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search

Table 1: Pre-processing codes

Sr. No. Code Description

1. Cloud-Generator Generates nodes or cloud of points using elliptic,

transfinite interpolation based grid generator.

2. Cloud-Blanker Blanks background cloud due to presence of bodies.

3. Cloud-Merger Merges sub-clouds around each bodies with the

background cloud.

4. Cloud-Neb-Flag Generates connectivity, assigns boundary flags

and direction cosines for the treatment of

boundary points.

Table 2: Flow Solver codes
Sr. No. Code Description

1. SLKNS SLKNS code for continuum,

non-continuum slip flows.

2. SLKNS-Polar SLKNS code for axi-symmetric case.

The code is three dimensional as it updates

azimuthal velocity.



Table 3: Parallelization codes
Sr. No. Code Description

1. Cloud-Graph-Generator Generates graph based on symmetric

connectivity required for partitioning.

2. Comm-Schedule Schedules the contention free optimum

communication based on number of processor

and decomposed domains and prepares

a look-up table.

3. Cloud-Map-G2L Maps the global data arrays to local data arrays

belonging to decomposed domains.

4. Cloud-Sequencer Does cloud sequencing from coarse, medium

to fine cloud.

5. Parallel-SLKNS Parallel version of SLKNS codes for continuum,

non-continuum slip flows.

6. Reconstruct-Cloud Reconstructs data from all processors and

prepares plot files for post-processing.

Table 4: Optimization codes and subroutines

Sr. No. Code Description

1. Cloud-Adapter Generates cloud after taking input from the

optimization code by merging and blanking operations.

2. Param Subroutine for parametrization and

boundary surface generation.

3. Multi-Opt Subroutine for multi-objective optimization based on

reference point approach and ϵ dominance strategy.

This subroutine plugs into existing Genetic

Algorithm (GA), Ant Colony Optimization (ACO),

Non-Linear Simplex codes.



Nomenclature

List of some salient variables, constants and symbols.

Greek Symbols

αg viscosity coefficient
α(σv) parameter as a function of tangential

momentum coefficient in viscosity relationship
α0, α1

i ,α
2
ik properties of the system in equilibrium

β thermal speed = (2RT )−1

γ ratio of specific heat
δ Dirac delta function
δu statistical fluctuation
δo exponent of the viscosity law of the gas
δ(BGK/HS) first order slip parameter
δlayer Ekman and Stewartson boundary layer
ε Rossby number
ϵi factor used in ϵ-dominance rank
ηi slope of the connectivity point Pi
κ thermal conductivity
θ azimuthal variable
ϑτ,1, ϑτ,2, ϑτ,3 moment closure coefficients associated with

the shear stress terms for Burnett equation.
ϑq,1, ϑq,2, ϑq,3 moment closure coefficients associated with

the heat flux vector terms for Burnett equation.
λ mean free path
λ±E eigenvalues of the least square matrix C
µ, µnum physical viscosity and numerical viscosity
ν collision frequency

ξ1,τ , ξ̃1,τ Chapman-Enskog polynomials associated with
the shear stress tensor.

ξ1,q, ξ̃1,q Chapman-Enskog polynomials associated with
the heat flux vector.



ρ density
ρsb density of particles in side beam
ρs entropy density,
ρsin entropy density due to internal process
ρsex entropy density due to external exchange
ϱ, Θ scattering angles
σ,σi,σo, σt⃗, σn⃗ accommodation coefficient
σv, σT momentum and thermal accommodation coefficient
σP , σ(t) entropy production and its density
σ(X i,J i) entropy production density based on flux and force
σ(J i,Jk) entropy production density based in terms of fluxes
ς macroscopic parameter for Knudsen number
ζ parameter used in ranking
τ shear stress tensor
τs, τf slow and fast time scale in van Kampen’s procedure.
ϕX(X i,Xk) dissipation function density
ϕo, ϕi variable for determination of derivative at point Po and Pi
ϕxo, ϕyo, ϕzo derivative of the variable with respect to x, y, z.
φ dissipation control function

Φo matrix of derivatives ([ϕxo, ϕyo, ϕzo]
T ∈ Rn)

χ, χavg, χref baroclinic terms
χ̄ dimensionless baroclinic term
ω angular velocity
ω(v⃗) weight function associated with Hermite polynomials.
∆xi,∆yi,∆zi difference in coordinate distance for the points Pi and Po
∆bxi,∆byi,∆bzi deformation for surface points
∆ϕi difference in variable for the points Pi and Po

∆ϕN matrix of observation ([∆ϕ1,∆ϕ2, · · · ,∆ϕm]T ∈ Rm)
∆f ,∆f1 difference in Maxwellian and their Chapman-Enskog term

∆f̂1 difference between first order Chapman-Enskog
and Maxwellian distribution

∆f̄1 difference in first order Chapman-Enskog
expansion term for Maxwellian

∆p pressure drop
∆t time step
∆tI , ∆tV , ∆tS inviscid, viscous and slip time steps
∆us Burnett addition to the slip velocity
Θij function of symmetric tensor
Ξ linear subspace used in Levermore hierarchy
Φ, Φi perturbation term and its component
ΦT perturbation used in trial distribution
Ωz axial vorticity vector



(Ωz)RB axial vorticity vector for rigid body rotation

Ωi,Ω̃i decomposed domain and augmented domain
ΩR
i ,Ω

S
i domain involved in receiving and sending data

ΩR,s
i ,ΩR,d

i domain involved in receiving static and dynamic data

ΩS,s
i ,ΩS,d

i domain involved in sending static and dynamic data
Π̄ molecular collision cross section
Ψk1k2k3···kj(x⃗, t) macroscopic thermodynamic quantity
Π tensor of viscous stresses
Λx,Λy,Λz diagonal matrices
Ῡj, Υj,Ῡjk microscopic tensors
Υ±·
j ,Υ

·±
j microscopic split tensors for 2D geometry.

Υ±··
j ,Υ·±·

j ,Υ··±
j microscopic split tensors for 3D geometry.

Λx
j ,Λ

y
j ,Λ

z
j macroscopic tensors for x, y, z.

Λ±·
j ,Υ

·±
j macroscopic split tensors for 2D geometry.

Λ±··
j ,Υ·±·

j ,Υ··±
j macroscopic split tensors for 3D geometry.

Ψm1m2···mk
,Ψ,ψi, moment vectors and its element

Ψ̄ moment function

Roman and Mathematical Symbols

a⃗ acceleration vector
a(n) expansion coefficient used in Grad moment method.

a(0), a
(1)
i , a

(2)
ij constants used in Shakhov’s model

A±
x , A

±
y , A

±
z factors based on error functions.

A±
1 , A

±
2 , A

±
3 factors based on error functions.

A1,A2 first order and second order velocity slip coefficient
associated with shear stress tensor

A(z), B(z), C(z) parameters to calculate the analytical velocity
profile

bi(x, y) basis function
bx, by, bz Cartesian coordinates of the body
Bx, By, Bz factors based on exponential function.
B1, B2, B3 factors based on exponential function
BT

1 first order slip coefficient for temperature jump
BT

2 second order slip coefficient for temperature jump
BNS breakdown matrix due to moment realizability
Bc sub-cloud of points lying in non-computing domain
Cl, Cd, Cf lift, drag and friction coefficients
dh hydraulic diameter of the annuli



d(Pi, Pj) Euclidean distance between points Pi and Pj
D degree of freedom
D(σv) parameter as a function of tangential

momentum coefficient in viscosity relationship
D(fg, fh) Symmetric Kullback-Leibler directed divergence

for distributions fg and fh
exi, eyi, ezi scaled error terms for the point Pi
E total energy
Ecut edge cuts
Ee set off edges
Ek Ekman number
Exi, Eyi, Ezi error terms for the point Pi
f(x⃗, v⃗, I, t) density based velocity distribution function
f0,f1 Maxwellian and first order distribution function

f̆ number density based distribution function
f1,T trial linearized distribution
f±
1 , f

±±
1 , f±±±

1 half range first order distribution function
f1,Σ total distribution at the wall
f1,I distribution incident to the wall
f1,R specularly reflected distribution
f0,W Maxwellian distribution at wall condition.
fRB distribution associated with rigid body rotation.
fref reference distribution function.
fES ellipsoidal statistical distribution function.
f (H) distribution function at hierarchy H
Fexp, Fnum experimental and numerical flow rate.
g magnitude of the relative particle velocity before collision
gt(x⃗) trigonometric parametric function
G undirected weighted graph
Gmass, G

±
mass net mass flux and its split form

G global mapping function
h distance parameter
H Boltzmann entropy function
H̄ half height of the cylinder
Iτ , Iq constants used in microscopic tensors.

j⃗s flux of entropy density
JB(f, f) binary collision term at same position
J(f, f) binary collision term
Jm(f, f) binary collision model
kB Boltzmann’s constant
K(f, f, f) ternary collision term
Kn, KnGL,ζ Knudsen number and gradient length Knudsen number



Knρ,KnT ,Knu gradient length Knudsen number based on ρ, T and u
KnL Knudsen number based on length scale
L(f, f, f, f) quaternary collision term
Lρ characteristic length scale
mx,my,mz number of points in the connectivity sub-stencil

for x,y,z direction
L(X,J),L(X,J , λ) Lagrangian in terms of X, J , and its multiplier.
L local mapping function
ṁ, ṁNS slip and continuum mass flow rate
M Mach number
Mi path of message
Mpart sub-domain

Ṁq,Ṁτ Mahalanobis speed for thermodynamic force
Xq, Xτ

D(fg∥fh),D(fg, fh) Kullback-Leibler directed divergence for
distributions fg and fh

n(x⃗, t) number of particles
n, s subscript denoting the normal and

tangential coordinate to the wall
N sample size used in DSMC
N(Po) connectivity set for point Po
N±±, N±±±, split connectivity set for 2-D and 3-D
N±
x (Po) split connectivity sub-stencil for x direction

N±
y (Po) split connectivity sub-stencil for y direction

N±
z (Po) split connectivity sub-stencil for z direction

NSB,NSL breakdown parameter for Navier-Stokes equation
p, p̄ pressure and average pressure
Pk(x, y) polynomial in two dimensions.
Pr Prandtl number
q⃗ heat flux vector
q⃗g,q⃗∗ goal vectors
rf relaxation factor
rk1(x⃗), r

k
2(x⃗), r

k
3(x⃗) 3 vertices of simplex r at iteration k

r, rwall radius and radius of the cylinder
ri,ro inner and outer radius
rd dimensionless radius
rs radius of the sphere
R specific gas constant
Re Reynold’s number
Resk2 L2 norm based residue at iteration k
Rp Reciprocity number
R(Uk) residue vector



sC sub-cloud of points
sk1(x⃗), s

k
2(x⃗), s

k
3(x⃗) 3 vertices of simplex s at iteration k

S surface area
Sp disjoint sub-sets of vertices
SN(Pi) symmetric connectivity set for point Pi
St kinetic Strouhal number
t,t̂ time and dimensionless time
tR,t̂R relaxation time and dimensionless relaxation time
tR,1, tR,2 relaxation time for momentum transport

and energy transport
tR(f), tR(f0) relaxation time for distribution f and Maxwellian
tR(τ), tR(q) relaxation time associated with τ and q.
tR(τ,ii), tR(q,ii) relaxation time due to self collisions of specie i
tR(τ,jj), tR(q,jj) relaxation time due to self collisions of specie j
tR(τ,ij), tR(q,ij) relaxation time due to cross collisions of specie i with j
tR(τ,ji), tR(q,ji) relaxation time due to cross collisions of specie j with i
T, To temperature, average temperature
TMax Maximum surface temperature
T̄M , Tref dimensionless and reference temperature
uz,uzmax axial velocity and its maximum in the annuli
uB velocity based on Boltzmann solution.
uNS velocity based on Navier-Stokes solution.
uKn Knudsen contribution to the velocity.
us,uw slip velocity and wall velocity
uλ tangential gas velocity at one mean free path
uσ dispersion velocity
u⃗,⃗c macroscopic velocity vector, peculiar velocity
vth most probable molecular thermal speed
vz, vr, vθ axial, radial and azimuthal molecular velocity
V set of vertices
wv, we set of vertex and edge weights
xo, yo, zo coordinates of the point Po
xi, yi, zi coordinates of the point Pi
x⃗,v⃗ position vector and molecular velocity vector
⃗̂x, ⃗̂v dimensionless position and velocity vector
X, Y,Q Parametric, objective and goal space
ỹ y/λ
z axial variable
z̄ element of linear subspace in Levermore hierarchy
H(n) Hermite or Gram-Charlier polynomials.
H(x⃗, v⃗) Hamiltonian in 6 dimensional space
I internal energy variable
Io average internal energy parameter



J linear operator for collision terms
L Liouville operator
My y directional momentum flux
O three dimensional rotation operator
P(ȳ) collision probability function.
Qy y directional energy flux
Sxy,Syz,Szx connectivity parameters
G, G± flux vector and its split form
G±
m1m2···mk

spli flux vector in extended thermodynamics
GX,GY ,GZ flux vector in x, y, z-direction
GX±

I ,GY
±
I ,GZ

±
I inviscid split flux vectors

GX±
V ,GY

±
V ,GZ

±
V viscous split flux vectors

(GX±
V )∆, (GY

±
V )∆ VRKFVS viscous split flux vectors in x,y-direction

(GZ±
V )∆ VRKFVS viscous split flux vectors in z-direction

GR radial flux
GR±

I ,GR
±
V inviscid and viscous radial split flux components

(GR±
I )RB,(GZ

±
I )RB r,z split fluxes based on rigid body condition

(GX±
I )RB,(GY

±
I )RB x,y split fluxes based on rigid body condition

J i,J
k
i thermodynamic flux

Lij,L
k
ij,L

k+1
ij Onsager’s phenomenological tensor

P Pressure tensor
RJ
ik,R

X
ik symmetric tensor in flux and force space

S source terms
U state update vector, [ρ, ρu⃗, ρE]T

UM vector of conserved variable for Maxwellian fM
URB state vector based on rigid body condition
Um1m2···mkmk+1

state vector in extended thermodynamics
X i ,X̄ thermodynamic force
Xτq tensor with components {Xτ ,Xq}
A , A± Jacobian matrix and its split form

AT , AA Jacobian matrix for transport and acoustic flux
AM adjacency matrix
AN ,ANx ,ANy ,ANz least square data matrix used in normal equations

approach (∈ Rn×m) for N(Po, Nx(Po, Ny(Po and Nz(Po.
A Matrix due to relaxation of distribution function
c,d matrix of coefficients used in radial basis function
C least square cross product matrix

CM ,C̃M communication matrices

H(ϕ
(1),k
0 ) Hessain matrix after k iteration

I identity invariant tensor / identity matrix
r,b vector of radial basis function and polynomial basis
W , V p weight matrix and Vandermonde matrix.



Abbreviations

ACO Ant colony optimization
AUSM Advective Upstream splitting method
BBGKY Bogoliubov, Born, Green, Kirkwood and Yvon
BGK Bhatnagar-Gross-Krook kinetic model
CIR Courant, Isaacson and Rees
CLL Cercignani, Lampis and Lord reflection model
CUSP Convection upwind and split pressure
DNS Direct numerical solution
DSMC Direct Simulation Monte Carlo
DQ Differential quadrature
EHE Extended hydrodynamic equations
ES-BGK Ellipsoidal statistical Bhatnagar-Gross-Krook kinetic model
GA Genetic algorithm
HS Hard sphere
ID,OD Inner diameter, outer diameter
IP Information preservation
KFVS Kinetic flux vector splitting
LB Lattice Boltzmann
m-SLKNS modified Split stencil least square kinetic upwind method

for Navier-Stokes
MACO Multi-objective ant colony optimization
MD Molecular dynamics
MEPP Maximum entropy production principle
MGA Multi-objective genetic algorithm
MNS Multi-objective nonlinear simplex
NET Non-equilibrium thermodynamics
NS Navier-Stokes
PSO Particle swarm optimization
PVU Peculiar velocity upwind
QGD Quasi gas dynamics
RBF Radial basis function
RTSM Relaxation Time Simulation Method
SLKNS Split stencil least square kinetic upwind method for Navier-Stokes
SSP Strong stability preserving
TMAC Tangential momentum accommodation coefficient
VHS Variable hard sphere
VRKFVS Variance reduction kinetic flux vector splitting



Synopsis

The thesis deals with the development of meshless method for slip

flows based on kinetic scheme incorporating features of non-equilibrium

thermodynamics. The subject involves research in the field of kinetic

theory, non-equilibrium thermodynamics, kinetic schemes, meshless

methods and optimization approaches.

Upwind scheme basically add correct amount of dissipation or en-

tropy so as to satisfy thermodynamics as the state vector is updated.

However, most of the upwind schemes fail to ensure the correct distri-

bution of the entropy generation for each thermodynamic force. Hence

it is difficult to formulate a single monolithic solver if it is to oper-

ate from low speed to hypersonic rarefied flow or from creeping flows

to high speed continuum flow. A successful upwind scheme should

address two issues: i) the correct amount of dissipation or entropy

generation, and ii) distribution of dissipation or entropy generation

for each thermodynamic force i.e. in what proportion the thermody-

namic forces associated with shear stress tensor and heat flux vector

contribute. The kinetic scheme developed in the thesis follows the

principle of non-equilibrium thermodynamics and ensures the correct

division of entropy generation for each thermodynamic force as the

state update moves from one conservation state to another follow-

ing the path laid down by non-equilibrium thermodynamics. One of

the fundamental contributions of the thesis is the development of a

new non-equilibrium thermodynamics based kinetic model. Based on

this new model, Navier-Stokes equation can be derived with correct

Prandtl number. The non-equilibrium part of the distribution func-

tion is obtained as full tensor contraction of thermodynamic forces



and its associated microscopic tensors.

It is more rational to incorporate features of non-equilibrium ther-

modynamics at the microscopic level and apply discretization at the

Boltzmann level. A new approach to kinetic flux vector splitting

method was formulated guided by the principles of non-equilibrium

thermodynamics. Upwind scheme for macroscopic conservation equa-

tions in the new approach involves three steps : i) in the first step

the Boltzmann equation is rendered into an upwind discretized form,

ii) in the second step inviscid fluxes are obtained by taking moments

of split Maxwellian distribution, iii) in the third step viscous fluxes

are obtained by taking moments and full tensor contraction of split

microscopic tensors. The present kinetic upwind scheme can be used

to simulate the entire range from rarefied slip flow to continuum flow,

creeping flow to flow with shocks as it is derived using kinetic theory

incorporating phenomenological theory of non-equilibrium thermody-

namics.

There are many approaches for numerical flow modeling of slip and

rarefied flows. Most of the slip models in the literature are for sim-

ple micro-channel flows with its own geometric specific slip coefficient

and range of validity in the Knudsen region. In such a scenario we

require a more fundamental approach. One of the motivations of

the thesis is to derive a unified wall boundary condition which sat-

isfies non-equilibrium thermodynamics and can simulate both con-

tinuum and rarefied slip flow within Navier-Stokes equation in order

to avoid extremely costly multi-scale simulation. The thesis presents

novel kinetic flux vector splitting based wall boundary which uses

Maxwell ’s gas-surface interaction model incorporating features of lin-

ear non-equilibrium thermodynamics for effective resolution of slip

phenomenon.

Recently, shape optimization using numerical methods has made rapid

progress. The shape optimization procedure requires repeated grid

generation after each iterative step. Most of the industrial problems

have many complex components and generation of suitable grid for a



complex multi-body configuration can be very tedious and intensive

task and sometimes it becomes the bottleneck. In such a scenario

we require a faster, simpler and robust meshless approach. Amongst

meshless approaches least square based methods are found to be ro-

bust and capable of resolving shocks. Normal equations as well as

QR approach used in least square method produces inaccurate results

when applied to stretched distribution of points required to resolve

boundary layers of a viscous flow problem. The thesis presents a new

approach to solve least square problem by generating a non-symmetric

cross-product matrix by suitable selection of sub-stencils such that the

matrix is diagonally dominant and well conditioned. The thesis de-

scribes the novel Split-stencil Least square Kinetic upwind method for

Navier-Stokes (SLKNS) solver which makes use of least squares and

Kinetic Flux Vector Splitting (KFVS) scheme based on microscopic

tensor splitting with kinetic wall boundary condition.

Parallelization of meshless code uses domain decomposition based on

graph built on symmetric connectivity. The parallel code uses optimal

contention free communication schedule to carry out parallelization.

This thesis also uses novel approach for cloud handling by merging the

sub-cloud around body undergoing optimization. The multi-objective

optimization for meshless method is based on Pareto optimality, ϵ-

dominance and reference point approach.

The prime motivation of the thesis is to develop a robust meshless

method based on kinetic theory that can carry out multi-objective op-

timization of stationary bodies under strong rotations and rarefied slip

flows. The meshless method described in the thesis is able to resolve

slip flow features, supersonic flows and typical features of the strongly

rotating flows characterized by steep density gradient and thin bound-

ary layers.
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Chapter 1

Introduction

1.1 Non-continuum slip flow

The presence of rarefied domain around space vehicle or fluid transport in mi-

croelectromechanical devices (MEMS) is a typical non-continuum flow feature.

Predicting fluid transport for rarefied flows or in micron-sized devices becomes

difficult due to breakdown of continuum flow assumption embedded in conven-

tional fluid dynamics. Validity of the Navier-Stokes equation as well as diffusion

equation requires sufficient collision of particles and relaxation of the distribution

to weak spatial gradients and slow temporal variations. Continuum also breaks

down when gradients are substantial relative to the scale of mean free path or tem-

poral changes are relatively rapid compared to mean collision time encountered in

astrophysics. For Navier-Stokes equations to remain valid it has also to operate

within the framework of Newtonian mechanics following continuum approxima-

tion and satisfying constitutive relationships due to collision dominated transport

models of shear stress tensor and heat flux vector. Navier-Stokes description for

simple fluids breaks down when the characteristic length scale associated with

flow approaches the molecular mean free path.1 As a consequence, the ratio of

the mean free path of the molecules to the characteristic dimensions becomes

appreciable. This ratio is referred to as the Knudsen number, Kn = λ
L
, where λ

is the mean free path and L is the characteristic length scale. For example L can

1 Refer Appendix A for determination of mean free path of gas.
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1.1 Non-continuum slip flow

also be defined in terms of the macroscopic gradients, e.g., L = ρ/ ∂ρ
∂x
. Consider

a flow in a tube of diameter D as shown in Figure 1.1, in the continuum regime

the mean free path λ is small compared to the characteristic length scale i.e.

diameter of the tube, D and in such cases collisions are more frequent amongst

molecules than they are between molecules and the wall of the container. As a

consequence the gas acts like a continuous viscous fluid when Knudsen number,

Kn=λ/D < 0.001 and no-slip condition prevails. When the fluid becomes rar-

efied as shown in Figure 1.2 the frequency of molecule-molecule collision is less as

compared with the molecule-wall collision. In such a case slip exists as fluid prop-

erties are no longer continuous and viscosity is undefined as there is no shearing

forces between layers of molecules nor is there any momentum exchange. Figure

1.3 shows slip velocity and slip length. Research in slip flows is primarily moti-

vated because of its huge applications in the field of micro devices in engineering,

medical and other scientific areas. In micro devices the Knudsen number is large

as the characteristic dimension of the micro device is small. In macro level the

slip flow is observed for rarefied flow as the mean free path becomes large due to

lower pressure.

With the increase of Knudsen number the collision dominated transport mod-

els i.e. constitutive relationships of shear stress tensor with deformation tensor

becomes invalid due to violation of the inherent assumptions of Navier-Stokes.

Classical hydrodynamics fails to describe flow phenomenon observed for rarefied

gas with finite Knudsen number. Some of the most significant flow phenomenon

for rarefied flow are as follows [267]:

1. Pressure profile observed in Couette and Poiseuille flow is not constant as

observed in classical hydrodynamics.

2. Temperature gradient does not drive the heat flux in flow direction as ob-

served in classical hydrodynamics.

3. Observation of Knudsen Paradox.1

1The mass flow in a Poiseuille flow varies as a function of Knudsen number, showing mini-

mum mass flow in transition regime at Knudsen number of unity.
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1.1 Non-continuum slip flow

Figure 1.1: Viscous flow given by Kn=λ/D < 0.001, viscous behavior is ob-

served as collisions are more frequent amongst molecules than they are between

molecules and the wall of the containing tube, as a consequence no-slip condition

prevails.

Figure 1.2: Rarefied flow Kn=λ/D∼1.0, viscous behavior is undefined as the

frequency of molecule-molecule collision is less as compared with the molecule-

wall collision, as a consequence slip exists.

4. Temperature profile in classical hydrodynamics for Poiseuille flow shows

variation of fourth-order power law with no dip whereas the temperature

profile in rarefied regime shows a dip.1

5. Detailed structure of shock, phase speed and attenuation of high frequency

sound waves for rarefied flow differs from the classical hydrodynamics.

6. Knudsen boundary layer is observed for all hydrodynamic quantities for

rarefied flow.

1This can only be described by either super-Burnett equations or higher moment method

based regularized Grad like approach.
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1.1 Non-continuum slip flow

Figure 1.3: Slip Velocity and slip length.

1.1.1 Flow regimes

Based on extent of non-equilibrium effects and rarefaction the flow regime can be

broadly classified [114] as

1. No-slip continuum regime : This regime is valid for Kn < 0.001, since

continuum and thermodynamic equilibrium prevails hence conventional no-

slip is used along with Navier-Stokes equations.

2. Slip-Flow regime: This regime is valid in the range 0.001<Kn<0.1. The

non-equilibrium effects occur in the close proximity of the wall, Navier-

Stokes coupled with slip boundary conditions can effectively model velocity

slip and temperature jump.

3. Transition regime: In the range 0.1 <Kn<10 the gas is very rarefied and

Navier-Stokes is no longer valid. Flow modelling approach may require

molecular or hybrid solvers.

4. Free-molecular flow: The regime is valid beyond Kn>10, in this regime

collision frequency is very low as the flow is characterized by large mean free

path compared to characteristic length scale. This regime can be modeled

by collision less form of Boltzmann equation.
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1.1 Non-continuum slip flow

Table 1.1: Rarefied flow regime based on different Mach and Reynolds Number

Reynolds No. O(ϵ) Reynolds No. O(1) Reynolds No. O(1
ϵ
)

Mach No. Kn = O(1) Kn = O(ϵ) Kn = O(ϵ2)

O(ϵ) Creeping micro flow Moderate micro flow Low Mach Fanno flow

Mach No. Kn = O(1
ϵ
) Kn = O(1) Kn = O(ϵ)

O(1) Transonic free Transonic Micro Flow Transonic Fanno Flow

molecular flow

Mach No. Kn = O( 1
ϵ2
) Kn = O(1

ϵ
) Kn = O(1)

O(1
ϵ
) Hypersonic free Hypersonic free Hypersonic Fanno

molecular flow molecular flow transitional flow

Using kinetic gas theory, we can also express the Knudsen number in terms of

Mach number, M and Reynolds number, Re as

Kn =

√
πγ

2

M

Re
(1.1)

Different (M,Re) combination will give rise to different types of flow regimes [13].

Perturbation analysis with three orders O(ϵ), O(1) and O(1
ϵ
) of Mach number, M

and Reynolds number, Re will lead to nine independent flow regimes based on

(M,Re) matrix. Arkilic et al. [13] classified flow regime based on this (M,Re)

matrix as shown in table 1.1. The flow regime characterized by (M,Re)=O(ϵ, ϵ),

O(1, 1) and O(ϵ, 1) are classified as micro flows.

1.1.2 Slip boundary condition

The gas surface interaction is also an important aspect, in one of the simplest

model called Maxwell model the incident flux of gas molecules hit the wall sur-

face, some molecules undergo specular reflection and some are held by the wall

and re-emitted as diffuse reflection. In Maxwell model the tangential momentum

accommodation coefficient (TMAC) becomes zero for fully specular and unity

for fully diffuse reflection. In rarefied slip flow conditions velocity slip and tem-

perature jump strongly depends on the tangential momentum accommodation
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1.2 Motivation and objectives of present work

coefficient (TMAC).

Consider a case of rarefied Couette flow confined between concentric inner rotat-

ing and outer stationary cylinder, which is one classical fluid dynamics problem.

When both the inner and outer walls are diffusive i.e. tangential momentum ac-

commodation coefficient (TMAC) is unity then all the incident flux is re-emitted

in a diffuse way in such a case the fluid rotates faster near the rotating inner

cylinder as per expectation as shown in Figure 1.4 (a). When both the inner and

outer walls are partly diffusive i.e. some part of the incident flux undergoes spec-

ular reflection and some part is re-emitted as diffuse reflection, the fluid in such

a case shows a presence of minimum tangential speed in between the inner and

outer wall as shown in Figure 1.4 (b). When both the inner and outer walls are

specular i.e. tangential momentum accommodation coefficient (TMAC) becomes

zero then all the incident flux undergo specular reflection, the gas rotates faster

near the stationary wall as shown in Figure 1.4 (c). This anomalous behavior is

also called ghost effect or flow inversion.

At smaller Knudsen number most of the momentum transfer happens due to

molecular collisions. The non-equilibrium effects dominate in the close proxim-

ity of the wall, Navier-Stokes coupled with slip boundary conditions defined by

gas-surface interaction model can effectively model velocity slip and temperature

jump.

1.2 Motivation and objectives of present work

Computation of scramjet technologies, hypersonic re-entry vehicles, aero-assisted

orbital transfer vehicle (AOTV), etc involve development of codes which can per-

form accurate two dimensional, axi-symmetric and three dimensional simulation

in continuum as well as non-continuum, non-equilibrium regimes. Most of the

non-continuum simulations are based on Direct Simulation Monte Carlo (DSMC)

which become prohibitively costly and hence we require development of new up-

wind method which is fast, accurate with ability to work both in continuum as

well as non-continuum regimes.
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1.2 Motivation and objectives of present work

(a)

(b)

(c)

Figure 1.4: Couette rarefied flow for (a) diffusive walls, (b) partly diffusive walls,

and (c) specular walls.
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1.2.1 Background and application

In order to validate the code we require ground based test facilities which either

use free-piston shock tunnel or expansion tubes where high enthalpy slug of test

gas is produced for short duration with test times in the range of 0.05-10 ms.

Because of short test times there are difficulties associated with process of data

acquisition. In such a scenario high speed rotating flow provides hypersonic flows

with effective acceleration in the radial direction of the order of few millions g

( Earth’s gravitational acceleration). For strongly rotating viscous compressible

flows confined in a vessel, the gas undergoes rigid-body rotations. The rigid-body

rotation is characterized by an exponential density rise in the radial direction to-

wards the periphery with thin boundary layers and a rarefied inner core. In a

high speed rotating vessel we get continuum regime towards the periphery, free

molecular in the centre region and slip and transition regimes in the intermediate

radial regions as shown in Figure 1.5. Thus a rotating high speed wind tunnel

provides hypersonic flow conditions under continuum as well as rarefied condition

to be analyzed for a longer duration as compared to shock tunnels and expansion

tubes. Such a rotating flow is characterized by exponential density rise in the

radial direction hence a stationary object placed near the wall might face contin-

uum as well as rarefied slip condition as shown in Figure 1.6. Numerical modeling

of such flows is a challenge as regimes change from continuum, slip, transition to

non-continuum. A ground based test facility based on rotating vessel provides a

unique opportunity to evaluate the research code as continuum to free molecular

flow exists within the same domain.

1.2.2 Research objectives

All the research in the development of upwind scheme based on macroscopic the-

ories can be seen in terms of inclusion of physically consistent amount of entropy.

In many case, a single solver operating from rarefied flow to hypersonic contin-

uum flow requires corrections and tuning as most of the time it is not known what

is the correct amount of entropy generation for a particular regime and the cor-

rect distribution of entropy generation for each thermodynamic force. Figure 1.7

shows schematic of entropy generation at two different locations x⃗1 and x⃗2 in the
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1.2 Motivation and objectives of present work

Figure 1.5: Continuum, slip, transition and free molecular flow regimes in a

rotating vessel.
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Density (Kg/m3)

Figure 1.6: Exponential variation of density in a high speed rotating flow field.
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1.2 Motivation and objectives of present work

Figure 1.7: Two components of entropy at locations x⃗1 and x⃗2 as physical state

evolves from time t to time t+∆t.

flow domain as physical state evolves from time t to time t+∆t. The components

of entropy due to thermodynamic forces associated with shear stress tensor and

heat flux vector differ in magnitude at two different locations. Genuine upwind

scheme should resolve these different components of entropy generation due to its

conjugate thermodynamic force in order to satisfy thermodynamics while the state

update happens. Most of the upwind schemes basically aim to add the correct

dissipation or entropy but fail to resolve and ensure the correct distribution of

the entropy associated with its conjugate thermodynamic force. If the solver fol-

lows and mimics the physics then we can have a single monolithic solver serving

the entire range from rarefied flow to continuum flow, creeping flow to flow with

shocks.

Figure 1.8 shows different scales involved in the simulation of transport equations

for mass, momentum and heat. At the microscopic level Hamilton’s equation

forms the governing equation for the discrete set of particles described my massm
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1.2 Motivation and objectives of present work

Figure 1.8: Different scales of solution of transport equations.

Figure 1.9: Kinetic theory provides molecular description while non-equilibrium

thermodynamics provides the relationship between the entropy generation due to

thermodynamic forces associated with shear stress tensor and heat flux vector.
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and velocity vector v⃗. Using molecular dynamics this microscopic description can

be solved, and averaging the particle ensemble leads to macroscopic description

given by density ρ, velocity v⃗ and temperature T . The macroscopic description

is governed by Euler / Navier-Stokes equations that are generally solved by finite

difference (FD) or finite volume method (FVM). The mesoscopic description lies

in between the macroscopic and microscopic level as it incorporates essential as-

pects of microscopic processes in order simulate macroscopic behaviour. At the

mesoscopic level Boltzmann equation forms the governing equation described by

distribution function f and kinetic model Jm(f, fref ). Lattice Boltzmann method,

gas kinetic method, discrete velocity model, dissipative particle dynamics, etc are

used for solving mesoscopic system, and macroscopic description is obtained by

taking moments.

Present application involves continuum to rarefied flow within a same domain;

mesoscopic theory provides the most practical approach for such a case as macro-

scopic route becomes physically inconsistent while microscopic methods become

computationally expensive. The entropy generation observed at the macroscopic

level is a consequence of molecular collisions at the microscopic level. Meso-

scopic method based on kinetic theory uses statistical description of a system of

molecules and provides model for molecular collisions leading to non-equilibrium

phenomena. Non-equilibrium thermodynamics being a phenomenological theory

describes this non-equilibrium phenomena and provides linkage with kinetic the-

ory based coefficients of transport and relaxation. Figure 1.9 shows a schematic

of entropy generation at two different locations as a physical state evolves in time.

The molecular description is provided by the kinetic theory while the relation-

ship between the entropy generation due to thermodynamic forces associated with

shear stress tensor and heat flux vector is a feature of non-equilibrium thermody-

namics. Kinetic theory and non-equilibrium thermodynamics together become a

powerful tool to model non-equilibrium processes of compressible gas.

The most common approach to simulate slip flow is to couple the continuum solver

with the slip boundary condition. The slip boundary condition should effectively

capture slip flow features under combined effects of adverse pressure gradient,

rarefaction and tangential flow gradients. Investigation reveals that there are

large numbers of second order slip model existing in the literature each with its

12



1.2 Motivation and objectives of present work

own geometric specific slip coefficient and range of validity in the Knudsen re-

gion. Most of the slip models in the literature are for simple micro-channel flows.

In such a scenario we require a more fundamental approach based on principles

of kinetic theory incorporating phenomenological theory of non-equilibrium ther-

modynamics to simulate slip flow. However, so far slip flow numerical modeling

has not been applied for computation of high speed rotating slip viscous flows as

the emphasis has been mostly on micro flows or on aerospace problems arising in

external rarefied aerodynamics. One of the motivations of this thesis is to develop

a numerical scheme for viscous slip flows with focus on rotating flows. Numerical

modeling of such a high speed rotating flows is a challenge as the regime changes

from continuum at the periphery to non-continuum free molecular in the central

core. Such a flow is also of considerable interest and importance in the field of

hydrodynamic bearings, rotating machinery, vacuum pumps and separators.

Shape optimization using numerical methods has made rapid progress. The shape

optimization procedure requires repeated grid generation after each iterative step.

Most of the industrial problems have many components and generation of suit-

able grid around them becomes the bottleneck. Generation of suitable grid for

a complex multi-body configuration can be very tedious and intensive task. In

such a scenario we require a faster, simpler and robust approach. Conventional

approach requires grids which include structured multi-block meshes, chimera

or overset grids, unstructured grids, Cartesian grids and hybrid grids. Recently

meshfree or meshless methods have gained popularity. All meshless numerical

methods share a common feature that no mesh is needed and the solver is capa-

ble of operating on an arbitrary distribution of points. The objective of the thesis

is to simulate rotating, viscous compressible slip flow through kinetic theory route

using a meshless method. The objective also includes multi-objective shape op-

timization of body in high speed rotating flow which will require repeated grid

generation and a solver capable of resolving high speed flow features like shocks,

weak secondary flow in the axial direction and in slip flow region. The long term

goal is to validate developed research codes with rotating high speed wind tunnel

for correct aerodynamic properties, understand the high speed flows and extend

the solver capabilities for reacting multi-component flows. The prime motivation

of the thesis is to develop a robust meshless method based on kinetic theory and
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1.2 Motivation and objectives of present work

non-equilibrium thermodynamics that can carry out multi-objective optimization

of stationary bodies under strong rotations and rarefied slip flows. The research

requirements and current status in the open literature can be broadly classified

as follows :

• Non-equilibrium thermodynamics based approach.

Literature review reveals that non-equilibrium thermodynamics based ap-

proach is still in the realm of physics.

• Kinetic theory and its application to slip flows.

Literature survey reveals that kinetic scheme based on non-equilibrium ther-

modynamics has not been extended to slip flow.

• Kinetic theory based method for fine resolution of weak secondary flow.

Literature reveals that molecular modelling methods use variance reduction

approach to simulate low speed weak secondary flows. Thus development of

variance reduced form of kinetic scheme may be one of the way to capture

weak secondary flow in presence of strong rotating primary flow field.

• Kinetic scheme for axi-symmetric problem.

Literature reveals that kinetic scheme based on flux vector splitting has not

been extended for axi-symmetric flows.

• Least square based meshless method.

Most of the meshless methods are either based on radial basis functions

(RBFs) or they use least square based approach. Literature survey revealed

that approach based on least squares as compared to RBFs was found to be

significantly better for flow problems with shock. Normal equations as well

as QR approach used in least square method produces inaccurate results

when applied to ill-conditioned problems. In such a scenario we require a

scheme which is computationally faster and provides more stable results

than QR.

• Domain decomposition and Parallelization.

The developed meshless kinetic code requires parallelization to cut down the
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simulation time. Research is also required to develop optimal contention

free communication schedule.

• Multi-objective shape optimization.

Literature survey reveals that in most of the multi-objective optimization

problems, Pareto optimality forms the basis and gives the set of non-

dominated solutions lying on the Pareto front. In such a scenario we require

research on suitable method in a meshless framework for obtaining optimum

solution from the set of non-dominated solutions.

In the present thesis the development of meshless scheme and slip boundary con-

dition has been accomplished with implementation of the kinetic scheme using

first order non-equilibrium thermodynamics based distribution. The thesis de-

scribes the novel Split Least square Kinetic upwind method for Navier-Stokes

equation (SLKNS) solver which differs from normal equations based least squares

method. The new meshless solver, SLKNS avoids ill-conditioning encountered

while using highly stretched distribution of points in the boundary layers. Thesis

also describes the development of SLKNS solver which requires following steps :

• Development of kinetic scheme:

– Onsager reciprocity principle based new kinetic model.

– Distribution function for polyatomic gas based on microscopic tensor

and its conjugate thermodynamic force.

– Microscopic tensor splitting

– Kinetic slip flow boundary condition.

– Kinetic theory based approach for slip bordering transition regime.

• Development of meshless method:

– Development of meshless scheme which can work for highly stretched

distribution of points.

– Parallelization of meshless scheme.

• Development of multi-objective shape optimization:
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– Development of tools for pre-processing the geometric shape.

– Development of methodology for multi-objective optimization.

The thesis attempts to give a fresh new look to Navier-Stokes equation from the

prism of non-equilibrium thermodynamics and kinetic theory. Present research

for the first time adds an additional condition based on the concept of correct

distribution of entropy for any upwind scheme to remain valid across different

regimes of flow. The scheme developed in the thesis applies discretization at the

Boltzmann level and follows the principle of non-equilibrium thermodynamics in

order to ensure the correct distribution of entropy generation for each thermody-

namic force as the state update moves from one conservation state to another.

The present kinetic upwind scheme can be used to simulate the entire range

from rarefied flow to continuum flow. The thesis describes the kinetic flux vec-

tor splitting scheme for axi-symmetric flows and kinetic flux based slip boundary

condition, it also gives the derivations of wall boundary condition for cases with

negligible fluid dynamic variations in tangential direction. A novel least square

based approach to stretched distribution of points required to resolve viscous

boundary layers has been formulated in this thesis.

The focused objectives of the thesis are summarized below:

• Development of kinetic theory based approach to model slip flows.

• Incorporation of phenomenological theory of non-equilibrium thermody-

namics.

• Extending the kinetic scheme for resolving weak secondary flow.

• Implementation of the kinetic scheme for axi-symmetric problem.

• Extending the solver for strongly rotating flow field.

• Development of meshless method based on least squares for stretched dis-

tribution of points.
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• Development of pre-processor for generation of cloud of points and robust

meshless scheme to carry out multi-objective optimization of stationary

bodies under strong rotations and rarefied slip flows.

• Parallelization of the present meshless code.

1.3 Scope of the thesis

The scope of the present research work covers the development of kinetic theory

and non-equilibrium thermodynamics based boundary conditions for slip flow and

development of meshless method for highly stretched distribution of points. The

scope of work also covers parallelization methodology and investigation of various

optimization methods in meshless framework. The scope of the present research

work is limited only to the single component compressible gas flows.

1.4 Thesis organization

The thesis is organized into eight chapters and five appendices. Chapter 1 gives

the introduction and Chapter 2 gives the description of the research area and its

literature review. Chapter 3 to Chapter 7 include original research contributions

which are summed up in concluding Chapter 8. Thesis organization is as follows:

• Chapter 1

The first chapter contains introduction to non-continuum slip flows, chal-

lenges in grid generation, motivation for present research, objectives and

scope of the thesis and its organization.

• Chapter 2

The second chapter carries out literature review and identifies potential

area of research in the field of slip flow, kinetic theory, non-equilibrium ther-

modynamics, kinetic scheme, meshless method, parallelization and multi-

objective optimization methods.

The present research contribution is described in chapter three to chapter seven,

with each chapter focused on the above identified objectives.
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• Chapter 3

The third chapter introduces maximum entropy production principle and

investigates its relationship with Onsager’s reciprocity principle and Boltz-

mann equation. The chapter also describes non-equilibrium thermodynam-

ics based new kinetic model and gives distribution function based on it. This

is followed by statistical representation of the new kinetic model, establish-

ing relationship between entropy production and Mahalanobis distance, and

derivation of Navier-Stokes equations.

• Chapter 4

The fourth chapter describes the development of a new kinetic upwind

method based on split microscopic tensors derived by the author on the

principles of non-equilibrium thermodynamics. The chapter also gives the

method of derivation for split macroscopic tensors and kinetic split fluxes1.

Further, it gives linkage of non-equilibrium thermodynamics with the new

kinetic method and extended thermodynamics due to split kinetic fluxes.

• Chapter 5

The fifth chapter describes the kinetic wall boundary conditions using non-

equilibrium thermodynamics based distribution function. The chapter de-

rives the gradient based slip flow boundary conditions using half range dis-

tribution for cases where tangential variations are negligible. The chapter

also derives kinetic flux vector splitting scheme based boundary conditions

for cases where tangential variations are dominant. The derived boundary

conditions are valid both for continuum as well as non-continuum flows.

Further, the chapter gives the treatment of slip flow regime which borders

transition flow using collision probability function.

• Chapter 6

The sixth chapter describes the new least square method using stencil split-

ting, and development of a meshless solver SLKNS based on kinetic scheme.

The chapter gives the implementation of SLKNS and also describes the

1Derived expressions of split macroscopic tensors and fluxes are given in Appendix D
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1.4 Thesis organization

meshless pre-processor, parallelization of SLKNS and implementation of

multi-objective optimization method.

• Chapter 7

The chapter seven gives results for test cases used for validating meshless

method for stretched distribution of nodes, slip boundary, implementation

of KFVS and multi-objective optimization in a strongly rotating flow field.

For each chapter from chapter 2 to chapter 7 sections on ”Introduction” and

”Summary” are included to introduce and summarize the content of each chapter.

• Chapter 8

Contributions, present research findings and future recommendations are

finally given in this chapter.

Chapter eight is followed by five appendices.

• Appendices A,B,C,D and E

Five appendices A through E are included in the thesis to describe mean

free path of the gas, kinetic theory and fluid flow, treatment of thermally

and calorically imperfect gas, expressions for split macroscopic tensors and

KFVS fluxes and experimental determination of tangential momentum ac-

commodation coefficient.
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Chapter 2

Literature review and potential

areas of research

2.1 Introduction

To meet the objectives of thesis, the research requires development of bound-

ary condition which can simulate both continuum and rarefied slip flow within

Navier-Stokes equations in order to avoid extremely costly multi-scale simula-

tion. It requires i) suitable upwind scheme which can capture shock, handle

strong rotation, weak secondary flow and resolve slip flow features, ii) a meshless

scheme which remains well-conditioned in highly stretched grids, resolves fea-

tures of viscous slip flows and captures shock, iii) parallelization methodology for

meshless scheme, iv) multi-objective shape optimization method in a meshless

framework, and v) validation of the developed meshless code for slip flow, and

demonstration of multi-objective shape optimization capability. Development of

such an industrial scale solver for slip flows using meshless method requires re-

search work in wide variety of fields which include i) slip modeling, ii) kinetic

theory, iii) non-equilibrium thermodynamics, iv) upwind methods, v) meshless

methods, vi) parallelization, and vii) multi-objective shape optimization. This

chapter introduces and describes these research fields associated with develop-

ment of a meshless solver and also carries out literature review and brings out

the potential area of research existing in each field. Fig. 2.1 shows the salient

research fields associated with the present investigation.
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2.2 Modelling of Slip Flows

Figure 2.1: Research fields associated with the present investigation.

2.2 Modelling of Slip Flows

As described earlier the presence of rarefied domain around space vehicle or fluid

transport in micron-sized devices (MEMS) is a typical non-continuum flow fea-

ture1. One of the main difficulties in modeling is due to the breakdown of con-

tinuum flow assumption as the mean free path of gas molecule is comparable

or larger than characteristic dimensions of the flow system. Modelling of slip

flow requires i) breakdown determination of Navier-Stokes equation, ii) choice of

gas-surface interaction model, and iii) fluid modelling approach.

2.2.1 Breakdown criteria of Navier-Stokes equations

For Navier-Stokes equations to remain valid it should operate within the frame-

work of Newtonian mechanics following continuum approximation and satisfy-

ing constitutive relationships due to collision dominated transport models of

stress tensor and heat flux vector. Most of the breakdown criteria which are

valid for micro flows are not suitable for hypersonic flows. The determination of

1The main differences between conventional rarefied flow and fluid transport in MEMS are

the operating pressure and extremely low Reynolds number (creeping flow) encountered in the

latter.
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2.2 Modelling of Slip Flows

non-equilibrium and non-continuum regions is generally carried out using a lo-

cal continuum breakdown parameter called the gradient-length Knudsen number

[240, 286] defined as

KnGL,ζ =
λ

ς
|∇ς| (2.1)

where ς is the parameter of interest, such as density(ρ), bulk velocity magnitude

(|u| =
√
u2x + u2y + u2z), or temperature (T). λ is the viscosity based mean free

path given as

λ = µ

√
π

2ρp
(2.2)

The actual continuum breakdown parameter is then the maximum of these, that

is:

KnGL = max(Knρ,Kn|u|,KnT ) (2.3)

Schwartzentruber and Boyd [240] have recommended values of KnGL > 0.05 to

signify continuum breakdown for representative hypersonic flows. In order to

prevent a non-positive distribution function when the Navier Stokes solution is

coupled with the Boltzmann solution, Kolobov et. al. [143] have used switching

criterion which is function of pressure gradient as well as velocity magnitude

defined as follows:

NSB = Kn

√√√√(∇p
p

)2

+
1

|u|2

[(
∂ux
∂x

)2

+

(
∂uy
∂y

)2

+

(
∂uz
∂z

)2
]

(2.4)

Levermore et al. [151] have applied the idea of moment realizability to derive

criteria for the validity of the Navier-Stokes equation. This criterion is given in

terms of the eigenvalues of the non-dimensional 3× 3 matrix given as follows

BNS = I − µ

p

[
∇u⃗+ (∇u⃗)T − 2

3
I∇ · u⃗

]
− 2

3

ρκ

p3
∇
(
p

ρ

)[
∇
(
p

ρ

)]T
(2.5)

where I is the identity invariant tensor, κ is the thermal conductivity and µ is

the viscosity. Significant deviations of the eigenvalues of this breakdown matrix

from unity indicate large gradients and significant departure from the equilibrium

state. Breakdown criteria can also be formulated based on departure of flow from

its equilibrium state. Lockerby et al. [164] have suggested breakdown criteria
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2.2 Modelling of Slip Flows

based on departure relative to near equilibrium or fractional relative departure

relative to Navier-Stokes non-equilibrium given as

NSL =
|
∫
ψi(f − f1)dv⃗|

|
∫
ψi(f1 − f0)dv⃗|

(2.6)

where ψi is the moment variable, v⃗ is the molecular velocity, f is higher order

distribution function, f1 is the first order distribution function corresponding to

Navier-Stokes equations and f0 is the equilibrium distribution.

2.2.2 Gas-surface interaction model

For non-continuum flows, the gas-surface interaction model has a profound influ-

ence on the flow parameters e.g. in high altitude hypersonic flights gas-surface

interaction plays vital role in the determination of aerodynamic forces and heat

transfer. There are several gas-surface interaction models based on treatment

of reflected flux e.g. Maxwell model which is the combination of diffuse reflec-

tion and specular reflection. Figure 2.2(a) shows the schematic of the Maxwell’s

gas-surface interaction model. Maxwell model is identified by the tangential ac-

commodation coefficient, σt⃗, the reflected flux is composed of fraction (1 − σt⃗)

undergoing specular reflection and fraction (σt⃗) which is re-emitted diffusely as

a Maxwellian distribution based on wall condition. Maxwell model is one of the

simplest and the most popular model which also satisfies the principle of detailed

balance i.e. reciprocity.

Cercignani and Lampis [46] introduced a phenomenological model which was lat-

ter on extended by Lords [167]. This model is called CLL (Cercignani, Lampis,

Lord) reflection model which is physically more meaningful and satisfies the reci-

procity principle. This model is based on normal accommodation coefficient,

αn⃗ as well as tangential accommodation coefficient, σt⃗. Figure 2.2(b) shows the

schematic of the CLL model.

2.2.2.1 Accommodation coefficient for polyatomic gas

Accommodation coefficient basically is a measure of inability of incident molecules

to adjust themselves to the body surface. Experiments have revealed that accom-

modation coefficients are numerically identical for rotational and translational
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2.2 Modelling of Slip Flows

(a) (b)

Figure 2.2: Gas-surface interaction models (a) Maxwell specular-diffuse reflection

model, (b) CLL (Cercignani, Lampis, Lord) reflection model.

energies. However, vibrational components of the internal energy present in poly-

atomic gas takes much more time to adjust to new values.

2.2.3 Approaches in slip flow modeling

The fluid modeling can be classified based on three approaches: (i) molecular

modeling, (ii) continuum modeling, and (iii) hybrid approach. In the molecular

modeling approach [245] the fluid is assumed to be collection of molecules which

are to be solved either by deterministic or statistical methods. Direct Simulation

Monte Carlo (DSMC) [36] or information preservation (IP) [270] are molecular

based methods. One of the main drawbacks of this probabilistic method is the

occurrence of statistical noise and inefficient handling near continuum flows and

flows with recirculation. Recently, direct numerical simulation (DNS) of Boltz-

mann transport equation [11, 201] has emerged as a viable alternative to DSMC.

Such deterministic methods based on solution of the Boltzmann equation are com-

putationally very expensive due to quadratic cost of the velocity discretization of

the collision operator. In the continuum modeling approach the fluid is assumed

to be continuous and indivisible. The macroscopic variables like velocity, density,

pressure, etc., are defined at every point in space and time. Conservation of mass,

energy and momentum based on moment method give rise to extended hydrody-

namic equations (EHE) leading to a set of nonlinear partial differential equations

like Euler, Navier-Stokes, Burnett, etc. Lattice Boltzmann (LB) method and

gas kinetic schemes are also promising approaches as they connect the molec-

ular and continuum descriptions. While hybrid solvers combine the speed of
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2.2 Modelling of Slip Flows

continuum fluid models and accuracy of kinetic non-continuum models and have

also emerged as an important area of research. In the hybrid approach the non-

continuum regions are solved using the molecular based methods and interfaced

with the continuum regions [11, 42, 143]. The determination of non-equilibrium

and continuum regions is generally carried out using a local continuum break-

down parameter. Based on extent of non-equilibrium effects and rarefaction the

flow regime can be broadly classified [114]. Table 2.1 shows various flow regimes

and corresponding fluid models. Figure 2.3 shows the fluid modeling classifica-

tion based on molecular, mesoscopic and macroscopic (continuum) approaches.

Different approaches in fluid modeling of slip flows can be summarized as :

• Molecular based numerical schemes.

• Direct numerical solution (DNS) of Boltzmann equation.

• Hybrid solver.

• Slip modeling using higher order continuum equations.

• Treatment of slip flow based on slip models and Navier-Stokes equation.

• Treatment of slip flow based on Lattice Boltzmann method.

• Treatment of slip based on Quasi-Gas-Dynamics (QGD) and hydrodynamic

theory of Brenner

• Kinetic theory based slip modeling.

2.2.3.1 Molecular based numerical schemes

Molecular based numerical schemes such as direct simulation Monte Carlo (DSMC)

becomes a useful tool for rarefied non-continuum flows. The gas-surface interac-

tion in DSMC is implemented using Maxwell as well as CLL (Cercignani, Lampis,

Lord) reflection model. In DSMC method microscopic properties are averaged

over a small space region to obtain the macroscopic state variables. For low speed

rarefied flow the statistical scatter requires a huge sample size. For example, con-

sider the macroscopic velocity of the order 0.1m/s with background noise under
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2.2 Modelling of Slip Flows

Figure 2.3: Fluid modelling classification.

Table 2.1: Knudsen number based flow regime and its fluid models.

Knudsen Number Flow Regime Fluid Model

Kn → 0 Continuum convective flow Euler Equations

Kn ≤ 10−3 Continuum convective Navier-Stokes equations with

and diffusive flow no slip boundary condition

10−3 ≤ Kn ≤ 10−1 Continuum slip flow Navier Stokes with

slip boundary condition

Burnett equation with

slip boundary condition

(DSMC,IP, LB,Hybrid solvers)

10−1 ≤ Kn ≤ 10 Transition flow Burnett equation with

slip boundary condition

(DSMC,IP, LB, Hybrid solvers)

Kn > 10 Free Molecular flow Collisionless Boltzmann solver

DSMC, Molecular Dynamics
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2.2 Modelling of Slip Flows

room condition given by
√
2RT of the order 103 m/s. If we require signal to be

nine times larger than the noise then the sample size N required is around 109

to keep the standard deviation given as
√
2RT/N to a small enough value (refer

Shen [245] for details). Cercignani et al. [48] give this signal-to-noise ratio for a

dilute gas as
u

δu
= M

√
γN (2.7)

where u is the characteristic flow velocity, δu is the statistical fluctuation, M is the

Mach number, γ is the ratio of specific heat andN is the sample size. Thus DSMC

becomes costly to simulate rarefied low speed gas flows encountered in MEMS

and micro-channel flows. DSMC finds more application to many high speed flows.

Fan and Shen [86, 87] proposed information preservation (IP) method to tackle

this problem of large sample size. The thermal movement of the particles causes

statistical scatter in DSMC while in IP method it surfaces only at the macroscopic

information level. In IP method each simulated particle is assigned two velocities :

thermal velocity c and information velocity (IP velocity) ui. Thus, each simulated

particle carries sum of the macroscopic velocity of a gas flow as well as velocity

scatter with an aim to preserve and update the macroscopic information of a

gas flow thereby reducing the statistical scatter. The major advantage of IP

method is the considerable reduction in the sample size. For the example given

earlier for the low speed flows the sample size for IP method is around 103 to

104. Another advantage of the IP method is the implementation of the boundary

condition as macroscopic values of the flow field are known at each time step.

Since IP method handles more information than the DSMC method hence it is

more memory intensive and complicated in its implementation [270]. Another

drawback of IP method is the issue of stability as the time step cannot be large

and particle sample size cannot be small.

2.2.3.2 Direct numerical solution (DNS) of the Boltzmann equation

The modeling of the collision term poses a challenge because of its non-linear

nature. The numerical methods should satisfy all the properties desired for a

kinetic models described in Appendix B i.e. properties of locality and Galilean

invariance, additive invariants, local entropy production, etc. There are broadly
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three methods for direct numerical solution the Boltzmann equation [143] i) node

to node (NtN) method, ii) Tcheremissine’s method, and iii) node to closest node

(NtCN) method. In the NtN method [97, 230, 273] a collision sphere in velocity

space is wrapped around pre- and post collision velocities. The NtN method takes

into account only those post-collisional velocities that fall exactly into the nodes

of the velocity grid. Tcheremissine’s method [274] is a generalization of the NtN

method for more complex models of the collisions by taking into account inverse

collisions that do not fall into the nodes of the velocity grid. NtCn method [66] on

the other hand can be used for arbitrary interaction potentials and non-uniform

grid in velocity space.

2.2.3.3 Hybrid solvers

DSMC becomes an expensive numerical method due to high sample size to keep

the stochastic noise bounded to a lower value. DSMC also becomes impractical

for time dependent flows as ensemble averaging becomes prohibitively expensive.

Near the continuum regions it becomes unrealistic to apply DSMC as mean free

time is very low. On the other hand continuum solvers like Navier-Stokes are

not valid in the rarefied as well non-thermodynamic regions of shock. Many re-

searchers [42, 143, 240] have used a hybrid approach to accommodate both the

issues of accuracy and computational cost for problems that contain the dis-

connected rarefied and non-equilibrium kinetic regions in the continuum flow

domain. DSMC due to its inherent statistical noise has been identified as an

obstacle for the development of hybrid solvers [206]. Some group of researchers

[143] have developed hybrid solvers which employs deterministic kinetic Boltz-

mann Solver instead of DSMC for rarefied and continuum gas flows. Tiwari and

Klar [258], Tiwari et. al [261] have used particle method to carry out contin-

uum and non-continuum coupling. Typical hybrid solver dynamically adapts the

meshes with dynamic addition and deletion of kinetic patches to simulate the

rarefied and non-continuum regions embedded in the continuum flow domain.

The most crucial aspect of the hybrid codes are the : i)adequate continuum

breakdown parameter, ii)identification of non-continuum regions, iii)method of

domain decomposition, and iv)coupling strategy i.e. imposition of boundary con-

ditions at the interface and procedure for information exchange. There are three
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methods of domain decomposition. The first method is domain decomposition

in physical space using appropriate continuum breakdown criteria. The second

method is domain decomposition in velocity space where fast and slow particles

are treated separately [58]. The third methods is hybrid of the two in which

one solves kinetic and fluid equation in entire domain. For example, Beylich [34]

interlaces the path-integral form of the kinetic equation (Boltzmann level) with

the set of conservation equations (Navier-Stokes level). The coupling strategy

between continuum and non-continuum domain can either be flux based coupling

or state based coupling [42, 118]. In the flux based coupling strategy the fluxes

of mass, momentum and energy are calculated according to non-continuum and

continuum domains. In this method the fluxes at the interface are modified such

that fluxes of continuum and non-continuum equate and conservation is insured

in the transfer of information across the interface. State based coupling is in-

herently conservative; in this approach macroscopic state is obtained by using

the average particle information in the non-continuum region and distribution of

particles are generated from a macroscopic state on the other side of the interface

in the continuum region. The major drawback of hybrid solvers is poor com-

putational efficiency and the inability to simulate unsteady flows. Identification

of non-continuum regions and implementation as well as synchronization of two

separate methods for continuum and rarefied flow simulation makes the hybrid

solver quite complex.

2.2.3.4 Slip modeling using higher order continuum equations

Higher order continuum equation based approaches are either based on i)5 mo-

ments based on expansion of distribution function ( Chapman-Enskog series so-

lution leading to Burnett or super-Burnett equations) or ii)higher moment based

approach which include Grad’s 13 moment, Struchtrup’s regularized R13, etc.

Lockerby et. al [163] have investigated most of the common higher order contin-

uum equations, the study revealed that most of these approaches fail to resolve

Knudsen layer structure in Kramers’ problem shown in figure 2.4. Kramers’ prob-

lem considers unidirectional isothermal motion of a gas over a stationary planar

solid. In the Kramers’ problem as the normal distance from the surface, y → ∞
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Figure 2.4: Knudsen layer in the Kramers’ problem.

the bulk flow gradient du/dy becomes constant, where u is the tangential flow

velocity. Let uB = uNS + uKn(y) be the true flow-field based on the Boltzmann

solution where uNS the Navier-Stokes based slip flow approximation and uKn(y)

is the Knudsen layer correction [112, 169]. Similarly for temperature we can write

TB = TNS+TKn(y) where TNS the Navier-Stokes based temperature field approxi-

mation and TKn(y) is the Knudsen layer correction. The Knudsen layer correction

uKn(y) and TKn(y) decays quickly as y/λ→ ∞. Hadjiconstantinou[112] estimates

that uKn(y) decays to approximately 3% of its maximum value at y = 1.5λ re-

ferred as effective width of the Knudsen layer. The Navier-Stokes solution reveals

that the terms of order Kn2 needs to be superimposed to the Navier-Stokes so-

lution to resolve the true solution of the Boltzmann equation for the Kramers’

problem. Investigation of Lockerby et. al [163] has revealed that for low-speed

isothermal flows neither Burnett[52], super-Burnett [50], or Grad’s 13 [102] mo-

ment equations can model the Knudsen layer. However, some of the higher order

accurate continuum equations can qualitatively model the Knudsen layer. Mod-

eling of Knudsen layer can be achieved either by introducing corrections based

on kinetic theory or by wall function approach based on suitable scaling of stress-

strain relationship. Table 2.2 gives the list of higher continuum models and their

capabilities to capture Knudsen layer structure in Kramers’ problem compiled

from Lockerby et. al [163].
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Table 2.2: Values of Knudsen layer thickness in Kramers’ problem for various

higher order continuum equations and kinetic theory based approaches (Refer

[163] for details.)

Kinetic theory based models Knudsen layer thickness

Burnett([52]), No Knudsen layer

Super-Burnett([50]),

Grad’s 13 ([102]), Eu’s GH([84]),

Lumpkin’s reduced Burnett ([174])

Woods ([291])

Zhong’s augmented Burnett ([302]) 0.9λ

Linearized Boltzmann equation([45]) 1.4λ

BGK model([172]) 1.4λ

BGK Burnett([22]) 2.1λ

R13([266]) 2.8λ

Regularized Burnett([127]) 4.9λ

2.2.3.5 Treatment of slip flow based on slip models and Navier-Stokes

equation

Harley et al. [115], Arkilic et al. [12, 13], Beskok and Karniadakis [33] have

shown that Navier-Stokes equations coupled with first order velocity slip and

temperature jump boundary conditions effectively capture slip flow. One of the

earliest model is the Maxwell’s velocity slip [184] expressed in conventional form

as

us − uw = ±
(
2− σv
σv

)
λ

(
∂us
∂n

)
w

+
3

4

µ

ρT

(
∂T

∂s

)
w

(2.8)

This can be expressed in general form [162] as

us − uw = ±
(
2− σv
σv

)
λτsn
µ

− 3

4

Pr(γ − 1)

γP
qs (2.9)

where subscript n denotes the normal coordinate to the wall, s is the tangential

coordinate,τsn is the component of shear stress, qs is the component of heat

flux vector, γ is the ratio of the specific heats, us is the slip velocity, uw is
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the reference wall velocity, Pr is the Prandtl number and σv is the tangential

momentum accommodation coefficient. The second term on the right hand side

of the equation is the thermal creep contribution to the slip velocity due to

tangential temperature variation. Similarly, von Smoluchowski’s temperature-

jump boundary conditions [139] is given as

Ts − Tw =

(
2− σT
σT

)
2γ

Pr(γ + 1)
λ
∂T

∂n
(2.10)

where σT is the thermal accommodation coefficient. The accommodation co-

efficients depend upon specific gas and the surface quality and it models the

momentum and energy exchange of gas molecules impinging on the walls. This

velocity slip equation as described in equation 2.9 for a surface in two dimension

can be written as [162] as follows

u⃗slip − u⃗w = −
(
2− σv
σv

)
µ

ρ(2RTw/π)1/2

(
∂us
∂n

+
∂un
∂s

)
− 3

4

µ

ρTw

∂T

∂s
(2.11)

where us and un are the gas velocity components in the streamwise and normal

to the wall, u⃗w is the wall velocity, and Tw is the wall temperature. s is the

coordinate in the streamwise (tangential) direction and n is the coordinate in the

normal direction to the wall. The second term in the equation 2.11 is associated

with the thermal creep (transpiration) phenomena causing pressure variations in

the streamwise direction in the presence of tangential temperature gradients.The

value of tangential momentum accommodation coefficient (TMAC) can vary from

zero for specular reflection to one for complete diffuse reflection.

These relations which are first order in Knudsen number for velocity slip and

temperature jump are also expressed in literature as

us − uw = ±A1
λτsn
µ

− C1
Pr(γ − 1)

γ p
qs (2.12)

Ts − Tw = B1
2γ

Pr(γ + 1)
λ
∂T

∂n
(2.13)

where coefficients A1 =
(

2−σv
σv

)
, C1 =

3
4
are given by Maxwell and B1 =

(
2−σT
σT

)
is given by von Smoluchowski. These coefficients can also be estimated by solving

the Boltzmann equation for slip coefficients for Bhatnagar-Gross-Krook (BGK)
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model and Hard Sphere (HS) model i.e A1 = δ(BGK/HS, σv = 1)
(

2√
π

)
. Rig-

orous kinetic approach of Albertoni et al. [3], Loyalka et al. [172], Loyalka and

Hickey [170], Loyalka and Tompson [171] have shown that δ(σv = 1) is 1.016191

for BGK molecules. The first order slip coefficient A1 using kinetic approach for

BGK molecular model can be written as

A1 = δ(BGK, σv = 1)

(
2√
π

)
= 1.14665 (2.14)

Ohwada et al.[201] evaluates δ(σv = 1) as 0.98738 for HS molecules. The first

order slip coefficient A1 using kinetic approach for HS molecular model can be

written as

A1 = δ(HS, σv = 1)

(
2√
π

)
= 1.114139 (2.15)

The other coefficients C1 and B1 for fully accommodating surfaces σ = σv = 1

for BGK model are C1(BGK, σ = 1) = 1.149 and B1(BGK, σ = 1) ≈ 1.168.

For hard sphere (HS) model Ohwada et al. [201] evaluates these coefficients as

C1(HS, σ = 1) = 1.015 and B1(HS, σ = 1) = 1.13. For isothermal flows of real

gases the hard sphere model is more appropriate compared to BGK.

As described earlier the Knudsen layer correction uKn(y) over Navier-Stokes so-

lution uNS requires terms of order Kn2 provided by second order velocity slip

model. Higher order slip models are required to model rarefied flows [44, 67, 111,

172, 253], experimental studies [32, 85, 181] have also shown that first order slip

model do not compare well with the experimental data beyond Kn>0.1. Most of

the research is based on simple micro channel flow or flows in simple geometry

without any flow separation. Thus, behavior of the slip model in the recircula-

tion zone due to combined effect of rarefaction and reduction of Reynolds number

forms a good validation test [2, 32]. Modeling the non-equilibrium layer close to

the walls, known as the Knudsen layer is the most crucial aspect for obtaining

a reliable higher-order slip model. Physics based empirical slip model of Beskok

[32] predicts Knudsen’s minimum, observed around Kn ≈ 1 as well as the flow

rate, velocity profile, and the pressure distribution. Beskok [32] carried out de-

tailed study of the slip model and validated it with DSMC results for classical

backward facing step under combined effect of rarefaction and adverse pressure

gradient on separated flows as a function of the Reynolds and Knudsen numbers.
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Beskok [32] slip equation is based on tangential gas velocity one mean free path

away from the wall surface as follows :

us =
1

2
[uλ + (1− σv)uλ + σvuw] (2.16)

where uλ is the tangential gas velocity one mean free path away from the wall

surface and us is the slip velocity. Using the Taylor series expansion of uλ about

us results in the following equation :

us =
1

2
(2− σv)

[
us + λ

(
∂u

∂n

)
s

+
λ2

2

(
∂u

∂n

)
s

+ ...

]
+

1

2
σvuw (2.17)

Another example of higher order slip is linearized Maxwell-Burnett boundary con-

dition obtained by Lockerby et al. [162] using the Burnett constitutive relations,

the expressions of slip are as follows

us − uw = ±
(

2−σv
σv

)
λ
(
∂us
∂n

+ ∂un
∂s

)
w
+ 3µ

4ρT
∂T
∂s

±
(

2−σv
σv

)
λ
(
2 µ
ρ2

∂2ρ
∂s∂n

− µ
ρT

∂2T
∂s∂n

)
w

+3Pr
16π

(
γ−1
γ

)
λ2
(
(45γ − 61)∂

2us
∂s2

+ (45γ − 49)∂
2un
∂s∂n

− 12∂
2us
∂n2

)
w

For stationary flow based on the linearized Maxwell-Burnett boundary condition,

the thermal stress flow due to temperature gradients can be derived as

us − uw = ±
(

2−σv
σv

)
λ
(
− µ
ρT

∂2T
∂s∂n

)
w

(2.18)

Higher order slip condition in Knudsen number approaches the classical Maxwell’s

first order condition if we neglect second and higher order terms. A second or

higher order slip boundary condition requires corresponding higher order con-

tinuum model i.e. second order slip condition will require Burnett equation.

Struchtrup and Torrilhon [266, 267] have used R13 equations for the expression

of the higher order slip boundary. Many researchers have used the generalized

second-order velocity slip boundary condition, which in absence of thermal creep

contribution can be expressed as

us − uw = ±A1λ

(
∂us
∂n

)
w

− A2λ
2

(
∂2us
∂n2

)
w

(2.19)

where A1 and A2 are the first and second order slip coefficients. For flow problems

with small Knudsen number the solution of linearized Boltzmann equation using
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asymptotic approaches can be used to obtain the second slip coefficient. For

example Cercignani and Lorenzani [47] have obtained the solution of Navier-

Stokes solution by using the second order slip boundary condition for Poiseuille

mass flux problem as

SNS = 1 + 6A1Kn + 12A2Kn2 (2.20)

Cercignani and Lorenzani [47] have used the variational technique to solve Boltz-

mann equation to get asymptotic near-continuum solution for the Poiseuille mass

flux to obtain the slip coefficients. The Navier-Stokes solution reveals that the

second order coefficient A2 with the terms of order Kn2 needs to be superimposed

to the Navier-Stokes solution to capture the true solution of the Boltzmann equa-

tion. Thus, the Knudsen layer correction uKn(y) over Navier-Stokes solution uNS

requires a second order velocity slip model. With the second order slip coeffi-

cient the classical hydrodynamical equations can simulate rarefied flows beyond

Kn = 0.1 i.e. second order model extends its applicability beyond slip flow regime

into the transition regime. Since the cost of solution of Navier-Stokes is negligible

compared to the alternative methods hence large number of researchers have at-

tempted to develop second order slip models that can be used beyond Kn = 0.1.

Table 2.3 gives the value of different slip coefficients proposed in the literature

for gas micro flows. It can be inferred from the table that the first order slip

coefficient is mildly dependent on molecular interaction model as compared to

strong dependence seen in second order slip coefficient. Most of the theoretically

derived second order slip models are derived under linearized conditions for flat

walls, steady flow and small gradients. The real conditions can be quite different

as geometries can be complex, flow can be time dependent, etc. The table reveals

that with regards to the first order coefficient A1 there is agreement amongst

various researchers. However, there is a large discrepancy between the values of

the second order coefficient, A2 and there seems to be no consensus amongst the

researchers even for the simple flows. It is also most likely that second order

coefficient A2 is geometry dependent. Under such a scenario boundary condition

derived from set of Burnett equations [162] looks physically meaningful as it in-

cludes the terms of order Kn2, shows reasonable agreement with experimental

data and is simple to implement numerically.
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Table 2.3: Value of slip coefficients proposed in the literature for gas micro flows

for σv=1.

Source A1 A2

Maxwell,1879 [184] 1.0 0.0

Schamberg 1947 [238] 1.0 1.308 (5π/12)

Albertoni et al. 1963[3] 1.1466 0.0

Cercignania 1964 [44] 1.1466 0.647

Deissler b, 1964 [67] 1.0 1.125 (9/8)

Sreekanth, 1969 [253] 1.1466 0.14

Loyalka et al. , 1975 [172] 1.1466 0.0

Langc ,1976 [147] 1.007 0.75

Hsia and Domoto, 1983 [124] 1.0 0.5

Loyalka and Hickey, 1989 [170] 1.1019 0.4490

Mitsuya, 1993 [191] 1.0 2/9

Pan et al. 1999 [209] 1.125 0.0

Beskok d, 2001 [32] 1.0 -0.5

Maurer et al., 2003 [181] (Helium) 1.2±0.05 0.23±0.1

Maurer et al., 2003 [181] (Nitrogen) 1.3±0.05 0.26±0.1

Cercignani et al. 2004 [48] 1.1366 0.6926

Hadjiconstantinoue, 2005 [113] 1.11 0.31

Lockerbyf,2004 [162] 1.0 0.19 (6/10π)

Dongari et al. g,2007 [77] 1.875 0.05

Ewart et al. 2007 [85] 1.26±0.02 0.17±0.02

Struchtrup et al. 2008 [267] 1.0 0.5303

Cercignani and Lorenzani 2010 [47] 1.209 0.2347
a After modification for hard sphere gas, refer Hadjiconstantinou [111] for details.
b Aubert and Colin [17] have also used Deissler’s boundary conditions.
c A2 = 3σv/(4Pr) for BGK model. For Maxwell gas, A2 = 1.125
d A2 = −2−σv

2σv
, where σv is the momentum accommodation coefficient.

e A2 = 0.31 with Knudsen layer correction
f A2 = 9Pr

4π

(
γ−1
γ

)
, based on Maxwell-Burnett boundary condition.

g A1 = 1.0, A2 = 0 for Kn ≤ 0.1 , A1 = 1.4, A2 = 0.7 for 0.1 < Kn ≤ 1.0 , A1 = 1.875, A2 = 0.05

for 1.0 < Kn
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2.2 Modelling of Slip Flows

Similarly, second order von Smoluchowski’s temperature-jump boundary condi-

tions can be expressed as

Ts − Tw =
2γ

Pr(γ + 1)

[
BT

1 λ

(
∂T

∂n

)
w

+BT
2 λ

2

(
∂2T

∂n2

)
w

]
(2.21)

where BT
1 and BT

2 are the first and second order slip coefficients for temperature.

Beskok’s second order temperature jump condition[32] is as follows :

Ts =

(
(2−σT )

Pr

)(
2γ

(γ+1)

)
Tλ + σTTw

σT +
(

(2−σT )
Pr

)(
2γ

(γ+1)

) (2.22)

Another approach for extending the Navier-Stokes equation to transition regime

is to consider the rarefaction effects in calculating the Navier-Stokes viscosity

coefficient. In order to include the rarefaction effects Karniadakis et al. [135]

proposed the following viscosity coefficient relationship

µ(Kn)

µ
=

1

1 + αgKn
(2.23)

Karniadakis et al.[135] uses only first order slip coefficient which is function of

Knudsen number. While Roohi and Darbandi [232] have used second order slip

formula coupled with viscosity coefficient correction evaluated using information

preservation (IP) method expressed as

µ(Kn)

µ
=

1 + 0.75Kn + 19.98Kn2

1 + 0.89Kn + 4.70Kn2 (2.24)

Fichman and Hetsroni [88] found that there is reduction in viscosity in the Knud-

sen layer due to interaction of molecules with the wall. This reduction of viscosity

leads to an increase in slip velocity as a consequence of increase of the flow gra-

dient in the direction normal to the wall. The effective viscosity proposed by

Fichman and Hetsroni [88] is

µ(ȳ, σv)

µ
=

{
σv/2 + (1− σv)ȳ,

1,
ȳ ≤ 1
ȳ > 1

(2.25)

where ȳ = y/λ, y is the normal distance from the surface and λ is the mean free

path. Fichman and Hetsroni [88] model fails to capture the asymptotic form of
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the velocity profile in the Knudsen layer near the surface [154]. Lilley and Sader

[154] have shown that flow exhibits a striking power-law dependence on distance

from the solid surface where the velocity gradient is singular i.e. the effective

viscosity is zero, under arbitrary thermal accommodation. The effective viscosity

proposed by Lilley and Sader [154] for ȳ < 1 is

µ(ȳ, σv)

µ
=

ȳ1−α(σv)

α(σv)D(σv)
(2.26)

Where α(σv) andD(σv) are functions of momentum accommodation coefficient,σv

given in [154].

2.2.3.6 Treatment of slip flow based on Lattice Boltzmann method.

The lattice Boltzmann (LB) method is a mesoscopic approach where details of

the molecular motions are not required. An introduction to LB method and its

theory may be obtained from reference [268]. Recently, Meng and Zhang [188]

have shown that the nine-velocity square lattice D2Q9 model is not sufficient to

capture flow characteristics in the Knudsen layer. Simulation of slip flows using

LB method requires improvement in physics for high Knudsen flows to simu-

late nonlinear constitutive relations as well as proper method of slip boundary

application. Researchers [8, 237] have used diffuse reflection boundary condi-

tion simulated as the combination of the bounce-back and specular reflection

boundary condition (similar to procedures developed in continuum kinetic the-

ory) to simulate slip flows in LB method. There are broadly two approaches in

LB method to include the effect of high Knudsen number : i)choice of discreet

velocity set with sufficient symmetry so that the discreet moments approximate

its counterpart based on continuous Boltzmann equation, ii)the second approach

makes use of an effective relaxation time to capture the Knudsen layer. Sbragaglia

and Succi [237] suggested suitable modification of the construction of the body

force in the LB model in order to obtain the second-order slip. Kim et al [141]

have implemented modification to the non-equilibrium energy flux to capture the

slip phenomena up to second order in the Knudsen number. Guo et al [109] have

used multiple effective relaxation times with wall confinement effects to simulate

the Knudsen layer. The LB framework’s extension to non-equilibrium flows still
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needs to evolve and mature to simulate transition regime [109]. The LB method

are commonly used to simulate fluids with isothermal equations of state in a

weakly compressible limit, it still needs development in the field of compressible

high speed flows.

2.2.3.7 Treatment of slip based on Quasi-Gas-Dynamics (QGD) and

hydrodynamic theory of Brenner

Galileo transform does not hold for the conservation equations based on spatial-

time averages. Quasi-gas-dynamics (QGD) [81] and Quasi-hydrodynamic [248]

approaches use the time-spatial averaging procedure for the definition of the main

gas dynamic quantities: density, velocity, and temperature as compared to spa-

tial averaging used in conventional Navier-Stokes theory. QGD introduces small

diffusive velocity in the expression of mass flux such that time-spatial averages

are invariant under Galileo transform. QGD approach[82] increases the domain

of validity of the continuum approach up to Kn ∼ 0.5. The mass flow rate for

slip conditions using QGD approach also accounts for the flow rate increase due

to self diffusion.

QGD approach is similar to modification in hydrodynamic theory proposed by

Brenner [38] by introducing a new mass diffusion contribution to the continuity

equation, more details are presented in section B.3 of Appendix B. Guo and Xu

[108] studied gaseous micro flows using Brenner’s hydrodynamic model and found

that Brenner’s model failed to give qualitative correct temperature profile.

2.2.3.8 Kinetic theory based slip modeling

According to kinetic theory velocity slip and temperature jump will always be

present even in continuum flow regime [90, 265]. The slip flow simulation using the

continuum solver can be carried out either by using slip models or by implement-

ing kinetic wall boundary condition. Maxwell specular-diffuse reflection model

is the most preferred gas-surface interaction model for engineering applications.

In this model molecules partially undergo specular reflection and the remainder

reflect in diffuse manner. The boundary conditions at the surface of the solid ob-

ject define the distribution function of the reflected particles as a sum of diffuse
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and specular reflections [189, 295]. It can be seen that there are large number

of slip models existing in the literature, each with its own geometry specific slip

coefficients and range of validity in Knudsen regime. Most of these slip models

are for simple micro-channel flows. The first order slip model itself is not perfect

as the slip velocity not only depends on the velocity gradient in the normal direc-

tion but also on the pressure gradient in the tangential flow direction [246]. Li et

al [152] have used gas kinetic upwind method to carry out slip flow modeling for

hypersonic flows. Agarwal et al. [1], Bao and Lin [24], and Lockerby and Reese

[161] have used Burnett equations coupled with slip models. For example Bao and

Lin [24] have adopted Beskok’s slip model [32]. Researchers [153, 189, 295] have

used kinetic wall boundary condition obtained using the distribution function.

Velocity slip and temperature jump can also be derived using linearized Grad’s

moment method which is based on expansion of distribution function around lo-

cal Maxwellian in terms of Hermite tensor polynomials. Accurate derivation of

velocity slip and temperature jump using Grad’s moment method requires at least

thirteen equations [266]. Patterson [211] carried out derivation of velocity slip

and temperature jump using Grad’s moment method. Patterson’s velocity slip

condition is similar to Maxwell’s velocity slip for curved surface [163]. However,

Patterson’s temperature boundary condition [211] is approximate as it is derived

under assumption of negligible tangential variation and negligible magnitude of

velocity compared to thermal speed of the molecules. Greenshields and Reese

[104] have used velocity slip and temperature jump derived using Patterson [211]

boundary conditions. Kinetic theory based methods in general have focused more

on entropy condition and ignored the issues of non-equilibrium thermodynamics

i.e. distribution of entropy for each thermodynamic force.

2.2.3.9 Kinetic theory and non-equilibrium thermodynamics based

slip modeling

Waldmann [283] carried out analysis of boundary condition and was first to stress

the need to incorporate features of non-equilibrium thermodynamics. Roldughin

[231] and later on Zhdanov and Roldughin [300] established links between phe-

nomenological approach of non-equilibrium thermodynamics and kinetic theory
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for entropy production in the boundary layer, derivation of slip and jump condi-

tions.

2.2.4 Potential area of research in slip modeling

The first order slip models not only depends on the velocity gradient in the normal

direction but also on the pressure gradient in the tangential flow direction as

most of theoretically derived slip models are derived under linearized conditions

for flat walls, steady flow and small tangential gradients. It can be inferred from

the literature review that the first order slip coefficient is mildly dependent on

molecular interaction model as compared to strong dependence seen in second

order slip coefficient. Literature survey also reveals that for Navier-Stokes based

approach there is no consensus amongst researchers in usage of second order

slip models. Compared to Navier-Stokes based approach kinetic theory based

methods are more successful in resolving features of slip flow. Kinetic theory

based methods in general have focused more on entropy condition and ignored

the issues of non-equilibrium thermodynamics. Literature review also revealed

that there is virtually no reported upwind method based on linkage between kinetic

theory and non-equilibrium thermodynamics for solving slip flows.

2.3 Kinetic theory and Fluid Flow

The kinetic theory of gases is a very vast field which successfully explains the

irreversible laws of fluid mechanics through a statistical description of a system

composed of larger number of particles. For detailed description of kinetic theory

of gases refer Appendix B.

2.3.1 Boltzmann equation

For a gas in absence of external force and without internal degrees of freedom,

the Boltzmann equation with binary collisions term J(f, f) is

∂f

∂t
+∇x⃗ · (v⃗f) = J(f, f) (2.27)
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The Boltzmann transport equation describes the transient molecular distribution

f(x⃗, v⃗, I, t) : RD × RD × R+ × R+ → R+ where D is the degree of freedom. For

conservation of total energy instead of translational energy alone an additional

internal energy variable I ∈ R+ is added as polyatomic gas consists of particles

with additional degree of freedom [69, 192]. Thus a molecule of a polyatomic gas

is characterized by a (2D + 1) dimensional space given by its position x⃗ ∈ RD,

molecular velocity vector v⃗ ∈ RD and internal energy I ∈ R. Distribution func-

tion expresses the probability of finding the molecules in the differential volume

dDxdDvdI 1 of the phase space.

n(x⃗, t) =

∫
R+

∫
RD

f(x⃗, v⃗, I, t)dv⃗dI (2.28)

The equilibrium or Maxwellian distribution function for the polyatomic gas is

given by

f0 =
ρ

Io

(
β

π

)D
2

exp

(
−β(v⃗ − u⃗)2 − I

Io

)
(2.29)

where β = 1/2RT and Io is given as

Io =
< I, f0 >
< f0 >

=
1

ρ

∫
R+

∫
RD

If0(x⃗, v⃗, I, t)dv⃗dI =
2− (γ − 1)D

4(γ − 1)β
(2.30)

2.3.2 Moments and hyperbolic conservation equations

The moment of a function, Ψ = Ψ(v⃗, I, t) : RD × R+ × R+ → R is defined as

Hilbert space of functions generated by the inner product

Ψ̄(x⃗, t) = ⟨Ψ, f⟩ ≡
∫
R+

∫
RD

Ψ(v⃗, I, t)f(x⃗, v⃗, I, t)dv⃗dI (2.31)

The five moments function defined as Ψ =
[
1, v⃗, I+ 1

2
v2
]T

gives the macro-

scopic mass, momentum, and energy densities i.e. ⟨Ψ, f⟩= [ρ, ρu⃗, ρE]T , where

E = RT/(γ − 1)+1
2
u2, u⃗ is the fluid velocity vector and γ is the specific heat

ratio. When we take moments of the Boltzmann equation we get the hyperbolic

1For example when D=3 the polyatomic gas is characterized by a 7 dimensional space and

the differential volume in phase space is d3xd3vdI where d3x is dxdydz and d3v is dvxdvydvz.
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conservation equation. For example with f = f0 we get Euler equations that are

set of inviscid compressible coupled hyperbolic conservation equations written as∫
R+

∫
RD

Ψ

(
∂f0
∂t

+∇x⃗.(v⃗f0) = 0

)
dv⃗dI ≡ ∂U

∂t
+
∂GXI

∂x
+
∂GY I

∂y
+
∂GZI

∂z
= 0

(2.32)

where U = [ρ, ρu⃗, ρE]T = ⟨Ψ , f0⟩ ≡
∫
R+

∫
RD Ψf0(x⃗, v⃗, I, t)dv⃗dI is the vector of

conserved variable and (GXI ,GY I ,GZI) are the Cartesian components of the

inviscid flux vector defined as

GXI =

∫
R+

∫
RD

Ψvxf0(x⃗, v⃗, I, t)dv⃗dI ≡


ρux

p+ ρu2x
ρuxuy
ρuxuz

(ρE + p)ux

 (2.33)

GY I =

∫
R+

∫
RD

Ψvyf0(x⃗, v⃗, I, t)dv⃗dI ≡


ρuy
ρuyux
p+ ρu2y
ρuyuz

(ρE + p)uy

 (2.34)

GZI =

∫
R+

∫
RD

Ψvzf0(x⃗, v⃗, I, t)dv⃗dI ≡


ρuz
ρuzux
ρuzuy
p+ ρu2z

(ρE + p)uz

 (2.35)

For an ideal law we have p = ρRT where R is the gas constant and T is the

absolute temperature. No real gas follows the ideal gas law p = ρRT for all

temperatures and pressures, similarly specific heat of many gases vary with tem-

perature. Refer Appendix C for treatment of thermally and calorically imperfect

gas.

The distribution function f can be expanded in terms Knudsen number, Kn as

follows

f = f0 +Knf̄1 +Kn2f̄2 + · · · (2.36)

With first order expansion f = f0 + Knf̄1 we get Navier-Stokes equations, and

with second order expansion f = f0 + Knf̄1 + Kn2f̄2 we get a set of Burnett

equations. The moments of the Boltzmann equation satisfy an infinite hierarchy
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(a) (b)

Figure 2.5: Boltzmann equation with (a) 5 moments resulting in Navier-Stokes

equations, (b) beyond Navier-Stokes with an infinite hierarchy of balance laws.

of balance laws such that from the continuum mechanics perspective the flux in

an equation becomes the density at the next hierarchical level. In other words to

conserve mass we require mass flux in the first hierarchy, now in order to conserve

mass flux (which can be interpreted as momentum) we require momentum flux in

the second hierarchy. In the second hierarchy we conserve the momentum for x, y

and z directions using momentum flux ( which can be interpreted as energy). This

momentum flux or energy is conserved using flux of energy in the third hierarchy.

Navier-Stokes ends in this third hierarchy with 5 equations conserving mass, three

momentums and energy. But we still require conservation of energy flux which

will require flux of energy flux in the fourth hierarchy. Thus, we require infinite

hierarchy or moments as shown in Figure 2.5. It is evident that Navier-Stokes

and Burnett equations are all obtained using the five moments and hence they

do not have equations for evolution of shear stress tensor and heat flux vectors.

There can be different set of moment equations based on entropy based closure

or closure due to equilibrium solution, for further details refer section B.1.3 of

Appendix B.

2.3.3 Kinetic Models

Boltzmann equation being a nonlinear integro-differential equation becomes dif-

ficult to handle. This requires some alternative simpler model to replace the
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collision term. Such a model which replaces the Boltzmann collision integral is

called a kinetic model. These models should preserve the basic properties and

characteristics of the Boltzmann equation. In kinetic models, the Boltzmann col-

lision term J(f, f) is substituted by a relaxation expression Jm(f, fref ) in terms

of suitable reference distribution function, fref and mean collision frequency, ν

which is inverse of relaxation time, tR. The collision or kinetic model Jm(f, fref )

should also satisfy the main properties of the Boltzmann collision integral. Some

of the main properties are

1. Locality and Galilean invariance

Since the Boltzmann equation is invariant under Galilean transformation

hence the collision term Jm(f, fref ) should depend only on peculiar velocity

c⃗ = v⃗ − u⃗.

2. Additive invariants of the collision integral

This property ensures conservation of mass, momentum and energy and is

represented as ∫
R+

∫
RD

Jm(f, fref )Ψdv⃗dI = 0 (2.37)

3. Uniqueness of equilibrium

The zero point of kinetic model Jm(f, fref ) = 0 representing collision term

implies uniqueness of equilibrium. This condition is also known as condition

of detailed balance.

4. Local entropy production inequality and Boltzmann H-theorem

This property represents non-negative entropy production by the kinetic

model representing collision term obtained using moment Ψe = −Rlnf .1

σ(v⃗, t) = −R
∫
R+

∫
RD

lnfJm(f, f0)dv⃗dI = −RdH
dt

≥ 0 (2.38)

1When distribution function f is expressed in terms of number density as f̆ then the moment

Ψe = −kBlnf̆ gives entropy production as

σ(v⃗, t) = −kB

∫
R+

∫
RD

lnf̆Jm(f̆ , f̆0)dv⃗dI = −kB
dH

dt
≥ 0

where kB is the Boltzmann’s constant.
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where H-function is given by

H =

∫
R+

∫
RD

flnfdv⃗dI (2.39)

5. Correct transport coefficients in the hydrodynamic limit

In the hydrodynamic limit the kinetic model should generate correct trans-

port coefficients such as viscosity, µ and thermal conductivity, κ and Prandtl

number, Pr should be close to 2/3.

6. Positive distribution

The H-function of the kinetic model should decay monotonically such that

Boltzmann equation gives positive distribution leading towards the unique

equilibrium solution.

For further details on properties of collision operator refer section B.2 of Ap-

pendix B. Literature review reveals Bhatnagar-Gross-Krook (BGK) model [35],

Fokker-Planck model [148], Quasi-Equilibrium model [100] and several other ki-

netic models. The simplest of all the kinetic models which satisfies the Boltzmann

H-theorem is the non-linear Bhatnagar-Gross-Krook (BGK) model.

2.3.3.1 Bhatnagar-Gross-Krook (BGK) Model

In this model the reference distribution function is simply Maxwellian i.e. fref =

f0. With this the BGK kinetic model [35] can be represented as

Jm(f, f0) = −ν(f − f0) = −(f − f0)

tR
(2.40)

where ν is the collision frequency and tR is the relaxation time. BGK is a non-

linear function of the moments of f whereas the Boltzmann collision integral is

non-linear in the distribution function itself. BGK model preserves most of the

property of the collision integral but its evaluation in the hydrodynamic limit gen-

erates transport coefficients which cannot be adjusted to give the correct Prandtl

number of 2/3. The BGK model gives viscosity, µ and thermal conductivity, κ

and Prandtl number as follows

µ = tRp, κ = ptRR
γ
γ−1

, Pr = 1 (2.41)
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2.3.3.2 Morse-BGK model for polyatomic gases

In most of the cases translational, rotational and vibrational partition functions

contribute to the thermodynamic properties in the temperature ranges encoun-

tered in engineering applications. As described earlier Maxwellian distribution

function, f0 for the polyatomic gas is given as

f0 =
ρ

Io

(
β

π

)D
2

exp

(
−β(v⃗ − u⃗)2 − I

Io

)
(2.42)

where Io =< I, f0 > / < f0 > =2−(γ−1)D
4(γ−1)β

is the average internal energy parame-

ter, β = 1/2RT . In Morse’s model [192] relaxation time for elastic and inelastic

collision is considered separately. Due to inelastic collision particles relax to equi-

librium distribution in internal and translational state at same temperature as

there is equipartition of energy between the internal and translational degree

of freedom. Whereas, due to elastic collision particles relax to equilibrium for

translational state at a temperature which is different from the temperature at

which internal state attains its equilibrium. Elastic collisions do not contribute

to equipartition of energy between translational and internal states. The relax-

ation model is parameterized by elastic and inelastic collision times. For inelastic

collisions the Morse-BGK [192] relaxation time model for polyatomic gas is given

by

Jm(f, f0) = −f(x⃗, v⃗, I, t)
tR(f)(x⃗, t)

+
f0(x⃗, v⃗, I, t)
tR(f0)(x⃗, t)

(2.43)

where inelastic Maxwellian f0 is

f0 =
ρ

Io(T )

(
β(T )

π

)D
2

exp

(
−β(T )(v⃗ − u⃗)2 − I(T )

Io(T )

)
(2.44)

Thus particles in non-equilibrium are replaced exponentially by particles in equi-

librium with characteristic time tR(f) and tR(f0) respectively. With an assumption

tR(f)=tR(f0)=tR the Morse-BGK model becomes

Jm(f, f0) = −f(x⃗, v⃗, I, t)− f0(x⃗, v⃗, I, t)
tR(x⃗, t)

(2.45)

Collision operator vanishes as f relaxes to f0.
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2.3.3.3 Drawbacks of BGK class of kinetic models

Morse-BGK model satisfies the Boltzmann H-theorem and preserves most of the

property of the collision integral but its evaluation at the hydrodynamic limit gen-

erates transport coefficients which cannot be adjusted to give the correct Prandtl

number of 2/3. The single relaxation time of the BGK class of kinetic model is

defined by

t−1
R =

(
RT δoref
µref

)
ρT 1−δo (2.46)

where µref is the viscosity of the gas at the reference temperature, Tref , δo is

the exponent of the viscosity law of the gas, which depends on the molecular

interaction potential and on the type of the gas. The single relaxation time in

the BGK model used for the collision operator leads to incorrect values of the

transport coefficients at the hydrodynamic limit. This approach gives Prandtl

number as unity. Woods [291] suggested a method which appears to be ad hoc

in which two distinct collision interval tR,1 for momentum transport and tR,2 for

energy transport are adopted using the BGK model. These collision intervals are

related as

tR,1 = Pr tR,2 =
2

3
tR,2 (2.47)

Chae et al. [49] and Xu [293] have suggested following modification of energy flux

for accurate heat transfer prediction

[ρE]corrected = ρE +

(
1

Pr
− 1

)
q⃗ (2.48)

where q⃗ is the heat flux vector. May et al. [185] have proposed Prandtl number

correction at the level of the partial differential equations without providing any

physical basis. It is important to understand that there are very few models which

respect each constraint of positivity, conservation of moments, and dissipation of

entropy, while being computationally inexpensive.

2.3.4 Kinetic models with correct transport coefficients in

the hydrodynamic limit

The incorrect value of the Prandtl number, can be corrected by kinetic models like

Shakhov’s model [241], the ellipsoidal statistical BGK ( ES-BGK) model [6, 122].
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The ellipsoidal statistical BGK ( ES-BGK) model and the Shakhov’s model or

S-model is a generalization of the BGK model equation with correct relaxation of

both the heat flux and stresses, leading thus to the correct continuum limit in the

case of small Knudsen numbers. Model proposed by Shakhov provides reliable

result for non-isothermal flows. Both the models are computationally expensive

in comparison with BGK model. Zheng and Struchtrup [301] have carried out

detailed study on kinetic models. Liu model [157], the BGK model with veloc-

ity dependent collision frequency ν(c)−BGK model of Mieussens and Struchtrup

[190] also yield the proper Prandtl number.

Kinetic model in lattice Boltzmann (LB) method is represented as scattering ma-

trix between various discrete-velocity distributions e.g. in lattice BGK (LBGK)

scattering matrix is in diagonal form with single relaxation parameter. Kinetic

model associated with multiple relaxation time (MRT) LB[74, 75] uses multiple

relaxation to address the issue of fixed Prandtl number and fixed ratio between the

kinematic and bulk viscosity while providing stability. Revised matrix LB model

[134] uses a two-step relaxation BGK like model to strike a balance between en-

hanced stability and simplicity. Yong [298] proposed Onsager like relation as a

requirement and guide to construct stable LB models.

Most of the kinetic models have either focused on Prandtl number fix or sat-

isfaction of H-theorem or stability, and have ignored the crucial aspect of non-

equilibrium thermodynamics. Almost all the models are expensive in terms of

computational cost as compared to BGK model. The next sub-section describes

ellipsoidal statistical BGK ( ES-BGK) model and the Shakhov’s model.

2.3.4.1 Ellipsoidal Statistical BGK Model

Holway [122] and Andries and Perthame[6] introduced the Ellipsoidal Statistical

BGK (ES-BGK) model which predicts the correct value of transport coefficients

and Prandtl number. Here the Maxwellian distribution which was the reference

distribution function in BGK model is being replaced by the generalized Gaussian

distribution given as

fref = fES =
ρ

[det(2πΘij)]1/2
exp(−1

2
ciΘ

−1
ij cj) (2.49)
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where Θij is a function of symmetric temperature tensor given by pij/ρ defined

as

Θij = RTδij + ξτij/ρ = (1− ξ)RTδij + ξpij/ρ (2.50)

where factor ξ lies in the interval [−1/2, 1] to ensure that Θij is positive defi-

nite. The ES-BGK model gives viscosity, µ, thermal conductivity, κ and Prandtl

number as follows

µ = 1
1−ξ

p
ν
, κ = 5

2
pR
ν
, Pr = 1

1−ξ (2.51)

Andries and Perthame [6] have also proved the validity of H-theorem for the

ES-BGK model.

2.3.4.2 Shakhov Model

In Shakhov’s model [241] we take fref as a function of peculiar velocity in the

form represented by convoluted Hermitian polynomials as

fref = f0

(
a(0) + a

(1)
i ci + a

(2)
ij

(cicj
RT

− δij

)
+ a

(3)
i ci

(
c2

2RT
− 5

2

))
(2.52)

By taking finite number of terms of the series to construct approximation of the

reverse collision integral. We obtain

a(0) = a
(1)
i = a

(2)
ij = 0

a
(3)
1 =

1− Prref
5

2qi
pRT

, qi =

∫
RD

cic
2fdv⃗

(2.53)

With the above approximation the reference distribution function, fref becomes

fref = fM

(
1 +

1− Prref
5

2qici
pRT

(
c2

2RT
− 5

2

))
(2.54)

If we take Prref given in Shakhov’s model as 2/3 then this gives

µ = p
ν
, κ = 15

4
pR
ν
, Pr = 2

3
(2.55)

The distribution function f might become negative for large values of the peculiar

velocities.
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Figure 2.6: Method of reduced description.
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2.3.5 Method of reduced description

The most detailed representation governed by Liouville equation leads to the

BBGKY infinite hierarchy such that each chain in the hierarchy involves reduced

distribution function F (H) and higher order distribution function F (H+1). Boltz-

mann’s molecular chaos assumption gives a closed equation for F (1). The method

of reduced description is required to find the closed set of equations. At each level

of reduction the insignificant features are discarded for simplicity while retaining

the essential physics. The closure problem becomes difficult because of the pres-

ence of higher order moments in the equation of lower order moment. Various

methods have been developed to give a reduced description in terms of distribu-

tion function [45]. Some of the salient methods are: the Chapman-Enskog method

[52], the Grad’s method [102, 242], the quasi-equilibrium method, and the method

of the invariant manifold [101]. In the Grad’s method [242] Boltzmann equation

is projected onto Hermite basis i.e. we seek solution of mass, momentum and en-

ergy conservation equation by expanding the distribution function f(x⃗, v⃗, I, t) in
Hermite or Gram-Charlier polynomials. The unique feature of Hermite orthonor-

mal polynomials forming the expansion basis is that its expansion coefficients

correspond to the velocity moments. Thus, N th order distribution function can

be approximated by its projection onto a Hilbert subspace spanned by the first

N Hermite polynomials. Instead of searching for a perturbative solution of the

Boltzmann equation in the neighbourhood of equilibrium, the Chapman-Enskog

method makes use of the time scales present in the equation of motion and ex-

pands it in terms of slow and fast components. As the evolution of distribution

function in Boltzmann’s equation happens on slower timescale τs due to slow pro-

cess of spatial gradients and at faster timescale τf due to the process of collisions.

The five moments corresponding to mass, momentum and energy densities evolve

slowly through spatial gradients as they are unaffected by collisions, whereas all

the higher moments which include momentum and energy fluxes evolve on the

faster timescale of collisions. In van Kampen’s procedure [278] the slow variables

are kept unexpanded while the fast variables are expanded in power of τf/τs.

The combination of any slow and fast variables will give rise to different, but

asymptotically equivalent evolution equations for the slow variables at each stage
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in procedure laid out by van Kampen [68]. Grad moment method and Chapman-

Enskog are the most commonly used approaches. Fig. 2.6 shows the schematic

of method of reduced description used in obtaining distribution function from

the most detailed representation. Refer section B.4 of Appendix B for details on

Grad moment method. In the present study we have followed Chapman-Enskog

approach [52], this method instead of searching for a perturbative solution of the

Boltzmann equation in the neighbourhood of equilibrium makes use of the time

scales present in the Boltzmann equations and expands it in terms of slow and

fast components.

2.3.5.1 Chapman-Enskog Expansion

Consider the Boltzmann equation with the BGK model as

∂f

∂t
+∇x⃗ · (v⃗f) = Jm(f, f0) = −(f − f0)

tR
(2.56)

where f0 is the Maxwellian. Boltzmann equation can also be written in a non-

dimensional form [234] as

St

[
∂f

∂t̂
+∇⃗̂x · (⃗v̂f)

]
= − 1

KnL

(f − f0)

t̂R
(2.57)

where ⃗̂x = x⃗/L0, ⃗̂v = v⃗/vth, t̂R = tRvth/λ , t̂ = t/t0 based on reference macro-

scopic length scale, L0, time scale, t0 and most probable molecular thermal speed,

vth = 1/
√
β. Dimensionless form contains kinetic Strouhal number, St and local

Knudsen number term, KnL. The local Knudsen number KnL = λ/L0 is defined

as a ratio of mean free path, λ and length scale, L0. The kinetic Strouhal number,

St is given as

St =
L0

vtht0
(2.58)

The distribution function f can be expressed as the Chapman-Enskog expansion

in terms Knudsen number as follows

f = f0 +Knf̄1 +Kn2f̄2 + · · · (2.59)

where f0 is the Maxwellian. It should be noted that the perturbation terms

satisfies the additive invariants property, expressed as

< Ψ,Knif̄i >∀i≥1= 0 (2.60)
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In Chapman-Enskog expansion, the first term represents the Maxwellian equilib-

rium distribution function corresponding to the Euler equations. The first two

terms in Chapman Enskog expansion, i.e., (f0 + Knf̄1) give a distribution func-

tion corresponding to the Navier-Stokes equations, which represent a first-order

departure from equilibrium. Boltzmann equation with higher order Chapman-

Enskog distribution will express higher order constitutive relationship for shear

and heat transfer terms. The higher order terms are proportional to the corre-

sponding power of Knudsen number, Kn hence higher order terms become im-

portant in the Knudsen number dominated rarefied regime. Higher order ex-

pansion gives Burnett equations [22, 127, 291], and super-Burnett equations [50].

Boltzmann equation with higher order Chapman-Enskog distribution will express

higher order constitutive relationship for shear and heat transfer terms. Using

the non-dimensionless Boltzmann equation and Chapman-Enskog perturbation

expansion, higher order distribution is generated by virtue of iterative refinement

as follows:

f̄i = − tR
Kn

[
∂f̄i−1

∂t
+∇x⃗.(v⃗f̄i−1)

]
(2.61)

where Kn is the Knudsen number with f̄0 = f0 .

2.3.6 Potential area of research in kinetic theory

Amongst researchers the Bhatnagar-Gross-Krook model (BGK) is the most pre-

ferred kinetic model because of the low computational cost even though it yields

an inconsistent value of Prandtl number and fails to provide reliable results for

non-isothermal flows. Morse-BGK model which is an extension of BGK model

for polyatomic gases also gives inconsistent Prandtl number. The ellipsoidal sta-

tistical BGK ( ES-BGK) model and the Shakhov’s model give correct Prandtl

number in the hydrodynamic limit but are computational expensive. Literature

survey reveals existence of a potential research area in the development of BGK

like computationally inexpensive kinetic model for polyatomic gases which gives

correct transport coefficients and Prandtl number in the hydrodynamic limit. It

was also realized that extending Chapman-Enskog reduced description method for

polyatomic gas could lead to a new contribution.
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2.4 Non-equilibrium thermodynamics

2.4 Non-equilibrium thermodynamics

Non-equilibrium thermodynamics being a phenomenological theory gives the sym-

metry relationship between kinetic coefficients as well as general structure of

equations describing the non-equilibrium phenomenon. Approximate solutions

provided by kinetic theory has to comply with requirements of non-equilibrium

thermodynamics like i)positive entropy production, ii)satisfaction of Onsager’s

relation. Thus non-equilibrium thermodynamics provides a tool for checking the

correctness of the kinetic theory based solutions [300].

2.4.1 Onsager Reciprocity principle

Total entropy of a system described by N -state variables can be written as

dρs
dt

=
dρsex
dt

+
dρsin
dt

(2.62)

where the first term is because of entropy exchange between the system and the

environment through the boundary and this can either be positive or negative.

The second term is due to the rate of entropy production because of internal

irreversible processes and it is always positive. The change in entropy due to

irreversible processes with respect to time is given as

∂ρs
∂t

+∇x⃗ · (j⃗s) = σ(t) ≥ 0 (2.63)

where ρs is the entropy density, j⃗s is the flux of entropy density and σ(t) is the

entropy production density. The entropy production is basically a characteristic

of a non-equilibrium state as a consequence of the product of the thermodynamic

force and conjugated fluxes. For the system described by N -state variables close

to equilibrium there exists a linear relationship between its corresponding N

fluxes J i and associated thermodynamic forcesXj through the phenomenological

tensorLij as

J i =
N∑
j=1

Lij ⊙Xj (2.64)

Operator ⊙ denotes full tensor contraction of forces and fluxes, which are of the

same tensorial order following Curie principle. Linear relationship between ther-

modynamic forces and fluxes based on Onsager variational principle [204, 205] is
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one of the corner stone of linear non-equilibrium thermodynamics. In isotropic

media Lij vanish if forces couple with fluxes of different tensor types. The phe-

nomenological equation either obey Onsager’s reciprocal relations Lij=Lji or

Casimir’s one Lij=−Lji. The flux vanishes when the system is in equilibrium

with respect to one of the corresponding state variables

N∑
j=1

Lij ⊙Xj = 0 (2.65)

The entropy production density is equal to the product of the thermodynamic

force and conjugated fluxes as

σ(X i,J i) =
N∑
i=1

J i ⊙X i ≥ 0 (2.66)

where ⊙ denotes full tensor contraction. For example consider transport of mass

flux and thermal energy flux between two vessels. Vessel-I is maintained at tem-

perature T and pressure p and vessel-II is maintained at temperature T + ∆T

and pressure p +∆p. Transport process due to mass flux Jm and the flux asso-

ciated with heat flux vector, J q is described by non equilibrium thermodynamic

phenomenological relations [61]

J i =
∑
Lij ⊙Xj (2.67)

where the phenomenological coefficients Lij form a positive matrix satisfying

Onsager reciprocity condition Lmq = Lqm. The thermodynamic forces are given

as [262]
Xm = −∆p

Tρ

Xq = −∆T
T 2

(2.68)

where ρ is the fluid density. The entropy production density in this case is

obtained as summation of each term of thermodynamic force and its conjugate

flux as follows

σ(X i,J i) =
∑

J i ⊙X i ≥ 0 (2.69)
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2.4.2 Maximum entropy production principle (MEPP)

Onsager variational principle was formulated in the space of thermodynamic

fluxes, alternative formulation of Gyarmati[110] was proposed in the space of

thermodynamic force. Ziegler [305] proposed that entropy production maximizes

when actual fluxes satisfy Onsager reciprocity principle for prescribed irreversible

force. Onsager [205] introduced dissipation function Φ(J i,Jk) expressed as

Φ(J i,Jk) =

∫
Ω

ϕJ(J i,Jk)dΩ =
1

2

∫
Ω

N∑
i,k=1

RJ
ik ⊙ J i ⊙ JkdΩ (2.70)

where RJ
ik is the symmetric tensor and ϕJ(J i,Jk) is dissipation function density

in the flux space. Onsager variational principle can now be written as[
∂ (σ(X i,J i)− ϕJ(J i,Jk))

∂J

]
X

= 0 (2.71)

Physically it says that if values of irreversible forces X i are assigned, true fluxes

J i maximize the expression [σ(X i,J i)− ϕJ(J i,Jk)], and expresses the principle

of least dissipation of energy.

An alternative Gyarmati [110] formulation in force space can be written as[
∂ (σ(X i,J i)− ϕX(X i,Xk))

∂X

]
J

= 0 (2.72)

ϕX(X i,Xk) is dissipation function density in the force space given as

ϕX(X i,Xk) =
1

2

∫
Ω

N∑
i,k=1

RX
ik ⊙X i ⊙XkdΩ (2.73)

where RX
ik is the symmetric tensor. Gyarmati formulation says that for a pre-

scribed thermodynamic fluxes J i the actual irreversible forces X i maximize the

expression [σ(X i,J i)− ϕX(X i,Xk)].

Ziegler [305] formulation is in flux space, it can be interpreted as maximization

of entropy σJ for prescribed irreversible force under constraint imposed on en-

tropy production due to conservation laws [180, 282]. This can be mathematically

written as
Maximize σJ(J i,Jk)
subject to (σJ(J i,Jk)− σ(X i,J i)) = 0

(2.74)
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Figure 2.7: Linkage between kinetic theory and non-equilibrium thermodynam-

ics.

where σ(X i,J i)=
∑

i J i ⊙X i is the entropy production density based on con-

servation law and σJ(J i,Jk) is the entropy production density in terms of fluxes.

Maximum entropy production principle (MEPP) represents an additional state-

ment over the second law of thermodynamics that entropy production is not just

positive but tends to a maximum. Maximization of the number of possible tra-

jectories as the system evolves from a non-equilibrium state in the phase space

probably leads to MEPP. Fig. 2.7 shows the linkage between kinetic theory and

non-equilibrium thermodynamics. As the fluid system evolves from one conser-

vation state to another it follows the path dictated by non-equilibrium thermo-

dynamics satisfying Onsager’s relationship which in turn leads to maximization

of the entropy production. Figure 2.8 shows the schematic picture of the evo-

lution of flow and entropy generation. The path which follows non-equilibrium

thermodynamics (NET) generates maximum entropy. The path can also be in-

terpreted in terms of entropy production in the flux space represented as surface

σ(J i,Jk) [180]. Figure 2.9 shows a linear irreversible process and a simple dissi-

pative surface σ for a case with two thermodynamic fluxes and forces. The flux

J i is generated corresponding to its conjugate thermodynamic force X i which is

orthogonal to surface σ(J i,Jk) intersected by the plane
∑

i J i ⊙X i.
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Figure 2.8: Maximum entropy production for the path which complies with the

principles on non-equilibrium thermodynamics (NET).

Figure 2.9: Simple dissipative surface for a path governed by two thermodynamic

fluxes and forces.
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2.4.3 Maximum entropy production, kinetic model and

distribution function

The distribution can be linearized about a local Maxwellian as follows

f(x⃗, v⃗, I, t) = f0(x⃗, v⃗, I, t)[1 + Φ(x⃗, v⃗, I, t)] (2.75)

Neglecting the dependence of Φ on x⃗ and t we can write

f(x⃗, v⃗, I, t) = f0(x⃗, v⃗, I, t) (1 + Φ(v⃗, I)) (2.76)

Let us consider another trial linearized distribution f1,T = f0[1 + ΦT ] satisfying

following conditions

• Distribution f1,T satisfies the additive invariants property

⟨Ψ, f0ΦT ⟩ = 0 (2.77)

• Distribution f1,T is not the solution of the Boltzmann equation

∂f0
∂t

+∇x⃗ · (v⃗f0) ̸= −f0JΦT (2.78)

• Distribution f1,T produces entropy

∂ρs
∂t

+∇x⃗ · (js) = R

∫
R+

∫
RD

f0ΦTJΦTdv⃗dI = σT (v⃗, t) ≥ 0 (2.79)

This condition requires∫
R+

∫
RD

ΦT

[
∂f0
∂t

+∇x⃗ · (v⃗f0)
]
dv⃗dI = −

∫
R+

∫
RN
f0ΦTJΦTdv⃗dI (2.80)

Based on the properties of the linear operator J we get∫
R+

∫
RD
f0(Φ− ΦT )J(Φ− ΦT )dv⃗dI ≥ 0 (2.81)

Since the collision operator is linear and self-adjoint [180] we get∫
R+

∫
RD
f0ΦJΦdv⃗dI ≥

∫
R+

∫
RD
f0ΦTJΦTdv⃗dI (2.82)
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This proves that the distribution which maximizes the entropy is the solution of

Boltzmann equation or in other words the solution of the Boltzmann equation is

in accordance with the principle of maximum entropy production [180]. This exer-

cise motivates us to device a non-equilibrium thermodynamics based distribution

function. In order to investigate further on the subject it is essential to interpret

linear Boltzmann collision operator from non-equilibrium thermodynamics point

of view. Consider linearized Boltzmann equation in terms of linearized collision

operator JΦ with distribution f = f0[1 + Φ] as follows

1

f0

(
∂f0
∂t

+∇x⃗ · (v⃗f0)
)

= −JΦ (2.83)

Wang Chang and Uhlenbeck [51] , Grad[102], Ikenberry and Truesdell [125], Gross

and Jackson [107], and others have done extensive investigations on linearized

Boltzmann equation. Researchers have tried to interpret the linear collision op-

erator by i) either considering its spectrum that includes eigenvalues for which

JΦ = λΦ has eigensolutions within the Hilbert space, ii) or decomposing it in

terms of fluid dynamic gradients, iii) or expanding it in terms of thermodynamic

forces. For example Wang Chang and Uhlenbeck [51] interpreted Φ in terms of or-

thonormalized set of eigenfunctions written in separable form as tensor spherical

harmonic and radial eigenfunctions, these eigenfunctions for Maxwell molecules

can be written in terms of Laguerre-Sonine polynomials. Grad [102] interpreted

Φ in terms of Hermitian tensor polynomials whereas Gross and Jackson [107] used

eigenvalue-theory of Wang Chang and Uhlenbeck [51] to construct kinetic model

by replacing higher order eigenvalues by a suitable constant at each lower order

approximation. Loyalka [168] used linearized Boltzmann equation with pertur-

bation based on pressure and temperature gradients to investigate the Onsager

reciprocal relationship for slip flows. Lang [147] decomposed the perturbation

into three parts and made use of variational technique to calculate symmetric

Onsager’s matrix for slip flows. Zhdanov and Roldughin [300] have investigated

linkage between kinetic theory and non-equilibrium thermodynamics by expand-

ing Φ in terms of tensor spherical harmonic and Sonine polynomials while Mc-

Court et al. [186] incorporated non-equilibrium thermodynamics by interpreting

Φ in term of flux and its conjugate thermodynamic force.
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2.4.4 Eu’s modified moment method.

In conventional moment method entropy, macroscopic variables are treated at par

and Boltzmann equation is solved by expanding the distribution function. It is not

guaranteed that this approximate distribution function will be able to meet all the

requirements of thermodynamics. Eu [83] developed modified moment method

in which the distribution function depends on microscopic molecular variables as

well as entropy derivatives called as Gibbs variables. In Eu’s modified moment

method the distribution function depends on the thermodynamic information on

the entropy surface, hence a close connection can be established between kinetic

theory, transport processes, and irreversible thermodynamics. Eu’s theory re-

quires consistency condition to bring out the extended Gibbs relation for entropy

change and expressions of thermodynamic forces. This consistency condition is

expressed in terms of partial differential equation for entropy density.

2.4.5 Potential area of research in non-equilibrium ther-

modynamics.

Most of the research which links non-equilibrium thermodynamics with kinetic

theory is still in the realm of physics. Approximate solutions provided by kinetic

theory has to comply with requirements of non-equilibrium thermodynamics like

following Onsager’s principle and maximization of entropy production under con-

straint imposed due to conservation laws. Thus, non-equilibrium thermodynamics

provides a tool which can be used to check the correctness of the kinetic theory

based flow solver. This opens up a major potential research area in incorporating

phenomenological theory of non-equilibrium thermodynamics into kinetic theory

based flow solver using the conventional moment method.

2.5 Upwind methods

Gudunov and Boltzmann schemes are broadly two approaches to solve hyperbolic

system of conservation laws. Godunov scheme uses sound waves and streamlines

to propagate information while Boltzmann scheme uses trajectories of individ-

ual particles and its distribution [117, 279]. Godunov scheme relies on solving
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a Riemann’s initial value problem with characteristics of the Euler equation. In

this approach interaction amongst the neighboring cells is through discrete, finite

amplitude waves. The numerical technique using this incoming and the outgoing

waves is called the flux differencing splitting scheme. Examples are the methods

of Roe [229] and Osher [207]. While, in Boltzmann based approach interaction

amongst the neighboring cells is through movement of the particles or its veloc-

ity distribution. The numerical technique based on this movement of incoming

and outgoing particles is called flux-vector splitting scheme. One of the earliest

example is the Beam scheme of Sanders and Prendergast [236] and Steger and

Warming [256]. When it comes to resolution of boundary layers and calcula-

tion of adiabatic wall temperature the flux difference splitting is less dissipative

compared to flux vector splitting [281].

2.5.1 Flux Vector Splitting Schemes

Sanders and Prendergast [236] developed Beam scheme for astrophysical compu-

tations which is based on velocity distribution consisting of delta-functions

f(v) = ρsbδ[v − (u− uσ)] + (ρ− 2ρsbδ(v − u) + ρsbδ[v − (u+ uσ)] (2.84)

In the above equation ρ is the density, ρsb is the density of the particles in each

side beam, u is the mass averaged velocity, and uσ is a dispersion velocity greater

than the sound velocity. For a special case when dispersion velocity equals the

speed of sound the flux splitting becomes identical to the scheme of Steger and

Warming [256]. Beam or Steger and Warming fluxes are not differentiable in

sonic and stagnation points.

2.5.1.1 Flux Vector Splitting Schemes for Euler equations

Euler equation can be seen in two forms i)conservative form, ii)symmetric hyper-

bolic form. Consider Euler equation in conservative form as follows

∂U

∂t
+
∂G(U)

∂x⃗
= 0 (2.85)
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where U is the state vector and G(U) is the flux vector. Euler equation satisfies

the homogeneity property

G(U) = AU (2.86)

where Jacobian matrix A is given as

A =
∂G(U)

∂U
(2.87)

The matrix A has real eigenvalues λi and complete set of eigenvectors. Flux

vector splitting requires splitting flux into two components G(U)+ and G(U)−

such that

G(U) = G(U)+ +G(U)− (2.88)

Because of homogeneity property splitting is easily accomplished by splitting the

Jacobian matrix A, which in turn is split by splitting of eigenvalues λi=λ
+
i +λ

−1
i ,

such that Jacobian ∂G+/∂U has all positive eigenvalues and Jacobian ∂G−/∂U

has all the negative eigenvalues.

For approximating a first order system of conservation laws we require continuous

differentiability of fluxes. Scheme of van Leer [279] provides split fluxes which are

continuously differentiable, flux vector splitting can be used in a higher MUSCL-

type code and can be considered as an approximate Riemann solver such as Roe’s

[229] and Osher’s [207].

2.5.1.2 Flux Vector Splitting and Boltzmann type schemes

The symmetry of the Jacobian matrix occurring in the symmetric hyperbolic

form establishes connection between symmetrizability, entropy function, and Roe

linearization [116]. From physics point of view according to van Leer [280] the

velocity distribution is not chosen to be Maxwellian, instead as a simplification

it is assumed to be an instantaneous ”equilibrium” uniform distribution with

equivalent mass, momentum and energy as shown in figure 2.10. Solution of flux

vector splitting for Euler equations can be interpreted as a solution of collisionless

Boltzmann equation [117, 279, 280] and flux vector splitting is considered as a

natural consequence of regarding a fluid as an ensemble of particles.
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Figure 2.10: Flux vector splitting as a simplified solution of collisionless Boltz-

mann equation.

2.5.1.3 Dissipative properties of Flux Vector Splitting Schemes

Consider net traverse-momentum flux across the boundary layer using flux-vector

splitting[280] as

ρuyux(i, j) = G+
massux(i, j − 1) +G−

massux(i, j + 1)

= (G+
mass(i, j − 1) +G−

mass(i, j + 1)) ux(i,j−1)+ux(i,j+1)
2

− (G+
mass(i, j − 1)−G−

mass(i, j + 1)) ux(i,j−1)−ux(i,j+1)
2

(2.89)

where (i, j +1) denotes the top cell and (i, j− 1) denotes the bottom cell. When

the net flux Gmass=G
+
mass(i, j − 1) +G−

mass(i, j + 1) vanishes the second term in

the traverse momentum flux is still there and it becomes the cause of numerical

diffusion. This dissipative property of flux vector splitting give rise to broadening

of attached boundary layers and inaccurate adiabatic wall temperatures as com-

pared to numerical solutions obtained with flux difference splitting of Roe [229]

and Osher [207].

2.5.2 Kinetic Schemes

A few years later to the Beam scheme [236] Harten et al. [117] developed an

approach to construct a scheme for general hyperbolic systems of conservation

laws. Equilibrium flux method (EFM) of Pullin [221] initiated the development

of kinetic schemes for compressible Euler system based on Maxwellian distribu-

tion. Just after development of EFM, Reitz [227] developed a kinetic scheme
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using Boltzmann equation. Deshpande [70] proposed Kinetic Flux Vector Split-

ting (KFVS) scheme which was further developed by Mandal and Deshpande

[179] for solving Euler problems. At the same time Perthame [214] developed

kinetic scheme and Prendergast and Xu [219] proposed a scheme based on BGK

simplification of the Boltzmann equation. Xu [293] and May et al. [185] modified

and further developed this scheme. The exact solution of Boltzmann equation

with BGK model J(f, f0) = −(f − f0)/tR is

f =

∫
R+

Exp(−t́/tR)f0(v⃗, x⃗− v⃗t́, t− t́)t−1
R dt́ (2.90)

Physically it means that along the trajectory in the phase space, particles are

replaced exponentially by particles in equilibrium with characteristics time tR.

The gas kinetic scheme of Xu [293, 294] uses this method of characteristics using

BGK model and thus it differs from the KFVS scheme mainly in the inclusion

of particle collisions in the gas evolution stage as it updates the distribution.

Numerical fluxes are calculated in the gas evolution stage as time dependent gas

distribution function is computed at the cell interface by making use of local in-

tegral solution of the BGK model. Raghurama and Deshpande [226] proposed

a scheme based on peculiar velocity based upwind method which splits the flux

vector into acoustic and the transport part. Macrossan [175] proposed a new

method called the Relaxation Time Simulation Method (RTSM) based on Boltz-

mann equation with BGK kinetic model. Macrossan’s RTSM (relaxation time

simulation method) uses method of characteristics and BGK model to update

distribution function, f(∆t) after time t = ∆t as

f(∆t) = Exp(−∆t/tR)f(0)− (1− Exp(−∆t/tR))f0 (2.91)

where f(0) = f(t = 0) is the initial distribution established by the streaming or

convection phase just before the simulation of collision phase. In the collision

phase the distribution function relaxes towards equilibrium Maxwellian distribu-

tion, f0 after sufficient collisions with a time constant tR. This pseudo-collision

step or the relaxation step actually carries out the step of redistribution of the

particles such that the resulting distribution is a mixture of the initial distribu-

tion, f(0) and the final equilibrium distribution, f0. Wang et al. [285] further
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Figure 2.11: Moments of the Boltzmann equation.

improved RTSM by introducing the internal energy relaxation scheme. KFVS

scheme for the viscous flows was proposed by Chou and Baganoff [54]. KFVS is

based on moment-method strategy which operates in two levels: i) the Boltzmann

level where upwind implementation is done, ii) the macroscopic (Euler or Navier-

Stokes) level at which the state update operates. KFVS for viscous flows applies

Courant splitting at the Boltzmann level followed by moment-method strategy

using Chapman-Enskog distribution to obtain split Navier-Stokes fluxes based on

the signs of the molecular velocity. Mahendra [177] used KFVS method proposed

by Chou and Baganoff [54] for simulating compressible, viscous flows. KFVS has

also been applied to quantum gas dynamics for Bose-Einstein and Fermi-Dirac

gases [296].

2.5.3 Kinetic Flux Vector Splitting (KFVS)

Kinetic schemes exploits the connection between the Boltzmann equation and the

governing conservation equations at the macroscopic level. As illustrated in Fig.

2.11 the moments of the Boltzmann equation lead to the Euler/ Navier-Stokes

equations. Kinetic Flux Vector Splitting (KFVS) scheme [54, 70, 179] involves

two steps : i)in the first step the Boltzmann equation is rendered into an upwind

discretized form, ii)in the second step moments of the upwind discretized Boltz-

mann equation are taken to obtain upwind scheme for the macroscopic conserva-

tion equations. Fig.2.12 shows the two steps, implementation of upwinding in the

Boltzmann (microscopic level) and mapping to the Euler or Navier-Stokes level

( macroscopic level at which the state update operates) by taking Ψ-moments.
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Figure 2.12: Kinetic Flux Vector Splitting Scheme operating at two levels.

Consider Boltzmann equation for one dimensional case in inertial frame of refer-

ence
∂f

∂t
+ v

∂f

∂x
= 0 (2.92)

The 1-D Boltzmann equation can be interpreted as a linear scalar advection

equation where f(x, t) is a scalar function v is a positive constant. Consider that

the spatial domain is unbounded i.e. −∞ < x < ∞ , with initial condition being

f(x, 0) =g(x). The solution to this linear advection equation [142] is

f(x,∆t) = g(x− v∆t) (2.93)

The solution can be interpreted as a distribution similar to a wave traveling

with speed v without a change of form. Similar to linear advection equation the

propagation of information will depend on the signs of the molecular velocity

v. For example when v > 0 then the information comes from the left of the

node i i.e. solution at any point xi is determined from the solution in the region

x < xi at previous time level. Similarly, when v < 0 then the information comes

from the right side of the node i i.e. solution at any point xi is determined from

the solution in the region x > xi at previous time level. The one dimensional

Boltzmann equation in its upwind discretized form can be written as

f t+∆t
i −f ti

∆t
+ v

f ti−f ti−1

∆x
= 0 if v > 0

f t+∆t
i −f ti

∆t
+ v

f ti+1−f ti
∆x

= 0 if v < 0
(2.94)

The upwind discretized form in CIR split-form1 can be written as

f t+∆t
i − f ti

∆t
+
v + |v|

2

f ti − f ti−1

∆x
+
v − |v|

2

f ti+1 − f ti
∆x

= 0 (2.95)

1In CIR (Courant, Isaacson and Rees) split-form v = v+|v|
2 + v−|v|

2
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Figure 2.13: Kinetic Flux Vector Splitting based on moments of upwind dis-

cretized Boltzmann equation.

When scalar function f is a function of particle velocity v then the function

needs splitting while undergoing upwinding. Fluid is regarded as an ensemble of

particles moving in forward as well as in backward coordinate directions leading

to split fluxes of mass, momentum and energy into positive fluxes (for positive

velocity) and negative fluxes (for negative velocity). KFVS can also be interpreted

as construction of the distribution function at time t+∆t in a fluid domain based

on half range distribution as follows

f t+∆t
i = f ti −∆t

[(
∂vf+

i

∂x

)t
0<v<+∞

+

(
∂vf−

i

∂x

)t
−∞<v<0

]
(2.96)

where f+
i is the half-range first order distribution function for 0 < v < +∞ and

f−
i is the half-range distribution function for −∞ < v < 0. Consider f = f0 as a

Maxwellian distribution for one-dimensional case written as

f = f0 = ρ

√
β

π
exp

(
−β(v − u)2 − I

Io

)
(2.97)
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The moment function for one-dimensional case in terms of molecular velocity v

and internal energy parameter I is

Ψ(v, I) =

 1
v
I+ 1

2
v2

 (2.98)

Taking moments of Boltzmann equation in upwind discretized form leads to

U i(t+∆t)−U i(t)

∆t
+
GX+

i (t)−GX+
i−1(t)

∆x
+
GX−

i+1(t)−GX−
i (t)

∆x
= 0 (2.99)

where

U = ⟨Ψ, f⟩ =
∫ +∞

0

∫ +∞

−∞
ΨfdvdI =

 ρ
ρu
ρE

 (2.100)

where E = RT/(γ − 1)+1
2
u2, u is the fluid velocity vector and γ is the specific

heat ratio. Fig. 2.13 shows the schematic of kinetic flux vector splitting method.

The split fluxes are obtained as

GX+ =
⟨
Ψ, vf+

⟩
=

∫ +∞

0

∫ +∞

0

Ψ
v + |v|

2
fdvdI (2.101)

GX− =
⟨
Ψ, vf−⟩ = ∫ +∞

0

∫ 0

−∞
Ψ
v − |v|

2
fdvdI (2.102)

The expression for split fluxes GX± are

GX± =


1
2
(1± Erf(u

√
β))ρu± ρ

(
Exp(−βu2)

2
√
πβ

)
1
2
(1± Erf(u

√
β))(p+ ρu2)± ρu

(
Exp(−βu2)

2
√
πβ

)
1
2
(1± Erf(u

√
β))(pu+ ρuE)±

(
p
2
+ ρE

) (Exp(−βu2)
2
√
πβ

)
 (2.103)

2.5.4 Modified KFVS for Euler equations

In modified KFVS for Euler equations, Anil et al. [7] introduce dissipation control

function in order to resolve the discontinuity more sharply with less dissipation.

The order of accuracy can be improved with the proper choice of dissipation
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Figure 2.14: Comparison of density versus length plot with exact solution for

kinetic scheme without dissipation control function and with dissipation control

function, φ=0.45.
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control function φ such that 0 < φ < 1. Boltzmann equation in this modified

Courant splitting is expressed as

f t+∆t
i − f ti

∆t
+
v + φ|v|

2

(
f ti − f ti−1

∆x

)
+
v − φ|v|

2

(
f ti+1 − f ti

∆x

)
= 0 (2.104)

Modified partial differential equation (MPDE) analysis for one dimensional Boltz-

mann equation reveals a numerical kinetic viscosity as

µnum =
∆x

2

√
β

π

∫
R+

∫
R
|v|φe−β(v−u)2dvdI (2.105)

With φ = 0 the formulation becomes central difference and with φ = 1 the for-

mulation is in the KFVS upwind form. For the case when dissipation control

function φ = 1 the numerical viscosity is maximum when molecular velocity v

is closed to u. Analysis also revealed that particles with large peculiar velocity

contribute little to the dissipation, hence Anil et al. [7] considered dissipation

control function, φ to be function of molecular velocity.

2.5.4.1 One dimensional shock tube problem

Consider 1-D shock tube problem of unit length with a diaphragm at xo =0.5

which separates left and the right regions which have different densities and pres-

sure. The value of the left state is denoted by (ρ, u, p)L=(1.0, 0, 1.0)L, and the

right state by (ρ, u, p)R=(0.125, 0, 0.1)R. The test case was simulated for t=0.1225

seconds. The computational domain of unit length with 200 mesh points and CFL

no. of 0.9 with air as motive fluid (γ = 1.4) was used to evaluate 1-D shock test

case. As explained earlier, the state update equation for kinetic scheme without

dissipation control function is

U i(t+∆t) = U i(t)−∆t

(
GX+

i (t)−GX+
i−1(t)

∆x
+
GX−

i+1(t)−GX−
i (t)

∆x

)
(2.106)

where expressions of GX± are given by equation 2.103. In case of modified

kinetic scheme the state update is written as

U i(t+∆t) = U i(t)−∆t

(
G̃X

+

i (t)− G̃X
+

i−1(t)

∆x
+
G̃X

−
i+1(t)− G̃X

−
i (t)

∆x

)
(2.107)
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The fluxes G̃X
±
i are based on dissipation control parameter φ given as

G̃X
±
=

1

2

[
(GX+ +GX−)± φ(GX+ −GX−)

]
(2.108)

Figure 2.14 shows the exact solution of density variation with respect to length

and its comparison with kinetic scheme without dissipation control function and

with dissipation control function, φ=0.45.

2.5.5 Kinetic method and its connection with other up-

wind schemes

There are two different ways of incorporating hyperbolicity into numerical schemes.

The first one is flux difference splitting where the flow variables which are held

constant within a cell see a jump as it crosses a cell face. Riemann solver breaks

these jumps into waves thus making cells interact with one and another through

waves. In the second approach flux vector G is split into two parts G+, G−

such that the Jacobian ∂G+/∂U has all positive eigenvalues and ∂G−/∂U has

all negative eigenvalues. Consider one dimensional Euler equation in primitive

variables cast in matrix form as follows

∂V

∂t
+ Ã

T ∂V

∂x
+ Ã

A∂V

∂x
= 0 (2.109)

where,

V =

 ρ
u
p

 ; Ã
T
=

 u 0 0
0 u 0
0 0 u

 ; Ã
A
=

 0 ρ 0
0 0 1/ρ
0 γp 0

 (2.110)

The matrix Ã
T
represents the transport part due to advection of fluid element

along particle path Ã
A
represents the propagation of acoustic waves due to di-

latation or contraction of fluid elements. The eigenvalues associated with the

acoustic part of the matrix Ã
A
is λ(Ã

A
)=0,±c where sonic speed c = (γp/ρ)1/2.

Splitting of particle like transport part and wave like acoustic part leads to wave-

particle splitting [71].

To understand this from kinetic theory point of view requires taking moments of

Boltzmann equation written in terms of peculiar velocity, c = v−u, where v is the

73



2.5 Upwind methods

molecular velocity and u is the macroscopic fluid velocity. Consider Boltzmann

equation for one dimensional case in inertial frame of reference written in terms

of peculiar velocity, as follows

∂f

∂t
+ u

∂f

∂x
+ c

∂f

∂x
= 0 (2.111)

When f = f0 as a Maxwellian distribution for one-dimensional case, by tak-

ing moments we get one dimensional Euler equation in terms of transport and

acoustic flux as
∂U

∂t
+
∂GXT

∂x
+
∂GXA

∂x
= 0 (2.112)

where U represents the conserved vector, GXT the transport part of the flux

vector, GXA the acoustic part of the flux vector given as

GXT =

 ρu
ρu2

ρuE

 ; GXA =

 0
p
pu

 (2.113)

The motion of the fluid can be thought as composed of u-part which is orderly,

deterministic, unidirectional particle like and the c-part which is random and

multi-directional and wave like due to thermal agitation following N(0, 1/(2β))

i.e. Normal distribution with zero mean and variance equal to 1/(2β) . The

Jacobian for AT and AA for the transport flux and acoustic flux can be written

as

AT = ∂GXT

∂U
=

 0 1 0
−u2 2u 0
− eu

ρ
e
ρ

u


AA = ∂GXA

∂U
=

 0 0 0
(γ−1)

2
u2 −(γ − 1)u (γ − 1)

−pu
ρ
+ (γ−1)

2
u3 −p

ρ
− (γ − 1)u2 (γ − 1)u


(2.114)

The eigenvalues of the matrices are λ(AT) = [u, u, u] and λ(AA) =
[
0± [(γ − 1)/γ]

1
2

]
.

Due to mixed eigenvalue of acoustic flux the task of enforcing upwinding is com-

plex. Hence upwind schemes can be constructed by carrying out separate treat-

ment for transport and acoustic flux. For example scheme can do upwind differ-

encing for the transport flux and apply splitting to the acoustic flux. Convection
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Figure 2.15: Peculiar Velocity upwind method operating at two levels.

Upwind and Split Pressure (CUSP) scheme of Jameson [126] and Advective Up-

stream Splitting Method (AUSM) of Liou and Steffen [155] split flux into two

separate components i) convective which is similar to transport flux, and ii) pres-

sure flux which is similar to acoustic flux and then each one undergoes upwinding.

From kinetic theory point of view CUSP and AUSM schemes are related to up-

wind treatment of transport flux which is obtained using the macroscopic velocity

u and acoustic flux which is obtained using peculiar velocity c.

2.5.6 Peculiar Velocity based Upwind Method (PVU)

Peculiar velocity based upwind (PVU) method [226] involves three steps : i) in

the first step Boltzmann equation is written in terms of peculiar velocity , ii) in

the second step Boltzmann equation is rendered into an upwind discretized form,

iii) in the third step moments of the upwind discretized Boltzmann equation are

taken to obtain upwind scheme for the macroscopic conservation equations. In

KFVS upwind method propagation of information was based on the signs of the

molecular velocity v, whereas in peculiar velocity based upwind (PVU) method

propagation of information is based on the signs of the fluid velocity u and peculiar

velocity c. Fig.2.15 shows the three steps, writing Boltzmann equation in terms

of peculiar velocity, implementation of upwinding in the Boltzmann (microscopic

level) and mapping to the Euler or Navier-Stokes level ( macroscopic level at

which the state update operates) by taking Ψ-moments. The upwind discretized
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form in CIR split-form can be written as

f t+∆t
i −f ti

∆t
+ u+|u|

2

(
f ti−f ti−1

∆x

)
+ u−|u|

2

(
f ti+1−f ti

∆x

)
+ c+|c|

2

(
f ti−f ti−1

∆x

)
+ c−|c|

2

(
f ti+1−f ti

∆x

)
= 0

(2.115)

Taking moments of Boltzmann equation in upwind discretized form leads to

U i(t+∆t)−U i(t)
∆t

+
GXT,+

i (t)−GXT,+
i−1(t)

∆x
+

GXT,−
i+1 (t)−GXT,−

i (t)

∆x

+
GXA,+

i (t)−GXA,+
i−1 (t)

∆x
+

GXA,−
i+1 (t)−GXA,−

i (t)

∆x
= 0

(2.116)

where GXT,± and GXA,± are given as

GXT,+ =

⟨
Ψ,

u+ |u|
2

f

⟩
=

∫ +∞

0

∫ +∞

0

Ψ
u+ |u|

2
fdvdI (2.117)

GXT,− =

⟨
Ψ,

u− |u|
2

f

⟩
=

∫ +∞

0

∫ 0

−∞
Ψ
u− |u|

2
fdvdI (2.118)

GXA,+ =

⟨
Ψ,

c+ |c|
2

f

⟩
=

∫ +∞

0

∫ +∞

0

Ψ
c+ |c|

2
fdvdI (2.119)

GXA,− =

⟨
Ψ,

c− |c|
2

f

⟩
=

∫ +∞

0

∫ 0

−∞
Ψ
c− |c|

2
fdvdI (2.120)

Peculiar velocity based method uses both the wave and particle model of the fluid

flow.

2.5.6.1 PVU method for viscous flows

Peculiar Velocity based Upwind (PVU) method can be implemented into two

forms PVU1 and PVU2 which differ from each other based on sequence of inte-

gration and differencing of the acoustic term. While implementing PVU2 scheme

for the acoustic term, the integration step is completed first followed by the dif-

ferencing step. The split acoustic flux expressions of PVU2 scheme do not involve

any error functions or exponentials [225] hence PVU2 method is followed while

implementing Peculiar Velocity based Upwind. The upwind viscous fluxes de-

rived do not follows non-equilibrium thermodynamics, for example x-component

of acoustic split mass flux can be derived as

GXA±
1 = ± ρ

2
√
πβ

∓ ρ

4β
√
πβ

τxx (2.121)
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The viscous part of the acoustic mass flux only contains terms of shear stress

tensor the term associated with heat flux vector is missing. For effective capture

of cross phenomena of thermal transpiration and the mechanocalorific effect the

viscous part should also contain the terms of heat flux vector. PVU method fails

to comply with the principles of non-equilibrium thermodynamics.

2.5.7 Kinetic method for strongly rotating flows.

For strongly rotating viscous compressible flows the gas is held under rigid-body

rotation, in such flows the effective acceleration in the radial direction dominates

the Earth’s gravitational acceleration. There is an exponential density rise in the

radial direction towards the periphery with thin boundary layers and a rarefied

inner core [26, 40]. Numerical modeling of high speed rotating flows is a chal-

lenge as the regime changes from continuum at the periphery, slip, transition to

non-continuum in the central core. Such a flow is of considerable interest and im-

portance in the field of hydrodynamic bearings, rotating machinery and pumps.

Numerical studies performed by researchers Dickinson and Jones [76], Park and

Hyun [210] and Babarsky et al. [19] focused more on perturbative flows arising

out of basic state of rigid body rotation. Most of the researchers have described

such a strongly rotating flows using continuum hydrodynamics even though a

large portion of the volume is rendered rarefied near to the free molecular re-

gion. It was first shown by Johnson and Stopford [128] that flow predicted by

kinetic theory differs from the results obtained using continuum hydrodynamics.

Johnson and Stopford [128] have used the Boltzmann equation in the presence of

external force instead of Boltzmann equation with both centrifugal and Coriolis

terms. Based on the Boltzmann equation Müller [195] concluded that in rotat-

ing systems a radial temperature gradient apart from leading to the radial heat

flux also causes tangential heat flux which are related at the level of the Bur-

nett approximation. Sharipov and Kremer[243] and Sharipov et al. [244] have

investigated transport phenomena through a fluid confined between two coaxial

cylinders over a wide range of gas rarefaction and observed that results based on

kinetic approach do not follow from the Navier-Stokes equations of continuum

mechanics. Taheri and Struchtrup [265] have used continuum approach as well
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as regularized 13-moment (R13) equations to study the effects of rarefaction in

micro flows between two rotating coaxial cylinders.

Rossby number and Ekman number are the two dimensionless numbers charac-

terizing the rotating flow. The Rossby number is defined as the ratio between the

inertial and the Coriolis forces, and the Ekman number is defined as the ratio of

the viscous forces to the Coriolis forces. To understand rotating flow one needs

to understand the rotating frame of reference as compared to the inertial frame

of reference. The Boltzmann equation can be solved in two reference frames: i)

non-inertial frame i.e. frame rotating with the body and ii) inertial frame i.e.

in the laboratory frame in which the body rotates. It should be noted that the

relation between heat flux and temperature gradient, stress and velocity gradient

is frame dependent [195]. In most of the rotational problems the secondary flow

features are embedded in a primary rotating flow field.

2.5.7.1 Validity of Navier-Stokes for strong rotations

Validity of the Navier-Stokes equation as well as diffusion equation requires suffi-

cient collision of particles and relaxation of the distribution to weak spatial gra-

dients and slow temporal variations. There are cases encountered in astrophysics

when gradients are substantial on the scale of mean free path or temporal changes

are relatively rapid compared to mean collision time. Causality is violated, since

the particle flux is obviously limited by the finite particle speed. One way to

proceed is to use Boltzmann equation which is strictly causal by taking higher

moments with appropriate closure relations. Investigations by Narayan et al.

[197] revealed that the shear stress depends on the shear amplitude as it reaches

a maximum and then decreases as the velocity gradient increases. It should be

noted that the shear amplitude for the non-inertial rotational problem should be

observed in the correct frame of reference with variance reduction approach.

2.5.7.2 Kinetic scheme for axi-symmetric geometries

The velocity discretization of the transport operator is no longer trivial in the

cylindrical system as inertia terms are velocity derivatives of the distribution

function. The characteristic curves of this form of Boltzmann equation are curves
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of R4 and certainly more complex compared to the Cartesian form [189]. The

characteristic curves are defined by

ż(t) = vz, ṙ(t) = vr, v̇r(t) =
v2θ
r
, v̇θ(t) = −vrvθ

r
(2.122)

Mieussens [189] and Sugimoto and Sone [269] have used variables ς and ω to re-

place (vr, vθ) by (ς cosω, ς sinω) to obtain completely conservative form of Boltz-

mann equation as follows

∂rf

∂t
+ vz

∂rf

∂z
+ ς cosω

∂rf

∂r
− ς

∂ sinωf

∂ω
= rJ(f, f) (2.123)

For axi-symmetric geometries the Boltzmann equation in the cylindrical coordi-

nate system [243, 244] is as follows:

∂f
∂t

+ vz
∂f
∂z

+ vr
∂f
∂r

+ ∂vr
∂t

∂f
∂vr

+ ∂vθ
∂t

∂f
∂vθ

= J(f, f) (2.124)

Mieussens [189] has used discrete-velocity models for the collision and transport

operators, for plane and axi-symmetric geometries satisfying positivity, entropy

and conservation.

2.5.8 Potential area of research in kinetic upwind method

Kinetic upwind method make use of kinetic theory and moment method strategy

to implement upwinding. Most of the kinetic upwind methods like gas kinetic

scheme of Xu [293] and relaxation time simulation method (RTSM) [175] include

particle collisions in the gas evolution stage by making use of local integral so-

lution of the BGK model. Kinetic flux vector splitting (KFVS) method on the

other hand uses fluxes based on the analytical evaluation, hence it is much eas-

ier to incorporate phenomenological theory of non-equilibrium thermodynamics.

Kinetic flux vector splitting (KFVS) method complies with the principles of non-

equilibrium thermodynamics as compared to peculiar velocity upwind method.

Literature review revealed that kinetic flux vector splitting method has not been ex-

tended to slip flows, strong rotation and axi-symmetric geometries. Development

of kinetic upwind method which complies with requirements of non-equilibrium

thermodynamics appears promising research area. Another potential area of re-

search is to develop kinetic upwind method with dissipation control function and

application of variance reduction techniques.
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Figure 2.16: Taxonomy of grid.

2.6 Meshless method

For carrying out numerical simulation of Navier-Stokes equations for complex

multibody configuration using conventional approach requires grids which in-

clude structured multi-block meshes, chimera or overset grids, unstructured grids,

Cartesian grids and hybrid grids. Figure 2.16 shows the taxonomy of the different

types of grids. Figure 2.17 shows typical multiblock structured and unstructured

mesh for a pipe confined within a cylinder. In the multiblock approach the compu-

tational domain is composed of several blocks with either continuous (composite

grids) or discontinuous (patched) block interfaces. Multiblock approach for com-

plex geometries becomes very tedious due to large number of blocks of different

orientation and sizes and their interfaces [257]. Difficulties associated with multi-

block approach led to the development of more flexible method called chimera

[29, 212]. In this approach the body fitted grids are generated for each component

of a multibody configuration and the grids are allowed to overlap. Difficulty in

this approach is in transferring information between regions and maintenance of

conservation in the overlapped regions. The unstructured grid generation uses

Delaunay methods [289], advancing front method [165] and octree based method
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(a) (b)

Figure 2.17: (a) Multiblock mesh (b) Unstructured mesh.

[239, 247]. For Navier-Stokes equation the main solution gradients occur in the

direction normal to the surface and this requires cells with high aspect ratio. Gen-

eration of satisfactory tetrahedral cells for boundary layers is difficult [182]. The

approach in Cartesian grid is different. Here the grids are aligned with respect

to the Cartesian coordinates [73, 297]. Viscous flow simulations are difficult to

be performed with Cartesian meshes [64]. The idea of making structured grids

near the boundary and unstructured elsewhere to resolve the viscous flows led to

the development of hybrid grids. Hybrid grids consisting of triangles and quadri-

laterals in 2-D and tetrahedra and prisms in 3-D [15] provides the advantages of

both structured and unstructured meshes. One of the important issue involved

with hybrid grids is the smooth variation of sizes from one mesh to another

and the treatment of the moving bodies. In real life generation of suitable grid

for complex multibody configuration with many components becomes the bot-

tleneck. Meshless methods is one of the approaches to circumvent the difficulty

associated with the meshing process. Meshless or meshfree methods have become

one of the topic of recent research in the area of computational fluid dynamics.

Several meshless methods have been proposed over the last few decade, most of

these methods can be defined either as radial basis functions (RBFs) or in terms

of moving least squares (MLS) methods drawing motivations from applications

in the field of mapping, meteorology, geophysics, etc. All meshless numerical
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methods[28, 158] share a common feature that no mesh is needed and the solver

is capable of operating on an arbitrary distribution of points. Meshfree methods

originated with the work of Gingold and Monaghan [95], and Lucy [173] devel-

oping smooth particle hydrodynamics. Smooth particle hydrodynamics (SPH)

is a Lagrangian method where the fluid is replaced with set of moving particles

to model astrophysical phenomenon without boundaries, such as exploding stars

and dust clouds. Finite point set [259, 260] is another meshless approach where

finite points either move with fluid velocity (Lagrangian approach) or the flow

information runs through the finite points if they are located constant in space

(Eulerian approach) or a mixed approach (Arbitrary Lagrangian Eulerian, ALE)

is followed. The finite points represents flow domain with particle like features and

is extremely efficient for problems where free surfaces are involved or multiphase

flows are to be handled. Liu et al. [159] proposed the Reproducing Kernel Parti-

cle Method (RKPM) to remove the inconsistency in SPH by correction function

for kernels in both the discrete and continuous case. Combination of Reproducing

Kernel Particle Method (RKPM) and Moving Least Squares (MLS) resulted in

Moving Least Squares Reproducing Kernel Particle Method [160]. Nayroles et

al. [198] developed Diffuse Element Method (DEM) by using the moving least

squares (MLS) local interpolation in a Galerkin weak form. Belytschko et al.

[28] developed Element Free Galerkin (EFG) which was an improvement over

diffuse element method extending it to discontinuous approximations. Zhu and

Atluri [16, 303] proposed Meshless Local Petrov Galerkin (MPLG) using Petrov-

Galerkin weak form to compute integrals. Performance of MPLG deteriorates

with high Peclet number flows. De and Bathe [60] introduced method of Finite

Spheres which uses Partition of Unity [20] to construct approximation function.

Griebel and Schweitzer [106] developed particle-partition of unity method for the

solution of elliptic, parabolic, and hyperbolic problems. The method combines

a particle approach and meshless method to generate the shape functions and

adaptation of particles. Duarte and Oden [79] proposed meshfree h − p cloud

method based on h and p enrichment of the approximations. Other meshless

methods include Boundary Element Method (BEM) [194] and Local Boundary

Integral Method (LBIE) [304].
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2.6.1 Meshless discretization for fluid flow

There are broadly three types of meshless discretization [137] followed in compu-

tational fluid dynamics : i) least square method based on Taylor series expansion,

ii) least square method based on polynomial basis functions, and iii) local radial

basis function based method. Batina [27] used least squares to carry out viscous

flow simulation, Onãte et al. [202, 203] and Löhner et al. [166] developed Fi-

nite Point Method (FPM) for fluid flow problems. FPM used collocation point

technique using polynomial basis with least square based trial functions. Ghosh

and Deshpande [93] used least square based method based on Taylor series ex-

pansion [156] and developed Least Square Kinetic Upwind Method (LSKUM)

for solving Euler flow problems. LSKUM was further developed by Ramesh[224],

Praveen [217, 218] and Anandhanarayanan [4]. Sridar and Balakrishnan [254, 255]

developed an upwind scheme based on least squares, Katz and Jameson[138] de-

veloped meshless method for overset grid system. Kansa [132, 133] was first to

apply technique based on the direct collocation method and multiquadric Radial

Basis Function (RBF) to solve fluid flow problem. Kansa method based on mul-

tiquadric RBF leads to global approximation resulting in a system of equations

characterized by a dense stiffness matrix. Another approach called Local Multi-

quadric based on construction of approximation using sub-domains leads to local

approximation resulting in a sparse stiffness matrix. Shu et al. [250] applied

local radial basis function-based differential quadrature method to solve incom-

pressible fluid flow problem. Shu et al. [251], Tota and Wang [276] applied RBF

based meshless method for compressible inviscid flows. Barba et. al. [25] intro-

duced meshless spatial adaption based on radial basis function interpolation for

viscous vortex methods. Shu et al. [252] carried out study to compare meshless

method based on least squares (LSQ) and radial basis function (RBF) in terms

of their accuracy and efficiency for incompressible flow problems. The numerical

experiments conducted by Shu et al. [252] using the same iterative solver un-

der the similar conditions of node distribution and number of supporting points

reveals that meshless method based on RBF give more accuracy while method

based on LSQ require lesser iterations. Katz and Jameson[137] also carried out

a comparative study using meshless method based on least squares with Taylor
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Figure 2.18: Point connectivity for least square based method.

series expansion, least squares using polynomial basis functions and Hardy mul-

tiquadric radial basis functions for Euler flow problems. Katz and Jameson[137]

found that for flow problems with shocks the least square based methods was sig-

nificantly better than radial basis method in terms of giving shock location and

its magnitude. Chiu et al. [53] developed meshless formulation which possesses

various conservation and mimetic properties at the discrete level.

2.6.2 Least square method based on Taylor series expan-

sion

Let Ω be an open domain of Rn, n= 1, 2, 3. Suppose that a continuous function

ϕ :Ω̄→ R is given at all nodes i.e. it is given at all points Pi ∈ Ω̄ in a cloud

of nodes. Consider a reference node Po surrounded by m points as shown in

Figure 2.18 or with its set of local support or set of neighbours (also defined as

connectivity, N(Po) ={∀Pi : d(Po, Pi) < h }.) We are interested in finding the

derivatives of ϕ at all the nodes. The error at any point Pi in the neighbourhood

of Po for two dimensional case gives us,

Ei = ∆ϕi−∆xiϕxo−∆yiϕyo−
∆x2i
2
ϕxxo−

∆y2i
2
ϕyyo−∆xi∆yiϕxyo+· · · i = 1, · · · ,m

(2.125)
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where ∆xi = xi − xo, ∆yi = yi − yo and ∆ϕi = ϕi − ϕo. Terms ϕxo, ϕyo are the

first order derivatives and ϕxxo, ϕyyo and ϕxyo are the second order derivatives.

Thus, we can obtain following system of equations in matrix form as

ANΦo = ∆ϕN (2.126)

where Φo = [ϕxo, ϕyo, ϕxxo, ϕyyo, ϕxyo]
T ∈ Rn, observation ∆ϕN=[∆ϕ1, · · · ,∆ϕm]T

∈Rm with data matrix AN∈Rm×n.The expressions (·)N requires values evaluated

using connectivity N(Po). Data matrix, AN in this case is given as

AN =


∆x1 ∆y1

∆x21
2

∆y21
2

∆x1∆y1

∆x2 ∆y2
∆x22
2

∆y22
2

∆x2∆y2
· · · · · · · · · · · · · · ·
∆xm ∆ym

∆x2m
2

∆y2m
2

∆xm∆ym

 (2.127)

Finding the derivative at point o is a least squares problem where error norm

∥E∥2 is to be minimized with respect to ϕxo, ϕyo, ϕxxo, ϕyyo and ϕxyo using

stencil N(Po). Taylor series based least squares method uses the normal equations

approach to findΦo = [ϕxo, ϕyo, ϕxxo, ϕyyo, ϕxyo]
T ∈ Rn such that ∥ANΦo−∆ϕN∥2

is minimized. The normal equations approach uses smaller cross-product matrix

C = AT
NAN ∈ Rn×n such that

CΦo = A
T
NANΦo = A

T
N∆ϕN (2.128)

The derivatives can be obtained as

Φo = C
−1AT

N∆ϕN =
(
AT
NAN

)−1
AT
N∆ϕN (2.129)

The cross product matrix C with m > n has better condition number than the

matrix AN . The matrix
(
AT
NAN

)−1
AT
N can be computed once and stored to

evaluate the derivatives.The nodes near to the node Po will have more influ-

ence compared to nodes further away in the connectivity set N(Po). In order

to redistribute the error weights can be assigned based on the distance from the

reference node Po leading to weighted least squares. The derivatives in weighted

least square method can be obtained as

Φo =
(
AT
NWAN

)−1
AT
NW∆ϕN (2.130)
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(a) (b)

(c)

Figure 2.19: (a) Taylor series passes through reference node Po, (b) Least Square

Method based on Polynomial basis function does not pass through reference node

Po, and (c) Method based on Radial Basis Functions pass through all the points.

where W is a diagonal weight matrix given as

W =


w1

w2

. . .

wm

 (2.131)

Least square approach becomes unreliable for stretched distribution of nodes

encountered in the boundary layer as nodes lying within a thin cylinder and disc

leads to ill-conditioning [217, 218].

2.6.3 Least square method based on Polynomial Basis func-

tions

Least square method based on polynomial basis fits a function to a discrete data

and obtains partial derivatives after differentiation step whereas least square

method based on Taylor series solves directly for the partial derivatives [137].

Fig 2.19 shows the subtle difference between the Taylor series based least square

approach and least square approach based on polynomial basis function. It can be

seen that in method based on Taylor series approach passes through the reference

node compared to polynomial fit. As defined earlier let Ω be an open domain of

Rn, n= 1, 2, 3. Suppose that a continuous function ϕ :Ω̄→ R is given at all nodes

i.e. it is given at all points Pi ∈ Ω̄ in a cloud of nodes. For two dimensional case

consider polynomial Pk(x, y) represented as a linear combination of polynomial
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basis function bi(x, y) given as

Pk(x, y) =
k∑
i=0

cibi(x, y) (2.132)

where ci is the set of coefficients. For a 2D problem the polynomial basis, bT for

k = 3 can be expressed as bT = [1, x, y]T and bT = [1, x, y, x2, xy, y2]T for k = 6.

We seek polynomial which minimizes

∥ϕ− Pk∥2 = ⟨ϕ− Pk, ϕ− Pk⟩
1
2 (2.133)

over the set of polynomials of degree ≤ k. The optimal set of coefficients is

obtained by using normal equations approach. The optimal set of coefficients

using weighted least square approach are given as

C =
(
V T

pWV p

)−1
V T

pWϕ (2.134)

where W is the weight matrix and V p is the rectangular m × k Vandermonde

matrix given as

V p =


b1(x1, y1) b2(x1, y1) · · · bk(x1, y1)
b1(x2, y2) b2(x2, y2) · · · bk(x2, y2)
...

...
. . .

...
b1(xm, ym) b2(xm, ym) · · · bk(xm, ym)

 (2.135)

2.6.4 Local Radial Basis Function based method

Unlike least square based method the radial basis function seeks to fit a function

which passes through all points in the cloud of points. Figure 2.19 shows the

comparison of radial basis function (RBF) based method with respect to least

square based approach. Local radial basis function based method uses local cloud

of points leading to sparse matrix. Radial basis function based approach can be

considered as an extension of differential quadrature (DQ) technique for smooth

functions [252]. In this approach partial derivative can be expressed as a weighted

linear sum of function values at all points in the sub cloud. The pth - order

derivative with respect to independent variable x and y can be approximated by

DQ as
∂pϕ

∂xp−k∂yk xi,yi
=

m∑
j=1

w
(p,k)
ij ϕ(xi, yi) (2.136)
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where xi, yi are coordinates of the point N(Pi), m is the number of points in the

sub-cloud, ϕ(xi, yi) is the function value and w
(p,k)
ij is the related weight which

needs to be determined [252]. The weights can be evaluated using multivariate

polynomial interpolation technique. But there are several issues like i) what mixed

terms to be used in multivariate polynomial interpolation, ii) issue of singularity

as polynomial interpolation for Ω ∈ Rn, for n > 1 is not well-posed [187]. Many

of these issues can be resolved if RBF interpolation instead of polynomial basis

is used to generate the weights. RBF are any function that satisfies

r(x⃗) = r(∥x⃗∥) (2.137)

There are wide variety of RBF classified as i) piecewise smooth RBFs, and ii)

infinitely smooth RBFs. Multiquadric RBF belonging to the class of infinitely

smooth RBFs converges most rapidly and incurs least error compared to most of

the RBFs used in the global scattered data interpolation. It is given as

r(xi, yi) =
√

(x− xi)2 + (y − yi)2 + s2 (2.138)

where s is a free shape parameter which is empirically determined based on ac-

curacy and convergence considerations. To improve consistency and to ensure

non-singular approximation polynomial is appended to the radial basis function.

The radial basis function with appended polynomial is given as

ϕ̄(x, y) =
m∑
i=1

diri(x, y) +
k∑
j=1

cjbj(x, y) = r
Td+ bTc (2.139)

where c=[c1, · · · , ck]T , d=[d1, · · · , dm]T , r and b are the vectors of radial basis

functions and polynomial basis as follows

rT (x, y) =
[
r1(x, y) r2(x, y) · · · rm(x, y)

]
,

bT (x, y) =
[
b1(x, y) b2(x, y) · · · bk(x, y)

] (2.140)

Enforcing the interpolation condition

ϕ̄(xi, yi) = ϕ(xi, yi) i = 1, · · · ,m (2.141)

results in system of m linear equations in m + k unknowns in vector d and c,

leading to k additional conditions
m∑
i=1

dibj(x, y) j = 1, · · · , k (2.142)
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to ensure a unique solution. This amounts to solving system of linear equation

of the form [
r b
bT 0

] [
d
c

]
=

[
ϕ
0

]
(2.143)

where ϕ is the vector of nodal values defined as ϕT=[ϕ1, · · · , ϕm].

2.6.5 Potential area of research in meshless method

Literature review revealed that meshless approach based least square (LSQ) and

radial basis function (RBF) are the two most potential methods for solving con-

servations laws. Review also revealed that RBF give more accuracy while method

based on LSQ require lesser iterations [252]. For flow problems with shocks the

least square based methods was significantly better than radial basis method in

terms of giving shock location and its magnitude[137]. Least square approach for

nodes lying within a thin cylinder and disc leads to ill-conditioning [217, 218],

hence we require a new approach for developing least square based method for

a highly stretched distribution of points required for viscous flow problems. A

potential area of research exists in developing least square based method which

remains well conditioned for viscous flow problems which require highly stretched

and clustered grid near the walls to resolve boundary layers.

2.7 Parallelization of meshless method

For practical industrial problems with thin boundary layers and complex geom-

etry we require large number of nodes or points for adequate resolution. Highly

stretched grids near wall cause grid induced stiffness because allowed time step

is dictated by the smallest h (i.e. grid size ) and to resolve viscous as well as slip

flow features we require scheme with higher order (pth order). Thus, each solver

is dictated by its h − p adaptivity which in turn gives two measures of a code

: i) rate of data processing (RDP), and ii) bytes per mesh point. Rate of data

processing for a meshless code is defined as the time per iteration per mesh point

for a given connectivity set. Memory required by a code is measured by bytes per

mesh point for a given connectivity set. For real large scale problem the CPU
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time for a meshless code becomes prohibitively large thus requiring its paralleliza-

tion. The main goal of parallel computation is its performance and scalability.

Parallelization can be implemented using i) a message based distributed memory

model with MPI, ii) or shared memory programming model using OpenMP, iii)

hybrid model[31]. Message passing based distributed memory model with domain

decomposition or partitioning is the preferred parallelization strategy for most of

the industrial solvers.

2.7.1 Domain decomposition

The computational domain comprises of nodes or elements at which similar com-

putational tasks are performed. Such a domain is divided into many sub-domains,

which are then assigned to different processors. In each sub-domain similar

computational tasks are performed concurrently by their processors. Boundary

conditions for each sub-domain are obtained from the data in the neighboring

sub-domains thereby requiring communication with other processors by virtue of

message passing. The main goal of parallel computation is its performance and

scalability which depends on the following factors

• Numerical method and type of parallel architecture.

• Partitioning method.

• Dynamic load balancing.

• Scheduling of the message passing.

• Mapping of partitions to processors.

2.7.2 Partitioning methods

Mesh can be represented as a graph, namely, dual graph. The dual graph is

defined to be consisting of an undirected, weighted graph G = (V,Ee, wv, we),

where V is the set of vertices, Ee is the set of edges, wv is a set of non-negative
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vertex weights and we is a set of non-negative edge weights. For a set P of n

processors, we can define a partition,

Mpart : V → P (2.144)

The sub-domains defined by Mpart gives the disjoint sub-sets of vertices, Sp as

Sp = {vi ∈ V :Mpart(vi) = p, p ∈ P} (2.145)

Thus a partition of the graph is a mapping of V into P disjoint sub-domains

Sp such that the union of Sp = V [120]. For a given partition Mpart, the num-

ber of edges whose vertices belong to different subsets is called edge cut of the

partition.The set of edge cuts, Ecut are defined as

Ecut = {eij ∈ Ee : vi ∈ Sp → vj /∈ Sp} (2.146)

The graph partitioning seeks a partition which evenly balances the vertex weight

in each sub-domain whilst minimizing the total weight of edge cut. Thus, one

has to find Mpart of a graph G which minimizes the bi-objective function f1 and

f2
f1 =

(
Sp − V

n

)
f2 = Ecut

(2.147)

The graph partitioning algorithm is NP-complete i.e. there is no known algo-

rithm that can provide an optimal solution for large variety of problems in a

reasonable time. Mesh partitioning in general fall under the following five main

approaches[130, 233].

• Bisection

• Greedy

• Probabilistic

• Local Migration

• Space filling curves

Most of the partitioning algorithms are either graph theory based [120, 136, 284]

or based on geometric techniques [120, 129, 233]. Softwares for partitioning like

Metis [136], Jostle [284], Chaco [120], Scotch [213] and Zoltan [37] are widely

available.
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2.7.3 Parallelization strategy for meshless method

Requirements of parallelization of meshless solver is quite similar to finite volume

and finite element codes : i) balance of computational load among processor

while minimizing the interprocessor communication. Literature review revealed

that most of the parallelization strategy adopted for meshless method [59] use

graph partitioning.

2.7.4 Communication scheduling

Complex problems require a large cluster of parallel system and in such cases

performance depends highly on interprocessor communication time and message

scheduling. Communication scheduling is an important aspect of parallelization

in order to avoid memory contention and conflicts at the switches and maximize

the performance. The most common approach for optimization of communica-

tion schedule are i) random scheduling, greedy approach, and iii) edge coloring

algorithm. Surma et al.[272] have used collision graph model for optimal com-

munication scheduling. For a given set of messages, a collision graph is defined

as G = (V,Ee) where V is the set of vertices representing messages M1, M1,

· · ·MN ; and edges E ={(Mi,Mj)}, the paths of messages Mi and Mj intersect.

Optimal schedule reduces to minimum edge orientation problem derived from

collision graph model. Determination of minimum number of levels is equivalent

to solving the NP-complete graph coloring problem [91].

2.7.5 Potential area of research in parallelization of mesh-

less method

Literature review revealed that message passing based distributed memory model

with domain decomposition or partitioning is the preferred parallelization strat-

egy for most of the industrial solvers. Graph partitioning is the preferred paral-

lelization strategy adopted for meshless method. Parallelization of least square

based meshless method using graph partitioning method and optimal communica-

tion schedule appears to be a potential area of new contribution.
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2.8 Multi-objective shape optimization for mesh-

less method

Multi-objective problems are now common feature in many engineering problems.

Shape optimization searches for the optimal shape that minimizes a certain ob-

jectives or cost functional while satisfying given constraints.

2.8.1 Optimization methods

Optimization methods can be broadly classified as

• Deterministic or Gradient based approaches.

The gradient based approach requires the gradients of objectives with re-

spect to design variables. Gradient based approach is further classified as

– Quasi-Newton method.

It uses the changes in gradient to carry out optimization.

– Perturbation analysis and sensitivity analysis based methods.

It is based on perturbation and sensitivity analysis using the gradients

with respect to design variables.

– Automatic differentiation based approach.

This method is based on derivative information of user defined function

with respect to the inputs based on the analysis codes.

– Adjoint methods.

Adjoint method was introduced by Pironneau [215] is motivated by

control theory approach where system is defined by the conservation

laws or partial differential equations of the flow, with boundary shape

acts as the control.

• Stochastic or Non-Gradient based approaches.

– Grid or random search.

In this method the cost of searching the design space becomes very

expensive for large set of design variables.
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– Tabu search.

Tabu search uses adaptive memory to guide its responsive search. In

its responsive exploration it makes use of exploitation of good solution

and exploration of new promising regions.

– Simulated annealing.

This method simulates the annealing process and optimization follows

the simulated path which minimizes the energy distribution.

– Genetic algorithms (GA).

GA was introduced by Holland [121] in which each candidate design

configuration is represented by a genetic string. The optimization

method performs set of operations analogous to biological evolution

theory.

– Ant colony optimization (ACO).

ACO was developed by Dorigo [78] in which each candidate design

configuration is represented by the path for trajectory taken by the

ant.

– Particle swarm optimization (PSO).

PSO was developed by Kennedy and Eberhart [140] in which each

candidate design configuration is represented by its location.

– Nonlinear simplex.

Nelder and Mead [199] introduced simplex method in which each ver-

tex of the simplex represents the candidate design configuration.

Nearly all optimization method are constructed with elaborate permutation and

combination of hill climbing and random search.

2.8.2 Shape parametrization

There are various parametrization approaches like discrete approach, domain ele-

ment approach, polynomial and splines based, CAD based, free-form deformation

and soft object animation based approach. The shape parametrization approach

is problem specific and is of immense importance as it can bring drastic reduction
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2.8 Multi-objective shape optimization for meshless method

in the computational time. The sensitivity derivative or design velocity field of

a response r with respect to the design vector, x⃗ [235] using chain rule can be

written as
∂r

∂x⃗
=

(
∂r

∂mf

)(
∂mf

∂ms

)(
∂ms

∂mg

)(
∂mg

∂x⃗

)
(2.148)

wheremf is the field or volume mesh, ms is the surface mesh, andmg is the geom-

etry. The term ∂mg

∂x⃗
is very vital as it denotes the geometry sensitivity derivatives

with respect to design vector. Shape parametrization for multi-objective opti-

mization is an active area of research[235].

2.8.3 Mesh handling strategy

As the boundary shape of the candidate design evolves during the optimization

process, the location of the mesh points are moved or re-generated in order to

conform to the new candidate design configuration. Automated re-meshing af-

ter every optimization step is a challenge as adequate quality of the mesh can

fall. Alternatively, automated deformation for small deformation is more robust

and inexpensive. Researchers in general have adopted algebraic mesh movement

schemes [200] for structured meshes and automated re-meshing for unstructured

meshes [55]. Rendall and Allen [228] have proposed radial basis functions (RBFs)-

based mesh deformation method that preserves orthogonality and produces high

quality of meshes and is independent of mesh type. Most of the mesh move-

ment strategy either become expensive or fail when deformation is high when

optimization demands large shape changes.

2.8.4 Cloud handling strategy for meshless method

As described earlier meshless method only require i) cloud of points in the compu-

tational domain, and ii) connectivity of each point in the computational domain.

Combining meshless method with a stochastic algorithm is a very attractive

possibility in fluid dynamic shape optimization. Genetic algorithm (GA), Ant

colony optimization (ACO) and hybrid GA-ACO coupled with meshless solver

[72, 145, 146] have all used node blanking method executed in following three

steps : i)non-participating nodes are blanked off, ii)points only on the body
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(a) (b)

(c) (d)

Figure 2.20: Node blanking method: (a) Shape before and after optimization

step, points on the body move acting as a control, (b) New shape lying in the

background cloud and dense body cloud, (c) assignment of flags with points inside

the body being blanked off, and (d) connectivity generated based on participating

points.
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are changed, and iii)connectivity is generated. Salient features of node-blanking

method shown in figure 2.20 can be described as follows:

• Points in the computational domain are assigned flags. As the optimizer

suggests a new shape the points which go inside the body are blanked off

and points which where previously blanked off but now are in the flow field

are assigned flags.

• Points on the body acts as control points during optimization process. Only

these points are allowed to change.

• Connectivity is generated for all points which are assigned flags. Points

which are blanked off do not participate in flow solver and hence they are

not the part of connectivity.

Essentially, this method does not generate any mesh point it either blanks ”off”

or flags ”on” the existing points and generates connectivity for the ”on” points.

2.8.5 Multi-objective optimization

Multi-objective problems are now common feature in many engineering prob-

lems. Let the functions fi(x⃗)∈Y⊂Rm be the objective functions defining the

m-dimensional objective space with its subset Ỹ⊂Y representing the feasible ob-

jective region. Similarly, let n-dimensional space Rn be called the parameter

space dependent on the shape parametrization approach. The solution of such

problem poses a challenge and requires a new notion of optimality as in most

of the cases objectives tend to be in conflict with each other. There are variety

of commonly used methods for multi-objective optimization. Three of the most

commonly used methods can be stated as follows:

Method 1: Sum of weighted objectives

minimize f =
∑m

i wifi
subject to x⃗ ∈ Rn; where wi > 0 and

∑
wi = 1

(2.149)

Method 2: Lexicographic method

The multi-objective optimization is based on lexicographic ordering.

x⃗1≺x⃗2 (2.150)
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if either x⃗1 = x⃗2 or first non− zero component of x⃗1 − x⃗2 < 0
subject to x⃗1 ∈ Rn and x⃗2 ∈ Rn (2.151)

Objectives are ranked; the first objective is more important, the second one a bit

less and so on.

Method 3: Increasing the constraint vector space

In this method one of the objective functions is taken as the most primary and

the remaining objective functions are transformed into constraints.

minimize f1(x⃗)
subject to f2(x⃗) ≤ c2, ..., fm(x⃗) ≤ cm x⃗ ∈ Rn;
where ci is the bound.

(2.152)

All these methods provide point solutions. Here parameter vector x⃗ is based

on weights, objective value bounds, preferences based on experience, engineering

judgment, etc. Trade-offs in optimum solutions over a wide range of weights can

give a better picture. In such a scenario optimization approaches based on game

theory can be taken as the basis. Methods based on game theory are : i) non-

cooperative game theory using Nash Strategy, ii) cooperative game theory using

Pareto Strategy, and iii) leader-follower based game theory using Stackelberg

Strategy.

2.8.6 Pareto optimality

Dominance Pareto front technique [65, 96] is the most common approach used

in multi-objective optimization, it uses non-dominated sorting coupled with the

optimization algorithms. The dominance Pareto front technique moves the so-

lution towards the Pareto front and does not suffer from convexity or scaling

problems. In the non-dominated sorting approach Pareto optimality forms the

basis of multi-objective optimization as it takes all the objectives into consider-

ation simultaneously; every element in the Pareto front is a good solution. The

concept of Pareto optimality can best be understood if we transform graphical

solutions from n-dimensional parametric or design space X to m-dimensional ob-

jective or criterion space Y . The shaded portion Ỹ in Fig.2.21 represents feasible

objective space Y and ∂Y ≺ marks the Pareto optimal front bounded between Y ≺
1

98



2.8 Multi-objective shape optimization for meshless method

Figure 2.21: Mapping of the parameter space X to the objective function Y :

shaded portion Ỹ represents feasible objective space Y and ∂Y ≺ marks the Pareto

optimal front.

and Y ≺
2 . The Pareto strategy uses dominance strategy where an optimum x⃗∗ is

said to dominate x⃗ if and only if{
∀ i ∈ {1, · · · ,m}, fi(x⃗∗) ≤ fi(x⃗)
∃ j such that fj(x⃗∗) < fj(x⃗)

(2.153)

The x⃗∗ is said to be non-dominated and efficient solution if and only if there is no

other feasible solution in the search space that dominates it. The Pareto front is a

set of all such non-dominated solutions. The scheme for selecting the best solution

along the Pareto front depends on the decision maker’s overall preferences.

2.8.7 Potential area of research in multi-objective shape

optimization for meshless method.

Literature review revealed several different issues like i)choice of optimization

method, ii)shape parametrization, iii)mesh handling, and iv) multi-objective method-

ology. Survey also revealed numerous strategies for addressing these issues. Po-

tential area of research in the field of multi-objective shape optimization for mesh-

less method includes i) development of new multi-objective and cloud handing
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strategy, ii)demonstrating the strategy for stochastic methods like GA, ACO and

simplex method.

2.9 Summary

Development of a robust meshless solver for slip flow requires research work in

wide variety of fields which include i) slip modeling, ii) kinetic theory, iii) non-

equilibrium thermodynamics, iv) upwind methods, v) meshless methods, vi) par-

allelization, and vii) multi-objective shape optimization. Literature review was

conducted and potential area of research identified in each field was taken up as

follows

• Slip flow modeling

Slip models not only depends on the velocity gradient in the normal di-

rection but also on the pressure gradient in the tangential flow direction.

Literature review also reveals that there is no consensus amongst researchers

for second order slip models. Literature review further revealed that there

is virtually no reported upwind method based on linkage between kinetic

theory and non-equilibrium thermodynamics for solving slip flow.

• Kinetic theory

Literature review reveals existence of a potential research area in the devel-

opment of computationally inexpensive kinetic model for polyatomic gases

which gives correct transport coefficients and Prandtl number in the hydro-

dynamic limit.

• Non-equilibrium thermodynamics

Approximate solutions provided by kinetic theory has to comply with re-

quirements of non-equilibrium thermodynamics There exists a major poten-

tial research area in incorporating phenomenological theory of non-equilibrium

thermodynamics into kinetic theory based flow solver.

• Kinetic upwind method

Literature review revealed that kinetic flux vector splitting method which
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complies with requirements of non-equilibrium thermodynamics has not

been extended to slip flows.

• Meshless method

Literature review revealed that for flow problems with shocks the least

square based methods was significantly better than the radial basis method

in terms of giving shock location and its magnitude, but least square based

methods fail when they encounter highly stretched distribution of points

used in the boundary layer. Potential area of research exists in developing

least square based method which remains well conditioned for viscous flow

problems which require highly stretched and clustered grid near the walls

to resolve boundary layers.

• Parallelization of meshless method

Parallelization of least square based meshless method using graph partition-

ing method and optimal communication schedule appears to be a potential

area of research.

• Multi-objective shape optimization for meshless method

Potential area of research in the field of multi-objective shape optimization

includes i) development of new multi-objective and cloud handing strategy,

ii)demonstrating the strategy for stochastic methods like GA, ACO and

simplex method.

Development of meshless solver requires formulation based on kinetic theory

which complies with the principles of non-equilibrium thermodynamics. This

will require i) development of a new kinetic model based on non-equilibrium

thermodynamics, ii) development of kinetic scheme for viscous slip flow and its

wall boundary condition, iii) development of new least square based meshless

method for stretched distribution of nodes which retains simplicity of normal

equations, iv)development of parallelization strategy and multi-objective opti-

mization method for meshless solver.
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Chapter 3

Onsager reciprocity principle

based new kinetic model

3.1 Introduction

Boltzmann equation being a nonlinear integro-differential equation becomes dif-

ficult to handle and hence alternative simpler kinetic model is required to replace

the collision term. The kinetic model should preserve the basic properties and

characteristics of the Boltzmann equation and also comply with the principles

of non-equilibrium thermodynamics. This chapter introduces maximum entropy

production principle and investigates its relationship with Onsager’s reciprocity

principle and Boltzmann equation. The derivation of first order distribution func-

tion based on Morse-BGK model for polyatomic gas is presented. Morse-BGK

model gives inconsistent value of Prandtl number, to overcome this problem a

new kinetic model for polyatomic gas based on Onsager’s reciprocity principle

is proposed which gives correct Prandtl number and also complies with the re-

quirements of non-equilibrium thermodynamics. This is followed by statistical

representation of the new kinetic model by establishing relationship between en-

tropy production and Mahalanobis distance. Finally derivations of first order

distribution function, Euler and Navier-Stokes equations are presented.
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3.2 Non-equilibrium thermodynamics

Non-equilibrium thermodynamics provides a tool which can be used to check

the correctness of the kinetic theory based flow solver. Distribution function de-

rived using kinetic theory has to comply with requirements of non-equilibrium

thermodynamics like following Onsager’s principle and maximization of entropy

production under constraint imposed due to conservation laws. In the words of

Clausius the second law of thermodynamics states that for an adiabatic process

entropy of the final state is larger than or equal to entropy of the initial state.

Maximum entropy production principle is an additional statement over the sec-

ond law of thermodynamics telling us that the entropy production is not just

positive, but tends to a maximum. Publications in this area is fragmented and

still in the realm of physics 1. In the first subsection we present a derivation

of maximization of entropy which takes place within the imposed constraints of

conservation laws. In the second section we have related Onsager’s principle and

Boltzmann equation.

3.2.1 Maximum entropy production and Onsager’s prin-

ciple for fluid flow

Derivation of maximum entropy production principle has been done by the physi-

cists in many different ways. This subsection gives the derivation of the maxi-

mum entropy production principle from the point of view of a computational

fluid dynamist. For any fluid flow process changing from one conservation state

to another conservation state there is generation of entropy σJ . Maximum en-

tropy production principle states that this entropy is not only positive it is also

maximum. The maximization of entropy takes place for a prescribed irreversible

force under constraint imposed on entropy production due to conservation laws.

This can be mathematically written as

Maximize σJ(J i,Jk)
subject to σJ(J i,Jk)− σ(J i,X i) = 0

(3.1)

1 Refer to publication of Martyushev and Seleznev [180], and Beretta [30] for more details.
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where σ(J i,X i)=
∑

i J i ⊙X i is the entropy production density based on con-

servation law and σJ(J i,Jk) is the entropy production density in terms of fluxes.

Operator ⊙ denotes full tensor contraction of forces and fluxes, which are of the

same tensorial order following Curie principle. The term J i signifies flux and the

term X i signifies the thermodynamic force. The subscript ”i” is not the index

notation of the tensor, it signifies the type of thermodynamic force e.g Xτ or Xq

associated due to shear stress tensor or heat flux vector. Taylor expansion of the

entropy production density σJ in terms of fluxes for system close to equilibrium

state gives

σJ(J i,Jk) = α0 +
N∑
i=1

α1
iJ i +

N∑
i,k=1

α2
ik ⊙ J i ⊙ Jk + · · · (3.2)

where coefficients α0, α1
i ,α

2
ik, · · · , are properties of the system in equilibrium

state. The first term on the right hand side vanishes since there is no entropy

production in the equilibrium state. Coefficients associated with odd power of

fluxes vanish i.e. α1
i = 0 as entropy production is independent of the direction of

flux flow. The coefficients αrs, αsr vanish if flux J r and J s do not couple. Thus,

entropy production density σJ(J i,Jk) is bilinear function of fluxes given as

σJ(J i,Jk) =
N∑

i,k=1

α2
ik ⊙ J i ⊙ Jk (3.3)

The constrained maximization of σJ(J i,Jk) leads to Lagrangian L(X,J , λ)

L(X,J , λ) =

[
∂(

∑N
i,k=1 α

2
ik⊙Ji⊙Jk−λ(

∑N
i,k=1 α

2
ik⊙Ji⊙Jk−

∑N
i Ji⊙Xi))

∂Ji

]
X

= 0 (3.4)

where λ is a Lagrangian multiplier. The optimality conditions leads to KKT

(Kharush-Kuhn-Tucker) equations [∇JL(X,J , λ)]X,λ = 0 and [∇λL(X,J , λ)]X,J =

0 . [
∂(

∑N
i,k=1 α

2
ik⊙Ji⊙Jk−λ(

∑N
i,k=1 α

2
ik⊙Ji⊙Jk−

∑N
i Ji⊙Xi))

∂Ji

]
X,λ

= 0[
∂(

∑N
i,k=1 α

2
ik⊙Ji⊙Jk−λ(

∑N
i,k=1 α

2
ik⊙Ji⊙Jk−

∑N
i Ji⊙Xi))

∂λ

]
X,J

= 0
(3.5)

The first KKT condition [∇JL(X,J , λ)]X,λ = 0 gives

X i =
2(λ− 1)

λ

N∑
k=1

α2
ik ⊙ Jk (3.6)
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Using the second KKT condition we obtain λ = 2 and the Lagrangian becomes

L(X,J) =

[
∂(

∑N
i,k=1 α

2
ik⊙Ji⊙Jk−2(

∑N
i,k=1 α

2
ik⊙Ji⊙Jk−

∑N
i Ji⊙Xi))

∂Ji

]
X

= 0 (3.7)

This Lagrangian can be recast in a form similar to Onsager’s variational principle[
∂(

∑N
i Ji⊙Xi− 1

2

∑N
i,k=1 α

2
ik⊙Ji⊙Jk)

∂J

]
X

= 0

⇔
[
∂(σ(Ji,Xi)−ϕJ (Ji,Jk))

∂J

]
X

= 0
(3.8)

The derived entropy production is similar to Onsager’s dissipative function de-

scribed earlier in section 2.4.2 by equation 2.70 of Chapter 2.

Φ(J i,Jk) =

∫
Ω

σJ(J i,Jk)dΩ =
1

2

∫
Ω

N∑
i,k=1

RJ
ik ⊙ J i ⊙ JkdΩ (3.9)

and coefficients α2
ik ≡RJ

ik. For a prescribed irreversible force X i the actual flux

J i which satisfies Onsager’s reciprocity principle σ(X i,J i) =
∑

i J i ⊙X i also

maximizes the entropy production.

3.2.2 Onsager’s reciprocity principle and linearized Boltz-

mann equation

Consider linearized distribution f1 = f0[1 + Φ] with the further assumption that

|Φ| ≪ 1 and both Maxwellian and unknown Φ vary slowly in space and time, with

this assumption we can neglect the product of Φ with derivatives of Maxwellian

f0 as well as derivatives of Φ . With this the linearized Boltzmann equation1 in

terms of linearized collision operator JΦ can be expressed as

1

f0

(
∂f0
∂t

+∇x⃗ · (v⃗f0)
)

= −JΦ (3.10)

The unknown Φ can be written as a sum of components Φi i.e. Φ =
∑

iΦi. The

component of perturbation Φi appears due to thermodynamic forceX i such that

all other thermodynamic forces are absent. This component can be expressed as

follows

Φi = (Φ)Xj=0,∀j ̸=i (3.11)

1For further details on linearized Boltzmann equation refer section B.6 of Appendix B
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The linearized Boltzmann equation corresponding thermodynamic force X i be-

comes
1

f0

(
∂f0
∂t

+∇x⃗ · (v⃗f0)
)

Xj=0,∀j ̸=i
= −(JΦ)i (3.12)

The collision operator (JΦ)i will exists when the system is disturbed from the

state of equilibrium due to some thermodynamic forces X i. Such a thermody-

namic force will lead to its associated conjugate microscopic vector of heat and

tensor of shear stress. Formulation of linearized collision operator in terms of

thermodynamic force and its conjugate microscopic tensor is a first step towards

establishing linkage between kinetic theory and non-equilibrium thermodynamics.

For such a case linearized Boltzmann equation can be written as

1

f0

∑(
∂f0
∂t

+∇x⃗ · (v⃗f0)
)

Xj=0,∀j ̸=i
= −

∑
i

Ῡi ⊙X i (3.13)

where ⊙ denotes full tensor contraction, Ῡi is the reduced microscopic vector and

tensor associated with heat and shear stress respectively,X i is the conjugate ther-

modynamic force vector and tensor. For certain kinetic models we can invert the

collision operator as the right hand side of the equation is in non-hydrodynamic

subspace to obtain

Φj = (J−1Ῡ)j ⊙Xj (3.14)

The thermodynamic flux J i can be evaluated as

J i = R
⟨
Ῡi, f0Φ

⟩
= R

⟨
Ῡi, f0

∑
j

(
(J−1Ῡ)j ⊙Xj

)⟩
(3.15)

where R is the specific gas constant. The flux can also be written as

J i =
∑
j

Lij ⊙Xj (3.16)

where Lij is the phenomenological tensor written as

Lij = R
⟨
Ῡi, f0(J−1Ῡ)j

⟩
(3.17)

The phenomenological tensor either obeys Onsager’s reciprocal relationship Lij

= Lji or Casimir’s Lij = -Lji. If the reduced microscopic flux tensors Ῡr and
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Ῡs do not couple then no cross effects will be present and phenomenological

tensor of transport coefficients Lrs = Lsr will vanish. For example in case of

fluid flow described by Navier-Stokes-Fourier equations we have Ῡτ associated

with shear stress tensor and Ῡq associated with heat flux vector. For such a case

Lτq = Lqτ vanish as Ῡτ and Ῡq are of different tensorial order and hence do

not couple. We get only two tensors Lττ and Lqq of transport coefficients which

are equivalent to scalars because of isotropy due to the rotational invariance

of the collision operator1. Viscosity and thermal conductivity coefficients can

be extracted from the reduced matrix element Lττ and Lqq respectively, where

reduced matrix element Lii for any tensor Lii of rank t is defined as

Lii =
R
⟨
Ῡi⊙, f0(J−1Ῡ)i

⟩
2t+ 1

(3.18)

In case of thermodynamic forces due to heat flux vector, Xq and species diffu-

sion vector, Xd which is of the same tensorial order we get equality in Soret and

Dufour coefficients due to Onsager symmetry. Onsager-Casimir symmetry rela-

tionship is a consequence of positive semi-definiteness and self-adjoint property

of the linearized collision operator J arising from the microscopic reversibility

condition due to the equality of the differential cross sections for direct and time

reversed collision processes. The derivation of entropy production density quickly

establishes the connection with linear irreversible thermodynamics as follows

σ(X i,J i) =
∂ρs
∂t

+∇x⃗ · (⃗js) = R⟨ln(f), JΦ⟩ ≥ 0
= R⟨(ln(f0) + Φ) JΦ⟩ ≥ 0

(3.19)

This results in

σ(X i,J i) = R⟨f0ΦJΦ⟩ ≥ 0

= R
⟨
f0
∑

j(J−1Ῡ)j ⊙Xj

∑
i Ῡi ⊙X i

⟩
≥ 0

=
∑

i

(∑
j Lij ⊙Xj

)
⊙X i ≥ 0

=
∑

i J i ⊙X i ≥ 0

(3.20)

The connection with Onsager’s theory of linear irreversible thermodynamics is

quickly established. This exercise gives us the following guidance and directions

1The operator J has rotational invariance if J = O−1JO for any rotational operator O.
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• Kinetic model should be formulated based on the principles of non-equilibrium

thermodynamics.

• The perturbation term Φ in such a case can be written as a sum of perturba-

tion components Φi for each thermodynamic forces X i. The perturbation

components Φi can be expressed as tensor contraction of reduced micro-

scopic flux with its conjugate thermodynamic force following Onsager’s re-

lationship.

• Once the distribution function is formulated in the Onsager’s form at the

microscopic level it will also comply with the principles on non-equilibrium

thermodynamics once it is projected to macroscopic Navier-Stokes level.

3.3 Derivation of first order distribution func-

tion using Morse-BGK model

Using the non-dimensionless Boltzmann equation with Morse-BGK kinetic model

and Chapman-Enskog perturbation expansion, higher order distribution is gen-

erated by virtue of iterative refinement as follows:

f̄i = − tR
Kn

[
∂f̄i−1

∂t
+∇x⃗ · (v⃗f̄i−1)

]
(3.21)

where Kn is the Knudsen number, tR is the relaxation time used in the Morse-

BGK model with f̄0 = f0 . First order distribution is obtained by considering

the first two terms of the Chapman-Enskog expansion given as

f1 = f0 +Knf̄1 (3.22)

For Boltzmann equation in inertial frame

f̄1
f0

= − tR
Kn

[
∂lnf0
∂t

+ vx
∂lnf0
∂x

]
(3.23)

In terms of total derivative D
Dt

= ∂
∂t
+ u⃗.∇ for inertial frame it can be written as

f̄1
f0

= − tR
Kn

[
Dlnf0
Dt

+ c⃗
∂lnf0
∂x

]
(3.24)
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which after simplification can be expressed as

f̄1
f0

= − tR
Kn


1
ρ
Dρ
Dt

− 2β2R
(
D+2
2β

− 4(γ−1)I
2−D(γ−1)

−
∑D

i c
2
i

)
DT
Dt

+2β
∑D

j cj

(
Duj
Dt

+
∑D

i

(
ci
∂ui
∂sj

))
+
∑D

j cj

{
1
ρ
∂ρ
∂sj

− 2β2R
(
D+2
2β

− 4(γ−1)I
2−D(γ−1)

−
∑D

i c
2
i

)
∂T
∂sj

}

(3.25)

Where ci = vi − ui where i = x, y, z with ui and vi being the fluid and molecular

velocity. Parameters s1, s2 and s3 are spatial coordinates x, y, z. While evaluating

the above equation it is assumed that hydrodynamic scale and time scale are

much larger than mean free path and the relaxation time. Thus spatio-temporal

derivatives of molecular variables, v⃗ and I in the inertial framework vanish. After

substitution of Euler equation we have∫
R+

∫
RD

Ψ

(
∂f0
∂t

+∇x⃗ · (v⃗f0) = 0

)
dv⃗dI ⇒

Dρ
Dt

= −ρ∂ui
∂si

Dui
Dt

= ρ
2β2

∂βρ
∂si

DT
dt

= −(γ − 1)T ∂ui
∂si

 (3.26)

The first-order Chapman-Enskog term can be written as

f1 = f0

[
1− ξ1,τ

p
− ξ1,q

p

]
(3.27)

where ξ1,τ and ξ1,q are Chapman-Enskog polynomials associated with the shear

stress tensor and heat flux vector. For 1D geometry this can be written as

ξ1,τ = ptR

[
3γ−5
2

+ I(1−γ)
Io + (3− γ)βc2x

]
∂ux
∂x

(3.28)

ξ1,q = 2β2RptR

[
5cx
2β

− cxI
Ioβ − c3x

]
∂T
∂x

(3.29)

where Navier Stokes stress τxx and heat flux qx are given as follows

τxx = 2ptR
∂ux
∂x

+ (1− γ)
p

ν

∂ux
∂x

(3.30)

qx = −ptRR
γ

γ − 1

∂T

∂x
(3.31)

For 2D geometry Chapman-Enskog polynomial associated with the shear stress

tensor and heat flux vector can be written as

ξ1,τ = ptR

[
(2γ − 3) + (1− γ) I

Io + β(3− γ)c2x + β(1− γ)c2y

]
∂ux
∂x

+ptR

[
(2γ − 3) + (1− γ) I

Io + β(1− γ)c2x + β(3− γ)c2y

]
∂uy
∂y

+ptR

[
2βcxcy

∂ux
∂y

++2βcxcy
∂uy
∂x

] (3.32)
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ξ1,q = 2β2RptR

[
3cx
β

− cxI
Ioβ − c3x − cxc

2
y

]
∂T
∂x

+2β2RptR

[
3cy
β

− cyI
Ioβ − c2xcy − c3y

]
∂T
∂y

(3.33)

where Navier Stokes stress τxx, τxy and τyy and heat flux qx and qy are given as

follows

τxx = 2ptR
∂ux
∂x

+ (1− γ)ptR

(
∂ux
∂x

+
∂uy
∂y

)
(3.34)

τyy = 2ptR
∂uy
∂y

+ (1− γ)ptR

(
∂ux
∂x

+
∂uy
∂y

)
(3.35)

τxy = τyx = 2βcxcyptR

(
∂ux
∂y

+
∂uy
∂x

)
(3.36)

qx = −ptRR
γ

γ − 1

∂T

∂x
(3.37)

qy = −ptRR
γ

γ − 1

∂T

∂y
(3.38)

For 3D geometry it can be written as follows:

ξ1,τ = ptR

[
5γ−7
2

− (γ−1)I
Io + c2x(3− γ)β − c2y(γ − 1)β − c2z(γ − 1)β

]
∂ux
∂x

+ptR

[
5γ−7
2

− (γ−1)I
Io − c2x(γ − 1)β + c2y(3− γ)β − c2z(γ − 1)β

]
∂uy
∂y

+ptR

[
5γ−7
2

− (γ−1)I
Io − c2x(γ − 1)β + c2y(γ − 1)β − c2z(3− γ)β

]
∂uz
∂z

+ptR

[
2βcxcy

(
∂ux
∂y

+ ∂uy
∂x

)
+ 2βcycz

(
∂uy
∂z

+ ∂uz
∂y

)
+ 2βcxcz

(
∂ux
∂z

+ ∂uz
∂x

)]
(3.39)

ξ1,q = −2β2RptR

[
7cx
2β

− cxI
Ioβ − c3x − c2ycx − c2zcx

]
∂T
∂x

−2β2RptR

[
7cy
2β

− cyI
Ioβ − c2xcy − c3y − c2zcy

]
∂T
∂y

−2β2RptR

[
7cz
2β

− czI
Ioβ − c2xcz − c2ycz − c3z

]
∂T
∂z

(3.40)

where Navier Stokes stress τxx, τxy, τxz, · · ·, τzy, τzz and heat flux qx,qy and qz are

given as follows

τxx = 2ptR
∂ux
∂x

+ (1− γ)ptR

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
(3.41)

τyy = 2ptR
∂uy
∂y

+ (1− γ)ptR

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
(3.42)

τzz = 2ptR
∂uz
∂z

+ (1− γ)ptR

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
(3.43)
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τxy = τyx = ptR

(
∂ux
∂y

+
∂uy
∂x

)
(3.44)

τxz = τzx = ptR

(
∂ux
∂z

+
∂uz
∂x

)
(3.45)

τyz = τzy = ptR

(
∂uy
∂z

+
∂uz
∂y

)
(3.46)

qx = −ptRR
γ

γ − 1

∂T

∂x
(3.47)

qy = −ptRR
γ

γ − 1

∂T

∂y
(3.48)

qz = −ptRR
γ

γ − 1

∂T

∂z
(3.49)

From the above expression of distribution function, tensor of viscous stresses Π

can be deduced as

Π = µ

[
(∇⊗ u⃗) + (∇⊗ u⃗)T − 2

3
I∇·u⃗

]
+ ζI∇·u⃗ (3.50)

where I is the identity invariant tensor, ζ is the coefficient of bulk viscosity

expressed as

ζ = µ

(
5

3
− γ

)
(3.51)

Macroscopic dynamic viscosity is directly related to molecular collision process by

virtue of collision time. Chapman–Enskog expansion gives a viscosity coefficient

of

µ = tRp (3.52)

Similarly, heat flux vector, q⃗ can be deduced as

q⃗ = −κ∇T (3.53)

where thermal conductivity κ as

κ = tRpR
γ

γ − 1
(3.54)

This approach gives Prandtl number, Pr as unity. The single relaxation time tR

used in the Morse-BGK model leads to incorrect values of the transport coefficients

in the hydrodynamic limit.
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model

It is important to understand that there are very few models which respect each

constraint of positivity, conservation of moments, and dissipation of entropy, while

being computationally inexpensive. Hence research is required in the development

of alternative kinetic model for polyatomic gas which retains the simplicity of the

Morse-BGK model as well as complies with the principles of non-equilibrium

thermodynamics.

3.3.1 Identification of thermodynamic forces and micro-

scopic tensors

Important linkages with non-equilibrium thermodynamics can be drawn from the

expression of the derived first order velocity distribution function, f1 based on

Morse-BGK model. Velocity distribution function f1 can be written as

f1 = f0

[
1− ξ1,τ

p
− ξ1,q

p

]
= f0 −

∑
j Υj ⊙Xj

= f0 − (Υτ :Xτ +Υq ·Xq)

(3.55)

where ⊙ denotes full tensor contraction, Υj is the microscopic vector and tensor

associated with heat and shear stress respectively, Xj is the conjugate thermo-

dynamic force vector and tensor. Using the definition of perturbation term Φ the

microscopic tensor Υj can be expressed in terms of reduced microscopic tensor

as follows

Υj = −f0(J−1Ῡ)j = −f0tRῩj (3.56)

The linearized collision operator J is described by a single relaxation time tR

which is not affected by thermodynamic force. The microscopic tensor associated

with the shear stress for D degree of freedom in terms of BGK’s single relaxation

time tR is derived as

Υτ = tRf0

[
c⃗⊗ c⃗+

1

2
{(2 +D)γ − (4 +D)

2β
− I(γ − 1)

Ioβ
− c2(γ − 1)}I

]
(3.57)

where c⃗ is the peculiar velocity vector and I is the rank-D identity invariant

tensor. The microscopic vector associated with heat transport in terms of BGK’s

single relaxation time tR is derived as

Υq = tRf0

[
4 +D

2β
− I

Ioβ
− c2

]
c⃗ (3.58)
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3.3 Derivation of first order distribution function using Morse-BGK
model

The thermodynamic force associated with shear stress tensor,Xτ and heat vector,

Xq can be expressed as

Xτ = β[(∇⊗ u⃗) + (∇⊗ u⃗)T ]
Xq = ∇β (3.59)

For example components of microscopic tensor associated with shear stress, Υτ

for 3D geometry can be expressed as

Υτ ≡ tRf0

 c2x − 1
2
[c2(γ − 1) + Iτ cxcy cxcz

cxcy c2y − 1
2
[c2(γ − 1) + Iτ cycz

cxcz cycz c2z − 1
2
[c2(γ − 1) + Iτ


(3.60)

where c2=c2x + c2y + c2z and

Iτ ≡
(
−I(γ − 1)

Ioβ
+

−7 + 5γ

2β

)
(3.61)

Similarly, components of microscopic Υq for 3D geometry can be expressed as

Υq = tRf0
[
cx(−c2 + Iq) cy(−c2 + Iq) cz(−c2 + Iq)

]
(3.62)

where

Iq =
7

2β
− I

Ioβ
(3.63)

The components of thermodynamic force associated with shear stress tensor

Xτ ≡ β

 2∂ux
∂x

(∂ux
∂y

+ ∂uy
∂x

) (∂ux
∂z

+ ∂uz
∂x

)

(∂ux
∂y

+ ∂uy
∂x

) 2∂uy
∂y

(∂uz
∂y

+ ∂uy
∂z

)

(∂ux
∂z

+ ∂uz
∂x

) (∂uz
∂y

+ ∂uy
∂z

) 2∂uz
∂z

 (3.64)

The thermodynamic force associated with heat vector is

Xq ≡
[

∂β
∂x

∂β
∂y

∂β
∂z

]
≡ −2Rβ2

[
∂T
∂x

∂T
∂y

∂T
∂z

] (3.65)

The exercise of derivation of distribution function of polyatomic gas using Morse-

BGK model has led to following conclusions :

• Identification of Υj microscopic vector and tensor associated with heat and

shear stress.
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• Identification of thermodynamic forces Xj for polyatomic gas.

• Distribution function contains terms of higher order moments Ψ = [v⃗ ⊗
v⃗,
(
I+ v2

2

)
v⃗]T as it contains pressure tensor and heat flux vector. The

pressure tensor in terms of higher order moments are defined by

P =

∫
R+

∫
RD

c⃗⊗ c⃗fdv⃗dI (3.66)

where c⃗ is the peculiar velocity. The heat flux vector in terms of higher

order moments are defined by

q =

∫
R+

∫
RD

(
I+

c2

2

)
c⃗fdv⃗dI (3.67)

• Inference can be drawn that for each thermodynamic force there should be

an associated relaxation time. The construction of new kinetic model should

have relaxation time for each thermodynamic force.

3.4 New kinetic model

Distribution function should follow Onsager’s reciprocity principle so as to satisfy

principles of non-equilibrium thermodynamics. The polynomials associated with

shear stress, ξ1,τ and heat flux, ξ1,q will give rise to flux J i expressed in terms of

thermodynamic force Xj as follows

J i =
∑
j

Lij ⊙Xj (3.68)

where Lij is the tensor of phenomenological coefficients such that entropy pro-

duction σ(X i,J i) satisfies the Onsager’s reciprocity relations depicted as follows

:

σ(X i,J i) =
∑
i

J i ⊙X i =
∑
i,j

(Lij ⊙Xj)⊙X i (3.69)

The subscript i and j denote the thermodynamic forces associated with shear

stress tensor and heat flux vector. In order to derive a thermodynamically cor-

rect distribution function the kinetic model itself requires its foundation based on
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3.4 New kinetic model

principles of non-equilibrium thermodynamics. Assuming that the particles are

in non-equilibrium due thermodynamic forcesXτ andXq. The particles that are

in non-equilibrium due to thermodynamic forces Xτ are replaced exponentially

by particles in equilibrium with characteristic time tR(f,τ) and tR(f0,τ) respectively.

Similarly, particles in non-equilibrium due to thermodynamic forces Xq are re-

placed exponentially by particles in equilibrium with characteristic time tR(f,q)

and tR(f0,q) respectively. In most cases the state of gas is not varying rapidly in

the interval of relaxation time so f−f0 is small, hence tR(f,τ) = tR(f0,τ) = tR(τ)

and tR(f,q) = tR(f0,q) = trR(q), with this the new kinetic model becomes

Jm(f, f0) = −
(
f(x⃗, v⃗, I, t)− f0(x⃗, v⃗, I, t)

tR(τ)(x⃗, t)

)
Xq=0

−
(
f(x⃗, v⃗, I, t)− f0(x⃗, v⃗, I, t)

tR(q)(x⃗, t)

)
Xτ=0

(3.70)

In the proposed new kinetic model only inelastic collisions are considered such

that particles relaxes to equilibrium distribution in internal and translational

state at same temperature as there is equipartition of energy between the inter-

nal and translational degrees of freedom. Further, this inelastic collisions are in

non-equilibrium due to thermodynamic forces Xτ and Xq. The part of distri-

bution which is in non-equilibrium due thermodynamic forces Xτ first relaxes to

Maxwellian f0 in characteristic time tR(τ). Simultaneously the part of distribution

which is in non-equilibrium due thermodynamic forces Xq relaxes to Maxwellian

f0 in characteristic time tR(q). Figure 3.1 shows the components of the new ki-

netic model for thermodynamic forceXτ andXq as non-equilibrium distribution

f relaxes to equilibrium distribution f0 in the phase plane of thermodynamic

force Xτ and Xq. The relaxation step can also be cast as an eigenvalue problem

(A − λI)Xτq = 0 where Xτq is a tensor with components {Xτ ,Xq} such that

positive semi-definiteness of the collision operator ensures non-negative entropy

production, providing a Lyapunov criterion for the stability towards a equilibrium

distribution. In a more generalized form Onsager-BGK model can be written as

Jm(f, f0) = −
∑
j

(
f(x⃗, v⃗, I, t)− f0(x⃗, v⃗, I, t)

tR(j)(x⃗, t)

)
Xi=0,∀i̸=j

(3.71)
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3.4 New kinetic model

Figure 3.1: Components of the new kinetic model for thermodynamic force Xτ

and Xq as non-equilibrium distribution f relaxes to equilibrium distribution f0.

where tR(j) is the relaxation time for thermodynamic force Xj. Distribution

function, f(∆t) after time interval t = ∆t relaxes as

f(∆t) =
∑
j

[
f(0)Exp(−∆t/tR(j))− f0(1− Exp(−∆t/tR(j)))

]
Xi=0,i ̸=j (3.72)

where f(0) = f(t = 0) is the initial non-equilibrium distribution just after stream-

ing or convection step while f0 is the final equilibrium distribution to be reached

after sufficient collisions1. Non-equilibrium thermodynamics based kinetic model

can also be extended for gas mixtures, refer section B.7 in Appendix B for more

details.

3.4.1 Distribution function for proposed new kinetic model

Using the non-dimensionless Boltzmann equation with BGK kinetic model and

Chapman-Enskog perturbation expansion, higher order distribution is generated

1The present analysis can be made more physically meaningful by using modified moment

method of Eu [83] in which the distribution function depends also on entropy derivatives called

as Gibbs variables.
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3.4 New kinetic model

by virtue of iterative refinement as follows:

f̄i = −
tR(τ)

Kn

[
∂f̄i−1

∂t
+∇x⃗ · (v⃗f̄i−1)

]
Xq=0

−
tR(q)

Kn

[
∂f̄i−1

∂t
+∇x⃗ · (v⃗f̄i−1)

]
Xτ=0

(3.73)

where Kn is the Knudsen number with f̄0 = f0. Velocity distribution function f

can be now be derived as

f1 = f0 −
∑
j

Υj ⊙Xj = f0 − (Υτ :Xτ +Υq ·Xq) (3.74)

For the first order Chapman-Enskog expansion the microscopic tensor Υj can be

expressed in terms of reduced microscopic tensor Ῡj as follows

Υj = −f0tR(j)Ῡj = −f0tR(j)Ῡj (3.75)

where linearized collision operator J has a dependence on the thermodynamic

force i.e. it depends inversely with tR(j) which is the relaxation time associated

with the thermodynamic force Xj. The microscopic tensor associated with the

shear stress for D degree of freedom is

Υτ = tR(τ)f0

[
c⃗⊗ c⃗+

1

2
{(2 +D)γ − (4 +D)

2β
− I(γ − 1)

Ioβ
− c2(γ − 1)}I

]
(3.76)

where c⃗ is the peculiar velocity vector and I is the rank-D identity invariant

tensor, the relaxation time associated with shear stress, tR(τ) is given as

tR(τ) =
µref
p

(
T

Tref

)δo
(3.77)

where µref is the viscosity of the gas at reference temperature Tref , δo is the

exponent of the viscosity law and p is the pressure.

The microscopic vector associated with heat transport is

Υq = tR(q)f0

[
4 +D

2β
− I

Ioβ
− c2

]
c⃗ (3.78)

The relaxation time associated with heat transport, tR(q) is given as

tR(q) =
κ(γ − 1)

Rγp
=
tR(τ)

Pr
(3.79)
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where κ is thermal conductivity and Pr is the Prandtl number. The thermody-

namic force associated with shear stress tensor, Xτ and heat vector, Xq are

Xτ = β[(∇⊗ u⃗) + (∇⊗ u⃗)T ]
Xq = ∇β (3.80)

The perturbation term can be written as

Knf̄1 = −
∑
j

Υj ⊙Xj (3.81)

The perturbation terms satisfies the additive invariants property, expressed as⟨
Ψ,Knf̄1

⟩
= −

∑
j ⟨Ψ,Υj⟩ ⊙Xj = −

∑
j

(∫
R+

∫
RD

ΨΥjdv⃗dI
)
⊙Xj = 0

(3.82)

where moment vector function is defined as Ψ =
[
1, v⃗, I+ 1

2
v⃗T v⃗
]T
.

3.4.2 Statistical representation of new kinetic model

In statistics there are many varied approaches to measure divergence between

two generalized probability density function fg(x) and fh(x). Kullback-Leibler

divergence [144] is one such measure which provides relative entropy. Kullback-

Leibler divergence is defined as follows

D(fg∥fh) =
∫
fg(x)ln

fg(x)

fh(x)
dx (3.83)

Kullback-Leibler divergence is asymmetric, always non-negative and becomes zero

if and only if both the distributions are identical. Kullback-Leibler symmetric

divergence can be written as

D(fg, fh) = D(fg∥fh) +D(fh∥fg) =
∫

(fg(x)− fh(x)) ln
fg(x)

fh(x)
dx (3.84)

Kullback-Leibler symmetric divergence D(fg, fh) equals Mahalanobis distance

[176] when fg(x) and fh(x) are multivariate normal distributions with common

variance-covariance matrix. Mahalanobis distance uses Galilean transformation

and evaluates equivalent Euclidean distance under standard normal distribution.

In the kinetic theory context D(f, fref ) can be interpreted as Mahalanobis dis-

tance between two distributions f and fref .
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3.4.2.1 Mahalanobis speed and entropy production

Consider Boltzmann H-function given by

H =

∫
R+

∫
RD

flnfdv⃗dI (3.85)

The time derivative of H-function can be cast as

∂H

∂t
=

∫
R+

∫
RD

Jm(f, f0)lnfdv⃗dI (3.86)

Based on the additive invariant property due to conservation of mass, momentum

and energy we can write∫
R+

∫
RD

Jm(f, f0)ln(f0)dv⃗dI = 0 (3.87)

Using the above relationship the time derivative of Boltzmann H-function can

also be written as
∂H

∂t
=

∫
R+

∫
RD

Jm(f, f0)ln
f

f0
dv⃗dI (3.88)

After substituting the kinetic model described by equation 3.70 we get

∂H

∂t
= − 1

tR(τ)

(∫
R+

∫
RD

(f − f0)ln
f

f0
dv⃗dI

)
Xq=0

− 1

tR(q)

(∫
R+

∫
RD

(f − f0)ln
f

f0
dv⃗dI

)
Xτ=0

= −
D(f, f0)Xq=0

tR(τ)

− D(f, f0)Xτ=0

tR(q)

(3.89)

where D(f, f0)Xq=0 and D(f, f0)Xτ=0 are the Mahalanobis distance between dis-

tribution f and f0 associated with thermodynamic force Xτ and Xq. This sta-

tistical representation helps us to draw analogy with Mahalanobis distance and

its positivity property shows
∂H

∂t
≤ 0 (3.90)

this establishes an effortless proof of H-theorem for the new kinetic model. The

entropy production can be written as

σ(f, f0) = −R∂H
∂t

= R
D(f, f0)Xq=0

tR(τ)

+R
D(f, f0)Xτ=0

tR(q)

= Ṁq + Ṁτ

(3.91)
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where Ṁq and Ṁτ are defined in this thesis as Mahalanobis rate of generation of

entropy or Mahalanobis speed for thermodynamic forceXτ andXq. Mahalanobis

speed Ṁi gives the component of entropy production rate, σi associated with the

thermodynamic force X i.

3.4.2.2 Mahalanobis speed and Onsager’s entropy relationship

Mahalanobis speed Ṁi associated with thermodynamic force X i for first order

distribution function can be written as

Ṁi = R

(
D(f1, f0)

tR(i)

)
Xj=0,∀j ̸=i

= −R
(
∂H

∂t

)
Xj=0,∀j ̸=i

= −R
∫
R+

∫
RD

Jm(f, f0)Xj=0,∀j ̸=ilnfdv⃗dI

= −R
∫
R+

∫
RD

(
Υi ⊙X i

tR(i)

)
Xj=0,∀j ̸=i

lnfdv⃗dI

= R

(∫
R+

∫
RD

f0Ῡilnfdv⃗dI
)

Xj=0,∀j ̸=i
⊙X i

= J i ⊙X i

(3.92)

where J i is the entropy flux associated with the thermodynamic force X i as the

physical state evolves with Mahalanobis speed Ṁi satisfying Onsager’s relation-

ship. Figure 3.2 shows Mahalanobis speed for thermodynamic force Xτ and Xq.

3.4.3 Derivation of Euler and Navier-Stokes equation

Euler and Navier-Stokes equation can be derived with an assumption that the

departure from equilibrium is small and the first order Chapman-Enskog dis-

tribution is valid. Euler and Navier-Stokes equations are obtained by taking

Ψ-moments of the Boltzmann equation using the first order Chapman-Enskog

distribution. Consider Ψ-moments of the one-dimensional Boltzmann equation

as follows ⟨
Ψ,

∂f1
∂t

+
∂vf1
∂x

= 0

⟩
(3.93)
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Figure 3.2: Mahalanobis speed for thermodynamic force Xτ and Xq as non-

equilibrium distribution f relaxes to equilibrium distribution f0.

Substituting the first order Chapman-Enskog distribution based on new kinetic

model, f1 = f0 −
∑

j Υj ⊙Xj one can get⟨
Ψ,

∂f0 −
∑

j Υj ⊙Xj

∂t

⟩
+

⟨
Ψ,

∂v(f0 −
∑

j Υj ⊙Xj)

∂x

⟩
= 0 (3.94)

This simplifies to

∂
⟨
Ψ, f0 −

∑
j Υj ⊙Xj

⟩
∂t

+
∂ ⟨Ψ, vf0⟩

∂x
+
∂
⟨
Ψ,−v

∑
j Υj ⊙Xj

⟩
∂x

= 0
(3.95)

Due to additive invariants property theΨ moments of the perturbation term does

not contribute i.e. ⟨
Ψ,
∑
j

Υj ⊙Xj

⟩
= 0 (3.96)

The Ψ-moments of one dimensional Boltzmann equation simplifies to

∂ ⟨Ψ, f0⟩
∂t

+
∂ ⟨Ψ, vf0⟩

∂x
+
∂ −

∑
j Λj ⊙Xj

∂x
= 0 (3.97)

where macroscopic tensor Λj is defined as

Λj = ⟨Ψ, vΥj⟩ (3.98)
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We get the one-dimensional Navier-Stokes equations as follows

∂U

∂t
+
∂GXI

∂x
+
∂GXV

∂x
= 0 (3.99)

where U=(ρ, ρux, ρE)T represent the conserved vector. GXI is the x-component

of the inviscid flux vector given as follows

GXI = ⟨Ψvf0⟩ ≡
∫
R+

∫
R
Ψvf0dvdI =

 ρux
p+ ρu2x

ρuxE + uxp

 (3.100)

GXV is the x-component of the viscous flux vector given as follows

GXV = −
∑

j Λj ⊙Xj = −
∑

j ⟨ΨvΥj⟩⊙Xj

≡ −
∑
j

(∫
R+

∫
R
ΨvΥjdvdI

)
⊙Xj

(3.101)

Components of macroscopic tensorsΛτ = [Λ1,τ ,Λ2,τ ,Λ3,τ ]
T andΛq = [Λ1,q,Λ2,q,Λ3,q]

T

are given as follows

Λ1,τ = [0] , Λ1,q = [0]

Λ2,τ =
[
(3−γ)µρ
4pβ2

]
, Λ2,q = [0]

Λ3,τ =
[
ux

(3−γ)µρ
4pβ2

]
, Λ3,q =

[
− κρ

4pRβ3

] (3.102)

The thermodynamic forces are

Xτ = 2β
∂ux
∂x

, Xq = −2Rβ2 ∂T
∂x

(3.103)

Using relation ρ = 2pβ the viscous fluxes are obtained as

GXV = −
∑

j Λj ⊙Xj = −(Λτ :Xτ +Λq ·Xq)

=

 0
−τxx

−uxτxx + qx

 (3.104)

where shear stress tensor τxx based on kinetic theory is

τxx = (3− γ)µ
∂ux
∂x

(3.105)

and heat flux vector is

qx = −κ∂T
∂x

(3.106)
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3.4 New kinetic model

3.4.3.1 Higher dimensional macroscopic tensors and validity of Stokes

hypothesis

Macroscopic tensors Λτ , Λq satisfy Onsager’s reciprocal principle and hence com-

plies with the requirement of non-equilibrium thermodynamics. One dimensional

derivation fails to provide a complete picture, hence a derivation for a higher

dimensional case is required to illustrate the nature of the macroscopic tensors.

Consider Ψ-moments of a Boltzmann equation for a two dimensional fluid system

as follows ⟨
Ψ,

∂f1
∂t

+
∂vxf1
∂x

+
∂vyf1
∂y

= 0

⟩
(3.107)

Substitution of the first order distribution for the polyatomic gas leads to⟨
Ψ,

∂f0 −
∑

j Υj ⊙Xj

∂t

⟩
+

⟨
∂vx(f0 −

∑
j Υj ⊙Xj)

∂x

⟩
+

⟨
∂vy(f0 −

∑
j Υj ⊙Xj)

∂y

⟩
= 0

(3.108)

After solving we get Navier-Stokes equation as follows

∂U

∂t
+
∂GXI

∂x
+
∂GXV

∂x
+
∂GYI

∂y
+
∂GYV

∂y
= 0 (3.109)

where U=(ρ, ρux, ρuy, ρE)
T represent the conserved vector. As described earlier

inviscid or Euler fluxes GXI ,GY I are based on Maxwellian, f0 and viscous

fluxes GXV , GY V are based on perturbation Knf̄1 = −(
∑

j Υj ⊙Xj). The

mass, momentum and energy components of inviscid fluxes are

[GXI,i, GYI,i] = [⟨ψivxf0⟩, ⟨ψivyf0⟩]

≡
∫
R+

∫
R2

ψiv⃗f0dv⃗dI
(3.110)

where vx and vy are the Cartesian components of molecular velocity v⃗ and moment

variable ψi∈ Ψ.

The mass, momentum and energy components of viscous fluxes are

[GXV,i, GYV,i] = [−
∑

j Λ
x
i,j ⊙Xj,−

∑
j Λ

y
i,j ⊙Xj] (3.111)

where Λxi,j and Λyi,j are the macroscopic tensors associated with heat flux vector

and stress tensor expressed as

[Λxi,j,Λ
y
i,j] = [⟨ψivxΥj⟩, ⟨ψivyΥj⟩]

≡
∫
R+

∫
R2

ψiv⃗Υjdv⃗dI
(3.112)
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3.4 New kinetic model

The components of macroscopic tensors Λx
τ and Λx

q are obtained as

Λx1,τ =

[
0 0
0 0

]
, Λx1,q =

[
0 0

]
Λx2,τ =

[
(3−γ)µρ
4pβ2 0

0 (1−γ)µρ
4pβ2

]
, Λx2,q =

[
0 0

]
Λx3,τ =

[
0 µρ

4pβ2

µρ
4pβ2 0

]
, Λx3,q =

[
0 0

]
Λx4,τ =

[
ux

(3−γ)µρ
4pβ2 uy

µρ
4pβ2

uy
µρ

4pβ2 ux
(1−γ)µρ
4pβ2

]
, Λx4,q =

[
− κρ

4pRβ3 0
]

(3.113)

Similarly, the components of macroscopic tensors Λy
τ and Λy

q are obtained as

Λy1,τ =

[
0 0
0 0

]
, Λy1,q =

[
0 0

]
Λy2,τ =

[
0 µρ

4pβ2

µρ
4pβ2 0

]
, Λy2,q =

[
0 0

]
Λy3,τ =

[
(1−γ)µρ
4pβ2 0

0 (3−γ)µρ
4pβ2

]
, Λy3,q =

[
0 0

]
Λy4,τ =

[
uy

(1−γ)µρ
4pβ2 ux

µρ
4pβ2

ux
µρ

4pβ2 uy
(3−γ)µρ
4pβ2

]
, Λx4,q =

[
0 − κρ

4pRβ3

]
(3.114)

Because of isotropy due to rotational invariance of the collision operator the

macroscopic tensor associated with shear stress tensor follows the symmetry re-

lationship by satisfying Λx,ψi
τ (r, s) = Λx,ψi

τ (s, r) and Λy,ψi
τ (r, s) = Λy,ψi

τ (s, r) where

r, s are the component index of the tensor such that s ̸= r. The thermodynamic

forces are

Xτ ≡

 2β ∂ux
∂x

2β
(
∂uy
∂x

+ ∂ux
∂y

)
2β
(
∂uy
∂x

+ ∂ux
∂y

)
2β ∂uy

∂y

 , Xq ≡
(
−2Rβ2 ∂T

∂x
−2Rβ2 ∂T

∂y

)
(3.115)

The viscous fluxes are obtained as

GXV = −
∑

j Λ
x
j ⊙Xj

=


0

−τxx
−τxy

−uxτxx − uyτxy + qx

 (3.116)
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3.4 New kinetic model

GY V = −
∑

j Λ
y
j ⊙Xj

=


0

−τxy
−τyy

−uxτxy − uyτyy + qy

 (3.117)

Here ux and uy are the velocity components in Cartesian frame, ρ is the density, T

is the static temperature and p is the pressure which is calculated from equation

of state of perfect gas. The heat flux vector is

q⃗ = −κ∇T (3.118)

Tensor of viscous stresses Π is given as

Π = µ

[
(∇⊗ u⃗) + (∇⊗ u⃗)T − 2

3
I∇·u⃗

]
+ ζI∇·u⃗ (3.119)

where I is the rank-D identity invariant tensor, ζ is the coefficient of bulk viscosity

expressed as

ζ = µ

(
5

3
− γ

)
(3.120)

From the expression of shear stress derived using kinetic theory it is evident that

Stokes hypothesis is only valid for mono-atomic gases as γ = 5/3 and ζ = 0.

Otherwise, ζ > 0 as 1 < γ < 5/3. For polyatomic gas the concept of bulk

viscosity term will change if elastic collisions are included e.g. when elastic and

inelastic collision terms are of the same order Eucken correction to heat transfer

coefficient and bulk viscosity may appear.

3.4.4 Realizability of moments for the first order distri-

bution function

Local entropy production due to the collision term can be written as

σ(v⃗, t) = −R
∫
R+

∫
RD

lnfJ(f, f)dv⃗dI ≥ 0 (3.121)

where R is specific gas constant. It follows from the Boltzmann equation that

collisions between the molecules in the non-equilibrium state lead to entropy pro-

duction. The Boltzmann H-theorem states that entropy production is positive
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3.4 New kinetic model

for all distributions. As described earlier the Chapman-Enskog expansion leads

to f=[1 + Φ] where Φ is perturbation term associated with the shear stress ten-

sor and heat flux vector function of peculiar velocity and derivatives in space

and time of temperature and velocity. The Chapman-Enksog distribution will

become negative only when Φ<−1 for large value of peculiar velocity c⃗. Using

the approach of Struchtrup[263] we fix a velocity bound cmax such that

∥Φ∥ < 1 for c < cmax (3.122)

The entropy production after substituting the distribution with Chapman-Enskog

distribution can be written as

σ(v⃗, t) = −R
∫
R+

∫
RD

ln(f0[1 + Φ])Jm(f, f0)dv⃗dI

= −R
∫
R+

∫
RD

ln[1 + Φ]Jm(f, f0)dv⃗dI
(3.123)

Since the Chapman-Enskog polynomial is bounded by ∥Φ∥ < 1, the entropy

production can also be expressed by expanding the natural logarithm into a Taylor

series as

σ(v⃗, t) = −R
∫
R+

∫
RD

[
Φ− Φ2

2
+ · · ·

]
Jm(f, f0)dv⃗dI

= −R
∫
R+

∫
RD

[
Knξ1 +Kn2(−1

2
ξ21 +

f̄1
f0
ξ2 + · · ·

]
Jm(f, f0)dv⃗dI

(3.124)

The condition ∥Φ∥ < 1 for the Chapman-Enskog expansion can also be inter-

preted as ∥Υτ :Xτ

f0
∥ ≤ 1 and ∥Υq·Xq

f0
∥ ≤ 1. This leads to following condition[

(2+D)γ−(4+D)
2(2−(γ−1)D)

− I
4βI2o

+ βc2i

]
|τii|+ 2β|cicjτij| ≤ 1

|
[
(4+D)

2
− I

Io − βc2
]
ciqi| ≤ 1

(3.125)

Entropy generation for the first order Chapman-Enskog distribution is

σ(v⃗, t) = −R
∫
R+

∫
RD

ΦJm(f, f0)dv⃗dI

= R
∑
i

(∫
R+

∫
RD

f0Ῡilnfdv⃗dI
)

Xj=0,∀j ̸=i
⊙X i

=
∑
i

(J i ⊙X i)

(3.126)
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3.5 Summary

Based on first order expansion the entropy generation is always positive and

looks independent of velocity and temperature gradients involved in thermody-

namic force X. This is an incorrect interpretation as the very validity of first

order Chapman-Enskog distribution is not ensured at higher gradients or when

condition described by equation 3.125 i.e. ∥Υi⊙Xi

f0
∥ ≤ 1 is violated.

3.5 Summary

For a prescribed irreversible force X i the actual flux J i which satisfies Onsager’s

reciprocity principle maximizes the entropy production, σ(X i,J i) =
∑

i J i ⊙X i.

It is also shown that the perturbation term due to non-equilibrium distribution

also follows Onsager’s relationship as it can be expressed in terms of thermody-

namic forces and its conjugate microscopic fluxes. Existing Morse-BGK model

for polyatomic is single relaxation model that gives incorrect Prandtl number.

A new kinetic model was proposed based on the principles of non-equilibrium

thermodynamics. The new kinetic model is computationally inexpensive and

gives correct Prandtl number in the hydrodynamic limit and follows Onsager’s

reciprocity principle. Kinetic model was also given statistical representation by

relating entropy production with positivity of Mahalanobis distance, yielding an

effortless proof of H-theorem. Chapman-Enskog procedure was extended for this

new kinetic model to obtain distribution function which can be expressed in

terms of thermodynamic force and its conjugate microscopic tensor. Euler and

Navier-Stokes equations were also derived by taking Ψ-moments of the Boltz-

mann equation using the first order Chapman-Enskog distribution, and nature of

associated macroscopic tensors was also illustrated.
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Chapter 4

Development of Kinetic Upwind

method based on microscopic

tensor splitting

4.1 Introduction

As the state update moves from one time step to another time step it decreases

the thermodynamic forces and generates entropy which is the product of the ther-

modynamic forces and its conjugate fluxes. All the research in the development of

upwind scheme revolves around the methodology of adding the correct dissipation

or entropy and its correct distribution for each thermodynamic force associated

with shear stress tensor and heat flux vector. In precise words the state update

of a solver has to follow the path laid down by non-equilibrium thermodynamics.

For example if the amount of dissipation is too less then the solver will fail to

capture shocks and if the amount of dissipation is too high then natural viscous

behavior will get overshadowed. The correct amount of dissipation and its dis-

tribution for each thermodynamic force depends on the physical process through

which state update passes, hence it is difficult to have a single monolithic solver

operating across the regime from rarefied flow to hypersonic continuum flow. If

the solver follows and mimics the physics then we can have a single compressible

flow solver serving the entire range from rarefied flow to continuum flow, creep-

ing flow to flow with shocks. The research in the development of such a solver
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4.2 Kinetic upwind method for Navier-Stokes equations

will follows a rigorous procedure based on principles of kinetic theory incorporat-

ing phenomenological theory of non-equilibrium thermodynamics. The present

research uses the approach of kinetic flux vector splitting using kinetic model

and distribution function based on features of non-equilibrium thermodynamics.

The present research also aims to have a single robust solver that naturally adds

the necessary dissipation for each thermodynamic force and mimics the physics.

This chapter describes kinetic flux vector splitting scheme based on microscopic

tensor splitting which is entropy consistent and does not suffer from the many

pathological behavior of other flux differencing / splitting schemes. The nu-

merical dissipation in the kinetic scheme can be controlled by incorporating the

modified Courant splitting based on dissipation control parameter. The chapter

describes axi-symmetric formulation of kinetic scheme and also describes a novel

scheme Variation Reduction Kinetic Flux Vector Splitting scheme (VRKFVS)

which solves for the deviations over the chosen Maxwellian. Using this method

the solver can capture very weak secondary flow features embedded in strong

primary flow field.

4.2 Kinetic upwind method for Navier-Stokes

equations

As explained earlier kinetic schemes exploits the connection between the Boltz-

mann equation and the governing conservation equations at the macroscopic level.

Kinetic Flux Vector Splitting (KFVS) pioneered by Deshpande [70] extended by

Chou and Baganoff [54] for Navier-Stokes equations involves two steps : i) in the

first step the Boltzmann equation is rendered into an upwind discretized form,

ii) in the second step Ψ moments of the upwind discretized Boltzmann equation

are taken to obtain upwind scheme for the macroscopic conservation equations

at which the state update operates.
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4.2 Kinetic upwind method for Navier-Stokes equations

4.2.1 Kinetic Flux Vector Splitting based on distribution

splitting

Consider Boltzmann equation for one dimensional case with first order distribu-

tion function as follows
∂f1
∂t

+
∂vf1
∂x

= 0 (4.1)

The upwind CIR split-form for first order distribution function can be written as

∂f1
∂t

+
∂ v+|v|

2
f+
1

∂x
+
∂ v−|v|

2
f−
1

∂x
(4.2)

where f+
1 is the half-range first order distribution function for 0 < v < +∞ and

f−
1 is the half-range distribution function for −∞ < v < 0. Thus in KFVS the

distribution function at time t + ∆t in a fluid domain is constructed based on

half range distribution as follows

f t+∆t
1 = f t1 −∆t

[(
∂vf+

1

∂x

)t
0<v<+∞

+

(
∂vf−

1

∂x

)t
−∞<v<0

]
(4.3)

State update equation is obtained by taking Ψ moments as follows

⟨
Ψ, f t+∆t

1

⟩
=
⟨
Ψ, f t1

⟩
−∆t


(
∂⟨Ψ,vf+1 ⟩

∂x

)t
0<v<+∞

+

(
∂⟨Ψ,vf−1 ⟩

∂x

)t
−∞<v<0

 (4.4)

Since the perturbation term satisfies the additive invariants property i.e. ⟨Ψ,Knf̄1⟩ =
0, the one-dimensional Boltzmann equation in upwind form simplifies to

⟨
Ψ, f t+∆t

0

⟩
=
⟨
Ψ, f t0

⟩
−∆t


(
∂⟨Ψ,vf+1 ⟩

∂x

)t
0<v<+∞

+

(
∂⟨Ψ,vf−1 ⟩

∂x

)t
−∞<v<0

 (4.5)

This leads to upwind equations in macroscopic form i.e. Navier-Stokes equations

in kinetic upwind form as follows

U (t+∆t) = U (t)−∆t

[(
∂GX+(t)

∂x

)
∆x<0

+

(
∂GX−(t)

∂x

)
∆x>0

]
(4.6)
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4.2 Kinetic upwind method for Navier-Stokes equations

where U = [ρ, ρux, ρE]T is the state update vector, where E = RT/(γ− 1)+1
2
u2x,

ux is the macroscopic fluid velocity and γ is the specific heat ratio and split flux is

GX± = ⟨Ψ, vf±
1 ⟩. Upwinding in macroscopic level is enforced using stencil sub-

division. The derivative ∂GX+

∂x
is evaluated using left side of the stencil ∆x < 0

and derivative ∂GX−

∂x
is evaluated using right side of the stencil ∆x > 0.

4.2.2 KFVS based on microscopic tensor splitting

The new approach is guided by the principles of non-equilibrium thermodynamics

and it differs from the approach of Chou and Baganoff [54]. In the new approach

the viscous flux are split based on splitting of microscopic tensor associated with

each thermodynamic force. The new method involves three steps : i) in the

first step the Boltzmann equation is rendered into an upwind discretized form in

terms of Maxwellian distribution and its perturbation term based on microscopic

tensor and its conjugate thermodynamic forces , ii) in the second step inviscid

or Euler fluxes are obtained by taking Ψ moments of split Maxwellian distribu-

tion, iii) in the third step viscous fluxes are obtained by taking moments and

full tensor contraction of split microscopic tensors to obtain upwind scheme for

macroscopic conservation equations. The method of obtaining inviscid or Euler

fluxes by splitting the Maxwellian distribution in the new approach is similar

to KFVS based on distribution splitting. The method of evaluation of viscous

split fluxes in the new approach differs from the KFVS extended by Chou and

Baganoff [54] for Navier-Stokes which was based on distribution splitting. The

new approach evaluates the viscous fluxes by taking moments of split microscopic

tensors and subsequent full tensor contraction with its conjugate thermodynamic

forces. The new approach gives the explicit contribution of entropy generation due

to thermodynamic forces associated with shear stress tensor and heat flux vector

and follows Onsager reciprocity principle. Following sub-sections describes the

three steps involved in the new upwind scheme.

4.2.2.1 Step 1 : Boltzmann equation in upwind form

Assuming that the departure from equilibrium is small we then use the first order

Chapman-Enskog distribution, f1 = f0+Knf̄1 to express Navier-Stokes equation
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4.2 Kinetic upwind method for Navier-Stokes equations

in upwind form as⟨
Ψ, {f0 +Knf̄1}t+∆t

⟩
=
⟨
Ψ, {f0 +Knf̄1}t

⟩

−∆t


(
∂⟨Ψ,v{f0+Knf̄1}+⟩

∂x

)t
0<v<+∞

+

(
∂⟨Ψ,v{f0+Knf̄1}−⟩

∂x

)t
−∞<v<0


(4.7)

The first order Chapman-Enskog distribution, f1=f0 +Knf̄1=f0 −
∑

j Υj ⊙Xj.

Taking Ψ-moments of the one-dimensional Boltzmann equation in the upwind

discretized form in terms of Maxwellian distribution and its perturbation term

based on microscopic tensor and its conjugate thermodynamic forces, we get⟨
Ψ, {f0 −

∑
j Υj ⊙Xj}t+∆t

⟩
=
⟨
Ψ, {f0 −

∑
j Υj ⊙Xj}t

⟩

−∆t


(
∂⟨Ψ,v{f0−∑

j Υj⊙Xj}+⟩
∂x

)t
0<v<+∞

+

(
∂⟨Ψ,v{f0−∑

j Υj⊙Xj}−⟩
∂x

)t
−∞<v<0


(4.8)

The perturbation term −
∑

j Υj ⊙Xj satisfies the additive invariants property⟨
Ψ,−

∑
j

Υj ⊙Xj

⟩
= 0 (4.9)

The Boltzmann equation after taking Ψ-moments simplifies to⟨
Ψ, f t+∆t

0

⟩
= ⟨Ψ, f t0⟩

−∆t



(
∂
⟨
Ψ, vf+

0

⟩
∂x

)t

0<v<+∞

+

(
∂ −

∑
j Λ

+
j ⊙Xj

∂x

)t

0<v<+∞

+

(
∂
⟨
Ψ, vf−

0

⟩
∂x

)t

−∞<v<0

+

(
∂ −

∑
j Λ

−
j ⊙Xj

∂x

)t

−∞<v<0


(4.10)

where positive macroscopic split tensor Λ+
j is based on half range first order

distribution function for 0 < v < +∞ as follows

Λ+
j =

⟨
Ψ, vΥ+

j

⟩
≡
∫ +∞

0

∫ +∞

0

ΨvΥjdvdI (4.11)
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4.2 Kinetic upwind method for Navier-Stokes equations

Similarly, negative macroscopic split tensor Λ−
j is based on half-range distribution

function for −∞ < v < 0 as follows

Λ−
j =

⟨
Ψ, vΥ−

j

⟩
≡
∫ +∞

0

∫ 0

−∞
ΨvΥjdvdI (4.12)

This leads to upwind equations in macroscopic form i.e. Navier-Stokes equations

in kinetic upwind form

U(t+∆t) = U(t)−∆t


(
∂GX+

I (t)

∂x

)
∆x<0

+
(
∂GX−

I (t)

∂x

)
∆x>0

+
(
∂GX+

V (t)

∂x

)
∆x<0

+
(
∂GX−

V (t)

∂x

)
∆x>0

 (4.13)

Upwinding in macroscopic level is enforced using stencil sub-division. The flux

is composed of inviscid, GX±
I and viscous part GX±

V . The inviscid part of the

flux component, GX±
I = ⟨Ψ, vf±

0 ⟩ and viscous part of the flux component GX±
V

= ⟨Ψ, vKnf̄±
1 ⟩. The term U is the state update vector defined as

U = ⟨Ψ, f0⟩ =
∫ +∞

0

∫ +∞

−∞
Ψf0dvdI =

 ρ
ρux
ρE

 (4.14)

where E = RT/(γ − 1)+1
2
u2x, ux is the macroscopic fluid velocity and γ is the

specific heat ratio.

4.2.2.2 Step 2 : Evaluation of split inviscid fluxes based on split

Maxwellian distribution

Like in KFVS the split Euler or inviscid fluxes are obtained based on split half

range Maxwellian distribution i.e. split positive flux GX+ is evaluated using

half range Maxwellian distribution f+
0 for positive molecular velocities 0 < v <

+∞ while split negative flux GX− is evaluated using half range Maxwellian

distribution f−
0 for negative molecular velocities +∞ < v < 0. Thus the inviscid

part of the flux component, GX±
I is defined as

GX+
I =

⟨
Ψ, vf+

0

⟩
=

∫ +∞

0

∫ ∞

0

Ψvf0dvdI

GX−
I =

⟨
Ψ, vf−

0

⟩
=

∫ +∞

0

∫ 0

−∞
Ψvf0dvdI

(4.15)
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4.2 Kinetic upwind method for Navier-Stokes equations

The expression of inviscid flux GX±
I is given as

GX±
I =


1
2
A±ρux + ρ

(
B±

2
√
πβ

)
1
2
A±(p+ ρu2x) + ρux

(
B±

2
√
πβ

)
1
2
A±(pux + ρuxE) +

(
p
2
+ ρE

) (
B±

2
√
πβ

)
 (4.16)

where A± and B± are defined as

A± = 1± Erf(ux
√
β), B± = ±Exp(−βu2x) (4.17)

4.2.2.3 Step 3 : Evaluation of split viscous fluxes based on split mi-

croscopic tensors

In the present upwind approach the viscous fluxes are evaluated based on full

tensor contraction of split macroscopic tensors with its conjugate thermodynamic

forces. The split macroscopic tensors are obtained by taking moments of the split

microscopic tensors associated with the shear stress tensor and heat flux vector.

Thus the viscous part of the flux component, GX±
V is defined as

GX+
V = −

∑
j

Λ+
j ⊙Xj = −

∑
j

(∫ +∞

0

∫ ∞

0

ΨvΥ+
j dvdI

)
⊙Xj

GX−
V = −

∑
j

Λ−
j ⊙Xj = −

∑
j

(∫ +∞

0

∫ 0

−∞
ΨvΥ−

j dvdI
)
⊙Xj

(4.18)

where Υ+ is based on half-range Maxwellian distribution function for 0 < v <

+∞. Similarly, Υ− is based on half-range Maxwellian distribution function for

−∞ < v < 0. Components of macroscopic split tensors Λ±
τ = [Λ±

1,τ ,Λ
±
2,τ ,Λ

±
3,τ ]

T

and Λ±
q = [Λ±

1,q,Λ
±
2,q,Λ

±
3,q]

T are given as follows

Λ±
1,τ =

[
B∓
√
π
(γ−3)µρ

8pβ3/2

]
, Λ±

1,q =
[
−B∓

√
π
(γ−1)
γ

κρux
4pRβ3/2

]
Λ±

2,τ =
[
− (γ−3)µρA±

8pβ2

]
, Λ±

2,q =
[
−B∓

√
π
(γ−1)
γ

κρ
4pRβ5/2

]
Λ±

3,τ =
[
(γ−3)µρ

32pβ5/2

{
B∓
√
π
(3γ−1)
(γ−1)

− 4ux
√
βA±

}]
, Λ±

3,q =
[

κρ
16pRβ3

{
B∓
√
π
ux

√
β(γ−3)
γ

− 2A±
}]

(4.19)

The viscous fluxes are obtained as

GX±
V = −

∑
j Λ

±
j ⊙Xj = −(Λ±

τ :Xτ +Λ±
q ·Xq) (4.20)
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Expression of viscous fluxes obtained after full tensor contraction with thermo-

dynamic forces Xτ = 2β ∂ux
∂x

and Xq = −2Rβ2 ∂T
∂x

are

GX±
V =


B∓
√
π

ρ
4p

√
β

{
2uxβqx

(γ−1)
γ

+ τxx

}
ρ

4pβ

{
−2B

∓
√
π

√
βqx

(γ−1)
γ

− A±τxx

}
ρ

16pβ3/2

[
B∓
√
π

{
2βuxqx

(3−γ)
γ

+ τxx
(3γ−1)
(γ−1)

}
+ 4A±√β {qx − uxτxx}

]


(4.21)

4.2.3 One dimensional test case: Argon shock structure

Examination of shock structure is one of the characteristic test case of non-

equilibrium flow structure used for evaluating kinetic scheme along with its associ-

ated kinetic model. The present kinetic scheme uses microscopic tensor splitting

and Onsager reciprocity principle based kinetic model. One dimensional code

can be used to evaluate the performance of kinetic scheme and kinetic model by

examining shock structure appearing due to discontinuity as the flow undergoes

transition from uniform upstream flow to a uniform downstream flow. The shock

wave has a finite thickness in terms of mean free path, λ and its profile as a

function of Mach number and ω which is the exponent of viscosity law. Consider

a argon shock structure simulation for shock of Mach 1.4 at 293 K with mean

free path λ = 1.3442 × 10−2 m and Prandtl number, Pr = 2/3. The viscosity-

temperature relationship used in the simulation is

µ = µref

(
T

Tref

)δo
(4.22)

where exponent δo is 0.81 and reference viscosity [36] is evaluated as

µref =
30

(7− 2δo)(5− 2δo)

ρλ
√
2πRT

4
(4.23)

The computational domain spans −0.3 m to 0.3 m with uniform spread of 300

nodes. The kinetic scheme based state update can be written as

U (t+∆t) = U(t)−∆t


(
∂GX+

I (t)

∂x

)
∆x<0

+
(
∂GX−

I (t)

∂x

)
∆x>0(

∂GX+
V (t)

∂x

)
∆x<0

+
(
∂GX−

V (t)

∂x

)
∆x>0

 (4.24)

135



4.2 Kinetic upwind method for Navier-Stokes equations

Figure 4.1: Density and temperature profile in argon for Mach 1.4.

Expressions for split inviscid Euler fluxes GX±
I are given by Eq. 4.16 and split

viscous fluxes GX±
V are given by Eq. 4.21. The simulated results are compared

with DSMC (Direct Simulation Monte Carlo) code DSMC1S provided by Bird

[36]. Figure 4.1 shows the normalized density and temperature profile in argon for

Mach 1.4. The normalized density ρ̄ and normalized temperature T̄ are defined

as

ρ̄ =
ρ− ρu
ρd − ρu

, T̄ =
T − Tu
Td − Tu

(4.25)

where subscripts u and d represents the upstream and downstream Rankine-

Hugoniot values respectively. The results reveal that the kinetic scheme using

Onsager’s reciprocity principle based kinetic model preserves the shock structure

accurately.

4.2.4 Two dimensional split fluxes and macroscopic ten-

sors for new kinetic upwind method

One dimensional derivation fails to provide a complete picture, hence a derivation

of higher dimensional case is required to illustrate the implementation of the new

kinetic method, derivation of split macroscopic tensors and evaluation of split

fluxes. The following subsection describes the procedure of obtaining split fluxes

for two dimensional kinetic upwind method. Consider Boltzmann equation for
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two dimensional case written in terms of first order distribution function as follows

∂f1
∂t

+
∂vxf1
∂x

+
∂vyf1
∂y

= 0 (4.26)

In KFVS the distribution function at time t+∆t in a fluid domain is constructed

based on half range distribution as follows

f t+∆t
1 = f t1 −∆t

 (∂vxf+·
1

∂x

)t
+
(
∂vxf

−·
1

∂x

)t(
∂vyf

·+
1

∂y

)t
+
(
∂vyf

·−
1

∂y

)t
 (4.27)

Two-dimensional Boltzmann equation after taking Ψ-moments simplifies to⟨
Ψ, f t+∆t

0

⟩
= ⟨Ψ, f t0⟩

−∆t



(
∂⟨Ψ,vxf+·

0 ⟩
∂x

)t
+
(
∂−

∑
j Λ

+·
j ⊙Xj

∂x

)t

+

(
∂⟨Ψ,vxf−·

0 ⟩
∂x

)t
+
(
∂−

∑
j Λ

−·
j ⊙Xj

∂x

)t

+

(
∂⟨Ψ,vyf ·+0 ⟩

∂y

)t
+
(
∂−

∑
j Λ

·+
j ⊙Xj

∂y

)t

+

(
∂⟨Ψ,vyf ·−0 ⟩

∂y

)t
+
(
∂−

∑
j Λ

·−
j ⊙Xj

∂y

)t



(4.28)

where the superscript over Maxwellian distribution represents its evaluation based

on half range and full range components of molecular velocities as follows

f+·
0 ≡ f

(0<vx<+∞)(−∞<vy<+∞)
0 f−·

0 ≡ f
(−∞<vx<0)(−∞<vy<+∞)
0

f ·+
0 ≡ f

(−∞<vx<+∞)(0<vy<+∞)
0 f ·−

0 ≡ f
(−∞<vx<+∞)(−∞<vy<0)
0

(4.29)

Similarly, split macroscopic tensors are denoted by superscript over macroscopic

tensors which represents its evaluation based on half range and full range com-

ponents of molecular velocities as follows

Λ+·
j ≡ Λ

(0<vx<+∞)(−∞<vy<+∞)
j Λ−·

j ≡ Λ
(−∞<vx<0)(−∞<vy<+∞)
j

Λ·+
j ≡ Λ

(−∞<vx<+∞)(0<vy<+∞)
j Λ·−

j ≡ Λ
(−∞<vx<+∞)(−∞<vy<0)
j

(4.30)

Thus, positive macroscopic split tensor Λ+·
j is based half range of x-component

of molecular velocity 0 < vx < +∞ and full range of y-component of molecular
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velocity −∞ < vy < +∞ as follows

Λ+·
j =

⟨
Ψ, vxΥ

+·
j

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ +∞

0

ΨvxΥjdvxdvydI (4.31)

Similarly, negative macroscopic split tensor Λ−·
j is based on half range of x-

component of molecular velocity −∞ < vx < 0 and full range of y-component of

molecular velocity −∞ < vy < +∞ as follows

Λ−·
j =

⟨
Ψ, vxΥ

−·
j

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ 0

−∞
ΨvxΥjdvxdvydI (4.32)

Similarly, macroscopic tensors Λ·±
j are based on full range of x-component of

molecular velocity and half range of y-component of molecular velocity as follows

Λ·+
j =

⟨
Ψ, vyΥ

·+
j

⟩
≡
∫ +∞

0

∫ +∞

0

∫ +∞

−∞
ΨvyΥjdvxdvydI (4.33)

Λ·−
j =

⟨
Ψ, vyΥ

·−
j

⟩
≡
∫ +∞

0

∫ 0

−∞

∫ +∞

−∞
ΨvyΥjdvxdvydI (4.34)

This leads to upwind equations in macroscopic form i.e. Navier-Stokes equations

in kinetic upwind form

U(t+∆t) = U(t)−∆t



(
∂GX+

I (t)

∂x

)
∆x<0

+
(
∂GX−

I (t)

∂x

)
∆x>0

+
(
∂GX+

V (t)

∂x

)
∆x<0

+
(
∂GX−

V (t)

∂x

)
∆x>0

+
(
∂GY +

I (t)

∂y

)
∆y<0

+
(
∂GY −

I (t)

∂y

)
∆y>0

+
(
∂GY +

V (t)

∂y

)
∆y<0

+
(
∂GY −

V (t)

∂y

)
∆y>0


(4.35)

Upwinding in macroscopic level is enforced using stencil sub-division. The term

U is the state update vector defined as

U = ⟨Ψ, f0⟩ =
∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞
Ψf0dvxdvydI =


ρ
ρux
ρuy
ρE

 (4.36)

where E = RT/(γ − 1)+1
2
(u2x + u2y), ux, uy are the x and y components of

macroscopic fluid velocity and γ is the specific heat ratio.
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4.2.4.1 Evaluation of split inviscid fluxes

Evaluation of split inviscid fluxes is similar to KFVS which is based on split half

range Maxwellian distribution i.e. split positive flux GX±
I is evaluated using half

range Maxwellian distribution f±·
0 which is based on half range of x-component

of molecular velocity 0 < vx < +∞ or −∞ < vx < 0 and full range of y-

component of molecular velocity −∞ < vy < +∞. Thus the inviscid part of the

flux component, GX±
I is defined as

GX+
I =

⟨
Ψ, vxf

+·
0

⟩
=

∫ +∞

0

∫ +∞

−∞

∫ +∞

0

Ψvxf0dvxdvydI

GX−
I =

⟨
Ψ, vxf

−·
0

⟩
=

∫ +∞

0

∫ +∞

−∞

∫ 0

−∞
Ψvxf0dvxdvydI

(4.37)

Similarly, split negative flux GY −
I is evaluated using half range Maxwellian

distribution f ·−
0 which is based on full range of x-component of molecular ve-

locity −∞ < vx < +∞ and half range of y-component of molecular velocity

−∞ < vy < 0 or 0 < vy < +∞. The expression of inviscid flux GY ±
I is given as

GY +
I =

⟨
Ψ, vyf

·+
0

⟩
=

∫ +∞

0

∫ +∞

0

∫ +∞

−∞
Ψvyf0dvxdvydI

GY −
I =

⟨
Ψ, vyf

·−
0

⟩
=

∫ +∞

0

∫ 0

−∞

∫ +∞

−∞
Ψvyf0dvxdvydI

(4.38)

The x-component of the inviscid split fluxes in 2-D is given by

GX±
I (1) =

ρ
2
√
β
(
B±

1√
π
+ sxA

±
1 )

GX±
I (2) =

ρ
2β
(
B±

1√
π
sx +

(1+2s2x)
2

A±
1 )

GX±
I (3) =

ρ
2β
sy(

B±
1√
π
+ sxA

±
1 )

GX±
I (4) =

ρ
8β3/2 (

B±
1√
π
(1+γ+ds)
(−1+γ)

+ sx
(2γ+ds)
(−1+γ)

A±
1 )

(4.39)

The y-component of the inviscid split fluxes in 2-D is given by

GY ±
I (1) = ρ

2
√
β
(
B±

2√
π
+ syA

±
2 )

GY ±
I (2) = ρ

2β
sx(

B±
2√
π
+ syA

±
2 )

GY ±
I (3) = ρ

2β
(
B±

2√
π
sy +

(1+2s2y)

2
A±

2 )

GY ±
I (4) = ρ

8β3/2 (
B±

2√
π
(1+γ+ds)
(−1+γ)

+ sy
(2γ+ds)
(−1+γ)

A±
2 )

(4.40)

where sx =
√
βux, sy =

√
βuy, dx = 2(−1 + γ)s2x, dy = 2(−1 + γ)s2y, ds =

2(−1 + γ)(s2x + s2y), η = (−1 + γ)/γ, B±
1 = ±Exp[−s2x], B±

2 = ±Exp[−s2y],
A±

1 = 1± Erf [sx], A
±
2 = 1± Erf [sy].
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4.2.4.2 Evaluation of split viscous fluxes based on split microscopic

tensors

The split macroscopic tensors are obtained by taking moments of the split mi-

croscopic tensors associated with the shear stress tensor and heat flux vector. As

described earlier the viscous fluxes are evaluated based on full tensor contrac-

tion of split macroscopic tensors with its conjugate thermodynamic forces. The

viscous part of the flux component, GX±
V and GY ±

V are defined as

GX±
V = −

∑
j Λ

±·
j ⊙Xj = −(Λ±·

τ :Xτ +Λ±·
q ·Xq)

GY ±
V = −

∑
j Λ

·±
j ⊙Xj = −(Λ·±

τ :Xτ +Λ·±
q ·Xq)

(4.41)

Conjugate thermodynamic forces, Xτ and Xq are

Xτ ≡

[
2β ∂ux

∂x
β(∂ux

∂y
+ ∂uy

∂x
)

β(∂ux
∂y

+ ∂uy
∂x

) 2β ∂uy
∂y

]

Xq ≡
[
−2Rβ2 ∂T

∂x
,−2Rβ2 ∂T

∂y

] (4.42)

The components of the macroscopic tensorsΛ±·
τ , Λ±·

q associated with x split fluxes

are given as follows

Λ±·
1,τ =

⟨
Ψ1, vxΥ

±·
τ

⟩
= µ

p

 B∓
1 (γ−3)ρ

8
√
πβ3/2 0

0
B∓

1 (γ−1)ρ

8
√
πβ3/2

 (4.43)

Λ±·
1,q =

⟨
Ψ1, vxΥ

±·
q

⟩
= (γ−1)

γ
κ
pR

[
− B∓

1 uxρ

4
√
πβ3/2 0

]
(4.44)

Λ±·
2,τ =

⟨
Ψ2, vxΥ

±·
τ

⟩
= µ

p

[
−A±

1 (γ−3)ρ

8β2 0

0 −A±
1 (γ−1)ρ

8β2

]
(4.45)

Λ±·
2,q =

⟨
Ψ2, vxΥ

±·
q

⟩
= (γ−1)

γ
κ
pR

[
B∓

1 ρ

4
√
πβ5/2 0

]
(4.46)
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Λ±·
3,τ =

⟨
Ψ3, vxΥ

±·
τ

⟩
= µ

p

 B∓
1 uy(γ−3)ρ

8
√
πβ3/2

A±
1 ρ

8β2

A±
1 ρ

8β2

B∓
1 uy(γ−1)ρ

8
√
πβ3/2

 (4.47)

Λ±·
3,q =

⟨
Ψ3, vxΥ

±·
q

⟩
= (γ−1)

γ
κ
pR

[
−B∓

1 uxuyρ

4
√
πβ3/2

B∓
1 ρ

8
√
πβ5/2

]
(4.48)

Λ±·
4,τ =

⟨
Ψ4, vxΥ

±·
τ

⟩
= µ

p

 − (γ−3)C±
1 ρ

32
√
πβ5/2(γ−1)

A±
1 uyρ

8β2

A±
1 uyρ

8β2 − C±
1 ρ

32
√
πβ5/2

 (4.49)

Λ±·
4,q =

⟨
Ψ4, vxΥ

±·
q

⟩
= (γ−1)

γ
κ
pR

[
− (B∓

1

√
βux(3+2uy2β(γ−1)−γ)+2A±

1

√
πγ)ρ

16
√
πβ3(γ−1)

B∓
1 uyρ

8
√
πβ5/2

]
(4.50)

Similarly, the components of the macroscopic tensors Λ·±
τ , Λ·±

q associated with y

split fluxes are given as follows

Λ·±
1,τ =

⟨
Ψ1, vyΥ

·±
τ

⟩
= µ

p

 B∓
2 (γ−1)ρ

8
√
πβ3/2 0

0
B∓

2 (γ−3)ρ

8
√
πβ3/2

 (4.51)

Λ·±
1,q =

⟨
Ψ1, vyΥ

·±
q

⟩
= (γ−1)

γ
κ
pR

[
0 − B∓

2 uyρ

4
√
πβ3/2

]
(4.52)

Λ·±
2,τ =

⟨
Ψ2, vyΥ

·±
τ

⟩
= µ

p

 B∓
2 ux(γ−1)ρ

8
√
πβ3/2

A±
2 ρ

8β2

A±
2 ρ

8β2

B∓
2 ux(γ−3)ρ

8
√
πβ3/2

 (4.53)

Λ·±
2,q =

⟨
Ψ2, vyΥ

·±
q

⟩
= (γ−1)

γ
κ
pR

[
B∓

2 ρ

8
√
πβ5/2 −B∓

2 uxuyρ

4
√
πβ3/2

]
(4.54)
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Λ·±
3,τ =

⟨
Ψ3, vyΥ

·±
τ

⟩
= µ

p

[
−A±

2 (γ−1)ρ

8β2 0

0 −A±
2 (γ−3)ρ

8β2

]
(4.55)

Λ·±
3,q =

⟨
Ψ3, vyΥ

·±
q

⟩
= (γ−1)

γ
κ
pR

[
0

B∓
2 ρ

4p
√
πβ5/2

]
(4.56)

Λ·±
4,τ =

⟨
Ψ4, vyΥ

·±
τ

⟩
= µ

p

 − C±
2 ρ

32
√
πβ5/2

A±
2 uxρ

8β2

A±
2 uxρ

8β2 − (γ−3)C±
2 ρ

32
√
πβ5/2

 (4.57)

Λ·±
4,q =

⟨
Ψ4, vyΥ

·±
q

⟩
= (γ−1)

γ
κ
pR

[
B∓

2 uxρ

8p
√
πβ5/2

(−B∓
2 uy

√
β(3+2ux2β(γ−1)−γ)+2A±

2

√
πγ)ρ

16
√
πβ3(γ−1)

]
(4.58)

where A±
1 = 1 ± Erf(ux

√
β), A±

2 = 1 ± Erf(uy
√
β), B±

1 = ±exp(−βu2x),
B±

2 = ±exp(−βu2y) and

C±
1 = 4A±

1 ux
√
β
√
π(γ − 1) +B∓

1 (1− 2u2yβ(γ − 1)− 3γ)
C±

2 = 4A±
2 uy

√
β
√
π(γ − 1) +B∓

2 (1− 2u2xβ(γ − 1)− 3γ)
(4.59)

The x-component of the viscous split fluxes in 2-D is given by

GXV (1)
± = − ρ

4p
√
β

B±
1√
π
(2
√
βηqxsx + τxx)

GXV (2)
± = ρ

4pβ
(
B±

1√
π
2
√
βηqx − A±

1 τxx)

GXV (3)
± = ρ

4pβ
(
B±

1√
π
(
√
βη(qy − 2qxsxsy)− syτxx)− A±

1 τxy)

GXV (4)
± = ρ

16pβ3/2

(
B±

1√
π
(4
√
βηqysy + 2

√
βqxsx

(−3+γ−dy)
γ

+ (1−3γ−dy)
−1+γ

τxx)

+4(
√
βqx − sxτxx − syτxy)A

±
1

)
(4.60)
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The y-component of the viscous split fluxes in 2-D is given by

GYV (1)
± = − ρ

4p
√
β

B±
2√
π
(2
√
βηqysy + τyy)

GYV (2)
± = ρ

4pβ
(
B±

2√
π
(
√
βη(qx − 2qysxsy)− sxτyy)− A±

2 τxy)

GYV (3)
± = ρ

4pβ
(
B±

2√
π
2
√
βηqy − A±

2 τyy)

GYV (4)
± = ρ

16pβ3/2

(
B±

2√
π
(4
√
βηqxsx + 2

√
βqysy

(−3+γ−dx)
γ

+ (1−3γ−dx)
−1+γ

τyy)

+4(
√
βqy − sxτxy − syτyy)A

±
2

)
(4.61)

where sx =
√
βux, sy =

√
βuy, dx = 2(−1 + γ)s2x, dy = 2(−1 + γ)s2y, ds =

2(−1 + γ)(s2x + s2y), η = (−1 + γ)/γ, B±
1 = ±Exp[−s2x], B±

2 = ±Exp[−s2y],
A±

1 = 1± Erf [sx], A
±
2 = 1± Erf [sy].

4.2.5 Three dimensional split fluxes and macroscopic ten-

sors for new kinetic upwind method

The procedure of obtaining split fluxes for three dimensional kinetic upwind

method is similar to two dimensional method. Three-dimensional Boltzmann

equation after taking Ψ-moments simplifies to⟨
Ψ, f t+∆t

0

⟩
= ⟨Ψ, f t0⟩

−∆t



(
∂⟨Ψ,vxf±··

0 ⟩
∂x

)t
+
(
∂−

∑
j Λ

±··
j ⊙Xj

∂x

)t

+

(
∂⟨Ψ,vyf ·±·

0 ⟩
∂y

)t
+
(
∂−

∑
j Λ

·±·
j ⊙Xj

∂y

)t

+

(
∂⟨Ψ,vzf ··±0 ⟩

∂z

)t
+
(
∂−

∑
j Λ

··±
j ⊙Xj

∂z

)t


(4.62)

where the superscript ”±” over Maxwellian distribution f0 and macroscopic ten-

sors Λj represents evaluation based on half range component of molecular veloc-

ities. Similarly, the superscript ”·” over Maxwellian distribution f0 and macro-

scopic tensors Λj represents evaluation based on full range components of molec-
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4.2 Kinetic upwind method for Navier-Stokes equations

ular velocities as follows

f+··
0 ≡ f

(0<vx<+∞)(−∞<vy<+∞)(−∞<vz<+∞)
0 f−··

0 ≡ f
(−∞<vx<0)(−∞<vy<+∞)(−∞<vz<+∞)
0

f ·+·
0 ≡ f

(−∞<vx<+∞)(0<vy<+∞)(−∞<vz<+∞)
0 f ·−·

0 ≡ f
(−∞<vx<+∞)(−∞<vy<0)(−∞<vz<+∞)
0

f ··+
0 ≡ f

(−∞<vx<+∞)(−∞<vy<+∞)(0<vz<+∞)
0 f ··−

0 ≡ f
(−∞<vx<+∞)(−∞<vy<+∞)(−∞<vz<0)
0

(4.63)

Similarly, split macroscopic tensors are denoted by superscript over macroscopic

tensors which represents its evaluation based on half range and full range com-

ponents of molecular velocities as follows

Λ+··
j ≡ Λ

(0<vx<+∞)(−∞<vy<+∞)(−∞<vz<+∞)
j Λ−··

j ≡ Λ
(−∞<vx<0)(−∞<vy<+∞)(−∞<vz<+∞)
j

Λ·+·
j ≡ Λ

(−∞<vx<+∞)(0<vy<+∞)(−∞<vz<+∞)
j Λ·−·

j ≡ Λ
(−∞<vx<+∞)(−∞<vy<0)(−∞<vz<+∞)
j

Λ··+
j ≡ Λ

(−∞<vx<+∞)(−∞<vy<+∞)(0<vz<+∞)
j Λ··−

j ≡ Λ
(−∞<vx<+∞)(−∞<vy<+∞)(−∞<vz<0)
j

(4.64)

Thus, macroscopic split tensor Λ±··
j is based on half range of x-component of

molecular velocity and full range of y-component and z-component of molecular

velocity −∞ < vy < +∞ as follows

Λ+··
j =

⟨
Ψ, vxΥ

+··
j

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

ΨvxΥjdvxdvydvzdI

Λ−··
j =

⟨
Ψ, vxΥ

−··
j

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
ΨvxΥjdvxdvydvzdI

(4.65)

Similarly, macroscopic split tensor Λ·±·
j is based on half range of y-component of

molecular velocity as follows

Λ·+·
j =

⟨
Ψ, vyΥ

·+·
j

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
ΨvyΥjdvxdvydvzdI

Λ·−·
j =

⟨
Ψ, vyΥ

·−·
j

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ 0

−∞

∫ +∞

−∞
ΨvyΥjdvxdvydvzdI

(4.66)

Macroscopic split tensorsΛ··±
j are based on half range of z component of molecular

velocity as follows

Λ··+
j =

⟨
Ψ, vzΥ

··+
j

⟩
≡
∫ +∞

0

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞
ΨvzΥjdvxdvydvzdI

Λ··−
j =

⟨
Ψ, vzΥ

x+
j

⟩
≡
∫ +∞

0

∫ 0

−∞

∫ +∞

−∞

∫ +∞

−∞
ΨvzΥjdvxdvydvzdI

(4.67)
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4.2 Kinetic upwind method for Navier-Stokes equations

This leads to upwind equations in macroscopic form i.e. Navier-Stokes equations

in kinetic upwind form

U(t+∆t) = U(t)−∆t


∂GX±

I (t)

∂x
+

∂GX±
V (t)

∂x

+
∂GY ±

I (t)

∂y
+

∂GY ±
V (t)

∂y

+
∂GZ±

I (t)

∂z
+

∂GZ±
V (t)

∂z

 (4.68)

where U is the state update vector defined as

U = ⟨Ψ, f0⟩ =
∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
Ψf0dvxdvydvzdI =


ρ
ρux
ρuy
ρuz
ρE

 (4.69)

where E = RT/(γ − 1)+1
2
(u2x + u2y + u2z), ux, uy and uz are the x, y and z

components of macroscopic fluid velocity and γ is the specific heat ratio.

4.2.5.1 Evaluation of split inviscid fluxes

As described earlier split inviscid fluxes are evaluated based on distribution split-

ting in a similar way to KFVS. The inviscid part of the flux component, GX±
I

is defined as

GX+
I =

⟨
Ψ, vxf

+··
0

⟩
=

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

Ψvxf0dvxdvydvzdI

GX−
I =

⟨
Ψ, vxf

−··
0

⟩
=

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
Ψvxf0dvxdvydvzdI

(4.70)

Similarly, split fluxes GY ±
I and GZ±

I are evaluated as

GY +
I =

⟨
Ψ, vyf

·+·
0

⟩
=

∫ +∞

0

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
Ψvyf0dvxdvydvzdI

GY −
I =

⟨
Ψ, vyf

·−·
0

⟩
=

∫ +∞

0

∫ +∞

−∞

∫ 0

−∞

∫ +∞

−∞
Ψvyf0dvxdvydvzdI

(4.71)

GZ+
I =

⟨
Ψ, vzf

··+
0

⟩
=

∫ +∞

0

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞
Ψvzf0dvxdvydvzdI

GZ−
I =

⟨
Ψ, vzf

··−
0

⟩
=

∫ +∞

0

∫ 0

−∞

∫ +∞

−∞

∫ +∞

−∞
Ψvzf0dvxdvydvzdI

(4.72)

The expressions for fluxes are given in the Appendix D.
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scheme

4.2.5.2 Evaluation of split viscous fluxes based on split microscopic

tensors

The split macroscopic tensors are obtained by taking moments of the split mi-

croscopic tensors associated with the shear stress tensor and heat flux vector. As

described earlier the viscous fluxes are evaluated based on full tensor contrac-

tion of split macroscopic tensors with its conjugate thermodynamic forces. The

viscous part of the flux component, GX±
V , GY

±
V and GZ±

V are defined as

GX±
V = −

∑
j Λ

±··
j ⊙Xj = −(Λ±··

τ :Xτ +Λ±··
q ·Xq)

GY ±
V = −

∑
j Λ

·±·
j ⊙Xj = −(Λ·±·

τ :Xτ +Λ·±·
q ·Xq)

GZ±
V = −

∑
j Λ

··±
j ⊙Xj = −(Λ··±

τ :Xτ +Λ··±
q ·Xq)

(4.73)

Expressions for components of the macroscopic tensors Λ±··
τ , Λ±··

q associated with

x-split fluxes, Λ·±·
τ , Λ·±·

q associated with y-split fluxes and Λ··±
τ , Λ··±

q associated

with z-split fluxes are given in Appendix D. Expression of conjugate thermody-

namic forces, Xτ and Xq and expressions of split viscous fluxes GX±
V , GY

±
V

and GZ±
V are also given in the Appendix D.

4.3 Linkage of non-equilibrium thermodynam-

ics with the new kinetic scheme

As the state update moves from one time step to another time step in order to de-

crease the thermodynamic forces, the path of evolution follows non-equilibrium

thermodynamics by generating entropy which is the product of the thermody-

namic forces and its conjugate fluxes. As derived earlier the path traced out

maximizes the entropy under the constraint imposed due to conservation laws

and satisfies the Onsager’s variational principle. Most of the solver require fixes

and tuning if they have to operate from low speed to hypersonic rarefied flow or

from creeping flows to high speed continuum flow. This is because of two un-

known factors, i) the correct amount of entropy generation, and ii) distribution

of entropy generation for each thermodynamic force i.e. in what proportion the

thermodynamic forces associated with shear stress tensor and heat flux vector

contribute. While the present scheme generates entropy for each thermodynamic
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scheme

Figure 4.2: State update of the kinetic method follows non-equilibrium thermo-

dynamics.

force e.g. στ = J τ : Xτ with respect to thermodynamic force associated with

the shear stress tensor and entropy, σq=J q · Xq with respect to thermodynamic

force associated with the heat flux vector. Linkage with non-equilibrium thermo-

dynamics ensures correct division of entropy generation for each thermodynamic

force as the state update moves from one conservation state to another. The ki-

netic upwind method developed in the thesis mimics the actual physics as the

state update follows the path laid down by non-equilibrium thermodynamics as

shown in Figure 4.2. The present kinetic upwind scheme can be used to simulate

the entire range from rarefied flow to continuum flow, creeping flow to flow with

shocks as it is derived using kinetic theory incorporating phenomenological theory

of non-equilibrium thermodynamics. Figure 4.3(a) shows the schematic picture

of the evolution of flow and entropy generation for two different kinetic schemes :

one following non-equilibrium thermodynamics (NET)and other non-NET based.

The flow trajectory leaves the surface representing infinite-dimensional manifold

of locally Maxwellian distribution as shown in the Fig. 4.3(a). The flow tra-

jectory represents Boltzmann flow which after leaving the manifold is brought

back on this infinite-dimensional manifold of locally Maxwellian distribution gen-
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scheme

(a) (b)

Figure 4.3: Schematic picture of the (a) evolution of flow and entropy generation

for non-equilibrium thermodynamics (NET) based kinetic scheme and non-NET

based kinetic upwind method. (b) entropy generation based on Onsager’s princi-

ple for NET based kinetic scheme for two thermodynamic fluxes.
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4.4 Moments and extended thermodynamics due to kinetic split fluxes

erating irreversibility and entropy as a consequence. Each kinetic scheme will

have its own path or trajectory of evolution of flow as well as entropy genera-

tion. This trajectory can also be observed in the phase plane of thermodynamic

forces where it moves with Mahalanobis speed Ṁi i.e. generating entropy for each

thermodynamic forceX i following Onsager’s relationship. The movement of this

trajectory can also be interpreted in terms of entropy production in the flux space

represented as surface σ(J i,Jk). Figure 4.3(b) shows a linear irreversible process

and a dissipative surface of entropy for a case with two thermodynamic fluxes

and forces. As the flow trajectory leaves the manifold the flux J i is generated

corresponding to its conjugate thermodynamic force X i which is orthogonal to

surface σ(J i,Jk) intersected by the plane
∑

i J i ⊙X i.

It is the split flux not the full flux which participates in actual physical process.

Split fluxes based on new kinetic model also follow non-equilibrium thermody-

namics, for example entropy based on the split non-equilibrium flux σ±(J i,X i)

is expressed as

σ±(J i,X i) =
∑
i

J±
i ⊙X i (4.74)

where non-equilibrium split flux J±
i are kinetic non-equilibrium split flux conju-

gate to its thermodynamic force X i. Non-equilibrium split fluxes involve terms

of higher moments ψj /∈ Ψ, thus it modifies the idea of extended thermodynamics

4.4 Moments and extended thermodynamics due

to kinetic split fluxes

The moments of the Boltzmann equation satisfy an infinite hierarchy of balance

laws, the macroscopic state vector at the k + 1th hierarchy is based on the flux

vector Jki =
∑

j L
k
ij⊙Xj in the kth hierarchy where Onsager’s phenomenological

tensor at kth hierarchy, Lkij is obtained using Lk−1
ij as Lkij =

⟨
Ψ, v⃗Lk−1

ij

⟩
. Higher

order transport equations can be seen as a fractal entity based on Onsager’s

phenomenological tensor emerging through Maxwellian iteration. Navier-Stokes

equations is a limiting case of extended thermodynamics (ET) when relaxation

times of diffusive fluxes are neglected[196].
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4.4 Moments and extended thermodynamics due to kinetic split fluxes

In actual physical process it is split fluxes which participates in the conservation

hence the moments of the Boltzmann equation should satisfy an infinite hierarchy

of balance laws in terms of split fluxes. At the kth hierarchy the macroscopic state

vector Um1m2···mk
and split flux vectorG±

m1m2···mk
are based on the kth component

of the vector of collision invariant, Ψm1m2···mk
given as

Um1m2···mk
=

∫
R+

∫
RD

Ψm1m2···mk
fdv⃗dI (4.75)

G±
m1m2···mk

=

∫
R+

∫
RD±

Ψm1m2···mk
v⃗fdv⃗dI (4.76)

Unlike the idea of rational extended thermodynamics[196] it is the split flux terms

in an equation which becomes the density in the next one as follows

∂Um1

∂t
+

∂G±
m1

∂x⃗
= 0

↙
∂Um1m2

∂t
+

∂G±
m1m2

∂x⃗
= 0

↙
...

(4.77)

The state vector Um1m2···mkmk+1
in the (k + 1)th hierarchy is based on the split

flux G±
m1m2···mk

based on half range distribution function defined in kth hierarchy.

For example, consider one dimensional case where split mass flux composed of

inviscid and viscous contribution, GX±(ψ1) evaluated using ψ1 ∈ Ψ is given as

GX±(ψ1) =
1
2
ρ
(
A±ux +

B±
√
πβ

)
− ρ

4p
√
β
B±
√
π

(
2uxβqx

(γ−1)
γ

+ τxx

)
(4.78)

where A± = 1± Erf(ux
√
β) and B± = ±Exp(−βu2x). The split mass flux con-

tain terms of momentum, shear stress tensor and heat flux vector. These terms

involve i)v⃗, ii) v⃗ ⊗ v⃗, and iii)
(
I+ 1

2
v⃗T v⃗
)
v⃗ components of collision invariants.

Thus, 5 moments based on Ψ=
[
1, v⃗, I+ 1

2
v⃗T v⃗
]T

are inadequate as vector of colli-

sion invariant should include Ψ=
[
1, v⃗, I+ 1

2
v⃗T v⃗, v⃗ ⊗ v⃗,

(
I+ 1

2
v⃗T v⃗
)
v⃗
]T

giving rise

to at-least 13 moment equations such that split mass flux becomes density in the

second step and split momentum flux becomes density in the third step. This

set of 13-moment Grad like system[102] includes evolution of shear stress ten-

sor and heat flux vector. However, the present 5 moments based formulation is

adequate for the simulation of most of the engineering slip flow problems which
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4.5 Kinetic upwind method for axi-symmetric geometries and
strongly rotating flows

lie in the regime of linear irreversible thermodynamics. The present approach

will not be adequate for cases that involve large Mach number in shock waves,

high frequencies for sound waves, etc. It should also be noted that the approach

based on non-equilibrium thermodynamics may also modify Levermore [149] pro-

cedure which generates hierarchy of closed systems of moment equations that

ensures every member of the hierarchy is symmetric hyperbolic with an entropy,

and formally recovers to Euler limit. The finite dimensional linear subspace Ξ

of functions of v⃗ in Levermore procedure should ensure that entropy generation

follows Onsager’s reciprocity principle.

In real media it is the split flux which participates in any physical process and for

non-equilibrium flows the split fluxes contain dissipative terms. For example split

flux associated with mass flow contains contribution of viscous terms. It is also

interesting to note that the presence of dissipative terms due to thermodynamic

forces in the split fluxes brings out its relationship and difference with the hydro-

dynamic theory of Brenner [38] and Quasi-gas dynamics [81] where dissipative

terms were introduced in un-split flux terms such that time-spatial averages are

invariant under Galileo transform.

4.5 Kinetic upwind method for axi-symmetric

geometries and strongly rotating flows

As described earlier in chapter two that the numerical modeling of high speed

rotating flows is a challenge as the regime changes from continuum at the periph-

ery, slip, transition to non-continuum in the central core. The another difficult

aspect of strongly rotating flows is to effectively capture the weak secondary flow

feature (measured by Rossby number) embedded in a strongly rotating primary

flow field. This section gives the new way of implementing kinetic upwind method

for axi-symmetric geometries. This section also presents a novel approach using

variance reduction technique and kinetic flux vector splitting method for resolving

weak secondary flow present in a primary strong rotating flow field.
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strongly rotating flows

4.5.1 Continuum breakdown in rotating flow field

Rossby number, ε can also be defined as the deviation from equilibrium rigid

body rotation, expressed as

ε =

∫
R+

∫
RD ψi(f1 − fRB)dv⃗dI∫
R+

∫
RD ψifRBdv⃗dI

(4.79)

where moment variable ψi ∈ Ψ ≡ {1, v⃗, v⃗T v⃗} or any other admissible ψi ∈ Ψ ≡
{1, v⃗, v⃗⊗ v⃗, · · ·}. The term fRB is Maxwellian distribution function based on rigid

body rotation condition, and f1 is the first order distribution function correspond-

ing to the Navier-Stokes equation. Continuum breakdown parameter, NSL based

on the degree of departure from the non-equilibrium flow state is expressed as

NSL =

∫
R+

∫
RD ψi(f − f1)dv⃗dI∫

R+

∫
RD ψi(f1 − fRB)dv⃗dI

(4.80)

where f is a higher order distribution function. Continuum breakdown parameter,

NSL for a rotating flow field based on the degree of departure from the non-

equilibrium flow state will then be a function of Rossby number, ε as follows

NSL =

∫
R+

∫
RD ψi(f − f1)dv⃗dI

ε
∫
R+

∫
RD ψifRBdv⃗dI

(4.81)

4.5.2 Kinetic upwind method for axi-symmetric geome-

tries

For axi-symmetric geometries the Boltzmann equation in the cylindrical coordi-

nate system is given as follows:

∂f
∂t

+ vz
∂f
∂z

+ vr
r
∂rf
∂r

+
{

−fvr
r

+
v2θ
r
∂f
∂vr

− vrvθ
r

∂f
∂vθ

}
= J(f, f) (4.82)

The terms in the curly bracket correspond to the source terms obtained in sta-

tionary frame of reference. Applying the modified kinetic flux vector splitting of

the axi-symmetric formulation and taking Ψ moments of the Boltzmann equation

with dissipation control function, φ⟨
Ψ, ∂f1

∂t
+

∂( vz+φ|vz |
2 )f1
∂z

+
∂( vz−φ|vz |

2 )f1
∂z

+ 1
r

∂r( vr+φ|vr |
2 )f1
∂r

+ 1
r

∂r( vr−φ|vr |
2 )f1
∂r

⟩
+
⟨
Ψ,
{

−f1vr
r

+
v2θ
r
∂f1
∂vr

− vrvθ
r

∂f1
∂vθ

}⟩
= 0

(4.83)
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strongly rotating flows

For axi-symmetric geometries the dissipation control function, φ can either be a

function of molecular velocity or any suitable macroscopic parameter depending

on the type of flow. This leads to kinetic upwind axi-symmetric formulation of

Navier-Stokes equations as

∂U
∂t

+ ∂GZ+

∂z
+ ∂GZ−

∂z
+ 1

r
∂rGR+

∂r
+ 1

r
∂rGR−

∂r
+ S = 0 (4.84)

where GZ± and GR± represents axial and radial split fluxes and un-split source

term S is expressed as

S =

[
0, 0,−p

r
− ρu2θ

r
− τθθ

r
,
ρuruθ
r

+
τrθ
r
, 0

]T
(4.85)

4.5.3 Variance Reduction Kinetic Flux Vector Splitting

(VRKFVS)

The shear amplitude for the non-inertial rotational problem should be observed in

the correct frame of reference with variance reduction approach. A new method

variance reduction kinetic flux vector splitting (VRKFVS) was developed to re-

solve weak secondary flow embedded in strong primary flow. In the variance re-

duction approach Boltzmann equation is written as a perturbation from its state

of equilibrium. This method basically evaluates the variance-reduced form of the

collision integral as in the variance reduction technique of Baker and Hadjicon-

stantinou [21] and Homolle and Hadjiconstantinou [123] used in direct simulation

Monte Carlo (DSMC). The collision integral can also be expressed as

J(f, f) =
1

2

∫ π/2

0

∫ 2π

0

∫
R+

∫
R+

∫
RD

∫
RD

· · ·

(δa1 + δa2 − δ1 − δ2) f
(1)f (2)g Π̄ dv⃗1dv⃗2dI1dI2dϱdΘ

(4.86)

where δa1 = δ3(v⃗a1− v⃗), δa2 = δ3(v⃗a2− v⃗), δ1 = δ3(v⃗1− v⃗) and δ2 = δ3(v⃗2− v⃗), δ is the
Dirac delta function and subscript ‘a’ denotes after collision state. Integration

is performed with respect to scattering angle ϱ which goes from 0 to 2π, while

angle Θ varies from 0 ( head-on collisions) to π/2 (grazing collisions), Π̄ is the

molecular collision cross section, g is the magnitude of the relative velocity of the

particles before collision relative to path of the centre of gravity of the system

consisting of two particles. For further details on binary collisions refer section
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B.1 in Appendix B. If the distributions f (1) = f0 +∆f (1) and f (2) = fM +∆f (2)

are perturbations around Maxwellians f0 and fM , then the collision integral in

the variance-reduced form can be expressed as

J(f, f) =
1

2

∫ π/2

0

∫ 2π

0

∫
R+

∫
R+

∫
RD

∫
RD

· · ·

(δa1 + δa2 − δ1 − δ2) (2f0∆f
(2) +∆f (1)∆f (2))g Π̄ dv⃗1dv⃗2dI1dI2dϱdΘ

= L(∆f) + Γ(∆f,∆f)
(4.87)

Thus the integral can be written as the sum of linear L(∆f) and a quadratic

Γ(∆f,∆f) term.

In this variant of kinetic flux vector splitting the Boltzmann equation uses distri-

bution in a Chapman-Enskog perturbative form. The Boltzmann equation with

distribution function written in Chapman-Enskog perturbative form with respect

to Maxwellian f0 is expressed as

∂
(
f0 +

∑∞
i Knif̄i

)
∂t

+
∂v⃗
(
f0 +

∑∞
i Knif̄i

)
∂x⃗

= 0 (4.88)

Assuming that f in the vicinity of f0 as well as another chosen Maxwellian fM .

In such a case the Boltzmann equation can also be written based on Chapman-

Enskog perturbative form with respect to fM

∂
(
fM +

∑∞
i Knif̄Mi

)
∂t

+
∂v⃗
(
fM +

∑∞
i Knif̄Mi

)
∂x⃗

= 0 (4.89)

Taking Ψ moment of the difference of these two Boltzmann equations we get

< Ψ,
∂ (∆f)

∂t
+
∂v⃗
(
∆f +

∑∞
i Knif̄i −

∑∞
i Knif̄Mi

)
∂x⃗

= 0 > (4.90)

The term ∆f = f0 − fM is the difference in the Maxwellians. It should be noted

that the terms
∑∞

i Knif̄iand
∑∞

i Knif̄Mi associated with time derivative vanishes

as these perturbation terms satisfy the additive invariants property, expressed as

< Ψ,Knif̄i >∀i≥1=< Ψ,Knif̄Mi >∀i≥1= 0 (4.91)

The difference in the perturbation terms for the two Maxwellians can be simplified

for first order distribution as

Knf̄1 −Knf̄M1 = −tR0

[
∂f0
∂t

+∇x⃗ · (v⃗f0)
]
+ tRM

[
∂fM
∂t

+∇x⃗ · (v⃗fM)

]
(4.92)
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where tR0 and tRM are relaxation time for f0 and fM . Assuming tR = tR0 = tRM

as the chosen distribution f0 is in the vicinity offM . With this the difference in

the perturbation terms can be approximated for the first order expansion as

Kn∆f̄1 = Knf̄1 −Knf̄M1 ≈ −tR
[
∂∆f

∂t
+∇x⃗ · (v⃗∆f)

]
(4.93)

where ∆f̄1 = f̄1 − f̄M1 and with its substitution the Boltzmann equation in this

variance reduction form based on first order distribution is expressed as

∂ (∆f)

∂t
+
∂v⃗ (∆f1)

∂x⃗
= 0 or

∂
(
∆f̂
)

∂t
+
∂v⃗ (∆f1)

∂x⃗
= 0 (4.94)

where ∆f1 = ∆f + Kn∆f̄1 = ∆f −
∑

j Υj ⊙Xj and ∆f̂ = f1 − fM andf1 =

f0 +Knf̄1 = f0 −
∑

j Υj ⊙Xj as ⟨Ψ,
∑

j Υj ⊙Xj⟩ = 0.

In Variance Reduction Kinetic Flux Vector Splitting (VRKFVS) for Navier-

Stokes upwinding is implemented in a similar way as in KFVS using Courant

split Boltzmann equation as follows :

∂∆f̂

∂t
+
∂(vx±|vx|

2
)∆f1

∂x
+
∂(vy±|vy|

2
)∆f1

∂y
+
∂(vz±|vz |

2
)∆f1

∂z
= 0 (4.95)

Taking Ψ moments of the resulting variant of Boltzmann equation leads to

Navier-Stokes equation based on Variance Reduction Kinetic Flux Vector Split-

ting (VRKFVS) as follows

∂
∂t
(∆U) + ∂

∂x

[
∆
(
GX±

I

)
+
(
GX±

V

)
∆

]
+ ∂

∂y

[
∆
(
GY ±

I

)
+
(
GY ±

V

)
∆

]
+ ∂
∂z

[
∆
(
GZ±

I

)
+
(
GZ±

V

)
∆

]
= 0

(4.96)

where ∆U = U − UM is the deviation of the state update vector U over UM

based on Maxwellian distribution,fM . The inviscid fluxes are also deviations

over the inviscid fluxes based on the chosen distribution,fM . Thus ∆
(
GX±

I

)
=(

GX±
I

)
−
(
GX±

I

)
M
, ∆
(
GY ±

I

)
=
(
GY ±

I

)
−
(
GY ±

I

)
M

and ∆
(
GZ±

I

)
=
(
GZ±

I

)
−
(
GZ±

I

)
M
, where

(
GX±

I

)
M
,
(
GY ±

I

)
M

and
(
GZ±

I

)
M

are the inviscid split fluxes

based on the Maxwellian distribution, fM associated with the chosen state of

equilibrium. The viscous fluxes
(
GX±

V

)
∆
,
(
GY ±

V

)
∆
and

(
GZ±

V

)
∆
are computed

based on relative velocity field over the chosen Maxwellian fM . Thus we solve

for the deviations over a state vector, UM using the fluxes over a relative flow
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field based on chosen Maxwellian, fM . The selection of the state of equilibrium,

fM can be based on i) free stream condition, or ii) wall conditions, or iii) the

mean equilibrium based on the neighborhood values, or iv) combination of all the

three in the solution domain. This variant of KFVS based on variance reduction

form of BGK-Boltzmann equation was found extremely useful in capturing weak

secondary flow in a strong flow field environment.

4.5.3.1 VRKFVS scheme for one dimensional case

In a presence of thermodynamic forceX the one dimensional Boltzmann equation

can be written in terms of first order distribution functionf1 as follows

∂f1
∂t

+
∂vf1
∂x

= 0 (4.97)

In absence of any thermodynamic force the system is in equilibrium and there

can be many possible equilibrium states. Consider an equilibrium state based

on space varying Maxwellian fM which is closest to distribution f1. The one

dimensional Boltzmann equation in its variance reduction form for such a case

can be written as
∂
(
∆f̂
)

∂t
+
∂v⃗ (∆f1)

∂x⃗
= 0 (4.98)

where ∆f1 = ∆f −
∑

j Υj ⊙Xj and ∆f̂ = f1 − fM and f1 = f0 −
∑

j Υj ⊙Xj

as ⟨Ψ,
∑

j Υj ⊙Xj⟩ = 0. Thus in VRKFVS the distribution function at time

t + ∆t in a fluid domain is constructed based on half range perturbation over

Maxwellian distribution as follows

f t+∆t
1 = fM −∆t

[(
∂v∆f+

1

∂x

)t
0<v<+∞

+

(
∂v∆f−

1

∂x

)t
−∞<v<0

]
(4.99)

Figure 4.4 shows a schematic of variance reduction kinetic flux vector splitting.

State update equation is obtained by taking Ψ moments as follows

⟨
Ψ, f t+∆t

1

⟩
= ⟨Ψ, fM⟩ −∆t


(
∂⟨Ψ,v∆f+1 ⟩

∂x

)t
0<v<+∞

+

(
∂⟨Ψ,v∆f−1 ⟩

∂x

)t
−∞<v<0

 (4.100)
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Figure 4.4: Variance reduction kinetic flux vector splitting based on moments

of upwind discretized Boltzmann equation using perturbation over a chosen

Maxwellian distribution.
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The first order Chapman-Enskog distribution, f1 = f0 −
∑

j Υj ⊙Xj. The one-

dimensional Boltzmann equation in the upwind discretized form after taking Ψ-

moments is⟨
Ψ, {f0 −

∑
j Υj ⊙Xj}t+∆t

⟩
= ⟨Ψ, fM⟩

−∆t



(
∂⟨Ψ,v{f0−∑

j Υj⊙Xj}+⟩
∂x

)t
0<v<+∞

−
(
∂⟨Ψ,v∆f+M⟩

∂x

)
0<v<+∞

+

(
∂⟨Ψ,v{f0−∑

j Υj⊙Xj}−⟩
∂x

)t
−∞<v<0

−
(
∂⟨Ψ,vf−M⟩

∂x

)
−∞<v<0


(4.101)

The perturbation term −
∑

j Υj ⊙Xj satisfies the additive invariants property⟨
Ψ,
∑
j

Υj ⊙Xj

⟩
= 0 (4.102)

The upwind discretized Boltzmann equation after taking Ψ-moments simplifies

to⟨
Ψ, f t+∆t

0

⟩
= ⟨Ψ, fM⟩

−∆t



(
∂
⟨
Ψ, v(f+

0 − f+
M)
⟩

∂x

)t

0<v<+∞

+

(
∂ −

∑
j Λ

+
j ⊙ X̄j

∂x

)t

0<v<+∞

+

(
∂
⟨
Ψ, v(f−

0 − f+
M)
⟩

∂x

)t

−∞<v<0

+

(
∂ −

∑
j Λ

−
j ⊙ X̄j

∂x

)t

−∞<v<0


(4.103)

where tensor of thermodynamic force X̄ are computed based on relative velocity

field v⃗ − v⃗M and temperature field T − TM where v⃗M and TM are the velocity

and temperature field of the chosen Maxwellian fM . This leads to Navier-Stokes

equation based on Variance Reduction Kinetic Flux Vector Splitting (VRKFVS)

∂

∂t
(∆U ) +

∂∆GX+

∂x
+
∂∆GX−

∂x
= 0 (4.104)
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where ∆U = U − UM is the deviation of the state update vector U over UM

based on Maxwellian distribution,fM .The flux ∆GX± is expressed as

∆GX± = ∆GX±
I +

(
GX±

V

)
∆

(4.105)

The inviscid flux ∆
(
GX±

I

)
=
(
GX±

I

)
−
(
GX±

I

)
M

where
(
GX±

I

)
M

is the in-

viscid split fluxes based on the Maxwellian distribution, fM associated with the

chosen state of equilibrium. The inviscid fluxes are also deviations over the in-

viscid fluxes based on the chosen distribution,fM . The viscous fluxes
(
GX±

V

)
∆

is computed based on tensor of thermodynamic force X̄ evaluated using relative

velocity field v⃗ − v⃗M and temperature field T − TM .

4.5.3.2 Variance Reduction approach and treatment for strong rota-

tion

Gas under isothermal condition with temperature T = To uniformly rotating with

angular velocity ω in a cylinder of radius rwall can be described by rigid body

rotation. The flow variables with rigid body condition are expressed as

[vz, vr, vθ, T, ρ]RB ≡
[
0, 0, ω r, To, ρwall Exp

(
ω2

2RTo
(r2 − r2wall)

)]
(4.106)

where the subscript RB denotes the state of rigid body rotation. Boltzmann

equation observed in the rigid body rotational frame leads to a very interesting

result as velocity distribution associated with the rigid body solution satisfies both

the inviscid as well as viscous solution. The velocity distribution associated with

this rigid body rotation, fRB is a Maxwellian. This variant of BGK-Boltzmann

equation is then expressed in the variance reduction form as

∂ (∆f)

∂t
+
∂v⃗ (∆f1)

∂x⃗
= 0 or

∂
(
∆f̂
)

∂t
+
∂v⃗ (∆f1)

∂x⃗
= 0 (4.107)

where ∆f1 = ∆f + Kn∆f̄1= ∆f −
∑

j Υj ⊙Xj, ∆f = f0 − fRB, ∆f̄1 = f̄1 −
f̄RB1 and ∆f̂ = f1 − fRB. The term f̄RB1 is the first order perturbation term

for Maxwellian, fRB associated with rigid body rotation. The term Kn∆f̄1 is

expressed as

Kn∆f̄1 ≈ −tR
[
∂∆f

∂t
+∇x⃗ · (v⃗∆f)

]
(4.108)
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The steep gradients observed in stationary inertial frame now appear to be a

weak perturbation. Taking ψ moments of the resulting variant of Boltzmann

equation leads to upwind Navier-Stokes equation based on Variance Reduction

Kinetic Flux Vector Splitting (VRKFVS) form as

∂
∂t
(U −URB) + ∂

∂x

[(
GX±

I

)
−
(
GX±

I

)
RB

+
(
GX±

V

)
∆

]
+ ∂
∂y

[(
GY ±

I

)
−
(
GY ±

I

)
RB

+
(
GY ±

V

)
∆

]
+ ∂
∂z

[(
GZ±

I

)
−
(
GZ±

I

)
RB

+
(
GZ±

V

)
∆

]
= 0

(4.109)

whereURB is the state update vector at rigid body rotation condition,
(
GX±

I

)
RB

,(
GY ±

I

)
RB

and
(
GZ±

I

)
RB

are the split fluxes based on rigid body rotation. The

viscous fluxes
(
GX±

V

)
∆
,
(
GY ±

V

)
∆
and

(
GZ±

V

)
∆
are computed based on relative

velocity field over the rigid body rotation. Rossby number which gives relative

importance of inertial with respect to Coriolis forces is also a measure of departure

from the rigid body solution. Small perturbation defined by Rossby number based

on perturbation due to rotation ε = ∆ω
ω

or temperature as ε = ∆T
T

can be used

to expand the solution as a Taylor series in ε about rigid body rotation. For a

case where the departure from the rigid body distribution fRB is small, the first

order distribution is f1 = fRB(1 −
∑

j Υj ⊙Xj) the Rossby number in such as

case can also be expressed as

ε =
⟨Ψi, f1 − fRB⟩

⟨Ψi, fRB⟩
=

⟨
Ψi,
∑

j Υj ⊙Xj

⟩
⟨Ψi, fRB⟩

(4.110)

This local Rossby number, ε is used as a measure of departure from the rigid body

solution, for example if ε < εs the solver switches to VRKFVS scheme otherwise

solver uses default KFVS based scheme.

4.6 Summary

It is difficult to find a single solver serving the entire regime from low speed to

hypersonic rarefied flow or from creeping flows to high speed continuum flow. All

the research in the development of upwind scheme revolves around the method-

ology of i) adding the correct amount of dissipation or entropy generation, and

ii) distribution of dissipation or entropy generation for each thermodynamic force
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i.e. in what proportion the thermodynamic forces associated with shear stress

tensor and heat flux vector contribute to this entropy gain. The state update of

a solver has to follow the path laid down by non-equilibrium thermodynamics.

The path traced out maximizes the entropy under the constraint imposed due

to conservation laws and satisfies the Onsager’s variational principle. The new

upwind scheme for macroscopic conservation equations involves three steps : i)

in the first step the Boltzmann equation is rendered into an upwind discretized

form, ii) in the second step inviscid fluxes are obtained by taking moments of split

Maxwellian distribution, iii) in the third step viscous fluxes are obtained by tak-

ing moments of split microscopic tensors and subsequent full tensor contraction

with its conjugate thermodynamic forces, hence it differs from KFVS extended

by Chou and Baganoff [54]. The present method only requires split microscopic

tensor and its conjugate thermodynamic forces, for example it can easily be ex-

tended for solving species transport problem by splitting the microscopic tensor

associated with it. The new kinetic method apart from giving physically correct

dissipation also gives the contribution to this dissipation made by the thermody-

namic forces associated with shear stress tensor and heat flux vector. The new

kinetic theory based scheme has a potential to be a monolithic solver for simu-

lating the entire range from rarefied slip flow to continuum flow, creeping flow to

flow with shocks as it is derived using kinetic theory incorporating phenomeno-

logical theory of non-equilibrium thermodynamics. The new kinetic scheme was

also formulated for axi-symmetric case and in its variance reduced form.
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Chapter 5

Development of Kinetic wall

boundary conditions

5.1 Introduction

Wall boundary condition is an important part in simulation of fluid flow. Ex-

perimental studies as well as theoretical analysis corroborate the efficacy of a

given boundary condition. No-slip and slip condition at the wall provide a real-

istic boundary condition used for the solution of Navier-Stokes equation in the

continuum and rarefied regime respectively. Kinetic theory based methods in

general have focused more on entropy condition and ignored the crucial aspect

of non-equilibrium thermodynamics. Apart from entropy condition boundary

condition based on kinetic method should also satisfy the Onsager’s reciprocity

relationship. The formulation of Maxwell velocity slip and von Smoluchowski

temperature jump fail when flow variations tangential to surface are significant.

The kinetic theory based formulation which constructs velocity distribution using

half range distribution following Onsager’s reciprocity relationship is better suited

to resolve features associated with slip flow as well as continuum flow. One of

the motivations of the thesis is to derive a unified wall boundary condition which

satisfies Onsager’s relationship and can simulate both continuum and rarefied slip

flow within Navier-Stokes equation in order to avoid extremely costly multi-scale

simulation.
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5.2 Treatment of slip boundary condition using Maxwell model.

Figure 5.1: Maxwell model based on specular and diffuse reflection.

This chapter gives the derivation of kinetic wall boundary condition using non-

equilibrium thermodynamics based distribution and Maxwell model. The first

section describes the implementation of Maxwell’s model used in the research.

Second section carries out the derivation of velocity slip and temperature jump

conditions using the non-equilibrium thermodynamics based distribution func-

tion for cases with negligible fluid dynamical variations in the tangential direc-

tion. Slip boundary conditions are derived using first order distribution based on

Chapman-Enskog approach in the present research work. The third section gives

the derivation of flux based wall boundary conditions which being more exact

remains valid even for strong gradients in the tangential directions. The fourth

section gives the treatment for slip flow near the transition regime using Burnett

based second order model as well as a new method based on collision probability

function.

5.2 Treatment of slip boundary condition using

Maxwell model.

In the present approach Maxwell model is used for gas-surface interaction for

both continuum as well as slip flow regime. In this model molecules partially

undergo specular reflection and the remainder reflect in diffuse manner as shown

in figure 5.1 such that the distribution function is a sum of diffuse and specular
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reflections. With a accommodation coefficient σ, distribution function can be

written as

fΣ= fI+(1− σ)fR + σf0,W (5.1)

where fΣ is the distribution function which is a sum of fI incident distribution, fR

specularly reflected distribution and f0,W which is the diffuse reflected Maxwellian

distribution evaluated at the wall conditions. For example the specularly reflected

distribution, fR is reconstructed from incident distribution, fI for 2D geometry

as follows

fR(vx, vy, I) =
fI(vx, vy, I) for vy < 0
fI(vx,−vy, I) for vy > 0

(5.2)

Similarly, for for 3D geometry the specularly reflected distribution, fR is recon-

structed from incident distribution, fI as follows

fR(vx, vy, vz, I) =
fI(vx, vy, vz, I) for vz < 0
fI(vx, vy,−vz, I) for vz > 0

(5.3)

5.3 Derivation of density jump for negligible tan-

gential gradients.

The conservation of mass at the wall for 2-D geometry can be simplified as∫
R+

∫
R−

∫
R
vyf

·−
I dvxdvydI+

∫
R+

∫
R+

∫
R
vyf

·+
0,WdvxdvydI = 0 (5.4)

where f ·−
I is the half-range incident distribution function for −∞ < vx < +∞

and −∞ < vy < 0 and similarly f ·+
0,W is the half-range Maxwellian distribution

function for −∞ < vx < +∞ and 0 < vy <∞.

Solving the mass conservation using first order distribution at the boundary

f ·−
1,I=f

·−
0,I−

∑
j Υ

·−
I,j ⊙Xj , the resultant flux due to incident and specular reflection

can be simplified as∫
R+

∫
R−

∫
R
vyf

·−
1,IdvxdvydI

=

∫
R+

∫
R−

∫
R
vy

(
f ·−
0,I −

∑
j

Υ·−
I,j ⊙Xj

)
dvxdvydI

= ρ√
β

 1
2

(
−By√
π
+ syA

−
y

)
− τxx

4p

(
−By√
π
+ syA

−
y

)
+ τyy

2p

(
−By√
π
− syA

−
y

2

)
+ τxx+τyy

4p

(
−By√
π
+ syA

−
y

)
+ qyη

√
β syBy

2
√
π


(5.5)
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where
A±
y = 1± Erf(sy)

By = Exp(−s2y)
sy = uy

√
β

η = γ−1
γ

(5.6)

The flux due to diffuse reflection is a contribution of Maxwellian flux based on

wall condition, this can be expressed as∫
R+

∫
R+

∫
R
vyf

·+
0,W (ρw, vx, vy, I)dvxdvydI

= ρw
2
√
βw

[
Bw,y√
π

+ sw,yA
+
w,y

] (5.7)

where βw, Bw,y, sw,y and A+
w,y are evaluated with wall condition as follows

A+
w,y = 1 + Erf(sw,y)

Bw,y = Exp(−s2w,y)
sw,y = uw,y

√
βw

(5.8)

Near the wall uy→ 0, with this sy → 0, By → and A±
y → 1. For stationary wall

uw,y= 0, with this sw,y = 0, Bw,y = 1 and A+
w,y = 1. The conservation of mass at

the wall can now be expressed as

ρ

2
√
π
√
β

[
−1 +

τxx
2p

τyy
p

− τxx + τyy
2p

]
+

ρw

2
√
π
√
βw

= 0 (5.9)

This leads to density jump at the wall as

ρw =
ρ
√
βw√
β

[
1− τyy

2p

]
= ρ

√
T

Tw

(
1− τyy

2p

)
(5.10)

where Tw is the wall temperature.

5.3.1 Derivation of density jump for 3D geometry

The conservation of mass at the wall can be simplified as∫
R+

∫
R−

∫
R

∫
R
vzf

··−
I dvxdvydvzdI+

∫
R+

∫
R+

∫
R

∫
R
vzf

··+
0,WdvxdvydvzdI = 0 (5.11)

where f ··−
I is the half-range incident distribution function for −∞ < vx < +∞,

−∞ < vy < +∞ and −∞ < vz < 0. The distribution f ··+
0,W is the half-range
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Figure 5.2: Shearing stress on infinitesimal area on the wall

Maxwellian distribution function for −∞ < vx < +∞, −∞ < vy < +∞ and

0 < vz <∞.

This leads to density jump at the wall as

ρw =
ρ
√
βw√
β

[
1− τzz

2p

]
= ρ

√
T

Tw

(
1− τzz

2p

)
(5.12)

where Tw is the wall temperature.

5.4 Derivation of slip velocity and temperature

jump for negligible tangential gradients.

The expression of Maxwell velocity slip and von Smoluchowski’s temperature

jump available in the literature are derived under conditions of negligible fluid

dynamical variations in the tangential directions. This section revisits the deriva-

tion of Maxwell velocity slip and von Smoluchowski temperature jump using the

non-equilibrium thermodynamics based distribution function.

5.4.1 Derivation of slip velocity

Let us consider an infinitesimal area ds on the surface of the wall and an elemen-

tary strip of gas extending above the wall in the y-direction from the elementary
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tangential gradients.

area ds as shown in Fig.5.2. The strip reaches the imaginary plane set at y = ∆y

and the momentum flux, M passing through it based on linearized distribution

f1 is given as

My=∆y=

∫
R+

∫
R

∫
R
(f0 −

∑
j

Υj ⊙Xj)vxvydvxdvydI= ρuxuy − τxy (5.13)

The contributing momentum component at the wall where y=0 is expressed as

My=0ds = σ


∫
R+

∫
R−

∫
R
(f ·−

0,I −
∑

j Υ
·−
I,j ⊙Xj)vxvydvxdvydI

+

∫
R+

∫
R+

∫
R
f ·+
0,WvxvydvxdvydI

 (5.14)

where Υ·−
I,j is evaluated for −∞ < vx < +∞ and −∞ < vy < 0 corresponding to

incident distribution. The momentum flux on the infinitesimal surface ds at the

wall y = 0 can be equated with the momentum flux on the infinitesimal surface

ds as ∆y→0.

With the definition, tensor of viscous stressesΠ=µ
[
(∇⊗ u⃗) + (∇⊗ u⃗)T − 2

3
I∇ · u⃗

]
+

ζI∇·u⃗ where coefficient of bulk viscosity ζ = µ
(
5
3
− γ
)
, heat flux vector q⃗=−κ∇T

the conservation of momentum flux becomes

−τxy = σ

[
− ρ

4βp
√
π

(√
πτxy +

√
β(ηqx − τyyux)

)
− 1

2
√
π
(ρux − ρwuw,x)

]
(5.15)

where uw,x is the x component of the wall velocity and η = (γ − 1)/γ. After

substituting the viscosity based mean free path, λ= µ
2p

√
π
β
, the slip velocity ux for

stationary wall condition can be expressed as

ux =

[(
2− σ

σ

)
τxy
2p

√
π

β
− qxη

2p

]
ϕ

=

[(
2− σ

σ

)
τxy

λ

µ
−
(
γ − 1

γ

)
qx
2p

]
ϕ

(5.16)

We get the new expression of velocity slip which is named in this research work

as Onsager-Maxwell slip velocity, it differs from Maxwell’s expression [163] by an

extra term ϕ = (1− τyy/2p)
−1 due to density jump.
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tangential gradients.

5.4.1.1 Expressions of velocity slip for 3D geometry

For three dimensional case there are two slip velocities ux and uy if the surface

normal points towards z direction. For stationary surface the two slip velocities

are derived as

ux =

[(
2− σ

σ

)
τxz

λ

µ
−
(
γ − 1

γ

)
qx
2p

](
1− τzz

2p

)−1

(5.17)

uy =

[(
2− σ

σ

)
τyz

λ

µ
−
(
γ − 1

γ

)
qy
2p

](
1− τzz

2p

)−1

(5.18)

5.4.2 Derivation of temperature jump

Similarly, we can carry out energy conservation by equating the energy flux on

the strip ds at y = ∆y and y = 0 as shown in Fig.5.2. The energy flux, Q at

y = ∆y based on linearized distribution is given as

Qy=∆y =

∫
R+

∫
R

∫
R
(f0 −

∑
j Υj ⊙Xj)(I+ v2

2
)vydvxdvydI (5.19)

This gets simplified as

Qy=∆y =
ρ

2pβ

[
qy − uxτxy + uy(−τyy + βpu2x + βpu2y +

pγ
γ−1

)
]

(5.20)

The energy flux at the wall where y = 0 can be expressed as

Qy=0 = σ


∫
R+

∫
R−

∫
R
(f ·−

0,I −
∑

j Υ
·−
I,j ⊙Xj)(I+ v2

2
)vydvxdvydI

+

∫
R+

∫
R+

∫
R
f ·+
0,W (I+

v2

2
)vydvxdvydI

 (5.21)

After substituting the value of slip velocity ux and wall density ρw this expression

simplifies as

Qy=0 =
ρ(γ + 1)(2p2 − 3pτyy − τ 2yy)σ

βwB

+
ρ

2βBσ


−8(γ − 1)πτ 2xy

+σ2

 −4(γ + 1)p2 + 2(γ − 1)(
√
βηqx +

√
πτxy)

2

−4
√
βηγ

√
πqyτyy + τ 2yy − 3γτ 2yy

+8γp(
√
βη

√
πqy + τyy)



(5.22)
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where B = 8
√
β(γ− 1)p

√
π(2p− τyy). The energy flux at the wall, y = 0 is being

balanced by the energy flux as ∆y→ 0. The conservation leads to

ρ

2ββwB


2β(γ + 1)(2p2 − 3pτyy + τ 2yy)σ

2

+βw

 2(γ − 1)πτ 2xy(σ − 2)2

+4
√
βη

√
π(−qxτxy + γ(2pqy + qxτxy − qyτyy))σ(σ − 2)

+(4(γ + 1)p2 + 2βη2(γ − 1)q2x + 8γpτyy − (3γ − 1)τ 2yy)σ
2


 = 0

(5.23)

For small temperature jump we can replace pressure in terms of mean free path,

λ using relation p = µ
√
π/(2λ

√
β). In this case we get balance equations for 2D

geometry case in β as follows
2β2(βwη

2(γ − 1)q2x + (γ + 1)τ 2yy)λ
2σ2

+4
√
ββwγ

√
πτyyλµσ

2 − βw(γ + 1)πµ2σ2

+β
√
β
√
πλσ(4βwη((γ − 1)qxτxy − γqyτyy)λ(σ − 2)

−3(γ + 1)τyyµσ) + β(γ + 1)πµ2σ2

+ββwλ

(
−(3γ − 1)τ 2yyλσ

2

+2π(σ − 2)((γ − 1)τ 2xyλ(σ − 2) + 2ηγqyµσ)

)

 = 0 (5.24)

This expression can be further simplified by neglecting terms associated with τyy

and qx to get

(β−βw)(γ+1)πµ2σ2+βw(2βwπλ(σ−2)((γ−1)τ 2xyλ(σ−2)+2ηγqyµσ)) = 0 (5.25)

After solving for β we get

β =
βw(γ + 1)µ2σ2

(γ + 1)µ2σ2 + 2βwλ(σ − 2)((γ − 1)τ 2xyλ(σ − 2) + 2ηγqyµσ)
(5.26)

After substituting the following expressions for β, βw given as

β =
1

2RT
=

γ

2T (γ − 1)cp
(5.27)

βw =
1

2RTw
=

γ

2Tw(γ − 1)cp
(5.28)

The solution leads to

T = Tw +

(
2− σ

σ

)2 γλ2τ 2xy
cp(γ + 1)µ2

−
(
2− σ

σ

)
2γλqy

cp(γ + 1)µ
(5.29)

We get a new expression of temperature jump which is named in this research

work as Onsager-von Smoluchowski’s temperature jump as it contains both the
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terms of heat flux vector and shear stress tensor following Onsager’s reciprocity

relationship. With an additional assumption that shear stress term τxy is neg-

ligible we get the von Smoluchowski’s temperature jump boundary condition in

terms of Prandtl number Pr as

T = Tw −
(
2− σ

σ

)
2γλqy

cp(1 + γ)µ
= Tw +

(2− σ)

σ

2

Pr

γ

(γ + 1)
λ
∂T

∂y
(5.30)

This condition is obtained with an assumption that tangential variations, terms

qx, τyy and τxy are negligible and temperature jump is mild.

For large temperature jump the mean free path may vary significantly, in such

cases the compressibility effect is accounted by using ideal gas law where pressure

depends on density as p = ρ/2β. The energy balance equation for such a case

becomes

4β5/2βwη
√
π((γ − 1)qxτxy − γqyτyy)(σ − 2)σ

+(β − βw)(1 + γ)ρ2σ2 + 2β3(βwη
2(γ − 1)q2x + (γ + 1)τ 2yy)σ

2

+βρσ(4
√
ββwηγ

√
πqy(σ − 2) + 4βwγτyyσ − 3β(γ + 1)τyyσ)

+β2βw(2− (γ − 1)πτ 2xy(σ − 2)2 + (1− 3γ)τ 2yyσ
2) = 0

(5.31)

The energy balance equation for such a case can be solved when τyy, qx and τxy

is negligible to get temperature jump for compressible flow as

T =
3β2

wγS
2ϑ

cp(γ − 1)(21/3(2− 12β3
wS

2 + 21/3ϑ2) + 2ϑ)
(5.32)

where

S = −
(
2− σ

σ

)
4(γ − 1)

√
π

ρ(γ + 1)
qy (5.33)

ϑ =
(
2− 18β3

wS
2 + 27β6

wS
4 + 3β4

wS
3
√
81β4

wS
2 − 12βw

)1/3
(5.34)

It is should be noted that these expressions are valid only in slip flow regime

when there are insignificant fluid dynamic variations in the tangential direction.
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5.4.2.1 Expressions of temperature jump for 3D geometry

For 3D case after substituting the slip velocity ux and uy the balance equations

are

ρ

2ββwB


β(γ + 1)(2p− τzz)

2σ2

+βw


2(γ − 1)π(τ 2xz + τ 2yz)(σ − 2)2

+4
√
βη

√
π

(
−qxτxz − qyτyz
+γ(2pqz + qxτxz + qyτyz − qzτzz)

)
σ(σ − 2)

+

(
4(γ + 1)p2 + 2βη2(γ − 1)(q2x + q2y)
+8γpτzz − (3γ − 1)τ 2zz

l

)
σ2



 = 0

(5.35)

where B = 8
√
β(γ − 1)p

√
π(2p− τzz).

As described before for small temperature jump we can replace pressure in terms

of mean free path, λ using relation p = µ
√
π/(2λ

√
β). In this case we get balance

equations for 3D case in terms of β as follows

2β2(βwη
2(γ − 1)(q2x + q2y) + (γ + 1)τ 2zz)λ

2σ2

+4
√
ββwγ

√
πτzzλµσ

2 − βw(γ + 1)πµ2σ2

+β
√
β
√
πλσT

(
4βwη((γ − 1)(qxτxz + qyτyz)
−γqzτzz)λ(σ − 2)− (γ + 1)τzzµσ

)
+β(γ + 1)πµ2σ2

+ββwλ


−(3γ − 1)τ 2zzλσ

2

+2π(σ − 2)

 (γ − 1)τ 2xzλ(σ − 2)
+(γ − 1)τ 2yzλ(σ − 2)
+2ηγqzµσ





= 0 (5.36)

This expression can be further simplified by neglecting terms associated with τzz,

qx and qy to get

(β−βw)(γ+1)πµ2σ2+βw(2βwπλ(σ−2)((γ−1)(τ 2xz+τ
2
yz)λ(σ−2)+2ηγqzµσ)) = 0

(5.37)

After solving for β we get

β =
βw(γ + 1)µ2σ2

(γ + 1)µ2σ2 + 2βwλ(σ − 2)((γ − 1)(τ 2xz + τ 2yz)λ(σ − 2) + 2ηγqzµσ)
(5.38)

substituting the following expressions for β, βw the solution leads to

T = Tw +

(
2− σ

σ

)2 γλ2(τ 2xz + τ 2yz)

cp(γ + 1)µ2
−
(
2− σ

σ

)
2γλqz

cp(γ + 1)µ
(5.39)
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5.5 Kinetic upwind based wall boundary condition

We get the expression of Onsager-von Smoluchowski’s temperature jump for 3D

geometry. With an additional assumption that shear stress terms τxz and τyz are

negligible we get the von Smoluchowski’s temperature jump boundary condition

in terms of Prandtl number Pr as

T = Tw −
(
2− σ

σ

)
2γλqz

cp(1 + γ)µ
= Tw +

(2− σ)

σ

2

Pr

γ

(γ + 1)
λ
∂T

∂z
(5.40)

This condition is obtained with an assumption that tangential variations, terms

qx, qy, τzz, τxz and τyz are negligible and temperature jump is mild.

For large temperature jump the compressibility effect is accounted by using ideal

gas law where pressure depends on density as p = ρ/2β. The energy balance

equation for such a case becomes

4β5/2βwη
√
π((γ − 1)(qxτxz + qyτyz)− γqzτzz)(σ − 2)σ

+(β − βw)(1 + γ)ρ2σ2 + 2β3(βwη
2(γ − 1)(q2x + q2y) + (γ + 1)τ 2zz)σ

2

+βρσ(4
√
ββwηγ

√
πqz(σ − 2) + 4βwγτzzσ − 2β(γ + 1)τzzσ)

+β2βw(2(γ − 1)π(τ 2xz + τ 2yz)(σ − 2)2 + (1− 3γ)τ 2zzσ
2) = 0

(5.41)

The energy balance equation for such a case can be solved when τzz, τxz, τyz, qx

and qy are negligible to get temperature jump for compressible flow similar to 2D

case as

T =
3β2

wγS
2ϑ

cp(γ − 1)(21/3(2− 12β3
wS

2 + 21/3ϑ2) + 2ϑ)
(5.42)

where

S = −
(
2− σ

σ

)
4(γ − 1)

√
π

ρ(γ + 1)
qz (5.43)

ϑ =
(
2− 18β3

wS
2 + 27β6

wS
4 + 3β4

wS
3
√
81β4

wS
2 − 12βw

)1/3
(5.44)

It is should be noted that these expressions are valid only in slip flow regime

when there are insignificant fluid dynamic variations in the tangential direction.

5.5 Kinetic upwind based wall boundary condi-

tion

The approach of continuum solver coupled with Maxwell’s velocity slip boundary

condition [184] and von Smoluchowski’s temperature jump boundary condition
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5.5 Kinetic upwind based wall boundary condition

[139] is the most popular as it is computationally the least expensive. Most of

the applications slip are simple micro-channel flows. It is should be noted that

these expressions are valid only in slip flow regime when there are insignificant

fluid dynamic variations in the tangential direction. Literature review has already

revealed that the first order slip velocity not only depends on the velocity gradient

in the normal direction but also on the pressure gradient in the tangential flow

direction. Thus we require an approach which is computationally cheap and takes

the slip velocity dependence on the fluid dynamic variations in the tangential

direction. Using the Maxwell model for gas-surface interaction and accounting

the kinetic split fluxes in the tangential direction a more accurate estimate of slip

velocity and temperature jump can be made. As described earlier net first order

distribution function at time t+∆t in terms of accommodation coefficient σ can

be written as

f1,Σ(v⃗, I, t+∆t) = f1,I(v⃗, I, t+∆t)
+(1− σ)f1,R(v⃗, I, t+∆t)+σf0,W (v⃗, I, t+∆t)

(5.45)

where f1,Σ(v⃗, I, t +∆t) is the total distribution resulting due to Maxwell model,

f1,I(v⃗, I, t + ∆t) and f1,R(v⃗, I, t + ∆t) are the incident and specularly reflected

first order distribution respectively and f0,W (v⃗, I, t + ∆t) is the diffuse reflected

Maxwellian distribution evaluated using wall conditions. The specularly reflected

first order distribution f1,R(v⃗, I, t+∆t) is written as

fR(v⃗, I, t+∆t) =
fI(v⃗, I, t+∆t) for i⃗n · v⃗ < 0

fI(v⃗ − 2⃗in⃗in · v⃗, I, t+∆t) for i⃗n · v⃗ > 0
(5.46)

molecules are reflected away from the boundary (⃗in · v⃗ > 0) where i⃗n is the surface

normal. The specular reflected distribution is constructed using v⃗ − 2⃗in⃗in · v⃗ i.e.

with reverse sign of normal component of velocity.

The total distribution satisfies Boltzmann equation and hence at time t + ∆t it

is constructed as follows

f1,Σ(v⃗, I, t+∆t) = f1,Σ(v⃗, I, t)−∆t∇x⃗ · (v⃗f1,Σ(v⃗, I, t)) (5.47)

173



5.5 Kinetic upwind based wall boundary condition

5.5.1 Wall boundary condition for 2-D case

After upwind discretization for the two dimensional case the distribution at time

t+∆t at the boundary simplifies as

f1,Σ(t+∆t) = f1,Σ(t)−∆t

[
∂vxf

+−
1,Σ (t)

∂x
+
∂vxf

−−
1,Σ (t)

∂x
+
∂vyf

·−
1,Σ(t)

∂y

]
(5.48)

where f+−
1 is the half-range total distribution function for 0 < vx <∞ and −∞ <

vy < 0 and f−−
1 is the half-range total distribution function for −∞ < vx < 0

and −∞ < vy < 0. After taking Ψ moment we can obtain state update equation

expressed as

U(t+∆t) = U(t)−∆t


(
∂ĜX

+−
(t)

∂x

)
∆x<0

+

(
∂ĜX

−−
(t)

∂x

)
∆x>0

+

(
∂ĜY

·−
(t)

∂y

)
∆y>0

 (5.49)

where U=[ρ, ρu, ρE]T is the state vector and ∆t is the time step.

The y component of state vector is not updated as Ui=3=ρuy= 0. ĜX
±−

repre-

sents the flux based on half range distributions f±−
1,Σ . ĜY

·−
is the flux resulting

from half range distribution f ·−
1,Σ. Derivatives of ĜX

+−
, ĜX

−−
and ĜY

·−
are

evaluated using mesh points on the left, right and upward side. The mass, mo-

mentum and energy components of x-directional flux ĜX
±−

can be written as

sum of inviscid or Euler part ĜX
±−
I and viscous part ĜX

±−
V as follows

ĜX
±−

= ĜX
±−
I + ĜX

±−
V =

⟨
vxΨf

±−
0,Σ

⟩
−
∑

j Λ
±−
j ⊙Xj (5.50)

Similarly, components of y-directional flux ĜY
·−

can be written as sum of inviscid

part and viscous part as follows

ĜY
·−

= ĜY
·−
I + ĜY

·−
V =

⟨
vyΨf

·−
0,Σ

⟩
−
∑

j Λ
·−
j ⊙Xj (5.51)

The viscous fluxes are obtained using macroscopic tensors Λ±−
j and Λ·−

j associ-

ated with shear stress tensor and heat flux vector following Onsager’s reciprocal

relationship so as to maximize the entropy production. The fluxes ĜX
±−

and

ĜY
−
can also be written in alternative form as

ĜX
±−

= (2− σ)(GX±−
I +GX±−

V ) + σGX±−
I (ρ, uw,x, Tw)

ĜY
·−

= (2− σ)(GY −
I +GY −

V ) + σGY −
I (ρ, uw,x, Tw)

(5.52)
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where GX±−
I , GX±−

V , GY −
I and GY −

V are evaluated based on fluid conditions

while GX±−
I (ρ, uw,x, Tw) and GY −

I (ρ, uw,x, Tw) are the inviscid flux based on

Maxwellian distribution which are evaluated using fluid density ρ, wall tempera-

ture Tw and wall velocity uw≡(uw,x, 0).

The expressions for GX±−
I , GX±−

V , GY −
I and GY −

V fluxes are given below

GX±−
I,1 = ρ

4
√
β
A−

2

(
B±

1√
π
+
√
βuxA

±
1

)

GX±−
V,1 = ρ

8p
√
β


B±

1√
π

(
2
√
β
B−

2√
π
uy(2βηqyuy + τyy)

−(2βηqxux + τxx)A
−
2

)
−2

B−
2√
π

(
βηqyux(1− 2βu2y) + τxy
+βuy(ηqx − uxτyy)

)
A±

1


GX±−

I,2 = ρ
8β
A−

2

(
B±

1√
π
2
√
βux + (1 + 2βu2x)A

±
1

)

GX±−
V,2 = ρ

8pβ


2
B±

1√
π

(
−B−

2√
π
(βηqyux(1− 2βu2y) + 2τxy + βuy(2ηqx − uxτyy))

+
√
βηqxA

−
2

)

+

 √
β
B−

2√
π

(
ηqy(1 + 2β(u2y + u2x(−1 + 2βu2y)))
−4ux(βηqxuy + τxy) + (1 + 2βu2x)uyτyy

)
−τxxA−

2

A±
1


GX±−

I,4 = ρ
16β3/2

 B±
1√
π

(
−2

√
βB−

2 uy√
π

+
(1+ū2+γ)A−

2

γ−1

)
+
(
−2βB−

2 uxuy√
π

+
√
β(ū2+2γ)uxA

−
2

γ−1

)
A±

1



GX±−
V,4 = ρ

32pβ3/2



B±
1√
π


−2

√
β
B−

2√
π


qy(−4γ+ū2x+2β(−2−ū2x)u2y)

γ

+(uy(8βηqxux + τxx) + 6uxτxy)

− (2+ū2x)uyτyy
γ−1


+

(
4βηqyuy +

2βqxux(−3+γ−ū2y)
γ

+
(1−3γ−ū2y)τxx

γ−1

)
A−

2



+2


B−

2√
π


−βqx(1+γ+3ū2x)uy

γ

+
βqyux(−1+3γ−ū2x+(2β(1+γ)+2βū2x)u

2
y)

γ

+ (1−3γ−3ū2x)τxy+βux(1+γ+ū
2
x)uyτyy

γ−1


+2

√
β(qx − (uxτxx + uyτxy))A

−
2

A±
1


GY −

I,1 =
ρ

2
√
β
(
B−

2√
π
+
√
βuyA

−
2 )

GY −
V,1 = − ρ

4p
√
β

B−
2√
π
(2βηqyuy + τyy)

GY −
I,2 =

ρ
2
√
β
ux(

B−
2√
π
+
√
βuyA

−
2 )

GY −
V,2 =

ρ
4pβ

(
√
β
B−

2√
π
(η(qx − 2βqyuxuy)− uxτyy)− A−

2 τxy)

GY −
I,4 =

ρ
8β3/2 (

B−
2√
π
(1+γ+ū2)
(γ−1)

+
√
βuy

(2γ+ū2)
(γ−1)

A−
2 )
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GY −
V,4 =

ρ
16pβ3/2

(
B−

2√
π
(4βηqxux + 2βqyuy

(γ−3−ū2x)
γ

+ (1−3γ−ū2x)
γ−1

τyy)

+4
√
β(qy − uxτxy − uyτyy)A

−
2

)

where ū2x = 2β(γ − 1)u2x, ū
2
y = 2β(γ − 1)u2y, ū

2 = 2β(γ − 1)(u2x + u2y), η =

(γ − 1)/γ, B±
1 = ±Exp[−βu2x], B±

2 = ±Exp[−βu2y], A±
1 = 1 ± Erf [

√
βux]

and A±
2 = 1 ± Erf [

√
βuy]. The y component of state vector is not updated

as Ui=3=ρuy= 0, hence fluxes GX±−
I,3 , GX

±−
V,3 , GY

−
I,3,GY

−
V,3 are not evaluated.

5.5.2 Wall boundary condition for 3-D case

Similarly upwind discretization for the three dimensional case the distribution at

time t+∆t at the boundary is obtained as

f1,Σ(t+∆t) = f1,Σ(t)−∆t


∂vxf

+·−
1,Σ (t)

∂x
+

∂vxf
−·−
1,Σ (t)

∂x
∂vyf

·+−
1,Σ (t)

∂y
+

∂vyf
·−−
1,Σ (t)

∂y

+
∂vzf

··−
1,Σ(t)

∂z

 (5.53)

where distribution f+·−
1 is the half-range total distribution function for 0 < vx <

∞, −∞ < vy < ∞ and −∞ < vz < 0. The distribution f−·−
1 is the total

distribution function for −∞ < vx < 0, −∞ < vy < ∞ and −∞ < vz < 0. The

distribution f ··−
1 is the total distribution function for −∞ < vx < ∞, −∞ <

vy < ∞ and −∞ < vz < 0. After taking Ψ moment we can obtain state update

equation expressed as

U(t+∆t) = U(t)−∆t



(
∂ĜX

+·−
(t)

∂x

)
∆x<0

+

(
∂ĜX

−·−
(t)

∂x

)
∆x>0(

∂ĜY
·+−

(t)
∂y

)
∆y<0

+

(
∂ĜY

·−−
(t)

∂y

)
∆y>0

+

(
∂ĜZ

··−
(t)

∂z

)
∆z>0

 (5.54)

where U=[ρ, ρu, ρE]T is the state vector and ∆t is the time step.

The z component of state vector is not updated as Ui=4=ρuz= 0. ĜX
±·−

repre-

sents the flux based on half range distributions f±·−
1,Σ . ĜY

·±−
represents the flux

based on half range distributions f ·±−
1,Σ . ĜZ

··−
is the flux resulting from half range

distribution f ··−
1,Σ. The mass, momentum and energy components of x-directional
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5.6 Treatment of slip flow near transition regime.

flux ĜX
±·−

can be written as sum of inviscid or Euler part ĜX
±·−
I and viscous

part ĜX
±·−
V as

ĜX
±·−

= ĜX
±·−
I + ĜX

±·−
V =

⟨
vxΨf

±·−
0,Σ

⟩
−
∑

j Λ
±·−
j ⊙Xj (5.55)

Components of y-directional flux ĜY
·±−

can be written as sum of inviscid part

and viscous part as follows

ĜY
·±−

= ĜY
·±−
I + ĜY

·±−
V =

⟨
vyΨf

·±−
0,Σ

⟩
−
∑

j Λ
·±−
j ⊙Xj (5.56)

Similarly, components of z-directional flux ĜZ
··−

can be written as sum of inviscid

part and viscous part as follows

ĜZ
··−

= ĜZ
··−
I + ĜZ

··−
V =

⟨
vzΨf

··−
0,Σ

⟩
−
∑

j Λ
··−
j ⊙Xj (5.57)

The viscous fluxes are obtained using macroscopic tensors Λ±·−
j , Λ·±−

j and Λ··−
j

associated with shear stress tensor and heat flux vector following Onsager’s recip-

rocal relationship so as to maximize the entropy production. The fluxes ĜX
±·−

,

ĜY
·±−

and ĜZ
··−

can also be written in alternative form as

ĜX
±·−

= (2− σ)(GX±·−
I +GX±·−

V ) + σGX±−
I (ρ, u⃗w, Tw)

ĜY
·±−

= (2− σ)(GY ·±−
I +GY ·±−

V ) + σGY ·±−
I (ρ, u⃗w, Tw)

ĜZ
··−

= (2− σ)(GZ−
I +GZ−

V ) + σGZ−
I (ρ, u⃗w, Tw)

(5.58)

where GX±·−
I , GX±·−

V , GY ·±−
I GY ·±−

V , GZ−
I and GZ−

V are evaluated based on

fluid conditions while GX±·−
I (ρ, u⃗w, Tw), GY

·±−
I (ρ, u⃗w, Tw) and GZ

−
I (ρ, u⃗w, Tw)

are the inviscid flux based on Maxwellian distribution which are evaluated using

fluid density ρ, wall temperature Tw and wall velocity u⃗w≡(uw,x, uw,y, 0). The

final expressions of these fluxes are given in section D.3.3 of Appendix D.

5.6 Treatment of slip flow near transition regime.

For modeling slip near transition regime ideally we require an approach which

is computationally cheap and takes the slip velocity dependence on the fluid

dynamic variations in the tangential direction. The approach also requires inclu-

sion of the terms of order Kn2 for its validity in the non-continuum slip bordering
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5.6 Treatment of slip flow near transition regime.

the transition region (Kn ≈ 0.1). In the present study we have implemented slip

boundary based on kinetic approach. By using the higher order Chapman-Enskog

distribution the kinetic treatment of slip can be extended to higher Knudsen num-

ber, Kn>0.1 by adding the Burnett split flux terms. Full kinetic approach with

the addition of Burnett split fluxes associated with second order Chapman-Enskog

will make the computation quite costly. This section discusses various approaches

for the treatment of slip flow near transition regime

5.6.1 Kinetic upwind method using second order Chapman-

Enskog perturbation expansion

For example consider second order Chapman-Enskog perturbation expansion for

Morse-BGK model written as

f = f0 +Knf̄1 +Kn2f̄2
= f0 +Knf0ξ1 +Kn2f̄1ξ2

(5.59)

where Kn is the Knudsen number and ξ1and ξ2 are the first and second order

Chapman-Enskog polynomials.1 Expressing in terms of substantiative derivative
D
Dt

= ∂
∂t
+ u⃗.∇ and relaxation time tR using the procedure of iterative refinement

1Chapman-Enskog theory and the physical models are based on an inappropriate definition

of the peculiar velocity leading to frame dependence of the Burnett equations [291].
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5.6 Treatment of slip flow near transition regime.

for one dimensional geometry we get

Kn2f̄2
f0

= t2R



[(
25
4β2 − I2

β2I2o
− 5I

β2Io

)
c2x +

(
2I
βIo

− 5
β

)
c4x + c6x

] (
∂β
∂x

)2
+2

 (5(3γ−5)
4β

− (4γ−5)I
βIo

+ (γ−1)I2
βI2o

)
cx+(

(10− 4γ) + (2γ−4)I
Io

)
c3x − (3− γ)βc5x

(∂β
∂x

) (
∂ux
∂x

)
+

 ( (3γ−5)2

4
− (3γ−5)(γ−1)I

Io
− (γ−1)2I2

I2o

)
+(

(3− γ)(3γ − 5)β − (γ−1)(3−γ)2βI
Io

)
c2x + (3− γ)2β2c4x

(∂ux
∂x

)2



+ t2R


(

5cx
2β

− Icx
Ioβ

− c3x

)
D
Dt

(
∂β
∂x

)
+

{ (
− 5

2β
+ I

Ioβ
+ 3c2x

)
Dux
Dt

− 5cx
2β2

Dβ
Dt

}(
∂β
∂x

)
+
(
(3− γ)βc2x −

(γ−1)I
Io

cx +
(3γ−5)

2

)
D
Dt

(
∂ux
∂x

)
+{(

(3− γ)c2x −
(γ−1)
βIo

)
Dβ
Dt

− 2(3− γ)βcx
Dux
Dt

}(
∂ux
∂x

)



+ t2R


(

5c2x
2β

− Ic2x
Ioβ

− c4x

)
∂2β
∂x2

+

(
−5cx

2β
∂ux
∂x

+ Icx
Ioβ

∂ux
∂x

+ 3c3x
∂ux
∂x

− 5c2x
2β2

∂β
∂x

)
∂β
∂x

+
(
(3− γ)βc3x −

(γ−1)I
Io

cx +
(3γ−5)

2
cx

)
∂2ux
∂x2

+(
−2(3− γ)β ∂ux

∂x
+ (3− γ)c2x

∂β
∂x

− (γ−1)I
βIo

∂β
∂x

) (
∂ux
∂x

)


(5.60)

This perturbation term has to satisfy the additive invariants property, ex-

pressed as

< Ψ,Knif̄i >1≤i≤2= 0 (5.61)

More-so-ever evaluation shows that < Ψ,Kn2f̄2 > ̸= 0 so we require additional

moment closure terms thus making the determination of f2 non-unique. Refer

section B.5 of Appendix B for closure coefficients for second order Chapman-

Enskog distribution. This derivation illustrates that expressions even for one

dimensional second order distribution based on Morse-BGK model become very

unwieldy and unmanageable. Hence we require an alternative simpler treatment

for modeling slip near transition regime.

5.6.2 Transition-slip velocity treatment based on Burnett

constitutive relations

One of the simplest way to extend the kinetic based slip boundary condition is

by further updating the slip velocity using the second order Kn2 terms associated
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5.6 Treatment of slip flow near transition regime.

with the Burnett constitutive relations [162].

(us)
n+1
2ndOrder = (us)

n+1
kinetic + (∆us)

n+1
Burnett (5.62)

The second order Kn2 Burnett correction terms given by Lockerby et al. [162] is

expressed as

(∆us)
n+1
Burnett =

(
2−σv
σv

)
λ
(
2 µ
ρ2

∂2ρ
∂s∂n

− µ
ρT

∂2T
∂s∂n

)n
w

+ 3Pr
16π

(
γ−1
γ

)
λ2
(
(45γ − 61)∂

2us
∂s2

+ (45γ − 49)∂
2un
∂s∂n

− 12∂
2us
∂n2

)n
w
(5.63)

It should be noted that for polyatomic molecules this correction requires a modi-

fication as Burnett coefficients are different. In this approach second order treat-

ment based on addition of Burnett correction terms is only applied to the velocity

slip. This treatment is thermodynamically incorrect and violates Onsager’s reci-

procity principle as there is no contribution made to the thermal terms.

5.6.3 Treatment of transition-slip flow based on collision

probability function

Near the wall at a normal distance of order O(λ) = λe there exists a Knudsen

layer parametrized by λe which is the effective mean free path depending on

the effective viscosity and wall conditions. In the Knudsen layer some molecules

may collide more with the wall and may not suffer as much collisions with the

molecules as compared to the molecules above the Knudsen layer. Figure 5.3

shows the incident molecules and the reflected molecules in the Knudsen layer.

For modeling slip near transition regime ideally we require an approach which is

computationally cheap includes higher moments thereby terms of order Kn2. It

should be noted that validity of Chapman-Enskog expansion procedure can only

be said for Kn ≤ 1, the more correct way to obtain non-linear distribution has

to be based on extended irreversible thermodynamics (EIT) by expanding the

distribution function in terms of microscopic tensors and thermodynamic forces

as follows

f = f0 −
∑
j

Υj ⊙Xj −
∑
jk

Ῡjk ⊙Xj ⊙Xk + · · · (5.64)
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5.6 Treatment of slip flow near transition regime.

Figure 5.3: Collision probability function in the Knudsen layer

From non-equilibrium thermodynamics point of view linear irreversible thermo-

dynamics (LIT) is no longer valid in the Knudsen layer as fluxes are no longer

linear functions of its conjugate force, regime shifts to extended irreversible ther-

modynamics (EIT) described by J i =
∑

j Lij⊙Xj+
1
2

∑
jk Lijk⊙Xj⊙Xk+ · · ·.

Simplest approach may be to approximate EIT based flux as a function of LIT

based flux by using suitable scaling function. Consider a function P(ȳ)1 as a

measure of probability of collision at any normal distance ȳ= y
λe

≤1 such that

non-equilibrium EIT based flux, J i can be approximated in terms of P(ȳ) for

curvature free surface as J i ≈ P(ȳ)
∑

j Lij ⊙Xj. In the present study we have

used the following form of the collision probability function

P(ȳ) =
{

ȳ
2
+ sin−1(ȳ)

π
,

1,

ȳ ≤ 1
ȳ > 1

(5.65)

where factor ȳ
2
is probability of molecules in the Knudsen layer moving in upward

direction i.e. it is proportional to volume of molecules below the dimensionless

normal distance. Similarly the factor sin−1(ȳ)
π

is the probability of collision due

to downward traveling molecules. The single particle reduced description of the

velocity distribution f1(ȳ) in the Knudsen layer at any normal dimensionless

1For two dimensional symmetry problems collision probability function, P(ȳ) will also de-

pend on the curvature of the surface as it is a volume dependent parameter related to Onsager’s

dissipation function.
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5.6 Treatment of slip flow near transition regime.

distance ȳ= y
λe

≤1 can be expressed as

f1(ȳ) = f0 + P(ȳ)Φf0 (5.66)

where P(ȳ) is the collision probability function, f0 is the Maxwellian, Φ can

be in terms of first order tensorial Hermite polynomials or Chapman-Enskog

polynomials. In the present case the distribution function at normal dimensionless

distance ȳ is expressed as

f1(ȳ) = f0 − P(ȳ)
∑
j

Υj ⊙Xj (5.67)

Using the Maxwell model the total distribution function, f1,Σ at the wall in terms

of accommodation coefficient σ can be written as

f1,Σ(ȳ = 0) = f1,I(ȳ = 0)vz<0 + (1− σ)f1,I(ȳ = 0)vz>0 + σf0,W (ȳ = 0)vz>0

(5.68)

where f1,Σ(v⃗, I) is the total, f1,I(v⃗, I) is the incident as well as the specularly re-

flected Chapman-Enskog distribution and f0,W (v⃗, I) is the diffuse reflected Maxwellian

distribution evaluated at the wall conditions. At the wall the velocity gradient

is singular as Maxwellian distribution prevails i.e. the effective viscosity becomes

zero similar to the findings of Lilley and Sader [154].

The Boltzmann equation in the Knudsen layer in terms of new kinetic model can

be interpreted as

∂f

∂t
+∇x⃗ · (v⃗f) = −

(
f − f0

P(ȳ)tR(τ)

)
Xq=0

−
(

f − f0
P(ȳ)tR(q)

)
Xτ=0

(5.69)

This can also be interpreted as new kinetic model with varying relaxation time

expressed as

∂f

∂t
+∇x⃗ · (v⃗f) = −

(
f − f0
t̃R(τ)(ȳ)

)
Xq=0

−
(
f − f0
t̃R(q)(ȳ)

)
Xτ=0

(5.70)

The relaxation time varies with the normal distance from the wall based on the

collision probability function, P(ȳ) as

t̃R(j) = P(ȳ)tR(j) (5.71)
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5.7 Summary

The kinetic upwind equations in the macroscopic form is

U(t+∆t) = U(t)−∆t


∂GX±

I (t)

∂x
+ ∂ḠX

±
V (t)

∂x

+
∂GY ±

I (t)

∂y
+ ∂ḠY

±
V (t)

∂y

+
∂GZ±

I (t)

∂z
+ ∂ḠZ

±
V (t)

∂z

 (5.72)

This kinetic method is quite easy to implement as the viscous fluxes are just

multiplied by the collision function P(ȳ). The viscous part of the flux component,

ḠX
±
V , ḠY

±
V and ḠZ

±
V are obtained as

ḠX
±
V = P(ȳ)GX±

V = −P(ȳ)
∑

j Λ
±··
j ⊙Xj

ḠY
±
V = P(ȳ)GY ±

V = −P(ȳ)
∑

j Λ
·±·
j ⊙Xj

ḠZ
±
V = P(ȳ)GZ±

V = −P(ȳ)
∑

j Λ
··±
j ⊙Xj

(5.73)

Expressions for components of the macroscopic tensors Λ±··
τ , Λ±··

q associated with

x-split fluxes, Λ·±·
τ , Λ·±·

q associated with y-split fluxes and Λ··±
τ , Λ··±

q associated

with z-split fluxes are given in section D.2 of Appendix D.

5.7 Summary

The chapter derives gradient and flux based kinetic wall boundary condition

using new non-equilibrium thermodynamics based distribution function. Gradi-

ent based velocity slip and temperature jump boundary conditions were derived

using half range distribution function for cases with negligible tangential varia-

tions. Expressions of gradient based velocity slip and temperature jump derived

using non-equilibrium based distribution were compared with the expressions

of Maxwell velocity slip and von Smoluchowski temperature jump. A unified ki-

netic theory and non-equilibrium thermodynamics based wall boundary condition

which satisfies Onsager’s relationship was also derived, this boundary condition is

flux based and can simulate both continuum and rarefied slip flow within Navier-

Stokes equation in order to avoid extremely costly multi-scale simulation. In

order to extend the slip flow simulation near the transition regime a new method

based on collision probability function was also suggested.
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Chapter 6

Development of meshless kinetic

upwind solver

6.1 Introduction

In this chapter we present a novel meshless kinetic upwind solver which can work

for highly stretched distribution of points required for viscous and slip flow sim-

ulations. The first section describes least square method using normal equations

approach to carry out a test for highly stretched distribution of points. The

second section describes the novel least square method based on stencil spitting,

the third section describes the pre-processing tools used in the split stencil least

square based method. An illustrative numerical example of a function simulat-

ing boundary layer over stretched distribution of points is presented to show the

merit of the novel least square approach. The fourth section describes the imple-

mentation of kinetic upwind scheme based on split stencil least square meshless

method. The fifth section describes the parallelization strategy and the last sec-

tion describes the implementation of multi-objective optimization methodology

for meshless solver.

184



6.2 Least square based method and stretched distribution of points

Figure 6.1: Point connectivity for LSKUM

6.2 Least square based method and stretched

distribution of points

Consider a reference node Po surrounded by m points defined as connectivity

N(Po) ={∀Pi : d(Po, Pi) < h } as shown in Figure 6.1. We are interested in finding

the derivatives of ϕ at all the nodes. The derivatives are obtained in the following

way. Error at any point Pi in the neighbourhood of Po in terms of derivatives

ϕxo, ϕyo and ϕzo gives us,

Ei = ∆ϕi −∆xiϕxo −∆yiϕyo −∆ziϕzo i = 1, ...,m (6.1)

where ∆xi = xi − xo, ∆yi = yi − yo, ∆zi = zi − zo and ∆ϕi = ϕi − ϕo. Finding

the derivative at point Po is a least squares problem where error norm ∥E∥2
is to be minimized with respect to ϕxo, ϕyo and ϕzo using stencil N(Po). In

the normal equations approach we find Φo = [ϕxo, ϕyo, ϕzo]
T ∈ Rn such that

∥ANΦo −∆ϕN∥2 is minimized where data matrix AN ∈ Rm×n and observation

∆ϕN = [∆ϕ1,∆ϕ2, · · · ,∆ϕm]T ∈ Rm. As described earlier the normal equations

approach uses smaller cross-product matrix C = AT
NAN ∈ Rn×n. In the least
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6.2 Least square based method and stretched distribution of points

square approach the matrices AT
N and AN are expressed as

AT
N =

 ∆x1 ∆x2 · · · ∆xm
∆y1 ∆y2 · · · ∆ym
∆z1 ∆z2 · · · ∆zm


AN =


∆x1 ∆y1 ∆z1
∆x2 ∆y2 ∆z2
· · · · · · · · ·
∆xm ∆ym ∆zm


(6.2)

Thus, cross matrix product C =AT
NAN for sub-stencil Nx(Po) is given as

C = AT
NAN =

 (
∑

∆x2i )N (
∑

∆xi∆yi)N (
∑

∆xi∆zi)N
(
∑

∆xi∆yi)N (
∑

∆y2i )N (
∑

∆yi∆zi)N
(
∑

∆xi∆zi)N (
∑

∆yi∆zi)N (
∑

∆z2i )N

 (6.3)

The expressions (·)N require values evaluated using stencils N(Po). The deriva-

tives in least square method can be obtained as

Φo =
(
AT
NAN

)−1
AT
N∆ϕN = C−1AT

N∆ϕN (6.4)

For a two dimensional case this can be written as[
ϕxo
ϕyo

]
=

[
(
∑

∆x2i )N (
∑

∆xi∆yi)N
(
∑

∆xi∆yi)N (
∑

∆y2i )N

]−1 [
(
∑

∆ϕi∆xi)N
(
∑

∆ϕi∆yi)N

]
(6.5)

The expressions of the derivatives after solution based on normal equations ap-

proach is as follows

ϕxo =
(
∑

∆y2i )N(
∑

∆ϕi∆xi)N − (
∑

∆xi∆yi)N(
∑

∆ϕi∆yi)N
(
∑

∆x2i )N(
∑

∆y2i )N − (
∑

∆xi∆yi)N(
∑

∆xi∆yi)N
(6.6)

ϕyo =
(
∑

∆x2i )N(
∑

∆ϕi∆yi)N − (
∑

∆xi∆yi)N(
∑

∆ϕi∆xi)N
(
∑

∆x2i )N(
∑

∆y2i )N − (
∑

∆xi∆yi)N(
∑

∆xi∆yi)N
(6.7)

The selection of connectivity set N(Po) is the most crucial aspect. With this

method degeneracy takes place when the distribution of points is highly stretched.

6.2.1 Condition number and highly stretched distribution

of points

Important question is how least square based method based on normal equations

approach handle highly stretched distribution of points. One of the good measure
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Figure 6.2: Highly stretched distribution of points.

is the condition number of the cross product matrix evaluated for highly stretched

cloud of points. To illustrate this consider a test case with highly stretched

distribution of point generated using uniform clustering parallel to x-axis and

exponential clustering parallel to y-axis as follows

xi = xmax

(
i−1

imax−1

)
yi = ymax

(
exp(β j−1

jmax−1)−1

exp(β)−1

)
(6.8)

Following parameters are used in this test case

β = 10. imax = 20 , jmax = 20 xmax = 1.0 ymax = 0.2 (6.9)

Fig. 6.2 shows the distribution of points, aspect ratio of the distribution of

points near the wall is ∆x
∆y

= 8367. For 2-D geometry the cross matrix product

C =AT
NAN is

C = AT
NAN =

[
(
∑

∆x2i )N (
∑

∆xi∆yi)N
(
∑

∆xi∆yi)N (
∑

∆y2i )N

]
(6.10)

Fig. 6.3 shows the contour plot of condition number of the cross matrix product

C. Near the wall the condition number rises up to an order 9 × 107. The

least square based approach leads to ill-conditioning near the wall due to highly

stretched distribution of points required for resolving the viscous flow features.

6.2.2 QR approach

The most reliable approach is reduction of matrix AN to various canonical forms

via orthogonal transformations [98] and QR approach is one of the ways to com-
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Figure 6.3: Condition number plot for highly stretched distribution of points.

pute orthonormal basis for a set of vectors. Any matrix can be decomposed

in Q which is orthonormal and R which is upper triangular. QR factorization

transforms the linear least square problem into a triangular least squares. Not

all ill effects inherent in the normal equation approach can be avoided by using

orthogonal transformation as condition number is still relevant to some extent

[99].

6.2.3 Numerical test

Consider a 2-D test case to evaluate gradients of a function,ϕ simulating viscous

boundary layer. The function ϕ chosen for this test case is

ϕ = 1.5
(y
δ

)
− 0.5

(y
δ

)3
(6.11)

where δ is given as

δ =
5.2x√
Re

(6.12)

where Reynold’s number, Re = 1000. The clouds of points are generated using

highly stretched grid described in the previous section. Fig. 6.4(a) and Fig. 6.4(b)

show comparison of derivatives ∂ϕ
∂x

and ∂ϕ
∂y

using normal equations and QR based

least square method with respect to analytical evaluation. The cross-product
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matrix, C in normal equations based least square method becomes ill-conditioned

when the distribution of points is highly stretched. Because of clustering in y

direction the derivative ∂ϕ
∂y

is quite accurate. While derivative ∂ϕ
∂x

suffers due

to ill-conditioning of matrix C caused by stretched distribution. Approach of

normal equations as well as QR produces inaccurate results when applied to ill-

conditioned problem [98]. Numerical test conducted to check the accuracy of

the least square based meshless method revealed that for a stretched distribution

of points, least square approach based on normal equations and QR leads to ill-

conditioning. Thus, we require a formulation which remains well conditioned even

for highly stretched distribution of points.

6.2.4 Why least square method fails ?

Consider a two-dimensional case with reference node Po surrounded by m points

defined by its connectivity N(Po) with node point Pj lying close to x-axis such

that ∆yj is very small, and node point Pk lying close to y-axis such that ∆xk

is very small as shown in Figure 6.5 The derivative ϕxo and ϕyo based on Taylor

series can be written for any node point Pi as follows

ϕxo =
∆ϕi
∆xi

− ∆yi
∆xi

ϕyo −
Ei
∆xi

i = 1, ...,m (6.13)

ϕyo =
∆ϕi
∆yi

− ∆xi
∆yi

ϕxo −
Ei
∆yi

i = 1, ...,m (6.14)

For point Pk which lies close to y-axis the term ∆yk
∆xk

becomes singular as ∆xk

approaches y-axis, thus evaluation of ϕxo will become erroneous due to presence

of all the similar points like Pk which are close to y-axis. Similarly, For point

Pj which lies close to x-axis the term
∆xj
∆yj

becomes singular as ∆yj approaches

x-axis, thus evaluation of ϕyo will become erroneous due to presence of all the

similar points like Pj which are close to x-axis. Hence we require a method which

filters off all the points close to y-axis while evaluating x-derivative ϕxo and filters

off all the points close to x-axis while evaluating y-derivative ϕyo.
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Figure 6.4: Comparison of (a) derivative ∂ϕ
∂x
, and (b) derivative ∂ϕ

∂y
with respect

to analytical result.
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6.2 Least square based method and stretched distribution of points

Figure 6.5: A typical connectivity for a two dimensional least square method.

Figure 6.6: Connectivity N(Po) split into two parts Nx(Po) and Ny(Po) .
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6.3 Split-stencil least square kinetic upwind method

(SLKNS)

This section presents a novel way to avoid ill-conditioning of the cross-product

matrix while retaining the simplicity of normal equations approach. Consider a

two-dimensional case with reference node Po surrounded by m points defined by

its split connectivity Nx(Po) and Ny(Po) as shown in Figure 6.6. By splitting

the connectivity we will get error for x-split connectivity Nx(Po) with mx points

as well as y-split connectivity Ny(Po) with my points. For example error at any

point Pi in the neighbourhood of Po for Nx(Po) in terms of derivatives ϕxo and

ϕyo gives us

Exi = ∆ϕi −∆xiϕxo −∆yiϕyo i = 1, · · · ,mx (6.15)

where ∆xi = xi − xo, ∆yi = yi − yo and ∆ϕi = ϕi − ϕo. The x-split connectivity

Nx(Po) is defined as

Nx(Po) =

{
∀Pi : Pi ∈ N(Po)∃

∆yi
∆xi

≤ 1

}
(6.16)

such that mx are the number of nodes contained in Nx(Po). Similarly, error at

any point Pi in the neighbourhood of Po for Ny(Po) gives us

Eyi = ∆ϕi −∆xiϕxo −∆yiϕyo i = 1, · · · ,my (6.17)

wheremy are the number of nodes contained in y-split connectivityNy(Po) defined

as

Ny(Po) =

{
∀Pi : Pi ∈ N(Po)∃

∆xi
∆yi

≤ 1

}
(6.18)

Finding the derivative at point Po now differs from the usual normal equations

approach as error norms ∥Ex∥2 and ∥Ey∥2 are to be minimized with respect to

ϕxo and ϕyo using stencils Nx(Po) and Ny(Po). Solution for this can be written as[
ϕxo
ϕyo

]
=

[
(
∑

∆x2i )Nx (
∑

∆xi∆yi)Nx

(
∑

∆xi∆yi)Ny (
∑

∆y2i )Ny

]−1 [
(
∑

∆ϕi∆xi)Nx

(
∑

∆ϕi∆yi)Ny

]
(6.19)

The expressions of the derivatives are as follows

ϕxo =
(
∑

∆y2i )Ny(
∑

∆ϕi∆xi)Nx − (
∑

∆xi∆yi)Nx(
∑

∆ϕi∆yi)Ny

(
∑

∆x2i )Nx(
∑

∆y2i )Ny − (
∑

∆xi∆yi)Nx(
∑

∆xi∆yi)Ny

(6.20)
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Figure 6.7: Comparison of derivative ∂ϕ
∂x

with respect to analytical result.

ϕyo =
(
∑

∆x2i )Nx(
∑

∆ϕi∆yi)Ny − (
∑

∆xi∆yi)Ny(
∑

∆ϕi∆xi)Nx

(
∑

∆x2i )Nx(
∑

∆y2i )Ny − (
∑

∆xi∆yi)Nx(
∑

∆xi∆yi)Ny

(6.21)

Consider a 2-D test case described in section 6.2.3 using highly stretched grid to

evaluate gradients of a function,ϕ simulating viscous boundary layer described

earlier. As observed earlier because of clustering in y direction the derivative ∂ϕ
∂y

is quite accurate. While derivative ∂ϕ
∂x

suffers due to ill-conditioning of matrix C

caused by stretched distribution. The new method based on split stencil least

square gives the most accurate result as it filters off all the points close to y-

axis while evaluating x-derivative ϕxo and filters off all the points close to x-axis

while evaluating y-derivative ϕyo. Fig. 6.7 shows the comparison of derivatives
∂ϕ
∂x

using normal equations, QR based least square method and new method using

split stencil least square with respect to analytical evaluation. The present method

based on split stencils successfully overcomes the ill-conditioning due to stretched

distribution of points while retaining the simplicity of normal equations approach.
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6.3 Split-stencil least square kinetic upwind method (SLKNS)

(a) (b)

Figure 6.8: Point connectivity for (a)Normal equations based least Square

method, and (b)Split-stencil based least Square method

6.3.1 Selection of sub-stencils

Let us consider Ω to be an open domain of Rn, n= 3. Suppose that a continuous

function ϕ :Ω̄→ R i.e. it is given at all points Pi ∈ Ω̄ in a cloud of nodes and ϕ

is any function of x, y and z. Also consider a reference node Po surrounded by

m points defined as connectivity N(Po) ={∀Pi : d(Po, Pi) < h } as shown in Fig-

ure 6.8(a). The new method splits the set of neighbours N(Po) for node Po so as

to resolve the derivatives for highly stretched cloud of points. We are interested

in finding the derivatives of ϕ at all the nodes. As described earlier, existing least

square method follows normal equations approach where ∥ANΦo−∆ϕN∥2 is min-

imized for stencil N(Po). Whereas, the new method using split stencils minimizes

∥ANxΦo −∆ϕNx
∥2, ∥ANyΦo −∆ϕNy

∥2 and ∥ANzΦo −∆ϕNz
∥2 with respect to

ϕxo, ϕyo and ϕzo respectively for each carefully selected sub-stencilsNx(Po) ∈ Rmx ,

Ny(Po) ∈ Rmy , Nz(Po) ∈ Rmz and ∆ϕNα
= [∆ϕ1,∆ϕ2, · · · ,∆ϕmα ]

T ∈ Rmα where

α= x,y and z. For example matrix ANx ∈ Rmx×n ⊂ AN contains entries of only

those nodes which have ∆y and ∆z tending to zero such that sub-stencilNx(Po) ⊂
N(Po) contains mx nodes. Similarly, sub-stencil Ny(Po) ⊂ N(Po) contains my

nodes forms matrix ANy ∈ Rmy×n ⊂ AN and sub-stencil Nz(Po) ⊂ N(Po) con-

tainsmz nodes forms matrixANz ∈ Rmz×n ⊂AN . Expressing ∥ANαΦo−∆ϕNα
∥2

where α= x,y and z as a dot-product in terms of transpose and matrix multipli-
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6.3 Split-stencil least square kinetic upwind method (SLKNS)

cation

(ANαΦo −∆ϕNα
)T (ANαΦo −∆ϕNα

)
= AT

Nα
ΦT
oANαΦo −AT

Nα
ΦT
o∆ϕNα

−∆ϕTNα
ANαΦo +∆ϕTNα

∆ϕNα

(6.22)

Minimization of the 2-norm (ANαΦo − ∆ϕNα
)T (ANαΦo − ∆ϕNα

) with respect

to its gradient ϕαo where α= x,y and z using matrix calculus leads to(∑
α

ΛαA
T
Nα
ANα

)
Φo =

∑
α

ΛαA
T
Nα

∆ϕNα
⇔ CΦo = ∆ϕNxyz

(6.23)

whereC = ΛxA
T
Nx
ANx +ΛyA

T
Ny
ANy +ΛzA

T
Nz
ANz and∆ϕNxyz

=ΛxA
T
Nx
∆ϕNx

+ ΛyA
T
Ny
∆ϕNy

+ ΛzA
T
Nz
∆ϕNz

with diagonal matrices Λx, Λy and Λz ∈ Rn×n.

The diagonal matrices are subsets of Identity matrix, I such that Λx+Λy+Λz =

I with Λx ≡ diag(1, 0, 0), Λy ≡ diag(0, 1, 0) and Λz ≡ diag(0, 0, 1). For example

matrices ΛxA
T
Nx

and ANx can be expressed as

ΛxA
T
Nx

=

 ∆x1 ∆x2 · · · ∆xmx

0 0 · · · 0
0 0 · · · 0


ANx =


∆x1 ∆y1 ∆z1
∆x2 ∆y2 ∆z2
· · · · · · · · ·
∆xmx ∆ymx ∆zmx


(6.24)

Matrices ΛyA
T
Ny

and ANy can be expressed as

ΛxA
T
Ny

=

 0 0 · · · 0
∆y1 ∆y2 · · · ∆ymy

0 0 · · · 0


ANy =


∆x1 ∆y1 ∆z1
∆x2 ∆y2 ∆z2
· · · · · · · · ·
∆xmy ∆ymy ∆zmy


(6.25)

Similarly, matrices ΛzA
T
Nz

and ANz can be expressed as

ΛzA
T
Nz

=

 0 0 · · · 0
0 0 · · · 0
∆z1 ∆z2 · · · ∆zmz


ANz =


∆x1 ∆y1 ∆z1
∆x2 ∆y2 ∆z2
· · · · · · · · ·
∆xmz ∆ymz ∆zmz


(6.26)
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The cross product matrix C = ΛxA
T
Nx
ANx + ΛyA

T
Ny
ANy + ΛzA

T
Nz
ANz is given

as

C =

 (
∑

∆x2i )Nx (
∑

∆xi∆yi)Nx (
∑

∆xi∆zi)Nx

(
∑

∆xi∆yi)Ny (
∑

∆y2i )Ny (
∑

∆yi∆zi)Ny

(
∑

∆xi∆zi)Nz (
∑

∆yi∆zi)Nz (
∑

∆z2i )Nz

 (6.27)

The expressions (·)Nx
, (·)Ny

and (·)Nz
requires values evaluated using sub-stencils

Nx(Po), Ny(Po) and Nz(Po). With the proper choice of sub-stencils Nx, Ny and

Nz we can make the matrix C diagonally dominant and off-diagonal terms very

small.

When upwind scheme is implemented based on positive and negative stencil split

to account signal propagation we have to further split the stencil. Thus in upwind

split stencil based least square method the basic stencil N(Po) gets divided into 6

different kind of upwind sub-stencils : N+
x (Po), N

−
x (Po), N

+
y (Po), N

−
y (Po), N

+
z (Po)

and N−
z (Po) as shown in Fig. 6.8(b). For example connectivity parameters Syx

and Szx define conical sub-stencils N±
x (Po) such that

∣∣∣∆yi∆xi

∣∣∣ = syxi ≤ Syx and
∣∣∣∆zi∆xi

∣∣∣
= szxi ≤ Szx as follows:

N+
x (Po) =

{
∀Pi : Pi ∈ N(Po)∃∆xi ≤ 0, syxi ≤ Syx, szxi ≤ Szx

}
N−
x (Po) =

{
∀Pi : Pi ∈ N(Po)∃∆xi ≥ 0, syxi ≤ Syx, szxi ≤ Szx

} (6.28)

Connectivity parameters Sxy and Szy define conical sub-stencils N±
y (Po) such that∣∣∣∆xi∆yi

∣∣∣ = sxyi ≤ Sxy and
∣∣∣∆zi∆yi

∣∣∣ = szyi ≤ Szy. Conical sub-stencils N±
y (Po) is defined

as follows

N+
y (Po) =

{
∀Pi : Pi ∈ N(Po)∃∆yi ≤ 0, sxyi ≤ Sxy, szyi ≤ Szy

}
N−
y (Po) =

{
∀Pi : Pi ∈ N(Po)∃∆yi ≥ 0, sxyi ≤ Sxy, szyi ≤ Szy

} (6.29)

Similarly, connectivity parameters Sxz and Syz define conical sub-stencils N±
z (Po)

such that
∣∣∣∆xi∆zi

∣∣∣ = sxzi ≤ Sxz and
∣∣∣∆yi∆zi

∣∣∣ = syzi ≤ Syz. Conical sub-stencils N±
z (Po)

is defined as follows

N+
z (Po) =

{
∀Pi : Pi ∈ N(Po)∃∆zi ≤ 0, sxzi ≤ Sxz, syzi ≤ Syz

}
N−
z (Po) =

{
∀Pi : Pi ∈ N(Po)∃∆zi ≥ 0, sxzi ≤ Sxz, syzi ≤ Syz

} (6.30)
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6.3 Split-stencil least square kinetic upwind method (SLKNS)

Minimization of the ∥ANαΦo −∆ϕNα
∥2 with respect to its gradient ϕαo where

α= x,y and z leads to CΦo = ∆ϕNxyz
as follows:

∆rxyz


1

(
∑

∆x2i syxi)N±
x

(
∑

∆x2i )N±
x

(
∑

∆x2i szxi)
N±
x

(
∑

∆x2i )N±
x

(
∑

∆y2i sxyi)N±
y

(
∑

∆y2i )N±
y

1
(
∑

∆y2i szyi)N±
y

(
∑

∆y2i )N±
y

(
∑

∆z2i sxzi)N±
z

(
∑

∆z2i )N±
z

(
∑

∆z2i syzi)N±
z

(
∑

∆z2i )N±
z

1


︸ ︷︷ ︸

C

 ϕxo
ϕyo
ϕzo


︸ ︷︷ ︸

Φo

=

 (
∑

∆ϕi∆xi)N±
x

(
∑

∆ϕi∆yi)N±
y

(
∑

∆ϕi∆zi)N±
z


︸ ︷︷ ︸

∆ϕNxyz

(6.31)

where ∆rxyz = (
∑

∆x2i )N±
x
(
∑

∆y2i )N±
y
(
∑

∆z2i )N±
z
. The expressions (·)N±

x
, (·)N±

y

and (·)N±
z

requires values evaluated using split stencils N±
x (Po), N

±
y (Po) and

N±
z (Po). When these connectivity parameters Syx, Szx, Sxy, Szy, Sxz and Syz

all tend to zero, then the matrix C as shown in Eq. (6.31) is always diagonally

dominant and well conditioned as off diagonal terms are very small. When all

the connectivity parameters tend to zero split stencil based least square method

becomes less dissipative as it approaches the Taylor series based finite difference

method.

The new proposed method uses a different approach to solve a least squares

problem as it generates the non-symmetric cross-product matrix C ̸= AT
NAN by

suitable selection of sub-stencils such that the matrix is diagonally dominant and

well conditioned. In other words split stencil based least square while retaining

the simplicity of normal equations approach avoids the ill-conditioning of the ma-

trix C which is the weakness of normal equations approach. The present method

like normal equations approach requires (m+n/3)n2 flops as against 2(m−n/3)n2

flops required in QR approach for a full rank least squares problem. For large

m ≫ n the split stencil least square provides stable results involving about half

the arithmetic. The kinetic upwind scheme based on least square method using

split stencil is called as split stencil least square kinetic upwind method or SLKNS

in short.
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6.3 Split-stencil least square kinetic upwind method (SLKNS)

Figure 6.9: Typical split connectivity around point Po

6.3.2 Modified split stencil method (m-SLKNS)

In modified split stencil based least square method the error is normalized by

distance component such that error at any point i in the neighbourhood of o

gives us

exi =
ei
∆xi

=
∆ϕi
∆xi

− ϕxo −
∆yi
∆xi

ϕyo −
∆zi
∆xi

ϕzo + · · · i = 1, · · · ,mx (6.32)

eyi =
ei
∆yi

=
∆ϕi
∆yi

− ∆xi
∆yi

ϕxo − ϕyo −
∆zi
∆yi

ϕzo + · · · i = 1, · · · ,my (6.33)

ezi =
ei
∆zi

=
∆ϕi
∆zi

− ∆xi
∆zi

ϕxo −
∆yi
∆zi

ϕyo − ϕzo + · · · i = 1, · · · ,mz (6.34)

where ∆xi = xi − xo, ∆yi = yi − yo, ∆zi = zi − zo and ∆ϕi = ϕi − ϕo. Modified

split stencil minimizes
∑

∥ex∥2 ,
∑

∥ey∥2 and
∑

∥ez∥2 with respect to ϕxo, ϕyo

and ϕzo respectively for each carefully selected sub-stencils Nx(Po)∈ Rmx , Ny(Po)

∈ Rmy and Nz(Po) ∈ Rmz . Thus, modified split stencil is similar to split stencil

least square as the basic stencil N(Po) gets divided into 6 different kind of upwind

sub-stencils : N+
x (Po), N

−
x (Po), N

+
y (Po), N

−
y (Po), N

+
z (Po) and N−

z (Po) defined

by connectivity parameters. To illustrate the derivative calculation consider ϕ to

be any function of x, y in two-dimensions with cloud of points with split stencils

as shown in Fig. 6.9. Error exi for any point Pi using connectivity set Nx(Po)

based on Taylor series around Po is defined as

exi =
ei
∆xi

=

(
∆ϕi − ϕxo −

∆yi
∆xi

ϕyo

)
+ · · · (6.35)
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Similarly, error eyi for connectivity set Ny(Po) is defined as

eyi =
ei
∆yi

=

(
∆ϕi −

∆xi
∆yi

ϕxo − ϕyo

)
+ · · · (6.36)

Thus we have two sets of the square of error
∑

∥ex∥2and
∑

∥ey∥2 defined as∑
∥ex∥2 =

mx∑
i=1

(
∆ϕi
∆xi

− ϕxo − ϕyo
∆yi
∆xi

)2

=
mx∑
i=1

(
∆ϕi
∆xi

− ϕxo − ϕyoηi

)2

(6.37)

∑
∥ey∥2 =

my∑
i=1

(
∆ϕi
∆yi

− ϕxo
∆xi
∆yi

− ϕyo

)2

=

my∑
i=1

(
∆ϕi
∆yi

− ϕxo
1

ηi
− ϕyo

)2

(6.38)

where slope ηi =
∆yi
∆xi

. Minimizing the sum of the squares of error
∑

∥ex∥2 and∑
∥ey∥2 with respect to ϕxo and ϕyowill lead to CΦo = ∆Φxy

C =

[
1. 1

mx

∑mx

i=1 ηi
1
my

∑my

i=1 (ηi)
−1 1.

]
,Φo =

[
ϕxo
ϕyo

]
, ∆Φxy =

[
1
mx

∑mx

i=1
∆ϕi
∆xi

1
my

∑my

i=1
∆ϕi
∆yi

]
(6.39)

The derivatives ϕxo and ϕyowill lead to

ϕxo =
1

mx

∑mx
i=1

∆ϕi
∆x

i
−( 1

mx

∑mx
i=1 ηi)

(
1

my

∑my
i=1

∆ϕi
∆yi

)
1.−( 1

mx

∑mx
i=1 ηi)

(
1

my

∑my
i=1(ηi)

−1
)

ϕyo =
1

my

∑my
i=1

∆ϕi
∆y

i
−
(

1
my

∑my
i=1

1
ηi

)(
1

mx

∑mx
i=1

∆ϕi
∆x

i

)
1.−( 1

mx

∑mx
i=1 ηi)

(
1

my

∑my
i=1(ηi)

−1
)

(6.40)

Two eigen values are

λ±E = 1±

√√√√ 1

mx

mx∑
i=1

ηi
1

my

my∑
i=1

(ηi)
−1 (6.41)

If the chosen split connectivity stencils Nx(Po) and Ny(Po) are bounded within a

45 degree line then in such case ηi ≤ 1 for Nx(Po) and (ηi)
−1 ≤ 1 for Ny(Po), thus

the matrix C is always well-conditioned. Advantage of this method is its low

storage requirement as we are only storing the off diagonal terms of the matrix

C. The second advantage is for each sub-stencils we can assign separate weights.

The kinetic upwind scheme is based on this modified form of split stencil based

least square method is called as modified split stencil least square kinetic upwind

method or m-SLKNS in short.
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6.3.3 Higher order of accuracy through defect correction

As described earlier Taylor series expansion of any function ϕi at node Pi in the

neighbourhood of node Po will give

ϕi = ϕo +∆xiϕxo +∆yiϕyo +∆ziϕzo

+
∆x2i
2
ϕxxo +

∆y2i
2
ϕyyo +

∆z2i
2
ϕzzo

+∆xi∆yiϕxyo +∆xi∆ziϕxzo +∆yi∆ziϕyzo +O(h3)

(6.42)

where O(h)≡O(∆x,∆y,∆z). For first order accurate derivatives Taylor series is

retained upto first order terms as follows

∆ϕ
(0)
i = ϕi − ϕo = ∆xiϕxo +∆yiϕyo +∆ziϕzo +O(h2) (6.43)

The present method of obtaining higher order accuracy using multi-step defect

correction over first order derivative is extension of defect correction procedure

of Ghosh [92]. In the first step Φ(1)
o obtained for node Po as

 ϕ
(1)
xo

ϕ
(1)
yo

ϕ
(1)
zo


︸ ︷︷ ︸

Φ
(1)
o

= C−1


(∑

∆ϕ
(0)
i ∆xi

)
N±

x(∑
∆ϕ

(0)
i ∆yi

)
N±

y(∑
∆ϕ

(0)
i ∆zi

)
N±

z


︸ ︷︷ ︸

∆ϕ
(0)
Nxyz

(6.44)

The derivatives ϕ
(1)
xi , ϕ

(1)
yi and ϕ

(1)
zi can also be expanded in Taylor series as follows

∆ϕ
(1)
xi = ϕ

(1)
xi − ϕ

(1)
xo = ∆xiϕxxo +∆yiϕxyo +∆ziϕxzo +O(h2)

∆ϕ
(1)
yi = ϕ

(1)
yi − ϕ

(1)
yo = ∆xiϕyxo +∆yiϕyyo +∆ziϕyzo +O(h2)

∆ϕ
(1)
zi = ϕ

(1)
zi − ϕ

(1)
zo = ∆xiϕzxo +∆yiϕzyo +∆ziϕzzo +O(h2)

(6.45)

Using the Taylor series expansion expressed in equation 6.45 we can approximate

the second order accurate Taylor series expansion as follows

∆ϕ
(1)
i = ∆ϕ

(0)
i − 1

2

[
∆xiϕ

(1)
xi +∆yiϕ

(1)
yi +∆ziϕ

(1)
zi

]
+O(h3) (6.46)

Once the first order derivatives ϕ
(1)
xi , ϕ

(1)
yi and ϕ

(1)
zi are available we calculate the

defect corrected first order accurate ∆ϕ
(1)
i to obtain second order accurate deriva-
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tives as follows  ϕ
(2)
xo

ϕ
(2)
yo

ϕ
(2)
zo


︸ ︷︷ ︸

Φ
(2)
o

= C−1


(∑

∆ϕ
(1)
i ∆xi

)
N±

x(∑
∆ϕ

(1)
i ∆yi

)
N±

y(∑
∆ϕ

(1)
i ∆zi

)
N±

z


︸ ︷︷ ︸

∆ϕ
(1)
Nxyz

(6.47)

Thus, second order accuracy in split stencil is achieved through a two-step defect

procedure with inner iterations. The inner iterations further improves the spectral

property as well as second order accuracy of the derivative. The defect corrected

first order accurate ∆ϕ
(1),k
i after k iterations is

∆ϕ
(1),k
i = ∆ϕ

(0)
i − 1

2

[
∆xiϕ

(2),k−1
xi +∆yiϕ

(2),k−1
yi +∆ziϕ

(2),k−1
zi

]
+O(h3) (6.48)

The second order accurate derivative with improved spectral property after k

iterations is evaluated as follows ϕ
(2),k
xo

ϕ
(2),k
yo

ϕ
(2),k
zo


︸ ︷︷ ︸

Φ
(2),k
o

= C−1


(∑

∆ϕ
(1),k
i ∆xi

)
N±

x(∑
∆ϕ

(1),k
i ∆yi

)
N±

y(∑
∆ϕ

(1),k
i ∆zi

)
N±

z


︸ ︷︷ ︸

∆ϕ
(1),k
Nxyz

(6.49)

In order to evaluate third order accurate derivative we need to calculate the

Hessian matrix, H(ϕ
(1),k
0 ) of second order derivatives after k iterations given as

follows ϕ
(1),k
xxo ϕ

(1),k
xyo ϕ

(1),k
xzo

ϕ
(1),k
yxo ϕ

(1),k
yyo ϕ

(1),k
yzo

ϕ
(1),k
zxo ϕ

(1),k
zyo ϕ

(1),k
zzo


︸ ︷︷ ︸

H(ϕ
(1),k
0 )

= C−1


(∑

∆ϕ
(2),k
xi ∆xi

)
N±

x

(∑
∆ϕ

(2),k
yi ∆xi

)
N±

x

(∑
∆ϕ

(2),k
zi ∆xi

)
N±

x(∑
∆ϕ

(2),k
xi ∆yi

)
N±

y

(∑
∆ϕ

(2),k
yi ∆yi

)
N±

y

(∑
∆ϕ

(2),k
zi ∆yi

)
N±

y(∑
∆ϕ

(2),k
xi ∆zi

)
N±

z

(∑
∆ϕ

(2),k
yi ∆zi

)
N±

z

(∑
∆ϕ

(2),k
zi ∆zi

)
N±

z


︸ ︷︷ ︸

∆Φ
(2),k
Nxyz

(6.50)

201



6.3 Split-stencil least square kinetic upwind method (SLKNS)

The defect corrected second accurate ∆ϕ
(2),k
i is expressed as

∆ϕ
(2),k
i = ∆ϕ

(0)
i − 1

2

[
∆xiϕ

(2),k
xi +∆yiϕ

(2),k
yi +∆ziϕ

(2),k
zi

]
+ 1

12

[
∆x2iϕ

(1),k
xxi +∆y2i ϕ

(1),k
yyi +∆z2i ϕ

(1),k
zzi

]
+1

6

[
∆xi∆yi

ϕ
(1),k
xyi +ϕ

(1),k
yxi

2
+∆yi∆zi

ϕ
(1),k
yzi +ϕ

(1),k
zyi

2
+∆xi∆zi

ϕ
(1),k
xzi +ϕ

(1),k
zxi

2

]
+O(h4)

(6.51)

It should be noted that cross derivatives ϕxyi, ϕxzi are evaluated using stencil N±
x

whereas ϕyxi and ϕyzi is evaluated using stencil N±
y . Similarly, cross derivatives

ϕzxi and ϕzyi are evaluated using stencil N±
z . Third order accurate derivatives

after k inner iterations can now be written as

 ϕ
(3),k
xo

ϕ
(3),k
yo

ϕ
(3),k
zo


︸ ︷︷ ︸

Φ
(3),k
o

= C−1


(∑

∆ϕ
(2),k
i ∆xi

)
N±

x(∑
∆ϕ

(2),k
i ∆yi

)
N±

y(∑
∆ϕ

(2),k
i ∆zi

)
N±

z


︸ ︷︷ ︸

∆ϕ
(2),k
Nxyz

(6.52)

6.3.4 Implementation of SLKNS

The following subsection describes the implementation of split-stencil least square

kinetic upwind method (SLKNS). To illustrate the implementation of SLKNS

two dimensional case has been taken up as one dimensional derivation fails to

provide a complete picture. As described earlier in kinetic upwind method the

distribution function at time t + ∆t in a fluid domain for two dimensional case

with first order Chapman-Enskog distribution is constructed based on half range

distribution using x-split and y-split stencils as follows

f t+∆t
1 = f t1 −∆t


(
∂vxf

+·
1

∂x

)t
N+·

x (Po)
+
(
∂vxf

−·
1

∂x

)t
N−·

x (Po)

+
(
∂vyf

·+
1

∂y

)t
N ·+

y (Po)
+
(
∂vyf

·−
1

∂y

)t
N ·−

y (Po)

 (6.53)

where the superscript over first order distribution f1 represents its evaluation

based on half range and full range components of molecular velocities. The prop-

agation of information to node Po depends upon location of node Pi relative to

Po and the signs of vx and vy . If vx > 0 then only the nodes to the left of Po
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(a) (b)

(c) (d)

Figure 6.10: Split-stencil least square kinetic upwind method (SLKNS) (a) pos-

itive x-split, (b) negative x-split, (c) positive y-split, and (d) negative y-split

connectivity for upwind implementation.

203



6.3 Split-stencil least square kinetic upwind method (SLKNS)

belonging to connectivity N+·
x (Po) will influence the solution at Po as shown in

Figure 6.10(a). Similarly, if vx < 0 then only the nodes to the right of Po belong-

ing to connectivity N−·
x (Po) will influence the solution at Po as shown in Figure

6.10(b). Similar arguments show that for vy > 0 the node below Po and for vy < 0

the node above Po will influence the solution at Po belonging to connectivity sets

N ·+
y (Po) and N

·−
y (Po) respectively as shown in Figure 6.10(c) and (d). Kinetic up-

wind scheme accounts this signal propagation property, two-dimensional upwind

discretized Boltzmann equation after taking Ψ-moments simplifies to⟨
Ψ, f t+∆t

1

⟩
= ⟨Ψ, f t1⟩

−∆t



(
∂⟨Ψ,vxf+·

1 ⟩
∂x

)t
N+·

x (Po)

+

(
∂⟨Ψ,vxf−·

1 ⟩
∂x

)t
N−·

x (Po)

+

(
∂⟨Ψ,vyf ·+1 ⟩

∂y

)t
N ·+

y (Po)

+

(
∂⟨Ψ,vyf ·−1 ⟩

∂y

)t
N ·−

y (Po)


(6.54)

Taking Ψ moment leads to split flux Navier-Stokes state update equations for

iteration k + 1 as follows

U k+1 = U k −∆t


(
∂GX+·

∂x

)k
N+·

x (Po)
+
(
∂GX−·

∂x

)k
N−·

x (Po)

+
(
∂GY ·+

∂y

)k
N ·+

y (Po)
+
(
∂GY ·−

∂y

)k
N ·−

y (Po)

 (6.55)

where split fluxes GX±· and GY ·± are represented as GX± and GY ± respec-

tively for the sake of brevity. The expressions of these flux terms are given in

Appendix D. The state update can also be expressed as

U k+1 = U k −∆t


(
∂GX+

∂x

)k
∆x<0

+
(
∂GX−

∂x

)k
∆x>0

+
(
∂GY +

∂y

)k
∆y<0

+
(
∂GY −

∂y

)k
∆y>0

 (6.56)

The upwind treatment of the viscous term is required for effective capture of cross

phenomena of thermal transpiration or thermal creep and the mechanocalorific

effect.

Similarly, 3-D split flux Navier-Stokes state update equations for iteration k + 1
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can be written as

U k+1 = U k −∆t



(
∂GX+··

∂x

)k
N+··

x (Po)
+
(
∂GX−··

∂x

)k
N−··

x (Po)

+
(
∂GY ·+·

∂y

)k
N ·+·

y (Po)
+
(
∂GY ·−·

∂y

)k
N ·−·

y (Po)

+
(
∂GZ··+

∂z

)k
N ··+

z (Po)
+
(
∂GZ··−

∂z

)k
N ··−

y (Po)


(6.57)

where split fluxes GX±··, GY ·±· and GZ ··± are represented as GX±, GY ± and

GZ± respectively for the sake of brevity. The state update can also be expressed

as

U k+1 = U k −∆t



(
∂GX+

∂x

)k
∆x<0

+
(
∂GX−

∂x

)k
∆x>0

+
(
∂GY +

∂y

)k
∆y<0

+
(
∂GY −

∂y

)k
∆y>0

+
(
∂GZ+

∂z

)k
∆z<0

+
(
∂GZ−

∂z

)k
∆z>0


(6.58)

In order to maintain the stability during explicit time integration the CFL time

step is determined by inviscid, viscous and slip time steps as follows

∆t ≤
[

1

∆tI
+

1

∆tV
+

1

∆tS

]−1

(6.59)

where ∆tI is the inviscid time step based on detailed stability analysis [92]

∆tI ≤
Min
i ∈ N(Po)

| d(Pi, Po)

(
√
u2x + u2y + u2z + 3RT )i

| (6.60)

where d(Pi, Po) is the distance between points Pi and Po. The viscous time step

∆tV is adapted for meshless method given as

∆tV =
ρPr d(Pi, Po)min

4µγ
(6.61)

where Pr is the Prandtl number and d(Pi, Po)min is the minimum distance between

points Pi and Po. The slip time step is given by

∆tS =
λ

vth
(6.62)
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where λ is the mean free path and vth = 1/
√
β is the most probable molecular

thermal speed.

The Navier-Stokes equations in the unsteady state form is obtained by marching

in time till residual falls below a specified tolerance. For an equation

dU

dt
= R(U k) (6.63)

A single stage Euler time step gives

U k+1 = U k +∆tR(U k) (6.64)

The linear stability requirement for the hyperbolic problems leads to a bounded

ratio between the time step ∆t and the spatial mesh size ∆x. As a consequence

regardless of higher order spatial accuracy one gets only global first order accuracy

for the scheme. Higher order accuracy in time is required while still maintaining

this stability. For this we require a strong stability preserving (SSP) and positivity

preserving high order time discretization method. SSP time discretization is also

required for hyperbolic problems with shocks because each intermediate stage

solution is non-oscillatory. The present work also uses a 3-stage scheme of Shu

and Osher [249] which is one such SSP higher order time discretization written

as follows
U (0) = U k

U (1) = U k +∆tR(U (0))

U (2) = 3
4
U k + 1

4

(
U (1) +∆tR(U (1))

)
U (3) = 1

3
U k + 2

3

(
U (2) +∆tR(U (2))

)
U k+1 = U (3)

(6.65)

where ∆t is the CFL time step. It can be observed that each stage in the scheme

is a convex combination of an explicit Euler step, thus it retains strong stability

properties. Convergence is evaluated as L2 norm of change in state vector as

follows

Resk2 =
1

Ncloud

Ncloud∑
i=1

(
1

D + 2

D+2∑
j

(Uk+1
j (i)− Uk

j (i))
2

)1/2

(6.66)

where Resk2 is the residue based on L2 norm at kth iteration, Ncloud is the number

of points in the cloud, D + 2 is number of components of the state vector U
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e.g. for 2D geometry we have 4 components of the state vector and for 3D we

have 5 components. The term Uk
j (i) is the j

th component of the state vector at

iteration k for point i. For convergence residue Resk2 as well as normalized residue

R̄es
k
2 = Resk2/Res

0
2 are monitored and time stepping is continued till the residue

undergoes atleast 5 decades fall or it falls below a specified tolerance.

6.3.5 Implementation of SLKNS for kinetic slip boundary

condition.

As described earlier with an accommodation coefficient σ, distribution function

can be written as

fΣ= fI+(1− σ)fR + σf0,W (6.67)

where fΣ is the distribution function which is a sum of fI incident distribution, fR

specularly reflected distribution and f0,W which is the diffuse reflected Maxwellian

distribution evaluated at the wall conditions. For example the specularly reflected

distribution, fR is reconstructed from incident distribution, fI for 2-D geometry

is as follows

fR(vx, vy, I) =
fI(vx, vy, I) for vy < 0
fI(vx,−vy, I) for vy > 0

(6.68)

The distribution f0,W is constructed based on conservation of mass at the wall

written as ∫
R+

∫
R−

∫
R
vyf

·−
I dvxdvydI+

∫
R+

∫
R+

∫
R
vyf

·+
0,WdvxdvydI = 0 (6.69)

where f ·−
I is the half-range incident distribution function for −∞ < vx < +∞

and −∞ < vy < 0 and similarly f ·+
0,W is the half-range Maxwellian distribution

function for −∞ < vx < +∞ and 0 < vy < ∞. The distribution function at

time t+∆t at the boundary for two dimensional case with first order Chapman-

Enskog distribution is constructed based on half range distribution using x-split

and y-split stencils as follows

f t+∆t
1,Σ = f t1,Σ −∆t


(
∂vxf

+−
1,Σ

∂x

)t
N+−

x (Po)

+

(
∂vxf

−−
1,Σ

∂x

)t
N−−

x (Po)

+

(
∂vyf

·−
1,Σ

∂y

)t
N ·−

y (Po)

 (6.70)
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(a) (b)

(c)

Figure 6.11: Split-stencil least square kinetic upwind method (SLKNS) for bound-

ary points (a) positive x-split, (b) negative x-split, and (c) negative y-split con-

nectivity for upwind implementation.

where f+−
1,Σ is half-range distribution function for for 0 < vx < +∞ and −∞ <

vy < 0, f−−
1,Σ is half-range distribution function for for −∞ < vx < 0 and −∞ <

vy < 0 and f ·−
1,Σ is the half-range incident distribution function for −∞ < vx <

+∞ and −∞ < vy < 0. The propagation of information to node Po depends

upon location of node Pi relative to Po and the signs of vx and vy . If vx > 0 then

only the nodes to the left of Po belonging to connectivity N+−
x (Po) will influence

the solution at Po as shown in Figure 6.11(a). Similarly, if vx < 0 then only

the nodes to the right of Po belonging to connectivity N−−
x (Po) will influence

the solution at Po as shown in Figure 6.11(b). Since the distribution of reflected

molecules are written in terms of incident molecules hence the node above Po

will influence the solution at Po belonging to connectivity set N ·−
y (Po) as shown

in Figure 6.11(c). Two-dimensional Boltzmann equation for the boundary node
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after taking Ψ-moments simplifies to⟨
Ψ, f t+∆t

1,Σ

⟩
=
⟨
Ψ, f t1,Σ

⟩

−∆t



(
∂⟨Ψ,vxf+−

1,Σ ⟩
∂x

)t
N+·

x (Po)

+

(
∂⟨Ψ,vxf−−

1,Σ ⟩
∂x

)t
N−·

x (Po)

+

(
∂⟨Ψ,vyf ·−1,Σ⟩

∂y

)t
N ·−

y (Po)


(6.71)

SLKNS implementation is performed in locally rotated frame such that surface

normal of the boundary coincides with the y-axis. Taking Ψ moment leads to the

kinetic split flux boundary state update equations for iteration k + 1 as follows

U k+1 = U k −∆t


(
∂ĜX

+−

∂x

)k
N+−

x (Po)
+
(
∂ĜX

−−

∂x

)k
N−−

x (Po)

+
(
∂ĜY

·−

∂y

)k
N ·−

y (Po)

 (6.72)

where ĜX
±−

and ĜY
·−

represents the split inviscid and viscous fluxes described

in section 5.5.1. Expressions of the wall split fluxes are given in Appendix D. This

state update can also be expressed as

U k+1 = U k −∆t


(
∂ĜX

+−

∂x

)k
∆x<0

+
(
∂ĜX

−−

∂x

)k
∆x>0

+
(
∂ĜY

·−

∂y

)k
∆y>0

 (6.73)

Similarly, for 3-D geometry SLKNS implementation is performed in locally ro-

tated frame such that surface normal of the boundary coincides with the z-axis.

The kinetic split flux boundary state update equations for iteration k + 1 is

U k+1 = U k −∆t



(
∂ĜX

+·−

∂x

)k
N+·−

x (Po)
+
(
∂ĜX

−·−

∂x

)k
N−·−

x (Po)

+
(
∂ĜY

·+−

∂y

)k
N ·+−

y (Po)
+
(
∂ĜY

·−−

∂y

)k
N ·−−

y (Po)

+
(
∂ĜZ

··−

∂z

)k
N ··−

z (Po)


(6.74)
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(a) (b)

Figure 6.12: Split-stencil least square kinetic upwind method (SLKNS) for su-

personic flow past NACA airfoil (a) cloud of points, (b) split connectivity in the

flow domain and the boundary for upwind implementation.

where ĜX
±·−

, ĜY
·±−

and ĜZ
··−

represents the split inviscid and viscous fluxes

described in section 5.5.2. Expressions of the wall split fluxes are given in Ap-

pendix D. This state update can also be expressed as

U k+1 = U k −∆t



(
∂ĜX

+·−

∂x

)k
∆x<0

+
(
∂ĜX

−·−

∂x

)k
∆x>0

+
(
∂ĜY

·+−

∂y

)k
∆y<0

+
(
∂ĜY

·−−

∂y

)k
∆y>0

+
(
∂ĜZ

··−

∂z

)k
∆z>0


(6.75)

6.3.6 Implementation of SLKNS : Example supersonic flow

past NACA0012 airfoil

Consider free stream supersonic flow at M = 1.5 past a NACA0012 airfoil at an

angle of attack α = 0 deg. The Reynolds number based on the airfoil chord is

10000. Total 10143 cloud of points were generated using C-type mesh of size

207× 49 shown in Figure 6.12(a). This test case was solved using SLKNS solver

with dissipation control, the state update for node Po in the flow domain is
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implemented as

U(t+∆t) = U(t)−∆t


(
∂GX+(t)

∂x

)
N+·

x (Po)
+
(
∂GX−(t)

∂x

)
N−·

x (Po)

+
(
∂GY +(t)

∂y

)
N ·+

y (Po)
+
(
∂GY −(t)

∂y

)
N ·−

y (Po)

 (6.76)

The upwinding at node Po is enforced using split flux and its associated split

connectivity sets N±·
x (Po) and N ·±

y (Po) as shown in Figure 6.12(b). where flux

derivatives are calculated using SLKNS as follows(
∂GX±(t)

∂x

)
N±·

x (Po)
=

(
∑

∆y2i )N±·
y (Po)

(
∑

∆GX±
i (t)∆xi)N±·

x (Po)
−(

∑
∆xi∆yi)N±·

x (Po)
(
∑

∆GX±
i ∆yi)N±·

y (Po)

(
∑

∆x2i )N±·
x (Po)

(
∑

∆y2i )N±·
y (Po)

−(
∑

∆xi∆yi)N±·
x (Po)

(
∑

∆xi∆yi)N±·
y (Po)

(6.77)(
∂GY ±(t)

∂y

)
N ·±

y (Po)
=

(
∑

∆x2i )N·±
x (Po)

(
∑

∆GY ±
i (t)∆yi)N·±

y (Po)
−(

∑
∆xi∆yi)N·±

y (Po)
(
∑

∆GY ±
i (t)∆xi)N·±

x (Po)

(
∑

∆x2i )N·±
x (Po)

(
∑

∆y2i )N·±
y (Po)

−(
∑

∆xi∆yi)N·±
x (Po)

(
∑

∆xi∆yi)N·±
y (Po)

(6.78)

where ∆GX±
i (t) = GX

±
i (t)−GX±

o (t) and ∆GY ±
i (t) = GY

±
i (t)−GY ±

o (t) are

the flux differences between node Pi and Po. The expressions of split fluxes are

given in Appendix D. For boundary nodes SLKNS implementation is done in a

locally rotated frame of reference such that surface normal and tangents coincide

with the coordinate axes as shown in Figure 6.12(b). The state update for node

Po in the boundary is as follows

U(t+∆t) = U (t)−∆t



(
∂ĜX

+−
(t)

∂x

)
N+−

x (Po)

+

(
∂ĜX

−−
(t)

∂x

)
N−−

x (Po)

+

(
∂ĜY

·−
(t)

∂y

)
N ·−

y (Po)


(6.79)

where N±−
x (Po) and N ·−

y (Po) are the associated split connectivity sets for split

fluxes ĜX
±−

and ĜY
·−

described in section 5.5.1 of chapter 5. In this example

no-slip boundary condition is used i.e. U2 = 0 and U3 = 0 using explicit Euler

time stepping based on global CFL time step described by equation 6.59. Figure

6.13(b) shows the solution trajectory and the stability point reached by the two

different solver points one located near the NACA airfoil wall boundary and

the other located near the freestream boundary. The phase plane portrait of

the solution trajectory is shown in the state space defined by the magnitude of
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thermodynamic forces associated with heat flux vector and shear stress tensor.

Figure 6.13(a) shows the unstable focus of the solution trajectory in the initial

phase of the iterations. The phase-plane analysis provides physical insight about

the qualitative behaviour of the solver, for example in the initial iterations, the

eigenvalue solution with respect to magnitude of the thermodynamic forces is

complex with positive real parts which gradually approaches a stable node at

the end of the iterations. The trajectory speed in the phase plane can also be

used to ascertain convergence. The present research uses residue plot to ascertain

convergence, for example residue plot depicted in Figure 6.14 shows the 5 decades

fall of the normalized residue R̄es
k
2 = Resk2/Res

0
2, where residue Resk2 is based

on the average L2 norm of all the components across the domain at kth iteration

evaluated as follows

Resk2 =
1

10143

10143∑
i=1

(
1

4

4∑
j

(Uk+1
j (i)− Uk

j (i))
2

)1/2

(6.80)

where Uk
j (i) is the jth component of the state vector at iteration k for point i.

The computation reveals shock ahead of the body as well as a fish tail shock

shown in Figure 6.15.

6.4 Meshless pre-processor

One of the greatest advantages of meshless solver is its ability to work on any type

of grid or on an arbitrary distribution of points. In present meshless method the

points are generated around each component of the multibody configuration using

simple grid generator and then the points around each components are merged

to form the cloud of points. Meshless method in this case requires cloud of points

and its connectivity. The meshless pre-processing requires i) pre-processing of

cloud of points, and ii) connectivity generation

6.4.1 Generation of cloud of points

The task of generating suitable grid for a complex multi-body configuration can

be accomplished by breaking down a geometrically complex object as a union of
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(a) (b)

Figure 6.13: Solution trajectory shown in the state space defined by the magni-

tude of thermodynamic forces associated with heat flux vector and shear stress

tensor (a) unstable focus in the initial iteration phase, (b) and stability point

reached at the end of the iteration.
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Figure 6.14: Residue plot for supersonic flow at M=1.5 past a NACA0012 airfoil.

213



6.4 Meshless pre-processor

X

Y

Z

M
1.50
1.40
1.30
1.20
1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

Figure 6.15: Supersonic flow at M=1.5 past a NACA0012 airfoil.

(a) (b)

Figure 6.16: Pre-processing of cloud of points (a) merging of simple sub-cloud,

(b)node deletion of sub-cloud.
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Figure 6.17: Pre-processing of cloud of points (a) merging of hemispherical sub-

cloud, (b) sectional view (c) view after node deletion of background cloud (d)

view showing grid tesselation after pre-processing phase (e) cloud of points after

pre-processing
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several geometrically simple objects, generating grid around each simple object

and then finally merging all the grid points into a cloud of points enveloping

the complex multi-body configuration. We need an appropriate pre-processor to

carry out merging of points and then generating connectivity. Let us define nodes

generated around simple objects as sub-clouds that will merge to form the cloud.

For example define sub-clouds around a circle shaped body as α sub-cloud which

is to be merged with background β sub-cloud. A pre-processor is required to

merge many sub-clouds as shown in Figure 6.16. The union of two sub-clouds

can be written as

sC(α) ∪ sC(β) = sC(α) + sC(β)− sC(α) ∩ sC(β)− sCC(α) − sCC(β) (6.81)

where

sC(α) ∩ sC(β) = {∀Pi : Pi ∈ sC(α) ,∀Pj : Pj ∈ sC(β) ∃ d(Pi, Pj) ≤ hmin}
(6.82)

sCC(α) = {∀Pi : Pi|Pi /∈ sC(α), Pi ∈ Bc(α)} (6.83)

sCC(β) = {∀Pi : Pi|Pi /∈ sC(β), Pi ∈ Bc(β)} (6.84)

The term sC(α) ∩ sC(β)denote nodes belonging to sub-clouds sC(α) of object

α and sub-cloud sC(β)of object β which are very close to each other i.e. within the

minimum tolerance hmin specified by the user. While Bc(α) and Bc(β) denote

blank nodes i.e. nodes which will perform no computation. Bc(α) can also

be defined as a set of sub-clouds lying inside the body or in any other non-

computing domain of α and similarly Bc(β) can be defined as a set of sub-clouds

lying inside the body or in any other non-computing domain of β. Thus, the

term sCC(α)and sCC(β) denote the set of all the nodes which do not belong to

sub-clouds sC(α), sC(β) and these nodes lie inside the body or in any other non-

computing domain of α and β respectively. The term sC(α) ∪ sC(β) denotes

the merging phase where the nodes that lie inside the body or in any other non-

computing domain are deleted by ray-tracing algorithm. The merging phase also

deletes the nodes based on the criterion d(Pi, Pj) ≤ hmin. The parameter d(Pi, Pj)

gives the Euclidean distance between Pi and Pj. Similarly, for a three dimensional

problem figure 6.17 shows the steps involved in pre-processing of cloud of points.
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Figure 6.18: Connectivity data by moving along coordinate directions for a

structured grid.

6.4.2 Connectivity generation

Connectivity or neighbourhood information for cloud of points generated using

structured mesh as shown in Fig.6.18 can easily be obtained by by selecting the

nodes along the co-ordinate directions. For unstructured cloud of points as shown

in Fig.6.19 the connectivity is generated using edge based data structure. For

example for a grid generated using triangulation, the edge based data structure

is generated using the Voronoi information. Distribution of points can be obtained

by multiple sources and there can be multiple bodies in such cases it is desirable

to have a method which would operate on any type of distribution of points

independent of the way the cloud of points is generated. Quad-tree and Oct-tree

based methods are commonly used in generating connectivity. Connectivity is an

important issue and it should possess following certain minimum attributes :

• Each quadrant also should have adequate number of points for implement-

ing upwinding by stencil sub-division.

Care should be taken to avoid extreme case of a quadrant being empty. For

the boundary points where locally rotated frame are used it is essential that

the above criterion be applied to quadrants of rotated frame.

• Connectivity for points near or on body should only contain aerodynamic

points.
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Figure 6.19: Connectivity data using edge based data structure for an unstruc-

tured grid.

Consider a point Po is shown lying on lower side of the body as shown

in in Fig. 6.20 where its split neighbourhood is defined as Nx(Po) and

Ny(Po). The split neighborhoods of Po lie inside a ball of radius h and

it can easily be seen that all the points contained within this ball are not

aerodynamically connected i.e. some of the points lie on the upper side

of the body. Such points should not participate in the solution process or

influence the solution update at Po. Define set of edges that connect all

points of the connectivity data to point Po and all the points connected to

those edges that intersect the body define the forbidden region as shown in

the Fig. 6.20. This forbidden region should be excluded or removed from

the connectivity set, Nx(Po) or Ny(Po) . The pre-processor while generating

the connectivity data deletes the points lying in the forbidden regions. The

final connectivity so obtained is shown in Fig. 6.20 where points retained

are solid circles, represented by the edges joining the point Po to all the

valid nodes in the connectivity.

Connectivity is generated by quad-tree / oct-tree method in the fluid domain far

away from the body. For points near the body edge based data structure is used so

as to get the aerodynamically connected neighbors. We require enough connectiv-

ity such that the problem remains overdetermined we also require that the cross-

product matrix remains well-conditioned. The matrix becomes ill-conditioned

when all the points in the connectivity set lie on a straight line that passes
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Figure 6.20: Aerodynamically connected neighbours and definition of eclipsed

region

Figure 6.21: Degenerate cases of neighbours lying within a thin pencil

through the node Po as illustrated in Fig. 6.21. This eventuality is an example

of degeneracy of connectivity. For a 3-D case the denominator will become zero

when all the points in the connectivity set lie on a plane. For a 2-D case even

when the points lie approximately on a straight line, that is forming a thin pencil

also contributes a case of degeneracy and can cause solution divergence or large

error. While generating connectivity data one should ensure that degeneracy is

avoided.

6.5 Parallelization of SLKNS

For practical industrial problems with thin boundary layers and rapid density

and pressure variation large number of nodes or points are required for adequate

resolution. Highly stretched grids near wall cause grid induced stiffness because

allowed time step is dictated by the smallest h (i.e. grid size ) and to resolve

viscous as well as slip flow features we require scheme with higher order (pth or-
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Figure 6.22: Asymmetric connectivity

der). For real large scale problem the CPU time for a SLKNS code then becomes

prohibitively large thus requiring its parallelization. The main goal of parallel

computation is its performance and scalability, the present parallelization strat-

egy employs domain decomposition. In the present research METIS was found to

be quite superior in terms of speed and partitioning performance as compared to

partitioning by Recursive Co-ordinate Bisection (RCB), Recursive Spectral Bisec-

tion(RSB). METIS offers a variety of codes to partition graphs, meshes, convert

meshes into graphs. There are two codes pmetis and kmetis for partitioning an

unstructured graph into k equal size parts. The code pmetis is based on multilevel

recursive bisection, whereas the code kmetis is based on multilevel k-way parti-

tioning. METIS also supports the minimization of total communication volume

using subroutine METIS PartGraphV Kway and METIS PartGraphKway.

In the present work pmetis was found to provide better domain decomposition

for SLKNS code.

6.5.1 Graph partitioning for SLKNS

The graph to be partitioned requires an adjacency list. METIS operates only on

symmetric adjacency list. Symmetry relation requires that if Pi is the neighbour

of Pj then Pj should be a neighbour of Pi. Consider a node Pi with a split

connectivity set Nx(Pi), Ny(Pi) and node Pj∈Nx(Pi) with split connectivity set

Nx(Pj) and Ny(Pj). Then symmetry requires that Pi∈Nx(Pj) and Pj∈Nx(Pi).

Fig. 6.22 shows a case where this condition is violated. For this case Pi∈Nx(Pj)

but Pj /∈Nx(Pi). Consider only x-split stencil and a new set SNx(Pj) called
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Figure 6.23: Symmetric connectivity for interior point

symmetric x-split connectivity set of Pj defined by

SNx(Pj) = Nx(Pj) ∪ Pi : Pj ∈ Nx(Pi) (6.85)

This new connectivity set satisfies the symmetry relation

∀Pi ∈ SNx(Pj)∃Pj ∈ SNx(Pi) (6.86)

Fig. 6.23 shows a symmetric connectivity set, SNx(Pj) shown by a dotted line.

Here point Pi has been appended to x-split connectivity set of Pj .This symmetric

connectivity SNx(Pj) forms the x-split adjacency list of point Pj. Similarly,

symmetric connectivity set for y-split stencil is created. METIS requires the

symmetric connectivity set SN(Pi) which is union of symmetric split connectivity

sets SNx(Pi) and SNy(Pi) i.e. SN(Pi) = SNx(Pi) ∪ SNy(Pi).

6.5.2 Mapping global grid data structure to the local sub-

domains

After decomposition we get many sub-domains that are assigned to different

processors to perform almost identical computational tasks. At the boundary of

sub-domains some nodes can have neighbours which can lie in many neighbouring

sub-domains. Thus, at the interface boundary we have a set of nodes that have

to communicate information with neighboring sub-domains. Each sub-domain is

assigned to a particular processor and hence it is given a label corresponding to

the processor number. Boundary conditions for each sub-domain are obtained

from the data in the neighboring sub-domains thereby requiring communication
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with the other processors by virtue of message passing. Within a sub-domain, a

node is assigned a unique integer i.d. between 1 and the total number of nodes. A

node that is shared between several processors is stored in all the processors that

share it to avoid additional communication overhead. Thus, the total number of

nodes for a particular sub-domain includes both the computation nodes and the

communication nodes that lie in other sub-domain. Nodes are renumbered within

each sub-domain and assigned a local index having a correspondence with global

index. Furthermore, each sub-domain maintains two arrays, one for sending

the information and other for receiving it. Each send and receive array is a two

dimensional array which keeps the list of processor that communicates and the i.d.

of the node. This enables any sub-domain to exchange data with its neighboring

sub-domain. It should be noted that for asymmetric neighborhood the send array

is not identical to receive array.

6.5.3 Parallelization pre-processing

To illustrate the pre-processing step consider a flow domain Ω with total number

of nodes as m and total number of processors as np. After domain decomposition

we will have np domains Ωi each containing mi nodes with bi communicating

boundaries ∂Ω1,· · ·,∂Ωbi . The parallelization pre-processing can be illustrated as

follows

• (a) Domain Decomposition

Ω =

np∑
i=1

Ωi (6.87)

Flow domain Ω{1, 2, · · · ,m} is decomposed into np domains Ωi.

• (b) Renumber domains

Each domain is renumbered locally e.g. Ωi{1, 2, · · · ,mi}.

• Construct Global/Local mapping function

G(Ωi, p) ⊂ Ω, where G : Ωi 7→ Ω (6.88)
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Figure 6.24: Compute nodes and Communication nodes due to part of connec-

tivity lying outside the domain.

The global mapping function G maps the domain Ωi{1, 2, · · · ,mi} into the

global grid Ω{1, 2, · · · ,m}. Similarly constructing np local mapping func-

tions L which maps the domain global flow domain,Ω to local decomposed

domains Ωi.

L(Ω, p) ⊂ Ω, where L : Ω 7→ Ωi (6.89)

• Compute send and receive data

Some part of the connectivity set may lie in the neighbouring domain

forming the communication nodes which needs to be received or send by

the neighbouring domain. Figure 6.24 shows the compute as well as com-

munication nodes. Receive communication data consists of static data as

well as dynamic data.

ΩR
i =

bi∑
j=1

ΩR,s
i,j +

bi∑
j=1

ΩR,d
i,j (6.90)
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where ΩR,s
i,j is the static receive data (or data which is not changing with

the iterations) from domain i to domain j, similarly ΩR,d
i,j is the dynamic

receive data i.e. fluid dynamic data from domain i to domain j. The send

communication data can also be expressed as

ΩS
i =

bi∑
j=1

ΩS,s
i,j +

bi∑
j=1

ΩS,d
i,j (6.91)

where ΩS,s
i,j is the static send data from domain i to domain j, similarly ΩR,d

i,j

is the dynamic send data from domain i to domain j.

• Domain Augmentation

The domain Ωi is augmented with the static receive communication data

to avoid repeated communications after every iterations.

Ω̃i = Ωi +

bi∑
j=1

ΩR,s
i (6.92)

• Communication matrix Optimization

For any np number of processors there are np − 1 parallel set of commu-

nications that avoid collision of messages. Basic communication matrix is

prepared based on Latin hyper cube described by the following pseudo code

for i = 0 to np-2

for j = 0 to np-2

cm(i,j) = (i+j) mod (n-1)

next j

next i

for i = 0 to np-1

for j = 0 to np-1

if cm(i,j) =0 then

cm(i,j) = np-1

end if

if i = j then

cm(i,np-1) = cm(i,j)

cm(np-1,i) = cm(i,j)
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cm(i,j) = 0

end if

next j

next i

For example for the case of np = 8, the communication matrix CM is

CM =



0 1 2 3 4 5 6 7
1 0 3 4 5 6 7 2
2 3 0 5 6 7 1 4
3 4 5 0 7 1 2 6
4 5 6 7 0 2 3 1
5 6 7 1 2 0 4 3
6 7 1 2 3 4 0 5
7 2 4 6 1 3 5 0


(6.93)

At communication step CM(i, j) the ith domain sends data to jth domain for

all i > j. Similarly at communication step CM(i, j) the ith domain receives

data from jth domain for all i < j. Consider domain decomposition of flow

domain of 7200 nodes around NACA0012 airfoil decomposed into np = 8

domains as shown in Fig. 6.25. This decomposition generates an adjacency

matrix, AM based on neighbourhood of decomposed domains. For example

in this particular case the matrix AM can be expressed as

AM =



0 1 0 0 0 0 0 1
1 0 1 1 0 1 0 1
0 1 0 1 1 0 0 0
0 1 1 0 1 1 1 0
0 0 1 1 0 0 1 1
1 1 0 1 0 0 1 0
0 0 0 1 1 1 0 1
1 0 0 0 1 0 1 0


(6.94)

Within each np− 1 parallel set of communications there are some commu-

nications that may be empty depending on the neighborhood of partitions

or domains. Thus, within these 7 sets of communication in this example

there are some communications that are empty e.g. domain Ω1 can only

communicate to two domains i.e Ω2 and Ω8. Hence after domain decompo-

sition the optimal communication scheduling will depend on its adjacency
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Figure 6.25: Flow domain around NACA0012 airfoil decomposed into np = 8

domains based on its symmetric connectivity.
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Table 6.1: Communication Schedule based on Communication matrix CM

Communication Step Set 1 Set 2 Set 3 Set 4

Step 1 1 ↔ 2 3 ↔ 7 4 ↔ 6 5 ↔ 8

Step 2 1 ↔ 3 2 ↔ 8 4 ↔ 7 5 ↔ 6

Step 3 1 ↔ 4 2 ↔ 3 5 ↔ 7 6 ↔ 8

Step 4 1 ↔ 5 2 ↔ 4 3 ↔ 8 6 ↔ 7

Step 5 1 ↔ 6 2 ↔ 5 3 ↔ 4 7 ↔ 8

Step 6 1 ↔ 7 2 ↔ 6 3 ↔ 5 4 ↔ 8

Step 7 1 ↔ 8 2 ↔ 7 3 ↔ 6 4 ↔ 5

matrix. The modified communication matrix C̃M is evaluated based on

neighbourhood of decomposed domains, it is expressed as

C̃M =



0 1 0 0 0 0 0 7
1 0 3 4 0 6 0 2
0 3 0 5 6 0 0 0
0 4 5 0 7 1 2 0
0 0 6 7 0 0 3 1
5 6 0 1 0 0 4 0
0 0 0 2 3 4 0 5
7 0 0 0 1 0 5 0


(6.95)

Table 6.1 and table 6.2 shows the communication schedule based on matrix

CM and C̃M respectively. Fig. 6.26 shows the communication between the

domains.Optimal communication schedule of 3 pairs in only 5 steps can

be obtained based on the modified Communication matrix C̃M and tabu

search as shown in Table 6.3. Fig. 6.27 shows the optimized communication

between the processors reduced from 7 steps to 5 steps.

6.5.4 Coarse-medium-fine cloud sequencing

As iterations proceeds the high frequency part of the error gets removed but low

frequency part reduces slowly. Convergence requires prohibitive O(N2) iterations

and coarse-medium-fine cloud sequencing is one of the method to hasten the
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Figure 6.26: Communication schedule between domains.

Table 6.2: Communication Schedule based on modified Communication matrix

C̃M

Communication Step Set 1 Set 2 Set 3 Set 4

Step 1 1 ↔ 2 4 ↔ 6 5 ↔ 8

Step 2 2 ↔ 8 4 ↔ 7

Step 3 2 ↔ 3 5 ↔ 7

Step 4 2 ↔ 4 6 ↔ 7

Step 5 3 ↔ 4 7 ↔ 8

Step 6 2 ↔ 6 3 ↔ 5

Step 7 1 ↔ 8 4 ↔ 5
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Table 6.3: Optimized communication schedule

Communication Step Set 1 Set 2 Set 3

Step 1 2 ↔ 8 4 ↔ 6 5 ↔ 7

Step 2 2 ↔ 4 5 ↔ 8 6 ↔ 7

Step 3 1 ↔ 2 3 ↔ 4 7 ↔ 8

Step 4 2 ↔ 6 3 ↔ 5 4 ↔ 7

Step 5 1 ↔ 8 2 ↔ 3 4 ↔ 5

Figure 6.27: Optimized Communication schedule between processors.
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Figure 6.28: Coarse-medium-fine cloud sequencing.
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convergence. In this multi-cloud approach coarse cloud solution is mapped to

medium cloud and then finally to fine cloud. The coarse cloud sieves out low

frequency part of error observed in fine grid. The coarse cloud is solved in parallel

by decomposing its domain as shown in Figure 6.28(a). After few thousand

iterations the solution as shown in Figure 6.28(b) is mapped to the medium

cloud as shown in Figure 6.28(c). The parallel solution from the medium cloud

as shown in Figure 6.28(d) is mapped to the fine cloud as shown in Figure 6.28(e)

and solved to obtain the final solution as shown in Figure 6.28(f).

6.5.5 Construction of the parallel code

The parallel SLKNS code contains three codes i) pre-processor code, ii) solver

code, and iii)post-processor code. The details of each code is as follows:

• Pre-processor code

At the start pre-processor is run to decompose the domain, prepare op-

timized communication look-up table and information regarding receiving

and sending processors, amount of nodes in each one of them. The pre-

processor also augments the cloud Ωi for each processor with static send

and receive data. The augmented cloud Ω̃i = Ωi +
∑bi

j=1Ω
R,s
i for each pro-

cessor is written as a separate file. Where ΩR,s
i,j is the static receive data (or

data which is not changing with the iterations) from domain i to domain

j. Each augmented cloud Ω̃i is written as a separate file with its boundary

flags, connectivity set and fluid dynamic state vectors. This set of files form

a part of I/O (input/output) parallelization.

• SLKNS code

The parallel code reads the augmented cloud data Ω̃i=Ωi+
∑bi

j=1Ω
R,s
i in sub-

routine cloud data. The optimized communication schedule as a look-up

table is read by subroutine read par info, this subroutine also reads infor-

mation regarding receiving and sending processors, amount of nodes in each

one of them. The computation of inviscid fluxes at a node Pi lying in the do-

main Ωi will require only the state vector of the node Pi. On the other hand

the computation of viscous fluxes will require the evaluation of velocity and
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temperature gradients at all the neighbouring nodes Pj ∈ {Nx(Pi), Ny(Pi),

Nz(Pi) } belonging to the communication band ΩR
i of the augmented cloud

Ω̃i. Since the computation of fluxes is more computationally intensive hence

the split fluxes of all the node Pj is communicated instead of transferring

the gradients. The subroutine par comm split fluxes performs this task of

communicating the send and receive split fluxes. Similarly the derivatives

of fluxes are transfered by subroutine par comm split fluxes derivatives to

carry out higher order accurate calculation.

• Post-processor code

This routine plots the residue and reconstructs the data from the decom-

posed domain for plotting and data extraction.

The SLKNS code uses domain decomposition and I/O (input/output) paralleliza-

tion to read and write data for a large scale parallel computing. The present par-

allel implementation uses ”master-slave” paradigm with parallel optimized com-

munication with I/O parallelization. Structure of the FORTRAN based SLKNS

code is as follows

C------------------------------------------------------------

include ’params.h’

include ’mpif.h’

C MPI initialize calls

call mpi_init (anumpi_err)

call mpi_comm_rank (MPI_COMM_WORLD, anumpi_myid, anumpi_err)

call mpi_comm_size (MPI_COMM_WORLD, anumpi_nproc, anumpi_err)

C Open all files

call open_file

C Read augmented grid and solver parameters

call input_parameters

C Initialize constants and allocate memory

call constants_and_allocate_memory

C Read augmented cloud data

call cloud_data

C Initialize flow field

call init_flow

C Read parallel information i.e. send / receive arrays, etc.
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call read_par_info

C Evaluate parameters of cross-product C matrix

C for least square method

call c_matrix

C Implement the time stepping

do iter = itmin+1,itmax

C Evaluate the split inviscid fluxes based on Maxwellian distribution

call inviscid_split_fluxes

C Evaluate the thermodynamic force tensors using

C velocity and temperature gradients

call thermo_force_tensor

C Perform tensor contraction to get split viscous fluxes

call split_tensor_contraction

C Parallel communication of inviscid/viscous split fluxes

C using mpi_send, mpi_recv calls.

call par_comm_split_fluxes

C Evaluate first order flux derivatives using SLKNS routine

C for points in the fluid domain

call first_order_SLKNS

C Evaluate boundary flux and its derivatives using SLKNS routine

C for points in the boundary

call boundary_flux_SLKNS

C Evaluate time steps for each nodes in the cloud

call delta_time

C Do the first order based state vector update

call update_first_order

C Check flag for higher order accuracy using

C defect correction

if ( iorder .gt. 1 ) then

C Parallel communication of split fluxes derivatives

C using mpi_send, mpi_recv calls.

call par_comm_split_flux_derivatives

C Carry out defect correction to get the higher order accuracy

call higher_order_SLKNS

C Do the state vector update for higher order points in the cloud

call update_higher_order
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end if

C Parallel communication of state vector U

C using mpi_send, mpi_recv calls.

call par_comm_state_vector

C Evaluate L-2 norm, L-infinity residue and send it for plotting

call residue

C Write output and post-processing data after iprn iterations

if((iter/iprn)*iprn.eq.iter) then

call output

end if

end do

C Close all files, deallocate memory.

call clsfil

C MPI finalize call

call mpi_finalize (anumpi_err)

stop

end

C------------------------------------------------------------

The slave code differs from the master code in the subroutine open file. The slave

code opens its processor’s specific file for reading cloud and fluid dynamic data.

6.6 Multi-objective optimization methodology for

SLKNS

The meshless method only require boundary data, cloud of points and its connec-

tivity. As mentioned earlier the existing method reported in the literature carry

out optimization for meshless method by flagging off the blank nodes and gen-

erating connectivity of the participating nodes. In the present research we have

used a novel approach for cloud handling for meshless method. In this method

the sub-cloud around the body is generated after every optimization step and

this new sub-cloud is merged with the background cloud. This methodology can

be described in following steps as shown in the Figure 6.29

• Hole creation in the background cloud.

Hole is created in the background cloud by blanking nodes in the vicinity of
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(a) (b)

(c) (d)

(e) (f)

Figure 6.29: Cloud handling methodology for shape optimization.
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the body which need optimization. The size of the hole is made large enough

such that the body undergoing optimization remains bounded. This step is

shown in Figure 6.29(b) in which nodes are blanked off around the body as

shown in Figure 6.29 (a). Hole creation in the background cloud helps in

avoiding the time-consuming node-deletion phase of pre-processing. During

the optimization process the shape of the body may change drastically for

such cases the optimization module can have many a priori different kind

of holes so as to contain the shape of the body within its limit.

• Generation of sub-cloud around the body.

The sub-cloud is generated around the new shape based on the suggestion

of the optimization step. This is illustrated in Figure 6.29(c) and Figure

6.29(e) for two different shapes to illustrate that the body remains confined

within the hole created in the background cloud. Figure Figure 6.29(d) and

Figure 6.29(f) shows the zoomed view of the cloud around the body.

• Merging of background and sub-cloud.

In this step the sub-cloud around the body and the background are merged

to form a single cloud.

• Connectivity generation.

The connectivity is only generated for the nodes lying in the vicinity of the

body.

• Mapping of the fluid dynamic data.

The fluid dynamic data is mapped from cloud-body configuration to another

cloud-body configuration as shown in Figure 6.30 (a) and (b). This helps

in quick convergence of the solution for the new body shape suggested by

the optimization step.

6.6.1 Multi-objective optimization and parametrization

The shape of the body depends on its parametrization. As described earlier there

are various parametrization approaches like discrete approach, domain element

approach, polynomial and splines based, CAD based, free-form deformation and

soft object animation based approach. The shape parametrization approach is
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(a)

(b)

Figure 6.30: Mapping of the fluid dynamic data from one cloud to another.

problem specific and is of immense importance as it can bring drastic reduction

in the computational time. Consider a simple shape parametrization based on

four parameters i.e. x1, x2, x3 and x4 as shown in Figure 6.31. The parameter

x1 gives the length of the body, parameter x2 gives the camber at the mid-body,

parameter x3 and x4 are the two control points at two pre-determined positions.

The optimization routine only requires the set of parameters x⃗∈Rn called the n-

dimensional parameter space. The task of optimization is to get the best shape or

x⃗ so as optimize m objective functions fi(x⃗)∈Y⊂Rm. Solutions to these objective

Figure 6.31: Shape parametrization.
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functions defining the m-dimensional objective space with its subset Ỹ⊂Y repre-

sents the feasible objective region. Since the real world is dotted with multi-modal

noisy search space fractured with discontinuities hence calculus based methods

fails to reach the global solution as they are local in scope, require strict continu-

ity and derivability. In the present study three stochastic or non-gradient based

methods have been considered namely i) Nonlinear simplex, ii) Genetic algorithm

(GA), and iii) Ant Colony Optimization (ACO). Figure 6.32 shows the x⃗ contain-

ing the shape parameters of the candidate design configuration and its relation

with the optimization method. Nonlinear simplex method starts by forming a

simplex which is simply a polytope of n+1 vertices in n-dimensions. Each vertex

of the simplex is given by the parametric shape vector as shown in Figure 6.32.

The simplex undergoes reflection, expansion, contraction and shrinkage to move

towards the best solution. In genetic algorithm (GA) the parameter involved in

shape parametrization denotes a gene as shown in Figure 6.32 and genetic string

denotes the shape or the candidate design which undergoes optimization. The

basic building block of genetic algorithm is its i)Parameterization and Coding,

(ii) Population, (iii) Crossover, (iv) Mutation and (v)Selection. In ant colony op-

timization (ACO) each parameter is discretized into finite number of levels such

that the ant path contains the level of each parameter. In this method the path

taken by the ant denotes a shape or candidate design configuration participating

in the optimization as shown in Figure 6.32.

6.6.2 New approach using scalarization based ϵ-dominance

The solution of muti-objective problem poses a challenge and requires a new no-

tion of optimality as in most of the cases objectives tend to be in conflict with

each other. The present research gives a novel approach based on the concept

of Pareto optimality and scalarization based ϵ-dominance as the basis for the

multiple objective optimizations. In the present algorithm the concept of multi-

ple objective optimizations is achieved using the goal vector (or reference point)

optimization strategy[290] by applying scalarization. This method translates the

multi-objective function into a single objective. The ranking is done using scalar-

ization based ϵ-dominance with Lp metric strategy. The minimization of the

maximum distance from the goal vector drives the solution closer to the goal
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Figure 6.32: Parameterization coding in the optimization methods : i)Nonlinear

Simplex, ii) Genetic algorithm, and iii) Ant colony optimization.

vector.

The method of determining ranking is based on either (i) non-dominated sorting

(Pareto based), or (ii) sorting based on ϵ-dominance. In the non-dominated sort-

ing approach Pareto optimality forms the basis of multi-objective optimization as

it takes all the objectives into consideration simultaneously; every element in the

Pareto front is a good solution. Pareto-optimality only tells us which decisions

to avoid. This non-uniqueness of Pareto-optimal solution can be turned into ad-

vantage by using scalarizing function which projects the reference vector q⃗g∈Rm

onto the Pareto optimal front. This approach transforms the multi-objective

problem into a single objective problem. There are many scalarizing function

s : Q×Y→R1 which are strictly order preserving. Min-max optimization can be

used by selecting Pareto point chosen by minimizing its weighted maximum devi-

ation from the ideal point (utopia point) or the demand point. described earlier.

The scalarization step is implemented by weighted Lp-problem as

min
x⃗∈Rn

L(f⃗ ,w⃗,q⃗∗)
p (x⃗) =

(
m∑
i=1

wi|fi(x⃗)− q∗i |p
)1/p

(6.96)
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where q⃗∗ is the goal or reference vector. Most of the multi-objective methods use

Pareto based non-dominated ranking shown in figure. 6.33 and given as follows

f⃗ ∗ ≺ f⃗ :⇔ ∀
i∈1,2,...m(fi(x⃗

∗) ≤ fi(x⃗)) ∧ ∃
i∈1,2,···,m(fi(x⃗

∗) < fi(x⃗)) (6.97)

where f⃗ ∗ is the non-dominated solution. The present research uses a new ap-

proach of sorting using scalarization based ϵ-dominance with Lp metric strategy

[178] described by equation 6.98

f⃗ ∗ ≺ f⃗ :⇔ ∀
i∈1,2,...m(fi(x⃗

∗) ≤ fi(x⃗)− ϵi) ∧ ∃
i∈1,2,···,m(fi(x⃗

∗) < fi(x⃗)− ϵi)

∃L(f⃗ ,w⃗,q⃗∗)
p (x⃗) < L

(f⃗−ϵi,w⃗,q⃗∗)
p (x⃗) ; ϵi = ζ(fmaxi − fmini ); ζ ∈ (0, 1) (6.98)

where ζ is a user defined parameter which determines the ϵ-dominance zone as

illustrated in Fig. 6.33. The points on the curve 1 belong to the Pareto optimal

(non-dominated) solutions. Similarly curves 2 and 3 represent less non-dominated

sets. For the purpose of ranking using non-dominated sorting we construct curves

1,2 and 3 from the given data. Solutions on curve 1 are given highest priority,

next preference is given to curve 2 then to curve 3. The sorting using ϵ-dominance

described by equation 6.98, this is also shown in form of loops in Fig. 6.33. The

distance of a solution from goal vector is Lp metric used by the scalarization

function. The solutions within a zone are sorted from rest of them. We see

that the ϵ-dominance zone contains solutions belonging to multiple levels of non-

dominated Pareto solutions. As the value of ζ increases the size of the loop

increases. Smaller loop reduces the optimization time, but may run into the risk

of not reaching the global optimum.

6.6.2.1 Scalarization in absence of goal vector

In absence of the prescribed goal vector or reference vector q⃗g∈Q⊂Rm we con-

sider an ideal vector q⃗∗i≡{fi(x⃗),· · · ,fm(x⃗)} defined as an individual maximum of

each component of a vector obtained during the course of optimization after k

evaluations of the problem as follows

q∗i = min
x⃗∈Rn

{(fi(x⃗))1, · · · , (fi(x⃗))k} (6.99)

Thus the goal vector is the minimum value of the function obtained during course

of optimization after k simulation runs.
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Figure 6.33: Sorting using scalarization based ϵ-dominance with Lp metric strat-

egy.

Figure 6.34: Oblique shock test case.

6.6.3 Multi-objective optimization example

Two examples are taken to illustrate the multi-objective optimization methodol-

ogy. The first example is multi-objective optimization for oblique shock test case,

the second example is aerodynamic shape optimization of an airfoil in a meshless

framework.

6.6.3.1 Oblique shock test case

Consider a example test case of a oblique shock problem involving compressible

frictionless irrotational flow of air. The inlet pressure and temp being 95720 Pa

and 273 K respectively. Figure 6.34 describes the example test case in which air
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moving in a supersonic speed M1 = 3 approaches a ramp which is at an angle θ

to the horizontal. After production of an oblique shock (at an angle β to the hor-

izontal) the pressure, temperature changes to after shock condition. To simplify

assume that the Rankine-Hugoniot (R-H) jump conditions relate the pre-shock

and post-shock situations. The optimization problem is now formulated as fol-

lows: Given the inlet flow conditions i.e. Mach (M1), Pressure (P1), Temperature

(T1) and angle of shock β optimize the n = 3 parameters of post shock conditions

i.e. pressure P2, temperature T2 and ramp angle θ. The m = 3 objective func-

tions which are to be optimized are entropy change ∆S, enthalpy change ∆H

across the shock and the ramp angle θ given as

f1(x⃗) = ∆S = Cp ln(T2/T1)−R ln(P2/P1)

f2(x⃗) = ∆H = Cp (T2 − T1)

f3(x⃗) = θ = Tan−1(2cotβ
M2

1sin
2β−1

M2
1(γ+cos2β)+2

)

(6.100)

For a given goal vector q⃗∗ ≡ (∆Sm,∆Hm, θm) the scalarizing function s : Q×Y →
R1 is defined by the L2 metric. This L2 metric based normalized distance from

the goal vector scalarizes the multi-objectives to a single function described by

s = ∥(∆S,∆H, β)− (∆Sm,∆Hm, βm)∥2 (6.101)

Multi-objective nonlinear simplex (MNS), multi-objective ant colony (MACO) ,

multi-objective genetic algorithm (MGA) was run with the goal vector (∆Sm =

168.75,∆Hm = 275860, θm = 0.5237). The exercise shows that multi-objective

nonlinear simplex (MNS) converges faster than multi-objective ant colony (MACO)

and multi-objective genetic algorithm (MGA) for this case as shown in Figure

6.35. It is found that MNS took 404 function calls compared to 2125 function

calls for MACO to converge to 7 decade fall whereas MGA took 4900 function

calls for 5 decade fall of L2 metric based normalized distance from the goal

vector. Multi-objective nonlinear simplex (MNS) and multi-objective ant colony

(MACO) are attractive choice of methods which can be used in conjunction with

the meshless SLKNS code to carry out multi-objective shape optimization. 1 In

1Studies conducted over various test cases have shown that MACO and MNS both are

promising methods for shape optimization as they require minimum function calls or CFD runs

[178]. These studies are not reported in the present work as they are beyond the scope of the

thesis.
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Function Calls

N
or

m
al

iz
ed

di
st

an
ce

fro
m

th
e

go
al

ve
ct

or

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Multi-objective Genetic Algorithm (MGA)
Multi-objective Ant Colony Optimization (MACO)
Multi-objective Nonlinear Simplex (MNS)

Figure 6.35: L2 metric versus function calls for multi-objective nonlinear simplex,

ant colony optimization and genetic algorithm.
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the present research multi-objective nonlinear simplex (MNS) method is preferred

over multi-objective ant colony (MACO) method as MNS takes less number of

CFD calls.

6.6.3.2 Aerodynamic shape optimization using SLKNS

Consider two objective functions based an aerodynamic shape optimization prob-

lem involving viscous subsonic flow around an airfoil at Mach = 0.7 and 5× 106

Reynolds number. In this test case of multi-objective aerodynamic shape opti-

mization, the objective functions are

Objective Functions f1 = Cl , f2 = Cd (6.102)

and scalarization function is given as

Scalarization function = ∥(Cl, Cd)− (Cl,m, Cd,m)∥2 (6.103)

where (Cl,m, Cd,m) are the components of the goal vector taken as

q⃗∗ ≡ (Cl,m = 1.2, Cd,m = 0.09) (6.104)

The meshless SLKNS solver was run to evaluate the lift coefficient Cl and drag

coefficient Cd and carry out optimization. The shape of the airfoil was constructed

using NACA 4-digit airfoil formula. Parameterization consists of 3 shape controls

and one flow control parameter. The shape parameters are 1) Maximum thickness

of airfoil (THK), 2) Maximum camber (MC) and 3) Position of maximum camber

(PMC). The flow control parameter used was 4) Angle of attack (AOA). In this

test case, constraint concerning the thickness of airfoil was imposed by fixing it’s

minimum value. Shape optimization was carried out using ACO and meshless

SLKNS solver. Figure 6.36 shows a schematic of SLKNS based multi-objective

shape optimization process. Only the control parameters are allowed to change as

the optimization proceeds. Each of the parameter’s domain was discretized into 5

levels and 125 ant paths were chosen randomly. Each ant path defines the shape

of the airfoil as well as AOA at which it should be solved. Figure 6.37 shows the

discretized parameter domain and the ant paths. For example each path taken

gives a shape of the airfoil as shown in Figure 6.37 where an ant e.g. ANT01

traces out a path 1 − 3 − 1 − 2 which gives the value of angle of attack (AOA),

244



6.6 Multi-objective optimization methodology for SLKNS

Figure 6.36: Schematic of a SLKNS based multi-objective shape optimization

process.

Figure 6.37: Ant paths and shape parametrization.
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Table 6.4: Comparison of Initial and optimized results for goal vector q⃗

MACO parameters Initial range Optimization result

THK [ 10 , 15 ] [ 10.40, 10.82 ]

MC [ 0.0 , 4.0 ] [ 2.15, 2.43 ]

PMC [ 0.2 , 0.4 ] [ 0.25, 0.45 ]

AOA [ 0.0 , 5.0 ] [ 4.90, 5.62 ]

Optimum Cl, Cd – (1.214,0.087)

No. of CFD runs – 875

position of maximum camber (PMC), maximum camber (MC) and thickness of

the airfoil (THK). Using this we get the shape as well as angle of attack to

carry out next optimization step. After carrying out cloud pre-processing step

which involves cloud merging and connectivity generation we proceed with the

optimization. Trials and scores were evaluated at each discretized point of the

parametric domain using the L2 metric. For each ant path in the study, one CFD

call is needed. A large number of CFD calls are required for the entire shape

optimization. It should be noted that the time taken by the flow solver was very

high compared to the time taken by ACO. Table 6.4 shows the initial and final

range after convergence for the parameters for goal vector q⃗ ≡ (Cl,m = 1.2, Cd,m =

0.09) The optimization case was also run with multi-objective nonlinear simplex

(MNS) in order to compare it with multi-objective ACO. MNS took nearly four

times less CFD runs but failed to converge to a lower value of L2 metric while

multi-objective ant colony optimization took nearly 875 CFD calls and converges

to a much lower value of L2 metric as ACO goes outside the range provided by the

user. It should be noted that the parameters PMC and AOA converge to a range

outside the initial range supplied by the user - an advantage of using ACO based

multi-objective optimization. Figure 6.38(a) shows the change in airfoil shape and

Figure 6.38(b) shows the convergence in terms of scalarization based L2 metric

with respect to CFD calls as the optimization proceeds.
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Figure 6.38: ACO based aerodynamic shape optimization (a) change of shape

with iterations, and (b)convergence for goal vector q⃗.

6.7 Summary

Normal equations as well as QR approach used in least square method produces

inaccurate results when applied to stretched distribution of points required to re-

solve boundary layers of a viscous slip flow problem. The present approach over-

comes the limitations due to the ill-conditioning which is the weakness of normal

equations by using a novel concept of stencil splitting. The present method like

normal equations approach requires (m+n/3)n2 flops and provides stable results

for highly stretched distribution of points involving about half the arithmetic as

compared to QR approach. A new meshless method, SLKNS based on kinetic

theory retains the simplicity of normal equations approach and achieves higher

order accuracy through multi step procedure of defect correction. SLKNS uses

symmetric connectivity to generate graph required for domain decomposition.

Parallelization of SLKNS was carried out using optimized contention free com-

munication. By using coarse-medium-fine cloud sequencing the SLKNS solver

can be further accelerated. SLKNS can also be readily used for optimization

by generating cloud over the candidate body after each optimization step and

merging its sub-cloud. SLKNS was tested for carrying out multi-objective opti-

mization using scalarization based ϵ-dominance strategy coupled with ant colony

and simplex method. Ant colony optimization (ACO) can venture outside the
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range provided by the user while exploring the optima at a cost of higher num-

ber of CFD calls as compared to nonlinear-simplex. Multi-objective nonlinear

simplex (MNS) because of lesser CFD calls is more attractive, hence it is used

in the present research work to demonstrate multi-objective optimization within

meshless framework.
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Chapter 7

Results and Discussions

7.1 Introduction

Based on the formulations described in chapter 6, SLKNS code has been devel-

oped. The code uses kinetic flux vector splitting based boundary condition for

non-continuum slip flow as well as continuum flow. SLKNS code also has an

option of no-slip, Maxwell velocity slip and von Smoluchowski temperature jump

boundary conditions. In this code the time integration is based on local time step

as well as global time step. By default SLKNS code uses global time step with

3-stage scheme of Shu and Osher [249]. In the present study local time step with

explicit first order Euler is used only for test cases based on 3-D problems and test

cases for carrying out optimization studies in order to cut down computational

time for faster convergence to steady solutions. The code implements dynamic

allocation of memory for each node based on its connectivity.

This chapter describes the validation of meshless SLKNS solver for a variety

of test cases including continuum flows and non-continuum slip flows. Valida-

tion test cases include experimental pressure drop example, sets of numerical

case studies with slip flow features, supersonic flows and test cases with typical

features of the strongly rotating flows characterized by steep density gradient

and thin boundary layers. Multi-objective optimization test case is in addition

included to describe cloud handling methodology and non-linear simplex with

ϵ-dominance strategy within meshless framework.
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Figure 7.1: Experimental setup

7.2 Validation with experimental data

Literature review revealed large scale availability of slip flow data for micro-slip

flows but scanty data was available for rarefied slip flow. More so ever to carry

out accurate simulation we require the correct value of tangential momentum ac-

commodation coefficient i.e. the factor which identifies the fraction of molecules

reflecting in a diffuse way. In most of the reported experimental methods the

tangential momentum accommodation coefficient, σ are derived under an as-

sumption that pressure gradient along the test specimen is negligible. Hence,

it was planned to carry out in house experiments for validation of the SLKNS

code with an experimental pressure drop versus flow rate data for two pipes with

different geometries and surface finish.

Fig. 7.1 shows the experimental setup which consists of thermal mass flow meter

and capacitance based absolute pressure gauge. The test section chosen was a

pipe, motive gas chosen was nitrogen and experiment was conducted for varying

mass flow rate and its corresponding inlet and outlet pressures were measured.

The test section was baked and out-gassed. The setup was made leak tight by car-

rying out the Helium leak detection test. An extra valve was placed just after the

test section for pressure throttling and rarefied condition was maintained using

diffusion and roots pump. Experiments were conducted for two different tubes

of varying surface finish with following dimensions : i) 0.25 inch outer diameter

(OD) with inner diameter(ID) 0.475 cm and length 54 cm, and ii) 0.50 inch OD

with ID 1.205 cm and length 100.8 cm. Experiments revealed that the rarefaction

acts to increase the observed mass flow rate for a given inlet and outlet pressure

condition. The effect of slip makes a more significant contribution to the mass

flow.
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7.2.1 Analytical determination of mass flow rate

In the present case Maxwell model is used for gas-surface interaction. Maxwell

model uses tangential momentum accommodation coefficient (TMAC), σ. The

value of TMAC, σ depends upon the surface roughness of the wall as well as

particular solid and gas involved. For specular reflection TMAC, σ is zero and

for fully diffuse reflection σ becomes unity. Under fully developed conditions the

flow can be described by axial momentum equation as

µ

(
d2u

dr2
+

1

r

du

dr

)
=
dp

dz
(7.1)

The solution of Eq.7.1 gives a parabolic velocity profile equation as

ut(r, z) = A(z)r2 +B(z)r + C(z) (7.2)

The boundary condition is provided by the tangential slip velocity written in

terms of TMAC, σ as

ut(r, z) = −2− σ

σ
λ

(
∂u

∂r

)
r=a

(7.3)

where a is the radius of the pipe and λ is the mean free path. By substituting

the expressions of the derivatives the factors A(z), B(z) and C(z) can be derived

as

A(z) =
1

4µ

dp

dz
(7.4)

B(z) = 0 (7.5)

C(z) = − 1

4µ

dp

dz

(
a2 + 2a

2− σ

σ
λ

)
(7.6)

Substituting these factors we can obtain the axial velocity profile across the pipe

as

u(r, z) = − 1

4µ

dp

dz

(
a2 − r2 + 2a

2− σ

σ
λ

)
(7.7)

The average velocity can be written as

ū(z) =
1

πa2

∫ a

0

u(r, z)2πrdr

= − a2

8µ

dp

dz

(
1 + 4

2− σ

σ

λ

a

)
= − a2

8µ

dp

dz

(
1 + 8

2− σ

σ
Kn

) (7.8)
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where Kn is the Knudsen number defined as

Kn =
λ

2a
=

µ

2a

√
π

2ρp
=

µ

2ap

√
πRT

2
(7.9)

The mass flow rate (generally measured in units of mbar − liter/s ) can be

expressed as

ṁ = πa2ū(z)p

= −πa
4

8µ
p
dp

dz

(
1 + 4

2− σ

σ

λ

a

)
= −πa

4

8µ
p
dp

dz

(
1 + 8

2− σ

σ
Kn

) (7.10)

The ratio of mass flow rate in slip flow regime, ṁ with respect to mass flow rate

in continuum flow regime, ṁNS can be expressed as

ṁ
ṁNS

=
(
1 + 82−σ

σ
Kn
)

(7.11)

Thus the mass flow rate depends also on the pressure and its axial gradient. The

axial pressure gradient does not remain constant with respect to axial position.

This pressure gradient can be derived in two steps [13] : i) by obtaining the radial

velocity profile using the continuity equation, ii) deriving the pressure equation

based on the boundary condition of radial velocity at the wall. For isothermal

case we can write the continuity equation at steady state as

1

r

∂p(z)v(r, z)r

∂r
+
∂p(z)u(r, z)

∂z
= 0 (7.12)

where v(r, z) is the radial component of the velocity. After substitution of tan-

gential velocity we get the following expression

1

r

∂p(z)v(r, z)r

∂r
=

1

8µ

d2p2

dz2
(a2 − r2) +

a

2

2− σ

σ

√
πRT

2

d2p

dz2
(7.13)

The radial component of the velocity, v(r, z) can be evaluated as

v(r, z) =
1

rp(z)

∫
r
∂p(z)u(r, z)

∂z
dr

=
1

rp(z)

(
1

8µ

d2p2

dz2
(
a2r2

2
− r4

4
) +

ar2

4

2− σ

σ

√
πRT

2

d2p

dz2
+ C1

)
(7.14)
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where C1 is the integration constant. Using symmetry boundary condition at

the centre of the pipe where v(r, z) = 0 at r = 0. With this C1 = 0 and radial

velocity v(r, z) can be written as

v(r, z) = 1
p(z)

(
1
8µ

d2p(z)2

dz2
(a

2r
2

− r3

4
) + ar

4
2−σ
σ

√
πRT
2

d2p(z)
dz2

)
(7.15)

Using boundary condition at the wall where normal velocity is zero i.e. v(r, z) = 0

at r = a we get the pressure condition

d2p(z)2

dz2
+

8µ

a

2− σ

σ

√
πRT

2

d2p(z)

dz2
= 0 (7.16)

This can also be written in terms of Knudsen number Kn defined on the basis of

average pressure p̄=(pi + po)/2 of the pipe as

Kn =
λ̄

2a
=

µ

2ap̄

√
πRT

2
(7.17)

The pressure variation equation can now be expressed as

d2p(z)2

dz2
+ 16Knp̄

2− σ

σ

d2p(z)

dz2
= 0 (7.18)

Using pressure boundary conditions i)p = pi at z = 0, and ii)p = po at z = L we

can solve for pressure as

p(z) = −fslip +
√
(pi + fslipp̄)2 + (po − pi)(pi + po + 2fslipp̄)

z

L
(7.19)

The pressure gradient can be derived as

dp(z)

dz
=

(pi − po)(pi + po + 2fslipp̄)

2
√
L(L(pi + fslipp̄)2 + (po − pi)(pi + po + 2fslipp̄)z)

(7.20)

where factor fslip is expressed as

fslip = 8Kn
2− σ

σ
(7.21)

The pressure gradient at the inlet and outlet can be written as(
dp(z)
dz

)
z=0

=
(pi−po)(pi+po+2fslipp̄)

2L(pi+fslipp̄)(
dp(z)
dz

)
z=L

=
(pi−po)(pi+po+2fslipp̄)

2L(po+fslipp̄)

(7.22)
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The average pressure gradient can be written as

dp̄(z)
dz

=
(pi−po)(pi+po+2fslipp̄)

2

4L(pi+fslipp̄)(po+fslipp̄)
(7.23)

The mass flow rate, ṁ for a short pipe in terms of average pressure and its

gradient can be expressed as

ṁ = −πa4

8µ
p̄dp̄
dz
(1 + fslip)

= πa4

8µ
p̄∆p
L
ϕ̄p (1 + fslip)

(7.24)

where

p̄∆p
L

= (pi+po
2

) (pi−po)
L

(7.25)

and ϕ̄p is

ϕ̄p =
(pi+po+2fslipp̄)

2

4(pi+fslipp̄)(po+fslipp̄)
(7.26)

7.2.2 Validation with pressure drop and flow rate data

In order to validate the SLKNS code with the experimental data we require

the tangential momentum accommodation coefficient (TMAC) which identifies

fraction of molecules undergoing diffuse reflection. Refer Appendix E for the

experimental determination of tangential momentum accommodation coefficient

(TMAC). In the present study, axi-symmetric SLKNS code was used to calculate

mass flow rate for a given pressure drop for 0.25 inch OD pipe and 0.50 inch OD

pipe with TMAC evaluated using method-III described in the Appendix E. The

state update using axi-symmetric SLKNS is given as

U(t+∆t) = U(t)−∆t


(
∂GZ+(t)

∂z

)
∆z<0

+
(
∂GZ−(t)

∂z

)
∆z>0

+
(

1
r
∂rGR+(t)

∂r

)
∆r<0

+ 1
r

(
∂rGR−(t)

∂r

)
∆r>0

+ S

 (7.27)

where expressions of z and r component of the split fluxesGZ±,GR± and source

term S are given in section D.4 of Appendix D. Figure 7.2 shows the validation of

SLKNS code along with the selected experimental data and analytical expression

for flow rate versus average pressure for 0.50 and 0.25 inch OD pipe.
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Figure 7.2: Validation of SLKNS code using experimental data and analytical

expression for flow rate versus average pressure for 0.50 and 0.25 inch OD pipe.
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7.3 Validations with numerical test cases

This section presents set of twelve test cases to validate SLKNS, this also includes

two test cases chosen to validate the robustness and versatility of the meshless

solver for carrying out multi-objective optimization. The test cases are described

as follows :

• Continuum transonic flow over NACA0012 airfoil to validate wall boundary

condition using SLKNS solver.

• Hypersonic rarefied flow over a flat plate to validate kinetic wall boundary

conditions and its comparison with gradient based slip boundary conditions.

• Rarefied transonic flow over NACA0012 airfoil to validate the slip boundary

condition.

• Velocity distribution in a cylindrical annuli to validate slip boundary con-

dition.

• Concentric Couette flow to validate slip under rotation and axi-symmetric

solving capability of the solver. This test case was also solved with SLKNS

solver using r-θ plane.

• Rarefied flow in a rotating annulus to validate the axi-symmetric rarefied

flow solving capability.

• Optimization of slowly moving ring in a rotating annulus to validate the

optimization capability for axi-symmetric problems.

• Flow field around a stationary body in the rotating subsonic and supersonic

flow field.

• Rarefied near transition flow in a rotating eccentric cylinder to validate the

slip modeling abilities of the solver under rarefied condition beyond slip and

near transition regime with adverse pressure gradient.

• Rarefied supersonic flow over a hemisphere to validate SLKNS for 3-D flow

and slip boundary.
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X

Y

Z

Figure 7.3: Cloud of points around NACA0012 aero foil

• Stationary hemisphere in strongly rotating flow field to validate SLKNS for

rarefied core boundary condition.

• Multi-objective optimization of stationary body in a strongly rotating flow

field to demonstrate the optimization method in meshless framework.

7.3.1 Transonic viscous flow over NACA0012 airfoil and

wall boundary condition

Consider a test case of transonic continuum flow of air at Mach 0.8 past a

NACA0012 airfoil at 10 degrees angle of attack at Reynolds number of 500 with

Knudsen number of 2.4× 10−3 based on chord length. This test case is simulated

using C-type mesh of size 207 × 49 shown in Fig. 7.3 using no-slip and adiabatic

wall boundary condition. This test case was solved using SLKNS solver with

dissipation control, the state update for this case is written as

U (t+∆t) = U(t)−∆t


(
∂G̃X

+
(t)

∂x

)
∆x<0

+
(
∂G̃X

−
(t)

∂x

)
∆x>0

+
(
∂G̃Y

+
(t)

∂y

)
∆y<0

+
(
∂G̃Y

−
(t)

∂y

)
∆y>0

 (7.28)
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Figure 7.4: Transonic flow past NACA0012 airfoil at Mach=0.8,AOA=10 deg.,

Re=500

The fluxes based on dissipation control parameter φ are

G̃X
±
= 1

2

[
(GX+ +GX−)± φ(GX+ −GX−)

]
G̃Y

±
= 1

2

[
(GY + +GY −)± φ(GY + −GY −)

] (7.29)

when dissipation control parameter φ=1 the formulation becomes in KFVS form.

In this study the dissipation control parameter φ is a function of average cloud

space or grid spacing in the connectivity. Fig.7.4 shows the Mach contours with

two counter rotating vortices. Figure 7.5 and Figure 7.6 show plots of pressure

coefficient and skin friction coefficient for SLKNS solver and a finite volume lam-

inar viscous solver of Furtunato and Magi [89]. The skin friction coefficient plot

also shows comparison with results of Catalano et al. [43] obtained using the

grid size of 257 × 65 = 16705 nodes. SLKNS code was run for coarse, medium

and fine cloud and its results in terms of lift and drag coefficients are compared

in table 7.1. The table shows that the results improve as the cloud becomes

fine. Results for fine cloud lies within the range reported in GAMM workshop

[39]. Figure 7.7 shows plot of skin friction coefficient for coarse, medium and fine

cloud using SLKNS solver. In this test case, the solver uses a 3-stage scheme of

Shu and Osher [249] based on global CFL time step. The residue plot in Figure

7.8 shows the fall of normalized residue for coarse, medium and fine clouds. The
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Figure 7.5: Pressure distribution plot for transonic flow past NACA0012 airfoil

at Mach=0.8,AOA=10 deg., Re=500.
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Figure 7.6: Skin friction plot for transonic flow past NACA0012 airfoil at

Mach=0.8,AOA=10 deg., Re=500.
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Table 7.1: Comparison of lift and drag coefficients for transonic flow past

NACA0012 airfoil with coarse, medium and fine cloud.

Cloud Cl Cd

64 × 16 0.6992 0.3417

128 × 32 0.5520 0.3110

257 × 65 0.4642 0.2812

GAMM 0.4145 0.5170 0.2430 0.2868

normalized residue R̄es
k
2 = Resk2/Res

0
2, where residue Resk2 is based on the aver-

age L2 norm of all the state vector components across the domain at kth iteration

as described in section 6.3.4 of chapter 6. Kinetic schemes work more efficiently

for high speed flows; this is evident if we compare the fall of residue of transonic

flow past NACA0012 airfoil with respect to supersonic flow for the same cloud of

points as shown in section 6.3.6.

7.3.1.1 Validity of no-slip boundary condition

Based on results of continuum theory no-slip condition prevails at the wall. On

the other hand results of kinetic theory reveals that the velocity slip and tem-

perature jump will always be present even in continuum flow regime [90, 265].

The slip taking place is of the order of mean free path which cannot be vali-

dated experimentally or deduced without some kind of dependence of classical

Navier-Stokes equations. More-so-ever in gases no slip is achieved only when the

molecules simulate wettability condition i.e. molecules are adsorbed onto solid

surface for a considerable amount of time. Watanabe et al. [288] and Tretheway

& Meinhart [277] have reported that that slip exists in liquids when wettability

is not achieved. Discussions about this subject is beyond the scope of the thesis

but the kinetic theory based derivations reported in the next subsection shows

that slip is always present. Slip becomes negligibly small and approaches no-slip

condition as the flow condition approaches continuum.
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Figure 7.7: Skin friction plot for transonic flow past NACA0012 airfoil at

Mach=0.8,AOA=10 deg., Re=500 for coarse, medium and fine cloud.
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Figure 7.8: Residue plot for transonic flow past NACA0012 airfoil with coarse,

medium and fine cloud.

7.3.1.2 No-slip and kinetic wall boundary condition

For continuum flow conditions the stationary solid wall will have to satisfy no-slip

boundary condition that is ux = 0, uy = 0 and temperature is required to satisfy

isothermal or adiabatic boundary condition. The adiabatic boundary condition

for temperature is obtained by solving s⃗n · ∇T = 0, where s⃗n is the surface nor-

mal. It is found advantageous to update pressure at the wall ( instead of density

) by using normal momentum equation. The momentum flux can be written as

ρ u⃗ ⊗ u⃗−P . At the wall in continuum regime u⃗=0 hence pressure for no slip

boundary can be obtained using ∇ · P = 0. The term P is the pressure tensor

defined as P=Π− pI where I is the identity invariant tensor and Π is the ten-

sor of viscous stresses. Primarily very close to the wall the balance is between

pressure gradient and viscous stress gradient terms.

The alternative route based on kinetic theory differs from the treatment of bound-

ary based on no-slip condition. Kinetic boundary condition solves the conserva-

tion of distribution at the boundary based on the tangential momentum / energy

accommodation coefficient. Kinetic theory results show that the velocity slip and
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7.3 Validations with numerical test cases

temperature jump, however small is always be present in the continuum flow

regime.

7.3.1.3 Continuum test case with kinetic wall boundary condition

Consider the same test case of transonic continuum flow of air at Mach 0.8 past a

NACA0012 airfoil at 10 degrees angle of attack at Re=500. The Knudsen number

in terms of Mach number, rmM and Reynolds number, Re can be written as

Kn =

√
πγ

2

M

Re
(7.30)

The Knudsen number, Kn evaluated for such a case is 2.4× 10−3 based on chord

length. This test case is simulated using the kinetic boundary condition with

fully diffuse reflecting wall i.e. the accommodation coefficient, σ =1. The kinetic

boundary condition treats the continuum region in the same way as the non-

continuum region admitting velocity slip and temperature jump which becomes

negligibly small in the continuum region. The slip velocity not only depends on

the velocity gradient in the normal direction but also on the tangential flow gradi-

ents. As described earlier when variations in tangential directions are substantial

then distribution at time t+∆t at the boundary can be constructed as follows

f1,Σ(t+∆t) = f1,Σ(t)−∆t

[
∂vxf

+−
1,Σ (t)

∂x
+
∂vxf

−−
1,Σ (t)

∂x
+
∂vyf

·−
1,Σ(t)

∂y

]
(7.31)

where f+−
1 is the half-range first order distribution function for 0 < vx < ∞

and −∞ < vy < 0 and f−−
1 is the half-range first order distribution function for

−∞ < vx < 0 and −∞ < vy < 0. After taking Ψ moment we can obtain state

update equation expressed as

U(t+∆t) = U(t)−∆t


(
∂ĜX

+−
(t)

∂x

)
∆x<0

+

(
∂ĜX

−−
(t)

∂x

)
∆x>0

+

(
∂ĜY

·−
(t)

∂y

)
∆y>0

 (7.32)

where U=[ρ, ρu, ρE]T is the state vector and ∆t is the time step. ĜY
·−

is the

flux resulting from half range distribution f ·−
1,Σ. Derivatives of ĜX

+−
, ĜX

−−
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Figure 7.9: Residue plot for continuum transonic flow past NACA0012 airfoil

with kinetic wall boundary condition: (a)Coarse cloud, (b)coarse-medium cloud

sequence, and (c)coarse-medium-fine cloud sequence.

and ĜY
·−

are evaluated using mesh points on the left, right and upward side.

The fluxes ĜX
±−

and ĜY
−
are given as

ĜX
±−

= (2− σ)(GX±−
I +GX±−

V ) + σGX±−
I (ρ, uw,x, Tw)

ĜY
·−

= (2− σ)(GY ·−
I +GY ·−

V ) + σGY ·−
I (ρ, uw,x, Tw)

(7.33)

where GX±−
I , GX±−

V , GY ·−
I and GY ·−

V are evaluated based on fluid conditions

while GX±−
I (ρ, uw,x, Tw) and GY ·−

I (ρ, uw,x, Tw) are the inviscid flux based on

Maxwellian distribution which are evaluated using fluid density ρ, wall tempera-

ture Tw and wall velocity uw≡(uw,x, 0). The final expressions of these fluxes are

given in Appendix D.

With the implementation of kinetic wall boundary condition we require smaller

time step and as a consequence the code converges slowly and number of iterations

increases many fold for resolving slip flow feature. In the present approach the

code is accelerated using cloud sequencing described earlier by running SLKNS on

a coarse cloud of size 64× 16 for a limited amount of iterations after one decade

fall in the residue and then the result is mapped into a medium cloud of size

128× 32 . The solver runs on the medium cloud for 3 decade fall of residue and

results are mapped to a fine cloud of size 257×65. Figure 7.9 shows the plot of the

normalized residue for coarse, medium and fine cloud used in cloud sequencing.

Fig. 7.10 (a) shows the plot of coefficient of friction compared with SLKNS solver

with kinetic wall boundary condition, SLKNS with no-slip boundary condition

and fluctuation splitting LDA scheme [43] using no-slip boundary condition. Dip

in coefficient of friction near the leading edge can be observed due to slip flow.

264



7.3 Validations with numerical test cases

(a)
x/chord

C
f

0 0.25 0.5 0.75 1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Kinetic boundary condition
No Slip ( Catalano et al. )
No Slip ( SLKNS Solver )

(b)
x/chord

u sl
ip
/u

fr
ee

st
re

am

0 0.25 0.5 0.75 1
0

0.01

0.02

0.03

0.04

0.05

Figure 7.10: Continuum transonic flow past NACA0012 airfoil with kinetic wall

boundary condition: (a)Coefficient of friction plot, (b) velocity slip along the

surface of NACA0012 airfoil.

Fig. 7.10 (b) shows the small velocity slip existing on the surface. Temperature

jump for this case was found to be very negligible. This continuum flow test

case using kinetic wall boundary condition confirms the observation made by

Struchtrup [265] that temperature jump and velocity slip will be present for all

dissipative walls even in continuum regime.

7.3.2 Hypersonic rarefied flow over a flat plate

Hypersonic rarefied flow over a flat plate is one of the fundamental problem as it

generates wide range of flow phenomena extending from highly non-equilibrium

flow near the leading edge through the merged layer to strong and weak interac-

tion regimes to a classical boundary layer flow at the downstream. Figure 7.11

shows a schematic of fluid flow phenomena near the leading edge. Kinetic flow re-

gion exists very near the leading edge caused by collisions between free stream and

body reflected molecules. Near the leading edge non-continuum non-equilibrium

viscous region exists where molecule-molecule and molecule-body collisions dom-

inate the flow and as a consequence the distribution function is far away from

Maxwellian. Further downstream in the transition region molecule-molecule col-

lisions dominate the flow, this is followed by merged layer region in which wall
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Figure 7.11: Schematic of fluid phenomena near the leading edge for hypersonic

rarefied flow over a flat plate[222].

boundary layer merges with the a non-Rankine-Hugoniot shock [222]. Consider

a test case of hypersonic flow of argon at free stream velocity of (1893.7, 0, 0)

m/s, with pressure of 3.73 Pascal at temperature of 64.5 K over a flat-plate held

at uniform temperature Tw = 292 K at 0 deg angle of attack [104]. The test case

used in this thesis consists of flat plate 45 cm long placed along the x-axis in a

flow domain of 25 cm × 50 cm as shown in Figure 7.12. The CFD simulation used

a mesh of 70 × 100 graded from ∆y≈0.13 mm at the plate surface to ∆x≈0.21

mm ahead of the plate tip. The kinetic slip boundary condition is flux based and

its state update is given as

U(t+∆t) = U(t)−∆t


(
∂ĜX

+−
(t)

∂x

)
∆x<0

+

(
∂ĜX

−−
(t)

∂x

)
∆x>0

+

(
∂ĜY

·−
(t)

∂y

)
∆y>0

 (7.34)

Figure 7.13 shows the profile of the tangential velocity in the boundary layer at

x=25 mm from the plate tip. Figure 7.14 shows the profile of the temperature

in the boundary layer at x=25 mm from the plate tip. Figure 7.15 shows the

profile of the density in the boundary layer at x=25 mm from the plate tip.

The hypersonic test case was run for 500 iterations using SLKNS solver with no-

slip boundary condition, thereafter SLKNS was used with kinetic wall boundary

condition. Figure 7.16 shows plot of density with iterations at a location x= 5
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Figure 7.12: Hypersonic flow over a flat plate, Mach contours based on SLKNS

solver.
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Figure 7.13: Tangential velocity at cross-section x=25 mm from the plate tip.
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Figure 7.14: Temperature at cross-section x=25 mm from the plate tip.

mm and y=2 mm from the plate tip.

7.3.2.1 Comparison with various slip boundary conditions

In this test case of the hypersonic flat plate problem various slip and jump bound-

ary conditions are compared with the results of flux based kinetic wall boundary

condition using SLKNS solver and DSMC (Direct Simulation Monte Carlo) [36].

Maxwell velocity slip [163] given as

ux =

[(
2− σ

σ

)
τxy
2p

√
π

β
− qxη

2p

]
(7.35)

and von Smoluchowski’s temperature jump boundary condition given as

T = Tw −
(
2− σ

σ

)
2γλqy

cp(1 + γ)µ
(7.36)

Apart from this we have also used the new velocity slip and temperature jump

conditions based on present research work derived using non-equilibrium distri-

bution based on the new kinetic model as described in sections 5.4.1 and 5.4.2

of chapter 5. The derived velocity slip expression called Onsager-Maxwell slip

velocity is

ux =

[(
2− σ

σ

)
τxy
2p

√
π

β
− qxη

2p

]
(1− τyy/2p)

−1 (7.37)
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Figure 7.15: Density at cross-section x=25 mm from the plate tip.

Figure 7.16: Plot of density variation with iterations at a location x= 5 mm and

y=2 mm from the plate tip.
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Figure 7.17: Variation of (a)Velocity slip and (b)Temperature jump along the

surface of flat plate for various boundary conditions.
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The derived temperature jump condition called Onsager-von Smoluchowski’s tem-

perature jump is

T = Tw +

(
2− σ

σ

)2 γλ2τ 2xy
cp(γ + 1)µ2

−
(
2− σ

σ

)
2γλqy

cp(γ + 1)µ
(7.38)

In the present simulation we have also used derived compressible temperature

jump condition as

T =
3β2

wγS
2ϑ

cp(γ − 1)(21/3(2− 12β3
wS

2 + 21/3ϑ2) + 2ϑ)
(7.39)

where βw is given as

βw =
1

2RTw
=

γ

2Tw(γ − 1)cp
(7.40)

and

S = −
(
2− σ

σ

)
4(γ − 1)

√
π

ρ(γ + 1)
qy (7.41)

ϑ =
(
2− 18β3

wS
2 + 27β6

wS
4 + 3β4

wS
3
√
81β4

wS
2 − 12βw

)1/3
(7.42)

All of these boundary conditions are compared with the flux based kinetic bound-

ary condition and results of DSMC. Figure 7.17(a) shows the plot of velocity slip

for DSMC, kinetic boundary condition, Maxwell slip and Onsager-Maxwell slip.

Figure 7.17(b) shows the plot of temperature jump for DSMC, kinetic, von Smolu-

chowski, Onsager-von Smoluchowski boundary condition and temperature jump

for compressible flow. Temperature jump for compressible flow and von Smolu-

chowski temperature jump gave unphysical temperature jump near the leading

edge, hence they were evaluated based on DSMC field data to compare it with

kinetic boundary condition. Kinetic boundary condition was found to give better

agreement with the results of DSMC. As also observed by Greenshields & Reese

[104] there is discrepancy between the results of DSMC and boundary conditions

of Maxwell and von Smoluchowski. This discrepancy is because of two factors:

i)missing features of non-equilibrium thermodynamics, ii)as well as due to the

fact that these expressions are derived under condition of negligible tangential

variations. The mass flux due to slip on the surface of the plate is governed both

by the tangential as well as normal components of shear stress tensor and heat

flux vector. In order to estimate the order of importance of cross phenomenon

involved in tangential flow a new term called reciprocity number Rp was derived
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using the contribution of thermodynamic forces on viscous split fluxes. Rp is

expressed as the ratio of slip mass flux due to shear stress tensor and heat flux

vector derived using half range distribution for this case as follows

Rp =
Λ+−

1,τ :Xτ

Λ+−
1,q ·Xq

=
2τxyA

+
1 − τxxB

+
1

2βηuslip(qyA
+
1 − qxB

+
1 )

(7.43)

where expressions of A+
1 and B+

1 are given in Appendix D. The plot of Rp in

Figure 7.18 shows a sudden variation in the ratio of contribution of shear stress

tensor and heat flux vector near the leading edge. Near the leading edge the flow

is dominated by the cross-coupling due to thermodynamic forces based on heat

flux vector and shear stress tensor. Tangential variations become insignificant as

we move away from the zone of sudden dip.

7.3.3 Rarefied transonic viscous flow over NACA0012 air-

foil

This test consists of free stream rarefied transonic flow at Mach, rmM = 0.8,

density 1.116× 10−4 kg/m3 and temperature 257 K past a NACA0012 airfoil at

zero angle of attack [270]. The Reynolds number based on the airfoil chord is 73

and Knudsen number is 0.014. The chord length is 0.04m and wall of the airfoil

is at 290 K. The density contours shown in Fig. 7.19 reveals rise of density near

stagnation point and rarefaction towards the tail where the density drops down.

The viscosity based mean free path depends on the density, ρ as follows

λ = µ

√
π

2ρp
(7.44)

The mean free path becomes large near the tail. Fig. 7.20 shows the contours

of mean free path. The rise in the mean free path near the tail makes the slip

influence more pronounced which results in sudden rise of slip velocity. The state

update equation for interior flow solver node is expressed as

U (t+∆t) = U(t)−∆t


(
∂GX+(t)

∂x

)
∆x<0

+
(
∂GX−(t)

∂x

)
∆x>0

+
(
∂GY +(t)

∂y

)
∆y<0

+
(
∂GY −(t)

∂y

)
∆y>0

 (7.45)

where U=[ρ, ρu, ρE]T is the state vector and ∆t is the time step. Expressions of

split fluxes GX± and GY ± are given in Appendix D. The state update for the
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boundary node is expressed as

U(t+∆t) = U(t)−∆t


(
∂ĜX

+−
(t)

∂x

)
∆x<0

+

(
∂ĜX

−−
(t)

∂x

)
∆x>0

+

(
∂ĜY

·−
(t)

∂y

)
∆y>0

 (7.46)

where ĜY
·−

is the flux resulting from half range distribution f ·−
1,Σ. Derivatives

of ĜX
+−

, ĜX
−−

and ĜY
·−

are evaluated using mesh points on the left, right

and upward side. The fluxes ĜX
±−

and ĜY
−
are given as

ĜX
±−

= (2− σ)(GX±−
I +GX±−

V ) + σGX±−
I (ρ, uw,x, Tw)

ĜY
·−

= (2− σ)(GY ·−
I +GY ·−

V ) + σGY ·−
I (ρ, uw,x, Tw)

(7.47)

where GX±−
I , GX±−

V , GY ·−
I and GY ·−

V are evaluated based on fluid conditions

while GX±−
I (ρ, uw,x, Tw) and GY ·−

I (ρ, uw,x, Tw) are the inviscid flux based on

Maxwellian distribution which are evaluated using fluid density ρ, wall tempera-

ture Tw and wall velocity uw≡(uw,x, 0). The final expressions of these fluxes are

given in Appendix D.

Fig. 7.21 shows the comparison of the slip velocity distribution for rarefied flow

past NACA0012 airfoil based on SLKNS solver and DSMC on a coarse cloud.

The simulation was carried out using 7200 cloud of points generated using mesh

of size 120× 60 as shown in Fig. 7.22. DSMC gave better results for nearly same

grid size. Fig. 7.23 shows the plot of normalized residue using SLKNS solver

using explicit first order Euler time stepping based on global time step.

7.3.4 Slip flow in an annulus

Avci and Aydin [18] investigated laminar slip flow in a micro-annulus between

two concentric cylinders of inner radius ri and outer radius ro. They considered

a slip flow with fully diffuse reflection and found out a relationship in terms of

dimensionless radius rd = ri/ro for dimensionless velocity distribution as

uz
uzmax

=

2

[
1−

(
r
ro

)2
+ r2m ln

(
r
ro

)
+ A

]
B

(7.48)
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Figure 7.20: Contours of mean free path for rarefied flow past NACA0012 airfoil
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Figure 7.23: Residue plot for rarefied transonic viscous flow over NACA0012

airfoil

where A, B and rm are, respectively given as

A = 4Kn(1− rd)(1− r2m)

B =
[
1− r2d − 4r2m

(
1
2
+

r2d
1−r2d

ln(rd)
)
+ 2A

]
rm = rm

ro
=

 (1−r2d)(1+4Kn)

2 ln( 1
r
d
)−4Kn(

r2
d
−1)

r2
d

1/2 (7.49)

Here Knudsen number,Kn = λ/dh is defined with respect to hydraulic diameter

of the annuli as

dh = 2(ro − ri) (7.50)

In this test case we considered cylindrical annuli with inner radius of 0.02 m and

outer radius of 0.1 m with argon flowing at an average pressure of 2 pascals. The

meshless solver m-SLKNS described in section 6.3.2 was used for this slip flow

case at Kn = 0.0227. The 900 node size cloud was generated using r-z mesh of

30 × 30. The state update using axi-symmetric SLKNS is given as

U (t+∆t) = U(t)−∆t

(
∂GZ±

∂z
+

1

r

∂rGR±

∂r
+ S

)
(7.51)

Figure 7.24(a) shows the plot of dimensionless velocity which compared well with

the analytical results of Avci and Aydin [18]. The plot in Figure 7.24(b) shows
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Figure 7.24: Slip flow in a micro-annulus at Kn = 0.0227 (a)plot of velocity

distribution, (b) residue plot.

the fall of normalized residue, R̄es
k
2 = Resk2/Res

0
2, where residue Resk2 is based

on the average L2 norm of all the components across the domain at kth iteration

as described in section 6.3.4 of chapter 6.

7.3.5 Concentric Couette flow

Couette flow between concentric inner rotating and outer stationary cylinders

is one of a classical fluid dynamics problem. However, under certain conditions

of rarefaction and wall boundary (when accommodation coefficient is small the

wall become more specular), the velocity profile inverts i.e. the gas rotates faster

near the stationary wall. This phenomenon was first predicted by Einzel et al.

[80]. Many researchers [9, 162, 275] have carried out analytical and DSMC stud-

ies to explain this anomalous behavior. In this test case Argon gas is confined

between inner and outer cylinder that have tangential momentum accommoda-

tion coefficient of 0.1 and radii of 3λ and 5λ respectively, where mean free path,

λ = 6.25 × 10−8 m. Inner cylinder rotates with angular speed, ω = 5.17 × 108

rad/s and outer cylinder is held stationary [275].
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Figure 7.25: Comparison of the non-dimensional tangential velocity for SLKNS

simulation on r-z plane and DSMC

7.3.5.1 SLKNS simulation on r-z plane

Meshless solver SLKNS was able to capture this anomalous behavior of velocity

inversion with axi-symmetric version of the code using r-z plane with a cloud of

size 60 × 30. The state update for interior node using axi-symmetric SLKNS is

given as

U(t+∆t) = U(t)−∆t


(
∂GZ+(t)

∂z

)
∆z<0

+
(
∂GZ−(t)

∂z

)
∆z>0

+
(

1
r
∂rGR+(t)

∂r

)
∆r<0

+ 1
r

(
∂rGR−(t)

∂r

)
∆r>0

+ S

 (7.52)

where expressions of z and r component of the split fluxes GZ± and GR± and

source term S are given in section D.4 of Appendix D. Fig.7.25 shows the plot

of the non-dimensional tangential velocity with respect to non-dimensional ra-

dial distance for SLKNS and Direct Simulation Monte Carlo(DSMC) [36]. From

physical point of view the rotating cylinder imparts the circumferential momen-

tum to the molecules undergoing diffuse reflection. At smaller Knudsen number

most of the momentum transfer is due to molecular collisions. When the outer

cylinder is specularly reflecting then no circumferential momentum is transferred

to the outer cylinder [9]. As a consequence the gas accelerates and reaches the

stationary state of rigid body rotation (the distribution function is a Maxwellian),
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satisfying the Onsager’s principle of least dissipation of energy valid for processes

close to equilibrium.

7.3.5.2 SLKNS simulation on r-θ plane

Similar test case was also verified with the analytical results of Sun et al. [271].

Consider rarefied flow with a mean free path, λ of 0.00625 m confined in a rotating

inner cylinder of radius 3λ and stationary outer cylinder of radius 5λ. The motive

gas chosen is argon with initial uniform density of 1.867819 × 10−5 kg/m3 and

inner cylinder held at 300 K, rotates at frequency of 1000π radians/sec. The

tangential momentum accommodation coefficient and thermal accommodation

coefficient were taken as unity. The tangential velocity derived by Sun et al.

[271] can be written as

uθ(r) = ar +
b

r
(7.53)

where factors a and b can be written as

a =
A

A−B
ω (7.54)

b =
1

B − A
ω (7.55)

parameters A and B are as follows

A =
1

r2o

(
1− 2− σo

σo

2λ

ro

)
(7.56)

B =
1

r2i

(
1 +

2− σi
σi

2λ

ri

)
(7.57)

where ri and ro are the inner and outer radius, σi and σo are the accommodation

factors at the inner and outer cylinder. The dimensionless velocity with respect

to circumferential rotating inner cylinder u∗θ can be written as

u∗θ =
uθ
ωri

=
1

(A−B)ri

(
Ar − 1

r

)
(7.58)

The state update equation for interior flow solver node using r-θ plane is expressed

as

U (t+∆t) = U(t)−∆t


(
∂GX+(t)

∂x

)
∆x<0

+
(
∂GX−(t)

∂x

)
∆x>0

+
(
∂GY +(t)

∂y

)
∆y<0

+
(
∂GY −(t)

∂y

)
∆y>0

 (7.59)
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Figure 7.26: Comparison of the non-dimensional tangential velocity for SLKNS

simulation on r-θ plane and analytical result [271].

where expressions of split fluxes GX± and GY ± are given in Appendix D. A

cloud of size 120 × 200 was used to carry out simulation using SLKNS. Fig.7.26

shows the plot of the non-dimensional tangential velocity with respect to non-

dimensional radial distance for SLKNS solver using r-θ plane and analytical re-

sults. The analytical results are obtained using isothermal condition and uniform

density. It should be noted that the density dips near the inner cylinder and

increases near the outer cylinder as shown in figures 7.27 and 7.28. Figure 7.29

shows the contour of temperature which breaks the symmetry. It should be noted

that analytical result is based on axi-symmetric solution which may no longer be

accurate as symmetry breaks due to slip flow. SLKNS converges very fast as it is

based on VRKFVS scheme which solves for the perturbation over the Maxwellian

distribution. Figure 7.30 shows the plot of residue fall with iterations for coarse,

medium and fine cloud, here the residue is based on the average L2 norm of all

the components across the domain at kth iteration as described in section 6.3.4 of

chapter 6. Figure 7.31 shows the variation of dimensionless velocity with respect

to non-dimensional radial distance for coarse cloud of size 1500 nodes, medium

cloud of size 6000 nodes and fine cloud of size 24000 nodes, and its comparison

with analytical result.
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Figure 7.29: Contours of temperature based on simulation on r-θ plane.

Figure 7.30: Residue plot for coarse, medium and fine cloud for concentric couette

flow based on simulation on r-θ plane.
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Figure 7.31: Variation of dimensionless velocity with respect to non-dimensional

radial distance for coarse, medium and fine cloud simulation on r-θ plane and

analytical result.

7.3.6 Flow in a rotating annulus

In this test case we present result for argon gas with a stream density of 1.4×1021

molecules/m3 in rotating cylindrical annulus of inner radius 0.1 m and outer

radius of 0.2 m and height of 0.1 m with top lid held at 310 deg K and bottom at

290 deg K. Figure 7.32 shows the comparison between Direct Simulation Monte

Carlo(DSMC) simulation with 100×100 mesh and axi-symmetric SLKNS results

with cloud of 14400 nodes. The distance between first node and the bottom wall

and peripheral side wall was kept at 1.65 × 10−4 m so as to resolve the viscous

boundary layers encountered in the rotating flows.

7.3.6.1 Boundary layer in rotating flows

A simple scaling analysis [105] of the flow close to side wall and bottom wall

gives three types of boundary layers i.e. two vertical Stewartson layers to bring

azimuthal velocity to wall velocity and axial velocity to rest and horizontal Ekman

layer to bring radial velocity to rest. The thickness of the three layers are given

by

δlayer = H̄Eα
k (7.60)
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Figure 7.33: Velocity boundary layers computed using SLKNS code for flow in

rotating annulus:(a)Horizontal radial velocity Ekman layer with slip velocity in

the inset figure(b) Vertical axial velocity Stewartson layer.

where H̄ is the half height of the cylinder, Ek is the Ekman number and α is the

exponent based on type of layer. The Ekman number Ek is given by

Ek =
µ

ρΩH̄2
(7.61)

where Ω is the angular speed in radians. The thickness of the layers are given as

• δStewartsonlayer = H̄E
1/3
k

This gives the thickness of the vertical Stewartson 1/3 boundary layer which

brings the axial velocity to rest.

• δStewartsonlayer = H̄E
1/4
k

This gives the thickness of the vertical Stewartson 1/4 boundary layer which

brings the azimuthal velocity to wall’s rigid body rotation.

• δEkmanlayer = H̄E
1/2
k

This gives the thickness of the horizontal Ekman boundary layer which

brings the radial and azimuthal velocities to rest.

SLKNS was able to resolve both the layers. Figure 7.33(a) shows the horizontal

Ekman layer for bringing radial velocity to rest, the inset figure shows the zoomed

view with small slip velocity developed at the wall. Figure 7.33(b) shows the

vertical Stewartson layer for bringing axial velocity to rest.
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7.3.6.2 Weak secondary flow in a strong primary flow field

Apart from capturing flow features associated with strong rotation SLKNS solver

was also able to capture a weak axial flow of the order 2 ms−1 with maximum

wall velocity of around 628 ms−1. In this validation test case variance reduction

kinetic flux vector scheme (VRKFVS) was used. As described earlier the SLKNS

solver based on VRKFVS uses only the perturbation fluxes over the rigid body

rotation as follows

∂
∂t
(U −URB) + ∂

∂z

[(
GZ±

I

)
−
(
GZ±

I

)
RB

+
(
GZ±

V

)
∆

]
+1
r
∂
∂r

[(
rGR±

I

)
− r

(
GR±

I

)
RB

+ r
(
GR±

V

)
∆

]
+ S − SRB = 0

(7.62)

where URB is the state update vector ,
(
GR±

I

)
RB

and
(
GZ±

I

)
RB

are the split

fluxes based on rigid body rotation. The viscous fluxes
(
GR±

V

)
∆
and

(
GZ±

V

)
∆
are

computed based on relative velocity field over the rigid body rotation. The source

term S is subtracted with SRB evaluated with rigid body rotation condition.

Cloud convergence study was done using a coarse cloud of 900 nodes, medium

cloud of 3600 nodes and a fine cloud of 14400 nodes. Figure 7.34 shows the plot of

axial mass flux for coarse, medium and fine cloud. Figure 7.35 shows the plot of

normalized residue for the coarse, medium and fine cloud based on VRKFVS and

KFVS schemes using macroscopic tensor splitting. Normalized residue is defined

as R̄es
k
2 = Resk2/Res

0
2, where residue Res

k
2 is based on the average L2 norm of all

the components across the domain at kth iteration as described in section 6.3.4 of

chapter 6. From the residue plot it is evident that the scheme based on VRKFVS

converges much faster and at the same time resolves the weak secondary flow.

7.3.6.3 Comparison of SLKNS solver with DSMC

It is difficult to truly compare time and memory requirements of DSMC and

SLKNS solver as it depends on the speed memory trade-off and level of rarefac-

tion. Typically, SLKNS solver based on VRKFVS takes around 20 to 30 times less

computational time with fraction of memory requirement as compared to DSMC.

In this particular problem DSMC solver has taken nearly 6.5 K Bytes/meshpoint

compared to 1.2 K Bytes/node for SLKNS solver.
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Figure 7.34: Plot of axial mass flux (kg m/s) with respect to radius (m) for

cloud convergence study using coarse, medium and fine cloud for flow in rotating

annulus.
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Figure 7.35: Flow in rotating annulus: (a) Residue plot for coarse, medium

and fine cloud for SLKNS solver based on VRKFVS and KFVS schemes using

macroscopic tensor splitting, (b) and its zoomed view.

7.3.6.4 Symmetry breaking due to slip flow

It should be noted that rigid body rotation does not hold for rarefied gas confined

in a rotating annulus. Fig. 7.36 shows a symmetry breaking in temperature

contour due to slip flow solved with SLKNS solver on r-θ plane. In this case

the inner and outer walls are rotating with the same frequency, walls are held at

temperature of 300 K and Knudsen no. based on radius of inner cylinder is 0.01.

Due to rotation the gas becomes rarefied near the inner cylinder causing slip flow

which produces instability mechanism due to shear-thinning finally leading to

symmetry breaking. Thus we require 3D solver instead of axi-symmetric solver

to simulate gas confined in a rotating cylindrical annulus. The cloud requirement

to simulate such a flow using a 3D solver will be enormous in order to resolve thin

boundary layers, slip effects and exponential rise in density towards the peripheral

wall.

7.3.7 Shape optimization of slowly moving ring in a ro-

tating annulus

We present a third case of argon gas in a cylindrical annulus of inner radius of 0.3

m, outer radius of 1.0 m, height of 1.0 m with a ring of radius 0.01 m located at
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Figure 7.36: Symmetry breaking in temperature contour due to slip flow observed

using SLKNS solver on r-θ plane.
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Figure 7.37: Rotating cylindrical annulus with a slowly rotating ring: (a)Cloud

of points; (b)recirculation in Stewartson layer; (c)velocity vector in Ekman and

Stewartson layers; and (d)axial decay of axial flow at radius=0.77 m
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a radius of 0.85 m and axial location of 0.1 m from bottom. Initial density at the

wall being 0.0528 Kg/m3 is held at 300 deg K and rotates with 100 revolutions

per second. Ring which is also held at 300 deg K rotates at angular speed of

95 revolutions per second. The total number of nodes in the cloud was 15010.

The solver with normal equations based least square approach as well as QR

based approach failed with this highly stretched connectivity at the wall. SLKNS

solver on the other hand was able to capture weak secondary flow. Figure 7.37

shows the cloud of points, streamline plot and vectors in Ekman and Stewartson

layers. Variation of axial flow profile can be cast as an eigenvalue problem for

unknown decay rates λi. Thus the axial flow variation can be expressed as series

of decaying exponentials e.g. vz =
∑

i fi(r)e
−λiz [19]. The decay of axial flow

at radial location r = 0.77 m predicted by SLKNS solver compares well with

the theoretical result as shown in figure 7.37(d). Drag of such a body varies

with the radius as the density increases exponentially towards the wall leading to

presence of vortex in Stewartson layer as shown in Fig. 7.37(b). The simulation

was carried out using a global time step with 3-stage scheme of Shu and Osher

[249]. For temporal accuracy, time step smaller than the CFL time step was

chosen for getting unsteady transient solution. It was observed that the axial

velocity oscillates between two values with iterations as shown in Figure 7.38(a)

and 7.38(b). Figure 7.39(a) shows the plot of convergence history of the residue

based on axial flux, Uz defined as

Resk2 =
1

Ncloud

Ncloud∑
i=1

(
|Uk+1

z (i)− Uk
z (i)|

)
(7.63)

where Resk2 is the residue based on L2 norm at kth iteration of axial flux Uz

= ρuz with uz as the axial velocity and Ncloud as the number of points in the

cloud. Residue oscillation can be observed in Figure 7.39(a) and 7.39(b) due to

unsteady nature of the problem, similar to vortex shedding past cylindrical bodies

observed in linear flows. However, performance of the solver shows a converging

trend towards a asymptotic residue with minor oscillation due to fluid mechanics

of rotating flow and slowly rotating ring. Figure 7.39(b) shows the zoomed view

of the convergence plot.
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(a) (b)

Figure 7.38: Plot of axial velocity (m/s) at (a) iteration 1.3×107 and (b) iteration

1.35× 107 for rotating cylindrical annulus with a slowly rotating ring.

(a) (b)

Figure 7.39: Plot of (a)Convergence history, (b) zoomed view showing oscillations

for rotating cylindrical annulus with a slowly rotating ring.
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7.3.7.1 Shape parametrization and optimization method

One may aspire to optimize the shape of the slowly rotating ring such that the

strength of the vortex weakens. Such a shape optimization will require repeated

grid generation and a solver which can capture features of high speed flow, slip

flow features and weak secondary flow. The cost of optimization depends on the

choice of shape parametrization and optimization method. The present approach

uses simplex (Nelder-Mead) method based optimization strategy as it takes min-

imum function calls or CFD runs. The boundary of the body is created using

Fourier descriptors[299] i.e. trigonometric functions based on sine and cosine as

it requires minimum parameters and at the same time it can be rendered as a

smooth function. In this case the boundary of the body is created using trigono-

metric function gt(x⃗) based on parametric vector x⃗≡(x1, x2) ∈ R2 as follows

bxi = gt(x⃗)Cos(θi)

byi = gt(x⃗)Sin(θi)
(7.64)

where bxi and byi are the coordinates of the body and function gt(x⃗) is given as

gt(x⃗) = x1

(
1− Cos(θi)

2

)(
1− x2

1− Cos(θi)

2

)
(7.65)

Figure 7.40 shows shape of the ring and its associated cloud of points after deletion

and merging phase of pre-processor. In non-linear simplex approach parameters

x1 and x2 are the coordinates of the simplex. The single objective function f

∈ R is given by the drag of the ring. By carrying out shape optimization we

basically search the two dimensional parametric space in order to minimize the

drag of the ring so as to weaken the vortex in the Stewartson layer. Fig 7.41 shows

the streamline plot and contours of axial velocity for certain shapes of the ring.

Total 67 CFD runs using SLKNS code with local time stepping were required

while using the optimization routine for 35 iterations based on single simplex.

This test case shows that the present meshless solver is capable of carrying out

shape optimization for axi-symmetric problems.

7.3.8 Stationary body in the rotating flow field

Consider a stationary cylinder of radius 0.01 m placed at a radial location of 0.075

m within a rotating flow confined between outer isothermal rotating cylinders of
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Figure 7.40: Shape of the ring and its cloud of points : (a) Asymmetric shape,

and (b) Symmetric shape
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Figure 7.41: Variation of shape of vortex in the Stewartson layer for (a) Asym-

metric shape of the ring, and (b) Symmetric shape of the ring .
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Figure 7.42: Cloud of points in the flow domain to simulate stationary body in

the rotating flow field

radius 0.1 m and inner isothermal stationary cylinder of radius 0.05 m. Two cases

with subsonic wall speed (Mach=0.5 ) and supersonic wall speed (Mach=2.0 ) with

argon gas are chosen for simulation. Figure 7.42 shows the total 20807 points in

the flow domain. For the case with wall speed of Mach=0.5 we can observe the

spread of the stagnation temperature against the flow and towards the radial

direction; it almost covers the whole domain. This is because here the body

faces its own wake. The flow accelerates between the rotating cylinder and the

stationary cylinder on the expense of the internal energy, thereby cooling the gas.

Fig. 7.43 shows the plot of the temperature contour. Fig.7.44 shows the Mach

contour. Fig. 7.45 shows the stream line plot near the stationary body. For the

case with supersonic wall speed with Mach=2.0 a vortex ahead of the stationary

body in the subsonic pocket can be observed. Fig. 7.46 shows the Mach contour

and a vortex ahead of the body. At higher speed this vortex becomes weak. It

should be noted that the pressure is function of density and entropy per unit

mass. If ∇ρ × ∇p ̸= 0 or ∇T × ∇s ̸= 0 then, this baroclinic effect creates the
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Figure 7.43: Temperature contour observed for stationary body in the rotating

flow field.
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Figure 7.44: Mach contour for subsonic case observed for stationary body in the

rotating flow field.

296



7.3 Validations with numerical test cases

0.57
0.53
0.49
0.46
0.42
0.38
0.34
0.30
0.27
0.23
0.19
0.15
0.11
0.08
0.04

Mach

Figure 7.45: Stream line plot near the stationary body for subsonic rotating flow.
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Figure 7.46: Mach contour observed for stationary body in the supersonic rotat-

ing flow field, the zoom view near the stationary body shows the vortex.
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Figure 7.47: Residue plot for stationary body in supersonic rotating flow.

vorticity in the subsonic pocket. The baroclinic term, χ is derived by taking the

curl of the pressure gradient in the Navier-Stokes equation

χ = ∇×
(
−1

ρ
∇p
)

=
1

ρ2
∇ρ×∇p (7.66)

The size of the sub-sonic pocket becomes small at very high rotational speed. As

a consequence a very fine grid is required to capture the weak vortex at very high

rotational speed. It should be noted that as the wall speed increases, the central

core becomes rarefied and non-continuum region starts appearing. Figure 7.47

show the plot of fall of residue with iterations. In this case residue, Resk2 is based

on the average L2 norm of all the components across the domain at kth iteration

as described in section 6.3.4 of chapter 6.

7.3.9 Rarefied near transition flow in a rotating eccentric

cylinder

The flow confined between two eccentric cylinders is much more complex than the

axi-symmetric case. This flow even though confined within such a simple geom-

etry generates myriad nonlinearities associated with the Navier-Stokes equation.

Consider a flow of argon confined between outer rotating and inner stationary
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Figure 7.48: Cloud of points for simulating rarefied flow in a rotating eccentric

cylinder.

Figure 7.49: Shaded portion shows the region of Navier-Stokes breakdown for

rarefied flow in a rotating eccentric cylinder for Mach=0.5 based on gradient

length Knudsen number.
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Figure 7.50: Plot of local Knudsen number with region showing separation of

flow at Kn=0.0175 for rarefied flow in a rotating eccentric cylinder.
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Figure 7.51: Temperature contour for Mach =0.5, eccentricity =0.45, Kn=0.1

for rarefied flow in a rotating eccentric cylinder.
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eccentric isothermal cylinders. Researchers [131, 287] have given approximate

closed form solution to describe such a flow, others have used approximate ana-

lytical solutions by either using an eccentricity parameter [292] or the Reynolds

number [23]. Numerical techniques were also developed [5, 10, 223] to simulate

continuum flows for this eccentric geometry. Socio and Marino [62, 63] studied

this problem using direct simulation Monte-Carlo (DSMC) and carried out de-

tailed study by taking effects of eccentricity and different wall rotational speed for

different gas rarefaction for wide range of Knudsen number. The determination

of non-continuum region in the present investigation is carried out using a local

continuum breakdown parameter called the gradient-length Knudsen number,

defined as

KnGL,ζ =
λ

ς
|∇ς| (7.67)

where ς is the parameter of interest, such as density(ρ), bulk velocity magnitude

(|u| =
√
u2x + u2y + u2z), or temperature (T). The actual continuum breakdown

parameter is maximum of these, that is:

KnGL = max(Knρ,Kn|u|,KnT ) (7.68)

The local Knudsen number, Kn is defined as

Kn =
λ

(ro − ri)
(7.69)

where ro is the outer radius and ri is the inner radius. For example take a case

with eccentricity of 0.45 at Mach=0.5 for Kn=0.0175 with isothermal wall held at

temperature of 300 K using14962 points in the cloud as shown in Fig. 7.48. Fig.

7.49 shows the region of continuum breakdown based on gradient length Knudsen

number KnGL. Fig. 7.50 shows the plot of local Knudsen number contours for

Kn=0.0175.

The present test case explores the validity of kinetic boundary condition derived

using first order Chapman-Enskog for rarefied near transition flow with Kn=0.1.

Numerical simulation for eccentricity of 0.45 at Mach=0.5, Kn=0.1 with isother-

mal wall held at temperature of 300 K was carried out using cloud of 14962

points. This test case was solved using boundary condition based on Burnett

correction term as well as collision probability function using Variance Reduction
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Kinetic Flux Vector Splitting (VRKFVS) and m-SLKNS solver described in sec-

tion 6.3.2. Upwind Navier-Stokes equation based on Variance Reduction Kinetic

Flux Vector Splitting (VRKFVS) form is written as

∂
∂t
(U −URB) + ∂

∂x

[(
GX±

I

)
−
(
GX±

I

)
RB

+
(
GX±

V

)
∆

]
+ ∂
∂y

[(
GY ±

I

)
−
(
GY ±

I

)
RB

+
(
GY ±

V

)
∆

]
= 0

(7.70)

where URB is the state update vector at rigid body rotation condition,
(
GX±

I

)
RB

and
(
GY ±

I

)
RB

are the split fluxes based on rigid body rotation. The viscous

fluxes
(
GX±

V

)
∆
and

(
GY ±

V

)
∆
are computed based on relative velocity field over

the rigid body rotation. VRKFVS based method is more accurate and applicable

in regions where solution is in vicinity of rigid body state.

7.3.9.1 Treatment based on Burnett correction

One of the simplest way to extend the kinetic based slip boundary condition is

by further updating the slip velocity using the second order Kn2 terms associated

with the Burnett constitutive relations as described in section 5.6.2 in chapter 5.

This correction (∆us)Burnett over slip velocity, (us)kinetic calculated by SLKNS is

as follows

(us)
n+1
2ndOrder = (us)

n+1
kinetic + (∆us)

n+1
Burnett (7.71)

Flux derivatives are calculated with at-least third order accuracy, the Burnett

correction to the slip velocity is under-relaxed by factor, rf which is below 0.1

such that

(∆us)
n+1
Burnett = (∆us)

n
Burnett + rf

[
(∆us)

n+1
Burnett − (∆us)

n
Burnett

]
(7.72)

Fig. 7.51 revealed contours of temperature similar to observed in DSMC for the

case with Kn=0.1. In this case the maximum temperature observed is 308.82 K

and minimum temperature is 293.21 K using m-SLKNS solver based on VRKFVS

scheme with Burnett correction. Thus, maximum temperature ratio is 1.029 and

minimum temperature ratio is 0.977 ratio. Socio and Marino [63] have observed

as maximum temperature ratio as 1.033 and minimum at 0.979 using DSMC

Simulation. This second order treatment based on addition of Burnett correction

terms does not comply with the Onsager’s reciprocity principle as there is no

contribution made to the thermal terms.
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7.3.9.2 Treatment based on collision probability function

As described earlier near the wall at a normal distance of order O(λ) = λe there

exists a Knudsen layer where some molecules may not suffer as much collisions as

compared to the molecules above the Knudsen layer. The term λe is the effective

mean free path depending on the viscosity and wall conditions. In this case the

distribution function at normal dimensionless distance ȳ = y
λe

≤1 is expressed as

f1(ȳ) = f0 − P(ȳ)
∑
j

Υj ⊙Xj (7.73)

The collision probability function used in the simulation is

P(ȳ) =

{
ȳ
2
+ sin−1(ȳ)

π
,

1,

ȳ ≤ 1

ȳ > 1
(7.74)

where factor ȳ
2
is probability of molecules in the Knudsen layer moving in upward

direction i.e. it is proportional to volume of molecules below the dimensionless

normal distance. For surface with curvature P(ȳ) is multiplied with additional

surface dependent weight e.g. in this case weight is based on its radius. This

kinetic method is quite easy to implement as the viscous fluxes are just multiplied

by the collision function P(ȳ). The viscous part of the flux component,
(
ḠX

±
V

)
∆

and
(
ḠY

±
V

)
∆
are obtained as(
ḠX

±
V

)
∆

= P(ȳ)
(
GX±

V

)
∆
= −P(ȳ)

∑
j Λ

±·
j ⊙ X̄j(

ḠY
±
V

)
∆

= P(ȳ)
(
GY ±

V

)
∆
= −P(ȳ)

∑
j Λ

·±
j ⊙ X̄j

(7.75)

where tensor of thermodynamic force X̄ is evaluated based on relative veloc-

ity field and temperature over the rigid body rotation condition. Using SLKNS

solver based on VRKFVS scheme with slip flow model based collision probabil-

ity function P(ȳ) the maximum temperature observed is 309.01 K and minimum

temperature is 291.59 K as shown in Fig. 7.52 and Fig. 7.53 shows the plot of

residue based on the average L2 norm of all the components across the domain

at kth iteration as described in section 6.3.4 of chapter 6. The maximum temper-

ature ratio is 1.030 and minimum temperature ratio is 0.972 ratio observed with

slip flow model based on Onsager’s reciprocity principle and collision probability

function is much closer to DSMC.
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DSMC simulation carried out by Socio and Marino [63] revealed that the onset of

vortex was being helped by the eccentricity while gas rarefaction had an opposite

influence in subsiding the vortex. The disappearance of the vortex for eccentric-

ity of 0.45 at Mach =0.5 was observed at Kn=0.72 using SLKNS with Burnett

correction, this disappearance of vortex happens at Kn=0.8 using slip flow model

based on Onsager’s reciprocity principle and collision probability function while

Socio and Marino [63] observed it at Kn=1.0 using DSMC. It should be noted

that Socio and Marino [62, 63] employed the bi-polar coordinate system to sim-

plify the geometric representation at the cost of complications introduced due to

the rectilinear trajectories of the particles. The density contour plot reveals the

density rises exponentially towards the periphery. The bipolar coordinate system

used in DSMC leads to large size cells towards the rotating peripheral region

where density rises sharply. While in m-SLKNS solver the cloud of points were

more clustered radially towards the peripheral wall as well as in the azimuthal

region.

7.3.9.3 Performance of SLKNS solver for rarefied transition flow

The vortex for eccentricity of 0.45 at Mach =0.5 subsides at much lower Knudsen

number and does not compare well with the DSMC prediction[63] at Kn=1.0. One

of the reasons of disagreement is due to the extension of the present first order

distribution based kinetic boundary condition to higher Knudsen number flow

using corrections with Kn2 order Burnett terms and usage of collision probability

function. More-so-ever the present 5 moments based formulation is inadequate

for the simulation of rarefied flow beyond slip regime, in order to resolve features

of transition flow we need to extend the formulation to 13-moment Grad system

[102].

7.3.10 Rarefied supersonic flow over a hemisphere

Consider a 3D test case of rarefied supersonic flow of air of density 1.40706×10−5

kg/m3 at 300 K impinging a hemisphere of radius 0.1 m with a speed of 1000.

m/s. The Knudsen number based on hemisphere radius is 0.0535 with fully diffuse

wall held at 300 K. Fig 7.54 shows the Mach and density contour at Knudsen

number 0.0535 calculated using SLKNS solver. SLKNS solver was run using
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Figure 7.52: Temperature contour for Mach =0.5, eccentricity =0.45, Kn=0.1 for

rarefied flow in a rotating eccentric cylinder with slip flow model based collision

probability function.
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Figure 7.53: Residue plot for rarefied flow in a rotating eccentric cylinder with

Mach =0.5, eccentricity =0.45, Kn=0.1 using VRKFVS scheme and collision

probability function.

23657 cloud of points generated using 25 × 25 × 41 grid in spherical coordinate

system. The number of cloud of points were chosen based on grid points used in

DSMC simulation with which results of SLKNS is to be compared. Fig 7.55 shows

the variation of slip velocity expressed in Mach as well as density on the surface of

the hemisphere with respect to angle from the stagnation point. Fig 7.56 shows

the variation of Mach number as well as density with respect to distance from

the hemisphere. For nearly similar number of points DSMC was more accurate,

SLKNS was not able to capture the shock structure as described by DSMC. The

state update for interior flow solver nodes is expressed as

U k+1 = U k −∆t



(
∂GX+

∂x

)k
∆x<0

+
(
∂GX−

∂x

)k
∆x>0

+
(
∂GY +

∂y

)k
∆y<0

+
(
∂GY −

∂y

)k
∆y>0

+
(
∂GZ+

∂z

)k
∆z<0

+
(
∂GZ−

∂z

)k
∆z>0


(7.76)
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Figure 7.54: Mach contours and density contour at Kn = 0.0535 of flow of air at

1000 m/s over a hemisphere based on SLKNS solver
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Figure 7.55: Slip velocity and density variation at Kn = 0.0535 of flow of air at

1000 m/s over a hemisphere based on SLKNS solver and DSMC
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Figure 7.56: Mach and density variation at Kn = 0.0535 of flow of air at 1000m/s

over a hemisphere based on SLKNS solver and DSMC with respect to distance x

in meters.

where expressions of split fluxes GX±, GY ± and GZ± are given in Appendix

D. The sate update for wall boundary nodes is expressed

U k+1 = U k −∆t



(
∂ĜX

+·−

∂x

)k
∆x<0

+
(
∂ĜX

−·−

∂x

)k
∆x>0

+
(
∂ĜY

·+−

∂y

)k
∆y<0

+
(
∂ĜY

·−−

∂y

)k
∆y>0

+
(
∂ĜZ

··−

∂z

)k
∆z>0


(7.77)

where expressions of split fluxes ĜX
±·−

, ĜY
·±−

and ĜZ
··−

are given in Ap-

pendix D. This test once again revealed that DSMC required lesser computing

nodes as compared to SLKNS. The size of cloud in the present analysis was fixed

based on the requirement of cells required by DSMC used in this test case for

validation. For doing cloud convergence study we will require a medium cloud of

2562 nodes using 12× 12× 21 grid in spherical coordinate system. Generation of

coarse cloud in this case will not be a feasible. In order to carry out cloud conver-

gence analysis a fine cloud of 127551 nodes was generated using 51× 51× 51 grid

in spherical coordinate system. Medium cloud of 15002 nodes using 25× 25× 26

grid and coarse cloud of 1586 nodes using 12×12×13 grid was generated. Fig 7.57
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Figure 7.57: Density variation at Kn = 0.0535 of flow of air at 1000 m/s based

on SLKNS solver for coarse, medium and fine cloud.

shows the variation of density with respect to distance from the hemisphere for

coarse, medium and fine cloud as compared to cloud with 23657 nodes and results

of DSMC. SLKNS solver uses explicit first order Euler time integration based on

local time step to cut down the computational time. Fig 7.58 shows the residue

plot for coarse, medium and fine cloud of points. The residue, Resk2 in this par-

ticular case is based on the average L2 norm of all the components across the

domain at kth iteration as described in section 6.3.4 of chapter 6. Because of

local time-stepping this 3-D test case converges much faster compared to test

cases with global time stepping.

7.3.11 Stationary hemisphere in a strongly rotating flow

field

Consider another 3D test case in which a stationary hemisphere of radius 0.005

m is placed mid way at a radius of 0.075 m in a annular cylindrical sector of

outer radius 0.1 m and inner radius of 0.05 m and height of 0.035 m. The wall

of the annular cylindrical sector is rotating at 2000 revolutions per second. The

top lid and the rear side of the hemisphere have an outflow boundary as shown

in Fig. 7.59 with the rotating bottom boundary. Fig. 7.60 shows the points
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Figure 7.58: Residue plot for coarse, medium and fine cloud of points for rarefied

supersonic flow over a hemisphere.
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Figure 7.59: Cloud of points and outflow boundary for stationary hemisphere

placed a strongly rotating flow field.
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Figure 7.60: Cloud of points generated using cylindrical and spherical mesh for

stationary hemisphere placed a strongly rotating flow field.
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Figure 7.61: Mach contours Hemisphere facing a rotating flow.
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Figure 7.62: Density variation at the bottom lid of the outflow based on SLKNS

and analytical solid body solution for stationary hemisphere placed a strongly

rotating flow field.

generated using cylindrical and spherical meshes, the total number of points

in the cloud was 122921. Fig.7.61 shows a curved shock with strong radially

inward flow as the rotating flow hits the stationary hemisphere. The density

of air at wall is taken as 1.271 Kg/m3 for this case. Fig.7.62 shows compari-

son between SLKNS and analytical result near the bottom boundary. The ex-

ponential rise in the density compared well with the analytical result given as

ρr = ρwall exp
(

1
2RT

((v2θ)r − (v2θ)wall)
)
.

7.3.11.1 Rarefied case

Consider a rarefied rotating flow with density of air at wall being 0.01271 Kg/m3.

SLKNS solver using VRKFVS scheme as well as KFVS scheme is used to solve this

test case. Upwind Navier-Stokes equation based on Variance Reduction Kinetic

Flux Vector Splitting (VRKFVS) form is written as

∂
∂t
(U −URB) + ∂

∂x

[(
GX±

I

)
−
(
GX±

I

)
RB

+
(
GX±

V

)
∆

]
+ ∂
∂y

[(
GY ±

I

)
−
(
GY ±

I

)
RB

+
(
GY ±

V

)
∆

]
+ ∂
∂z

[(
GZ±

I

)
−
(
GZ±

I

)
RB

+
(
GZ±

V

)
∆

]
= 0

(7.78)
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whereURB is the state update vector at rigid body rotation condition,
(
GX±

I

)
RB

,(
GY ±

I

)
RB

and
(
GZ±

I

)
RB

are the split fluxes based on rigid body rotation. The

viscous fluxes
(
GX±

V

)
∆
,
(
GY ±

V

)
∆
and

(
GZ±

V

)
∆
are computed based on relative

velocity field over the rigid body rotation. VRKFVS based method is more

accurate and applicable in regions where solution is in vicinity of rigid body

state. Rossby number which gives relative importance of inertial with respect to

Coriolis forces is also a measure of departure from the rigid body solution. In

the present research work we have defined the local Rossby number, ε based on

z-component of vorticity vector Ωz as

ε =

∣∣∣∣1− Ωz

(Ωz)RB

∣∣∣∣ (7.79)

where (Ωz)RB is the z-component of vorticity vector for rigid body rotation. The

domain is decomposed based on this local Rossby number which is used as a mea-

sure of departure from the rigid body solution. For example in the present case

if ε < εs=0.1 the flow domain uses VRKFVS scheme and when ε > εs then the

solver switches back to KFVS scheme. Fig. 7.63(a) shows a typical VRKFVS

domain where ε < 0.1 and Fig. 7.63(b) shows remaining KFVS domain where

KFVS solver updates the solution. The KFVS and VRKFVS regions are dynam-

ically defined at every iteration based on the local Rossby number.

Fig.7.64 shows the non-continuum transition region due to the development

of rarefied core at high speed based on gradient length Knudsen number, Knρ

= λ
Lρ
, where λ is the mean free path and characteristic length scale, Lρ is de-

fined in terms of the density gradient as Lρ = ρ/∂ρ
∂r

with r as the radius. This

non-continuum rarefied region which is near transition regime i.e. Knρ ≥ 0.1 re-

quires coupling with either Burnett equation or DSMC solver. In the present case

rarefied core boundary condition was used and interior rarefied core was coupled

with Maxwellian distribution. At the rarefied core the distribution is Maxwellian,

f0,∞ as near free molecular flow prevails. This Maxwellian is split into two parts

based on the direction of propagation. Similarly, the Chapman-Enskog distribu-

tion, f1 is split into two parts i.e. part escaping out of the flow domain and the

part which remains in the flow domain as shown in figure 7.65. If vz > 0 then the

molecules belonging to the Maxwellian, f0,∞ enter into the computational domain

from the rarefied core. If vz < 0 then the molecules are coming from the com-

putational domain. Thus, distribution function f1,Σ(vx, vy, vz, I) at the rarefied
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(a) (b)

Figure 7.63: Domain decomposition based on Rossby number for stationary hemi-

sphere placed a strongly rotating flow field: (a) VRKFVS domain where ε < 0.1,

(b) remaining KFVS domain. Regions based on cylindrical and spherical mesh

are shown by black and red colour respectively.
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Figure 7.64: Region of Navier-Stokes breakdown based on gradient length Knud-

sen number, Knρ for stationary hemisphere placed a strongly rotating flow field.
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Figure 7.65: Distribution function at the rarefied core constructed from the

truncated Maxwellian from the rarefied core and Chapman-Enskog distribution

from the flow domain

core is constructed as the union of a Maxwellian distribution f0,∞(vx, vy, vz, I)
corresponding to the incoming particle from the rarefied domain and first order

Chapman-Enskog distribution f1(vx, vy, vz, I) corresponding to outgoing particles

from the computing domain.

f1,Σ(vx, vy, vz, I) = f0,∞(vx, vy, vz, I)vz>0 ∪ f1(vx, vy, vz, I)vz<0 (7.80)

where f1 = f0−
∑

j Υj ⊙Xj. The state update based on KFVS implementation

at the rarefied core boundary after taking Ψ moment and writing in terms of

inner product at time t+∆t can be expressed as

U (t+∆t) = Ū(t)−∆t

[
∂GX(t)

∂x

±·−

+
∂GY (t)

∂y

·±−

+
∂GZ(t)

∂z

−]
(7.81)

where

Ū =

∫
RD

∫
R+

Ψf1,Σdv⃗dI (7.82)

The GX±·−, GY ·±− and GZ− fluxes can be written as sum of inviscid or Euler

part and viscous part as follows

GX±·− = GX±·−
I +GX±·−

V =
⟨
vxΨf

±·−
0

⟩
−
∑

j Λ
±·−
j ⊙Xj (7.83)

GY ·±− = GY ·±−
I +GY ·±−

V =
⟨
vyΨf

·±−
0

⟩
−
∑

j Λ
·±−
j ⊙Xj (7.84)
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Figure 7.66: Plot of density contour for stationary hemisphere placed a strongly

rotating flow field.

GZ− = GZ−
I +GZ−

V =
⟨
vzΨf

··−
0

⟩
−
∑

j Λ
··−
j ⊙Xj (7.85)

Fig. 7.66 and Fig.7.67 shows density and Mach contours. In the three dimensional

case due to relieving effect of flow moving out axially the effect of shock is not

so severe. Fig. 7.67 also shows that the subsonic pocket is much smaller and the

shock is smeared due to coarse distribution of points. In this case SLKNS was

used with local time stepping to cut down the computational time. Fig 7.68 shows

the plot of residue, Resk2 based on the average L2 norm of all the components

across the domain at kth iteration as described in section6.3.4 of chapter 6.

The cloud used in the present test case is also used for carrying out multi-objective

optimization presented in the next sub-section. The purpose of using a coarse

cloud in this test case is to demonstrate the robustness of the SLKNS solver in

handling the supersonic region to rarefied non-continuum regions as well as to cut

down the computation time for carrying out multi-objective optimization which

requires repeated solver runs.
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Figure 7.67: Plot of Mach contour

Figure 7.68: Residue plot for stationary hemisphere placed a strongly rotating

flow field.
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Figure 7.69: Vortex ahead of the cylinder facing strongly rotating flow

7.3.12 Shape optimization of stationary body in a rotat-

ing flow

This test case demonstrates the multi-objective optimization capability of the

SLKNS solver. As described earlier, Fig 7.69 shows the vortex ahead of the

cylindrical body placed in strongly rotating flow of air computed using SLKNS

solver. The presence of vortex is due to baroclinic term because of entropy gain

as pressure and density are no longer isentropically related. Thus, one may aspire

to have an optimum shape which minimizes this baroclinic effect, minimizes the

maximum temperature on the body and maximizes the axial mass flux under

certain constraints. Consider the same test conditions and geometry as described

in previous subsection for a stationary hemisphere in a rotating flow. Let the

functions fi(x⃗)∈Y⊂Rm be the objective functions defining the m-dimensional

objective space with its subset Ỹ⊂Y representing the feasible objective region.

Similarly, let n-dimensional space Rn be called the parameter space dependent

on the shape parametrization approach. Multi-objective shape optimization of

stationary body (initial shape being a hemisphere) in a high speed rotating flow

will require repeated grid generation and a solver capable of capturing high speed

flow features like shocks, weak secondary flow in the axial direction and in slip

flow region. As described earlier only the cloud of points enveloping the object

as shown in Figure 7.70 are modified during the course of optimization while the

background cloud of points are dynamically flagged or blanked off where body is

present. Multiples holes are created in the background cloud. Based on the shape
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Figure 7.70: Modification of cloud of points around the body to be optimized.

of body suggested by optimization algorithm a hole which can contain the body

with a minimum gap is selected from a priori sets of hole. The fluid dynamic data

is extrapolated where hole was earlier existing. Figure 7.71 shows the merging of

sub-cloud around the body and the background cloud.

7.3.12.1 Shape parametrization and optimization method.

As described earlier there are various parametrization approaches like discrete

approach, domain element approach, polynomial and splines based, CAD based,

free-form deformation and soft object animation based approach. The shape

parametrization approach is problem specific and is of immense importance as it

can bring drastic reduction in the computational time. The present study uses

shape parametrization based on Fourier descriptors[299] and meshless strategy.

The shape parametrization based on Fourier descriptors require smaller paramet-

ric space. The spherical coordinate system is used for parametrization of the

body. The shape of the body is generated by deforming the sphere of radius rs

with its origin at (bxref , byref , bzref ) by multiplying its height by a trigonometric

function gt(x⃗) using x⃗≡(x1, x2) ∈ R2 i.e. based on two parameters x1 and x2 as

follows
bxi = bxref −∆bxi = bxref − rsCos(θi)Cos(ϕi)

byi = byref −∆byi = byref − rsCos(θi)Sin(ϕi)

bzi = bzref −∆bzigt(x⃗) = bzref − rsSin(ϕi)gt(x⃗)

(7.86)

where (bxi, byi, bzi) are the Cartesian coordinates of the body and parametric

vector trigonometric function gt(x⃗) is evaluated based on the value of parameter
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Figure 7.71: Merging of sub-clouds around the body and the background cloud.
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Figure 7.72: Ill-conditioned shapes due to Fourier descriptors.
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∆byi as follows

if ∆byi



< 0 gt = Abs
[
Sin2(θi)

2

]

≥ 0 gt =
x1Abs

[
Sin2(θi)

2
Cos(ϕi)

]
+x2Abs

[(
Sin2(θi)

2
− 1
)
(Sin(θi) + 1)

]
(1− Cos(ϕi))

(7.87)

The parametric space is two dimensional as x⃗≡(x1, x2) ∈ R2. The objective func-

tion in the present case is also two dimensional as it is based on minimization of

maximum value of temperature TMax on the body and minimization of baroclinic

term given as follows

f1 = T̄M = TMax

Tref

f2 = χ̄ = χavg

χref

(7.88)

The term T̄M is made dimensionless based on reference temperature, Tref .The

term χref is reference baroclinic term and χavg is baroclinic term averaged over

a prescribed plane defined as

χavg =
1

S

∫ (
1

ρ2
∇ρ×∇p

)
dS (7.89)

where S is the surface area of the prescribed plane. Before running the solver the

parametric space was further pruned and reduced to avoid ill-conditioned shapes

as shown in Fig 7.72. The concept of ϵ-dominance has been taken as the basis

for the cooperative multiple objective optimizations.

7.3.12.2 Dynamic evaluation of goal vector

In the present case two non-interacting simplex are used where vertex of each

simplex is defined by the vector x⃗ in the parametric space. At kth iteration we

get 3 vertices for simplex r as rk1(x⃗), r
k
2(x⃗) and rk3(x⃗) and similarly we get 3

vertices for simplex s as sk1(x⃗), s
k
2(x⃗) and sk3(x⃗). These two simplex are shown

in the objective space in Figure 7.73(a) populated with six members given by all

the vertices. Figure 7.73(b) shows the non-dominated Pareto ranking based on

six members. The present case is a two-dimensional optimization problem with

functions f1 = T̄M and f2 = χ̄. The term (fi(x⃗))
k is the minimum of the ith
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(a) (b)

Figure 7.73: Two simplex in the objective space (a)population of 6 vertices, and

(b)their non-dominated Pareto ranking.

component amongst all the population i.e. vertices of the participating simplex

at kth optimization iteration given as follows

(fi(x⃗))
k = min

x⃗∈Rn
{fi(x⃗r1), fi(x⃗r2), · · · , fi(x⃗s1), fi(x⃗s3)} (7.90)

In this problem we do not have a priori information of minimum or decision

maker’s definition of goal. In the absence of decision maker we define goal vector

as an ideal vector q⃗∗ made up of individual minimum of each component of a vector

obtained during the course of optimization after k evaluations of the problem q∗i
is obtained as follows

q∗i = min
x⃗∈Rn

{(fi(x⃗))1, · · · , (fi(x⃗))k} (7.91)

Figure 7.74(a) shows the evaluation of goal vector q∗i after k iteration of opti-

mization routine. In this study scalarization step s : Q×Y→R1 is implemented

by weighted L2-problem as

min
x⃗∈Rn

L
(f⃗ ,w⃗,q⃗∗)
2 (x⃗) =

(
m∑
i=1

wi|fi(x⃗)− q∗i |2
)1/2

(7.92)

where q⃗∗∈Q⊂Rm is the goal vector based on decision makers’ overall preferences

for trade-off between different objectives. Figure 7.74(b) shows the ϵ-dominance
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(a)

(b)

Figure 7.74: Evaluation of (a)goal vector, and (b)ϵ-dominated ranking.

based ranking as compared to non-dominated Pareto ranking based on six mem-

bers shown in Figure 7.73(b). In this problem L2 metric is used and each vertex

of the simplex gives a score or a scalarized value based on its distance from the

goal vector q⃗∗ evaluated after each optimization iteration. Using this method a

multi-objective problem is rendered into a single value. The optimization prob-

lems runs till it reaches the maximum number of iterations defined by the user.

The vertex which is nearest to the goal vector is taken as the best candidate solu-

tion. This new approach of sorting using scalarization proposed in this research

is based on ϵ-dominance with L2 metric strategy described by Figure 7.74(b) and

Eq. 7.93

f⃗ ∗ ≺ f⃗ :⇔ ∀
i∈1,2,...m(fi(x⃗

∗) ≤ fi(x⃗)− ϵi) ∧ ∃
i∈1,2,···,m(fi(x⃗

∗) < fi(x⃗)− ϵi)

∃L(f⃗ ,w⃗,q⃗∗)
2 (x⃗) < L

(f⃗−ϵi,w⃗,q⃗∗)
2 (x⃗) ; ϵi = ζ(fmaxi − fmini ); ζ ∈ (0, 1) (7.93)

ζ is a user defined parameter which determines the ϵ-dominance rank as shown

in Figure 7.74(b).

7.3.12.3 Results of optimization

Fig 7.75 shows the evolution of the shapes and generation of cloud of points for

the meshless method. In the present study the multi-objective routine with a
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Figure 7.75: Evolving shapes and cloud of points

population of two non-interacting simplex was run for k = 10 iterations which

required total 42 CFD runs. Fig 7.76 shows the different shapes of the stationary

body and its temperature contour. Fig 7.77 and Fig 7.78 shows Mach and axial

velocity contours for a typical set of optimal shapes in a strongly rotating field

of air. This test case fulfills the prime motivation of the thesis towards the

development of a robust meshless method based on kinetic theory that can carry

out multi-objective optimization of stationary bodies under strong rotations and

rarefied slip flows.

7.4 Summary

The meshless SLKNS solver was verified and validated with a variety of test cases

including continuum flows and non-continuum slip flows. Validation test includes

comparison with both experimental pressure drop and sets of numerical 2D/3D

examples of slip flows in rarefied medium around stationary bodies. It was found

that SLKNS works more efficiently for high speed supersonic flows as compared to

low speed subsonic flows. The capability of meshless solver SLKNS to resolve slip

flow features, supersonic flows and typical features of the strongly rotating flows

characterized by steep density gradient and thin boundary layers was demon-

strated for stretched distribution of points. The developed SLKNS numerical

solver avoids extremely costly multi-scale simulation as it uses a thermodynam-

ically consistent flux splitting scheme, a unified wall boundary condition which

satisfies Onsager’s relationship and simulates both continuum and rarefied slip

flow within Navier-Stokes equation. Further, SLKNS was also able to carry out
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Figure 7.76: Shapes of stationary body and its temperature contour during the

course of optimization.
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Figure 7.77: Mach contours for an optimal shape.
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Figure 7.78: Contours of axial velocity for an optimal shape.

multi-objective optimization within meshless framework using non-linear simplex

with ϵ-dominance strategy.
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Chapter 8

Conclusions

8.1 Contributions and research findings

The primary objective of the thesis is met as slip flow is simulated effectively

through kinetic theory route incorporating features of non-equilibrium thermody-

namics using meshless method which remains well conditioned near the boundary

where highly stretched distribution of points are present. The present investiga-

tion involved research in the field of kinetic theory, non-equilibrium thermody-

namics, kinetic schemes, meshless methods and optimization approaches. The

kinetic upwind scheme was shown to simulate the entire range from rarefied slip

flow to continuum flow, and flow with shocks as it is derived using kinetic theory

incorporating phenomenological theory of non-equilibrium thermodynamics. The

kinetic theory based unified wall boundary condition which satisfies Onsager’s

relationship was able to simulate both continuum and rarefied slip flow within

Navier-Stokes equation avoiding extremely costly multi-scale simulation. SLKNS

was also able to resolve weak secondary flow even under strong rotation using

kinetic flux vector splitting in its variance reduced form. The meshless solver

was able to carry out multi-objective optimization using ϵ-dominance strategy.

Research contributions are made in following three fields:

• Kinetic scheme for modelling viscous slip flows.

• Fluid mechanics of slip flow.

• Meshless method.
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8.1 Contributions and research findings

Salient research findings and fundamental contributions made in these fields are

highlighted in the following sections.

8.1.1 Contributions made to kinetic scheme for modelling

viscous slip flows

To develop a single monolithic solver which can operate from low speed to hyper-

sonic rarefied slip flow to high speed continuum flow is a challenging task because

of two unknown factors, i) the correct amount of dissipation or entropy genera-

tion, and ii) distribution of dissipation or entropy generation for each thermody-

namic force. Most of the upwind scheme fail to ensure the correct distribution

of the entropy generation for each thermodynamic force associated with shear

stress tensor and heat flux vector. The kinetic scheme developed in the thesis

follows the principle of non-equilibrium thermodynamics and ensures the correct

division of entropy generation for each thermodynamic force as the state update

moves from one conservation state to another following the path laid down by

non-equilibrium thermodynamics. The research work gives a fresh new look to

Navier-Stokes equation from the prism of non-equilibrium thermodynamics and

kinetic theory. Present research for the first time adds an additional condition

based on the concept of correct distribution of entropy or dissipation for any up-

wind scheme to remain valid across different regimes of flow.

The major contribution of the thesis is in the development of kinetic model,

derivation of non-equilibrium distribution and formulation of kinetic scheme which

incorporates features of non-equilibrium thermodynamics in the microscopic level

and apply discretization at the Boltzmann level. The new upwind scheme for

macroscopic conservation equations involves three steps : i) in the first step the

Boltzmann equation is rendered into an upwind discretized form using distribu-

tion function which complies with phenomenological theory of non-equilibrium

thermodynamics , ii) in the second step inviscid fluxes are obtained by taking Ψ

moments of split Maxwellian distribution, iii) in the third step viscous fluxes are

obtained by taking moments and full tensor contraction of split microscopic ten-

sors. The research work also presents derivation of gradient based velocity slip,

temperature jump and novel kinetic flux vector splitting based wall boundary

329



8.1 Contributions and research findings

condition. Major contributions are listed as follows.

8.1.1.1 Onsager reciprocity principle based new kinetic model

The research findings have revealed that kinetic model should satisfy an additional

property i.e. Onsager relation for entropy production. With this new addition,

the main properties of the kinetic model can be listed as follows

1. Locality and Galilean invariance

2. Additive invariants of the collision integral

3. Uniqueness of equilibrium

4. Local entropy production inequality

5. Correct transport coefficients in the hydrodynamic limit

6. Positive distribution

7. Onsager relation for entropy production

BGK model is one of the simplest kinetic model and its extension for polyatomic

gas is Morse-BGK model. Both the models give incorrect Prandtl number and

and fail to comply with the principles on non-equilibrium thermodynamics. One

of the fundamental contribution of the thesis is the development of a new non-

equilibrium thermodynamics based kinetic model described in section 3.4. The

non-equilibrium part of the distribution function is obtained as full tensor contrac-

tion of thermodynamic forces and its associated microscopic tensors. Using this

Navier-Stokes equation can be derived with correct Prandtl number and kinetic

schemes can be formulated which complies with the principles on non-equilibrium

thermodynamics.

8.1.1.2 Microscopic tensors and novel concept of macroscopic tensors

Microscopic tensor associated with shear stress tensor and heat flux vector was

identified based on derivation of first order distribution. Section 3.3.1 gives the ex-

pressions of thermodynamic forces and microscopic tensors associated with poly-

atomic gas. The thesis also reports a novel method of extracting viscous fluxes by
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full tensor contraction of macroscopic tensors and its conjugate thermodynamic

forces described in section 3.4.3. The macroscopic tensors are moments of micro-

scopic tensors and follow Onsager’s reciprocity principle. They can be used to

quantify the contribution of each thermodynamic forces.

8.1.1.3 Kinetic scheme based on microscopic tensor splitting

Successful upwind scheme can be seen as a scheme which not only adds the correct

dissipation or entropy but also ensures the correct division for each thermody-

namic force as the state update moves from one conservation state to another so

as to satisfy thermodynamics. Hence, it is more rational to incorporate features

of non-equilibrium thermodynamics in the microscopic level and apply discretiza-

tion at the Boltzmann level rather than the derived macroscopic variables. The

present kinetic scheme proposed in section 4.2 of the thesis achieves this in two

ways:

• Embeds non-equilibrium thermodynamics at the microscopic level.

The distribution function at the microscopic level is written in terms of

thermodynamic forces and its conjugate microscopic fluxes. Once the ki-

netic model is formulated in the Onsager’s form at the microscopic level

the derived distribution function also complies with the principles on non-

equilibrium thermodynamics.

• Upwind discretization in the Boltzmann level.

Upwind discretization is performed in the Boltzmann level and the upwind

scheme for macroscopic conservation equations is obtained in following three

steps : i) in the first step the Boltzmann equation is rendered into an upwind

discretized form , ii) in the second step inviscid fluxes are obtained by taking

Ψ moments of split Maxwellian distribution, iii) in the third step viscous

fluxes are obtained by taking moments and full tensor contraction of split

microscopic tensors.

The advantage of the present upwind method is that it does not require con-

struction of the distribution function. The present method only requires split

microscopic tensor and its conjugate thermodynamic forces, hence it can be eas-

ily be extended for problems with multiple thermodynamic forces i.e. species
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transport problem which can be solved by splitting the microscopic tensor asso-

ciated with it. The thesis presents schemes developed for three dimensional and

axi-symmetric geometries and also describes a novel method based on variance

reduced form of kinetic flux vector splitting. The final expression and derivations

of slip macroscopic tensors and split fluxes are included in Appendix D.

8.1.1.4 Flux based kinetic wall boundary condition

Wall boundary condition is an important part in simulation of fluid flow. No-

slip and slip condition at the wall provide a realistic boundary condition used

for the solution of Navier-Stokes equation in the continuum and rarefied regime

respectively. Another fundamental contribution is the implementation of kinetic

flux vector splitting based wall boundary which uses Maxwell model, kinetic the-

ory and incorporates features of linear non-equilibrium thermodynamics. The

new boundary condition described in section 5.5 is flux based rather than gra-

dient based boundary condition reported in literature. Present thesis gives the

expressions of split wall fluxes derived using the new distribution. The bound-

ary condition for velocity slip and temperature jump was also derived for cases

with negligible tangential flow variations and compared with Maxwell velocity

slip and von Smoluchowski temperature jump conditions. The flow simulation

effectively captures slip flow features under combined effects of adverse pressure

gradient and rarefaction. The simulation also captures high speed rotating flow

with rarefied slip flow regions.

8.1.1.5 Treatment of Knudsen layer based on collision probability

function

Treatment of slip flow near the transition regime requires a second order dis-

tribution. The present research work in the thesis has proposed an alternative

method described in section 5.6.3 which is based on collision probability function

to simulate Knudsen layer. The new proposed method can also be interpreted as

an implementation of new kinetic model with varying relaxation time. This new

method of simulation was validated with numerical test case described in section

7.3.9.2 and was found promising and easy to implement.
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8.1.2 Contributions made to fluid mechanics of slip flow

The present research work was also able to confirm the existence of negligible slip

existing in continuum regime as reported by many researchers. The investigation

also reveals symmetry breaking in axi-symmetric problems induced due to slip

flow. The derivations of wall boundary condition for cases with negligible fluid

dynamic variations in tangential direction led to more accurate expressions of

Maxwell velocity slip and von Smoluchowski temperature jump.

8.1.2.1 Existence of slip at the wall for continuum flows.

According to continuum theory no-slip condition prevails at the wall as the slip at

the wall is exactly zero. On the other hand results of kinetic theory reveals that

the velocity slip and temperature jump will always be present even in continuum

flow regime. The thesis also explores this fundamental question of existence of no-

slip for continuum flows. The numerical test conducted in section 7.3.1.3 using

kinetic wall boundary condition for continuum flows confirms the observation

reported in literature that temperature jump and velocity slip will be present

however, with negligible magnitude for all dissipative walls even in continuum

regime.

8.1.2.2 Symmetry breaking due to slip flow

Due to slip the axi-symmetric problems do not remain symmetric. Numerical

results described in section 7.3.5 and 7.3.6.4 reveal that temperature contours

become wavy and unsymmetrical due to slip phenomenon which produces insta-

bility mechanism due to shear rate thinning. This needs further research and

investigations to establish the instability mechanism.

8.1.2.3 Improvement over gradient based Maxwell velocity slip and

von Smoluchowski temperature jump

The present research work described in section 5.4.1 and 5.4.2 gives new expres-

sions of velocity slip called Onsager-Maxwell velocity slip and new expression

for temperature jump called Onsager-von Smoluchowski jump condition derived
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using normal half range distribution based on new kinetic model. The new bound-

ary conditions complies with the principles of non-equilibrium thermodynamics

and were found to be more accurate than the Maxwell velocity slip and von

Smoluchowski jump condition based on numerical test case described in section

7.3.2.

8.1.2.4 Quantification of cross phenomenon due to shear stress tensor

and heat flux vector

A new term based on Onsager’s reciprocity principle was derived using the vis-

cous split fluxes. This term called as Reciprocity number described in section

7.3.2 gives the contribution of mass flux as well as entropy generation due to

thermodynamic forces associated with shear stress tensor and heat flux vector

to quantify the cross phenomenon involved in slip flow. This also brings forth

the advantage of kinetic scheme over any numerical based scheme as we can have

correct term by term description of the contributions made in the slip mass flow

in the boundary layer due shear stress tensor and heat flux vector.

8.1.3 Contribution made to meshless method

Most of the meshless methods are either based on radial basis functions (RBFs)

or they use least square based approach. Approach based on least squares is

more preferred for flow problems with shock. Normal equations as well as QR

approach used in least square method produces inaccurate results when applied to

stretched distribution of points required to resolve boundary layers of a viscous

flow problem. The present approach overcomes the limitations due to the ill-

conditioning which is the weakness of normal equations by using a novel concept

of stencil splitting. The thesis presents a new approach to solve least square

problem by generating a non-symmetric cross-product matrix by suitable selection

of sub-stencils such that the matrix is diagonally dominant and well conditioned.
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8.1.3.1 Least square based meshless method

The new approach described in section 6.3 was able to solve least square problem

by generating a non-symmetric cross-product matrix by suitable selection of sub-

stencils such that the matrix is diagonally dominant and well conditioned. The

present method like normal equations approach requires (m + n/3)n2 flops and

provides stable results for highly stretched distribution of points involving about

half the arithmetic for larger connectivity set as compared to QR approach for

a full rank least squares problem. The novel Split-stencil Least square Kinetic

upwind method for Navier-Stokes (SLKNS) solver makes use of least squares

and Kinetic Flux Vector Splitting (KFVS) scheme based on microscopic tensor

splitting with kinetic wall boundary condition. SLKNS was found to be capable

and accurate for wide range of problems of interest. SLKNS based on Variance

Reduction Kinetic Flux Vector Splitting (VRKFVS) was able to resolve weak

secondary flow even under strong rotation while simulating the slip flow in the

rarefied core.

8.1.3.2 Parallelization of meshless code

Parallelization of SLKNS code described in section 6.5 was carried out using

domain decomposition with optimal contention free communication schedule.

Graph based on adjacency list built using symmetric connectivity was used to

carry out domain decomposition. Cloud sequencing with coarse-medium-fine

cloud was used to further accelerate the code.

8.1.3.3 Multi-objective optimization using meshless code

The present solver was able to carry out multi-objective optimization of station-

ary bodies under strong rotations and rarefied slip flows in a meshless framework

which was one of the prime motivations of the thesis. Multi-objective optimiza-

tion described in section 6.6 was accomplished using a novel approach by i) merg-

ing the sub-cloud around body undergoing optimization, ii) shape parametriza-

tion based on Fourier descriptors (trigonometric functions), iii) non-linear simplex

as an optimization method, and iv) Pareto optimality, ϵ-dominance and reference

point approach as a basis for the cooperative multiple objective optimizations.
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8.2 Summary of Contributions

The major contributions of the research accomplished in the thesis can be sum-

marized as follows :

• Development of Onsager reciprocity principle based new kinetic model.

• Development of kinetic viscous flux vector splitting based on microscopic

tensor splitting

• Concept of macroscopic tensors, derivation of Onsager’s reciprocity rela-

tionship and its relationship with kinetic flux vector splitting to bring out

connection between non-equilibrium thermodynamics and kinetic theory.

• Development of kinetic slip boundary condition using first order non-equilibrium

thermodynamics based distribution function and Maxwell specular-diffuse

reflection model. Derivation of split macroscopic tensors and split fluxes.

• Correction over existing Maxwell velocity slip and von Smoluchowski tem-

perature jump boundary conditions.

• Development of a new method based on collision probability function to

simulate the flow in the Knudsen layer.

• Development of Variance Reduction Kinetic Flux Vector Splitting (VRK-

FVS) method to capture weak secondary flow in a strong primary flow field.

• Extending kinetic scheme for axi-symmetric flows.

• Development of least square based meshless solver which gives more stable

results compared to normal equations and QR approach, and is considerably

faster than QR.

• Parallelization of the meshless code with optimized communication schedul-

ing.

• Development of multi-objective optimization for meshless method based on

Pareto optimality, ϵ-dominance and reference point approach.
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• Experimental evaluation of tangential momentum accommodation coeffi-

cient (TMAC) which takes into account the effect of varying pressure gra-

dient along the test section.

8.3 Future recommendations

Numerical modeling of multi-species, reacting, non-continuum, hypersonic vis-

cous flow with many components is a challenge. The present study can be further

extended in future to include coupling non-continuum regions with the DSMC

or with direct numerical solution of Boltzmann equation and development of

more accurate kinetic model for the Knudsen layer. In the discretization front

future potential exists for the development of meshless formulation which pos-

sesses conservation properties and at the same time remains well conditioned for

highly stretched distribution of points. The ultimate long term aim is to develop

SLKNS based hybrid code that can solve a large scale multi-species, reacting,

non-continuum, hypersonic viscous flow problem. This task of development of

such industrial scale 3-D solver will require following steps :

• Improvement over SLKNS:

– Extending 5 moments based on Ψ =
[
1, v⃗, I+ 1

2
v⃗T v⃗
]T

to 13 moment

system described by Ψ =
[
1, v⃗, I+ 1

2
v⃗T v⃗, v⃗ ⊗ v⃗,

(
I+ 1

2
v⃗T v⃗
)
v⃗
]T

such

that evolution of shear stress tensor and heat flux vector are included.

– Implementation of CLL gas-surface interaction model.

– Development for more accurate collision probability function to simu-

late the Knudsen layer.

– Extending the kinetic scheme for multi-component, reacting gas flows.

– Development of meshless formulation that possess conservation prop-

erties.

– Extending the kinetic upwind using meshless method for moving bod-

ies.

• Validation with rotating high speed wind tunnel and application to indus-

trial problems
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– Validation of code with ground based rotating test facility.

– Application to wide variety of industrial problems involving slip flows.

– Simulating a large size multi-physics problem.

• Development of Hybrid solver based on:

– Coupling with Direct Monte Carlo Simulation (DSMC) in the non-

continuum regions.

– Coupling with Direct Numerical Solution (DNS) of Boltzmann equa-

tion in the non-continuum regions.
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Appendix A

Mean free path of the gas

Consider ideal gas under standard ambient temperature and pressure (SATP)

condition defined by temperature, T =298.15 K and pressure,p =105N/m2. Ideal

gas law relates number of particles, N with pressure, p in volume, V with tem-

perature, T as pV = NkBT , where kB is the Boltzmann’s constant. The average

volume available for one molecule corresponds to cube of side length, ld also called

mean molecular distance expressed as follows

ld =

(
V

N

) 1
3

=

(
kBT

P

) 1
3

= 3.45281× 10−9m (A.1)

Consider a molecule of diameter d moving with velocity v. In time δt the molecule

will collide with all the molecules with center in the cylinder of πd2v∆t. The

mean free path or the average distance traveled by a molecule between successive

collision is given by

λ =
kBT√
2πd2p

(A.2)

The effective diameter of a gas molecule depends on the type of gas and is typically

between 2×10−10 m to 6×10−10 m. Thus, mean free path at SATP is therefore

given as

λ =
9.26524× 10−27

d2
(A.3)

For average collision diameter of the air molecule is 3.66×10−10 m we get a mean

free path of 6.92×10−8 m. Table A.1 shows the collision diameters and mean free
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Table A.1: Collision diameter and mean free path of common gases [57]

.

Gas Diameter (m) Mean free path (m)

Air 3.66× 10−10 6.92× 10−8

Ar 3.58× 10−10 7.23× 10−8

CO2 4.53× 10−10 4.51× 10−8

H2 2.71× 10−10 1.26× 10−7

He 2.15× 10−10 2.00× 10−7

Kr 4.08× 10−10 5.56× 10−8

N2 3.70× 10−10 6.76× 10−8

NH3 4.32× 10−10 4.96× 10−8

Ne 2.54× 10−10 1.43× 10−7

O2 3.55× 10−10 7.35× 10−8

Xe 4.78× 10−10 4.05× 10−8
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paths of different gases [57]. Thus, effective diameter, d of the molecule is one

order magnitude less than the mean molecular distance, ld. In turn mean free

path, λ is one or two orders of magnitude larger than the mean particle distance,

ld and two to three orders of magnitude larger than the particle diameter. When

λ is much larger than molecule diameter then the gas can be considered as an

ideal gas. In such a case mean free path of the gas can be written as

λ = µ

√
π

2ρp
(A.4)

It should be noted that structure of the molecule might introduce long range elec-

trostatic forces such that the interaction potential makes the interaction diameter,

di much larger than actual diameter of the molecule and ratio d/λ becomes rele-

vant. One of the example is molecule of water vapor where the dipole structure

introduces long range electrostatic forces.
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Appendix B

Kinetic Theory and Fluid Flow

The detailed description of the classical gas system consisting of N particles in

three dimensions is the Hamiltonian representation, H(x⃗, v⃗) with 3N coordinates

and 3N momenta. The classical Hamiltonian dynamics can also described in

terms of two body potential U as

H(x⃗, v⃗) =
1

2

N∑
i=1

|vi|2 +
∑
i ̸=j

U(xi − xj) (B.1)

This can also be represented by Liouville equation as

∂F (N)(x⃗, v⃗, t)

∂t
+ LF (N)(x⃗, v⃗, t) = 0 (B.2)

where F (N) is density with respect to Lebesgue measure of such a system at time

t and L is the Liouville operator given as

L =
N∑
i=1

[
∂H(x⃗, v⃗)

vi

∂

xi
− ∂H(x⃗, v⃗)

xi

∂

vi

]
(B.3)

The alternative representation using the Gibbs ensemble described by Liouville

equation forms the basic statistical equation for conservation of N particle dis-

tribution function, F (N) which can be seen as Gibbs measure (exp(−βH(x⃗, v⃗)))

of the Hamiltonian H(x⃗, v⃗) in 6N dimensional phase space [234]. BBGKY1 hi-

1BBGKY equations are named after the five authors Bogoliubov, Born, Green, Kirkwood

and Yvon who first suggested these equations.
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erarchy of equations are obtained after successive integration of the Liouville

equation. Each chain in the hierarchy involves reduced distribution function

F (H) and higher order distribution function F (H+1). Boltzmanns molecular chaos

( Stosszahl Ansatz) assumption gives a closed equation for F (1) by introducing

time irreversibility while asserting the absence of correlations between molecules

entering a binary collision. In this case the gas system is described by the single

particle distribution function governed by Boltzmann equation. It is this aspect

of the Boltzmann equation that leads to entropy production. There are kinetic

theories which are not based on the BBGKY hierarchy like Prigogine-Balescu’s

method[220] and Markov’s method of random flight [94].

B.1 Boltzmann Equation

The Boltzmann transport equation [41, 45] describes the transient molecular dis-

tribution function, f(x⃗, v⃗, I, t) : RD×RD×R+×R+ → R+. For a gas in absence of

external force and without internal degrees of freedom, the Boltzmann equation

is as follows
∂f

∂t
+ a⃗ · ∇v⃗f +∇x⃗ · (v⃗f) = JB(f, f) (B.4)

where x⃗, the position vector, a⃗ is the acceleration vector and v⃗ is the velocity

vector of molecules given in RD. The left hand side describes the streaming oper-

ation as ∇· v⃗= 0, thus it expresses advection of molecules written in conservative

form and the right hand side factor JB(f, f) corresponds to binary collision at

the same position x⃗. While Bogoliubov’s generalized form [56] in inertial frame

being
∂f

∂t
+∇x⃗ · (v⃗f) = J(f, f) +K(f, f, f) + L(f, f, f, f) + · · · (B.5)

where J(f, f) is binary or two particle collision, K(f, f, f) being the ternary or

three particle collision and L(f, f, f, f) is quaternary or four particle collision.

Here in J,K, L the difference in position between the colliding particles is taken

into account. The binary collision integral J(f, f) can be described as

J(f, f) =

∫ π/2

0

∫ 2π

0

∫
R+

∫
RD

(
faf

′a − ff
′
)
B(|v⃗a− v⃗

′

a|, cos(Θ))dv⃗
′
dIdϱdΘ (B.6)

where f = f(x⃗, v⃗, I, t) and f ′
= f(x⃗, v⃗

′
, I, t) are the distribution functions of the
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Figure B.1: Binary Collision

molecules before collision and fa = f(x⃗, v⃗a, I, t) and f
′a = f(x⃗, v⃗

′
a, I, t) are the

distribution functions of the molecules after collision. Also, g =
∣∣∣v⃗ − v⃗′

∣∣∣ is the

magnitude of the relative velocity of the particles before collision relative to path

of the centre of gravity of the system consisting of two particles as illustrated

in Figure B.1. Integration with respect to ϱ goes from 0 to 2π, while angle Θ

varies from 0 ( head-on collisions) to π/2 (grazing collisions). The term B(|v⃗a −
v⃗

′
a|, cos(Θ)) is the un-normalized probability density of a relative deflection equal

to π − 2Θ for a pair of molecules having a relative speed of g. This can also be

expressed as

B(|v⃗a − v⃗
′

a|, cos(Θ)) = gr
∂r

∂Θ
(B.7)

where r is the impact parameter which can be interpreted as the distance of

closest approach of the two molecules had they continued their motion without

interaction [45]. The pre-collision velocities can be calculated using the post-

collision velocities v⃗a, v⃗
′
a and relative velocity g as follows

v⃗ = 1
2
(v⃗a + v⃗

′
a + |v⃗a − v⃗

′
a|g)

v⃗
′
= 1

2
(v⃗a + v⃗

′
a − |v⃗a − v⃗

′
a|g)

(B.8)
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Angle Θ is the angle between v⃗a − v⃗
′
a and v⃗ − v⃗

′
expressed as

Θ = cos−1

(
g(v⃗a − v⃗

′
a)

|v⃗a − v⃗′
a|

)
(B.9)

Consider molecules as rigid sphere of radius rh such that two body potential

U = 0 for r ≥ rh and U = ∞ for r < rh, the factor B(|v⃗a − v⃗
′
a|, cos(Θ)) for this

hard interaction is given as

B(|v⃗a − v⃗
′

a|, cos(Θ)) = gr2hcos(Θ)sin(Θ) (B.10)

It can be seen that even for simple two body potentials like inverse power po-

tentials (U(r) = kr−(n−1), n ≠= 2, 3) the term B(|v⃗a − v⃗
′
a|, cos(Θ)) cannot be

described in terms of elementary functions. With power-law potentials U(r) =

kr−(n−1), n > 3 the un-normalized probability density of relative deflectionB(|v⃗a−
v⃗

′
a|, cos(Θ)) is proportional to fractional power of relative speed of g [45] as follows

B(|v⃗a − v⃗
′

a|, cos(Θ)) ∝ g
n−5
n−1 (B.11)

when n = 5 the un-normalized probability density of relative deflection B(|v⃗a −
v⃗

′
a|, cos(Θ)) is no longer a function of relative velocity g. This simplification

was discovered by Maxwell and fictitious molecules interacting in this fashion

are called Maxwell molecules. The probability density of relative deflection for

different interacting molecules are

• Maxwell molecules : B(|v⃗a − v⃗
′
a|, cos(Θ)) = constant.

• Hard Sphere (HS) molecules : B(|v⃗a − v⃗
′
a|, cos(Θ)) = constant |v⃗a − v⃗

′
a|.

• Variable Hard Sphere (VHS) molecules : B(|v⃗a−v⃗
′
a|, cos(Θ)) = constant|v⃗a−

v⃗
′
a|α.

The binary collision integral J(f, f) can also be described as

J(f, f) =

∫ π/2

0

∫ 2π

0

∫
R+

∫
RD

(
faf

′a − ff
′
)
g Π̄ dv⃗

′
dIdϱdΘ (B.12)

Π̄ is the molecular collision cross section, for hard sphere Π̄ = d2/4, where d

is diameter of the hard sphere with Π̄ ∝ 1/g. HS model predicts transport

coefficients which are proportional to square root of temperature i.e. T 0.5 while
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real gases vary as T 0.7. With better collision model like Variable Hard Sphere

(VHS) model in which Π̄ ∝ g−α for a constant α > 0 more realistic prediction of

transport properties can be made. This binary collision integral vanishes in the

Euler limit when the distribution becomes a Maxwellian, f0.

B.1.1 The Grad-Boltzmann Limit

Boltzmann equation has been formulated for hard sphere molecules undergoing

binary collision at same position x⃗. The mathematical condition is given by

the Grad-Boltzmann limit. This is defined as a limit when number of particles

n(x⃗, t) tends to infinity, the diameter of the hard sphere d tends to zero, the

volume occupied by the particles, n(x⃗, t)d3 tends to zero while total cross-section,

n(x⃗, t)d2 remains constant. Thus the rarefied regime can be characterized by the

mean free path which remains constant even though the volume occupied by the

particles approaches zero.

B.1.2 Molecular Chaos

The Boltzmann’s molecular chaos ( ”Stosszahl Ansatz”) assumption introduces

time irreversibility and asserts the absence of correlations between molecules en-

tering a binary collision. It is this aspect of the Boltzmann equation that leads

to entropy production.

B.1.3 Moments and extended thermodynamics

Levermore [149] proposed a procedure that generates hierarchy of closed systems

of moment equations. The Levermore closure procedure ensures every member

of the hierarchy is symmetric hyperbolic with an entropy, and formally recovers

to Euler limit. Consider finite dimensional linear subspace Ξ of functions of v⃗

satisfying the following conditions :

(I) Ψ ≡ span{1, v⃗, v⃗T v⃗} ⊂ Ξ

(II) Ξ follows Galilean invariance

(III) Ξc ≡ {z̄ ∈ Ξ : ⟨exp(z̄(v⃗))⟩ < +∞}

 (B.13)
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Examples of such admissible subspace with maximal degree two and four are

Ξ = span{1, v⃗, v⃗T v⃗}
Ξ = span{1, v⃗, v⃗ ⊗ v⃗}

}
maximal degree = 2

Ξ = span{1, v⃗, v⃗ ⊗ v⃗, v⃗(v⃗T v⃗), (v⃗T v⃗)(v⃗T v⃗)}
Ξ = span{1, v⃗, v⃗ ⊗ v⃗, v⃗ ⊗ v⃗ ⊗ v⃗, (v⃗T v⃗)(v⃗T v⃗)}
Ξ = span{1, v⃗, v⃗ ⊗ v⃗, v⃗ ⊗ v⃗ ⊗ v⃗, v⃗(v⃗T v⃗)⊗ v⃗}
Ξ = span{1, v⃗, v⃗ ⊗ v⃗, v⃗ ⊗ v⃗ ⊗ v⃗, v⃗ ⊗ v⃗ ⊗ v⃗ ⊗ v⃗}

maximal degree = 4

(B.14)

Thus there can be 5, 10, 14, 21, 26 and 35 equations with entropy based closures

using Levermore procedure [119, 151]. Closure based on Maxwellian (equilib-

rium solution) distribution will give us 13 and 20 moment equations. In the

kinetic theory moments of the phase density define the macroscopic thermody-

namic quantities. Using moment vector function defined as Ψ=
[
1, v⃗, I+ 1

2
v⃗T v⃗
]T

the moments of the Boltzmann equation are as follows :

[ρ, ρu⃗, ρE]T = ⟨Ψ, f⟩ ≡
∫
R+

∫
RD

Ψf(x⃗, v⃗, I, t)dv⃗dI (B.15)

Thus we can define jth component of the macroscopic thermodynamic quantity

Ψk1k2k3···kj(x⃗, t) based on the jth component of the vector of collision invariant ,

Ψ as follows

Ψk1k2k3···kj(x⃗, t) =

∫
R+

∫
RD

Ψk1k2k3···kj(v⃗, I, t)f(x⃗, v⃗, I, t)dv⃗dI (B.16)

The moments of the Boltzmann equation satisfy an infinite hierarchy of balance

laws expressed as follows :

∂tΨ + ∂iΨi = 0,

↙
∂tΨk1 + ∂iΨik1 = 0,

↙
∂tΨk1k2 + ∂iΨik1k2 = Pk1k2 ,

↙
∂tΨk1k2k3 + ∂iΨik1k2k3 = Pk1k2k3 ,

↙
...

∂tΨk1k2k3···kn + ∂iΨik1k2k3···kn = Pk1k2k3···kn ,
...

(B.17)
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From the continuum mechanics perspective the flux in an equation becomes the

density in the next one, as there can be infinite moments. Thus, there is a prob-

lem of the closure when we cut this hierarchy at the density with tensor of rank

n as its flux and production term will require its balance as they become density

in the next hierarchical step. According to the idea of rational extended ther-

modynamics Müller and Ruggeri [196] have treated this truncated system as a

phenomenological system of continuum mechanics governed by universal princi-

ple of entropy, objectivity, causality and stability ( convexity of entropy). The

differential system is hyperbolic and classical constitutive equations are approx-

imation of balance laws when relaxation times are negligible. (This avoids the

heat paradox 1 observed in the classical theory.) The diffusion equation and the

Navier-Stokes equation are valid only when particles have suffered many colli-

sions and their distribution has relaxed to have weak spatial gradients and slow

temporal variations. However, there are physical situations where gradients are

large on the scale of a collisional mean free path or temporal changes are rapid

relative to the mean collision time. Examples include radiation hydrodynamics in

optically thin media (Levermore and Pomraning [150]), viscous angular momen-

tum transport in boundary layers of accretion disks (Popham & Narayan [216])

and electron heat transport in laser produced plasma (Max [183]). It should

be noted that Navier-Stokes equations do not have equations for evolution of

shear stress and heat flux vectors as compared to 13-moments Grad system [102].

When relaxation time for evolution of shear stress and heat flux are negligible

then 13-moments Grad system reduces to classical Navier-Stokes as illustrated by

extended thermodynamics. Fig. B.2 shows various hierarchies of equations due

to Knudsen number expansion and number of moments compiled from Struchtrup

[264].

1 The parabolic nature of heat equation in classical theory implies an infinite speed of

propagation of disturbance in temperature. This paradox is similar to paradox of diffusion and

shear waves.
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Figure B.2: Hierarchy of equations due to Knudsen number expansion and num-

ber of moments for Maxwell molecule. ([264])

B.2 Boltzmann equation and the Collision op-

erator

The collision redistributes the particles in the space leading to a change in the

local fluid dynamic field. This term contains irreversibility of the kinetic descrip-

tion, entropy production, etc. The collision integral preserves some of the basic

properties of the Boltzmann equation.

B.2.1 Locality and Galilean invariance

The molecules considered in the Boltzmann equation are point particles whose

interaction is governed by the finite range intermolecular forces. Hence collision

term is local in the position space and non-local in the velocity space. Since

the Boltzmann equation is invariant under Galilean transformation hence the

collision term J(f, f) depends only on peculiar velocity c⃗ = v⃗− u⃗. This property

is important from numerical simulation of the collision term.
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B.2 Boltzmann equation and the Collision operator

B.2.2 Additive invariants of the collision

This property represents conservation of number of particles, the three compo-

nents of particles momentum and its energy due to collision. Mathematically it

can be represented as ∫
R+

∫
RD

J(f, f)Ψdv⃗dI = 0 (B.18)

Thus, the local fluid dynamics field redistributes as a consequence of the collision.

B.2.3 Uniqueness of equilibrium

The zero point of collision integral given as

J(f, f) = 0 (B.19)

implies detailed balance condition as

f(x⃗, v⃗, I, t)f ′
(x⃗, v⃗

′
, I, t) = fa(x⃗, v⃗a, I, t)f

′

a(x⃗, v⃗
′

a, I, t) (B.20)

Chapman-Enskog method like many other perturbative schemes for solving the

Boltzmann equation use this condition of detailed balance as the lowest order of

approximation to the distribution function.

B.2.4 Local entropy production inequality and Boltzmann

H-theorem

Taking moments of the Boltzmann equation with function Ψe = −Rlnf we obtain

the density of entropy, ρs and its flux, j⃗s given as

ρs =

∫
R+

∫
RD

(−Rflnf)dv⃗dI = −kBH (B.21)

j⃗s =

∫
R+

∫
RD

(−Rflnf)v⃗dv⃗dI (B.22)

Thus, we get the Boltzmann H-theorem

∂ρs
∂t

+∇x⃗ · (⃗js) = σ(v⃗, t) ≥ 0 (B.23)
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B.2 Boltzmann equation and the Collision operator

The rate of change of entropy equals the non-negative entropy production. For

certain boundary condition such as specular reflection or flow condition at infinity

the flux of entropy density j⃗s gives no contribution. Local entropy production

due to the collision term can be written as

σ(v⃗, t) = −R
∫
R+

∫
RD

lnfJ(f, f)dv⃗dI ≥ 0 (B.24)

where R is the specific gas constant. It follows from the Boltzmann equation

that entropy production is linked to the collision term. Collisions between the

molecules in the non-equilibrium state leads to entropy production. Thus local

production inequality describes the relaxation of the distribution function towards

the equilibrium distribution given by local Maxwellian. It should be noted that

when the distribution function f is expressed in terms of number density as f̆ , in

that case the density of entropy, ρs and its flux, j⃗s are given as

ρs =

∫
R+

∫
RD

(−kB f̆ lnf̆)dv⃗dI = −kBH (B.25)

j⃗s =

∫
R+

∫
RD

(−kB f̆ lnf̆)v⃗dv⃗dI (B.26)

as moment Ψe = −kBlnf̆ , local entropy production due to the collision term can

be written as

σ(v⃗, t) = −kB
∫
R+

∫
RD

lnf̆J(f̆ , f̆)dv⃗dI ≥ 0 (B.27)

where kB is the Boltzmann’s constant.

B.2.5 Correct transport coefficients in the hydrodynamic

limit

In the hydrodynamic limit the collision operator should generate correct transport

coefficients such as viscosity, µ and thermal conductivity, κ and Prandtl number,

Pr.
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B.2.6 Positive distribution

The local H-function is independent of spatial position as it can be cast as follows

dH

dt
= −σ(v⃗, t)

R
=

∫
R+

∫
RD

lnfJ(f, f)dv⃗dI (B.28)

The H-function decays monotonically along the solution such that Boltzmann

equation leads towards the unique global Maxwellian. The H-function of the

kinetic model should decay monotonically such that Boltzmann equation gives

positive distribution leading towards the unique equilibrium solution.

B.3 Quasi-Gas-Dynamics (QGD) and hydrody-

namic theory of Brenner

Consider coordinate system C∗ moving relative to another inertial coordinate

system C with constant speed U . Then the coordinates of a material point x∗ and

time t∗ in C∗ can be expressed as Galileo transforms with respect to coordinate

x and t in the coordinate system C as

x∗ = x− U(t− t0) (B.29)

t∗ = t (B.30)

At an instant t0, both systems coincide i.e. equations of motion in theses systems

are invariant. Invariance of hydrodynamic equations can be ascertained by the

change in the macroscopic parameters - the density ρ, the velocity u and temper-

ature T when passing from coordinate C to C∗. The instant spatial averages can

be expressed as

ρ∗s = ρs, u∗s = us − U, T ∗
s = Ts (B.31)

Thus invariance of Navier-Stokes equations constructed using spatial averages as

shown in Equation B.31 is verified. For spatial-time averages, the volume ∆V in

the fixed coordinate system differs from the volume ∆V ∗ in the moving coordinate

system. The instant spatial-time averages can be expressed as

ρ∗st ≈ ρst, u∗st ≈ ust − U, T ∗
st ≈ Tst (B.32)
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The invariance of instant spatial-time averages of density, velocity and tempera-

ture with respect to Galileo transform is violated in this case. Galileo transforma-

tion does not hold for the gas-dynamic equations based on spatial-time averages.

For example consider continuity equation

∂ρ

∂t
+
∂jm
∂x

=
∂ρ

∂t
+
∂ρu

∂x
= 0 (B.33)

where jm is the mass flux density. The Galileo transform holds for the equation

of continuity as well as the spatial averages as

∂ρs(x, t)

∂t
+
∂ρs(x, t)us(x, t)

∂x
= 0 (B.34)

In terms of spatial-time averages, the continuity equation can be written as

1

∆t

∫ t+∆t

t

∂ρs(x, t
′
)

∂t
= − 1

∆t

∫ t+∆t

t

div
(
ρs(x, t

′
)us(x, t

′
)
)
dt

′
(B.35)

This is simplified as

∂ρst(x,t
′
)

∂t
= −div

(
1
∆t

∫ t+∆t

t
ρs(x, t

′
)us(x, t

′
)dt

′
)

̸= −div
(
ρst(x, t

′
)ust(x, t

′
)
) (B.36)

This inequality is due to∫ t+∆t

t

ρs(x, t
′
)us(x, t

′
)dt

′ ̸=
∫ t+∆t

t

ρs(x, t
′
)dt

′
∫ t+∆t

t

us(x, t
′
)dt

′
(B.37)

For spatial-time averages, the mass flux density may not be same as momentum

of the volume unit as even for small time ∆t, the instant value of density and

momentum change. Thus Galileo transform does not hold for the gas-dynamic

equations based on spatial-time averages. Quasi-gas-dynamics (QGD) [81] and

Quasi-hydrodynamic [248] approach uses the time-spatial averaging procedure for

the definition of the main gas dynamic quantities: density, velocity, and tempera-

ture as compared to spatial averaging used in conventional Navier-Stokes theory.

For example QGD introduces of small velocity w in the expression of mass flux

such that time-spatial averages are invariant under Galileo transform. In QGD

the mass flux density is calculated as

jm = ρ(u− w) (B.38)
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where

w =
ts
ρ
[div(ρu⊗ u) +∇p− ρF ] (B.39)

where ts is the additional parameter related to averaging (smoothing) in time

and F is the mass density of exterior forces. This is similar to modification

in hydrodynamic theory proposed by Brenner [38] by introducing a new mass

diffusion contribution to the continuity equation. The equations were formalized

by Ottinger [208] by providing thermodynamical basis. Greenshields and Reese

[103] investigated monoatomic gas shocks and found that results with Brenner’s

modifications are significantly better than those of the standard Navier-Stokes

equations.

B.4 Grad moment method

The method projects the Boltzmann equation onto Hermite basis i.e. we seek

solution of mass, momentum and energy conservation equation by expanding the

distribution function f(x⃗, v⃗, t) in Hermite or Gram-Charlier polynomials. The

unique feature of Hermite ortho-normal polynomials forming the expansion ba-

sis is that its expansion coefficients correspond to the velocity moments. The

distribution function represented in terms of Hermite polynomials is

f(x⃗, v⃗, t) = ω(v⃗)
∞∑
n=0

1

n!
a(n)H(n)(v⃗) (B.40)

where both a(n) and H(n) are rank-n tensors. In a D-dimensional Cartesian

coordinates the weight function associated with the Hermite polynomial is

ω(v⃗) =
1

(2π)D/2
exp(−v⃗.v⃗) (B.41)

The nth order Hermite polynomial which is also nth rank symmetric tensor is

defined as

H(n)(v⃗) =
(−1)n

ω(v⃗)
∇nω(v⃗) (B.42)
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distribution

The first few polynomials are

H(0)(v⃗) = 1

H(1)
i (v⃗) = vi

H(2)
ij (v⃗) = vivj − δij

H(3)
ijk(v⃗) = vivjvk − viδjk − vjδik − vkδij

(B.43)

The expansion coefficients are linear combinations of the velocity moments of f

as follows
a(0) =

∫
fdv⃗ = ρ

a(1) =
∫
fv⃗dv⃗ = ρu⃗

a(2) =
∫
f(v⃗2 − δ)dv⃗ = P+ ρ(u⃗2 − δ)

a(3) =
∫
f(v⃗3 − v⃗δ)dv⃗ = q⃗ + u⃗a(2) − (D − 1)ρu⃗3

(B.44)

Here the product of two tensors is sum of all possible permutations of tensor

product. Thus the state variables [ρ, u⃗, T ]T , the momentum flux tensor P or its

traceless part the stress tensor σ and the heat flux vector q⃗ can be completely

determined by the first four Hermite expansion coefficients.

ρ = a(0)

ρu⃗ = a(1)

P = a(2) − ρ(u⃗2 − δ)

q⃗ = a(3) − u⃗a(2) + (D − 1)ρu⃗3

(B.45)

Thus, Nth order distribution function can be approximated by its projection onto

a Hilbert subspace spanned by the first N Hermite polynomials

f(x⃗, v⃗, t) ≈ fN(x⃗, v⃗, t) = ω(v⃗)
N∑
n=0

1

n!
a(n)H(n)(v⃗) (B.46)

B.5 Closure coefficients for second order Chapman-

Enskog distribution

Evaluation shows that < Ψ,Kn2f̄2 ≯= 0 so we require additional moment closure

terms thus making the determination of f2 non-unique [22]. The complete second

order can be evaluated in terms of moment closure coefficients ϑτ,k and ϑq,k as

f2 = f0 +Knf̄1 −KntR

[
Df̄1
Dt

+ ∂f0ξ̃1
∂x

]
(B.47)
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Table B.1: Closure coefficients

ϑτ,1 ϑτ,2 ϑτ,3 ϑq,1 ϑq,2 ϑq,3

3 3 1 1 1
5

(
3γ−5
γ−1

)
−1

3

(
3−γ
γ−1

)
3 3 1 −3

(
γ−1
3−γ

)
−3

5

(
3γ−5
3−γ

)
1

1 1 3 1 1
5

(
3γ−5
γ−1

)
−1

3

(
3−γ
γ−1

)
1 1 3 −3

(
γ−1
3−γ

)
−3

5

(
3γ−5
3−γ

)
1

ξ̃1 = − 1

Kn

(
ξ̃τ
p
τ +

ξ̃q
p
q

)
(B.48)

ξ̃τ =

(
3γ − 5

2(3− γ)
ϑτ,1 −

I
I2o

1

4β
ϑτ,2 + βc2xϑτ,3

)
(B.49)

ξ̃q = 2β

(
γ − 1

γ

)(
− I
Io
cxϑq,1 +

5

2
cxϑq,2 − βc3xϑq,3

)
(B.50)

where closure coefficients ϑτ,k and ϑq,k∀ k = 1, 2, 3 differ from the closure coef-

ficients given by Balakrishnan [22]. Table B.1 shows the closure coefficients. It

should be noted that Burnett equations are embedded within Grad’s 13 moment

method [102] and can easily be extracted using Chapman-Enskog theory. Another

alternative to extract Burnett equations from moment systems is Maxwellian

iteration of Ikenberry and Truesdell [125]. For more details on second order

Chapman-Enskog expansion and Burnett equation refer Struchtrup [264].

B.6 Linearized Boltzmann equation

Boltzmann equation for binary collision is

∂f

∂t
+∇x⃗ · (v⃗f) = J(f, f) (B.51)

where J(f, f) is binary or two particle collision integral describing the collision

amongst the molecules which vanishes in the Euler limit. The distribution can
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be linearized about a local Maxwellian as follows

f(x⃗, v⃗, I, t) = f0(x⃗, v⃗, I, t)[1 + Φ(x⃗, v⃗, I, t)] (B.52)

Neglecting the dependence of Φ on x⃗ and t we can write

f(x⃗, v⃗, I, t) = f0(x⃗, v⃗, I, t)[1 + Φ(v⃗, I)] (B.53)

With the further assumption that |Φ| ≪ 1 and both Maxwellian and unknown Φ

vary slowly in space and time, with this assumption we can neglect the product

of Φ with derivatives of Maxwellian f0 as well as derivatives of Φ . With this

the linearized Boltzmann equation in terms of linearized collision operator JΦ
becomes

1

f0

(
∂f0
∂t

+∇x⃗ · (v⃗f0)
)
+ JΦ = 0 (B.54)

The linearized collision operator JΦ is defined as

JΦ = − 1

f0

(∫ π/2

0

∫ 2π

0

∫
R+

∫
RD

f0f
′

0

(
Φa + Φ

′a − Φ− Φ
′
)
g Π dv⃗

′
dIdϱdΘ

)
(B.55)

The linearized collision operator J has following properties [186]

• a) The operator J is linear :

J(α1Φ1 + α2Φ2) = α1JΦ1 + α2JΦ2 (B.56)

• b) The operator J has rotational invariance:

O−1JO = J (B.57)

where O is any three dimensional rotation operator

• c) The operator J is self adjoint :∫
R+

∫
RD

ΦiJΦjdv⃗dI =
∫
R+

∫
RD

ΦjJΦidv⃗dI (B.58)

The symmetry indicates that operator J is self-adjoint, the matrix elements

are hermitean symmetric giving rise to Onsager symmetry relations. This

property arises from the equality of the differential cross-sections for direct

and inverse collisions.
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B.7 Extending kinetic model for gas-mixture

• d) The positive semi-definiteness of the collision operator J :∫
R+

∫
RD

ΦiJΦidv⃗dI ≥ 0 (B.59)

It should be noted that the perturbation terms satisfies the moment closure prop-

erty, expressed as

⟨ψ, f0Φ⟩ =
∫
R+

∫
RD

Ψ(v⃗, I, t)f0Φdv⃗dI = 0 (B.60)

where moment vector is Ψ =
[
1, v⃗, I+ 1

2
v⃗T v⃗
]T
. Taking moments of the function

Ψe = −Rlnf of the linearized Boltzmann equation

∂f0
∂t

+∇x⃗ · (v⃗f0) = −f0JΦ (B.61)

we obtain the entropy density production equation expressed as

∂ρs
∂t

+∇x⃗ · (js) = R

∫
R+

∫
RD

lnf(f0J)Φdv⃗dI (B.62)

Because of linearization factor lnf can be expressed as

lnf = lnf0 + ln(1 + Φ) = lnf0 + Φ (B.63)

Since lnf0 is a collisional invariant and hence makes no contribution. Entropy

density production equation can now be written as

∂ρs
∂t

+∇x⃗ · (js) = R

∫
R+

∫
RD

f0ΦJΦdv⃗dI = σ(v⃗, t) ≥ 0 (B.64)

B.7 Extending kinetic model for gas-mixture

Extension of the kinetic model for mixture of non-reacting gas can be accom-

plished in two different ways i)single fluid model, ii)multi-fluid model. For ex-

ample single fluid kinetic model for binary mixture of non-reacting gas can be

written as

Jm(f, f0) = −
(
f − f0
tR(τ)

)
Xq=0,Xd=0

−
(
f − f0
tR(q)

)
Xτ=0,Xd=0

−
(
f − f0
tR(d)

)
Xτ=0,Xq=0

(B.65)
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B.7 Extending kinetic model for gas-mixture

where Xτ , Xq and Xd are the thermodynamic force terms associated with

shear stress tensor, heat flux vector and species diffusion flux vector. Parameters

tR(τ), tR(q) and tR(d) are the relaxation time due thermodynamic force associated

with shear stress tensor, heat flux vector and species concentration vector. The

distribution function can be derived as

f1 = f0 −
∑
j

Υj ⊙Xj = f0 − (Υτ :Xτ +Υq ·Xq +Υd ·Xd) (B.66)

where Υτ , Υq and Υd are the thermodynamic force terms associated with shear

stress tensor, heat flux vector and species diffusion flux vector. Here Xq and Xd

are of same tensorial order, hence Onsager’s cross coupling gives the Soret and

Dufour effect.

In case of two fluid approximation we will have kinetic models for each species.

The kinetic model will not only depend on relaxation time associated with self-

collisions but also on relaxation time associated with cross collisions of specie i

with specie j. The kinetic model Jm(f, f0)(i) for specie i and Jm(f, f0)(j) for

specie j can be expressed as

Jm(f, f0)(i) = −
(
f(i)−f0(i)
tR(τ,ii)

)
Xq=0

−
(
f(i)−f0(i)
tR(q,ii)

)
Xτ=0

−
(
f(i)−f̃0(i)
tR(τ,ij)

)
Xq=0

−
(
f(i)−f̃0(i)
tR(q,ij)

)
Xτ=0

(B.67)

Jm(f, f0)(j) = −
(
f(j)−f0(j)
tR(τ,jj)

)
Xq=0

−
(
f(j)−f0(j)
tR(q,jj)

)
Xτ=0

−
(
f(j)−f̃0(j)
tR(τ,ji)

)
Xq=0

−
(
f(j)−f̃0(j)
tR(q,ji)

)
Xτ=0

(B.68)

where fi and f0(i) is the non-equilibrium and equilibrium distribution for specie

i. Similarly, fj and f0(j) is the non-equilibrium and equilibrium distribution for

specie j. Maxwellian distribution f̃0(i) and f̃0(j) is based on free temperature

parameter as derived by Morse[193]. Parameters tR(τ,ii), tR(q,ii) are the relaxation

time due to self collisions of specie i while tR(τ,jj), tR(q,jj) are the relaxation time

due to self collisions of specie j. Parameters tR(τ,ij), tR(q,ij) are the relaxation

time due to cross collisions of specie i with specie j while tR(τ,ji), tR(q,ji) is the

relaxation time due to self collisions of specie j with specie i. The cross collision

relaxation time tR(α,ij) and tR(α,ji) is related to number density as follows

tR(α,ij)

tR(α,ji)

=
ni
nj

(B.69)
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B.7 Extending kinetic model for gas-mixture

where ni and nj is the number density of specie i and specie j.
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Appendix C

Treatment of thermally and

calorically imperfect gas

The definition of a perfect gas is stated in two parts: i)the gas is thermally perfect

i.e. it obeys the thermal equation of state or ideal law p = ρRT , and ii) the gas

is calorically perfect i.e. the gas specific heats are constants.

C.1 Thermally imperfect gas

At higher pressures or lower temperatures the behaviour of gases deviates from

ideal gas law relationship and follow a relationship given as

p

ρRT
= 1 +Bρ+ Cρ2 + · · · (C.1)

where B and C are the virial coefficients which are functions of temperature and

are determined experimentally. Another commonly used formulation is van der

Waals equation of state given as

p =
RT

v − b
− a

v2
(C.2)

Another alternative method is based on compressibility factor, Z defined as

Z =
p

ρRT
(C.3)
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C.2 Calorically imperfect gas

where Z has a value of 1.0 for ideal gas and its deviation from 1.0 characterizes

the non-ideality of gases.

C.2 Calorically imperfect gas

For the calorically imperfect gas the specific heat capacity at constant pressure

and volume, cp and cv; the ratio of specific heat capacities, γ and the enthlapy

are non-linear functions of temperature.

The probability, pi to find the system in some state i with energy Ei is

pi =
exp(−βEi)

Z
=

exp(−βEi)∑
i exp(−βEi)

(C.4)

where β = 1/kBT with kB as the Boltzmann’s constant and Z from German

name Zustandssummme is the factor of normalization which is the sum over all

micro eigenstates i which system takes. The factor Z is also called partition

function for canonical ensemble for the N indistinguishable molecules. It can

also be expressed as

Z =
1

N !hNDf

∫
· · ·
∫
exp(− H

kBT
)dr⃗1dr⃗2 · · · dr⃗Ndp⃗1dp⃗2 · · · dp⃗N (C.5)

where H designates the Hamiltonian molecule system, vectors dr⃗1dr⃗2 · · · dr⃗N de-

scribe the position of N molecules and dp⃗1dp⃗2 · · · dp⃗N describe the momenta of

the N molecules. Df gives the degrees of freedom of individual molecules, k is

the Boltzmann’s constant and h is Planck’s constant.

C.2.1 Partition function and thermodynamic properties

It should be noted that Boltzmann distribution is the probability of dominant

macrostate. For N molecules the probability that the system is in macro state

with energy Ei is the product of N Boltzmann distributions

ZN =
∑
i

exp(−βE(1)
i + · · ·+ E

(N)
i ) =

(∑
i

exp(−βEi)

)N

(C.6)
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C.2 Calorically imperfect gas

Thus the partition function,ZN for a system ofN calorically imperfect gas molecules

can be written as

ZN = ZN (C.7)

where Z is the single molecule partition function of calorically imperfect gas which

can be written as

Z = ZtransZvibZrotZirZelZnucZconf (C.8)

The partition function Z is a product of terms of the translation (trans), the

vibration (vib), the rotation (rot), the internal rotation (ir), the influence of

electron excitation (el), the influence of nuclei excitation (nuc) and the influence

of the intermolecular potential energy (conf). Thus canonical ensemble partition

function ZN for N independent indistinguishable molecules is given as

ZN =
ZN
trans

N !
ZN
vibZ

N
rotZ

N
irZ

N
el Z

N
nucZ

N
conf (C.9)

The N ! associated with the translational term is necessary to account for the N !

ways of permuting N molecules. The assumption that each modes are decoupled

the thermodynamic properties of a molecule can be calculated by summing the

individual contributions from each mode. For example total internal energy of a

molecule U can be written as

U = Utrans + Urot + Uvib + · · · (C.10)

The thermodynamic functions can be evaluated as follows

Pressure, p = kBT
(
∂ln(ZN )
∂V

)
T
,

Helmholtz free energy, H = −kBT ln(ZN),

Internal energy, U = kBT
2
(
∂ln(ZN )
∂T

)
V
,

Entropy, S = kB

[
ln(ZN) + T

(
∂ln(ZN )
∂T

)
V

]
,

Enthalpy, H = kBT
[
T
(
∂ln(ZN )
∂T

)
V
+ V

(
∂ln(ZN )
∂V

)
T

]
,

F ree Enthalpy, G = −kBT
[
ln(ZN)− V

(
∂ln(ZN )
∂V

)
T

]
(C.11)

where T is the temperature and V is the volume of molecular system. As described

earlier each energy mode has an associated partition function Z which is obtained

from the quantitized molecular energy levels Ei of the mode. If an energy level
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C.2 Calorically imperfect gas

is degenerate the degeneracy, gi must also be accounted. In such a case the

molecular partition function for each mode is

Z =
∞∑
i

giexp(−βEi) (C.12)

When Ei>kBT then all the energy levels are assumed to accessible to the molecule,

thus integral approximation replaces the discrete summation of the partition

function leading to classical representation of the system i.e. the kinetic the-

ory of gases. Another way of determining whether the quantized or continuum

representation of the partition function should be used is to calculate the charac-

teristic temperature θi = Ei/kB for each mode. In most of the cases translational,

rotational and vibrational partition functions contribute to the thermodynamic

properties in the temperature ranges encountered in engineering applications.

C.2.2 Translational partition function

The quantized translational energy available to a molecule confined to a cubic

box of volume V =a3 in three dimensions is

Ei =
h2(n2

x + n2
y + n2

z)

8ma2
(C.13)

where nx,ny, nz are translational quantum numbers, h is Planck’s constant and

m is the mass of the molecule. The characteristic translational temperature per

mole is

θtrans =
h2

8mkBa2
=

h2

8mkBV 2/3
(C.14)

With an assumption that there is no translational degeneracy and translational

characteristic temperature is less than the temperature of interest, the total trans-

lational contribution to the partition function for N molecules is

ZN(trans) =
ZN
trans

N !
=
V N

N !

(
2πmkBT

h2

)3N/2

(C.15)

The translational contribution to internal energy and enthalpy can be shown to

be
Utrans =

3NkBT
2

Htrans =
5NkBT

2

(C.16)
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C.2 Calorically imperfect gas

C.2.3 Rotational partition function

The quantized rotational energy is given by

Ei =
h2J(J + 1)

8π2IA,B,C
(C.17)

where J is the rotational quantum number and IA,B,C are the principal moments

of inertia of the molecule. The characteristic rotational temperature of a molecule

being

θrot =
h3

8kBπ2IA
(C.18)

With an assumption that rotational characteristic temperature is less than the

temperature of interest, the total rotational contribution to the partition function

for N molecules is

ZN(rot) = ZN
rot =

((
kBT
h

)3/2
π1/2

σ(ABC)1/2

)N

(C.19)

where σ(ABC) is the rotational symmetry number. The rotational contribution

to internal energy and enthalpy can be shown to be

Urot =
3NkBT

2

Hrot =
3NkBT

2

(C.20)

C.2.4 Vibrational partition function

The quantized vibrational energy relative to the ground state can be written as

Ei = h vibi (C.21)

where vibi is a fundamental vibrational frequency. The characteristic vibrational

temperature of a molecule is

θvib =
h vib c

kB
(C.22)

In many polyatomic molecules the vibrational characteristic temperature is some-

times near the temperature of interest. In such a case we have to use quantized

model of the vibrational contribution given as

Zvib =
∞∑
i=1

giexp(−
θi
T
) (C.23)
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C.2 Calorically imperfect gas

where gi is the degeneracy of the ith vibrational mode, θi is the characteristic

temperature. Expanding the partition function as a geometric series the partition

function for nv number of vibrational mode for N molecules can be expressed as

ZN(vib) = ZN
vib = Πi=nv

i=1

(
gi

1− exp(− θi
T
)

)N

(C.24)

The vibrational contribution to internal energy and enthalpy can be shown to be

Uvib = R
∑i=nv

i=1

(
giθiexp(−

θi
T
)

1−exp(− θi
T
)

)
Hvib = R

∑i=nv
i=1

(
giθiexp(−

θi
T
)

1−exp(− θi
T
)

) (C.25)

C.2.5 Internal energy, Enthalpy, Specific heats and γ

Internal energy and enthalpy per unit mass for calorically imperfect polyatomic

molecules can be now be written as

U = Utrans + Urot + Uvib = 3RT +R
∑i=nv

i=1

(
giθiexp(−

θi
T
)

1−exp(− θi
T
)

)
H = Htrans +Hrot +Hvib = 4RT +R

∑i=nv
i=1

(
giθiexp(−

θi
T
)

1−exp(− θi
T
)

) (C.26)

The specific heat at constant volume, Cv and constant pressure, Cp can be derived

as

Cv =
∂U
∂T

= 3R +R
∑i=nv

i=1

(
gi( θi

T )
2
exp(− θi

T
)

(1−exp(− θi
T
))

2

)
Cp =

∂H
∂T

= 4R +R
∑i=nv

i=1

(
gi( θi

T )
2
exp(− θi

T
)

(1−exp(− θi
T
))

2

) (C.27)

The expression for ratio of specific heats, γ can be written as

γ = 1 +
1

3 +
∑i=nv

i=1

(
gi( θi

T )
2
exp(− θi

T
)

(1−exp(− θi
T
))

2

) (C.28)
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Appendix D

Split macroscopic tensors and

Kinetic Flux Vector Split Fluxes

D.1 Split macroscopic tensors, Λ±·
ij and Λ·±

ij for

2D

D.1.1 X Split macroscopic tensors, Λ±·
ij

Λ+·
τ =

⟨
Ψ, vxΥ

+·
τ

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ +∞

0

ΨvxΥτdvxdvydI

Λ−·
τ =

⟨
Ψ, vxΥ

−·
τ

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ 0

−∞
ΨvxΥτdvxdvydI

Λ+·
q =

⟨
Ψ, vxΥ

+·
q

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ +∞

0

ΨvxΥqdvxdvydI

Λ−·
q =

⟨
Ψ, vxΥ

−·
q

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ 0

−∞
ΨvxΥqdvxdvydI
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D.1 Split macroscopic tensors, Λ±·
ij and Λ·±

ij for 2D

Λ±·
1,τ =

⟨
Ψ1, vxΥ

±·
τ

⟩
= µ

p

 B∓
1 (γ−3)ρ

8
√
πβ3/2 0

0
B∓

1 (γ−1)ρ

8
√
πβ3/2


Λ±·

1,q =
⟨
Ψ1, vxΥ

±·
q

⟩
= (γ−1)

γ
κ
pR

[
− B∓

1 uxρ

4
√
πβ3/2 0

]
Λ±·

2,τ =
⟨
Ψ2, vxΥ

±·
τ

⟩
= µ

p

[
−A±

1 (γ−3)ρ

8β2 0

0 −A±
1 (γ−1)ρ

8β2

]
Λ±·

2,q =
⟨
Ψ2, vxΥ

±·
q

⟩
= (γ−1)

γ
κ
pR

[
B∓

1 ρ

4
√
πβ5/2 0

]

Λ±·
3,τ =

⟨
Ψ3, vxΥ

±·
τ

⟩
= µ

p

 B∓
1 uy(γ−3)ρ

8
√
πβ3/2

A±
1 ρ

8β2

A±
1 ρ

8β2

B∓
1 uy(γ−1)ρ

8
√
πβ3/2


Λ±·

3,q =
⟨
Ψ3, vxΥ

±·
q

⟩
= (γ−1)

γ
κ
pR

[
−B∓

1 uxuyρ

4
√
πβ3/2

B∓
1 ρ

8
√
πβ5/2

]

Λ±·
4,τ =

⟨
Ψ4, vxΥ

±·
τ

⟩
= µ

p

 − (γ−3)C±
1 ρ

32
√
πβ5/2(γ−1)

A±
1 uyρ

8β2

A±
1 uyρ

8β2 − C±
1 ρ

32
√
πβ5/2


Λ±·

4,q =
⟨
Ψ4, vxΥ

±·
q

⟩
= (γ−1)

γ
κ
pR

[
− (B∓

1

√
βux(3+2uy2β(γ−1)−γ)+2A±

1

√
πγ)ρ

16
√
πβ3(γ−1)

B∓
1 uyρ

8
√
πβ5/2

]

D.1.2 Y Split macroscopic tensors, Λ·±
ij

Λ·+
τ =

⟨
Ψ, vyΥ

·+
τ

⟩
≡
∫ +∞

0

∫ +∞

0

∫ +∞

−∞
ΨvyΥτdvxdvydI

Λ·−
τ =

⟨
Ψ, vyΥ

·−
τ

⟩
≡
∫ +∞

0

∫ 0

−∞

∫ +∞

−∞
ΨvyΥτdvxdvydI

Λ·+
q =

⟨
Ψ, vyΥ

·+
q

⟩
≡
∫ +∞

0

∫ +∞

0

∫ +∞

−∞
ΨvyΥqdvxdvydI

Λ·−
q =

⟨
Ψ, vyΥ

·−
q

⟩
≡
∫ +∞

0

∫ 0

−∞

∫ +∞

−∞
ΨvyΥqdvxdvydI
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D.1 Split macroscopic tensors, Λ±·
ij and Λ·±

ij for 2D

Λ·±
1,τ =

⟨
Ψ1, vyΥ

·±
τ

⟩
= µ

p

 B∓
2 (γ−1)ρ

8
√
πβ3/2 0

0
B∓

2 (γ−3)ρ

8
√
πβ3/2


Λ·±

1,q =
⟨
Ψ1, vyΥ

·±
q

⟩
= (γ−1)

γ
κ
pR

[
0 − B∓

2 uyρ

4
√
πβ3/2

]

Λ·±
2,τ =

⟨
Ψ2, vyΥ

·±
τ

⟩
= µ

p

 B∓
2 ux(γ−1)ρ

8
√
πβ3/2

A±
2 ρ

8β2

A±
2 ρ

8β2

B∓
2 ux(γ−3)ρ

8
√
πβ3/2


Λ·±

2,q =
⟨
Ψ2, vyΥ

·±
q

⟩
= (γ−1)

γ
κ
pR

[
B∓

2 ρ

8
√
πβ5/2 −B∓

2 uxuyρ

4
√
πβ3/2

]
Λ·±

3,τ =
⟨
Ψ3, vyΥ

·±
τ

⟩
= µ

p

[
−A±

2 (γ−1)ρ

8β2 0

0 −A±
2 (γ−3)ρ

8β2

]
Λ·±

3,q =
⟨
Ψ3, vyΥ

·±
q

⟩
= (γ−1)

γ
κ
pR

[
0

B∓
2 ρ

4p
√
πβ5/2

]

Λ·±
4,τ =

⟨
Ψ4, vyΥ

·±
τ

⟩
= µ

p

 − C±
2 ρ

32
√
πβ5/2

A±
2 uxρ

8β2

A±
2 uxρ

8β2 − (γ−3)C±
2 ρ

32
√
πβ5/2


Λ·±

4,q =
⟨
Ψ4, vyΥ

·±
q

⟩
= (γ−1)

γ
κ
pR

[
B∓

2 uxρ

8p
√
πβ5/2

(−B∓
2 uy

√
β(3+2ux2β(γ−1)−γ)+2A±

2

√
πγ)ρ

16
√
πβ3(γ−1)

]
where A±

1 = 1 ± Erf(ux
√
β), A±

2 = 1 ± Erf(uy
√
β), B±

1 = ±exp(−βu2x), B±
2 =

±exp(−βu2y) and
C±

1 = 4A±
1 ux

√
β
√
π(γ − 1) +B∓

1 (1− 2u2yβ(γ − 1)− 3γ)

C±
2 = 4A±

2 uy
√
β
√
π(γ − 1) +B∓

2 (1− 2u2xβ(γ − 1)− 3γ)
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D.2 Split macroscopic tensors, Λ±··
ij ,Λ·±·

ij and Λ··±
ij for 3D

D.2 Split macroscopic tensors, Λ±··
ij ,Λ

·±·
ij and Λ··±

ij

for 3D

D.2.1 X macroscopic tensors, Λ±··
ij

Λ+··
τ =

⟨
Ψ, vxΥ

+··
τ

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

ΨvxΥτdvxdvydvzdI

Λ−··
τ =

⟨
Ψ, vxΥ

−··
τ

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
ΨvxΥτdvxdvydvzdI

Λ+··
q =

⟨
Ψ, vxΥ

+··
q

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

ΨvxΥqdvxdvydvzdI

Λ−··
q =

⟨
Ψ, vxΥ

−··
q

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
ΨvxΥqdvxdvydvzdI

Λ±··
1,τ =

⟨
Ψ1, vxΥ

±··
τ

⟩
= µ

p


B∓

1 (−3+γ)ρ

8
√
πβ3/2 0 0

0
B∓

1 (−1+γ)ρ

8
√
πβ3/2 0

0 0
B∓

1 (−1+γ)ρ

8
√
πβ3/2


Λ±··

1,q =
⟨
Ψ1, vxΥ

±··
q

⟩
= (γ−1)

γ
κ
pR

[
− B∓

1 uxρ

4
√
πβ3/2 , 0, 0

]

Λ±··
2,τ =

⟨
Ψ2, vxΥ

±··
τ

⟩
= µ

p


−A±

1 (−3+γ)ρ

8β2 0 0

0 −A±
1 (−1+γ)ρ

8β2 0

0 0 −A±
1 (−1+γ)ρ

8β2


Λ±··

2,q =
⟨
Ψ2, vxΥ

±··
q

⟩
= (γ−1)

γ
κ
pR

[
B∓

1 ρ

4
√
πβ5/2 , 0, 0

]

Λ±··
3,τ =

⟨
Ψ3, vxΥ

±··
τ

⟩
= µ

p


B∓

1 uy(−3+γ)ρ

8
√
πβ3/2

A±
1 ρ

8β2 0
A±

1 ρ

8β2

B∓
1 uy(−1+γ)ρ

8
√
πβ3/2 0

0 0
B∓

1 uy(−1+γ)ρ

8
√
πβ3/2


Λ±··

3,q =
⟨
Ψ3, vxΥ

±··
q

⟩
= (γ−1)

γ
κ
pR

[
−B∓

1 uxuyρ

4
√
πβ3/2 ,

B∓
1 ρ

8
√
πβ5/2 , 0

]
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Λ±··
4,τ =

⟨
Ψ4, vxΥ

±··
τ

⟩
= µ

p


B∓

1 uz(−3+γ)ρ

8
√
πβ3/2 0

A±
1 ρ

8β2

0
B∓

1 uz(−1+γ)ρ

8
√
πβ3/2 0

A±
1 ρ

8β2 0
B∓

1 uz(−1+γ)ρ

8
√
πβ3/2


Λ±··

4,q =
⟨
Ψ4, vxΥ

±··
q

⟩
= (γ−1)

γ
κ
pR

[
−B∓

1 uxuzρ

4
√
πβ3/2 , 0,

B∓
1 ρ

8
√
πβ5/2

]

Λ±··
5,τ =

⟨
Ψ5, vxΥ

±··
τ

⟩
= µ

p


− (−3+γ)C±

1 ρ

32
√
πβ5/2(−1+γ)

A±
1 uyρ

8β2

A±
1 uzρ

8β2

A±
1 uyρ

8β2 − C±
1 ρ

32
√
πβ5/2 0

A±
1 uzρ

8β2 0 − C±
1 ρ

32
√
πβ5/2



Λ±··
5,q =

⟨
Ψ5, vxΥ

±··
q

⟩
= (γ−1)

γ
κ
pR

[
−ρ(B∓

1 ux
√
β(3+byz−γ)+2

√
πγA±

1 )

16
√
πβ3(−1+γ)

,
B∓

1 uyρ

8
√
πβ5/2 ,

B∓
1 uzρ

8
√
πβ5/2

]

D.2.2 Y Split macroscopic tensors, Λ·±·
ij

Λ·+·
τ =

⟨
Ψ, vyΥ

·+·
τ

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
ΨvyΥτdvxdvydvzdI

Λ·−·
τ =

⟨
Ψ, vyΥ

·−·
τ

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ 0

−∞

∫ +∞

−∞
ΨvyΥτdvxdvydvzdI

Λ·+·
q =

⟨
Ψ, vyΥ

·+·
q

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
ΨvyΥqdvxdvydvzdI

Λ·−·
τ =

⟨
Ψ, vyΥ

·−·
q

⟩
≡
∫ +∞

0

∫ +∞

−∞

∫ 0

−∞

∫ +∞

−∞
ΨvyΥqdvxdvydvzdI
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Λ·±·
1,τ =

⟨
Ψ1, vyΥ

·±·
τ

⟩
= µ

p


B∓

2 (−1+γ)ρ

8
√
πβ3/2 0 0

0
B∓

2 (−3+γ)ρ

8
√
πβ3/2 0

0 0
B∓

2 (−1+γ)ρ

8
√
πβ3/2


Λ·±·

1,q =
⟨
Ψ1, vyΥ

·±·
q

⟩
= (γ−1)

γ
κ
pR

[
0,− B∓

2 uyρ

4
√
πβ3/2 , 0

]

Λ·±·
2,τ =

⟨
Ψ2, vyΥ

·±·
τ

⟩
= µ

p


B∓

2 ux(−1+γ)ρ

8
√
πβ3/2

A±
2 ρ

8β2 0
A±

2 ρ

8β2

B∓
2 ux(−3+γ)ρ

8
√
πβ3/2 0

0 0
B∓

2 ux(−1+γ)ρ

8
√
πβ3/2


Λ·±·

2,q =
⟨
Ψ2, vyΥ

·±·
q

⟩
= (γ−1)

γ
κ
pR

[
B∓

2 ρ

8
√
πβ5/2 ,−

B∓
2 uxuyρ

4
√
πβ3/2 , 0

]

Λ·±·
3,τ =

⟨
Ψ3, vyΥ

·±·
τ

⟩
= µ

p


−A±

2 (−1+γ)ρ

8β2 0 0

0 −A±
2 (−3+γ)ρ

8β2 0

0 0 −A±
2 (−1+γ)ρ

8β2


Λ·±·

3,q =
⟨
Ψ3, vyΥ

·±·
q

⟩
= (γ−1)

γ
κ
pR

[
0,

B∓
2 ρ

4
√
πβ5/2 , 0

]

Λ·±·
4,τ =

⟨
Ψ4, vyΥ

·±·
τ

⟩
= µ

p


B∓

2 uz(−1+γ)ρ

8
√
πβ3/2 0 0

0
B∓

2 uz(−3+γ)ρ

8
√
πβ3/2

A±
2 ρ

8β2

0
A±

2 ρ

8β2

B∓
2 uz(−1+γ)ρ

8
√
πβ3/2


Λ·±·

4,q =
⟨
Ψ4, vyΥ

·±·
q

⟩
= (γ−1)

γ
κ
pR

[
0,−B∓

2 uyuzρ

4
√
πβ3/2 ,

B∓
2 ρ

8
√
πβ5/2

]

Λ·±·
5,τ =

⟨
Ψ5, vyΥ

·±·
τ

⟩
= µ

p


− C±

2 ρ

32
√
πβ5/2

A±
2 uxρ

8β2 0
A±

2 uxρ

8β2 − (−3+γ)C±
2 ρ

32
√
πβ5/2(−1+γ)

A±
2 uzρ

8β2

0
A±

2 uzρ

8β2 − C±
2 ρ

32
√
πβ5/2



Λ·±·
5,q =

⟨
Ψ5, vyΥ

·±·
q

⟩
= (γ−1)

γ
κ
pR

[
B∓

2 uxρ

8
√
πβ5/2 ,−

ρ(B∓
2 uy

√
β(3+bxz−γ)+2

√
πγA±

2 )

16
√
πβ3(−1+γ)

,
B∓

2 uzρ

8
√
πβ5/2

]
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D.2.3 Z Split macroscopic tensors, Λ··±
ij

Λ··+
τ =

⟨
Ψ, vzΥ

··+
τ

⟩
≡
∫ +∞

0

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞
ΨvyΥτdvxdvydvzdI

Λ··−
τ =

⟨
Ψ, vzΥ

··−
τ

⟩
≡
∫ +∞

0

∫ 0

−∞

∫ +∞

−∞

∫ +∞

−∞
ΨvyΥτdvxdvydvzdI

Λ··+
q =

⟨
Ψ, vzΥ

··+
q

⟩
≡
∫ +∞

0

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞
ΨvyΥqdvxdvydvzdI

Λ··−
q =

⟨
Ψ, vzΥ

··−
q

⟩
≡
∫ +∞

0

∫ 0

−∞

∫ +∞

−∞

∫ +∞

−∞
ΨvyΥqdvxdvydvzdI

Λ··±
1,τ =

⟨
Ψ1, vzΥ

··±
τ

⟩
= µ

p


B∓

3 (−1+γ)ρ

8
√
πβ3/2 0 0

0
B∓

3 (−1+γ)ρ

8
√
πβ3/2 0

0 0
B∓

3 (−3+γ)ρ

8
√
πβ3/2


Λ··±

1,q =
⟨
Ψ1, vzΥ

··±
q

⟩
= (γ−1)

γ
κ
pR

[
0, 0,− B∓

3 uzρ

4
√
πβ3/2

]

Λ··±
2,τ =

⟨
Ψ2, vzΥ

··±
τ

⟩
= µ

p


B∓

3 ux(−1+γ)ρ

8
√
πβ3/2 0

A±
3 ρ

8β2

0
B∓

3 ux(−1+γ)ρ

8
√
πβ3/2 0

A±
3 ρ

8β2 0
B∓

3 ux(−3+γ)ρ

8
√
πβ3/2


Λ··±

2,q =
⟨
Ψ2, vzΥ

··±
q

⟩
= (γ−1)

γ
κ
pR

[
B∓

3 ρ

8
√
πβ5/2 , 0,−

B∓
3 uxuzρ

4
√
πβ3/2

]

Λ··±
3,τ =

⟨
Ψ3, vzΥ

··±
τ

⟩
= µ

p


B∓

3 uy(−1+γ)ρ

8
√
πβ3/2 0 0

0
B∓

3 uy(−1+γ)ρ

8
√
πβ3/2

A±
3 ρ

8β2

0
A±

3 ρ

8β2

B∓
3 uy(−3+γ)ρ

8
√
πβ3/2


Λ··±

3,q =
⟨
Ψ3, vzΥ

··±
q

⟩
= (γ−1)

γ
κ
pR

[
0,

B∓
2 ρ

8
√
πβ5/2 ,−

B∓
2 uyuzρ

4
√
πβ3/2

]

Λ··±
4,τ =

⟨
Ψ4, vzΥ

··±
τ

⟩
= µ

p


−A±

3 (−1+γ)ρ

8β2 0 0

0 −A±
3 (−1+γ)ρ

8β2 0

0 0 −A±
3 (−3+γ)ρ

8β2
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Λ··±
4,q =

⟨
Ψ4, vzΥ

··±
q

⟩
= (γ−1)

γ
κ
pR

[
0, 0,

B∓
3 ρ

4
√
πβ5/2

]

Λ··±
5,τ =

⟨
Ψ5, vzΥ

··±
τ

⟩
= µ

p


− C±

3 ρ

32
√
πβ5/2 0

A±
3 uxρ

8β2

0 − C±
3 ρ

32
√
πβ5/2

uyρA
±
3

8β2

A±
3 uxρ

8β2

uyρA
±
3

8β2 − C±
3 (−3+γ)ρ

32
√
πβ5/2(−1+γ)



Λ··±
5,q =

⟨
Ψ5, vzΥ

··±
q

⟩
= (γ−1)

γ
κ
pR

[
B∓

3 uxρ

8
√
πβ5/2 ,

B∓
3 uyρ

8
√
πβ5/2 ,−

ρ(B∓
3 uz

√
β(3+bxy−γ)+2

√
πγA±

3 )

16
√
πβ3(−1+γ)

]

where

byz = 2(u2y + u2z)β(−1 + γ)

C±
1 = 4A±

1

√
πux

√
β(−1 + γ) + B∓

1 (1− 2byz − 3γ)

bxz = 2(u2x + u2z)β(−1 + γ)

C±
2 = 4A±

2

√
πuy

√
β(−1 + γ) +B∓

2 (1− 2bxz − 3γ)

bxy = 2(u2x + u2y)β(−1 + γ)

C±
3 = 4A±

3

√
πuz

√
β(−1 + γ) + B∓

3 (1− 2bxy − 3γ)

D.3 KFVS Split Fluxes

The inviscid part of the flux component, GX±
I for 2D is defined as

GX+
I =

⟨
Ψ, vxf

+·
0

⟩
=

∫ +∞

0

∫ +∞

−∞

∫ +∞

0

Ψvxf0dvxdvydI

GX−
I =

⟨
Ψ, vxf

−·
0

⟩
=

∫ +∞

0

∫ +∞

−∞

∫ 0

−∞
Ψvxf0dvxdvydI

The expression of inviscid flux GY ±
I for 2D is given as

GY +
I =

⟨
Ψ, vyf

·+
0

⟩
=

∫ +∞

0

∫ +∞

0

∫ +∞

−∞
Ψvyf0dvxdvydI

GY −
I =

⟨
Ψ, vyf

·−
0

⟩
=

∫ +∞

0

∫ 0

−∞

∫ +∞

−∞
Ψvyf0dvxdvydI

The viscous part of the flux component, GX±
V and GY ±

V are defined as
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GX±
V = −

∑
j Λ

±·
j ⊙Xj = −(Λ±·

τ :Xτ +Λ±·
q ·Xq)

GY ±
V = −

∑
j Λ

·±
j ⊙Xj = −(Λ·±

τ :Xτ +Λ·±
q ·Xq)

Conjugate thermodynamic forces, Xτ and Xq are

Xτ ≡

[
2β ∂ux

∂x
β(∂ux

∂y
+ ∂uy

∂x
)

β(∂ux
∂y

+ ∂uy
∂x

) 2β ∂uy
∂y

]

Xq ≡
[
−2Rβ2 ∂T

∂x
,−2Rβ2 ∂T

∂y

]
The inviscid part of the split flux component, GX±

I GY
±
I and GZ±

I are evalu-

ated as

GX+
I =

⟨
Ψ, vxf

+··
0

⟩
=

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

Ψvxf0dvxdvydvzdI

GX−
I =

⟨
Ψ, vxf

−··
0

⟩
=

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞

∫ 0

−∞
Ψvxf0dvxdvydvzdI

GY +
I =

⟨
Ψ, vyf

·+·
0

⟩
=

∫ +∞

0

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
Ψvyf0dvxdvydvzdI

GY −
I =

⟨
Ψ, vyf

·−·
0

⟩
=

∫ +∞

0

∫ +∞

−∞

∫ 0

−∞

∫ +∞

−∞
Ψvyf0dvxdvydvzdI

GZ+
I =

⟨
Ψ, vzf

··+
0

⟩
=

∫ +∞

0

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞
Ψvzf0dvxdvydvzdI

GZ−
I =

⟨
Ψ, vzf

··−
0

⟩
=

∫ +∞

0

∫ 0

−∞

∫ +∞

−∞

∫ +∞

−∞
Ψvzf0dvxdvydvzdI

The viscous part of the flux component, GX±
V , GY

±
V and GZ±

V are defined as

GX±
V = −

∑
j Λ

±··
j ⊙Xj = −(Λ±··

τ :Xτ +Λ±··
q ·Xq)

GY ±
V = −

∑
j Λ

·±·
j ⊙Xj = −(Λ·±·

τ :Xτ +Λ·±·
q ·Xq)

GZ±
V = −

∑
j Λ

··±
j ⊙Xj = −(Λ··±

τ :Xτ +Λ··±
q ·Xq)

The thermodynamic force associated with shear stress tensor

Xτ ≡ β

 2∂ux
∂x

(∂ux
∂y

+ ∂uy
∂x

) (∂ux
∂z

+ ∂uz
∂x

)

(∂ux
∂y

+ ∂uy
∂x

) 2∂uy
∂y

(∂uy
∂y

+ ∂uy
∂z

)

(∂ux
∂z

+ ∂uz
∂x

) (∂uy
∂y

+ ∂uy
∂z

) 2∂uy
∂z


The thermodynamic force associated with heat vector is

Xq ≡ −2Rβ2
[

∂T
∂x

∂T
∂y

∂T
∂z

]
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D.3.1 Expressions for the 2-D KFVS Split Fluxes

The x-component of the inviscid and viscous split fluxes in 2-D are given by

GXI(1)
± = ρ

2
√
β
(
B±

1√
π
+ sxA

±
1 )

GXV (1)
± = − ρ

4p
√
β

B±
1√
π
(2
√
βηqxsx + τxx)

GXI(2)
± = ρ

2β
(
B±

1√
π
sx +

(1+2s2x)
2

A±
1 )

GXV (2)
± = ρ

4pβ
(
B±

1√
π
2
√
βηqx − A±

1 τxx)

GXI(3)
± = ρ

2β
sy(

B±
1√
π
+ sxA

±
1 )

GXV (3)
± = ρ

4pβ
(
B±

1√
π
(
√
βη(qy − 2qxsxsy)− syτxx)− A±

1 τxy)

GXI(4)
± = ρ

8β3/2 (
B±

1√
π
(1+γ+ds)
(−1+γ)

+ sx
(2γ+ds)
(−1+γ)

A±
1 )

GXV (4)
± = ρ

16pβ3/2

(
B±

1√
π
(4
√
βηqysy + 2

√
βqxsx

(−3+γ−dy)
γ

+ (1−3γ−dy)
−1+γ

τxx)

+4(
√
βqx − sxτxx − syτxy)A

±
1

)

The y-component of the inviscid and viscous split fluxes in 2-D are given by

GYI(1)
± = ρ

2
√
β
(
B±

2√
π
+ syA

±
2 )

GYV (1)
± = − ρ

4p
√
β

B±
2√
π
(2
√
βηqysy + τyy)

GYI(2)
± = ρ

2β
sx(

B±
2√
π
+ syA

±
2 )

GYV (2)
± = ρ

4pβ
(
B±

2√
π
(
√
βη(qx − 2qysxsy)− sxτyy)− A±

2 τxy)

GYI(3)
± = ρ

2β
(
B±

2√
π
sy +

(1+2s2y)

2
A±

2 )

GYV (3)
± = ρ

4pβ
(
B±

2√
π
2
√
βηqy − A±

2 τyy)

GYI(4)
± = ρ

8β3/2 (
B±

2√
π
(1+γ+ds)
(−1+γ)

+ sy
(2γ+ds)
(−1+γ)

A±
2 )

GYV (4)
± = ρ

16pβ3/2

(
B±

2√
π
(4
√
βηqxsx + 2

√
βqysy

(−3+γ−dx)
γ

+ (1−3γ−dx)
−1+γ

τyy)

+4(
√
βqy − sxτxy − syτyy)A

±
2

)
where

sx =
√
βux

sy =
√
βuy

dx = 2(γ − 1)s2x
dy = 2(γ − 1)s2y
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ds = 2(γ − 1)(s2x + s2y)

η = (γ − 1)/γ

B±
1 = ±Exp[−s2x]

B±
2 = ±Exp[−s2y]

A±
1 = 1± Erf [sx]

A±
2 = 1± Erf [sy]

D.3.2 Expressions for the 2-D KFVS Wall Split Fluxes

The x-component of the wall split fluxes in 2-D are given by

GXI(1)
±− = ρ

4
√
β
A−

2

(
B±

1√
π
+
√
βuxA

±
1

)

GXV (1)
±− = ρ

8p
√
β


B±

1√
π

(
−2

√
β
B±

2√
π
uy(2βηqyuy + τyy)

−(2βηqxux + τxx)A
−
2

)

+2
B±

2√
π

(
βηqyux(1− 2βu2y) + τxy

+βuy(ηqx − uxτyy)

)
A±

1



GXI(2)
±− = ρ

8β
A−

2

(
B±

1√
π
2
√
βux + (1 + 2βu2x)A

±
1

)

GXV (2)
±− = ρ

8pβ


2
B±

1√
π

(
B±

2√
π
(βηqyux(1− 2βu2y) + 2τxy + βuy(2ηqx − uxτyy))

+
√
βηqxA

−
2

)

+

 −
√
β
B±

2√
π

(
ηqy(1 + 2β(u2y + u2x(−1 + 2βu2y)))

−4ux(βηqxuy + τxy) + (1 + 2βu2x)uyτyy

)
−τxxA−

2

A±
1



GXI(3)
±− = ρ

4β

(
B2√
π
−

√
βuyA

−
2

)(
−B±

1√
π
−
√
βuxA

±
1

)

GXV (3)
±− = ρ

8pβ

 B±
1√
π

(
B±

2√
π
(2βη(qxux + qyuy) + τxx + τyy)

+
√
β(ηqy − uy(2βηqxux + τxx))A

−
2

)
−
(√

β
B±

2√
π
(ηqx − ux(2βηqyuy + τyy)) + τxyA

−
2

)
A±

1
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GXI(4)
±− = ρ

16β3/2

 B±
1√
π

(
−2

√
βB2uy√
π

+
(1+du+γ)A−

2

−1+γ

)
+
(
−2βB2uxuy√

π
+

√
β(du+2γ)uxA

−
2

−1+γ

)
A±

1



GXV (4)
±− = ρ

32pβ3/2



B±
1√
π


2
√
β
B±

2√
π


qy(−4γ+dx+2β(−2−dx)u2y)

γ

+(uy(8βηqxux + τxx) + 6uxτxy)

− (2+dx)uyτyy
−1+γ


+

(
4βηqyuy +

2βqxux(−3+γ−dy)
γ

+ (1−3γ−dy)τxx
−1+γ

)
A−

2



+2

 −B±
2√
π

 −βqx(1+γ+3dx)uy
γ

+
βqyux(−1+3γ−dx+(2β(1+γ)+2βdx)u2y)

γ

+ (1−3γ−3dx)τxy+βux(1+γ+dx)uyτyy
−1+γ


+2

√
β(qx − (uxτxx + uyτxy))A

−
2

A±
1


where

dx = 2β(γ − 1)u2x
dy = 2β(γ − 1)u2y
du = 2u2β(γ − 1)

η = (γ − 1)/γ

D.3.3 Expressions for the 3-D KFVS Split Fluxes

The x-component of the inviscid and viscous split fluxes in 3-D are given by

GXI(1)
± = ρ

2
√
β
(
B±

1√
π
+ sxA

±
1 )

GXV (1)
± = − ρ

4p
√
β

B±
1√
π
(2
√
βηqxsx + τxx)

GXI(2)
± = ρ

2β
(
B±

1√
π
sx +

(1+2s2x)
2

A±
1 )

GXV (2)
± = − ρ

4pβ
(−2

√
βηqx

B±
1√
π
+ τxxA

±
1 )

GXI(3)
± = ρ

2β
(
B±

1√
π
sy + sxsyA

±
1 )

GXV (3)
± = ρ

4pβ
(
B±

1√
π
(
√
βηqy − sy(2

√
βηqxsx + τxx))− τxyA

±
1 )

GXI(4)
± = ρ

2β
(
B±

1√
π
sz + sxszA

±
1 )

GXV (4)
±4 = ρ

4pβ
(
B±

1√
π
(
√
βηqz − sz(2

√
βηqxsx + τxx))− τxzA

±
1 )
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GXI(5)
± = ρ

8β3/2 (
(1+γ+du)
(−1+γ)

B±
1√
π
+ (2γ+du)

(−1+γ)
sxA

±
1 )

GXV (5)
±5 = ρ

16pβ3/2

 B±
1√
π

(
4(
√
βηqysy +

√
βηqzsz)

−2
√
βηqxsx

(3−γ+dy+dz)
(−1+γ)

− (−1+3γ+dy+dz)
(−1+γ)

τxx

)
+4(

√
βqx − (sxτxx + syτxy + szτxz))A

±
1



The y-component of the inviscid and viscous split fluxes in 3-D are given by

GYI(1)
± = ρ

2
√
β
(
B±

2√
π
+ syA

±
2 )

GYV (1)
± = − ρ

4p
√
β

B±
2√
π
(2
√
βηqysy + τyy)

GYI(2)
± = ρ

2β
(
B±

2√
π
sx + sxsyA

±
2 )

GYV (2)
± = − ρ

4pβ
(
√
β
B±

2√
π
(−ηqx + ux(2

√
βηqysy + τyy)) + τxyA

±
2 )

GYI(3)
± = ρ

2β
(
B±

2√
π
sy +

(1+2s2y)

2
A±

2 )

GYV (3)
± = ρ

4pβ
(2
√
βηqy

B±
2√
π
− τyyA

±
2 )

GYI(4)
± = ρ

2β
(
B±

2√
π
sz + szsyA

±
2 )

GYV (4)
± = − ρ

4pβ
(
B±

2√
π
(−

√
βηqz + sz(2

√
βηqysy + τyy)) + τyzA

±
2 )

GYI(5)
± = ρ

8β3/2 (
(1+γ+du)
(−1+γ)

B±
2√
π
+ (2γ+du)

(−1+γ)
syA

±
2 )

GYV (5)
± = ρ

16pβ3/2

 B±
2√
π

(
4(
√
βηqxsx +

√
βηqzsz)

−2
√
βηqysy

(3−γ+dx+dz)
(−1+γ)

− (−1+3γ+dx+dz)
(−1+γ)

τyy

)
+4(

√
βqy − (sxτxy + syτyy + szτyz))A

±
2



The z-component of the inviscid and viscous split fluxes in 3-D are given by

GZI(1)
± = ρ

2
√
β
(
B±

3√
π
+ szA

±
3 )

GZV (1)
± = − ρ

4p
√
β

B±
3√
π
(2
√
βηqzsz + τzz)

GZI(2)
± = ρ

2β
(
B±

3√
π
sx + sxszA

±
3 )

GZV (2)
± = − ρ

4pβ
(
B±

3√
π
(−

√
βηqx + sx(2

√
βηqzsz + τzz)) + τxzA

±
3 )

GZI(3)
± = ρ

2β
(
B±

3√
π
sy + syszA

±
3 )
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GZV (3)
± = − ρ

4pβ
(
B±

3√
π
(−

√
βηqy + sy(2

√
βηqzsz + τzz)) + τyzA

±
3 )

GZI(4)
± = ρ

2β
(
B±

3√
π
sz +

(1+2s2z)
2

A±
3 )

GZV (4)
± = ρ

4pβ
(2
√
βηqz

B±
3√
π
− τzzA

±
3 )

GZI(5)
± = ρ

8β3/2 (
(1+γ+du)
(−1+γ)

B±
3√
π
+ (2γ+du)

(−1+γ)
szA

±
3 )

GZV (5)
± = ρ

16pβ3/2

 B±
3√
π

(
4(
√
βηqxsx +

√
βηqysy)

−2
√
βηqzsz

(3−γ+dx+dy)
(−1+γ)

− (−1+3γ+dx+dy)
(−1+γ)

τzz

)
+4(

√
βqz − (sxτxz + syτyz + szτzz))A

±
3


where

η = (γ − 1)/γ

sx =
√
βux

sy =
√
βuy

sz =
√
βuz

u2 = u2x + u2y + u2z
ss =

√
βu

dyz = 2β(γ − 1)uyuz

dxz = 2β(γ − 1)uxuz

dx = 2β(γ − 1)u2x
dy = 2β(γ − 1)u2y
dz = 2β(γ − 1)u2z
du = 2β(γ − 1)u2

B±
1 = ±Exp[−s2x]

B±
2 = ±Exp[−s2y]

B±
3 = ±Exp[−s2z]

A±
1 = 1± Erf [sx]

A±
2 = 1± Erf [sy]

A±
3 = 1± Erf [sz]

D.3.4 Expressions for the 3-D KFVS Wall Split Fluxes

The x-component of the inviscid and viscous wall split fluxes in 3-D are given by

GX±·−
I (1) = ρ

4
√
β
A−

3

(
B±

1√
π
+ ux

√
βA±

1

)
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GX±·−
V (1) = ρ

8p
√
β


−B±

1√
π

(
2
√
β B3√

π
uz(2βηqzuz + τzz)

+(2βηqxux + τxx)A
−
3

)

+2 B3√
π

(
τxz + β

(
ηqzux + ηqxuz

−2βηqzuxu
2
z − uxuzτzz

))
A±

1



GX±·−
I (2) = ρ

8β
A−

3

(
B±

1√
π
2
√
βux + A±

1 + 2βu2xA
±
1

)

GX±·−
V (2) = ρ

8pβ



B±
1√
π

(
2 B3√

π
(2τxz + β(ηqzux + 2ηqxuz − 2βηqzuxu

2
z − uxuzτzz))

+2
√
βηqxA

−
3

)

+


√
β B3√

π

 η

(
4βqxuxuz

+qz(−1 + 2βu2x − 2β(1 + 2βu2x)u
2
z)

)
+4uxτxz − (1 + 2βu2x)uzτzz


−τxxA−

3

A±
1



GX±·−
I (3) = ρ

4
√
β
uyA

−
3

(
B±

1√
π
+ ux

√
βA±

1

)

GX±·−
V (3) = ρ

8pβ



B±
1√
π

(
2 B3√

π
(τyz + βuz(ηqy − 2βηqzuyuz − uyτzz))

+
√
β(ηqy − uy(2βηqxux + τxx))A

−
3

)

+


2
√
β B3√

π


uyτxz + uxτyz

+β

 η

(
qzuxuy + qyuxuz

+qxuyuz − 2βqzuxuyu
2
z

)
−uxuyuzτzz




−τxyA−
3

A±
1



GX±·−
I (4) = ρ

4β

(
− B3√

π
+
√
βuzA

−
3

)(
B±

1√
π
+
√
βuxA

±
1

)

GX±·−
V (4) = ρ

8pβ

 B±
1√
π

(
B3√
π
(2βη(qxux + qzuz) + τxx + τzz)

+
√
β(ηqz − uz(2βηqxux + τxx))A

−
3

)
+
(√

β B3√
π
(−ηqx + 2βηqzuxuz + uxτzz)− τxzA

−
3

)
A±

1
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GX±·−
I (5) = ρ

16β3/2


( (1+γ)
(−1+γ)

+ 2u2β)
B±

1√
π
A−

3

+2
√
β(u2β + γ

(−1+γ)
)uxA

−
3 A

±
1

−2
√
β B3√

π
uz(

B±
1√
π
+
√
βuxA

±
1 )



GX±·−
V (5) = ρ

32pβ3/2



B±
1√
π


−2

√
β B3√

π

 −8βηqxuxuz +
qz(4γ−dx+2β(2+dx+dy)u2z)

γ

−uz(4β(−1+γ)qyuy
γ

+ τxx)

−6uxτxz − 4uyτyz +
(2+dx+dy)uzτzz

−1+γ


−

(
−4β(−1+γ)(qyuy+qzuz)

γ
+ 2βqxux(3−γ+dy+dz)

γ

+ (−1+3γ+dy+dz)τxx
−1+γ

)
A−

3



+2


− B3√

π


−4β2ηqyuxuyuz − βqx(1+γ+3dx+dy)uz

γ

+βqzux(−1+3γ−dx−dy+2β(1+γ+dx+dy)u2z)
γ

+ (1−3γ−3dx−dy)τxz
γ−1

+βux(−4(−1+γ)uyτyz+(1+γ+dx+dy)uzτzz)

γ−1


+2

√
β(qx − (uxτxx + uyτxy + uzτxz))A

−
3

A±
1



The y-component of the inviscid and viscous wall split fluxes in 3-D are given by

GY ·±−
I (1) = ρ

4
√
β
A−

3 (
B±

2√
π
+ uy

√
βA±

2 )

GY ·±−
V (1) = ρ

8p
√
β


−B±

2√
π

(
2
√
β B3√

π
uz(2βηqzuz + τzz)

+(2βηqyuy + τyy)A
−
3

)

+2 B3√
π

(
τyz + β

(
ηqzuy + ηqyuz

−2βηqzuyu
2
z − uyuzτzz

) )
A±

2



GY ·±−
I (2) = ρ

4
√
β
uxA

−
3 (

B±
2√
π
+ uy

√
βA±

2 )

GY ·±−
V (2) = ρ

8pβ



B±
2√
π

(
2 B3√

π
(τxz + βuz(η(qx − 2βqzuxuz)− uxτzz))

+
√
β(η(qx − 2βqyuxuy)− uxτyy)A

−
3

)

+


−2

√
β B3√

π


−uyτxz − uxτyz

+β

 −η

(
(qyux + qxuy)uz

+qzuxuy(1− 2βu2z)

)
+uxuyuzτzz




−τxyA−
3

A±
2
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GY ·±−
I (3) = ρ

8β
A−

3 (
B±

2√
π
2
√
βuy + (1 + 2βu2y)A

±
2 )

GY ·±−
V (3) = ρ

8pβ


2
B±

2√
π

(
B3√
π
(βηqzuy(1− 2βu2z) + 2τyz + βuz(2ηqy − uyτzz))

+
√
βηqyA

−
3

)

−

 √
β B3√

π

(
ηqz(1 + 2β(u2z + u2y(−1 + 2βu2z)))

−4uy(βηqyuz + τyz) + (1 + 2βu2y)uzτzz

)
+τyyA

−
3

A±
2



GY ·±−
I (4) = ρ

4β
(− B3√

π
+
√
βuzA

−
3 )(

B±
2√
π
+
√
βuyA

±
2 )

GY ·±−
V (4) = ρ

8pβ

 B±
2√
π

(
B3√
π
(2βη(qyuy + qzuz) + τyy + τzz)

+
√
β(ηqz − uz(2βηqyuy + τyy))A

−
3

)
+(

√
β B3√

π
(−ηqy + uy(2βηqzuz + τzz))− τyzA

−
3 )A

±
2



GY ·±−
I (5) = ρ

16β3/2


( (1+γ)
(−1+γ)

+ 2u2β)
B±

2√
π
A−

3

+2
√
β(u2β + γ

(−1+γ)
)uyA

−
3 A

±
2

−2
√
β B3√

π
uz(

B±
2√
π
+
√
βuyA

±
2 )



GY ·±−
V (5) = ρ

32pβ3/2



B±
2√
π



−2
√
β B3√

π


−4βηqxuxuz − 8βηqyuyuz

+ qz(−dy+4γ+2(2+dx+dy)βu2z)
γ

−4uxτxz − uzτyy − 6uyτyz

+ (2+dx+dy)uzτzz
−1+γ


+


4β(−1+γ)(qxux+qzuz)

γ

+2β(−3−dx−dz+γ)qyuy
γ

− (−1+dx+dz+3γ)τyy
−1+γ

A−
3



+2


B3√
π


β(1+dx+3dy+γ)qyuz

γ
+ 4β2(−1+γ)qxuxuyuz

γ

+βqzuy(1+dx+dy−3γ−2β(1+dx+dy+γ)u2z)

γ

+4βuxuyτxz +
(−1+dx+3dy+3γ)τyz

−1+γ

−β(1+dx+dy+γ)uyuzτzz
−1+γ


+2

√
β(qy − uxτxy − uyτyy − uzτyz)A

−
3

A±
2
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where

η = (γ − 1)/γ

sx =
√
βux

sy =
√
βuy

sz =
√
βuz

dx = 2β(γ − 1)u2x
dy = 2β(γ − 1)u2y
dz = 2β(γ − 1)u2z

B±
1 = ±Exp[−s2x]

B±
2 = ±Exp[−s2y]

B±
3 = ±Exp[−s2z]

B3 = Exp[−s2z]
A±

1 = 1± Erf [sx]

A±
2 = 1± Erf [sy]

A±
3 = 1± Erf [sz]

D.4 Axi-symmetric polar KFVS Split Fluxes

Kinetic upwind 3-D axi-symmetric formulation of Navier-Stokes equations is given

as

∂U

∂t
+
∂GZ±

∂z
+

1

r

∂rGR±

∂r
+ S = 0

where GZ± and GR± represents axial and radial split fluxes. This formula-

tion is 3-D axi-symmetric as azimuthal velocity component uθ is updated, the

state update vector U is given as

U = [ρ, ρuz, ρur, ρuθ, ρE]T

where E = RT/(γ − 1)+1
2
(u2z + u2r + u2θ), uz, ur and uθ are the z, r and θ

components of macroscopic fluid velocity and γ is the specific heat ratio. Un-

split source term S is expressed as
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S =

[
0, 0,−p

r
− ρu2θ

r
− τθθ

r
,
ρuruθ
r

+
τrθ
r
, 0

]T
where p is the pressure, τθθ and τrθ are the components of shear stress tensor.

The z-component of the inviscid and viscous split fluxes in 3-D axi-symmetric

polar form are given by

GZI(1)
± = ρ

2
√
β
(B

±
z√
π
+ szA

±
z )

GZV (1)
± = − ρ

4p
√
β
B±

z√
π
(2
√
βηqzsz + τzz)

GZI(2)
± = ρ

2β
(B

±
z√
π
sz +

(1+2s2z)
2

A±
z )

GZV (2)
± = − ρ

4pβ
(−2

√
βηqz

B±
z√
π
+ τzzA

±
z )

GZI(3)
± = ρ

2β
(B

±
z√
π
sr + szsrA

±
z )

GZV (3)
± = ρ

4pβ
(B

±
z√
π
(
√
βηqr − sr(2

√
βηqzsz + τzz))− τzrA

±
z )

GZI(4)
± = ρ

2β
(B

±
z√
π
sθ + szsθA

±
z )

GZV (4)
± = ρ

4pβ
(B

±
z√
π
(−sθ(2

√
βηqzsz + τzz))− τzθA

±
z )

GZI(5)
± = ρ

8β3/2 (
(1+γ+du)
(−1+γ)

B±
z√
π
+ (2γ+du)

(−1+γ)
szA

±
z )

GZV (5)
± = ρ

16pβ3/2

 B±
z√
π

(
4(
√
βηqrsr)

−2
√
βηqzsz

(3−γ+dr+dθ)
(−1+γ)

− (−1+3γ+dr+dθ)
(−1+γ)

τzz

)
+4(

√
βqz − (szτzz + srτzr + sθτzθ))A

±
z



The r-component of the inviscid and viscous split fluxes in 3-D axi-symmetric

polar form are given by

GRI(1)
± = ρ

2
√
β
(B

±
r√
π
+ srA

±
r )

GRV (1)
± = − ρ

4p
√
β
B±

r√
π
(2
√
βηqrsr + τrr)

GRI(2)
± = ρ

2β
(B

±
r√
π
sz + szsrA

±
r )

GRV (2)
± = − ρ

4pβ
(
√
βB

±
r√
π
(−ηqz + uz(2

√
βηqrsr + τrr)) + τzrA

±
r )

GRI(3)
± = ρ

2β
(B

±
r√
π
sr +

(1+2s2r)
2

A±
r )

GRV (3)
± = ρ

4pβ
(2
√
βηqr

B±
r√
π
− τrrA

±
r )
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GRI(4)
± = ρ

2β
(B

±
r√
π
sθ + sθsrA

±
r )

GRV (4)
± = − ρ

4pβ
(B

±
r√
π
(sθ(2

√
βηqrsr + τrr)) + τrθA

±
r )

GRI(5)
± = ρ

8β3/2 (
(1+γ+du)
(−1+γ)

B±
2√
π
+ (2γ+du)

(−1+γ)
srA

±
r )

GRV (5)
± = ρ

16pβ3/2

 B±
r√
π

(
4(
√
βηqzsz)

−2
√
βηqrsr

(3−γ+dz+dθ)
(−1+γ)

− (−1+3γ+dz+dθ)
(−1+γ)

τrr

)
+4(

√
βqr − (szτzr + srτrr + sθτrθ))A

±
r


where

η = (γ − 1)/γ

sz =
√
βuz

sr =
√
βur

sθ =
√
βuθ

u2 = u2z + u2r + u2θ
dz = 2β(γ − 1)u2z
dr = 2β(γ − 1)u2r
dθ = 2β(γ − 1)u2θ
du = 2β(γ − 1)u2

B±
z = ±Exp[−s2z]

B±
r = ±Exp[−s2r]

A±
z = 1± Erf [sz]

A±
r = 1± Erf [sr]

τzz = 2µ
(
∂uz
∂z

)
+ (1− γ)µ∇ · u⃗

τrr = 2µ
(
∂ur
∂r

)
+ (1− γ)µ∇ · u⃗

τθθ = 2µ
(
ur
r

)
+ (1− γ)µ∇ · u⃗

τzr = τrz = µ
(
∂uz
∂r

+ ∂ur
∂z

)
τθz = τzθ = µ

(
∂uθ
∂z

)
τrθ = τθr = µ

(
r ∂(uθ/r)

∂r

)
∇ · u⃗ = 1

r
∂(rur)
∂r

+ ∂uz
∂z

qz = −κ∂T
∂z

qr = −κ∂T
∂r
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Appendix E

Experimental determination of

tangential momentum

accommodation coefficient

(TMAC)

Existing methods available in current literature use microchannels to evaluate

TMAC and assume pressure gradient to be constant along the test section [14, 85].

The tangential momentum accommodation coefficient (TMAC), σ can be deter-

mined by conducting a simple pressure drop experiment. Thus an investigation

is required to account for the effect of varying pressure gradient along the test-

section. Experiments were conducted for two different tubes : i) 0.25 inch OD of

inner diameter 0.475 cm and length 54 cm, and ii) 0.50 inch OD of inner diameter

1.205 cm and length 100.8 cm. This section presents methodology for determina-

tion of tangential momentum accommodation coefficient (TMAC) when pressure

gradient variation along the pipe is significant. Table E.1 and table E.2 gives the

flow and pressure experimental data for 0.25 OD and 0.50 OD pipe

Fig. E.1 and fig. E.2 depicts the flow and conductance variation with respect
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Table E.1: Mass flow rate versus inlet and outlet pressure experimental data for

0.25 inch OD pipe.

Mass flowrate (mbar liter/s) Inlet Pressure (mbar) Outlet Pressure (mbar)

4.543 10.49 6.77

3.786 9.46 6.01

3.596 9.16 5.80

3.407 8.90 5.60

3.218 8.58 5.38

3.028 8.30 5.18

2.839 8.01 4.98

2.650 7.70 4.76

2.460 7.40 4.55

2.271 7.07 4.32

2.082 6.73 4.10

1.892 6.39 3.87

1.703 6.04 3.63

1.514 5.66 3.38

1.325 5.26 3.12

1.135 4.84 2.85

0.946 4.38 2.56

0.757 3.88 2.24

0.567 3.31 1.89

0.378 2.66 1.50

0.189 1.85 1.01

388



Table E.2: Mass flow rate versus inlet and outlet pressure experimental data for

0.50 inch OD pipe.

Mass flowrate (mbar liter/s) Inlet Pressure (mbar) Outlet Pressure (mbar)

9.389 10.33 10.02

8.518 9.53 9.22

7.572 8.67 8.36

6.625 7.81 7.52

5.679 6.90 6.62

4.732 6.04 5.77

3.786 5.17 4.92

2.839 4.22 3.99

1.892 3.22 3.01

1.703 3.01 2.82

1.514 2.79 2.61

1.325 2.55 2.37

1.135 2.28 2.12

0.946 2.07 1.92

0.757 1.79 1.65

0.567 1.49 1.37

0.378 1.09 0.99

0.189 0.73 0.66
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Figure E.1: Experimental flow versus average pressure for 0.25 inch OD pipe.

to average pressure for 0.25 inch OD. Similarly fig. E.3 and fig. E.4 depicts the

flow and conductance variation with respect to average pressure for 0.50 inch OD

pipe.

E.0.1 Determination of tangential momentum accommo-

dation coefficient (TMAC)

Most of the methods which determine the tangential momentum accommodation

coefficient (TMAC) assume that pressure gradient ∂p
∂z

along the length of the

pipe is constant with a value ∆p
L
. The mass flow rate for a short pipe in terms of

average pressure and its gradient derived in the thesis is expressed as

M = −πa4

8µ
p̄dp̄
dz
(1 + fslip)

= πa4

8µ
p̄∆p
L
ϕ̄p (1 + fslip)

(E.1)

where

p̄∆p
L

= (pi+po
2

) (pi−po)
L

(E.2)

and ϕ̄p is

ϕ̄p =
(pi+po+2fslipp̄)

2

4(pi+fslipp̄)(po+fslipp̄)
(E.3)
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Figure E.2: Experimental conductance versus average pressure for 0.25 inch OD

pipe.
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Figure E.3: Experimental flow versus average pressure for 0.50 inch OD pipe.
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Figure E.4: Experimental conductance versus average pressure for 0.50 inch OD

pipe.
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Figure E.5: Ratio of the analytical mean pressure gradient ∂p
∂z

with respect to

pressure gradient ∆p
L

based on experimental data for 0.25 and 0.50 inch OD pipe.

Thus analytical derivations reveals that for pipes of smaller diameter the pressure

gradient varies linearly as compared to the larger diameter pipe. Fig. E.5 shows

the ratio of the analytical obtained mean pressure gradient ∂p
∂z

with respect to

pressure gradient ∆p
L
. The method of TMAC determination can either use graph-

ical methods like i) Method-I based on the ratio of mass flow rate with respect to

pressure drop plotted with respect to average pressure, or ii) Method-II based on

the ratio of mass flow rate with respect to product of pressure and pressure drop

plotted with respect to reciprocal of average pressure. Alternatively, Method-III

uses least error minimization between the experimental flow values and analytical

flow values to get the TMAC.

M
∆p

(8µL
πa4

) = p̄ϕ̄
(
1 + 8Kn(2−σ

σ
)
)

= p̄ϕ̄
(
1 + 8 µ

2ap̄

√
πRT
2

(2−σ
σ
)
)

= 4µ
a

√
πRT
2

(2−σ
σ
)ϕ̄+ ϕ̄p̄

(E.4)
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Table E.3: TMAC evaluation for 0.25 and 0.50 inch OD pipe.

Experiment Method-I Method-II Method-III

0.25 inch OD 0.550 0.675 0.641

0.50 inch OD 0.372 0.292 0.452

Method-II can be written as

M
p̄∆p

(8µL
πa4

) = ϕ̄
(
1 + 8Kn2−σ

σ

)
= ϕ̄

(
1 + 8 µ

2ap̄

√
πRT
2

(2−σ
σ
)
)

= ϕ̄+ 4µ
a

√
πRT
2

(2−σ
σ
)ϕ̄(1

p̄
)

(E.5)

In Method-I the factor on the right hand side M
∆p

(8µL
πa4

) when plotted with respect

to average pressure, p̄ will have y-intercept by slope ratio of

y−intercept
slope

= 4µ
a

√
πRT
2

(2−σ
σ
) (E.6)

Method-II is similar to method of Arkilic [13], the factor on the right hand

side M
p̄∆p

(8µL
πa4

) when plotted with respect to reciprocal of average pressure, 1
p̄
will

have slope by y-intercept ratio of

slope
y−intercept =

4µ
2a

√
πRT
2

(2−σ
σ
) (E.7)

Method-III uses least square error minimization of E with respect to TMAC,

σ where sum of square of error, E is expressed as

E =
∑

(Fexp − Fnum(σ))
2 (E.8)

where Fexp is the value of the experimental flow rate, and Fnum(σ) is the nu-

merically obtained value of the flow for a particular assumed value of TMAC,

σ.

Using Method-I as shown in Fig. E.6 and Fig. E.8 the TMAC, σ = 0.550 and

TMAC, σ = 0.3724 is obtained for 0.25 OD and 0.50 OD pipe. Using Method-II

as shown in Fig. E.7 and Fig. E.9 the TMAC, σ = 0.675 and TMAC, σ = 0.292

is obtained for 0.25 OD and 0.50 OD pipe. After least square error minimization
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) with respect to average pressure, p̄ for 0.25 inch OD
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Figure E.7: Plot of M
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for
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Figure E.8: Plot of M
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(8µL
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) with respect to average pressure, p̄ for 0.50 inch OD

pipe.
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Figure E.10: Theoretical flow and experimental flow versus average pressure for

0.25 inch OD pipe.
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Figure E.11: Theoretical conductance and experimental conductance versus av-

erage pressure for 0.25 inch OD pipe.
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Figure E.12: Theoretical flow and experimental flow versus average pressure for

0.50 inch OD pipe.
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Figure E.13: Theoretical conductance and experimental conductance versus av-

erage pressure for 0.50 inch OD pipe.
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Method-III gives the TMAC as σ = 0.641. Fig. E.10 show the comparison of the-

oretical and experimental flow and Fig. E.11 shows the comparison of theoretical

and experimental conductance for 0.25 OD pipe. Similarly, Method-III for 0.50

OD pipe gives the TMAC, σ = 0.452. Fig. E.12 show the comparison of theo-

retical and experimental flow and Fig. E.13 shows the comparison of theoretical

and experimental conductance for 0.50 OD pipe. Table E.3 gives the values of

TMAC evaluated using Method-I, Method-II and Method-III for 0.25 OD and

0.50 OD pipe.
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