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Abstract

The work in the thesis addresses the problem of identification of complex sys-
tems in presence of noise. Modeling complexities with wavelet basis improves
prediction capability and accuracy of the identified model. A novel technique
for estimating parameters of a strictly time varying model in wavelet domain
is proposed based on consistent output prediction as an alternative solution
to the classical least squares minimization problem. The work introduces and
justifies the use of spline biorthogonal wavelets as a modeling tool for sys-
tem identification. It suggests that weighted scalar summation of projections
in approximation space could be used for deriving consistent output predic-
tion in case model structure is built with spline biorthogonal wavelets. The
method of identification could be viewed as modeling with pre-filtered input
and output which renders the identified model minimum-memory (ideal case)
and insensitive to noise. Resulting parameter estimates are unbiased and
bounded. An iterative algorithm, alternately projecting the solution in time
and wavelet domain for minimization of local error in wavelet coefficients,
is proposed for output reconstruction. The algorithm is computationally ef-
ficient and exhibits excellent performance in cross validation. Stability and
uniqueness issues of reconstruction by alternate projection is studied. As
an extension of existing methods of reconstruction from sparse wavelet rep-
resentation, a new representation called wavelet maximum curvature point
representation is proposed. The algorithm ensures that the reconstructed
signal contains complete information for characterization. The technique is
validated by characterizing NDT signals. As a case study, the paper ad-
dresses the problem of modeling a complex process called the Liquid Zone
Control System (LZCS) in a large Pressurized Heavy Water Reactor based
on the evolution of input and output. In this work, an identification scheme
of a linear time invariant model of the LZCS is studied. Orthogonal as well
as biorthogonal wavelets are used for consistent output estimate of the LZCS
process. The technique is verified on the real experimental data obtained
from a full scale test setup. The concept of designing an admissible control,
constrained to be memory-less, with output wavelet states is introduced and
controllability of the open loop and closed loop system with output feedback
is studied. The theory of controller design with wavelet states is developed
in the work. The technique is demonstrated with simulation examples of
multiscale systems. Point kinetic model of a nuclear reactor is studied for
pole assignment by designing a wavelet state controller.
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Chapter I

Introduction

System identification, by perturbing a plant to excite its dynamic modes
is carried out for numerous reasons such as plant simulation, design of process
control, plant diagnostics etc. Moreover, identification from the experimental
data proves superior to analytical methods of modeling while retrofitting a
control design in an existing plant which has aged over time. The accuracy
of the control design depends largely on the model accuracy. Hence, it is
important to arrive at a plant model which is reasonably accurate and at the
same time, simple enough to be relevant to the design objective.

The classical regression model for estimating output y (t) of a Linear
Time varying (LTV) system is expressed in terms of parameter vector H(t)
and regression vector v(t)

ŷ(t) = vT (t)H(t) + ε(t) (1.1)

The model is linear in H(t) and in case the regression vector v(t) is made
up of past values of input and output, the model structure is called Auto-
Regressive with eXogenous inputs (ARX) model. Here, ε(t) is considered
to be iid Gaussian i.e. N (0, σ2) distributed additive noise at the output.
An important underlying assumption, for modeling a discrete time system
is that prior to sampling, continuous time input and output are pre-filtered
with an ideal, band limited filter and they can be perfectly reconstructed by
interpolating with orthogonal sinc functions. For some systems (for exam-
ple, multiple time scale systems with clusters of poles far apart) modeling
with complex sine or sinc basis necessitates very high frequency resolution
to discriminate closely spaced poles as well as very high time resolution for
modeling multi-scale pole clusters. As both frequency and time resolution
cannot be made arbitrarily high, we need to look for alternative basis. The
problem can be solved if the restriction of band limit of the pre-filter and
reconstruction filter is removed and identification could use many other ba-
sis functions [12, 24, 35, 69]. In recent time, identification of linear time
varying, partially linear and non-linear systems has attracted very active re-
search interest [12, 24, 25, 28, 35, 69, 89]. In most of these works, uses of basis
functions, other than classical sine or sinc function have been suggested as
underlying structures of the models. Wavelet basis functions [18, 84] among
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them are of particular interest in this work. The structure of the model, is
governed to a large extent, by the wavelets selected as basis. The identifica-
tion problem in the wavelet domain is usually re-formulated using orthogo-
nal wavelets as basis functions, while the model parameters are estimated by
minimizing errors in a Least Squares (LS) sense [12]. With orthogonal basis
functions, error minimization (in LS sense) in time and wavelet domain gives
the same solution. A constrained minimization problem is solved however, in
this work, projecting the solution onto biorthogonal wavelet basis functions.

Wavelet basis functions have excellent approximation property which is
very useful for signal/system modeling. In addition, efficient shrinkage as-
sociated with wavelets can render an identified model insensitive to noise.
The use of wavelets as basis functions brings with it several other advantages
to the modeling arena. Primary among them are their abilities to handle
non-stationary and non-linear systems. Wavelets are known to provide near
optimal non-linear estimates of signals. Moreover, higher-order systems in
the measurement space reduce to lower-order models in the projection space
because the correlation functions in wavelet domain decay faster than the
correlation functions of the original signal in time [75]. In addition, the
multiresolution approximation abilities of wavelet basis functions naturally
accommodate pre-filtering of data resulting an accurate model.

The specific motivation to this work originates from efforts to model a
complex system (possibly) consisting of nonlinearities and integrating effects.
Traditionally, a large class of non-linear systems is modeled as linear systems
with time-varying parameters. However, if non-linearities are accompanied
with high-order and integrating type effects, modeling in the classical input-
output description (regardless of time varying nature) require significantly
large number of parameters. Modeling of such effects in wavelet domain is
likely to greatly reduce number of model parameters.

Thus, the objective translates to building a consistent and parsimonious
LTV predictor of a non-linear system using wavelets as basis.

That a wavelet basis LTV model can capture complexities such as com-
ponent nonlinearity, integrating and multiple time scale behaviours very ef-
fectively in fewer parameters as shown in this thesis. This provides a strong
motivation for modeling and control design of complex systems, for exam-
ple a nuclear reactor, with wavelet basis LTV or a derived wavelet basis
Linear Time Invariant (LTI) model. This work has been extended to the
development of a method to efficiently isolate multiple time-scales in a linear
time-invariant system, a problem that has been of interest and challenge in
identification and control of nuclear reactors [77]. Multi-scale Principal Com-
ponent Analysis (MSPCA) combining PCA with wavelet analysis has been
suggested for modeling and monitoring multivariable statistical processes[2].
The property of wavelet basis to approximately decorrelate the autocorre-
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lated measurements makes it a good choice for modeling multi-scale systems.

For estimating LTI model parameters in LS sense, the basic assumption
is that the system is overdetermined i.e. there are more samples available
than number of parameters. A strict LTV model in general is underdeter-
mined because dynamic solution requires derivation of more than one system
parameters at each sample time instant. Hence, the parameter estimation
will always fall short of samples. Several approaches have been taken to ob-
tain determinable solution of the LTV parameter estimation problem. For
instance, modeling of LTV systems using wavelet basis has been addressed in
[24] where Least Mean Square (LMS) adaptive filtering algorithm is used for
identification. In [23] it is shown that a wavelet model is particularly suit-
able for adaptive identification of Linear Periodically Time Varying (LPTV)
systems. Although in these two papers it is claimed that the LMS algorithm
with wavelets converges faster than the LMS Finite Impulse Response (FIR)
algorithm applied in measurement space, it is well known that the adaptive
LMS algorithms work only for relatively slowly time varying processes. LS
solution of parameter estimation problem of a wavelet basis model, proposed
in the twin paper by Zhao and Bentsman [90, 91], assumes time invariance
over the length of the filter. Although the values of model parameters are
updated at every time instant, the approach fails to capture abrupt change
in the system such as regime switching in a process. Moreover, linear ap-
proximation as suggested by the work, may give rise to ill conditioning of
estimated impulse response while modeling some of the complexities men-
tioned above.

A different approach has been taken in this thesis, whereby it does not
necessitate the assumption of local time invariance. The method of param-
eter estimation, proposed here, naturally accommodates non-linear approxi-
mation [46] and primarily checks the local consistency of the estimate with
output signal for a determinable minimum memory solution in wavelet do-
main. The method proposed in this work, exploits the fact that the wavelet
coefficients have less memory compared to time samples and attempts to
minimize the local error in de-correlated wavelet coefficients for estimation of
system parameters. Wavelet packet identification of LTI models in frequency
subbands have been suggested in order to achieve a compromise between ac-
curacy and parsimony [59]. It has also been observed that since the model
only needs to represent the system in limited frequency band, only two taps
are required for fine-tuning FIR filter. This supports our assumption that
it is possible to have reduced memory models in subbands. It is important
to note, at the outset, that consistency in the literature of system identifica-
tion generally refers to an asymptotically unbiased estimate of parameters.
Strictly speaking, parameter estimate is said to be consistent when the esti-
mate tends to the true value of system parameter[71, 88]. The method given
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in the thesis, predicts the output signal one step ahead and to avoid ambi-
guity, defines the method as consistent output prediction. The definition of
consistent output prediction used in this work refers to the signal which has
the same representation in wavelet domain as the original output, bearing
strong similarity to the idea of consistent estimate in signal processing liter-
ature [17, 57]. The technique gives a simple and elegant algorithmic solution
of LS minimization problem.

In the proposed scheme, the system is modeled in an approximation space
in which both input and output are projected. Spline biorthogonal wavelets
span the approximation space and can be very effectively used for system
identification because of their short support and ability to get excellent ap-
proximation. Wavelets constructed from splines are called spline biorthog-
onal wavelets. The underlying spline functions, however, are not strictly
orthogonal except for those of order zero and hence energy is not preserved
in transform domain. As the system dynamics is captured by a few non
orthogonal basis functions in transform domain the issue of stable recon-
struction (needed for cross validation of the model) in measurement space,
needs to be assured. Providentially, in case splines are used as generalized
bases, weighted scalar addition of projections in approximation space could
be used for consistent output prediction and it can be shown that the pro-
posed solution seeking local fit in approximation space does not necessarily
require the assumption of strict orthogonality. Hence higher order spline
wavelet bases are admissible for modeling. In general, the method of estima-
tion of model parameters, with wavelet basis, could be cast as a penalized
least squares problem. For a given strictly positive threshold, the solution is
arrived at by retaining wavelet coefficients whose modulus values cross the
threshold [9, 20, 21].

The technique of consistent output prediction in wavelet domain is pro-
posed as an alternative solution to the classical LS minimization problem.
Although derived through a different route, this parametric identification
result has a striking similarity to non parametric Time Frequency Represen-
tation (TFR) of an LTV model expressed as ratio of Continuous Wavelet
Transform (CWT) of output and input [68]. TFR, however, is computation-
ally expensive and gives a frequency domain description of the system. In
contrast, the technique given in the thesis identifies a system truly in mul-
tiresolution. Moreover, an elegant algorithmic solution to the problem has
been proposed, for discrete implementation.

Quality of a model is tested by reconstructing system output. Proposed
technique of consistent output prediction is a non-linear approximation tech-
nique and is based on a subset of projections (decided by the choice of thresh-
old) in the subband. The system is in fact, modeled in even lower dimension
subspace spanned by the wavelet functions located at the indices where pro-
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jections have significant values i.e. they cross a pre-defined threshold. Inverse
wavelet transform can be seen as a mapping from a space of lower dimension
spanned by a few wavelet functions to the measurement space of higher di-
mension. Hence, the reconstruction in time and its dyadic wavelet transform
are not unique. All possible solutions associated with wavelet representation
in the space of all dyadic wavelet transforms � together make the reconstruc-
tion set residing in space L. The minimum error norm solution is reached
iteratively by projecting the solution back to time and then again projecting
the crude prediction (in time) forth in transform domain. The intermediate
solution in wavelet domain is forced to match significant projection values in
every iteration. The alternate projection on L and � is known to converge
strongly to the orthogonal projection on �∩L, eventually to the member of
the reconstruction set that minimizes the objective function.

In classical approach of system identification, noise is modeled in addition
to system parameters. However, working in equation error framework, it has
been attempted here, to identify a model from pre-filtered input and output
such that identified model is less sensitive to noise. From this viewpoint, the
proposed method is reminiscent of the familiar technique of identification
using pre-filtered data. It is therefore worthwhile pointing out certain salient
differences between the pre-filtering approach and the approach under study.
Firstly, in the approach using pre-filters, the data is projected back in time
followed by the usual identification exercise. In contrast, the models devel-
oped here work with projections. In this respect, the proposed method takes
a different stance from that of the several existing methods using wavelets
for identification. Secondly, the noise is handled in the proposed approach
by means of elimination using the well-known thresholding strategy, which
is equivalent to a non-linear estimation of the signal - while, the approach
of pre-filtering traditionally carries out noise elimination using linear filters.
In this study, it is assumed that the (white) noise directly enters the output.
Consequently, the focus is on achieving the best predictions of the deter-
ministic component of the output, but in the wavelet space. Although, in
general, the proposed wavelet based model is time varying, if it is known
from physics that the process is mildly non-linear and time invariant, an ap-
proximate LTI model can be derived in each subspace spanned by wavelet
functions. The proposed LTI model is similar to the special case discussed in
[15] where parameters are considered to be constant at each scale and may
vary from scale to scale. Assuming that the unmodeled noise is a zero mean
Gaussian process, it is proved that parameter error is also zero mean for a
derived LTI model. Hence, it is established that parameter estimation using
the method of consistent output prediction is unbiased. It can be further
proved that the parameter uncertainty is bounded and the bound can be
reduced by increasing level of thresholds. Hence correctness of the identified
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model depends on the level of threshold chosen by the designer. At the same
time, higher threshold could possibly remove significant signal component
thereby compromising usefulness of the identified model. A tradeoff in this
regard is necessary to meet the design objective as well as quality of identifi-
cation. For the LTI model, how parameter estimates can be computed from
the noisy measurements is stated and proved in the thesis.

The derived LTI model can be used for control design of a nuclear re-
actor. A nuclear reactor is a very complex dynamical system. Modeling
and identification problems for nuclear power reactors have been considered
extensively in [30, 39, 41, 58, 67]. In analytical method, either complicated
equations are obtained for full characterization of the process or simplifica-
tions limit the application of the model to fewer operating modes. Wavelet
based models have been suggested earlier for identification of control rele-
vant process identification [10] to extract information localized in both time
and frequency. Auto Regressive with eXogenous input (ARX) or State-space
models in time are popularly used for design of state feedback control. A
class of multiscale state space models have been extensively studied in [15]
for modeling stochastic phenomenon given noisy mesurements. There each
scale is viewed as in the notion of system state for coarse-to-fine prediction
using scale-to-scale linear recursion. It is well known that for a controllable
system, poles can be placed at desired locations by full state feedback con-
trol [26]. However, in case of input-output modeling, system states are not
visible (measureable) for full state feedback control. In this thesis, it is sug-
gested that wavelet states of the identified model can be used for the purpose
of control. The conditions for pole assignable design of a full wavelet state
feedback controller are derived. The method of controller design is illustrated
with an example of a multiscale model of a nuclear reactor. The proposed
technique of system identification is validated by modeling a complex process
in a large Pressurized Heavy Water Reactor (PHWR). Large thermal reactors
such as the 540 MWe PHWR are inherently unstable with respect to xenon
induced spatial oscillations due to loose neutronic coupling among different
regions of the core and comparatively very small reactivity feedback effect
of fuel. These spatial oscillations must be controlled, failing which, a poten-
tially serious situation known as “flux tilting” may arise, i.e., one portion of
the reactor may tend to produce more energy than other portion does. This
can cause fuel in that region to exceed its thermal design limits and thus
affecting fuel integrity [64, 77]. Xenon-induced spatial oscillations are kept
from growing in large PHWRs, by means of Liquid Zone Control System
(LZCS). The mathematical model of LZCS is useful in analysis work such as
the study of reactor power variations during normal operational transients,
besides in control system design [77]. A full scale test set up of the LZCS
of 540 MWe PHWR has been developed at Bhabha Atomic Research Cen-
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tre. Data from this test setup have been used in this work for identification
and validation of models. In particular, an identification scheme of a SISO
time varying ARX model of the LZCS with wavelets as basis is studied. The
framework is that of uniformly sampled signals i.e. both output and input
are sampled at the same rate. The system is identified using orthogonal
and biorthogonal wavelets. An LTI model of a Zone Control Compartment
(ZCC) is derived as a special case of time varying model. The new scheme
of estimating system parameters based on consistent output prediction in
wavelet domain is used for unbiased estimation of system parameters. Fur-
ther a novel technique for estimating process time-delay is suggested. The
estimate is shown by application to the LZCS to be insensitive to noise and
is used as an input to the linear model. The proposed wavelet based model
is compared with traditional and wavelet basis locally LTI, ARX type mod-
els for identifying the LZCS process. It is observed that even a low order
wavelet based model gives excellent approximation from fewer numbers of
input output data points, whereas the traditional models fail.

Thresholding gives rise to sparse representation in wavelet domain [20,
21]. While projecting the signal in time for approaching the solution by al-
ternate projection, the problem can be cast as a non-linear signal approxima-
tion problem from Wavelet Representation with Missing Samples (WMSR).
In literature, method of alternate projection is suggested to have a consistent
estimate, based on modulus maxima or extrema representation. The same
is used in this work for reconstruction from a wavelet representation with
missing samples. As an extension of the existing schemes, a new scheme has
been devised based on Wavelet Maximum Curvature Point Representation
(WMCPR), which can be viewed as a generalization of the existing schemes
for signal reconstruction from sparse representations. The algorithm seeks
the solution to have minimum local error in wavelet coefficients by alter-
nately projecting the solution in time and wavelet domain. The algorithm
of alternate projection is used for denoising and compression of Non De-
structive Testing (NDT) signals. An application of signal characterization
using WMCPR is demonstrated using Magnetic Flux Leakage (MFL) signal.
Estimated defect size based on the reconstruction is found to be acceptable.

The thesis is organized as follows. Chapter I introduce the topic and gives
a brief overview of the work.

Chapter II gives an overview of the existing work on system identification
using wavelet basis functions and places the proposed work in that backdrop
indicating relevance and necessity for the development. Distinction and nov-
elties of the proposed method vis − à − vis the existing modeling methods
are clearly indicated.

Chapter III discusses the fundamentals of system modeling using wavelets
as basis, establishes the admissibility of wavelet basis functions for system
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identification with time varying linear models and formulates the identifi-
cation problem in wavelet domain. It has been shown that modeling with
spline biorthogonal wavelets can be viewed as identification with prefiltered
input and output.

Chapter IV presents the main contribution of this work e.g. estimation of
parameters of a linear time varying model using consistent output prediction.
The chapter also gives a brief introduction to the LZCS in a PHWR. Details
of experiments conducted in a full scale test set up and results of the experi-
ments are discussed. It is shown that an unbiased LTI model can be derived
as a special case of LTV model and parameter estimates by consistent output
prediction from noisy measurements are unbiased and bounded. Issues of sig-
nal representations in wavelet domain using Undecimated Discrete Wavelet
Transform (UDWT) are discussed. A recipe of the algorithm for parame-
ter estimation of an LTV system and reconstruction of consistent output by
alternate projection is presented. Efficacy of modeling with orthogonal and
biorthogonal wavelets is demonstrated by cross validation using data from a
full scale test set up of the LZCS. Accuracy of the derived model in presence
of noise is established.

Methodology of closed loop control design using output wavelet states is
demonstrated in Chapter V. The notion of designing a control with output
wavelet states is introduced and controllability of the open loop and closed
loop system with output feedback is studied. The technique is demonstrated
with multi scale simulation examples.

Chapter VI concludes the work indicating major achievements and future
scope.

Apart from the work carried out to achieve the main objective, a few
related theories have been developed during the course of the programme.
These theories and the verification results using simulation and actual plant
data have been documented in the appendices as stand alone supporting
works. Data denoising and signal characterization based on wavelet maxi-
mum curvature representation, with a novel dual thresholding scheme has
been presented in Appendix A. Appendix B presents a new robust technique
for estimation of time delay in a process. The technique is used for estimating
transport delay in the LZCS.
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Chapter II

Literature Survey

The field of system identification is well developed with established and
widely understood techniques. To formulate a problem of parametric iden-
tification, first it is necessary to choose the basis for approximation. Model
parameters are estimated based on a criterion, such as that of LS, to match
the output for the given input data. In this sense, the best identified sys-
tem is only as good as the input-output pair. Model validation is the last
step in identification and it aims at assessing objectively, whether the iden-
tified model agrees sufficiently well with the observed data. The generic
model structure, given by Ljung [43, 69], can be extended to the family of
linear difference equations, parameterized by the time varying linear filters
At, Bt, C t, Dt and F t.

At(q)y(t) =
Bt(q)

F t(q)
u(t) +

C t(q)

Dt(q)
ε(t) (2.1)

Here q denotes the shift operator, y(t) measured output, u(t) measured input
and ε(t) is called disturbance, error or noise. The most used ARX model
(F t = C t = Dt = 1) relates the current output y(t) to a finite number of past
outputs y(t−k), k = 1, 2, ...P and inputs u(t−k−d), k = 1, 2, ...Q. d denotes
pure time-delay or the dead-time in terms of number of samples. There are
several elaborations (referred as ARX type model, later in this thesis) of
the basic ARX model, where different filter structures are introduced to
provide flexibility. These include the well known Auto Regressive Moving
Average with Exogenous input (ARMAX) (F t = Dt = 1), Output-Error
(OE) (At = C t = Dt = 1), and Box-Jenkins (BJ) (At = 1) model.

Modeling systems in transform domain, in Fourier [63] or Gabor [25] space
are single resolution alternatives to time domain representation. A compre-
hensive discussion on mathematical foundation of linear and nonlinear black
box identification problem with different basis can be found in [35] where
it has been observed that the quality of identification is a tradeoff between
the number of parameters used to describe the model and the approximation
error. Error is found to increase proportionally with the number of parame-
ters. Hence a good approximation which minimizes number of parameters by
suitable choice of basis function is important for good identification. This is a
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Figure 2.1: Constant Q wavelet filters

strong motivation in favour of compact support wavelet basis representation
of a system which minimizes number of model parameters. The paper [35] in-
troduces the wavelets as basis for identification and establishes its usefulness
in system modeling.

2.1 Properties of wavelet transform

Wavelets are basis functions that span the space (L2) of functions with fi-
nite energy i.e. any function in this space can be represented by wavelet
basis. Wavelets are constant Q

(
= �ω

ω

)
band pass filters. As we keep dilat-

ing wavelets in time, � ω → 0 as shown in Figure 2.1. Ideally (countable)
infinite number of wavelets are needed to represent a function in L2. In-
stead, in wavelet theory it is proved that dialates and translates of scaling
function φ (t), combined with wavelets ψ (t) span the whole frequency axis.
A measurement in terms of wavelet basis can be expressed as follows.

y (t) =
∑

k

ckφk (t) +
∑
j,k

djkψjk (t) (2.2)

Wavelet basis functions have many interesting properties that make them
ideal for function approximation.

1. Wavelets are known to provide near optimal non-linear estimates of
signals [46]. A non linear estimation (with I basis) may use basis
functions located at the indices of I largest projections and hence, I /∈
Z. As I increases, approximation error in case of non linear estimation
decays faster than that of linear estimation. With a priori knowledge
about the system or signal, an appropriate choice of basis can be made
from a large range of wavelet functions to obtain a sparse representation
needed non linear estimation.
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2. Wavelets are natural choice for modeling time varying systems. They
are local approximators with compact support (in time and frequency).
Figure 2.2 shows compact support B-spline scaling functions and wavelets.
These functions are ideal for projecting time limited signals or functions
in shift invariant subspace of L2 [81].

3. The correlation functions in wavelet domain decay faster than the cor-
relation functions in time. Thus, higher-order systems in the measure-
ment space reduce to lower-order models in the projection space.

4. The multi-resolution approximation abilities of wavelet basis functions
naturally accommodate pre-filtering of data working in the sub-space
of measurement space [52].

5. Wavelets efficiently isolate multiple time-scales in an LTI system be-
cause they use variable size time-frequency atoms as shown in the sec-
ond grid of Figure 2.3 (first grid showing grid for Short Time Fourier
Transform (STFT)).

6. Wavelet shrinkage (denoising) enables robust estimate of parameters.

2.2 Admissibility of wavelets as basis

An LTV system, in general, can be described by a parametric or non para-
metric linear time varying impulse response function h (t, τ ). A time varying
ARX (TVARX) model output using the continuous impulse response func-
tion is given by

ŷ (t) = h (t, τ ) � u (t) (2.3)

Noise term is considered to be zero for the time being and shall be included
later in the formulation. Output of the system at discrete time t is

y [t] =
∑
k∈Z

h [t, k]u [t− k] , t ∈ Z (2.4)

If the discrete system is causal and discrete version of the impulse response
function h [t, k] is appropriately truncated, number of past inputs required to
represent output at each time t is equal to the length of the impulse response
function. In general, parametric representation of h (t, τ ) is expressed as
a weighted sum of infinite number of integer indexed basis functions. Let
us define the shift invariant infinite dimension sub-space V of Hilbert space,
H = L2 (space of all functions that are square-integrable in Lebesgue’s sense)
as

11



Figure 2.2: Compact support B-spline scaling functions and wavelets at res-
olution level - 1

Figure 2.3: Variable size time-frequency atoms for wavelets
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V (ϕ) =

{
h (t, τ ) =

∑
i∈Z

�i (t)ϕi (τ ) : �i ∈ l2 (Z)

}
, V ⊂ L2 (2.5)

Shift invariant basis functions ϕi (t) and its time varying coefficient �i (t),
together constitute the discrete-continuous model of the time varying system.

y (t) = h (t, τ ) � u (t) =
∑
i∈Z

�i(t)(ϕi � u)(t) (2.6)

Output of the system given by the discrete impulse response �i ∈ l2 (Z), at
discrete time t is given by

y [t] =
∑
k∈Z

(∑
i∈Z

�i [k]ϕi [k]

)
u [t− k] (2.7)

In case of uniformly sampled data in single resolution, it is easy to see that
i = k.

For ϕi to qualify as basis, it is necessary that three conditions are satisfied
e.g. the sequence of coefficients �i must be square summable, the family of
basis functions should form a Riesz basis of V (ϕ) and the basis functions
satisfy the partition of unity condition [81].

Let us define now Wavelet Transform (WT) given by an operator W .
Applying W to the noisy measurements WT of y(t) is obtained as

Wy [t] = wy [t]

Right hand inequality of Riesz basis condition, stated below in (2.8), con-
sidering ϕi as wavelets ensures a stable reconstruction by the inverse WT
operator because the energy in discrete and continuous domain satisfies the
following condition.

A ‖wy [t]‖2 ≤
∥∥∥∥∥∑

i∈Z

�i(t)(ϕi � u)(t)

∥∥∥∥∥
2

≤ B ‖wy [t]‖2 , 0 < A, B <∞ (2.8)

By virtue of (2.8), a solution to the parametric identification problem could
be obtained in wavelet domain as well, by minimizing the total energy (in LS
sense) as discussed in chapter 4. �i(t) are the parameters which are estimated
satisfying LS criterion. The scaling functions of wavelet transform satisfying
all the three conditions mentioned above are admissible as or basis functions.
In addition they satisfy a two scale relation

φ

(
t

2

)
=

√
2
∑
k∈Z

fkφ (t− k) (2.9)
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Table 2.1: Classification of spline wavelets
Wavelet type Orthogonality Compact support Implementation

Orthogonal Yes No IIR/IIR
Semi-orthogonal Inter-scale Analysis/ Synthesis Recursive IIR/FIR
Shift-orthogonal Intra-scale No IIR/IIR

Biorthogonal No Yes FIR

where fk is refinement filter. Again, to admit wavelet basis functions instead
of a single space V (φ) = V0 , a ladder of rescaled subspaces are considered.
These subspaces are indexed by scale number j and are given by

Vj = span(φj,k)k∈Z with φj,k (t) = 2−
j
2φ

(
t

2j
− k

)
(2.10)

If φ satisfies (2.9) then these spaces are nested and form a multi-resolution
analysis (MRA) [49] of L2. Defining difference spacesWj = Vj−1−Vj , wavelet
basis functions ψ given by

ψ

(
t

2

)
=

√
2
∑
kεZ

gkφ (t− k) (2.11)

can be designed for the discrete-continuous models, such that they form the
Riesz basis of difference spaces Wj, i.e. Wj = span (ψjk)k∈Z

.
Wavelets with underlying B-spline scaling functions are called spline wavelets.

For a given order, the basis functions of spline wavelets are shortest (ideal for
modeling time varying systems), most regular and have the best approxima-
tion properties among all known wavelets. Unlike most other wavelet bases,
they have explicit formulae in both time and frequency domain allowing easy
manipulation. Spline wavelets can be classified into four categories, primarily
based on their orthogonality property as shown in Table 2.1 [80].

Although orthogonality condition is not satisfied, spline biorthogonal
wavelets are very popular, primarily because of the ease with which they can
be implemented. Properties like symmetric FIR filter structure and com-
pact support are best suited for model identification based on time limited
input-output signal. In this thesis, advantages of using spline biorthogonal
wavelets as underlying basis for modeling have been studied in detail. The
refinement filter in (2.9) in this case is given in frequency domain by

f (ω) =
√

2exp

(−iεω
2

)(
cos

ω

2

)p

(2.12)

with ε = 0 for p even and ε = 1 for p odd. The scaling function computed is
then spline of degree p− 1.
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φ (ω) = exp

(−iεω
2

)(
sinω

2
ω
2

)p

(2.13)

Since ψ is a linear combination of splines given by (2.11), it is a compactly
supported polynomial spline of same degree.

Representation of signals or functions with Undecimated Discrete Wavelet
Transforms (UDWT) 1 is rigorously treated in the next sub-section.

2.3 Representation with undecimated discrete wavelet transfom

A brief introduction to UDWT [8, 17] is presented in the beginning of this
section.

Let us assume that all signals are square summable, discrete time se-
quences x [k] , kεZ i.e. the space is l2 (Z). UDWT is a linear bounded operator
W consisting of J + 1 linear operators

Wj : l2(Z) → l2(I), l2(I) = l2({j = 1, 2, . . . , J + 1} × Z) (2.14)

In wavelet literature j is referred to as scale, as an alternative to frequency.
One can compute UDWT of the discrete signal x [k] with a bank of low-pass
filters (f) and a high-pass filters (g). Filters f and g are finite impulse
response (FIR) filters. The resulting sequence of discrete signals of the form
{(Wjx), 1 ≤ j ≤ J, Uj} are called the UDWT of the sequence x [k]. The
operators Wj and Uj, for undecimated dyadic discrete wavelet transform
(DWT), are the convolution operators giving details and approximation of
a signal at the scale j. The impulse responses of the undecimated octave
band filter bank with z-transform F (z2j

) and G(z2j
), i.e. fj and gj can be

obtained by putting 2j−1 zeros between two consecutive coefficients of f and
g, respectively. The reconstruction operator W ∗, the inverse of W , can also
be implemented by a undecimated octave band filter bank F̃ (z) and G̃(z).
For perfect reconstruction of an arbitrary signal x ∈ l2(Z) from its wavelet
transform, Wx, it is necessary and sufficient that there exist two FIR filters
F̃ (z) and G̃(z), satisfying

F (z)F̃ (z) +G(z)G̃(z) = 1 (2.15)

F̃ (z) and G̃(z) are referred to as the undecimated synthesis octave band filter
bank. In case of decimated filter bank [73] an equation very similar to (2.15)

1 For the development of the proposed theory of identification, shift invariant UDWT is
considered to be the underlying transform, throughout the thesis.
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is obtained with the exception that the right hand side has a factor of 2z−l,
i.e.

F1(z)F̃1(z) +G1(z)G̃1(z) = 2z−l (2.16)

Subscripts 1 denote filters for decimated analysis and synthesis. With the
substitution F̃1(z) = G1(−z) and G̃1(z) = −F1(−z), (2.16) takes the follow-
ing form:

zlF1(z)F̃1(z) − zlF1(−z)F̃1(−z) = 2 (2.17)

Let us define the product filter P (z) = zlF1(z)F̃1(z)
2

. Also the discussion is
restricted to odd length of filters, i.e. to odd values of l. The max-flat
product filterP (z), satisfying (2.17), is designed as a symmetric polynomial
with only odd powers of z. All even powers in P (z) are zero except the
constant term. With this substitution (2.17) becomes P (z)+P (−z) = 1, for
odd values of l, because

P (−z) =
(−z)lF1(−z)F̃1(−z)

2
=

−zlF1(−z)F̃1(−z)
2

(2.18)

It may be noted that all odd powers of P (z) cancel those of P (−z).
One obvious choice of undecimated filter bank would be given by

F (z)F̃ (z) = P (z) =
zlF1(z)F̃1(z)

2
(2.19)

and

G(z)G̃(z) = P (−z) =
−zlF1(−z)F̃1(−z)

2
=
zlG1(z)G̃1(z)

2
(2.20)

The substitution of (2.19) and (2.20) in (2.15), which defines the perfect
reconstruction relationship for undecimated filter bank, also takes the form
of (2.16). Hence in undecimated case, the same FIR filter coefficients, odd
length and symmetric, derived in decimated case, can be used after dividing
each of them by

√
2 [54]. This allows us to test signals with the family

of readily available, biorthogonal and reverse biorthogonal wavelets, in our
work. The impulse responses of fj and gj, f̃j and g̃j, used in this work, are
either symmetric or anti-symmetric. Non-causal implementation of the filter
banks ensures zero delay in the reconstructed signal.

Although a given system is identified in wavelet domain, reconstruction
of the system output from a wavelet representation of past values of input
and output is necessary for cross validation of the output estimate. Recon-
struction from wavelet multi-scale maxima or zero crossing representations
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have been suggested in the beginning of nineties and stability and uniqueness
issues were long deliberated [4, 17, 48]. Reconstruction and transforms are
always performed on the regular sampling interval although sampling of rep-
resentation in transform domain is usually irregular. Hence, the topic can be
viewed as bordering the more general and classical topic of signal reconstruc-
tion from irregular samples. An overview of the status of contemporary work
on sampling including irregular sampling may be obtained in an excellent de-
piction by Unser [81]. Generalized or multichannel sampling introduced by
Papoulis in 1977 for signal reconstruction from measurements performed in
structured manner, and its many variants such as interlaced and derivative
sampling have become popular in the last decade. Design of robust and com-
putationally simple reconstruction techniques are still active research topics
[50, 78]. In this work, however, fixed rate sampling is used by employing
undecimated wavelet transform. Recently the notion of compressed sensing
(CS), put forward in [78], suggests that a signal could be accurately recon-
structed from fewer samples than regular nominal numbers by solving for the
transform coefficients consistent with measured data and having minimum
l1 norm. The results are demonstrated to work nicely on several synthetic
experiments mimicking problems in imaging and spectroscopy. The method
of CS seems to work in reverse direction as compared to earlier ones based
on multi-scale edges. A number of reconstruction algorithms have been pro-
posed based on consistent estimate and very accurate reconstructions are
reported using alternate projection. Basic theory of alternate projection is
discussed in next few paragraphs.

Let the input signal x (t) belong to L2 and Wjx be its (dyadic) wavelet
transform at scale j. A function xc(t) is defined such that a chosen wavelet
representation of xc equals that of x. The set of abscissa’s where representa-
tion of Wx is significant and non zero is denoted by tjk. Two conditions are
imposed on the wavelet representation Rmx

c of Wjx
c.

1. At each scale j, at all tjk, Wjx
c = Wjx.

2. At each scale, projections in the representations are located only at tjk.

Let � be the closure of the linear combination of all (dyadic) wavelet functions
in L2 and assume that the projections of xc on � is equal to the projection
of x on �, for all abscissa tjk. Let O be the orthogonal compliment of �
in L2. Thus, �⊕

O = L2. Defining xo (t), xo ∈ �, x can be expressed as
x = xc + xo. Here, if U = L2 , then O ∈ {0}, which implies that x = xc. As
this is not in general true, condition 1 above does not uniquely characterize
x. Condition 2 stated above is approximated using convex functions.

Let L be the affine space of sequence of functions wxc

j (t) such that at

any scale j and at all tjk, w
xc

j = Wjx. The solution lies in both the spaces
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Figure 2.4: Alternate projection algorithm

� and L, which implies (dyadic) wavelet transform that satisfy condition 1
are sequences of functions that belong to � ∩ L. The objective is to find
the element in �∩L whose norm is minimum. This is achieved by alternate
projections on � and L. If W denotes (dyadic) wavelet transform and W ∗

denotes inverse (dyadic) wavelet transform, then any (dyadic) wavelet trans-
form, wxc

j (t) remains invariant under the operator P� = WoW ∗. As � is a
space of all (dyadic) wavelet transforms, P�w ∈ � for any sequence w = wxc

j .
Thus P� acts as a projector of w on �. The projector on L, operator PL is
implemented by retaining the magnitude of representation at each scale at
the appropriate abscissa’s and convex interpolation. Convex constraints are
imposed to suppress any spurious oscillations in the reconstructed wavelet
transform. Defining a new operator, P = P�oPL, P performs alternate
projections in both the spaces. Since � belongs to L2 and L is the affine
space, repeated application of alternate projection, P (n) reduces the normal
distances between two spaces and Limn−→+∞P (n)w = P�∩Lw. Alternate
projections on � and L strongly converge to the orthogonal projection on
� ∩ L. The solution in fact converges to an element of � ∩ L whose norm
is minimum. The imposition that the norm of wxc

j is as small as possible on

average, generally creates significant projections locally at tjk’s. Figure 2.4
shows a graphical representation of the alternate projection algorithm.

18



2.4 Wavelets in identification: A review

In last two decades, a number of papers suggested usefulness of wavelet
bases, in particular, orthogonal wavelet bases for identification of systems
with nonlinearities. Sureshbabu and Farrell [74] gave a strong motivation for
using local orthogonal wavelet approximators for modeling non linear sys-
tems. Moreover, they suggested accuracy of approximation can be improved
locally where system function changes rapidly by adding new basis functions
to the existing model without affecting the existing model. They propose sys-
tem identification based on compactly supported orthogonal wavelets such
that sample distribution can be considered constant over the support and
thresholding is permitted to zero out insignificant wavelet coefficients. It
may be noted here that decimated filter bank implementation of an orthog-
onal wavelet transform is non-invariant in time. Time or shift invariance
[46, 48] of a representation is a preferred property from the point of view of
system identification. Conventionally, redundant wavelet representations are
used to alleviate the problem of time non-invariance. Generalized classes of
orthogonal wavelets with time invariance property have also been suggested
for parameter estimation/detection of signals in [3, 62]. A recursive criterion
for selecting different sets of orthonormal wavelet coefficients is devised in
the paper to reflect the matching properties of a redundant representation
to a signal. So, redundant as well as non redundant representation with or-
thogonal wavelet is possible and can be used for signal and system modeling.

The problem of nonlinear system modeling can also be reduced to scat-
tered data interpolation problem using wavelet bases. Considering that input
and output are sampled at regular time interval, non linear mapping of out-
put with input as argument, would in general, be on an irregularly spaced
grid. In [40] interpolants are computed that minimize a wavelet based norm
associated with a Reproducing Kernel Hilbert Space (RKHS) subject to in-
terpolatory constraints decided by the scattered data. Although wavelet
functions are designed to form an orthogonal basis for L2, the kernels are
not shift invariant and provide spatially varying resolution suitable for ir-
regularly distributed data samples. On contrary to this, our approach is to
describe any system on a regular grid as a linear combination of basis func-
tion by embedding the nonlinearity, if present, in the basis. However, we
work with sparse representations in wavelet domain and prove that a stable
and consistent reconstruction of output in time can be obtained.

A methodology for identifying Nonlinear Auto-Regressive Moving Aver-
age with eXogenous input (NARMAX) models from noise corrupted data is
introduced based on semi-orthogonal wavelet multi-resolution approximation
in [16]. For a non linear model, in general output can be expressed in terms
of nonlinear function f of the finite dimensional regressor obtained by the
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regression function gk.

y [k] = f (gk (y [k − 1] , . . . , u [k − 1] . . . , ε [k − 1] . . .) , ρk)

Best non linear parameterization of f is searched as a linear expansion in
terms of the basis functions of non linear regressors gk such that

f =
∑
k∈Z

ρkgk

The family of non linear basis functions or regressors used for approximation
of f are B-spline scaling and wavelet functions.

Broadly identification techniques fall in two categories.

1. Model Identification with input as argument, sampled at irregular grid
points.

2. Model Identification with time as argument, both input and output
sampled on a regular grid.

Most of the works mentioned above, address the problem of identification
from input-output measurements, sampled at irregular grid points. But since
most practical systems employ uniform or regular time sampling, this work is
restricted to uniformly sampled signals and to shift invariant basis functions
for identifying system impulse response function. For non linear systems,
uniform time sampling may turn out to be inadequate when output is sam-
pled with respect to input and it is directly mapped with respect to input.
To get rid of this problem, the system function with time as argument is
searched rather than input as argument.

Modeling of linear time varying systems using wavelet basis has been
addressed in [24, 90]. Time varying impulse response of the system is modeled
in these papers, either from input side or from output side as given below.

From input : y (t) =
∑

I

aI (t) (ηI � u) (t) (2.21)

From output : y (t) =
∑

I

ξI (t) (aI � u) (t) (2.22)

where aI are time varying parameters of the system and {ηI(t)}I and {ξI(t)}I

are wavelets used to expand time varying response function from input side
and output side respectively. I = (i, j), where i is the shifting and j is the
scaling parameter. From either models however, it is possible to derive a
model structure with constant parameters aIJ in the following form [24, 86].
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Figure 2.5: Generalized raised model with wavelet basis for identification of
LPTV systems

y (t) =
∑

I

ξI (t)
∑

J

aIJ (ζJ � u) (t) (2.23)

Modeling of LPTV systems is treated as a specific case in the time varying
framework considering output functions {ξI(t)}I to be periodic. Generalized
raised model with wavelet basis has the similar structure (Figure 2.5) and it
has been found to be particularly suitable for adaptive identification of LPTV
systems. It is possible to identify an LTI model in each frequency sub-band
with the periodic transform and its inverse implemented using wavelet anal-
ysis and synthesis filter banks respectively. However, in [23] the problem has
been reformulated using Wavelet Analysis Tree (WAT) and Wavelet Synthe-
sis Tree (WST) (first and third block respectively) to equalize the sampling
rates of all tree branches. The LTI system is identified as a Multiple Input
Multiple Output (MIMO) FIR system.

Although, not the best choice, for identification of constant system param-
eters aIJ ’s, wavelet Least Mean Square (LMS) adaptive filtering algorithm
has been suggested [23, 24]. Except under strong restrictions (sufficient order
modeling with orthonormal wavelets, white noise input), the optimal param-
eter vector is time varying. Parameters aIJ ’s are estimated by minimizing
mean squared error between the adaptive filter output and the output of the
unknown system (Figure 2.6). For adaptation, error could be minimzed in
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Figure 2.6: System identification by LMS algorithm

wavelet domain as well if orthonormal wavelets are used for modeling [23].
The wavelet LMS algorithm works only if the system is slowly time varying
and variations are small. However, wavelet LMS algorithm converges faster
than the FIR LMS algorithm and approaches optimality with lower error.

Identification of relatively fast changes in an LTV system, due to natural
dynamics and/ or faulty behaviour has been addressed in the twin papers
[90, 91]. LTV system modeling, in this work, has the similar structure as
discussed in (2.21), (2.22) and (2.23). The work proposes a general func-
tion space approximation based framework for modeling and identification.
The framework is rigorous and with the assumption of Banach space as the
approximation space, it is shown that the approximation error converges
to zero as the number of terms in the approximation increases. However,
for the identification of system parameters, the time varying system is as-
sumed to be locally time invariant, (ideally over the total length of filter,
L =

⋃
i=1,2,...I (Li), where I is the system order). Although, time variation

is addressed by parameter updation at every time instant, the assumption
puts serious limitation for approximating rapidly changing systems. It can
be seen in “examples and discussion” section of the same paper, that the
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error in identification (using Daubechies length 4 filer) is high where time
domain system has a unit step change. The formulation allows modeling
with biorthogonal basis functions and provides mathematical tools for find-
ing time-frequency localized bounds on the approximation error. However,
the approximation error can be unacceptably high (ill conditioning problem)
due to following reasons which are also interrelated.

1. Model order (number of basis function used for approximation) is in-
sufficient.

2. The formulation precludes the possibility of non linear approximation.

3. Assumption of local time invariance is not in agreement with actual
system dynamics.

It may be noted here for the sake of completion, that non parametric time
frequency representation has the similar form as the parametric representa-
tion derived in the present work [68]. A technique to model LTV systems
in frequency domain has been proposed in the above reference employing
Continuous Wavelet Transform. The method is similar to Empirical Trans-
fer Function Estimate (ETFE) [42]. The method works with time frequency
representation such that a non linear LS estimator could be used to obtain
the set of parameters of the model transfer function, optimized in multi-
resolution.

2.5 Motivation and relevance

The approach in this work is similar to the above mentioned works, only to
the extent that the estimation of aI (t) is achieved by minimizing local error in
LS sense. An adaptive filter or the technique proposed in [91] also looks for a
local solution of the time varying estimation problem. The major difference of
the identification method, proposed in this thesis, with the existing methods
are as follows.

1. Instead of identifying the system in time domain, parameters are es-
timated in wavelet domain ( in multiresolution) by projecting filtered
output and its shifted version onto the same basis as that used for the
input. The technique utilizes the parsimony in the representation, the
real strength of wavelet basis.

2. Many existing techniques assume that it is possible to model a linear
time varying system as a number of linear time invariant systems in
the subspace. The proposed technique makes no such assumption and
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identifies LTV models in the wavelet subspace. Moreover, the identi-
fied subband models are strictly time varying. The solution does not
even need any explicit assumption of local time invariance because the
identification is done truly in multi-resolution with decorrelated pro-
jections.

3. The proposed technique permits non linear approximation to allevi-
ate ill conditioning problem (blowing up of local error) encountered in
case of linear approximation of system model. Method of non linear
approximation models a system with basis functions located at signifi-
cant projections and has additional advantage of reducing model order
considerably.

4. It may be noted here, that for modeling a practical system, a time vary-
ing ARX model may be better suited. Although it could be included
in the ambit of the existing formulations, the TVARX formulation is
not discussed explicitly. TVARX modeling is popular in application
domain and an example of modeling by expanding time varying param-
eters with temporal basis functions can be found in [66], for detecting
changes in the dynamic stiffness of human elbow following the onset of
a broadband perturbation. This thesis particularly focuses on TVARX
formulation with wavelet basis and related issues.

5. Let us assume that the coefficient function aI (t) can be expressed in
terms of basis functions θ∗J (t) and (2.21) can be written as

y (t) =
∑
I∈Z

∑
J∈Z

aIJθ
∗
J (t) (ηI � u) (t) (2.24)

Projection of the output onto the flipped version of the basis i.e. θJ (t)
would be given by

〈y (t) , θJ (t)〉 =
∑
I∈Z

aIJ (ηI � u) (t) |t=J (2.25)

since, 〈θI (t) , θ∗J (t)〉 = δI−J . The solution of the problem in general is
underdetermined because it requires estimation of IJ parameters from
J equations. Hence, the best set of aIJ (containing less than or equal to
J elements) is searched that would minimize error in output projections
in least squares sense. For example, if summation is omitted in (2.25),
a determinable set of aIJ is obtained as solution. The result has a
striking similarity to time frequency representation of an LTV model
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defined in continuous domain, expressed as ratio of Continuous Wavelet
Transform of output and input [68],

TFR (j, k) =
W(j,k) [y (t)]

W(j,k) [u (t)]

The technique however, is computationally expensive and gives a fre-
quency domain description of the system. In contrast to the existing
methods of identification where an analytical solution is obtained, the
technique proposed in this thesis suggests an elegant, computationally
efficient, algorithmic, alternative solution to the LS problem, amenable
for discrete implementation.

6. In general, a model is tested and validated by reconstructing the out-
put. The synthesis basis maps the function in approximation space
to the output space using the inverse transform (complex sine, sinc,
cardinal spline etc in single resolution case). In the proposed scheme
with wavelets, mapping from the lower dimension approximation space
to the higher dimension output space is implemented using alternate
projection algorithm. The algorithm iterates the solution between the
spaces imposing convex constraints in each iteration and converges to
the true solution in the limit.

7. Projections of measurements onto wavelet basis space is equivalent
to filtering the measurements using multi-rate filter banks [46]. Pre-
filtering of data prior to identification is not uncommon. Extended
instrumental variable methods which employ pre-filtering of the data
is shown to be generically consistent [71]. From this viewpoint, the
proposed method is reminiscent of the familiar technique of identifica-
tion using pre-filtered data [43]. It is therefore worthwhile pointing out
certain salient differences between the pre-filtering approach and the
approach under study. Firstly, in the approach using pre-filters, the
data is projected back in time followed by the usual identification exer-
cise. In contrast, the models developed here work with projections. In
this respect, the proposed method takes a different stance from that of
the several existing methods using wavelets for identification. Secondly,
the noise is handled in the proposed approach by means of elimination
using the well-known thresholding strategy, which is equivalent to a
non-linear estimation of the signal [20, 21] - while, the approach of pre-
filtering traditionally carries out noise elimination using linear filters.
In this study, it is assumed that the (white) noise directly enters the
output. Consequently, the focus is on achieving the best predictions of
the deterministic component of the output, but in the wavelet space.
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2.6 Application in nuclear reactors

In application domain, very few actual applications [85] of wavelet based
identification have been reported, particularly that are related to nuclear re-
actors. A demonstration of black box modeling using wavelet basis function,
utilizing data obtained during two transients of Monju fast breeder reactor,
can be found in [34]. A method was proposed in this paper that pairs the
analytical ability of the wavelets and computational power of a radial basis
function network. It may be observed from the surveyed literature that the
subject of system identification using wavelets is still young and at an ex-
ploratory stage of maturity. This is evident from the varied research interest
and in rare attempts to apply the theoretical techniques in real life problems.
It would be worth mentioning that lot of work is taking place in the domain
of mathematics to support the research activity in the field of control system
analysis.

A nuclear reactor is a complex system with non linearities, integrating
effects and multiple time scale behaviour. Modeling of a nuclear reactor and
its sub-systems for control design, failure analysis and simulation is an ex-
tremely important research activity. It is particularly relevant in the present
scenario considering the global concern about inherent safety of the working
nuclear plants. The work in this thesis has a great potential to be used for
efficient modeling and control design of a nuclear reactor. A point kinetic
model of a nuclear reactor is used as a plant and the method of wavelet based
identification is tested. The derived LTI model is used for control design of a
nuclear reactor. The concept of modeling systems with projections as states
is not new [14, 29, 51]. For example Gilbert’s method suggests that a sys-
tem can be modeled using projections on eigen vectors. As the system gets
completely decoupled, control inputs can be applied along the directions of
eigen vectors. A similar approach is taken here by projecting the system on
wavelet basis for applying control along each basis.

The proposed technique of system identification is also validated by mod-
eling a complex process called the LZCS in a large Pressurized Heavy Water
Reactor (PHWR). Besides providing continuous fine control of reactor power
level and power distribution in the core of a large PHWR, the LZCS also
compensates for routine reactivity perturbations due to on-power refueling
and other minor changes in parameters such as temperature etc. The LZCS
in a 540 MWe PHWR consists of 14 individually controllable compartments
in the reactor, called Zone Control Compartments (ZCC) (Figure 2.7). Con-
trol of the reactor power level and the core power distribution is achieved by
the LZCS through variation of light water levels in the ZCCs. Water serves
as a neutron absorber and its inflow to ZCCs can be individually varied by
the reactor regulating system by maneuvering the control valves in the water
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Figure 2.7: General assembly of the LZCS

inlet lines of each ZCC. However, a constant outflow of water takes place
from each ZCC. Data from a full scale test setup [76] has been used in this
work, for identification and validation of models. A full scale test set up
of the LZCS of 540 MWe PHWR has been erected at Bhabha Atomic Re-
search Centre. Data from this test setup have been used in this work for
identification and validation of models.

2.7 Summary

A brief review of literature survey of related works on system identifica-
tion using wavelet basis function has been presented in this chapter. Prior
to embarking on the subject, admissibility of wavelets as basis for system
modeling is established. As a system is identified in wavelet domain, con-
sistent output prediction needs alternate projection algorithm (revisited in
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this chapter, based on Mallat’s work) for reconstruction. In this context, the
theory of shift invariant, undecimated wavelet transform is discussed and it
is shown that decimated filterbanks, available freely in public domain, can
even be used in undecimated case. The existing works in wavelet based mod-
eling, in general, indicate advantages of using wavelets as basis over classical
identification techniques for modeling non linearities and other complex sys-
tem behaviours (widely modeled with time varying systems). In most of the
works the formulation is reduced to that of LS minimization. Classical LS
solution needs assumptions which are not practical for modeling strictly time
varying systems and hence compromises model accuracy. Moreover, if the
model is of insufficient order even for an LTI system, minimum point of the
error surface varies with time and in general the optimal solution may never
be reached. In specific, a very poor quality model of a nuclear reactor, a mul-
tiple time scale system, is obtained using classical ARX modeling technique.
The model even fails to capture slow and fast modes with equal efficiency.
Wavelet bases have compact support in both time and frequency and with
their multi-resolution ability, there is a much higher chance to have a suffi-
cient order model. As a consequence, approach to optimality is closer and
faster (using LMS or RLS algorithm). This is the reason why with wavelet
basis (and not with sine or sinc basis) it is possible to get consistent (true
and unbiased and bounded) parameter estimates. In the hindsight, one may
not capture individual poles but now there are singularities with a bundle
of frequencies. Even with short support basis, existing wavelet models need
the assumption of local time invariance which compromises model accuracy
when dynamic behaviour of a system changes rapidly. Moreover, the exist-
ing techniques preclude non linear approximation. Motivation of the present
work in relation to the existing works, pointing out major similarities and
differences has been explained. Novelties of the proposed method vis-à-vis
the existing modeling methods are clearly indicated.
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Chapter III

Identification with Wavelet Basis

Identification of a dynamical system based on its input-output data can
be grouped in two categories: parametric and nonparametric. Wavelet based
parametric models are more popular for identification of linear and non linear
systems and their formulation are considered in this chapter. In the follow-
ing text, the symbol t in the parentheses indicates the time argument of a
function and k in square bracket indicates the sample of the function at time
t = k. A subscript used with a basis function denotes the basis function with
time shift given by the subscript. For example, the basis function ϕ placed
at kth time index will be given by ϕk = ϕ (t− k) .

3.1 A discrete predictor model

For the purpose of identification, the TVARX model of a system can be ex-
pressed by partitioning input and output elements of the regression vector in
terms of two impulse responses given by huy (t, τ ) and hyy (t, τ ) respectively.

ŷ (t) = (huy � u) (t) + (hyy � y) (t) (3.1)

Let us choose two different finite length basis functions θi, i = 1, 2, . . .P
and γi, i = 1, 2, . . .Q for projecting outputs and inputs respectively in the
approximation space. It may be noted here, that subscripts are used to
denote discrete indices of the basis functions. Assuming a finite number of
basis functions are needed for approximation of the time varying impulse
responses following simplification is possible.

huy (t, τ ) =

Q∑
i=1

bi (t) γi (τ ) (3.2)

hyy (t, τ ) =
P∑

i=1

ai (t) θi (τ ) (3.3)

In general, a linear time varying function can be expressed in function space
as a weighted sum of infinite number of integer indexed basis functions.
The formulation does not require this restriction of using finite number of
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basis functions and for the time being, the generalization i ∈ Z (and Z

shall be skipped from now on) is continued. One can see that output of a
dynamical system can be estimated by linear filtering of projections (given by
the convolutions) of past output and past inputs onto θi and γi respectively,
in the following alternate description of the system derived from (3.1).

ŷ (t) =
∑

i

ai (t) (θi � y) (t) +
∑

i

bi (t) (γi � u) (t) (3.4)

This alternate description of the system shall be used throughout this thesis.
The formulation allows the use of two different set of wavelet basis for output
and input. This permits a better match with the respective wavelet basis
leading to fewer coefficients of the modeled signal in the transform domain.
Now, expressing ai (t) =

∑
l ailθ

∗
i (t) and bi (t) =

∑
l bilθ

∗
i (t) (3.4) can be

written as

ŷ (t) =
∑

i

∑
l

ailθ
∗
l (t) (θi � y) (t) +

∑
i

∑
l

bilθ
∗
l (t) (γi � u) (t) (3.5)

in terms of constant parameters ail’s and bil’s. In general, θi and γi could be
considered as shift invariant generating functions. (θi � y) (t) and (γi � u) (t)
are convolution of output and input with respective ith basis and samples at
t = k, (θi � y) [k] and (γi � u) [k] are called generalized samples [82] of output
and input respectively. It is important to note that for predictive modelling
of a causal system, the discrete generalized samples

∑
τ∈ i=1,2,... θi [τ ]u [k − τ ]

and
∑

τ∈ i=1,2,... γi [τ ] y [k − τ ] are obtained using convolution (computed at
t = k) of past values of input and output with respective basis functions.
Hence without any loss of generality, ail’s and bil’s can be considered to be
parameters of a discrete TVARX model [79] and in that case left hand side
of (3.5) will turn out to be one-step-ahead prediction expressed as

ŷ [k + 1] =
∑

i

∑
l

ailθ
∗
l [k] (θi � y) [k] +

∑
i

∑
l

bilθ
∗
l [k] (γi � u) [k] (3.6)

It may be noted here, that this formulation is similar to the input side mod-
eling used in [24, 90, 91] the difference being adoptation of TVARX model
instead of FIR and use of two different basis functions for approximating
input and output. kth generalized sample of the output projected [72] on ith

basis θi can be expressed in terms of inner product with the time reversed θi

shifted to (placed at) t = k

(θi � y) [k] =
〈
θT

k , y
〉
, θT

k (t) = θk (−t)
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Similarly, kth generalized sample of the input is given by

(γi � u) [k] =
〈
γT

k , u
〉
, γT

k (t) = γk (−t)
For biorthogonal spline wavelets with symmetry θk (−t) = θk (t) and γk (−t) =
γk (t). This implies

ŷ [k + 1] =
∑

k

∑
l

akl 〈θk, y〉 θ∗l [k] +
∑

k

∑
l

bkl 〈γk, u〉 θ∗l [k] (3.7)

where akl’s and bkl’s are time varying model parameters to be estimated.
In case θi and γi are sinc functions, the convolutions in (3.6) pick-up time
samples of input and output and the model reduces to classical ARX type
model. If the output is approximated in multiresolution, the generalized basis
functions are admissible scaling and wavelet functions, as has been explained
in section 2.2.

3.1.1 Spline biorthogonal wavelets as basis

It may be noted here that projecting both input and output eventually onto
the same basis in approximation space has two advantages.

1. If θi = βm � βr
i and γi = βn � βr

i the approximation space is spanned
by βr

i . Hence, scalar addition of projections onto the analysing basis
functions θi and γi in approximation space is admitted.

2. The correlation structure of filtered version of output and input (ob-
tained by convolving with βm and βn respectively) is maintained in the
approximation space.

Scalar addition of projections is a useful technique that could be used in
consistent output prediction discussed later in the thesis. The structure of
θi and γi suggests use of spline biorthogonal scaling and wavelet functions
as basis for system identification because higher order spline functions are
formed by successive convolution of the spline functions of order zero.

βn(t) = βn−1 � β0(t) (3.8)

where β0(t) is the box function spline of order 0.

β0(t) =

{
1, |t| < 1/2
0, |t| ≥ 1/2

(3.9)

The structure of βn is same as that of θi and γi and hence projections on
splines of different orders can be directly added. Moreover, box splines can
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be used as the underlying scaling function φi = φk = φ (t− k) for designing
spline biorthogonal wavelets. As explained earlier, for approximating the
measurement y [k + 1], projections onto the basis functions θi and γi could
be weighted and directly added for every index k, if eventually both input and
output are mapped into the space spanned by the same set of basis. Spline
biorthogonal wavelets are popularly known as Reverse Biorthogonal (RBIO)
Wavelets and are designated as rbio p.p̃ or spline p.p̃. p and p̃ are vanishing
moments of reconstruction and anlysis wavelets. Associated analyzing scaling
function is the spline of degree p− 1.

3.1.2 Identification from pre-filtered input and output

From (3.8) it is easy to see that a spline of order n with integer time shift k,
can be written as

βn
k (t) = βn−1(t) � β0

k(t) (3.10)

Hence projecting output and input onto βm
k = βm−1 � β0

k and βn
k = βn−1 � β0

k

respectively is equivalent to first pre-filtering output with βm−1 and input
with βn−1 before projecting them in the approximation space spanned by β0

k.
Box splines can be used as the underlying scaling function for designing

spline biorthogonal wavelets. It may be noted that since ψ( t
2
) is a linear

combination of box splines φ(t − k), spline biorthogonal wavelets are also
compactly supported polynomial splines of same degree as that of φ (t). Thus
in (3.6), the approximation is no longer based on input and output but on the
basis of low pass filtered version of input and output. In general input and
output are vectors belonging to different spaces. Hence a mapping as such
is necessary for linearly transforming a vector from input or output space to
the approximation space where the parameters akl and bkl are estimated.

Primary objective of pre-filtering however, is to decorrelate samples such
that direct addition of projections for local fit can be considered as a possible
solution. Moreover, thresholding decorrelated generalized samples obtained
by pre-filtering makes the identified model insensitive to noise.

3.2 Modeling with wavelets

It is often useful to formulate the problem in terms of matrix-vector for-
mulation using wavelet projections. In general, it follows from (3.7) that
for a linear Single-Input-Single-Output (SISO) system, the estimate of the
wavelet transform of one-step-ahead output of the system ys, can be written
as a difference equation in terms of wavelet projections of the time limited
input-output data set
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(
Ŵys

)
[k] = Θkw

y [k] + Γkw
u [k] (3.11)

with

Θk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dy
11
...

dy
1K

· · ·
...
· · ·
dy

J1
...

dy
JK

· · ·
cyJ1
...

cyJK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

, Γk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

du
11
...

du
1K

· · ·
...
· · ·
du

J1
...

du
JK

· · ·
cuJ1
...

cuJK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

wy [k] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
θh
11 � y

)
[k]

...(
θh
1K � y

)
[k]

· · ·
...
· · ·(

θh
J1 � y

)
[k]

...(
θh

JK � y
)
[k]

· · ·(
θl

J1 � y
)
[k]

...(
θl

JK � y
)
[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, wu [k] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
γh

11 � u
)
[k]

...(
γh

1K � u
)
[k]

· · ·
...
· · ·(

γh
J1 � u

)
[k]

...(
γh

JK � u
)
[k]

· · ·(
γl

J1 � u
)
[k]

...(
γl

JK � u
)
[k]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It is assumed that each of the sets

{
θh

jk

}
and

{
γh

jk

}
, k = 1, 2, . . . K indepen-

dently spanWj and similarly each of the sets
{
θl

Jk

}
and

{
γl

Jk

}
, k = 1, 2, . . . K

independently span VJ where K is the time limit. Assuming that the system

is identified in subspaces Wj,
(
Ŵys

)
[k] is a scalar. However, the model in

general admits contribution from the basis functions at all scales. For the
sake of brevity subscript j in the formulation is omitted. A similar vector-
matrix formulation using orthogonal wavelet basis is given in [65].
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To start with, let us assume here that wy [k] and wu [k] are obtained by
applying a shift invariant wavelet transform e.g. UDWT suggested by Mallat
and Zhang [48]. wy [k] and wu [k] can be considered as states of the identified
system. To distinguish wy [k] and wu [k] from states of a system x [k] let us
call the former wavelet states. Collecting wavelet states for all k,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

...(
Ŵys

)
[k − 1](

Ŵys

)
[k](

Ŵys

)
[k + 1]

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
. . .

...
...

... · · ·
· · · Θk−1 0 0 · · ·
· · · 0 Θk 0 · · ·
· · · 0 0 Θk+1 · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
...

wy [k − 1]
wy [k]

wy [k + 1]
...

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
. . .

...
...

... · · ·
· · · Γk−1 0 0 · · ·
· · · 0 Γk 0 · · ·
· · · 0 0 Γk+1 · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
...

wu [k − 1]
wu [k]

wu [k + 1]
...

⎤⎥⎥⎥⎥⎥⎦
or in shorter form

Ŵys = ŵys = Θwy + Γwu (3.12)

where a bar on Θ and Γ indicate that they are matrices. Extending the SISO
model for a Multi-Input-Multi-Output (MIMO) system, having p inputs and
q outputs, following can be written.⎡⎢⎣ ŵys1 [k]

...
ŵysq [k]

⎤⎥⎦ =

⎡⎢⎣ (Θ11)k (Θ12)k · · · (Θ1q)k
...

...
. . .

...
(Θq1)k (Θq2)k · · · (Θqq)k

⎤⎥⎦
⎡⎢⎣ wy1 [k]

...
wyq [k]

⎤⎥⎦+

⎡⎢⎣ (Γ11)k (Γ12)k · · · (Γ1p)k
...

...
. . .

...
(Γq1)k (Γq2)k · · · (Γqp)k

⎤⎥⎦
⎡⎢⎣ wu1 [k]

...
wup [k]

⎤⎥⎦ (3.13)

or in shorter form, (
Ŵys

)
[k] = Θkw

y [k] + Γkw
u [k] (3.14)

Here bars on wy [k] and wu [k] indicate that the vectors are formed by con-
catenating wavelet coefficients corresponding to multiple inputs and out-
puts. Θk has q rows and (J + 1)Kq columns and matrix Γk has q rows and
(J + 1)Kp columns. wy [k] and wu [k] are column vectors having (J + 1)Kq
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and (J + 1)Kp rows respectively. It can be observed in the above formula-
tion that there is a J+1 fold increase in the dimensionality when generalized
samples are used. In the applications of multi-rate control, increase in sam-
pling rate is used to ensure that all the poles of the system can be assigned.
For example, in Periodic Output Feedback (POF) control input is sampled
at a higher rate than the rate at which output is sampled. Minimum rate
at which input could be sampled is decided by the controllability index of
the system [11]. Similarly, control of a system identified with wavelet basis
functions also could employ higher rate of sampling which justifies increase
in dimensionality. Here, a few comments are necessary to clarify the formu-
lation.

1. It may be noted that the number of samples are increased to (J + 1)K
in case UDWT is used which is shift invariant. In case DWT (decimated
filter bank implementation) is used, the dimensionality would still be
K as sub-sampling is employed.

2. Dimensionality is drastically reduced in case biorthogonal spline wavelets,
having compact support are employed for modeling. As the support of
the basis functions is compact, a basis shifted far away from k would
not contribute to (Wys) [k]. Hence, Θk and Γk would be sparse.

3. Very often models of many large systems naturally possess interacting
dynamic modes giving rise to widely separated clusters of eigen val-
ues. There are a plenty of such examples in nuclear engineering and
econometrics which are modeled with two or three time scales. The
ill conditioning problem in designing of POF and FOS controllers for
two-time-scale systems is solved by transforming the system in block
triangular form so that the clusters of eigen values are visible [77]. It
is argued here that multiple time scale systems are ideal candidates for
modeling with wavelets. As wavelets tend to naturally cluster the eigen
values, parameter J is reduced to number of clusters.

4. Non linear approximation by thresholding wavelet coefficients also limit
number of wavelet basis functions used for modeling. Hence in practice,
a much lower order problem is solved.

3.3 State space model in wavelet domain

Let us consider a discrete, linear system Sd of order N , given by one-step-
ahead state-space model

Sd : x [k + 1] = Akx [k] +Bku [k] , ∀k (3.15)
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x [k] and x [k + 1] are the state vectors respectively at time t = k and t =
k + 1 where x is a sequence in �n. It would be interesting to find if the
state equation can be expressed in terms of wavelet coefficients. Let us now
examine if it is possible to write

wx [k + 1] = Aw
kw

x [k] +Bw
k w

u [k] , ∀k (3.16)

Reckoning that x and for this formulation w are sequences in �n, one can
write

wx [k + 1] = wx
s [k] (3.17)

x [k + 1] = xs [k] (3.18)

where wx
s [k] is the kth element of the sequence wx, shifted in future by one

time step. To get back the sequence of states in time, more precisely the
relation given by (3.15), an implementation of inverse WT, is designated as
an operator W ∗. Substituting (3.17) in (3.16), collecting instances at all time

wx
s = Awwx +Bwwu (3.19)

Taking inverse WT of both sides of (3.19)

⇒ W ∗Wxs = W ∗AwWx+W ∗BwWu (3.20)

Aw and Bw matrices are formed by collecting Aw
k and Bw

k matrices respec-
tively for all k. (3.19) is of the same form as (3.12) derived for SISO case
(refer (3.12)) . Similarly A and B matrices can be formed by collecting Ak

and Bk matrices respectively for all k. It can be seen that (3.15) is obtained
from (3.20) if W ∗Wxs = xs, W

∗AwWx = Ax and W ∗BwWu = Bu. Hence
under certain restrictive conditions one can work with a prediction model in
wavelet domain as well. This has a very far reaching implication that now
instead of applying the control law on the block of data, it could be applied
at every instant k. In extension, a prediction-correction type algorithm simi-
lar to Kalman Filter [36, 37] can be designed for controlling a process in real
time. A multiscale Kalman filter algorithm is investigated in [15] for optimal
estimation of model parameters.

To complete the one-step-ahead modeling, output equation can be written
in a similar way as the state equation (5.1)

y [k] = Tkx [k] (3.21)

where,

Tk = [T1k T2k · · · TNk] .
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As earlier, collecting samples at all k,

y = Tx (3.22)

Pre-multiplying (3.22) by W , we would like to write it in terms of wavelet
projections as below.

wy = WTx = Twx (3.23)

Matrix T has K rows and KN columns.

T =

⎡⎢⎢⎢⎢⎢⎣
. . .

...
...

... · · ·
· · · Tk−1 0 0 · · ·
· · · 0 Tk 0 · · ·
· · · 0 0 Tk+1 · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎦
In case of single output, wavelet operator matrix W would have KN rows
and K columns. One can see Tw

k in (5.2) is a submatrix of Tw = WT (having
KN rows and KN columns) and needs to be of rank N .

3.4 Parameterization in wavelet domain

The state equation in terms of wavelet coefficients

wx [k + 1] = Aw
kw

x [k] +Bw
k w

u [k] (3.24)

can be shown equivalent to state equation in time

x [k + 1] = Akx [k] +Bku [k] (3.25)

if
1. W is invertible and shift invariant i.e.

W ∗wx
s = W ∗Wxs = xs ⇒ W ∗W = I (3.26)

2. Parameters in measurement and transform domain are related as

W ∗AwW = A, W ∗BwW = B (3.27)

For minimum memory consistent estimation of parameters proposed in this
work, Aw

k and Bw
k and hence Aw and Bw are diagonal matrices. Hence (3.27)

implies that columns of invertible transform W are eigen vectors of A and B
and diagonal elements of Aw and Bw are corresponding eigen values. Let,
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Aw =

⎡⎢⎢⎢⎣
α1 0 · · · 0
0 α2 · · · 0
...

...
. . . 0

0 0 0 αN

⎤⎥⎥⎥⎦
where, α1, α2, · · ·αN are non zero distinct eigen valus and N = NK.

Any linear transformation W in single resolution, satisfying

AwW = WA

can in general be given by [26]

W = V U

One possibility, given U = Q−1, Q =
[
B, AB, · · ·AN−1B

]
(implying Sd con-

trollable) with QÃ = AQ where,

Ã =

⎡⎢⎢⎢⎢⎣
0 0 · · · −aN

1 0 · · · −aN−1

0 1 · · · −aN−2

· · · · · · · · · · · ·
0 0 · · · −a1

⎤⎥⎥⎥⎥⎦
is of rank N. Here (a1 · · · aN) are the coefficients of K characteristic equa-
tions representing the time varying system. The transformation V satisfying
V Aw = V Ã then is given by

V =

⎡⎢⎢⎢⎢⎢⎣
−
(

aN

α1

)
k1 −

(
aN

α2

)
k2 · · · −

(
aN

αN

)
kN

−
(

aN

α1
+ aN−1

)
k1 −

(
aN

α2
+ aN−1

)
k2 · · · −

(
aN

αN
+ aN−1

)
kN

...
...

...
...

k1 k2 · · · kN

⎤⎥⎥⎥⎥⎥⎦
V is of rank N if eigen values are non zero and distinct. Note that if eigen
values are non zero and distinct no coefficient of characteristic equations
(a1 · · · aN) can be zero. Since both U and V are of rank N, W is also of rank
N. Now the question is - “is it possible to find a multi-resolution version of
U or V ?” Design of wavelets through this route is an open problem. If the
answer to the question posed above is “yes” then it can be concluded that a
controllable system can be modeled with wavelet states provided eigen values
of Aw and Bw are non zero and distinct. A method that diagonalizes A is
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MSPCA where system states are transformed to wavelet states followed by
principal component analysis at each scale.

Let us however start with a wavelet filterbank W and impose restrictions
on eigen values of Aw and Bw while identifying the model using the method of
consistent prediction. Although the wavelets are not known to be exact eigen
functions or principal components of any operator, they are approximate
eigen functions of a large variety of operators [19, 87] and hence the imposed
restrictions are justified. The output is synthesized by alternate projection
that fits the best model (across the scales and time) in LS sense to a sparse
wavelet representation of data.

3.5 Summary

This chapter starts with formulating linear TVARX predictor model in con-
tinuous and discrete domain, using generalized basis functions. Advantages
of using spline biorthogonal wavelets as generalized basis functions are ex-
plained. Modeling with spline biorthogonal wavelets can be viewed as identi-
fication with pre-filtered input and output. Further, projections on biorthog-
onal spline wavelets can be weighted and directly added for estimating pa-
rameters using consistent output prediction. In specific, SISO as well as
MIMO linear models for identification in wavelet domain are derived and
wavelet states are defined. Issues related to reduction of dimensionality are
discussed. It is shown that state space model with wavelet states can be
derived if the transform is invertible and shift invariant. Further, under
certain restrictive assumptions, a controllable system can be modeled with
wavelet states. It is argued that the restrictive assumptions are justified be-
cause wavelets are approximate eigen functions and the restrictions can be
imposed in the framework of consistent output prediction.
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Chapter IV

Parameter Estimation by Consistent Output prediction

This chapter discusses the solution method of parameter estimation prob-
lem using consistent output prediction. First a general solution is derived for
a time varying model without considering noise. An approximate LTI model
is derived from the general solution under piecewise linear assumption. The
LTI model is characterized considering output noise in equation error frame-
work. An algorithmic solution (alternate projection) is proposed for model
identification and output reconstruction.

4.1 General considerations

Denote the shifted version of measurement y(t+ T ) as ys(t), where T is the
sampling time. Discrete measurement y [k + 1] can be expressed in terms of
projections of shifted version of the measurement ys(t) onto analyzing wavelet
θl

y [k + 1] = ys [k] =
∑

l

〈θl, ys〉 θ∗l [k] (4.1)

where θ∗l denote the reconstruction wavelet. Minimum error solution of the
estimation problem in LS sense is obtained by minimizing the error func-
tional,

χ =
∑

k

(y [k + 1] − ŷ [k + 1])2 (4.2)

Let us rather work with an equivalent cost function in terms of wavelet
projections

χ1 =
∑

k

(e [k])2 (4.3)

where,

e [k] =
∑

l

〈θl, ys〉 θ∗l [k] −
∑

l

∑
k

akl 〈θk, y〉 θ∗l [k] +
∑

l

∑
k

bkl 〈γk, u〉 θ∗l [k]
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As suggested earlier, in this work parameter estimation is attempted com-
pletely in wavelet domain. This is in deviation from traditional approaches
of identification where model parameters are estimated by minimizing error
functional in measurement space (in time). If orthogonal wavelets are used,
energy of the signal is equal by Parseval’s relation in both time and wavelet
domain and hence error minimization in LS sense in either domain would give
the same solution. The proposed method of estimation of model parameters
based on the idea of consistent output prediction, as formally defined later,
however does not necessarily need the assumption of strict orthogonality.

A brief comparison with the LS approach in the original measurement
space (or the space of filtered measurements) is in place here. The moti-
vation underlying the use of LS approach in the measurement space is that
every data point in that space contains both the signal and noise, and there-
fore predictions should not completely explain every point but be as “close”
as possible to the data points. Modeling based on wavelet projections as
proposed here provides two advantages in this context.

1. The signal and noise are separated to a large extent, if not com-
pletely. Consequently, a large number of projections (coefficients) can
be treated as zero. Usually for penalized local error minimization a
suitable thresholding is applied to determine the subset of projections
that correspond to noise (and setting them to zero), while the remain-
ing subset of projections are adjusted so that they only contain the
signal. Subsequently, the parameters are determined such that the
predictions exactly match these adjusted non-zero projections, which
are much fewer in number than the original number of samples.

2. The projections themselves are relatively much less correlated com-
pared to the original measurements. This is attributed to the fact that
the correlation functions in wavelet domain are known to decay faster
than the correlation functions of the original signal in time [7, 75].
Thus, higher-order systems in the measurement space reduce to lower-
order models in the projection space. This advantage is lost when mod-
eling is carried out on the inverse transformed data, i.e., the filtered
data since we are back in the space of Shannon basis functions.

The second point discussed above is satisfied for several other basis and/or
operator spaces as well. In fact this has been exploited in a few works on
identification using orthonormal functions [60, 61]. The novelty in this work
stems from the first point, which sets the tone for consistent output pre-
diction. The following definitions are inspired by the notion of consistent
estimate proposed by [17] and are necessary to begin the discussion on the
proposed solution.
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Definition 4.1: A signal representation in transform domain is an ordered
collection of significant signal values (obtained by a nonlinear operation like
maxima detection or thresholding).

Consequence of the above definition is that every element in the represen-
tation is a pair formed by the signal value associated with an index changing
in ascending order. For example, thresholded wavelet coefficients of a mea-
surement (of a noisy signal) form a representation of the signal in wavelet
domain because thresholding removes noise coefficients. Hereafter, by repre-
sentation we allude to wavelet representation of a signal. In this context, a
consistent prediction is defined as follows.

Definition 4.2: A consistent prediction is such that the output signal and
its prediction in measurement space have the same signal representation in
the wavelet domain.

A consistent estimate of a signal from a measurement is one whose trans-
form is identical to the transform of the signal component of the measure-
ment. The idea is illustrated in Figure 4.1 with an application of signal
denoising. First consider a synthetic signal marked as original signal in the
top pane of the figure. A noisy version of the synthetic original signal is
obtained by adding a coloured noise of signal-to-noise ratio (SNR) 30 dB.
The denoised reconstructed signal shown in the third pane of the figure is
obtained by thresholding wavelet projections of the noisy signal and applying
iterative alternate projection algorithm to obtain consistent estimate of the
original signal. Error plot in the bottom pane of the figure clearly shows
strong convergence to the consistent estimate. The reconstruction here is
based on significant projections (projections above a threshold) of the noisy
signal.

Wavelet projections of the noisy signal and those of its reconstruction
(indicated by circles and solid lines respectively) are shown in Figure 4.2 in
frequency subbands W2 through W4. Frequency band W1 is found to be
predominantly noise and is rejected in reconstruction. W5 shows the output
of the low pass filter at the highest scale of the Haar filter bank. It is used
without thresholding in this exercise for implementing undecimated wavelet
decomposition. It is not necessary that all the significant projections of the
reconstructed signal (obtained by applying inverse wavelet transform once)
would match with those of the original signal because the reconstruction has
been made from a sparse representation in wavelet domain. Ideally a recon-
struction would qualify as a consistent estimate if it had the same wavelet
representation. The same is forced by equating values of original signal and
its reconstruction at all significant projections in iterative alternate projec-
tion algorithm described in details later.

Definition 4.3: Reconstruction set �, associated with the representation
Rmw

x is a set consisting of all the sequences wxc ∈ l2(Z), called consistent
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Figure 4.1: Consistent estimation of a function in wavelet projections

43



0 50 100 150 200 250
−0.2

0

0.2

W
2

0 50 100 150 200 250
−0.5

0

0.5

W
3

0 50 100 150 200 250

−0.5

0

0.5

W
4

0 50 100 150 200 250

−1

0

1

W
5

0 50 100 150 200 250
−20

0

20

Sample no.

W
6

Figure 4.2: Consistent estimation of a function in wavelet projections
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estimates which have the same representation Rmw
x i.e.

� =
{
wxc ∈ l2(z) : Rmw

xc

= Rmw
x
}

(4.4)

Reconstruction set is the set of signals which have the same wavelet rep-
resentation. The definition is inspired by the notion of consistent estimate
proposed by [17]. An estimate in the reconstruction set of the representa-
tion is obtained by the projection operator P� = WoW ∗. The method of
consistent output estimate uses local error minimization in wavelet domain.
The technique forces error at every significant projection locally to go to
zero. The operator PL extracts the values of projections at the represen-
tative points, sets the projections equal to the projection of measurements
and projects in L space using convex constraints. Rest of the projections
due to noise are set equal to zero. Repeated iteration of alternate projection
operator, P (n), P = P�oPL reduces the normal distances between two spaces
� and L and the alternate projections on � and L strongly converge to the
orthogonal projection on Λ = � ∩ L. The iteration actually converges to
the member of the reconstruction set that minimizes error norm giving the
solution of the optimization problem.

As the generalized samples of the transformed system in wavelet domain
are likely to have less memory compared to the time samples of the original
system in measurement space, the solution of consistent output prediction
using local error minimization will work better with generalized samples. The
memory however is not lost. In fact it remains embedded in the properly
designed wavelet basis [55]. Moreover, a residual dependency structure still
remains between magnitudes of wavelet coefficients both across the scale and
at neighbouring temporal locations. In this context a minimum memory
system can be defined as follows.

Definition 4.4: A system for which output estimate at any instant is
completely decided by the weighted sum of the measurements of input and
output at that instant is called a minimum memory system.

It may be noted that the output estimate could be a prediction. Extend-
ing the arguments, the following conjecture may be stated.

Conjecture 4.1: Any dynamical system can be transformed into a mini-
mum memory system by proper design of representative wavelet basis.

As enumerated in the two advantages above, representation of a noisy
measurement in terms of its wavelet projections strips the noise components
from signal (so that noise components can be removed by amplitude thresh-
olding) as well as concentrates energy in fewer projections. As a result, a
projection becomes less related to the other. Hence, proposition 4.1 follows.

Proposition 4.1: The consistent output prediction, obtained by local error
minimization in wavelet domain, approaches the true solution as the trans-
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formed system (given by wavelet based representation) tends to become a
minimum memory system.

Proof of proposition 4.1 can be constructed by arguing that the true
solution for a minimum memory system shall have no dependence on the
measurements at any time instant other than the ones at present time instant.
If conjecture 4.1 is true i.e., if it is possible to decorrelate wavelet coefficients
of the signal to the extent that the estimated prediction at any time instant is
solely dependent on the input and output measurement of a single (present)
time instant, consistent prediction by local error minimization in wavelet
domain shall give the true solution.

Assuming that the system remains time varying in transform domain it
is wiser to minimize local error instead of global error (or error over a finitely
long time interval). As local error minimization is admissible by virtue of
Proposition 4.1, a near-true solution can be obtained here, using proposed
method of consistent output prediction because wavelets are known to be
approximate eigen functions of a large variety of operators. Wavelet coeffi-
cients may not be fully decorrelated and as a result, amplitude thresholding
may fail to cut-off noise completely and the near-true solution is reached by
alternate projection. Nevertheless, given the wavelet basis and the chosen
thresholds for the modeling exercise, the solution is optimum in LS sense.
Although not exactly true, the solution has certain useful advantages. The
method identifies a complex system (for example with an integrator) with
high order dynamics by a time varying model with fewer parameters.

4.2 Proposed LTV solution using consistent output prediction

Consider identifying a subsystem in wavelet subspace Wj with t = k denoting
the time index of a basis function θjk and γjk in Wj. For the sake of bravity j
is skipped in the index of the basis. Such subsystems can be interconnected
to get the original system. Theoretical background of the proposed solution
is built with the assumption that the projections in transform domain are
derived by an undecimated wavelet transform (for example, using the shift
invariant algorithm suggested by [48]) such that l and k represent indices of
the original measurement sampling grid. However, the theory will also hold
good under mild assumptions, in case decimated wavelet transform is used.
We need to estimate akl, bkl, constant valued parameter of the wavelet model.
As scalar summation is allowed in the space spanned by the wavelet basis,
error in time e [k] can be written in terms of errors in wavelet domain, we[l]

e [k] =
∑

l

[
〈θl, ys〉 −

∑
k

akl 〈θk, y〉 −
∑

k

bkl 〈γk, u〉
]
θ∗l [k]
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=
∑

l

we[l]θ∗l [k] (4.5)

where we[l] = 〈θl, ys〉 −
∑

k akl 〈θk, y〉 −
∑

k bkl 〈γk, y〉.
The parameters are now estimated by setting the partial derivatives of

error to zero. For instance,

∂χ1

∂akl
= 2

∑
k

e [k] 〈θk, y〉 θ∗l [k] = 0 (4.6)

Assuming that there are K input-output pairs of data, both input and output
being sampled exactly on the same time grid k, l = 1, 2, . . . , K, the above
problem is underdetermined because one needs to compute 2K2 coefficients
from 2K equations. However, it is possible to search for the best set of
coefficients (less thanK ) that would minimizewe [l] globally. The underlying
assumption is that the system is time invariant in transform domain. The
assumption is not necessarily true and hence the optimum global solution
may not be a good solution.

A numerical example
A hypothetical numerical example can be considered to show the advan-

tage of time varying modeling which is in general under determined in original
measurement space. Let us take the case of modeling a 5th order time vary-
ing system from 1000 input-output data samples. Strictly speaking, solution
in original measurement space needs estimation of 5000 parameters and is
clearly under determined. On the contrary, the regressor may have a few
significant wavelet projections needed for modeling.

It can be seen from (4.6) that an optimum solution can be obtained by
either setting the error in time, e [k] = 0 (for significant projections) or by
setting projection 〈θk, y〉 = 0 (for noise projections). From (4.5), e [k] = 0
implies we [l] = 0 for all l = k with the assumption θ�

l span the output error
space. we [l] can be set equal to zero by a wavelet basis locally linear time
invariant model, estimating projections of the shifted measurement as

ŵys [l] = 〈θl, ys〉 =
∑

k

akl 〈θk, y〉 +
∑

k

bkl 〈γk, u〉 (4.7)

(4.7) is underdetermined and coefficients of the linear filters given by akl

and bkl can be estimated only with the assumption of local time invariance.
A strictly time varying solution can however, be approached assuming the
system is minimum memory (by omitting the summations over k in (4.7)).
Validity of this assumption is discussed at length earlier. In summary the

47



proposed method works as follows.we [l] can be set equal to zero if coefficients
of wavelet expansion of the shifted measurement at every time instant k, is
set equal to the weighted sum of coefficients of wavelet expansion of output
〈θk, y〉 and input 〈γk, y〉. Thresholding in wavelet domain is known to reduce
noise and is a solution to the (penalized) least squares problem. Let λu and
λy be two strictly positive values. In (penalized) LS minimization, only those
wavelet coefficients of input and output are used which have modulus values
more than λu and λy respectively. Let us define those as significant wavelet
coefficients. Thresholding allows nonlinear estimation of the output and the
method works as follows.

1. It sets the local error i.e. the error at the location of each significant
wavelet coefficient of the shifted output to zero.

2. Rest of the projections are considered to be noise and are directly set
equal to zero.

Reckoning that we [l] for all l = k is obtained by subtracting weighted scalar
summation of wavelet coefficients at kth instant from the wavelet coefficient
of the shifted measurement at kth instant (summation is omitted), l in the
subscript of a and b can be dropped. Based on the above discussion solution
of consistent output prediction can be written as

〈θk, ys〉 − ak 〈θk, y〉 − bk 〈γk, u〉 = 0
∀k ∈ {Iu : |〈γk, u〉| ≥ λu

⋂
Iy : |〈θk, y〉| ≥ λy}

ak = bk = 0 ∀k /∈ Iu and ∀k /∈ Iy

(4.8)

If Dim Iu ∩ Iy = M , the system is optimally identified by ak and bk,
∀k ∈ {Iu

⋂
Iy}, in M − Dim subspace with M � K. At each k it is still

required to find two parameters ak and bk from a single equation (4.8). An
algorithmic solution for identification of an LTV model is derived in section
4.4.2. The derivation is motivated by Theorem 4.1 derived later in this
chapter.

As the system is identified in wavelet domain, a method is needed to be
devised to reconstruct the system output in time domain for model testing
and cross validation. Note that the consistent output prediction is based on
a subset of a sequence of projections. The reconstruction algorithm works by
alternately projecting the output prediction on L and � spaces. The output
prediction is a wavelet transform of a function in time and belongs to � if
and only if reproducing kernel equations hold [47]. Projection operator on �,
P� = WoW ∗ is invariant in �. For the algorithm to work, it is necessary that
the projection operator, PL takes the solution out of � space by violating
the kernel equations.
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Application of the operator PL followed by P� can be seen as a mapping
from a space of lower dimension to a space of higher dimension and hence
the reconstruction is not unique. P� projects an intermediate solution, in
the affine space L, back to time and then again the crude estimate of output
prediction, in time, forth to transform domain. However, projection paths
of P� on � and PL on L are different. The projections are orthogonal on
respective spaces if wavelets are symmetric or anti-symmetric which is the
case with spline biorthogonal wavelets. Minimum norm solution in �⋂L is
approached iteratively by projecting the solution alternately on � and L i.e.
alternate projection converges to the member of the reconstruction set that
minimizes the cost function in (4.2).

An important point to note here is that at indices k for which 〈θk, y〉 = 0,
error in time e [k] is not necessarily zero. At all other k, e [k] is exactly equal
to zero. The result shows close similarity to that obtained in compressed
sensing [78] and indicates signal representation with fewer measurements at
indices for which e [k] = 0. It may be noted that in the above derivation,
no assumption of strict orthogonality has been made and hence biorthogonal
spline basis of order higher than 0 are admissible. It is however, necessary to
ensure stability of reconstruction which readily follows because coefficients
in transform domain are bounded [90] from the assumption of Riesz basis
(refer (2.9)).

The basic tenets of the proposed theory is validated experimentally as the
results are documented in this and subsequent chapters. First an approxi-
mate LTI model shall be built in equation error framework considering noisy
measurements.

4.3 Output prediction in presence of noise

Although the formulation of model estimator is in general time varying, it is
useful to identify an LTI model in each subband when it is known a priori
(from physics) that the process is approximately LTI (mildly non linear or
time varying). One way to account for the un-modeled non linearity is to
model it in a piecewise linear fashion by assuming contribution from input
and output to be constant over each piecewise linear region. Based on the
idea, a simplification is possible in the form

ak = k1αk, bk = k2αk, (4.9)

where intuitively, for one step ahead prediction, k1 and k2 can be seen some-
way related to the output auto-correlation and input-output cross-correlation
coefficients at lag one. Hence, the following theorem can be proved by sub-
stituting (4.9) in (4.8) considering the size of Iu

⋂
Iy = M .
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Theorem 4.1: Assuming that the noise in the estimate is stationary, iid
N(0, σ2) distributed, ak and bk are given by ak = k1αj, bk = k2αj where
k1 and k2 are two real valued constants independent of time, then the first
order estimate of an LTI model parameters at scale j based on the consistent
output estimate using local error minimization in wavelet domain is given by

α̂j =
1

M

∑
k=Iu

⋂
Iy

[ 〈θk, ys〉
k1 〈θk, y〉 + k2 〈γk, u〉

]
(4.10)

4.3.1 Characterization of the LTI model in presence of noise

It can be assumed here, that in the identified time varying model, variations
in the system parameters are only due to noise in the output. As discussed
in the last subsection, for an LTI model, ak = k1αj and bk = k2αj , k1, k2

and αj remaining constant over time in the subband (scale) indexed by j.
Let us assume that the output measurement is corrupted with stationary,
iid N (0, σ2) distributed (Gaussian, white) noise. Let superscript s indicate
signal component and superscript n indicate noise component in the output
measurement. Then from (4.8), it can be seen that a parameter can be
expressed as a sum of a deterministic and a random component.

αj = αj + ∇αj(t) (4.11)

with

αj =
〈θk, y

s
s〉

k1 〈θk, ys〉 + k2 〈γk, u〉
and

∇αj =
〈θk, y

n
s 〉

k1 〈θk, ys〉 + k2 〈γk, u〉

∀k ∈
{
Iu : |〈γk, u〉| ≥ λu

⋂
Iy : |〈θk, y〉| ≥ λy

}
It may be noted that noise in the regressor given by 〈θk, y

n
s 〉 is considered

to be removed by thresholding and hence the denominator of both the terms
on the Right Hand Side (RHS) of (4.11) are deterministic. Under the as-
sumption that signal and noise components are independent of each other,
the uncertainty in the parameter, given by the second term on the RHS of
(4.11) is also zero mean random because

E (∇αj) =
E (〈θk, y

n
s 〉)

k1 〈θk, ys〉 + k2 〈γk, u〉 = 0 (4.12)
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where E denotes expectation operator. The variance term of parameter error
can be estimated as

P̂ = E
(
(∇αj)

2) =
E
(〈θk, y

n
s 〉2

)
(k1 〈θk, ys〉 + k2 〈γk, u〉)2 =

σ2

R2

where, R = (k1 〈θk, y
s〉 + k2 〈γk, u〉)

Since, ys and u are finite, R is also finite and decides the bound of parameter
error.

Max
(
P̂
)

=
σ2

min (R2)
=

σ2

min
(
(k1λy)

2 , (k2λu)
2
)

It can be seen that the bound of parameter uncertainty can be reduced by
increasing thresholds. Hence accuracy of the identified model depends on the
level of threshold chosen by the designer. At the same time, higher threshold
could possibly remove significant signal component thereby compromising
usefulness of the identified model. A tradeoff in this regard is necessary to
meet the design objective as well as quality of identification.

4.3.2 A discussion on the assumption of Gaussianity

The assumption that a measurement is corrupt with white Gaussian noise is
possibly the most common assumption about the noise distribution because
the assumption holds perfectly in large class of practical systems. Moreover
the assumption makes mathematical tractability simpler since a Gaussian
distribution can be completely characterized by its first two moments. For

Gaussian white noise the largest observation is of size O
(√

log (K)
)

and

can be successfully removed for a large range of smooth signal by applying
a wavelet transform, thresholding the wavelet coefficients and then inverting
the transform. If the noise has mild form of non-Gaussianity with suffi-
ciently many finite moments, level-dependent threshold (somewhat higher
than the Gaussian case) works for a limited range of smoothness classes
[31]. However, in certain applications such as in analog telephony, radar sig-
nal processing and laser radar imaging data exhibit strongly non-Gaussian
noise distribution. A strong non-Gaussianity e.g. Cauchy distributed noise
has no moments and is characterized by sudden very large deviations. In
this case thresholding of linear wavelet transform coefficients fails to remove
noise. Median-interpolating pyramid transform - a kind of nonlinear wavelet
transform has been suggested for denoising measurements with such strong
non-Gaussian noise [22]. Shrinkage rule for the class of strong non-Gaussian
noise, specifying a prior distribution on wavelet coefficients has also been
suggested based on wavelet based Bayesian approach[1].
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4.4 Signal reconstruction using consistent estimate

The structure of (4.10) suggests that an iterative scheme can be formulated to
find the LTV solution. Parameter updating happens twice in each iteration.
In each updating either input or output (not both) is used for prediction such
that solution of (4.8) reduces to estimation of only one parameter. For intu-
tive understanding the iterative algorithm can be described in the following
way. If we start modeling the system as an AR process, next in the same
iteration the residue is modeled as an FIR process. The algorithm continues
to iterate seeking the minimum norm solution by alternately projecting it on
L and � [55]. It is important that operator PL takes the solution out of �
space. Since at every iteration, the solution is estimated once using the pro-
jections of the output followed by using those from the input, the operator
PL takes the solution out of space �, even when decimated Discrete Wavelet
Transform (DWT) with orthogonal wavelet basis is used.

Before we embark on the method of alternate projection let us formally
define different representations in wavelet domain.

Let L0w
x be the set of arguments of a signal wx such that the operator

PE , extracts values of wx at representative points

PEwx = (L0w
x, V0w

x) (4.13)

where

V0w
x = wx [k] , ∀k ∈ L0w

x

The difference between PL and PE is that PL also includes projection (us-
ing convex constraints) of PEwx in L space. Using the definition of PE , a
representation Rm is defined as

Rmw
x = (PE(Wjx)1≤j≤J , V0(Wjx)1≤j≤J , V0(VJ+1x)) (4.14)

On an irregular grid, arguments of four wavelet representations are defined
as below.

1. Wavelet Representation with Missing Samples (WMSR) (obtained by
amplitude thresholding)

L0ms(w
x) = {k : |wx [k]| > λ} (4.15)

2. Wavelet Modulus Maxima Representation (WMMR)

L0mm(wx) = {k : |wx [k + 1] | < |wx [k] |, |wx [k − 1] |≤|wx [k] |}⋂
{k : |wx [k]| > λ} (4.16)
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3. Wavelet Extrema Point Representation (WEPR)

Loe(w
x) = {k : wx [k + 1] < wx [k] , wx [k − 1]≤ w [k]}⋂

{k : wx [k + 1] > wx [k] , wx [k − 1] ≥ wx [k]} (4.17)

4. Wavelet Maximum Curvature Point Representation (WMCPR)

L0mc(w
x) = {k : C(wx [k + 1]) < C(wx [k]), C(wx [k − 1]) ≤ C(wx [k])}

⋂
{k : C (wx [k]) > Cth} (4.18)

where C denotes curvature. Let us now define the representation Rm for
WMSR as below

(L0ms(Wjx)1≤j≤J , V0(Wjx)1≤j≤J , V0(WJ+1x)) = (L(wx), V (wx)) (4.19)

4.4.1 Stability of reconstruction from wavelet representation with missing
samples

Modeling from missing sample using wavelets is an active research topic [27].
To prove stability of reconstruction from WMSR, Theorem 1 of [4] is restated
for the sake of completion.

Theorem 4.2: Any multi-scale maxima representation is an inherently
bounded Adaptive Quasi Linear Representation (AQLR).

The theorem is valid as wavelets satisfy Riesz frame conditions.
It can be easily seen that

‖Wjx
c‖ ≤ K1 ‖Vmaxw

x‖ ≤ K2 ‖V wx‖ , K1, K2 > 0 (4.20)

where Vmax is the set of multi-scale maxima values in maxima representation.
The first inequality is proved in Theorem 1 in [4] and the second inequality
holds because L0mm ⊂ L0ms. This implies

‖Wjx
c‖ ≤ K ‖V wx‖ , K > 0 (4.21)

‖xc‖ ≤ K ‖V wx‖ , K > 0 (4.22)

Hence, we state Corollary 4.1: WMSR is also an inherently bounded AQLR
and reconstruction is stable.
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4.4.2 Parameter estimation of the LTV model by alternate projection

The alternate projection algorithm starts with significant wavelet coefficients
(or the wavelet representation with missing samples) and seeks the solution
to have minimum local error norm by alternately projecting the solution or-
thogonally on L and �. At every iteration, the solution is estimated once
using the projections of the input (path a in Figure 4.3) followed by using
those from the output (path b in Figure 4.3) [55]. The alternate projection
algorithm gives better results compared to that from exact implementation
of 4.10 as restrictive constraints given by 4.9 are not needed in the imple-
mentation. An implementation of the algorithm works through the following
steps in each iteration z with initial values of parameters â0−

jk all set to zero.

1. Intermediate values of parameters are computed at each scale j and
each time instant k given by âZ−

jk using contribution from significant
wavelet coefficients of output.

2. The output estimate is projected in time domain (first equality) and
again back onto wavelet basis (second equality).

3. Final values of parameters for the iteration given by âZ+
jk is computed

using contribution from significant wavelet coefficients of the input.

The algorithm listed below continues till the mean squared errors between
two consecutive iterations satisfy εz − εz−1 < εth, where εth is the threshold
of the incremental error.

1. âz−
jk = â

(z−1)+
jk +

⎡⎣〈θk, y
s〉 −

〈
θk, ŷs(z−1)+

〉
〈θk, y〉

⎤⎦ ,

∀k ∈ {Iy : |〈θk, y〉| ≥ λy}

âz−
jk = â

(z−1)+
jk ,

∀k /∈ {Iy : |〈θk, y〉| ≥ λy}

2.
∑
j,k

âz−
jk 〈θjk, y〉 θ∗jk (t) = ŷsz−

=
∑
j,k

〈
θjk, ŷsz−〉

θ∗jk (t)
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Figure 4.3: Alternate projection algorithm

55



3. b̂z+jk = b̂z−jk +

⎡⎣〈θk, y
s〉 −

〈
θk, ŷsz−〉

〈γk, u〉

⎤⎦ ,

∀k ∈ {Iu : |〈γk, u〉| ≥ λu}

b̂z+jk = b̂z−jk ,

∀k /∈ {Iu : |〈γk, u〉| ≥ λu}

4.
∑
j,k

[
b̂z+jk 〈γk, u〉 +

〈
θjk, ŷsz−〉]

θ∗jk (t) = ŷsz+
=
∑
j,k

〈
θjk, ŷsz+

〉
θ∗jk (t) ,

5. εZ =
1

K

∑
k

(
ŷk+1 − ŷz+

k+1

)2

4.5 Experiments in the liquid zone control system

The mathematical model of the LZCS is useful in analysis work such as
the study of reactor power variations during normal operational transients,
besides in control system design. The normal operation of the LZCS full
scale test setup consists of maintaining ZCC water levels at the desired level
set points and increasing it or decreasing it at controlled rates. Sets of
input output data were collected from experiments conducted in LZCS test
setup for obtaining mathematical model of the water level dynamics in both
open loop and closed loop cases. A prediction error method will consistently
estimate the system under certain conditions [43] even if the data is collected
under feedback. Here, the closed loop system is identified from reference
input to output. Open loop system can be retrieved form the identified
system making use of the known regulator. In next chapter, a method of
controller design, using parameters of the identified open and closed loop
models, is discussed. As the ZCC water level depends essentially on the
water inflow and the inflow varies, in turn, depending on the position of inlet
control valve of the ZCC, the input data are the samples of the signal to the
inlet control valve and the output data are the samples of ZCC water level
signal.
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Figure 4.4: Open loop input-output data set for training.

4.5.1 Open loop case

Input output data for one ZCC at a time was collected by isolating the
ZCC for a short duration from the automatic level controller and applying
Pseudo Random Binary Sequence (PRBS) input to the inlet control valve
of the ZCC. PRBS is popularly used to expose all the system modes in a
system identification problem. PRBS comprises of a sequence of variable
duty cycle square pulses which can assume two states. This ensures that
the process component to be identified is persistently excited. Here, PRBS
is used as the reference or control input to the valve. The amplitude of the
input signal was equivalent to 10 % opening of the inlet Control Valve (CV)
around the steady state position. This magnitude is large enough to obtain
a good signal-to-noise ratio. Figures 4.4 and 4.5 depict the input output
data sets, collected at 50 ms uniform interval, used later for model training
and validation respectively. After the collection of data, the inflow control
valve was switched back to the automatic level controller. The water level
after the experiment is found to be slightly different from the steady water
level before the experiment, but its effect on identification is expected to be
insignificant. Hence, this deviation was ignored.
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Figure 4.5: Open loop input-output data set for validation.
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4.5.2 Closed loop case

Identification experiments in closed loop are performed to take care of the
open loop system pole, located at origin. In the experiments, the water level
in each ZCC was regulated by its level controller with initial level setpoint
at 30%. Input output data for one ZCC at a time were collected by varying
its level setpoint in the range of 30% to 80% and the level was allowed to
stabilize at the new setpoint. In each experiment, the water level is brought
back to 30% at the end of the experiment. The variations in level setpoint
are designed to be large so as to obtain a good Signal-to-Noise Ratio (SNR)
such that the variation of water level due to process noise is minimum. Such
an input design for the purpose of identification would ensure that effect of
noise on the parameter is negligible. Figures 4.6 through 4.9 depict four sets
of input output data collected at 50 ms uniform interval, in four experiments
(experiment 1 through 4), conducted on the LZCS test set-up. Input sig-
nal u(k), is shown as the equivalent desired position of the CV in terms of
percentage opening (%OPN). The output signal y(k), is the level of water
expressed as percentage of full scale (%FS). Full scale level means that the
height of the water column is equal to the full height of the ZCC. The control
input to the valve is changed from one level to the new level in step manner
by the controller, on demand, to change the water level in the compartment.

4.6 Validation of assumptions

It would be interesting to see the correlation functions i.e. auto-correlation
and cross-correlation functions of the input and output data set (refer figure
4.10, the same figure is used again in Appendix B for estimation of time
delay of the process). As expected, system output is less strongly correlated
with itself, as compared to that of input. But one can see that the plant is
predominantly an AR process because the input-output cross-correlation is
not very high.

Let us now check output auto-correlation in frequency sub-bands (Figure
4.11) generated by a realization of UDWT. It can be seen that except for
approximation by W6 LPF , width of the main lobe of the auto-correlation
function has greatly reduced. So it can be concluded that the system can
be modeled as reduced memory systems in sub-bands. Lower frequency sub
bands show stronger correlation justifying decimation.

4.7 Identification of the LZCS with wavelet basis

A simple model of the LZCS can be developed from first principles consid-
ering a zone control compartment (ZCC) as a tank in which the water level
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Figure 4.6: Input output data indicating the equivalent %OPN of the CV and
level of water as %FS: Water level is raised from 30% FS and is broughtback
to 30% FS fourtimes.
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Figure 4.7: Input output data indicating the equivalent %OPN of the CV
and level of water as %FS: Each time water level is changed from 30% FS to
60% FS and is allowed to settle there.
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Figure 4.8: The input output data indicating the equivalent %OPN of the
CV and level of water as %FS in LZCS: Water level is raised from 30% FS
and is allowed to settle at five different levels.
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Figure 4.9: The input output data indicating the equivalent %OPN of the
CV and level of water as %FS in LZCS: Water level is raised from 30% FS
and is brought back to 30% level after excursion over four different steady
levels.
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Figure 4.11: Auto-correlation functions in sub-bands
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Figure 4.12: Validation result with a simple first order model.

variation is caused due to variations in inflow that occurs when position of
control valve changes due to variations in input. Figure 4.12 compares the
estimated output of such a simplistic model with actual output shown in
Figure 4.7.

Although such a simplistic first order model is adequate for the initial
design of control system, simulation needs rigorous models of LZCS. This
would require knowledge of valve design data including the characteristics of
its different accessories. Moreover, for obtaining a reasonably accurate model,
it would also be necessary to account for the transport delay as the water
level in the ZCC would vary after a finite delay and not instantaneously
following a change in flow through the control valve. This is because of
considerable length of piping between the control valve and ZCC. Similarly
due to large length of tube from the purge flow regulator to ZCC and from
the ZCC to gas outlet header, there could be delay in sensing the variation in
ZCC level. In view of these difficulties, developing the mathematical model
for ZCC water level dynamics employing a suitable method of identification
from measurement of input and output is preferred.

Identification of LZCS with classical input-output models is attempted
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Figure 4.13: Validation result with a high order BJ model.

first. Initially, identification with sinc basis ARX model and its variants were
attempted. ARX type models showed unacceptable mismatches between
output of the model and actual output in all the experiments. Most of
the lower order ARX type models offered very poor match clearly failing to
capture dominant dynamic modes. Simulated BJ model identified shows best
result where order of all filters is 9. The model is identified based on the data
given in Figure 4.6 and cross validation result with the data given in Figure
4.7 is shown in Figure 4.13.

The mismatch does not reduce even by increasing the filter orders or fine
tuning other parameters. Such a high order model in any case is not fit
for the purpose of control system analysis. It was also observed from the
pole-zero plot, that the identified system is almost always unstable, having
poles outside the boundary of the unit circle. Even when the poles are inside,
nearness to the boundary compromises the robustness of the system. The
open-loop LZCS system is essentially an integrator with nonlinearities due
to control valve and flow characteristic. The instability to the step input is
due to the response of the integrator and associated nonlinearity which could
not be captured appropriately by sinc basis used in the ARX type models. A
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common practice for identifying a system with an integrator is to differentiate
the input prior to identification. Although it slightly improves the match,
the noise is often amplified. In conclusion, the modeling exercise with sinc
basis ARX model and its variants was not satisfactory. Hence, modeling
based on wavelet basis was explored. Wavelet based models are expected to
perform better due to their excellent local approximation property. In case
of wavelets, systems are approximated in a shift invariant subspace and the
idealized restriction of band limited approximation is loosened. As a result
lower order models are expected with wavelet bases.

Traditionally, efficacy of a technique of system identification is demon-
strated by unbiased estimate of system parameters. It is proposed here how-
ever, to check the local consistency in the output and verify the model by
cross-validation. Unbiased estimates of system parameters are obtained in
the process as suggested in Section 4.3.1. It is argued that for all practical
purposes it is sufficient to cross validate a model exhaustively with different
inputs for testing the consistency in the output.

The proposed method of system identification in wavelet domain based
on consistent output estimate has been applied to the LZCS and the results
are presented in next section. Decimated wavelet transform is not shift in-
variant and aliasing takes place in wavelet domain as very often crude filters
are used. Detailed description of decimated wavelet transforms and design
methods of filter banks could be found in [73]. Assuming no loss of significant
signal due to thresholding the results however, would be commensurate with
the theory developed for the shift invariant wavelet basis. The advantage of
using decimated wavelet transform is that for predicting an output signal of
length N with wavelets, numbers of basis functions used are also N . There
are of course 2N numbers of wavelet coefficients involved when both input
and output constitute the regressor. However, as the method of consistent
estimate solves only N equations due to N basis, the proposed method of
solution uses a linear combination of input and output at each of these N
points. For modeling with wavelet basis, the decimated wavelet transform
is used where past outputs are used in addition to past inputs (delayed) to
predict the one-step-ahead estimate as given in (3.6). The idea is to get the
prediction as a consistent estimate such that the significant coefficients in
wavelet domain, of the shifted output signal and weighted sum of wavelet co-
efficients of the input and the output match at every instant. The estimated
time-delay between the input and the output is of the order of 3.5s which
was computed using the technique described in B.4.
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4.8 LTI model of the LZCS with orthogonal wavelets

For identification of an LTI model of the LZCS with orthogonal wavelets, it
is assumed that θi = γi, such that working is possible in the output space.
This is permitted, because for a SISO system, both input and output are
scalars and belong to the same space. It may be noted that, given a certain
number of basis functions, reconstruction from orthogonal projection gives
minimum error in least squares sense. The results presented in this section
are derived using orthogonal wavelet basis.

As mentioned earlier, θi is designed to minimize the number of coefficients
of wavelet transform of the input by finding a good match of the signal with
the basis and its dilated versions. The best basis, in this sense, would have
maximum cross correlation with the signal and minimum with the noise,
assuming that noise is uncorrelated with the signal. As input is a sequence
of steps, db1 of Daubechies family of wavelets (Haar wavelet) is chosen to
represent the signal in wavelet domain. A good match of the input signals
with the Haar wavelet results relatively less number of significant coefficients
in the decomposition. A sparse representation thus obtained, reduces number
of basis functions used to represent a system.

4.8.1 Open loop model

In open loop case, first the results are presented considering the system to
be piecewise linear, time invariant. Parameters are estimated by exactly
implementing (4.10) with k1 = 0.99 and k2 = 0.01. Figure 4.14 shows the
result of training, using data in Figure 4.4. The identified model is validated
with the data in Figure 4.5 and the test results are shown in Figure 4.15. The
result shows clear deviation of the estimate from the actual measurement at
least on two occasions (time intervals). From this point onwards, we switch to
iterative estimation algorithm based on alternate projection and the results
presented in subsequent sections are based on the algorithm listed in section
4.4.2.

4.8.2 Closed loop model

In closed loop case, data of Figure 4.8 is used for identification of the model
and data of Figure 4.9 is used for validation of the model. The proposed
iterative algorithm estimates the time invariant parameters at each scale.
Alternate projection scheme described in section 4.4.2 is used for reconstruc-
tion of the estimate of the shifted output. In each iteration, the optimum
estimate of âz+

j as defined in section 4.4.2 is computed as the mean of all âz+
j s

over each scale, while changing the scale index from one to eight. As the
algorithm converges, âz+

j s for input and output may come out to be different
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Figure 4.14: Training of the open loop, piecewise linear, time invariant model
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Figure 4.15: Validation of the open loop, piecewise linear, time invariant
model
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Table 4.1: Wavelet LTI Model of the LZCS
Scale index, j 1 2 3 4 5 6 7 8 9

aj 0.00 0.18 0.06 0.95 0.98 0.99 1.02 0.98 1.00
bj -1.91 3.77 -0.96 -0.99 -4.16 -0.02 0.84 0.60 0.02

as no restrictive assumptions were made as in Theorem 4.3. The LTI model
of the LZCS thus obtained, is given by two sets of multipliers as shown in
Table 4.1 .

Note that low frequencies in the input contribute more in the estimate.
However, similar conclusion cannot be made for the output.

The iterative scheme attempts to use minimum number of basis by thresh-
olding wavelet coefficients for the reconstruction. Thresholds λu and λo are
taken as 0.05% of the maximum absolute values of wavelet coefficients of
input and output respectively at each scale. The choice is a balance between
reducing the number of basis functions and quality of approximation.

The reconstructed water level output signal after 7 iterations and actual
water level output signal are compared in Figure 4.16. Although approxi-
mated by a Haar wavelet which is derived from zero order spline, an excellent
match is observed between the consistent prediction and the actual output.

The identified LTI model based on the input output data given in Figure
4.8, thus obtained, is now tested to check if actual output can be predicted,
also for the input output data shown in Figure 4.9. The output in this case,
is again measured by exciting the control valve with a different sequence of
steps. The cross validation result is shown in Figure 4.17.

Note that an excellent visual match is observed between the model output
and the actual output level of the ZCC. The result conclusively proves the
validity of proposed method of parameter estimation based on consistent
output estimate. In the next section LTV modeling of the LZCS with spline
biorthogonal wavelets is investigated.

4.9 Modeling with biorthogonal spline wavelets: LTV and LTI
models

The LTV modeling approach due to [90, 91] which assumes time invariance
over the length of support of the spline biorthogonal basis functions, when
applied to the LZCS, failed in cross validation. This is primarily because
the approach precludes non linear operation such as thresholding, resulting
locally unstable solution. The instability arises due to ill conditioning of the
regressor correlation matrix and invalid assumption of local time invariance
failing to model rapid changes in the response. In this section, the results
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Figure 4.16: Result of model identification using data of Figure 4.8: Recon-
structed ZCC water level after 7 iterations and actual water level output.
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Figure 4.17: Result of cross validation of the identified model with a new
input: Model output is compared with the actual output shown in Figure
4.9
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of LTV modeling of the LZCS using consistent output prediction with spline
biorthogonal wavelets are presented.

4.9.1 Discussion on the choice of spline biorthogonal wavelets

Two spline biorthogonal wavelets of different degrees are used, one for pro-
jecting the input and the other for projecting the output. It has been shown
in chapter 3 that even input side modeling with spline biorthogonal wavelets
permits use of two different wavelets for approximating input and output.
The choices are motivated by the economy of representation. Wavelets can
be seen as matched filters i.e. the guideline for choice is to pick up the wavelet
which correlates best with the signal such that representation is maximally
sparse. Wavelet RBIO1.5 is used for projecting or analyzing the input. As
in db1 the analyzing scaling function of RBIO1.5 is a box function or box
spline of degree zero. As has been observed earlier, projection of step or
PRBS input on the scaling and wavelet functions of RBIO1.5 shall minimize
number of significant wavelet coefficients.

As explained earlier a higher order spline can be considered as convolution
of a low pass filter with a lower order spline. The low pass filter removes
noise from output and the process can be viewed as identifying the dynamic
modes using pre-filtered output. Output measurement is usually noisy and
reflects excited dynamic modes of the system which limit output bandwidth.
Approximation with a spline function of higher degree is more appropriate
because it economizes number of model parameters as well as derives an
accurate model insensitive to noise. RBIO2.4 has been used for projecting the
output. The analyzing scaling function of RBIO2.4 is a triangular function
or box spline of degree one.

4.9.2 Open loop model

In open loop case, an LTV model is trained with the data in Figure 4.4 to
get the consistent output estimate (refer Figure 4.18) (so that the signifi-
cant coefficients in wavelet domain match). The identified model is tested
on the second set of data shown in Figure 4.5, again excited by a PRBS
input. A threshold of 0.05 of the maximum coefficient value has been used
for thresholding at each scale, both at input and output stage. A reasonable
match is observed between the model output and the actual output when
cross validation is tried with the new data set. The result is shown in Figure
4.19.
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Figure 4.18: Training of the open loop model
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Figure 4.19: Validation of the open loop model
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Figure 4.20: Result of model identification with spline biorthogonal wavelets
using data of Figure 4.8

4.9.3 Closed loop model

As earlier, data of Figure 4.8 is used for identification of the model and data
shown in Figure 4.9 is used for validation of the model. The proposed it-
erative algorithm estimates the time varying parameters at each scale. The
reconstructed water level output signal of the training set and actual water
level output signal are compared in Figure 4.20. One can observe an excellent
match between the consistent prediction and the actual output. The identi-
fied LTV model, is now tested for the input output data shown in Figure 4.9.
The cross validation result of the LTV model is shown in Figure 4.21. Again
a good match is observed between the model output and the actual output
level of the ZCC. Superimposed on the same figure is the cross validation
result of the LTI model which shows a better match with the actual output
indicating that the system is predominantly LTI..

Comparison of validation results in Figure 4.17 and 4.21 show that a
better match is obtained in transient and steady state responses with spline
biorthogonal wavelets. The results validate use of spline biorthogonal wavelets
as basis for identification.
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Figure 4.21: Result of cross validation of the identified spline biorthogonal
wavelet model with a new input.
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Table 4.2: Variation in Normalized Mean Square Error with Signal-to-Noise
Ratio of the output (Input and output threshold is kept at 0.05% for both
identification and validation)

Signal-to-Noise-Ratio Normalized Mean Square Error

Measured Output (>50dB) 0.015
30 dB additive noise 0.015
20 dB additive noise 0.025
10 dB additive noise 0.045

As the method is validated on the data obtained from a full scale test set
up of the LZCS, it can be considered sufficiently rugged and insensitive to
process and measurement noise usually present in an actual system. How-
ever, a numerical study of the effect of an additive, synthetic output noise
(white Gaussian) on identification and validation is summarized in Table 4.2.
Normalized Mean Square error (NMSE) shown in the table is given by

NMSE =

∑K
k=1

(
y [k] − ˆy [k]

)2

∑K
k=1 (y [k])2

where y [k] is the measurement and ŷ [k] is its estimate.
For the same threshold of 0.05%, Normalized Mean Square Error (NMSE)

in output estimate increases as SNR falls i.e. as the noise increases. For out-
put with low SNR, NMSE can be improved by increasing threshold, obviously
because higher threshold would pre-filter more noise. Choice of best thresh-
old depends on the level of noise and is systematically studied in wavelet
literature [20, 21]. For the present application of identification of the LZCS,
threshold is decided such that NMSE in validation is low and parameters are
insensitive to small change in threshold value.

4.10 Summary

This chapter presents the method of estimation of model parameters in
wavelet domain, using consistent output prediction. It is established that
the method is an efficient alternative to classical solution of least squares
minimization problem. A strictly time varying LS minimization solution of
a linear prediction model, with wavelet basis functions is derived. The solu-
tion is near true and optimum given the choice of the wavelet basis and the
level of threshold. The method minimizes the local error and provides a so-
lution consistent with the output measurement in wavelet domain. Validity
of the assumptions made while deriving the new solution is justified based
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on the correlation structure of input and output data in transform domain.
An approximate piecewise linear model is derived as a special case of general
LTV model and it is proved that the parameter estimates of the linear model
by consistent output prediction are unbiased and bounded. The estimator
of the approximate LTI model has error bounds that can be controlled by
the choice of threshold. The characterization considers additive noise in the
output measurement and handles it in equation error framework. For testing
and validation of the identified model, it is necessary to devise a method
to reconstruct the model output. Reconstruction from a representation in
wavelet domain is discussed. A proof of stability of the reconstruction based
on WMSR is stated in corollary 4.1. The proof is necessary to support the
non linear approximation used for the reconstruction of a signal from sparse
wavelet representation. A recipe of the new algorithm for reconstruction of
consistent LTV model output by alternate projection is proposed. The algo-
rithm is motivated by the derivation of parameter estimates given by theorem
4.3. The chapter also presents a brief description of the LZCS used for power
control in large PHWRs. Details of experiments conducted in open loop and
closed loop cases in full scale test set up and the results of the experiments
are discussed. Both open loop and closed loop cases are considered for mod-
eling, as next chapter presents a method of controller design with wavelet
states using both open loop and closed loop model parameters. Limitations
of classical modeling techniques for identification of non linear complex sys-
tems such as the LZCS are demonstrated. Efficacy of the proposed modeling
technique with orthogonal and biorthogonal wavelets is illustrated by the
LZCS model identification, testing and cross validation. Accuracy of the
derived models in presence of noise is established.
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Chapter V

Controller design by output feedback

The modeling approach in section 3.2 establishes that an input-output
model of a system can be identified which would have considerably less mem-
ory compared to the original system. Intuitively, control solution of a system
identified with a minimum memory model may be searched in the class of ad-
missible controls, also constrained to be minimum memory. In this chapter,
answer to the question if it is possible to achieve desired dynamic response,
using full wavelet state feedback control will be sought.

5.1 Controller design

Prerequisite of designing a full state feedback controller for the discrete, linear
time varying system Sd of orderN , given by one-step-ahead state-space model

Sd : x [k + 1] = Akx [k] +Bku [k] , ∀k (5.1)

modeled from input and output is that the system should be controllable
and observable [13]. It is now necessary to examine under what conditions
Sd, modeled with wavelet states would also be controllable and observable.

Since for an input-output model, only output measurements are available
for applying control, all the system modes can be controlled if the open loop
system is observable. From this point of view, wavelet states can also be
seen as states of a linear observer [44, 45]. Let us assume, to start with,
that wavelet states of Sd can be obtained from the states of identified system
given in (3.14) by following linear transformations [32, 33].

wy [k] = Hkx [k] (5.2)

x [k] = Gkw
u [k] =⇒ wu [k] = Gkx [k] , Gk = G

∗
k (5.3)

Although more rigorous analysis would follow, intuitively it is easy to see
that the relationship given in (5.2) may arise from observability condition and
from the fact that no two wavelet states are completely redundant. Extending
the same, (5.3) suggests that for a controllable system, it is expected that
input wavelet states are related to the states of the system.
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Here, a few comments are necessary regarding the structure ofHk and Gk.
Note that a linear time varying system is completely described over K time
samples by KN states (time or wavelet). For wavelet based identification, it
is always possible to have a model structure such that

(J + 1)qK > NK, (J + 1)pK > NK (5.4)

where p and q are dimension of input and output and J is the maximum scale
index. Note that the matrix Hk has (J + 1) qK rows and N columns and the
matrix Gk has (J + 1)pK rows and N columns. Further, it may be observed
that it is possible to choose KN non redundant wavelet states of wy (wu)
for perfect reconstruction of y. Methods to construct (wy)N ((wu)N ) (non
redundant wavelet state description) have been reported in the literature
[3, 62]. Let us define an N -tuple, for each k consisting N projections or
generalized samples as (wy)N [k]. Let HN

k be an NXN square submatrix of
Hk such that

(wy)N [k] = HN
k x [k] (5.5)

A simple example may be taken to clarify the idea. Let us consider a sin-
gle output controllable and observable system. Elements of column vector
(wy)

N
[k] are projections on wavelet basis and could be obtained by collecting

kth sample of UDWT of y at each of J+1 = N scales. These projections have
quantifiable redundancy [48] but not completely redundant. Then wavelet
states can be obtained by weighting elements of the state vector x. Now,
based on above discussion following proposition can be made.

Proposition 5.1

1. Sd is observable by wavelet states if rank of Hk is N .

2. Sd is controllable by wavelet states if rank of Gk is N .

Proof of Proposition 5.1, part 1
Consider (wy)N [k] is obtained by a linear filtering (using wavelets) with

multiscale causal filterbank WN
k [73, 83],

(wy)N [k] = WN
k y (5.6)

where, y {= y [1] , y [2] · · · y [K]} is a discrete sequence in R
n. Existance of a

W of rank KN for a controllable system with non zero and distinct eigen
values is proved in section 3.4. WN

k can be seen as a sub matrix of W .
Hence from (5.5),

x [k] =
(
HN

k

)−1
WN

k y [k] (5.7)
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States of Sd can be computed from y [k] if and only if
(
HN

k

)−1
exists i.e. HN

k

is of rank N and hence Sd modeled with wavelet states is observable.
Part 2 of Proposition 5.1 can also be proved by observing

(wu)N [k] = WN
k u [k] (5.8)

and arguing in the same manner.
Considering the class of admissible controls for Sd, constrained to be

discrete time memory less linear functions of the output,

u [k] = Cky [k] (5.9)

Substituting (5.9) in (5.1) and using (5.7)

x [k + 1] = Akx [k] +BkCk

(
WN

k

)−1
HN

k x [k] (5.10)

x [k + 1] =
(
Ak +BkCk

(
WN

k

)−1
HN

k

)
x [k] (5.11)

Note that (Ac)k =
(
Ak +BkCk

(
WN

k

)−1
HN

k

)
is the closed loop state transi-

tion matrix.
The necessary and sufficient conditions for Sd to be pole assignable by

output feedback is that ((Ac)k, Bk) is controllable. That the closed loop
system with state feedback x is controllable follows from the assumption
that the open loop system with state feedback x is controllable. By virtue
of proposition 5.1, Sd is controllable with wavelet states, if rank of Gk is N .
Moreover, if the loop is closed with output wavelet state feedback then (5.11)
implies that it is possible to control Sd with full wavelet state feedback, if
rank of (Ac)k is N which in turn necessitates that rank of Hk should be N .
Hence it is necessary that the matrices Hk and Gk are of rank N (i.e. open
loop system in wavelet states is controllable and observable) for Sd to be pole
assignable by output wavelet state feedback.

5.2 Modeling of a multiple time scale system

The proposed technique can be used very efficiently for modeling and control
of multiple time scale systems characterized by fast transients superimposed
on slowly varying quasi-steady states. Control design for multiple time scale
systems is difficult. The challenge comes from efficiently handling high di-
mensionality and ill conditioning resulting from the interaction of slow and
fast dynamic modes. Such systems often occur naturally and examples in-
clude nuclear reactors, power systems, economic models etc. Singular per-
turbation models are used when states can be grouped into slow and fast

84



Table 5.1: Parameters of the LTI Model
Scale index, j 1 2 3 4 5

aj -0.7 0.1 0.8 1.0 1.0
bj X10−4 1.5 1.3 -2.4 -5.1 5.8

ones. Modeling with wavelet basis turns out to be a natural choice for these
systems as illustrated below.

Let us consider transfer function T (s) of a 4th order system having poles
at s = 0,−1,−8,−9

T (s) =
0.08(2s2 + 18s + 9)

s4 + 18s3 + 89s2 + 72s

Clearly dynamic modes can be grouped into two or three categories, one con-
taining the fast ones due to poles at s = −8,−9 and the other(s) containing
slower ones due to poles at s = 0,−1. Motivation for modeling with wavelet
basis is to isolate these groups with minimum interaction. This is likely be-
cause in case of wavelets, frequency window is broader than that for Fourier
analysis. An LTI model h (τ ) is derived by exciting T (s) with a train of
impulses and by consistent prediction of the noisy output as shown in Figure
5.1. The identification now, per se amounts to estimating parameters of the
system in multiresolution by assuming the parameters are constants across
each scale j. The solution is obtained by iterating alternate projections till
the mean square error diminishes. The parameters (Projections on θj i.e.
aj) given in the Table 5.1 show a definite separation of modes in the wavelet
model, fast mode indicated by a1 and the slower ones by a2, a3 and a4. Both
input and output are sampled at 0.1 s.

The model is cross validated by using a sinusoidal input and matching
actual and predicted output as shown in Figure 5.2. It may be noted that
decimated wavelet transform naturally isolates slow and fast operating modes
with optimum resolution. However, number of parameters indicating a group
shall depend on several factors such as width of the frequency window chosen
for analysis vis-a-vis width of the group, sampling frequency, etc.

5.3 Design of a controller with output feedback for a nuclear
reactor

In this section the method of computation of controller gains with output
feedback is illustrated using an input-output wavelet model of a large nu-
clear reactor. In a nuclear reactor neutrons are produced, get absorbed or
escape at different energies. The mathematical model of a practical nuclear
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Figure 5.1: Training data for identification
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Figure 5.2: Validation with sine wave input
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reactor is a complex, continuous function of neutron energy. However, repre-
sentative results can be obtained by considering single neutron energy group
model. The assumption is that generation, diffusion, absorption and leakage
of neutrons take place at a single energy. The model also assumes that time
variation of neutron flux at all points of the core is identical. This type of
model is called point kinetic model [30, 67, 39, 41]. Neutronic power P in a
nuclear reactor is given by the point kinetic model, described as below.

dP

dt
=

[
ρ−

md∑
i=1

βi − σXX

Σa

]
P

l∗
+

md∑
i=1

λiCi (5.12)

Xenon and Iodine concentrations are given by following two equations.

dI

dt
= − [λI + σIP ] I + γIΣfP (5.13)

dX

dt
= − [λX + σXP ]X + λII + γXΣfP (5.14)

Parameters used in (5.12), (5.13) and (5.14) are defined in the begining of
the document. It may be noted here that point kinetic model does not
apply to situations involving three dimensional effects occurring due to Xenon
oscillation and similar transients. Nevertheless, the simulation results based
on point kinetic model clearly indicate potential benefits of a wavelet sub-
band model. Extension of the wavelet based model for 3D description of a
large power reactor is beyond the scope of this work.

The rate of formation of the delayed neutron precursor of the ithgroup
(representative group) is given by

dCi

dt
=
βi

l∗
n− λiCi (5.15)

Addition of reactivity depends on reactivity control mechanism and in general
can be expressed as a non linear function f of control input v.

dρ

dt
= f (v) (5.16)

To study reactor kinetics, the system of non linear equations (5.12) - (5.16)
are linearized around a steady state operating point (P0, Ci0, I0, X0,ρo ) to
obtain a fifth order state space representation in the following form.

dx

dt
= Ax+Bu, y = Cx (5.17)

where,
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Table 5.2: Typical parameter values in a PHWR
l = 0.00079s λ = 0.091s−1

Σf = 1.262X10−3cm−1 Σa = 3.2341X10−3cm−1

σX = 1.2X10−18cm2 σI = 0.0cm2

γX = 0.006 γI = 0.0618
λX = 2.1X10−5s−1 λI = 2.878X10−5s−1

x =

⎡⎢⎢⎢⎢⎣
δI
I0
δX
X0
δCi

Ci0

δρ
δP
P0

⎤⎥⎥⎥⎥⎦ , u = δv, y = δP

and A, B and C are constant matrices. Typical values of physical data for
a PHWR is given in Table 5.2 .

Based on the above data open loop transfer function T (s) from control
input v to reactor power output δP

P0
can be obtained.

T (s) =
−0.89s3 − 0.008s2 − 2.5X10−6s − 6.5X10−11

s5 + 9.6s4 − 0.004s3 − 0.0007s2 + 1.7X10−9s

The transfer function model, mimics an actual nuclear reactor and output
data is generated using standard inputs. This Input-output data is used for
demonstration of identification and control with wavelets. Note that the poles
of the transfer function model are clustered in two regions in the s−plane.
One cluster having four poles at s = 0, 2.6X10−6 , 8.5X10−3 ,−8.1X10−3 is
located close to origin. Two of the poles in this cluster are in the right half
of s-plane and cause instability. This cluster is responsible for slow dynamic
mode of the system. There is one more pole at s = −9.6 which contributes
to the fast response of the system.

For complete control of the process all poles should be assignable. Let us
assume that the following closed loop transfer function Tc(s) satisfying the
desired dynamic response is specified by the designer of the control system.

Tc (s) =
−0.89s3 − 0.008s2 − 2.5X10−6s− 6.5X10−11

s5 + 13s4 − 42s3 − 58s2 + 37s + 9

Note that zeros of Tc(s) are at the same locations as those of T (s) whereas
poles are shifted to s = −1,−1,−1,−1,−9 to get a stable response. Open
loop stable pole at s = −9.6 is only shifted marginally closer to the other
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Table 5.3: Open Loop Response Function
Scale index, j 1 2 3 4 5

aj -0.63 0.41 0.56 1.45 1.1
bj -0.03 -0.034 -0.077 -0.023 0.015

cluster. All unstable or marginally stable poles are shifted to −1 to improve
stability and sharing of control action. To compare the responses of the open
loop and the closed loop transfer functions, both the systems given by T (s)
and Tc(s) respectively, are excited by the same input v(t), a [0, u0] pulse
train. In addition, to simulate measurement noise, an additive, zero mean,
white Gaussian noise of Signal-to-Noise-Ratio (SNR) 100 dB is injected at
the output. Both input and output are sampled at an interval of 0.2 s.

As explained in Chapter 4 an LTI open loop model with wavelet is de-
rived. Here, idea is to show that a wavelet based model captures pole clus-
ters, rather than individual poles and has a potential to reduce the order of a
model very similar to the way time-scale methods [56] and singular perturba-
tion methods [38] do. As input is a sequence of impulses, db1 of Daubechies
family of wavelets (Haar wavelet) could be chosen to represent the signal in
wavelet domain. A good match of the input signals with the Haar wavelet
results sparse representation in wavelet domain and reduces number of basis
functions used to represent systems from input to output. Wavelet RBIO1.5
is used in the modeling exercise shown in Figure 5.3 for projecting or analyz-
ing the input. As in db1 the analyzing scaling function of RBIO1.5 is a box
function or box spline of degree zero. The output is projected on RBIO2.4.
The choice of wavelets are explained in details in section 4.9. Thresholds λu

and λy are taken as 0.05% of the maximum absolute values of wavelet coef-
ficients of input and output respectively at each scale. A very good match is
observed between the predicted output and actual output as shown in Figure
5.3. The estimated model turns out to be AR as expected because location
of zeros of T (s) are close to origin. Identified parameters in open loop case
are listed in Table 5.3 for input-to-output and output-to-output responses.

Let dyo and duo be the input and output parameters respectively estimated
for the open-loop system. The ith elements of each vector in (3.14) is thus
computed using consistent output estimate as given below.(

Ŵys
i

)
[k] = dyo

j w
yi

j [k] + duo
j w

vi
j [k] (5.18)

A close look at the distribution of estimated parameters confirm peaking at
scale j = 0 and at J = 2 and above indicating two clusters of eigen values.
Note that parameter d1 is found to be at least an order less compared to

90



0 1000 2000 3000 4000 5000 6000 7000 8000
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−4

Sample no.

R
ea

ct
or

 p
ow

er

Predicted output
Actual output

Figure 5.3: Variation of reactor power plotted in open loop case against
predicted model output in response to [0, u0] input.
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other parameters. Moreover, although the transfer functions are of order 5,
working up to scale 4 seems to be sufficient for exposing the clusters.

Output of the closed loop system is the desired response and is used
for estimating controller gains. Alternatively, a desired response could be
obtained directly from the specification. It may be noted here that the linear
control law defined in (5.9) for the wavelet model is memory less as depicted
in Figure 5.4. Block D in the figure denotes one step delay and cyj are
proportionality constants of the full wavelet state feedback controller. The
figure shows the simulated plant and the basis structure of the controller
or compensator with wavelet basis. It can be seen that the controller uses
generalized samples of control input and open loop output as indicated in
(5.9).

Let dyc and duc be the input and output parameters respectively estimated
for the close loop system using the same control input (as in open loop case)
and the desired output. Hence in closed loop case, the ith elements of each
vector in (3.14) is computed as below.(

Ŵys
i

)
[k] = dyc

j w
yi
j [k] + duc

j w
vi
j [k] (5.19)

Looking at the structure of the controller in Figure 5.4, (5.19) can be ex-
pressed in terms of open loop parameters as below.(

Ŵys
i

)
[k] = cyjd

uo
j w

yi
j [k] + cuj d

uo
j w

vi
j [k] + dyo

j w
yi
j [k]

⇒
(
Ŵys

i

)
[k] =

(
dyo

j + cyjd
uo
j

)
wyi

j [k] + cuj d
uo
j w

vi
j [k] (5.20)

This implies that if predicted output is made to relate to the exogenous input
in both open loop and closed loop models in a way such that

cuj =
duc

j

duo
j

(5.21)

scalar gain of the controller would be given by

cyj =
dyc

j − dyo
j

duo
j

(5.22)

Loosely speaking, cuj can also be thought as fixed part of the controller.
Parameters of the closed loop system duc

j , d
yc
j ∀j are estimated by consistent

prediction of input and output of the closed loop transfer function Tc (s).
Both cuj as well as cyj can be computed using (5.21) and (5.22) by alternate
projection algorithm as contributions from input and output are alternatively
used for regression. Figure 5.5 shows the validation result comparing closed
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Table 5.4: Closed Loop Response function
Scale index, j 1 2 3 4 5

aj -0.47 0.39 0.8 1.04 0.85
bj -0.003 0.006 0.007 0.001 -0.001

Table 5.5: Controller Gains
Scale index, j 1 2 3 4 5

Output gain 5.4 0.6 -2.8 17.6 -1.6
Input gain -0.1 -0.2 0.1 -0.06 -0.07

loop output of the wavelet model with the output of desired transfer function.

Again a nice match is observed between the actual and predicted outputs.
The parameters of the model in closed loop case are estimated as earlier for
output-to-output response function and are tabulated in Table 5.4. Now,
controller gains are computed for each scale j using (5.22) and are tabulated
in Table 5.5. A good design of controller would require small gains.

5.4 A note on using the model for real time control applications

In the last section, methodology of designing a controller with a wavelet
based model is discissed. It is a common practice to apply wavelet transform
on a block of data and the efficacy of the technique is demonstrated working
on a data block. However, for implementing a real time control in wavelet
domain It is desirable that the state equation (5.1) is written in terms of
wavelet coefficients (projections). As has been observed in section 3.2 this
would indeed be possible under certain restrictive conditions. And hence a
Kalman filter type algorithm for designing an optimum (in presence of noise)
wavelet state observer can be formulated for real time control applications.

5.5 Summary

The chapter presents the theory of controller design with wavelet states. The
notion of designing a control with output wavelet states is introduced and
controllability of the open loop and closed loop system with output wavelet
state feedback is studied. Proposition 5.1 presents necessary conditions for
wavelet state model to be controllable and observable. It is proved that the
closed loop control with wavelet states is pole assignable if open loop system
is controllable and observable. The technique is demonstrated with multi
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scale simulation examples. Simulation model of a large nuclear reactor is
considered for design of full wavelet state feedback control. The methodology
can be seen as designing a wavelet state observer. It is possible to use the
observer states for designing a full state feedback compensator to achieve
required closed loop performance. The controller gains can be found from
the open and closed loop model parameters. Use of the proposed control
methodology in a real time control application is discussed.
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Chapter VI

Conclusion

The major contribution of this work comes in the form of designing a
computationally efficient alternative to classical least squares minimization
problem by penalized local error minimization in wavelet domain. We call
this “method of consistent output prediction” and use it for estimation of
model parameters. It is shown that estimates are unbiased and bounded.
An LTI model by first order estimate of time varying model parameters (
Theorem 4.1) is derived as a special case. An algorithmic technique for pa-
rameter estimation by alternate projection in time and wavelet domain is
suggested. The algorithm works on sparse representation in wavelet domain.
As an extension a new representation called “wavelet maximum curvature
point representation” is proposed as a generalization of existing represen-
tations and reconstruction based on WMCPR is validated using an NDT
signal.

The other novelty of work is in admitting two different basis functions
matching input and output for identification of a system. Spline biorthogonal
wavelet basis of different degrees which allow direct weighted addition of pro-
jections are used in this work for system modeling. This new class of wavelet
basis provides a robust representation of a system with fewer parameters.
The process of identification can be viewed as modeling with pre-filtered
input and output and gives a model insensitive to noise.

The theory is validated with the help of a case study - identification of
the LZCS in a large PHWR. A graphical method to compute process delay is
devised and used for finding the delay in control action in LZCS. Results of
the iterative alternate projection algorithm suggested for estimating process
parameters show excellent match with the experimental data in cross valida-
tion. Results of modeling with orthogonal and spline biorthogonal wavelts
are compared. The estimated model is validated on the data obtained from
a full scale test set up of the LZCS and hence can be considered sufficiently
accuarte and insensitive to process and measurement noise usually present
in an actual system. However, a numerical study of the effect of noise on
identification is included in the work.

Efficiency in the proposed algorithm is achieved by shifting memory to the
wavelet basis and getting a low order model with local memory. Intuitively
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the class of admissible controls, also constrained to be memory-less would
be best suited. The theory of controller design with output wavelet state
feedback for pole assignment is developed. It is shown that under certain
restrictive conditions the closed loop system with output wavelet states will
be pole assignable. The technique is demonstrated by designing a control
with a simulated point kinetic model of a nuclear reactor.

The theory developed in this work has a huge potential of proliferation
in the area of signal and system modeling. For example, the method of
consistent estimate could readily be used for learning the system function
in a wavelet neural network. One-step-ahead formulation in wavelet domain
strongly indicates a development of recursive algorithms as an extension in
future.
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Appendix A

Alternate projection for reconstruction of signals from

wavelet maximum curvature point representation

An iterative algorithm, similar to those based on multi-scale edges, for
the reconstruction of signal from maximum curvature point representation in
wavelet domain is proposed. From the application point of view, it is desired
that the reconstructed signal has all the properties of the original signal as
described by the representation.

A.1 Maximum curvature point representation

A new scheme of signal reconstruction by alternating projections is proposed
based on WMCPR. WMCPR is a convex representation as it includes the
wavelet extrema points giving as many inequality constraints. Curvature of
a function wx (t) at a sample point k is defined as

C (wx) |t=k=

∣∣∣d2wx

dt2
|t=k

∣∣∣[
1 +

(
dwx

dt
|t=k

)2
] 3

2

(A.1)

wx (t) is assumed continuous around k. Numerical computation of first and
second order derivatives from the sample points are needed for determining
curvature at k. Maximum curvature points are detected as first order peaks
of the curvature signal. Insignificant peaks may be ignored for denoising
using threshold.

Inclusion of maximum curvature points is an attempt to include more
significant points in the representation over and above the extrema points.
It can also be interpreted as inclusion of left and right boundaries of a peak for
capturing its shape. Maximum curvature representation is, however, a non-
linear representation. To enforce linearity the curvature can be approximated
as

C1(wx) =

∣∣∣∣d2wx

dt2

∣∣∣∣ (A.2)
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At the extrema points, dwx

dt
is exactly equal to zero. C1 is now a linear

operator giving some extra equality constraints at approximate maximum
curvature points. As extrema points are included in the representation, the
inequality relations shall be the same as those for extrema representation.
The approximate wavelet maximum curvature representation (AWMCR) now
can be treated as an inherently bounded AQLR as defined in [4]. All the
results proved in [4] related to different properties including stability shall
be valid for AWMCR also.

An alternative interpretation can be given in continuous case. A smooth-
ing function ϕ(t) is one which has integral equal to 1 and converges to 0
at infinity. It is also assumed that ϕ(t) and its dilated versions are at least

thrice differentiable. Then dϕ(t)
dt
, d2ϕ(t)

dt2
as well as d3ϕ(t)

dt3
can be considered to

be wavelets as

+∞∫
−∞

dnϕ (t)

dtn
dt = 0, n = 1, 2, 3 (A.3)

Hence, the approximate wavelet maximum curvature representation with the
wavelet transform of x at scale s, given by

wx (t) = s
d (x � ϕs) (t)

dt
(A.4)

can be considered as wavelet modulus maxima representation using wavelet
d3ϕs(t)

dt3
. Thus for proper choice of wavelet, maxima based scheme shall give

similar result to that based on maximum curvature. Since a definite relation-
ship exists between the peak in time domain and the evolution of wavelet
modulus maxima, hence more than intuitive, there also exists an indirect re-
lationship between the peak feature and wavelet maximum curvature point
representation. It may be noted that AWMCR as discussed here is a repre-
sentation at maximum curvature points of the Continuous Wavelet Transform
(CWT). The discussion on use of CWT shall be limited to this extent. The
discrete implementation and design of the structures of wavelet filter banks
is beyond the scope of this work.

In case the values of the function at maximum curvature points instead
of the curvature value are used then the resulting representation shall be
quasi linear. We shall call this representation wavelet maximum curvature
point representation. Wavelet maximum curvature point representation is
an inherently bounded AQLR.

Let us define the representation Rm for WMCPR as below

(L0mc(Wjx)1≤j≤J , V0(Wjx)1≤j≤J , V0(UJx)) = (L′(wx), V ′(wx)) (A.5)
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Now it is further argued that

‖Wjx
c‖ ≤ K1 ‖Vmaxw

x‖ ≤ K2 ‖V ′wx‖ , K1, K2 > 0 (A.6)

where Vmax is the set of multi-scale maxima values in maxima representation
at arguments given by

L0mm(wx) = {k : |wx [k + 1] | < |wx [k] |, |wx [k − 1] | ≤ |wx [k] |} (A.7)

The first inequality is proved in Theorem 1 in [4] and the second inequality
holds because L0mm ⊂ L0e ⊂ L0mc. This implies

‖Wjx
c‖ ≤ K ‖V ′wx‖ , K > 0 (A.8)

∥∥wxc∥∥ ≤ K ‖V ′wx‖ , K > 0 (A.9)

We allow, in this work, non-linear operations such as thresholding [21, 20]
and band (read scale) rejection of wavelet maximum curvature point repre-
sentation to obtain L (wx) �= L(wx) prior to reconstruction. Let the recon-
struction set of such signals be P (R′

mw
x).

Assumption A.1
Signal modeling based on the reconstructed signal in P (R′

mw
x) �= P (Rmw

x)
is valid, if it is ensured that there is no loss of useful information due to
thresholding and band rejection.

This of course, calls for proper choice of threshold. As such, the recon-
struction from a representation is not unique as null space of V ′ is not empty.
Hence in the context of signal modeling, the following theorem is necessary
for validation of the reconstruction set.

TheoremA.1
A signal in the reconstruction set P (R′

mw
x) reconstructed based on wavelet

maximum curvature point representation associated with specified non-linear
operation such as thresholding and band rejection removing insignificant
wavelet maximum curvature points, contains complete information for vali-
dation.

The tacit assumption as stated in Assumption A.1 is the non-linear oper-
ations are defined to retain the significant information. Although it sounds
obvious a proof by constructive argument shall be given. In the extreme case
if M(Wjx)1≤j≤J+1 = {Ø} then the reconstructed signal is also identically
equal to zero. Even in the absence of useful signal, the conditions mentioned
above are not encountered in general due to presence of noise. However, they
can be forced by non-linear operations in the wavelet domain.

While analyzing NDT signals all the scales are rarely exhausted [54]. By
virtue of Theorem A.1 it is permitted to do so. By assumption, the peaks in
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time contain complete information for characterization. Hence, the theorem
can be proved.

Proof of TheoremA.1
If the signal reconstructed from the null space of � does not contain any

peak then any signal in P (R′
mw

x)contains complete information for charac-
terization. Now indeed, the signals in the null space of wavelet maximum
curvature point representation associated with specified non-linear opera-
tions do not contain any point where curvature is maximum, i.e. the signals
are monotonic with constant slope. As inverse wavelet transform is a lin-
ear operation, the signal reconstructed from the kernel of the representation
cannot contain any peak. The reverse, however, is not true as we allow quasi
linear and non-linear operations in the forward direction.

A.2 Reconstruction by alternate projection from WMCPR

WMCPR is a set of convex constraints on the signal. The reconstruction
from the representation recovers x(t), the signal in time by inverse wavelet
transform. The closure of the reconstruction set of F = Wx is given by

� = �
⋂

�
⋂(⋂

jk

Njk

)
(A.10)

where � is the range of the wavelet transform, � is the closed convex set
of all G ∈ l2(I) such that C(F ) = C(G) for all k, which are maximum
curvature points across all scales and N ′

jks are only applicable to those points
k where curvature exceeds a specified threshold. Njk, kεK, jεJ are the set of
convex constraints given by (A.12). With convex constraints on � a subspace
in l2(I), alternating projection of any initial point F 0εl2(I) onto time and
wavelet bases, shall converge to a consistent estimate in P (R′

mw
x). The

initial value F 0εl2(I) can be given by

F 0
k = V (wx) if k = L′ (wx) (A.11)

and

F 0
k = 0 otherwise

A.3 Denoising by thresholding

For denoising, a dual thresholding scheme is proposed. The basic assumption
is that the noise is not only present in a particular band of frequency but
also at all frequencies and it can be removed by thresholding. Original signal
is first decomposed using UDWT. Curvatures of UDWT coefficients at each
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scale are computed and maximum curvature point representation is obtained
at the following points.

L0mc = {k : C (wx [k + 1]) < C (wx [k]) , C (wx [k − 1])≤C (wx [k]) , C (wx [k])≥Cth}
(A.12)

(A.12) contains curvature thresholding in addition to peak detection. In-
significant curvatures in the representation are ignored and coefficients in
the UDWT decomposition are zeroed by non-linear hard thresholding opera-
tions. Hard thresholding keeps those coefficients in the representation which
are more than the specified threshold and cuts those off which are lower than
the threshold. This is first level of thresholding.

In the second level, signal power thresholding is used for denoising. The
dual thresholding scheme proposed is more robust compared to amplitude
thresholding as it takes into account the shape of a peak. The left and right
boundaries of a peak are used to compute the signal power of a peak. The
boundaries of a peak are already available as maximum curvature points and
need not be computed separately. Recognizing that a peak is also detected
as a maximum curvature point, if l and r are left and right boundaries (also
at the maximum curvature points) on both sides of the extremum (peak) the
signal power of the peak is defined as

Pk =

∑r
k=l (w

x [k])2

(lk − rk + 1)
(A.13)

and the signal power thresholding is given by

wx [k] = wx [l] +
k − l

r − l
(wx [r] − wx [l]) if Pk ≤ Pth (A.14)

and

wx [k] = wx [k] if Pk

Level of threshold Pth is decided by estimating median absolute deviation
of UDWT coefficients at the finest scale. It is assumed that the finest scale
mainly comprises of noise. One method to determine Pth could be by deriving
standard deviation of noise (σn) (by estimating maximum absolute deviation
of the UDWT coefficients at the finest scale) and computing Pth as a function
of σn. One can choose to reject UDWT coefficients at some scales if all the
coefficients at those scales are considered to be noise.

A.4 An example application in NDT

In NDT applications, defects are detected and characterized by the param-
eters of peaks in the sensor output signals. Typically the amplitude, shape
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and location of a peak feature would have information regarding shape and
size of a defect. Classification of the features based on the parameter vec-
tors and associating a shape and size template to the class is the ultimate
objective in any NDT problem.

Again as the data size increases it becomes necessary to characterize the
defects in unsupervised fashion. On line compression of data reduces storage
requirement and makes data handling less cumbersome also allowing unsu-
pervised characterization. The technique proposed in this work could be
used for characterization and compression of magnetic flux leakage (MFL)
signal. MFL technique is frequently used in in-line inspection (ILI) tools for
detection and characterization of metal loss defects. Any metal loss in the
pipe wall causes significant geometrical deformation and acts as an area of
increased magnetic reluctance. This causes a local perturbation of the mag-
netic field distribution [53]. Measurement of leakage flux density provides
sizing and contour information. Simulation results for demonstrating denois-
ing and reconstruction are demonstrated. The wavelet maximum curvature
point representation contains the complete information for characterization
in fewer coefficients. Hence it can be used for compression of MFL data.
The technique could also be effectively used in other defect characterization
problems as well as for biomedical applications. The technique could be used
for sparse representation of systems as well.

With wavelets, as the frequency resolution, f , increases with frequency,
time or space resolution, t, reduces. This property of UDWT is particularly
useful for the analysis of NDT signals. A common feature of NDT signal is
the appearance of sharp peaks (having high frequency components locally at
the edges of defects), closely spaced in time or space (due to defects having
small length or for two defects with trailing edge of one very close to the
leading edge of the other). As t becomes finer at higher frequency it is easier
to detect these sharp peaks with wavelets.

Figure A.1 shows an artificially generated signal S1 as could be picked
up by an MFL sensor placed radially under a set of defects in presence of
additive noise. A synthetic signal is used to validate the proposed technique.
Radial component of flux density changes polarity under a defect. Unipolar
peaks in S1 could indicate beginning and end of a thicker section. The exact
location and amplitude of peaks are corrupted by noise. This is a typical
representation of MFL signal. The exact method of synthesis is trivial and
hence omitted. It is possible to obtain a complete wavelet representation
using a filter-bank hj and gj, j = 1, 2, . . . , J by adopting what popularly
known as bior2.2 filter bank. In general it is possible to use bior2.x(x =
2, 4, . . . ) filter banks as indicated in Section (2.3). The maximum curvature
point representation at scales 1–6 after first level of curvature thresholding
given by (A.12) is shown in Figure A.2. Low amplitudes maximum curvature
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Figure A.1: Artificially generated signal simulating MFL signal over pipe
features and defects and result of denoising using maximum curvature point
representation.

points at finer scales are predominantly due to noise. The numbers of points
at finer scales are more compared to coarser scales. However, it is clearly
seen that the information content is more at coarser scales.

The sparse representation of information indicates that the information
can be stored in compressed form. However, thresholding makes the compres-
sion scheme a lossy one. The loss is determined by the levels of thresholding.
Search of optimum thresholds is problem dependent. A formal search can
be designed in the application domain minimizing a metric in the space of
defect features.

The low pass filtered signal at scale J, UJx is not used for reconstruc-
tion (also not shown in Figure A.2), as the peaks due to metal loss defects
are insignificantly small at this scale with a specified thresholding condition.
Theorem A.1 justifies the rejection of the low pass filtered signal at scale
J , UJx. The desired denoised signal can be directly obtained by alternate
projection as described in Section (A.2). High frequency noise at the finer
scales and the low frequency undulations at scale J are removed in the de-
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Figure A.2: Maximum curvature point representation of the signal in Fig.
5.1.
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noised signal. Noise at other scales is removed by signal power thresholding
as described in (A.14). The reconstructed denoised signal using J = 6, after
20 iterations is also shown in Figure A.1 as S2. The DC shift in the denoised
signal is due to rejection of WJ+1x as explained earlier. It may be noted
that location and relative value of the peaks over the base level have been
preserved in the reconstructed signal and hence characterization based on
the reconstructed signal shall be very accurate.

Figure A.3 shows similar results for the actual MFL signal acquired by
a hall-effect sensor over three slot type defects (marked as D1, D2 and D3)
of different dimension created on a pipe spool. The pipe spool with defects
is joined to other spools by flanges on both sides (marked as F 1 and F 2)
and supported by metallic supports (S1 and S2). As mentioned earlier, high
frequency noise and the low frequency undulations are removed in the de-
noised signal. Noise at other scales is removed by signal power thresholding.
The denoised signal has been reconstructed from maximum curvature point
representation using J = 6, after 20 iterations. The distinct signatures of
different pipe features can be clearly seen in the reconstructed denoised sig-
nal. The location and amplitude of peak features are also preserved in the
reconstructed signal.

A.5 Summary

Data denoising and signal characterization based on wavelet maximum cur-
vature representation, with a novel dual thresholding scheme has been pre-
sented here. The number of scales to which a signal needs to be decomposed
using wavelet transform depends on the concentration of significant infor-
mation in frequency. Theorem A.1 proves that for specific applications, the
part of the signal that does not contain significant information can be re-
jected using curvature based thresholding scheme. The scheme can as well
be viewed as a generalization of the similar schemes already existing for sig-
nal reconstruction from sparse representations. The technique was tested on
the synthetic as well as actual Magnetic Flux Leakage (MFL) data. Char-
acterization of defects based on the reconstructed signal was proper and the
results were found satisfactory. The mapping of signal parameters to the de-
fect parameters is however application specific. The work strongly indicates
the possibility of characterizing defects by inverse mapping (signal features
to defect parameters) directly (without reconstruction) from the represen-
tation in wavelet domain since it is proved that the representation contains
complete information for characterization.
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Figure A.3: Denoising of actual MFL signal from three defects in a pipe
section using maximum curvature point representation.
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Appendix B

Estimation of process time-delay

All industrial processes have inherent time-delays due to process dynamics
and instrumentation. For example, transport lags in piping, delays in the in-
strument response etc can significantly contribute to time-delay in responses.
For control design, Smith predictor invented by O. J. M. Smith in 1957 [70] is
used as a predictive controller for a system with pure time delay. It is a com-
mon practice to model time-delays with higher order dynamics, although in
principle, time-delays are different from system order. And it is impractical
and inappropriate to fit a higher order parametric model to account for the
time-delay. Due to complexity of any industrial process, estimation of time-
delay of a process often turns out to be easier from input-output data rather
than from the physics of the process. However, the measurement of input
and output could be noisy and problem of Time-Delay Estimation (TDE)
needs to be addressed in a statistical framework. Although TDE has been a
much studied problem [5, 6], yet a clear agreement for the best method does
not exist. This appendix specifically focuses on time domain approximation
methods and proposes a new approximation method in time domain.

B.1 Estimation of process delay from noisy measurements

Let the impulse response of a process having u(t) as input and y(t) as out-
put be h(t) with unknown process delay d. Let us assume that the output
measurement is corrupted with measurement noise w(t) which is zero mean
and uncorrelated with input. The output y(t) can be expressed as

y(t) = u(t− d) � h(t) + w(t) (B.1)

This implies,

+∞∫
−∞

y (t+ τ )u (τ ) dτ =

+∞∫
−∞

h (t) � u (t+ τ − d) u (τ ) dτ +

+∞∫
−∞

w (t+ τ )u (τ ) dτ

(B.2)
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As the noise is zero mean and uncorrelated with input the second term
on the right hand side in (B.2) vanishes. Hence, in terms of cross correlation
function Ayu(t) and auto correlation function Auu (t), (B.2) can be expressed
in time lag (t) – correlation amplitude (A) plane (t− A plane) as follows.

Ayu(t) = h (t) � Auu (t− d) (B.3)

In case the system is excited by pure white noise having signal power λ,
Auu (t) becomes an impulse and (B.3) becomes

Ayu(t) = λh (t− d) (B.4)

It can be seen from (B.4) that the impulse response of the system can be
estimated from the cross correlation function and time-delay can be measured
by the delay for the impulse response to start. For low Signal to Noise Ratio
(SNR) the estimated impulse response (estimated from input output data)
could be noisy due to deviation of noise pattern from the assumed model.
And hence it could be difficult to find the exact start of the impulse response.

B.2 Concurrent cross correlation method

An elegant technique insensitive to noise is devised in this work for estimating
time-delay of a process. It can be seen that if the process is excited by any
input other than the white noise, the cross correlation function will be given
by (B.3). It is always possible to find some inputs (different from each other)
such that the cross correlation functions concur at a fixed point in the first
quadrant of t− A plane. To start with let us assume that indeed the cross
correlation functions due to two different inputs u1 and u2 intersect at a fixed
point t = t1. From (B.3) following can be written.

+∞∫
−∞

Au1u1 (t1 − d+ τ )h (τ ) dτ =

+∞∫
−∞

Au2u2 (t1 − d+ τ )h (τ ) dτ (B.5)

Evidently, h(t−d), the cross correlation function with pure white noise input
will also pass through the same point. As time-delay is a parameter which is
independent of dynamic modes of the system, time-delay d is then expected
to be given by the abscissa of this point of concurrence. Substituting t1 = d,

+∞∫
−∞

Au1u1 (τ )h (τ ) dτ =

+∞∫
−∞

Au2u2 (τ )h (τ ) dτ (B.6)
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It can be seen from (B.6) that a condition for cross correlation functions
to intersect at a point with abscissa t = d is that inputs should have same
area under the curve Auu(τ )h(τ ). The proposed method does not depend on
any thresholding scheme for detection of the start of cross correlation curve
making it immune to choice of threshold. Hence there is no need for esti-
mating uncertainty as required by some methods. Again, as the method of
estimating time delay implicitly looks for a definite point (point of concur-
rence) obtained by intersection of minimum two cross correlation curves, the
estimate becomes to a great extent insensitive to noise.

B.3 Simulation example

The proposed technique of time delay estimation by concurrent cross corre-
lation method is demonstrated on simulated examples as well as on actual
data collected from LZCS full scale model.

In this section two simulation examples are presented.

1. Simulation of a first order system having pole at -1 with 1 second time-
delay.

2. Simulation of a second order system having poles at 0 and -1 with 2
seconds time-delay.

Simulation example 1: In the first simulation example following transfer
function is considered.

T (s) =
e−s

s+ 1
(B.7)

Input is excited by a band limited white noise with auto correlation function
shown dotted in Figure B.1. The cross correlation function is plotted in red.
Ideally for the system the impulse response is an exponential function. It can
be seen that the cross correlation function also shows exponential behavior.
The deviation from the ideal exponential behavior is due to the fact that the
input is not a pure white noise. The estimated impulse response given by
the cross correlation function starts at t = 1 second. So, the time-delay of 1
second can be estimated from the start of the cross correlation function.

Simulation example 2: For the second simulation example let us consider
a second order linear time invariant system with transfer function having
time-delay of 2 seconds which in amplitude is significant when comparable
with process time constant.

T (s) =
e−2s

s (s+ 7)
(B.8)
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Figure B.1: Simulation example 1: The cross correlation function due to
band limited white noise input starts at time-delay 1 s.
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Table B.1: Parameters of input 1 and input 2.
Input t1 t2 t3 t4

1 2 3 6 7
2 2 2.5 6 6.5

In this simulation, the system is excited three times with three different
inputs. Each input spanned over 10 seconds and was uniformly sampled at
100 ms intervals. First two inputs are designed as follows.

u (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for 0 ≤ t < t1
1 for t1 ≤ t < t2
0 for t2 ≤ t < t3
−1 for t3 ≤ t < t4
1 for t4 ≤ t < 10

(B.9)

The parameters t1 through t4 for first two inputs are as given in Table
B.1. The third input is a band-limited white noise input. The estimates of
normalized cross correlation of input and corresponding output are shown in
Figure B.2.

It can be seen that the estimates of cross correlation functions concur at
a point with abscissa approximately equal to 2 seconds corresponding to the
process delay. However, the cross correlation function due to band-limited
white noise which is also the estimated impulse response turns out to be
noisy and there is an ambiguity regarding its start point. The correct start
actually corresponds to the third peak of the estimated impulse response and
a suitable thresholding criterion needs to be designed to designate the third
peak as the first significant value or the start of the impulse response. On
the contrary, given the well designed inputs, the proposed method does not
suffer from such ambiguity.

B.4 Estimation of time delay of the LZCS

Data from a full scale test setup of LZCS has been used in this work, for
estimation of time delay between application of control action and response
observed in change of water level. The time-delay is primarily due to trans-
port lags in the piping as water is pumped from the delay tank kept phys-
ically away from the ZCCs into the water inlet header of ZCCs, through a
heat exchanger.

The ZCC can basically be viewed as an integrator. However, the level
variation would start taking place after a delay, past any variation in the
control valve position. The delay in the plant can be computed from the cross
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Figure B.3: Input output correlation of ZCC plotted with lags. Cross corre-
lation functions concur at a point whose abscissa gives time-delay.

correlation functions of input and output as described below. To start with,
the input and the output are de-trended. Three parameters, the normalized
autocorrelation values of the input, the normalized autocorrelation values
of the output and the normalized input-output cross correlation values are
computed at lags up to 500 and plotted in Figure B.3, for four data sets
shown in Figure 4.6 through 4.9.

The general nature of these plots can be understood with the help of
simplified model of the ZCC level variation, i.e.,

y(t) = μ

+∞∫
−∞

u (t− d) dt (B.10)

where μ is a scalar. From this following is obtained

+∞∫
−∞

y (t+ τ )u (τ ) dτ = μ

t∫
−∞

+∞∫
−∞

[u (t+ τ − d)u (τ ) dτ ] dt (B.11)
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And thus the following relationship between autocorrelation and cross corre-
lation coefficients is obvious.

Ayu (t) = μ

+∞∫
−∞

Auu (t− d) dt (B.12)

It can be seen from the cross-correlation plots in Figure B.3 that the four in-
puts depending on their richness are exciting different dynamic modes in the
process. But very interestingly, all the cross correlation plots are concurrent.
So this point of concurrence has to be related to a system parameter which
is invariant to the richness of the input. Now, let us consider a hypothetical
situation, in which the system is excited by a pure white noise input. In
such a case, it can be seen that for the ideal system given by (B.10), as the
auto-correlation of input is a unit impulse, the input-output cross correla-
tion is a step with transition at a lag of d. Since the point of concurrence
is invariant to the richness of the input, the transition of the input-output
cross-correlation curve would also be through the same point of concurrence.
So it can be concluded that the x-coordinate (lag in samples) of the point of
concurrence is the delay d of the system [55]. Delay computed for the LZCS
test set up using this technique tallies with the expected value of delay which
is due to transport delay in the piping.

B.5 Summary

The appendix presents a new robust technique for estimation of time delay
in a process. The proposed technique estimates delay in time domain in pres-
ence of measurement noise. The technique is used for estimating transport
delay in the LZCS. The delay is fed as an input parameter (implicit param-
eter) to the linear wavelet model. The report proposes a new method based
on correlation analysis. The delay is estimated from the point of concurrence
of cross correlation plots. It is established by illustrative examples that the
method is less sensitive to noise and does not depend on a thesholding scheme
depending on the measure of uncertainty. However, one needs to carefully
design inputs for effective use of the new method. A condition is derived for
design of such inputs. The method is validated using simulation examples
and applying it on the data collected from a full scale model of LZCS used in
large PHWRs. Systematic study of design of inputs and error in the estimate
of time-delay could be taken up in future.
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