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Synopsis 
 

Welding is one of the most widely used fabrication process in the nuclear power plants. It 

has been observed that weld joint locations are generally critical in comparison to base 

metal and, thus, their fracture integrity must be assured. Conventional defect assessment 

procedures that are being used at present were essentially developed for cracks lying in a 

homogeneous material. In view of the variations in the tensile and fracture properties of 

base and weld material, the integrity assessment of strength mismatch welds is not 

straightforward. Extensive studies are required on welds as besides specimen geometry and 

loading conditions the strength mismatch ratio M (defined as ratio of yield strength of weld 

to yield strength of base material) and weld slenderness ratio ψ (defined as ratio of 

uncracked ligament to half weld thickness) are the additional variables affecting the 

fracture assessment procedures. The present investigation is an effort in that direction. 

  In this work, detailed theoretical and numerical studies were performed on elastic-

perfectly plastic (non-hardening) material. It is well recognized that such idealised model 

does not adequately represent the real material behaviour, however, insight into the physics 

of deformation can be obtained by this simplified material response. Thus, in present 

investigation, both base and weld materials were modeled as elastic-perfectly plastic. The 

two materials were assumed to have same elastic modulus and Poisson’s ratio but 

mismatch in their yield strength. All the investigations in this work are based on plane-

strain assumption. Crack was postulated at the centre of weld. Numerical studies were 

performed within the framework of continuum scale plasticity (J2 flow theory) and effects 

of micro-structural heterogeneity and presence of residual stresses were not accounted. 

 



  

 ii

A new load bounding technique, Modified Upper Bound (MUB) theorem, was 

proposed. Rigorous mathematical basis of this load bounding technique and its equivalence 

with the classical Slip Line Field analysis (SLF) was presented. Various simplifications 

resulting from the use of this new load bounding technique over SLF method were 

demonstrated. Several standard problems of plane strain analysed by SLF method and 

validated by experiments in past were examined. As a novel application of the proposed 

method, a complete analytical formulation for yield locus for the entire range of tensile and 

bending load was obtained for a single-edge-cracked plate.  

Apart from analysing standard homogeneous fracture mechanic specimens in 

plane-strain condition, the proposed MUB method was used to analyse weld strength 

mismatch effects. Application of MUB method to the practical problem of evaluation of 

the limit load, plastic η-factor (used for experimental evaluation of fracture toughness), and 

crack tip stress fields of fracture specimens having weld centre crack was demonstrated. 

Aspects related to state of stress at the base-weld interface were discussed in detail. 

Excellent agreement was observed between the proposed theoretical solutions and those 

obtained from detailed full-field finite element analysis.  

In addition, the important concern of characterization of crack-tip stresses in 

incompressible elastic-perfectly plastic material under mode-I loading was dealt with. 

Detailed investigations revealed that the most general elastic-plastic crack-tip fields can be 

completely described by the 5-sector stress solution proposed in this work. It is well known 

that the loss of constraint at the crack-tip leads to an elastic sector at the crack flank 

leading to incomplete crack-tip plasticity. This study has revealed that cases arise where 

the severe loss of crack-tip constraint can lead to compressive yielding of crack flank that 
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can be described by the 5-sector stress field. Several important applications of the proposed 

5-sector stress fields were discussed. A new constraint-indexing parameter TCS-2 was 

proposed which along with hydrostatic stress ahead of crack tip is capable of representing 

the entire elastic plastic crack-tip stress fields over all angles around a crack tip. Excellent 

agreement was obtained between the proposed asymptotic crack-tip stress field and the 

finite element results. It was demonstrated that the proposed constraint parameters are 

adequate to represent the crack-tip constraint arising due to specimen geometry and 

loading conditions as well as the additional constraint that arises due to weld mismatch. 

 Towards the end we would like to briefly address the application aspects of this 

work. Although finite element analysis may be used to carry out integrity assessment of 

strength mismatch weld on case by case basis, however, for engineering applications a 

simplified fracture assessment procedure is invariably preferred. Most of the commonly 

used fracture assessment procedures developed for welds require the limit load. In 

addition, evaluation of plastic η-factor is required for experimental evaluation of fracture 

toughness. The proposed solutions of limit load would be useful for engineering fracture 

assessment of these strength mismatch welds. Although the proposed solutions of plastic 

η-factors and crack-tip constraint were evaluated for non-hardening material model, 

however, the results may still be applicable for materials having low and even moderate 

strain-hardening. It is expected that the detailed analytical and numerical studies performed 

in this work would provide a comprehensive understanding of the effects of weld strength 

mismatch on the limit load, plastic η-factor and crack tip stress fields of plane strain 

fracture specimens. 
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CHAPTER 1 

 

Introduction 
 

 

The ever increasing demand for power to support and sustain the requirements of world 

population of 7.0 billion (in 2011) is dictating the optimum use of energy and materials. 

Fracture of engineering materials is a problem that society has faced for a long. Major 

airline crashes, failures of high pressure pipe lines, bursting of liquid and gas storage 

tankers etc are just a few examples of catastrophic failures. An economic study (Duga et 

al., 1983) estimated the cost of fracture in the United States in 1978 at around $ 120 

billion, about 4% of gross national product. This data is sufficient to indicate that how 

detrimental these catastrophic failures are to the economy. Moreover, this study also 

provided an estimate of the annual cost that could be reduced if further research is directed 

towards understanding and predicting the failure behaviour of materials. Thus, it is a little 

surprise that substantial efforts are being made worldwide in this direction with a broad 

objective of developing more robust structural integrity assessment methods so that the 

safety and integrity of the load bearing components/structures can be reliably assured. 

 Nuclear power generation is considered to be one of the clean and sustainable 

sources of energy. At present around 20% of electricity in US and 74% in France is 

generated through nuclear energy. India has an ambitious plan to extend its power 

generation capacity through nuclear energy to 20,000 MWe by 2020. Safe and reliable 

operation of nuclear power plants is an essential requirement to satisfy the public concern 

of safety besides the obvious economic aspects. 
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 Welding is one of the most widely used fabrication process in the nuclear power 

plants. It is used to join permanently two, usually metallic, components by the application 

of heat and/or pressure. The range of pressure and temperature used may vary a lot 

depending up on the particular welding technique but heating and cooling are integral parts 

of most welding process. The particular combination of these variables results in a joint 

that is unique in terms of material variation, potential flaws, and residual stresses. Material 

variations occur across a weld joint because each region of weld is subjected to a different 

thermal history, with temperatures rising, in some cases, above those required for phase 

transformation and grain growth. In a typical multi-pass weld in steels, for instance, 

several regions may develop in the heat affected zone, each with its own microstructure 

and mechanical and fracture properties. In cases where filler metals are used the weld 

metal may have significantly different chemical composition than the base metal and, 

hence, may possess different mechanical properties. Such material variations can affect 

significantly both the fracture toughness and the crack driving force in a weld joint. The 

welding process also largely controls the potential for weld defects which may develop 

during fabrication. The common defects developed during welding include lack of 

penetration, lack of fusion, which are planar defects, and slag inclusions and porosity, 

which are volumetric defects. Cracks may also develop during welding. Planar defects and 

cracks have direct consequences on the structural integrity of weldment, while volumetric 

defects may eventually pose problems due to fatigue crack initiation during service.   

 Conventional defect assessment procedures that are being used at present were 

essentially developed for cracks lying in a homogeneous material. In view of the variations 

in the tensile and fracture properties of base and weld material, the integrity assessment of 
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strength mismatch welds is not straightforward. Here mismatch means that the weld and 

base material differ in yield strength and in hardening behaviour. In addition the difference 

in elastic modulus and Poisson’s ratio also occurs in certain cases. However, for 

engineering materials that are used in bridges, offshore equipments, piping and pressure 

vessels, the difference in the elastic properties is usually small (Hao et al., 1997). Thus, 

these structures need specific attention on the mismatch problem under elastic-plastic 

condition. Although finite element analysis may be used to carry out integrity assessment 

of strength mismatch weld on case by case basis, however, for engineering applications a 

simplified fracture assessment procedure is invariably preferred. In this study accurate 

analytical solutions of the limit load, plastic η-factor and crack tip stress fields of plane 

strain fracture specimens having weld centre crack are presented. Proposed analytical 

solutions were validated by detailed elastic-plastic finite element analyses. It is expected 

that the detailed analytical and numerical studies performed in this work would provide a 

comprehensive understanding of the effects of weld strength mismatch on the limit load, 

plastic η-factor and crack tip stress fields of plane strain fracture specimens. 

 

1.1    Fracture assessment procedures for welds 

 

Most of the commonly used fracture assessment procedures developed for welds require an 

accurate evaluation of the limit load. For materials having high fracture toughness the net-

section collapse occurs prior to crack growth initiation and, thus, the limit load provides a 

good estimate of the load bearing capacity of the component. However, for materials 

having moderate or low fracture toughness the criterion of net section yielding is not 
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adequate and detailed fracture mechanics calculations are required. Apart from accurate 

evaluation of crack driving force like J-integral, the material fracture toughness is also 

required for such integrity assessment calculations. In general, plastic η-factor is used for 

the experimental evaluation of fracture toughness. Fracture testing standards like ASTM E-

1820 provides the plastic η-factor for standard homogeneous fracture specimens. Effects of 

weld strength mismatch on the plastic η-factor have not been incorporated till date. 

 Conventionally, fracture toughness tests are performed on small size standard 

fracture specimens. Detailed analytical and experimental studies conducted in past two 

decades have revealed that the crack-tip stresses play an important role in the fracture 

process. Since the state of stress near the crack tip in a standard fracture specimen is very 

different from that of the component/structure under investigation, significant variations in 

the fracture toughness of standard fracture specimen and the actual component have been 

observed.  

 Thus, extensive studies are required on welds as besides specimen geometry and 

loading conditions the strength mismatch ratio M (defined as ratio of yield strength of weld 

to yield strength of base material) and weld slenderness ratio ψ (defined as ratio of 

uncracked ligament to half weld thickness) are the additional variables affecting the 

fracture assessment parameters.  

 

1.2    Identification of issues for investigation 

 

A detailed literature survey (presented in Chapter 2) revealed that in the past two decades 

several detailed numerical (FE) and experimental studies have been performed on weld 
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centre crack. Although the effect of strength mismatch ratio M and weld slenderness ratio 

ψ on fracture assessment parameters has been numerically as well as experimentally 

examined, however, the detailed insight of the mechanics of deformation in a strength 

mismatch weld is still lacking. The detailed structure of global plastic fields that occurs in 

commonly used fracture specimens, having weld centre crack, under fully plastic condition 

has not been worked out. Aspects related to the state of stress at the base-weld interface 

need a more thorough investigation. The general structure of crack tip stress field and 

particularly the angular variation of these local stresses need a detailed examination. The 

important concern of characterisation of crack tip stresses for weld centre crack under 

mode I loading needs to be studied. It remains to be established that the effect of specimen 

geometry, loading condition and weld strength mismatch can be suitably represented by 

appropriate crack tip constraint parameters. The present work is intended to address these 

issues. 

 

1.3    Scope of work 

 

In this work, detailed analytical and numerical studies were envisaged on weld centre crack 

under mode I loading. Both base and weld materials were modeled as elastic-perfectly 

plastic (non-hardening). It is well recognized that such idealised model does not adequately 

represent the real material behaviour, however, this material model was chosen for the 

present study because of three prime reasons; (i) an insight into the physics of deformation 

of solids can be obtained by this simplified material response. (ii) Limit load has been 

widely used as an important design parameter. It is worth to note that the assumption of 
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non-hardening plasticity is a necessary requirement for limit analysis. The effect of strain 

hardening is accounted indirectly by adjusting the reference stress, in general, as an 

average of yield and ultimate tensile strength. In addition, the experimental evaluation of 

fracture toughness requires a proportionality factor, often referred as the plastic η-factor. 

Analytical evaluation of plastic η-factor also invokes the assumption of non-hardening 

plasticity. (iii) The results of crack tip stresses obtained from this idealized material model 

may still be applicable for materials having low and even moderate strain-hardening. For 

homogeneous standard fracture mechanics specimens it has been demonstrated by O' 

Dowd and Shih (1991) that the constraint parameter Q is a weak function of material strain 

hardening behaviour.  

 Thus, in the present investigation, both base and weld materials were modeled as 

elastic-perfectly plastic. The two materials were assumed to have same elastic modulus and 

Poisson’s ratio but mismatch in their yield strength. All the investigations in this work 

were carried out on deeply cracked fracture specimens under plane-strain condition. A 

schematic of geometries investigated in present work is shown in Fig.1. Crack was 

postulated at the centre of weld. Numerical studies were performed within the framework 

of continuum scale plasticity (J2 flow theory) and effects of micro-structural heterogeneity 

and presence of residual stresses were not accounted. 

 

1.4    Objectives of the thesis 

The objectives of the present thesis are as follows 
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• To develop a robust analytical method for plane-strain problems that can account 

for weld strength mismatch effects.  

• To develop accurate analytical solutions of the limit load for commonly used 

fracture mechanics specimens having weld centre cracks. 

• To study the effects of strength mismatch ratio M  and weld slenderness ratio ψ on 

the state of stress near the crack tip in high as well as in low constraint geometries 

namely pure bending SE(PB) specimen, compact tension C(T) specimen, and 

middle tension  M(T) specimen having weld centre crack.  

• To propose analytical solutions of the plastic η-factor (used for experimental 

evaluation of fracture toughness) for fracture specimens having weld centre cracks. 

• To propose the general structure of crack tip stress field in an elastic-perfectly 

plastic material under mode I loading. To study the suitability of 4-sector stress 

field proposed by Zhu and Chao (2001) for the problem of weld centre crack. To 

examine whether the combined effects of specimen geometry, loading conditions 

and weld strength mismatch can be suitably represented by a general structure of 

crack tip stress field. 

• To develop constraint parameters that can be used to characterize the crack tip 

stresses in an elastic-perfectly plastic material under mode I loading. To study the 

suitability of the proposed constraint parameters for a wide range of crack tip 

constraint. To identify whether the proposed constraint parameters are adequate to 

represent the effects of specimen geometry, loading conditions and weld strength 

mismatch on crack tip stresses. 
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• To perform detailed 2-D elastic-plastic full field finite element analysis on both 

high constraint and low constraint geometries having weld centre crack under mode 

I loading. To validate the structure of proposed general elastic plastic crack tip 

stress field with the results of crack tip stresses obtained from FE analysis. 

 

1.5    Organisation of the report 

 

The work carried out in this thesis is organised in nine chapters. The structure of the 

remaining part of this report is as follows: 

 Chapter 2 of this thesis describes a detailed literature survey that is conducted to 

understand the studies performed by various researchers on fracture aspects of strength 

mismatch welds under monotonic loading. Both analytical and experimental studies are 

covered. For the sake of completeness a brief description of the studies performed on 

homogeneous fracture specimens is also provided. 

  In chapter 3 of this thesis, general aspects related to the assumption of rigid plastic 

material model, virtual work principle, and limit theorems of classical plasticity are 

introduced. The concept of proposed Modified Upper Bound (MUB) theorem and its 

analytical formulation are presented. It is demonstrated that the method (MUB) is actually 

a new form of already existing extremum/work principle. 

 In chapter 4, the equivalence of proposed MUB theorem with the classical Slip line 

Field (SLF) analysis, for a rigid-plastic body in plane strain, is discussed. It is 

demonstrated that minimization of this new form of general work principle automatically 

leads to global equilibrium equations, as obtained from SLF analysis. Both cracked and 
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uncracked configurations are analysed to establish this equivalence in general. As a novel 

application a complete analytical formulation for yield locus for the entire range of tensile 

and bending load, for a single edge notched specimen, is presented. 

 In chapter 5, weld strength mismatch effects on the limit load and crack tip 

constraint is examined. The detailed structure of global plastic fields for pure bending 

SE(PB) specimen, and compact tension C(T) specimen having weld centre crack, under 

fully plastic condition, is presented. Aspects related to the state of stress at the base-weld 

interface are discussed. Effect of strength mismatch ratio M and weld slenderness ratio ψ is 

systematically examined. Using the proposed MUB theorem accurate analytical solutions 

of the limit load, and crack tip constraint parameter h are obtained. It is shown that a 

family of five fields proposed in this work is adequate to cover all practical cases of weld 

mismatch. Proposed analytical solutions are confirmed with detailed FE results. 

 In chapter 6, weld strength mismatch effects on low constraint geometries is 

analysed. As a representative of such a case, a middle tension M(T) specimen is analysed. 

A discontinuous stress solution is proposed to analyse M(T) specimen having a weld centre 

crack. Discontinuity is incorporated in the proposed solution by assuming an unknown 

value of normal stress at the base-weld interface. MUB theorem along with global 

equilibrium equations is utilised to obtain this unknown normal stress and hence the whole 

plastic field. The results obtained are found to be in excellent agreement with the known 

FE solutions available in literature. In addition to limit load, detailed evaluation of crack 

tip constraint is performed. 

 In chapter 7, the effects of weld strength mismatch on fracture toughness testing are 

discussed. Analytical solutions of plastic η-factor for pure bending specimen, compact 
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tension specimen and middle tension specimen having weld centre cracks are proposed and 

compared with finite element results. 

 In chapter 8, the important concern of characterisation of crack tip stresses in an 

elastic-perfectly plastic material under mode-I loading is discussed. A novel 5-sector 

asymptotic crack tip stress field is developed for a stationary crack under plane strain 

condition. Detailed 2-D elastic plastic finite element analyses are performed to examine 

validity of the proposed 5-sector stress field. A new constraint-indexing parameter TCS-2 is 

proposed which along with hydrostatic stress ahead of crack tip is capable of representing 

the entire elastic plastic crack tip stress fields over all angles around a crack tip. Finally, it 

is demonstrated that the proposed constraint parameters are adequate to represent the crack 

tip constraint arising due to combined effect of specimen geometry, loading conditions, 

and weld strength mismatch effects. 

 In chapter 9, a brief summary of the entire work and salient conclusions drawn 

from the present investigation are presented. In addition, further possible extension of the 

present study that may be carried out in future is also discussed. 
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Fig. 1.1: Geometries investigated in present work (a) Pure bending SE(PB) specimen, 
(b) Middle tension M(T) specimen and (c) Compact tension C(T) specimen having a 
weld centre crack 
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CHAPTER 2 

 

Literature review 
 
 
 

In the following sections literature describing the investigations performed to understand 

the effects of weld strength mismatch on the fracture assessment parameters is presented. 

For the sake of completeness a brief description of the studies performed on homogeneous 

fracture specimens is also provided. These investigations are covered under two main 

headings: Analytical and numerical studies, and experimental studies. 

 

2.1    Analytical and numerical studies on plane 2-D fracture specimens 

 

A brief review of analytical and numerical studies on the limit load, plastic η-factor and 

crack tip stress fields performed on plane 2-D fracture specimens is presented in the 

following paragraphs. The review comprises of studies on homogeneous specimens as well 

as on fracture specimens having strength mismatch welds.  

 

2.1.1    Studies on limit load 

 

The two-criteria approach for flaw assessment like R-6 (Milne et al., 1986) provides a 

method for interpolation between plastic collapse and fracture governed by linear elastic 

fracture mechanics. A realistic assessment of plastic collapse should take into account the 

material strain hardening, the finite strain and the finite deformation effects. In practice, 
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however, a simpler assessment is performed using the limit analysis, where these effects 

are ignored. Limit analysis may also be used for evaluation of other fracture assessment 

parameters. The elastic-plastic parameter J (Rice, 1968) may be assessed by the reference 

stress method (Ainsworth, 1984) using the limit load. If it is assumed that the creep stress 

distribution is similar to that of the reference stress obtained from the limit load, the 

reference stress itself may be used to evaluate the creep crack growth parameter, that is, the 

C* integral. In view of these considerations it becomes apparent that the limit analysis 

plays an important role in integrity assessment of components subjected to different 

loading conditions. 

 Limit analysis calculates the maximum load that a given structure made of elastic-

perfectly plastic material can sustain. The loading is assumed to vary proportionally with a 

single factor. When the limit load is reached the deformations become unbounded and the 

structure behaves like a mechanism. As complete solutions are difficult to obtain, bounds 

are arrived on the limit load using the two limit theorems. In the following paragraphs few 

salient studies related to the limit load of homogeneous fracture specimens and fracture 

specimens having strength mismatch welds are described. 

 

2.1.1.1    Limit load of homogeneous fracture specimens 

 

The notched specimens are nowadays frequently used in fracture mechanics analysis. In 

low strength metal specimens the remaining ligament is normally fully yielded before 

crack growth initiation occurs. Under these conditions the slip-line field (SLF) analysis, 

assuming that the material is rigid-plastic, can provide sufficiently accurate estimates of 
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stresses in plastic region and the corresponding limit load. Applications of the SLF theory 

to fracture related problems in Charpy and Izod test specimens are discussed in detail by 

Green and Hundy (1956), Green (1953, 1956), Alexander and Komoly (1962) and Ewing 

(1968). Effect of notch root radius and flank angle on the limit load and the corresponding 

crack tip stresses was accounted in these solutions. An excellent survey of limit loads of 

structures containing defects was presented by Miller (1988). 

 

2.1.1.2    Effect of weld strength mismatch on the limit load of fracture 

specimens  

 

In many practical applications, flaws are located within the welds. In these cases, the 

assumptions on which the conventional flaw assessment procedures are based are generally 

not valid. As a result flaw assessment procedures have been developed for welds that can 

account for weld strength mismatch effects. Most of these methods require an accurate 

evaluation of the limit load. 

 Analytical studies on the limit load of fracture specimens having weld centre cracks 

were carried out by Joch et al. (1993) and Burstow and Ainsworth (1995). These authors 

quantified the influence of strength mismatch ratio M and weld slenderness ratio ψ on the 

limit load of middle tension M(T) and three-point bend SE(B) specimens. Classical upper 

bound theorem of limit analysis was used to derive analytical solutions. Proposed 

analytical solutions were compared with FE results. Hao et al. (1997, 2000) examined the 

effect of weld strength mismatch on the limit load of M(T) and pure bending SE(PB) 

specimen having weld centre crack. They performed analytical studies on rigid-plastic 
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material model. Using classical approach of Slip-line theory, they provided sufficiently 

detailed analytical solutions of limit load and crack-tip stresses for the cases where 

plasticity was confined only in weld material. For the cases where the yield strength of 

base and weld material was comparable approximate solutions were proposed using results 

obtained from finite element (FE) analyses. 

 Kim and Schwalbe (2001a, b and c) in a series of papers numerically examined the 

effect of weld strength mismatch on the limit load of commonly used fracture specimens: 

M(T), SE(PB), SE(B), C(T) and double edge cracked tensile DE(T) specimen. Results of 

the limit load obtained from FE analyses were presented in closed-form solutions. Both 

plane strain and plane stress cases were analysed. Limit load solutions were provided for 

weld centre crack, interfacial crack and for asymmetrically located crack in the weld 

region. 

 The effect of weld undermatch on the plastic limit load and fully plastic stress 

triaxilities for flat plates and round bar specimens was studied by Kim and Oh (2006) using 

FE analysis. Elastic-perfectly plastic material model was assumed and for flat plate both 

plane stress and plane strain cases were analysed. It was observed that the effect of weld 

strength mismatch was significant for flat plate under plane strain and round bar specimens 

whereas the effect was less significant for plate under plane stress condition. The effect of 

weld slenderness ratio was also quantified. 

 Limit load solution for a M(T) specimen having a highly undermatch weld with an 

arbitrary crack in the weld region is recently proposed by Alexandrov (2010). Plane strain 

condition was assumed. Using the slip line field for the Prandtl's problem (compression of 
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a plastic layer between two rough parallel plates), a closed form expression of the limit 

load was proposed. 

 

2.1.2    Studies on plastic η-factor 

 

The evaluation of fracture toughness is an integral part of structural integrity assessment 

procedures which are based on fracture mechanics concepts. In fact fracture toughness 

essentially provides the criterion through which the severity of crack like flaws can be 

related to the operating conditions in terms of a critical applied load or a critical crack size. 

Fracture toughness, in terms of J-integral, is measured using the experimental load-

displacement data and a proportionality factor, often referred as the plastic η-factor (Rice 

et al., 1973). These authors proposed to split the total J-integral into elastic (Je) and plastic 

components (Jp). While the elastic part Je is related to the stress intensity factor (K), the 

plastic part Jp is associated with the plastic area under the load-displacement data obtained 

from experiments, as described by the following equation 
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Here E'= E for plane stress and E'=E/(1-ν2) for plane strain condition. A γ-factor was 

proposed by Hutchinson and Paris (1979) and later generalised by Ernst et al. (1979) and 

Ernst and Paris (1980) to incorporate the correction term due to crack growth. The 

following paragraphs summarizes some of the important studies related to plastic η-factor 
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for standard homogeneous fracture specimens as well as fracture specimens having 

strength mismatch welds. 

 

2.1.2.1    Plastic η-factor of homogeneous fracture specimens 

 

Conventionally, fracture toughness is evaluated by performing tests on small size standard 

fracture specimens like deeply cracked SE(B) and C(T) specimens. Commonly used 

fracture testing standards like ASTM E-1820 and ESIS P1-92 use the experimental load 

versus load line displacement (LLD) data of deeply cracked specimens for evaluation of 

fracture toughness. Values of plastic η-factor to be used are also suggested by theses 

standards which are based on investigations performed by many researchers. For deeply 

cracked geometries expressions of plastic η-factor have been obtained either using 

dimensional analysis or load separation criterion. Solutions of plastic η-factor for middle 

tension M(T) specimen have been proposed by Rice (1973), Landes et al. (1979) and Roos 

et al. (1986). However, for cases where gross-section yielding occurs prior to net section 

yielding the fracture toughness procedures based on load versus load line displacement 

data are not adequate. This is the case particularly for specimens having short cracks. 

Sumpter (1987) proposed the idea to determine the fracture toughness Jc from three-point 

bend specimen having a shallow crack using load versus crack mouth opening 

displacement (CMOD) data. Elastic plastic FE analysis was used to show the adequacy of 

the proposed method. For M(T) specimen Hoshide et al. (1982) also proposed to evaluate J 

from the area under load versus CMOD data. Based on FE calculations, Wang and Gordon 

(1992) proposed expressions of CMOD based plastic η-factor for SE(PB) specimen. In a 
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more general work, Chattopadhyay et al. (2001) derived limit load based general 

expressions of plastic η and γ factors. The advantage of these general expressions is that 

the plastic η and γ factors for any cracked geometry and loading condition can be readily 

obtained using the limit load expression. Based on slip line field and detailed FE analysis, 

Kim (2002b) provides the plastic η factor for single-edge cracked specimen, subjected to 

four-point bending load. Both LLD based and CMOD based η factors were proposed. In 

accordance with previous studies, it was observed that the use of CMOD based η factors 

provide a more robust experimental J estimation procedure, particularly for shallow 

cracked geometries. The effect of in-plane and out-of-plane constraint on the plastic η 

factor of double edge cracked tensile specimen DE(T) was examined by Kim et al. (2004) 

using detailed 3-D FE analysis. Investigations were performed for both hardening and non-

hardening material models. It was observed that in contrast to M(T) specimen, the J 

estimation scheme for a DE(T) specimen depends on whether the specimen is in plane 

strain or plane stress. 

 

2.1.2.2    Effect of weld strength mismatch on plastic η-factor of fracture 

specimens 

 

Existing fracture testing standards are mainly applicable to fracture specimens made of 

homogeneous materials. In order to assess fracture integrity of a cracked welded structure, 

accurate estimation formulas for fracture toughness evaluation, which can account for weld 

strength mismatch effects, are required.  
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 Analytical studies to quantify the effect of weld strength mismatch on plastic η-

factors were performed by Joch et al. (1993) and Burstow and Ainsworth (1995). Using 

classical upper bound theorem of limit analysis solutions of limit load were obtained by 

these authors. The limit load solutions were in turn used to derive the plastic η-factors for 

M(T) and SE(B) specimens. Crack was postulated at the centre of weld and the effect of 

mismatch ratio M and weld slenderness ratio ψ was systematically examined. Proposed 

analytical solutions of η-factors were compared with FE results and reasonably good 

agreement was obtained between the two solutions. It was demonstrated that weld strength 

overmatch ( M>1) would reduce the plastic η-factors below that of standard homogeneous 

specimens while under match welds lead to higher plastic η-factors. Obtained results were 

used to provide guidance for testing weldments using standard bend specimens. Burstow 

and Ainsworth (1995) discussed that the crack growth in the undermatched specimen can 

be characterised by J-integral for the weld metal. However, for overmatched specimen J-

integral can be used to characterise only small amount of crack growth. 

 Sumpter (1987) presented a method for determination of fracture toughness Jc from 

SE(B) specimen having a shallow crack using load versus CMOD data. For the weld 

geometry and the range of weld strength mismatch considered, he demonstrated that the 

method can be applied to specimens containing weld joints also. Eripret and Hornet (1992, 

1994) discussed that for an overmatched weld plastic deformation can occur at the base-

weld interface even before starting at the crack tip. Under such condition the LLD 

increases without causing any real loading of the crack. They suggested that commonly 

used toughness estimation procedures based on area under the load versus LLD curves are 

not valid particularly for overmatched welds. Based on analytical considerations, Hornet 



                                                                                                                                                                                         Chapter-2
  

 20

and Eripret (1995) proposed a new procedure for evaluation of fracture toughness from the 

area under the load versus CMOD curve. The proposed method was compared with 

experimental results and FE calculations. 

 

Based on FE analysis, Gordon and Wang (1994) suggested an expression for CMOD based 

plastic η-factor incorporating the weld strength mismatch effect, however, their proposed 

expression was not in good agreement with their FE results. Kim (2002b) proposed 

solutions of plastic η-factor for bi-material SE(PB) specimen having an interface crack. 

Based on FE results both LLD based and CMOD based η-factors were proposed. It was 

demonstrated that the proposed CMOD based η-factor of homogeneous SE(PB) specimen 

can also be used for a bi-material specimen with an interface crack. 

 The effect of weld strength mismatch on plastic η-factor of fracture specimens 

having weld centre crack was also examined by Kim et al. (2003). Detailed 2-D FE 

analyses were performed to account the effect of strength mismatch ratio M and weld 

slenderness ratio ψ on plastic η-factor of commonly used fracture specimens namely M(T), 

SE(B), and C(T) specimens. Investigations were performed on deeply cracked specimens 

and the effect of material strain hardening was accounted. However, same value of strain 

hardening index was used for both base and weld material. Based on proposed solutions a 

window was provided, within which the plastic η-factor of homogeneous specimens may 

be used for fracture toughness evaluation of weldments. 

 In a recent study, Dunato et al. (2009) examined the effect of weld strength 

mismatch on fracture toughness parameters such as J-integral and crack tip opening 

displacement CTOD for SE(B) specimen. Detailed non-linear FE analyses were performed 
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on plane strain SE(B) specimen with a crack located at the centre of weld and in heat 

affected zone along the fusion line of weldment. The study provided a database of plastic 

η-factor and plastic rotation rp factor for a wide range of crack sizes and strength mismatch 

ratio. It was concluded that for the range of mismatch ±20% J-integral and CTOD 

estimation expressions are not significantly affected and, thus, the weld mismatch effects 

can be ignored.  

 

2.1.3    Studies on crack tip stress fields 

 

The application of conventional fracture mechanics to assess the integrity of a cracked 

structure is based on the assumption that a single parameter uniquely characterizes the 

resistance of a material to fracture. Material resistance to catastrophic brittle fracture is 

characterized by a critical value of the stress intensity factor, KIc while resistance to the 

onset of ductile fracture is characterized by a critical value of the J-integral, JIc. Fracture 

testing standards like ASTM E-1820 imposes certain restrictions on the size of fracture 

specimens to be tested and on crack depth. These requirements are intended to ensure that 

the crack tip is essentially in a state of plane strain and a high stress tri-axiality (constraint) 

exists ahead of crack tip. Under these conditions it can be demonstrated that the state of 

stress near the crack tip and the resulting fracture is controlled by Hutchinson-Rice-

Rosengren (HRR) asymptotic fields. The requirements of the testing standards thereby 

guarantee that KIc and JIc are lower bound, geometry independent measures of fracture 

toughness. However, cracks in civil, nuclear and marine structures are seldom this highly 

constrained, which makes predictions of structural fracture resistance based on laboratory 
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fracture toughness values overly conservative. Excessive conservatism in structural 

assessment can lead to the unwarranted repair or decommissioning of engineering 

structures to protect the public safety at a great, and often unneeded, cost and 

inconvenience.  

 Experimental studies by Sumpter (1989) and by Kirk and Dodds (1991) 

demonstrated that the use of geometry dependent fracture toughness values allows more 

accurate prediction of the fracture performance of structures than is possible using 

conventional fracture mechanics. However, the task of characterizing fracture toughness 

becomes more complex as testing of non-standard specimens is required, and different 

fracture toughness data are needed for each geometry of interest. Further, this approach 

cannot be applied economically to thick section structures (e.g. nuclear pressure vessels). 

As a result many detailed numerical and experimental studies were performed to identify 

the parameters responsible for the variation of fracture toughness with specimen geometry 

and loading conditions. These studies revealed that the geometry dependence of fracture 

toughness arises essentially due to difference in state of stress ahead of crack tip. Thus, 

special emphasis is laid on the understanding of these local fields and characterisation of 

crack tip stresses has been an area of active research for many decades. This is not only 

useful in structural design but also helps in understanding material failure by throwing 

light on potential fracture mechanisms (e.g. brittle cleavage or ductile void coalescense). 

Further, the information on the state of stress near the crack tip, obtained from a continuum 

analysis, can be suitably combined with a local (micro-mechanical based) fracture criterion 

that may help in predicting the fracture toughness and the potential direction of crack 

propagation especially under mixed mode loading conditions. 
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  In the following paragraphs a few salient investigations describing the near tip 

stress fields of a stationary crack, in pressure-insensitive solids (yield criterion independent 

of hydrostatic stress), is presented. More details on stationary crack tip stress fields in 

elastic plastic solids can be found in a recent article by Narasimhan et al. (2009). 

 

2.1.3.1    Crack-tip stress fields in homogeneous fracture specimens 

 

The first general study regarding the state of stress ahead of crack tip, in a linear elastic 

material, was performed by Williams (1957), though Westergaard (1939) in an earlier 

work has provided a means for connecting the local stress fields to the global boundary 

conditions in certain configurations. In his landmark paper, Williams (1957) showed that 

the crack tip stress fields in an isotropic elastic material can be expressed as an infinite 

series where the leading term exhibit a 1/√r singularity and the second term is independent 

of r. Classical fracture mechanics theory neglects all but the singular term and, thus, came 

the concept of characterisation of crack tip stresses by a single parameter. Although the 

third and higher order terms of the Williams’s series vanish near the crack tip, the second 

term (that is constant) remains finite and has a strong effect on the stresses in the plastic 

zone near the crack tip (Larsson and Carlsson, 1973). This second term has been referred 

in the literature as T-stress (Rice, 1974). The single parameter characterisation is rigorously 

correct only for T >0. In nuclear power plants, particularly for class-I components, special 

emphasis is laid on the use of high toughness materials so that the possibility of brittle 

fracture is remote. For such materials the size of plastic zone, ahead of crack tip, is quite 

large and T-stress being an elastic parameter has no physical meaning under such large 
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scale plasticity. By idealising the actual elastic-plastic behaviour of material as non-linear 

elastic, Hutchinson (1968), Rice and Rosengren (1968) proposed the dominant term of the 

singularity field (often referred as HRR solution) for plane strain mode-I crack based on 

the J-integral (Rice, 1968). Thus, the HRR singularity is the natural extension of one-

parameter characterisation concept to a non-linear elastic material. The HRR solution, 

revealed several important features about the structure of stress and strain fields near the 

crack tip and paved the way for the development of the field of elastic-plastic fracture 

mechanics.  It was pointed out by Hutchinson (1983) that in order to use J as a valid 

fracture characterizing parameter, it is essential that the region of dominance of HRR field 

must exceed the size of the fracture process zone where microscopic processes such as 

void growth and coalescence occur. This requirement has been referred in the literature as 

the condition of the J-dominance. Shih (1974) and Hutchinson and Shih (1975) extended 

the HRR solution to include combined I and II loading under conditions of plane strain and 

plane stress, respectively. 

 It has been realized, however, that the specimen geometry and loading conditions 

have significant effect on the region of J-dominance. For shallow cracks, tensile dominated 

loads etc it has been observed that the actual structure of crack tip stress fields is very 

different from those predicted by HRR fields (Al-Ani and Hancock, 1991) and, thus, the 

HRR field have limited application to real cracked structures. For a Ramberg-Osgood 

material model, the crack tip fields in the plastic zone can be expressed in terms of a power 

series where the HRR solution is the leading term. Analytical studies aimed at determining 

the higher order terms in the asymptotic solution for the crack tip fields were conducted by 

Sharma and Aravas (1991) and Xia et al. (1993). The higher order terms of this power 
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series were grouped together and its amplitude was denoted as Q by O’Dowd and Shih 

(1991). Other representative two-parameters that are used to characterise the crack tip 

stress fields are J-T of Betegon and Hancock (1991) and J-A2 of Chao et al. (1994). The 

objective of all these investigations is to develop a suitable fracture criterion that can be 

used to characterise crack growth initiation in ductile materials.  

 

2.1.3.2    Crack-tip stress fields in fracture specimens having strength 

mismatch welds 

 

In-service inspection of many nuclear power plants have revealed that cracks are most 

likely to occur in or the regions near welds that invariably occur in reactor coolant piping. 

Although welding is done as per qualified welding procedure it is quite probable that small 

cracks at the fusion line of base-weld interface or in the filler material may occur. These 

initials flaws may grow during service due to combined effects of environment and fatigue 

loading and may pose a serious threat to the integrity of these components. From integrity 

assessment point of view the problem of crack lying at the interface of two materials or in 

the centre of weld is of equal importance. The behaviour of crack lying anywhere else in 

the weld region is likely to be explained by these two limiting crack locations. In the 

following sub-sections studies conducted on crack tip stress fields for interfacial crack as 

well as for weld centre crack are presented. 
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2.1.3.2.1    Crack-tip stress fields for interface cracks 

 

The problem of elastic dissimilar materials with a semi-infinite crack at the interface was 

first analysed by Williams (1959). He discovered that the crack tip stresses possess an 

oscillatory character of the type r -1/2 sin (or cos) of the argument ε log r, where r is the 

radial distance from the crack tip and ε is a function of material constants. This problem 

was later extended to the case of bending loads by Sih and Rice (1964). In a later work 

Rice and Sih (1965) analysed this problem using the complex variable method combined 

with eigenfunction expansion. They demonstrated that the stress intensity factor of an 

interfacial crack between two elastic dissimilar materials is in mixed mode even when the 

geometry is symmetric with respect to crack, and loading is pure mode I. Solutions to 

specific problems of interface crack have been given by Cherepanov (1962), England 

(1965), and Erdogan (1965). The concern of crack face contact that is predicted by 

analytical studies based on the assumption of linear elastic materials was discussed by 

Comninou (1977) and Comninou and Schmueser (1979). All these studies were performed 

on elastic isotropic materials. Willis (1971) analysed this problem for anisotropic 

materials. Rice (1988) reexamined this elastic interface crack problem and proposed the 

complete form of near tip fields based on analytic function theory. A complex stress 

intensity factor was proposed and its validity as the crack tip characterising parameter was 

discussed. 

 Fracture in most structural materials, however, is often accompanied by plastic 

flow near the crack tip, invalidating the assumption of linear elasticity. When the plastic 

deformation takes place over a large size scale, then the linear elastic solution may not be 
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useful to characterise the stresses and deformations near a crack tip, and the elastic-plastic 

solutions for such crack problems are essential. An elastic-plastic finite element analysis 

for a crack at the interface between a power-law hardening material and a rigid substrate 

has been given by Zywicz and Park (1989, 1992). Shih and Asaro (1988, 1989) and Shih et 

al. (1991) performed a series of investigations and showed that the crack tip fields are 

members of a family parametrised by plastic mode mixity factor and are scaled by J-

integral. Under plane-strain condition, the problem of a stationary and quasi-statically 

growing interface crack between an elastic-perfectly plastic solid and a rigid substrate has 

been analysed by Guo and Keer (1990a). For a stationary crack a one-parameter family of 

asymptotic near tip stress fields was proposed by these authors. A complete asymptotic 

near tip stress and deformation field for a quasi-statically growing crack was also 

proposed. Under anti-plane deformation Guo and Keer (1990b) presented an asymptotic 

solution for a crack at the interface of two power-law hardening elastic-plastic materials. It 

was demonstrated that the stress singularity near the crack tip was -1/(1+n) where n is the 

maximum of the strain hardening index of the two materials.  The problem of interface 

crack between two yield strength mismatched solids, under remote mode I loading, was 

analysed by Ganti and Parks (1997) and Zhang et al. (1997a, 1997b). These authors 

investigated the effect of yield strength mismatch between the two materials on the crack 

tip constraint. The study of Ganti and Parks (1997) was focused on elastic-perfectly plastic 

materials while Zhang et al. (1997a, 1997b) incorporated the effect of strain hardening 

also. Two-parameter description of crack tip stress field for a crack located at the fusion 

line was given by Ranestad et al. (1997). The asymptotic crack tip stress fields for the 

general case of remote mixed mode loading were developed by Sham et al. (1999).  The 
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authors characterised the local stress field by a phase angle which quantified the ratio of 

normal to shear tractions on the interface at the crack tip and the yield strength ratio of the 

two materials. The effect of mismatch in yield strength as well as in strain hardening index 

of the two materials on interfacial crack tip fields was examined by Lee and Kim (2001) 

using detailed FE analysis. 

                                                                                                                                                                               

2.1.3.2.2    Crack-tip stress fields for weld centre cracks 

 

The problem of crack lying at the centre of weld is (theoretically) less understood. This 

case was first systematically studied by Varias et al. (1991). They numerically (finite 

element) examined the case where a crack was postulated at the centre of ductile metal foil 

sandwiched between two rigid ceramic blocks. The focus of this study was to understand 

the ductile failure mechanisms that are likely to occur in the metal foil under such a high 

constraint state. It was demonstrated that for such an extreme mismatch case, under small-

scale yielding condition, under uni-axial tensile load a high tri-axial stress exists ahead of 

crack tip at a distance several times the foil thickness. A formula for evaluating the stress 

intensity factor was also suggested. In welds that are typically encountered in many 

engineering applications the mismatch in yield strength, however, is not so high. Thus, in 

the more general case both the materials are elastic-plastic and plasticity passes through the 

interface of two materials. This was the focus of a numerical study by Burstow et al. 

(1998). They performed a series of two-dimensional finite element analyses within the 

framework of modified boundary layer formulation. Both base and weld materials were 

assumed to have same elastic properties and were modeled as elastic-perfectly plastic. 
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Elastic T-stress was applied to model different constraint at the crack-tip arising due to 

actual specimen geometry and loading conditions. The effect of strength mismatch on 

crack-tip constraint was studied systematically by changing the yield strength of base 

material. It was demonstrated that a normalised load parameter, J/hσyw, scales the size of 

the plastic zone with the width of the weld material and can be used to quantify the level of 

constraint for a given degree of mismatching. The effect of strength mismatch on 

constraint of SE(B) specimen under small scale yielding, for a wide variety of weld 

geometries, was examined by Kirk and Dodds (1993). A constraint parameter for 

quantifying the crack tip stress fields in weld joints, under small scale yielding, was 

suggested by Betegon and Penuelas (2006). All these numerical studies demonstrated that 

under small-scale yielding condition the weld strength mismatch effects have a strong 

influence on the state of stress (constraint) near the crack tip.  

 The small-scale yielding assumption is valid only as long as the remotely applied 

elastic displacement field is not influence by the plastic behavior at the crack-tip. Since 

welded structures are intended to withstand sufficiently high loading such an assumption 

of small-scale yielding strictly does not hold good. Analytical studies of crack tip stresses 

under fully plastic condition (at limit state) were performed by Hao et al. (1997). Using 

classical approach of Slip-line theory, they obtained analytical solutions of crack-tip 

stresses for the case where plasticity was confined only in the weld material. In cases 

where the yield strength of base and weld material is comparable plastic deformation 

occurs in both the materials. To construct crack tip stress fields for such cases, information 

about the state of tractions at the interface is needed. Although Hao et al. (1997) briefly 

discussed aspects related to state of stress at the base-weld interface, however, no detailed 
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solutions were provided for this general case. Based on comparison of their analytical 

results with finite element studies they indicated the possibility of jump in tractions at the 

interface of the two materials. Since many plastic deformation patterns and variables are 

involved in mismatch welds, comprehensive analytical solutions of crack tip stresses, 

based on SLF analysis, are difficult to obtain. In addition to above-mentioned problems the 

possibility of discontinuity of tractions at the material interfaces is also a matter of 

concern. At this point it is necessary to clarify that the concept of continuity of tractions at 

the interface has been successfully utilised to examine the structure of crack-tip stress 

fields, for an interfacial crack, under small-scale-yielding (Guo and Keer, 1990a, Ganti and 

Parks, 1997, Sham et al., 1999). However, no such detailed study has yet been reported for 

the case of weld centre crack under large-scale plasticity. This general case was 

numerically examined by Kim and Schwalbe (2004). They performed detailed finite 

element analysis to examine the strength mismatch effect on crack-tip stresses under fully 

plastic condition. FE Studies were performed on M(T) and SE(PB) specimen for an elastic-

perfectly plastic material. Variation of constraint parameter h was presented for different 

mismatch ratio M and weld slenderness ratio ψ. Both plane-strain and plane stress cases 

were accounted.  

 

2.2    Experimental studies on strength mismatch welds 

 

Initial studies on crack growth in welded specimens were carried out by Garwood (1985) 

and de Verdia (1989). The effect of heterogeneity of the mechanical properties on the 

crack growth resistance was also examined by Homma et al. (1995). In this experimental 
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study two types of welded C(T) specimens were used to relate the crack growth behavior 

near to and in a welding bead. The initial fatigue crack was introduced perpendicular to the 

weld bead. The crack growth resistance curves were evaluated for various positions of 

initial crack tip. For the case where the difference in mechanical properties of base metal, 

weld metal, and heat affected zone was relatively small, the crack growth resistance curves 

spread over a narrow range. For C(T) specimens fabricated from A-533B-HT80 welds 

exhibiting large strength mismatch, the crack growth resistance was strongly affected by 

the relative positions of the steels in the specimen and the width ratio of each steel to the 

specimen. 

The influence of strength mismatch and crack depth on the triaxial state of stress at the 

crack tip, crack tip opening displacement, and fracture toughness of welded SE(B) 

specimen was examined by Tang and Shi (1995). It was demonstrated that there exists a 

fracture toughness peak in the curve of fracture toughness versus crack depth. It was 

discussed that the location of fracture toughness peak is influenced by the yield strength 

for a homogeneous specimen and is also influenced by the strength mismatch for the 

welded specimen. The variation of observed fracture toughness with weld strength 

mismatch was explained in terms of the size of plastic zone ahead of crack tip.  It was 

concluded that the fracture toughness of an undermatched specimen is lower than that of 

overmatched specimen for the same crack depth. 

 The fracture behavior of M(T) specimen having a strength mismatch weld was 

examined by Neale (1999). Experiments were performed to measure the J-Δa behavior. 

The mismatched specimens were fabricated from two steel plates joined by electron beam 

welding technique. The J-Δa data for the mismatched specimens were compared with the 
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results obtained from the individual plates. It was demonstrated that the use of mismatch 

corrected plastic η-factor provided J-Δa data that was in excellent agreement with the J-Δa 

data for the individual plates. 

 An et al. (2003) examined the effect of strength mismatch and loading rate on 

ductile fracture initiation using a two-parameter criterion. Experimental studies revealed 

that the relationship between the critical equivalent plastic strain to initiate ductile fracture 

and stress triaxiality for a strength mismatch weld was equivalent to that obtained on 

homogeneous specimens under static loading. Moreover the two parameter criterion was 

shown to be independent of the loading rate. 

 The effect of mismatch in plastic properties on initiation and propagation of an 

interface crack in a ferrite-austenite joint was examined by Besson et al. (2005). Tests were 

performed on various specimens including smooth and notched tensile bars, Charpy V-

notched specimens, and single-edge notch bend specimens. The effect of distance between 

the notch root and interface on fracture initiation and crack propagation direction was 

examined. These studies revealed that when the crack is located in ferrite, the overall 

ductility increases as the distance of the crack from the interface decreases whereas the 

load carrying capacity decreases. Opposite effects were observed when the crack was 

located in the austenite. The observed variations of the ductility can be explained by the 

alterations of the stress state in the vicinity of crack due to strength mismatch. Compared 

to homogeneous structure, the stress triaxility ratio close to crack is smaller when the crack 

lies in the harder material and vice-versa.   

 Experimental studies of interface crack growth, where plastic yielding occurs in at 

least one of the solids joined at the interface have been reported by Cao and Evans (1989), 
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Liechti and Chai (1992) and O’Dowd et al. (1992). These studies have shown a strong 

dependence on mode mixity, such that the measured fracture toughness is much higher in 

cases where mode II loading dominates at the crack tip than in cases where mode I loading 

dominates. This was also predicted by the numerical computations of Tvergaard and 

Hutchinson (1993), and it was concluded that the observed strong dependence on the mode 

of loading is due to plastic yielding.  

 Recently an experimental study was conducted by Saxena (2007) to assess the 

structural performance of repair welds in 1Cr-1Mo-0.25V turbine casing material. The 

tests conducted include tensile tests, creep tests, fracture toughness tests, fatigue crack 

growth rate tests, creep crack growth rate tests, and creep-fatigue crack growth tests on 

base and weld metal. The effects of weld strength mismatch and the location of crack (with 

respect to fusion line and in weldment) on the various aspects related to these tests were 

discussed. In addition, the analytical framework of non linear fracture mechanics for 

assessing the behavior of welds was examined and suggestions for future work in this 

direction were made. 

 

2.3    Plane strain theory of slip line field 

 

In plane strain the displacement of particles of the body are parallel to the x, y plane, and 

are independent of z: 

 

                                    ( ) ( ), , 0x x y y zu u x y u u x y u= = =                           (2.2) 
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In any section z = const. there will be the same stress-strain configuration. The components 

of stress depend only on x, y, and τxz, τyz are zero on account of the absence of the 

corresponding shears. Thus, σz is one of the principal stresses. In elasticity theory the 

above conditions are known to be sufficient for formulating the plane strain problem. In 

plasticity theory, however, additional simplifications are needed, since otherwise it is not 

possible to derive an acceptable mathematical formulation of the problem (Kachanov, 

1971). 

 

In general, the rigid plastic material model is used to formulate the theory for plane strain 

problems. As discussed earlier, this assumption introduces an error which is difficult to 

estimate. On the other hand, as pointed by Kachanov (1971), it is extremely difficult to 

undertake any systematic analysis of the plane strain problem without using the rigid 

plastic model. In most of the plane strain problems, the limit state is usually reached with 

some regions of the body still in an elastic state. Thus, it is really necessary to consider the 

elastic-plastic problem, but the difficulties of solving it (analytically) are enormous. 

Complete neglect of the elastic regions deprives the formulation of determinacy and makes 

physical interpretation of solutions difficult. 

 

It is far more expedient to proceed from the rigid plastic model. This allows the stress field 

and the displacement field to be investigated simultaneously, the latter being related to the 

displacement of the rigid (elastic) regions. In this way meaningful approximate solutions of 

elastic-plastic problems can be constructed. The error so introduced will, however, depend 

on the type of problem being considered. 
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2.3.1    Governing equations 

 

For plane strain problems εz = 0. Using this condition it can be easily demonstrated that 

both the deformation theory and the flow theory equations, after neglecting the elastic 

strain, lead to the following relation 

 

                                                               0zσ σ− =                                                          (2.3) 

And hence 

 

                                                                     ( )1
2 x yσ σ σ= +                                           (2.4) 

 

As noted earlier, σz is one of the principal stresses. The other two principal stresses are 

given by the following relation 

 

                                        ( ) ( )2max 2

min

1 1 4
2 2x y x y xy

σ
σ σ σ σ τ

σ
⎫
= + ± − +⎬

⎭
                           (2.5) 

 

It is clear that σz is the intermediate principal stress, so that the maximum tangential stress 

will be 

 

                                   ( ) ( )2 2
max max min

1 1 4
2 2 x y xyτ σ σ σ σ τ τ= − = − + ≡                        (2.6) 
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Thus, the principal stresses are 

 

                                       1 2 3σ σ τ σ σ σ σ τ= + = = −                               (2.7) 

 

Eq. (2.7) describes that the state of stress at every point is characterized by superposition of 

the hydrostatic pressure σ on the maximum shear stress τ. 

 

The angle made by the first principal stress σ1 with the x-axis can be obtained from the 

following relation 

 

                                                        ( )
2

tan 2 1, xy

x y

x
τ

σ σ
=

−
                                               (2.8) 

 

The directions of the surfaces on which the maximum shear stresses act make angles ± π/4  

with the principal directions. This brings an important concept of the so called "slip lines". 

A slip line is a line which is tangent at every point to the surface of maximum shear stress. 

It is obvious that there are two orthogonal families of slip lines, often referred as the α-slip 

line and β-slip line. The α-line is inclined to the right of first principal direction at 45˚, the 

β-line is inclined to the left of first principal direction at the same angle (Fig. 2.1). The 

direction of the α and β lines may be fixed by using the standard convention that clockwise 

shear stress is taken as positive. Thus, α- lines are all associated with a positive shear stress 

(+ τ) and β-lines with a negative shear stress (- τ). The angle of inclination of the tangent to 
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the α- line, measured in the positive x-direction will be denoted by θ.  Thus, the differential 

equations of the α and β families are respectively 

 

                                               tan , cotdy dy
dx dx

θ θ= = −                                            (2.9) 

 

The slip lines cover the region with an orthogonal grid. An infinitesimal element cut out by 

slip lines experiences identical tension (σ) in the directions of the slip line (Fig. 2.2). 

 

2.3.1.1    Yield condition 

 

As discussed earlier, the material is assumed to be perfectly plastic (non-hardening). Thus, 

the yield criterion may be expressed as follows 

 

                                                           .const kτ = =                                                      (2.10) 

 

or 

 

                                                          max min 2kσ σ− =                                                   (2.11) 

 

Thus, 

 

                                                      ( )2 2 24 4x y xy kσ σ τ− + =                                           (2.12) 
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2.3.1.2    Hencky's theorems 

 

In the absence of body forces, the differential equations of equilibrium can be expressed as  

 

                                     0 , 0xy xy yx

x y x y
τ τ σσ ∂ ∂ ∂∂

+ = + =
∂ ∂ ∂ ∂

                                       (2.13) 

 

From elementary stress transformation equations, the relation between the Cartesian 

components of stresses and the principal stresses can be expressed as follows 

 

                                     ( ) ( )1 2 1 2
1 1 cos 2(1, )
2 2x xσ σ σ σ σ= + + −                                   (2.14) 

 

                                     ( ) ( )1 2 1 2
1 1 cos 2(1, )
2 2y xσ σ σ σ σ= + − −                                   (2.15) 

 

                                              ( )1 2
1 sin 2(1, )
2xy xτ σ σ= −                                                (2.16) 

 

On substituting σ for half the sum of the principal stresses, k for half their difference (yield 

criterion) and transform to the angle θ = (1, x)-π/4. Then 

 

 

                                                        sin 2x kσ σ θ= −                                                     (2.17) 

 

                                                        sin 2y kσ σ θ= +                                                     (2.18) 
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                                                        cos 2xy kτ θ=                                                           (2.19) 

 

On substituting eqs. (2.17-2.19) in the equilibrium equations, we obtain two non-linear 

partial differential equations of first order with respect to unknown functions σ (x, y) and θ 

(x, y). 

 

 

                                             2 cos 2 sin 2 0k
x x y
σ θ θθ θ

⎛ ⎞∂ ∂ ∂
− + =⎜ ⎟∂ ∂ ∂⎝ ⎠

                                (2.20) 

 

                                             2 sin 2 cos 2 0k
y x y
σ θ θθ θ

⎛ ⎞∂ ∂ ∂
− − =⎜ ⎟∂ ∂ ∂⎝ ⎠

                                (2.21) 

 

Since the equilibrium equations and yield criterion remain unchanged in transforming from 

co-ordinate system x, y to any other system, a local co-ordinate system is chosen in which 

s1 and s2 are measured along the tangent and normal to any point P on the slip line, 

respectively then θ = 0. Thus, the differential equations, eq. (2.20) and eq. (2.21), take the 

simple form 

 

     ( )2 0k
sα

σ θ∂
− =

∂
                                               (2.22) 

 

     ( )2 0k
sβ

σ θ∂
+ =

∂
                                              (2.23) 
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Where ∂/∂sα and ∂/∂sβ are derivatives along the α and β lines, respectively. Since P is an 

arbitrary point on the slip line, it follows that along slip lines of α and β families we have 

respectively the following relations 

 

                                   

tan cot

. .
2 2

dy dy
dx dx

const const
k k

θ θ

σ σθ ξ θ η

⎫ ⎫= = −⎪ ⎪
⎪ ⎪
⎬ ⎬
⎪ ⎪
⎪ ⎪− = = + = =
⎭ ⎭

                       (2.24) 

 

The above equations of plasticity for plane strain problems were first obtained by Hencky 

(1923). 
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      Fig. 2.1: Description of slip lines in Cartesian coordinate system. 
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      Fig. 2.2: Stresses acting on a plane strain element cut out by slip lines. 
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CHAPTER 3 

 

Analytical formulation of Modified Upper Bound theorem 
 
 
 

3.1    Introduction 

 

In the mathematical theory of elasticity, the principles of minimum potential energy and 

minimum complimentary energy are powerful tools for obtaining approximate solutions to 

difficult boundary value problems. In plasticity exact solutions are harder to obtain than in 

elasticity. Accordingly the extremum theorems of plasticity play an equally, or even more 

important role in arriving at solutions of problems of practical interest. Apart from their 

general nature, these theorems provide a way to a direct construction of solutions, by-

passing the integration of the differential equations. In the non-linear problems which 

constitute the plasticity theory this possibility is extremely important as emphasized by 

Prager and Hodge (1951) and Kachanov (1971). Fundamental results on extremum 

principles for a plastic-rigid body are mainly due to Markov (1947), Hill (1950), Prager 

and Hodge (1951) and Koiter (1960). The extremum theorems for a plastic-rigid body 

provide an efficient method of obtaining the limit load using successive approximations by 

means of upper and lower bound estimates. More details regarding these load bounding 

techniques can be found in the work of Hill (1950), Prager and Hodge (1951), Kachanov 

(1971), and Johnson and Mellor (1973) etc.  

 Of the two general limit theorems, the upper bound theorem, in particular, has been 

extensively used in metal forming operations where no exact solutions for the load to cause 
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unconstrained plastic deformation are available. It needs a kinematically admissible 

velocity field which may have discontinuities in the tangential component but normal 

component must be the same to maintain plastic volume constancy. The assumption which 

is often invoked to simplify the analysis is to consider the rigid mode of deformation, that 

is, the material is assumed to move in rigid blocks separated by lines of tangential 

displacement discontinuity (see Johnson and Mellor, 1973). This results in considerable 

simplification and useful upper bounds can be easily obtained. Unfortunately, as a result of 

this simplifying assumption, particularly for the problems involving predominant bending 

loads, this upper bound theorem provides (unacceptable) higher estimates of the limit 

loads. Thus, despite its efficiency the use of this upper bound analysis is quite restricted. In 

other words, the usefulness and the general nature of these work principles have not been 

fully exploited and to an extent, till date, they remain merely as a crude method of 

obtaining the bounds on the limit load.  

 The organization of this chapter is as follows: first the assumption of plastic-rigid 

material which is often made in the analytical solutions of many practical problems is 

discussed. This is followed by a discussion on virtual work principle which is the basis of 

general theorems of limit analysis. Concepts of statically admissible stress field and 

kinematically admissible velocity fields which are closely connected with the lower and 

upper bound theorems of limit analysis are introduced. Finally, the analytical formulation 

of the proposed Modified Upper Bound (MUB) theorem is presented.  
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3.2    Assumption of plastic-rigid material 

 

In finding the analytical solutions of many problems of practical interest we are often 

compelled by mathematical difficulties to disregard the elastic component of strain. For 

consistency we must also disregard the purely elastic strain in the non-plastic region. In 

effect, therefore, we work with a material that is rigid when stressed below the yield-point 

and in which the Young’s modulus has an infinitely large value. This hypothetical material 

may be referred to as a plastic-rigid material, in contrast to the elastic-plastic material. 

 The distribution of stress in the plastic-rigid body is only likely to approximate that 

in a real metal under similar external conditions when the plastic material has freedom to 

flow in some direction. If the plastic material is severely constrained by adjacent elastic 

material, neglect of the elastic component of strain introduces serious errors in some of the 

calculated stress components. On the other hand, even though an easy direction of flow is 

available, so that the elastic strain increments soon become negligible throughout most of 

the plastic zone, there must still be a certain boundary layer, or transition region, bordering 

the elastic zone, in which the elastic and plastic strain increments are comparable. The 

narrower this transition region, the better should be the overall approximation. Since the 

allowable error depends very much on the intended field of application of the solution, no 

more explicit rule can be laid down (Hill, 1950). In many metal forming processes like 

rolling, drawing, forging etc., where large plastic deformation occurs, experience shows 

that the assumption of a plastic-rigid material does not lead to any significant errors. 

Another type of problem is that characterized by small deformations. These are problems 

on limit loads and are closely related to the questions of strength. In this case the regions of 
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plastic deformation for plastic-rigid and elastic-plastic bodies can be quite different. To 

estimate the error it is desirable to have experimental data. It has been seen that the tests 

are in good agreement with many of the results obtained from the plastic-rigid model.  

 

3.3    Virtual work principle 

 

The principle of virtual work has proved very powerful as a technique in solving problems 

and in providing proofs for general theorems in solid mechanics. In the following the 

virtual work equation is derived. This equation is needed for considerations of stability and 

uniqueness of general stress-strain relations, which may be irreversible and path 

dependent. In the derivation the following assumption is made: the displacements are 

sufficiently small so that the changes in the geometry of the body are negligible and the 

original undeformed configuration can be used in setting up the equations for the system. 

This implies that nonlinear contributions in the compatibility of strains and displacements 

are neglected. 

 The principle of virtual work deals with two separate and unrelated sets: the 

equilibrium set and the compatible set. The equilibrium set and the compatible set are 

brought together, side by side but independently, in the equation of virtual work 

 

                                             * * *
i i i i ij ij

A V V

T u dA F u dV dVσ ε+ =∫ ∫ ∫                                            (3.1) 

 

Here integration is over the whole area, A, or volume, V, of the body. The quantities Ti and 

Fi are external surface and body forces, respectively. The stress field σij is any set of 
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stresses, real or otherwise, in equilibrium with body forces Fi within the body and with the 

surface forces Ti on the surfaces where the forces Ti are prescribed. Similarly the strain 

field εij
* represents any set of strains or deformation compatible with the real or imagined 

(virtual) displacements ui
* of the points of application of the external forces Ti and Fi.  

 The important point to keep in mind is that neither the equilibrium set Ti, Fi and σij 

nor the compatible set ui
* and εij

* need be the actual state, nor need the equilibrium and 

compatible sets be related in any way to each other. In eq. (3.1) asterisks are used for the 

compatible set to emphasise the point that these two sets are completely independent. 

When the actual or real states (which satisfy both equilibrium and compatibility) are 

substituted in eq. (3.1), the asterisks are omitted. 

 

3.3.1    Proof of virtual work equation 

 

Consider the external virtual work, Wext, given by the expression on the left-hand side of 

eq. (3.1). With Ti = σjinj on A, we can write 

 

                                          * *
ext ji j i i i

A V

W n u dA F u dVσ= +∫ ∫                                                  (3.2) 

 

The first integral can be transformed into a volume integral using the divergence theorem. 

Thus, we have 

                                             ( )* *

,ext ji i i ij
V V

W u dV F u dVσ= +∫ ∫                                             (3.3) 
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                                            ( )* * *
, ,ext ji j i ji i j i i

V V

W u u dV F u dVσ σ= + +∫ ∫                                 (3.4) 

 

                                               ( ) * *
, ,ext ji j i i ji i j

V

W F u u dVσ σ⎡ ⎤= + +⎣ ⎦∫                                      (3.5) 

 

The first term in parenthesis in eq. (3.5) vanishes for the equilibrium set, which satisfies 

the equilibrium equations. Therefore, eq. (3.5) reduces to 

 

                                                       *
,ext ij i j

V

W u dVσ= ∫                                                         (3.6)                              

 

Now consider the internal virtual work, Wint, given by the expression on the right-hand 

side of eq. (3.1). Using the compatibility relations, we have  

 

                                        ( )* * *
, ,

1
2int ij ij ij i j j i

V V

W dV u u dVσ ε σ= = +∫ ∫                                       (3.7) 

 

                                           * *
, ,

1 1
2 2int ij i j ij j i

V

W u u dVσ σ⎛ ⎞= +⎜ ⎟
⎝ ⎠∫                                               (3.8) 

 

Which can be written as (i, j are dummy indices)  

 

                                                * *
, ,

1 1
2 2int ij i j ji i j

V

W u u dVσ σ⎛ ⎞= +⎜ ⎟
⎝ ⎠∫                                          (3.9) 
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Finally using the symmetry of σij, 

 

                                                          *
,int ij i j

V

W u dVσ= ∫                                                    (3.10) 

 

Thus, from eqs. (3.6) and (3.10), Wext = Wint, and the virtual work principle, eq. (3.1) is 

established. 

 

3.4    General theorems of limit analysis  

 

A complete elastic-plastic analysis is generally quite complicated. The complexities arise 

mainly from the necessity of carrying out an analysis in an iterative and incremental 

manner. The development of efficient alternative methods that can be used to obtain the 

collapse load of a structural problem in a simple and more direct manner without recourse 

to an iterative and incremental analysis is, therefore, of great value to practicing engineers, 

despite the fact that the information so obtained is just a part of the total solution. Limit 

analysis is concerned with the development and applications of such methods that can 

furnish the engineer with an estimate of the collapse load of a structure in a direct manner. 

The estimation of the collapse load is of great value, not only as a simple check for a more 

refined analysis, but also as a basis for engineering design. 

 

It should be emphasized here that the collapse load as calculated in limit analysis is 

different from the actual plastic collapse load, as it occurs in a real structure or body. 

Herein, we shall calculate the plastic collapse load of an ideal structure, at which the 
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deformation of the structure can increase without limit while the load is held constant. 

This, of course rarely happens in a real structure, and hence, the limit analysis calculations 

apply strictly, not to the real structure, but to the idealised one, in which neither work 

hardening of the material nor significant changes in geometry of the structure occurs. 

Nevertheless a load computed on the basis of this definition or idealisation may give a 

good approximation to the actual plastic collapse load of a real structure.   

 

3.4.1    Admissible stress and velocity fields 

 

It is well known that there are three basic relations that must be satisfied for a valid 

solution of any problem in the mechanics of deformable solids, namely, the equilibrium 

equations, the constitutive relations, and the compatibility equations. In general in a limit 

analysis problem, only the equilibrium equations and yield criterion need be satisfied for a 

lower-bound solution, and only the compatibility equations and the flow rule associated 

with a yield criterion need be satisfied for an upper-bound solution. However, an infinite 

number of stress states will generally satisfy the equilibrium equations and the yield 

criterion alone, and an infinite number of displacement modes will satisfy the kinematic 

conditions associated with the flow rule and the displacement boundary conditions. Like 

other dual principles in structural mechanics, the two theorems of limit analysis are 

obtained by comparing first only the conditions imposed on the solution by the equilibrium 

requirements and the constitutive relations, and second the conditions imposed only by the 

kinematic requirements and the constitutive relations, with the complete or exact solution 
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to be satisfied by all three requirements: equilibrium, kinematics, and constitutive 

relations. 

 

3.4.1.1    Statically admissible stress field 

 

The stress field which (i) satisfies the equations of equilibrium, (ii) satisfies the stress 

boundary conditions, and (iii) nowhere violates the yield criterion is termed a statically 

admissible stress field for the problem under consideration. The external loads determined 

from a statically admissible stress field alone are not greater than the actual collapse load 

according to the lower-bound theorem of limit analysis.   

 

3.4.1.2    Kinematically admissible velocity field 

 

An assumed deformation mode (or velocity field) that satisfies (a) velocity boundary 

conditions, and (b) strain rate and velocity compatibility conditions is termed a 

kinematically admissible velocity field. The loads determined by equating the external rate 

of work to the internal rate of dissipation for this assumed deformation mode are not less 

than the actual collapse load according to the upper bound theorem of limit analysis.   

 

3.4.2    Lower bound theorem 

 

According to lower-bound theorem, “If an equilibrium distribution of stress σij can be 

found which balances the body force Fi in V and the applied loads Ti on the stress 
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boundary AT and is everywhere below yield, then the body at the loads Ti, Fi will not 

collapse”. Thus, it can be seen that the lower-bound theorem considers only the 

equilibrium and yield conditions. It gives no consideration to kinematics.  

 The lower-bound theorem of limit analysis follows directly from the basic material 

stability postulate (Drucker, 1951). Assume that there are no body forces and define the 

limit state as one for which deformation occurs under constant surface tractions on the 

boundary of the body. Then, in the limit state 

   

                                    0 p
i i ij ij ij ij

S V V

dT du dS d d dV d d dVσ ε σ ε= = =∫ ∫ ∫                             (3.11) 

 

Virtual work and normality of plastic strain increments have been employed. The last 

integrand is positive definite, so that stresses and elastic strains are constant in the limit 

state; dεij=dεij
p. Let σij

E be any stress field in equilibrium with Ti
E on the boundary and 

nowhere violating the yield condition. As per material stability postulate 

 

                                                      ( ) 0E p
ij ij ijdσ σ ε− ≥                                                     (3.12) 

 

Where σij and dεij
p=dεij refer to the limit state, 

 

                                                   E
ij ij ij ij

V V

d dV d dVσ ε σ ε≥∫ ∫                                              (3.13) 

Therefore, 
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                                                     E
i i i i

S S

T du dS T du dS≥∫ ∫                                                 (3.14) 

 

This is the lower bound theorem. When tractions are proportional to some positive 

parameter P, the value at limit load exceeds any value PE corresponding to an equilibrium 

stress field nowhere violating the yield condition 

 

3.4.3    Upper bound theorem 

 

According to upper-bound theorem, “If a kinematically admissible velocity field can be 

found then the loads Ti and Fi determined by equating the rate at which the external forces 

do work to the rate of internal dissipation will be either higher than or equal to the actual 

limit load”. Thus, the upper-bound theorem considers only the velocity field and energy 

dissipation. The stress distribution need not be in equilibrium, and is only defined in the 

deforming regions of the assumed failure mode. 

 Consider a strain increment field dεij
*derivable from a kinematically admissible 

displacement increment field dui
* (that is, the displacement increment field satisfies any 

prescribed boundary conditions and compatibility equations). Let σij
* be any stress state 

corresponding to a plastic strain increment dεij
*.  Since 

 

                                                        ( )* * 0ij ij ijdσ σ ε− ≥                                                    (3.15) 

 

                                                * * *
ij ij ij ij

V V

d dV d dVσ ε σ ε≥∫ ∫                                                 (3.16) 
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therefore, 

 

                                                      * * *
ij ij i i

V S

d dV T du dSσ ε ≥∫ ∫                                              (3.17) 

 

This is the upper-bound theorem. When tractions are proportional to some positive 

parameter P and dui
* is chosen so that the surface integral is positive, the value at limit load 

is less than the value P* defined by equality of the surface and volume integrals. 

Discontinuous displacement increment fields are permissible, but sliding type 

discontinuities alone are admissible when incompressibility is assumed. In this case, work 

done on sliding displacement increments by the shear stress corresponding to a shear strain 

increment in the sliding direction must be added to the volume integral. Thus, the final 

expression for an upper bound load can be expressed as follows: 

 

                                             * * * *
i i ij ij p

S V S

T du dS d dV v dSσ ε τ≤ +∫ ∫ ∫                                      (3.18) 

 

Here ν* denotes the tangential displacement increment discontinuity on a surface Sp for the 

kinematically admissible velocity field dui
*, and τ the shear stress.  

 

3.5    Analytical formulation of the modified upper bound theorem 

 

We proceed in a manner similar to that used for formulation of work principle. Let us 

consider a body, as shown in Fig. 3.1, which occupies a volume V and is bounded by 



                                                                                                                                                                                         Chapter-3
  

 55

surface S = SF + SV. Suppose that on the portion SF of the surface the traction vector T is 

given whose components with respect to global axes xi (i=1,2,3) are denoted by Ti. Stress 

field is assumed to be consistent with the prescribed traction vector on the boundary SF in 

the sense of Cauchy’s formula 

 

                                                                 ij j in Tσ =                                                         (3.19) 

 

where nj are the direction cosines. On the portion SV of the surface we suppose that velocity 

vo is prescribed, its components are denoted by voi. Assume some continuous velocity field 

vi (later we shall remove this restriction) which satisfies the prescribed conditions, that is, 

vi = voi on SV.  Now the strain rate components are related to this velocity field by 

 

                                                         1
2

ji
ij

j i

vvd
x x

ξ
⎛ ⎞∂∂

= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
                                                 (3.20) 

 

For a complete solid body the following equation based on virtual work principle holds 

(Kachanov, 1971) 

 

                                                       i i ij ij
s V

T v dS d dVσ ξ=∫ ∫                                                 (3.21) 

 

where the second integration extends over the whole volume of the body, and the first over 

the whole surface S.  When we consider discontinuities in the velocity field we note that 
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the discontinuities can occur only in the tangential velocity components. The stresses 

acting on the surface of velocity discontinuity develop a rate of work 

 

                                                            *

p

p
s

v dSτ−∑ ∫                                                        (3.22) 

 

where the summation covers all surfaces of discontinuity. τ is the shearing stress 

component of σij in the direction of displacement increment discontinuity. This rate of 

work when inserted in the virtual work principle, that is, eq. (3.1) would lead to following 

expression (Kachanov, 1971) 

                                                        

                                                *

p

i i ij ij p
s V s

T v dS d dV v dSσ ξ τ= +∫ ∫ ∫                                        (3.23) 

 

We now proceed to apply this virtual work principle to a rigid-plastic body. Let the 

quantities σij, dξij, vi be the actual solution of the problem in which case the stresses and 

strain-rates are connected by the Saint Venant-Von Mises relations and satisfy all the 

conditions of equilibrium and continuity. Together with the actual state we consider 

another kinematically possible velocity field vi
*, satisfying the incompressibility condition 

and the prescribed boundary conditions on SV.  The velocities have associated with them 

strain-rates dξij
*, and to these there corresponds a stress deviator sij

* for dξij
*≠ 0. Finally, let 

the kinematically possible field vi
*, be discontinuous on certain surfaces. If σij * is a stress 

field, not necessarily statically admissible, derivable by way of the concept of the plastic 
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potential from the strain increment field dξij
*, then as per material stability postulate 

(Drucker, 1951), 

 

                                                       ( )* * 0ij ij ij
V

d dVσ σ ξ− ≥∫                                              (3.24) 

 

If the virtual work principle, that is, eq. (3.23) is applied to the actual stress distribution σij 

and the kinematically possible velocity field vi
*, we have,  

 

                                                   * * *

p

i i ij ij p
s V s

T v dS d dV v dSσ ξ τ= +∫ ∫ ∫                                   (3.25) 

 

Using eq. (3.24) in eq. (3.25) we get 

                                                   

                                             * * * *

p

i i ij ij p
s V s

T v dS d dV v dSσ ξ τ≤ +∫ ∫ ∫                                        (3.26) 

  

If we replace τ by k the shear yield strength of material we only strengthen the inequality.  

Thus, finally we have, 

 

                                               * * * *

p

i i ij ij p
s V s

T v dS d dV kv dSσ ξ≤ +∫ ∫ ∫                                      (3.27) 

The equality sign is achieved only when the kinematically possible field vi
* coincides with 

the actual field vi. The expression on the right-hand side may be interpreted as the total rate 

of work. Thus, the total rate of work attains an absolute minimum for the actual field. 
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 We further assume that this body actually comprises of two distinct regions viz. 

Region I consisting of a set of volumes, say Vm (m=1, 2, 3…), comprising of rigid blocks 

of materials separated by surfaces of tangential displacement discontinuity SVm (similar to 

the assumption made in classical upper bound theorem) and Region II consisting of 

another set of volumes say Vn (n=1, 2, 3…), having deforming zone. The bounding 

surfaces of the volumes Vn are denoted as SVn. Applying the work principle as expressed by 

eq. (3.27) over this entire body we can write 

 

             * * * * * * *

m Vm n Vn

i i ij ij m m ij ij n n
s V s V s

T v dS d dV kv dS d dV kv dSσ ξ σ ξ≤ + + +∑ ∑ ∑ ∑∫ ∫ ∫ ∫ ∫          (3.28) 

 

The assumption of rigid mode of deformation, in region I, makes the first integral term of 

RHS of eq. (3.28) equal to zero. Similarly the assumption of deforming zone, in region II, 

vanishes the fourth integral term. As a result eq. (3.28) can finally be expressed as 

 

                                       * * * *

Dm n

i i m ij ij n
s s V

T v dS kv dS d dVσ ξ≤ +∑ ∑∫ ∫ ∫                                  (3.29) 

 

Of course eq. (3.29) seems just to be a rearranged form of general expression of work 

principle but it would soon become evident that it leads to considerable simplifications and 

allows us to obtain a general solution. In general, in most of the plastic deformation fields 

that typically occurs in plane strain problems, the deforming zone, that is, Region II 

usually lies near the free surface and is in the form of either uniform stress state or simple 

stress state. This immediately allows us to use some of the standard results of stress 
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distributions as obtained from SLF. These stress distributions obtained from SLF satisfies 

the differential equations of equilibrium at each and every point in this plastically 

deformed zone, that is, 

 

                                                     
*

0ij

ix
σ∂

=
∂

  in region II                                                 (3.30)   

 

It is worth to note that, till now, neither information regarding the state of stress in region I 

is required nor is it necessary to prove that the stress distribution there satisfies the 

equilibrium equations. The evaluation of first term on RHS of eq. (3.29) is rather 

straightforward and needs no further discussion. However, the second term requires some 

more attention. Using Green Gauss’s theorem this second term can be expressed in the 

form of surface integral as follows 

 

                                       
*

* * * * *

n n n

ij
ij i j n i n ij ij n

iS V V

v n dS v dV d dV
x
σ

σ σ ξ
∂

= +
∂∫ ∫ ∫                             (3.31) 

 

The first integral on RHS of eq. (3.31) becomes zero because of differential equation of 

equilibrium expressed by eq. (3.30). Thus,  

 

                                                  
** * *

n n

ij i j n ij ij n
S V

v n dS d dVσ σ ξ=∫ ∫                                          (3.32) 

 

Substituting eq. (3.32) in eq. (3.29) we can write 
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                                         * * * *

Dm n

i i m ij i j n
s s S

T v dS kv ds v n dSσ≤ +∑ ∑∫ ∫ ∫                                (3.33) 

 

If the assumption of rigid mode of deformation (Johnson & Mellor, 1973) was invoked 

over the whole body then second integral term of eq. (3.33) becomes zero and hence eq. 

(3.33) would reduce to the conventional form of upper bound theorem that is widely used 

in load bounding estimates.  

 In passing it may be mentioned that the proposed solution is incomplete in so far as 

no attempt is made to extend the stress field into the rigid zones. It has not been shown that 

an equilibrium stress distribution satisfying the boundary conditions and not exceeding the 

yield point exists in the assumed rigid regions. Thus, the solution does not meet the 

requirements of the lower bound theorem. However, the velocity field is that required by 

the upper bound theorem and, therefore, the MUB theorem is strictly speaking an upper 

bound solution. These arguments are very much in line with those establishing the upper 

bound nature of SLF solution. It is important to note that, additionally, inside a SLF the 

equation of incompressibility and equilibrium conditions are satisfied.  In the MUB 

theorem, neither information regarding the state of stress in region-I is required nor is it 

necessary to prove that the stress distribution there satisfies the equilibrium equations. 

 To evaluate this integral, that is, eq. (3.33) we need to know the extent of rigid and 

deforming zones over which the first and second integral term of RHS of eq. (3.33) should 

be evaluated respectively. For an assumed kinematically admissible velocity fields, the 

MUB theorem itself provides the extent of the rigid and deforming zones. This aspect 

would become clear in chapters 4 and 5 where we deal with specific problems. The only 

thing that remains is to relate the rate of imposed velocity field vi
* with the tangential 
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velocity, ν*, with which the rigid parts slide relative to each other. New kinematically 

compatible velocity fields are proposed in chapter 4 for three-point bending, SE(B) and 

compact tension, C(T) specimens. These proposed velocity fields when incorporated in 

MUB theorem have provided results that are in exact agreement with SLF solutions.  
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     Fig. 3.1: Schematic used for analytical formulation of Modified Upper Bound (MUB)
theorem. 
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CHAPTER 4 
 

Application of proposed modified upper bound theorem to 

plane strain problems in homogeneous materials 
 

 

4.1    Introduction 

 

In the previous chapter the significance of extremum theorems/work principles for a 

plastic-rigid body was emphasised. Apart from their general applicability to many 

boundary value problems, these theorems provide a way to a direct construction of 

solutions, by-passing the integration of the differential equations. In the non-linear 

problems which constitute the plasticity theory this possibility is extremely important as 

emphasized by Kachanov (1971). Unfortunately, till now, these extremum theorems have 

been used only as a crude method of obtaining the limit load, of a plastic-rigid body, using 

successive approximations by upper and lower bound estimates. On the other hand, slip-

line field (SLF) analysis, which also assumes that the material is rigid-plastic, can provide 

sufficiently accurate estimates of the stresses in the plastic region as well as near the notch 

tip and the corresponding limit loads. Constructing complete SLF for plane strain, non-

hardening plasticity, involves discovering a field that satisfies (i) the Hencky equations for 

equilibrium and yield condition in the deformed region, (ii) the Geiringer equations for 

incompressibility and (iii) equilibrium and yield inequality in the rigid regions. As a result 

constructing a complete SLF is relatively difficult and theoretical solutions exist only for 

limited geometries and loading conditions. Applications of the SLF theory to fracture 
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related problems in Charpy and Izod test specimens are discussed in detail by Green (1953, 

1956), Green and Hundy (1956), Alexander and Komoly (1962) and Ewing (1968). Till 

now, these two methods of plastic analysis, that is, the limit theorems and SLF have 

remained more or less independent apart from the fact that both are upper bounds as they 

use kinematically admissible velocity fields.  

 The analytical formulation of a new load bounding technique, Modified Upper 

Bound (MUB) theorem, was presented in the previous chapter. It was demonstrated that 

the method (MUB) is actually a new form of already existing extremum/work principle. In 

this chapter the equivalence of this new form of work principle, that is, the MUB theorem 

with the classical SLF analysis, for a rigid-plastic body in plane strain, is discussed in 

detail. Since plastic deformation fields depend on specimen geometry and type of loading, 

specific cases were considered. Both cracked and uncracked configurations were analysed 

to establish this equivalence in general. For cracked bodies only deeply cracked 

configurations were considered so that the plastic deformation remains confined to the 

uncracked ligament and does not spread to the cracked flanks. At this point it is worth to 

mention that Kim (2002) has also shown the global equilibrium of least upper bound 

circular arcs and evaluated fully plastic crack tip stresses. He assumed a plane strain 

deformation field consisting of rigid-body rotation across a circular arc extending from a 

crack tip across the remaining ligament. However, such an assumed deformation field has 

very limited applications. 

 In the subsequent sections it would be demonstrated that minimization of this new 

form of general work principle automatically leads to global equilibrium equations, as 

obtained from SLF analysis. Once this global equilibrium is established, the kinematically 
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admissible velocity field allows us to use Hencky’s equation for evaluation of stresses at 

any point in the plastically deformed region and in the vicinity of crack tip. Solutions of 

crack tip stresses obtained from MUB theorem were compared with detailed SLF 

solutions. Prandtl (1920) first developed the well-known Prandtl slip-line field for a semi-

infinite plane strain mode-I crack.  Detailed crack tip SLF solutions have already been 

provided by Rice & Johnson (1970) for blunted crack tip and Hutchinson (1968) for plane 

stress condition. Various simplifications resulting from the use of the proposed MUB 

theorem over SLF method are discussed in this chapter.  

 As a novel application of the proposed method, single-edge-cracked specimen 

under combined bending and tensile load was analysed. For plates with deep, single edge 

cracks, slip line fields are known under pure tension and under opening bending with 

compression or small tension (Shiratori and Miyoshi, 1980; Shiratori and Dodds, 1980). 

For such plates under opening bending and large tension, Rice (1972) gave an analytical-

graphical formulation for sliding along the circular arc giving the least upper bound to the 

limit load. He also proposed an approximate elliptical yield locus for all ranges of positive 

tension and net section moments. Kim et al. (1995) provided a complete analytical 

formulation for Rice’s least upper bound. They also proposed an improved approximate 

elliptical yield locus (based on numerical fitting) and compared it with the finite element 

limit analyses of Lee and Parks (1993). Thus, while SLF solutions are available only for 

bending with small tensile load, classical upper bound solutions are valid for bending with 

large tensile load. In this chapter a completely analytical formulation for yield locus for the 

entire range of tensile and bending load is presented. 
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4.2    Equivalence of proposed modified upper bound theorem with slip 

line field analysis 

 

As mentioned earlier, the modified upper bound (MUB) theorem is actually a new form of 

already existing extremum/work principle. In this section equivalence of SLF analysis and 

MUB theorem would be established in terms of global equilibrium equations for a wide 

variety of plastic deformation fields. While SLF method requires integration of stress 

distribution of plastically deformed regions the MUB method minimizes plastic work with 

respect to unknown parameters of assumed plastic field to arrive at global equilibrium 

equations. Standard results of stress distribution in plastically deformed zones, that is, 

Region II (see Fig. 3.1), obtained from SLF analysis would be utilized. It is obvious that if 

we can obtain stress distribution that satisfies equilibrium conditions in the deforming 

region by any method (experimental or analytical) we need not to refer to SLF results. 

Moreover, no information is required regarding the state of stress in region I comprising of 

rigid blocks of material.  

 As demonstrated in subsequent sections, the expression of MUB theorem itself 

provides an equation of global equilibrium for force or bending moment. Minimum work 

principle is then invoked to evaluate the unknown parameters of the plastic deformation 

field. This process of minimization automatically leads to other equations of global 

equilibrium which are identical to those obtained from the SLF analysis. It may be 

emphasized that this equivalence in terms of global equilibrium equations means that the 

state of stress in the regions having rigid mode of deformation and hence throughout the 

body is identical with that obtained from detailed SLF analyses. Thus, the plastic 
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deformation field assumed in MUB analysis is in fact SLF and Hencky’s theorem can now 

be used at any point in the plastically deformed regions to evaluate the state of stress.  For 

the sake of simplicity we begin with uncracked configurations. 

 

4.2.1    Bending of cantilever  

 

We start with this classical problem that was first analysed by Green (1954). Let a 

cantilever beam of rectangular cross-section and length l be bent by a force P (per unit 

width), applied at the end; the left-hand end of the beam is rigidly clamped. The width b in 

the horizontal direction is constant and at least six times (Green, 1954) than the height 2h. 

In these circumstances plane strain condition can be safely assumed. Depending on l/2h 

two types of plastic deformation patterns are possible.  

 

4.2.1.1    Short cantilever (l/2h ≤ 13.73) 

 

In this case the possible plastic deformation field, assumed by Green (1954), is shown in 

Fig. 4.1(a). Let d be the length of AD, ε the angle DAC and 2ψ the angle subtended by the 

arc DD΄. The right hand part of the cantilever slides along this arc in the limit state. 

Following the standard results of SLF analysis, (Green, 1954), we have uniaxial tension 

+2k in ABC and compression -2k in A΄B΄C΄. Adjoining these triangles are the central 

fields ACD, A΄C΄D΄, which are linked by circular slip line DD΄ of radius R. The mean 

pressure on slip line AD is p=k (1+2ε); the tangential stress on AD is clearly equal to k. 
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This much information regarding the state of stress distribution, in plastically deformed 

region, is required for MUB analysis.   

 The scheme used to relate the relative velocity, ν*, (with which rigid parts rotate) to 

the rate of imposed displacement, δ ·, is shown in Fig. 4.1(b). Since the undeformed 

material is assumed to slide over the circular arc, therefore, its instantaneous centre must 

lie at the centre of this arc DD΄. At instantaneous centre the tangential velocity is zero. As 

the undeformed portions are moving rigidly, linear variation of velocity (between 

instantaneous centre and the point of application of imposed load) can be assumed. As a 

result the Y-component of imposed displacement at D or D΄ can be expressed as follows: 

 

                                                     
( )

.
. cos

cos sinD
R

l R d
δ ψδ

ψ ψ
=

+ −
                                             (4.1) 

 

For kinematic admissibility the Y-component of tangential velocity, ν*, at D, must be equal 

to the Y-component of imposed displacement. Thus, the tangential velocity can be 

expressed as follows 

                                                       

                                               ( )
.

*

cos sin
Rv

l R d
δ
ψ ψ

=
+ −

                                                     (4.2) 

 

The angular velocity ω with which the rigid part of the beam rotate about the instantaneous 

centre O can be obtained from the following relation 
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                                                 ( )
* .

cos sin
v
R l R d

δω
ψ ψ

= =
+ −

                                           (4.3) 

 

Now invoking work principle, that is, eq. (3.33), limit load can be expressed as, 

  

                              *

0

2L ij j i ij j i
DC CB

P kv Rd n v dS n v dS
ψ

δ θ σ σ⋅ ⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
∫ ∫ ∫                                (4.4)    

                            

The velocity v of any point P lying on the circular arc DC or on the segment CB can be 

simply obtained as the product of radial distance r between the instantaneous centre O and 

point P and the angular velocity ω. In order to evaluate the work done by the stresses on 

the elastic-plastic boundary, the velocity v is resolved into two components: vt that is along 

the slip line and vn  which is normal to it, as shown in Fig. 4.1(c). 

  The work done by the stresses on the circular arc DC (of radius d) can be expressed 

as follows 

 

                                      ( )
0 0

1 2ij j i t n
DC

n v dS kdv d k dv d
ε ε

σ θ θ θ= − + +∫ ∫ ∫                             (4.5)    

 

                                ( )
0 0

sin 1 2 cosij j i
DC

n v dS kdr d k dr d
ε ε

σ ω λ θ θ ω λ θ= − + +∫ ∫ ∫               (4.6)    

 

From simple geometry , Fig. 4.1(c), it can be readily shown that along circular arc DC         
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                                       ( ) ( )sin 1 cos sinr d Rλ ε θ ε θ= − − + −⎡ ⎤⎣ ⎦                                 (4.7) 

 

                                        ( ) ( )cos cos sinr R dλ ε θ ε θ= − + −                                        (4.8) 

 

On substituting eqs. (4.7 & 4.8) in eq. (4.6), followed by integration, it can be shown that 

 

       
[ ]

( )

sin cos

1 2 2 sin cos 2 cos 2 sin

ij j i
DC

n v dS k d d R d R

k d d R R d R d

σ ω ε ε ε

ω ε ε ε ε ε

= − + − −

+ + + + − − −⎡ ⎤⎣ ⎦

∫
      (4.9)    

 

Similarly, the work done by the stresses on the segment CB can be expressed as follows 

 

                                             
0 0

x x

ij j i t n
CB

n v dS kv dx kv dxσ = − +∫ ∫ ∫                                        (4.10)    

 

                                        
0 0

sin cos
x x

ij j i
CB

n v dS kr dx kr dxσ ω λ ω λ= − +∫ ∫ ∫                         (4.11)    

 

As per the geometry shown in Fig. 4.1(c), it can be readily shown that along segment CB                                

 

                                                   ( )sin 1 cos sinr d Rλ ε ε= − +                                      (4.12) 

 

                                                  cos cos sinr R d xλ ε ε= + +                                        (4.13) 
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Substitution of eqs. (4.12 & 4.13) in eq. (4.11), followed by integration, lead to the 

following relation 

 

          ( )1 cos sin cos sin
2ij j i

CB

dn v dS k d d R k d R dσ ω ε ε ω ε ε⎡ ⎤= − − + + + +⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦∫         (4.14)      

 

Finally, substitution of eqs. (4.9 & 4.14) in eq. (4.4), using the value of ω as given by eq. 

(4.3), lead to the following relation for the limit load of a short cantilever 

 

                                     
( ) ( )

2
22 1 2

sin cos 2L
k dP R dR

l d R
ψ ε

ψ ψ
⎡ ⎤

= + + +⎢ ⎥− + ⎣ ⎦
                      (4.15) 

  

It may be noted that eq. (4.15) is in fact the condition of global moment equilibrium about 

hinge point O. From geometry it may be easily observed that 
4
πψ ε= −  and   sin

cos
h Rd ψ

ψ
−

= .  

Here ε and R are the two independent unknown parameters that would be evaluated using 

minimum work principle. Minimizing eq. (4.15) with respect to these two unknown 

parameters we have 

                              

                         
( ) ( )

( )
( )

2 2

2
2

2

2 1 2
sin cos

2 cos sin sin
1 2 0

2 sin cos

LP k d dR R d d
l d R

dk d R
dR dR

l d R

ε
ε ψ ψ ε ε

ψ ψ ψ
εψ ε

ψ ψ

∂ ∂ ∂⎡ ⎤= − + + + + +⎢ ⎥∂ − + ∂ ∂⎣ ⎦

⎡ ⎤∂⎛ ⎞− − +⎜ ⎟⎢ ⎥⎡ ⎤ ∂⎝ ⎠⎢ ⎥+ + + =⎢ ⎥
⎢ ⎥− +⎣ ⎦
⎢ ⎥⎣ ⎦

                 (4.16) 
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( ) ( )

( )
( )

2
2

2

2 2 1 2
sin cos

2 sin cos
1 2 0

2 sin cos

LP k d dR d R d
R l d R R R

dk
d RR dR

l d R

ψ ε
ψ ψ

ψ ψ
ψ ε

ψ ψ

∂ ∂ ∂⎡ ⎤= + + + + +⎢ ⎥∂ − + ∂ ∂⎣ ⎦

⎡ ⎤∂⎛ ⎞− − +⎜ ⎟⎢ ⎥⎡ ⎤ ∂⎝ ⎠⎢ ⎥+ + + =⎢ ⎥
⎢ ⎥− +⎣ ⎦
⎢ ⎥⎣ ⎦

                 (4.17) 

 

After a few algebraic simplifications the resulting expressions can be written as follows   

     

     ( ) ( )
( )

( )

2
2 1 2

2
1 2 cos cos sin 1 2 sin

sin cos 2
L

dR dR
PR d R d

l d R k

ψ ε
ε ψ ψ ψ ε ψ

ψ ψ

⎡ ⎤
+ + +⎢ ⎥

⎣ ⎦⎡ ⎤+ + − − + = =⎣ ⎦ − +
       (4.18) 

            

        ( )
( )

( )

2
2 1 2

2
2 cos cos sin 1 2 sin

sin cos 2
L

dR dR
PR d R d

l d R k

ψ ε
ψ ψ ψ ψ ε ψ

ψ ψ

⎡ ⎤
+ + +⎢ ⎥

⎣ ⎦⎡ ⎤+ − − + = =⎣ ⎦ − +
             (4.19)  

 

Comparison of eqs. (4.18) and (4.19) provides 1 2 2ε ψ+ =  that can also be obtained from 

SLF analysis using Hencky’s theorem of constancy of ξ along the continuous α-slip-line 

ADD΄A΄ (Green, 1954). Thus 2ε=π/4-1/2. If SLF analysis is performed then unknown 

radius R is determined from the condition of force equilibrium. Along the arc DD΄, the 

normal stress is equal to 2kχ (Kachanov, 1971), where the angle χ is measured from the 

horizontal as shown in Fig. 4.1(a). Thus,   

                                                                                            

                           ( )
0 0

cos 1 2 sin cos 2 sin
2

LPd d R d R d
k

ψ ψ

ψ ε ψ χ χ χ χ χ
⎡ ⎤

− + + − =⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫                   (4.20) 
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After simplification eq. (4.20) can be finally expressed as 

 

                              ( )cos 1 2 sin sin 2 cos
2

LPd d R R
k

ψ ε ψ ψ ψ ψ⎡ ⎤− + − + =⎣ ⎦                                (4.21) 

 

Thus, it is proved that the MUB theorem automatically leads to equations of global 

equilibrium which are identical to those obtained from SLF analyses. Moreover, the 

method inherently satisfies Hencky’s theorem along a continuous slip line.  

 

4.2.1.2    Long cantilever (l/2h> 13.73) 

 

For the case of a long cantilever the possible slip field, assumed by Green (1954), is shown 

in Fig. 4.2. State of stress in plastically deformed regions ABCD, A΄B΄C΄D΄, is identical to 

that obtained for short cantilever. The shape of assumed plastic field clearly reveals that 

there is no region in which rigid mode of deformation can be assumed, thus, the first 

integral term of eq. (3.33) becomes zero. In the limit state a rotation of the rigid part of the 

cantilever (to the right of BDB΄) takes place with respect to point D. Using the stress 

distribution of plastically deformed region, and evaluating the work done by the stresses on 

the elastic-plastic boundary DCB, eq. (3.33) can be finally expressed as  

                                                                     

                                                        ( ) 21 2

sin
4

L

k d
P

l d

ε

π ε

⎡ ⎤+⎣ ⎦=
⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                             (4.22) 
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It may be noted that the limit load of a long cantilever expressed by eq. (4.22) can be 

directly obtained by substituting R=0 in eq. (4.15). From geometry it can be readily 

obtained that d=h/cos(π/4-ε). Here ε is the only unknown parameter that would be 

evaluated using minimum work principle. Minimizing eq. (4.22) with respect to ε we have 
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2

2

sin 2 1 2 2
4

1 2 sin cos 0
4 4

LP dl d d k k d

dk d d

π ε ε
ε ε

π πε ε ε
ε

⎛ ⎞∂ ∂⎛ ⎞ ⎡ ⎤= − − + + −⎜ ⎟⎜ ⎟ ⎢ ⎥∂ ∂⎝ ⎠ ⎣ ⎦⎝ ⎠
⎡ ⎤∂⎛ ⎞ ⎛ ⎞⎡ ⎤+ − − + − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

                          (4.23) 

 

After a few algebraic re-arrangements the following expression can be easily obtained 

 

                                ( )
( )1 2

cos 1 2 sin
4 4 2 sin

4

d

l d

επ πε ε ε
π ε

⎡ ⎤+⎛ ⎞ ⎛ ⎞ ⎣ ⎦− − + − =⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎛ ⎞⎝ ⎠ ⎝ ⎠ − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                        (4.24) 

 

Using eq. (4.22), eq. (4.24) can be re-written as follows 

                                            

                                       ( )cos 1 2 sin
4 4 2

LP
kd

π πε ε ε⎛ ⎞ ⎛ ⎞− − + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                        (4.25) 

 

Eq. (4.25) represents the condition of force equilibrium which is identical to that obtained 

from SLF analysis (Kachanov, 1971). As per SLF procedure, for the case of long 

cantilever, 2ε<π/4-1/2, the plastic deformation field shown in Fig. 4.2 is valid. When 

2ε=π/4-1/2, SLF shown in Fig. 4.1(a) leads to a smaller, and therefore more appropriate, 

value of the limit load. The first type of field, Fig. 4.1(a), arises with short cantilever (l/2h 
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≤ 13.73), when (l/2h = 13.73) the two fields coincided, since R=0. All these conditions can 

be directly obtained from the proposed MUB theorem. Thus, for both short and long 

cantilever MUB theorem and SLF analysis finally provide identical results. Numerical 

values of ε, R, d and PL for both these configurations were already provided by Green 

(1954). 

 

4.2.2    Bending of deeply cracked fracture mechanics specimens 

 

In order to demonstrate equivalence of proposed MUB theorem and SLF analysis for 

cracked bodies, standard fracture mechanics specimens (plane-strain) viz. pure bending 

specimen, SE(PB), three-pint bend specimens, SE(B) and compact tension specimen, C(T) 

were analysed. These cracked bend specimens are nowadays frequently used in fracture 

mechanics analysis. To ensure that a high crack tip constraint exists in these specimens the 

testing standards usually recommend deeply cracked geometries subjected to predominant 

bending load. This recommendation ensures that the fracture toughness so obtained would 

be a conservative estimate of the fracture toughness of the actual structure under 

investigation. In low strength metal specimens the remaining ligament is normally fully 

yielded before crack growth initiation. The plastic deformation, therefore, gets confined to 

the uncracked ligament and does not spread to the cracked flanks. Under these conditions 

the proposed MUB theorem, assuming that the material is rigid-plastic, can provide 

sufficiently accurate estimates of the crack tip stresses and, hence, the crack tip constraint 

parameters like Q, q or h. Which of these constraint parameters is more appropriate to 

characterise ductile fracture process has been the topic of many detailed investigations (e.g. 
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Roos et al., 1993). In the remaining part of this chapter results of crack tip constraint is 

expressed in terms of Q, though q or h can also be easily obtained. The parameter Q is 

defined by O’ Dowd and Shih (1991) in the form 

                                                         

                                                    
,

0, 2Y

Prandtl

rY
J

Q θθ θθ

σ
θ

σ σ
σ

= =

−
=                                   (4.26) 

 

for a rigid-plastic material; where θ is the angle in polar co-ordinate system centered at the 

crack tip and the subscript Prandtl denotes the stress component calculated from the 

solution of Prandtl crack tip field. In addition, parameters like the limit load, plastic eta 

factors (ηp) and plastic rotation factor (rp) were also evaluated. These parameters may 

serve as an essential preliminary aspect of the subsequent fracture analysis.  

 In conventional fracture mechanics J-integral has been widely used as a parameter 

(though it has its own limitations) to characterize stress and strain field in the vicinity of 

crack tip for a non-linear elastic material. Its experimental evaluation requires a calibration 

factor (ηp) either based on load-load line displacement (ηLLD) records or on load-crack 

mouth opening displacement (ηCMOD) records. For a given specimen geometry and loading 

condition, MUB theorem provides the plastic limit load solution, PL, as a function of crack 

length a/W, which then provides ηLLD and subsequently ηCMOD, (see chapter 7 for details). 
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4.2.2.1    Single edge cracked specimen in pure bending, SE(PB) 

 

For a deeply cracked SE(PB) specimen (a/W>0.3), the plastic deformation mechanism, as 

shown in Fig. 4.3, was assumed. This is exactly the same deformation mode that was 

assumed by Green (1953) in his slip line field analysis. Instead of SLF method, here MUB 

theorem (eq. 3.33) was used to evaluate the limit moment and other useful fracture 

mechanics parameters. In the proposed solution it is assumed that at limit moment, there is 

a central pivot OPQ that remains rigid, around which the rigid parts of the specimen on 

either side rotate by shearing over the circular arcs, OPQ. Near free surface, there is a 

region of constant compressive stress, RQR, due to traction free boundary condition at the 

edge A-A. Circular arcs, OPQ, merge in this compressive zone tangentially. The line, 

OPQR', consisting of a straight line segment, QR', and a circular arc, OPQ, has a 

continuous tangent and therefore the corresponding velocity field is kinematically 

admissible (Kachanov, 1971). From Hundy’s field (1954), the stress distribution in this 

compressive zone can be expresses as 

 

                                               11 0,σ =  22 2kσ = −  and 12 0σ =                                      (4.27) 

 

Here k is the shear yield strength (σy/√3, according to Von-Mises yield criterion). As far as 

kinematics is concerned it is assumed that, at limit state, the relative angular velocity, ν*, 

with which rigid parts rotate becomes equal to the rate of imposed rotation i.e. ν*=ω. Using 

stress distribution of compressive zone and evaluating the work done by the stresses on the 
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elastic-plastic boundary QR, the resulting expression for limit moment, using eq. (3.33), 

can be expressed as  

 

                                              2 ( ) ( 0.5 )
4LM k R x R xπβ⎡ ⎤= + + +⎢ ⎥⎣ ⎦

                                    (4.28) 

 

Eq. (4.28) represents the condition of global moment equilibrium about the hinge point. 

From geometry following relation can be easily obtained                                                          

                                                                 

                                                              2
1(sin )
2

xl
R

β

−
=

+

                                                (4.29) 

 

Here x and β are the two independent unknown parameters that would be evaluated using 

minimum work principle. Since the algebra involved is quite standard only important 

steps/equations are provided. Minimizing eq. (4.28) with respect to these two unknown 

parameters we have 

                                                    

                                              2 0
4

LM R Rk R R x x
x x x

πβ⎡ ⎤∂ ∂ ∂⎛ ⎞= + + + + =⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦
                         (4.30) 

 

                                               2 2 0
4

LM R Rk R R xπβ
β β β

⎡ ⎤∂ ∂ ∂⎛ ⎞= + + + =⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦
                           (4.31) 

 

On further simplification, these two equations can be expressed as                                                    
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                                                    ( )sin cos 2cos
4
πβ β β β⎛ ⎞+ = +⎜ ⎟

⎝ ⎠
                                  (4.32)  

                                               

                                            cos sin 2sin 2
42

Rx πβ β β β⎡ ⎤⎛ ⎞= − + + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
                          (4.33) 

 

Eqs. (4.32) & (4.33) actually represent global equilibrium conditions which can also be 

obtained from detailed SLF analysis (Chakrabarty, 1987). In addition to limit moment, 

plastic eta factor, ηLLD, and plastic rotation factor, rp, were also evaluated and were found 

to be in exact agreement with SLF solution. Numerical values of these parameters are 

presented in Table 4.1. In Table 4.1, the values of the limit moment ML were normalised 

with the limit moment of an uncracked bar Mo. 

 It is important to note that if presence of compressive zone is neglected then eq. 

(4.28) would reduce to the classical upper bound solution proposed by Prager (1955), that 

is, 20.398L yM lσ=  which is about 10% higher than that obtained from detailed SLF/MUB 

solution. In addition to limit moment, plastic eta factor, ηLLD, and plastic rotation factor, rp, 

were also compared with the classical SLF solution. MUB theorem provides ηLLD =2 and 

rp =0.37 which are in exact agreement with Green’s (1953) SLF solution.   

 

4.2.2.1.1    Fully plastic crack-tip stress fields for SE(PB) specimen 

 

In the previous section, it was established that, for the assumed plastic deformation field, 

minimum work principle automatically satisfies the global equilibrium equations. It means 

that the state of stress in the regions having rigid mode of deformation and hence through 



                                                                                                                                                                                         Chapter-4
  

 80

out the body is identical with that obtained from detailed SLF analyses. Thus, the assumed 

plastic deformation field is in fact SLF and Hencky’s theorem can now be used at any 

point in the plastically deformed regions to evaluate the state of stress. However, from the 

stress distribution we cannot determine the constraint parameter Q at the crack tip directly 

as the assumed plastic field can only give the stress components along the slip lines which 

radiate from the crack tip and which are inclined to the horizontal line with an angle larger 

than 45˚ (Hao et al., 2000). From this kind of slip line fields the stress field surrounding the 

crack tip is not uniquely obtainable. Following Hao et al. (2000), possible crack-tip stress 

field is illustrated in Fig. 4.4. In this figure we assume, asymptotically, that a small 

segment of straight slip line OO' exists. It radiates from the crack tip and is connected to 

the arc OP in the global slip line field. Thus, the stress components on these small lines are 

constant and equal to the components at the point O' on the arc O'P. The plastic 

deformation expand from the line OO' ahead of the crack tip, as shown in Fig. 4.4 and 

form a diamond-like plastic zone OBXB like that in Prandtl field. In Fig. 4.3, OPQR' is a β 

slip line along which
2k
σ θ η+ = . At point Q, σ=-k and θ=π/4. Thus, 1

4 2Q O
πη η= = − . At point 

O, θ=-β and on substituting ψ=π/4+β, ( )2 1O kσ ψ= − . Also O'BX is α-slip line along 

which
2k
σ θ ξ− = . Thus, 

'
1
2O Bξ ξ ψ β= = − + . At point B, θ=-π/4 and the normal pressure 

(hydrostatic stress) can be expressed in terms of slip angle β as follows. 

 

                                                 ( )2 1 2
4B X k k πσ σ ψ β⎛ ⎞= = − + −⎜ ⎟

⎝ ⎠
                                 (4.34) 
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In triangle OBX (that is actually a uniform stress zone) lying just below the crack tip, 

maximum tensile stress is given by the following expression 

                                                                     

                                                              B kθθσ σ= +                                                     (4.35) 

 

Comparison of these local stresses near the crack tip and, hence, the constraint factor 

obtained using MUB theorem and those from detailed SLF solution (Green, 1953) is given 

in Table 4.1. 

 

Table 4.1: Comparison of results of SE(PB) specimen obtained from MUB theorem with 

SLF analysis (Green, 1953) for a/W=0.3 - 1. 

 R/l ψ˚ x/l ML/Mo rp ηLLD (σm/σy)

at θ=0 

(σθθ/σy) 

at θ=0 

Q 

SLF 0.388 117.04 0.502 1.26 0.369 2.0 2.326 2.903 -0.064 

MUB 0.388 117.04 0.502 1.26 0.369 2.0 2.326 2.903 -0.064 

 

                          

4.2.2.2    Single edge cracked specimen in three-point bending, SE(B) 

 

For a deeply cracked SE(B) specimen (a/W > 0.177), the plastic deformation mechanism 

suggested by Green and Hundy (1956), as shown in Fig. 4.5, was used. In constructing this 

field it was assumed that the crack is sufficiently deep for initial overall yielding not to 

spread to the surface on the cracked side and that there is a stress singularity at the point R 

on the flat surface. In practice, the central load is supported over a finite length of the 
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surface spanning the point R and local deformation would fit the load ‘point’ to this 

surface. Thus, the singularities shown coinciding at R in Fig. 4.5 should be separated by a 

small distance; in fact, with them coinciding, the yield criterion is certainly violated in the 

rigid corner QRQ (Hill, 1954). However, as Ewing (1968) has demonstrated, the effect of 

neglecting this local disturbance does not lead to much error in the overall pattern or limit 

load, or in the stress distribution near the crack tip. The effect of finite indenter width 

would be dealt in more detail in the later part of this sub-section.  

           In the proposed solution it was assumed that at limit moment, there is a region 

OPQQPO that remains rigid, around which the rigid parts of the specimen on either side 

rotate by shearing over the circular arcs, OPQ. Near free surface, we have uniaxial 

compression in the region RST. Adjacent to it is the central field QRT which merges with 

the circular slip line of radius R. From Hundy’s field (1954), the stress distribution in this 

compressive zone can be expressed as 11 0,σ =  22 2kσ = −  and 12 0σ = . In the central field 

QRT, the shear stress along RT is k and the normal pressure acting on the segment RQ is 

k(1+2γ). The scheme used to relate the relative velocity, ν*, (with which rigid parts rotate) 

to the rate of imposed displacement, δ ., is shown in Fig. 4.6. In an actual SE(B) specimen 

supports are fixed and load is applied at the center that causes an imposed displacement. 

However, for a kinematic analysis it can be assumed that load point is fixed and a 

displacement,δ.., is imposed at the supports. From kinematics, it is well known that the 

instantaneous centre of a body sliding on a curved surface lies at the center of curvature. 

Since the undeformed material is assumed to slide over the circular arcs, therefore, their 

instantaneous centre must lie at the centre of these arcs. At instantaneous centre the 

tangential velocity is zero. As the undeformed portions are moving rigidly, linear variation 
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of velocity (between instantaneous centre and support) can be assumed. As a result, x-

component of imposed displacement (see Fig. 4.6) at crack tip can be expressed as follows: 

 

                                                         
( )

.
. cos

/ 2 cosc
R

S R
δ βδ

β
=

+
                                               (4.36) 

 

For kinematic admissibility the x-component of tangential velocity, ν*, at crack tip, must 

be equal to the x-component of imposed displacement i.e. 

 

                                                  
( )

.
. *cos cos

/ 2 cosc
R v

S R
δ βδ β

β
= =

+
                                       (4.37) 

 

Thus, the tangential velocity can be expressed in terms of imposed displacement,δ ., as 

given by following equation. 

 

                                                          
( )

.
*

/ 2 cos
Rv

S R
δ

β
=

+
                                                (4.38) 

 

The angular velocity ω with which the rigid part of the beam rotate about the hinge H can 

be obtained from the following relation 

 

                                                       ( )
* .

/ 2 cos
v
R S R

δω
β

= =
+

                                          (4.39) 

 

Now invoking work principle, that is, eq. (3.33), limit load can be expressed as, 
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4

*

0
L ij j i ij j i

QT TS

P kv Rd n v dS n v dS

π
β γ

δ θ σ σ

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

⋅ = + +∫ ∫ ∫                             (4.40) 

 

Since the stress and velocity distribution on the elastic-plastic boundary QTS are quite 

similar to that of short cantilever, Fig. 4.1 (c), the details are omitted and the resulting 

expression for the limit load can be expressed as 

                                        

                                   ( ) ( )
2

22 / 4 1 2
2cos

2

L
k xP R xR

S R
β π γ γ

β

⎡ ⎤
= + − + + +⎢ ⎥⎛ ⎞ ⎣ ⎦+⎜ ⎟
⎝ ⎠

                        (4.41) 

for                                         

 

                                           
cos sin

4 4

sin sin cos cos
4 4

l x x
R

π πγ γ

π πβ γ γ β

⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= =
⎛ ⎞ ⎛ ⎞+ − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                              (4.42) 

 

Eq. (4.41) represents the global moment equilibrium, about the hinge point, that needs to 

be minimized with respect to unknown parameters, that is, x, γ and β. These three 

parameters are not independent but are subjected to a geometrical constraint as specified 

by eq. (4.42). In the present case, Lagrange’s method of undetermined multiplier was used. 

Application of this optimization technique requires the geometrical constraint to be re-

expressed in following form 

 

         ( ), , sin sin sin cos cos cos
4 4 4 4

x x l xπ π π πφ β γ γ β γ γ β γ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − − − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

        (4.43) 
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Following Lagrange’s multiplier method, we have 

                                                

                                  0LP
x x

φλ∂ ∂
+ =

∂ ∂
 ; 0LP φλ

β β
∂ ∂

+ =
∂ ∂

 ; 0LP φλ
γ γ

∂ ∂
+ =

∂ ∂
                               (4.44) 

 

On elimination of undetermined multiplier, λ, from the above equations we have 

 

                                                           0L LP P
x x

φ φ
β β

∂ ∂∂ ∂
− =

∂ ∂ ∂ ∂
                                               (4.45) 

 

                                                           0L LP Pφ φ
β γ γ β

∂ ∂∂ ∂
− =

∂ ∂ ∂ ∂
                                               (4.46) 

 

                                                           0L LP P
x x

φ φ
γ γ

∂ ∂∂ ∂
− =

∂ ∂ ∂ ∂
                                                (4.47) 

 

Minimizing eq. (4.41) with respect to unknown parameters and after a few algebraic 

simplifications, we have 

                                            

                                        ( )2 22 1 2 2 cos2

cos cos
2 2

L LR x RxP P Rk
S Sx x R x R

ψ γ β

β β

⎡ ⎤
⎢ ⎥+ + +∂ ⎢ ⎥= −

∂ ⎛ ⎞ ⎛ ⎞⎢ ⎥+ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

                    (4.48) 
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⎡ ⎤
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      (4.50) 

 

Here,  

                                                                
4
πψ β γ= + −                                                (4.51) 

Also 

                                                                    1 cos
x
φ ψ∂
= −

∂
                                               (4.52) 

 

                                       2sin cos sin sin sin
4 4

x Rφ π πγ β β β γ
β

⎡ ⎤∂ ⎛ ⎞ ⎛ ⎞= − − + −⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦
                (4.53) 

                            

               sin cos sin sin sin sin
4 4 4 4

x x Rφ π π π πγ γ ψ β γ γ
γ

⎡ ⎤∂ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − − − − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
           (4.54) 
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Substitution of eqs. (4.49) & (4.50) and eqs. (4.53) & (4.54) in eq. (4.46) finally leads to 

following equation 

                   

          ( )

( ){ } ( )

sin 1 2 cos
2 4 4

2 1 2 sin cos 1 2 sin cos
4 4 4 4

LP kx

kR

π πγ γ γ

π π π πψ γ ψ γ ψ γ γ γ γ

⎡ ⎤⎛ ⎞ ⎛ ⎞= + − + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + + + + + + + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

     (4.55)                              

 

Similarly, substitution of eqs. (4.48) & (4.54) and eqs. (4.50) & (4.52) in eq. (4.47) 

provides the following expression 

 

        ( )
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4 4
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4 4 4 4

kx
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⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + + − + + + + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

   (4.56)     

 

Eqs. (4.55) & (4.56) represent the global force equilibrium equations (identical to those 

obtained from SLF analysis, Wu et al., 1987). This in turn again establishes equivalence of 

MUB theorem and SLF analysis. For the case of standard deeply cracked SE(B) specimen, 

Wu et al. (1987) have presented SLF solution and expressed the results of limit load in the 

form of plastic constraint factor L that gives the measure of load enhancement due to 

presence of notch. Limit load, thus can be expressed in the following form 

                                                              

                                                    
22

( / )
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L

l
P L a W

S
σ

=                                               (4.57) 
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In addition to plastic constraint factor, L(a/W), x, β and γ, plastic eta factor, ηLLD, and 

plastic rotation factor, rp, were also compared with the classical SLF solution and their 

numerical values are given in Table 4.2.  

 It is worth to note that Joch et al. (1993) have also proposed an upper bound 

solution for standard SE(B) specimen. They have neglected the constant stress region RST 

and the fan field QRT (see Fig. 4.5) and assumed a deformation mechanism consisting of 

circular arcs emanating from the crack tip up to the free surface. The tangential velocity 

and the load point displacement was related by the following expression 

 

                                                              
.

* 2Rv
S
δ

=                                                          (4.58) 

 

The resulting expression of upper bound limit load (Joch et al., 1993), with Von-Mises 

plasticity, is given below 

 

                                                            
21.593 y

l

l
P

S
σ

=                                                     (4.59)   

                  

It can be noted that the solution provided by Joch et al. (1993) does not explain the 

dependence of limit load on a/W ratio. For a/W=0.5, the limit load is about 10% higher 

that that obtained from SLF solution (Wu et al., 1987). Similarly, the plastic constraint 

factor obtained is about 13.5% higher than that obtained from the SLF solution. 
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4.2.2.2.1    Fully plastic crack-tip stress fields for SE(B) specimen 

 

 In Fig. 4.5, assuming Δ RST to be in a state of compression, ST is α-slip line along 

which
2k
σ θ ξ− = . At point S, σ=-k and θ=π/4. Thus, 1

4 2S Q
πξ ξ ⎛ ⎞= = − +⎜ ⎟
⎝ ⎠

. At point Q, 
4
πθ γ= −  

and thus the normal pressure is ( )1 2Q kσ γ= − + . Now, RQPO is β-slip line along 

which
2k
σ θ η+ = . Thus, 12

4 2Q O
πη η γ= = − − . At point O, θ= -β and on substituting ψ=π/4+β-γ, 

( )2 2 1O kσ ψ γ= − − . Also O΄BX is α-slip line along which
2k
σ θ ξ− = . Thus, 

'
1
2O Bξ ξ ψ γ β= = − − + . At point B, θ=-π/4 and the normal pressure (hydrostatic stress) can be 

expressed in terms of slip angle β as follows. 

                                                            

                                           ( )2 2 1 2
4B X k k πσ σ ψ γ β⎛ ⎞= = − − + −⎜ ⎟

⎝ ⎠
                                     (4.60) 

 

In triangle OBX (that is actually a uniform stress zone) lying just below the crack tip, 

maximum tensile stress is given by the following expression   

 

                                                              B kθθσ σ= +                                                      (4.61) 

 

Comparison of hydrostatic stress, near the crack tip, obtained using MUB theorem and that 

from detailed SLF solution (Wu et al., 1987) is given in Table 4.2. 
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Table 4.2: Comparison of theoretical results of SE(B) specimen obtained from MUB 

theorem with SLF analysis (Wu et al., 1987). 

a/W Method R/(W-a) ψ˚ γ˚ x/(W-a) L rp  ηLLD  (σm/k) 

at θ=0 

SLF 0.5 102.38 7.37 0.3 1.215 0.455 1.937 3.006  

0.2 MUB 0.5 102.31 7.35 0.3 1.215 0.455 1.921 3.00 

SLF 0.49 103.99 7.28 0.31 1.227 0.451 1.945 3.118  

0.3 MUB 0.49 104.08 7.3 0.31 1.227 0.450 1.935 3.124 

SLF 0.48 105.63 7.18 0.32 1.238 0.447 1.953 3.233  

0.4 MUB 0.48 105.66 7.17 0.32 1.238 0.447 1.948 3.235 

SLF 0.47 107.29 7.07 0.34 1.248 0.443 1.961 3.349  

0.5 MUB 0.47 107.29 7.07 0.34 1.248 0.443 1.959 3.346 

SLF 0.47 108.96 6.96 0.35 1.258 0.439 1.969 3.466  

0.6 MUB 0.47 108.96 6.94 0.35 1.258 0.439 1.97 3.462 

SLF 0.46 110.65 6.84 0.36 1.267 0.435 1.977 3.584  

0.7 MUB 0.46 110.64 6.81 0.36 1.267 0.435 1.979 3.582 

SLF 0.45 112.35 6.71 0.37 1.275 0.431 1.985 3.702  

0.8 MUB 0.45 112.34 6.71 0.37 1.275 0.431 1.988 3.701 

SLF 0.44 114.05 6.58 0.38 1.282 0.427 1.987 3.821  

0.9 MUB 0.44 114.05 6.53 0.38 1.282 0.427 1.994 3.821 
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4.2.2.2.2    Effect of indenter width on the limit load and local stresses 

near the crack tip for SE(B) specimen 

 

In actual practice, SE(B) specimen is loaded in three-point bending by an indenter of finite 

width. This requires evaluation of correction to be expected due to finite indenter width. 

The indenter surface in practice is a circular arc of about 2.5 mm radius but following the 

suggestions of Alexander and Komoly (1962), Ewing (1968) replaced it by a flat punch of 

width 2b and analyse the effects on the SLF by varying this small dimension b. The plastic 

deformation field (as suggested by Ewing, 1968) is shown in Fig. 4.7. The stress 

distribution in compressive zone and central field remain same as obtained earlier. 

Application of MUB theorem, eq. (3.33), yields the following expression for limit load 

(same as eq. (4.41)).  

                                            

                                        ( ) ( )
2

22 / 4 1 2
2cos

2

L
k xP R xR

S R
β π γ γ

β

⎡ ⎤
= + − + + +⎢ ⎥⎛ ⎞ ⎣ ⎦+⎜ ⎟
⎝ ⎠

                  (4.62) 

for                                                       

                                                        
sin

4

cos cos
4

b x
R

π γ

π γ β

⎛ ⎞+ −⎜ ⎟
⎝ ⎠=

⎧ ⎫⎛ ⎞− −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

                                          (4.63) 

                            

             sin sin sin cos cos cos
4 4 4 4

b x l xπ π π πγ β γ γ β γ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − + − = − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

         (4.64) 
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Rest of the analysis is exactly same as discussed under sub-section 4.2.2.2 and we proceed 

directly to results. Effect of finite indenter width on plastic constraint factor, L(a/W), R, x, 

β and ψ, and on local stresses near the crack tip is quantified in Table 4.3. Again, both 

MUB theorem and SLF analysis provides identical results. 

 

Table 4.3: Effect of indenter width on plastic field parameters and crack tip stresses 

obtained from MUB theorem and SLF analysis (Ewing, 1968) for a/W=0.2, W=10 mm. 

Span b 

(mm) 

Method R (mm) ψ˚ γ˚ x (mm) β (σθθ/2k)θ=0

SLF 3.9629 103.548 7.309 2.4779 1.224 2.044  

0 MUB 3.9627 103.538 7.312 2.4786 1.224 2.043 

SLF 4.0881 103.755 9.431 2.2456 1.251 2.051  

0.5 MUB 4.0879 103.769 9.419 2.2453 1.251 2.051 

SLF 4.2173 104.119 11.532 2.0322 1.287 2.064 

 

 

 

  S=44 

(mm)  

1.0 MUB 4.2163 104.128 11.531 2.0335 1.287 2.064 

SLF 4.0219 102.375 7.376 2.4078 1.215 2.003  

0 MUB 4.0221 102.364 7.375 2.4077 1.215 2.002 

SLF 4.1475 102.590 9.510 2.1757 1.243 2.01  

0.5 MUB 4.1480 102.591 9.499 2.1746 1.243 2.01 

SLF 4.2771 102.957 11.625 1.9624 1.279 2.023 

 

 

 

  S=40 

(mm)  

1.0 MUB 4.2766 102.960 11.622 1.9630 1.279 2.023 
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4.2.3    Compact tension C(T) specimen 

 

Theoretical solution proposed here is valid for a deeply cracked C(T) specimen (a/W ≥ 

0.1). The same plastic deformation mechanism that was suggested by Green (1953) for 

SE(PB) specimen was used by Ewing and Richards (1974) in their SLF analysis of C(T) 

specimen. The stress distribution in compressive zone is assumed to be same as that in case 

of SE(B) specimen i.e. 11 0,σ =  22 2kσ = −  and 12 0σ = . 

 The scheme used to relate the relative velocity, ν*, (with which rigid parts rotate) to 

the rate of imposed displacement,δ ., is similar to that used for SE(B) specimen. Since the 

undeformed material is assumed to slide over the circular arcs, therefore, their 

instantaneous centre must lie at the centre of these arcs. At instantaneous centre the 

tangential velocity is zero. As the undeformed portions are moving rigidly, linear variation 

of velocity (between instantaneous centre and pin) can be assumed. As a result, Y-

component of imposed displacement (see Fig. 4.6) at the crack tip can be expressed as 

follows 

 

                                                            
( )

.
. sin

2 sinc
R

a R
δ βδ

β
=

+
                                              (4.65) 

 

For kinematic admissibility, Y-component of the tangential velocity, ν*, at the crack tip, 

must be equal to Y-component of imposed displacement i.e. 

 

                                                        
( )

.
. *sin sin

2 sinc
R v

a R
δ βδ β

β
= =

+
                                       (4.66) 
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Thus, the tangential velocity can be expressed in terms of imposed displacement,δ ., as 

given by the following equation. 

 

                                                              
( )

.
*

2 sin
Rv

a R
δ

β
=

+
                                              (4.67) 

 

Using the stress distribution of compressive zone and the proposed velocity field in the 

MUB theorem, eq. (3.33), the resulting expression for limit load can be expressed as 

                                                 

                                        
( )

2 ( / 4) ( 0.5 )
sinL

kP R x R x
a R

β π
β

⎡ ⎤= + + +⎣ ⎦+
                             (4.68) 

 

Eq. (4.68) represents the condition of global moment equilibrium about the hinge point. 

From geometry following relation can be easily obtained  

                                                           

                                                              2
1(sin )
2

xl
R

β

−
=

+

                                                  (4.69) 

 

Similar to the case of SE(PB) specimen, here x and β are the two independent unknown 

parameters that would be evaluated using minimum work principle. Minimizing eq. (4.68) 

with respect to these two unknown parameters and after a few algebraic re-arrangements 

we have 
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                                  ( ) sin12 2 sin
4 2 2

LPR l x x
k

βπβ β
⎡ ⎤⎛ ⎞⎛ ⎞+ = − + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

                        (4.70) 

 

                              
2cos

cos cos41
1 1 1sin 2 sin sin
2 2 2

LP x

k R R

πβ β
β β

β β β

⎛ ⎞+⎜ ⎟
⎝ ⎠− − =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                        (4.71) 

 

On further simplification, these two equations can be rearranged to give 

                                                       

                                                 ( )sin cos 2cos
4
πβ β β β⎛ ⎞+ = +⎜ ⎟

⎝ ⎠
                                       (4.72) 

                                                               

                                                     1 2 cos
2 cos 2

LPx R
k

β
β

⎛ ⎞−
= −⎜ ⎟⎜ ⎟

⎝ ⎠
                                            (4.73) 

 

Solution of eq. (4.72) provides β=72.04°, that is, the angle subtended by the circular arc 

OQ to its centre (see Fig. 4.8) is always 117.04° for all a/W ≥ 0.1. This leads to 

considerable simplification and a closed-form expression for the limit load can be 

expressed as follows 

                                                               

                                                       ( )21.26
2
l m m m
W

= + −                                           (4.74) 

 

Here,
4

LPm
kW

= , thus results obtained from MUB theorem are in exact agreement with SLF 

solution (Ewing and Richards, 1974). In addition to factor m, plastic eta factor, ηLLD, and 
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plastic rotation factor, rp, were also compared with the classical SLF solution and their 

comparison is given in Table 4.4. It is worth to note that for deep notches as a/W →1, 

results obtained from eq. (4.60) reduces to the case of pure bending specimen, SE(PB), as 

discussed by Ewing and Richards (1974). 

 Following the procedure used to evaluate the fully plastic crack tip stresses, for a 

pure bending specimen SE(PB), the pressure (hydrostatic stress) in the diamond shaped 

plastic zone OBXB (see Fig. 4.4) can be expressed in terms of slip angle β as follows:   

       

                                                       ( )2 1 2
4B X k k πσ σ ψ β⎛ ⎞= = − + −⎜ ⎟

⎝ ⎠
                                (4.75) 

 

In triangle OBX (that is actually a uniform stress zone) lying just below the crack tip, 

maximum tensile stress is given by the following expression 

                                                                         

                                                                 B kθθσ σ= +                                                   (4.76) 

 

For a deeply cracked C(T) specimen (a/W ≥ 0.1), the angle subtended by the circular arc at 

its centre is 117.04° and, thus, the hydrostatic stress near the crack tip, that is, σm/2k is 

2.014 and the tensile stress at the tip of crack (σθθ/σo) is 2.903 (the same as found for a 

deeply cracked pure bending specimen). 
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Table 4.4: Comparison of results obtained from MUB theorem with SLF solutions (Ewing 

and Richards, 1974) for W=10 mm. 

 

a/W 

m 

(SLF) 

m 

(MUB) 

R (mm) 

(SLF) 

R (mm) 

(MUB) 

ηp 

(MUB) 

ηp 

(SLF) 

rp 

(MUB) 

rp 

(SLF) 

0.1 0.244 0.244 5.3959 5.3955 2.63 2.63 0.57 0.57 

0.2 0.179 0.179 4.5050 4.5033 2.591 2.59 0.53 0.53 

0.3 0.127 0.127 3.7124 3.7105 2.531 2.53 0.50 0.50 

0.4 0.087 0.087 3.0075 3.0061 2.458 2.453 0.47 0.47 

0.5 0.056 0.056 2.3785 2.3776 2.377 2.376 0.45 0.45 

0.6 0.033 0.033 1.8136 1.8126 2.295 2.293 0.43 0.43 

0.7 0.017 0.017 1.3019 1.3008 2.214 2.212 0.41 0.41 

0.8 0.007 0.007 0.8344 0.8334 2.137 2.133 0.39 0.39 

0.9 0.0017 0.0017 0.4038 0.4017 2.06 2.045 0.38 0.38 

 

 

4.2.4    Single-edge-cracked specimen under combined bending and 

tension 

 

Shiratori and Dodds (1980) discussed that the plastic deformation mechanism that was 

suggested by Green (1953) for SE(PB) specimen can also be used for single-edge- cracked 

specimen under combined bending and tension but with modification to account for the 

tensile load. Thus, in the proposed solution, for opening bending with small tension, it is 

assumed that at limit state, there is a region OPQQPO that remains rigid, around which the 

rigid parts of the specimen on either side rotate by shearing over the circular arcs, OPQ. 
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Near free surface, we have uni-axial compression in the region RQR΄. Thus, plastic 

deformation mechanism (as shown in Fig. 4.9) consists of a circular arc that merges into 

the constant stress region tangentially. The stress distribution in this constant region is 

already known from Hundy’s field (1954). 

 Before proceeding further let us introduce two non-dimensional parameters nN
∧

and 

nM
∧

 representing net section tension and bending moment normalized in terms of an 

uncracked plate with the shear strength k and remaining ligament l: 

                                                                          

                                                                
2

n
n

NN
kl

∧

=                                                         (4.77) 

                                                                      

                                                                20.5
n

n
MM

kl

∧

=                                                    (4.78) 

 

The condition 1 0.5512nN
∧

− ≤ <  is generally referred as small tension for which 

compressive zone near the free surface exists and SLFs are well known. 0.5512nN
∧

>  is 

referred as large tension for which compressive zone vanishes and SLFs are unknown. 

 The scheme used to relate the relative angular velocity, ω, (with which rigid parts 

rotate) to the rate of imposed displacement,δ ., was proposed by Kim et al.  (1995). Thus, 

the relative velocity, ω, can be expressed in terms of imposed displacement,δ ., as given by 

following equation. 
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                                                             .

sin
2
lR

δω
β

=
⎛ ⎞−⎜ ⎟
⎝ ⎠

                                                 (4.79) 

 

Using the stress distribution of compressive zone and the proposed velocity field in the 

MUB theorem, eq. (3.33), the resulting expression for limit moment can be expressed as  

                                               

                                  2 ( ) ( 0.5 ) sin
4 2L L

lM k R x R x N Rπβ β⎡ ⎤ ⎛ ⎞= + + + − −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
                    (4.80) 

 

Eq. (4.80) represents the condition of global moment equilibrium about the hinge point. 

From geometry following relation can be easily obtained                                                         

                                                                   

                                                           2
1(sin )
2

xl
R

β

−
=

+

                                                    (4.81) 

 

Here x and β are the two independent unknown parameters that would be evaluated using 

minimum work principle. Minimizing eq. (4.80) with respect to these two unknown 

parameters we have 

                                          

                               2 sin 0
4

L
L

M R R Rk R R x x N
x x x x

πβ β⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞= + + + + − =⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
                    (4.82) 

                                  

                       2 2 cos sin 0
4

L
L

M R R Rk R R x N Rπβ β β
β β β β

⎡ ⎤ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= + + + − + =⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦ ⎝ ⎠
             (4.83) 
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On further simplification, these two equations can be expressed as 

                                                        

                                             ( )sin cos 2cos
4
πβ β β β⎛ ⎞+ = +⎜ ⎟

⎝ ⎠
                                          (4.84)   

                                                               

                                                1 2 cos
2 cos 2

LNx R
k

β
β

⎛ ⎞−
= −⎜ ⎟⎜ ⎟

⎝ ⎠
                                                 (4.85) 

 

Eqs. (4.84) & (4.85) actually represent global equilibrium conditions which can also be 

obtained from detailed SLF analysis (Shiratori and Dodds, 1980). Solution of eq. (4.84) 

provides β=72.04° , that is, the angle subtended by the circular arc OQ to its centre (see 

Fig. 4.9) is always 117.04° for all a/W>0.35 and small tension. This leads to considerable 

simplification and a closed-form expression for resulting yield locus that is in exact 

agreement with SLF solution (Shiratori and Dodds, 1980) can be expressed as follows                                      

 

                                        20.7394 0.5212 1.2606 0MUB n n nM N N
∧∧ ∧

Φ = + − − =                     (4.86)  

 

for 1 0.5512nN
∧

− ≤ <  

 

 For deeply cracked specimens subjected to opening bending with large tensile load 

compressive zone region i.e. x becomes zero and hence MUB theorem would reduce to the 

classical upper bound theorem of limit analyses. The plastic field for this case can be 

approximated by a circular arc emanating from the crack tip and extending up to the free 
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surface (Rice, 1972).  Using this deformation mechanism, as suggested by Rice (1972), 

Kim et al. (1995) and Kim (2002) have already provided a complete analytical formulation 

for Rice’s least upper bound yield locus that can be obtained directly by substituting x=0 in 

eq. (4.78). It may be observed that now there is no way to impose traction free boundary 

condition and, therefore, the total angle subtended by circular arc is simply β+ γ. The 

resulting expression for limit moment can then be expressed as  

                                                                     

                                              2 ( ) sin
2L L
lM kR N Rβ γ β⎛ ⎞= + − −⎜ ⎟

⎝ ⎠
                                   (4.87) 

for                       

                                                                  
(sin sin )

lR
β γ

=
+

                                           (4.88) 

 

Minimizing eq. (4.87) with respect to the two unknown parameters, that is, β and γ we 

have 

                              

                           ( )2 2 cos sin 0L
L

M R Rk R R N Rβ γ β β
β β β

⎡ ⎤ ⎡ ⎤∂ ∂ ∂
= + + − + =⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

                        (4.89) 

                                         

                                  ( )2 2 sin 0L
L

M R Rk R R Nβ γ β
γ γ γ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂
= + + − =⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

                              (4.90) 

 

On further simplification, these two equations can be expressed as 

               

                                        ( ) ( ) cos sin1cos sin sin 0
2 2

LN
kR
β γβ γ β β γ+ − + + =                        (4.91) 



                                                                                                                                                                                         Chapter-4
  

 102

                                        ( ) ( ) cos sin1cos sin sin 0
2 2

LN
kR
γ ββ γ γ β γ+ − + − =                         (4.92) 

 

As expected, eqs. (4.91) and (4.92) are in exact agreement with the classical upper bound 

solution proposed by Kim et al. (1995). Thus, for the case of deeply cracked specimens 

subjected to opening bending with small tensile load MUB theorem has provided yield 

locus that is in exact agreement with detailed SLF solutions where as for opening bending 

with large tensile load MUB theorem reduces to the classical upper bound solution. 

 The procedure used to evaluate the fully plastic crack tip stresses for a pure 

bending specimen SE(PB) can be used for the case of opening bending with small tensile 

load (for which SLF exists). As the angle subtended by the circular arc at its centre is 

117.04°  thus the hydrostatic stress near the crack tip, that is, σm/2k is 2.014 and the tensile 

stress at the tip of crack (σθθ/σo) is 2.903 (same as found for a deeply cracked pure bending 

specimen). For the case of opening bending with large tensile load SLF breakdown and 

thus the Hencky’s equations cannot be used directly to evaluate stress distribution in 

plastically deformed region. For this case Kim (2002) has suggested an approximate 

procedure that can be used to estimate fully plastic crack tip stresses based on equilibrium 

condition of the least upper bound for plane strain deformation fields consisting of rigid-

body rotation. 

 

4.3    Discussion  

 

In this chapter an analytical formulation of MUB theorem is presented and it is 

demonstrated that MUB theorem is actually a new form of already existing general work 
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principle. The most important consideration in the proposed method (as well as in SLF 

analysis) is the choice of assumed plastic deformation field which is subjected to 

restrictions imposed by kinematic admissibility and boundary conditions. Once this plastic 

field is chosen then either the concept of global static equilibrium (the SLF method) or 

minimum work principle (the MUB theorem) can be invoked to evaluate the dimensions of 

this plastic field. Unfortunately, till now these extremum/work principles have normally 

been utilized as a crude method of load bounding mainly in metal forming operations. 

Thus, whenever it was required to analytically evaluate the stress distribution near the tip 

of crack or any crack tip constraint parameter, SLF analysis was the only choice. 

 In the present context it is worth to discuss the work performed by Kim (2002). He 

has presented a simple method to estimate fully plastic crack tip stresses based on 

equilibrium condition of the least upper bound for plane strain deformation fields 

consisting of rigid-body rotation across a circular arc extending from the crack tip across 

the remaining ligament. However, such an assumed plastic field has very limited 

application and no attempt was made to establish the general equivalence of work principle 

and SLF analysis. In the present work it was established, for a wide variety of cases, that 

consideration of minimum work principle automatically leads to global equilibrium and, 

thus, the two methods, that is, MUB theorem and SLF analysis would give identical 

results. A wide variety of plastic deformation fields were analysed to establish this 

equivalence in general. The proposed MUB theorem was used to obtain theoretical 

solutions of the limit load, plastic eta factor (ηp), plastic rotation factor (rp), and crack tip 

constraint parameter Q for standard deeply cracked SE(PB), SE(B) and C(T) specimens, 

under plane strain condition. In addition, standard problem of bending of cantilever was 
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also analysed. Results of these standard homogeneous specimens were found to be in exact 

agreement with those obtained by detailed SLF analyses.  The case of single-edge-cracked 

specimen under combined bending and tensile load was also analysed. A complete 

analytical formulation of yield locus for the entire range of tensile and bending load was 

obtained using the proposed MUB theorem. These findings have demonstrated that the 

proposed MUB theorem is a promising technique to solve a class of plane strain plasticity 

problems in rigid-plastic materials.  

 In SLF analysis, in addition to equilibrium considerations, Hencky’s theorem is 

invoked to set up additional equations which need to be solved simultaneously to evaluate 

the unknown parameters. As these equations are generally transcendental considerable 

mathematics is involved in SLF analysis. No such calculations are involved in the 

proposed method. Standard optimization algorithms can be readily used to minimize the 

plastic work done and thus the present method becomes very amenable to computational 

analysis. It is worth to note that MUB theorem automatically satisfies Hencky’s theorem. 

This work has shown one successful application of the proposed theorem and it is expected 

that similar other cases, particularly in metal forming processes, where in one region rigid 

plastic flow of the material is occurring and in other region statically governed stress field 

exists, may also be treated. 
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Fig. 4.1 (a): Assumed plastic deformation mechanism for a short cantilever under 
transverse load, Green (1954). 
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Fig. 4.1 (b): Schematic describing the relationship between tangential velocity v* and 
imposed displacement δ˙. 
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Fig. 4.1 (c): Stress and velocity distribution on the elastic-plastic boundary of a 
short cantilever. 
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Fig. 4.2: Assumed plastic deformation mechanism for a long cantilever 
under transverse load, Green (1954). 
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Fig. 4.3: Assumed plastic deformation mechanism for SE(PB) specimen, 
Green (1953). 

R

R 

P 

P 

Q 

Q 

 x 

l 

π/4 
  β 

R' 

R' 

X R 
O 

B

B

O' 

O' 

ML 

ML 

H 

k k k 



                                                                                                                                                                                         Chapter-4
  

 110

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4: Asymptotic fully plastic crack-tip stress fields for a deeply cracked pure 
bending SE(PB) and three-point bend SE(B) specimen. 
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Fig. 4.5: Assumed plastic deformation mechanism for a three-point bend 
SE(B) specimen, Green and Hundy (1956). 
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Fig. 4.6: Schematic describing the relationship between the tangential velocity and 
imposed displacement for a three-point SE(B) specimen. 
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Fig. 4.7: Effect of indenter width on plastic deformation mechanism for SE(B) 
specimen, Ewing (1968). 
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Fig. 4.8: Assumed plastic deformation mechanism for a compact tension C(T) 
specimen, Ewing and Richards (1974). 
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Fig. 4.9: Assumed plastic field for a single-edge-cracked specimen under 
bending with small tensile load, Shiratori and Dodds (1980). 
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CHAPTER 5 
 

 

Strength mismatch effects on the limit load and crack tip 

constraint of pure bending SE(PB) specimen and compact 

tension C(T) specimen  having a weld centre crack 
 

 

5.1    Introduction 

 

In-service inspections of many nuclear power plants have revealed that cracks are most 

likely to occur in or the regions near the weld. Interfacial cracks (Fig. 5.1a) under elastic as 

well as in elastic-plastic conditions have already been extensively discussed in literature. 

However, the problem of crack lying at the centre of weld (Fig. 5.1b) is (theoretically) less 

understood. Though several detailed numerical and experimental studies have been 

performed in past to investigate the influence of weld strength mismatch on the limit load, 

plastic η-factor, and crack-tip stress fields, however, the detailed insight of the structure of 

stress fields under large scale plasticity is still lacking.  

 In this chapter, the detailed structure of the global plastic fields that occur in high 

constraint geometries like deeply cracked pure bending SE(PB) specimen, and compact 

tension, C(T) specimen having weld centre crack is presented. Both the base and weld 

materials were modeled as elastic-perfectly plastic. The two materials were assumed to 

have same elastic modulus and Poisson’s ratio but mismatch in their yield strength. All the 

investigations in this work were based on plane strain assumption. Crack was postulated at 
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the centre of weld. Aspects related to the state of stress at the interface of two materials are 

discussed in detail. It is shown that a family of five stress fields proposed in this work is 

adequate to cover all practical cases of weld mismatch. Extreme under-match cases where 

plastic fields get fully confined in the weld material were not considered as sufficiently 

detailed results for these cases already exist in literature (Hao et al., 1997, 2000). The 

proposed fields were utilized to obtain analytical solutions of the limit moment/load, and 

crack-tip constraint using the Modified Upper Bound (MUB) theorem, developed in 

chapter 3. One of the most striking features of this new load bounding technique is that it 

requires no information about the state of stress in the rigid regions, the stress field only in 

the deforming zones should be statically admissible. This important feature of the proposed 

theorem has enabled us to theoretically examine the problem of a crack lying at the centre 

of a strength mismatch weld. Proposed fields were confirmed by detailed full-field finite 

element analysis. Numerical studies were performed within the framework of continuum 

scale plasticity (J2 flow theory) and effects of micro-structural heterogeneity and presence 

of residual stresses were not accounted. Excellent agreement was observed between the 

proposed theoretical solutions and the numerical results.  

 

5.2    Structure of stress fields for a deeply cracked pure bending SE(PB) 

specimen having a weld centre crack under fully plastic state in mode-I 

loading 

 

We consider here a stationary crack lying at the centre of weld in a pure bending SE(PB) 

specimen, as shown in Fig. 5.2. Generally, an actual weld joint is very complicated both 
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metallurgically and mechanically. In order to simplify the analysis the effects of heat 

affected zone, residual stresses and other kinds of heterogeneity (except material) were not 

considered and weld joint was modeled as a sandwich like bi-material structure. The 

mismatch in yield strength between the weld (σyw) and base material (σyb) is quantified by 

the mismatch factor M: 

 

                                                            yw w

yb b

kM
k

σ
σ

= =                                                       (5.1) 

 

where kw = σyw/√3 and kb = σyb/√3 are the shear yield strengths of base and weld material, 

respectively. For an under match weld, M < 1 and for an over match weld, M > 1. Another 

important parameter for the strength mismatched welds is the weld slenderness ratio which 

is defined as 

                                                               ( )W a
H

ψ
−

=                                                       (5.2) 

 

where a denotes the crack length, W is the width of the specimen and H is half weld width. 

Only deeply cracked configuration (a/W > 0.3) is considered so that the plastic fields are 

confined in the ligament and do not spread up to the crack flank. We present here the 

detailed structure of the family of five stress fields that occur in case of pure bending 

SE(PB) specimen, under fully plastic state, in mode-I loading. These five stress fields 

cover all practical cases of weld mismatch except for the extreme under-match cases where 

the plastic fields get fully confined in the weaker weld material. For such a case 

sufficiently detailed results already exist in literature. Only plane strain case was 
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considered for all theoretical and numerical calculations. The basic assumption invoked to 

construct these stress fields is that in cases where the slip line passing through the interface 

of two materials lies in deforming zones, continuity of traction is respected. For other cases 

where the slip line passing through the interface separates the two rigid (elastic) regions 

both shear and normal traction undergoes a jump at this interface. It would be 

demonstrated in the subsequent sections that such an assumption was in excellent 

agreement with the results obtained from detailed finite element analysis. In passing it may 

be mentioned that the proposed solutions are incomplete in so far as no attempt is made to 

extend the stress fields into the rigid zones. It has not been shown that an equilibrium stress 

distribution satisfying the boundary conditions and not exceeding the yield point exists in 

the assumed rigid regions. Thus, the solution does not meet the requirements of the lower 

bound theorem. However, the velocity fields, as per the requirement of upper bound 

theorem, are kinematically admissible and, therefore, the proposed solutions strictly 

speaking are in fact upper bound. 

 

5.2.1    Stress field-A 

 

Detailed structure of this stress field is shown in Fig. 5.3(a). It is symmetric with respect to 

weld centre line. It is worth to note that the structure of this field is similar to that 

suggested by Ewing (1968) to analyse the Charpy specimen loaded by a finite width 

indenter. Hao et al. (2000) discussed that this field is responsible for plastic yielding of an 

over-matched SE(PB) specimen, however, the authors did not present any details of its 

analysis. In the proposed solution, it is assumed that at limit state, there is a region OPQ 
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that remains rigid, around which the rigid parts of the specimen on either side rotate by 

shearing over the circular arc, OPQ at an angular velocity ω. Near the free surface, we 

have uni-axial compression in the region RST. Adjacent to it is the central field QRT 

which merges with the circular slip line OPQ of radius R.  

 It is easy to establish that the slip line OPQR belongs to α–family (Katchanov, 

1971). Using the free surface condition and the yield criterion in the constant stress region 

the stress distribution in Δ RST can be expressed as 11 0,σ =  22 2 bkσ = −  and 12 0σ = . Here 

minus sign indicates the compressive nature of stress. In the central field QRT, the shear 

stress along QR is kb and the mean stress (pressure) acting on it is -kb(1+2γ). Stress 

distribution along the circular arc OPQ can be easily obtained, up to point P, using the 

well-known Hencky’s relation. Thus, the mean stress just above point P, that is, in the base 

material can be simply expressed in terms of angles φ and γ (see Fig. 5.3) as given below 

 

                                                    ( )2 1 2
4

P
b b bk kπσ φ γ γ⎛ ⎞= + − − +⎜ ⎟

⎝ ⎠
                                (5.3) 

 

At point P, that is, at the interface of two materials we propose that the continuity of 

tractions is violated. Thus, both the in-plane shear stress σ12 as well as the mean stress 

undergoes a sudden jump at the interface. As a result, the stress distribution in the weld 

region cannot be readily obtained. This problem can be overcome by the use of modified 

upper bound (MUB) theorem. Unlike slip line field (SLF) analysis this technique does not 

require any information about the mean stress along the arc (slip line) separating the two 

rigid regions. This is simply because only plastic dissipation of energy in the rigid domain 

is needed for the application of this work principle (see Chapter 3 for details). Since the 
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tangential velocity and the shear stress (by virtue of yield criterion) are known along the 

circular arc OPQ, plastic dissipation of energy can be easily computed. As the mean stress 

acting on the circular arc OPQ and, hence, the unknown mean stress at the interface, does 

not enter in MUB analysis problem becomes amenable to a fully analytical treatment. We 

now proceed to analyse this field. Using the stress and velocity distributions on the elastic-

plastic boundary QTS, the work done by the stresses can be easily evaluated (the method is 

similar to that discussed in section 4.1). The resulting expression for limit moment, using 

eq. (3.33),  can be finally expressed as  

                                

                                ( ) ( ) ( )
2

2 2/ 4 1 2
2L B
xM k R MR xRφ π γ β φ γ

⎡ ⎤
= + − + − + + +⎢ ⎥

⎣ ⎦
                 (5.4) 

 

for                                   
cos sin

4 4

sin sin cos cos
4 4

l x x
R

π πγ γ

π πβ γ γ β

⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= =
⎛ ⎞ ⎛ ⎞+ − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                 (5.5) 

 

and                                                   1cos cos lK
R

φ β− ⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                                 (5.6) 

 

Eq. (5.4) represents the global moment equilibrium, about the hinge point, that needs to be 

minimized with respect to the unknown parameters, that is, x, γ and β. These three 

parameters are not independent but are subjected to a geometrical constraint as specified 

by eq. (5.5). Due to considerable algebra involved, minimization of the limit moment, that 

is, eq. (5.4) was carried out numerically. This minimization process gives us the required 

unknown parameters of the plastic field. It may be noted that as far as evaluation of the 
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limit moment is concerned, the unknown value of the mean stress at the base-weld 

interface does not enter in the analysis. However, for evaluation of crack tip stress field the 

jump in the value of mean stress that occurs at the base-weld interface must be quantified. 

For several cases of cracked as well as uncracked geometries of homogeneous material, it 

was demonstrated in chapter 4 that the MUB theorem and SLF analysis are equivalent. It 

was established that the minimization process finally leads to equations of global 

equilibrium. Since the problem of a mismatch weld with mismatch ratio close to one 

cannot differ substantially from a corresponding homogeneous problem, it is expected that 

the MUB theorem when applied to fracture specimens having strength mismatch welds 

should also satisfy global equilibrium equations. We now need to establish this assumption 

rigorously. If the unknown mean stress at the base-weld interface (at point P) is denoted by 

σw
*, Hencky's equations may be used to describe stress distribution along the circular arc 

OP in the weld region. Mean stress at point O, on the circular arc, near the crack tip can be 

obtained from the following expression 

 

                                                        ( )* 2O
w wkσ σ β φ= + −                                              (5.7) 

 

Once the state of stress is described the global equilibrium equations can be simply 

expressed as follows. 

 

                                                        1 0x i i
OPQR

F n dSσ= =∑ ∫                                          (5.8) 
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                                                        2 0y i i
OPQR

F n dSσ= =∑ ∫                                          (5.9) 

 

Here ni are the direction cosines of the vector which is normal to the infinitesimal line 

segment on OPQR. If the plastic stress field is extended into the rigid region to form two 

fictitious fans, that is, QHP and PHO (see Fig. 5.3) the global equilibrium equations can be 

essentially written by inspection. According to Ewing (1968) this simple artifice was first 

suggested to him by Hill. Resulting equilibrium equations can, thus, be expressed as 

follows 

 

     

( ) ( )

*

sin 1 2 cos sin 1 2
4 4 4

cos sin cos sin cos sin cos
4

x b b b b

P O
b b w w w

F k x k x k R k

R k R R k R R k R R

π π πγ γ γ γ γ

π γ φ σ φ φ σ φ β σ β

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + + − − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞− − + + − − +⎜ ⎟
⎝ ⎠

∑

    

(5.10)    

                                                                                                  

     

( ) ( )

*

cos 1 2 sin cos 1 2
4 4 4

sin cos sin cos sin cos sin
4

y b b b b

P O
b b w w w

F k x k x k R k

R k R R k R R k R R

π π πγ γ γ γ γ

π γ φ σ φ φ σ φ β σ β

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − + + − − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞− + + − − + +⎜ ⎟
⎝ ⎠

∑
   (5.11)   

 

 

Now if the assumption that MUB analysis also satisfies the global equilibrium equations 

holds good than by substituting the parameters of the plastic field obtained from it, both 

eqs (5.10) and (5.11) should become zero. Except for the unknown mean stress at the base-

weld interface, denoted by σw
*, rest all the other parameters of this plastic field are known 

from MUB analysis. In fact σw
* can not be evaluated directly from work principle (MUB 

analysis) as it plays no role in the plastic dissipation of energy. So an easy way to prove the 
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validity of this assumption is to calculate σw
* from one of these two equations, say eq. 

(5.10) and then ensure that with the value of σw
* so obtained the other equation, that is eq. 

(5.11), is satisfied identically. For all the cases analysed it was observed that wherever the 

proposed plastic field was responsible for full yielding of the ligament, the values of the 

field parameters obtained from MUB analysis and σw
* obtained from eq. (5.10) always 

satisfies the other equilibrium condition, that is, eq. (5.11). This essentially validates our 

assumption that for the case of a strength mismatch weld also (having two different 

material interfaces) the parameters of plastic field as obtained from MUB theorem also 

satisfies the global equilibrium equations. This is really an important finding, particularly 

for the problem of strength mismatch welds, as it allows a complete analytical evaluation 

of stress distribution in the plastic regions.  

 Once σw
* is known the mean stress at point O on the slip line OPQ, near the crack 

tip, can be obtained from eq. (5.7). From the stress distribution so obtained the state of 

stress ahead of crack tip can not be directly evaluated as discussed by Hao et al. (2000).  

To evaluate crack tip stress distribution, the plastic field is extended in the rigid region 

ahead of crack tip as shown in Fig. 5.4. In this figure we assume, asymptotically, that a 

small segment of straight slip line OO΄ exists. It radiates from the crack tip and is 

connected to the arc OP in the global slip line field. Thus, the stress components on this 

small line OO' are constant and equal to the components at the point O΄ on the arc O΄P. 

The plastic deformation expands from the line OO΄ ahead of the crack tip and forms a 

diamond-like plastic zone OBX like that in Prandtl field. Using Hencky's relations, the 

pressure (hydrostatic stress), directly ahead of crack tip, can be expressed in terms of slip 

angle β as follows. 
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                                                2
4

X B O
wk πσ σ σ β⎛ ⎞= = + −⎜ ⎟
⎝ ⎠

                                         (5.12) 

 

This incomplete crack tip stress field can be used to obtain stress distribution in the plastic 

sectors, that is, in the constant stress sector OBX and in fan field O΄OB. Such a 

construction cannot be extended beyond O΄O as the elastic-plastic boundary is unknown. 

Thus, the proposed MUB theorem, assuming that the material is rigid-plastic, can provide 

estimates of the crack tip stresses (in the plastic sectors) and hence the constraint 

parameters. In the literature the effect of weld strength mismatch on crack tip constraint 

has been quantified, by many investigators, in terms of constraint parameter h. The 

parameter h, for a rigid-plastic material, is defined as follows (Kim and Schwalbe, 2004)  

 

                                                                             
0

X
m

yw yw

h
θ

σ σ
σ σ

=

= =                                                   (5.13) 

 

5.2.2    Stress field-B 

 

Detailed structure of this stress field is shown in Fig. 5.5. For clarity enlarged view of the 

stress fields occurring in the region near the free surface is shown in Fig. 5.5 (b). It is 

assumed that at the limit state, there is a region GFE that remains rigid, around which the 

rigid parts of the specimen on either side rotate by shearing over the circular arc, GE at an 

angular velocity ω. Near the free surface, we have uni-axial compression in the region 

ABL. This constant stress sector is followed by a circular arc BC and another constant 

stress sector CDM till point D that lies on the interface of two materials. In the region lying 
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in the base material, just adjacent to the interface, there is a constant stress sector DEN that 

merges with the circular arc GFE tangentially. It can be shown easily that the slip line 

GFEDCBA belongs to α–family. Using the free surface condition and the yield criterion in 

the constant stress region the stress distribution in Δ ABL can be expressed as 11 0,σ =  

22 2 wkσ = −  and 12 0σ = . Thus, the mean stress at point B, σB, is simply -kw.  

 Since point D at the interface lies in deforming zone it is assumed, as discussed in 

section 5.2, that both the shear and normal traction are continuous. Due to continuity of 

shear traction a sudden jump occurs in the angle θ made by α-slip-line at the interface as 

the shear yield strength of the materials lying on either side of interface (base and weld 

material) are different. Careful examination of the stress fields obtained from detailed FE 

studies and physical considerations related to mechanics of deformation have revealed that 

the in-plane shear stress acting in the two constant stress sectors, that is, in CDM and DEN, 

lying on either side of interface can be simply expressed as follows 

 

                                                               ( )12 1 bM kσ = −                                                  (5.14) 

 

We would like to emphasise here that eq. (5.14) is quite general and holds good for both 

over-matched and under-matched welds. It was observed that eq. (5.14) is able to describe 

adequately the shear stress distribution near the base-weld interface for other plastic fields 

also proposed in this work. Shear stress σ12 and the angle, θ, made by α-slip line with 

respect to some fixed axis are related by the following expression (Kachanov, 1971) 

 

                                                              12 cos 2kσ θ=                                                     (5.15) 
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Thus, the angle made by α-slip line on either side of interface can be obtained from the 

following expressions 

                                                           ( )1 11 cos
2w

M
M

θ − −
=                                               (5.16) 

  

                                                            ( )11 cos 1
2b Mθ −= −                                               (5.17) 

 

Using Hencky's relation, the mean stress at point C can be expressed as 

 

                                                              2C B
w wkσ σ γ= +                                               (5.18) 

 

                                                1 11 cos
2

C
w

Mk
M

πσ −⎡ ⎤⎧ − ⎫⎛ ⎞= − − −⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎩ ⎭⎣ ⎦

                                 (5.19) 

 

Continuity of normal traction at the interface, at point D, can be expressed in the following 

form (Kachanov, 1971) 

 

                                                  sin 2 sin 2D D
b b b w w wk kσ θ σ θ+ = +                                  (5.20) 

 

                                            ( ) 2 12D C
b b w

Mk M M k
M

σ σ −
− − = −                                 (5.21) 
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Thus, the mean stress acting in the constant stress sector DEN lying in the base material, 

just adjacent to the interface, can be expressed as follows 

 

                       ( )1 1cos 2 1 2
2

D
b b

Mk M M M M M
M

πσ −⎡ ⎤⎧ − ⎫⎛ ⎞= − − − + − − −⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎩ ⎭⎣ ⎦

               (5.22) 

 

Stress and velocity distributions on the elastic-plastic boundary GFEDCBA, were utilized 

to evaluate the work done. The resulting expression for limit moment, using eq. (3.33),  

can be finally expressed as  

 

   

( ) ( )
( ) ( ) ( )

( ){ } ( ){ } ( ){ }

2 2 2
1

2
1 1 1 1 1 1

1 1 1 1 1 1

/ 4 0.5

0.5 0.5 cos

0.5 sin sin cos 0.5

D
L w B b B b w

C C
w w w

w w w w w w

M k R k R k zR z k yR

y z y k R z y R k R z y

k R R z y k y R z y k y z y y

β φ φ π γ σ

σ σ γ

γ γ γ
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    (5.23) 

 

From geometry the following relations can be easily established 

                                         

                                             11 1cos
4 4 2w w

M
M

π πγ θ − −⎛ ⎞= − = − ⎜ ⎟
⎝ ⎠

                                      (5.24) 

 

                                                ( )11 cos 1
4 4 2b b Mπ πγ θ −= − = − −                                     (5.25) 

 

                                                               b wδ γ γ= −                                                        (5.26) 
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                                                        1cos cos lK
R

φ β− ⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                               (5.27) 

 

                                                      ( )1 tan sin
cos

RR z R δ δ
δ

= + −                                     (5.28) 

 

                                                             ( )1 tan cosz z R δ δ= −                                         (5.29) 
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                   (5.31) 

 

where 

                      
1
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π γ

⎡ ⎤⎧ ⎫⎧ ⎫⎛ ⎞ ⎛ ⎞+ − + −⎨ ⎬⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎧ ⎫⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎩ ⎭⎢ ⎥= − + −⎨ ⎬⎜ ⎟⎢ ⎥⎧ ⎫⎛ ⎞⎝ ⎠⎩ ⎭ + −⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦

               (5.32) 

 

Also 
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                                     sin cos cos
4 4b blK z Rπ πγ γ β⎧ ⎫⎛ ⎞ ⎛ ⎞+ − = − −⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
                             (5.33) 

 

Eq. (5.23) was minimized with respect to the unknown parameters, that is, x, z and β 

accounting for the geometrical constraint that is represented by eq. (5.33). Once the 

parameters of the assumed plastic field are obtained we can proceed to establish that the 

resulting stress field also satisfies global equilibrium equations. Stress distribution along 

the circular arc GFE can be easily obtained, up to point F, using the well-known Hencky’s 

relation. Thus, the mean stress just above point F, that is, in the base material can be 

simply expressed in terms of angles φ and γb (see Fig. 5.5(a)) as given below 

 

                                                    2
4

F D
b b b bk πσ φ γ σ⎛ ⎞= + − +⎜ ⎟

⎝ ⎠
                                           (5.34) 

 

At point F, that is, at the interface of two materials we propose that the continuity of 

tractions is violated. If the unknown mean stress at the base-weld interface (at point F) is 

denoted by σw
*, Hencky's equations may be used to describe stress distribution along the 

arc GF in the weld region. Mean stress at point G, on the circular arc, near the crack tip can 

be obtained from the following expression 

 

                                                         ( )* 2G
w wkσ σ β φ= + −                                             (5.35) 
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The global equilibrium equations can be easily obtained by extending the plastic stress 

field into the rigid region to form two fictitious fans, that is, EHF and FHG. The resulting 

equations can be expressed as follows 
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     (5.36)  
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∑

     (5.37) 

 

The procedure used to evaluate σw
* and constraint parameter h, ahead of crack tip, is 

similar to that described in section 5.2.2.  

 

5.2.3    Stress field-C 

 

Structure of this stress field, for an over-match weld, is shown in Fig. 5.6(a). It may be 

observed that the proposed field is quite similar to the stress field described in Fig. 5.5(a). 

Stress distribution in the deforming zone is, thus, identical to that of Stress field-B. As a 

result, eqs. (5.14-5.22) derived in section 5.2.2 are equally applicable for stress field-C 
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also. The unknown parameters of this plastic field can be obtained from MUB analysis. 

The resulting expression for the limit moment is as follows 
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(5.38)  

 

It may be noted that eqs. (5.24-5.33), except eqs. (5.31) and (5.32), describing the 

geometrical relations among different field parameters are equally valid here. Moreover, 

for this case 
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                           (5.39) 

 

and 
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Eq. (5.38) was minimized numerically to evaluate the limit moment and the unknown 

parameters of the assumed plastic field. Stress distribution along the circular arc GFE can 

be obtained from eqs (5.34) and (5.35) derived in section 5.2.2. Since the stress distribution 

of sector PAP (near the free surface) produces no force in X-direction, force equilibrium in 

this direction can be described by eq. (5.36). Force equilibrium equation in Y-direction is 

given by the following equation 
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∑

     (5.41) 

       

 For an under-match weld it can be seen from eqs. (5.16) and (5.17) that the angles 

made by α-slip line in weld θw and base material θb are greater than π/4. This essentially 

means that the centre of curvature of the circular arc BC (in weld region) would lie to the 

right of elastic-plastic boundary DCBA to maintain continuity of slope of tangents drawn 

at point B and C. Thus, the angle subtended by circular arc EF (in base region) is
4 b
πφ γ+ + . 

Except for these changes rest of the analysis is same as discussed for the case of an over-

match weld. 
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5.2.4    Stress field-D 

 

The complete structure of this stress field, for an over match weld, is shown in Fig. 5.7(a). 

Stress field in the deforming zone up to point D is identical to that described in Fig. 5.5(a). 

At point D the straight slip line CD merges with the circular arc GFED tangentially. The 

resulting expression for the limit moment can be expressed as follows   

 

      
( ) ( )
{ } { } { }

{ } { }

2 2 2 2

2

2 / 4 0.5 cos

0.5 sin 0.5 sin cos 0.5

cos sin 0.5

C
L w b w w w w w

C
w w w w w w w

w w w w

M k R k R k R k yR y k Ry

k Ry k R R y R k y R y k y y y

k z y y k z R y z

β φ φ π γ φ σ γ

γ σ γ γ

γ γ

= − + + − − + + +

− + + − + + + +

+ + + + +

    (5.42) 

 

From geometry followings relations can be easily obtained 
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w
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R
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⎝ ⎠⎩ ⎭=

⎧ ⎫⎛ ⎞ ⎛ ⎞+ − + − +⎨ ⎬⎜ ⎟ ⎜ ⎟
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                          (5.43) 

 

                                                 11 1cos
4 4 2w w

M
M

π πγ θ − −⎛ ⎞= − = − ⎜ ⎟
⎝ ⎠

                                    (5.44) 

 

                                                         1cos cos lK
R

φ β− ⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                              (5.45) 

Also 
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                     1 1sin cos cos sin
4 4 42 2w w wy Rπ π πγ γ β γ⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − = − − − + +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
                (5.46) 

 

Eq. (5.42) was minimized numerically to evaluate the limit moment and the unknown 

parameters of the plastic field. The mean stress just below point E, that is, in the weld 

material can be simply expressed in terms of angles φ and γw (see Fig. 5.7(a)) as given 

below 

 

                                                   2
4

E C
w w wk πσ γ φ σ⎛ ⎞= − − −⎜ ⎟

⎝ ⎠
                                           (5.47) 

 

At points E and F, that is, at the base-weld interface, it is proposed that continuity of 

tractions is violated. If the unknown mean stresses at points E and F are denoted by σE
* and 

σw
* respectively, Hencky's equations may be used to describe stress distribution to obtain 

mean stress at point F and G (near the crack tip) in terms of the two unknowns as follows.  

 

                                                               * 4F
E bkσ σ φ= +                                                 (5.48) 

 

                                                         ( )* 2G
w wkσ σ β φ= + −                                           (5.49) 

 

Resulting equilibrium equations can be expressed as follows 
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∑     (5.51) 

 

Eqs. (5.50) and (5.51) contain two unknowns namely σw
* and σE

*, which can not be 

evaluated from MUB analysis. The procedure used for evaluation of σw
* and constraint 

parameter h has been described in section 5.2.1. The other unknown, that is, σE
* can be 

determined from eq. (5.51). If the field parameters as obtained from MUB analysis are 

correct than both σw
* and σE

* should be in agreement with FE results.  

 For an under-match weld the centre of curvature of the circular arc BC (in weld 

region) would lie to the right of elastic-plastic boundary DCBA and the angle subtended by 

circular arc EF (in base region) is
4 w
πφ γ+ + .  

 

5.2.5    Stress field-E 

 

The structure of this proposed stress field, for an overmatch weld, is shown in Fig. 5.8(a). 

Stress field comprises of a rigid region MLJ, around which the rigid parts of the specimen 

rotate at an angular velocity ω. Near the free surface, we have uni-axial compression in the 

region ABP lying in the base material. This constant stress sector is followed by a circular 

arc BC and another constant stress sector till point D that lies at the base-weld interface. It 
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is assumed that the interface lies in deforming zone and continuity of both shear and 

normal traction is respected. Due to continuity of shear traction a sudden jump occurs in 

the angle θ made by α slip-line at the interface. In the region lying in the weld material, 

just adjacent to the interface, there is another constant stress sector that merges with the 

circular arc EF tangentially. Using the free surface condition and the yield criterion the 

stress distribution in Δ ABP can be expressed as 11 0,σ =  22 2 bkσ = −  and 12 0σ = . The in-

plane shear stress acting in the constant stress sectors, lying in the weld material, can be 

simply expressed as follows 

 

                                                              ( )12 1 bM kσ = −                                                   (5.52) 

 

As a result, eqs. (5.16) and (5.17) describing the angles made by α-slip line in the weld and 

base material respectively, hold good. If it is assumed that continuity of tractions is 

maintained at point I also then the stress distribution in the entire deforming zone, up to 

point J, can be easily obtained using Hencky's relations. The resulting expression for limit 

moment can be expressed as follows 
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  (5.53) 

 

Here, 
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From geometry the followings relations can be easily obtained 

 

                                                    
1 sin

42
1 sin

42

w

w

lK R
c

π γ

π γ

⎡ ⎤⎧ ⎫⎛ ⎞− − −⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦=
⎧ ⎫⎛ ⎞+ +⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭

                                     (5.56) 

 

                 

{ }1

1 1sin cos cos
4 4 42 2 2

1sin cos cos cos sin
4 4 42

w w b

w b w

zl lk
R

b

π π πγ γ γ

π π πβ β γ γ γ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + − + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎣ ⎦=
⎧ ⎫⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + − + + −⎨ ⎬⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎩ ⎭

             (5.57) 

 

where 
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                                                                { }1 2 cosy R β= −                                            (5.59) 

 

                                                    ( ) ( )cos sinw wd R c R yγ γ= + + −                                     (5.60) 
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Eq. (5.53) was minimized with respect to the unknown parameters z, and β. At point L that 

is at the interface of two materials, it is proposed that continuity of tractions is violated. If 

the unknown mean stress at point L is denoted by σw
*, the mean stress at point M (near the 

crack tip) can be expressed as follows.  

 

                                                         ( )* 2M
w wkσ σ β φ= + −                                         (5.69) 

 

Resulting equilibrium equations can be expressed as follows 
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 For an under-match weld, the centres of curvature of the circular arc BC (in the 

base region) and EF (in the weld region) would lie to the left and right of elastic-plastic 

boundary BCDEF respectively. 
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5.3    Structure of stress fields for a deeply cracked compact tension C(T) 

specimen having a weld centre crack under fully plastic state in mode-I 

loading 

 

We consider here a stationary crack lying at the centre of weld in a compact tension C(T) 

specimen, as shown in Fig. 5.9. The effects of strength mismatch ratio M and weld 

slenderness ratio ψ on the limit load and the crack tip constraint parameter h were 

analysed. It is well known that the global stress field of a homogeneous SE(PB) specimen 

is also applicable to a C(T) specimen, though the kinematic conditions are different in the 

two cases. The present study has revealed that a family of five stress fields proposed for a 

SE(PB) specimen having a weld centre crack, is also applicable to a C(T) specimen having 

a weld centre crack. The proposed stress fields cover all practical cases of weld mismatch 

except for the extreme under-match case where the plastic field gets fully confined in the 

weaker weld material. The detailed structure of these five stress fields has already been 

presented in section 5.2 and we now emphasise on the kinematic aspects of the associated 

velocity fields as they are required in MUB analysis. 

 The relation between the relative velocity, ν*, (with which the rigid parts rotate) 

and the rate of imposed displacement,δ ., is the same proposed for a homogeneous C(T) 

specimen and can be expressed as 
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.
*

2 sin
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a R
δ

β
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+
                                                   (5.72) 
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The above kinematic relation along with the stress distribution of deforming zones for each 

of the five stress fields (proposed in section 5.2) was used to obtain the limit load 

expression using the modified upper bound theorem, eq. 3.33. Since rest of the analysis 

used to obtain the limit load and the crack tip constraint parameter h is very similar to that 

of SE(PB) specimen, we skip the details and proceed directly to results. 

 

5.4    Finite element analysis 

 

In sections 5.2 and 5.3, detailed structure of the stress fields was proposed for a stationary 

crack lying at the centre of weld in a pure bending specimen and in a compact tension 

specimen under plane strain condition. To verify the proposed analytical solutions of the 

limit moment and crack tip constraint, finite element analyses were performed on the 

above-mentioned specimens, under large-scale plasticity (at limit state). Numerical 

solutions of the limit moment/load and crack-tip constraint parameter h were compared 

with analytical results. In finite element analysis both base and weld materials were 

modeled as isotropic, elastic-perfectly plastic. The two materials were assumed to have 

same elastic modulus (E=203 GPa) and Poisson’s ratio (ν=0.3) but mismatch in their yield 

strength. Stationary crack at the centre line of weld, parallel to base-weld interface, was 

modeled. Fig. 5.10 shows the FE discretisation scheme used in present investigation. To 

avoid problems associated with incompressibility eight-noded plane strain element with 

reduced integration were employed in all finite element calculations. 16 eight-noded 

elements comprised the upper-half of crack tip and forty circumferential rings of element 

were surrounding the crack tip. The innermost ring of the elements had one side collapsed 
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on to the crack-tip. All the collapsed nodes got separated after the loading was applied. 

Due to symmetry only one-half of SE(PB) and C(T) specimen was modeled. This one-half 

model contains about 1400, 8-noded elements and 4000 nodes. The radial extent of the 

elements in the first ring was ≈ 2x10-4 l where l is the uncracked ligament. Numerical 

model employs the small-strain formulation with J2 flow theory. For SE(PB) specimen 

rotation was applied on the top edge of this FE model and the specimen was loaded to its 

limit state. Material mismatch ratio M and weld slenderness ratio ψ were systematically 

varied to create a wide range of crack-tip constraint. For over matched welds analyses were 

performed for 1 ≤ M ≤ 2. This range of mismatch covers practically the entire range of 

over matching that is likely to occur in most engineering applications. For under matched 

welds finite element analyses were performed only for 0.8 ≤ M ≤ 1 so that the plastic fields 

are not fully confined in weld material. Weld slenderness ratio was also varied (1.667 ≤ ψ 

≤ 10) to account for both conventional and narrow grove welds.  

 

5.5    Results 

 

We present here the comparison of the limit moment/load, and crack tip constraint 

parameter h of SE(PB) and C(T) specimen, having a weld centre crack, obtained from the 

proposed MUB theorem with our numerical (FE) results. For each mismatch ratio M and 

weld slenderness ratio ψ out of the five stress fields, described in 5.2.1-5.2.5, only one of 

them governs the plastic yielding of the remaining ligament. The stress field producing the 

lowest limit moment represents the correct solution (for details see section 5.6). Thus, the 

limit moment and constraint parameter h was evaluated from the equations relevant to that 
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particular stress field. It may be noted that Kim and Schwalbe (2001a, 2001b, 2004) have 

also investigated the effect of weld strength mismatch on the limit moment/load and crack-

tip constraint parameter h of the above-mentioned specimens by finite element analysis. 

Fig. 5.11 shows the variation of normalised limit moment Mlr and constraint parameter h 

with mismatch factor M and weld slenderness ratio ψ for a SE(PB) specimen. The 

normalised limit moment Mlr is defined as the ratio of the limit moment of a SE(PB) 

specimen, having a weld centre crack, to the limit moment of homogeneous SE(PB) 

specimen of base material. Fig. 5.13 shows the variation of normalised limit load Plr and 

constraint parameter h with mismatch factor M and weld slenderness ratio ψ for a C(T) 

specimen. The normalised limit load Plr is defined as the ratio of the limit load of a C(T) 

specimen, having a weld centre crack, to the limit load of homogeneous C(T) specimen of 

the base material. 

 It can be seen from Figs. 5.11(a) and 5.13(a) that all the three solutions of the limit 

moment/load seem to be in good agreement with each other. Closed form solutions 

proposed by Kim and Schwalbe (2001a, 2001b) shows a small difference with our finite 

element results as these are based on fitting of finite element results of these authors. 

Constraint parameter h, shown in Fig. 5.11(b) and 5.13(b), was evaluated ahead of crack 

tip, that is, at θ=0. In finite element analysis, h was evaluated at a distance of 5x10-3 l 

which is sufficiently close to the crack tip. Here l is the uncracked ligament. Both 

theoretical and finite element results clearly indicate that weld overmatch reduces crack tip 

constraint while undermatch increases it. This observation has been made by many other 

investigators and more detailed comments can be found in the work of Kim and Schwalbe 

(2004). 
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Figs. 5.12 and 5.14 shows the variation of constraint parameter h with polar angle θ for 

SE(PB) and C(T) specimen, respectively. For SE(PB) specimen, results are presented here 

for two representative cases, that is, for ψ = 10 and ψ = 3.33. As discussed in section 5.1, 

proposed analytical solutions, due to lack of information about the elastic plastic boundary 

near the crack tip, can provide crack tip stresses only in the plastic sectors, that is, for 0≤ θ 

≤ β. The angle β is shown in Figs. (5.1-5.8). For this range of θ analytical solutions of h 

were found to be in good agreement with finite element results. From Fig. 5.12 it can be 

observed that as weld slenderness ratio ψ decreases (large weld width), the effect of weld 

strength mismatch on crack tip constraint parameter h becomes less pronounced. 

 

5.6    Discussion  

 

In the past two decades, the problem of a stationary crack lying at the centre of a strength 

mismatched weld has been extensively investigated. However, the detailed insight of the 

structure of stress fields under large scale plasticity is still lacking. In this work the 

problem was examined from a more fundamental perspective. It is generally felt that unlike 

numerical results the classical approaches like slip line field provides a better 

understanding of the aspects related to mechanics of deformation. However, constructing 

such analytical solutions for mismatch welds requires some special considerations over and 

above those needed for a standard boundary value problem involving single material. In 

the present investigation, stress fields were constructed by assuming that in the cases 

where the slip line passing through the interface of two materials lies in deforming zones, 

continuity of traction is respected. For the cases where the slip line passing through the 
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interface separates two rigid (elastic) regions both the shear and normal tractions undergo a 

jump at this interface. This assumption which was the basis of the proposed solutions was 

in good agreement with observations from detailed finite element analysis. To evaluate the 

unknown parameters of the plastic field, the modified upper bound (MUB) theorem 

developed in chapter 3 was used. Minimization of the limit moment/load expressions 

obtained from MUB analysis provided us the required unknown parameters of the plastic 

fields. It may be noted that as far as the evaluation of limit moment/load is concerned the 

unknown value of the mean stress at the base-weld interface does not enter in the analysis. 

For several cases of homogeneous cracked as well as uncracked geometries, the 

equivalence of MUB theorem with slip line field analysis was demonstrated in chapter 4. It 

was established that the minimization process finally leads to equations of global 

equilibrium. Studies presented in this chapter have established that this equivalence holds 

good for mismatch welds also. This is really an important finding, particularly for the 

problem of strength mismatch welds, as it allows a complete analytical evaluation of stress 

distribution in the plastic regions.  

 For homogeneous fracture specimens, it is well established that plastic 

deformation fields depend on specimen geometry and loading condition (McClintock, 

1971). For a fracture specimen having a strength mismatch weld, mismatch ratio M and 

weld slenderness ratio ψ are the additional parameters affecting the plastic fields. Thus, in 

comparison to the slip line fields describing the stress distribution in homogeneous cracked 

specimens, fields for mismatched welds are more complicated. In this work, a family of 

five stress fields is proposed to cover all practical cases of weld mismatch. It is worth to 

discuss that all the five fields are similar to each other in the rigid zones where they are in 
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the form of circular arcs. However, significant differences do occur in the structure of these 

fields in the deforming zones. Depending upon the mismatch ratio M and weld slenderness 

ratio ψ only one of these fields governs the plastic yielding of the remaining ligament. The 

criterion adopted to choose which of these fields is relevant for a particular case is similar 

to that used for the homogeneous cases. Since all the proposed solutions are upper bound 

the one giving the least value of limit load/moment is nearer to the exact solution 

(Katchanov, 1971). Our study revealed that out of the five proposed fields the one leading 

to the least value of limit moment also satisfies the global equilibrium equations and was 

close to the actual plastic field obtained from FE analysis. 

 It is also worth to discuss that the present article was focused mainly on weld 

centre crack. In an actual weld joint crack may lie, however, anywhere also. MUB theorem 

may be used to analyse such cases but the structure of global plastic fields need to be 

established. Such studies may be carried out in future.  

 It is widely accepted that the weld mismatch effects not only change the limit 

moment/load and crack driving force (J-integral) but also influence the materials fracture 

behaviour. This is simply because the weld mismatch effects change the stress fields near 

the crack tip and, hence, the crack tip constraint. Detailed numerical studies performed by 

many investigators have clearly established that weld over match produces a "shielding 

effect" on the crack tip and reduces the crack tip constraint. Similarly under match causes a 

significant increase in crack tip constraint. The detailed structure of stress fields presented 

in this chapter has provided a more elaborate explanation to this well-known influence of 

weld mismatch on crack-tip constraint.  
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Fig. 5.1: Schematic of (a) an interface crack and (b) a weld centre crack in a strength 
mismatch weld. 
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Fig. 5.2: Pure bending SE(PB) specimen with a weld centre crack. 
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Fig. 5.3: (a) Proposed structure of stress field-A and (b) plot of equivalent plastic strain 
obtain from FE analysis.  
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Fig. 5.4: Asymptotic incomplete crack-tip stress field for a deeply cracked SE(PB) 
specimen and C(T) specimen. 
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Fig. 5.5: Description of stress field-B (a) complete structure of the proposed field (b) 
zoomed portion of stress field near free surface and (c) plot of equivalent plastic 
strain obtained from FE analysis.  
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Fig. 5.6: Description of stress field-C (a) complete structure of the proposed field for  
an over-match weld and (b) plot of equivalent plastic strain as obtained from FE analysis. 
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Fig. 5.7: Description of stress field-D (a) complete structure of the proposed field for 
an overmatch weld and (b) plot of equivalent plastic strain as obtained from FE 
analysis.  
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Fig. 5.8: Description of stress field-E (a) complete structure of the proposed field and (b) 
plot of equivalent plastic strain as obtained from FE analysis.  
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        Fig. 5.9: Compact Tension C(T) specimen with a weld centre crack. 
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Fig. 5.10: Finite element discretisation scheme used in present investigation, (a) global 
view of the mesh used for a SE(PB) specimen and (b) zoomed view near the crack tip 
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Fig. 5.11: Comparison of (a) normalised limit moment and (b) crack tip constraint 
parameter h, evaluated at θ=0, obtained from MUB theorem with FE results for 
SE(PB) specimen. 
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Fig. 5.12: Variation of constraint parameter h with polar angle θ for (a) ψ = 10 and (b) 
ψ = 3.33 obtained from MUB theorem and FE analysis for SE(PB) specimen. 
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Fig. 5.13: Comparison of (a) normalised limit load and (b) crack tip constraint 
parameter h, evaluated at θ=0, obtained from MUB theorem with FE results for C(T) 
specimen. 
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Fig. 5.14: Variation of constraint parameter h with polar angle θ for ψ = 10 obtained 
from MUB theorem and FE analysis for C(T) specimen. 
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CHAPTER 6 
 

A study of the limit load and crack tip constraint of middle 

tension M(T) specimen having a weld centre crack 
 

 

6.1    Introduction 

 

The problem of middle tension M(T) specimen having a weld centre crack has been 

studied extensively. It was first systematically analysed by Varias et al. (1991). They 

numerically (finite element) examined the case where a crack was postulated at the centre 

of ductile metal foil sandwiched between two rigid ceramic blocks. The focus of this study 

was to understand the ductile failure mechanisms that are likely to occur in the metal foil 

under such a high constraint state. It was demonstrated that for such an extreme mismatch 

case, under small-scale yielding condition, under uni-axial tensile load a high tri-axial 

stress exists ahead of crack tip at a distance several times the foil thickness. A formula for 

evaluating the stress intensity factor was also suggested. 

 On analytical front, initial study on M(T) specimen having a weld centre crack, 

under large-scale plasticity, was carried out by Joch et al. (1993). Main objective of this 

study was to quantify the influence of weld strength mismatch on the limit load and plastic 

η-factor. Classical upper bound theorem of limit analysis was used to derive analytical 

solutions. However, more detailed description of this problem was presented by Hao et al. 

(1997). Using classical approach of Slip-line theory, they provided sufficiently detailed 

analytical solutions of the limit load and crack tip stresses for the case where plasticity was 
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confined only in the weld material. In case where the yield strength of base and weld 

material is comparable plastic deformation occurs in both the materials. Constructing SLF 

solutions for such cases is not straightforward as the stress connections conditions at the 

base-weld interface are unknown. 

 Hao et al. (1997) made an attempt to solve this problem analytically by assuming 

continuity of normal and shear stress along the slip line passing through the interface of 

base and weld material. However, this assumption was not well supported by the results 

obtained from detailed elastic-plastic finite element analysis. Based on comparison of their 

analytical results with finite element (FE) studies they indicated the possibility of jump in 

tractions at the interface of the two materials. This problem was then re-examined 

numerically by Kim and Schwalbe (2001, 2004). Based on extensive FE analyses, these 

authors proposed closed-form expressions of the limit load of M(T) specimen for weld 

centre crack, interfacial crack, and asymmetrically located crack in the weld region. They 

also performed detailed numerical studies to examine the strength mismatch effect on 

crack tip constraint parameter h under fully plastic condition (2004). The problem of M(T) 

specimen having an asymmetric crack in the weld region was also analysed by Lei et al. 

(1999). The classical upper bound theorem of limit analyses was used to obtain analytical 

solutions of the limit load. Using the concept of equivalent stress-strain relation proposed 

by Lei and Ainsworth (1997) these authors also provided an estimation of J-integral. 

Analytical solutions of the limit load of an overmatched M(T) specimen were also 

provided by Alexandrov et al. (1999). Based on kinematically admissible velocity fields 

and statically admissible stress fields corresponding upper and lower bound estimates of 

limit load were arrived. Their numerical results for upper bound limit load were identical 
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to those provided by Joch et al. (1993), however, Alexandrov et al. (1999) demonstrated 

that the upper bound limit load depends on a single parameter that can account for the 

effects of weld strength mismatch M as well as weld slenderness ratio ψ. 

 In this chapter, a discontinuous stress solution is proposed to analyse M(T) 

specimen having a weld centre crack. Discontinuity is incorporated in the proposed 

solution by assuming an unknown value of the mean (hydrostatic) stress at the base-weld 

interface. Modified upper bound (MUB) theorem along with global equilibrium equations 

was utilised to obtain this unknown mean stress and hence the whole stress field. The 

results obtained were found to be in excellent agreement with the known FE solutions 

available in literature. In addition to the limit load, effect of weld strength mismatch on 

crack tip constraint parameter h was quantified.  

 

6.2    Analysis of overmatched middle tension M(T) specimen having a 

weld centre crack 

 

Consider the case of a M(T) specimen having a weld centre crack as shown in Fig. 6.1. 

Assumption of plane strain was made and analysis was carried out on an idealised weld 

without any heat affected zone (HAZ). The two materials (base and weld) were considered 

as rigid-plastic having mismatch in their yield strength. The effects of weld geometry were 

modeled by changing the weld slenderness ratio ψ while the strength mismatch effects 

were incorporated by changing the mismatch ratio M. These two parameters are defined as 

follows 
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= =                                    (6.1) 

 

Material strength mismatch ratio M and weld slenderness ratio ψ were systematically 

varied to account all practical cases. M>1 corresponds to an overmatch weld while M<1 

refers to an undermatch weld.  

 For a M(T) specimen, having a weld centre crack, the assumed plastic field for an 

overmatch weld is shown in Fig. 6.2. In this field it was assumed that a straight slip line 

APB emanated from the crack tip and crossed the base-weld interface. It was then merged 

into the fan field BEC of angular extent γ whose centre E lied at the base-weld interface. 

Near the free surface there was a region of constant stress (uniform tension) CDE which 

merged with the fan field tangentially. It may be mentioned that this type of field was first 

suggested by Hao et al. (1997), however, the authors did not provide any details of its 

analysis. The stress distribution in the constant stress region, CDE, can be expressed as 

   

                                                 11 0,σ =  22 2kσ = −  and 12 0σ =                                       (6.2) 

 

In the central field BEC, the shear stress along BE was k and the pressure acting on it, as 

per Hencky's relation, was k(1+2γ). Thus, the stress distribution in the plastic region of the 

base material up to point P was readily known. At point P, that is, at the interface of two 

materials we propose that the continuity of tractions is violated. Thus, both the in-plane 

shear stress σ12 as well as the mean stress undergoes a sudden jump at the interface. As a 

result, the stress distribution cannot be obtained directly for the weld region. As discussed 

in chapter 5, this problem was solved by the use of MUB theorem. Unlike SLF analysis 
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this technique does not require any information about the mean stress along the slip line 

separating the two rigid regions. Since the tangential velocity and the shear stress (by 

virtue of yield criterion) were known along the slip line APB, plastic dissipation of energy 

can be easily computed. As the mean stress acting on the slip line APB and, hence, the 

unknown mean stress at the interface, does not enter in MUB analysis problem becomes 

amenable to a fully analytical treatment. We now proceed to analyse this field. 

 From kinematics the relation between the rate of imposed displacement δ. and the 

tangential velocity v* along the slip line APB can be easily established, that is, 

 

                                                                 *

sin
4

v δ
π γ

⋅

=
⎛ ⎞+⎜ ⎟
⎝ ⎠

                                                 (6.3) 

 

Now invoking work principle, that is, eq. (3.33), limit load can be expressed as, 

  

                   * *2L w b ij j i ij j i
AP PB BC CD

P k v dS k v dS n v dS n v dSδ σ σ⋅ ⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
∫ ∫ ∫ ∫                         (6.4)    

 

The work done by the stresses on the circular arc BC (of radius x), Fig. 6.2 (b), can be 

expressed as follows 

 

                                      ( )
0 0

1 2ij j i t n
BC

n v dS kxv d k xv d
γ γ
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                    ( )
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4 4ij j i
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n v dS kx d k x d
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                 ( )cos 1 2 sin 2
4 4ij j i
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n v dS kx k x kxπ πσ δ γ γ δ γ δ⋅ ⋅ ⋅⎛ ⎞ ⎛ ⎞= + + + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫             (6.7)    

 

Similarly, work done by the stresses on the segment CD can be expressed as follows 

 

                                    2ij j i t n
CD CD CD

n v dS kv dS kv dS kxσ δ ⋅= + =∫ ∫ ∫                                  (6.8)    

 

Finally, substitution of eqs. (6.7) & (6.8) in eq. (6.4), using the value of v* as given by eq. 

(6.3), lead to the following relation for the limit load  
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Since γ is the only independent variable, as per MUB theorem 
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Thus, the limit load Fy and all the unknown parameters of the assumed plastic field can be 

easily evaluated. When γ=0 the field reduces to that of homogeneous M(T) specimen 

(McClintock, 1971). As far as evaluation of the limit load is concerned, the unknown value 

of the mean stress at the base-weld interface does not enter in the analysis. However, for 

evaluation of crack tip stress field the jump in the value of mean stress that occurs at the 

base-weld interface must be quantified.  

 For a wide variety of specimen geometry and loading conditions it has been 

established in chapter 4 that the MUB theorem provides results that are identical to those 

obtained from SLF analysis. Moreover, it was demonstrated in chapter 5 that MUB 

theorem when applied to SE(PB) and C(T) specimen having a weld centre crack satisfy 

global equilibrium equations. We now proceed to establish this for a M(T) specimen also. 

If it is assumed that σw
* is the unknown value of hydrostatic stress that occurs at point P, in 

the weld material, then the equations of global equilibrium can be expressed as follows 

 

                      ( ) ( )
( ) ( )
1 2

2 cos / 4
2 sin / 4 tan / 4

y b w
b w

F k x Hk x k H
γ σπ γ

π γ π γ

∗+
= + + + +

+ +
                (6.11)    

                                            

                                
( ) ( )

sin 2 0
2 sin / 4 tan / 4

x b w
w

F k x k H Hγ σ
π γ π γ

∗−
= + − =

+ +
                               (6.12)                             

 

Thus, if the equivalence of MUB theorem and SLF analysis is assumed to hold good for a 

M(T) specimen also then the value of assumed plastic field parameters (x and γ) obtained 

from the MUB theorem may be used to obtain σw
* from eq. (6.12). As a cross check, the 

value of σw
* was substituted in eq. (6.11) to confirm that the limit load so obtained is quite 
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close to that obtained directly from the MUB theorem. This again has validated our 

assumption that for the case of a strength mismatch weld also (having two different 

material interfaces) the parameters of plastic field as obtained from MUB theorem also 

satisfies the global equilibrium equations. 

 As discussed in chapter 5, from the stress distribution so obtained the state of stress 

ahead of crack tip can not be directly evaluated. A construction similar to that shown in 

Fig. 5.4 was used to evaluate the crack tip stress distribution. Thus, the mean (hydrostatic) 

stress, directly ahead of crack tip, can be expressed as follows. 

 

                                                             * 2X B
w wkσ σ σ γ= = +                                         (6.13) 

 

The crack tip constraint parameter h (eq. 5.15) was used to describe the effect of weld 

strength mismatch on the local stress tri-axiality. 

 

6.3    Analysis of undermatched middle tension M(T) specimen having a 

weld centre crack 

 

For a M(T) specimen having a crack at the centre of an undermatched weld, in general, 

plasticity passes through both base and weld material. Detailed FE analyses performed by 

the author revealed that in comparison to an overmatch case the global stress fields for an 

undermatch case are more complex. No detailed global stress field could be developed for 

such a case. Limit load solution for such cases were obtained using the simple 

kinematically admissible velocity field that was first proposed by Joch et al. (1993). 
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However, it is important to mention that such simplified velocity field can not be used for 

evaluation of crack tip constraint as it has not been demonstrated that the global 

equilibrium equations are satisfied. 

 When the yield strength of weld material is sufficiently low (with respect to base 

metal), the entire plastic deformation gets confined in the weaker weld material and, thus, 

the weld slenderness ratio ψ is the only important parameter affecting the plastic 

deformation. For such cases Hao et al. (1997) proposed slip line fields for various values of 

ψ and obtained analytical solution of the limit load and crack tip constraint parameter h. 

The case of extreme undermatch was also analysed by Kim and Schwalbe (2001a). Based 

on SLF analyses a different expression of the limit load was proposed, however, no details 

of solution were provided. It was discussed that their solutions provide slightly different 

value of the limit load than that suggested by Hao et al. (1997).  

 In the following sections detailed analyses of the proposed slip line fields for the 

case of a M(T) specimen having a crack at the centre of an extreme undermatch weld are 

presented. The proposed fields were used to obtain analytical solutions of the limit load 

and crack tip constraint parameter h. 

 

6.3.1    Slip Line Field-1 (1 ≤ ψ ≤ 3.6) 

 

The complete structure of the proposed field is shown in Fig. 6.3. At point C lying at the 

base-weld interface, near the free surface, it was assumed that a singularity exist and the 

stress distribution in the plastic sector BCD is described by a fan field of radial extent x 

and angular extent γ. Adjacent to the fan field is the constant stress region CED in which a 
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uniform tensile stress of magnitude 2k exists. It is assumed, asymptotically, that a small 

segment of straight slip line AA' exists. It radiates from the crack tip at an angle of π/4 with 

the horizontal axis. The fan field BCD is connected to the straight slip line AA' by a 

circular arc A'B of radius y and angular extent γ. The stress components on the small line 

AA' are constant and equal to the components at the point A' on the arc A'B. The global 

stress field is completely described by the three unknown parameters, that is, x, y, and γ. 

 It can be easily established that ABC is an α-slip line and the mean (hydrostatic) 

stress at point B is k(1+2γ). From Hencky's relation, the hydrostatic stress at point A' can 

be expressed by the following equation 

  

                                                 ( )'

1 2 2
2 4

A
w wk π πσ γ γ⎡ ⎤⎛ ⎞= + − + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

                                 (6.14) 

                                                                                    
 

From geometry the following two relations can be easily obtained 

 

                                           

1cos sin
4 42

y x Hπ πγ γ⎡ ⎤⎛ ⎞ ⎛ ⎞− − + − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
                             (6.15)

 

 

                                             

1 sin cos
4 42

y x lπ πγ γ⎡ ⎤⎛ ⎞ ⎛ ⎞− − + − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
                             (6.16)

 

 

The remaining third equation can be obtained from the equilibrium consideration, that is 
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1 0x i i

ABC

F n dSσ= =∑ ∫                                        (6.17) 

 

Eqs. 6.15-6.17 may be used to obtain the values of the three unknown parameters of the 

plastic field and the stress distribution in the plastic sectors can be easily evaluated. The 

resulting limit load can be obtained from the following expression 

 

                                                            
2 0y i i

ABC

F n dSσ= =∑ ∫                                        (6.18) 

 

Once the hydrostatic stress at point A' is known, the crack opening stress directly ahead of 

crack tip can be obtained from the following relation 

 

                                                            

'

0
A
w wkθθ θ

σ σ
=
= +                                                (6.19) 

 

It is worth to mention that the proposed slip line field is applicable for 1 ≤ ψ ≤ 3.6. As the 

weld slenderness ratio ψ increases the angle γ describing the angular extent of fan field 

BCD increases. This results in a increase of hydrostatic stress at point A near the crack tip. 

When ψ=3.6, the angle γ becomes equal to π/4 and the hydrostatic stress ahead of crack tip 

is high enough to cause complete yielding of the crack tip and the Prandtl's field develops. 
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6.3.2    Slip Line Field-2 (3.6 ≤ ψ ≤ 5) 

 

The construction of this field is guided by the consideration that for ψ ≥ 3.6, the stress tri-

axiality ahead of crack tip is sufficient enough to cause complete yielding of the crack tip. 

As a result the asymptotic distribution of stresses near the crack tip can be completely 

described by the Prandtl field which extends up to a distance z from the crack tip in the 

radial direction as shown in Fig. 6.4. At point J lying at the base-weld interface, near the 

free surface, it is assumed that a singularity exist and the stress distribution in the plastic 

sector EFJ is described by a fan field of radial extent x and angular extent of π/4.  Adjacent 

to the fan field is the constant stress region JFG in which a uniform tensile stress of 

magnitude 2k exists. The fan field EFJ is connected to the Prandtl field by a circular arc 

DE of radius y that intersects the horizontal axis at an angle of π/4. The radial extent of the 

Prandtl field is described by z. The global stress field is, thus, completely described by the 

three unknown parameters, that is, x, y, and z. 

 From Hencky's relation, the hydrostatic stress at point D can be expressed by the 

following equation 

  

                                                                
( )1D

w wkσ π= +                                                (6.20) 

                                                                  
 

Eq. (6.20) indicates that the stress distribution at point D is the same as that obtained from 

the Prandtl field. The crack opening stress directly ahead of crack tip in the Prandtl field 

can be expressed as
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( )0
2D

w w wk kθθ θ
σ σ π

=
= + = +                                        (6.21)

 
 

Now from geometry the following two relations can be easily obtained 

 

                                                         

11
2

y H⎡ ⎤
− =⎢ ⎥

⎣ ⎦
                                                     (6.22)

 

 

                                                         

2
2 2
z y x l+ + =                                                     (6.23) 

 

The equilibrium equation in horizontal direction remain same as expressed by eq. (6.12) as 

the presence of Prandtl field near the crack tip does not effect the force equilibrium in X-

direction. Thus, eqs. (6.17), (6.22) and  (6.23) may be used to evaluate the unknown 

parameters of the plastic field and, hence, the stress distribution in the plastic regions. The 

resulting limit load can be obtained from the following expression.  
 

 

                                              ( )2 2 2y i i w
DEJ

F n dS k zσ π= + +∑ ∫                                 (6.24)
 

 

As the weld slenderness ratio ψ increases the size of the Prandtl field near the crack tip, as 

measured by the distance z, increases monotonically and at ψ=5 the Prandtl field just 
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touches the base-weld interface. For ψ ≥ 5 the stress fields of the weld zone become 

complicated and numerical construction of slip line fields is required. Slip line fields for 

such cases were constructed by Hao et al. (1997), and Kim and Schwalbe (2001a).
 

           

6.4    Results 

  

For the case of M(T) specimen having a weld centre crack the limit load solutions have 

been provided by various authors. However, the solutions provided by Kim and Schwalbe 

(2001a) which are based on detailed FE analysis are most accurate and are widely 

accepted. Thus, in the present study analytical solutions of the limit load obtained from 

MUB theorem were compared with detailed FE analyses performed by the author and with 

the solutions provided by Kim and Schwalbe (2001a) as shown in Fig. 6.5. As mentioned 

earlier, analytical solutions of the limit load based on continuity of tractions at the base-

weld interface were proposed by Hao et al. (1997). A comparison of their limit load 

solutions with FE results is shown in Fig. 6.6. In Figs. 6.5 and 6.6, the normalised limit 

load represent the ratio of limit load of M(T) specimen having a weld centre crack to that 

of homogeneous M(T) specimen. It may be observed from Fig. 6.6 that as the weld 

strength mismatch ratio M increases the difference between the limit load solutions of Hao 

et al. (1997) and FE results becomes higher. This actually suggests that the assumption of 

continuous stress solution is not valid particularly for higher mismatch ratios. On the other 

hand the limit load obtained from MUB theorem is in very good agreement with FE results 

(see Fig. 6.5) for all mismatch ratios. In Fig. 6.7 analytical solution of crack tip constraint 

parameter h obtained from MUB theorem is compared with FE results of Kim and 
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Schwalbe (2004). For an extremely undermatched M(T) specimen having a weld centre 

crack analytical solutions of crack tip constraint parameter h obtained from the proposed 

slip line fields were compared with the solutions provided by Kim and Schwalbe (2004) in 

Fig. 6.8. Very good agreement was obtained between the two solutions. 

 

6.5    Discussion  

 

In this chapter analytical solutions of the limit load and crack tip constraint parameter h for 

a rigid-plastic material under mode-I loading were described. For standard homogeneous 

fracture specimens MUB theorem provides results that are in exact agreement with SLF 

solutions. Classical methods like SLF analysis are, however, applicable to macroscopically 

homogeneous/single material. Welded structures have an abrupt material discontinuity at 

the base weld interface. Constructing SLF solutions for such problems is not 

straightforward as the stress connections conditions at the interface are unknown. Detailed 

FE analysis performed by Hao et al. (1997) and Kim and Schwalbe (2001a) have revealed 

that SLF solutions based on continuity of stress at base-weld interface are not in good 

agreement with FE results. In this chapter MUB theorem was successfully used to obtain 

analytical solution of the limit load and crack tip constraint parameter h for M(T) specimen 

having a weld centre crack. At this point it is worth to discuss that while the analytical 

solutions of the limit load obtained from MUB theorem are in excellent agreement with the 

widely accepted solutions of Kim and Schwalbe (2001a) and detailed FE results performed 

by the author, however, analytical results of crack tip constraint parameter h do not show 

such a good match with FE solutions. Such kind of differences in the crack tip stresses 
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obtained from SLF analysis and FE results have also been observed for a homogeneous 

M(T) specimen (Zhu and Chao, 2000). These authors performed detailed FE studies and 

observed that there exist tensile and compressive stresses along the vertical centerline of 

M(T) specimen which result in a bending moment MV. The difference between MV and the 

moment generated by the applied far-field load makes the crack opening stress non-

uniform along the remaining ligament. However the slip line field for M(T) specimen 

(McClintock, 1971) comprises of a constant stress sector creating uniform opening stress 

along the ligament. These authors, thus, concluded that at the limit load the crack tip stress 

fields obtained from FE analysis can only approach to, but cannot attain to, the slip-line 

fields of homogeneous M(T) specimen. A closer look of Fig. 6.7 reveals that for higher 

weld overmatch ratios (M → 2), FE results were close to analytical solutions, however, as 

M approaches unity (homogeneous case) difference between FE results and analytical 

predictions increases as noted by Zhu and Chao (2000). 
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Fig. 6.1: Middle tension M(T) specimen having a weld centre crack. 
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Fig. 6.2 (a): Proposed stress field for an overmatched M(T) specimen having a 
weld centre crack. 
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Fig. 6.2 (b): Stress and velocity distribution on the elastic-plastic boundary of an 
overmatched M(T) specimen having a weld centre crack. 
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Fig. 6.3: Proposed slip line field of extremely undermatched M(T) specimen having 
a weld centre crack (1 ≤ ψ ≤ 3.6). 
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Fig. 6.4: Proposed slip line field of extremely undermatched M(T) specimen having 
a weld centre crack (3.6 ≤ ψ ≤ 5). 

Plane of 
symmetry 

J 
z x

y 
F

k 
k(1+π/2+2θ) 

θ 



                                                                                                                                                                                         Chapter-6
  

 183

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0 5 10 15 20

ψ=(W-a)/H 

M= 1.25, 1.5, 1.75, 2 

M=0.9, 0.75 

P L
/P

H
om

og
. 

Kim and Schwalbe (2001a) 

MUB 

FEA (Author) 

Fig. 6.5: Comparison of normalised limit load of M(T) specimen, having a weld 
centre crack, obtained from MUB theorem with FE results. 
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Fig. 6.6: Comparison of normalised limit load of M(T) specimen, having a weld 
centre crack, provided by Hao et al. (1997) with author's FE results. 
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Fig. 6.7: Comparison of crack tip constraint parameter h of overmatched M(T) 
specimen obtained from MUB theorem with FE results. 
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Fig. 6.8: Comparison of crack tip constraint parameter h of extremely 
undermatched M(T) specimen obtained from proposed SLF with FE results. 
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CHAPTER 7 
 

Aspects related to plastic η factor of plane strain fracture 

specimens having weld centre crack 
 

 

7.1    Introduction 

 

The evaluation of fracture toughness is an integral part of structural integrity assessment 

procedures which are based on fracture mechanics concepts. In fact, fracture toughness 

essentially provides the criterion through which the severity of crack like flaws can be 

related to the operating conditions in terms of a critical applied load or a critical crack size. 

Fracture toughness, in terms of J-integral, is measured using the experimental load-load 

line displacement (LLD) data and a proportionality factor, often referred as the plastic η-

factor (Rice et al., 1973). These authors proposed to split the total J-integral into elastic (Je) 

and plastic components (Jp). While the elastic part Je is related to the Stress intensity factor 

(K), the plastic part Jp is associated with the plastic area under the load-displacement data 

obtained from experiments, Fig. 7.1a, as described by the following equation 

 

                                                 
2

0

P

e P P P
KJ J J Pd
E

η
Δ

= + = + Δ
′ ∫                                       (7.1) 
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Here E' = E for plane stress and E' = E/(1-ν2) for plane strain condition. ν is the Poisson’s 

ratio, P is the total applied load and Δp is the plastic component of load line displacement 

due to crack only. 

 Recently it has been observed that the J-integral estimated from experimental crack 

mouth opening displacement (CMOD) records provide more robust and accurate J-

estimation, particularly for shallow cracked geometries (Wang and Gordon, 1992, Kim and 

Schwalbe, 2001d). Moreover, the measurement of CMOD is more robust and easier than 

that of LLD. The expression used to evaluate J-integral from CMOD data is as follows 

 

                                         
2

0

CMOD
P

CMOD CMOD
e P P P

KJ J J Pd
E

η
Δ

= + = + Δ
′ ∫                                (7.2) 

 

Here Δp
CMOD is the plastic component of CMOD (Fig. 7.1b). Existing fracture testing 

standards like ASTM E-1820 are mainly applicable to fracture specimens made of 

homogeneous materials. In order to assess fracture behaviour of a cracked welded structure 

accurate estimation formulas for fracture toughness evaluation, which can account for weld 

strength mismatch effects, are required.  

 Analytical studies to quantify the effect of weld strength mismatch on plastic η-

factors were performed by Joch et al. (1993) and Burstow and Ainsworth (1995). Sumpter 

(1987) presented a method for determination of fracture toughness Jc from three-point bend 

specimen having a shallow crack using load versus CMOD data. Based on analytical 

considerations Hornet and Eripret (1995) proposed a new procedure for evaluation of 

fracture toughness from the area under the load versus CMOD curve. Gordon and Wang 

(1994) suggested an expression for CMOD based plastic η-factor incorporating the weld 
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strength mismatch effect using FE analyses. The effect of weld strength mismatch on 

plastic η-factor of fracture specimens having weld centre crack was also examined by Kim 

et al. (2003). In a recent study, Dunato et al. (2009) examined the effect of weld strength 

mismatch on fracture toughness parameters such as J and CTOD for three-point bend 

specimen. All these analytical and numerical investigations revealed that the weld strength 

overmatch (M>1) would reduce the plastic η-factors below that of standard homogeneous 

specimens while under match welds lead to higher plastic η-factors. 

 In this chapter analytical solutions of plastic η-factor are developed using the 

accurate limit load solutions proposed in chapter 5 and 6. Pure bending specimen, SE(PB), 

Compact tension specimen, C(T) and middle tension specimen, M(T) having weld centre 

crack were considered. The effects of strength mismatch ratio M and weld slenderness ratio 

ψ on plastic η-factor are discussed. 

 

7.2    Analytical evaluation of plastic η-factor 

 

The computation of plastic η-factor for evaluation of plastic part of J-integral, Jp, requires a 

limit load expression. Ernst et al. (1979) have shown that ηp will always exist if and only if 

a separation of variables can be found for the expression of load P in terms of crack length 

a and plastic load-line displacement Δp. If it is assumed that the material behavior can be 

represented as ideal-plastic then under conditions of constant load-line displacement, a 

straight forward derivation based on the general definition of J-integral provides following 

expression (Roos et al. , 1986, Chattopadhyay et al. , 2001) 
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                                                             1 L
P

L

P
P a

η
∂− ⎛ ⎞= ⎜ ⎟∂⎝ ⎠

                                                       (7.3) 

 

By this expression ηp can be calculated in principle if the limit load equation as a function 

of crack size a is available. It is important to note that the limit load as mentioned in the 

above equation corresponds to the global limit load. Chattopadhyay et al. (2001, 2004) 

conducted further studies and obtained limit load based general expression of γ-factor 

(correction factor to account for crack growth). Using the limit load based expressions 

these authors derived plastic ηp and γ factors for various geometries of practical interest. 

The ηp
CMOD solution can also be obtained from limit analysis using the following 

expression 

 

                                                              ,CMOD
P p P

af r
W

η η⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                            (7.4) 

 

Here rp denotes the plastic rotation factor and can be obtained from the limit analysis. The 

explicit form of the function f (a/W, rp) depends on the geometry of the specimen (Kim, 

2002b). 

 

7.3    Numerical evaluation of plastic η-factor 

 

Analytical solutions of plastic η-factors (both LLD and CMOD based) obtained from limit 

analyses are applicable to a rigid-plastic (non-hardening) material model. In order to assess 

the influence of material strain hardening on plastic η-factors, finite element analysis is 
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required. The J-integral can be easily obtained using the post-processing techniques (like 

Rice’s contour integral, Virtual crack extension method, or domain integral method) which 

are typically available in all commercial finite element codes. In addition, the FE results 

provide other required data like load-LLD and load-CMOD values from which the plastic 

η-factors can be computed using the estimation formulae (eqs. 1 and 2). Further details on 

calculation of plastic η-factors from FE results are available in Kim (2002b). Detailed 

finite element studies have revealed that for homogeneous fracture specimens the effect of 

material strain-hardening on plastic factors is weak (Kim and Schwalbe, 2001e).  

 

7.4    Analytical solutions of plastic η-factor of plane strain fracture 

specimens having weld centre crack 

 

The limit load based general expression of plastic η-factor (eq. 7.3), derived for 

homogeneous fracture specimens, is applicable for fracture specimens having strength 

mismatch weld provided the limit load formulas accounting weld mismatch effects are 

used (Kim et al., 2003). In chapter 5, MUB theoremwas used to derive analytical 

expression of the limit moment/load for SE(PB) and C(T) specimen having weld centre 

crack. Similar limit load expressions were obtained for M(T) specimen having weld centre 

crack in chapter 6. These limit load expressions were substituted in eq. (7.3) to obtain 

plastic η-factor (LLD based) for the above-mentioned fracture specimens. Numerical 

differentiation, using central difference scheme, is used to approximate the first order 

derivative of limit load with respect to crack size. Apart from limit load, MUB theorem 

also provides parameters describing the plastic field from which the plastic rotation factor 
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rp can be easily obtained. The CMOD based plastic η-factor can then be obtained using eq. 

(7.4). 

 

7.5    Results 

 

For a pure bending SE(PB) specimen having a weld centre crack the expression of LLD 

and CMOD based plastic η-factors were obtained as discussed in section 7.4. Comparison 

of analytical solutions of LLD and CMOD based plastic η-factors with finite element 

results, obtained by the author, is shown in Figs. 7.2 and 7.3 respectively. Analytical 

solutions of plastic η-factor for a compact tension C(T) specimen and a middle tension 

M(T) specimen having weld centre crack were obtained in a similar manner. It may be 

noted that for a C(T) specimen there is essentially no difference between LLD and CMOD. 

The effect of weld strength mismatch on plastic η-factor of fracture specimens having weld 

centre crack was also examined by Kim et al. (2003). These authors used detailed FE 

analyses to incorporate strength mismatch effects on plastic η-factor. Comparison of 

proposed plastic η-factors for a C(T) specimen and M(T) specimen with finite element 

results of Kim et al. (2003) is shown in Fig. 7.4 and Fig. 7.5 respectively. 

 

7.6    Discussion 

 

In this chapter analytical solutions of plastic η-factor are proposed for a SE(PB), C(T) and 

M(T) specimen having a weld centre crack. The effect of weld strength mismatch ratio M 

and weld slenderness ratio ψ on plastic η-factor was systematically examined. The 
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proposed solutions of plastic η-factor obtained from MUB theorem were compared with 

finite element results obtained by the author and those of Kim et al. (2003). In all cases 

a/W was kept as 0.5. Although the analytical limit moment/load solutions were in good 

agreement with those obtained from FE analysis (see chapter 5 and 6), the analytical 

solutions of plastic η-factor did not show such a good agreement. The maximum difference 

noted was about 12%, however, the overall trend was correct. At this point it is worth to 

mention that Kim et al. (2003) have also presented comparison of plastic η-factors 

obtained from FE limit load solutions with those obtained directly from detailed FE 

analysis and similar sort of differences were observed. This does not mean that either the 

proposed limit load solutions or their partial derivative with respect to crack size are not 

accurate. This difference may be due to the inherent assumption of load separation 

criterion that is used to evaluate plastic η-factor from limit load solution, using eq. (7.3). 
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Fig. 7.1: Determination of area under experimental load-displacement records for J-
estimation (a and b) plastic area for SE(PB) and C(T) specimens, (c and d) plastic area 
for M(T) specimen. 
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Fig. 7.2: Comparison of LLD based plastic η-factor of SE(PB) specimen having a 
weld centre crack obtained from MUB theorem with FE results. 
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Fig. 7.3: Comparison of CMOD based plastic η-factor of SE(PB) specimen 
having a weld centre crack obtained from MUB theorem with FE results. 
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Fig. 7.4: Comparison of CMOD based plastic η-factor of C(T) specimen having a 
weld centre crack obtained from MUB theorem with FE results of Kim et al. 
(2003). 
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Fig. 7.5: Comparison of CMOD plastic η-factor of M(T) specimen having a 
weld centre crack obtained from MUB theorem with FE results of Kim et al. 
(2003). 
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CHAPTER 8 
 

Characterisation of crack tip stresses in elastic-perfectly plastic 

material under mode-I loading 
 

 

8.1    Introduction 

 

Characterisation of crack tip stresses has been an area of active research for many decades. 

Williams (1957) in his landmark paper showed that the crack tip stress fields in an 

isotropic elastic material can be expressed as an infinite series where the leading term 

exhibit a 1/√r singularity and the second term is independent of r. Classical fracture 

mechanics theory neglects all but the singular term and, thus, came the concept of 

characterisation of crack tip stresses by a single parameter. Although the third and higher 

order terms of the Williams’s series vanish near the crack tip, the second term (that is 

constant) remains finite and has a strong effect on the stresses in the plastic zone. This 

second term has been referred in the literature as T-stress. The single parameter 

characterisation is rigorously correct only for T >0. It is important to note that T-stress is an 

elastic parameter and has no physical meaning under large scale plasticity. Then, assuming 

small-strain formulation, Hutchinson (1968), Rice and Rosengren (1968) proposed the 

dominant term of the singularity field (often referred as HRR solution) for plane strain 

mode-I crack based on the J-integral (Rice, 1968). Thus, the HRR singularity is the natural 

extension of one-parameter characterisation concept to a non-linear elastic material. 

However, it has been realized that the specimen geometry and loading conditions 
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significantly affect the crack tip fields and, thus, the HRR field have limited application to 

real cracked structures. For a Ramberg-Osgood material model, the crack tip fields in the 

plastic zone can be expressed in terms of a power series where the HRR solution is the 

leading term. The higher order terms of this power series were grouped together and its 

amplitude was denoted as Q by O’Dowd and Shih (1991). Other representative two-

parameters that are used to characterise the crack tip stress fields are J-T of Betegon and 

Hancock (1991) and J-A2 of Chao et al. (1994).  

For a rigid plastic material (non-hardening), slip line fields (SLF) have been 

extensively used to estimate crack tip stresses in fully plastic state under plane strain 

condition. Results indicate that for a non-hardening material, under fully-yielded condition, 

the stresses near the crack tip are not unique but a strong function of specimen geometry 

and loading condition. An excellent compilation of the various SLF solutions has been 

given by McClintock (1971). For high constraint geometries like deeply cracked Double 

Edge Crack Plate in tension (DECP) plasticity completely surrounds the crack tip (Prandtl 

field) and SLF analysis can be used to obtain crack tip stress distribution over all angles. 

However, when constraint at the crack tip is not high-enough to cause tensile yielding of 

the crack flank then an elastic sector appears there (not in all cases as would be discussed 

later) and SLF analysis can only describe the state of stress in the plastic sectors ahead of 

the crack tip.  

Apart from analytical studies (SLF analysis) detailed numerical (finite element) 

investigations have been performed to evaluate crack tip stress fields in non-hardening 

material. For small-scale yielding, Du and Hancock (1991) examined the effects of elastic 

T-stress on crack tip stress fields for mode-I crack under plane strain condition. They 
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provided an explanation to the existence of incomplete crack tip plasticity in terms of T-

stress. Under large-scale yielding Lee and Parks (1993) analysed single edge cracked 

specimen subjected to combined bending and tension. Kim et al. (1996) and Zhu and Chao 

(2000) performed detailed FE analyses of SENB, M(T) AND DECP specimens. Further 

comments can be seen in Zhu and Chao (2001). It is important to understand that the two-

parameters such as J-Q or J-A2 characterisation cannot describe the state of stress in the 

elastic sector near the crack flanks. 

            To construct the general elastic-plastic crack tip stress field Ibrgimov and Tarasyuk 

(1976) and Nemat-Nasser and Obata (1984) first discussed the possibility of existence of 

elastic sector for plane strain mode-I crack in elastic-perfectly plastic material. Then, Li 

and Hancock (1991) described the crack tip fields under small-scale yielding in terms of 

plastic sectors and an elastic sector to account for the incomplete crack tip plasticity 

observed from detailed FE investigations. More details about elastic-plastic crack tip stress 

fields under mode-II and mixed-mode loading can be found in Zhu and Chao (2001). In the 

asymptotic solution, Li and Hancock (1991) assumed three different stress sectors near the 

crack tip, that is, a constant stress sector (plastic), a fan field (plastic) followed by an 

elastic stress sector near the crack flank. Their 3-sector solution was extended by Zhu and 

Chao (2001) who, based on available FE results of Kim et al. (1996), Zhu and Chao 

(2000), proposed that the actual stress field of a stationary crack in elastic-perfectly plastic 

material under plane strain condition can be described by a 4-sector solution. Closed-form 

asymptotic solutions of crack tip fields were developed by them. Two undetermined 

parameters; Tp and Tπ were proposed to characterise the state of stress near the crack tip. 
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The proposed asymptotic solutions were compared with detailed FE results for various 

fracture specimens with constraint level ranging from high to low. 

 In this chapter asymptotic crack tip stress fields were developed for a stationary 

plane strain crack under mode-I loading. Incompressible, elastic-perfectly plastic material 

with Von-Mises yield criterion was assumed for the present study. Detailed investigations 

have revealed that in between the two extreme conditions of crack tip constraint, that is, 

between the fully plastic Prandtl field and the uniform stress field the general elastic-

plastic crack tip fields can be completely described by the 5-sector stress solution. The 4-

sector field proposed by Zhu and Chao (2001) is a subset of the general elastic-plastic field 

proposed in this work. It is well known that loss of constraint at the crack tip leads to an 

elastic sector at the crack flank, thus, leading to incomplete crack tip plasticity. This study 

has revealed that cases arise where severe loss of crack tip constraint can lead to 

compressive yielding of crack flank. This particular situation leads to 5-sector stress field 

where the elastic sector is sandwiched between the two plastic sectors of uniform stress 

state. Such 5-sector stress field exists in an overmatched weld where the relatively higher 

strength of weld leads to shielding effect on the crack tip and, thus, leads to loss of crack 

tip constraint. Detailed 2-D elastic plastic finite element analyses were performed on 

middle tension M(T), pure bending SE(PB) and C(T) specimens having a weld centre 

crack to examine the validity of the proposed 5-sector stress field. Both under matched and 

over matched cases were analysed to simulate a wide range of crack tip constraint. 

Excellent agreement was obtained between the proposed asymptotic crack tip stress field 

and finite element results. Detailed studies have revealed that, in the general case of elastic 

plastic crack tip fields, the Tπ parameter proposed by Zhu and Chao (2001) cannot be used 
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as a constraint parameter to represent a unique state of stress at the crack tip. A new 

constraint-indexing parameter TCS-2 is proposed which along with Tp parameter, suggested 

by Zhu and Chao (2001), is capable of representing the entire elastic plastic crack tip stress 

fields over all angles around a crack tip. Advantages of the proposed TCS-2 parameter over 

the Tπ parameter are discussed. It is demonstrated that the proposed constraint parameters 

are adequate to represent the crack tip constraint arising due to specimen geometry and 

loading conditions as well as additional constraint that arises due to weld strength 

mismatch. 

 

8.2    Governing equations 

 

We consider here a stationary crack in an incompressible elastic-perfectly plastic material 

under plane strain condition. Zhu and Chao (2001) have concluded that constraint has no 

effect on the stress state ahead of the crack tip for a mode-II crack in an elastic-perfectly 

plastic material. A similar conclusion was made by Chao and Yang (1996) for a power-law 

hardening material. In view of the above-mentioned conclusions, only mode-I loading is 

considered here. 

 

8.2.1    Equilibrium equations 

 

For elastic-perfectly plastic material numerical results of Dong and Pan (1990) have 

established that that all stress components near the crack tip are bounded and are, thus, 

functions of polar angle θ only. The equilibrium equations, thus, reduces to ordinary 
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differential equations and can be expressed in polar co-ordinate system, centred at the 

crack tip, in the following form  

 

                                                             
0r

rr
d
d

θ
θθ

σ σ σ
θ

+ − =                                           (8.1a) 

 

                                                             2 0r
d
d

θθ
θ

σ
σ

θ
+ =                                                 (8.1b) 

 

8.2.2    Plane strain condition 

 

If the elastic response of the material is considered as incompressible then due to constancy 

of volume in plastic deformation the body is fully incompressible. Thus, plane strain 

condition is same for both elastic and plastic sectors and can be expressed as 

 

                                                 
( ) ( )33 11 22

1 1
2 2 rr θθσ σ σ σ σ= + = +                                   (8.2) 

 

8.2.3    Yield criterion 

 

The Von-Mises yield criterion for plane strain condition can be expressed as 

 

                                                    
( )2 2 21

4 rr r kθθ θσ σ σ− + =                                              (8.3) 
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Here k is σy/√3, where σy is the yield strength in tension. The in-plane stress components in 

the plastic sector can be expressed in terms of a stress function ψ(θ) (Zhu et al., 1997) 

 

                                                      ( ) ( ) ( )cosrr m kσ θ σ θ ψ θ= −                                    (8.4a) 

 

                                                    ( ) ( ) ( )cosm kθθσ θ σ θ ψ θ= +                                     (8.4b) 

 

                                                         ( ) ( )sinr kθσ θ ψ θ=                                               (8.4c) 

 

8.2.4    Asymptotic solution in plastic sector 

 

When the in-plane stress components satisfying the yield criterion, that is, eq. (8.3) is 

substituted in the equilibrium equations, eq. (8.1), the governing equations in plastic sector 

leads to two different stress solutions near the crack tip. While one corresponds to a 

constant stress sector (in which the mean stress σm is a constant quantity) the other 

represents fan field (where the mean stress σm is a linear function of the polar angle θ). 

In constant stress sector 

 

                                                                  ( ) 2 oψ θ θ ψ= +                                              (8.5a) 

 

                                                                     ( ) 1m Cσ θ =                                                 (8.5b) 

In fan field  
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( )

2
nπψ θ π= +                                              (8.6a) 

 

                                                           ( ) 22 cos( )m k n Cσ θ θ π= − +                                 (8.6b) 

 

The constants ψo, C1, C2 and the integer n in eqs. (8.5) and (8.6) can be determined by 

boundary and continuity conditions. 

 

8.2.5    Asymptotic solution in elastic sector 

 

In an elastic sector in addition to satisfying the asymptotic equilibrium equations, eq. (8.1), 

the deformation field has to be compatible. Stresses in such an elastic sector can be finally 

expressed as (Sham et al., 1999)  

 

          ( ) cos 2 sin 2 2rr A B C Dσ θ θ θ θ= − − + +                              (8.7a) 

 

                                         ( ) cos 2 sin 2 2A B C Dθθσ θ θ θ θ= + + +                              (8.7b) 

 

                                         ( ) sin 2 cos 2r A B Cθσ θ θ θ= − −                                            (8.7c) 

 

The integration constants A, B, C and D can be determined from the boundary and 

continuity conditions. 
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8.2.6    Assembly of crack tip sectors 

 

Asymptotic elastic and plastic sectors were assembled in a manner that is consistent with 

the continuity of tractions, σθθ and σrθ across sector boundaries, as required by equilibrium 

condition. However, radial stress σrr may be discontinuous across the sector boundaries. 

Asymptotic form of yield criterion, eq. (8.3), may be used to find the two possible values 

of this radial stress as given below 

 

                                                  2 22rr rkθθ θσ σ σ= ± −                                                 (8.8)  

 

For a centred fan adjoining an elastic, or constant stress sector, σrθ = k. There can thus be 

no stress jump in σrr and full continuity of all the stress components is required. Thus the 

continuity of stress components can be simply expressed as  

 

                                                      ( ) ( )i iαβ αβσ θ σ θ− +=                                                   (8.9) 

 

Here θ-
i and θ+

i correspond to angles just before and after the border-delimitation angle θi, 

respectively.  

 

8.3    Elastic-plastic crack tip stress field under mode-I loading 

 

For a mode-I crack, the stress components are required in the upper half plane (0≤θ≤π). 

The traction free conditions on the crack flank and symmetric deformation requires that  



                                                                                                                                                                                         Chapter-8
  

 208

                            ( ) 0θθσ π± =               ( ) 0rθσ π± =               ( )0 0rθσ =                     (8.10) 

 

 The most general elastic-plastic crack tip stress field, for an incompressible elastic 

perfectly-plastic material, actually comprises of 4 plastic sectors and one elastic sector as 

shown in Fig. 8.1 (a). The 4-sector field, Fig. 8.1(b), is a degenerated version of this 

general 5-sector stress field. 

 The proposed 5-sector stress field comprises of a plastic sector of uniform stress 

just ahead of crack tip (0≤ θ≤ θ1), a fan field (θ1≤θ≤ θ2), a second constant stress sector 

(θ2≤θ≤ θ3), an elastic sector (θ3≤θ≤ θ4) and finally a third constant stress sector adjacent to 

the crack flank. Here θ1, θ2, θ3 and θ4 are the border angles separating the two adjacent 

stress sectors. It is easy to visualise that when θ4 =π, the proposed 5-sector field 

degenerates to the 4-sector stress solution. Since the first 3-sectors in proposed 5 sector 

field are identical to those of Zhu and Chao (2001) we omit the details and directly express 

the resulting equations as follows 

 

                                           ( )

( )

1

1 2

2 2 3

2 0
4

2

2
2

πθ θ θ

πψ θ θ θ θ

π θ θ θ θ θ

⎧ ≤ ≤ =⎪
⎪
⎪= ≤ ≤⎨
⎪
⎪ + − ≤ ≤⎪⎩

                          (8.11)   
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                              ( )

( ) 1
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2 2 3
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2
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m p

p

k T

k T

k T

ππ θ θ

σ θ π θ θ θ θ

π θ θ θ θ

⎧
+ + ≤ ≤ =⎪

⎪
⎪ ⎛ ⎞= + − + ≤ ≤⎨ ⎜ ⎟

⎝ ⎠⎪
⎪ ⎛ ⎞+ − + ≤ ≤⎪ ⎜ ⎟

⎝ ⎠⎩

                        (8.12) 

 

Here Tp is an undetermined constant in the asymptotic analysis. It has to be evaluated from 

full-field solution like SLF or finite element analysis. This Tp parameter was defined by 

Zhu and Chao (2001) as  

 

                                                   ( ) ( )Pr0 0app andtl
pT θθ θθσ σ= −                                        (8.13) 

 

Thus, Tp essentially represents the hydrostatic stress ahead of the crack tip and carries the 

same physical meaning as that of Q proposed by O’Dowd and Shih (1991). The stress 

components in the second constant stress sector, using eq. (5), are as follows 

 

                                        
( ) ( )2 2

31 2 sin 2
2rr pk k Tσ θ π θ θ θ⎛ ⎞= + − + − +⎜ ⎟

⎝ ⎠
                   (8.14a) 

 

                                      
( ) ( )2 2

31 2 sin 2
2 pk k Tθθσ θ π θ θ θ⎛ ⎞= + − − − +⎜ ⎟

⎝ ⎠
                    (8.14b) 

 

                                                         ( ) ( )2cos 2r kθσ θ θ θ= −                                       (8.14c) 
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In the third constant stress sector, adjacent to crack flank, the stress distribution can be 

obtained by using the traction free condition on the crack flank, that is,  

 

                                             ( ) 0θθσ π =                              ( ) 0rθσ π =                         (8.15) 

 

In terms of stress function, ψ(θ), the boundary conditions, eq. (8.10) can be expressed as 

follows 

 

                                                ( )sin 0ψ π = ( ) ( )cosm kσ π ψ π= −                                (8.16) 

 

Thus, in the third constant stress sector ( 4θ θ π≤ ≤ ), the general solution can be expressed 

as 

  

                                                            ( ) 2 nψ θ θ π π= − +                                             (8.17) 

 

It may be noted that the case n=0 would lead to tensile yielding of the crack flank that 

happens in case of the Prandtl field. For compressive yielding of crack flank n=1 and the 

resulting stress function and stress components can be expressed as follows 

 

                                                                   ( ) 2ψ θ θ=                                                    (8.18) 

 

                                                       ( ) ( )1 cos 2rr kσ θ θ= − +                                         (8.19a) 
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                                                        ( ) ( )1 cos 2kθθσ θ θ= − −                                        (8.19b) 

 

                                                             ( ) sin 2r kθσ θ θ=                                              (8.19c) 

 

For a fully continuous stress solution around the crack tip, the integration constants (A, B, 

C and D) that describes the stress distribution in the elastic sector can be expressed in 

terms of the border angles separating the two adjacent stress sectors by using the continuity 

conditions, eq. (8.9). Omitting the algebraic details, the resulting equations can be 

expressed as follows  

 

     

( ){ } ( )( )
( )

3 3 2 4 3 2 3 4

4 3

cos 2 cos 2 sin 2 sin 2 sin 2 sin 2
1 cos 2

B k
θ θ θ θ θ θ θ θ

θ θ

⎡ ⎤− − + − −
= − ⎢ ⎥

− −⎢ ⎥⎣ ⎦
        (8.20a) 

 

                                        

( )3 2 3

3 3

sin 2 sin 2
cos 2 cos 2

A k B
θ θ θ
θ θ
−⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

                                      (8.20b) 

 

                                        4 4 4sin 2 cos 2 sin 2C A B kθ θ θ= − −                                       (8.20c) 

 

                                ( )4 4 4 4cos 2 sin 2 2 1 cos 2D A B C kθ θ θ θ= − − − − −                       (8.20d) 

 

Continuity conditions provide two additional equations, which are as follows 
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2 3

31 2 2
2 pk T C Dπ θ θ⎛ ⎞+ − + = +⎜ ⎟

⎝ ⎠
                                  (8.21) 

   

                                                              42C D kθ + = −                                                  (8.22) 

 

These two equations are insufficient to solve for three unknowns, that is, θ2, θ3 and θ4. In 

other words, the Tp parameter alone cannot characterise the crack tip stresses. It may be 

noted that the Tπ parameter proposed by Zhu and Chao (2001) that was used to describe the 

stress state in the elastic sector near the crack flank (in case of 4-sector field) losses its 

applicability in the general elastic plastic 5-sector stress solution. For various possible 

states of stress near the crack tip (for a 5-sector solution) the value of Tπ parameter is fixed 

(Tπ=-2k). In view of this limitation of Tπ parameter we propose the hydrostatic/mean stress 

in the second constant stress sector as an independent and additional parameter which in 

conjunction with Tp parameter is used to describe the general state of stress near the crack 

tip in an elastic perfectly-plastic material.  

 In an analogous way to the description of Tp parameter we define the TCS-2 

parameter as the difference of mean stress in the actual state of stress from the reference 

Prandtl field in the second constant stress sector. It may be noted that in a constant stress 

sector the mean stress is not a function of polar co-ordinate θ (σm=constant) and thus the 

TCS-2 parameter can be defined anywhere in the second constant stress sector. 

 

                                                     
Pr

2
app andtl

CS m mT σ σ− = −                                              (8.23a) 
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                                                         2
app

CS mT kσ− = −                                                   (8.23b) 

 

In the second constant stress sector ( 2 3θ θ θ≤ ≤ ) we have 

 

                                                
2

31 2
2m pk Tσ π θ⎛ ⎞= + − +⎜ ⎟

⎝ ⎠
                                             (8.24) 

 

The angular position of the border separating the fan field and the second constant stress 

sector can be expressed in terms of the two constraint indexing parameters as follows  

 

                                                         

( )2
2

3
4 2

CS pT T
k

θ π − −
= −                                           (8.25) 

 

For a given value of Tp and TCS-2 parameter, θ2 can be obtained from eq. (8.25). Eqs (8.21) 

& (8.22) can then be used to evaluate the two unknown variables, that is, θ3 and θ4. Thus, a 

complete characterisation of crack tip stresses is possible by means of these two 

independent constraint indexing parameters. 

 

8.3.1    Special cases of the general 5-sector stress solution 

 

i)  A definite mathematical relation exists between the constraint parameters Tp and 

TCS-2 when transition occurs from the 5-sector field to the 4-sector stress field. This 

limiting condition corresponds to the situation when compressive yielding just initiates at 
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the crack tip. Under this special case θ4 =π and, thus, following relations can be easily 

obtained 

 

                                                              

( )3 2

3

cos 2
sin

A k
θ θ
θ
−

=                                         (8.26a) 

 

                                                              
2

3

cos 2
1 cos 2

B k θ
θ

= −
−

                                           (8.26b) 

 

                                                             C B= −                                                             (8.26c) 

 

                                                             2D B Aπ= −                                                    (8.26d) 

 

On substituting θ4=π in eqs. (21) & (22) and after a few algebraic simplifications the 

following relations can be easily obtained. 

 

     

( ) ( )( ) ( )( )3 1 1
3 3 3 3

3

32 2 cos cos sin cos sin
2 1 cos 2

pT
k

π θ
π θ θ θ θ

θ
− −−⎛ ⎞

− + + = + − +⎜ ⎟ −⎝ ⎠
         (8.27a) 

 

                                      
( )1

2 3 3
3 cos sin
2CS pT T k π θ θ−

−
⎡ ⎤= + − −⎢ ⎥⎣ ⎦

                                  (8.27b)                             

 

This mathematical relation simply means that at θ4=π the compressive yielding would 

occur just at the crack flank and Tp and TCS-2 parameter are not independent. This is the 
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limiting case up to which the 4-sector stress field is valid. Beyond this condition any 

further loss of crack tip constraint would spread compressive yielding in the region 

adjacent to crack flank and the resulting stress distribution cannot be described by the 4-

sector field. On the contrary, with a rise in crack tip constraint the crack flank comes under 

elastic condition and eq. (8.22) is not valid. Thus, Tp and TCS-2 parameter again become 

independent and can be used to characterise the state of stress near the crack tip. For a 

given value of Tp and TCS-2 parameter, eq. (8.25) can be used to obtain the border angle θ2. 

Eq. (8.21) can then be used to evaluate the border angle θ3 and hence all the 4 integration 

constants (A, B, C and D). The complete stress distribution in the elastic sector can be 

obtained using eq. (8.8). This condition corresponds to the 4-sector solution and for this 

special case either TCS-2 or Tπ in conjunction with Tp parameter can be used to define the 

crack tip stresses. The following relation exists between the TCS-2 or Tπ parameter for the 

case of 4-sector stress field 

 

                              

2
3

3

1 31 cos
sin 2

CS pT TT
k k
π πθ

θ
−⎛ ⎞⎧ − ⎫⎛ ⎞⎪ ⎪= − + − +⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠

                               (8.28) 

 

As demonstrated by Zhu and Chao (2001), for commonly used fracture mechanics 

specimens, the constraint conditions near the crack tip leads to 4-sector stress solution. 

Comparison of crack tip stresses obtained from detailed FE analysis of Kim et al. (1996), 

Zhu and Chao (2000) with the asymptotic 4-sector stress solution in terms of Tp and Tπ 

parameters have already been given by Zhu and Chao (2001). For all such cases the 

numerical values of Tp, TCS-2 and Tπ parameters are provided in Table 8.1. Zhu and Chao 
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(2001) used the values of Tp and Tπ parameters, obtained from FE analysis, to obtain the 

values of border delimitation angles (θ2 and θ3) and, hence, the complete crack tip stress 

distribution. In the present analysis, we have used the values of Tp and TCS-2 parameters to 

obtain the border delimitation angles (θ2 and θ3). Once the angles θ2 and θ3 are known Tπ 

parameter can be calculated from stress distribution of the elastic sector using eq. (8.8) or 

directly from eq. (8.28). Both the approaches yield identical results for crack tip stress 

distribution. 

 

Table 8.1: Comparison of 4-sector stress field variables in terms of Tπ and TCS-2 parameters 

4-sector solution in terms 

of Tπ parameters 

4-sector solution in terms of 

TCS-2 parameters 

 

Specimen 

Type 

 

Tp  

( FEA) Tπ (FEA) θ2  

 

θ3 TCS-2 (FEA) θ2  

 

θ3 

SENB 

(a/W=0.1) 

-0.969σo -0.827σo 88.5° 110.8° -0.032σo 88.5° 110.8° 

SENB 

(a/W=0.2) 

-0.588σo -0.877σo 107.4° 143° -0.032σo 107.4° 143° 

SENB 

(a/W=0.3) 

-0.119σo -0.352σo 128.2° 157.8° 0.018σo 128.2° 157.8° 

DECP 

(a/W=0.5) 

-1.092σo -0.856σo 84° 106° -0.064σo 84° 106° 

M(T) 

(a/W=0.5) 

-1.577σo -0.903σo 62° 65° -0.106σo 62° 65° 
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ii)  When θ2=θ3 and θ4=π, the 5-sector field degenerates to the 3-sector stress field of 

Li and Hancock (1999). For this special case following relation can be easily obtained. 

 

                                 

( )22
2 2

2 2

cos32 1 2 cos 2
2 sin 1 cos 2

pT
k

π θθθ π θ
θ θ

−⎛ ⎞= − − − −⎜ ⎟ −⎝ ⎠
                      (8.29) 

 

Keeping eqs. (8.29) & (8.25) in view, it becomes obvious that for the case of 3-sector field 

θ2 and, hence, TCS-2 parameter are not independent. Thus, for this special case Tp parameter 

alone can characterise the entire crack tip stress field. This conclusions was already made 

earlier by Zhu and Chao (2001). 

iii)  When Tp =0, that is for the case of Prandtl field it can be easily shown that 

θ2=3π/4 and TCS-2=0 

iv) When Tp =-(2+π)k, that is for the case of uniform stress field it can be easily shown 

that θ2=π/4 and TCS-2 = -2k 

 

8.4    Finite element simulation of crack tip stress fields for different 

constraint levels in incompressible elastic-perfectly plastic material 

 

In the previous section, 5-sector stress solution was proposed to represent the crack tip 

stress fields, in an incompressible elastic-perfectly plastic material, in terms of two 

constraint indexing parameters, that is, Tp and TCS-2. As discussed by Nemat-Nasser and 

Obata (1984) such an asymptotic analysis cannot be used to evaluate these unknown 

parameters. To verify the proposed asymptotic 5-sector field detailed full-field FE analyses 
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were performed to simulate a wide range of Tp and TCS-2 parameter representing different 

crack tip constraint levels. 

 For non-hardening material, detailed SLF analysis (McClintock, 1971) and many 

numerical studies (Lee and parks, 1993; Kim et al., 1996; Zhu and Chao, 2000) have 

clearly established the effects of specimen geometry and loading conditions on crack tip 

stresses. In last one decade considerable work has been done on strength mismatch welds 

where the difference in plastic properties of base and weld material is accounted. Various 

numerical (FE) as well as experimental studies have indicated that the strength mismatch 

between base and weld material has appreciable influence on crack tip stresses. Thus, 

while analysing these strength mismatch weld it is important to consider constraint effects 

due to geometry and loading of cracked structure as well as due to material strength 

mismatching. Within the framework of small-scale yielding Burstow et al. (1998) used the 

modified boundary layer formulation to investigate the crack tip constraint in strength 

mismatch weld. The effects of specimen geometry on the crack tip stresses were modelled 

by varying the magnitude of applied T-stress and the effects of constraint due to strength 

mismatching were investigated by changing the strength of base material with respect to 

weld. 

 In this study detailed 2-D plane strain FE analyses were performed on middle 

tension M(T) specimen, pure bending specimen SE(PB) and compact tension C(T) 

specimen under large-scale plasticity (at limit state) to model different crack tip constraint. 

Only idealised weld without any heat affected zone (HAZ) was considered. Stationary 

weld centre crack running parallel to the interface of base and weld material was modelled 

(see Fig. 1.1). The two materials were assumed to have same elastic modulus and 
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Poisson’s ratio but mismatch in their yield strength. The elastic response of base and weld 

material was modeled as isotropic and almost incompressible (ν=0.49). This small 

departure from full incompressibility was suggested by Sham et al. (1999) to avoid 

numerical problems with mesh locking. The effects of geometry were modelled by 

changing the weld slenderness ratio (ψ) while the strength mismatch effects were 

incorporated by changing the mismatch ratio (M). These two parameters are defined as 

follows 

 

                                                                   

yw

yb

M
σ
σ

=
                                                     (8.30)

 

 

                                                            W a l
H H

ψ −
= =                                                   (8.31) 

 

Material mismatch ratio M and weld slenderness ratio ψ were systematically varied to 

create a wide range of crack tip constraint. For over matched welds, representing low crack 

tip constraint, analyses were performed for 1 ≤ M ≤ 2. This range of mismatch covers 

practically the entire range of over matching that is likely to occur in most engineering 

applications. Similarly for under matched welds, representing high constraint, FE analyses 

were performed for 0.25 ≤ M ≤ 1. Weld slenderness ratio was also varied (1.667 ≤ ψ ≤ 10) 

to account for both conventional and narrow gap welds.  Fig. 5.10 shows the FE 

discretisation scheme used in present investigation. To avoid problems associated with 

incompressibility eight-noded plane strain element with reduced integration were 

employed in all FE calculations. 16 eight-noded elements comprised the upper-half of 
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crack tip and forty circumferential rings of element are surrounding the crack tip. The 

innermost ring of the elements has one side collapsed on to the crack tip. All the collapsed 

nodes get separated after the loading is applied. Due to symmetry only one-quarter of M(T) 

specimen was modelled. Appropriate symmetric boundary conditions were applied on the 

two planes of symmetry. This one-quarter model contains about 1400, 8-noded elements 

and 4000 nodes. The radial extent of the elements in the first ring was ≈ 2x10-4 b where b 

denotes the uncracked ligament. The numerical model employs the small-strain 

formulation. The material was model as isotropic, elastic-plastic obeying the Von-Mises 

yield criterion. Uniform rigid displacement was applied on the top edge of this FE model 

and the specimen was loaded to its limit state. Results of crack tip stress fields obtained 

from detailed FE analyses and their comparison with the proposed 5-sector stress field are 

presented in the following subsection. For the case of homogeneous M(T) specimens, Zhu 

and Chao (2000) have presented results of crack tip stresses obtained from detailed FE 

analyses. In order to investigate the effects of applied loading conditions on crack tip 

stresses they applied two types of loadings on the top edge of the FE model: one was 

uniformly distributed applied load and the other was uniform rigid displacement. These 

two cases were used as a benchmark for the present FE calculations. Excellent agreement 

was obtained between the two FE investigations (see Fig. 8.2). 

 

8.5    Results 

 

In this section results obtained from detailed elastic-plastic FE analyses are presented. 

Crack tip stress fields obtained from the proposed asymptotic 5-sector stress fields were 
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compared with the full field FE analyses of middle tension M(T) specimen, pure bending 

specimen SE(PB) and compact tension C(T) specimen, having a weld centre crack, under 

large-scale plasticity (at limit state). For all these specimens a/W was kept as 0.5. Detailed 

comparison of analytical results with FE analyses is presented here only for few 

representative cases.  

 

8.5.1    Middle tension M(T) specimen 

 

For the case of M(T) specimen having a weld centre crack, the normalised values of 

constraint-indexing parameters, that is, Tp and TCS-2 obtained directly from FE analyses are 

provided in Table 8.2. To demonstrate the limitation of Tπ parameter, numerical values of 

this parameter obtained from eq. (8.28) is also provided. It may be mentioned that the Tπ 

parameter obtained from eq. (8.28) was in close agreement with FE results. 

 

Table 8.2: Numerical values of Tp, TCS-2 and Tπ parameters for a M(T) specimen having a 

weld centre crack obtained from FE analyses. 

Weld 

slenderness 

ratio (ψ) 

Mismatch 

ratio (M) 

Tp/k 

(FEA) 

TCS-2/k 

(FEA) 

Tπ/k 

 eq. (8.28) 

Crack tip stress field 

classification 

0.25 0 0 0 Prandtl field 

0.5 -0.371 0.0587 -0.821 4-sector stress field 

0.75 -1.959 -0.0648 -1.45 4-sector stress field 

 

 

 

10 0.9 -2.464 -0.3426 -1.60 4-sector stress field 
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1.25 -3.027 -0.791 -1.883 4-sector stress field 

1.5 -3.243 -0.952 -2 4-sector stress field 

1.75 -3.443 -1.133 -2 5-sector stress field 

 

 

 

 2 -3.611 -1.232 -2 5-sector stress field 

0.25 0 0 0 Prandtl field 

0.5 -0.376 0.0898 -0.736 4-sector stress field 

0.75 -1.928 -0.0347 -1.433 4-sector stress field 

0.9 -2.439 -0.312 -1.59 4-sector stress field 

1.25 -3.076 -0.782 -1.843 4-sector stress field 

1.5 -3.3 -0.995 -2 4-sector stress field 

1.75 -3.498 -1.165 -2 5-sector stress field 

 

 

 

5 

2 -3.625 -1.247 -2 5-sector stress field 

0.9 -2.574 -0.389 -1.627 4-sector stress field 

1.25 -3.011 -0.729 -1.81 4-sector stress field 

1.5 -3.359 -1.04 -2 4-sector stress field 

1.75 -3.475 -1.113 -2 5-sector stress field 

 

 

 

3.33 

2 -3.52 -1.18 -2 5-sector stress field 

0.5 -0.401 0.0832 -0.787 4-sector stress field 

0.75 -1.962 -0.0658 -1.45 4-sector stress field 

0.9 -2.452 -0.323 -1.598 4-sector stress field 

1.5 -3.265 -0.979 -2 4-sector stress field 

1.75 -3.32 -1.092 -2 5-sector stress field 

 

 

 

2.5 

2 -3.34 -1.109 -2 5-sector stress field 
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0.25 -1.45 0.199 -1.242 4-sector stress field 

0.5 -1.475 0.09 -1.304 4-sector stress field 

0.75 1.987 -0.0378 -1.44 4-sector stress field 

0.9 -2.559 -0.3893 -1.629 4-sector stress field 

1.25 -3.072 -0.767 -1.825 4-sector stress field 

1.5 -3.213 -0.948 -2 4-sector stress field 

1.75 -3.212 -1.026 -2 5-sector stress field 

 

 

 

1.667 

2 -3.276 -1.058 -2 5-sector stress field 

 

 

In Figs. 8.3-8.6 comparison of angular variation of crack tip stress fields obtained from 

analytical solutions with FE results are presented for a thin weld, described by ψ=10, for 

various mismatch ratios M. The case ψ=10 is representative of welds produced by electron 

beam welding or by narrow gap welding technique. For a thin highly undermatch weld 

(Fig. 8.3) it can be seen that the mean stress (constraint) near the crack tip is very high and 

the full Prandtl field develops near the crack tip. As the degree of overmatch increase (Fig. 

8.4) the mean stress near the crack tip decrease and an elastic sector appears near the crack 

flank. For highly overmatch welds (Fig. 8.5 and 8.6) the mean stress nearly get saturated 

but plastic yielding in compression starts at the crack flank and the yielded region increases 

in size with the degree of weld overmatching. For such cases the stress fields, particularly 

in the backward sector (90°≤θ≤180°), can not be described by the 4-sector stress field. The 

results obtained from the proposed 5-sector stress fields were in excellent agreement with 

FE solutions for the entire range of 0°≤θ≤180°. 
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 Figs. 8.7-8.9 describes the angular variation of crack tip stress fields for a thick 

weld (ψ=1.67) for various mismatch ratios M. The observations made are very similar to 

the case of a thin weld as discussed in previous paragraph. 

 

8.5.2    Pure bending SE(PB) specimen 

 

For the case of SE(PB) specimen having a weld centre crack, the normalised values of the 

constraint-indexing parameters, that is, Tp and TCS-2  were obtained directly from FE 

analyses. The angular variation of crack tip stresses obtained from the proposed analytical 

solutions was compared with FE results for various cases. The effect of strength mismatch 

ratio M and weld slenderness ratio ψ on the crack tip stress field was very similar to that 

observed for a M(T) specimen. It was noted that two different cases having different values 

of the mismatch ratio M and weld slenderness ratio ψ but having nearly same value of the 

proposed constraint parameters lead to almost similar stress fields. An example of such a 

case is shown in Fig. 8.10. 

 

8.5.3    Compact tension C(T) specimen 

 

The case of C(T) specimen having a weld centre crack was also analysed. The effect of 

strength mismatch ratio M and weld slenderness ratio ψ on the crack tip stress field was 

examined. The conclusions made from the study are very similar to those discussed for the 

case of SE(PB) specimen. 
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8.6    Discussion 

 

For mode-I crack in an elastic-perfectly plastic material the general elastic-plastic crack tip 

stress field is a 5-sector solution that can be completely described by Tp and TCS-2 

parameters. For high constraint geometries like DECP Tp ≈ 0 that leads to complete 

yielding of the crack tip. For such cases the Tp parameter alone can characterise the crack 

tip stresses. With the loss of crack tip constraint an elastic sector appears in the region 

adjacent to crack flank and two independent parameters, that is, Tp and TCS-2 (or Tπ) are 

required for complete description of stress field. The crack tip stresses of most of the 

commonly used fracture specimens can be completely characterised by means of 4-sector 

solution. With a further reduction in crack tip constraint, the integration constant A 

becomes equal to k, the yield criterion gets satisfied on the crack flank, that is, at θ=π and 

Tπ parameter becomes -2k. This is the transition point between the 4-sector and the 5-

sector field. Beyond this stage any further loss of crack tip constraint would lead to plastic 

yielding in the region adjacent to crack flank and the elastic sector gets pressed between 

the two plastic sectors of uniform stress state. This situation arises in case of over matched 

welds where the relatively higher strength of weld material produces a shielding effect on 

the crack tip and thus severely lowers the crack tip constraint. In all such cases the value of 

Tπ parameter remains as -2k and thus the 4-sector solution is incapable to describe the shift 

of elastic sector as a function of crack tip constraint. From the detailed investigations it 

appears that the proposed TCS-2 parameter possesses some advantages over the Tπ parameter 

suggested by Zhu and Chao (2001). In the general case of elastic plastic crack tip stress 

field (5-sector solution) the Tπ parameter cannot characterise the crack tip stresses 
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particularly near the crack flank. For the value of Tπ =-2k many different states of crack tip 

stresses are possible. While one of the states corresponds to the well-known fully plastic 

uniform stress field, many other states of stresses are possible for the cases where 5-sector 

stress solution exists such as in case of over matched M(T) specimen. Thus, while the Tπ 

parameter is valid only for the 4-sector stress field the proposed TCS-2 parameter is 

applicable for all possible states of crack tip stresses and is, thus, more general. In addition 

to the above-mentioned aspects it is the apprehension of the writer that TCS-2 parameter may 

have some influence on the mechanism of fracture. It is widely accepted that two-

parameter approaches like J-T (Betegon and Hancock, 1991) and J-Q (O’Dowd and Shih, 

1991) bring an improvement over the conventional single parameter (J-based) approach in 

characterization of fracture toughness. However, they in turn are not adequate enough to 

fully resolve this issue. These two-parameter approaches are based on the notion that the 

state of stress in leading sector (0≤θ≤90˚) near the crack tip governs the fracture process. 

Actually O’Dowd and Shih (1991) proposed this concept based on their numerical study 

where they demonstrated that the Q-parameter can accurately describe the state of stress in 

this leading sector. However, no experimental study has yet been reported which clearly 

shows that the state of stress in the leading sector only governs this fracture process. In 

light of this, a qualitative statement that an accurate characterization of fracture process 

requires an accurate description of the state of stress, at least in plastic sectors near the 

crack tip, is quite plausible. This perspective, thus, supports that TCS-2 parameter is more 

suitable than Tπ parameter evaluated from the elastic sector. In view of this it is felt that 

TCS-2 parameter in conjunction with Tp parameter is more appropriate for a general 

characterisation of crack tip stress field in an elastic perfectly plastic material under mode-I 
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loading. Since the present work is concerned with elastic-perfectly plastic material 

application of the proposed constraint parameters to the actual strain-hardening material is 

yet to be established. Thus, this work may be looked upon as the first step towards this 

important issue of fracture characterization from the consideration of crack tip stresses. 
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Fig. 8.1: Description of elastic-plastic crack-tip stress fields under mode I loading by 
(a) proposed 5-sector field and (b) 4-sector solution of Zhu and Chao (2001). 
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Fig. 8.2: Comparison of crack-tip stresses for M(T) specimen obtained from present 
FE analysis with those of Zhu and Chao (2001) (a) under rigid displacement loading 
condition and (b) under uniformly distributed applied pressure. While continuous 
line shows present FE results, the open circles refer to FEA of Zhu and Chao (2001). 
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Fig. 8.3: Comparison of crack-tip stresses for mismatch welded M(T) specimen with 
ψ=10. (a) M=0.25 and (b) M=0.75. While continuous line shows the results of 
asymptotic 4-sector stress solution, the open circles refer to FEA. 
 

(a) 

0

0.5

1

1.5

2

2.5

3

0 30 60 90 120 150 180

σθθ 

σrθ 

σrr σe 

σm 

θ 

σ i
j/σ

o 

M=0.25 

(b) 

‐1

‐0.5

0

0.5

1

1.5

2

0 30 60 90 120 150 180

σθθ 

σrθ 

σrr 

σe 
σm 

θ 

σ i
j/σ

o 

M=0.75 



                                                                                                                                                                                         Chapter-8
  

 231

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.4: Comparison of crack-tip stresses for mismatch welded M(T) specimen with 
ψ=10. (a) M=1.25 and (b) M=1.5 that leads to compressive yielding just on crack flank. 
While continuous line shows the results of asymptotic 4-sector stress solution, the open 
circles refer to FEA.
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M=1.75; 4-Sector solution
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Fig. 8.5: Comparison of crack-tip stresses for mismatch welded M(T) specimen with 
ψ=10 and M=1.75. (a) Asymptotic 4-sector stress solution proposed by Zhu and Chao 
(2001). (b) Proposed 5-sector stress solution. The open circles refer to results obtained 
from FEA. 
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Fig. 8.6: Comparison of crack-tip stresses for mismatch welded M(T) specimen with 
ψ=10 and M=2. (a) Asymptotic 4-sector stress solution proposed by Zhu and Chao 
(2001). (b) Proposed 5-sector stress solution. The open circles refer to results obtained 
from FEA. 
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Fig. 8.7: Comparison of crack-tip stresses for mismatch welded M(T) specimen with 
ψ=1.67. (a) M=0.25 and (b) M=0.75. While continuous line shows the results of 
asymptotic 4-sector stress solution, the open circles refer to FEA. 
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Fig. 8.8: Comparison of crack-tip stresses for mismatch welded M(T) specimen with 
ψ=1.67 and M=1.75. (a) Asymptotic 4-sector stress solution proposed by Zhu and 
Chao (2001). (b) Proposed 5-sector stress solution. The open circles refer to results 
obtained from FEA. 
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Fig. 8.9: Comparison of crack-tip stresses for mismatch welded M(T) specimen with 
ψ=1.67 and M=2. (a) Asymptotic 4-sector stress solution proposed by Zhu and Chao 
(2001). (b) Proposed 5-sector stress solution. The open circles refer to results obtained 
from FEA. 
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Fig. 8.10: Comparison of crack-tip stresses for mismatch welded SE(PB) specimen with. 
(a) Tp/k=-1.28, TCS-2/k=-1.32  and (b) Tp/k=-1.16, TCS-2/k=-1.48. While continuous line 
shows the results of asymptotic 4-sector stress solution, the open circles refer to FEA. 
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CHAPTER 9 
 

Conclusions and future work 
 

 

In this chapter studies performed in this work are summarised. In addition to conclusions 

further possible extensions of the present study that may be carried out in future are also 

discussed. 

 

9.1    Conclusions 

Salient conclusions drawn from this work are as follows 

• The modified upper bound (MUB) theorem of limit analysis for plane strain problems 

was developed. The proposed theorem is adequate to account weld strength mismatch 

effects on the fracture mechanics parameters. 

• In comparison to slip line fields describing the stress distribution in homogeneous 

cracked fracture specimens, fields for fracture specimens having a weld centre crack 

are more complicated. In this work the detailed structure of global plastic fields that 

occurs in pure bending SE(PB) specimen, compact tension C(T) specimen and middle 

tension M(T) specimen having a weld centre crack was presented. Proposed fields 

were confirmed by performing detailed elastic-plastic FE analysis. 

• Accurate analytical solutions of the limit load and plastic η-factor of plane strain 

fracture specimens having a weld centre crack were obtained using the proposed MUB 
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theorem. Proposed analytical solutions were validated by detailed finite element 

results obtained by the author as well as with those available in literature. Excellent 

agreement was observed between the two solutions. 

• Weld strength mismatch have significant effects on plastic η-factor and, hence, on 

estimated fracture toughness of weldments. This is particularly more important for 

overmatched welds which are typically used in various applications and whose 

fracture toughness may be overestimated by the use of toughness estimation 

procedures developed for standard homogeneous fracture specimens. 

• In between the two extreme conditions of crack tip constraint, that is, between the 

fully plastic Prandtl field (representing high constraint) and the uniform stress field 

(representing low constraint) the most general elastic-plastic crack tip fields can be 

completely described by the 5-sector stress solution proposed in this work. The 4-

sector field proposed by Zhu and Chao (2001) is a subset of the general elastic-plastic 

field proposed in this work 

• It is well known that the loss of constraint at the crack tip leads to an elastic sector at 

the crack flank leading to incomplete crack tip plasticity. This study has revealed that 

cases arise where the severe loss of crack tip constraint can lead to compressive 

yielding of crack flank. This particular situation leads to 5-sector stress field where the 

elastic sector is sandwiched between the two plastic sectors of uniform stress state. 

• Detailed studies have revealed that, in the most general case of elastic plastic crack tip 

fields, the Tπ parameter proposed by Zhu and Chao (2001) cannot be used as a 

constraint indexing parameter to represent a unique state of stress at the crack tip. A 
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new constraint parameter TCS-2 is proposed which along with Tp is capable of 

representing the general elastic plastic crack tip stress fields over all angles around a 

crack tip.  

• The asymptotic variation of crack tip stresses in plane strain fracture specimens having 

a weld centre crack under mode I loading, for various strength mismatch ratio M and 

weld slenderness ratio ψ, is very similar to what has been observed in different 

homogeneous fracture specimens. The crack tip stresses for all such cases can be fully 

described by the proposed 5-sector stress solution.  

• Detailed 2-D elastic plastic finite element analyses were performed to examine the 

validity of the proposed 5-sector stress field for a wide range of crack tip constraint. 

Excellent agreement was obtained between the proposed asymptotic crack tip stress 

field and the finite element results. 

• For elastic-perfectly plastic material at limit state, the proposed constraint parameters, 

that is, Tp and TCS-2 are adequate to represent the crack tip constraint arising due to 

specimen geometry and loading conditions as well as the additional constraint arising 

due to weld strength mismatch. It is demonstrated that two different type of specimens 

(with different geometries and loading condition) having different weld strength 

mismatch ratio M and weld slenderness ratio ψ but having the same values of the 

proposed constraint parameters have identical crack tip stress fields. Thus, it seems 

that once these constraint parameters are available the fracture mechanics assessment 

of these heterogeneous welds can be carried out in exactly similar way as for 
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homogeneous specimens. Several activities are going on in the author's group to 

validate this last statement in a comprehensive way. 

 

9.2    Future work 

Some of the possible extensions of the work reported in this thesis are listed below 

• The present study was based on the assumption of elastic-perfectly plastic (non-

hardening) material. Real materials, however, do not satisfy such ideal conditions 

and show significant strain hardening. In metal forming processes, attempts have 

been made to incorporate the effect of strain hardening on extrusion pressure etc 

using mean strain concepts (Johnson and Kudo, 1962). Halling and Mitchell (1967) 

demonstrated that the SLF pattern of extrusion through a smooth die was not much 

affected by the form of stress-strain relationship. Thus, it would be worth trying to 

extend the present study to real strain hardening materials. 

• The present work was focused on the problem of a stationary crack lying at the 

centre of a strength mismatched weld. In an actual weld joint crack may lie, 

however, anywhere also. The proposed MUB theorem may be used to analyse such 

cases but the structure of global plastic fields need to be established. Such studies 

may be carried out in future to analyse the structural integrity of interfacial cracks 

that can form at the heat affected zone (HAZ) and base metal interface. 
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