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Synopsis

Quantifier elimination involves converting a logic formwantaining quantifiers
into a semantically equivalent quantifier-free formula.slias a number of im-
portant applications in formal verification and analysisafdware and software
systems. Many key operations performed by formal verificaéind analysis tools
essentially boil down to quantifier elimination from logiorulas. This the-
sis presents practically efficient and scalable technipreguantifier elimination
from logic formulas that can improve the performance of daecmal verification
and analysis tools.

Boolean combinations of linear equalities, disequalitied aequalities on
fixed-width bit-vectors, collectively called linear modulconstraints, is an im-
portant fragment of the theory of fixed-width bit-vector g Quantifier elim-
ination from linear modular constraints is extremely intpat in the context of
formal verification and analysis of word-level RTL desigmslaembedded pro-
grams. The most dominant technique used for eliminatingnifiers from these
constraints is bit-blasting, followed by bit-level qudigi elimination. Since lin-
ear modular constraints can be expressed as formulae ar imeger arithmetic,
quantifier elimination for linear integer arithmetic cas@lbe used. However,

both the above approaches destroy the word-level struofufee problem, and



do not scale well for linear modular constraints with largeidths.

We present a practically efficient and bit-precise algamitbr quantifier elim-
ination from conjunctions of linear modular constraintsur@lgorithm uses a
layered approach, whereby sound but incomplete and ché&apes are invoked
first, and expensive but complete layers are called only wkgnired. Unlike
alternative quantifier elimination techniques based oiblaisting and conversion
to linear integer arithmetic, our algorithm keeps the qgifi@meliminated formu-
lae in linear modular arithmetic. We also extend this alfponi to work with
arbitrary Boolean combinations of linear modular constsiExperiments indi-
cate that our techniques significantly outperform alteveajuantifier elimination
techniques. The experiments also demonstrate the utilityuo techniques in
bounded model checking of word-level RTL designs.

We then present Skolem function-based techniques for diearglimination
from formulas in propositional logic. Techniques for geatarg Skolem functions
are of significant interest not only in quantifier eliminatjdut also in certification
of solvers, synthesis of programs and circuits from spetibas, and disjunctive
decomposition of sequential circuits. In many such appbtoa, the input for-
mula is given as a conjunction of simpler sub-formulas,echfiactors, each of
which depends on a small subset of variables. Existing elgos for Skolem
function generation ignore any such factored form and tteainput formula as
a monolithic conjunction of factors.

We present a SAT solving based algorithm for generating eékdlinctions
for propositional formulas that exploits factored repreagon of input formulas.
In contrast to existing algorithms, our algorithm neitheguires a proof of satis-

fiability nor uses composition of monolithic conjunctionfdactors. Experiments



indicate that on several large problem instances, our idfhgorgenerates smaller
Skolem functions and runs faster when compared to existkaje$ function

generation algorithms.
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Chapter 1

Introduction

Quantifier elimination (QE) is the process of converting giddormula contain-
ing quantifiers into a semantically equivalent quantifreefformula. This has a
number of important applications in formal verification athlysis of hardware
and software systems. Key operations such as image congoufd}, computa-
tion of strongest post-conditions [2] and computation efdicate abstractions [3]
performed by formal verification and analysis tools essdigtreduce to QE from
logic formulas. The motivation for this dissertation is thevelopment of prac-
tically efficient and scalable techniques for QE from logienfiulas that can im-
prove the performance of such formal verification and ansity®ls.

In this thesis, we initially focus on QE from formulas in angartant fragment
of bit-vector logic [13] called linear modular arithmeti€ormulas in linear mod-
ular arithmetic are Boolean combinations of linear equeitidisequalities and
inequalities on fixed-width bit-vectors. QE techniqueslfoear modular arith-
metic have been found useful in formal verification and asialpf word-level

RTL designs and embedded programs [80, 77]. The problem ofr@#& for-

11
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mulas in linear modular arithmetic and the details of ourkmor this field are
explained in Section 1.2.

We then address the problem of QE from formulas in proposafidogic.
One of the approaches for performing QE is to express thetifjednvariables
as functions of other variables in the formula. Such fumgiare traditionally
called Skolem functions [5]. QE can be done by substitutiregydccurrences of
the quantified variables in the formula by their Skolem fuortd. We focus on
techniques to generate Skolem functions for quantifiechisées in propositional
logic formulas. Other than QE, the techniques for genegaBkolem functions
have important applications in reachability analysis ofwits [6, 7], certification
of solvers [8] and synthesis of programs from specificati@js The details of

our work in this field are explained in Section 1.3.

1.1 Preliminaries

Before delving into the details of our work, we provide a bii@foduction to
first-order logic, first-order theories and QE. More dethitkscussion on these
topics can be found in books on logic (see [5, 30]). We alsmdhice notation

that will be used in the remainder of this thesis.

1.1.1 First-Order Logic

The alphabet of first-order logic consists of variablesjdagsymbols, and non-
logical symbols. Logical symbols include Boolean connedig-, Vv, A), quanti-
fiers (7, d), constant formulasf§lse, true), and parentheses. Nonlogical symbols

include function symbols, predicate symbols, and constamiools.
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Terms and formulas in first-order logic are constructed gisins alphabet.
Terms are variables, constants, and function applicatees other termsfalse
andtrue are called constant formulas. The most basic formulas arstaected by
application of predicates over terms, and are cadli@nic constraint®r simply
constraints More complex formulas are constructed by application of |IBao
connectives and quantifiers over other formulas: (H is a formula, then-F is
a formula, (ii) if F, andF~ are formulas, thef; A F andF; vV F, are formulas,
(i) if F is a formula and is a variable appearing iR, then3dx.F andVx.F are
formulas.

A formula constructed only by using constraints and Booleamectives is
called aquantifier-freeformula. The variables appearing in a quantifier-free for-
mula are calledreevariables. LeF be a quantifier-free formula over a 3étof
free variables. We often writeé asF (V) to highlight the fact thaF is a formula
over variables iV. A formula of the formQx F, wherex € V andQ € {3,V} is
called aguantifiedformula. The variable here is calledoundvariable inQx F,

and the variables iW \ {x} are calledreevariablesQx.F.

1.1.2 First-Order Theories

A first-order theory defines the set of nonlogical symbols ¢thaa be used in terms
and formulas. It also defines the domaimf variables, and gives interpretation to
the nonlogical symbols. The interpretation to the nonlalggymbols is a mapping
from function symbols, predicate symbols, and constantbgsto functions,
predicates, and elements owr

As an example, Presburger arithmetic [40, 13] is a first-ottakeory with non-

logical symbols 0, 14+ and<. The domain of variables in this theory is the get
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of integers. The symbols 0 and 1 map to the integers 0 and 1syfrhbols+ and
< have their obvious interpretations o\&r Linear real arithmetic, linear modular
arithmetic, propositional logic etc. are other examplefiref-order theories.

Given a formulaF in a first-order theoryZ, avariable assignmernt assigns
an element of the domaiD to each free variable ifk. The formulaF evalu-
ates to eithetrue or false undertt If F evaluates tarue undert, then we say
=7 F. Otherwise, ifF evaluates tdalse undert, then we sayt =+ F. When
the theory7 is clear from the context, we simply say—= F andrt = F. Note
that each constrairtin F evaluates to eithetrue or false underm depending on
the interpretations of the nonlogical symbolsih Formulas with Boolean con-
nectives are evaluated in the following manner: {i}=7 —Fy iff T [&7 Fy, (ii)
NME=r FARIf Ty Frandnt=s B, (i) s B VRIff =L Formi=s Fo.
In order to explain how quantified formulas are evaluateddefene the notation
1(x|d] for variablex andd € D. We definerix|d] as a variable assignment which
is exactly the same asexcept that the variabbeis assigned the valug We have
T =4 3 Fy iff {x|d] =4 F1 for somed € D. Similarly, we havet =4 vx. Fy iff
T(x|d] =4 Fy for all d € D.

Let F, F1, I be formulas in a first-order theory. FormulaF is called7 -
satisfiableif there exists a variable assignmensuch thatrt =, F. FormulaF
is 7 -valid if for every variable assignmemt we haver =+ F. Formulas; and
F, are T-equivalentif for every variable assignment, =4 Fy iff T=4 F.
When the theoryZ is clear from the context, we simply usatisfiable valid, and
equivalent we useF; = F, to denote that the formuldg andF; are equivalent.

Moreover, we often use; = F» to denote the formulaF; v F.
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1.1.3 Quantifier Elimination

Let F be a quantifier-free formula over a 3étof free variables in a first-order
theory 7. Consider the quantified formul@ix; Q2x2 ...QnXn. F, whereX =
{X1,...Xn} isasubseto¥, andQ; € {3,V} fori € {1,...n}. QE involves comput-
ing a quantifier-free formul&’ on variables i/ \ X such tha¥’ is 7-equivalent
toF.

As an example, consider the formua (y = 3x) in the theory of linear arith-
metic over integers. This formula expresses they sétintegers that are divisible
by 3. Since the quantifier-free formu{g =0 (mod 3)) expresses the set of in-
tegers that are divisible by 3x. (y = 3x) is equivalent tqy = 0 (mod 3)) in the
theory of linear arithmetic over integers.

Given a universally quantified formulka. F in any first-order theoryZ’, Vx
can be converted téx using the equivalenceéx. F = —3x. -F. Hence the prob-
lem of developing a QE algorithm for theor¥ boils down to the problem of
developing arexistentialQE algorithm forZ". Therefore, in the remaining part of

this thesis, we will use QE to refer to existential QE.

1.2 QE for Linear Modular Arithmetic

Linear modular arithmetic is a fragment of bit-vector loffl&]. Constraints in
linear modular arithmetic are linear equalities, diseitieal and inequalities on
fixed-width bit-vectors. Lefp be a positive integer constan, ..., X, be p-bit
non-negative integer variables, aagl . . .,a, be integer constants i0,...,2P —
1}. Alinear term oveky, ..., X, is a term of the fornay - X1 + - - - @n - Xn + ao, Where

- denotes multiplication moduloP2and+ denotes addition moduloP2 A linear
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modular equality (LME) is a constraint of the fotin=t, (mod 2°), wheret; and
to are linear terms oveq, . .., . Similarly, a linear modular disequality (LMD) is
a constraint of the formy #t, (mod 2°), and a linear modular inequality (LMI) is
a constraint of the forrmy ity (mod 2°), wheresie {<, <}. We will use linear
modular constraint (LMC) to refer to an LME, LMD or LMI. Convemnally 2°
is called the modulus of the LMC.

The semantics of LMCs differ from that of linear constraintgrintegers in

two aspects:

1. Wrap-around behaviourThe successor ofP2- 1 in modular arithmetic is
0. Hence, foxx = 2P — 1, the value ok+ 1 modulo 2 overflows and wraps
to 0. Hence the formuléx = 3)A(x+ 1 < 2) is satisfiable in linear modular

arithmetic with modulus 4, whereas it is unsatisfiable onezgers.

2. Finite domain:Domain of variables in modular arithmetic has finite/bouwhde
cardinality unlike integer arithmetic where the variables unbounded.
Hence the formuldx = 3)A(x < y) is unsatisfiable in linear modular arith-

metic with modulus 4, whereas it is satisfiable over integers

Efficient techniques for QE from LMCs have applications innfiat verifi-
cation and analysis of hardware and software systems. Fammécation and
analysis tools reason about symbolic transition relatiinkardware and soft-
ware systems expressed as formulas in appropriate logiab&lc transition re-
lations of word-level RTL designs and embedded progran@wevconstraints in
linear modular arithmetic. LMEs arise from the assignméatiesnents, whereas
LMDs and LMis arise primarily from branch and loop conditsotinat compare

words/registers. Key operations such as image computitjpeomputation of
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strongest post-conditions [2] and computation of predicdistractions [3] per-
formed by formal verification and analysis algorithms baiweh to QE from

formulas involving symbolic transition relation. Symhmotransition relations of
RTL designs and embedded programs in general may involveegigariables
with signed operations and comparisons on them. Howeverethre standard
techniques to convert constraints with signed semantitcsdquisatisfiable con-
straints with unsigned semantics (for example, see pag¢81pf Therefore, we
will focus only on constraints with unsigned semantics.

Our primary motivation for studying QE from LMCs arises froraunded
model checking [4] of word-level RTL designs. Suppose wewiisuse bounded
model checking to prove that a property holds for the fitrsi/cles of operation of
a word-level RTL design. This can be done by unrolling the Isglc transition
relation of the desigiN times, conjoining the unrolled relation with the negation
of the property, and then checking for satisfiability of teeulting formula using
an SMT solver [10]. Since the transition relation contaithsariables that appear
in the RTL description, unrolling the transition relatiodaage number of times
gives a formula with a large number of variables. While the banof variables
in a formula is not the only factor that affects the perfore®@nf an SMT solver,
for large enough values ™, the increased variable count has an adverse effect
on the performance of the solver.

In order to alleviate the above problem, one can use an abstemsition
relation that relates only a chosen subset of variablesastdo the property be-
ing checked, while abstracting the relation between therothriables. Such an
abstract transition relation can be computed by existiyntantifying out the

variables that are not relevant to the property being cleeék@m the original
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transition relation. Since the abstract transition relattontains fewer variables
than the original transition relation, the formula obtaitiy unrolling the abstract
transition relation has fewer variables. In general, tlis tead to significantly
better performance of the SMT solver, as demonstrated iexpgriments. Since
Boolean combinations of LMCs arise in transition relationsvofd-level RTL
designs, building an abstract transition relation requexistentially quantifying
variables from Boolean combinations of LMCs.

For ease of analysis, formal verification and analysis #lgois abstract vari-
ables in the system to be verified as unbounded integers sa@k techniques for
unbounded integers [11]. However the underlying systemdmpntation often
uses modular arithmetic, and as mentioned eatrlier, the r#gaaf unbounded
integer arithmetic differs from that of modular arithmetigence the results of
verification and analysis by abstracting variables as untled integers and using
QE for unbounded integers may not be sound or complete [1Bgitinderlying
implementation uses modular arithmetic. Therefore, agirb bit-preciseQE
techniques for LMCs is an important problem.

Currently, the dominant technique for eliminating quantfigrom LMCs in-
volves blasting variables into individual bits (also called bit-blastint3]), fol-
lowed by elimination of the blasted bit-level variables J[1& his approach has
some undesirable features. Blasting involves a bitwiditedeent blow-up in the
size of the problem. This can present scaling problems irutlage of bit-level
QE tools, especially when reasoning about wide words. &ngjlgiven an in-
stance of the QE problem, blasting variables that are dfighinay transitively
require blasting other variables (that are not quantifiedyvall. This can cause

the quantifier-eliminated formula to appear like a proposdl formula on blasted
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bits, instead of being a modular arithmetic formula. Sire@soning at the level of
modular arithmetic is often more efficient in practice theasoning at the level of
bits, QE using bit-blasting might not be the best option & tfuantifier-eliminated
formula is intended to be used in further modular arithmietiel reasoning.
Another technique for eliminating quantifiers from LMCs isngerting the

LMCs to equivalent constraints in linear arithmetic oveegers [13], and then
using QE techniques for linear integer arithmetic such ag@mnTest [11]. Sim-
ilarly, automata-theoretic approaches for eliminatingrmjtfiers from linear inte-
ger constraints [15] can also be used. However, this appreeales poorly in
practice. Moreover, this approach destroys the modulénragtic structure of
the problem since the resulting formula is a linear integigghmetic formula and

converting this formula back to modular arithmetic is oftéfficult.

1.2.1 Contributions

— We present a bit-precise and practically efficient algaomifor eliminating
quantifiers from conjunctions of LMCs. The algorithm is basad layered
approach, whereby sound but incomplete and cheaper layelis\aked
first, and expensive but complete layers are called only wlguired. The
cheapest layers are based on simplifications using LMEs aygpohg un-
constraining LMDs and LMIs from the problem instance. Sujosaitly we
use a Fourier-Motzkin style layer to eliminate quantifieosf conjunctions
of LMIs. The final, most expensive and complete layer is basedodel
enumeration. Experiments indicate that we do not need ttkkenthe model
enumeration based layer on a wide range of benchmarksgamspractice.

The experiments also demonstrate effectiveness of ouritdgoover alter-
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native QE techniques based on bit-blasting and conversiontdger linear

arithmetic.

— We present approaches to extend the aforementioned thlgoto elimi-
nate quantifiers from Boolean combinations of LMCs. We intzda new
decision diagram called Linear Modular Decision DiagrarviD) that
represents Boolean combinations of LMCs, and present aigasifor QE
from LMDDs. We then present an SMT solving based approaciQfer
from Boolean combinations of LMCs, and a hybrid approach thes to
combine the strengths of the LMDD and SMT solving based agugires.
Experiments demonstrate the effectiveness of these agpsaThe exper-
iments also demonstrate the utility of these approachesumdied model

checking of word-level RTL designs.

1.3 QE for Propositional Logic

In propositional logic, variables can have valuag or false. Formulas are con-
structed using variables, constantsi¢, false), and Boolean connectives(V,
A). Variables and formulas in propositional logic are alsteechpropositional
variables and propositional formulas respectively. Ushmgnotation introduced
in Section 1.1, propositional logic can be considered astadider theory, where
domain of variables itrue, false} and constraints are variables or constants.
We focus on Skolem function-based techniques for QE fromédas in propo-
sitional logic. Formally, leX = {x1,...xn} andY = {y1,...ym} be sets of propo-
sitional variables. LeF(X,Y) be a propositional formula over the setJY. A

Skolem functiony; for x; in F(X,Y) is a formula over the seX\ {x;} UY such
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that3x. F = F[x — ], whereF[x; — ;] denotes the formula obtained by sub-
stituting occurrences of in F with ;. For example, consider the propositional
formulax; Ay1 . We claim that the/; andtrue are two Skolem functions for the
variablex; in x; Ay;. To verify the claim, observe that (§x;. (X1 A Y1) iS equiv-
alent toy, (i) (xp Ay1)[X1 — Y1) is equivalent toyr, and (iii) (X1 A y1)[X1 +— true]

is equivalenty.

Other than QE, Skolem functions have many important apgbice. Skolem
functions are used as certificates [8] for satisfiable QtiadtBoolean Formulas
(QBFs) by QBF solvers. The problem of synthesizing a circugrogram [9] that
satisfies the specificatidBpe¢l,O), wherel is the set of inputs an@ is the set
of outputs reduces to computing Skolem functidri$) for variables inO in the
formulaSpecl,O).

Our primary motivation for studying Skolem function gerteya comes from
the problem of computing disjunctive decompositions ofusatdial circuits rep-
resented as symbolic transition functions in propositiéogic [6]. Here, given
a sequential circuit, we wish to obtain “component” seqiamircuits, each of
which has the same state space as the original circuit, tyaasingle transition
going out of every state. Thus, the set of state transitibtiseooriginal circuit is
the union of the sets of state transitions of the compon@&isgunctive decompo-
sitions find their applications in efficient reachabilityadysis [7].

Given a propositional formul& (X,Y), there are techniques [8, 16, 17] for
generating Skolem functions for variables in theXethen3X.F(X,Y) is valid.
These techniques extract Skolem functions from the proadlidity of 3X. F(X,Y).
However in applications such as QE and computation of disjue decomposi-

tion, we need to generate Skolem functigni¥’) for variables in seX irrespective
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of the validity of 3X.F(X,Y). The work in [9] proposes techniques to generate
Skolem functions matching predefined candidate functiomptates. However
such techniques are effective only when the set of candfdatgion templates is
known and small.

The work by Jiang in [18] and the work by Trivedi et. al. in [6lopose
composition based techniques to compute Skolem functioets-[x; — 0] be F
with occurrences of; replaced byfalse andF [x; — 1] be F with occurrences of
x; replaced bytrue. The work in [18] computes a Skolem function #giin F as a
Craig interpolant [19] of [ — 1] A =F [x; — O] and—F [x; — 1] AF[X — 0]. The
work in [6] observes thatF [x — 1] A—F[x — 0]) vV (F[xi — 1] AF[x — O] Ah)

vV (=F[X% — 1] A=F[x — O] Ag) is a Skolem function fok; in F, whereh and

g are any propositional formulas witk \ {x;} UY as support. However these
techniques necessarily require nested compositions,hwddase formula blow-
up and vulnerability to memory-outs even for medium-sizeddhmarks.

In many practical applications, the formu#dX,Y) is given as a conjunction
of smaller formulas rather than as a single monolithic fdemuExisting algo-
rithms for generation of Skolem functions do not make usaiohdactored form
and consideF (X,Y) as a monolithic formula. We focus on the generating Skolem
functions for propositional formulas given in factoredrfoand argue that exploit-

ing the factored form yields significant performance imgnoents.

1.3.1 Contributions

— We present a SAT solving based CounterExample Guided AlbistnaRe-
finement (CEGAR) style algorithm for generating Skolem fumasi for

propositional formulas that exploits factored represionaof the formu-
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las. In contrast to the algorithms in literature, our algor neither re-
quires proof of satisfiability nor uses memory-intensivenpositions. Ex-
periments demonstrate that our algorithm can generatdisantly smaller
Skolem functions and performs better on large benchmags ttine exist-
ing state-of-the-art algorithms. We show that our algoniib applicable in
more generic cases where the input fornfa(x,Y) involves uninterpreted

predicates, and demonstrate other potential applicatibaar algorithm.

1.4 Organization of Thesis

The remainder of this thesis is organized as follows. In Givaptve discuss the
related works in detail. This includes a survey of existirlg ®©chniques for lin-
ear modular arithmetic and propositional logic. We alscsprne QE techniques
for the theory of linear real arithmetic and the theory oéln integer arithmetic
— two theories that are closely related to the theory of limeadular arithmetic.
In Chapter 3 we present our algorithm for eliminating quasrtsfifrom conjunc-
tions of LMCs. We present approaches to extend this algorftmeliminating
quantifiers from Boolean combinations of LMCs in Chapter 4. Oarlvon gen-
eration of Skolem functions for propositional formulas isgented in Chapter 5.
We conclude and suggest directions for future work in Chater

For clarity of exposition, in most of the lemmas/proposisttheorems pre-
sented in the following chapters, we give illustrative exées before presenting
the detailed proofs. Chapter 3 and Chapter 4 are extende@nsmsi our works
in [20, 21], and also reported in [22]. Chapter 5 is an extenaesion of our work
in [23].



Chapter 2

Related Works

In this chapter, we present existing QE techniques for timeadular arithmetic
and propositional logic. We also present QE techniquesHertheory of lin-
ear real arithmetic and the theory of linear integer arittienélhese theories are
closely related to the theory of linear modular arithmelworeover some of the
techniques that we present in the following chapters arensitns of QE tech-
niques for these theories.

We will use symbolgly , 77 and 7, to refer to the theories linear real arith-
metic, linear integer arithmetic and linear modular arigtimrespectively. More-
over, we will use “linear arithmetic” when the distinctioativeen the theorie®y,
Tz and‘Z,, is not important. QE algorithms for linear arithmetic usyaork on
conjunctions of constraints. In order to apply these atbors on formulas that
are arbitrary Boolean combinations of constraints, the tdans often converted
into disjunctive normal form (DNFRJ; V- - -V dmn, where eacld; is a conjunction of
constraints. For eadty, Ix. d; is computed by using the QE algorithm that works

on conjunctions of constraints. Hence, in this chapter, mit&lly focus on QE

24
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algorithms that work on conjunctions of constraints, arehtexplore techniques
to extend these algorithms to arbitrary Boolean combinatadrconstraints.

Satisfiability problem (decision problem) for a theory i throblem of de-
ciding if a given formula in the theory is satisfiable or umsfable. Algorithms
for satisfiability problem for a theory are called satisfidpprocedures (decision
procedures). A formul& over variablexs, ..., X, is satisfiable iffdx; - - - Ix,. F is
true. Hence QE algorithm for a theory can be used as a decisioreguoe for the
theory. In fact the relationship between QE algorithms aecision procedures
is even deeper. Advances in decision procedures have aiwatygated develop-
ment of efficient QE algorithms. For example SAT based QErélyaos [24, 25,
26] for propositional logic were motivated by the succesSAT solvers. Simi-
larly, many key operations performed by decision proceslare closely related
to QE. For example, as observed in [24], resolution, thecbagseration used in
SAT solving, is actually performing QE. Let, co be two clauses and let be the
resolvent ofc; andc; on a variablex. Then,cz is equivalent tadx. (c1 A cp). Due
to this strong connection between QE algorithms and detsiocedures, along
with QE algorithms, we also provide a brief description otiden procedures
for the theories.

The remaining part of this chapter is organized as followse &Xplain QE
algorithms for conjunctions of constraintsd in Section 2.1 and QE algorithms
for conjunctions of constraints ifi; in Section 2.2. Existing algorithms for QE
from conjunctions of constraints i, are explained in Section 2.3. Section 2.4
describes techniques to extend these algorithms to aspB@lean combinations
of constraints. Techniques for QE from propositional Idgienulas are explained
in Section 2.5. We conclude in Section 2.6.
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2.1 Linear Real Arithmetic

Ty permits linear terms of the formx; + - - - + anxn + ap, Whereay, ..., a, are
rational constants anxi, ..., X, are variables ranging over reals. Constraints in
T are of the formsat wheres, t are linear terms permitted by the theory and
€ {=,#,<,<} (see [30] for more details off).

We wish to computeix.C, whereC is a quantifier-free conjunction of con-
straints in7g involving x. We assume that involves only equalities and strict in-
equalities. Note that this does not cause any loss of getyesahce disequalities
and weak inequalities can be replaced by equalities antt stequalities using
the equivalences Ip<t) = (s<t)Vv(s=t),and 2)(s#t) = (s<t)V(s>1t).

We further assume that the constraintCimare expressed in theormalized
form x>t, wheret is a term free ok and< € {=,<,>}. This is always possi-
ble by using the standard arithmetic transformations piechin real arithmetic.
For example, consider th6; constraint3x+ 10> y). It can be equivalently ex-
pressed in forn§3x > y— 10) by adding—10 to both sides of the inequality. It can
be then expressed in the normalized fqpm> %y— 1—30) by dividing both sides by
3.

Note that ifC contains an equalitx = t, then3x.C can be computed very
easily. Substituting the occurrencesxoh all other constraints i€ by t, and then
droppingx =t from C gives3x.C. Hence, in the remaining part of this section,
we will assume that involves only strict inequalities of the form< sandx > t.

We present three algorithms for QE from such conjunctionsoofstraints in
Ty - Fourier-Motzkin Algorithm, Ferrante and Rackoff’s Algtinm and Loos
and Wiespfenning’s Algorithm (Although in the following si&ription we focus

on only conjunctions of constraints, Ferrante and Rackdfigorithm and Loos
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and Wiespfenning’s Algorithm can directly work on Boolearmtmnations of
constraints inZg ). We then present automata-theoretic approaches for Q& fro
conjunctions of constraints ifiz , and conclude the section with a discussion on

decision procedures fafy and some complexity results.

2.1.1 Fourier-Motzkin Algorithm

The fundamental idea behind Fourier-Motzkin Algorithmasetiminate the vari-
able by projecting the constraints on the remaining vaesioh the conjunction.
Let L be the set of constraints @ of the form(x > t), andU be the set of con-
straints inC of the form (x < s). The result of projectin@€ on the remaining

variables can be computedas A (t <s). As an example, consider the
(x<s)eU, (x>t)eL

problem of computinglx.C, whereC is the formula(x < 3y+2) A (x> 3z+3).
HereL is {x > 3z+ 3} andU is {x < 3y + 2}. Projecting(x < 3y+2) A (x>

12+ 3) onyandzand thereby eliminating gives3x.C as(3z+ 3 < 3y +2).

2.1.2 Ferrante and Rackoff’'s Algorithm

Ferrante and Rackoff’'s Algorithm [31] istast pointbased QE algorithm. Test
point based algorithms express C as an equivalent finite disjunction of the form
C[x t1] V--- VC[X+ ty], wherety, ...ty are terms on free variables @ and
C[x — tj] represent€ with occurrences of replaced byt;. The termdy, ..., ty
are called test points, and are generated from the constrai@.

Let A be the set of constraints @. Ferrante and Rackoff’s Algorithm com-
putes3x.C asC[x — —o] V C[X i +o0] V V  Clx— =], wherex €

(x<s), () €A
{<,>}. The occurrences of and-+ can be eliminated by using the equiv-
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alences(s < —») = (40 < t) = false and (—o < t) = (S< +0) = true. As
an example, consider the problem of computihgC, whereC is the formula
(X< 5) A (x> 3). HereC[x — —w] andC[x — +oo] simplify to false. Since the
constraints irC are (x < 5) and (x > g), the termss andt take values from the
set{5,3}, and=}! takes values from the s¢b, 2, #}. Note thatC[x — 5] and
Clx— g] both simplify tofalse, wherea<C|x — #] simplifies totrue. Hence

Ix.C is computed asrue.

2.1.3 Loos and Wiespfenning’s Algorithm

Loos and Wiespfenning'’s Algorithm [32] is an optimizatioiF@rrante and Rack-
off’s Algorithm. Suppose there akeconstraints irC. It can be observed that the
number of test points Ferrante and Rackoff’s Algorithm exasiisO(k?). Loos
and Wiespfenning’s algorithm reduces the number of tesitpdo be examined
to O(K).

Let L be the set of constraints @ of the formx >t. Loos and Wiespfen-
ning’s Algorithm computesix.C asC[x+— —o] V. \/ C[x+ t+¢€], wheree is
a positive number close to zero. As in Ferrante(x;l)s LRackd(jtsr'mhm, —oo and
€ can be eliminated by using the equivalenf®s —) = false, (—o0 < t) = true,
(s+e<t)=(s<t),and(s<t+¢g) = (s<t). As an example, consider again the
problem of computingx < 5) A (x> %). We have seen th@lx+— —oo] simplifies
to false. The set is {x > %}. The termt + € takes values from the séé +&},

andCix — t + €] simplifies totrue. Hence3dx.C is computed asrue.
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2.1.4 Automata-theoretic Approaches

The key idea behind the automata-theoretic approaches@mte@rt the conjunc-
tion C to an automaton such that the language accepted by the aotoowre-
sponds to the solutions @ The work in [33] shows that constraintsdi; can be
represented using weak deterministigdBi automata, a restricted class afdbi
automata. QE then reduces to applying projection operatiathe automaton for
the conjunction. The tools LIRA [34] and LASH [35] provide $uautomata-
theoretic QE implementations. However, there are two furetgal problems
with these approaches. First of all, the automaton constiuaften blows up in
practice. Secondly, the result of QE is an automaton, notrauta, and synthe-

sizing a formula from the automaton is difficult.

2.1.5 Complexity Results and Decision Procedures

The QE algorithms for conjunctions of constraintgZip that we saw have doubly
exponential worst case complexities. lmtbe the number of constraints (¢
After the execution of Fourier-Motzkin Algorithm, the nuetbof constraints in
Ix.C can grow to% in the worst case. Lat be the number of variables to be
eliminated. Elimination ofi variables using Fourier-Motzkin Algorithm can thus
result in”jf—nn constraints. As a result, the number of steps involved inetive-
ination of n variables using Fourier-Motzkin Algorithm is doubly exgmortial in

n in the worst case. Similarly, in the cases of both FerranteReaxckoff's Algo-
rithm and Loos and Wiespfenning’s Algorithm, the worst ctige complexity is
22"k, wherel is the length of the original conjunctidd andk is a fixed positive

constant.
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The decision problem for conjunctions of constraintdjnis solvable in poly-
nomial time as originally shown by Khachian in [36] and labyr Karmarkar
in [37]. Because of their comparatively high theoretical anactical complex-
ities, the QE algorithms fof; are not usually used as decision procedures. The
most popular decision procedure used in practice for camjoims of constraints
in 7 is a variant [38] of Simplex algorithm [39] for linear prognaning. Al-
though Simplex is exponential in worst case, in practicentbed for exponential

number of steps occurs very rarely.

2.2 Linear Integer Arithmetic

T, permits linear terms of the forraixy + - - - 4+ apXn + @, Whereay, ..., a, are
integer constants and, ..., X, are variables ranging over integers. Constraints in
T are of the formsxt wheres, t are linear terms permitted by the theory ard
€ {=,#,<,<} (see [30] for more details).

T, as defined above does not admit QE. To see this, consider timailfo
3Ix. (y = 2x) in Iz. This formula expresses the setf integers that when divided
by 2 gives another integer. In other words, this formula egpes the set of even
integers. However, it can be observed that there is no fanuliZ; that can
express the set of even integers. To overcome this problgms augmented
with congruence constraintsf the form(t = 0 (modKk)), wherek is a positive
integer and is a linear term. Note thatongruence constraintare similar to
LMEs, but the modulus need not be a power of 2. It can be obdehag(t = 0
(modKk)) is semantically equivalent tex. (t = kx). The augmented theory admits

QE. For example, the formulx. (y = 2x) is equivalent tqy =0 (mod 2)). As
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we are interested in the problem of QE, henceforth we will Tiséo denote the
augmented theory of linear integer arithmetic.

In this section, we will focus on techniques to comptdieC, whereC is a
guantifier-free conjunction of constraints i3, involving x. We assume that
involves only equalities and strict inequalities. As in ttese of reals, this does
not cause any loss of generality, since disequalities arakwesqualities can be
replaced by strict inequalities using the equivalences ¥)t) = (s<t+1), and
2) (s#t)=(s<t)V(s>t).

QE and reasoning techniques for constraint¥inare more involved com-
pared to those for constraints# . The additional difficulty arises primarily due
to the reason that unlike reals which are dense, integemisceete. Recall that
equalities and strict inequalities ifi; can be transformed to tm®rmalizedform
x>1t, wheret is a term free ok and € {=, <, >}. However such transformation
may not preserve equivalence in casé/gfas it can generate non-integral coeffi-
cients. Hence aveaker normalizedorm axe<t, wheret is a term free ok, < €
{=,<,>}, andais a positive integer is defined far;. For example, consider the
constraint—2x+y > 10. It can be expressed in the normalized forn2y — 10
by adding—y to both sides and then multiplying both sides-b¥.

As in the case ofly, the presence of equalities @ simplifies the compu-
tation of Ix.C considerably. LeC involves an equalityax=t. Let o be the
least common multiple (Icm) of the coefficients»oin the constraints il€. The
constraints inC can be multiplied by appropriate constants so thas the co-
efficient of x in all constraints. Let the equaligx =t gets multiplied byb and
gets converted tox = bt in this process, wherkb = . Substituting the occur-

rences ofox in all constraints irC other thanox = bt by bt, and then replacing
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ox = bt by (bt =0 (mod o)) gives3x.C. For example, consider the problem of
computing3x. ((2x = 3y+2) A (3x > 4z+ 3)). Hereo is Ilcm(2,3)= 6. Mul-
tiplying (2x = 3y + 2) by 3 and(3x > 4z+ 3) by 2, we havedx. ((6x = 9y + 6)

A (6x > 8z+ 6)). Replacing the 6in (6x > 8z+ 6) by 9+ 6 and simplifying
gives3x. (6x=9y+6) A (9y > 82). This is equivalent t§9y+6 =0 (mod 6)) A
(9y > 8z). Henceforth, we will assume th@tinvolves only strict inequalities of
the formax <t andbx > s.

The pioneering work on QE from conjunctions of constraintgi was done
by Presburger [40]. Here we present a more efficient versfoRresburger’s
QE procedure introduced by Cooper in [41] called Cooper’s Atgm (Sim-
ilar to Ferrante and Rackoff’s Algorithm and Loos and Wiespiag's Algo-
rithm for 7z, Cooper’s Algorithm can directly work on Boolean combinasion
of constraints. However in the following description we dsanly on conjunc-
tions of constraints.). We also present Omega Test Algorithl], an extension
of Fourier-Motzkin Algorithm for7;. We then present automata-theoretic ap-
proaches, and conclude the section with a discussion osidegrocedures for

T~ and some complexity results.

2.2.1 Cooper’s Algorithm

Cooper’s algorithm is a test point based QE algorithm. It expesix.C as an
equivalent disjunction of the for@[x — t1] vV --- VC[X — ty|, wherety, ...t are
terms on free variables @.

Let o be the Icm of the coefficients of in the constraints irf€. The con-
straints inC are multiplied by appropriate constants so thas the coefficient of

x in all constraints. Le€’ be the formula obtained by replacing the occurrences
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of ox in C by a fresh variable(. Let D be the formulaC'A(X = 0 (mod g)).
It can be observed thaix.C is equivalent todx'.D. Let L be the set of con-

o
straints inD of the formx > t. Now 3x.C is equivalent to\/ D[X — —oco+ j]
j=1

\Y \7 /\/ DX +—t+ j]. The occurrences of are eliminated by using the
eqlei\llg(I;I)cfléﬁ—OH— j >t) =false and(—o + j <t) = true.

As an example, consider the problem of computixgC, whereC is the for-
mula (3x < 7) A (2x > 3). Note thato is lcm(3, 2)= 6. Multiplying (3x < 7)
by 2 and(2x > 3) by 3, we getix. ((6x < 14) A (6x > 9)). Replacing & by X,
and adding the constraift' =0 (mod 6)), we have3x'.D, whereD is (X < 14)
AKX >9) A (X =0 (mod 6). Note that_\(; D[X +— —oo+ j] simplifies tofalse.
Since the set is {x' > 9}, t takes the vaI:J_elQ, andr j takes values from the set
{10,11,12,13 14,15}. Note that\(; \V DIX — t+ j] simplifies totrue, since

j=1(¥>t)eL
D[X' +— 12] is true. Thereforedx.C computed igrue.

2.2.2 Omega Test Algorithm

Omega Test Algorithm is an extension of Fourier-Motzkin évighm for QE from
constraints inZz. Although originally presented as a decision proceduretor
junctions of constraints iffz, it can be extended to a QE algorithm in a straight-
forward manner.

For clarity in exposition, let us initially consider the spter problem of com-
puting3x. (ax<t) A (bx> s). First(ax < t) is multiplied byb and(bx > s) is mul-
tiplied by a so thatabis the coefficient ok in both the constraints. Thus we have
Ix. (abx < bt) A (abx> as). Applying Fourier-Motzkin Algorithm orgx. (abx <

bt) A (abx> as) gives(bt > as). However(bt > as) is an over-approximation of
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3x. (abx< bt) A (abx> as), calledreal shadow Note that if(bt — as> ab) holds,
then existence of an integesuch thatabi < bt) A (abi > as) is guaranteed. Thus
(bt —as > ab) is an under-approximation afx. (abx < bt) A (abx> as). The
constraint(bt —as > ab) is calleddark shadow

Considerdx. (abx< bt) A (abx> as) when(bt —as< ab). This implies(as<
abx< as+ ab) i.e.,(s<bx<s+b). Hencedx. (abx< bt) A (abx> as) is equiv-

alent to3x. \/ (bx= s+ j)A(abx < bt)A (abx> as) when (bt —as< ab). The
=1

b—1
formula \/ (bx= s+ j) is calledgrey shadowSubstituting the occurrenceslof
j=1
in (abx< bt) and(abx> as) by s+ j, and then replacintpx=s+j) by (s+j=0
b—1
(modb)) gives \/ (s+j =0 (modb))A(a(s+ j) < bt)A (a(s+ j) > as), which
j=1

can be simplified tg\71(s+ j =0 (modb))A(a(s+ j) < bt)A (bt > as).

Putting everythlng togetheﬁx (ax<t) A (bx>s) is equivalent to the disjunc-
tion of (bt —as> ab) and \/ (s+ ] =0 (modb))A(a(s+ j) < bt)A (bt > as).
In general, letl be the set of constraints i@ of the form (bx > s) andU be
the set of constraints i€ of the form (ax < t). Then3x.C is equivalent to

A . (ax<t) A (bx>s).
(ax<t)eU, (bx>s)eL

As an example consider the problem of computixgC, whereC is the for-
mula (5x < y) A (6x >y). Herea=5,b=6 ands=t =Y. Real shadow
(bt > as) is (y > 0), anddark shadow(bt —as> ab) is (y > 30). The formula
\7 (s+ ] =0 (modb))A(a(s+ j) < bt) simplifies to(y=5 (mod 6 Ay > 5) v
ly— 4 (mod Ay >10) v (y—3 (mod §Ay> 15) v (y—2 (mod § Ay > 20)
vV (y=1 (mod 6 Ay > 25). Hence3x.C is computed agy > 30) V (y=5
mod 6 Ay >5) vV (y=4 (mod Ay >10) Vv (y=3 (mod 6 Ay > 15) v

(m
(y=2 (mod 6 Ay>20)V (y=1 (mod 6 Ay > 25).
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2.2.3 Automata-theoretic Approaches

Buichi showed [42] that a conjunction of constraintgZin can be represented by
a finite state automaton such that the language accepteca autbmaton corre-
sponds to the solutions of the conjunction. A more efficiechhique to repre-
sent constraints il by automaton was proposed by Boudet and Comon in [43],
which was further improved by Wolper and Boigelot [44]. Onlee tonjunction
is represented as an automaton, QE can be done by applyilegiwo operation
on the automaton. An implementation of the technique by \&ognd Boigelot
can be found in the tool LASH [35]. LIRA [34] provides a more eiéint imple-
mentation of this technique that reduces the number ofstatbe automaton and
thereby keeps the automaton smaller. However, as in theotakg, the primary
bottleneck of the automaton-based approaches is that thenaton constructed
often blows up in practice as observed in [15]. Moreovenwvitgy a formula from

the automaton obtained after QE is difficult.

2.2.4 Complexity Results and Decision Procedures

Letl| be the length of the input conjunction of constrai@tsThe worst case time
complexity of Cooper’s Algorithm is 22”(, wherek is a fixed positive constant.
The time taken by Omega Test Algorithm and the size of quantdiiminated
result can be proportional to the absolute values of theficaaits in the worst
case.

The decision problem for conjunctions of constraintgiis NP-complete [45].
Although Omega Test Algorithm is used as a decision pro@edlr conjunc-

tions of constraints ir/, there exist more popular decision procedures based on
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branch-and-bound and Gomory’s cutting planes [46]. In lWb#se approaches,
given a conjunctiol® of constraints irnZz, it is first checked to see @ has a solu-
tion when the variables are not required to be integers. Vdnsion ofC without
the integrality requirement is calleelaxed problemand can be solved using Sim-
plex algorithm. If the relaxed problem is unsatisfiablent@eas also unsatisfiable.
Otherwise letrt be the solution returned by Simplex for the relaxed probléim.
all variables are assigned integer valuestrthenTtis a solution toC as well.
Otherwise letrt assigns a fractional valuk to variablex;. In branch-and-bound
approach, two conjunctior; andC; are created, wher@; is CA(xi < [ f;|) and
Cy is CA(xi > [fi]). The original problem of decidin@ is now split into sub-
problems of decidingc; andCy, sinceC has a solution only if2; or C; has a
solution. In Gomory’s cutting planes approach, a new inétyuk(called cutting
plane) is added t€ such thatC = | andl avoids the fractional solutior. The

problem thus changes to decidiGg\I.

2.3 Linear Modular Arithmetic

Recall that unlikeZ7;, variables in modular arithmetic have finite domain. More-
over, the successor of2- 1 in modular arithmetic with modulusPds 0. Thus
semantics of constraints ify,, differ from that of constraints iffz, and hence QE
techniques forZ cannot be directly used for QE from constraint¥ig.

Existence of inversesilet Zo» denote the sef0,...,2P — 1}. It can be observed
that for each element e Zyp, there exits an elementc Zyp such thac+d =0
(mod ). In other words, additive inverses modul® &xist for all elements in

Zop. For a ternt, we use—t to denote the additive inverse bmodulo 2. Multi-
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plicative inverses moduloP2exist only for odd elements if;p. The work in [74]
gives anO(p)-time algorithm to compute multiplicative inverses modafbfor
odd elements iZp.

Since every variable in an LM@; - X3 + -+ an - Xy <@ (mod ), where
e {=,#,<,<}, represents a-bit integer, it follows that a set of LMCs sharing
a variable must have the same modulus. Hence we will assuthewriloss of
generality that whenever we consider a conjunction of LMGCwislg a variable,
all the LMCs have the same modulus.

The most dominant technique used in practice for elimigequrantifiers from
LMCs is conversion to bit-level constraints (also calleddésting [13]), fol-
lowed by bit-level QE. As an example, consider the L{gk x+Yy) with modulus
8. In bit-blasting, the termt+ y on the right-hand-side is expressed as an equiv-
alent bit-level formula corresponding to a 3-bit ripple rgaadder, and then the
LMl is expressed as an equivalent bit-level formula coroesing to a 3-bit com-
parator. However this technique irretrievably destroyswiord-level structure of
the problem, and scales poorly as the width of bit-vectarssiases.

LMCs can also be expressed as equivalent formulag;ifB3], and then QE
algorithms forZz can be used. For example the LI < x+y) with modulus 8
can be equivalently expressed aggormulaite(x+y <7,s=Xx+Y,S=X+Yy—8)

A (0<x<7) A (0<y<7), whereite represents if-then-else, axdy, s are
integer variables. However as observed in [13], this apgrazales poorly in
practice primarily due to the blow-up in formula size durthg conversion t@.
Moreover, this approach destroys the modular arithmaticgire of the problem
since the resulting formula is ifi; and converting this formula back @, is

often difficult.
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In the remaining part of this section, we first discuss thewkmeomplexity

results forZ,,, and then describe decision proceduresZgr.

2.3.1 Complexity Results

Satisfiability problem for a conjunction of LMEs is polynaahitime [79]. How-
ever, satisfiability problem for conjunctions of even veiryited fragments of
LMDs or LMIs are proved to be NP-hard.

Jain et. al in/[80] proves that the satisfiability problem &conjunction of
LMDs with modulus 4 is NP-hard. Any instance of 3-SAT probleam be reduced
to an instance of satisfiability problem for a conjunction.MDs with modulus
4 in polynomial-time.

Gange et. al's work in [81] gives a simple reduction from dr8pcolourability
problem to the satisfiability problem for a conjunction ohstraints of the form
X1 # X2 (modm), wherem > 3. Consider an instance of graph 3-colourability
problemG =< V,E >, whereV = {vy,...,vs} is the set of vertices arf is the
set of edges. For each edge,vj) € E, let us introduce a constraint # X;
(mod 3. It can be seen that the conjunction of these constraintisfiable iff
G is 3-colourable. Sincr; # x2 (mod m) is equivalent tox; —x2 > 1 (mod m),
this reduction applies also for a conjunction of constsaoftthe formx; —x, > 1
(mod m) with m> 3.

The work in [12] introduces Modular Difference Logic (MDLpagstraints.
MDL constraints are a fragment of LMIs of the forp+k; < xp+ko (mod 2°),
wherexy, Xo are variables, ankl;, ko are constants. The work in [12] proves that
the satisfiability problem for conjunctions of MDL constits of the formx; +1 <

X2 (mod 2P) or of the formx; < x>+ 2P —1 (mod 2°) with 2P > 4 is NP-hard.
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Any instance of graph 3-colourability problem can be redutean instance of
satisfiability problem for a conjunction of such constraiim polynomial-time.

Given a conjunctiol© of LMCs over variablesy, . .., xn, the problem of com-
puting 3x; --- I%.C is NP-hard, since (i) the satisfiability problem for a corgun
tion of LMCs is NP-hard even when the modulus is a priori fixed &r) C is
satisfiable iff3x; - - - Ix,.C is true.

A related, but possibly simpler problem is quantifying agénvariable from
a conjunction of LMCs. Note that the above NP-hardness résutjuantifying a
set of variables from a conjunction of LMCs does not imply N&emess of the
problem for a single variable. However, even the problemafsingle variable
is NP-hard when the modulus is not a priori fixed but part ofitiput and the
modulus is not necessarily a power of 2. Given a collectiormiered pairs
{(a1,b1),...,(an,bn)}, wherea;, bj are positive integers withh < b; for 1 <i <n,
the problem of computingx. (X # a1 (modb1))A ... A (X# @y (modby))) is

NP-hard as shown in [45].

2.3.2 Decision Procedures

There are several works (see [75, 76]) on solving conjunstiaf LMES using
variants of Gaussian elimination. The works in [77] and [@®F Gaussian elim-
ination basedalgorithms for deriving solved form for conjunctions of LMEThe
solved form captures all possible solutions of the givenjuaction of LMESs.
Ganesh et. al in [79] givessolve-and-substitute kinalgorithm to derive solved
form for conjunctions of LMEs. Given a conjunction of LMEg$et algorithm
in [79] initially solves for the variables appearing withddoefficients. If there

is a variable appearing with odd coefficient in an LME, theat ttME is chosen.
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The term involving the variable appearing with odd coeffitiis isolated on the
left-hand-side of the LME, and the LME is multiplied by the ltplicative inverse
of the variable’s coefficient. The variable is then elimethfrom other LMEs by
substitution. If there are no variables appearing with odefficients, then the
algorithm selects the variable with coefficient that hasrtheimum number of
factors of 2. Letx be the variable selected this way and febe the number of
factors of 2 in its coefficient. The whole conjunction is died by Z to obtain a
conjunction of LMEs with modulus® f which is equisatisfiable with the origi-
nal conjunction. The variable selecte@ppears with odd coefficient in the new
conjunction of LMEs, and the algorithm proceeds by solvimgthis variable.

Most of the SMT solvers [82, 10] decide the satisfiability ohgnctions of
LMDs and/or LMiIs by bit-blasting followed by SAT solving. Mever because
of the bitwidth-dependent blow-up during bit-blastingsthpproach suffers from
scaling problems for problem instances with large modute EMT solver Math-
SAT [84] converts LMCs to equivalent formulas i, and then uses solvers for
T-. However, as mentioned earlier, this approach suffers bilomwv-up in formula
size during the conversion 6.

Hadarean et. al. in [85] proposes an extension of the wellwkncongruence
closure algorithm [13] for deciding the satisfiability ofrganctions of LMDs.
Recall that the standard congruence closure algorithm asstirat variables have
infinite domain, and hence it cannot be directly used foriaghconjunctions
of LMDs. Given a conjunction of LMDs, for exampléx #y) A (X # z) with
modulus 2, the work in [85] initially puts the variablesy, andz in different
congruence classes. It is then checked to see if each comgruéass can be

assigned a distinct constant value. If this is possiblen the have a satisfying
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assignment. In the example, this is not possible since #reréhree congruence
classes and only two distinct constant values with modulus 2uch cases, the
problem is split into a number of sub-problems. In each sutlpm, a different
pair of congruence classes are merged. The process isedpaatil either the
splits lead to inconsistency or a satisfying assignmeniiained. In the example,
the algorithm identifies that congruence classey &ordz can be merged to obtain
a satisfying assignment for £ y) A (X # 2).

The work in [85] also proposes an algorithm to decide thesgability of con-
junctions of a special class of MDL constraints of the faxima x, (mod 2°),
where< € {<,<}. Note that these constraints do not have wrap-around be-
haviour. Given a conjunctiohof these constraints the algorithm builds the least
modelM of | by incrementally processing the constraintd inLeast model is
the model where all the variables have the least possibleesalNote that every
such satisfiable conjunction has a least model. Initilly;) is set to O for each
variablex; present inl. LetC be the conjunction of constraints that are already
processed. Given a new constrairt y, it is attempted to extentll such thaiv
becomes the least model 6fA x<y. Therefore if the value®(x) andM(y) do
not satisfyx <1y, thenM(y) is increased so that<y is satisfied. This may violate
the previously satisfied constraints@ and may require changing the values of
other variables. IM cannot be extended to become the least mod€l afx <y,
thenC A x<yis unsatisfiable, and hentés unsatisfiable.

Gange et. al's work in [81] proposes a sound heuristic to lchiee satisfia-
bility of MDL constraints. It makes use of a variant of Floydarshall all-pairs
shortest path algorithm to derive the relations betweepaitk of variables. The

relation between variableg andx, is over-approximated by a constraint of the
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form x; — x2 € [k1, ko], whereky, ko are constantgks, ko] is called a “wrapped in-
terval” which represents the st|k; <d <kp} if k1 <k, and{d|k; <d <2P-1}

U {d|0 <d < kp} if ky > ky. If constraints) — x2 € [a,b] andx; — Xz € [c,d] are
derived wherga,b| and|c,d] are disjoint wrapped intervals, then the algorithm
soundly infers unsatisfiability.

The idea of wrapped intervals (also called clockwise irdVvwas actually
introduced by Gotlieb et. al. in [86] in the context of progranalysis. In this
work, the possible values that program variables can takalastracted by clock-
wise intervals. Optimal clockwise intervals, i.e., tigsitever-approximations of
possible values expressed as clockwise intervals, arewohfior each program
variable. Techniques for computing the optimal clockwigelivals when the pro-
gram involves (linear modular) arithmetic operations dse aroposed.

Modern SMT solvers, such as, Z3 [10] and theorem-provens aa®VsS [60]
use specialized heuristics [98] to solve quantified biteeformulas by Skolem-
ization followed by use of appropriate choices of Skolencfions. The use of
p-adic expansions [61, 62] is explored in [63, 64] to sahan-linear modular
equations. Bruttomesso et al. [110] present a polynomiad aitgorithm for solv-
ing conjunctions of constraints in the core bit-vector tiyeconsisting of only
equalities, extractions and concatenations. Their dlgorfirst generates an eq-
uisatisfiable conjunction of equalities on non-overlagpstices of variables in-
volved in the constraints. Congruence closure algorithringa tuised for checking
the satisfiability of this conjunction of equalities on nowerlapping slices. Sim-
ilar slicing based ideas for solving conjunctions of bittae constraints can be
found in [65, 66].

Jain et al. [80] give a polynomial-time algorithm for comimgt Craig inter-
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polants for conjunctions of LMEs. Griggio [67] presents yelieed framework for
computing interpolants for bit-vector formulas that trteskeep the word-level
structure of the problem as much as possible. The cheaperslage interpo-
lation in EUF (equality+ uninterpreted functions) and interpolation by equality

substitution. The more expensive layers use conversian @nd bit-blasting.

2.4 Boolean Combinations

In the QE algorithms we have seen so far, focus was on elimmauantifiers
from conjunctions of constraints. However formulas adsin many practical
applications are arbitrary Boolean combinations of conmssanot necessarily
conjunctions. In this section, we will explore techniques éxtending the QE
algorithms for conjunctions of constraints to arbitrary B@m combinations of
constraints.

Ferrante and Rackoff’s Algorithm, Loos and Wiespfenninglgokithm and
Cooper’s Algorithm which are test point based algorithms) ba directly ap-
plied on arbitrary Boolean combinations of constraints. Eesv, the scalability
of these algorithms in practice often depends on the unidgrigpresentation of
the Boolean skeletons of formulas and implementation higsisised. On the
other hand, projection based algorithms such as Fourigeitoand Omega test
cannot be directly applied on arbitrary Boolean combinatiohconstraints. As
mentioned earlier, the input formula is first transformet IDNF dy V - - - V dpy,
where eacld; is a conjunction of constraints. These conjunctions of trairgs
are also callednonomes For each monome;, Jx.d; is then computed using

Fourier-Motzkin / Omega test. Efficient techniques for gatien of DNF are
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crucial in extending these algorithms to arbitrary Booleambinations of con-
straints.

In the following discussion, we will initially focus on tenlgues for scal-
able extension of test point based algorithms to arbitrargl®m combinations
of constraints. We will then present efficient techniquasgeneration of DNF

from arbitrary Boolean combinations of constraints.

2.4.1 Extending Test Point Based Algorithms

LinAIG tool [47] implements Loos and Wiespfenning's Algttnm using a data
structure called LinAIG. The constraints are abstractedbglean variables to
obtain Boolean skeletons of formulas. FRAIGs [48] are usedeprasent the
Boolean skeletons, and a map is maintained between the amnstind the Boolean
variables. Moreover, they use Craig interpolants [19] taide and remove re-
dundant constraints generated during application of LodsVdiespfenning’s Al-
gorithm.

Bjarner’s work in [49] avoids application of substitutionsthe formulation
of Loos and Wiespfenning’'s Algorithm and Cooper’s Algorithihe effect of
substitutions is encoded as an additional constraintecpii@twhich is conjoined
with the input formulaF. Satisfying assignments Eo\pivotare generated using a
DPLL(7T) framework, which are then generalized to disjuncts in trentilation
of Loos and Wiespfenning's / Cooper’s Algorithm. This helpsavoiding 7 -
inconsistent disjuncts in the formulation and unnecedslary-up in formula size.

Nipkow’s work [50] provides implementations of FerranteddRackoff’s al-
gorithm, Loos and Wiespfenning’s algorithm, and Coopergodathm that are

verified in the theorem prover Isabelle.
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Komuravelli et al. [58] introduce model based projectioatinvolves comput-
ing model-based under-approximations of existentiallgrgified formulas. Their
work also gives procedures for computing such under-appatons for exis-
tentially quantified formulas in linear arithmetic as dispts in the formulation
of Loos and Wiespfenning’s algorithm or Cooper’s algorittBjarner et al. [59]
give an algorithm that makes use of model based projectmmdeitiding the sat-
isfiability of quantified linear arithmetic formulas. Theilgorithm conceptually
works as a two-player satisfiability game and can be extefate@E from linear

arithmetic formulas.

2.4.2 Generation of DNF

Cavada et al.'s work [27] addresses the problem of existgngjaantifying out all
numeric variables from formulas involvirg; constraints and Boolean variables.
Their work uses BDDs [51] to represent Boolean structure ofahmulas. QE
is done by recursively traversing the BDD, carrying alongheaath, theZz con-
straints encountered on it so far (called the context). $aith 74 -inconsistent
contexts are removed. Because of the dependence of the oésultecursive
call on the context, if the same BDD node is encountered fatiguwwo different
paths, the results of the calls are not the same in generakeHéis procedure is
not amenable to dynamic programming usually employed inrtidementation
of BDD operations. In particular, the number of recursivdscal the worst-case
is linear in the number of paths, and not the number of nodésemriginal BDD.
The work in [28] presents an efficient algorithm for QE fromrfwilas in the
theory of Octagons (a fragment @f, for which Fourier-Motzkin is sufficient for

conjunction-level QE). This work introduces decision d&ygs for linear arith-
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metic called LDDs. The Boolean skeletons of formulas areasgmted by BDDs
and constraints are managed using a separate library aktethe BDD package.
QE from LDDs makes use of an algorithm calletiite-box-QELIMthat elimi-
nates a single variable from an LDD and returns the resulh &£&. Suppose we
wish to compute the result of quantifying out a variabfeom an LDD rooted at a
nodef. Let p be the constraint labelinfy and let andh respectively be the LDDs
appearing as the low child and high child faf white-box-QELIMfirst computes
an LDD I’ obtained by adding to each 1-pathin | the result of quantifying out
the variablex from the conjunction ofy and—p. Similarly it computes an LDDY
obtained by adding to each 1-pathin h the result of quantifying out from the
conjunction ofrg, and p. It then recursively callsvhite-box-QELIMon the LDDs
I” andh’, and returns the disjunction of the LDDs resulting from thealls. Since
the result of a recursive call is context-independefhife-box-QELIMcan be im-
plemented with dynamic programming. This results in comigille performance
improvement as reported in [28].

Suppose we wish to quantify out a set of variableom a 73 formulaF.
A straightforward algorithm to do this is an All-SMT algdrit (also called All-
SMT loop) that works as follows. An SMT solver call is used teeck if F is
satisfiable. IfF is unsatisfiable, theBX.F is false. Otherwise, the solution d¥
is generalized to a monon@ such thaC; = F. The SMT solver is now called to
check ifF A —=Cy is satisfiable. IF A —C; is unsatisfiable, theaX. F is equivalent
to 9X.C,. Otherwise, the solution &f A —C; is generalized to a monon@ such
thatC, = F. This loop is repeated until the formula given to the SMT solv
becomes unsatisfiable. Each iteraticof the loop generates a monor@esuch

thatG = F, for 1 <i <n. Finally 3X.F is equivalent tadX.Cy Vv --- vV IX.C,.
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The work by Lahiri et al. [54] improves the All-SMT algorithby consider-
ing —C; as a conflicting clause and then performing conflict-drivaaksjumping
inside the SMT solver. The work by Monniaux in [29] improvée tAll-SMT
algorithm in the following ways. Instead efC;, —-39X.C; is conjoined with the for-
mula given to the SMT solver. Monniaux calls this “interleay projection and
model enumeration”. It is observed that this helps in prgrre solution space
of the problem. This results in early termination of the ailpon and reduces the
number of SMT solver calls required. Secondly, an SMT sobased procedure
is used to further generalizg by dropping unnecessary constraints frGpbe-
fore 3X.C; is computed. This optimization improves the overall parfance of
the algorithm. GeneralizinG; reduces the time to compuX.C;, and results
in generalizeddX.C;. A generalizeddX.C; increases the size of solution space
pruned by conjoining-3X.C; with the formula given to the SMT solver.

The later work by Monniaux in [52] improves the above aldomtin handling
of quantifier alternations. When applied ori/a formula with quantifier alter-
nations, for examplejx;. V. Ix3. F, the above algorithm computes the DNF for
Ix3.F, and then CNF fok/xo. 3x3. F, and finally DNF fordx;.Vxs.3x3.F. The
work in [52] proposes a lazy algorithm for computifg . Vxo. 9x3. F that avoids
the construction of the full CNFs and DNFs. The algorithm catep under-
approximations ofix;. Vxo. Ix3. F as monomes until the disjunction of these monomes
IS equivalent tadx;. Vxp. Ix3. F. In order to compute an under-approximation of
Ix1. VXo. 3x3. F, initially an under-approximation ofdxs. F is computed. This is
then used to compute an under-approximatiowef Ix3. F, which is finally used
to compute the under-approximation=4;. vx,. 3x3. F. Phan et al's work in [53]

presents a more general version of this algorithm and egtinol 7, formulas.
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Techniques for finding generalized implicants are cruciaddalable applica-
tion of the All-SMT algorithm. Many interesting approache® proposed re-
cently for deriving such generalized implicants from a gigelution of an SMT
formula. De Moura et al. [55] present a variation of Booleanstmint prop-
agation in order to identify constraints whose truth valaes not essential for
determining the satisfiability of a formula.ébarbe et al. [56] present algorithms
for generating prime implicants from solutions of formulaeiterative removal
of assignments that are not necessary. Niemetz et al. [®8ppt a dual propa-
gation based technique to extract partial solutions froofi™&olutions of SMT
formulas. Given a solutiomof a formulaF, the assignments to variablesimare
presented as assumptions to a dual solver which maint&nsrhe assumptions
that are inconsistent withF identify the assignments sufficient to satisfy

The work by Veanes et al. [87] focuses on automatically casihg monadic
decompositions of formulas in quantifier free fragmentsrst irder logic. Monadic
decomposition involves transforming a given formula intoeguivalent Boolean
combination of unary predicates. Veanes et al. give an ilgorfor construct-
ing monadic decompositions in Disjunctive Normal Form (DN®nce such a
decomposition is constructed, QE can be achieved by disinidp the existential
qguantifiers over disjunctions in the DNF. This effectivegduces the problem
of eliminating quantifiers from a general formula to the peob of eliminating

quantifiers from conjunctions involving only unary predes
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2.5 Propositional Logic

Satisfiability problem for propositional logic has a widege of practical applica-
tions ranging from formal verification [4] to planning in #idial intelligence [88]
and from equivalence checking [89] to haplotype inferenddainformatics [90].
This has led to immense research in this field and to developaféSAT solvers
that can solve propositional logic formulas involving nailis of variables. Most
SAT solvers use variants of Davis-Putnam-Loveland-Lorg@m(DPLL) frame-
work [91]. DPLL framework makes use of a recursive algorithBach step in
the algorithm involves assigning a value to a variable inftrenula, and then
checking if this assignment leads to a conflict. If the coh#ixists in the for-
mula regardless of the assignments to the variables, tleefotimula is declared
unsatisfiable. Otherwise, if the conflict exists only undherpresent set of assign-
ments to the variables, then the algorithm tries to learmftioe conflict. It then
backtracks and undoes some of the assignments it mader edgrlieh led to the
conflict. This is repeated until either the formula is deethunsatisfiable or all
variables are assigned values in which case the formuldigiable.

The interestin propositional logic has also led to welleleped data-structures
for representing propositional logic formulas. BDDs [51¢yide canonical rep-
resentation of propositional logic formulas. In applioas where canonicity is
not required, formulas are often represented as And-lex&taphs (AIGs) [99].
More compact representations such as FRAIGs [48] are alsbinspecific ap-
plications [92].

In the remainder of this section, we will focus on techniqé@sQE from
propositional logic formulas. As mentioned earlier, onéha&f approaches to per-

form QE is to express the existentially quantified variableSkolem functions of
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other variables in the formula. QE can be done by substgutie occurrences of
the existentially quantified variables in the formula byittgkolem functions. In
Subsection 2.5.2 we will present techniques for gener&kaem functions for

formulas in propositional logic.

2.5.1 Quantifier Elimination

Suppose we wish to computx. F, whereF is a quantifier-free propositional
logic formula involvingx. It can be observed thak. F is equivalent td= [x — O]
V F[x~— 1], whereF[x — 0] is F with occurrences ok replaced byfalse and
F[x+— 1] is F with occurrences aof replaced bytrue. OnceF is represented as a
BDD or an AIG,F[x+— 0] V F[x~— 1] can be computed using the standard BDD
or AlG operations. The fundamental bottleneck in this téghe is that BDDs as
well as AlIGs blow-up in practice after a number of such QEstep

The advance in the field of SAT solvers led to the developmE&Bitd-based
QE techniques for propositional logic. Since SAT solverskvan Conjunctive
Normal Form (CNF), before applying these techniques, thetifggmula is trans-
formed to equisatisfiable CNF using Tseitin’s encoding [L@&}ppose we wish
to computedX.F, whereF is a propositional logic formula in CNF and is a
subset of variables in its support. The work in [24] modifles DPLL framework
to enumerate models &f. Each time a modatof F is obtained, it is generalized
to obtain a conjunction of literals (also called cube/iroght)c such thatt=-c
andc =- F. Finally F is equivalent to the disjunction of the implicants genetate
Then3X.F is obtained by removing the literalsand —x from the implicants,
wherex € X.

The work in [25] also proposes a model enumeration basedigdgoto com-
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putedX.F. However, rather than modifying the DPLL framework, thecaithm

in [25] uses queries to an external SAT solver for model ematien. The SAT
solver queries are constrained such that the implicantsrgéed are the shortest.
Moreover, the SAT solver queries are incremental, and aemmental SAT solver
is used to improve the overall performance of the algorithm.

The recent work by Goldberg et. al. in [26] proposes an adtierSAT solver
based QE algorithm. This work makes use of the insight tisatiuéion performed
during SAT solving involves QE. Leat;, c; be two clauses and leg be the resol-
vent ofc; andc, on a variablex. Then,cs is equivalent tadx. (c1 A cp). Given
IX.F, the algorithm proposed in [26] adds resolvent clauses ervahiables in
X to F. After adding a sufficient number of resolvent clauses, el tlauses
containing the variables iX become redundant i8X. F. These clauses are then

dropped and the resulting formula is equivalenfiXa F.

2.5.2 Skolem Functions

Let X = {Xg,... X} andY = {y1,...ym} be sets of propositional variables. Let
F(X,Y) be a propositional formula over the $€UY. As mentioned in Chapter 1,
a Skolem functiony; for x in F(X,Y) is a formula over the seX \ {x} UY
such thaBlx. F = F[x — ], whereF [x; — ] denotes the formula obtained by
substituting occurrences gfin F with ;.

Given a propositional formul&(X,Y), there are many interesting techniques
for generating Skolem functions for variables in the Xetvhen 3X.F(X,Y)
is valid. The pioneering work in this field is by Benedetti ir].[8This work
gives a technique for extracting Skolem functions from theop of validity of
IX.F(X,Y) generated by the Skolemization-based QBF solver Skizzo f£&8}zo
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is extended such that the steps to prove the validity arerdedan aproof log,
which is then read by a tool that constructs Skolem functemded as BDDs.

The work in [94] instruments the BDD-based QBF solver EBDDREShab t
it generates Skolem functions. To generate Skolem fundtioan existentially
guantified variable, all the clauses containingare collected and a BDD for
the conjunction of these clauses is built. Without loss afegality, letx be the
variable labeling the root node df and letl andh respectively be the BDDs
appearing as the low child and high child of the root nodé.0EBDDRES uses
the BDD h as the Skolem function fax. Moreover, it is observed in [94] that
negation of can also be used as the Skolem functiondor

Given a propositional formul& (X,Y), the work by Balabanov and Jiang
in [16] proposes a technique to extract Skolem functionsdoiables in the seX
from the cube-resolution proof of validity aiX.F(X,Y). When3X.F(X,Y) is
not valid, this work generates Herbrand functions for Jaga in the se¥ from
the clause-resolution proof of invalidity aiX.F(X,Y). Herbrand functions for
variables in the sét are simply values of the variablesYrfor which3X. F (X,Y)
is false. Thus Herbrand functions can be used as certificates fonttadidity of
IX.F(X,Y). This work is applicable to a large class of popular DPLL blaQ8F
solvers such as depQBF [106], QuBE-cert [95], yQuaffle [96], ethich can
generate resolution proofs without much overhead.

Huele et. al.'s work in [97] presents QRAT proof system thattaees the pre-
processing techniques used by QBF-solvers. The prepradelssmer for QBF
solvers is modified so that it generates QRAT proofs. Theiemework in [17]
gives techniques to extract Skolem functions from QRAT pso&iven a propo-

sitional formulaF (X,Y), this work thus helps in extracting Skolem functions for
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variables in the seX if (i) 3X.F(X,Y) is valid and (ii) the validity can be estab-
lished only by preprocessing.

Srivastava et. al. in [9] makes use of templates to generdatée® func-
tions for variables in bit-vector formulas. Given a bit-t@cformulaF (X,Y), the
occurrences of the variables € X in F are replaced by uninterpreted Skolem
functions matching a given template. For example, congfteproblem of com-
puting a Skolem function for the variabiein the formula(x <y), wherex and
y are bit-vectors of width, say 3 bits. Using the templegey + c, for x, where
C1, C2 are uninterpreted bit-vector constants of 3 bits, the fdansiconverted to
3cp. 3. VY. (€1 - Y+ €2 <y). This formula of the fornHC.VY.G(C,Y), whereC
denotes the set of uninterpreted bit-vector constantsdatred as above, is solved
for the values of variables i@. Instantiating the templates using these values for
variables in the sef gives Skolem functions for variables< X in F matching
the template.

The work in [98] makes use of the aforementioned idea to éevisolver for
quantified bit-vector formulas with uninterpreted funaso To solve a formula of
the formVvY.F(Y), whereF(Y) is a bit-vector formula with uninterpreted func-
tions over variables in séf, initially the occurrences of the uninterpreted func-
tions are replaced by templates. Similar to the work in |9k gives a formula of
the form3C.VY.G(C,Y), whereC denotes the set of uninterpreted bit-vector con-
stants introduced by the templates. The universal quanstifie3C.VY.G(C,Y)
are instantiated heuristically in order to convert it to arala involving only ex-
istential quantifiers which is easier to solve. The instmins of the universal
guantifiers are then refined in a counterexample guided nmamtieeither the so-

lutions are obtained or the formula is found to be unsatiiamndulo the given
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templates.

Given a propositional formul& (X,Y) and variablex; € X, the work in [18]
computes Skolem function fox in F as a Craig interpolant [19] oF [x; —
1] A =F[x — 0] and =F[x — 1] AF[x — 0], whereF[x +— O] denotesF with
occurrences o%; replaced byfalse andF [x; — 1] denotes~ with occurrences of
X; replaced bytrue. The work in [6] observes thdF [x — 1] A =F[x — Q]) V
(F[Xi— 1 AFX — 0 Ah) vV (=F[x — 1] A=F[x — 0] AQ) is a Skolem func-
tion for x; in F, whereh andg are any propositional formulas witk\ {x} UY
as support. When interpolants are used as Skolem functicswagested in [18],
the performance crucially depends on the size of the intenp®and time to com-
pute the interpolants. However it is observed in our expenits that computing
interpolants is often time-intensive and interpolantsagated by SAT solvers are
often not succinct. Moreover these techniques necessadlyire nested compo-
sitions, which cause formula blow-up and vulnerability temory-outs even for

medium-sized benchmarks.

2.6 Conclusions and Directions of Research

In this chapter, we presented a survey QE techniques foariagthmetic and
propositional logic. This survey led us to the following ctusions and research

directions.

1. Existing QE algorithms for conjunctions of LMCs are basackdher bit-
blasting the constraints or conversion of the constraiotBnear integer
arithmetic. These techniques not only suffer from perfarogaissues but

also destroy the word-level structure of the problem. Dewerlent of practi-
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cally efficient QE algorithms for conjunctions of LMCs thagethe word-

level structure of the constraints is a motivating resedicdction.

. Itis interesting to see how we can extend such QE algosittumconjunc-
tions of LMCs to arbitrary Boolean combinations of LMCs in a pically

scalable manner. This often requires transformation céthirary Boolean
combination of constraints to DNF. Such transformatiorsisally done us-
ing decision diagrams or SMT solving. The primary bottldnet DNF

finding algorithms that make use of SMT solving is usuallyth@pmpu-
tation time. The challenges in DNF finding algorithms thatkkenase of
decision diagrams are (i) keeping the diagrams compactigrekgploiting

reuse of results through dynamic programming. It is intiamgdo observe
if we can combine the strengths of the decision diagram basddSMT

solving based algorithms to get best of both worlds.

. Given a propositional formul&(X,Y), there are techniques for generat-
ing Skolem functions for variables in the sétwhen3X.F(X,Y) is valid.
Similarly there are template-based techniques for Skolemtfon genera-
tion that can be used when the Skolem function templatesaa# and are
known a-priori. Composition based techniques for Skolenction gen-
eration are applicable irrespective of the validity2X. F (X,Y). However
these techniques often suffer from memory blow-up in pcacti hus devel-
opment of efficient algorithms for generating succinct 8kofunctions for
existentially quantified variables in propositional lofgemulas is another

motivating research direction.



Chapter 3

Quantifier Elimination for
Conjunctions of Linear Modular

Constraints

This chapter describes our work on QE from conjunctions ofddvl Recall-
ing the definition of LMCs in Section 1.2, lgt be a positive integer constant,
X1,...,%n be p-bit non-negative integer variables, aagl ..., a, be integer con-
stants in{0,...,2°P — 1}. A linear term overxy,...,X, is a term of the form
a1 - X1+ ---an- X+ ag, where- denotes multiplication moduloP2and+ denotes
addition modulo 2. An LME is a constraint of the fora =t (mod 2°), where
t1 andt, are linear terms ovexy,...,X,. An LMD is a constraint of the form
t; #to (mod 2°), and an LMl is a constraint of the fortpe<it, (mod 2°), where
e {<, <}

The problem we wish to solve in this chapter can be formadiest as follows.

Let Adenote a conjunction of LMCs over variablgs. . . ,x,. We wish to compute

56
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a Boolean combination of LMCs, s&y such that) = Jx; --- 3%.A. As observed
in Section 2.3.1, this problem is NP-hard. Existing aldoris for solving this
problem based on bit-blasting and conversion to lineagertarithmetic suffer
from scaling issues and destroy the word-level structutb@problem.

Contributions: We present a bit-precise and practically efficient QE algo-
rithm for conjunctions of LMCs. Our QE algorithm is based oragered ap-
proach. Sound but incomplete and cheaper layers are infokgdwvhereas ex-
pensive but complete layers are called only when requirdte dheapest layer
is based on simplification of the problem instance using LMHss is followed
by a technique that identifies and drops unconstraining Ll LMIs from the
problem instance, and a Fourier-Motzkin style techniquelitoinate quantifiers
from conjunctions of LMIs. Finally we use model enumeratésthe last resort.
Experiments indicate the importance of our layered appreacheaper layers
eliminate a major fraction of quantifiers and model enunemnat not needed on
a wide range of benchmarks arising in practice. The expetisradso demonstrate
effectiveness of our algorithm over existing QE technigo@sed on bit-blasting
and conversion to integer linear arithmetic.

Among the approaches mentioned in Section 2.3 for reas@ingt LMCs,
the work that is most closely related to our work is that of &sdnet. al in [79].
The authors of [79] present a technique for reducing LMEs $olaed form by
selecting variables in a specific order. While this does netotly give us a tech-
nique to eliminate a user-specified variable from a conjoncof LMES, their
work can be extended to achieve this. More importantly, (f@s not consider
the problem of eliminating variables from conjunctionsdalwng LMDs or LMIs.

This problem is addressed in our work.
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3.1 Preliminaries

We will initially focus on the simpler problem of existentiaquantifying a single
variable from a conjunction of LMCs. For clarity of expositiove usexto denote
the variable to be quantified.

To simplify notation, we assume that all LMCs have moduldsdd some
positive integerp, unless stated otherwise. We use lettery, z, X3, Xo,... t0
denote variables, usg a1, ay, ..., b, by, bp,... to denote constants, and use
S, &,..., t, 11, to,... to denote linear terms. The letteds dq, do, ... are used
to denote LMDs], I, |5, ... are used to denote LMIs, amxlcy, Cp,... are used
to denote LMCs. Furthermore, we uBg D1, Do,... to denote conjunctions of
LMDs, I, I4, I2,... to denote conjunctions of LMIs, ard, Cq, Cy,..., A, Ag,
Ay, ... to denote conjunctions of LMCs. For a linear terymve use—t to denote

the additive inverse dfmodulo 2°.

Proposition 1. (t1 < tp) is equivalent to botht; < 2P —2) A (t1+ 1 < t) and
(t2>1) At <tp—1).

Proof of Proposition/1. (t; <tp)is equivalenttd(t; =2P —1) A (t1 <t2)) V ((ta
< 2P—2) A (t1 <t2)). Note that(t; = 2P — 1) A (t1 < tp) is equivalent tcfalse.
Moreover,(t; < 2P —2) A (t1 < tp) is equivalent tot; < 2P —2) A (11 + 1 < tp).
Hence(t; < tp) is equivalent tqt; < 2P —2) A (t1 + 1 <tp).

(t1 < tp) is equivalent to((t2 = 0) A (t1 < t2)) V ((t2 > 1) A(t1 < t2)). Since
(to = 0) A (t1 < tp) is equivalent tcfalse and (t; > 1) A (t1 < t2) is equivalent to

(to> 1At <tp—1), (tg <tp) is equivalent tqty > 1) A (tg <tp —1). O

Proposition 1 implies that there is no loss of generalityssuaming that LMIs

are restricted to be of the forta < to. However, for clarity of exposition, we
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allow LMIs of the formt; < ty, whenever convenient.

Proposition 2. An LME or LMD 4 xitp, whereie {=,#}, can be equivalently
expressed ag" - xat, where t is a linear term free of x, and p is an integer such

that0 < pu < p.

Example of Proposition'2: All LMCs in this example have modulus 8. Consider
the LME 7+ 4y = x+ z. Rearranging the terms modulo 8, we ggt64y + z,
which can be written as'23x = 4y + z. Multiplying by 3 (multiplicative inverse

of 3 modulo 8) and simplifying gives,'® = 4y + 3z

Proof of Proposition2. Consider an LME; =t,. The linear ternt; can be ex-
pressed asy - X+ S, wherea; is a constant and; is a linear term free ok.
Similarly, the linear ternt, can be expressed as - X+ S, whereay is a con-
stant ands; is a linear term free ok. Thus the LMEt; = t, can be expressed
as(ap-X+s =ax-Xx+%). Letabea; —ay andsbes, —s;. The LME can be
expressed ag- X = S.

If a+# 0, thena can be expressed a$ -, wherep is an integer such that
O0<u< p-1andbis an odd number. Thus we haveé-®-x =s. Sinceb is
odd, it has a multiplicative inverse modul®,Zayb’. Multiplying both sides of
2".b-x=sbhyb/, we get the LME 2-x=s-b/, which is in the required form
sinces- b’ is free ofx.

If a= 0, thena can be expressed a$,2and thus the LMEa-x = s can be
equivalently expressed a8 X = s, wheres s free ofx.

Since an LMDt; # t, is equivalent to the negation of the LME=ty, it is
easy to see that it can be equivalently expressed'as2 t, wheret is a linear

term free ofx, andpLis an integer such thatQ pu < p. O
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Definition of k: For every linear ternt; and variablex, we definek(x,t1) to be
an integer in{0,..., p} such that; is equivalent to ®(xt) . p.x+t, wheret is a
linear term free o, andb is an odd number. Note that tf is free ofx, then
K(x,t1) = p. The definition ofk(x, -) can be extended to (conjunctions of) LMCs
as follows. Letc be an LME/LMD equivalent to!2 x>it, wheresie {=,#} and

t is free ofx. We definex(x,c) to bep in this case. Ity,t, are linear terms, then
K(X,t1 <tp) is defined to benin(k(x,t1),K(x,t2)). Finally, if cy,...,cn are LMCs,
thenk(x, iZ\l(ci)) Is defined to beir;??(K(x, Gi)). Observe that i€ is a conjunction
of (possibly one) LMCs and ik(x,C) = k, then only the least significamt— k
bits of x affect the satisfaction df. We will say thatx is in the support o if

K(x,C) < p.

3.2 Layerl: Simplifications using LMEs

Layerl involves simplification of the given conjunction d¥ICs using the LMEs
present in the conjunction. It is an extension of the work lay&sh et. al. in [79].

The following Proposition and Lemmas form the crux of Layerl

Proposition 3. Let ¢ be an LME2- x = t, where k denotes(x,c). Then3x.c =
(2P-K.t =0).

Example of Proposition/3; All LMCs in this example have modulus 8x. (2'x =
By+2) = (2371(5y+2) = 0) = (4y = 0).

Proof of Proposition(3. Let ¢1 and ¢, denote the formuladx. (2€-x =t) and
2P—K.t = 0 respectively. To see thék = ¢, we simply multiply both sides of

2¢.x =1t by 2P~k and simplify modulo 2. To see whyp, = ¢1, note thatd,
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implies that the least significaktbits oft evaluate to zero. Also recall thats
free ofx. Given any value of variables insuch that the least significakbits of

t evaluate to zero, we can always find a valua sfich that 8- x = t. This can be
done by choosing the least significgnt k bits of x to be the same as the most

significantp — k bits oft. Hence 9, = ¢1, and thereforé); = ¢». O

Lemma 1. Let A be a conjunction of LMEs. Thelx. A can be equivalently ex-

pressed as a conjunction of LMEs each of which is free of x.

Example of Lemma/1; All LMCs in this example have modulus 8. Consider the
problem of computingx. ((21x = By + 2) A(22x = By + 62) A(2x = 2y + 4)).
This can be equivalently expressedsas((2x = 5y+2) A(2- (5y+2) = 5y + 62)
A(By+2 = 2y+4)). Simplifying modulo 8, we geBx. ((2x = 5y+ 2)) A(5y+
2z=4) A\ (3y = 2). Using Proposition 13, we obtain the final result(dg = 0)
ANBYy+2z=4) N\ (3y=2).

Proof of Lemma 1. Let A be_/nq (gi), where eacly; is an LME. Let each LME
g be of the form ¥ .x =1t;, I\/Tliwereki = K(x,g) and 1<i < m. Without loss
of generality, letk; be the minimum oky,... ky. It can be observed that the
LME 2% .x =t; can be used to eliminate the occurrences iof other LMEs by
expressing each LME®Rx=t; for2<i<mas 2 -t; =t;, where eaclp = kj —kj.
Hence,3x. A can be equivalently expressed@sA 3x. (2"1 X =1t1), whereC; is
the conjunction of the LMEs¥-t; =t;. Using Proposition 3, it follows that
CiAIX (24.x=1;) is equivalent taCy A (2P~ K1 -t; = 0). O

Lemma 2. Let A be a conjunction of LMCs containing at least one LME. Let
24 . x = t; be the LME with the minimum(x,-) value among the LMEs in A.

Thendx. A= C; A Ix.Cy, where G is a conjunction of LMCs free of x, ang & a
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conjunction o244 . x = t; and (possibly zero) LMIs and LMDs, each of which has

K(X,-) less than k.

Example of Lemma/2; All LMCs in this example have modulus 8. Consider
the problem of computingx. ((2x = 5y +2) A(2x # 6y +72) A (2°-Bx+z <
21x) A (21 -3x < y+2)). Substituting the occurrences obx2in the LMIs (2°-
5x+z < 2'x) and (21 - 3x < y+2z) by Sy + 2, we havedx. ((2x = 5y + 2)A (x #
By + 72) A\ (5x+2z < 5y+2) A (3- (By +2) < y+2z)). Simplifying modulo 8, we
get(7y+6 <y+2z) AIX. ((2x=5y+2) A (X # 6y + 72) A (5x+2z < 5y+2)). Note
that the result is of the fori@, A Ix.Cy, as specified in Lemma 2.

Proof of Lemma 2. Let A be equivalent t&E AD A I, whereE is a conjunction of
LMEs, D is a conjunction of LMDs, andl is a conjunction of LMIs. LeE be
m

n
A (g), where eacly; is an LME,D be A (d;), where eachd; is an LMD, and
i=1 i=mH-1

| be /r\ (li), where eaclh is an LMI.

Sloargplose each LME; is of the form % - x=t;, wherek; = K(X,q)and 1<i <
m. Suppose each LM@, is of the form % . x #£t;, wherek; = k(x,d;) andm+1 <
i <n. In addition, suppose each LMlis of the form(a; - x+u; < b;-X+V;), where
aj, by constants such thag # 0) v (b # 0), u;, v; are linear terms free of, and
n+1<i<r. Let us express each - x appearing in the LMIs such thaf # 0
in the equivalent form®- g - x, wherek; = K(X,a -X) andg is an odd number.
Similarly, let us express eadh- x appearing in the LMIs such that £ 0 in the
equivalent form ¥ - & - x, wherek! = k(x, b - x) andé is an odd number.

Without loss of generality, lek; be the minimum ofky, ... ky. It can be
observed that the LMEK2. x = t; can be used to eliminate the occurrencesiof

other LMEs, and in the LMDs and the LMIs wit(X,.) at least as large dg in
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the following way.

— Each LME % .x=t; for 2< i < mcan be equivalently expressed #s8 =

ti where eachy = ki — k.

— Each LMD X -X#1tj form+1 <i < n, such thak; <k; can be equivalently
expressed ag'2 t; # tj where eachy = ki — ki.

— Each occurrence of of the form % - g -xin the LMIs forn+1<i <r

such thatk; < k; can be equivalently expressed d5-2; - ¢ where each
M = ki — k1.

— Each occurrence of of the form X - e-xinthe LMIsforn+1<i<r

such thatk; < ki can be equivalently expressed as.2 - € where each
M =k —ka.

Hence, it can be observed that. A can be equivalently expressed @sA
Ix.Cp, whereC; is a conjunction of LMCs free of, andC; is a conjunction of
the LME 24 .x =t; and those LMIs and LMDs fronA with K(X,.) less tharkg,

after substitution of the occurrences &f byt;. O

For the remainder of the chapter, we adopt the conventidratgarithms for
eliminating a single variable will have names starting WifEL1 ",while those for
eliminating multiple variables will have names startinghwiQE_".

Proposition 3, Lemma 1, and Lemma 2 yield us a simple hea @l Layerl
that forms the core of Layerl of our QE algorithm. Given a oagfion of LMCs
A and a variablex to be quantifiedQE1 Layerl computesix. A asCy A IX.Cy
based on Lemma 2. If the(x, -) of all LMDs and LMIs inA are at least as large

ask; (as in Lemma 2), the@, consists of the single LME*2-x =t;. In this case,
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3x.C, simplifies to 2% .t; = 0 (see Proposition 3), ar@E1 Layerlsuffices to
computedx. A. However, in general; may contain LMDs and LMIs withk (X, -)
values less thaky. We describe techniques to address such cases in the fogjowi
sections.

Analysis of Complexity: Consider a conjunction of LMCs with a subset of vari-
ables in its support to be eliminated. Lebe the number of LMCs in the con-
junction, v be the number of variables its support, anbde the number of vari-
ables to be eliminated. It can be observed that for a variabdebe eliminated,
Layerl performdO(n-v) multiplications and additions in the worst-case. As-
suming that arithmetic operations gnbit numbers take tim&®(Q(p)) in the
worst-case, wher@(p) is a polynomial onp such thatp < Q(p) < p3, elimi-
nation of a variable hence has a worst-case time complexi®(o-v- Q(p)).
Observe that eliminating a variable does not increase th@euof LMCs in the
conjunction. Hence eliminating variables has a worst-case time complexity of
O(e-n-v-Q(p)). Note that reading and writing an LMC withvariables in sup-
port takesO(v- p) time. Hence reading LMCs as input and writing them back
after eliminating the variables tak€xn-v- p) time. Hence Layerl has a worst-
case time complexity oD(e-n-v-Q(p) +n-v-p). Sincep < Q(p) < p°, this
reduces t@(e-n-v-Q(p).

3.3 Layer2: Dropping Unconstraining LMIs and LMDs

Formally, our goal in this section is to expreésg obtained after application of
QE1lLayerl asCADAI, where (i)D is a conjunction of (zero or more) LMDs in

Co, (ii) 1 is a conjunction of (zero or more) LMiIs @y, (iii) Cis the conjunction of
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the remaining LMCs irC,, and (iv)3x. (C) = Ix. (CADAI). Sincedx. (CAD A

I) = 3Ix. (C) always holds, this would allow us to compube Cy, or equivalently
Ix. (CADAI), as3ax.C. We say thaD andl areunconstraining-MDs and LMIs,
respectively, in such cases.

GivenC, D and| satisfying conditions (i), (ii) and (iii) above, checking i
condition (iv) holds requires solving a quantified bit-vaactormula in general.
This can be done by using an SMT solver such as Z3 that supgoatstified
bit-vector formulae. Alternatively bit-blasting followleby QBF solving or bit-
level QE can be used. However applying such techniques caxpgmnsive, as
demonstrated in our experiments. In the following disaussive focus on finding
sufficient and polynomial time computable conditions fondition (iv) to hold.

Let x[i] denote tha'" bit of a bit-vectorx, wherex|0] denotes its least signifi-
cant bit. Fori < j, letx[i : j] denote the slice of bit-vectorconsisting of bits«i]
throughx[j]. Given slicex|i : j], its value is the natural number encoded by the
bits in the slice. A key notion used in the subsequent discass that of “adapt-
ing” a solution of a constraint to make it satisfy anotherstogint. Formally, we
say that a solutio®; of a conjunctionp of LMCs can be adapted with respect to
slicex(i : j] to satisfy a (possibly different) conjunctignof LMCs if there exists
a solutionB; of Y that matche®; except possibly in the bits of slicéi : j].
Example: Consider the LMCSx =y+2) (mod 8 and(4y+z < x) (mod 8.
Let 81 be the solutiorx=1,y=1,z=0 of (x=y+2) (mod 8, and let6, be
the solutionrx =5,y =1,z= 0 of (4y+z<x) (mod 8. Note thatd, matched;
except in the bits of slicg[2 : 2]. Hence we can say th8j can be adapted with
respect to slic&(2 : 2] to satisfy(4dy+z < x) (mod 8.

The central idea in the second layer of our QE algorithm idftoiently com-
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pute an under-approximationof the number of ways in which aarbitrary so-
lution of C can be adapted to satisB/AD Al. Itis easy to see thatif > 1, then
3x. (C) = Ix. (CADAI). We illustrate this idea below through an example. We
will use this as a running example throughout this section.
Example: Consider the problem of computingx.(CAD A1), whereC = (z=
4x+Yy), D = (x# z+7), andl = (6x+Yy < 4) and all LMCs have modulus 8. We
claim that an arbitrary solution & can be adapted to satisB/AD Al. Note thaCC
constrains only slicg[0 : 0, wheread constraints slic&[0 : 1] andD constraints
slicex|0 : 2. Therefore, the value of slicdl : 2] does not affect satisfaction 6f
and the value of slicg[2 : 2] does not affect satisfaction 6fA 1. Any solutiorof C
can be adapted with respect to slidé : 1] to satisfyl by choosing value of slice
X[1: 1 such that & lies between-y and 4—y. Sincex|0 : 0] is unchanged, each
such adapted solution must also sati€fyxI. For example, the solution= 1,
y=0,z=4 of C can be adapted with respect to sli¢é : 1] to obtain the solution
x=3,y=0,z=4 of CAI. Moreover,any solutionof CAl can be adapted
with respect to slic(2 : 2] to satisfyD by choosing value for slicg[2 : 2] that
differs from the most significant bit af+ 7. Sincex|0 : 1] is unchanged, each
such adapted solution also satisfi@s D Al. For example, the solution= 3,
y=0,z=4 of CAIl can be adapted with respect to slijé : 2] to obtain the
solutionx=7,y=0,z=4 of CADAI. In this case, Layer2 computes the under-
approximatiom of the number of ways in which an arbitrary solution®€an be
adapted to satisf¢ AD Al as> 1, thus inferring thaix. (C) = Ix. (CADAI).
Our technique of dropping unconstraining LMCs is concepusimilar to
clause-elimination procedures used in SAT solvers. Givg@nopositional for-

mula in CNF, clause-elimination procedures identify recamictlauses and drop
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them without changing the satisfiability or unsatisfiapilif the formula. The
works in [70, 71, 72] focus on different kinds of redundargudes such as tau-
tological clauses, subsumed clauses, blocked clauses;aweded clauses, and
present procedures to eliminate them. The recent work bglke al in [73]
presents more generalized redundant clauses calledossdell clauses and super-
blocked clauses, and gives detailed complexity analysikeproblem of elimi-
nating them.

We now present proceduf@E1 Layer?2 that applies the technique described
above to problem instances of the fofix C,, obtained after invokin@QE1 Layerl
QEZ1 Layer2initially expressedix.C, as3x. (CAD Al), whereC denotes ® - x =
t1 andD A | denotes the conjunction of LMDs and LMIs @. If n (as defined
above) is at least 1, thed Al is dropped fromCy,. Otherwise, the LMCs in
D Al with the largesk(x,-) value (i.e. LMCs whose satisfaction depends on the
least number of bits of) are identified and included i@, and the above process
repeats. If all the LMIs and LMDs ialx.Cy are dropped in this manner, then
Ix.Cp reduces tax. (24 - x =t;), andQE1 Layer2can return the equivalent form
2Pkt — 0. Otherwise QE1 Layer2returns3dx.Cs, whereCs is a conjunction
of possibly fewer LMCs compared @, such thatix. Cz = 3x.C,.

Before presenting the details of computimgwe present the following propo-

sition.

Proposition 4. Let x, . .., X, be r-bit numbers and b be an r-bit odd number such
that b-xq, ... ,b- X, take distinct consecutive values. Kdie a number such that
1</¢<r. Ifn <2 then the values off0: ¢ —1], ... %[0 : ¢ —1] are distinct.
Otherwise, if n> 2/, then the values 0fif0: ¢ — 1], ... ,x,[0 : £ — 1] span the entire
range0,1,...,2/ — 1.
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Example of Proposition 4: Supposea = 3,b=3, andn=>5. Letb-x1, b-xo,
b-x3, b-x4, b-Xs be 23,4,5,6. By multiplying by the multiplicative inverse dif
modulo 2, i.e., 3, we get the corresponding valuexgfxy, X3, X4, Xs as 6 1, 4,

7,2.

— Case 1: Let be 3. Hencen < 2'. The values 0kq[0: ¢ — 1], xp[0: £ —1],
X3[0:¢—1],x[0:¢—1],xs[0:¢—1] are 6 1, 4, 7, 2, which are distinct.

— Case 2: Let be 2. Hencen > 2'. The values oky[0: ¢ —1], x2[0: ¢ — 1],
x3[0:4—1],x4[0:¢—1],x5[0:¢£—1] are 2 1,0, 3, 2, which span the entire
range 01,...,2¢ —1.

Proof of Proposition/4. The proof is based on the following observations:
1. Thevalues ofb-x;)[0:¢—1], ... ,(b-X,)[0:¢—1] are consecutive.
2. (b-x)[0:¢—1]is equivalenttd[0:¢—1]-x[0:¢/—1] for1<i<n.
3. b[0:¢—1]is odd.

Sinceb[0 : ¢ — 1] is odd, it has a multiplicative invers@[0 : ¢ — 1])’ modulo 2.
Note that(b[0 : ¢ — 1])’ is also odd modulo2 Since(b-x)[0 : £ — 1] is equivalent
tob[0:/—1]-x[0:¢—1] for 1 <i <n, we getvalues 0k;[0:¢—1], ... ,X,[0:
¢ — 1] by multiplying the values ofb-x1)[0:¢—1], ... ,(b-X,)[0:¢—1] by
(b[0:¢—1]) modulo 2.

Observe that for K i <nand 1< j <nsuch thai # j, x[0:¢—1] = x;[0:
¢—1]iff (b-x)[0:4—1] = (b-xj)[0:¢—1]. Since the values qb-x1)[0: ¢ —1],
...,(b-x)[0: £— 1] are consecutive, it follows that, if < 2, then the values of

x1[0:¢—1], ... ,%[0:¢—1] are distinct. Ifn > 2¢, then the values afb- x;)[0 :
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¢—1],...,(b-x,)[0:¢—1] are consecutive and they span the rande.0.,2 — 1.
Hence it is obvious that the valuesxfl0 : ¢ — 1], ... ,xn[0 : £ — 1] also span the
range 01,...,2¢ —1. O

Computing n: Letl be Al (l;), where eacly is an LMI of the forms < t;, the
operator< is in {<,>1}, 5 is a linear term withx in its support, and is a linear
term free ofx. Note that this implies some loss of generality, since walbiigs
LMIs of the formsrt, where boths andt havex in their support. However, our
experiments indicate that this is not very restrictive iaqtice. Lets,...,s be
the distinct linear terms ihwith x in their support. We patrtitioh into I4,..., I,
where eachij is the conjunction of only those LMIs inthat contain the linear
termsj. We assume without loss of generality that eacleontains the trivial
LMIs s; > 0 andsj < 2P — 1. Letl; haven; LMIs, of which the firstm;(< n;j)
are of the forms; > tg, where 1< q < m;. Let the remaining LMIs irij be of the
form s; <tq, wherem; +1<q<n;.

Consider the inequality; : uj <s; <vj, whereu; denotes maénil(tq) andv;
denotes migi':mj+l(tq). AlthoughZ; is not a LMI, it is semantically equivalent to
lj. For notational convenience, let us denwfg,s;j) by kj. Clearly, the value of
slicexp—Kk;j : p— 1] does not affect the satisfaction 8f. We wish to compute
the number of ways, salij, in which an arbitrary solution of can be adapted
with respect to slicex[0 : p—k; — 1] to satisfyZ;. Towards this end, we com-
pute an integed; in {0,...,2P — 1} such tha®; < max(vj; —u; +1,0) for every
combination of values of other variables. Intuitivedy,represents the minimum
number ofconsecutiveralues thas; can take for every combination of values of
other variables, if we were to tregtas a frestp-bit variable and iZ; were to be

satisfied.
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Example: In our running example, whei€@ = (z= 4x+Yy), D = (x # z+7),
andl = (6x+y < 4), we haves; = 6x+y andl; = (6x+y > 0) A(6x+Yy < 4)
A(6x+Yy < 7). HenceZ; is (0 < 6x+Yy < 4) and thusu; = 0 andvy = 4. Note
that p = 3, ky = 1, and the value of slicg[2 : 2] does not affect the satisfaction
of (0 < 6x+y<4). We are trying to computhl;, the number of ways in which
an arbitrary solution ofz= 4x+y) can be adapted with respect to sli¢@ : 1] to
satisfy(0 < 6x+y < 4). Treating &+Yy as a fresh variablé gives ug0 < f <4).

As f can take fiveeonsecutivealues in(0 < f < 4), & is 5.

Lemma 3. For every combination of values of variables other than ryehexist

at least| 8j /2% | distinct values that[ : p—k; — 1] can take while satisfying;Z

Example of Lemma'3: In our exampleZ; = (0 < 6x+y<4), p=3,k; =1 and
31 = 5. Note that, for every value of there are at leag; /2% | = |5/21| = 2
distinct values thax|[0 : 1] can take while satisfying0 < 6x+y < 4).

Proof of Lemma 3. 9; is the minimum number afonsecutiveralues thas; can
take for every combination of values of other variables, ¢ were to treas; as

a freshp-bit variable and ifZj : uj <'s; < vj were to be satisfied. However, in
generals; is of the form %i - b; -x+wj, wherew; is a linear term free of, andb;

is an odd number. Therefore, for every combination of vahfesriables other
thanx, there exist at leag;j /2 | consecutiveralues thab;[0: p—kj — 1] -x[0:
p—kj — 1] can take while satisfying;. Sinceb;j is odd,b;[0 : p—k;j — 1] is odd.
Let us apply Proposition/4 on thesensecutivevalues ofb;[0: p—k; — 1] - x[0 :
p—kj— 1 withn=[j/2% |,r = £ = p—kj andb = b;[0: p—kj — 1]. Note that
18j/2%i | < 2P=Ki, sinced; < 2P. Therefore, using Proposition 4, we have: for

every combination of values of variables other thathere exist at leasg®; /2" |
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distinctvalues thak[0 : p—kj — 1] can take while satisfying;. O

Lemmd 3 indicates that there are at le@gl/2ki | ways in which an arbitrary
solution ofC can be adapted with respect to slige : p—k; — 1] to satisfyZ;.
HenceN; > |3;/2 ]. For notational convenience, we denglg/2" | by N;.

To understand how; is computed in general, recall that for evern {1...m;}
and for everyh in {m; +1...n;}, we havety <sj <ty. For every such pair
of indicesg and h, let 3y be an integer in{0,...,2P — 1} such thatdyg, <
maxth —ty+ 1,0) for every combination of values &f andty. The value of®;
can then be obtained as the minimum of&glh values. For reasons of simplicity
and efficiency, we compute the valuesdgh, conservatively using the following

Proposition.
Proposition 5. 1. Ifty and §, are constants and,t> tg, thendgp = th —tg+ 1.

2. Ift, is a constant,4 can be expressed & -t, wheret is an integer such

that0 <t < p-1,and{ > 2P - 27, thendyh =th — (2P - 2°) + 1.

3. Iftgis a constant,fcan be expressed &5-t +a, wheret is an integer such

that0 <1< p—1, and amod Z > tg, thendy, = amod Z —tg+ 1.
4. Otherwisedyh = 0.
Example of Proposition|5:

1. Supposty = 1 andt, = 6. Therefore, mafty —tg+1,0) =th —tg+1=6.

Sincedyh < max(th —tg+1,0), we can sedgp to 6.

2. Supposey = 4y, t, = 14, andp = 4. Herety is of the form 2 -t, wheret = 2

andt =y. Observe that the maximum possible value ypivith modulus 16
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is 2P —2' =12, i.e., 4 < 12. Therefore, mak, —tg+ 1,0) = max(14—
4y+1,0) > 14— 12+ 1= 3. Hence 3 can be used &g.

3. Supposey =0,t, =4y+7, andp = 4. Herety, is of the form 2 -t 4 a, where
T=2,t =y, anda= 7. Observe that the minimum possible value pf47
with modulus 16 immod Z = 7 mod 4= 3, i.e., 4+ 7 > 3. Therefore,
maxth —tg+1,0) = max4y+7—-0+1,0) > 3—-0+1=4. Hence 4 can

be used adgy .
4. Supposéy =Y, th =z In such cases we s&, to 0.

Proof of Proposition(5. 3y is anintegerir{0,...,2P —1} such thady, < max(th—

ty+ 1,0) for every combination of values &f andt.

1. If tg andt, are constants ant > tg, then maxt, —tg+ 1,0) reduces to

th —tg+ 1. Therefore, it is obvious théf —tg+ 1 can be used a¥ .

2. Consider the case whépis a constantiy can be expressed as-2, where
T is an integer such that @ 1 < p—1, andt, > 2P — 2'. Sincety is a
multiple of Z, the possible values df are Q27,...,2P — 2'. Hence the
maximum possible value &f is 2P — 2, i.e.,ty < 2P — 2. This implies that
th— (2P —2") + 1 < max(th —tg+1,0). Hencet, — (2P — 2%) + 1 can be used

asdg h.

3. Consider the case whegis a constantty can be expressed a$-2 + a,
wheret is an integer such that@ 1 < p—1, andamod Z > ty. Leta=
2'-a; +ap, wherea, = amod Z anda; > 0. Hencey, can be expressed as
2'- (t+a1) +ap. Since 2-(t+az) is a multiple of 2, the possible values

of 2" (t+a) are Q2,...,2P — 2T. Hence the possible values pfare
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Figure 3.1: Slicing of bits ok by ko, . ..,k

ay,2' +ay, ..., 2P — 2"+ ay. Therefore, the minimum possible valuetpfs
a, i.e.,th > ap, which implies thaty —ty+ 1 < max(t, —tg+1,0). Hence

a —tg+1,i.e,amod Z —tg+ 1 can be used & .

4. Consider the case when none of the above conditions is Buwe 0<

max(t, —tg+1,0), we can uségyp, as 0 in this case.
[

Let D be A™,(d;), where eactd; is an LMD of the form 204 . x £t
wherety, is a linear term free ok. Letky denotek(x,C), and letC be such that
ko is greater than both mglq k(x,di) and ma¥_, kj (recall thatkj = k(x;,sj)). To
simplify the exposition, suppose further that> ... > k. We partition the bits
of xintor + 2 slices as shown in Fig. 3.1, whedtécey represents]0 : p—ko — 1],
slice; representx([p— kj—1 : p—kj —1] for 1 < j <r, andslice,1 represents
x[p—k : p—1]. Note that the value dfliceg potentially affects the satisfaction
of C as well as that o; throughZ, the value ofslice; potentially affects the
satisfaction ofZ;j throughZ, for 1 < j <r, and the value oflice,;; does not
affect the satisfaction of arg; or C.

Let Zg denoteTrue. LetB be a solution o€ A Zg A ... A Zj, where O<i <r.



74

Note that bits irslice;, ; throughslice,,; do not affect satisfaction & A Zp A ...
A Zj. LetY; j denote the number of ways in whiéhcan be adapted with respect
to bits inslice;1 throughslice;, to satisfyZj, wherei < j <r. Sincesliceg through
slice; are unchanged, each such adapted solution must also $atisg&p A ... A

Zi.

Lemma 4. An arbitrary solution of CA Zg A ... A Z; for 0 <i < r can be adapted
with respect to bits islicej;; throughslice;, to satisfy Z fori < j <rin at least

LN\J-/ZF’_‘“J ways. Moreover, if we focus only alice; 1, then there are at least
min(|N;j/2P—k |, 2ki—k+1) distinct values oflice; 1 in the corresponding adapted

solutions.

Example of Lemmal4: In our running example, singe= 3, ko = 2, k; = 1, the
bits of x are partitioned into three slicesliceq is x[0 : 0], slice; is x[1 : 1] and
slicep is X[2 : 2]. Clearly, the value ofliceg potentially affects the satisfaction of
(z=4x+Yy) as well as that of0 < 6x+Yy < 4). The value ofslice; potentially
affects the satisfaction ¢ < 6x+y < 4), but not that of(z= 4x+Yy), and the
value ofslice, does not affect the satisfaction ¢f = 4x+vy) or (0 < 6x+y <

4). Let 6 be a solution of(z= 4x+y). Using Lemma 4, there exists at least
[Ny/2P¥1| = |2/2%-2| = 1 way in which® can be adapted with respect to bits in
slice; to satisfy(0 < 6x+Yy < 4). Sincesliceg is unchanged, the adapted solution

must satisfy(z= 4x+y) A(0 < 6x+y < 4).

Proof of Lemma 4. Recall that for every combination of values of variables pthe
thanx, there exist at least;; consecutivevalues thab;[0 : p—kj — 1] -x[0 : p—
kj — 1] can take while satisfying;, whereb;[0 : p—k;j — 1] is odd modulo 2.
Let us apply Proposition/4 on thesensecutiveralues ofb;[0: p—k; — 1] - x[0 :
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p—kj— 1 withn=N;j,r = p—kj, = p—k andb=b;j[0: p—kj — 1]. Using
Proposition 4, we have: for every combination of values ofaldes other thar,

(i) if N\J < 2P~ there exist at Iea§ﬂ- distinctvalues thak|0 : p—k; — 1] can take
while satisfyingZ;, and (ii) ifN} > 2Pk the values that[0 : p—k; — 1] can take
while satisfyingZ; span the entire rangeq. .., 2Pk 1,

Using Lemma 3, we know that, for every combination of valuksaviables
other thanx, there exist at Ieasﬁj distinct values that can be assignedxo :
p—kj —1] (i.e. bits insliceg throughslice;) while satisfyingZ;. This implies that
for every combination of values of variables other thaand for any arbitrary
value ofx[0 : p—k — 1] (i.e. bits insliceg throughslice;), there exist at least
LNAJ-/ZP*'“J distinctvalues that can be assignedxi@ — ki : p—k; — 1] (i.e. bits
in slice; 1 throughslice;) while satisfyingZ;. Hence, an arbitrary solution &f A
Zo N ...\ Zfor0<i<r can be adapted with respect to bitssiiae;, ; through
slice;, to satisfyZ; fori < j <r in at least|N; /2P~ | ways.

In order to prove our claim on values gice;, ; in the corresponding adapted
solutions, again apply Proposition 4 on value®@0 : p—kj —1]-x[0 : p—k;j — 1]
with n:N\j, r=p—Kj, {=p—kit1andb=b;[0: p—kj—1]. We have: for every
combination of values of variables other thar(i) if N} < 2P-Ki1 there exist at
Ieastﬂl} distinct values thai[0 : p— ki1 — 1] can take while satisfyingj, and
(ii) if NT > 2P—K+1, the values that[0 : p— ki1 — 1] can take while satisfying;
span the entire rangeD...,2°P%+1 — 1. In other words, for every combination
of values of variables other thaq there exist at least m@NA,-,Zp*‘“H) distinct
values thak[0 : p— ki1 — 1] can take while satisfying;.

We have already seen that, for every combination of valuesudébles other

thanx, (i) if N} < 2Pk there exist at Ieasﬁj distinctvalues thak[0 : p—kj — 1]
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can take while satisfying;, and (i) if ﬁj > 2P~k the values that[0 : p—k — 1]
can take while satisfying; span the entire range 1. .. ,2P~k _ 1. This implies
that, for every combination of values of variables othentkand for any arbitrary
value ofx[0 : p—k — 1] (i.e. bits insliceg throughslice;), there exist at least
min(|N; /2P || 2Pki+1 /2P |) = min(|N;/2P& |, 2k—K-1) distinctvalues that
can be assigned tgp — ki : p—ki+1 — 1] (i.e. bits inslicej; 1) while satisfyingZ;.
Therefore, if we focus only oslicej; in the aforementioned adapted solutions,

then there are at least nfjiN; /2P~ |, 24~ki+1) distinctvalues ofslice; 1. O

Using Lemma 4, we hav¥ j > Lﬁj/zp—k‘j. For notational convenience, let
us denote mif{N;j /2P~ |, 26—k+1) by a ;.

Lemma 4 indicates that a soluti®ofC A Zg A ... AZ;for0<i <r can be
adapted to satisf¢ A Zo A ... A Zi A Zj fori < j <r by using at leasty; j dif-
ferent values oflice;, ;. Let the corresponding set of valuesstife; ; be denoted
i1 FNj=i 1S, is non-empty, there exists a common valuslak;; that
permits us to ada with respect talice;, 1 throughslice, to satisfyZ; 1 through
Z;, respectively. It is therefore desirable to hﬁﬁéjziﬂﬁeﬂﬂ > 1. Using the
Inclusion-Exclusion principle, we find thﬁmﬁzi+1§+l7j| > (Yo 0ij) —(r—

i —1)-2K—k+1, Note that the lower bound is independentof For notational
convenience, let us denote the lower bound\by; .

If W11 > 1foralli € {0,...r —1}, an arbitrary solutio® of C can be adapted
to satisfyC A Zg A ... A Z; as follows. Sinc&\V, > 1, we choose a value elfice;,
sayv, from ﬂﬁzlﬁj. Let 6, denoteB with slice; (possibly) changed to have
valuev;. Then8, satisfiesC A Z;. SinceW, > 1, we can how choose a value of
slicep, sayvp, from ﬂﬁzz Sglj and repeat the procedure until we have chosen values

for slice; throughslice,. Finally, sinceslice,; does not affect the satisfaction of
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C or of anyZz;, we can choose an arbitrary value &tice,, ;. Clearly, there are at
least([/=5 Wi+1]) - 2¢ ways in which values of different slices can be chosen, so
as to adap® to satisfyC A Zp A ... A Z;. Letus denotéﬂ{;& W 1)) - 25 by .
Example (Continued): We haveYp 1 > [Np/2P %0 | =1, Alsodg 1 = min ( | Ny /
2P~k | 2o~k1) — min(1,2271) = 1. HencéM = (§7_,001) — (1—0—1). 2%k
= 0p1 = 1. Note that there is at least one way of adapting an arbisalytion
of (z= 4x+y) with respect taslice; to satisfy(z=4x+y) A(0 < 6x+Yy < 4).
Moreover, there are at least two ways of adapting an arpis@lution of(z= 4x+
y) with respect talice; through toslice, to satisfy(z=4x+y) A(0 < 6x+Yy < 4)
as indicated byy =W, -2} =1.21 =2

Let us now consider each LMEB, in D. Recall that eacld;, is of the form
2<(xd) . x £ t4. Note thatd; constrains only slice[0 : p— K(x,d;) — 1]. It can
be observed that for every combination of values of varmblber tharx, there
is exactly one way of choosing value for sligf® : p— K(x,d;) — 1] such thatd;
is violated. This means that there afé*®) ways of choosing values faticeg
throughslice ;1 such thatd; is violated. Thus for every combination of values
of variables other thaw, $™ ,(2<*%)) is an over-approximation of the number
ways of choosing values faticeg throughslice,.; such thaD is violated. Let us
denotey ™, (2¢>4)) by pp. We have already seen that there are at |pasiays
of adapting an arbitrary solutidhof C to satisfyC A Zg A ... A Z,. AS|p is an
over-approximation of the number of such adapted solutibascan violateD,
there are at leagf — Pup ways of adaptind to satisfyC A Zg A ... A Z AD.
Example (Continued): In the example, we haved; = (x# z+7) andk(x,d;) = 0.
Note that for every value af+ 7, there is exactly one way of choosing value for

slice x[0 : 2] such thatd; is violated. pp = 2¢*%) = 1, and hencey — pp = 1.
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Thus there is at least one way of adapting an arbitrary solwdf (z= 4x+Y) to
satisfy(z=4x+y) AN(0 < 6x+y < 4) A(X#z+7).

It can be observed that the above reasoning can be extendbd general
casek; > ... > k.. Lett for 0 <i <r be the number oF;’s with kj < k; for
i < j <r. Using the Inclusion-Exclusion principl&)_, above then changes to
(3 oiea @i j) = (6 — 1) - 267,
Theorem 1. If n =W —pp > 1, then3x. (CAD A1) = 3x.(C)

As mentioned earlier, the procedu@El Layer2 applies this technique to
problem instances of the forax. Cy,, obtained after invokin@E1 Layerlto find
unconstraining LMDs and LMls. If all the LMIs and LMDs ifx.C, are un-
constraining, thefx.C, reduces talx. (2 - x = t;), andQE1 Layer2returns the
equivalent form 2% .t; = 0.

Example (Continued): QE1 Layer2drops the LMI(6x+Yy < 4) and the LMD
(X # z+7) as they are unconstraining #x. ((z=4x+Yy) A(6X+Yy < 4) A(X #
z+7)). The problem instance thus reducesixo(z= 4x+y), which is equivalent
to (4y+ 4z = 0). Hence the final result idly + 4z = 0).

In general QE1 Layer2returns3x.Cs, whereCs is a conjunction of possibly
fewer LMCs compared t85, such thabix. C3 = Ix.C,. The next section describes
techniques to eliminate quantifiers from such problem imsta.

Analysis of Complexity: Consider a conjunction of LMCs with a subset of vari-
ables in its support to be eliminated. Lretbe the number of LMCs in the conjunc-
tion, vbe the number of variables in its support, &z the number of variables to
be eliminated. Consider the elimination of a variabiaside Layer2. Recall that
Layer2 can be applied only when all LMIs involvixgare of the forns<t, where

e {<, >}, sis alinear term withx in its support, and is a linear term free aof.
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Letr be the number of distinct linear terms withn the support appearing in the
LMIs. As observed above, computimgrequiresO(r?) arithmetic operations in
the worst-case. Note thatl n. Assuming that each arithmetic operationgbit
numbers take tim®(Q(p)) in the worst-case, wheme< Q(p) < p°, elimination
of a variable hence has a worst-case time complexi@(af - Q(p)). Observe that
eliminating a variable does not increase the number of LMGkerconjunction.
Hence eliminating variables has a worst-case time complexitpé- n?- Q(p)).
Since readingn LMCs as input and writing the result tak€n-v- p) time, Layer2

has a worst-case time complexity©fe-n?-Q(p) +n- p-v).

3.4 Layer3: Fourier-Motzkin Elimination for LMIs

In this section, we present a Fourier-Motzkin (FM) style Qgoathm for com-

puting Ix.C3 obtained above. Recall th& obtained above, in general, contains

LMDs, LMIs, and a single LME. We propose converting the LMDslahe LME

in Cz to LMIs using the equivalencds =tp) = (t1 > t2) A (t1 <t2) and(ty #t2)

= —(t1 =tp). This, in general, convertSs to a Boolean combination of LMIs.

However, as we will see in Chapter 4, a QE algorithm for corjons of LMCs

can be extended to a QE algorithm for Boolean combinationd€&. Hence,

in the remainder of this section, we will focus on QE freonjunctions of LMIs
There are two fundamental problems when trying to apply FMiehtion for

reals to a conjunction of LMIs:

1. Wrap-around behaviourRecall that FM elimination normalizes each in-
equalityl w.r.t. the variablex being quantified by expressihgn an equiva-

lent formx < t, wherexe {<,>} andt is a term free ok. However, due
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to wrap-around behaviour, the equivalencest{ix ty) = (t1 +tz <ty +1t3)
and (i) (tp <t2) = (a-t; < a-tp) used for normalizing inequalities do not
hold for LMIs in general. For examplé2 <3 (mod 4), but(2+1>3+1
(mod 4). Similarly, (1 <2 (mod 4)), but(1-2>2-2 (mod 4). Hence,
normalizing an LMI w.r.t. a variable is much more difficultait normaliz-
ing in the case of reals. Moreover, unlike in the case of raatsintegers,
presence of equalities does not always simplify QE in madaidghmetic.
For example, as observed in Section 222,((2x=3y+2) A (3x > 4z+ 3))
can be simplified taix. ((6x = 9y+6) A (6x > 8z+ 6)) on integers. How-

ever this simplification cannot be done in modular arithmigtigeneral.

. Lack of densityEven if we could normalize LMIs w.r.t. the variable being
guantified, due to the lack of density of integers, FM elinimacannot be
directly lifted to normalized LMIs. For exampkx. ((y <4x) A (4x < z)) is
equivalent toly < z) in reals, whereas this is not true in modular arithmetic

with modulus 2, wherep > 3.

This motivates us to (i) define a (weak) normal form for LMIsddii) adapt

FM elimination to achieve QE from normalized LMIs. Recalltti@@mega Test

(see Subsection 2.2.2) also defines a normal form for indgpsabver integers,

and adapts FM elimination over reals for QE from normalizeefjualities over

integers. However, Omega Test cannot be directly used fofr@& LMIs — us-

ing Omega Test for QE from LMIs requires converting the LMbsequivalent

constraints inZz; the resulting formula is iz, and converting the resulting for-

mula back to modular arithmetic is difficult. Moreover oupeximents indicate

that, using Omega Test for QE from thg, constraints arising from LMIs incurs

considerable performance overhead.
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A (weak) normal form for LMIs: We say that an LMI with x in its support is
normalized w.r.t. »f it is of the forma- xt, or of the forma- x> b-x, where
e {<,>}, andt is a linear term free of. We will henceforth us& F1 to refer
to the first normal formd- xr<t) andNF2 to refer to the second normal form
(a-x>1b-x). A Boolean combination of LMC# is said to be normalized w.rx

if every LMl in ¢ with x in its support is normalized w.r.x.

We will now show that every LMI withx in its support can be equivalently ex-
pressed as a Boolean combination of LMCs normalized w.rBefore going into
the details of normalizing LMIs, it would be useful to intrace some notation.
We defineQ(t;,to) as the condition under whidh + t, overflows ap-bit repre-
sentation, i.e.t; +t; interpreted as an integer exceeds-21. Note thatQ(ts,t»)
is equivalent to botffty # 0) A (t1 > —t2) and(t1 # 0) A (to > —t1).
Example: Suppose we wish to normalize the LN+ 2 <y) modulo 8 w.r.t.
X. Adding the additive inverse of 2 modulo 8, i.e, 6 to both sidé the LMI,
the left-hand sidex+ 2 changes ta and the right-hand sidg changes ty + 6.
However, note thatx+ 2 <) is not equivalent tdx <y+6). If Q(x+2,6) =
Q(y,6), then(x+2 <y) = (x<y+6) holds; otherwisgx+2 <y) = (x> y+6)
holds. Note tha(x+2,6) = Q(y,6) can be equivalently expressed(as< 5) =
(y > 2). Hence(x+2 <y) can be equivalently expressed in the normalized form
ite(p, (Xx<y+6),(x>y+6)), wherep denotegx < 5) = (y > 2), andite(a, B,y)
is a shorthand fofa A B) V (—a AY).

In this example, th& predicate allowed us to perform a case-split and nor-

malize each branch. The following Lemma generalizes tlaa.id

Lemmab. Letl; : (a-x+t; <b-x+t2) be an LMI, wherettand b are linear terms

without x in their supports. Them E ite(9,l2,—l2), where b = (a-x—b-x <
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to—t1), and¢ is a Boolean combination of LMCs normalized w.r.t. x.

Before we present the proof of Lemma 5, it would be useful tegméa propo-

sition.

Proposition 6. Let |1 be an LMI § <tp, and let § be a linear term. Them|=
ite(d1 A (92 @ ¢3), (t1 +1t3 > o +13), (t1 +t3 < tp +13)), whereps = (t3 #0),
b2 = (—t3<t1), dp3 = (—t3 <tz) anddp, @ ¢3 denotes exclusive-or @k, and

3.
Proof of Proposition 6. Note that(t; <tp) = W1V Y2V Y3V Yy, where
— Y1 = (1 <o) AQ(tg,t3) AQ(to,t3)
— Y2 = (g <t2) AQ(tg,t3) A —Q(t2,t3)
— W3 = (g <tx) A=Q(tg,t3) A Q(to,t3)
— Ys = (1 <) A-Q(tg,t3) A =Q(to,t3)
It can be seen that,
- Y1 = (t1+t3<ta+13) AQ(t1,t3) A Q(t2,t3)

— Yo = false, sinceQ(t1,t3) A—=Q(to,t3) = (t1 > to). However, we can write
W2 as(ty +t3 > ta +t3) A Q(tg,t3) A =Q(t2,t3) as well, which is equivalent
to false, sinceQ(ty,t3) A =Q(tp,t3) = (t1 +t3 <tz +t3).

— Y3 = (t1+t3>ta+13) A-Q(t1,t3) AQ(t2,t3)

—Ys = (t1+1t3 <ta+13) A=Q(ty,t3) A =Q(to, t3)
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Expressingp: vV Y2 V Y3V Y4 in terms ofites, we have,
(1 <t) = ite(Qty,t3) ©Qt2,t3), (t1 +1t3 > ta +13), (t1 +t3 <to +13))

Expanding theQ’s using the formuld)(a,B) = (B # 0) A (a > —pB), wherea, 3

are linear terms, we have,
(tl < '[2) = ite((l)l A (¢2 EB¢3), (tl +t3>1 —l—tg), ('[1 +t3<1t —l—t3))

where,p1 = (13 #0),¢2 = (—t3 <t1),andd3z = (—tz3 <ty). O
We can now prove Lemma 5.

Proof of Lemmab5. Consider an LMl : a-x+t; < b-x+ty, wheret; andt, are
linear terms withoui in their supports. Using Proposition 6, with x+t; in

place ofty, b- x4+t in place oft; and—b-x—ty in place ofts,
I, = ite((l)l/\ (¢2@¢3),(a-x—b-x> t2—t1),(a-x—b-x§t2—t1))

where,p1 = (b-x+1t1 #0), §2 = (b-x+1t; <a-x+t1), anddps = (b-x+1t; <
b-x+t2).

Note that the LMIga-x—b-x>ty;—t;) and(a-x—b-x <t; —t;) are normal-
ized w.r.t.x, whereash, and¢3 are not. Hence, let us try to normalipe and¢3
wW.r.t. X.

Considerp, = (b-x+t; < a-x+ty). Using Proposition 6, with- X+t in

place ofty, a- x4+t in place oft; and—t; in place ofts,
b2 = ite((t1 ZO)A((t1 <a-X+1t1) ®(t1 <b-x+t1)),(b-x>a-x),(b-x<a-x))

Using the observation < a+B) =-Q(a,B) andQ(a,B) = (B#0)A(a > —p)
for linear termsx andp, and simplifying,(t; # 0) A ((t1 < a-X+t1) & (t1 < b-Xx+
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t1)) is equivalent tqt; # 0) A ((—t1 < a-X) & (—t; < b-x)). Hence,
b2 = ite((t1 ZO)A((—t1 <a-xX) B (—t1 <b-x)),(b-x>a-x),(b-x<a-x))

Similarly, considerps = (b-x+t; < b-x+ty). Using Proposition 6, with

b-x+ty in place ofty, b-x+t> in place oft, and—b- x in place ofts,

d3 = ite((b-Xx#0)A((b-Xx<b-Xx+11) B (b-Xx<b-x+12)),(t1 > t2), (t1 <t2))

ite((b-x#0)A((—=b-x<t1)® (—b-x<tp)),(t1 > t2),(t1 <t2))

Putting everything together,

1 = ite(dp1A (d2®P3), (a-Xx—b-x>ta—13),(a-Xx—b-x<ty—t3)),where
¢1 = (b-x+t1#0)
b2 = ite((t1 ZO)A((—t1 <a-X) B (—t1 <b-x)),(b-x>a-x),(b-x<a-x))

d3 = ite((b-x£0)A((—=b-x<t1)®(—b-x<t)),(t1 >t2),(t1 <t2))

Hencel1 can be equivalently expressed as($, 12, —l2), wherel, = (a-x—b-
x<ty—t7), andp = -1V (¢2 = ¢3). Note thath here is a Boolean combination

of LMCs normalized w.r.tx. O

Modified FM for normalized LMIs: We begin by illustrating the primary idea
through an example.

Example: Consider the problem of computintx. C, whereC = (y < 4x) A (4x <

z) with modulus 16. Note thaix.C is “the condition under which there exists a
multiple of 4 betweery andz, wherey < Z’. Note that if x,y,z were reals, then
we would have obtaine@y < z) for 3x.C. However, as in the case of integers, this

would over-approximatex.C in the case of fixed width bit-vectors.
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If (y<12)A(z>y+ 3) holds, then the difference betwegrandz is > 3.
In this case, existence of a multiple of 4 betwgeand z is guaranteed. Thus
(y<2)A(y<12)A(z>y+3) = Ix.C. Note that this case is conceptually
similar todark shadown Omega test.

It can be seen that {fy > 12), then there does not exist arysuch thatly <
4x). Hence, if(y > 12), then3x.C is false. If (z < y+ 3), then3x.C is true iff
one of the following conditions holds: ({y < z) andy is a multiple of 4, i.e.,
(y<2)A(dy=0), (i) (y<z) and(y>z (mod 4), i.e.,(y < 2) A(dy > 4z).

Hence3x.C is equivalent to(y < z) A ¢, where¢ is the disjunction of the
following three formulas: (iz>y+3) A (y < 12), (i) (z<y+3)A(dy=0),
(i) (z<y+3)A(4y > 4z).

The following Lemma generalizes this idea.

Lemma 6. Let l; : (t1 <a-x) and b : (a-x <t) be LMIs in NF1 w.r.t. x. Let
k bek(x,a-x). Then,3x. (I3 Alz) = (t1 <t2) AP, whered is the disjunction of
the formulas: (i)(2P K-ty = 0), (i) (t2 >t +2¢— 1)A(ty < 2P —2X), and (iii)
(th <t +2X—DA(2P K.ty > 2P K. 1y).

Proof of Lemma 6. Note thatix. (I3 Alz) = 3x. (11 Al%), wherel] = (t; <2K-x)
andl), = (2¢-x <tp), since the multiples of2and X - e are the same moduld2
for any odd numbee e {1,...,2° —1}.

Now 3x. (11 Al5) = Ix. g vV I P2 vV IX. Y3V 3IX. Ya, where

1S A A (2P K-t = 0)

- Y1

1L AILA (2P Kty Z0) A (2 >t + 2K — 1) A (tg < 2P — 2X)

- Y2

- Y3 = |5_/\|/2/\(2p7k-t1750>/\(t2<t1—|—2k—1)
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— Yg = AILA (2P Koty £ 0) A (tg > 2P — 2¥)

Considerdx. Y. This is equivalent tax. (Y1 A (t1 < t2)), since(ty <tp) is
an LMI implied by g1. It can be seen thaix. (1 A (t1 < tp)) is equivalent to
(2PK.t; = 0) A (tp < tp), since given any solution t2PX.t; = 0) A (tg < tp),
we can satisfyf; Al5 by setting ¥.x=1t;. Note that setting'2 x = t; is always
possible, since®? k.t = 0= 3x. (2. x=t;) (see Proposition 3). Hencex. Y1 =
(2P K.t = 0) A (1 <tp).

Considerdx. 2. Note that the difference betwegnandt, here is> 2k_1,
which implies that there exists a multiple df Betweert; andt,. Hence it can be
seen thatt; <t)) A (2P K-ty £ 0) A (tp >t +2X— 1) A (t1 < 2P — 2) = 3x. o
Implication in the other direction is obvious. Henég, Y, = (t1 <t2) A (Zp—"-
t1 £O)A(tp >t + 2K— 1) A (tg < 2P — 2K),

Considedx. 3. This implies(2P%-t; > 2P~K.t,). Hencedx. Yz = 3Ix. (Y3 A
(2PK.t; > 2P~K.ty)). This is equivalent tdt; <tx) A (2P K.t3 £ 0) A (2 <ty +
2K 1) A (2P K.ty > 2PK. 1), as the existence of a multiple df Betweert; and
toisimplied by(t; <tx) A (2P K-t1 £ 0) A (tp <ty +2— 1) A (2P K-t > 2P K 1),

Considerdx. Y. This is equivalent tdalse, since given(t; > 2P — 2, there
exists nat; such thatj Al5 holds.

Putting everything together, it can be seen that(l; Al2) = (t1 <tz2) A ¢,
whered is the disjunction of the formulas: ((R°%-t; = 0), (ii) (tp >t + 25—
DA(tp < 2P —2X), and (jii) (tp <ty + 2~ )A (2P K-ty > 2P K. 1), O

Suppose we wish to compui&. |, wherel is a conjunction of LMIs normal-
ized w.r.t. x. Letl =11 Aly, wherel; is the conjunction of LMIs in that are

in NF1, andl; is the conjunction of LMIs inl that are inNF2. In addition, let
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ai,...,an be the distinct non-zero coefficientsfn LMIs in I3, and letlyj de-
note the conjunction of LMIs i1 in which the coefficient ok is g;. Finally,
let A(tg,t2, k) denote the result of computingk. ((t1 < a-x) A (a-x <tp)) using
Lemma 6, wherd denotex(x,a- x). It is easy to see that Lemma 6 can be used
to computedx. 1y, for everyi € {1,...n}. Similar to FM elimination, we parti-
tion the LMIsl; j : & - xpatj in Iy into two setsA< andA>, where/A., = {l; j |
lj j is of the forma; - x>t }, forae {<,>}. We assume without loss of general-
ity that the trivial LMIsg; - x < 2P — 1 anda; - x > 0 are present i< and/A> re-
spectively. We can now Compuiet. 11, aS/\ (g x<ty)en-, (a-xztg)ens (O (taytp, K (X, -X))).
Each conjunction of LMIs such ds; above, where all LMIs are iNF1w.r.t.
X, and have the same coefficientxofire said to be “coefficient-matched” w.r.t.
X. Similarly, a Boolean combination of LMGjsis said to be coefficient-matched
w.r.t. x if all LMIs in ¢ with x in their support are ilNF1 w.r.t. x and have the
same coefficient af. In the special case whén= true andn=1, i.e., when is
a conjunction of LMIs coefficient-matched w.rd.3x. | reduces tax. 1 1.
Unfortunately, converting to coefficient-matched form w.r.t. a variable is
inefficient in general. Hence we propose converting coefficient-matched form
w.r.t. x only in the following cases, where it can be done without miods of
efficiency: (a)lo = true, N =2 anday, = —ay, and (b)l> = true and everyg; is of
the form % . e, whereeis an odd number if1,...,2P — 1} independent of.
In case (a) abovd, can be equivalently expressed as a Boolean combination

of LMCs coefficient-matched w.r.k by using the following Proposition.
Proposition 7. (—t; < —tp) is equivalent tqt; = 0) V ((t2 # 0) A (tg > t2)).

Example of Proposition|7: Consider the problem of computint. |, wherel =

(y < 2x) A (6x < z) with modulus 8. Using Proposition 76x < z) is equivalent
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to (2x=0) V ((z# 0) A (2x> —2)). Thus3x.| can be equivalently expressed as
3x. ¢, whered is the disjunction ofy < 2x) A (2x=0) and(y < 2x) A (z# 0) A

(2x > —2z). Note that is coefficient-matched w.r.k.

Proof of Proposition[7. (—t; < —tp) is equivalent to the disjunction @f; = 0)
A (—t1 < —tp) and(ty # 0) A (—t1 < —t2). Note that(ty = 0) A (—t1 < —tp) is
equivalent tot; = 0). Moreover,(t; # 0) A (—t1 < —t2) is equivalent tqt; # 0)
A (t2 #0) A (—t1 < —t2), which is equivalent td@t; # 0) A (t2 # 0) A (t1 > t2).
Hence(—t; < —tp) is equivalent to the disjunction @f; = 0) and(ty # 0) A (tp #
0) A (t1 > t2), which can be simplified t¢t; = 0) v ((t2 # 0) A (t1 > t2)). O

We explain the idea behind case (b) by an example before denmsgy the
general case.
Example: Consider the problem of computiax. |, wherel = (y < 2x) A(x < 2)
with modulus 8. It can be shown thatl z can be equivalently expressed as the
disjunction of (i) Q(x,X) A Q(z,2) A (2x < 22), (ii) “Q(X,X) A ~Q(z,2) A (2x <
2z), and (iii) ~Q(x,x) A Q(z,z). Hence,3x.| can be equivalently expressed as
Ix. ¢, whered’ is the disjunction of (iQ2(x,X) AQ(z,2) A (2x < 22) A (y < 2x), (ii)
—Q(x,X) A=Q(z,2) A (2x < 22) A (y < 2x), and (iii) =Q(x,X) A Q(z,2) A (y < 2X).
Note thatQ(x,x) andQ(z z) can be equivalently expressed»x% 4 andz > 4
respectively. However, on closer inspection, it can be segtroccurrences of>
4 in 3x. ¢’ arising fromQ(x, x) are unconstraining, and can therefore be dropped.
Thus3x. ¢’ can be equivalently expressedas¢, where¢ is the disjunction of
(2x<22) A (y < 2x) and(z> 4) A (y < 2x). Note thatdx. ¢ is equivalent tax. |
and is coefficient-matched w.nx.

In general, giverdx.l such thatl, = true and theg’s have the same (as

defined above), we have the following Lemma.
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Lemma 7. Let l; be a conjunction of LMIs ilNF1w.r.t. x. Leta,...,a, be the
distinct non-zero coefficients of x in LMIs in Let each g for 1 <i <n, be of the
form 24 . e, where e is an odd number {1,...,2P — 1} independent of i. Then,
Jx.11 can be equivalently expressed-#s ¢, where¢ is a Boolean combination

of LMCs coefficient-matched w.r.t. x.

Proof of Lemma 7. Our proof makes use of the following claims.

Claim 1. An LMl a-x <t in NF1can be equivalently expressed as the disjunction
of formulas: (i)Q(a-x,a-x) AQ(t,t) A (2a-x < 2t), (i) ~Q(a-x,a-x) A—Q(t,t) A
(2a-x < 2t), and (iii) ~Q(a-x,a-x) AQ(t,t).

Claim 2. An LMl a-x >t in NF1can be equivalently expressed as the disjunction
of formulas: ()Q(a-x,a-x) AQ(t,t) A (2a-x> 2t), (i) ~Q(a-x,a-x) A—Q(t,t) A
(2a-x > 2t), and (iii) Q(a- x,a-x) A ~Q(t,t).

Proof of Claim/1. Note that(a-x <t) = Y1V Y2V W3V Ys, where
- Y1 = (a-x<t)AQ(a-x,a-x) AQ(t,t)
- Y2 = (a-x<t)AQ(a-x,a-x) A -Q(t,t)
—P3 = (a-x<t)A=Q(a-x,a-x) AQ(t,t)
- Yg = (a-x<t)A=Q(a-x,a-x) A—-Q(t,t)
It can be seen that,

- Y1

Qa-x,a-x) AQ(t,t) A(2a-x < 2t)
— Yy = false, sinceQ(a-x,a-x) A—Q(t,t) = (a-x>1)

- Y3 -Q(a-x,a-x) AQ(t,t), since~Q(a-x,a-x) AQ(t,t) = (a-x< t)
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- Ys = -Qa-x,a-x)A-Q(t,t) A (2a-x < 2t)
Hence the result. O
Proof of Claim/2. Similar to the proof of Claim 1. O

Without loss of generality, ledy > a» > ... > ay, i.e., 22-e>2.e> ... >
2% . e This implies that (iks > ko > ... > ks, and (ii)a; =244 . g for2<i <n.

Now consider each LME; - x>atj in I, where 2<i <nandxe {<,>
}. It can be seen that the above Claims can be used to exgressat; as an
equivalent Boolean combination of LMCs, involving (i) the L¥Ra; - X >< 2t;),
(i) Q(a -x,a -x), and (i) Q(tj,t;). Moreover, the above claims can be used
repeatedly to express - x> t; as an equivalent Boolean combination of LMCs,
involving (i) the LMI (2 Kg; - x 1 27Kity), ie., (a1 - x > 297Kity), (i) Q(a -
X, - X), Q(2a - X,28 - X),..., Q(2aKi~1g . x 2—k~1g . x) and (i) Q(tj,t;),
Q(2t), 2t)),..., Q(2a-ki—1t; 2kki-1g),

It can be seen th&@(a; -x, ;- X), Q(2a; -x, 28 -X),..., Q(2k—k—1g.x, 2k —ki—1g;.
x) can be equivalently expressedas x> 2P~1), (2a;-x>2P~1), ..., (2a—ki—1g.
x> 2P~1) respectively. Similarl (tj,t;), Q(2tj,2t)),. .., Q(2ka—ki—1t; 2ka—ki—lg)
can be equivalently expressedgs> 2P~1), (2t; > 2P-1), .., (2k—ki—1t; > 2p-1)
respectively. Hench can be equivalently expressed as a Boolean combination of
LMCs ¢, involving (i) LMIs of the form(ay - xo< 247K . t;), (i) LMIs of the form
(a-x>2P1), (28 -x> 2P 1), .., (2ak~1g.x > 2P~1) and (iii) LMIs of the
form (tj > 2P~1), (2t > 2P7Y), .., (2Kl > 2Py,

;
We can expres¢’ equivalently as\/ C,, where eaclC, is a conjunction of
(=1

LMCs. Hencedx. ¢’ is equivalent tov (Ix.Cy). Observe that ead, involves

three kinds of LMIs: (i) LMIs of the forn(al x> 247K .t;), (i) LMIs of the form



91

(a-x>2P1), (25 -x>2P1), .., (2aki—1g . x> 2P~1) and/or their negations,
and (i) LMIs of the form (tj > 2P~1), (2t; > 2P-1), ..., (2a—ki—1t; > 2p-1)
and/or their negations. L&Y ; be the conjunction of the first kind of LMIs i@,.
Similarly, letC, » andC, 3 respectively be the conjunctions of the second and the
third kinds of LMIs inC,. Hence we hav€, = C; 1 AC; 2 ACy 3.

Therefore3x.C, = (3. (Cp1 ACy2)) ACya, sinceCy 3 is free of x. More-
over, by applying Theorem| 1 ofix. (C,1 ACy2), it can be proved that, s is
unconstraining irdx. (C, 1 ACy2). Hencedx.C, can be equivalently expressed as
3x. (C1) ACy 3. Note that the coefficient ofin C, 1 is a;. This implies thatv C
can be equivalently expressed as a Boolean combination of LM)@ﬁlClent-

matched w.r.tx, with coefficient ofx asa;. O

Note that normalizing a given conjunction of LMIs w.r.t. ariadle and then
converting it to coefficient-matched form transforms it tB@olean combination
of LMCs in general. We make use of one of the techniques in Chdpfer
eliminating quantifiers from such Boolean combinations of@$4

In cases other than those covered in cases (a) and (b) abeyEppose com-
puting 3x.1 usingmodel enumeratign.e., by expressingx.| in the equivalent
formI|x—oV ...V I|x—20_1 Wherel|x_;j denoted with x replaced by the constant
i

The procedure that computés. C3 (whereCs is obtained fromQE1 Layer?
using techniques mentioned in this section is caldéd _Layer3(see Algorithm 1).
Initially, the LMDs and the single LME in the conjunction azenverted to LMIs
using the equivalence$; =ty) = (t1 > t2) A (1 <tp) and(t; #t2) = —~(t1 =t2).
This in general yields a Boolean combination of LM&s If ¢1 is a conjunction

of LMIs coefficient-matched w.r.tx, then3x. ¢, is computed using the modified
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FM elimination in Lemma 6. Otherwiséix.$; is computed either by convert-
ing ¢4 to coefficient-matched form w.r.tx, followed by QE from the resulting

Boolean combination of LMCs, or by model enumeration.

Algorithm 1. QE1 Layer3
Input: Conjunction of LMCSC, Variable to eliminate

Output: Boolean combination of LMCg equivalent tadx.C

1 ¢1 := convertToLMI{C); Il convert LMES and LMDs to LMs

N

if ¢1 is a coefficient-matched conjunction w.r.tthen
3 | W:= modifiedFMd1, X);

/'l Apply nodified FM based on Lemma 6
4 else

5 if model enumeration is selected to comptiep, then

6 Y := modelEnumerai@, X); /'l Apply nodel enuneration
7 else
8 - := coefficientMatct1, X);

Il ¢1 in general is a Bool ean conbination
9 Y := QEFromBooleanCombinatidy, x);

Il Elimnate x from Bool ean combi nation ¢o;

Il (see Chapter /4] for details)

10 return y;

Analysis of Complexity: Consider a conjunction of LMCs with a subset of vari-
ables in its support to be eliminated. Lrethe the number of LMCs in the conjunc-

tion, v be the number of variables in its support, atae the number of variables
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to be eliminated. Note that Layer3 resorts to model enunaogran the worst
case. Consider the elimination of the first quantified vagabhay,x; by model
enumeration.

Elimination of x; by model enumeration involves creating @opies of the
conjunction, and then replacing by a constant in each copy. Replacixgby
constant and then simplifying tak€xn) arithmetic operations in the worst-case
for each copy. Assuming that each arithmetic operatiompnit numbers take
time O(Q(p)) in the worst-case, wherg < Q(p) < p3, elimination ofx; from
each copy hence has a worst-case time complexi®(of Q(p)). Since there are
2P such copies, elimination o has a worst-case time complexity@fn- Q(p) -
2P).

Elimination ofx; generates a formula withP2isjuncts, where each disjunct
can haven LMCs. In a similar manner as above, it can be seen that elimmat
the second quantified variable, say,has a worst-case time complexity Ofn-
Q(p) - 22P). Proceeding like this, it can be seen that eliminatior ghiantified
variables has a worst-case time complexityoqfn- Q(p) - (2P +22P 4 ...2%F)),
which reduces t@(n- Q(p) - 26+,

After elimination ofe variables, we have a formula witl¥ 2 disjuncts, where
each disjunct can haveLMCs. Writing each disjunct involvingn LMCs takes
O(n-v- p) time. Hence writing the result tak&Xn-v- p-2%P) time. Therefore

Layer3 has a worst-case time complexity@h- Q(p) - 2tV P n.v. p-28P),

3.5 Project: Combining Layers

Recall thatQE1 Layerl, QE1 Layer2 andQE1 Layer3try to eliminate a single

qguantifier from a conjunction of LMCs. These procedures camexiended to
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eliminate multiple quantifiers by invoking them iteratiyelThus we have proce-
duresLayer], Layer2 andLayer3- extensions oQE1 Layerl, QE1 Layer2 and

QE1 Layer3respectively, to eliminate multiple quantifiers.

Algorithm 2: Project
Input: Conjunction of LMCSA, Set of variables to eliminaté

Output: Boolean combination of LMCg equivalent tadX. A

¢1 := LayerX(A, X); Il for each x € X, Apply QE1 Layer1l
if 1 has no quantifiershen

3 | Wi=ou

4 else

Il Let ¢1 = ALATY.B

5 ¢, := LayerdB, Y); Il for each x € Y, Apply QEl Layer?2

6 if ¢2 has no quantifiershen

=

N

7 | Ui=AA b2
8 else
Il Let ¢» = AATZ.C
9 ¢3:=Layer3C, 2); // for each x € Z, Apply QE1_Layer3
10 P:=A1AA2 A §3;
11 return y;

We now present the overall QE algoritHPnoject (see Algorithm 2) for com-
puting3X. A, whereA is a conjunction of LMCs over a set of variabMsuch that
X C V. Initially Projecttries to computelX. A usingLayerl This reducesiX. A

to an equivalent conjunction of LMGCg;. If all variables inX are eliminated
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by Layerl, thend1 is free of quantifiers. In this caséX.A is equivalent tap1,
andProjectreturnsd1. Otherwise$1 is equivalent to the conjunction & and
3Y.B, whereA, B are conjunctions of LMCsy C X, andX \ Y is the subset of
variables inX that are eliminated bizayerl Projectthen tries to computéY.B
usingLayer2

Layer2reducesdY. B to an equivalent conjunction of LMQs. If all variables
inY are eliminated by.ayer2 thend; is free of quantifiers. In this cas&X.Ais
equivalent toA1 A ¢2, andProjectreturnsA; A ¢o. Otherwise o is equivalent to
the conjunction oA, and3Z.C, whereA,, C are conjunctions of LMCsZ C Y,
andY \ Z is the subset of variables ¥ that are eliminated byayer2 Project
callsLayer3to computedZ.C. Layer3computesps, a Boolean combination of
LMCs equivalent tadZ.C, andProjectreturnsA; A Ag A 3.

Let x be the variable being eliminated. Line-8 QEL1Layer3generates a
Boolean combination of LMCg, coefficient-matched w.r.k. Line-9 of QE1 Layer3
then callsQEFromBooleanCombinatiom order to eliminatex from ¢,. This
eventually gets reduced to eliminatirgrom a bunch of conjunctions of LMCs.
Eliminating x from each such conjunction of LMCs results in a new recursive
Projectcall. Because of this feedback, the control flow indrtejectis not lin-
ear.

Note that each new recursi¥ojectcall may in turn callQE1 Layer3 How-
ever it can be observed that this mutual recursion betWdehl ayer3andProject
does not result in infinite recursion. To see this, note thaigich of the recursive
Projectcalls, all LMIs involvingx are coefficient-matched w.rx. Hencex will
be certainly eliminated bizayerl, Layer2 or modifiedFMinside these recursive

Projectcalls. This guarantees that the recursion terminates.
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3.6 Experimental Results

We performed experiments to (i) evaluate the performanceediectiveness of
the layers inProjectand (i) compare the performance®@fojectwith alternative
QE techniques. All the experiments were performed on a 1183 IGtel(R) Core

2 Duo machine with 2GB memory running Linux, with a timeoutl&00 sec-
onds. We used the same variable ordering in all experimesitg) BDDs [14].
We performed depth-first traversal of the Boolean formulasfiwhich the BDDs
were created. The variables were ordered in the order theg emcountered
in the depth-first traversal. IRroject inside the layers, when there were multi-
ple variables to eliminate, we used a simple lexicographitable elimination
order. Moreover, insiddéayer3 the variables with constraints in coefficient-
matched form were eliminated before the variables whichired transformation
to Boolean combination. In experiments involving Omega ,wstused Pugh et

al.’s implementation of Omega Test from [68].

Benchmarks: We used a benchmark suite consisting of i88d benchmarks [28]
and 39vhdlbenchmarks. Each of these benchmarks is a Boolean comnirdtio
LMCs with a subset of the variables in their support existdiytquantified.
Thelindd benchmarks reported in [28] are Boolean combinations ofyoctal
constraints over integers, i.e., constraints of the farmx+b-y < k wherex, y are
integer variables is an integer constant, amdb € {—1,1}. We converted these
benchmarks to Boolean combinations of LMCs by assuming thedimteger
as 16 bits. Although these benchmarks had no LMEs explidhlyy contained
LMEs encoded as conjunctions of the fofm—y < k) A -(x—y <k—1). We

converted each such conjunction to an LME y = k as a pre-processing step.
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The total number of variables, the number of variables tolineireated, and the
number of bits to be eliminated in thi@dd benchmarks ranged from 30 to 259,
2310 207, and 368 to 3312 respectively.

Thevhdl benchmarks were obtained in the following manner. We too&ta s
of word-level VHDL designs. Some of these are publicly aaalié designs ob-
tained from [69], and the remaining are proprietary. We\aatithe symbolic
transition relations of these VHDL designs. Tviadl benchmarks were obtained
by quantifying out all the internal variables (i.e. neitlput nor output of the
top-level module) from these symbolic transition relatio&ffectively this gives
abstract transition relations of the designs. The coeffisi®f the variables in
these benchmarks were largely odd. These benchmarks medtaisignificant
number of LMEs (arising from assignment statements in théVkrograms).
The total number of variables, the number of variables tolineieated, and the
number of bits to be eliminated in tiidl benchmarks ranged from 8 to 50, 2 to
21, and 10 to 672 respectively.

Evaluation of Project: We performed QE from the benchmarks using the al-
gorithms in Chapter|4, and analyzed fmject calls that were generated during
this process. Recall thatayer3involves transforming a conjunction of LMCs
to a Boolean combination of LMCs and QE from this Boolean comimnaThis
results in new (recursivérojectcalls. Hence two kinds d®rojectcalls were gen-
erated while performing QE from the benchmarks: (i) theaffiriginal Project
calls, and the (ii) aforementioned recurskmjectcalls. In the subsequent discus-
sion, whenever we mentiorPfojectcalls”, it refers to the initial/originaProject
calls, unless stated otherwise.

The total number oProject calls generated from théendd and vhdl bench-
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Table 3.1: Details oProjectcalls (figures are pdProjectcall)
Contr Time
Ll‘LZ‘LS Ll‘LZ‘LS‘Pr

Type | Vars | Qnt LMIs LMEs LMDs

lindd | 39.9 | 38.1 | (88,0,18.9)| (60,0,10.1)| (35,0,8.1)| 51 | 44 | 5 | 3 | 5 | 13149 | 674
vhdl | 86 | 72 | (4,0,03) | (16,0,5.8) | (31,0,20)| 95 | 45| 05| 2 | 6 | 161 | 3

Vars : Average number of variable@nt : Average number of quantifiersMIs : (Maximum, minimum, average)

number of LMIs,LMEs : (Maximum, minimum, average) number of LMHSVIDs : (Maximum, minimum, average)
number of LMDs,Contr : Average contribution of a layek,1 : Layerl, L2 : Layer2 L3 : Layer3 Pr : Project Time :
Average time spent per quantifier eliminated in milliseconds

marks were 52836 and 8027 respectively. Statistics of theBeoject calls are
shown in Table 3.1. The contribution of a layer is measurethagatio of the
number of quantifiers eliminated by the layer to the numbeguantifiers to be
eliminated in theProject call multiplied by 100. The time spent per quantifier
eliminated for a layer is measured as the ratio of the timeatspside the layer to
the number of quantifiers eliminated by the layer. The cbatrons of the layers
and the times taken by the layers per quantifier eliminateéhflividual Project
calls fromlindd benchmarks are shown in Fig. 3.2, Fig. 3.3 and|Fig. 3.6, avskth
for individual Projectcalls fromvhdl benchmarks are shown in Fig. 3.4, Fig.3.5
and Fig. 3.7. Thérojectcalls here are sorted in increasing order of contribution
from Layerl

LayerlandLayer2were cheap and eliminated a large fraction of quantifiers
in bothlindd andvhdlbenchmarks. This underlines the importance of our layered
framework. The relatively large contribution bayerlin the Project calls from
vhdl benchmarks was due to significant number of LMES in thesel@noln-
stancesLayer3was found to be the most expensive layer. Most of the timetspen
in Layer3was consumed in the recursii?eojectcalls. NoLayer3call in our ex-

periments required model enumeration. The large gap inittte per quantifier
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Figure 3.3: Contribution ofayer3for lindd benchmarks

in Layer2and that inLayer3for both sets of benchmarks points to the need for
developing additional cheap layers betwéayer2andLayer3as part of future
work.

Comparison of Project with alternative QE techniques: We compared the
performance oProjectwith QE based on linear integer arithmetic using Omega
Test, and also with QE based on bit-blasting. We implemetitedollowing al-
gorithms for this purpose: (ilayerlBlast this procedure first quantifies out
the variables usingiayerl (recall thatLayerlis a simple extension of the work
in [79]), and then uses bit-blasting and BDD based bit-leViEl [@4] for the re-
maining variables. (iil.ayerl OT, Layer2 OT: Layer1 OT first quantifies out the
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variables using.ayerl, and then uses conversion to linear integer arithmetic and
Omega Test for the remaining variabldsayer2 OT first quantifies out the vari-
ables usind.ayerlfollowed byLayer2 and then uses conversion to linear integer
arithmetic and Omega Test for the remaining variablesyer2 OT helps us to
compare the performance bayer3with that of Omega Test.

We collected 100 instances of QE problem for conjunctionEMCs aris-
ing from the algorithmQE_SMT (see Section 4.2) when QE is performed on the
benchmarks. We performed QE from these conjunction-lerablpm instances
usingProject LayerlBlast Layerl OT, andLayer2 OT. Fig./3.8(a) and 3.8(b)
compare the QE times taken Pyojectagainst those taken hyayerl Blastand
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Layerl1 OT for each of these conjunction-level problem instances.

Project could successfully eliminate quantifiers in all of the 106tamces.
LayerlBlastwas unsuccessful inin 68 cases &agerl OT were unsuccessful in
65 cases. These cases are indicated by the topmost poings 818{a) and 3.8(b)
respectively. In most cases whdrayerlBlastandLayerl OT were successful,
the times taken by all the three algorithms were comparabdeever there were

a few cases wherkayerlBlast and Layerl OT performed better thaRroject
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We found that these cases involvedyer3 and most of the time consumed by
Projectwas spent insideayer3

We compared the times consumedLlayer3in Projectwith those consumed
by Omega Test inayer2 OT (see Figl 3.9). There were 51 problem instances
which required_ayer3 Omega Test timed out in 37 of them. In 13 of the remain-
ing 14 cases, Omega Test performed better theyer3 Our analysis revealed
that these cases were simpler in terms of number of LMCs andeuof vari-
ables to be eliminated. Howevkayer3incurred several recursiveroject calls

in these cases.
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Figure 3.8: Plots comparing (d®roject and LayerlBlast and (b)Project and

Layer1 OT (All times are in milliseconds)

Comparison of Layer2 with alternative techniques: Recall that giverix. (CA

D Al), whereC is a conjunction of LMCsD is a conjunction of LMDs andlis a
conjunction of LMIs,Layer2checks ifax. (C) = 3x. (CADAI) holds.Layer2per-
forms this check by computing an efficiently computable urajgproximation of
the number of ways in which an arbitrary solutiorGéan be engineered to satisfy

CADAI. We compared the performancelafyer2with a BDD based alternative
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technique to perform this check. We implemented a proceBdaBasedLayer2
for this purposeBddBasedLayer2omputes BDDs fosix. (C) and3x. (CADAI),

and then checks if these BDDs are the safx(C) = 3x. (CAD Al) holds iff the
BDDs for 3x. (C) and3x. (CAD Al) are the same. We then implemented proce-
dureProjectWithBddBasedLaye#hich is a variant oProjectthat use88ddBas-
edLayer2in place ofLayer2

le+06 |
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BDDBasedLayer2 Time

» >

1 100 10000 1e+06
Layer2 Time

Figure 3.10: Plot comparingayer2andBddBasedLayer?All times are in mil-

liseconds)

We performed QE from the 100 conjunction-level problemanses using
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ProjectWithBddBasedLayerZor each problem instance, we then compared the
time consumed by ayer2in Project with that consumed byddBasedLayer2
in ProjectWithBddBasedLayel@ee Fig. 3.10).Layer2 outperformed the BDD

based alternative technique in all the 100 problem instance

3.7 Conclusions

The need for efficient techniques for bit-precise QE canmoberemphasized.
In this chapter, we presented such a bit-precise and padlgtefficient QE algo-
rithm for conjunctions of LMCs. Our experiments demonsttateat our modu-
lar arithmetic based algorithm for QE outperforms linedeger arithmetic and
bit-blasting based QE techniques. Moreover, our algorikeeps the quantifier
eliminated formula in modular arithmetic, which allows ther modular arith-
metic level reasoning on the quantifier eliminated formiti#s interesting to see
how we can extend this algorithm to eliminate quantifiersfiarbitrary Boolean
combinations of LMCs. Next chapter presents results of orgstigations in this

direction.



Chapter 4

Extending Quantifier Elimination to

Boolean Combinations

In Chapter 3, we presented a QE algoritfmoject for conjunctions of LMCs
which is bit-precise and efficient in practice. The motiwatbehind the develop-
ment of this algorithm was its applications in formal veation and analysis of
word-level RTL designs and embedded programs. Howeversyh®olic tran-
sition relations of word-level RTL designs and embeddedyms involve ar-
bitrary Boolean combinations of LMCs, not necessarily coajioms of LMCs.
Hence, the QE problem instances that arise in formal vetidicand analysis of
such designs and programs involve QE from arbitrary Booleanbinations of
LMCs. Thus extendindProject to eliminate quantifiers from arbitrary Boolean
combinations of LMCs is an important problem. We addressgtoblem in this
chapter.

As a motivating example, consider the synchronous cir¢wot in Fig. 4.1,

with the relevant part of its functionality described in VHON Fig.[4.2. The

105
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circuit comprises a controller and three 8-bit registér$, andX. The controller
switches between three states, 0, 1, and 2. In state O, thesvalA andB are read
from inputsinA andInB respectively, and are stored in corresponding registers. |
addition, the value oX is initialized to 0, and the control moves to state 1. State
1 implements the iterative algorithm:Xf+ A < B, the value oiX is incremented,
that of A is doubled, and the circuit continues to iterate in stateflhdwever,
X+ A > B, the circuit checks if the value of equalsB-+ 1. If so, the control
moves to state O via state 2. Otherwise, the control movesttiirto state 0 from

state 1.

clock=— STATE MACHINE

Figure 4.1: An example circuit

The symbolic transition relatiom, for this circuit can be obtained by conjoin-

ing the following equality relations, where primed variedbrefer to values of the
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if (clock’event and clock = "1") then
case state is
when "00" => A <= I nA
B <=1nB X <=x"00"; state <= "01";
when "01" => if (X + A <= B) then
X<=X+'1; A<=x"02"*A
elsif (X =B+ 1) then state <= "10";
el se state <= "00"; end if;

> state <= "00";

when ot hers
end case;

end if;

Figure 4.2: VHDL program for example circuit

corresponding unprimed variables after the next risingeaafdhe clock.

state’ = ite(state =0,1,ite(state = 1,ite(X+A < B,1,ite(X=B+1,2,0)),0))
A" = ite(state =0,InA,ite(state = 1,ite(X+A < B,2-A A),A))
B’ = ite(state=0,InB,B)
X' = ite(state = 0,0x00, ite(state = 1,ite(X + A < B, X+ 1,X), X))

In the above equalitieg,, A’, B, B, InA, InB, X, andX’ refer to bit-vectors of width
8, whereastate andstate’ refer to bit-vectors of width 2. Furthermore, all op-
erations and comparisons involvidgA’, B, B’, InA,InB, X, and X’ are unsigned

operations modulo® and those involvingtate andstate’ are unsigned opera-
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tions modulo 2. Sincea = ite(b,c,d) representgb A (a=c))V (-bA (a=d)),
the transition relatiofR above is a Boolean combination of LMCs.

The above circuit computes the smallest 8-bit non-negattegerX such that
2X.InA +X > InB, where all the operations are moduf 2f the smallest value
of X thus computed i¢B + 1, the control enters state 2; otherwise it returns to
state 0. For example, suppdsd = 1 andInB = 150. Inside state 1, the value of
A overflows to zero after 8 iterations and remains as zerodlfftere The value of
X is incremented in each iteration until it becomes 151. Nost ¥+ A < B is
false andX = B + 1 is true, the control moves to state 2. Observe that 151 is the
smallest 8-bit non-negative integérsuch that 2 - 1+ X > 150 modulo 8.

This circuit has the property that if it starts in state O nthiee value ofA is
always less than 25X when it visits state 2. The value 8fmay exceed 255
and even overflow during the modul® @wltiplications in state 1. However, when
it reaches state 2 is less than 255X. To see why this isrue, observe that in
state 2, bottK+ A > B andX = B+ 1 aretrue; henceX + A > X+ 255 istrue,
where 255 is the additive inverse of 1 in modufd Note that sinceA < 255,
X+ A > X+ 255 impliesX # 0. Moreover, sincé < 255, if the operatiotX + A
overflows, thelX + A < X+ 255 holds forX # 0. But we haveX + A > X 4 255.
Hence the operatioX+ A should not overflow. This implies thatis less than the
additive inverse oK modulo 2. Since 255X is the additive inverse of modulo
28, we haveA < 255.X.

Suppose we wish to verify this property for the fikstime steps of operation
of the circuit using bounded model checking. This involvesolling the tran-
sition relationN times, conjoining the unrolled relation with the negatidrthe

property, and feeding the resulting formula to an SMT so|¢6t. Observe thaR
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contains primed and unprimed versions of all variables endihcuit. Hence, un-
rolling R a large number of times can give a formula with a very large lmemof
variables. While the number of variables in an SMT formuladsthe sole deter-
minant of performance of SMT solving, formulas with largemhers of variables
typically lead to performance bottlenecks in SMT solving.

A common approach to circumventing this problem is to usetatract tran-
sition relationR’ that relates values of only a chosen subset of variablegart &
the property being checked, while abstracting the reldietveen the other vari-
ables. In general, the set of states reached WRingerapproximates the exact set
of reachable states. ThereforeNfstep bounded model checking usiRgfails
to give a counterexample, then the property holdblisteps of operation of the
circuit.

In our example, an abstract transition relati®man be obtained by computing

JB3B'3InB. R. An equivalent quantifier-free version Bf is given below.
((state = 0) A (state’ = 1) A (A" = InA) A (X' = 0x00)) V

((state=1) A(state’ = 1) A (A" =2-A)A(X' =X+1)) V

((state =1) A(state' =2) A (A" = A)A(X' = X) A (X+A > X+255)) V
((state=1)A(state’ =0)A(A'=A)AX' =X)Ad) V
((state # 0) A (state # 1) A (state’ = 0) A (A" = A) A (X' = X))

whereg is the disjunction of the formulgX + A # 0) A (X # 1) and(X+ A # 0) A
(X#0)A (X <X+ A+255).

It can indeed be verified that bounded model checking uBin@nstead of
R) suffices to show that if the circuit starts in state 0, theugadf A is always
less than 255X (mod 256 when it visits state 2. Sinc® does not contairB,

B’ or InB, the number of variables iN unrollings of R is less than that ilN
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unrollings of R. This often leads to better performance of SMT solving duyrin
bounded model checking usirig than during bounded model checking using
R. In practice, this can translate to a problem being solvatiiwigiven time
constraints, as opposed to timing out. Since transiticaticeis of word-level RTL
designs involve Boolean combinations of LM@siilding an abstract transition
relation requires existentially quantifying variable®in Boolean combinations
of LMCs

The above example illustrates the potential advantagesiofjian abstract
transition relation obtained by existentially quantifyia subset of variables from
the original transition relation. However, the effectiess of this approach de-
pends crucially on the choice of variables to quantify, am d@kailability of effi-
cient techniques to obtain a quantifier-free version of th&ract transition rela-
tion, and on the amenability of the obtained abstract ttemsielation to efficient
reasoning.

Let ¢ be a Boolean combination of LMCs over a set of variable$Ve wish
to compute a Boolean combination of LM@squivalent tadX. ¢, whereX C V.
As we saw in Chapter 2, the problem of extending a QE algorithmténjunc-
tions of constraints to Boolean combinations of constrag#sicountered in other
first order theories such as linear real arithmetic and figager arithmetic as
well. The techniques to solve this problem for these theagsentially transform
the input Boolean combination of constraints to DNF and thgplyethe QE algo-
rithm for conjunctions of constraints on each conjunctimfome) in the DNF.
Section 2.4 gives a detailed survey of these techniques.ngrtiese, the work by
Chaki et. al. in [28] makes use of decision diagrams to reptédeolean combi-

nations of octagonal constraints, and proposes efficienteQEniques that work
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on decision diagrams. The work by Monniaux in [29] proposeSKIT solving
based approach for extending Fourier-Motzkin to arbitBoglean combinations
of constraints in linear real arithmetic. Our work in thisagter is motivated by
the ideas introduced in these works.

Contributions: We present approaches to extdtrdjectto eliminate quanti-
fiers from Boolean combinations of LMCs. We introduce a newslenidiagram
called Linear Modular Decision Diagram (LMDD) that repretseBoolean com-
binations of LMCs, and present algorithms for QE from LMDDse Wen present
an SMT solving based approach and a hybrid approach thatttrieombine the
strengths of the LMDD and SMT solving based approaches. firpats demon-
strate the effectiveness of our technigques and indicatehtied MDD and SMT
solving based approaches are incomparable, whereas thd bpproach inherits
the strengths of both LMDD and SMT solving based approachdse experi-
ments also demonstrate the utility of these techniquesumdbed model checking

of word-level RTL designs.

4.1 Linear Modular Decision Diagrams

A Linear Modular Decision Diagram (LMDD) is a data structwieich represents
Boolean combinations of LMCs. They are BDDs[51] with nodes ledbevith
LMEs or LMIs.

Formally an LMDD is a Directed Acyclic Graph (DAG) where theriex set
contains two terminal nodes 0 and 1 with out-degree zero apti@t non-terminal
nodes with out-degree two. Each non-terminal noaelabeled with an LME or

LMI denoted ad>(u). The children of a non-terminal nodeare denoted biA (u)
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andL(u), and the node is denoted by the triglé(u),H(u),L(u)). The child
H(u) is called high child and the chilt(u) is called low child. The edge set
contains edge@&u, H(u)) and(u,L(u)) for every non-terminal node. An LMDD
with root nodeu represents a formula(u) defined ad=(0) = false, F(1) = true,
F(u) =ite(P(u),F(H(u)),F(L(u))), whereite(a, B,y) denotega AB) V (- AY).
To simplify the notation, we will not distinguish betweendsu and the formula
F (u) represented by it.

Example: Fig.[4.3 shows an LMDD corresponding to the formititdx <y (mod 4),
m=2n+7 (mod 8, m= 3n+5 (mod 8). Note that the thick lines and dot-
ted lines represent the edgasH (u)) and (u,L(u)) respectively for each non-
terminal nodeu.

We define Reduced Ordered LMDDs similar to the way Reduced @dder
BDDs are defined. Lek be an ordering on the LMCs labeling the nodes of an
LMDD f. The LMDD f is ordered w.r.& if for every pair of non-terminal nodes
u, vin f such thaw is a child ofu, we haveP(u) < P(v). An LMDD f is ordered
if there exists some ordering on the LMCs labeling the nodes dfsuch that
f is ordered w.r.t.<. For example, the LMDD in Fig. 4.3 is ordered w.r.t. the
orderx<y (mod 49 <m=2n+7 (mod 8§ <m=3n+5 (mod 8. An LMDD
is reduced iff (i) there are no duplicate nodes and (ii) tle@eeno redundant nodes
(a redundant node is a non-terminal nadsuch thatH (u) = L(u)). The LMDD
in Fig./4.3 is a reduced LMDD. Hereafter we use LMDD to referReduced
Ordered LMDD.

The procedures for performing the basic operations on LMBAD for con-
struction of LMDDs are simple extensions of the correspoggrocedures for
BDDs.
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Figure 4.3: Example of an LMDD

Given LMDDs f andg, the functionApply(op, f, g) constructs an LMDD for
f op g whereop is a binary operation. The implementation/Abply is similar
to the implementation of the corresponding operation on BDD'& case where
eitherf or gis a terminal is straightforward. Consider the case where baind
g are non-terminals. IP(f) andP(g) are the same, thehop gis constructed as
(P(f), H(f) op H(g), L(f) op L(g)). Otherwise ifP(f) < P(g) then,f op gis
constructed asP(f), H(f) op g L(f) op g). Similarly if P(g) < P(f) then,f op
g is constructed afP(g), f op H(g), f op L(g)).

Given LMDDs f andg, the functionsAND andOR construct LMDDs forf A
gandf Vv grespectively. They are implemented usigply. The functionNOT
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that negates an LMDLI is implemented as\pply(c, f, 1), where® denotes
the exclusive-or operation. Given LMDDisandg, and an LMCc, the function
ITE constructs an LMDD foite(c, f,g). The implementation ofTE is similar to
that of Apply. The functioncreateLMDDconstructs an LMDD from a Boolean
combination of LMCs}. Initially the LMDDs for the individual LMCs inp are
constructed. Then LMDD fo¢ is constructed recursively from the LMDDs for

its sub-formulas usinépply.

4.1.1 Quantifier Elimination from LMDDs

The problem we wish to solve in this subsection can be fognsadited as follows.
Given an LMDD f representing a Boolean combination of LMCs over a set of
variablesv, we wish to compute an LMDIg equivalent tadX. f, whereX C V.

The algorithms presented in this subsection use the fatigivelper functions:

i) Vars returns the set of variables in an LMC, getConjunct computes the
conjunction of LMCs in a given set, and iigUnsat determines if the conjunction
of LMCs in a given set is unsatisfiable.

A straightforward algorithm to computX. f is to applyProjectto each path
originating from the root off. We call this algorithmAll_Path. QElim (see Algo-
rithm[3). To computélX. f, we callAll_Path QElimwith argumentd, { } andX.
All_Path. QElim performs a recursive traversal dfcollecting the set of LMC$S
containing any of the variables X that it encountered along the path from the
root of f. If the path leads to a 1-terminal and if the conjunct@of LMCs in S
is theory-consistent, theProjectis called to computelX. Cs.

Example: Consider the problem of computingX. f, wheref is the LMDD in
Fig./4.4 andX = {x}. As all LMCs in this example have modulus 8, we will
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Algorithm 3: All_Path. QElim
Input: LMDD f, Set of LMCsS, Set of variables to eliminafé

Output: LMDD for 3X. (f ACs), whereCs is the conjunction of LMCs irs
1 if f =0orisUnsa(S)then

2 return O;

3 if f =1then Il f is theory-consistent 1-term nal
4 Cs := getConjundfS);

5 .= Project(Cs, X);// 1 = IX.Cq

6 return createLMDIO(m);// 1 = IX.(f ACy)

[l traverse down

7 c:=P(f);
g if Vardc)N X == {}then// cis free of variables to elininate
9 return ITE(c, All_Path QElim(H(f), S, X), All_Path QElim(L(f), S,
L X))
10 else Il c contains variables to elimnate
11 return OR(All_Path-QElim(H(f), SU {c}, X), All_Path QElim(L(f), S
| U{=c}, X));

not specifically write “(mod 8” for brevity. Note that there are two paths fn
leading to 1-terminal with theory-consistent context: (@x+ 2y = 0) — (4x+
m<2) — (2x+m=0) and (ii) (3x+ 2y # 0) — (2x+n = 0). All_Path QElim
reduces3X. f into the disjunction of (i))3x.((3x+2y =0) A (4x+m< 2) A
(2x+m=0)) and (ii) Ix. ((3x+ 2y # 0) A (2x+n = 0)). Project computes
X ((3X+2y=0) A (4X+m<2) A (2x+m=0)) as(m< 2) A (dy+m=0) and
X ((3x+2y#0) A (2x+n=0)) as(4n=0). Thus the final result is LMDD for
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2x+n = 0 mod 8

2x+m = 0 mod 8),

o |-

Figure 4.4: Example LMDD to illustrate QE

Recall thatAll_Path. QElim is similar to the algorithm proposed in Cavada et
al's work in [27] (see Subsection 2.4.2). As observed in [2cause of the
dependence of the result of a recursive call on the coi8ekthe same LMDD
node is encountered following two different paths, then rimults of the calls
are not the same in general. Herflé Path QEIlim is not amenable to dynamic
programming usually employed in the implementation of sieci diagram oper-
ations. The number of recursive calls is linear in the nunab@aths inf, which
can be exponential in the number of nodeg in

In the following discussion we present a more efficient athor QE_LMDD
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to computedX. f. QE_.LMDD makes use of an algorithm call@E1 LMDD that
eliminates a single variabbe from f (see Algorithm 4). To computéx. f, we
call QELLMDD with argumentsf, { } andx. QELLMDD performs a recursive
traversal of the LMDDf collecting the set of LMCs containingx that it en-
countered along the path from

In general QELLMDD (f, S, X) computes an LMDD fosx. (f ACsg,), where
Cs, denotes the conjunction of LMCs . Let Ey be the set of LMEs ir&,. Let
each LMEg in Ey be of the form ¥ . x = t;, wherek; = K(x,g) and 1<i <n
(recall the definition ofk from Section 3.1). Without loss of generality, let
be the smallest amorilgy, ..., k,. Letg be any internal non-terminal node of
represented a¥(g),H(g),L(Q)). Let us denot®(g) by c. It can be observed that
if ¢ hasx in its support, therr can be simplified by replacing the occurrences of
24.xinitbyt;. Letc be the simplified LMC. Note that i (x, ¢) > kq, thenc’ we
get, is free oi. Thus, ifk(x,c) > ki, theng can be simplified tgc’,H(g),L(g)),
wherec is free ofx.

We call the procedure that performs the selection of LME vhia minimum
K among the LMEs irEy asselectLME The ProcedursimplifyLMDD (see Algo-
rithm'5) performs simplification of using the selected LME as described above.
The procedurssimplifyLMCin Algorithm[5 simplifiesc to ¢’ using the selected
LME.

If simplifyLMDDis successful in eliminating all occurrences of variables-
ing the selected LME, thesimplifyLMDD returns a simplified LMDDf’ such
that3x. (f ACs,) is equivalent tof’ A 3x. (Cs ). Note thatdx. (Cs,) can be com-
puted byProject In this caseQE1LMDD returns without any further recursive

calls. If simplifyLMDD is unable to eliminate all occurrences of variaklehen
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Algorithm 4. QELLMDD

Input: LMDD f, Set of LMCsS,, Variable to eliminatex
Output: LMDD for 3x. (f ACs,),
whereCs, is the conjunction of LMCs irg,
1 if f =0orisUnsafS;) then

2 return O;

3 if f =1then /'l theory-consistent 1-termnal
4 Cs, := getConjunatSy);

5 .= Project(Cs,, {x});// 1 = 3IX.Cs,

6 return createLMDOm);// 1 = 3Ix.(f ACs,)

Il sinplification using LMES
7 Ex := set of LMEs inS;;
g if Ex # { } then
9 e, .= selectLMEE,);
10 f/ .= simplifyLMDI(f, e1, X);

11 if fis free of xthen

12 Cs, := getConjunatSy);

13 T:= Projeci(Cs,, {x});// 1 = 3Ix.Cs,

14 return AND(f’, createLMDOM));// f'A1t = 3. (f ACg))
15 else

16 f/=f;

Il traverse down
17 ¢:=P(f');
18 if cis free of xhen
19 | return ITE(c, QELLMDD(H ('), S, X), QELLMDD(L(f'), S, X));

20 else
21 | return ORQELLMDD(H ('), ScU {c}, x), QELLMDD(L(f), S
- U{=ch )
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Algorithm 5: simplifyLMDD

Input: LMDD f, LME ey : 24 .x =ty, Variable to eliminate
Output: LMDD f simplified usinge;

1if f=0o0r f=1then

t return f;

N

w

c:=P(f);

4 if cis free of xhen

5 return ITE(c, simplifyLMDD(H (f), X, 1), simplifyLMDD(L(f), X,
e));

6 else

7 ¢ :=simplifyLMQ(c, ey, xX);/ | if k(x,c) > kg, then ¢ is free
of x

8 return ITE(C/, simplifyLMDD(H (f), x, e1), simplifyLMDD(L( f), X,
e));
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QEL1LMDD proceeds by recursively traversing the simplified LMBD
Example: Let us understand ho@E1LMDD computesix. f, wheref is the
LMDD in Fig. 4.4. QELLMDD callssimplifyLMDDwith argumentd$ (f), (3x+
2y = 0) andx. Note that the LME3x+ 2y = 0) is equivalent tax = 2y) modulo
8. simplifyLMDDeliminates all occurrences ®in H( f) using(x = 2y), and thus
simplifiesH(f) as shown in Fig. 4/5. Leg be the simplified LMDD, which is
free ofx (shown in different colour in Fig. 4.5). Notice thax. (H(f) A (x = 2y))
is equivalent tay A 3x. (X = 2y). Since3dx. (X = 2y) is true, IX. (H(f) A (X = 2y))
is equivalent tay. However,L(f) cannot be simplified in this manner, as there are
no LMEs involvingx in its context. QELLMDD performs traversal df(f), and
calls Projectto computedx. ((3x+ 2y # 0) A (2x+n = 0)). Projectcomputes
X ((3x+2y #0) A (2x+n=0)) as(4n=0). Thus the final result is LMDD for
gV (4n=0).

It can be observed that if the same LMDD node is encounterdutive same
LME following two different paths, then the results of thdls#&o simplifyLMDD
must be the same. HensanplifyLMDD can be implemented with dynamic pro-
gramming. Moreover, although the result of each recursaletc QE1LLMDD
depends on the conteSt, the number of LMCs 1%, is usually very small, as only
the LMCs containing are collected ir5,. HenceQE1LMDD is still amenable
to dynamic programming.

QE1LMDD can be repeatedly invoked to compwtX. f. This is imple-
mented in the algorithn@QE LMDD. The order in which variables are selected
for elimination inQE_LMDD has a crucial impact on the sizes of the intermediate
and final LMDDs. In our ordering scheme, we selected the kiaccurring

in the least number of LMDD nodes as the next variable to bmieéted. Intu-
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LMDD g free of x by
simplification using
(x=2y)

3x+2y =0 mod 8
ms<2modS8 \
2x+n = 0mod 8

O |@mmmeeeaaaa

Figure 4.5: Example fosimplifyLMDD

itively, this ordering scheme usually results in smallemteats (i.e., smalleg,’s),
and more opportunities for dynamic programming.

In practice, the strategy of eliminating one variable atnaetiand simplifica-
tion of LMDDs using the LMESs in the context provide signifitapportunities for
reuse of results through dynamic programming. As a resuhede QE LMDD
in practice clearly outperformall_Path QEIlim, as also demonstrated by our ex-

periments.
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4.2 QE using SMT Solving

In recent years there has been significant progress in SMErsolor bit-vector
arithmetic. In this section we present an approach for Q& fBoolean combi-
nations of LMCs that leverages progress in SMT solvers fevédtor arithmetic.
Given a Boolean combination of LMOjs over a set of variableg, we wish to
compute a Boolean combination of LM@sequivalent tadX. ¢, whereX C V.

We initially present an algorithiAll_ SMT (see Algorithm 6) to computeX. ¢,
which is a straightforward extension of the All-SMT loop givin Section 2.4.
Initially the satisfiability of¢ is checked using an SMT solver. ¢fis unsatisfi-
able, therdX. ¢ is false. Otherwise, the solutiomy of ¢ obtained from the solver
is generalized to a conjunction of LM@ such thalC; = ¢. The SMT solver
is now called to check i A —C; is satisfiable. Ifp A —C; is unsatisfiable, then
IX. ¢ is equivalent tadX.C;. Otherwise, the solutiomp of ¢ A —C; obtained is
generalized to a conjunction of LM@3 such thaCy = ¢. This loop is repeated
until the formula given to the SMT solver becomes unsatitdiaBach iteration
of the loop generates a conjunction of LMCssuch thaCi = ¢, for 1 <i <n.
Finally 3X.¢ is equivalent tadX.C; Vv --- vV IX.C,. Projectis used to compute
IX.G, for1<i<n.

GeneralizeXsee Algorithm 7) uses the method suggested in [29] for géner
izing a solutionrm of ¢ to a conjunction of LMC£ such thaC = ¢. Generalizel
computesC as follows. FirstC is initialized totrue. Each LMCc in ¢ is then
evaluated with values given to variables in its support asypdf c evaluates to
true underm, i.e.,m = ¢, thenc is conjoined withC. Otherwise, ifc evaluates to
false underm, i.e.,m = —c, then—c is conjoined withC. It is easy to see that the

conjunctionC returned implies.
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Algorithm 6: All_SMT

Input: Boolean combination of LMC¢, Set of variables to eliminaté
Output: Boolean combination of LMCg equivalent tadX. ¢

1 H:=4¢;

2 = false;

3 while H is satisfiabledo

4 m:= a solution oH;// mE=H and mE ¢

5 C .= Generalizely, m);// C=¢

6 1:= Project(C, X);// m = 3X.C

7 Y:=yVvTr

8 H:=HA-C,

return g;// @ = IX. ¢

©

Algorithm 7: Generalizel

Input : Boolean combination of LMCé, A solutionm of ¢
Output: A conjunctionC of LMCs such thaC = ¢

1 S:=set of LMCs in¢;

2 C:=true;

3 for ce Sdo

4 if m}=cthen

5 LCZ:C/\C;

6 else

7 LC::CAﬂc;

8 return C;
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Let us understand the working 8fl_SMT with an example. We will use this
as a running example throughout this section.
Example: Consider the problem of computiatX. ¢, whereg is (y = 4x) A((X #
z) V (x# w)) with modulus of all LMCs as 8, and = {x}. Letmy : x=1,y =4,
z= 0, w= 0 be the solution o) from the SMT solver. Note thabeneralizel
generalizesn to the conjunctiorCy : (y = 4x) A (X# z) A (X # w), andProject
computesix.C; asty : (2y = 0). As$ A —C; is satisfiable, the next iteration of
the loop starts. Letp : x=1,y=4,z=1,w =0 be the solution o A —-C; from
the SMT solver. The conjunctid@, from Generalizelobtained by generalizing
mp is (y=4x) A(Xx=2) A (X# W), andrp = 3x.Cyis (y=4z) A (z# w). Note that
¢ N —C1 A =Cy is satisfiable, and the third iteration starts. Let solutigrof ¢ A
—-C1 A Cobex=1,y=4,z=0,w= 1. The conjunctiorCz from Generalizel
is (y=4x) A(X#2) A (x=w), andti = 3IX.Cz is (y =4w) A (z# w). The loop
now terminates a¢ A -C; A =Cp A —Cgz is unsatisfiable. The result of QE g
VB VTR, i.e,(2y=0)V ((y=42) A (z#W)) V ((y=4wW) A (Z#W)).

As mentioned in Section 2.4, the work by Monniaux in [29] ioyes the
All-SMT loop in the following ways.

1. Instead of-C, -39X.C is conjoined with the formul&, checked for satisfi-
ability. This is called “interleaving projection and mo@sglumeration”. Itis
observed that this enables pruning the solution space qirtiidem, which

results in early termination of the algorithm.

2. Before computingiX.C, C is generalized by dropping unnecessary con-
straints that do not affect the validity 6= ¢. GeneralizingC by drop-
ping unnecessary constraints simplifi@sand reduces the time to compute

3X.C. Moreover, it results in generalizetX.C, which increases the size of
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solution space pruned by conjoinirgX.C with H.

Algorithm 8: QE_.SMT
Input: Boolean combination of LMCé, Set of variables to eliminaé

Output: Boolean combination of LMCg equivalent tadX. ¢
H:=¢;
2 = false;

[EnY

3 while H is satisfiabledo

4 m:= a solution ofH;// mE=H and mE=¢

5 C:= Generalizelp, m);// C=1¢

6 C' .= Generalize?),C);// C=C' and C'=¢
7 m:= Projec{(C’, X);// = 3IX.C

8 Y:=yVTr

9 H:=HA -

10 return g;// @ = IX.P

Our algorithmQE_SMT (see Algorithm 8) makes use of these optimizations
to computedX.¢$. The algorithmQE_SMT calls the procedur&eneralizeZor
generalizingC by dropping unnecessary constraints frémrhusC’ computed by
Generalizeds such thaC = C' andC’ = ¢. The implementation oBeneralize2
in [29] works as follows. For each constramin C, it is checked to see € = ¢
remains valid even after droppirgfrom C. If C = ¢ remains valid even after
droppingc from C, thenc is unnecessary and is dropped fr@n Otherwise if
the implicationC = ¢ becomes invalid after droppingfrom C, thenc is not
dropped fromC. Checking the validity ofC = ¢ involves an SMT solver call.

However, in our experiments with LMCs, we have found thatitiiglementation
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of Generalize2is prohibitively time consuming as the number of SMT solver
calls is equal to the number of constraintsdn Hence our implementation of
Generalize2nakes use of a cheaper technique to achieve generalization.
Our technique is based on analysis of the Boolean skeletoheofarmula
¢. Boolean skeleto® of ¢ is the representation of Boolean structurepods a
Directed Acyclic Graph (DAG), with leaves representing LM@g and internal
nodes as-, A, andV. As every LMC in¢ appears irC in its original or negated
form, C effectively gives an assignment of Boolean values to thesleavP. We
now perform a bottom-up traversal Bfto evaluate® using the values assigned to
the leaves. LeB(n) be the value assigned to a nada P during the evaluation.
For each node, we find a subse$(n) of LMCs in C that are sufficient to evaluate
n to B(n). Table 4.1 shows how(n) and S(n) are computed for the different
nodes inP under different conditions. Lek(r) be the set of LMCs found in this
way for the rootr of P. C' is computed as the conjunction of LMCs$(r). It is
easy to see th& = C' andC’ = ¢.
Example: In our example, wheré is (y = 4x) A((X# z) V (X# w)), consider the
case wherC is (y = 4x) A(x=12) A (X# w). The Boolean skeletoR of ¢ is ny
A (N2 V ng), whereng, ny, Nz denote(y = 4x), (X # z), (X # w) respectively. Note
that B(ny) = true, B(np) = false, andB(ng) = true. Also S(n1) = {n1}, S(ny)
= {-ny}, andS(n3) = {n3}. Letny be the noddny Vv n3). SinceB(ny) = false,
B(ng) = true, andng is (n2 VV n3), we haveB(ns) = true. Note thatB(nz) = true is
sufficient to makd(ns) = true. HenceS(ns) = S(n3) = {n3} as per Table 4.1. Let
r be the root node d?, i.e., the nodeny A ng. SinceB(ng) = true, B(ng) = true,
we haveB(r) = true. Sincer isny A na, bothB(n1) andB(n4) should betrue for

B(r) to betrue. Hence we hav&(r) = S(n1) US(ns) = {ny,n3}. ThereforeC' is
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Table 4.1: Computation d(n) andS(n) insideGeneralize2

noden Condition B(n) S(n)
c appears i true c
MG ¢ pp | {c}
—C appears irc false {—c}
B(ny) =true false S(n)
—Nq
B(n;) = false true S(n)
B(n1) =true A B(np) =true | true S(n1) US(ny)
B(n1) =true A B(ny) = false | false S(ny)
N1 Ang
B(ny) = falsen B(ny) =true | false S(ny)
B(ny) = falsen B(np) = false | false| smaller among(n;) andS(ny)
B(ny) =true A B(np) =true | true | smaller among(ni) andS(ny)
B(n1) =true A B(np) = false | true S(n)
n1Vvny
B(n1) = falseA B(np) =true | true S(ny)
B(ny) = falseA B(ny) = false | false S(n1) US(ng)
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NEANg, i.e., (Yy=4x) A (X# W).

Let us understand the working QFE_.SMT on this example. Lein: x =1,
y=4,z=1,w= 0 be the solution o from the SMT solver in the first iteration.
Note thatGeneralizelgeneralizesn to the conjunctiorC: (y=4x) A (Xx=2) A
(x # w). As we just sawGeneralizeyeneralize€ to C': (y =4x) A (X # w).
Projectcomputesix.C’ astt: (2y = 0). Note thath A —Ttis unsatisfiable, and the
algorithm terminates. The result of QErisi.e., (2y = 0).

Note that the optimizations IQE_SMT helped us in early termination of the
loop in this exampleAll_SMThad taken 3 iterations, where@& SMTfinished in
just 1 iteration. In practice, these optimizations provéignificant improvement

in performance, as we will see in Section 4.4.

4.3 Hybrid Approach

The factors that contribute to the success of the LMDD-bag®atoach are the
presence of large shared sub-LMDDs and the strategy of reditinig one vari-
able at a time. Both factors contribute to significant oppatiess for reuse of
results through dynamic programming. The success of the-BA8€d approach
is attributable primarily to pruning of the solution spachiaved by interleaving
of projection and model enumeration. In the following dission, we present a
hybrid approach that tries to combine the strengths of ttvese@pproaches.

We illustrate the idea with the help of an example.
Example: Consider the working oQE LMDD on the example of computing
3IX. ¢, whered is (y = 4x) A((X# 2) V (X # w)) with modulus of all LMCs as 8,
andX = {x}. Fig. 4.6 shows LMDD fop with order(y = 4x) < (x=2) < (Xx=Ww).
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The LMDD nodes are denoted ds, fp, f3, f4, and fs. Recall thatQE_LMDD

Figure 4.6: Example for hybrid approach

callsQELLMDD with argumentsfy, { } andx to computedx.¢. QELLMDD(
f1, {}, x) makes recursive cal@E1LMDD( fp, {y = 4x}, x ) andQELLMDD(
f5, {y # 4x}, x ). QELLMDD( f,, {y = 4x}, x ) makes further recursive calls
QELLMDD( fg, {y=4x, x# z},x) andQELLMDD( f3, {y=4x, x=1z}, X).
QELLMDD( fa, {y=4x, x# z}, X ) callsProjectto computedx. ((y = 4x) A
(X#£2)), and returns LMDD for2y = 0). QELLMDD( f3, {y=4x, x= 2}, X)
returns LMDD for(y = 4z) A ite( z=w, 0, 1), andQEL1LMDD( fs, {y # 4x}, X
) returns 0. Thus the result of QE is LMDD f¢2y = 0) V ((y = 4z) A ite(z=w,
0, 1)). Note that effectivelyQE1 LMDD splits 3x. ¢ into three sub-problems: (i)
X (fa A (y=4X) A (X#2)), (i) IX. (f3 A (y=4X) A (x=2)), and (iii) IX. (f5 A
(y# 4x)). The result of QE is the disjunction of the results of thedestoblems.
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Note that3x. ¢ is actually equivalent tg2y = 0), the result of the first sub-
problem3x. (f4 A (y=4x) A (X# z)). Hence we could have avoided the compu-
tation of the sub-problemsx. (fz3 A (y=4x) A (x=2)) and3x.(fs A (y # 4X)).
We call such sub-problems whose computation can be avoislécedundant”
sub-problems. We can infer that the sub-probleg f3 A (y = 4X) A (x=2))
and3x. (fs A (y # 4x)) are redundant, from the fact thif A (y = 4x) A (x=2)

A (2y #0) and fs A (Y # 4X) A (2y # 0) are unsatisfiable.

In general, suppose we wish to comptdié. f, wheref denotes an LMDD
representing a Boolean combination of LMCs over a set of veasdbandX C V.
We can derive a set of sub-problems of the fai¥ (fi AC;), for 1 <i <n, where
fi denotes an LMDD an@; denotes a conjunction of LMCs, such th&X. f is
equivalent to\/[; (3X.(fiAC;)). Letg denote\/", (IX.(fiAC;)), where 1<
m < n. A sub-problemdX. (f; ACj), wherem+-1 < j <n, is redundant iff; AC;

A —gis unsatisfiable.

Our hybrid algorithmQE_Combinedsee Algorithm 9) makes use of this idea
to identify redundant sub-problems. InitialyE_ Combinedselects a satisfiable
pathttin the LMDD f using a functiorselectPath Subsequently, the algorithm
simplify(see Algorithm 10) is invoked, which traverses the gatim order to split
f into an equivalent disjunctioq(, (fi AC;), wheref; denotes an LMDD ang@;
denotes a conjunction of LMC$f; AG) is represented in Algorithm 10 as a pair
(fi, Gi).

In order to split LMDD f, simplifyis called with arguments, 1, C all initial-
ized totrue, andSinitialized to{ }. simplifycollects(f; AG;), for 1 <i < nin the
setSin the following way. The pathtis traversed recursively starting from the

root node off, conjoining withC all LMCs encountered ort. In each recursive
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Algorithm 9: QE_.Combined
Input: LMDD f, Set of variables to eliminaté

Output: Boolean combination of LMCg equivalent todX. f
1 T:= selectPatff);

2 S:={};/l set of sub-problens

3 C:=true;
4 simplif(f, I, C, S);
5 g:= false;

for each(f;,C;) € Sdo
if fi ACi A —g is satisfiablehen
h:= QE_.LMDD _Contextf;, C;, X);

]

~

[oe]

g:=gVh

©

10 return g;

call, if f isaterminal, therif, C) is inserted ir5. Otherwise iff is a non-terminal
and nodeH () appears it then(L(f), CA—P(f)) is inserted inS. Similarly if
f is a non-terminal and nodg f) appears i, then(H(f), CAP(f)) is inserted
in S. Fig./4.7 illustrates the splitting scheme followedsisnplify.
Example (Continued): In the case of LMDD in Fig. 4.6, using the path= 4x)
— (X# z) — 1 asTtsplits the LMDD into (i) (fa, (y = 4x) A (X # 2)), (i) (fs,
(y=4x) A (x=2)), and (iii) (fs, (y # 4)).

The functionselectPatlselects the patitin the following way. First, a solu-
tion mof f is generated using an SMT solver call. The root nodé sfselected
as the first node im. The LMCP(f) labeling the root node of is then evaluated

with values given to variables in its support as perlf P(f) evaluates tarue
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Algorithm 10: Simplify
Input: LMDD f, Satisfiable patim,

ConjunctionC of LMCs encountered along
Output: Set of sub-problemS
1 if f =1then
2 S:=SuU{(f,C) };

3 else

4 if node H f) is in Ttthen

5 S:=SU{ (L(f),CA=P(f)) };
6 - simplify(H(f), T CAP(f));

7 else

g S:=SU{ (H(f),CAP(f)) };
9 - simplify(L(f), TL CA-P());

underm, thenH (f) is selected as the next noderinOtherwise ifP(f) evaluates
to false underm, thenL(f) is selected as the next nodetn The LMC label-
ing the child of f thus selected as the next noderiis then evaluated unden.
These steps are iteratively repeated until 1-terminal é®entered, each iteration
adding a new node to. Note that encountering 1-terminal is guaranteed since
is a solution off.

QE_Combinednow computeg = 3X. f asV/{L; (3X. (fi ACi)) in the follow-
ing manner. In order to computX. (fi A Cj), QE.Combinedmakes use of an
algorithm QE_LMDD Context QE_LMDD_Contextis a variant of QE.LMDD

that eliminates a set of variables from an LMDD conjoinedhwétset of LMCs.
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Figure 4.7: Derivingf; A C; from pathtt
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QE_Combinednitially setsg to false. In the first iteration of the loop, the satisfi-
ability of f1 ACy is checked. Iff; ACy is satisfiable, thegis set todX. (f1 ACy).
Otherwise iffy AC; is unsatisfiable, then the sub-probléiX. (f1 ACy) is redun-
dant and is not computed. In the second iteration, the sHiibfy of f, ACy A —g

is checked. Iff, ACy A —g is satisfiable, thedX. (fo ACp) is computed and is
disjoined withg. Otherwise iff, ACy A —g is unsatisfiable, theBX. (f, ACy) is
not computed. This loop is repeated until all the sub-pnoislare considered. It
can be observed thatis equivalent td\/ij:1 (3X.(fj ACj)) after theit! iteration
of the loop, which implies thag is equivalent toy/]_; (3X. (f; ACj)) when the
loop is terminated.

Example (Continued): In our example, in the first iteration of the loop, the sat-

isfiability of f4 A (y=4x) A (X# z) is checked. Sincds A (y=4x) A (X # 2)
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is satisfiableg is set to(2y = 0), the result ofax. (f4 A (y=4x) A (X# 2)). In
the second iteration, the satisfiability & A (y=4x) A (x=2) A (2y #0) is
checked. Sincdz A (y=4x) A (Xx=12) A (2y # 0) is unsatisfiableax. (fz A
(y=4x) A (x=2)) is not computed. Similarly, in the third iteration of the o
the satisfiability offs A (y # 4x) A (2y # 0) is checked. Note thafls A (y # 4x)

A (2y # 0) is unsatisfiable. Hencex. (fs A (y # 4x)) is also not computed. The
final result of QE ig2y = 0).

Note that unlikeQE_.SMT, QE_Combineddoes not explicitly interleave pro-
jections inside model enumeration. However disjoiningrémult of 3X. (fi AG)
with g, and computingdX. (fi AC;) only if fi ACi A —g is satisfiable, helps in
avoiding the computation of redundant sub-problems. Théabks pruning the

solution space of the problem, as achieve@mB SMT.

4.4 Experimental Results

We performed experimental evaluation of our QE techniquethiee different
ways. First we performed experiments to evaluate the paedoce and effective-
ness ofQE_LMDD, QE_SMT, andQE_Combined We then compared the perfor-
mance ofQE_SMT with alternative QE techniques based on bit-blasting amd co
version to linear integer arithmetic. Finally we perforneegberiments to evaluate
the utility of our QE techniques in verification.

The experiments were performed on a 1.83 GHz Intel(R) Core 2 mdao
chine with 2GB memory running Linux, with a timeout of 180G&srds. We
implemented our own LMDD package for carrying out QE expenis involv-

ing LMDDs. In all our experiments, we used simplifyingSTR2] as the SMT
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solver. We selected simplifyingSTP, because it has a Varialiminator [79]
which is considered as suitable for solving bit-vector falas involving LMEs.
In all experiments using LMDDs, we used the same ordering & labeling
the LMDD nodes. We performed depth-first traversal of the DA&@resentations
of formulas from which the LMDDs were created; LMCs were oegkem the
order they were encountered in the depth-first traversal.

Simplification heuristics: We used the following simplification heuristics in our

implementation.

1. The LMDs with modulus 2 were converted to equivalent LME®r ex-
ample, the LMDx+y # 1 (mod 2 was converted ta+y =0 (mod 2.
We observed that this helps in easy elimination of existdigtquantified

variables involved in LMCs with modulus 2.

2. In a non-terminal LMDD node, if P(u) is an LME, then it is kept in a
normal form ¥.x =t, wherex is the variable appearing first in lexico-
graphical ordering between the names of variables in thpaupf P(u),
andk = k(x, P(u)) (recall the definition ok from Section 3.1). This allows
identification of equivalent LMEs during LMDD creation andrite more

compact LMDDs.

Evaluation of QE_SMT, QE_LMDD, and QE_Combined: We used the same
benchmark suite consisting of 19%&dd benchmarks and 3%hdl benchmarks,
that we used for experiments in Chapter 3. Each of these bearkkns a Boolean
combination of LMCs with a subset of the variables in theirgp existentially
guantified. The details of these benchmarks can be found dtidBe3.6. As

mentioned in Section 3.6, the total number of variablesntimaber of variables
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to be eliminated, and the number of bits to be eliminatededitidd benchmarks
ranged from 30 to 259, 23 to 207, and 368 to 3312 respectiVély.total number

of variables, the number of variables to be eliminated, &ediumber of bits to

be eliminated in th&hdl benchmarks ranged from 8 to 50, 2 to 21, and 10 to 672
respectively.

We measured the time taken QE SMT, QE_LMDD, andQE_Combinedfor
QE from each benchmark. FQE_LMDD and QE_Combined this included the
time to build the initial LMDD. We observed that each appioperformed better
than the others for some benchmarks (see|Fig. 4.8 and Fig. M&e that the
points in Fig. 4.9 are scattered, while the points in Fig(&).&nd 4.8(b) are more
clustered near the 43ine. This shows thaDD and SMT based approaches are
incomparable, whereas the hybrid approach inherits teagtins of bottbD and
SMT based approaches. Hence, given a problem instance, we meauinthe

hybrid approach, unless the approach which will perforneoés known a-priori.
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Figure 4.8: Plots comparing (E_SMT andQE_Combinedand (b)QE_LMDD

andQE_CombinedAll times are in seconds)

In order to evaluate the effectiveness of our simplificationQE_LMDD, we



137

10000
A A A AA
2 1000 | s
= Y S
g 4 a 4 A‘ A ‘AA > &
[a) 100 ¢ :A N :f [ a 4
=] 4 A Aa Aa At a
% 4 4 al%a MéA 4 a
4 44at A AL
I s y 3 A A
8 10 ¢ 4 a Aate, 2
o t 3 N Ve N
4 4
4 N
1 L L L
1 10 100 1000 10000

QE_SMT QE Time
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compared the time taken WYE LMDD with that taken byAll_Path QEIlim for
QE from each benchmark (see Fig. 4.10(&)).Path.QElim succeeded only in a
few cases. This is not surprising, as the LMDDs for the beraokscontained a
huge number of paths. IRE_LMDD, the single variable elimination strategy and
the simplification of LMDDs usingimplifyLMDDhelped in achieving significant
reuse of results through dynamic programming. This helpedoiding path enu-
meration, which resulted in considerable performancegyawerAll_Path QElim.

In order to evaluate the effectiveness of our generalinatchnique based
on analysis of Boolean skeleton of formulaeGeneralize2 we implemented a
variant of QE_.SMT calledQE_SMT_Mod. QE_.SMT_Mod is the same aQE_SMT
except that it uses the implementationGéneralizeas proposed in [29]. Recall
from Subsection 4/2 that the implementation@éneralize2in [29] makes use
of SMT solver calls to identify unnecessary LMCs. We compdhedtime taken
by QE_.SMT andQE_SMT Mod for QE from each benchmark (see Fig. 4.10(b)).
QE_SMT outperformedQE_SMT Mod except in a few cases. On profiling, we
found that most of the time taken Iy SMT Mod was spent in the SMT solver

calls inGeneralize2In the few cases whe@E_SMT Mod performed better than
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Benchmark D | T |V B AQ | QL || AS| QSM | QS
i_choosech.smt 299 | 42 | 33| 528 8 8 ||TO| 50 1
i_cb_print.smt 428 | 61 |48 | 768 || 390 | 6 || TO| 764 | 18
i_gnttextview_clicked.smt 589| 86 | 68| 1088| 414 | 15 | TO| 836 | 11
i_checkfor_ext cb.smt 378| 50 | 39| 624 | 1230| 12 || TO| 188 5
i_connect2Servewith_af.smt 427 | 54 | 43| 688 || TO | 14 | TO| 226 | 6
i_contextmenu.smt 7571102 | 81| 1296\ TO | 37 ||TO| 439 | 5
i_bmeditaction.smt 607 | 83 | 66| 1056| TO | 12 || TO| 361 5
i_SoundBeep.smt 516| 72 | 57| 912 | TO | 18 | TO| 1337 | 23
i_actionmovePage.smt 702|104 |83 |1328|| TO | 24 | TO| 437 | 8
i_add face.smt 531| 73 | 58| 928 | TO | 12 | TO| 104 | 3
i_avi_checkfile.smt 660 | 113 | 90 | 1440\ TO | 17 | TO| 684 | 13
i_Cudd EquivDC.smt 681|101/ 80| 1280\ TO | 54 | TO| 1718 | 21
i_gnt tree.clicked.smt 658 | 87 |69 |1104|| TO | 21 |TO| TO | 24
i_CuddbddLeqUnless.smt 783|106 |84 | 1344 TO | 53 | TO| TO | 37
i_checkidleness.smt 704| 91 | 72| 1152|| TO | 36 | TO| TO | 42
i_addTriangleRecur.smt 776|116 | 92 | 1472\ TO | 24 | TO| TO | 49
i_commandsubstcompletionfunction.smt || 627 | 100 | 79| 1264| TO | 16 | TO| TO | 53
i_gnt tree size.changed.smt 752|107 |85|1360|| TO | 24 |TO| TO | 20
i_bashquotefilename.smt 640| 92 | 73|1168|| TO | 18 | TO| TO | 45
i_cb.message.smt 5441 79 | 63|1008|| TO | 30 | TO| TO | 69

All times are in seconds TO: > 1800 second<): Dag size of the formulal:

Total number of variabled/: Number of variables to be eliminate®; Number

of bits to be eliminatedAQ: Total time taken byAll_Path QElim, QL : Total time
taken byQE_LMDD, AS: Total time taken byAll_SMT, QS_M: Total time taken
by QE_.SMTMod, QS: Total time taken byQE SMT
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Figure 4.10: Plots comparing (A)l_Path QElimandQE_LMDD and (b)QE_.SMT
andQE_SMT.Mod (All times are in seconds)

QE_SMT, the SMT solver based generalizationQE_ SMT.Mod was more ef-
fective which helped in faster termination of the All-SMTojm The comparison
indicates that our generalization technique based on sisalfthe Boolean skele-
ton of formulae inGeneralizeds a cheaper and effective alternative to the SMT
solver based generalization technique in [29]. Table A2gihe comparison be-
tween the times taken by the different QE algorithms for agarof 20lindd
benchmarks.

Recall that inQE_Combinedwe convertedX. f, wheref is an LMDD, into
an equivalent disjunction of sub-problems, and then gagselsub-problems to
QE_LMDD Contextseparately. Our analysis revealed that this helped in iden-
tifying redundant sub-problems. However, it was observed splitting3X. f
into sub-problems and computing the sub-problems sepgraezluced scope
for reuse of results through dynamic programming when coatpto computing
3X. f directly usingQE_LMDD. We could also observe that using a more eager

strategy for splitting into subproblems (i.e., a stratelggt tgenerates more sub-
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problems) in place adimplify, further reduced scope for reuse of results, although
it improved opportunity for identifying redundant sub-plems. On the other
hand, using a less eager strategy improved reuse of resuitgave lesser oppor-
tunity for identifying redundant sub-problems. Hencehailigh reuse of results
and splitting into subproblems contribute towards sucoéfise hybrid approach,
they act against each other. In our experiments, we foundhaaplitting scheme
in simplifyachieves a trade-off between them.

Comparison with Alternative QE Techniques: We wanted to understand how
QE_SMT would perform if a bit-blasting or linear integer arithnmetased al-
ternative QE algorithm is used in place Bfoject In order to do this, we first
computed the average times takenfbgjectfor QE from conjunction-level prob-
lem instances arising fro@E_SMT when QE is performed on each benchmark.
We also computed the average times takenLhyerlBlast LayerlOT, and
Layer2 OT (see Section 3.6) for QE from these conjunction-level mrobin-
stances. For each benchmark, we then compared the averagen&ttaken
by Projectagainst those taken hyayerl BlastandLayer1 OT (see Fig. 4.11(a)
and 4.11(b)). Subsequently, for each benchmark, we comphesaverage time
consumed by ayer3in the Project calls with that consumed by Omega Test in
the Layer2 OT calls (see Fig. 4.12). For a large number of benchmarks, we ob
served that the bit-blasting or linear integer arithmetisdd alternative QE al-
gorithm was unsuccessful in eliminating quantifiers frora tonjunction-level
problem instances. These benchmarks are indicated by ph®gi green circles
in Fig.[4.11(a), Fig. 4.11(b), and Fig. 4/12. Note that, foeste benchmarks we
could not compute the average times consumed by the bitifidas linear integer

arithmetic based alternative QE algorithm, as the algeritias unsuccessful in
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eliminating quantifiers from the conjunction-level prablénstances. There were
a few cases where Omega Test performed betterlthgar3 This was due to the

relatively larger number of recursiv&rojectcalls in these cases.

1le+06 [ 1e+06 r

10000 r 10000

100 | 100 |~
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Average Layerl_Blast Time
Average Layerl_OT Time

1 100 10000 1e+06 1 100 10000 1e+06
Average Project Time Average Project Time

Figure 4.11: Plots comparing average times consumed byPfaject and
LayerlBlast and (b)Project and Layerl OT when used insid€®E SMT (All
times are in milliseconds). Topmost green circles indi¢ghte benchmarks for

which LayerlBlastor Layerl OT was unsuccessful.

We also wanted to understand h@&% SMTwould perform if the BDD based
alternative techniqguBddBasedLayergee Section 3.6) is used in placd.afyer2
insideProject In order to do this, for each benchmark, we first computedcthe
erage time consumed lyayer2when QE is performed usinQE_SMT. For each
benchmark, we then computed the average time consum@&tithpasedLayer2
when BddBasedLayerds used in place ofayer2inside Project Fig.[4.13(a)
compares these times. Many points corresponding to diffdsenchmarks are
merged in Fig. 4.13(a), since the average times consumkdyiar2were signif-
icantly small compared those consumedBoidBasedLayer2\e provide a com-

parison of the total times in Fig. 4.13(b) for better exposit The plots clearly
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Figure 4.12: Plot comparing average times consumelddygr3and Omega Test
when used insid®E_SMT (All times are in milliseconds). Topmost green circles

indicate the benchmarks for which Omega Test was unsuedessf

demonstrate th&E_SMT performs poorly when the BDD based alternative tech-
nique is used in place dfayer2 Note that here again, topmost green circles in
Fig./4.13(a) and Fig. 4.13(b) indicate the benchmarks fockwIQE was unsuc-
cessful wherBddBasedLayer#as used in place dfayer2
Utility of our QE algorithms in verification:  Recall from Section 3.6 that the
vhdl benchmarks were obtained by quantifying out a subset ofratevariables
from the symbolic transition relations of word-level VHDIlesigns. The quanti-
fier eliminated formulae give abstract transition relasiohthe VHDL designs. In
order to evaluate the utility of our QE algorithms, we u§#el LMDD to compute
these abstract transition relations, and then used thes@ettransition relations
for checking safety properties of the VHDL designs usingriztad model check-
ing.

In order to check if the safety property holds for the fixstycles of opera-
tion, we first unrolled the transition relatids times, and conjoined the unrolled

relation with the negation of the property. The resultingrfala was then given to
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Figure 4.13: Plot comparing (a) average times and (b) totedd consumed by
Layer2 and BddBasedLayer#vhen used insidQE_SMT (All times are in mil-
liseconds). Topmost green circles indicate the benchnfarkshich BddBased-

Layer2was unsuccessful.

an SMT solver for checking satisfiability. Next, we obtairsdabstract transition
relationR usingQE_LMDD. The abstract transition relation was then unroled
times and was conjoined with the negation of the propertybtaio a formula,
which was given to the SMT solver to check satisfiability.

All the SMT solver calls were unsatisfiable, which implieattthe properties
hold for the firstN cycles of operation of the designs, and the abstract transit
relations are sufficient to prove the properties. Table &8sga summary of the
results for 16 designs. machideto machinel2 are modified versions of bench-
marks from ITC99 benchmark suite [69]. The remaining desagesproprietary.
The table clearly shows the significant performance benifisiog abstract tran-
sition relations computed BQE_LMDD in these verification exercises.

For all the designs except machig, all the internal variables were elimi-

nated from the transition relation in order to obtain theti@as transition relation.



Table 4.3: Experimental results on VHDL programs

Design | LOC TR N=500
NA QL

machinel | 363 | (592, 22,580) TO(TO) | 52(7, 23)
machine2 | 373 | (594, 22, 436)] TO(TO) 30(6, 1)
machine3 | 383 | (620, 25, 439)] TO(TO) 33(6, 3)
machined | 253 | (439, 26, 677) 1471(1441) 24(2, 0)
machine5 | 253 | (439, 26, 509) 1443(1413) 25(2, 0)
machine6 | 363 | (406, 17, 64) 78(53) 17(2,1)
machine7 | 379 | (440, 22,69)| 221(196) | 22(1,3)
machine8 | 251 | (286, 20, 157)] 193(177) 13(2, 0)
machine9 | 251 | (286, 20, 485) 331(315) 13(2, 0)
machinelO | 363 | (406, 17,420) TO(TO) 16(0, 1)
machinell | 363 | (593,22,96)| TO(TO) 40(8, 4)
machinel2 | 363 | (406, 17, 420) TO(TO) | 220(4, 187)

boardl | 404 | (400, 24, 194) 1442(1424) 21(12, 1)

board2 | 373 | (420, 24,194) TO(TO) 14(5, 1)

board3 | 503 | (573,54, 361) TO(TO) 16(5, 1)

board4 | 415 | (422,28,198) 241(223) | 62(9, 2)

BMC unrollings

All times are in seconds TO: > 1800 second4,0C: Lines of codeTR:
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Transition relation details (dag size, number of varialhesnber of bits)NA:
Without abstraction : total time (simplifyingSTP tim&)L : With QE_.LMDD for
abstraction : total timeQ@E_LMDD time, simplifyingSTP time)N: Number of
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For machinel2, a manually chosen subset of internal variables werearedied.
It was observed that in all the casésyerlandLayer2were sufficient to elim-
inate the variables, without any call tayer3 Layer2was needed only in five
cases: machiné through machind 0. In these casdsayer2eliminated 125%
to 40% of the quantified variables.

We performed limited preliminary experiments to evalubteditility of Layerl
andLayer2as preprocessing steps for conjunctions of LMCs before fgndat-
isfying assignments for the conjunctions using an SMT solVewards this end,
we generated 9 sets of random benchmarks. Each set incluskrttEmarks that
are randomly generated conjunctions of LMCs with the samebauof variables,
LMEs, LMDs and LMIs. The moduli of all LMCs in all benchmarks svéixed
to 224, The number of variables varied from 20 to 50. The number ofdsMvas
chosen as twice the number of variables.

In order to properly evaluate the effectivenessayerlandLayer2 we gen-
erated three types of benchmarks. Type-1 benchmarks nedtan equal mix of
LMEs, LMDs, and LMIs. The benchmarks in skt set4, and sef7 in Table 4.4
were of this type. These benchmarks allowed us to evaluateftactiveness of
Layerl In type-2 benchmarks, 80% of constraints were LMDs andéhsaining
were LMIs. The benchmarks in s2t set5, and se8 in Table 4.4 were of this
type. Finally, in type-3 benchmarks, 80% of constraintseneklls and the re-
maining were LMDs. The benchmarks in Sstset6, and se® in Table 4.4 were
of type-3. Type-2 and type-3 benchmarks allowed us to etaline effectiveness
of Layer2on different mixes of constraints.

We first measured the time taken by simplifyingSTP to sohahdsenchmark.

We then eliminated variables in the support of each bendhosngLayerland
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Layer2 This yields a potentially simplified benchmark with feweriables in
the support. We then measured the time taken by simplifyiifg® solve each
preprocessed benchmark. Table 4.4 gives a summary of thiésteé8reprocessing
helped in cases of type-2 benchmark set2sesket5, and seB. Preprocessing in
these cases completely solved the problem instances. én@dkes preprocessing

either caused additional overhead or was of not much use.

Table 4.4: Experimental results on preprocessing ulsaygrlandlLayer2
Set | V| E | D] I NP PR AP

setl | 20| 14| 13| 13| 1763 | 1572 | 2688
set2| 20| 0 |36 4 | 3270 251 0
set3,20| 0 | 4 | 36| 3208 655 3245

set4 | 30| 20| 20| 20| 8415 | 4769 | 9216
set5 | 30| O |54 | 6 | 7423 | 533 0
set6 | 30| O | 6 | 54| 7203 | 1651 | 7218

set7 | 40| 28 | 26 | 26 | 223880| 11255| 171207
set8 | 40| 0 | 72| 8 | 14115 | 1150 0

set9 40| O | 8 | 72| 14343 | 3561 | 13238
All times are in milliseconds V: Number of variables:: Number of LMESD:

Number of LMDs,I: Number of LMIs,NP: Average time taken by
simplifyingSTP for solving the benchmarks in the set withpreprocessing?R:
Average time for preprocessing the benchmarks in theAd&tAverage time
taken by simplifyingSTP for solving the benchmarks in thiesster

preprocessing

We also performed limited preliminary experiments to esgduthe utility of
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our QE techniques for computing Craig interpolants for Booleambinations of
LMCs. Towards this end, we generated a set of interpolatiochmarks. Each
benchmark is a pair of formula®,y), where¢, Y are Boolean combinations
of LMCs which are mutually inconsistent. We denote the setasfables in the
support of bothp andy asY. The set of variables in the supportdfout not in
the support ofp is denoted a¥X. Similarly, the set of variables in the support of
Y but not in the support of is denoted aZ.

Note that3X.¢ serves as an interpolant fdp, ). In fact, 3X.¢ is the
strongestnterpolant for(¢, ). For each interpolation benchmark, we first used
QE_Combinedto computedX.¢$. For each benchmark, we then used Mathsat to
compute an interpolant (Mathsat makes use of work in [67]rftarpolant com-
putation). We then compared the time taken by Mathsat to céenipterpolant
with that taken byQE_Combinedo computedX. ¢. Table 4.5 gives a summary of
the results for 10 benchmarks. Since interpolation is amaqimation of QE, it
is amenable to simplifications that QE may not be able expMévertheless our
experiments show that the two techniques are incomparadblsome cases, an
interpolant can be computed faster than the quantifierheditad formula, while
in other cases, QE using our techniques can be done much tlaastecomputing
an interpolant using the techniques encoded in MathSAT.

Considering the three sets of experiments that we performedvialuating
the utility of our QE techniques, it can be seen that our teghes are convinc-
ingly useful for computing abstract transition relationdounded model check-
ing. Our experiments showed that applying our techniquesndfanslates to a
model checking problem being solved within given time coaists, as opposed

to timing out. However the other two sets of experiments —yapg our tech-
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Table 4.5: Experimental results on computing interpolants
Benchmark | [X]| [ |Y| | |Z] | W | MS | QC

benchmarkl | 5 | 16 | 12 | 16| 12 | 36
benchmark?2 | 6 | 15| 8 | 16| 45 | 44
benchmark3 | 8 | 10| 6 | 8 | O 3
benchmarkd | 17 | 23 | 11 | 32| 7 | 275
benchmarks | 17 | 23 | 10 | 32| 6 | 142

benchmarke | 21 | 25| 8 | 32| TO | TO
benchmark7 | 12 | 7 | 7 | 22| TO | 16
benchmark8 | 10 | 17 | 8 32| 0 | 29
benchmark® | 3 | 10| 3 | 32| TO | 12

benchmarkil0 | 4 | 14| 3 | 16| TO | 7
All times are in seconds TO: > 1800 secondgX|: Number of variables in set

X,

Y|: Number of variables in set YZ|: Number of variables in set ZV:
Maximum bit-width of a variableMS: Time taken by Mathsa@QC: Time taken
by QE_Combined
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niques in solving conjunctions of LMCs and for computing Criatgrpolants for
Boolean combinations of LMCs — gave mixed results. Exploritigepapplica-

tions of our techniques is part of future work.

4.5 Conclusions

Extending QE algorithms that work on conjunctions on caists to eliminate
guantifiers from arbitrary Boolean combinations of constsais an important
problem. In this chapter, we presented three approachesfending a QE al-
gorithm for conjunctions of LMCs to eliminate quantifiersrfitddoolean combi-
nations of LMCs. Our experiments indicated that the LMDD aiTSsolving

based approaches are incomparable, and our hybrid apprietis the strengths
of both LMDD and SMT solving based approaches. The experisredao demon-
strated the effectiveness of our QE approaches and thkdy urticomputing ab-

stract transition relations in bounded model checking ofdalevel RTL designs.
Our approaches clearly made the difference between suictasd timed out ver-

ification runs. In the next chapter, we will focus on QE frompositional logic.



Chapter 5

Quantifier Elimination for

Propositional Formulas

In this chapter, we focus on techniques for QE from propaséi formulas that
are based on Skolem functions. Skolem functions, introdilogeThoraf Skolem
in the 1920s, have long occupied a central role in mathealdtgic. Formally,
given a first-order logic formul& (x,y), a Skolem functiorfor x in F is a func-
tion Y(y) such that substituting(y) for x in F yields a formula equivalent to
IX.F(xy), i.e. F(W(y),y) = Ix.F(x,y). Classically, Skolem functions have been
used to prove fundamental theorems in logic. More recewtily) the advent of
fast SAT solvers and theorem provers, several practicalgvant problems have
been encoded as quantified formulas, and can be solved byagjegeSkolem
functions.

We focus on the case where the form&las propositional. It follows from
the definition of Skolem function that QE can be achieved tsstuting Skolem

functions for existentially quantified variables. OtheattQE, Skolem functions
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have many important applications. Skolem functions arel asecertificates [8]
for satisfiable Quantified Boolean Formulas (QBFs) by QBF selvEhe problem

of synthesizing a circuit or program [9] that satisfies thecsjicationSpe¢!, O),
wherel is the set of inputs an@ is the set of outputs reduces to computing Skolem

functionsy(l) for variables inO in the formulaSpe¢l , O).

Motivating Application: As mentioned in Chapter 1, our primary motivation
for studying Skolem function generation comes from the [@wbof computing
disjunctive decompositions of sequential circuits repnésd as symbolic transi-
tion functions [6]. The disjunctive decomposition problesks the following:
Given a sequential circuit, can we obtain “component” satjakcircuits, each of
which has the same state space as the original circuit, yaosingle transition
going out of every state such that the set of state transitdthe original circuit
is the union of the sets of state transitions of the compan@ntVe illustrate the
disjunctive decomposition problem with the help of an exlEmp

Consider a sequential circuit as shown in Figure 5.1. Thaiitioonsists of
a combinational logic block and a set of flip-flops (denotedr&3. The circuit
has state variablag,y> and a single input. The state transition behaviour of the
circuit is specified by its symbolic transition functionosin inside the combina-
tional block, wherey; andy, refer to next state versions pf andy, respectively.
The state transition diagram of the circuit is shown on tgbtrin Figure 5.1. Each
state in the state transition diagram is labeled by a valoatf the state variables,
and each edge is labeled by the valuation of the input varitidt enables the
corresponding state transition.

Two components of this circuit are shown in Figure 5.2 andiféich.3, along



152

Figure 5.1: An example sequential circuit

NOTCOVERED = true

FIF

Figure 5.2: First component of example sequential circuit
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~XA((=y1/\Y2)
V(y1A—y2))

NOTCOVERED=

FIF —

Figure 5.3: Second component of example sequential circuit

with their state transition diagrams. Note that all statethe components have
single outgoing transitions and all state transitions efdhginal circuit are present
in at least one of the two components.

The goal of disjunctive decompaosition is to come up with sghdiransition
functions for the components, given the symbolic transificnction for the orig-
inal sequential circuit. This problem can be trivially sedvif the state transition
diagram for the original circuit is constructed. Howevensibucting the state
transition diagram may not always be feasible for circuithwarge numbers of
state variables.

A naive approach to solve this problem is to substitute adlsgue values for
the input variables in the symbolic transition function bé toriginal sequential
circuit one-by-one to generate all components.héte the number of input vari-
ables. The above approach would gener&tednponents. If there is a state in the

state transition diagram of the circuit that h&sdutgoing transitions, i.e., a state
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that goes to different states for all possible valuationspfit variables, then at
least 2" components are needed to compute the disjunctive decotigmodilow-
ever, such a scenario arises very rarely in practice. M@eadav state transition
diagrams of circuits that arise in practice, often thereaal@ of state transitions
that are labeled by multiple valuations of input variablé§e can exploit this
feature to reduce the number of components generated.

Let X be the set of input variables antl be the set of present state vari-
ables. Let MTCOVERED(X, Y) be a propositional formula that captures the
set of transitions that are not present in any of the compsrgenerated so far.
Such transitions that are not present in any of the compergemerated so far
are said to be transitions that amet coveredby the components. For example
in Fig.|5.3 after generating the first component, the tramsstcorresponding to
input O from state 01, and input O from state 10 are not covexedharacterized
by NOTCOVERED(X,Y1,Y2) = XA ((0y1 AY2) V (Y1 A —Y2)).

Generating a new component requires choosing values of igsiables as
functions of the present state such that for every stateptigoing transition
enabled by the chosen values of input variables is not cdugrehe components
generated so far. If all outgoing transitions from a statecavered, then we can
choose any of the outgoing transitions for that state.

It can be observed that the process of choosing values of wrgsiables as
functions of the present state as above, essentially redocgnding functions
Y(Y) such that’y. (3X.NoTCoVERED(X,Y) = NOTCOVERED({(Y),Y)) holds.
SinceVY. (-3X.NoTCoVvERED(X,Y) = —=NoTCoVvERED(Y(Y),Y)) holds for
anyy(Y), we are actually interested in computitigY ) such thaBX. NoTCov-

ERED (X,Y) = NOTCoVERED (Y(Y),Y). Recalling the definition of Skolem
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functions, this is the same as generating Skolem functionsdriables inX in
the formula NoTCoOVERED(X, Y).

For example in Fig. 5.2, initially RSTCOVERED(X,Y1,Y2) is true. Note that
(Yo A—Y2) V (—y1 AYo) is a Skolem function fox in true. Selecting the outgoing
transition enabled by choosixgs(y1 A —Y2) V (-y1AY2) for every state gives us
the first component. NTCOVERED(X, y1,Y2) after generating the first component
is XA ((5Yy1AY2) V (Y1 A—y2)). Note that(yr Ay2) V (=y1 A —y2) is a Skolem
function forxin =xA ((-y1 AYy2) V (Y1 A —y2)), and selecting the outgoing transi-
tion enabled by choosingas(y1 Ay2) V (—y1 A —y2) for every state gives us the
second component.

In computation of disjunctive decompositions, if all outggptransitions from
a state are already covered by the components generated HrefadX. NOT-
CovERED(X, Y) is not valid, although it can be satisfiable. For exaenph
Fig. 5.2, all outgoing transitions from state 00 as well aestl1 are covered
by the first component. Hence&X. NOTCOVERED(X, Y) after generation of the
first component, i.e3x. (XA ((=y1 Ay2) V (Y1 A—y2))) is not valid, although it
is satisfiable. Therefore, in general, we need to find Skolemetfons for vari-
ables inX in NOTCoVERED(X, Y) irrespective of the validity oHX. NoTCov-
ERED(X, Y).

Let F(X,Y) be a propositional formula, wheXeandY denote the sequences
of variables(xy, ...X,) and(yx,...Ym), respectively. Suppose we are interested in
generating Skolem functions for variablesXnin F(X,Y). Moreover, suppose
F(X,Y) is in Negation Normal Form. There are two interesting cages:h(i)
F(X,Y) is a disjunction of sub-formulas, and (#)X,Y) is a conjunction of sub-

formulas.
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The case wher&(X,Y) is a disjunction of sub-formulas is easy to solve.
For example, leF(X,Y) be of the formF; vV F. Let @3 be a Skolem function
for x; in F1, and2 be a Skolem function fog; in F». It can be observed that
((3xi.F1) AP1) V ((=3%.F1) Ag2) can be used as a Skolem function fpin F.
Note that this avoids treatirf§ V F» as a single monolithic formula, and computes
Skolem function for; in F from Skolem functions fog; in F; andF.

The case wher&(X,Y) is a conjunction of sub-formulas is the harder case.
Interestingly, for several problem instances, the spetiia of F (X,Y) is avail-
able in such dactoredform, i.e. as conjunction of simpler sub-formulas, each
of which depends on a subset of variables appearing in theulart (X,Y). Ex-
isting algorithms for Skolem function generation ignore anch factored form
and treat the conjunction of factors as a single monolithietion. We show that
exploiting the factored form can yield significant perfomna advantages when
generating Skolem functions.

We are not aware of other techniques for Skolem function igetios that ex-
ploit the factored form of a formula. As mentioned in Sectih.2, earlier work
on Skolem function generation essentially belong to oneof tategories. The
first category includes techniques that extract Skolemtfons from a proof of
validity of 3X. F(X,Y) [17, 16, 93]. In problem instances whet¥. F(X,Y) is
valid (and it forms an important sub-class of problems)sétechniques can usu-
ally find succinct Skolem functions if there exists a shodgfrof validity. How-
ever, in several other important classes of problems su€yEaand computation
of disjunctive decomposition, although the formdld. F(X,Y) is satisfiable, it
may not be valid, and techniques in the first category caneaiaplied.

The second category of techniques for Skolem function geioer includes
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techniques that use templates of candidate Skolem furscfgn Template-based
techniques are effective only when the set of candidateggkélinctions is known
and small. While this is a reasonable assumption in some asnf@y, it is not
possible to identify a small set of candidate Skolem fumsion other domains.
BDD-based techniques [94] are yet another way to computeeSkdlinctions.
Unfortunately, these techniques are known not to scale wakss custom-crafted
variable orders are used. The last category includes tggbsithat use cofactors
to obtain Skolem functions [18, 6]. These techniques do rpkod the factored
representation of a formula and, as we show experimentilyot scale well to
large problem instances.

Contributions: Our main technical contribution is a SAT-based Counter-
Example Guided Abstraction-Refinement (CEGAR) algorithm tarerating Skolem
functions from factored formulas. Unlike competing appfues, our algorithm
exploits the factored representation of a formula and kyes advances made in
SAT-solving technology. The factored representation edu® arrive at an ini-
tial abstraction of Skolem functions, while a SAT-solveused as an oracle to
identify counter-examples that are used to refine the Skdlerations until no
counter-examples exist. We present a detailed experitnevdahuation of our al-
gorithm over a large class of benchmarks. We also preseetiexgnts that com-
pare performance of our algorithm vis-a-vis state-of-dhiealgorithms [18, 17].
Our experiments show that on several large problem instaree outperform

competing algorithms both in terms of time and Skolem fuonrcsize.
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5.1 Preliminaries

We use lower case letters (possibly with subscripts) to tieppositional vari-
ables, and upper case letters to denote sequences of siathlesmrWe use 0 and

1 to denote the propositional constafidise andtrue, respectively. Lef (X,Y)

be a propositional formula, whepé andY denote the sequences of variables
(X1,...Xy) and (y1,...Ym), respectively. We are interested in problem instances
whereF (X,Y) is given as a conjunction of factofé(Xy,Y1),... f(X,Y;), where
eachX; (resp.)Y;) is a possibly empty sub-sequenceXofresp.,Y). For notational
convenience, we uge andAl_, f' interchangeably throughout this chapter. The
set of variables irF is called thesupportof F, and is denote@upp(F). Given
propositional formulag andW¥, we use-[x; — W] to denote the formula obtained
by substituting every occurrence of the variaklen F with W. This is also con-
ventionally calledfunction compositionlf X is a sequence of variables axnds

a variable, we us¥ \ x; to denote the sub-sequencexobbtained by removing;

(if present) fromX. Abusing notation, we also uséto denote the set of elements

in X, when there is no confusion.

Definition 1. Given a propositional formula EX,Y), a Skolem functiorfor x; €

X in F(X,Y) is a function(X \ x;,Y) such thatdx.F = F[x — Y.

Example: Consider the propositional formuia Ay . It can be observed that
and 1 are two Skolem functions for the variakjen x; Ay1, since (i)3x1. (X1 Ay1)
is equivalent tayg, (i) (X1 Ay1)[X1 — Y1) is equivalent tayg, and (i) (xg Ay1) [X1 —
1] is equivalenty;.
Notice that a Skolem function fog in F need not be unique. The following

proposition from [18, 6] characterizes the space of all 8&kofunctions forx; in
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F.

Proposition 8. A function(X \ x;,Y) is a Skolem function forin F(X,Y) iff
FiX — 1 A-F[x+— 0] = pandy = F[x — 1] V-F[x — 0.

Proof of Proposition|8. For any given value of variables M \ xUY, there are

four possible cases:

1. =F[x — 1] A =F[x — 0]: For this value of variables iX \ x;UY, F is 0
irrespective of the value of. Hence irrespective of whethéris 0 or 1, it

is a Skolem function fox; in F(X,Y).

2. F[xi — 1] A =F[x — 0]: For this value of variables iX \ x;UY, x; must be
1 for F to become 1. Henag must be 1 for it to become a Skolem function

for x; in F(X,Y).

3. =F[x — 1] A F[x — O]: Similar to case-2 must be 0 foiF to become 1.

Hencey must be 0 for it to become a Skolem function fpin F(X,Y).

4. F[x — 1] A F[x — 0]: Similar to case-1, irrespective of whethgiis O or

1, it is a Skolem function fox; in F(X,Y).

Hence,y is a Skolem function fok; in F iff F[x — 1] A —=F[x — O] = { and
—Fx — 1 A F[x — 0] = 4, i.e, F[xi— 1] A =F[x — 0] = p andyp =
FX— 1] vV =F[x — 0]. ]

The functionF [x; — 0] (resp. F [x — 1]) is called thenegativg(resp. positive
cofactorof F with respect tax;, and plays a central role in the study of Skolem
functions for propositional formulas. In particular, ilfiwvs from Proposition 8

thatF [x; — 1] is a Skolem function fox; in F.
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The above definition of a Skolem function for a single vamaban be nat-
urally extended to a vector of variables. Give(X,Y), a Skolem function vec-
tor for X = (x1,...%n) in F is a vector of functionsV = (Ws,...,Y,) such that
g X F = (- (FXg— W1]) -+ - [Xa — Wp)). A straightforward way to obtain
a Skolem function vectoW is to first obtain a Skolem functiog; for x; in F,
then computé’ = 3x;. F and obtain a Skolem functiaf, for x, in F’, and so on
until Y, has been obtained. More formally, can be computed as a Skolem func-
tion for x in 3Ix;....3%_1.F, starting fromy1 and proceeding t@g),. Note that

dx1....3x_1.F can itself be computed &s-- (F[x1 — P1]) -+ [Xi—1 — Pi—_1]).

Definition 2. The “Can’t-be-1" function for x; in F, denotedb1[x](F), is defined
to be(—=3xz....3x_1.F) [% — 1]. Similarly, the “Can’t-be-0” function for x; in F,
denotedcb0|x;|(F), is defined to bé—3x;....3x_1.F)[X — 0]. When X and F
are clear from the context, we use1[i] andCb0[i] for Cb1[x|(F) andCb0|[x;|(F),

respectively.

Intuitively, in order to makd- evaluate to 1, we cannot setto 1 (resp. 0) when-
ever the valuation ofx;,1, ... X} UY satisfie<b1][i] (resp.CbO[i]). The following
proposition follows from Definition 2 and from our obsenaatiabout computing

a Skolem function vector one component at a time.

Proposition 9. The function vectoWw=(—-Cb1[1],...~Cb1[n]) is a Skolem func-

tion vector for X in F.

Note that the support af; in W, as given by Proposition 9, {1,...xa} UY.
If we want a Skolem function vecto¥ such that every component function has

only Y (or a subset thereof) as support, this can be obtained dBsigpeatedly
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substituting the Skolem function for every varialglén all other Skolem functions

wherex; appears. We often denote such a Skolem function vectdi(és.

5.2 A Monolithic Composition Based Algorithm

Our algorithm is motivated in part by cofactor-based teghas for computing
Skolem functions, as proposed by Jiang et al [18] and Trij@dGivenF (X,Y) =
A_; f1(X,Y;), the techniques of [18, 6] essentially compute a Skolemtianc
vectorW(Y) for X in F as shown in algorithnMonoSkolen{see Algorithm 11).
In this algorithm, the variables iK are assumed to be ordered by their indices.
While variable ordering is known to affect the difficulty of reputing Skolem
functions [18], we assume w.l.0.g. that the variables adexed to represent a
desirable order. We describe the variable order used intady $n Section 5.4.
MonoSkolemvorks in two phases. In the first phase, it implements a ditaig
forward strategy for obtaining a Skolem function vectorsaggested by Proposi-
tion[9. Specifically, steps 3 and 4 BfonoSkolenbuild a monolithic conjunction
F of all factors that have; in their support, before computing;. This restricts
the scope of the quantifier fo§ to the conjunction of these factors. In Step 6,
we use—Cbl[i] for the Skolem functionp;. After computingy; from K, step 7
discards the factors witk; in their support, and introduces a single factor rep-
resentingdx;. F in their place. Note that eaal; obtained in this manner has
{Xi+1,..-Xn} UY (or a subset thereof) as support. Since we want each Skolem
function to have suppoit, a second phase of “reverse” substitutions is needed.
In this phase (see Algorithm 12), the Skolem functip(Y) obtained above is

substituted forx, in Y1,...Yn_1. This effectively renders all Skolem functions
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independent o%,. The process is then repeated with ; substituted fox,_1 in
Y1,...YPn_2 and so on, until all Skolem functions have been made indegperaf
X1,-...%n, and have only (or subsets thereof) as support.

MonoSkolentan be further refined by combining steps 6, 7 and by directly
defining Y in terms of K. However, we introduce the intermediate step using
CbO[i] andCb1[i] to motivate their central role in our approach. Indeed imdte
of —Cb1[i], we could use any Skolem function fgrin F in Step 6 of the above
algorithm. In fact, Jiang et al [18] compute a Skolem funefior x; in F as an in-
terpolant of—Cb1]i] A CbO[i] andCb1[i] A =CbO[i], while Trivedi [6] observes that
the function(—Cb1[i] A (CbO[i] V g)) V (Cb1]i] ACbO[i] A h) serves as a Skolem
function forx; in F whereh andg are arbitrary propositional functions with sup-
port in X\ {x;} UY. Since computing interpolants using a SAT solver is often
time-intensive and does not always lead to succinct Skolamtions [18], we
simply use—Cb1[i] as a Skolem function in Step 6. Proposition 9 guarantees the
correctness of this choice.

Let us consider an example to understdfmhoSkolemWe will use this as a
running example throughout this chapter.

Example: Let X be (x1,%2,%3) andY be (y1,y2). Let F(X,Y) be the conjunction
of factors(y1 AX1) V (my1 A —X1), (Xe AX2) V (—X1 A =X2), (X2 AX3) V (—X2 A —X3),
and(xz Vy2). For brevity, we will use the notatiofo < 3) to denote(a A B) V
(—=a A—B). Thus, our factors argy; < X1), (X1 < X2), (X2 < X3), and(Xz V y2).
Suppose we wish to compute Skolem function ve¢tor, Yo, W3) for (Xq, X2, X3)
inF.

In MonoSkoleminitially, we haveFactors = {(y1 < X1), (X1 < X2), (X2 < X3),

(x3Vy2)}. Since(y1 < x1) and(x; < Xo) are the factors withx; in support,F;
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Algorithm 11: MonoSkolem
Input : Prop. formulaF (X,Y) = Aj_; f1(X;,Y}), whereX = (xq,...X)

Output: Skolem function vectow (Y)
Il Phase 1 of algorithm
1 Factors := {fj 1< )< r};
2 foriin 1tondo
3 FactorsWithXi:= {f : f € Factors andx; € Supp(f)};
4 | F= Atecractorswithxi T3
5 CbO[i] := =KX — 0O; Cbl[i] := =KX — 1];
6 Pi := —Cb1[il;
Il I'n general, j is an interpolant of —Cb1[i] ACbOJi]
/1 and Cb1[i] A —CbOli]
7 Factors := (Factors\ FactorsWithXi) U {FK[X — Wi]};

Il Phase 2 of algorithm
g8 return ReverseSubstitu@gs,. .., Yn);

Algorithm 12: ReverseSubstitute
Input: FunctionsP1(Xz, ..., Xn,Y), W2(X3,....%n,Y),...,Wn(Y)

Output: Function vectotV(Y)

1 for i = n downto2 do

2 t for j =i—1downtol do Y = Yj[x — Wil

3 return W(Y) = (W1(Y),...,Un(Y));

is (y1 © x1) A (X1 < X2). Note thatFi[xg — 0] is —y1 A =Xz andF1[x; — 1] is

y1 A X2. HenceCb0[1] isy1 V X2, Cb1[1] is —y1 V =Xz, andyy is y1 A X2. Replacing
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the factors(y; < x1) and (X3 < X2) by the single factoF;[x; — W1], we have
Factors = {(y1 © Y1 AX2) A (Y1 A X2 < X2), (X2 < X3), (X3V Y2)}.

Next, Skolem functionp; is computed. Nowr is (y1 < Y1 AX2) A (Y1 AXe <
X2) A (X2 < x3). Note thatF;[xo — 0] is —y1 A —x3 and Fa[x2 — 1] is y1 A X3.
Hence,Cb0[2] is y1 V X3, Cb1[2] is —y1 V —X3. W2 iS y1 A X3, and Factors gets
changed tof(y1 < y1AX3) A (Y1 A X3 < X3), (X3Vy2)}. Finally, Fsis (y1 <
YIAX3) A (Y1AXs < X3) A (X3 VY2). Fa[xz— 0] is y1 Ay2 andRs[xs — 1] is y1.
Also Cb0[3] isy1 V Y2, Cb1[3] is —y1, andys is y1. Factors becomeq (y1Vy2)}.

This completes the first phase bfonoSkolem Thus, after the first phase,
we have(P1, W2, W3) = (Y1 A X2, Y1 AX3, Y1). In the second phase, firgf; is
substituted foxs in Y. This makesp, = y;. Now Y, is substituted foxy in Yy,
which makesp; = y;. Hence, after the second phase, we hawe Y2, W3) = (y1,
Y1, Y1)

Observe thamonoSkolemvorks with amonolithicconjunction &) of factors
that havex; in their support. Specifically, it composes each such mtmolcon-
junction | with a cofactor off in Step 7 to eliminate quantifiers sequentially.
This can lead to large memory footprints and more time-oudterused with
medium to large benchmarks as confirmed by our experimenhts.riotivates us
to ask if we can develop a cofactor-based algorithm that doesuffer from the

above drawbacks dflonoSkolem

5.3 CEGAR for Generating Skolem Functions

We now present a new CEGAR [105] algorithm for generating &kolunction

vectors, that exploits the factored form B{X,Y). Like MonoSkolemour new
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algorithm, namedCegarSkolemworks in two phases, and assumes that the vari-
ables inX are ordered by their indices. The first phase of the algoritbnsists
of the core abstraction-refinement part, and computes aB8kalnction vector
(W1, ..Yn), where; has{x;;1,...X} UY, or a subset thereof, as support. Unlike
in MonoSkolemthis phase avoids composing monolithic conjunctions offdiss,
yielding simpler Skolem functions. The second phase of ihersthm performs
reverse substitutions, similar to thatMonoSkolem

Before describing the details @fegarSkolemwe introduce some additional
notation and terminology. Given propositional functiohg&nd g, we say that
f refines gandg abstracts fiff f = g. GivenF(X,Y) and a vector of functions
VA = (U], ... Wh), we say that” is anabstract Skolem function vectfar X in F
iff there exists a Skolem function vectdr= (Y, ... Yn) for X in F such thaty?
abstracts);, for everyi € {1,...n}. Instead of usingb0[i] andCb1[i] to compute
Skolem functions, as was done MonoSkolemwe now use theirefinements
denotedr0li] andr1]i] respectively, to compute abstract Skolem functions. For
convenience, we represertt|i] andri[i] as sets of implicitly disjoined functions.
Thus, if rifi], viewed as a set, 101,02}, then it isg; vV g2 when viewed as a
function. We abuse notation and usHi] (respectivelyr0[i]) to denote a set of

functions or their disjunction, depending on the context.

5.3.1 Overview of Our CEGAR Algorithm

Algorithm CegarSkolenhas two phases. The first phase consists of a CEGAR
loop, while the second phase does reverse substitutions. CHGAR loop has

the following steps.
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— Initial abstraction and refinement. This step involves constructing re-
finements ofCb0[i] and Cb1[i] for everyx; in X. By Proposition 9, this
gives an initial abstract Skolem function vectéf'. This step is imple-
mented in Algorithm 13 laitAbsRe}, which processes individual factors
of F(X,Y) = Aj_1 f1(X;,Y;) separately, without considering their conjunc-
tion. As a result, this step is time and memory efficient if theéividual

factors are small and simple.

— Termination Condition. Once InitAbsRefhas computedr®, we check
whetherV? is already a Skolem function vector. This is achieved by con-
structing an appropriate propositional formalacalled the “error formula”
for WA (details in Subsection 5.3.3), and checking for its sabdfig. An
unsatisfiable formula implies that? is a Skolem function vector, and we
are done with the first phase. Otherwise, a satisfying assghrt of €
is used to improve the current refinement<bi[i] andCbo]i] for suitable

variablesx; in X.

— Counterexample guided abstraction and refinementThis step is imple-
mented in Algorithm 14JpdateAbsRefand leads to a refinement of the

abstract Skolem function vector®.

Thus, the overall CEGAR loop starts with the first step and tlepeats the sec-
ond and third steps until a Skolem function vector is obtéin@ the next three

subsections, we discuss the algorithms implementing tstegs in detail.
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Algorithm 13: InitAbsRef

Input : Prop. formulaF (X,Y) = Aj_; f1(X;,Y}), whereX = (xq,...X)
Output: Abstract Skolem function vecto¥” = (g7, ...,45), and
refinements0[i] andr1|i] for eachx; in X
1 foriin 1tondo

2 rO[i] :=0; r1[i]:=0;// Initializing

w
—h

or jinltordo
4 f:=fl:// Consider factor separately

5 foriin 1tondo

6 if X € Supp(f) then
7 rO[i] ;== r0[ijU{—f[x — O]};
8 rifi] == r1[ijU{~f[x — 1};
/!l Skolemfunction for x in f
9 Yi = f[x —1];
10 fo=fx— il /1 fx— i) =3x.f

11 foriin 1tondo

12 WA 1= —rtfi];

Il Interpreting rifij as a function

13 return WA=(YA, ... W4) androli],r1]i] for each xeX
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5.3.2 Initial Abstraction and Refinement

Algorithm InitAbsRef (see Algorithm 13) starts by initializing eaati|[i] and
r0li], viewed as sets, to the empty set. Subsequently, it cossaherh factor
fin Aj_y f1(X;,Y;), and determines the contribution 6fto Cbol[i] and Cb1[i],
for every x; in the support off. Specifically, if x; € Supp(f), the contribu-
tion of f to CbO[i] is (—3x1....3x_1. f)[x +— O], and its contribution te&b1]i|

iS (—3xq....3x_1. f)[X — 1]. These contributions are accumulated in the sets
r0[i] andr1[i], respectively, and thex is existentially quantified fronf and the
process repeated with the next variable in the suppadit &@fnce the contributions
from all factors are accumulated #0[i| and ri[i] for eachx; in X, InitAbsRef
computes an abstract Skolem functigft for eachx in F by complementing
r1li], interpreted as a disjunction of functions.

Example: Consider the execution dhitAbsRefin our example of computing
Skolem function vectofy1, Wy, P3) for (x1,x2,%3) in (Y1 < X1) A (X1 < X2) A
(X2 < x3) A (X3VY2). Initially ro[i] = 0 andri[i] = 0, for 1 <i < 3. InitAbsRef
now considers the first factdy; < x1), and determines the contribution of this
factor toCb0[1] andCb1[1]. Since(ys < X1)[X1 +— 0] is ~y1 and(y1 < X1)[x1 — 1]

is y1, the contribution ofly; < x1) to CbO[1] is y1 and the contribution t@b1[1]

is —y;. Hencer0[1] gets changed ty; } andri[1] gets changed t¢—y;}. The
factor (y1 < x1) now gets changed téx;. (y1 < X1), i.e., 1.

InitAbsRefthen proceeds with the next factpr; < x2), and determines its
contribution toCbO[1] and Cb1[1]. Note that the contribution ofx; < x2) to
Cb0[1] is x2 and contribution t@b1[1] is —X2, which are accumulated ir0[1] and
r1[1] respectively. Thus0[1] becomegys, X2} andr1[1] becomes -y, —Xo}.

The factor(x; < X2) gets changed t@x;. (X1 < x2), i.e., 1. Subsequently, the



169

factor (xo < x3) is consideredr0[2] andr1[2] are updated t¢xs} and{—x3} re-
spectively. Finally, the factaixs V y») is considered, ando[3], r1[3] are updated
to {—y»} and{0}.

Thus, finally we haver0[1] = {y1, X2}, r1[1] = {=y1, %2}, r0[2] = {x3},
r1[2] = {—x3}, r0[3] = {—y2}, andr1[3] = {0}, when interpreted as sets. When
interpreted as disjunctions[1] = y1 V X2, r1[1] = —y1 V =X, r0[2] = X3, r1[2]
= —X3, r0[3] = ¥, andr1[3] = 0. Since the abstract Skolem functigf for
eachx in F is obtained by complementing [i], we have} = y1 A X, U5 = X3,
andy? = 1.

Recall from Section 5.2 that, for this examph0[1] = y1 V X, Cb1[l] =
=Yy1 V =X, Cb0[2] = y1V X3, Cb1[2] = =y1 V —X3, CbO[3] = y1 V —y2, andCb1[3] =
—y1. Observe thatoli] andr1[i] are refinements afb0]i] andCb1[i] respectively,
for eachx;, sincer0Q[i] = CbO[i] andr1[i] = Cbil[i], whenr0]i] andri[i] are
interpreted as disjunctions.

Note that executing steps 4 through 1dmfAbsReffor a specific factorf is
operationally similar to executing steps 1 through MainoSkolenwith a single-
ton set of factors, i.eFactors = { f}. This highlights the key difference between
InitAbsRefandMonoSkolemwhile MonoSkolemvorks with monolithic conjunc-
tions of factors and their compositioriajtAbsRefworks with individual factors,
without ever considering their conjunctions. Lemma 8 dsdée correctness of
InitAbsRef

Lemma 8. The vectolv” computed bynitAbsRefis an abstract Skolem function
vector for X in HX,Y). In addition,r0[i] andr1[i] computed bynitAbsRefare
refinements ofbo[i](F) andCb1[i](F) for every xin X.

Proof of Lemma 8. Consider the ordered pafi,i) of loop indices correspond-
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ing to the nested loops in steps-30 and 5- 10 of algorithminitAbsRef Every
update ofr0]i] andr1i]i] in steps 7 and 8 ofnitAbsRefcan be associated with
a unique ordered pair of loop indices. Define a linear ordernon the loop
index pairs as{(j,i) < (j/,i")iff j < j’,orj=j andi <i'. Note that this rep-
resents the ordering of loop index pairs in successivetiters of the loop in
steps 5- 10 of InitAbsRef We use induction ofj,i), ordered by<, to show that
r0[i] andr1ifi], as computed binitAbsRef are refinements afb0[i] andCb1[i].
The base case follows from the initialization in steps 1 arad BhitAbsRef To
prove the inductive step, consider an update-@f] andri[i] in steps 7 and 8,
respectively, ofnitAbsRef The functionf used in steps 7 and 8 is easily seen to
be Ix;....3x_1. fl. Sincef! is a factor ofF, we also havd= = f!. It follows
that3xg....3x_1.F = 3x....3x_q1.f) = f. Taking the contrapositive gives
—f = —3x1....3%x_1.F. Therefore,~f[x — a = (—3x1....3x_1.F)[X — @
for every propositional constaat Recalling the definitions afb0li] andCb1[i],
we get—f[x; — O] = CbO[i] and—f[x — 1] = Cb1[1]. By the inductive hypothe-
sis,r0li] andr1]i] are refinements dafb0[i] andCb1]i] prior to executing step 7 of
InitAbsRef Therefore, the updated valuesraffi| andri[i], as computed in steps
7 and 8 oflnitAbsRef are also refinements 6b0[i] andCb1[i]. This completes
the induction.

Sincer1[i] = Cb1]i] for everyx; in X when we reach step 11 bfitAbsRef it
follows from Proposition 9 thap” = —r1[i] abstracts a Skolem function farin
F. Hence VA, as computed binitAbsRefis an abstract Skolem function vector
for XinF. ]
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5.3.3 Termination Condition

GivenF (X,Y) and an abstract Skolem function vectot, it may happen thav”
is already a Skolem function vector f&f in F. We therefore check i#” is a
Skolem function vector before refinement. Towards this eredefine theerror
formulafor WA asF (X', Y) A AL; (X < WY A=F (X,Y), whereX'=(X},... X)) is
a sequence of fresh variables with no variable in common Mitfihe idea is that
the first term in the error formula checks the satisfiabilitydX. 3Y.F (X,Y). If
it is indeed satisfiable, then the second term assigns thevalf the variables to
the values given by the abstract Skolem functions and thethihd term checks

if this assignment violates the validity of the formula. Bhu

Lemma 9. The error formula forW” is unsatisfiable ifi” is a Skolem function

vector for X in F.

Example of Lemma/9: In our example, the error formula g, < x}) A (X; < X5)

A X X5) A GVY2) A (X1 Y1IAX) A (X< X3) A (X3 1) A—((y1<X)

A (X1 < X2) A (X2 < X3) A (X3VY2)). Note that the error formula is satisfiable. A
satisfying assignment (g1 = 0), (y2 = 1), (X; = 0), (X, =0), (3 =0), (x = 0),
(x2=1), (x3=1). It can be observed thé&y; A X2, X3, 1) is not a Skolem function

vector forX in F.

Proof of Lemma 9, Lete be the error formula fow”. Suppose is unsatisfiable.
By definition ofe, F(X',Y) AAL1 (% & WM A-F(X,Y), whereX'=(xX,,...X,) is
unsatisfiable. This implies th&(X’,Y) A =F’(Y) is unsatisfiable, wherg’(Y)
denotes(--- (F[x1 — @g]) - X — Pp]). Thus3Y.3X'. (F(X,Y)A-F/(Y)) is
false, i.e.,VY.VX'. (F(X',Y) = F/(Y)) istrue. This implies thatY.3X'. (F(X',Y)
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= F/(Y)) is true, i.e., VY. (IX".F(X',Y) = F/(Y)) is true. Therefore VA is a
Skolem function vector foX in F.

Supposetis a satisfying assignment ef By definition ofg, 1tis a satisfying
assignment ofF (X’,Y) and of \{_; (xi & L|JiA) AN—=F(X,Y), considered separately.
Thus, the values ofy, ... x, given byd}, ... W respectively, causg to evaluate
to O for the valuation o¥ in Tt However, there exists a valuation¥f(viz. same
as that ofX’ in m) that cause$ to evaluate to 1 for the same valuation\ofn
Tt Hence, VA is not a Skolem function vector fo in F, as witnessed by the

valuation ofY in 1t ]

Satisfiability of the error formula can be checked using 8Ay solver. If
the error formula turns out to be satisfiable, we use a saigssignment of the

formula to refine¥”, as explained below.

5.3.4 CounterExample-Guided Abstraction and Refinement

Lete be the error formula fow”, and letrtbe a satisfying assignmentafWe calll

Tt a counterexamplef the claim thatv” is a Skolem function vector. For every
variablev e X’ UXUY, we usen(v) to denote the value ofin Tt Satisfiability of

g implies that we need to refine at least one abstract Skoleotitump? in WA to
make it a Skolem function vector. Sing# is —r1[i] in our approach, refining*
can be achieved by computing an improved (i.e. more abytraction ofri[i].
Algorithm UpdateAbsRefmplements this idea by using to determine which
r1li] should be rendered abstract by adding appropriate fursctart [i], viewed
as a set.

Before delving into the details dipdateAbsRefwe state some key results.
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In the following, we uset = f to denote that the formulé evaluates to 1 when
the variables irbupp(f) are set to values given by, If Tt|= f, we also sayf
evaluates to 1 under We userO[ilinit andri|ifint to refer toro[i] andrifi], as
computed by algorithninitAbsRef SinceUpdateAbsRebnly adds tori[i] and
r0[i], viewed as sets, it is easy to see thalfi|int = rO[i] andri|ilint = rifil,
viewed as functions (recall these functions are simplyudisjions of elements in
the corresponding sets).

The following Lemma forms the basis for the refinement thatpedgorm in

the algorithmUpdateAbsRef

Lemma 10. Lettbe a satisfying assignment of the error formalfor VA, Then

the following hold.
(@) 1= —Cbo[n] vV =Cb1[n].
(b) There exists k {1,...n—1} such thatrt|= r1[k] Ar0[K|.

(c) There exists no Skolem function vedtor= (Y1, ... Pn) such thatp; < L|JjA
forall jin {k+1,...n}.

(d) There exists & {k+1,...n} such that x=1in 11, andtt|= Cb1[l] A —rO[l].

Example of Lemma|10: Recall that our running exampleis (y1 = 0), (y2
1), ¥, =0), (X, =0), (x3=0), (xg=0), (x2=1), (x3=1). SinceCbo[3
y1V —y2 and Cb1[3] = —yj, clearly Tt |= —=Cb0[3] V —~Cb1[3]. Recall thatro[1]

=Yy1Vx2 andri[l] = -y, V—-x2. Hence,mE= r1[1] Ar0[1] andk = 1. Note
that we havey, W2, W) = (Y1 A X2, X3, 1). It can be observed that there exists

no Skolem function vectow = (i1, P2, Y3) such thaty, < @2 and Yz < W5.
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Finally observe that since0[3] is —yp, Cb1[3] A —r0[3] is —y1 AYyo. Also TT|=
Cb1[3] A —r0[3] andl = 3.

For clarity of exposition, we postpone the proof of Lemma d@hte end of
this section.

Algorithm 14 UpdateAbsRegfuses Lemma 10 to compute abstract versions
of r0[i] andr1[i], and a refined version af*, whenw” is not a Skolem function
vector. The algorithm takes as inputs the current versiéms [ andr1[i] for all
X in X, and a satisfying assignmenbf the error formula for the current version
of WA, Sincem = F(X,Y) andmt}= —F(X,Y), and since the value of every
in Tis given by, there exists at least ong*, wherel € {1,...n}, that fails to
generate the right value &f when the value of is as given byt UpdateAbsRef
works by identifying such an indexand refiningyf. Sinceg? = —r1[i], the
refinement ot|J,A is effected by updating (abstracting) the corresponditifj set.

In fact, the algorithm may, in general, end up abstractirignty r1[l], but several
r0[i] andr1]i] as well in a sound manner.

As shown in Algorithm 14UpdateAbsRefirst finds the largest indeik such
thatTt}= r0[k] Ar1]k]. Lemma 10b guarantees the existence of such an index in
{1,...n—1}. We assume access to a function calBs=heralizehat takes as argu-
ments an assignmerttand a functior such thatt = ¢, and returns a functio&
that generalizeawhile satisfyingd. More formally, if§ = Generalizér, ¢), then
Supp(§) C Supp(d), =& and& = ¢. Thus, in steps 2 and 3 afpdateAbsRef
we compute generalizations ofthat satisfyr0O[k] andr1[k], respectively. The
functionp computed in step 4 is therefore such tiat pandp = r0[k] A ri[k].

The functionGeneraliz€r, ¢) can be implemented in several ways. Since

T = ¢, we could return a conjunction of literals correspondinghi assignment
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Algorithm 14: UpdateAbsRef

1

2

3

4

5

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Input: ro[i] andr1]i] for all x; in X,

Satisfying assignmenmtof error formula, i.e.

F(leY) A /\le (Xi A wﬁ) N _'F(X7Y)

Output: Improved (i.e. refinedy” = (7, ...y4), and

Improved (i.e. abstracted[i] andri]i] for all x; in X

k := largestj such thattsatisfiesr0[j] A ri[j];
Ho := Generalizér, ro[k]);

W1 := Generalizér, r1[k]);
M= Ho /A Ma;
[ :=k+1;
while true do /'l current guess:
if x; € Supp(p) then
if x = 1in1tthen

Mg = p[x — 1];

r1fl] == r1fl] U {p};

if Tsatisfiesr0]l] then

Ho := Generaliz¢r, r0]l]);
| Hi=Ho /A
else
break;
else

Ho =[x — OJ;

0[] := r0[l] U {po};

M1 := Generalizérm, r1]l]);

| Hi=Ho A
l:=1+1;

VA = (—r1[1],...-r1[n]);

return ro[i] andr1[i] for all x; in X, andwA

Wt to be refined
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™, or the functiond itself. From our experiments, it appears that the first optio
leads to low memory requirements, but increased run-tinegallarge number of
invocations ofUpdateAbsRefThe other option leads to higher memory require-
ments, but reduced run-time due to fewer invocationspdateAbsRefFor our
study, we letGeneraliz€r, r1[k]) return one of the functions in1 K] (viewed as

a set) that evaluate to 1 under We follow a similar strategy foGeneralizérr,
r0[k]) as well. This appears to give us a reasonable tradeoff leetwme and
space requirements.

Example (Continued): In the examplek = 1 since (i)t |= r1[1] Ar0[1], (ii) Tt}
r1[2] Ar0[2], and (jii) Tt~ r1[3] Ax0[3]. Sinceri[l] = —y1V X2, r0[1] =Yy1 VX2,

T =~y andTt = xp, Generalizé€m, r1[1]) returns—y;, andGeneraliz€rm, r0[1])
returnsxe. Hencep at step 4 is; A —y1. Note thatrt = pandp =- r0[1] Ar1[l].

Using Definition 2,Cb1[k] A CbO[K] is equivalent td—3x;. ... Ixx_1.F) X —

0] A (=3x1. ... 3x_1.F) X — 1], which is equivalent te-3x;. ... 3xc. F. Since
r1[k] = Cb1[k] andrO[k] = CbO[K], this implies thatO[k] Ar1[k] = —3x;. ... Ix. F.
Sincep = r0[k] Ar1[k], we have = —3x;. ... 3. F. This means that any ab-
stract Skolem function vector that produces valueg0f..x, (given value ofY

as inm) for which p evaluates to 1, cannot be a Skolem function vector. Since the
support ofitis {Xc;1, ... Xa} UY, one of the abstract Skolem functiap§, ,, ... yA
must be refined.

The loop in steps 6-21 ddpdateAbsRefries to identify an abstract Skolem
function quA to be refined, by iteratingfrom k+ 1 ton. Clearly, ifx; & Supp(l),
the value ofgf* underm is of no consequence in evaluatipg and we ignore
such variables. % € Supp(p) and if x =1 in 1, thenTt = px — 1]. More-

over, it can be observed thatat this step (i.e. at step 9) is such that-
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—3X....3x_1.F. Hence,ux — 1] = (—-3x....3x_1.F)[X — 1]. Recalling
the definition ofCb1[l], we haveux — 1] = Cb1[l], and thereforgyx — 1] can
be added ta'1[l] (viewed as a set) yielding a more abstract versionidf|. Steps
8-10 ofUpdateAbsRefmplement this update aft]l].
Example (Continued): Recall thatk =1 andp at step 4 iso A—y1. | =2, and
sincexz € Supp(M) andxz = 1 in 11, we reach step 9. Note thax; — 1] = -y
= Cb1[2] = (-y1V —x3). After adding—y1, r1[2] becomeq—x3, —y1} viewed as
a set, and-x3 V —y; when viewed as a disjunction.

Sincett = Y[x — 1], we havert|= r1|l] after step 10. If it so happens that
T = r0[l] as well, then we have = r0[l] Ar1]l], whereri]l] refers to the up-
dated refinement afbi[l]. In this case, we have effectively found an index k
such thatrt|= rO[k] Ar1[k]. We can therefore repeat our algorithm starting with
| instead ofk. Steps 11-13 followed by step 21 of algoritfwpdateAbsReef-
fectively implement this. Steps 11-13 updgateand step 21 incrementsby 1,
so that the implicatiop = —3x;. ...3x_1.F is preserved. If, on the other hand,
Tt b~ r0[K], then we have found anthat satisfies the conditions in Lemma 10d.
We exit the search for an abstract Skolem function in thig ¢ase steps 14-15).
Example (Continued): As we saw, at step 1@, (2] is updated to-x3 V —y;1. Note
thatr0[2] = x3, andTt = X3. Thus we reach step 1%eneralizér, r0[2]) returns
x3. Hencep at step 13 isxg A —y1. The value ofl is now incremented to 3, and
the next iteration of the loop starts. Sinege Supp(M) andxz = 1 in 11, we reach
step 9. Note thati[xz — 1] = —y; = Cb1[3] = —y1. Adding—y; to r1[3] makes it
{=y1}. Sincer0[3] = —y», andrtdoes not satisfy0[3], we exit from the loop.

If = 0in 1L, a similar argument as above shows thjat — 0] can be added

to rO[l]. Steps 17-18 oblpdateAbsRefmplement this update. As before, it is
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easy to see that = r0[l] after step 18. Moreover, singe= AL, (% < Y#) and
WA = —r1]l], in order to haveg = 0 in 1, we must havet = r1[l]. Therefore, we
have once again found an index k such thatt |= rO[k] A r1[k], and can repeat
our algorithm starting with instead ok. Steps 19-21 of algorithtdpdateAbsRef
effectively implement this.

Once we exit the loop in steps 6—-21 dpdateAbsRefwe compute the re-
fined Skolem function vecto¥” as(—r1[1],...—r1[n]) in step 22 and return the
updatedro[i], r1[i] for all x; in X, and alsob”.

Example (Continued): Recall that, we changett [2] to —y; VV —X3, andr1[3] to

—y1. Thus after exit from the loop, we hawel [1] = —y1 V=X, r1[2] = —y1 V —X3,
andr1[3] = —y;. The refined Skolem function vect®” is (y1 A X2, Y1 A X3, Y1).

Note thatr1[2] andr1[3] have become more abstract after refinement, which has
led to more refined)s andys.

We now present the proof of Lemma 10.

Proof of Lemma 10. Part (a):Consider an assignment of variables inX U,
such thatt(x) = 1(x)) for all x; € X, andrt(y;) = 1(y;) for all y; € Y. Sincemn =

€, by definition ofe, we havert = F(X’,Y). This implies that? = F(X,Y) and
henceyT =3xg. ... Ip-1.F. If o =1in T, we getit = (3Xg. ... Ip-1.F) [Xg —
1], or equivalently, 7 = —Cb1[n]. If X, =0 in ¢, by a similar argumentit =
—CbO[n|. Therefore,’ = —Cb1[n] V —~CbO[n]. Sincex, is the variable with the
highest index inX, bothCb1[n] andCb0[n] have onlyY as their support. Since
T (y;) = T(y;) for all y; €V, it follows thatTt = ~Cb1[n] vV =CbO[n| as well.

Part (b): Sincet |= €, by definition ofe, we havert|= -F(X,Y). SinceF =
/\[q:1 f9, there existg € {1,...r} such thatt = —f. Without loss of generality,

assume thaBupp(f!) # 0 (otherwise,f! can be removed fromg_; f9). Letx
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be the variable with the smallest indexSopp(f}). We claim thatx = 0 in Tt
and prove this by contradiction.

If possible, letx, = 1 in Tt Then,mtl= (- f1)[x — 1]. Sincex is the lowest in-
dexed variable iSupp( f1), it follows from algorithminitAbsRefthat(—f1) [ —
1] € r1[Kinit, whenri[Klini is viewed as a set. This implies thét f1)[x —
1] = r1[Klinit, whenri[Kinit is viewed as a function. Hence, = ri[K|init, and
sincer1[Kjint = ri[k], we havert = r1]k]. By definition of g, we also have
ME (% < W), wheregf = —ri[k]. It follows thatx, = ¢ = 0 in Tt This
contradicts our assumptiorg(= 1), and hencey must be 0 inrt

Sincexx = 0 in 1, following the same reasoning as above, we can show that
T = ro[k]. Furthermore, since = (x < YY) andyi = —r1[K], havingx = 0 in
rtimplies thatrt = r1[k]. Hence, = r0[k] Ar1]K]. It now follows from part (a)
thatk # nand henc& € {1,...n—1}
Part (c):We prove this by contradiction. If possible, let there be al&k function
vector ¥ such thaty; < @2 for all i in {k+1,...n}. Sincem|= F(X',Y), it
follows thatTt = 3x;. ...3xy.F. Therefore, by definition of Skolem functions,
M= (- (FXg — W1]) - [Xn = Wn]). Since we have assumdd < Y for all i
in {k+1,...n} and sincert = Al (x < @), it follows thatTt = (- (F[xg +—
1)) -+ [X — Yg]). However, we know from part (b) that = rO[k] A r1]K]
and hencet = Cb0[k] A Cb1[k]. Recalling the definitions ofb0[k] and Cb1[k],
we gettt = (—3x;....3x. F). This contradicts our inference above, i.8.
(«+-(F[xg+— W1])--- % — W]). Hence our assumption is wrong, i.e. there is no
Skolem function vectow such that; < @ for alliin {k+1,...n}.
Part (d):We prove this by contradiction. If possible, suppoge= 0 in T, or

T|= —Cb1[l] v ro[l] for all | € {k+1,...n}. For convenience of notation, let us
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call this assumptioi in the discussion below.

If x =0 in 1 then sincert= AlL;(x < 2) and ¢ = —ri]i] for all i €
{1,...n}, it follows thattt|= r1[l]. Sincer1]l] = Cb1[l], we haver = Cb1]l] as
well. It is also easy to see that whenevel= —Cb1[l], thentt}= —r1[l] as well.
Therefore, ifx = 0 in tor if Tt= —Cb1[l], then bothCb1|[l] andr1]l] evaluate to
the same value under

Consider the subcase of assumptidwherex; = 0 in 11, or TT|= —Cb1[l],
for all | € {k+1,...n}. From the discussion above, eithef= Cb1[l] Ari[l] or
Tlj= —Cb1[l] A—ri]l] for all | € {k+1,...n}. Now consider the Skolem function
vectorV given by Proposition|9. Sinog = —Cb1[l] andy® = —r1[l], it follows
that there exists a Skolem function vector, W, such that);, < quA for all | in
{k+1,...n}. This contradicts the assertion in part (c) above. Henceamaat
havex, =0 inttor = —Cb1[l], foralll € {k+1,...n}.

If assumptiorA has to hold, there must therefore exist sdrae{k+1,...n}
such thatq = 1 in mandm = Cb1[l] ArQ[l]. Sincer0|[l] = Cbo[l], we must have
T = Cb1[l] A CbO]l] in this case. From part (a), we know that= —Cb0[n] Vv
—Cb1[n]. It follows thatl is strictly less tham, and we can repeat the entire
argument above with assumptidnrestricted to indices i{l +1,...n}. Note
that{l +1,...n} is non-empty (sincé < n), and is a strict subset ¢k+1,...n}
(sincel € {k+1,...n}). Therefore, restricting assumptiénto smaller subsets
of indices can only be done finitely many times, after whiceréhwon't be any
| in the set of indices under consideration such #hat 1 in TtandTt = Cb1[l| A
r0[l]. This shows that assumpti@nis false, thereby proving the assertion in part
(d). O

Lemma 11. Algorithm UpdateAbsReflways terminates, and renders at least
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onert[i] strictly abstract, and at least ong? strictly refined, for ic {1,...n}.

Proof of Lemma 11. By Lemma 10a, we know that = —Cb0[n] V —Cb1[n], and
thereforert = —r0[n| v —r1[n]. Since steps 12-13 or 17-20 bfpdateAbsRef
can be executed only when= r0[l] Ar1[l], and sincd is incremented in every
iteration of the loop in steps 6-21, it follows that steps lI8-must be executed
for somel < n. Therefore, algorithnupdateAbsReélways terminates.

It is easy to see from the pseudo-code of algorithpdateAbsRethat steps
7-10 and 14-15 must be executed before exiting the while (stgps 6-21) and
terminating. Before executing step 10, we hgve 1inmtandri= AL, (x < @)

. Sincey* = —r1]l] before step 10, withy = 1 in 11, it must be the case that
T = —r1]l] before step 10. However, singel= pjx — 1] in step 9, we have
Ti=r1[l] after step 10. Therefore, executing step 10 rendeji$ strictly abstract
than what it was earlier. This also implies tiigt= —r1]l] is strictly refined when

UpdateAbsRefeturns in step 23. O

TheCegarSkolemlgorithm can now be implemented as shown in Algorithm 15.

Theorem 2. CegarSkolerfF (X,Y)) terminates and computes a Skolem function

vector for X in F

The proof of this follows from Lemmas 8, 9 and/ 11.

Proof of Theorem/2. By Lemma 11, we know that every invocation dpdate-
AbsRefrenders at least onet|i] strictly abstract than what it was earlier. Since
ri[i] is a propositional function, it has finitely many mintermsiazan be ren-

dered strictly abstract only finitely many times. From Prgipon 9, we also know
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Algorithm 15: CegarSkolem

Input : Propositional formuld (X,Y) = Aj_; f1(X;,Y;), where
X =(X1,...Xn)

Output: Skolem function vectow(Y) for X in F

(WA, {rofi],r1[i] : 1<i < n}) = InitAbsRefAj_; f));

g:=F(X,Y)AALL(% & WM A-F(X,Y);

=

N

3 while € is satisfiabledo

4 Let rtbe a satisfying assignment &f

5 (WA, {rofi],rtfi] : 1<i<n}):=
UpdateAbsRéf r0[i],r1[i] : 1 <i<n}, m);
6 | €:=FX Y)AAL;(X < W) A-F(X,Y);

~

V(Y) := ReverseSubstituter1[1],...—-r1[n));
return V(Y);

[ee]
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that (—Cb1[1],...—Cb1[n]) is indeed a Skolem function vector, and therefore by
Lemmal 9, its error formula is unsatisfiable. The terminatdérCegarSkolem
follows immediately from the above observations. Siagge unsatisfiable when
CegarSkolenterminates, it follows from Lemmal 9 that the vector of funos

returned is a Skolem function vector f&rin F. ]

Example (Continued): As we saw, the refined Skolem function vectof is
(Yo AX2, Y1 A X3, Y1). Hence, the new error formula {§1 < X)) A (X < %)

A (X X5) A (X5VY2) A (X1 y1AX) A (X< YiAXs) A (e Y1) A-((y1<
X1) A (X1 < X2) A (X2 < X3) A (X3VY2)), which is unsatisfiable. Recall from
Section 5.2 thaty; A X2, Y1 A X3, Y1) is a Skolem function vector foX in F. After
ReverseSubstitutere have(Ws, Yo, W3) = (Y1, Y1, Y1)-

5.3.5 Variants

In this subsection, we describe some variant€efarSkolenthat we explored.
Notice thatCegarSkolenerminates only when the error formw&ecomes unsat-
isfiable. Hence the performance@égarSkolensrucially depends on the number
of CEGAR iterations and the time consumed in SAT solver calig theck the
satisfiability of the error formul&. The primary motivation behind exploring
these variants was to simplify the SAT solver calls and taicedthe number of

CEGAR iterations.

Optimization Using Interpolants

Recall that at step 10 dfpdateAbsRefy; is added tori[l] to obtain a more
abstract version of1[l]. Recall thatyy = Cb1[l]. Hencepy A F(X,Y) A X is
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unsatisfiable. Lev be an interpolant ofy andF (X,Y) A x. Note thatyy = v
andv A F(X,Y) A x is unsatisfiable. Hence rather than addiago ri[l], we
can addv to r1[l]. Similarly, at step 18 oUpdateAbsRefather than addingo,
we can add an interpolant p§ andF (X,Y) A —x to r0[l].

Simplification of €

The error formulag in CegarSkolemnvolves two copies of: F(X'Y) and
-F(X,Y). It turns out thate can be simplified by replacing the occurrence of

—-F(X,Y) by a simpler formula.

Definition 3. Thea function for x in F, denotedx|[x;|(F), is defined to bé3x;.
v Xi—1. F) X — 1 A (53X1....3X-1.F) [X — 0O]. Similarly, thef function for
xi in F, denoted3[x|(F), is defined to b&3x;....3x_1.F) [Xi — O] A (=3xq. ...
3x_1.F) [x — 1]. When X and F are clear from the context, we a§¢and f3[i]

for a[x|(F) andB[x](F), respectively.

We changenitAbsRefso that it computes refinements ofi] and f[i] de-
noted asi[i] and[i] (seelnitAbsRefMod1: Algorithm [16). We represerli]
andﬁ[i] as sets of implicitly disjoined functions. Note tHaittAbsRefMod1 con-
siders each factof in A\'_; fJ(X;,Y;) and accumulates the contribution bfto
ali] in a[i] for everyx; in the support off. Similarly the contribution off to
B[i] are accumulated ilﬁ[i]. If x; € Supp(f), the contribution off to ai] is
(Ixz....3-1. F) % — 1 A (=3xq....3%-1. F) [% — O], and its contribution to
Bli] is (Ix1....3xi—1. F) X — O] A (—3xX1....3x—1. T) [x — 1].

InitAbsRefMod1 also computesi[i] A ﬁ[i], which we call as bad We for-

-~

mally defineali], B[i], and bagas follows.
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Definition 4. Thed function for xin F = Aj_; f1, denotedi[x](F), is defined to
beVi_g ((3x1.... Ii—1. f1) [ = A (=3xa.... 1. 1) [ - 0]). Similarly the
Efunction for xin F, denotqu[xi](F), is defined to ba/ﬁzl((Elxl. 3. fj)

X — O] A (—3xa....3x—1. fj) [Xi — 1]). When X and F are clear from the con-

text, we us@|i] and[i] for a[x](F) andB[x(F), respectively.

Definition 5. Thebadfunction for xin F = /\Ezl fi, denotedad, (F), is defined
to bed[x](F) A E[xi](F). When X and F are clear from the context, we bad
for bad, (F).

Notice thatinitAbsRefMod1computesp? as—r1[i] v ro[i] unlike InitAbsRef
which (:omputes.lJiA as—rifi]. Similarly, we changeJpdateAbsRefo that it
computesb” as(—r1[1] V r0[dini, ... ~r1[n] V ro[n)int ), wherero[ilint denotes
r0[i] as computed bynitAbsRefMod1l The changed version ddpdateAbsRef
is calledUpdateAbsReModl As we will see, these changes are important for
applying the simplification om that we describe here.

SincerO[i]int = CbO[i], for any valuation of variable;1,...%,) andy, if
rOli]init evaluates to 1, then any Skolem function %oin F should also evaluate
to 1. Hence using-ri[i] v rO[i]int instead of-r1[i] asy? does not cause any
loss of correctness. Thus Theorem 2 can be proved on thewafi@egarSkolem
that callsinitAbsRefMod1 and UpdateAbsReMod1 in place ofInitAbsRefand
UpdateAbsRef

More interestingly, these changes allow us to use a difterersion of the

error formula.
Lemma 12. The formulag’ defined as EX',Y) A AL (% < WA A (bad V...V
bad, 1) for WA computed ag—r1[1] vV rO[dini, . .. ~r1[n] vV ro[njint) is unsatisfi-

able iff WA is a Skolem function vector for X in F.
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Algorithm 16: InitAbsRefMod1

1

2

10

11

12

13

14

15

16

Input: Prop. formulaF (X,Y) = Aj_; f1(X;,Y;), whereX = (xq,...Xn)

Output: Abstract Skolem function vecta¥” = (Y7, ..., W4, rOli], r1fil,
ali, B[i], and bagfor eachx; in X

for iin 1to ndo

r0[i] :=0; r1[i] :=0; Ali] :=0; E[i] :=0;// Initializing

—

or jin1ltordo

f:=fl:// Consider factor separately

for iin 1to ndo
if x; € Supp(f) then
r0[i] ;= ro[i|U{—f[x — O] };
rifi] i=r1fiju{~fx — 1}
ali] :==aliju{f[x — JA-f[x— 0}
Bli] :=Bli] U {fx — 0] A—F[x — 1}

[l Skolemfunction for x in f
Wi = fix—1];
=X Wit/ fX—Yif]=3x.f

for iin 1tondo
WA 1= —rtfi] v rofi;
bad := a[i] ABIi];
Il Interpreting rifi], roli], dli], E[i] as functions

return WA=(A, ... @A), r0]i],r1]i], @[i], B[i], andbad for each xeX
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Proof of Lemma 12, Proofin one direction is easy. Let us assumegiat .., y7
are Skolem functions for variables, ..., x, in F. Let us consider any solutiam
of F(X',Y), i.e,,F(x],...,X,,Y). Letw be the value assigned to the variables in
Y by Tt Lety),..., W4 evaluate ton, ..., vy for Y = w. Note thatF (xq, ..., Xn,Y)
[X1 V1] ... [Xn— Vn] [Y — W] is true, sinced), ..., are Skolem functions for
variablesxy, ..., xn in F. Suppose some badb true for (xg =v1), ... ,(Xn = Vn),
(Y =w), where 1< j < n— 1. This means that boff| j] andﬁ[j] aretrue, which
actually implies that one of the factors will evaluatefatse for (x; = v1), ...
,(Xn = Vn), (Y =wy), i.e., F will evaluate tofalse for (x; = v1), ... ,(Xnp = Vn),
(Y = w). This means that bad .. ,bad,_; should befalse for (x; =), ...
,(X» = Vn), (Y =w). Hence, ifY7,...,ws are Skolem functions for variables
X1,...,%y In F, then for any values of variables inY for which there exists
Xy, ..., X, such thafF (x,...,x,,Y) is satisfiable, bad. .. ,bad,_1 should befalse,
and hence’ should befalse. This means that’ is unsatisfiable.

Let us consider the proof in the other direction.

In the nestedor loop in Algorithm[16 steps 3—-12, we make an additional
assumption that; € Supp(f) is alwaystrue. This assumption is only to simplify
the notation, and the proof can be done even without thiswasson. We denote
Ixg.... 3. L, 3xg.. . 3x. frasfl .. ff. The factorsfl, ... f" are denoted
as f3,..., f{. We definew, for 2<i <n, as(bad Vv (@[i] A wi_1[% — 1]) V
(ﬁ[i] AWi—1[X — 0]) V (wi—1[X — L Awi_1[x — 0O])), andw; as bad.

Let us assume that is unsatisfiable. Note that&(x;,...,X,,Y) is unsatisfi-
able, then anyp?), ..., 4 are Skolem functions for variables, . .., x, in F.

The interesting case is whérix],...,X,,Y) is satisfiable. This implies that for

any valuew of variables irY such thaf (X}, ...,x,,Y) is satisfiable, bad. .. ,bad_1
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arefalse. In the following, we will prove that in this casen/i\, ..., A are Skolem
functions for variables, ..., X, in F. Our proof makes use of the following

claims.
Claim 3. g is a Skolem function forin X A ... AL .

Claim 4. F(X1,...,%,Y) [Xo— W] ... [%q — WA is equivalent ta 1 A... A fl)
A —badi[x — WA] ... [Xn— WA A... A ~bach_1[% — WA] A <badh.

Claim 5. 3x;.... 3. F(X1,..., %y, Y) is equivalent t fA A ... A 1) A oo,

Claim 6. For any value v of variables in Y such that &,...,X,,Y) is sat-
isfiable, and values of1x...,X, such that(x; = ¢}),..., (%, = W) for which

bad,...,bad, 1 arefalse, w, evaluates tdalse.

Proof of Claim(3. Recall that the Skolem functiap* has the formr1[i] vV rO[i]init.

Hence,

— Case 1: For the values of the other variables for whichnust be set to
true for f1 A ... Aff | to becometrue, @[i] is true. Hence there exists
an fitl such thatﬁfitl[n — 1] is false andﬂfill[xi — 0] is true. Since

_‘fij_l[xi — 0] = r0[ilinit, L|J{'\ IS true.

— Case 2: For the values of the other variables for wkichust be set tfalse
for f1 A ... Af[_; to becometrue, B[i] is true. Hence there exists aﬂ_1
such that- fiﬂl[xi — 1] is true andﬂfiﬂl[xi — 0] is false. Since— fiﬂl[xi —
1] = r1[i], we haver1|i] = true and—r1[i] = false. Moreover, since! ;A
... Afl_, is true, there cannot exist anff ; such that ()~ f* ;[x — 1] is

true and—fX | [x +— 0] istrue or (ii) ~fX ;[x > 1] is false and—=f¥ | [x — O]
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is true. This means that for all® ;, we have-f¥ | [x — 0] asfalse. Hence

rOli]init is false, and hencepiA is false.

Similarly, it can be observed that

— Case 3: For the values of the other variables for wikjatan be set torue

or false for f1 A ... Afl_ | to becomerue, P is true.

— Case 4: For the values of the other variables for which onkeofactors in

fl A ... Afl_ cannot be satisfied)® is a[i].

— Case 5: For the values of the other variables for whighis true andﬁ[i]

iS true, L|J§°‘ iS true.

Note that in each of these casé§! ;A ... Af[ ;) [x — Q] is equivalent to
. (fL4A ... Aff ), and henc@ is a Skolem function fox; in f1 (A ... Af ;.
(end of proof of Claim 3) ]

Proof of Claim/4. From Claim 3F (x,...,%n,Y) [X1 — W}] is equivalent talx;. (f3A
... Af}). Note thatxy. (f3A ... Af)) is equivalent to f1A ... Af]) A —bad.
Similarly, F (X, ..., %, Y) [X1 — W]] X2+ W5] is equivalent ta(f1A ... Af])
A —bad)) [z — W5]. Note that( fiA ... Af]) X2 — W5] is equivalent to f3A ...
Af3) A —bad. HenceF (xa,...,%n,Y) X1 — WY] [X2 — W3] is equivalent to f3A
.. AfD) A —bad A —badi [xp — P5).
Proceeding in this manner, it can be proved thaty, ..., Xn,Y) [X1 — Lp’i\]
[Xa — WA is equivalent ta f1A ... A f) A —badi[xz — Wh ... [Xn— WA A... A
—bad,_1[Xn — WA] A —bad,. (end of proof of Claim 4) O

Proof of Claim’5. We will prove that3x;....3x.F(x1,...,%n,Y) is equivalent to

(fIA... A1) A = for 1 <i < nusing induction on.
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Base case is easy to prove. Notice that.F(xy,...,Xn,Y) is equivalent to
(fIA...Af]) A —bad. Note that baglis the same as;. Hence3x. F (X, . .., %n,Y)
is equivalent ta f1 A ... A f]) A -

Supposedxs....x_1.F(X1,...,X,,Y) is equivalent to( fiﬁlA AN A
—wji_1. Note that3xy.... 3x. F (X1, .., X0, Y) is . (FL AL AFL ) A —ig).

It can be observed that this is equivalent(fd A ... A f1) A = (bad V (@li] A
@10 = 1) V Bli] Aw-1lx = 0)) V (@-1[x — 1 Ay -1[x — 0])), which is
the same aéft A... A 1) A -y (end of proof of Claim 5) O

Proof of Claim'6. Consider any valuey of variables irY such thaf (X}, ...,X;,,Y)
is satisfiable, and values ®f, ..., x, such tha(x; = W3), ..., (X, = W4) for which
bad,...,bad, 1 arefalse. Lety?,..., W4 evaluate tov,...,v, underw. This
means that bad 1[X, — vn|[Y — W] is false, bad_2[Xn—1 — Vn_1][Xn — Vn][Y —
V| is false, ..., and bad[Xo — Vo] ... [Xn — V] [Y — W] is false. Note that
bad[Y — w] is alsofalse, sinceF (X3, ..., X, Y) is satisfiable folY = w.

Recall thaty is bad v (@[i] Awy_1[x — 1]) V (B[i] Aw_1[% — O]) V (@ _1[x —
1] Awi—1[% — Q]). Note thatw is a formula on variablegi 1,...,xn, Y. Let us

evaluate each disjunct wy for (Xi+1 = Vit+1),-.., X =Vn), (Y =Ww).

— Consider bad We have badixi 11 — Vii1] ... [Xn — Vo] [Y — W] is false.

— Considera[i] Awi_1[X — 1]. Letd]i] betrue for (Xi+1 = Vi+1),...,(Xh =
Vi), (Y =w). From Claim 3, we know thap” is a Skolem function for
x in fL A ... Al . Hence, ifd[i] is true, then@f is true, i.e., Vi is true.
Therefore, ifa[i] is true, thend[i] A wj_1[x; — 1] is the same a1 [X; — V]

for (Xi+1=Vit1),---, Xa=Vn), (Y =W).



191

- Considelﬁ[i] Awi_1[X — 0. Letﬁ[i] betrue for for (Xi+1=Vi+1),..., X =
Vi), (Y = w). From Claim 3, we know thap” is a Skolem function fox;
in f1 A ... Afl ;. Hence, ifﬁ[i] is true, thenQ is false, i.e., Vi is false.
Therefore, ifﬁ[i] iS true, thenﬁ[i] Awi_1[X — 0] is the same as_1[X — Vi
for (Xi+1=Vit1),---, Xa=Vn), (Y =W).

— Considemy_1[% — 1] Awi_1[x — O]. It can be written asy_1[X — Vi] A

Wi—1[Xi — Vil

Hence,w reduces to eithem_1[x — Vi] or W_1[X — Vi] A i_1[X — —Vi]
for (Xi+1 =Vit1),..., X = Vn), (Y = w) where 1< i < n. Sincewy is bad and
bad[Xo — Vo] ... [Xn — Vn] [Y — W] is false, wy, evaluates tdalse for (Y = wy).

(end of proof of Claim 6) ]

Consider any valuey of variables iny such thaf (x3, ..., x;,Y) is satisfiable,
and values oy, ..., X, such thatxy = @7), ..., (xn = W4) for which bad, . .. ,bad,_1
arefalse. Using Claim 6.y, evaluates tdalse. SinceF (X},...,x;,,Y) is satisfiable
for (Y = w), bad is false. Now using Claim 4 and Claim 5, bofh(x, ..., Xn,Y)
X1 = W] ... [Xn— WA @and3Ixg.... 3xn. F (X1, ..., X, Y) evaluate to to the same
value(fiA...AfY). Thus for any valugy of variables iny such thaf (x}, ..., x,Y)
is satisfiableF (X1, ..., Xn,Y) [X1— W] ... Xn+— WAL Iff 3xq.... 3. F (X1, ..., %n,Y).

Hencetpf, ..., A are Skolem functions for variables, ..., x, in F. O

Note thate’ uses(bad Vv ...V bad,_1) in place of=F(X,Y). As the bad
functions are constructed by considering the individueldes separately without
constructing their conjunctions, we expébad V ...V bad,_1) to be a function
simpler than-F (X,Y). The variant ofCegarSkolenthat usednitAbsRefMod],
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UpdateAbsRelModlande¢’ instead ofinitAbsRef UpdateAbsRefnde is called
CegarSkolenMod1

Refining Skolem Functions Bottom-Up

The error formule in CegarSkolenchecks the correctness of a vector of Skolem
functions. Supposeis satisfiable. As per Lemma 9, this implies th@L...Lpﬁ

are not Skolem functions fog, . .. X, in F. However, it may happen th¢|@+1, T
are already Skolem functions fag, 1, ... X, in F for 1 <k < n, and satisfiability of

€ is happening due to the reason that some of the Skolem flmsdlinpf,...w{,f

are still abstract. In such situations, it is useful to chéck specific Skolem
function is correct, rather than checking the correctndss wector of Skolem

functions. We can modify the error formula to achieve this.

Lemma 13. The formulagy defined as EX',Y) A AL1 (% < W) A=F(X,Y) A
X AXA (Kei g =Xi1) A~ .. A (X = Xn) is unsatisfiable iffj; is Skolem function

for xc in F, wherel <k < n.

Proof of Lemma 13. Note thategy is € with the additional constraintéy = 1),

(% = 0) and (X1 = Xk+1), ---» (X3 = Xn). The constraintgx. ; = Xk1), - .-

(X, = Xn) are added under the assumption m@h, ..., WA are Skolem functions

for variablesxy. 1,...,%, in F. This is a reasonable assumption to make, since as
we will see, we will fix the Skolem functiongy' ;. .., s before fixingy. Since

i is an abstract Skolem function, the constraipds= 1) and (x, = 0) capture

the only condition under which our choice lpﬁ‘ is wrong. n

We present a variant degarSkolentalled CegarSkolenMod2 (see Algo-
rithm[17) that fixes the Skolem functions in a pre-defined ou$ing Lemma 13.
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Algorithm 17: CegarSkolenMod?2

Input : Propositional formulde (X,Y) = Aj_; f1(X;,Y;), where
X = (X1,...%Xn)
Output: Skolem function vectoW (Y) for X in F
1 (WA, {rofi],r1[i] : 1<i < n}):= InitAbsRe{A'_; f));
2 forkinntoldo
3 | &c=FXLY)AALL(XG € WY A=F(X,Y) A X AXA (X g =
Xki1) A e A (X = Xn);

4 while g is satisfiabledo

5 Let tbe a satisfying assignment &f;
6 (WA, {xO[i],r1i] : 1<i<n}):=
UpdateAbsRef r0li], r1[i] : 1 <i < n}, 10);
7 g = F(XLY)AALL(X < W A=F(X,Y) A =X AXA (X =
B Xt 1) Ao A (X = Xn);

8 £:=F(X ,Y)AAL (% & YY) A=F(X,Y);
9 if €is unsatisfiabléhen
10 L break;

11 V(Y) := ReverseSubstituter1[l],...-r1[n));
12 return V(Y);
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CegarSkolenMod2 initially checks the satisfiability of,. If €, is unsatis-
fiable, theanﬁ is a Skolem function fox, in F. Otherwise ife, is satisfiable,
thenCegarSkolenMod2 calls UpdateAbsRefo refiney?, ... y3. Then the satis-
fiability of €, is again checked, and this loop repeats upfilbecomes a Skolem
function forx, in F. The first iteration of théor loop thus fixes Skolem function
for x,. The subsequent iterations fix Skolem functions for vagskj_1,...,X;.
After fixing the Skolem function foxy, the satisfiability ofe is checked to see
if W7,...WH are Skolem functions foxy,...x, in F. If € is unsatisfiable, then

CegarSkolenMod2makes an early exit from tHer loop.

5.4 Experimental Results

5.4.1 Benchmarks

The Skolem function generation benchmarks were obtainedobgidering se-
guential circuits from the HWMCC10 benchmark suite [107], agddrmulat-
ing the problem of disjunctively decomposing the circutbitomponents as a
problem of generating Skolem function vectors. Each bemrchns of the form
IX.F(X,Y), whereF (X,Y) is a conjunction of factors, and was generated in the
following manner.

The HWMCC10 benchmarks are circuits in .aig format. In orderedoeay-
ate our benchmarks, we first read each circuit, and thenagtrdahe symbolic
transition function of the circuit. Letx} = f1(X, 1)) A... A (X, = fn(X,1)) be the
symbolic transition function extracted, whefe= (x1,...,X,) is the present state,
X' = (X},...,%,) is the next statd, = (i1,...,im) are the inputs, and, ..., f, are

transition functions for the state variables..., X, respectively. We generated
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benchmarks of the forAX.F(X,Y) from each symbolic transition function in
the following manner.

The first benchmark is of the forai . ((x1 # f1(X,1)) V...V (xn # fa(X,1))).
Note that for a given stat¥, a value of variables ih that satisfies the formula
(x1 # f1(X,1)) V...V (xa # fa(X,1)) gives an outgoing edge frotd which is
not a self-loop. Hence the benchmark represents the proliBamerate Skolem
functions for inputs in | such that the outgoing edge enablethe chosen values
of inputs is not a self-loap

To perform factorization, we did one-level of Tseitin entwd[100]. LetZ =
{Z3,...,Z,} be the Tseitin variables introduced. Two versions of thecharark
were generated after Tseitin encoding: {l) ((Z1 = (X1 # f1(X,1))) A ... A
(Zn= (Xn # Tn(X, 1)) A (Z2V ...V Zy)), and (i) 31.3Z. ((Z1 = (x1 # f1(X,1)))
Ao AN (Zn= (a7 Tn(X, 1)) A (Z1V ...V Zy)).

The second benchmark is of the foeth ((f1(X, TRUE) # f1(X,I)) v ... V
(fa(X, TRUE) # fn(X,1))), whereTRUE indicates that all inputs are set txe.
Note that for a given stat¥, a value of variables i that satisfies the formula
(f1(X, TRUE) # f1(X,1)) V ... vV (fa(X, TRUE) # fa(X,I)) gives an outgoing
edge fromX which is not leading to the same state as led by the edge enabled
when values of all inputs ateue. Hence the benchmark represents the problem:
Generate Skolem functions for inputs in | such that the aotgedge enabled by
the chosen values of inputs is such that it is not leadingeéstdme state as led by
the edge enabled when values of all inputstace.

As in the case of the first benchmark, to perform factorizgtiee introduced
Tseitin variables and did one-level of Tseitin encodingt Ze= {Z1,...,Z,} be

the Tseitin variables introduced. Two versions of the bematk were generated:
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() 3. ((Za = (f1(X, TRUE) # f1(X, 1)) A ... A (Zn= (fa(X, TRUE) # fr(X,1)))
A(Z1V...VZy)), and (ii)31.3Z. (21 = (f1(X, TRUE) # f1(X, 1)) A ... A (Zn=
(fa(X, TRUE) # fo(X,1))) A (Z1V...V Zp)).

The third benchmark is similar to the first benchmark of therfal. (x; #
f106,1)) V ... vV (%0 # fa(X,1))). However, we added a formul(X) : (x; =
f1(X,91(X))) A ... A (X0 = (X, 0n(X))) as an additional disjunct, whege(X),
..,On(X) are functions oX. Thus we have3l. ((x1 # f1(X,1)) V ... V (Xn #
fn(X,1)) vV A(X)). We then did one-level of Tseitin encoding and existentiall
quantified the Tseitin variables to get the final benchmakzasll. ((Z1 = (x1 #
f1OGD)) A o A (Zn= (% # Ta(Xo1)) A (Zner = AX)) A (ZaV ...V ZpV
Zni1)), WhereZ = {Zy,...,Zy1} are the Tseitin variables. The additional dis-
junct A(X) guarantees thatZ.3l.((Zy = (x1 # f101)) A coo A (Zn= (X0 #
fn(X,1))) A (Zny1 =AX)) A (Z1V ...V ZnV Znt1)) is valid. Note that for any
given stateX, the variableZs, ..., Z, becomefalse when the only outgoing edge
from X is a self-loop. However in this cagg, ; is true irrespective of the values
of the functionsyy (X),...,0n(X). Hence3Z.31.((Z1 = (x1 # f1(X,1))) A ... A
(Zn= (%0 # Tn(X, 1)) A (Zny1 =AX)) A (Z1V ...V ZyV Znyi1)) iS true for any
X.

After generating these benchmarks from the symbolic ttimsfunction ex-
tracted from each circuit, the benchmarks such that the rurmbexistentially
guantified variables is less than 20 are avoided from theHhrearck-suite. Sim-
ilarly the benchmarks for which none of the algorithms usethe experiments
could generate Skolem functions are also avoided. Finadlyhewe 424 bench-
marks.

We divided the benchmarks into two categories: a) TYPE-Icberarks
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where3X.F(X,Y) is valid, and b) TYPE-2 benchmarks whesX.F (X,Y) is
invalid. Among the 424 benchmarks, 160 are TYPE-1 benchmarks andr264
TYPE-2 benchmarks.

5.4.2 Experimental Methodology

For experimental evaluation, we r&egarSkolenmand MonoSkolenon all the
benchmarks. We also compared the performandeegfarSkolemvith tools that
generate Skolem functions from the proof of validity=2X. F (X,Y). Since these
tools generate Skolem functions only for vali{. F (X,Y) formulas, and require
the input to be in gdimacs format, we converted each of the TYPE-1 benchmarks
into . gdimacs format using Tseitin encoding.

We generated QRAT proofs for the TYPE-1 benchmarks usinpitiager [108]
tool, and then used thgat-trim tool [17] to generate Skolem functions from the
QRAT proofs. We refer twlogger + grat-trim asBlogger below. We also gener-
ated the cube-resolution proofs in QRP format for the TY P Eerichmarks using
the QBF solvemDepQBF [106], and then used th@BFcert framework [109] to
generate Skolem functions from the QRP proofs. We refeetBF + QBFcert
asDepQBF below.

Our implementations dflonoSkolenandCegarSkolermake use of the ABC [99]
library to represent and manipulate functions as AlGs.CagarSkolenwe used
the default SAT solver provided by ABC, which is a variant of MiAT. We used
a simple heuristic to order the variables, and used the sade¥iog for both
MonoSkolenand CegarSkolem In our ordering, variables that occur in fewer

factors are indexed lower than those that occur in more ffacto
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We used the following metrics to compare the performanceettgorithms:
(i) max/average size of the generated Skolem functions ko function vec-
tor, where the size is the number of nodes in the AIG reprasientof the func-
tion, and ii) total time taken to generate the Skolem funrctiector (excluding any
input format conversion time), in seconds. The experimesmt® performed on a
1.87 GHz Intel(R) Xeon machine with 128GB memory running Ubut.04.4.
The maximum time given to the algorithms for execution waB072econds, i.e.,

2 hours. Main memory usage was restricted to 32GB.

5.4.3 Results and Discussion

The 160 TYPE-1 benchmarks and 264 TYPE-2 benchmarks coweneiie
spectrum in terms of the number of factors, the total numiberacables and
the number of variables to be eliminated. For instance,enltfPE-1 category,
the number of factors varied from 44 to 7034, total numberasfables varied
from 94 to 9782 and the number of variables to eliminate dfiem 60 to 4751.
Amongst the TYPE-2 benchmarks, the number of factors varerd from 24
to 3956, the total number of variables varied from 70 to 52618l the variables to
eliminate varied 21 to 2689.

We first presen€egarSkolems Blogger results andCegarSkolems DepQBF
results on the TYPE-1 benchmarks followed GggarSkolenvs MonoSkolem
results on all the benchmarks. We then present the resuttsraxperiments on
the variants ofCegarSkolentiscussed in Subsection 5.3.5. We also discuss the
results of experiments o@egarSkolenwith different factor sizes, ordering, and

generalization functioGeneralize
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Cegar Skolem vs Blogqger
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Figure 5.4: Time taken bZegarSkolenvs time taken byBlogger on TYPE-1
benchmarks (in seconds). Topmost points indicate bendtsnalnereBloqger
couldn’t generate Skolem functions; rightmost pointsaati benchmarks where

CegarSkolensouldn’t generate Skolem functions.

Figure 5.4 shows the total time taken GggarSkolenandBlogger on the 160
TYPE-1 benchmarks. Recall from Subsection 2.5.2 tii@jger can generate
Skolem functions only in the cases where validity3X.F(X,Y) can be estab-
lished only by preprocessing. In other cases it givéR VERI FI ED message,
and cannot generate Skolem functions. Among the 160 TYPEntHmarks,
Blogger could successfully generate Skolem functions for 148 beacks; it
gaveNOT VERI FI ED message for the remaining 1ZegarSkolemon the other

hand, was able to successfully generate Skolem functiang5é benchmarks.
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Figure 5.5: Maximum size of Skolem function lyegarSkolenvs maximum
size of Skolem function bloqger. Topmost points indicate benchmarks where
Blogger couldn’t generate Skolem functions; rightmost points ¢ati bench-

marks whereCegarSkolencouldn’t generate Skolem functions.

In 4 caseLLegarSkolentimed out, and in 2 cases it ran out of memory during
construction of initial abstract Skolem functionslimtAbsRef

Among the 142 remaining benchmarks which bGdgarSkolenandBloqger
successfully solved, for 88 benchmarks, time taken by bathevcomparable.
The ratio of time taken bgloqger to time taken byCegarSkolenfor these bench-
marks was greater than®and less than.Q. For 29 benchmark€egarSkolem
clearly outperformedloqgger. The ratio of time taken bBlogger to time taken by
CegarSkolenfior these benchmarks wasd2- 30.3. For 25 benchmark®&loqger

outperformedCegarSkolenty a factor of 2 or more. For 13 benchmarks among
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them, the ratio of time taken yegarSkoleno that byBloqger was 21 - 886. For
12 benchmarksCegarSkolentook significantly more time compared Bboqqger
(almost 3 - 4 orders of magnitude). On profiling, we found tinaall of these
cases, more than 70% of the time takerggarSkolemvas spent in the function
ReverseSubstitutdue to larger sizes of Skolem functions generated.

There were 9 large benchmarks, with 1@0tactors and 1009 variables to
eliminate. Blogger could not generate Skolem functions for 8 of these and took
> 1 hour for the remaining oneCegarSkolensuccessfully generated Skolem
functions for each of these in under 20 minutes.

For each Skolem function vector generated, we also comparegjure 5.5
the maximum size of a Skolem function generated by the tworadhgns. We
chose to use the maximum size instead of average size fadimparison because
of the following reason. A large number of auxiliary vari@blare introduced
while converting a benchmark tadi macs format via Tseitin encoding. All such
auxiliary variables must be existentially quantified, almel $izes of Skolem func-
tions of these auxiliary variables are typically very smahis significantly skews
down the average size of generated Skolem functions. NateCiegarSkolem
does not require the benchmarks to be convertedjdomacs format, and hence
does not require Tseitin encoding, or introduction of aaryl variables.

For most benchmarks, as shown in Figure 5.5, the maximurs siz8kolem
functions obtained begarSkolenveresmallerthan those generated Bioqger.
Specifically, among the 142 benchmarks which bGggarSkolenand Bloqger
successfully solved, for 100 benchmarks, the ratio of marmngkolem function
size generated bBlogger to that byCegarSkolenwas more than 2. For 89 of

them the ratio was in the ranged5 7660. For 29 benchmarkBlogger generated
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Skolem functions that are smaller than those generatéiEgwarSkolenby a fac-
tor of 2 or more. For 8 of them, the Skolem functions generaie@egarSkolem
were bigger than those generateddiygger by more than 3 orders of magnitude.
Thus our analysis shows that CegarSkoferforms better on larger benchmarks,

and generates smaller Skolem functions on most benchmarks

Cegar Skolem vs DepQBF
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Figure 5.6: Time taken bZegarSkolenvs time taken byDepQBF on TYPE-1
benchmarks (in seconds). Topmost points indicate bendtswanereDepQBF
couldn’t generate Skolem functions; rightmost pointscati benchmarks where

CegarSkolensouldn’t generate Skolem functions.

Figure/ 5.6 shows the total time taken BegarSkolenand DepQBF on the
160 TYPE-1 benchmarks. Figure 5.7 compares the maximurs siz8kolem
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Figure 5.7: Maximum size of Skolem function BegarSkolemrs maximum size
of Skolem function byDepQBF. Topmost points indicate benchmarks whbee
pQBF couldn’t generate Skolem functions; rightmost points ¢ati benchmarks

whereCegarSkolencouldn’t generate Skolem functions.

functions generated bgegarSkolenwith those generated byepQBF. The re-
sults clearly demonstrate thaegarSkolem outperforntepQBF both in terms of
time and Skolem function size on all benchmarks

Among the 160 TYPE-1 benchmark3epQBF could generate Skolem func-
tions only for 7 benchmarks. For 150 benchmarks, the QRP filesfcould not
be generated; the files were huge32GB) and we ran out of disk space allocated.
Among the remaining 10 benchmarks for which the QRP files cbelgenerated,
for 3 benchmarks, th@BFcert framework ran out of memory during extraction

of Skolem functions from the QRP proofs.
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Cegar Skolem vs MonoSkolem

The performance of these two algorithms on both TYPE-1 andPEY2 cate-
gories of benchmarks is shown in Figure|5.8 and Figure 5.gurEi5.8 gives
the average sizes of Skolem functions generated in a Skaieatién vector. We
measured average sizes here, since both algorithms gesh&kblem functions
for exactly the same set of variables. Figure 5.9 shows tta time taken in
seconds. From Figure 5.8, it is clear that the Skolem funstigenerated by
CegarSkolermrare on an averagemallerthan those generated onoSkolem
There is no instance on whidbegarSkolengenerates Skolem functions that are
larger on average than those generated\dynoSkolem.

Due to repeated calls to the SAT-solver, we expe&@edarSkolento take
more time thaMonoSkolemFrom Figure 5.9, we can see tl@¢garSkolendoes
indeed take more time on some benchmarks but on most of tientotal time
taken by both algorithms wdsss thanl00 seconds. On profiling, we found that
CegarSkolenspent most of its time on SAT solving. On 38 benchmarks where
CegarSkolentook greater than 100 but less than 300 secokfds)oSkolenper-
formed significantly worse taking more than 1000 secondsfdled the degra-
dation ofMonoSkolenwas due to the large sizes of Skolem functions generated,;
these were of the order of 1 million whereas those genergt€dbarSkolenwvere
less than 8000.Large Skolem function sizes imply more time spent in fumctio
composition and reverse-substitution. This overhead wasiderably greater
than that incurred by SAT-solving, resulting MonoSkolemtaking significantly
more time

We noticed that for 101 benchmarks where the sizes of Skalectibns gen-

erated were even larger (of the order of Jl0MonoSkolentould not generate the
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Figure 5.8: Average Skolem function size BggarSkolenvs average Skolem
function size byMonoSkolem Topmost points indicate benchmarks where
MonoSkolemcouldn’t generate Skolem functions; rightmost points ¢ati

benchmarks wher€egarSkolencouldn’'t generate Skolem functions.

Skolem functions. In 8 of these cases, the memory consumeddmpSkolem
increased rapidly, resulting in a memory out. In 10 casesnitout of time. In
an overwhelming 83 cases, the Skolem functions generat@uogdine execution
of MonoSkolemvere so huge that the integer used in the underlying ABC fbrar
for storing the level of AIG nodes overflowed. This resultadassertion failure
in the ABC library. Notice thaCegarSkolengenerated Skolem functions for all
of these benchmarks. The rightmost points indicate 12 cabeseCegarSkolem
could not generate Skolem functions. Among these, 10 wae-tiuts and 2 were

memory-outsMonoSkolensucceeded in 6 of these cases. BodgarSkolenand
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Figure 5.9: Time taken bZegarSkolenvs time taken byMonoSkolen{(in sec-
onds). Topmost points indicate benchmarks whdmmoSkolentouldn’t gener-
ate Skolem functions; rightmost points indicate benchmarkereCegarSkolem

couldn’t generate Skolem functions.

MonoSkolenfailed on 6 cases; onlBlogger could generate Skolem functions for
these benchmarks. In the 2 memory-out caseLlegarSkolemit ran out of
memory during construction of initial abstract Skolem ftioigs in InitAbsRef

MonoSkolenalso ran out of memory in these cases.

Analysis of Cegar Skolem

CegarSkolentould generate Skolem functions for 412 of the 424 benchsnark
For 197 of these benchmarks the initial abstract Skolemtifoimg were correct,

and most of the time was spent in the SAT solver. For the rem@a227 bench-
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marks thaiCegarSkolensolved, the number of CEGAR iterations varied from 1
to 3121. For all benchmarks on whi€egarSkoleniimed out, we noticed that
there were large subsets of factors that shared many vesiabltheir supports.
As a resultCegarSkolensould not exploit the factored representation effectively
requiring many refinements. On averaging over all benchsyaxie found that
more than 33% of the time spent IegarSkolenwas for SAT-solving. This
leads to the natural suggestion that we could use more etfiSi®T solvers to im-
prove the performance @egarSkolemSince SAT-solving technology continues
to improve every year, we hope to leverage this to improveptréormance of
CegarSkolenfurther.

Variants of Cegar Skolem

When optimizations using interpolants were enabled, théopeance ofCe-
garSkolenctrucially depended on the size of the interpolants compatebtime
to compute the interpolants. However, we observed thatrtteggolants gener-
ated by ABC were often not succinct, and computing the infarge was often
time-intensive.

We measured the time taken BegarSkolenModl1 andCegarSkolenMod2
for generation of Skolem functions for the benchmarks, dedaverage sizes of
the Skolem functions generated. We compared the average aizhe Skolem
functions generated byegarSkolenMod1with those generated lyegarSkolem
(see Fig 5.10). The comparison clearly indicated that thae®k functions gen-
erated byCegarSkolemwere smaller in size compared to those generated by
CegarSkolenModl Recall that the Skolem functions generateddagarSkolem

are of the form-r1]i], whereas the Skolem functions generate@€bgarSkolenMod1
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have the form-r1[i] vV rO[i]init. Bigger Skolem functions iCegarSkolenMod1

were due to the additional disjuncd|i]init in the Skolem functions.
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Figure 5.10: Average Skolem function size GggarSkolenvs average Skolem
function size byCegarSkolenModl Topmost points indicate benchmarks where
CegarSkolemMod1 couldn’t generate Skolem functions; rightmost points 4indi

cate benchmarks whef@egarSkolencouldn’t generate Skolem functions.

We then compared (in Fig 5.11) the time takersgarSkolenMod1for gen-
eration of Skolem functions with the time taken GggarSkolemWe also com-
pared the number of CEGAR iterations neededdegarSkolenMod1 with the
number of CEGAR iterations needed 6ggarSkolenfior the benchmarks where
both the algorithms succeeded in generating Skolem fumsiisee Fig 5.12) (it-
erations+1 used in the plot to include cases with zero itara}.

The time taken by both the algorithms were roughly the samealimost
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Figure 5.11: Time taken b€egarSkolenvs time taken byCegarSkolenMod1
(in seconds). Topmost points indicate benchmarks wikagarSkolenModl
couldn’t generate Skolem functions; rightmost pointsgati benchmarks where

CegarSkolensouldn’t generate Skolem functions.
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all the benchmarks. We observed that due to bigger sizes @é&®kfunctions,
CegarSkolemMod1spent more time in reverse-substitution compared to theattsp
by CegarSkolem Recall that the error formulg in CegarSkolenMod1 differs
from the error formulee in CegarSkolemn two ways: (i) the abstract Skolem
function quA is —ri[i] V r0[ilint instead of—ri[i], and (ii) (bad V...V bad_1)

is used in place of-F(X,Y). For each benchmark, we measured the total time
taken by the SAT solver calls that check the satisfiability iof CegarSkolemWe

call this e-time for the benchmark. Similarly for each benchmark we sneed
the total time taken by the SAT solver calls that check thesfalbility of € in
CegarSkolenModl We call thise’-time for the benchmark. It was observed that
¢/-time is greater thae-time for many benchmarks. There were benchmarks with
¢/-time < e-time, but in most of these cases, the time saved in SAT calfsless
than the additional time incurred in reverse-substitution

There were 4 benchmarks on whi€egarSkolenMod1 timed out andCe-
garSkolemcould generate the Skolem functions. Interestingly, oseh@ench-
marks CegarSkolenperformed worse when compared Btbqger due to huge
Skolem functions and consequent expensive reverse-sulmsti The Skolem
functions generated insideegarSkolenMod1 for these benchmarks were even
bigger which resulted in timing out inside the reverse-stigon phase.

We compared the average sizes of Skolem functions gendna@eyarSkolenMod?2
with those generated b@egarSkolenfsee Fig 5.13), and the time taken G-
garSkolemMod2for generation of Skolem functions with the time taken®sg-
garSkolem(see Fig 5.15). We also compared the number of CEGAR itemtion
needed byCegarSkolenMod2 with the number of CEGAR iterations needed by
CegarSkolenfsee Fig 5.14).0ur analysis indicated that both the algmst be-
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haved very similar in all the cases, resulting in similareet@n times and Skolem
function sizes. Considerable differences in executiongimere observed only in
avery fewcases. We found that these differences were due to diffeseincthe

time spent in SAT calls.
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Figure 5.13: Average Skolem function size GggarSkolenvs average Skolem
function size byCegarSkolenMod2 Topmost points indicate benchmarks where
CegarSkolenMod2 couldn’t generate Skolem functions; rightmost points 4indi

cate benchmarks whef@egarSkolencouldn’t generate Skolem functions.

Effect of ordering on Cegar Skolem

In the variable ordering that we used@egarSkolenvariables occurring in fewer
factors are indexed lower than those occurring in more facio order to under-

stand the effect of this ordering on the performanc€efjarSkolemwe used a
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Figure 5.14: Time taken b€egarSkolenvs time taken byCegarSkolenMod?2
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couldn’t generate Skolem functions; rightmost pointsgati benchmarks where

CegarSkolensouldn’t generate Skolem functions.
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variant ofCegarSkolencalled CegarSkoleniexicothat uses lexicographical or-
dering on the variables.

We measured the time taken GggarSkoleniexicofor generation of Skolem
functions for the benchmarks, and the average sizes of tléei®@kfunctions
generated. In Fig 5.16 we compare the average sizes of thHerSKanctions
generated byegarSkoleniexicowith those generated b@egarSkolemand in
Fig/5.17 we compare the time taken GggarSkoleniexicowith the time taken
by CegarSkolem
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Figure 5.16: Average Skolem function size GggarSkolenvs average Skolem
function size byCegarSkoleniexica Topmost points indicate benchmarks where
CegarSkoleniexicocouldn’t generate Skolem functions; rightmost points 4indi

cate benchmarks whefgegarSkolencouldn’t generate Skolem functions.

The results clearly indicate that the ordering that we use@agarSkolem
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Figure 5.17: Time taken b@€egarSkolenvs time taken byCegarSkoleniLexico
(in seconds). Topmost points indicate benchmarks wikagarSkoleniexico
couldn’t generate Skolem functions; rightmost pointsgati benchmarks where

CegarSkolensouldn’t generate Skolem functions.
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gives better performance. In order to analyze the result®tail, we compared
the number of CEGAR iterations needed®ggarSkoleniexicowith the number
of CEGAR iterations needed yegarSkolenfsee Fig 5.18).
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Figure 5.18: Number of CEGAR iterations IegarSkolenvs number of CE-
GAR iterations byCegarSkoleniexica

Our analysis revealed that, in general, the abstract Skinleations generated
by InitAbsRefin CegarSkolemvere more refined compared to those generated by
InitAbsRefin CegarSkoleniexica Due to this,CegarSkoleniexicospent more
time inside the CEGAR loop compared @egarSkolem This also resulted in
bigger Skolem functions i€egarSkoleniexicq and consequently more time in

reverse-substitution.
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Effect of choice of factors onCegar Skolem

In order to understand how a different choice of factors waffect the perfor-
mance ofCegarSkolenwe used a variant @egarSkolensalledCegarSkolenClause
CegarSkolenClausetakes benchmarks imgdimacs format as input. In thgdimacs
version of a benchmarkX.F(X,Y), the formulaF (X,Y) appears as a conjunc-
tion of clauses, and thus each clause becomes a factor.

We executeegarSkolenClauseon the. gdimacs versions of TYPE-1 bench-
marks, and measured the time taken for generation of Skalewetibns and the
maximum sizes of the Skolem functions generated. We chasgetthe maximum
sizes of Skolem functions instead of average sizes, dtegarSkolenClause
takes benchmarks ingdimacs format as input. As mentioned before, the sizes
of Skolem functions of the Tseitin variables in thgdimacs format are typi-
cally very small, which significantly skews down the aver&j@lem function
sizes. In Fig 5.19 we compare the maximum sizes of the Skalerctibns gen-
erated byCegarSkolenClausewith those generated b@€egarSkolemand in
Fig/5.20 we compare the time taken ©ggarSkolenClausewith the time taken
by CegarSkolem We also measured the number of CEGAR iterations needed
by CegarSkolenClause and compared with the number of CEGAR iterations
needed byCegarSkolenfsee Fig 5.21).

The initial abstract Skolem functions generatedrbtiAbsRefinsideCegarSkolenClause
were significantly smaller than those generated insiédgarSkolem However
the initial abstract Skolem functions generated insigdgarSkolenClausewere
more abstract compared to those generated inSetgarSkolem As a result of
this, as shown in Fig 5.21, the number of CEGAR iterations edéaly Ce-

garSkolemClausewere significantly more than the number of CEGAR iterations
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tions.
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needed byCegarSkolem

In most of the benchmarks, due to the increased number of CEBAR
tions, CegarSkolenClauseperformed worse compared €@egarSkolem How-
ever, the smaller initial abstract Skolem functions hel@edarSkolenClausein
13 benchmarks, where it clearly outperform@dgarSkolenfsee Fig 5.20). In
11 of these case<;egarSkolenperformed bad due to huge Skolem functions
and consequent expensive reverse-substitution. In 2 ¢sgarSkolenman out
of memory during construction of initial abstract Skolemdtions inInitAbsRef
Although the number of CEGAR iterations DegarSkolenClausewere much
more than those i€@egarSkolenfor these benchmarks, the simpler initial Skolem
functions helpedCegarSkolenClauseto avoid the blow-up in Skolem function

sizes.

Experiments with different Generalize

In CegarSkolenwe used the functioGeneralizethat takes as arguments, an as-
signmentrtand a functiorp such thatt = ¢, and returns a functioé that gener-
alizesttwhile satisfyingd. Recall thath here is a disjunction of functions which
can also be viewed as a set of functions. Our implementafiGeoeralizér, ¢)
in CegarSkolenmneturnsone of the functions ¢ (viewed as a set) that evaluates
to 1 undert There are several other ways of implement@eneralizém, ¢). For
example Generalizém, ¢) can return the disjunction @fll functionsin ¢ (viewed
as a set) that evaluate to 1 underWe call the variant o€CegarSkolenthat uses
this implementation oGeneraliz€r, ¢) asCegarSkolenMod3

We measured the time taken BggarSkolenMod3for generation of Skolem

functions for the benchmarks, and the average sizes of tlée®@kfunctions
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generated. In Fig 5.22 we compare the average sizes of therSKanctions
generated byCegarSkolenMod3 with those generated b@egarSkolemand in
Fig'5.23 we compare the time taken BggarSkolenMod3 with the time taken
by CegarSkolem
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Figure 5.22: Average Skolem function size GggarSkolenvs average Skolem
function size byCegarSkolenMod3 Topmost points indicate benchmarks where
CegarSkolenMod3 couldn’t generate Skolem functions; rightmost points 4indi

cate benchmarks whe@egarSkolencouldn’t generate Skolem functions.

We observed that both the algorithms behaved very similalldenchmarks,
resulting in similar execution times and Skolem functiaresi There were many
cases where the number of CEGAR iterations neededdgarSkolenMod3was
less than those needed BGggarSkolenisee Fig 5.24). However, the functions re-

turned byGeneraliz€r, ¢) calls inCegarSkolenMod3were bigger in size when
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CegarSkolensouldn’t generate Skolem functions.
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compared to those returned Beneraliz¢r, ¢) calls in CegarSkolemHence al-
though the number of CEGAR iterations, and consequently mawftinvocations

of UpdateAbsRefind SAT checks ilfCegarSkolenMod3 were fewer than those

in CegarSkolemthe individual invocations opdateAbsRe&ind SAT checks in
CegarSkolenMod3were more expensive. Effectively the execution times of the

algorithms did not show much difference.
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5.5 Conclusions

We presented a CEGAR algorithm for generating Skolem funstfoom factored

propositional formulas. Our experiments show that for clexpunctions, our
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algorithm significantly out-performs state-of-the-aga@ithms.

Our techniques for generation of Skolem functions can bereldd to more
generic cases. One of these is the case where the fofiMl&Y') involves unin-
terpreted predicates. Formally, given a Boolean fornkul&,Y) on variables in
XUY involving uninterpreted predicatdy, ..., P,, we wish to generate Skolem
functionp(X'\ x;,Y) for x; € X in F(X,Y). It can be observed that the results that
we proved in this chapter hold in spite of the presence ofterpneted predicates.
As an example, LeX be(x1,x2) andY be(y). LetF(X,Y) be the formuld;(x)

A X1 A\'Y, wherePy is an uninterpreted predicate. Suppose we wish to compute
Skolem function vectofWs, Yy) for (x1,X%2) in F. Note thaty; can be computed
asF[xg— 1] =Py(x2) Ay. Now3x;. F isF[x1 — 1], i.e.,Pi(x2) Ay. Inasimilar
mannerP, can be computed &3 (1) A y. After substitutingd, for X in Y1, we
have(Ws, W2) = (P(PL(1) AY) AY, Pi(1) AY).

Techniques for generating Skolem functions have many qtb&ntial ap-
plications which we have not fully explored. For examplepsose we have a
Boolean formulaF (X,Y) on variables inXuY, whereX is {x1,...,Xn}. More-
over, SUppose (X, X2, ..., %, Y) A F(X{,X2,..., %, Y) A (X] #X{) is unsatisfiable,
wherex; andxj are fresh variables. In this case, the value;of completely de-
termined by the values of variablesXn\ x;UY. We callx; a dependent variable
and the variables iXX \ x;UY independent variables. The problem of expressing
X1 as a function of the independent variables reduces to finBkojem function
Y(X\ x1,Y) for xg in F. We would like to explore such applications of Skolem

functions in future.



Chapter 6

Conclusions and Future Works

This dissertation presented techniques to improve thalsitity of formal verifi-
cation and analysis tools for hardware and software systems

We presented practically efficient and bit-precise techesqfor quantifier
elimination from linear modular constraints. Our techgwutperform alternate
guantifier elimination techniques, and keep the final raauttodular arithmetic.
Many key operations performed by underlying algorithmsamfal verification
and analysis tools essentially boil down to quantifier eliation from formulas
involving linear modular constraints. Specifically we stealthe utility of our
techniques in one such formal verification activity — in cartipg abstract sym-
bolic transition relations for improving the scalabilitylmounded model checking
of word-level RTL designs.

We also presented an efficient algorithm to generate sucskatem functions
for propositional formulas. Our algorithm exploits thetf@ed form of input for-
mulas, and directly benefits from advances in SAT solvingrietogy. Moreover

unlike existing techniques in literature, our algorithnither requires proof of

227



228

satisfiability nor resorts to memory-intensive composi$io The algorithm finds
application in disjunctive decomposition of sequentiatwits which is useful in
improving the scalability of reachability analysis.

There are several promising directions for future work.

— Developing a quantifier elimination procedure for full-taéctor arithmetic
is an interesting research direction. Other than linearutesdarithmetic
operations, bit-vector arithmetic primarily includesraxtions, concatena-
tions, non-linear multiplications and bit-wise operasqt3]. The work by
Bruttomesso et. al. in [110] shows that constraints in the dit-vector
theory consisting of only equalities, extractions and edacations can be
equivalently expressed as a conjunction of equalities icesbf variables
involved in the constraints. The slices can be replaced éghfvariables
to generate equisatisfiable linear modular equalities iltteresting to see
how our quantifier elimination techniques can be extenddthatulle con-
straints involving non-linear multiplications. Bit-wisg@erations may not
be amenable to word-level reasoning and may require bat-lguantifier
elimination. A layered framework like that of ours looks pmsing for such
a quantifier elimination procedure for the full bit-vectoitlametic, since the
amenability to word-level reasoning and simplificationgesconsiderably

across different operations in the bit-vector theory.

— Quantifier elimination problem instances that arise ircfica frequently
mix expressions from different theories. The problem osogéng on for-
mulas in combined theories is well studied in the contextefision pro-
cedures. There are well established techniques such asN@lspen com-

bination method [111] that helps to come up with a decisimtedure for
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a combined theory, given decision procedures for the iddai theories.
However the problem ofjuantifier elimination from combined theories
largely unaddressed to the best of our knowledge. Spedtyfitas inter-

esting to study how the quantifier elimination techniquésoniuced in this
thesis can be extended to work in combined theories suchaisication of
linear modular arithmetic and equality over uninterprdtetttions, combi-

nation of linear modular arithmetic and array logic etc.

Another interesting research direction is to understavd the ideas intro-
duced in this dissertation can be used in decision procedarebit-vector
formulas. Clearly some of the techniques we proposed suaieasifying
and dropping unconstraining LMIs and LMDs can be useful irvbctor
solvers. Given a conjunction of LMCs, dropping unconstragniiMIs and
LMDs gives another conjunction of LMCs which is potentialignpler and
equisatisfiable to the original conjunction of LMCs. This dsnbeneficial
in performing word-level simplifications in lazy and laydtait-vector solv-
ing frameworks such as that of MathSAT [84]. Recall from Smtd.4 that

our limited preliminary experiments in this direction gawexed results.

Our CEGAR based algorithm for generation of Skolem fun&@aamits op-
timizations which we would like to explore as part of futurerk. One such
important optimization is the opportunity to refine usingltiple counterex-
amples in parallel. This would allow us to significantly irage on our run
times. Building portfolio Skolem function generators than iseveral algo-

rithms in parallel is yet another direction to explore.
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