long time. It is well- known that the flow exhibits vastly different patterns as 

the Reynolds number 
ν

= ∞DURe  changes, where U∝ is the free-stream velocity, 

D is the cylinder diameter, and ν is the kinematic viscosity. The total length of the 

grid is taken as 38D. The cylinder is placed at a distance of 8D from the left 

boundary, midway from the top and bottom boundary (i.e. at 16D). At small 

Reynolds numbers, i.e., from zero up to approximately Recritical ≅ 49 (Ding, 

(2004)), the flow maintains a stable pattern with a pair of symmetric counter-

rotating vortices behind the cylinder. In the present study, we performed 

numerical simulation at a series of Reynolds number from 10 to 40 with various 

flow patterns in the steady state. 

 
 
 
 
 
 
 
 
 
 
 
 
   
 
 

32D 

8D 30D 

D=1.0 

16D 

16D 

u∝ 

 

  
Figure 4.11 Configuration of flow past a circular cylinder 

To solve the governing equations for the flow around a circular cylinder in 

an infinite fluid domain, boundary conditions have to be specified over the body 

surface and at infinity. No-slip condition is imposed over the body surface and the 
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free stream condition away from the cylinder. The mathematical representation of 

these boundary conditions is presented below in equations (4.4 to 4.6). 

On the body: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
∂
∂

=
=

0
n
p

0v
0u

                  (4.4) 

 
At infinity and inflow: 

⎩
⎨
⎧

=
= ∞

0v
Uu

                       (4.5) 

 
At outflow: 

⎩
⎨
⎧

=
=

outflowv
outflowu

              (4.6)  

  

Pressure is updated at the inflow and infinity boundary while specified at 

the outflow. The numerical solution of the governing equations requires the 

specification of an initial condition in order to start the time-marching method. In 

the present work, the free stream characteristics are applied everywhere as initial 

conditions. Equation (4.7) below shows the mathematical representation of these 

conditions. 

⎪
⎩

⎪
⎨

⎧

=
=

= ∞

1p
0v

Uu
            (4.7) 

 

  

 

           

Figure 4.12   Composite grid Figure 4.13   Detailed grid structure 
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A special composite mesh is designed to exploit the performance of the present 

method. In the composite mesh, Cartesian nodes are generated as the 

background mesh, and the nodes around the solid body are generated with the 

consideration of the geometrical description to make the meshing easier. A 

typical example of the composite mesh generated near the cylindrical body is 

shown in Figure 4.12.  

 

A detailed local pattern of node distribution is demonstrated in figure 4.13, 

which shows the background Cartesian nodes and the nodes around the solid 

body. In principle, the concept of mesh-free least square-based discretization 

works well for any “mesh” system, in which the nodes can be either regularly or 

irregularly distributed. This makes the present meshless method acquire 

geometric flexibility. However for simplicity and convenience, the nodes in the 

neighbourhood of the circular cylinder are generated under the cylindrical 

coordinate system. Beyond this neighbourhood, Cartesian mesh is appropriately 

generated. For meshless method no special treatment of the interface between 

the two meshes is required and it can be of any shape, depending on the 

convenience and requirement of the user. 

 
Numerical simulations were carried out for flow past circular cylinder for 

small Reynolds numbers of: 20, 30 and 40 respectively. Figures 4.14a, 4.14b and 

4.14c illustrate the velocity contour and streamlines when flow reaches its final 

steady state for three different Reynolds numbers of 20, 30 and 40 respectively. 

The corresponding fall in residue is also plotted with the iterations in those 

figures. In all cases, a pair of vortices develops behind the cylinder. It is also 

observed from the numerical solution that ripples are present behind the vortices 

inside the disturbed zone.  
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Reynolds number contour 

         
Streamlines 

  
Residue 

  
 

 

 

 

 

          

          

   

Figure 4.14a:  Reynolds number contour, streamline and residual plot for

flow past circular cylinder at Reynolds number=20. 
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Re= 30; Reynolds number contour 

       
Re=30;Streamlines 

    
Re=30;Residue 

  
            

    
Figure 4.14b:  Reynolds number contour, streamline and residual plot for 

flow past circular cylinder at Reynolds number=30. 
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Re= 40; Reynolds number contour 

       
Re=40;Streamlines 

    
Re=40;Residue 
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Figure 4.14c:  Reynolds number contour, streamline and residual plot for 

flow past circular cylinder at Reynolds number=40. 



            

    

 

 

 

 

 

 

θsep
FLOW 

Lsep

Figure 4.15: Characteristic parameters of the cylinder’s wake 
 

For the fluid flow past a circular cylinder, the characteristic quantities usually 

include the wake length Lsep, the separation angle θsep and the drag coefficient 

Cd. The wake length, Lsep, is defined as the distance from the rear of the 

cylinder to the end of the separated region. The separation angle, θsep, is 

determined from zero-vorticity at the surface of the cylinder, where the vorticity 

ω can be calculated from the following equation   

    
y
u

x
v

∂
∂

−
∂
∂

=ω                   (4.8) 

The drag coefficient Cd is computed by 

          
Au

FC D
d

2

2
1

∞ρ
=                   (4.9) 

where FD is drag force,  the characteristic fluid density, A is area of the 

orthogonal projection of the cylinder on a plane perpendicular to the direction of 

motion. The drag force on the circular cylinder can be expressed as (Zhang et. 

al. (2005)) 

ρ

 

                                     ∫∫ φτ+φ−=
ssD dssindscospF                                      (4.10)               
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where p is the pressure along the cylinder surface, τ  the shear force on the 

cylinder surface,  φ  is  the angle between the normal to the surface element and 

the flow direction, s the total surface area of the circular cylinder. The results 

from the present calculation as well as the result of the other researchers, Dennis 

(1970), Takami (1969), Tuann(1978), Fornberg (1980),  Ding (2004), are listed in 

Table 4.1 for the test case of Reynolds number of 20 and 40. All these flow 

parameters agree well with the results of previous studies for the range of 

Reynolds number studied. 

 
Table 4.1: Comparison of length of re-circulating region (Lsep), separation angle 

(θsep) and drag coefficient (Cd) for Re= 20 and 40 
 

Re Source Lsep θsep Cd, 
20 Dennis et. al. (1970) 0.94 43.7 2.05 
 Takami et. al. (1969) 0.935 43.7 2.05 
 Tuann et. al. (1978) 0.9 44.1 2.25 
 Fornberg et al. 

(1980) 
0.91 - 2.00 

 Ding et. al. (2004) 0.93 44.1 2.18 
 Present 0.94 43.7 2.08 
     
40 Dennis et. al. (1970) 2.35 53.8 1.522 
 Takami et. al. (1969) 2.32 53.6 1.536 
 Tuann et. al. (1978) 2.1 54.8 1.675 
 Fornberg et al. 

(1980) 
2.24 - 1.498 

 Ding et. al. (2004) 2.20 53.5 1.713 
 Present 2.11 54.4 1.795 

 

4.4 Flow over a backward facing step 
 

Fluid flows in channels with flow separation and reattachment of the 

boundary layers are encountered in many flow problems like heat exchangers 

and ducts. Among this type of flow problems a backward facing step can be 

regarded as having a simple geometry while retaining rich flow physics 

manifested by flow separation, flow reattachment and multiple recirculating zones 
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in the channel depending on the Reynolds number, and the geometrical 

parameters like step height and channel height. This problem has been used as 

 

 

 
 

 
 
 
 
 
 
 
 
 
 

 

s Parabolic 
velocity  
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     Outflow

u=v=0

u=v=0

x3 

x2 
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 Figure 4.16: Outline of the backward facing step problem 
 

a validation case. The challenge in modeling this problem comes from the fact 

that the sizes of the separation zones downstream of the step are very sensitive 

to the pressure gradient in the flow, especially when the boundary layer is 

separated. If separation is present, a pressure wave traveling with finite speed 

will cause a change in the local pressure gradient, which will affect the location of 

the flow separation. It has been observed that this change in separated flow will 

cause a feed back to the pressure field, possibly preventing convergence to a 

steady state. The geometry used in the calculation is shown in figure 4.16, where 

s is the height of the step. The entrance channel width is equal to the step height 

and its length is double the step height. The total length of the channel from the 

step is 30s. The length of the primary circulation zone behind the step is denoted 

by x1, whereas the distance of the starting and end point of the secondary 

circulation zone are x2 and x3 respectively. 

 

In the literature, a rich amount of numerical studies can be found on the 

two-dimensional steady incompressible flow over a backward facing step like Guj 

and Stella (1988), Keskar and Lyn (1999), Barton (1998), Kim and Menon (1999). 

 56



Rogers and Kwak (1987) applied an upwind differencing scheme in conjunction 

with the artificial compressibility method for the incompressible Navier-Stokes 

equations and have taken flow over a backward facing step as an example 

problem. While the flow over a backward-facing step serve as an interesting 

benchmark flow problem for many numerical studies, some studies stated that 

the inlet and exit boundary condition used for the model problem can affect the 

numerical solution. Barton (1998) studied the entrance effect for flow over a 

backward facing step. He stated that when using an inlet channel upstream of 

the step, significant differences occur for low Reynolds numbers, however, they 

are localized in the sudden expansion region. Papanastasiou et al. (1992) 

studied the effect of the outflow boundary condition on the numerical solution in a 

backward facing step flow. Gartling (1990) stated the importance of the outflow 

boundary condition for the considered flow. Erturk (2008) suggested that not only 

the inlet channel and outflow boundary condition that can affect the numerical 

solution inside the computational domain but the location of the outflow boundary 

is also very important for the accuracy of the numerical solution.  

 

In a very important study Yee et al. (1999) observed the spurious behavior 

of the numerical schemes. They showed that for backward facing step flow when 

a coarse grid mesh is used, one can obtain a spurious oscillating numerical 

solution. Yee (1999) and Erturk  (2008) have reported that when a finer grid 

mesh was used, the oscillating behavior of the numerical solution disappeared 

and it was possible to obtain a steady solution. They stated that when finer grids 

are used, the Mesh Reynolds number defined as 
ν
∆

=
huRem  decreases and this  

 
Figure 4.17: Grid used for computation of flow over backward facing step 
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improves the numerical stability characteristics of the numerical scheme used, 

and allows high Reynolds number flows computable. In the present study, 

following Yee et al. (1999) and Erturk et al. (2008), a fine unstructured mesh is 

used in order to be able to obtain steady state numerical solutions. A part of the 

grid used for computation is shown in figure 4.17. 

 

At the inflow boundary, it is assumed that the flow is fully developed plane 

Poiseuille flow between parallel plates such that a parabolic velocity profile is 

prescribed throughout the calculation, and the static pressure is allowed to 

change. No slip boundary condition is prescribed at the top and bottom wall. Two 

step heights downstream from the inflow a two to one expansion is encountered. 

The outflow boundary extends to 30 step heights downstream of the step. At this 

exit boundary an outflow boundary condition has been used such that any wave 

generated in the computation domain could pass through the exit boundary and 

leave without any reflection back into the computational domain. The ability of the 

code to predict the reattachment length x1, of the primary separation zone behind 

the step, as well as the separation and reattachment locations, X2, and x3, of the 

secondary separation zone on the opposite wall was tested by comparing the 

computed result to that available in published literature. These quantities were 

measured for laminar range of Reynolds numbers, which are based on the 

average inflow velocity and twice the step height. The flow was calculated using 

a grid of 24600 points. The grid is unstructured and clustered near the side 

boundary for better resolution of the flow features to be captured. The initial 

conditions were specified to be free-stream velocity at the interior points with 

uniform pressure everywhere. The streamline plot for different Reynolds number 

is shown in figure 4.18. It is observed from the plots that as the Reynolds number 

increases the length of the primary separation zone x1 also increases. At 

Reynolds number = 400 a secondary separation zone has been developed at the 

top wall boundary.   
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  a) Entry Reynolds number = 100 

         
b) Entry Reynolds number = 200 

        
c) Entry Reynolds number = 400 

Figure 4.18: Streamline plot for flow over a backward facing step at different 

Reynolds number 
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Figure 4.19: Variation of x1,x2 and x3 with Reynolds Number 

 

In figure 4.19 the quantities x1, x2 and x3 are plotted against Reynolds 

number for present computed result and the result reported by Rogers et. al. 

(1991) and experimental results of Armaly et al. (1983). Good agreement is seen 

between these results for the value of x1, at the lower Reynolds numbers before 

the secondary separation appears. At a Reynolds number of 400, the secondary 

separation bubble is present and the values of x2 and x3 are compared. In their 

experiment, Armaly et al.(1983) reported that the flow was found to be three-

dimensional near the step for Reynolds number of 400 and above, and that the 

three-dimensional effects were negligible for lower Reynolds numbers. These 

three-dimensional effects could explain the discrepancies between calculation 

and experiment. 
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Figure 4.20 Velocity profiles at various downstream locations for backward
facing step problem (Re=100); Top figure Armaly et.al [1983], middle figure
Erturk [2008], bottom figure present study 

 

 

Next we compare a set of experimental and numerical solutions found in the 

literature with the present computational result in order to demonstrate the 

accuracy of the present numerical solutions. Figure 4.20 shows the u-velocity 

profile at several x-locations (plotted as a fraction of the total length of the 

configuration S, i.e. 
S
x . In this plot x=0 is taken at the step location) at Reynolds 
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number Re=100 for the experimental results presented by Armaly et al. (1983) 

for a backward facing step.  For the same geometry a numerical solution for a 

steady two-dimensional flow is also presented by Erturk (2008) and the u-velocity 

profiles at the corresponding x-locations drawn to the same scale is shown in the 

figure 4.20. Next the computed u-velocity profiles at the same x locations from 

the simulation with the present method are drawn for comparison. From the 

figure 4.20 it can be seen that the present computed velocity profiles agree well 

with that of experimental results of Armaley et al. (1983) and numerical result of 

Erturk (2008). 

4.5 Laminar axisymmetric sudden expansion flow 
 

Flows through sudden enlargements are of interest from the point of view 

of fundamental fluid mechanics as well as practical applications. There is keen 

interest in the understanding of such flows due to their widespread occurrence in 

many fluid applications including heat exchangers, combustors, and nuclear 

reactors as well as in biological systems. On the fundamental fluid mechanics 

side, the flow through an axisymmetric sudden expansion has all the 

complexities of an internally separating and reattaching flow. However, it is 

relatively easy to study numerically since the point of separation is fixed by the 

expansion step while the geometry affords a straightforward numerical scheme in 

the rectangular coordinates. For this reason, the laminar axisymmetric sudden 

expansion flow has become a standard problem to test the performance of 

different computational schemes. The gross features of the axisymmetric sudden 

expansion flow, both laminar and turbulent, are fairly well known through flow 

visualizations and some quantitative studies. However, the details of this flow 

structure such as velocity distributions, wall pressure and shear stress, 

redevelopment length and recirculation flow strength, are not well understood. 

 
The turbulent axisymmetric sudden expansion flow has been investigated 

both experimentally and numerically by a number of researchers. The details of 

the flow structure, as well as the influence of inlet conditions, are fairly well 

understood in this flow regime. On the other hand, the number of studies 
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involving the laminar axisymmetric sudden expansion flow is quite limited. The 

literature on the experimental investigations of this flow is even more limited and 

quantitative results obtained in a systematic fashion covering a range of 

Reynolds numbers is currently lacking. For this reason, most of the previous 

studies of the laminar axisymmetric sudden expansion flows have essentially 

been limited to flow visualizations. These studies showed that the size of the 

recirculation region downstream of the expansion increases with increasing 

Reynolds numbers within the laminar flow regime. 

 

A systematic study of the laminar sudden expansion flow was undertaken 

in the Reynolds number range of Re= 20 to 211. The selected Reynolds numbers 

insured instability-free laminar flow in the complete range of study; the lowest 

critical Reynolds number reported in the literature for the onset of flow 

instabilities is Re=300. Hammad et. al. (1999) has done a  digital PIV technique 
in order to provide quantitative data to form a baseline for  computational studies. 

It was also the aim of this study to investigate effect of Reynolds number on the 

length of recirculation zone and other features of the flow. The results obtained 

from the present code have been compared with this set of experimental data. 

The geometry of the pipes used to run the code is shown in the figure 4.21 along 

with the boundary condition. 

 

 

 u= v =0 

2dd

16d

Outflow 

u= v=0 

x=02d

Figure 4.21:  Geometry and boundary conditions used for sudden 
expansion flow problem  
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a) Re=20.6 

 

 
b) Re=55.4 

 

 
c) Re=77.6 

 

 
d) Re=109.0 

 

 

 
e) Re= 156.1, 

 

 
f) Re= 211.1 

Figure 4.22: Streamline plots for sudden expansion problem for different 

Reynolds   number 
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The set of Reynolds number for which the code has been run are Re= 

20.6, 55.4, 77.8, 109, 156.1 and 211.1. The streamline plots have been shown in 

the figure 4.22 for the above Reynolds number based on smaller pipe diameter. 

The fluid enters the expanded zone as a fully developed flow in order to ensure 

fully developed flow conditions upstream of the expansion. This allows for a 

meaningful comparison of the different Reynolds number cases. As the Reynolds 

number increases, the flow takes a longer axial distance to adjust to the sudden 

change in the pipe cross-sectional area. Also it has been observed that no flow 

instabilities exist even for Re=211 as stated by Hammed (1999). As the Reynolds 

number is increased the expanded flow becomes straighter and it reaches the 

wall at increasing axial distances from the expansion step. Furthermore, higher 

Reynolds numbers result in stronger flow recirculation as indicated by the 

existence of streamlines with progressively larger negative values. 

 

d
Lr

Figure 4.23: Comparison of dependence of reattachment length on
Reynolds number  

 
The reattachment length Lr, on the other hand, is a linear function of the 

Reynolds number as shown in figure 4.23. In this figure, the present results are 

compared to results reported by Hammad et. al. (1999) obtained experimentally 
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by PIV techniques. The agreement between those results and the present 

quantitative measurements is very strong confirming the earlier experimental 

observations that the reattachment length is roughly a linear function of the 

Reynolds number in this flow regime.  

4.6 Condition number analysis 

 In the numerical analysis, the condition number associated with a problem 

is a measure of that problem's amenability to digital computation, that is, how 

numerically well-conditioned the problem is. A problem with a low condition 

number is said to be well-conditioned, while a problem with a high condition 

number is said to be ill-conditioned. For square matrices we can measure the 

sensitivity of the solution of the linear algebraic system  

                                              (4.11) bAx =

with respect to changes in vector b and in matrix A by using the notion of the 

condition number of the matrix A. Condition number is defined as the product of 

norm of A and the norm of  A inverse 

 

                                       1A.A −=κ                                                              (4.12) 

Condition number depends on the underlying norm. However, regardless of the 

norm, it’s always greater than or equal to 1. If it’s close to one, matrix is well 

conditioned which means it’s inverse can be computed with good accuracy. If the 

condition number is large, when the matrix is said to be ill conditioned, and 

computation of it’s inverse, or solution of a linear system of equations is prone to 

large numerical errors. The condition number associated with the linear equation 

(4.11) gives a bound on how inaccurate the solution x will be after approximate 

solution. Conditioning is a property of the matrix, not the algorithm or floating 

point accuracy of the computer used to solve the corresponding system. The 

definition of condition number depends on the choice of the norm. If .  is l2 norm 

then  
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where, and are maximal and minimal singular values of A 

respectively. Therefore if A is normal then  

( )Amaxσ ( )Aminσ

                                       
)A(
)A(
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λ
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where, and are maximum and minimum (by modulus) 

eigenvalues of A respectively. Now substituting the values of maximum and 

minimum eigenvalues from equation (4.14) we get 

)A(maxλ )A(minλ

                                      

                                      
δ+−

δ++
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2

2

uu
uu)A(                                                    (4.15) 

The values of condition numbers have been computed for the following four 

cases of  

• Flow inside lid driven cavity at Reynolds number=400 

• Flow past a circular cylinder at Reynolds number=40 

• Flow over a backward facing step at Reynolds number=400 

• Laminar axisymmetric sudden expansion flow at Reynolds 

number=211 

The results are shown in figure 4.24. The values of maximum and minimum 

condition number for the above four cases and the values of corresponding 

artificial compressibility parameter has been given in the following table. 

 
Table 4.2 Values of condition number and artificial compressibility   parameter 
 

Case δ Max. Condition No 

Lid driven cavity 1.0 12.0 

Circular cylinder  1.0 3.4 

Backward facing step 1.0 11.0 

Sudden expansion 1.0 8.0 
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a) Flow inside lid driven cavity at 
Reynolds number=400 

b) Flow past a circular cylinder at 
Reynolds number=40 

 
 
 
 

 
c) Flow over a backward facing step at 

Reynolds number=400 
d) Laminar axisymmetric sudden 

expansion flow at Reynolds number=211
 

 
 
 
 

Figure 4.24 Condition number contours for flow simulation using meshless ACM 
based solver for different geometries 

It is observed that higher value of condition number occur at top moving 

plate of the lid driven cavity and entry region of the backward facing step. For 

laminar axisymmetric sudden expansion flow   the maximum value of condition 

number obtained is 8.0 whereas for flow past a circular cylinder highest value of 

condition number obtained is 3.4.  

 
4.7 Summary 
 
 In this chapter the capabilities of the present method are demonstrated by 

simulating the test cases of fully developed flow inside a channel, external flow 
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over a flat plate (Blasius Solution), flow inside a lid driven cavity, flow past a 

circular cylinder, flow over a backward facing step and laminar axisymmetric 

sudden expansion flow. Finally condition number analyses of a few selected 

cases have been presented. 
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CHAPTER 5 

Conclusions and future work 
 
5.0 Conclusion 
 

 Artificial Compressibility Method (ACM) of solution for the incompressible 

Navier-Stokes equations using meshless least square based discretization has 

been tested. A few benchmark problems have been solved to test the capability 

of the code. A simple flow problem between two parallel plates has been solved 

using this method for varying Reynolds number from 0 to 1000.  It is observed 

that convergence is faster when Reynolds number is smaller and solution is 

obtained using lesser number of grid points and higher values of the artificial 

compressibility parameter. But as the Reynolds number increases more and 

more grid points are required as well as convergence becomes slower. Also 

value of artificial compressibity parameter δ had to be brought down.  

Convergence to the steady state can be further accelerated by optimizing the 

parameters, time step ∆t and δ, to be assigned values that make convergence to 

the steady solution as rapid as possible. The stability condition restricts the range 

of permissible values of these parameters. If other types of boundary conditions 

are imposed, e.g., if the derivatives of the velocities are prescribed at the 

boundary, one has to ensure that no instabilities arise due to boundary effects. 

Finally, it has been observed that the accuracy of the scheme can be improved in 

two-dimensional problems with grid enhancement or clustering near the 

boundary.  

 
 Next, the external flow over a flat plate (Blasius solution) has been solved 

for Reynolds number of 10,000. The solution obtained is self-similar and matches 

well with the Blasius solution. Another widely accepted benchmark problem of 

incompressible flow inside a lid driven cavity for lower range of three different 

Reynolds numbers 100, 400 and 1000 has been solved using the ACM code 
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developed.   The solution matches well with that provided by Ghia (1982) for 

these range of Reynolds numbers.  

 

Next, the capabilities of the present method are demonstrated by 

simulating the laminar flow over a circular cylinder. This test case is particularly 

important in order to test the grid free or meshless nature of the ACM code with 

least square based discretization method adopted in the present work. As this 

method works on an arbitrary distribution of points and requires connectivity or 

neighbourhood information for every point in the ‘cloud of points’ it is extremely 

flexible for complex geometry and multibody configuration. Steady state solution 

for three different Reynolds numbers have been computed and results are 

compared with standard results available in the literature. The solution obtained 

through the ACM code developed matches well with that available in the 

literature. 

  
Next the problem of flow over a backward facing step that contains rich 

flow features like flow separation, flow reattachment and multiple recirculating 

zones have been tried with the present code. All the above features are 

successfully captured and compare well with those available in the literature. 

 

Finally the laminar axisymmetric sudden expansion flow problem has been 

solved. In the Reynolds number range covered by the study, the velocity field 

does not show any asymmetry on the vertical plane; the radial velocity on pipe 

axis is zero throughout and the top and bottom reattachment lengths are 

approximately the same. Higher Reynolds numbers lead to longer reattachment 

lengths. The reattachment lengths are linear functions of the Reynolds number. 

The result has been compared with the reported experimental results available in 

the literature and compares well. 

 

             The results of the driven cavity flow problem and the flow past a circular 

cylinder at low Reynolds numbers for two-dimensional steady incompressible 

Navier–Stokes problem further show that the least square based ACM method 
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can be successfully employed for simulation of the incompressible viscous flow. 

Hence it can be concluded that an meshless incompressible viscous two-

dimensional Navier-Stokes solver using artificial compressibility method has 

been developed that can be applied to any irregular geometry and requires 

information of a ‘cloud of points’. 

 

5.1 Future Work 
 

Further some major improvement can be worked out above the current 

code aimed as future work. These are 

• Introduction of energy equation in the current code to solve heat 

transfer related problems. 

• Extend the capabilities of the ACM code developed to handle 

transient problems. 

• Extend the code into three dimensional flow regimes.  

• Introduction of turbulence modeling 
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Appendix A 
 
In one dimension the least square approximation to the first order accurate 

derivative (in x) fxo at the point o is given by 

            
∑

∑
∆

∆∆
= 2

i

ii)1(
xo x

fx
f           (A.1) 

where ∆xi = xi -xo   and  ∆fi = fi -fo as before. Now considering the Taylor 

expansion  
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where H=higher order terms. Now we note 
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This suggests that  can be used to cancel the second derivative term in 

equation (A.2). Now we can define a modified difference as 

xif∆
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where, 
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The difference can be calculated by using the first order formula (A.1) and it 

can then be used to determine the modified difference using equation (A.4). 

From equation (A.2) and (A.4) we get  
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Hence the second -order accurate formula for is given by xof
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Thus we get a two-step second order accurate formula to calculate . In the first 

step first order accurate  and the modified difference is determined. In the 

second step using equation (A.7) the second order accurate  is calculated. 
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xof if
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 The above two-step formula can easily be extended to a two dimensional 

problem. Here in the first step as described above the first order accurate 

derivatives  are calculated as following (without the weight factors) )1(
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Then the modified differences can be calculated as 
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In the second step the second-order accurate derivatives  can be 

calculated as following 
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Hence it can be observed that in the above two-step formulae the first-order 

formulae has been repeatedly used and it has been found to be very robust, 

Deshpande (1998). 
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Appendix B 
 
 The present method like Lattice Boltzmann method is also based on the 

kinetic theory of gases. The crucial feature in both the method is the equilibrium 

distribution function, which describes the velocity distribution of the particles / 

molecules of liquid at thermal equilibrium in terms of the macroscopic state 

variables following the approach of Junk et al. (1999).  

           

  In order to understand the behavior of kinetic scheme in the 

incompressible limit (i.e. when u << speed of sound) we need to choose time 

scale 
U
L

=ς , where U is the typical speed and L is the length scale of the flow. 

Density is assumed to be of the order unity.  Then the governing equations are  
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after scaling the above equations (B1-B2) become 
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now by assumption  
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For any explicit compressible flow solver to work in incompressible limit has to 

get a reasonable space resolution. For this time resolution must be extremely 

fine (if Ma<<1) to satisfy the CFL condition. Consistency analysis carried out in 

the coupled limit 
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Junk et al (1999)  have further assumed 
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Leading to 
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Equation of this type is similar to the equation used in pseudo-compressibility 

method to ensure divergence free condition. This can be cast in the following 

form of Chorin’s Artificial Compressibility Method (reference equation 2.8) 
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Junk et. al. (1999) have concluded that in the  

 “In the coupled limit t, Ma  0 with ∆ → ζ=
∆

2Ma
t  with the assumption that 

)pMa( 21 +ρ=ρ and that u, p and their derivatives are order one functions, the 

Kinetic Scheme is consistent to the incompressible Navier Stokes equation with 

effective Reynolds number  “ 

         
2

11 λ
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and density is replaced by artificial equation of state    

                                                                                         (B15) ρδ=p

where ρ is an artificial density, equated to the product of inverse of artificial 

compressibility factor δ and pressure p by the artificial equation of state. Here, 

0→
τ∂
ρ∂ at the steady state and τ is a fictitious time. Since this is an artificial 

equation of state, then δ1/2 plays the role of an artificial sound speed. Here it is 

important to note that at steady state the solution is independent of ρ and τ. 

 
Governing Equations of ACM in Flux Form  

Reference equation (2.33) 
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Expressions for the 2-D inviscid fluxes 
 
The expression of x-component of the inviscid split-flux is given by 
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The expression of y-component of the inviscid split-flux is given by 

⎭
⎬
⎫

⎩
⎨
⎧

π
±

β
=

⎭
⎬
⎫

⎩
⎨
⎧

π
±

β
=

⎭
⎬
⎫

⎩
⎨
⎧

π
±

β
δ

=

±±

±±

±±

2
2

2
2
2

2
221

2
22

13

12

1

sBAs)(GX

BAss)(GY

BAs)(GY

I

I

I

        (B18) 

 
where, 
δ = Artificial compressibility parameter 

δ
=β

2
1  

2
eB

2
is

i

−

=  

( )
2

serf1A i
i

±
=±  

β= ii us  

The artificial equation of state given by equation (B15) 

ρδ=p  

 At incompressible limit the transient term in equation (B16) vanishes. 
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