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Synopsis

Quantifier elimination involves converting a logic formulacontaining quantifiers

into a semantically equivalent quantifier-free formula. This has a number of im-

portant applications in formal verification and analysis ofhardware and software

systems. Many key operations performed by formal verification and analysis tools

essentially boil down to quantifier elimination from logic formulas. This the-

sis presents practically efficient and scalable techniquesfor quantifier elimination

from logic formulas that can improve the performance of suchformal verification

and analysis tools.

Boolean combinations of linear equalities, disequalities and inequalities on

fixed-width bit-vectors, collectively called linear modular constraints, is an im-

portant fragment of the theory of fixed-width bit-vector logic. Quantifier elim-

ination from linear modular constraints is extremely important in the context of

formal verification and analysis of word-level RTL designs and embedded pro-

grams. The most dominant technique used for eliminating quantifiers from these

constraints is bit-blasting, followed by bit-level quantifier elimination. Since lin-

ear modular constraints can be expressed as formulae in linear integer arithmetic,

quantifier elimination for linear integer arithmetic can also be used. However,

both the above approaches destroy the word-level structureof the problem, and

1
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do not scale well for linear modular constraints with large bit-widths.

We present a practically efficient and bit-precise algorithm for quantifier elim-

ination from conjunctions of linear modular constraints. Our algorithm uses a

layered approach, whereby sound but incomplete and cheaperlayers are invoked

first, and expensive but complete layers are called only whenrequired. Unlike

alternative quantifier elimination techniques based on bit-blasting and conversion

to linear integer arithmetic, our algorithm keeps the quantifier-eliminated formu-

lae in linear modular arithmetic. We also extend this algorithm to work with

arbitrary Boolean combinations of linear modular constraints. Experiments indi-

cate that our techniques significantly outperform alternative quantifier elimination

techniques. The experiments also demonstrate the utility of our techniques in

bounded model checking of word-level RTL designs.

We then present Skolem function-based techniques for quantifier elimination

from formulas in propositional logic. Techniques for generating Skolem functions

are of significant interest not only in quantifier elimination, but also in certification

of solvers, synthesis of programs and circuits from specifications, and disjunctive

decomposition of sequential circuits. In many such applications, the input for-

mula is given as a conjunction of simpler sub-formulas, called factors, each of

which depends on a small subset of variables. Existing algorithms for Skolem

function generation ignore any such factored form and treatthe input formula as

a monolithic conjunction of factors.

We present a SAT solving based algorithm for generating Skolem functions

for propositional formulas that exploits factored representation of input formulas.

In contrast to existing algorithms, our algorithm neither requires a proof of satis-

fiability nor uses composition of monolithic conjunctions of factors. Experiments
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indicate that on several large problem instances, our algorithm generates smaller

Skolem functions and runs faster when compared to existing Skolem function

generation algorithms.
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Chapter 1

Introduction

Quantifier elimination (QE) is the process of converting a logic formula contain-

ing quantifiers into a semantically equivalent quantifier-free formula. This has a

number of important applications in formal verification andanalysis of hardware

and software systems. Key operations such as image computation [1], computa-

tion of strongest post-conditions [2] and computation of predicate abstractions [3]

performed by formal verification and analysis tools essentially reduce to QE from

logic formulas. The motivation for this dissertation is thedevelopment of prac-

tically efficient and scalable techniques for QE from logic formulas that can im-

prove the performance of such formal verification and analysis tools.

In this thesis, we initially focus on QE from formulas in an important fragment

of bit-vector logic [13] called linear modular arithmetic.Formulas in linear mod-

ular arithmetic are Boolean combinations of linear equalities, disequalities and

inequalities on fixed-width bit-vectors. QE techniques forlinear modular arith-

metic have been found useful in formal verification and analysis of word-level

RTL designs and embedded programs [80, 77]. The problem of QEfrom for-

11



12

mulas in linear modular arithmetic and the details of our work in this field are

explained in Section 1.2.

We then address the problem of QE from formulas in propositional logic.

One of the approaches for performing QE is to express the quantified variables

as functions of other variables in the formula. Such functions are traditionally

called Skolem functions [5]. QE can be done by substituting the occurrences of

the quantified variables in the formula by their Skolem functions. We focus on

techniques to generate Skolem functions for quantified variables in propositional

logic formulas. Other than QE, the techniques for generating Skolem functions

have important applications in reachability analysis of circuits [6, 7], certification

of solvers [8] and synthesis of programs from specifications[9]. The details of

our work in this field are explained in Section 1.3.

1.1 Preliminaries

Before delving into the details of our work, we provide a briefintroduction to

first-order logic, first-order theories and QE. More detailed discussion on these

topics can be found in books on logic (see [5, 30]). We also introduce notation

that will be used in the remainder of this thesis.

1.1.1 First-Order Logic

The alphabet of first-order logic consists of variables, logical symbols, and non-

logical symbols. Logical symbols include Boolean connectives (¬, ∨, ∧), quanti-

fiers (∀, ∃), constant formulas (false, true), and parentheses. Nonlogical symbols

include function symbols, predicate symbols, and constantsymbols.
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Terms and formulas in first-order logic are constructed using this alphabet.

Terms are variables, constants, and function applicationsover other terms.false

andtrue are called constant formulas. The most basic formulas are constructed by

application of predicates over terms, and are calledatomic constraintsor simply

constraints. More complex formulas are constructed by application of Boolean

connectives and quantifiers over other formulas: (i) ifF is a formula, then¬F is

a formula, (ii) if F1 andF2 are formulas, thenF1∧F2 andF1∨F2 are formulas,

(iii) if F is a formula andx is a variable appearing inF , then∃x.F and∀x.F are

formulas.

A formula constructed only by using constraints and Boolean connectives is

called aquantifier-freeformula. The variables appearing in a quantifier-free for-

mula are calledfreevariables. LetF be a quantifier-free formula over a setV of

free variables. We often writeF asF(V) to highlight the fact thatF is a formula

over variables inV. A formula of the formQx.F, wherex∈V andQ∈ {∃,∀} is

called aquantifiedformula. The variablex here is calledboundvariable inQx.F,

and the variables inV \{x} are calledfreevariablesQx.F.

1.1.2 First-Order Theories

A first-order theory defines the set of nonlogical symbols that can be used in terms

and formulas. It also defines the domainD of variables, and gives interpretation to

the nonlogical symbols. The interpretation to the nonlogical symbols is a mapping

from function symbols, predicate symbols, and constant symbols to functions,

predicates, and elements overD.

As an example, Presburger arithmetic [40, 13] is a first-order theory with non-

logical symbols 0, 1,+ and≤. The domain of variables in this theory is the setZ
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of integers. The symbols 0 and 1 map to the integers 0 and 1. Thesymbols+ and

≤ have their obvious interpretations overZ. Linear real arithmetic, linear modular

arithmetic, propositional logic etc. are other examples offirst-order theories.

Given a formulaF in a first-order theoryT , a variable assignmentπ assigns

an element of the domainD to each free variable inF . The formulaF evalu-

ates to eithertrue or false underπ. If F evaluates totrue underπ, then we say

π |=T F . Otherwise, ifF evaluates tofalse underπ, then we sayπ 6|=T F . When

the theoryT is clear from the context, we simply sayπ |= F andπ 6|= F . Note

that each constraintc in F evaluates to eithertrue or false underπ depending on

the interpretations of the nonlogical symbols inT . Formulas with Boolean con-

nectives are evaluated in the following manner: (i)π |=T ¬F1 iff π 6|=T F1, (ii)

π |=T F1∧F2 iff π |=T F1 andπ |=T F2, (iii) π |=T F1∨F2 iff π |=T F1 or π |=T F2.

In order to explain how quantified formulas are evaluated, wedefine the notation

π[x|d] for variablex andd ∈ D. We defineπ[x|d] as a variable assignment which

is exactly the same asπ except that the variablex is assigned the valued. We have

π |=T ∃x.F1 iff π[x|d] |=T F1 for somed ∈ D. Similarly, we haveπ |=T ∀x.F1 iff

π[x|d] |=T F1 for all d ∈ D.

Let F , F1, F2 be formulas in a first-order theoryT . FormulaF is calledT -

satisfiableif there exists a variable assignmentπ such thatπ |=T F . FormulaF

is T -valid if for every variable assignmentπ, we haveπ |=T F . FormulasF1 and

F2 areT -equivalentif for every variable assignmentπ, π |=T F1 iff π |=T F2.

When the theoryT is clear from the context, we simply usesatisfiable, valid, and

equivalent; we useF1 ≡ F2 to denote that the formulasF1 andF2 are equivalent.

Moreover, we often useF1 ⇒ F2 to denote the formula¬F1∨F2.
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1.1.3 Quantifier Elimination

Let F be a quantifier-free formula over a setV of free variables in a first-order

theory T . Consider the quantified formulaQ1x1Q2x2 . . .Qnxn.F, whereX =

{x1, . . .xn} is a subset ofV, andQi ∈ {∃,∀} for i ∈ {1, . . .n}. QE involves comput-

ing a quantifier-free formulaF ′ on variables inV \X such thatF ′ is T -equivalent

to F .

As an example, consider the formula∃x.(y = 3x) in the theory of linear arith-

metic over integers. This formula expresses the sety of integers that are divisible

by 3. Since the quantifier-free formula(y = 0 (mod 3)) expresses the set of in-

tegers that are divisible by 3,∃x.(y = 3x) is equivalent to(y = 0 (mod 3)) in the

theory of linear arithmetic over integers.

Given a universally quantified formula∀x.F in any first-order theoryT , ∀x

can be converted to∃x using the equivalence∀x.F ≡ ¬∃x.¬F. Hence the prob-

lem of developing a QE algorithm for theoryT boils down to the problem of

developing anexistentialQE algorithm forT . Therefore, in the remaining part of

this thesis, we will use QE to refer to existential QE.

1.2 QE for Linear Modular Arithmetic

Linear modular arithmetic is a fragment of bit-vector logic[13]. Constraints in

linear modular arithmetic are linear equalities, disequalities and inequalities on

fixed-width bit-vectors. Letp be a positive integer constant,x1, . . . ,xn be p-bit

non-negative integer variables, anda0, . . . ,an be integer constants in{0, . . . ,2p−

1}. A linear term overx1, . . . ,xn is a term of the forma1 ·x1+ · · ·an ·xn+a0, where

· denotes multiplication modulo 2p and+ denotes addition modulo 2p. A linear
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modular equality (LME) is a constraint of the formt1 = t2 (mod 2p), wheret1 and

t2 are linear terms overx1, . . . ,xn. Similarly, a linear modular disequality (LMD) is

a constraint of the formt1 6= t2 (mod 2p), and a linear modular inequality (LMI) is

a constraint of the formt1 ⊲⊳ t2 (mod 2p), where⊲⊳∈ {<,≤}. We will use linear

modular constraint (LMC) to refer to an LME, LMD or LMI. Conventionally 2p

is called the modulus of the LMC.

The semantics of LMCs differ from that of linear constraints over integers in

two aspects:

1. Wrap-around behaviour:The successor of 2p−1 in modular arithmetic is

0. Hence, forx = 2p−1, the value ofx+1 modulo 2p overflows and wraps

to 0. Hence the formula(x = 3)∧(x+1≤ 2) is satisfiable in linear modular

arithmetic with modulus 4, whereas it is unsatisfiable over integers.

2. Finite domain:Domain of variables in modular arithmetic has finite/bounded

cardinality unlike integer arithmetic where the variablesare unbounded.

Hence the formula(x = 3)∧(x < y) is unsatisfiable in linear modular arith-

metic with modulus 4, whereas it is satisfiable over integers.

Efficient techniques for QE from LMCs have applications in formal verifi-

cation and analysis of hardware and software systems. Formal verification and

analysis tools reason about symbolic transition relationsof hardware and soft-

ware systems expressed as formulas in appropriate logic. Symbolic transition re-

lations of word-level RTL designs and embedded programs involve constraints in

linear modular arithmetic. LMEs arise from the assignment statements, whereas

LMDs and LMIs arise primarily from branch and loop conditions that compare

words/registers. Key operations such as image computation[1], computation of
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strongest post-conditions [2] and computation of predicate abstractions [3] per-

formed by formal verification and analysis algorithms boil down to QE from

formulas involving symbolic transition relation. Symbolic transition relations of

RTL designs and embedded programs in general may involve signed variables

with signed operations and comparisons on them. However, there are standard

techniques to convert constraints with signed semantics into equisatisfiable con-

straints with unsigned semantics (for example, see page 2 of[81]). Therefore, we

will focus only on constraints with unsigned semantics.

Our primary motivation for studying QE from LMCs arises from bounded

model checking [4] of word-level RTL designs. Suppose we wish to use bounded

model checking to prove that a property holds for the firstN cycles of operation of

a word-level RTL design. This can be done by unrolling the symbolic transition

relation of the designN times, conjoining the unrolled relation with the negation

of the property, and then checking for satisfiability of the resulting formula using

an SMT solver [10]. Since the transition relation contains all variables that appear

in the RTL description, unrolling the transition relation alarge number of times

gives a formula with a large number of variables. While the number of variables

in a formula is not the only factor that affects the performance of an SMT solver,

for large enough values ofN, the increased variable count has an adverse effect

on the performance of the solver.

In order to alleviate the above problem, one can use an abstract transition

relation that relates only a chosen subset of variables relevant to the property be-

ing checked, while abstracting the relation between the other variables. Such an

abstract transition relation can be computed by existentially quantifying out the

variables that are not relevant to the property being checked from the original
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transition relation. Since the abstract transition relation contains fewer variables

than the original transition relation, the formula obtained by unrolling the abstract

transition relation has fewer variables. In general, this can lead to significantly

better performance of the SMT solver, as demonstrated in ourexperiments. Since

Boolean combinations of LMCs arise in transition relations ofword-level RTL

designs, building an abstract transition relation requires existentially quantifying

variables from Boolean combinations of LMCs.

For ease of analysis, formal verification and analysis algorithms abstract vari-

ables in the system to be verified as unbounded integers, and use QE techniques for

unbounded integers [11]. However the underlying system implementation often

uses modular arithmetic, and as mentioned earlier, the semantics of unbounded

integer arithmetic differs from that of modular arithmetic. Hence the results of

verification and analysis by abstracting variables as unbounded integers and using

QE for unbounded integers may not be sound or complete [12] ifthe underlying

implementation uses modular arithmetic. Therefore, developing bit-preciseQE

techniques for LMCs is an important problem.

Currently, the dominant technique for eliminating quantifiers from LMCs in-

volvesblastingvariables into individual bits (also called bit-blasting [13]), fol-

lowed by elimination of the blasted bit-level variables [14]. This approach has

some undesirable features. Blasting involves a bitwidth-dependent blow-up in the

size of the problem. This can present scaling problems in theusage of bit-level

QE tools, especially when reasoning about wide words. Similarly, given an in-

stance of the QE problem, blasting variables that are quantified may transitively

require blasting other variables (that are not quantified) as well. This can cause

the quantifier-eliminated formula to appear like a propositional formula on blasted
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bits, instead of being a modular arithmetic formula. Since reasoning at the level of

modular arithmetic is often more efficient in practice than reasoning at the level of

bits, QE using bit-blasting might not be the best option if the quantifier-eliminated

formula is intended to be used in further modular arithmeticlevel reasoning.

Another technique for eliminating quantifiers from LMCs is converting the

LMCs to equivalent constraints in linear arithmetic over integers [13], and then

using QE techniques for linear integer arithmetic such as Omega Test [11]. Sim-

ilarly, automata-theoretic approaches for eliminating quantifiers from linear inte-

ger constraints [15] can also be used. However, this approach scales poorly in

practice. Moreover, this approach destroys the modular arithmetic structure of

the problem since the resulting formula is a linear integer arithmetic formula and

converting this formula back to modular arithmetic is oftendifficult.

1.2.1 Contributions

– We present a bit-precise and practically efficient algorithm for eliminating

quantifiers from conjunctions of LMCs. The algorithm is basedon a layered

approach, whereby sound but incomplete and cheaper layers are invoked

first, and expensive but complete layers are called only whenrequired. The

cheapest layers are based on simplifications using LMEs and dropping un-

constraining LMDs and LMIs from the problem instance. Subsequently we

use a Fourier-Motzkin style layer to eliminate quantifiers from conjunctions

of LMIs. The final, most expensive and complete layer is basedon model

enumeration. Experiments indicate that we do not need to invoke the model

enumeration based layer on a wide range of benchmarks arising in practice.

The experiments also demonstrate effectiveness of our algorithm over alter-
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native QE techniques based on bit-blasting and conversion to integer linear

arithmetic.

– We present approaches to extend the aforementioned algorithm to elimi-

nate quantifiers from Boolean combinations of LMCs. We introduce a new

decision diagram called Linear Modular Decision Diagram (LMDD) that

represents Boolean combinations of LMCs, and present algorithms for QE

from LMDDs. We then present an SMT solving based approach forQE

from Boolean combinations of LMCs, and a hybrid approach that tries to

combine the strengths of the LMDD and SMT solving based approaches.

Experiments demonstrate the effectiveness of these approaches. The exper-

iments also demonstrate the utility of these approaches in bounded model

checking of word-level RTL designs.

1.3 QE for Propositional Logic

In propositional logic, variables can have valuestrue or false. Formulas are con-

structed using variables, constants (true, false), and Boolean connectives (¬, ∨,

∧). Variables and formulas in propositional logic are also called propositional

variables and propositional formulas respectively. Usingthe notation introduced

in Section 1.1, propositional logic can be considered as a first-order theory, where

domain of variables is{true, false} and constraints are variables or constants.

We focus on Skolem function-based techniques for QE from formulas in propo-

sitional logic. Formally, letX = {x1, . . .xn} andY = {y1, . . .ym} be sets of propo-

sitional variables. LetF(X,Y) be a propositional formula over the setX ∪Y. A

Skolem functionψi for xi in F(X,Y) is a formula over the setX \ {xi}∪Y such
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that∃xi.F ≡ F [xi 7→ ψi ], whereF [xi 7→ ψi] denotes the formula obtained by sub-

stituting occurrences ofxi in F with ψi. For example, consider the propositional

formulax1∧ y1 . We claim that they1 andtrue are two Skolem functions for the

variablex1 in x1∧y1. To verify the claim, observe that (i)∃x1.(x1∧y1) is equiv-

alent toy1, (ii) (x1∧y1)[x1 7→ y1] is equivalent toy1, and (iii) (x1∧y1)[x1 7→ true]

is equivalenty1.

Other than QE, Skolem functions have many important applications. Skolem

functions are used as certificates [8] for satisfiable Quantified Boolean Formulas

(QBFs) by QBF solvers. The problem of synthesizing a circuit orprogram [9] that

satisfies the specificationSpec(I ,O), whereI is the set of inputs andO is the set

of outputs reduces to computing Skolem functionsψ(I) for variables inO in the

formulaSpec(I ,O).

Our primary motivation for studying Skolem function generation comes from

the problem of computing disjunctive decompositions of sequential circuits rep-

resented as symbolic transition functions in propositional logic [6]. Here, given

a sequential circuit, we wish to obtain “component” sequential circuits, each of

which has the same state space as the original circuit, but only a single transition

going out of every state. Thus, the set of state transitions of the original circuit is

the union of the sets of state transitions of the components.Disjunctive decompo-

sitions find their applications in efficient reachability analysis [7].

Given a propositional formulaF(X,Y), there are techniques [8, 16, 17] for

generating Skolem functions for variables in the setX when∃X.F(X,Y) is valid.

These techniques extract Skolem functions from the proof ofvalidity of ∃X.F(X,Y).

However in applications such as QE and computation of disjunctive decomposi-

tion, we need to generate Skolem functionsψ(Y) for variables in setX irrespective
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of the validity of∃X.F(X,Y). The work in [9] proposes techniques to generate

Skolem functions matching predefined candidate function templates. However

such techniques are effective only when the set of candidatefunction templates is

known and small.

The work by Jiang in [18] and the work by Trivedi et. al. in [6] propose

composition based techniques to compute Skolem functions.Let F [xi 7→ 0] beF

with occurrences ofxi replaced byfalse andF [xi 7→ 1] beF with occurrences of

xi replaced bytrue. The work in [18] computes a Skolem function forxi in F as a

Craig interpolant [19] ofF [xi 7→ 1]∧¬F[xi 7→ 0] and¬F[xi 7→ 1]∧F[xi 7→ 0]. The

work in [6] observes that(F [xi 7→ 1]∧¬F[xi 7→ 0]) ∨ (F [xi 7→ 1]∧F[xi 7→ 0]∧h)

∨ (¬F [xi 7→ 1]∧¬F[xi 7→ 0]∧g) is a Skolem function forxi in F , whereh and

g are any propositional formulas withX \ {xi} ∪Y as support. However these

techniques necessarily require nested compositions, which cause formula blow-

up and vulnerability to memory-outs even for medium-sized benchmarks.

In many practical applications, the formulaF(X,Y) is given as a conjunction

of smaller formulas rather than as a single monolithic formula. Existing algo-

rithms for generation of Skolem functions do not make use of such factored form

and considerF(X,Y) as a monolithic formula. We focus on the generating Skolem

functions for propositional formulas given in factored form and argue that exploit-

ing the factored form yields significant performance improvements.

1.3.1 Contributions

– We present a SAT solving based CounterExample Guided Abstraction Re-

finement (CEGAR) style algorithm for generating Skolem functions for

propositional formulas that exploits factored representation of the formu-
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las. In contrast to the algorithms in literature, our algorithm neither re-

quires proof of satisfiability nor uses memory-intensive compositions. Ex-

periments demonstrate that our algorithm can generate significantly smaller

Skolem functions and performs better on large benchmarks than the exist-

ing state-of-the-art algorithms. We show that our algorithm is applicable in

more generic cases where the input formulaF(X,Y) involves uninterpreted

predicates, and demonstrate other potential applicationsof our algorithm.

1.4 Organization of Thesis

The remainder of this thesis is organized as follows. In Chapter 2 we discuss the

related works in detail. This includes a survey of existing QE techniques for lin-

ear modular arithmetic and propositional logic. We also present QE techniques

for the theory of linear real arithmetic and the theory of linear integer arithmetic

– two theories that are closely related to the theory of linear modular arithmetic.

In Chapter 3 we present our algorithm for eliminating quantifiers from conjunc-

tions of LMCs. We present approaches to extend this algorithmfor eliminating

quantifiers from Boolean combinations of LMCs in Chapter 4. Our work on gen-

eration of Skolem functions for propositional formulas is presented in Chapter 5.

We conclude and suggest directions for future work in Chapter6.

For clarity of exposition, in most of the lemmas/propositions/theorems pre-

sented in the following chapters, we give illustrative examples before presenting

the detailed proofs. Chapter 3 and Chapter 4 are extended versions of our works

in [20, 21], and also reported in [22]. Chapter 5 is an extendedversion of our work

in [23].



Chapter 2

Related Works

In this chapter, we present existing QE techniques for linear modular arithmetic

and propositional logic. We also present QE techniques for the theory of lin-

ear real arithmetic and the theory of linear integer arithmetic. These theories are

closely related to the theory of linear modular arithmetic.Moreover some of the

techniques that we present in the following chapters are extensions of QE tech-

niques for these theories.

We will use symbolsTR , TZ andTM to refer to the theories linear real arith-

metic, linear integer arithmetic and linear modular arithmetic respectively. More-

over, we will use “linear arithmetic” when the distinction between the theoriesTR ,

TZ andTM is not important. QE algorithms for linear arithmetic usually work on

conjunctions of constraints. In order to apply these algorithms on formulas that

are arbitrary Boolean combinations of constraints, the formula is often converted

into disjunctive normal form (DNF)d1∨·· ·∨dm, where eachdi is a conjunction of

constraints. For eachdi , ∃x.di is computed by using the QE algorithm that works

on conjunctions of constraints. Hence, in this chapter, we initially focus on QE

24
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algorithms that work on conjunctions of constraints, and then explore techniques

to extend these algorithms to arbitrary Boolean combinations of constraints.

Satisfiability problem (decision problem) for a theory is the problem of de-

ciding if a given formula in the theory is satisfiable or unsatisfiable. Algorithms

for satisfiability problem for a theory are called satisfiability procedures (decision

procedures). A formulaF over variablesx1, . . . ,xn is satisfiable iff∃x1 · · · ∃xn.F is

true. Hence QE algorithm for a theory can be used as a decision procedure for the

theory. In fact the relationship between QE algorithms and decision procedures

is even deeper. Advances in decision procedures have alwaysmotivated develop-

ment of efficient QE algorithms. For example SAT based QE algorithms [24, 25,

26] for propositional logic were motivated by the success ofSAT solvers. Simi-

larly, many key operations performed by decision procedures are closely related

to QE. For example, as observed in [24], resolution, the basic operation used in

SAT solving, is actually performing QE. Letc1,c2 be two clauses and letc3 be the

resolvent ofc1 andc2 on a variablex. Then,c3 is equivalent to∃x.(c1∧c2). Due

to this strong connection between QE algorithms and decision procedures, along

with QE algorithms, we also provide a brief description of decision procedures

for the theories.

The remaining part of this chapter is organized as follows. We explain QE

algorithms for conjunctions of constraints inTR in Section 2.1 and QE algorithms

for conjunctions of constraints inTZ in Section 2.2. Existing algorithms for QE

from conjunctions of constraints inTM are explained in Section 2.3. Section 2.4

describes techniques to extend these algorithms to arbitrary Boolean combinations

of constraints. Techniques for QE from propositional logicformulas are explained

in Section 2.5. We conclude in Section 2.6.
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2.1 Linear Real Arithmetic

TR permits linear terms of the forma1x1 + · · ·+ anxn + a0, wherea0, . . . ,an are

rational constants andx1, . . . ,xn are variables ranging over reals. Constraints in

TR are of the forms⊲⊳ t wheres, t are linear terms permitted by the theory and⊲⊳

∈ {=, 6=,<,≤} (see [30] for more details onTR ).

We wish to compute∃x.C, whereC is a quantifier-free conjunction of con-

straints inTR involving x. We assume thatC involves only equalities and strict in-

equalities. Note that this does not cause any loss of generality, since disequalities

and weak inequalities can be replaced by equalities and strict inequalities using

the equivalences 1)(s≤ t) ≡ (s< t)∨ (s= t), and 2)(s 6= t) ≡ (s< t)∨ (s> t).

We further assume that the constraints inC are expressed in thenormalized

form x ⊲⊳ t, wheret is a term free ofx and⊲⊳ ∈ {=,<,>}. This is always possi-

ble by using the standard arithmetic transformations permitted in real arithmetic.

For example, consider theTR constraint(3x+10> y). It can be equivalently ex-

pressed in form(3x> y−10) by adding−10 to both sides of the inequality. It can

be then expressed in the normalized form(x > 1
3y− 10

3 ) by dividing both sides by

3.

Note that ifC contains an equalityx = t, then∃x.C can be computed very

easily. Substituting the occurrences ofx in all other constraints inC by t, and then

droppingx = t from C gives∃x.C. Hence, in the remaining part of this section,

we will assume thatC involves only strict inequalities of the formx < sandx > t.

We present three algorithms for QE from such conjunctions ofconstraints in

TR - Fourier-Motzkin Algorithm, Ferrante and Rackoff’s Algorithm and Loos

and Wiespfenning’s Algorithm (Although in the following description we focus

on only conjunctions of constraints, Ferrante and Rackoff’sAlgorithm and Loos
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and Wiespfenning’s Algorithm can directly work on Boolean combinations of

constraints inTR ). We then present automata-theoretic approaches for QE from

conjunctions of constraints inTR , and conclude the section with a discussion on

decision procedures forTR and some complexity results.

2.1.1 Fourier-Motzkin Algorithm

The fundamental idea behind Fourier-Motzkin Algorithm is to eliminate the vari-

able by projecting the constraints on the remaining variables in the conjunction.

Let L be the set of constraints inC of the form(x > t), andU be the set of con-

straints inC of the form (x < s). The result of projectingC on the remaining

variables can be computed as
V

(x<s)∈U, (x>t)∈L
(t < s). As an example, consider the

problem of computing∃x.C, whereC is the formula(x < 3y+2) ∧ (x > 1
2z+ 3

2).

HereL is {x > 1
2z+ 3

2} andU is {x < 3y+ 2}. Projecting(x < 3y+ 2) ∧ (x >

1
2z+ 3

2) ony andzand thereby eliminatingx gives∃x.C as(1
2z+ 3

2 < 3y+2).

2.1.2 Ferrante and Rackoff’s Algorithm

Ferrante and Rackoff’s Algorithm [31] is atest pointbased QE algorithm. Test

point based algorithms express∃x.C as an equivalent finite disjunction of the form

C[x 7→ t1]∨ ·· ·∨C[x 7→ tm], wheret1, . . . , tm are terms on free variables inC, and

C[x 7→ ti ] representsC with occurrences ofx replaced byti. The termst1, . . . , tm

are called test points, and are generated from the constraints inC.

Let A be the set of constraints inC. Ferrante and Rackoff’s Algorithm com-

putes∃x.C asC[x 7→ −∞] ∨ C[x 7→ +∞] ∨
W

(x⊲⊳s),(x⊲⊳t)∈A
C[x 7→ s+t

2 ], where⊲⊳ ∈

{<,>}. The occurrences of−∞ and+∞ can be eliminated by using the equiv-



28

alences(s < −∞) ≡ (+∞ < t) ≡ false and (−∞ < t) ≡ (s < +∞) ≡ true. As

an example, consider the problem of computing∃x.C, whereC is the formula

(x < 5) ∧ (x > 5
3). HereC[x 7→ −∞] andC[x 7→ +∞] simplify to false. Since the

constraints inC are(x < 5) and(x > 5
3), the termss andt take values from the

set{5, 5
3}, and s+t

2 takes values from the set{5, 5
3,

5+ 5
3

2 }. Note thatC[x 7→ 5] and

C[x 7→ 5
3] both simplify to false, whereasC[x 7→

5+ 5
3

2 ] simplifies totrue. Hence

∃x.C is computed astrue.

2.1.3 Loos and Wiespfenning’s Algorithm

Loos and Wiespfenning’s Algorithm [32] is an optimization of Ferrante and Rack-

off’s Algorithm. Suppose there arek constraints inC. It can be observed that the

number of test points Ferrante and Rackoff’s Algorithm examines isO(k2). Loos

and Wiespfenning’s algorithm reduces the number of test points to be examined

to O(k).

Let L be the set of constraints inC of the formx > t. Loos and Wiespfen-

ning’s Algorithm computes∃x.C asC[x 7→ −∞] ∨
W

(x>t)∈L
C[x 7→ t + ε], whereε is

a positive number close to zero. As in Ferrante and Rackoff’s algorithm,−∞ and

ε can be eliminated by using the equivalences(s<−∞) ≡ false, (−∞ < t) ≡ true,

(s+ε < t) ≡ (s< t), and(s< t +ε) ≡ (s≤ t). As an example, consider again the

problem of computing(x< 5) ∧ (x> 5
3). We have seen thatC[x 7→−∞] simplifies

to false. The setL is {x > 5
3}. The termt + ε takes values from the set{5

3 + ε},

andC[x 7→ t + ε] simplifies totrue. Hence∃x.C is computed astrue.
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2.1.4 Automata-theoretic Approaches

The key idea behind the automata-theoretic approaches is toconvert the conjunc-

tion C to an automaton such that the language accepted by the automaton corre-

sponds to the solutions ofC. The work in [33] shows that constraints inTR can be

represented using weak deterministic Büchi automata, a restricted class of Büchi

automata. QE then reduces to applying projection operationon the automaton for

the conjunction. The tools LIRA [34] and LASH [35] provide such automata-

theoretic QE implementations. However, there are two fundamental problems

with these approaches. First of all, the automaton constructed often blows up in

practice. Secondly, the result of QE is an automaton, not a formula, and synthe-

sizing a formula from the automaton is difficult.

2.1.5 Complexity Results and Decision Procedures

The QE algorithms for conjunctions of constraints inTR that we saw have doubly

exponential worst case complexities. Letm be the number of constraints inC.

After the execution of Fourier-Motzkin Algorithm, the number of constraints in

∃x.C can grow tom2

4 in the worst case. Letn be the number of variables to be

eliminated. Elimination ofn variables using Fourier-Motzkin Algorithm can thus

result in m2n

4n constraints. As a result, the number of steps involved in theelim-

ination ofn variables using Fourier-Motzkin Algorithm is doubly exponential in

n in the worst case. Similarly, in the cases of both Ferrante and Rackoff’s Algo-

rithm and Loos and Wiespfenning’s Algorithm, the worst casetime complexity is

22l .k
, wherel is the length of the original conjunctionC andk is a fixed positive

constant.
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The decision problem for conjunctions of constraints inTR is solvable in poly-

nomial time as originally shown by Khachian in [36] and laterby Karmarkar

in [37]. Because of their comparatively high theoretical andpractical complex-

ities, the QE algorithms forTR are not usually used as decision procedures. The

most popular decision procedure used in practice for conjunctions of constraints

in TR is a variant [38] of Simplex algorithm [39] for linear programming. Al-

though Simplex is exponential in worst case, in practice theneed for exponential

number of steps occurs very rarely.

2.2 Linear Integer Arithmetic

TZ permits linear terms of the forma1x1 + · · ·+ anxn + a0, wherea0, . . . ,an are

integer constants andx1, . . . ,xn are variables ranging over integers. Constraints in

TZ are of the forms⊲⊳ t wheres, t are linear terms permitted by the theory and⊲⊳

∈ {=, 6=,<,≤} (see [30] for more details).

TZ as defined above does not admit QE. To see this, consider the formula

∃x.(y = 2x) in TZ. This formula expresses the sety of integers that when divided

by 2 gives another integer. In other words, this formula expresses the set of even

integers. However, it can be observed that there is no formula in TZ that can

express the set of even integers. To overcome this problem,TZ is augmented

with congruence constraintsof the form(t = 0 (mod k)), wherek is a positive

integer andt is a linear term. Note thatcongruence constraintsare similar to

LMEs, but the modulus need not be a power of 2. It can be observed that(t = 0

(mod k)) is semantically equivalent to∃x.(t = kx). The augmented theory admits

QE. For example, the formula∃x.(y = 2x) is equivalent to(y = 0 (mod 2)). As
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we are interested in the problem of QE, henceforth we will useTZ to denote the

augmented theory of linear integer arithmetic.

In this section, we will focus on techniques to compute∃x.C, whereC is a

quantifier-free conjunction of constraints inTZ involving x. We assume thatC

involves only equalities and strict inequalities. As in thecase of reals, this does

not cause any loss of generality, since disequalities and weak inequalities can be

replaced by strict inequalities using the equivalences 1)(s≤ t) ≡ (s< t +1), and

2) (s 6= t) ≡ (s< t)∨ (s> t).

QE and reasoning techniques for constraints inTZ are more involved com-

pared to those for constraints inTR . The additional difficulty arises primarily due

to the reason that unlike reals which are dense, integers arediscrete. Recall that

equalities and strict inequalities inTR can be transformed to thenormalizedform

x⊲⊳ t, wheret is a term free ofx and⊲⊳ ∈ {=,<,>}. However such transformation

may not preserve equivalence in case ofTZ as it can generate non-integral coeffi-

cients. Hence aweaker normalizedform ax⊲⊳ t, wheret is a term free ofx, ⊲⊳ ∈

{=,<,>}, anda is a positive integer is defined forTZ. For example, consider the

constraint−2x+y > 10. It can be expressed in the normalized form 2x < y−10

by adding−y to both sides and then multiplying both sides by−1.

As in the case ofTR , the presence of equalities inC simplifies the compu-

tation of ∃x.C considerably. LetC involves an equalityax = t. Let σ be the

least common multiple (lcm) of the coefficients ofx in the constraints inC. The

constraints inC can be multiplied by appropriate constants so thatσ is the co-

efficient of x in all constraints. Let the equalityax= t gets multiplied byb and

gets converted toσx = bt in this process, whereb = σ
a . Substituting the occur-

rences ofσx in all constraints inC other thanσx = bt by bt, and then replacing
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σx = bt by (bt = 0 (mod σ)) gives∃x.C. For example, consider the problem of

computing∃x.((2x = 3y+ 2) ∧ (3x > 4z+ 3)). Hereσ is lcm(2,3)= 6. Mul-

tiplying (2x = 3y+ 2) by 3 and(3x > 4z+ 3) by 2, we have∃x.((6x = 9y+ 6)

∧ (6x > 8z+ 6)). Replacing the 6x in (6x > 8z+ 6) by 9y+ 6 and simplifying

gives∃x.(6x= 9y+6) ∧ (9y> 8z). This is equivalent to(9y+6= 0 (mod 6)) ∧

(9y > 8z). Henceforth, we will assume thatC involves only strict inequalities of

the formax< t andbx> s.

The pioneering work on QE from conjunctions of constraints in TZ was done

by Presburger [40]. Here we present a more efficient version of Presburger’s

QE procedure introduced by Cooper in [41] called Cooper’s Algorithm (Sim-

ilar to Ferrante and Rackoff’s Algorithm and Loos and Wiespfenning’s Algo-

rithm for TR , Cooper’s Algorithm can directly work on Boolean combinations

of constraints. However in the following description we focus only on conjunc-

tions of constraints.). We also present Omega Test Algorithm [11], an extension

of Fourier-Motzkin Algorithm forTZ. We then present automata-theoretic ap-

proaches, and conclude the section with a discussion on decision procedures for

TZ and some complexity results.

2.2.1 Cooper’s Algorithm

Cooper’s algorithm is a test point based QE algorithm. It expresses∃x.C as an

equivalent disjunction of the formC[x 7→ t1]∨·· ·∨C[x 7→ tm], wheret1, . . . , tm are

terms on free variables inC.

Let σ be the lcm of the coefficients ofx in the constraints inC. The con-

straints inC are multiplied by appropriate constants so thatσ is the coefficient of

x in all constraints. LetC′ be the formula obtained by replacing the occurrences
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of σx in C by a fresh variablex′. Let D be the formulaC′∧(x′ = 0 (mod σ)).

It can be observed that∃x.C is equivalent to∃x′.D. Let L be the set of con-

straints inD of the formx′ > t. Now ∃x.C is equivalent to
σ
W

j=1
D[x′ 7→ −∞+ j]

∨
σ
W

j=1

W

(x′>t)∈L
D[x′ 7→ t + j]. The occurrences of−∞ are eliminated by using the

equivalences(−∞+ j > t) ≡ false and(−∞+ j < t) ≡ true.

As an example, consider the problem of computing∃x.C, whereC is the for-

mula (3x < 7) ∧ (2x > 3). Note thatσ is lcm(3, 2)= 6. Multiplying (3x < 7)

by 2 and(2x > 3) by 3, we get∃x.((6x < 14) ∧ (6x > 9)). Replacing 6x by x′,

and adding the constraint(x′ = 0 (mod 6)), we have∃x′.D, whereD is (x′ < 14)

∧ (x′ > 9) ∧ (x′ = 0 (mod 6)). Note that
σ
W

j=1
D[x′ 7→ −∞+ j] simplifies tofalse.

Since the setL is {x′ > 9}, t takes the value 9, andt + j takes values from the set

{10,11,12,13,14,15}. Note that
σ
W

j=1

W

(x′>t)∈L
D[x′ 7→ t + j] simplifies totrue, since

D[x′ 7→ 12] is true. Therefore∃x.C computed istrue.

2.2.2 Omega Test Algorithm

Omega Test Algorithm is an extension of Fourier-Motzkin Algorithm for QE from

constraints inTZ. Although originally presented as a decision procedure forcon-

junctions of constraints inTZ, it can be extended to a QE algorithm in a straight-

forward manner.

For clarity in exposition, let us initially consider the simpler problem of com-

puting∃x.(ax< t)∧(bx> s). First(ax< t) is multiplied byb and(bx> s) is mul-

tiplied bya so thatab is the coefficient ofx in both the constraints. Thus we have

∃x.(abx< bt)∧ (abx> as). Applying Fourier-Motzkin Algorithm on∃x.(abx<

bt)∧ (abx> as) gives(bt > as). However(bt > as) is an over-approximation of
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∃x.(abx< bt)∧ (abx> as), calledreal shadow. Note that if(bt−as> ab) holds,

then existence of an integeri such that(abi< bt)∧(abi> as) is guaranteed. Thus

(bt − as> ab) is an under-approximation of∃x.(abx< bt)∧ (abx> as). The

constraint(bt−as> ab) is calleddark shadow.

Consider∃x.(abx< bt)∧ (abx> as) when(bt−as≤ ab). This implies(as<

abx< as+ab), i.e.,(s< bx< s+b). Hence∃x.(abx< bt)∧ (abx> as) is equiv-

alent to∃x.
b−1
W

j=1
(bx= s+ j)∧(abx< bt)∧ (abx> as) when(bt−as≤ ab). The

formula
b−1
W

j=1
(bx= s+ j) is calledgrey shadow. Substituting the occurrences ofbx

in (abx< bt) and(abx> as) by s+ j, and then replacing(bx= s+ j) by (s+ j = 0

(mod b)) gives
b−1
W

j=1
(s+ j = 0 (mod b))∧(a(s+ j) < bt)∧ (a(s+ j) > as), which

can be simplified to
b−1
W

j=1
(s+ j = 0 (mod b))∧(a(s+ j) < bt)∧ (bt > as).

Putting everything together,∃x.(ax< t)∧(bx> s) is equivalent to the disjunc-

tion of (bt−as> ab) and
b−1
W

j=1
(s+ j = 0 (mod b))∧(a(s+ j) < bt)∧ (bt > as).

In general, letL be the set of constraints inC of the form (bx > s) andU be

the set of constraints inC of the form (ax < t). Then∃x.C is equivalent to
V

(ax<t)∈U, (bx>s)∈L
∃x.(ax< t)∧ (bx> s).

As an example consider the problem of computing∃x.C, whereC is the for-

mula (5x < y) ∧ (6x > y). Here a = 5, b = 6 ands = t = y. Real shadow

(bt > as) is (y > 0), anddark shadow(bt−as> ab) is (y > 30). The formula
b−1
W

j=1
(s+ j = 0 (mod b))∧(a(s+ j) < bt) simplifies to(y = 5 (mod 6)∧y > 5) ∨

(y= 4 (mod 6)∧y> 10) ∨ (y= 3 (mod 6)∧y> 15) ∨ (y= 2 (mod 6)∧y> 20)

∨ (y = 1 (mod 6)∧ y > 25). Hence∃x.C is computed as(y > 30) ∨ (y = 5

(mod 6)∧ y > 5) ∨ (y = 4 (mod 6)∧ y > 10) ∨ (y = 3 (mod 6)∧ y > 15) ∨

(y = 2 (mod 6)∧y > 20) ∨ (y = 1 (mod 6)∧y > 25).
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2.2.3 Automata-theoretic Approaches

Büchi showed [42] that a conjunction of constraints inTZ can be represented by

a finite state automaton such that the language accepted by the automaton corre-

sponds to the solutions of the conjunction. A more efficient technique to repre-

sent constraints inTZ by automaton was proposed by Boudet and Comon in [43],

which was further improved by Wolper and Boigelot [44]. Once the conjunction

is represented as an automaton, QE can be done by applying projection operation

on the automaton. An implementation of the technique by Wolper and Boigelot

can be found in the tool LASH [35]. LIRA [34] provides a more efficient imple-

mentation of this technique that reduces the number of states in the automaton and

thereby keeps the automaton smaller. However, as in the caseof TR , the primary

bottleneck of the automaton-based approaches is that the automaton constructed

often blows up in practice as observed in [15]. Moreover, deriving a formula from

the automaton obtained after QE is difficult.

2.2.4 Complexity Results and Decision Procedures

Let l be the length of the input conjunction of constraintsC. The worst case time

complexity of Cooper’s Algorithm is 22
2l .k

, wherek is a fixed positive constant.

The time taken by Omega Test Algorithm and the size of quantifier eliminated

result can be proportional to the absolute values of the coefficients in the worst

case.

The decision problem for conjunctions of constraints inTZ is NP-complete [45].

Although Omega Test Algorithm is used as a decision procedure for conjunc-

tions of constraints inTZ, there exist more popular decision procedures based on
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branch-and-bound and Gomory’s cutting planes [46]. In boththese approaches,

given a conjunctionC of constraints inTZ, it is first checked to see ifC has a solu-

tion when the variables are not required to be integers. Thisversion ofC without

the integrality requirement is calledrelaxed problem, and can be solved using Sim-

plex algorithm. If the relaxed problem is unsatisfiable, thenC is also unsatisfiable.

Otherwise letπ be the solution returned by Simplex for the relaxed problem.If

all variables are assigned integer values inπ, thenπ is a solution toC as well.

Otherwise letπ assigns a fractional valuefi to variablexi. In branch-and-bound

approach, two conjunctionsC1 andC2 are created, whereC1 is C∧(xi ≤ ⌊ fi⌋) and

C2 is C∧(xi ≥ ⌈ fi⌉). The original problem of decidingC is now split into sub-

problems of decidingC1 andC2, sinceC has a solution only ifC1 or C2 has a

solution. In Gomory’s cutting planes approach, a new inequality l (called cutting

plane) is added toC such thatC ⇒ l and l avoids the fractional solutionπ. The

problem thus changes to decidingC∧ l .

2.3 Linear Modular Arithmetic

Recall that unlikeTZ, variables in modular arithmetic have finite domain. More-

over, the successor of 2p−1 in modular arithmetic with modulus 2p is 0. Thus

semantics of constraints inTM differ from that of constraints inTZ, and hence QE

techniques forTZ cannot be directly used for QE from constraints inTM .

Existence of inverses:Let Z2p denote the set{0, . . . ,2p−1}. It can be observed

that for each elementc∈ Z2p, there exits an elementd ∈ Z2p such thatc+d = 0

(mod 2p). In other words, additive inverses modulo 2p exist for all elements in

Z2p. For a termt, we use−t to denote the additive inverse oft modulo 2p. Multi-
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plicative inverses modulo 2p exist only for odd elements inZ2p. The work in [74]

gives anO(p)-time algorithm to compute multiplicative inverses modulo2p for

odd elements inZ2p.

Since every variable in an LMCa1 · x1 + · · ·+ an · xn ⊲⊳ a0 (mod 2p), where

⊲⊳∈ {=, 6=,<,≤}, represents ap-bit integer, it follows that a set of LMCs sharing

a variable must have the same modulus. Hence we will assume without loss of

generality that whenever we consider a conjunction of LMCs sharing a variable,

all the LMCs have the same modulus.

The most dominant technique used in practice for eliminating quantifiers from

LMCs is conversion to bit-level constraints (also called bit-blasting [13]), fol-

lowed by bit-level QE. As an example, consider the LMI(s< x+y) with modulus

8. In bit-blasting, the termx+ y on the right-hand-side is expressed as an equiv-

alent bit-level formula corresponding to a 3-bit ripple carry adder, and then the

LMI is expressed as an equivalent bit-level formula corresponding to a 3-bit com-

parator. However this technique irretrievably destroys the word-level structure of

the problem, and scales poorly as the width of bit-vectors increases.

LMCs can also be expressed as equivalent formulas inTZ [83], and then QE

algorithms forTZ can be used. For example the LMI(s< x+y) with modulus 8

can be equivalently expressed as aTZ formulaite(x+y≤ 7,s= x+y, s= x+y−8)

∧ (0 ≤ x ≤ 7) ∧ (0 ≤ y ≤ 7), whereite represents if-then-else, andx, y, s are

integer variables. However as observed in [13], this approach scales poorly in

practice primarily due to the blow-up in formula size duringthe conversion toTZ.

Moreover, this approach destroys the modular arithmetic structure of the problem

since the resulting formula is inTZ and converting this formula back toTM is

often difficult.
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In the remaining part of this section, we first discuss the known complexity

results forTM , and then describe decision procedures forTM .

2.3.1 Complexity Results

Satisfiability problem for a conjunction of LMEs is polynomial-time [79]. How-

ever, satisfiability problem for conjunctions of even very limited fragments of

LMDs or LMIs are proved to be NP-hard.

Jain et. al in [80] proves that the satisfiability problem fora conjunction of

LMDs with modulus 4 is NP-hard. Any instance of 3-SAT problemcan be reduced

to an instance of satisfiability problem for a conjunction ofLMDs with modulus

4 in polynomial-time.

Gange et. al’s work in [81] gives a simple reduction from graph 3-colourability

problem to the satisfiability problem for a conjunction of constraints of the form

x1 6= x2 (mod m), wherem≥ 3. Consider an instance of graph 3-colourability

problemG =< V,E >, whereV = {v1, . . . ,vn} is the set of vertices andE is the

set of edges. For each edge(vi ,v j) ∈ E, let us introduce a constraintxi 6= x j

(mod 3). It can be seen that the conjunction of these constraints is satisfiable iff

G is 3-colourable. Sincex1 6= x2 (mod m) is equivalent tox1−x2 ≥ 1 (mod m),

this reduction applies also for a conjunction of constraints of the formx1−x2 ≥ 1

(mod m) with m≥ 3.

The work in [12] introduces Modular Difference Logic (MDL) constraints.

MDL constraints are a fragment of LMIs of the formx1+k1 ≤ x2+k2 (mod 2p),

wherex1,x2 are variables, andk1,k2 are constants. The work in [12] proves that

the satisfiability problem for conjunctions of MDL constraints of the formx1+1≤

x2 (mod 2p) or of the formx1 ≤ x2 + 2p−1 (mod 2p) with 2p ≥ 4 is NP-hard.
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Any instance of graph 3-colourability problem can be reduced to an instance of

satisfiability problem for a conjunction of such constraints in polynomial-time.

Given a conjunctionC of LMCs over variablesx1, . . . ,xn, the problem of com-

puting∃x1 · · · ∃xt .C is NP-hard, since (i) the satisfiability problem for a conjunc-

tion of LMCs is NP-hard even when the modulus is a priori fixed and (ii) C is

satisfiable iff∃x1 · · · ∃xn.C is true.

A related, but possibly simpler problem is quantifying a single variable from

a conjunction of LMCs. Note that the above NP-hardness resultfor quantifying a

set of variables from a conjunction of LMCs does not imply NP-hardness of the

problem for a single variable. However, even the problem fora single variable

is NP-hard when the modulus is not a priori fixed but part of theinput and the

modulus is not necessarily a power of 2. Given a collection ofordered pairs

{(a1,b1), . . . ,(an,bn)}, whereai, bi are positive integers withai ≤ bi for 1≤ i ≤ n,

the problem of computing∃x.((x 6= a1 (mod b1))∧ . . . ∧ (x 6= an (mod bn))) is

NP-hard as shown in [45].

2.3.2 Decision Procedures

There are several works (see [75, 76]) on solving conjunctions of LMEs using

variants of Gaussian elimination. The works in [77] and [78]giveGaussian elim-

ination basedalgorithms for deriving solved form for conjunctions of LMEs. The

solved form captures all possible solutions of the given conjunction of LMEs.

Ganesh et. al in [79] gives asolve-and-substitute kindalgorithm to derive solved

form for conjunctions of LMEs. Given a conjunction of LMEs, the algorithm

in [79] initially solves for the variables appearing with odd coefficients. If there

is a variable appearing with odd coefficient in an LME, then that LME is chosen.
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The term involving the variable appearing with odd coefficient is isolated on the

left-hand-side of the LME, and the LME is multiplied by the multiplicative inverse

of the variable’s coefficient. The variable is then eliminated from other LMEs by

substitution. If there are no variables appearing with odd coefficients, then the

algorithm selects the variable with coefficient that has theminimum number of

factors of 2. Letx be the variable selected this way and letf be the number of

factors of 2 in its coefficient. The whole conjunction is divided by 2f to obtain a

conjunction of LMEs with modulus 2p− f which is equisatisfiable with the origi-

nal conjunction. The variable selectedx appears with odd coefficient in the new

conjunction of LMEs, and the algorithm proceeds by solving for this variable.

Most of the SMT solvers [82, 10] decide the satisfiability of conjunctions of

LMDs and/or LMIs by bit-blasting followed by SAT solving. However because

of the bitwidth-dependent blow-up during bit-blasting, this approach suffers from

scaling problems for problem instances with large moduli. The SMT solver Math-

SAT [84] converts LMCs to equivalent formulas inTZ and then uses solvers for

TZ. However, as mentioned earlier, this approach suffers fromblow-up in formula

size during the conversion toTZ.

Hadarean et. al. in [85] proposes an extension of the well-known congruence

closure algorithm [13] for deciding the satisfiability of conjunctions of LMDs.

Recall that the standard congruence closure algorithm assumes that variables have

infinite domain, and hence it cannot be directly used for solving conjunctions

of LMDs. Given a conjunction of LMDs, for example,(x 6= y) ∧ (x 6= z) with

modulus 2, the work in [85] initially puts the variablesx, y, andz in different

congruence classes. It is then checked to see if each congruence class can be

assigned a distinct constant value. If this is possible, then we have a satisfying
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assignment. In the example, this is not possible since thereare three congruence

classes and only two distinct constant values with modulus 2. In such cases, the

problem is split into a number of sub-problems. In each sub-problem, a different

pair of congruence classes are merged. The process is repeated until either the

splits lead to inconsistency or a satisfying assignment is obtained. In the example,

the algorithm identifies that congruence classes fory andzcan be merged to obtain

a satisfying assignment for(x 6= y) ∧ (x 6= z).

The work in [85] also proposes an algorithm to decide the satisfiability of con-

junctions of a special class of MDL constraints of the formx1 ⊳ x2 (mod 2p),

where⊳ ∈ {<,≤}. Note that these constraints do not have wrap-around be-

haviour. Given a conjunctionI of these constraints the algorithm builds the least

modelM of I by incrementally processing the constraints inI . Least model is

the model where all the variables have the least possible values. Note that every

such satisfiable conjunction has a least model. InitiallyM(xi) is set to 0 for each

variablexi present inI . Let C be the conjunction of constraints that are already

processed. Given a new constraintx⊳y, it is attempted to extendM such thatM

becomes the least model ofC ∧ x⊳y. Therefore if the valuesM(x) andM(y) do

not satisfyx⊳y, thenM(y) is increased so thatx⊳y is satisfied. This may violate

the previously satisfied constraints inC, and may require changing the values of

other variables. IfM cannot be extended to become the least model ofC ∧ x⊳y,

thenC ∧ x⊳y is unsatisfiable, and henceI is unsatisfiable.

Gange et. al’s work in [81] proposes a sound heuristic to check the satisfia-

bility of MDL constraints. It makes use of a variant of Floyd-Warshall all-pairs

shortest path algorithm to derive the relations between allpairs of variables. The

relation between variablesx1 andx2 is over-approximated by a constraint of the
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form x1−x2 ∈ [k1,k2], wherek1,k2 are constants.[k1,k2] is called a “wrapped in-

terval” which represents the set{d|k1≤ d≤ k2} if k1≤ k2 and{d|k1≤ d≤ 2p−1}

∪ {d|0≤ d ≤ k2} if k1 > k2. If constraintsx1−x2 ∈ [a,b] andx1−x2 ∈ [c,d] are

derived where[a,b] and [c,d] are disjoint wrapped intervals, then the algorithm

soundly infers unsatisfiability.

The idea of wrapped intervals (also called clockwise intervals) was actually

introduced by Gotlieb et. al. in [86] in the context of program analysis. In this

work, the possible values that program variables can take are abstracted by clock-

wise intervals. Optimal clockwise intervals, i.e., tightest over-approximations of

possible values expressed as clockwise intervals, are computed for each program

variable. Techniques for computing the optimal clockwise intervals when the pro-

gram involves (linear modular) arithmetic operations are also proposed.

Modern SMT solvers, such as, Z3 [10] and theorem-provers such as PVS [60]

use specialized heuristics [98] to solve quantified bit-vector formulas by Skolem-

ization followed by use of appropriate choices of Skolem functions. The use of

p-adic expansions [61, 62] is explored in [63, 64] to solvenon-linear modular

equations. Bruttomesso et al. [110] present a polynomial time algorithm for solv-

ing conjunctions of constraints in the core bit-vector theory consisting of only

equalities, extractions and concatenations. Their algorithm first generates an eq-

uisatisfiable conjunction of equalities on non-overlapping slices of variables in-

volved in the constraints. Congruence closure algorithm is then used for checking

the satisfiability of this conjunction of equalities on non-overlapping slices. Sim-

ilar slicing based ideas for solving conjunctions of bit-vector constraints can be

found in [65, 66].

Jain et al. [80] give a polynomial-time algorithm for computing Craig inter-
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polants for conjunctions of LMEs. Griggio [67] presents a layered framework for

computing interpolants for bit-vector formulas that triesto keep the word-level

structure of the problem as much as possible. The cheaper layers use interpo-

lation in EUF (equality+ uninterpreted functions) and interpolation by equality

substitution. The more expensive layers use conversion toTZ and bit-blasting.

2.4 Boolean Combinations

In the QE algorithms we have seen so far, focus was on eliminating quantifiers

from conjunctions of constraints. However formulas arising in many practical

applications are arbitrary Boolean combinations of constraints, not necessarily

conjunctions. In this section, we will explore techniques for extending the QE

algorithms for conjunctions of constraints to arbitrary Boolean combinations of

constraints.

Ferrante and Rackoff’s Algorithm, Loos and Wiespfenning’s Algorithm and

Cooper’s Algorithm which are test point based algorithms, can be directly ap-

plied on arbitrary Boolean combinations of constraints. However, the scalability

of these algorithms in practice often depends on the underlying representation of

the Boolean skeletons of formulas and implementation heuristics used. On the

other hand, projection based algorithms such as Fourier-Motzkin and Omega test

cannot be directly applied on arbitrary Boolean combinations of constraints. As

mentioned earlier, the input formula is first transformed into DNF d1∨ ·· · ∨dm,

where eachdi is a conjunction of constraints. These conjunctions of constraints

are also calledmonomes. For each monomedi, ∃x.di is then computed using

Fourier-Motzkin / Omega test. Efficient techniques for generation of DNF are
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crucial in extending these algorithms to arbitrary Boolean combinations of con-

straints.

In the following discussion, we will initially focus on techniques for scal-

able extension of test point based algorithms to arbitrary Boolean combinations

of constraints. We will then present efficient techniques for generation of DNF

from arbitrary Boolean combinations of constraints.

2.4.1 Extending Test Point Based Algorithms

LinAIG tool [47] implements Loos and Wiespfenning’s Algorithm using a data

structure called LinAIG. The constraints are abstracted byBoolean variables to

obtain Boolean skeletons of formulas. FRAIGs [48] are used to represent the

Boolean skeletons, and a map is maintained between the constraints and the Boolean

variables. Moreover, they use Craig interpolants [19] to identify and remove re-

dundant constraints generated during application of Loos and Wiespfenning’s Al-

gorithm.

Bjørner’s work in [49] avoids application of substitutions in the formulation

of Loos and Wiespfenning’s Algorithm and Cooper’s Algorithm. The effect of

substitutions is encoded as an additional constraint called pivotwhich is conjoined

with the input formulaF . Satisfying assignments toF∧pivotare generated using a

DPLL(T ) framework, which are then generalized to disjuncts in the formulation

of Loos and Wiespfenning’s / Cooper’s Algorithm. This helps in avoidingT -

inconsistent disjuncts in the formulation and unnecessaryblow-up in formula size.

Nipkow’s work [50] provides implementations of Ferrante and Rackoff’s al-

gorithm, Loos and Wiespfenning’s algorithm, and Cooper’s algorithm that are

verified in the theorem prover Isabelle.
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Komuravelli et al. [58] introduce model based projection that involves comput-

ing model-based under-approximations of existentially quantified formulas. Their

work also gives procedures for computing such under-approximations for exis-

tentially quantified formulas in linear arithmetic as disjuncts in the formulation

of Loos and Wiespfenning’s algorithm or Cooper’s algorithm.Bjørner et al. [59]

give an algorithm that makes use of model based projections for deciding the sat-

isfiability of quantified linear arithmetic formulas. Theiralgorithm conceptually

works as a two-player satisfiability game and can be extendedfor QE from linear

arithmetic formulas.

2.4.2 Generation of DNF

Cavada et al.’s work [27] addresses the problem of existentially quantifying out all

numeric variables from formulas involvingTR constraints and Boolean variables.

Their work uses BDDs [51] to represent Boolean structure of theformulas. QE

is done by recursively traversing the BDD, carrying along each path, theTR con-

straints encountered on it so far (called the context). Paths with TR -inconsistent

contexts are removed. Because of the dependence of the resultof a recursive

call on the context, if the same BDD node is encountered following two different

paths, the results of the calls are not the same in general. Hence this procedure is

not amenable to dynamic programming usually employed in theimplementation

of BDD operations. In particular, the number of recursive calls in the worst-case

is linear in the number of paths, and not the number of nodes, of the original BDD.

The work in [28] presents an efficient algorithm for QE from formulas in the

theory of Octagons (a fragment ofTZ for which Fourier-Motzkin is sufficient for

conjunction-level QE). This work introduces decision diagrams for linear arith-
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metic called LDDs. The Boolean skeletons of formulas are represented by BDDs

and constraints are managed using a separate library external to the BDD package.

QE from LDDs makes use of an algorithm calledwhite-box-QELIMthat elimi-

nates a single variable from an LDD and returns the result as an LDD. Suppose we

wish to compute the result of quantifying out a variablex from an LDD rooted at a

nodef . Let p be the constraint labelingf , and letl andh respectively be the LDDs

appearing as the low child and high child off . white-box-QELIMfirst computes

an LDD l ′ obtained by adding to each 1-pathπl in l the result of quantifying out

the variablex from the conjunction ofπl and¬p. Similarly it computes an LDDh′

obtained by adding to each 1-pathπh in h the result of quantifying outx from the

conjunction ofπh andp. It then recursively callswhite-box-QELIMon the LDDs

l ′ andh′, and returns the disjunction of the LDDs resulting from these calls. Since

the result of a recursive call is context-independent,white-box-QELIMcan be im-

plemented with dynamic programming. This results in considerable performance

improvement as reported in [28].

Suppose we wish to quantify out a set of variablesX from aTR formula F .

A straightforward algorithm to do this is an All-SMT algorithm (also called All-

SMT loop) that works as follows. An SMT solver call is used to check if F is

satisfiable. IfF is unsatisfiable, then∃X.F is false. Otherwise, the solution ofF

is generalized to a monomeC1 such thatC1 ⇒ F . The SMT solver is now called to

check ifF∧¬C1 is satisfiable. IfF∧¬C1 is unsatisfiable, then∃X.F is equivalent

to ∃X.C1. Otherwise, the solution ofF ∧¬C1 is generalized to a monomeC2 such

that C2 ⇒ F . This loop is repeated until the formula given to the SMT solver

becomes unsatisfiable. Each iterationi of the loop generates a monomeCi such

thatCi ⇒ F , for 1≤ i ≤ n. Finally∃X.F is equivalent to∃X.C1 ∨ ·· ·∨∃X.Cn.
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The work by Lahiri et al. [54] improves the All-SMT algorithmby consider-

ing ¬Ci as a conflicting clause and then performing conflict-driven back-jumping

inside the SMT solver. The work by Monniaux in [29] improves the All-SMT

algorithm in the following ways. Instead of¬Ci,¬∃X.Ci is conjoined with the for-

mula given to the SMT solver. Monniaux calls this “interleaving projection and

model enumeration”. It is observed that this helps in pruning the solution space

of the problem. This results in early termination of the algorithm and reduces the

number of SMT solver calls required. Secondly, an SMT solverbased procedure

is used to further generalizeCi by dropping unnecessary constraints fromCi be-

fore ∃X.Ci is computed. This optimization improves the overall performance of

the algorithm. GeneralizingCi reduces the time to compute∃X.Ci, and results

in generalized∃X.Ci. A generalized∃X.Ci increases the size of solution space

pruned by conjoining¬∃X.Ci with the formula given to the SMT solver.

The later work by Monniaux in [52] improves the above algorithm in handling

of quantifier alternations. When applied on aTR formula with quantifier alter-

nations, for example,∃x1.∀x2.∃x3.F, the above algorithm computes the DNF for

∃x3.F, and then CNF for∀x2.∃x3.F, and finally DNF for∃x1.∀x2.∃x3.F. The

work in [52] proposes a lazy algorithm for computing∃x1.∀x2.∃x3.F that avoids

the construction of the full CNFs and DNFs. The algorithm computes under-

approximations of∃x1.∀x2.∃x3.F as monomes until the disjunction of these monomes

is equivalent to∃x1.∀x2.∃x3.F. In order to compute an under-approximation of

∃x1.∀x2.∃x3.F, initially an under-approximation of¬∃x3.F is computed. This is

then used to compute an under-approximation of∀x2.∃x3.F, which is finally used

to compute the under-approximation of∃x1.∀x2.∃x3.F. Phan et al’s work in [53]

presents a more general version of this algorithm and extends it toTZ formulas.
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Techniques for finding generalized implicants are crucial in scalable applica-

tion of the All-SMT algorithm. Many interesting approachesare proposed re-

cently for deriving such generalized implicants from a given solution of an SMT

formula. De Moura et al. [55] present a variation of Boolean constraint prop-

agation in order to identify constraints whose truth valuesare not essential for

determining the satisfiability of a formula. Déharbe et al. [56] present algorithms

for generating prime implicants from solutions of formulaeby iterative removal

of assignments that are not necessary. Niemetz et al. [57] present a dual propa-

gation based technique to extract partial solutions from “full” solutions of SMT

formulas. Given a solutionmof a formulaF , the assignments to variables inmare

presented as assumptions to a dual solver which maintains¬F. The assumptions

that are inconsistent with¬F identify the assignments sufficient to satisfyF .

The work by Veanes et al. [87] focuses on automatically constructing monadic

decompositions of formulas in quantifier free fragments of first order logic. Monadic

decomposition involves transforming a given formula into an equivalent Boolean

combination of unary predicates. Veanes et al. give an algorithm for construct-

ing monadic decompositions in Disjunctive Normal Form (DNF). Once such a

decomposition is constructed, QE can be achieved by distributing the existential

quantifiers over disjunctions in the DNF. This effectively reduces the problem

of eliminating quantifiers from a general formula to the problem of eliminating

quantifiers from conjunctions involving only unary predicates.
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2.5 Propositional Logic

Satisfiability problem for propositional logic has a wide range of practical applica-

tions ranging from formal verification [4] to planning in artificial intelligence [88]

and from equivalence checking [89] to haplotype inference in bioinformatics [90].

This has led to immense research in this field and to development of SAT solvers

that can solve propositional logic formulas involving millions of variables. Most

SAT solvers use variants of Davis-Putnam-Loveland-Longemann (DPLL) frame-

work [91]. DPLL framework makes use of a recursive algorithm. Each step in

the algorithm involves assigning a value to a variable in theformula, and then

checking if this assignment leads to a conflict. If the conflict exists in the for-

mula regardless of the assignments to the variables, then the formula is declared

unsatisfiable. Otherwise, if the conflict exists only under the present set of assign-

ments to the variables, then the algorithm tries to learn from the conflict. It then

backtracks and undoes some of the assignments it made earlier which led to the

conflict. This is repeated until either the formula is declared unsatisfiable or all

variables are assigned values in which case the formula is satisfiable.

The interest in propositional logic has also led to well-developed data-structures

for representing propositional logic formulas. BDDs [51] provide canonical rep-

resentation of propositional logic formulas. In applications where canonicity is

not required, formulas are often represented as And-Inverter-Graphs (AIGs) [99].

More compact representations such as FRAIGs [48] are also used in specific ap-

plications [92].

In the remainder of this section, we will focus on techniquesfor QE from

propositional logic formulas. As mentioned earlier, one ofthe approaches to per-

form QE is to express the existentially quantified variablesas Skolem functions of
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other variables in the formula. QE can be done by substituting the occurrences of

the existentially quantified variables in the formula by their Skolem functions. In

Subsection 2.5.2 we will present techniques for generatingSkolem functions for

formulas in propositional logic.

2.5.1 Quantifier Elimination

Suppose we wish to compute∃x.F, whereF is a quantifier-free propositional

logic formula involvingx. It can be observed that∃x.F is equivalent toF [x 7→ 0]

∨ F [x 7→ 1], whereF [x 7→ 0] is F with occurrences ofx replaced byfalse and

F [x 7→ 1] is F with occurrences ofx replaced bytrue. OnceF is represented as a

BDD or an AIG,F [x 7→ 0] ∨ F [x 7→ 1] can be computed using the standard BDD

or AIG operations. The fundamental bottleneck in this technique is that BDDs as

well as AIGs blow-up in practice after a number of such QE steps.

The advance in the field of SAT solvers led to the development of SAT-based

QE techniques for propositional logic. Since SAT solvers work on Conjunctive

Normal Form (CNF), before applying these techniques, the input formula is trans-

formed to equisatisfiable CNF using Tseitin’s encoding [100]. Suppose we wish

to compute∃X.F, whereF is a propositional logic formula in CNF andX is a

subset of variables in its support. The work in [24] modifies the DPLL framework

to enumerate models ofF . Each time a modelπ of F is obtained, it is generalized

to obtain a conjunction of literals (also called cube/implicant)c such thatπ ⇒ c

andc⇒ F . Finally F is equivalent to the disjunction of the implicants generated.

Then∃X.F is obtained by removing the literalsx and¬x from the implicants,

wherex∈ X.

The work in [25] also proposes a model enumeration based algorithm to com-
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pute∃X.F. However, rather than modifying the DPLL framework, the algorithm

in [25] uses queries to an external SAT solver for model enumeration. The SAT

solver queries are constrained such that the implicants generated are the shortest.

Moreover, the SAT solver queries are incremental, and an incremental SAT solver

is used to improve the overall performance of the algorithm.

The recent work by Goldberg et. al. in [26] proposes an alternate SAT solver

based QE algorithm. This work makes use of the insight that resolution performed

during SAT solving involves QE. Letc1,c2 be two clauses and letc3 be the resol-

vent of c1 andc2 on a variablex. Then,c3 is equivalent to∃x.(c1∧ c2). Given

∃X.F, the algorithm proposed in [26] adds resolvent clauses on the variables in

X to F . After adding a sufficient number of resolvent clauses, all the clauses

containing the variables inX become redundant in∃X.F. These clauses are then

dropped and the resulting formula is equivalent to∃X.F.

2.5.2 Skolem Functions

Let X = {x1, . . .xn} andY = {y1, . . .ym} be sets of propositional variables. Let

F(X,Y) be a propositional formula over the setX∪Y. As mentioned in Chapter 1,

a Skolem functionψi for xi in F(X,Y) is a formula over the setX \ {xi} ∪Y

such that∃xi.F ≡ F [xi 7→ ψi], whereF [xi 7→ ψi] denotes the formula obtained by

substituting occurrences ofxi in F with ψi .

Given a propositional formulaF(X,Y), there are many interesting techniques

for generating Skolem functions for variables in the setX when ∃X.F(X,Y)

is valid. The pioneering work in this field is by Benedetti in [8]. This work

gives a technique for extracting Skolem functions from the proof of validity of

∃X.F(X,Y) generated by the Skolemization-based QBF solver Skizzo [93]. Skizzo
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is extended such that the steps to prove the validity are recorded in aproof log,

which is then read by a tool that constructs Skolem functionsencoded as BDDs.

The work in [94] instruments the BDD-based QBF solver EBDDRES so that

it generates Skolem functions. To generate Skolem functionfor an existentially

quantified variablex, all the clauses containingx are collected and a BDDf for

the conjunction of these clauses is built. Without loss of generality, letx be the

variable labeling the root node off and let l and h respectively be the BDDs

appearing as the low child and high child of the root node off . EBDDRES uses

the BDD h as the Skolem function forx. Moreover, it is observed in [94] that

negation ofl can also be used as the Skolem function forx.

Given a propositional formulaF(X,Y), the work by Balabanov and Jiang

in [16] proposes a technique to extract Skolem functions forvariables in the setX

from the cube-resolution proof of validity of∃X.F(X,Y). When∃X.F(X,Y) is

not valid, this work generates Herbrand functions for variables in the setY from

the clause-resolution proof of invalidity of∃X.F(X,Y). Herbrand functions for

variables in the setY are simply values of the variables inY for which∃X.F(X,Y)

is false. Thus Herbrand functions can be used as certificates for the invalidity of

∃X.F(X,Y). This work is applicable to a large class of popular DPLL based QBF

solvers such as depQBF [106], QuBE-cert [95], yQuaffle [96] etc., which can

generate resolution proofs without much overhead.

Huele et. al.’s work in [97] presents QRAT proof system that captures the pre-

processing techniques used by QBF-solvers. The preprocessor bloqqer for QBF

solvers is modified so that it generates QRAT proofs. Their recent work in [17]

gives techniques to extract Skolem functions from QRAT proofs. Given a propo-

sitional formulaF(X,Y), this work thus helps in extracting Skolem functions for
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variables in the setX if (i) ∃X.F(X,Y) is valid and (ii) the validity can be estab-

lished only by preprocessing.

Srivastava et. al. in [9] makes use of templates to generate Skolem func-

tions for variables in bit-vector formulas. Given a bit-vector formulaF(X,Y), the

occurrences of the variablesxi ∈ X in F are replaced by uninterpreted Skolem

functions matching a given template. For example, considerthe problem of com-

puting a Skolem function for the variablex in the formula(x ≤ y), wherex and

y are bit-vectors of width, say 3 bits. Using the templatec1 · y+ c2 for x, where

c1, c2 are uninterpreted bit-vector constants of 3 bits, the formula is converted to

∃c1.∃c2.∀y.(c1 · y+ c2 ≤ y). This formula of the form∃C.∀Y.G(C,Y), whereC

denotes the set of uninterpreted bit-vector constants introduced as above, is solved

for the values of variables inC. Instantiating the templates using these values for

variables in the setC gives Skolem functions for variablesxi ∈ X in F matching

the template.

The work in [98] makes use of the aforementioned idea to devise a solver for

quantified bit-vector formulas with uninterpreted functions. To solve a formula of

the form∀Y.F(Y), whereF(Y) is a bit-vector formula with uninterpreted func-

tions over variables in setY, initially the occurrences of the uninterpreted func-

tions are replaced by templates. Similar to the work in [9], this gives a formula of

the form∃C.∀Y.G(C,Y), whereC denotes the set of uninterpreted bit-vector con-

stants introduced by the templates. The universal quantifiers in ∃C.∀Y.G(C,Y)

are instantiated heuristically in order to convert it to a formula involving only ex-

istential quantifiers which is easier to solve. The instantiations of the universal

quantifiers are then refined in a counterexample guided manner until either the so-

lutions are obtained or the formula is found to be unsatisfiable modulo the given
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templates.

Given a propositional formulaF(X,Y) and variablexi ∈ X, the work in [18]

computes Skolem function forxi in F as a Craig interpolant [19] ofF [xi 7→

1]∧¬F[xi 7→ 0] and¬F[xi 7→ 1]∧F [xi 7→ 0], whereF [xi 7→ 0] denotesF with

occurrences ofxi replaced byfalse andF [xi 7→ 1] denotesF with occurrences of

xi replaced bytrue. The work in [6] observes that(F [xi 7→ 1]∧¬F[xi 7→ 0]) ∨

(F [xi 7→ 1]∧F[xi 7→ 0]∧h) ∨ (¬F [xi 7→ 1]∧¬F[xi 7→ 0]∧g) is a Skolem func-

tion for xi in F , whereh andg are any propositional formulas withX \ {xi}∪Y

as support. When interpolants are used as Skolem functions assuggested in [18],

the performance crucially depends on the size of the interpolants and time to com-

pute the interpolants. However it is observed in our experiments that computing

interpolants is often time-intensive and interpolants generated by SAT solvers are

often not succinct. Moreover these techniques necessarilyrequire nested compo-

sitions, which cause formula blow-up and vulnerability to memory-outs even for

medium-sized benchmarks.

2.6 Conclusions and Directions of Research

In this chapter, we presented a survey QE techniques for linear arithmetic and

propositional logic. This survey led us to the following conclusions and research

directions.

1. Existing QE algorithms for conjunctions of LMCs are based on either bit-

blasting the constraints or conversion of the constraints to linear integer

arithmetic. These techniques not only suffer from performance issues but

also destroy the word-level structure of the problem. Development of practi-
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cally efficient QE algorithms for conjunctions of LMCs that keep the word-

level structure of the constraints is a motivating researchdirection.

2. It is interesting to see how we can extend such QE algorithms for conjunc-

tions of LMCs to arbitrary Boolean combinations of LMCs in a practically

scalable manner. This often requires transformation of thearbitrary Boolean

combination of constraints to DNF. Such transformation is usually done us-

ing decision diagrams or SMT solving. The primary bottleneck in DNF

finding algorithms that make use of SMT solving is usually high compu-

tation time. The challenges in DNF finding algorithms that make use of

decision diagrams are (i) keeping the diagrams compact and (ii) exploiting

reuse of results through dynamic programming. It is interesting to observe

if we can combine the strengths of the decision diagram basedand SMT

solving based algorithms to get best of both worlds.

3. Given a propositional formulaF(X,Y), there are techniques for generat-

ing Skolem functions for variables in the setX when∃X.F(X,Y) is valid.

Similarly there are template-based techniques for Skolem function genera-

tion that can be used when the Skolem function templates are small and are

known a-priori. Composition based techniques for Skolem function gen-

eration are applicable irrespective of the validity of∃X.F(X,Y). However

these techniques often suffer from memory blow-up in practice. Thus devel-

opment of efficient algorithms for generating succinct Skolem functions for

existentially quantified variables in propositional logicformulas is another

motivating research direction.



Chapter 3

Quantifier Elimination for

Conjunctions of Linear Modular

Constraints

This chapter describes our work on QE from conjunctions of LMCs. Recall-

ing the definition of LMCs in Section 1.2, letp be a positive integer constant,

x1, . . . ,xn be p-bit non-negative integer variables, anda0, . . . ,an be integer con-

stants in{0, . . . ,2p − 1}. A linear term overx1, . . . ,xn is a term of the form

a1 · x1 + · · ·an · xn +a0, where· denotes multiplication modulo 2p and+ denotes

addition modulo 2p. An LME is a constraint of the formt1 = t2 (mod 2p), where

t1 and t2 are linear terms overx1, . . . ,xn. An LMD is a constraint of the form

t1 6= t2 (mod 2p), and an LMI is a constraint of the formt1 ⊲⊳ t2 (mod 2p), where

⊲⊳∈ {<,≤}.

The problem we wish to solve in this chapter can be formally stated as follows.

Let A denote a conjunction of LMCs over variablesx1, . . . ,xn. We wish to compute

56
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a Boolean combination of LMCs, sayϕ, such thatϕ ≡ ∃x1 · · · ∃xt .A. As observed

in Section 2.3.1, this problem is NP-hard. Existing algorithms for solving this

problem based on bit-blasting and conversion to linear integer arithmetic suffer

from scaling issues and destroy the word-level structure ofthe problem.

Contributions: We present a bit-precise and practically efficient QE algo-

rithm for conjunctions of LMCs. Our QE algorithm is based on a layered ap-

proach. Sound but incomplete and cheaper layers are invokedfirst, whereas ex-

pensive but complete layers are called only when required. The cheapest layer

is based on simplification of the problem instance using LMEs. This is followed

by a technique that identifies and drops unconstraining LMDsand LMIs from the

problem instance, and a Fourier-Motzkin style technique toeliminate quantifiers

from conjunctions of LMIs. Finally we use model enumerationas the last resort.

Experiments indicate the importance of our layered approach – cheaper layers

eliminate a major fraction of quantifiers and model enumeration is not needed on

a wide range of benchmarks arising in practice. The experiments also demonstrate

effectiveness of our algorithm over existing QE techniquesbased on bit-blasting

and conversion to integer linear arithmetic.

Among the approaches mentioned in Section 2.3 for reasoningabout LMCs,

the work that is most closely related to our work is that of Ganesh et. al in [79].

The authors of [79] present a technique for reducing LMEs to asolved form by

selecting variables in a specific order. While this does not directly give us a tech-

nique to eliminate a user-specified variable from a conjunction of LMEs, their

work can be extended to achieve this. More importantly, [79]does not consider

the problem of eliminating variables from conjunctions involving LMDs or LMIs.

This problem is addressed in our work.
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3.1 Preliminaries

We will initially focus on the simpler problem of existentially quantifying a single

variable from a conjunction of LMCs. For clarity of exposition, we usex to denote

the variable to be quantified.

To simplify notation, we assume that all LMCs have modulus 2p for some

positive integerp, unless stated otherwise. We use lettersx, y, z, x1, x2, . . . to

denote variables, usea, a1, a2, . . ., b, b1, b2, . . . to denote constants, and uses,

s1, s2, . . ., t, t1, t2, . . . to denote linear terms. The lettersd, d1, d2, . . . are used

to denote LMDs,l , l1, l2, . . . are used to denote LMIs, andc, c1, c2, . . . are used

to denote LMCs. Furthermore, we useD, D1, D2, . . . to denote conjunctions of

LMDs, I , I1, I2, . . . to denote conjunctions of LMIs, andC, C1, C2, . . ., A, A1,

A2, . . . to denote conjunctions of LMCs. For a linear termt, we use−t to denote

the additive inverse oft modulo 2p.

Proposition 1. (t1 < t2) is equivalent to both(t1 ≤ 2p − 2)∧ (t1 + 1 ≤ t2) and

(t2 ≥ 1)∧ (t1 ≤ t2−1).

Proof of Proposition 1. (t1 < t2) is equivalent to((t1 = 2p−1)∧ (t1 < t2)) ∨ ((t1

≤ 2p−2) ∧ (t1 < t2)). Note that(t1 = 2p−1)∧ (t1 < t2) is equivalent tofalse.

Moreover,(t1 ≤ 2p−2)∧ (t1 < t2) is equivalent to(t1 ≤ 2p−2)∧ (t1 + 1 ≤ t2).

Hence(t1 < t2) is equivalent to(t1 ≤ 2p−2)∧ (t1 +1≤ t2).

(t1 < t2) is equivalent to((t2 = 0)∧ (t1 < t2)) ∨ ((t2 ≥ 1)∧ (t1 < t2)). Since

(t2 = 0)∧ (t1 < t2) is equivalent tofalse and(t2 ≥ 1)∧ (t1 < t2) is equivalent to

(t2 ≥ 1)∧ (t1 ≤ t2−1), (t1 < t2) is equivalent to(t2 ≥ 1)∧ (t1 ≤ t2−1).

Proposition 1 implies that there is no loss of generality in assuming that LMIs

are restricted to be of the formt1 ≤ t2. However, for clarity of exposition, we
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allow LMIs of the formt1 < t2, whenever convenient.

Proposition 2. An LME or LMD t1 ⊲⊳ t2, where⊲⊳∈ {=, 6=}, can be equivalently

expressed as2µ ·x ⊲⊳ t, where t is a linear term free of x, and µ is an integer such

that0≤ µ≤ p.

Example of Proposition 2: All LMCs in this example have modulus 8. Consider

the LME 7x+ 4y = x+ z. Rearranging the terms modulo 8, we get 6x = 4y+ z,

which can be written as 21 ·3x = 4y+z. Multiplying by 3 (multiplicative inverse

of 3 modulo 8) and simplifying gives, 21x = 4y+3z.

Proof of Proposition 2. Consider an LMEt1 = t2. The linear termt1 can be ex-

pressed asa1 · x+ s1, wherea1 is a constant ands1 is a linear term free ofx.

Similarly, the linear termt2 can be expressed asa2 · x+ s2, wherea2 is a con-

stant ands2 is a linear term free ofx. Thus the LMEt1 = t2 can be expressed

as(a1 · x+ s1 = a2 · x+ s2). Let a bea1−a2 ands bes2− s1. The LME can be

expressed asa·x = s.

If a 6= 0, thena can be expressed as 2µ · b, whereµ is an integer such that

0 ≤ µ ≤ p− 1 andb is an odd number. Thus we have 2µ · b · x = s. Sinceb is

odd, it has a multiplicative inverse modulo 2p, sayb′. Multiplying both sides of

2µ · b · x = s by b′, we get the LME 2µ · x = s· b′, which is in the required form

sinces·b′ is free ofx.

If a = 0, thena can be expressed as 2p, and thus the LMEa · x = s can be

equivalently expressed as 2p ·x = s, wheres is free ofx.

Since an LMDt1 6= t2 is equivalent to the negation of the LMEt1 = t2, it is

easy to see that it can be equivalently expressed as 2µ · x 6= t, wheret is a linear

term free ofx, andµ is an integer such that 0≤ µ≤ p.
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Definition of κ: For every linear termt1 and variablex, we defineκ(x, t1) to be

an integer in{0, . . . , p} such thatt1 is equivalent to 2κ(x,t1) ·b · x+ t, wheret is a

linear term free ofx, andb is an odd number. Note that ift1 is free ofx, then

κ(x, t1) = p. The definition ofκ(x, ·) can be extended to (conjunctions of) LMCs

as follows. Letc be an LME/LMD equivalent to 2µ ·x⊲⊳ t, where⊲⊳∈ {=, 6=} and

t is free ofx. We defineκ(x,c) to beµ in this case. Ift1, t2 are linear terms, then

κ(x, t1 ≤ t2) is defined to bemin(κ(x, t1),κ(x, t2)). Finally, if c1, . . . ,cm are LMCs,

thenκ(x,
m
V

i=1
(ci)) is defined to be

m
min
i=1

(κ(x,ci)). Observe that ifC is a conjunction

of (possibly one) LMCs and ifκ(x,C) = k, then only the least significantp− k

bits of x affect the satisfaction ofC. We will say thatx is in the support ofC if

κ(x,C) < p.

3.2 Layer1: Simplifications using LMEs

Layer1 involves simplification of the given conjunction of LMCs using the LMEs

present in the conjunction. It is an extension of the work by Ganesh et. al. in [79].

The following Proposition and Lemmas form the crux of Layer1.

Proposition 3. Let c be an LME2k ·x = t, where k denotesκ(x,c). Then∃x.c ≡

(2p−k · t = 0).

Example of Proposition 3: All LMCs in this example have modulus 8.∃x.(21x=

5y+2) ≡ (23−1(5y+2) = 0) ≡ (4y = 0).

Proof of Proposition 3. Let ϕ1 and ϕ2 denote the formulas∃x.(2k · x = t) and

2p−k · t = 0 respectively. To see thatϕ1 ⇒ ϕ2, we simply multiply both sides of

2k · x = t by 2p−k, and simplify modulo 2p. To see whyϕ2 ⇒ ϕ1, note thatϕ2
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implies that the least significantk bits of t evaluate to zero. Also recall thatt is

free ofx. Given any value of variables int such that the least significantk bits of

t evaluate to zero, we can always find a value ofx such that 2k ·x = t. This can be

done by choosing the least significantp− k bits of x to be the same as the most

significantp−k bits of t. Hence,ϕ2 ⇒ ϕ1, and thereforeϕ1 ≡ ϕ2.

Lemma 1. Let A be a conjunction of LMEs. Then∃x.A can be equivalently ex-

pressed as a conjunction of LMEs each of which is free of x.

Example of Lemma 1: All LMCs in this example have modulus 8. Consider the

problem of computing∃x.((21x = 5y+ 2) ∧(22x = 5y+ 6z) ∧(21x = 2y+ 4)).

This can be equivalently expressed as∃x.((2x = 5y+2) ∧(2· (5y+2) = 5y+6z)

∧(5y+ 2 = 2y+ 4)). Simplifying modulo 8, we get∃x.((2x = 5y+ 2)) ∧(5y+

2z = 4)∧ (3y = 2). Using Proposition 3, we obtain the final result as(4y = 0)

∧(5y+2z= 4)∧ (3y = 2).

Proof of Lemma 1. Let A be
m
V

i=1
(qi), where eachqi is an LME. Let each LME

qi be of the form 2ki · x = ti, whereki = κ(x,qi) and 1≤ i ≤ m. Without loss

of generality, letk1 be the minimum ofk1, . . . ,km. It can be observed that the

LME 2k1 · x = t1 can be used to eliminate the occurrences ofx in other LMEs by

expressing each LME 2ki ·x= ti for 2≤ i ≤mas 2µi ·t1 = ti, where eachµi = ki−k1.

Hence,∃x.A can be equivalently expressed asC1∧∃x.(2k1 · x = t1), whereC1 is

the conjunction of the LMEs 2µi · t1 = ti. Using Proposition 3, it follows that

C1∧∃x.(2k1 ·x = t1) is equivalent toC1∧ (2p−k1 · t1 = 0).

Lemma 2. Let A be a conjunction of LMCs containing at least one LME. Let

2k1 · x = t1 be the LME with the minimumκ(x, ·) value among the LMEs in A.

Then∃x.A≡C1∧∃x.C2, where C1 is a conjunction of LMCs free of x, and C2 is a
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conjunction of2k1 ·x = t1 and (possibly zero) LMIs and LMDs, each of which has

κ(x, ·) less than k1.

Example of Lemma 2: All LMCs in this example have modulus 8. Consider

the problem of computing∃x.((21x = 5y+ 2) ∧(20x 6= 6y+ 7z)∧ (20 ·5x+ z≤

21x)∧ (21 · 3x ≤ y+ z)). Substituting the occurrences of 21x in the LMIs (20 ·

5x+ z≤ 21x) and(21 ·3x ≤ y+ z) by 5y+ 2, we have∃x.((2x = 5y+ 2)∧ (x 6=

6y+ 7z)∧ (5x+ z≤ 5y+ 2)∧ (3 · (5y+ 2) ≤ y+ z)). Simplifying modulo 8, we

get(7y+6≤ y+z)∧∃x.((2x= 5y+2)∧ (x 6= 6y+7z)∧ (5x+z≤ 5y+2)). Note

that the result is of the formC1∧∃x.C2, as specified in Lemma 2.

Proof of Lemma 2. Let A be equivalent toE∧D∧ I , whereE is a conjunction of

LMEs, D is a conjunction of LMDs, andI is a conjunction of LMIs. LetE be
m
V

i=1
(qi), where eachqi is an LME,D be

n
V

i=m+1
(di), where eachdi is an LMD, and

I be
r

V

i=n+1
(l i), where eachl i is an LMI.

Suppose each LMEqi is of the form 2ki ·x= ti, whereki = κ(x,qi) and 1≤ i ≤

m. Suppose each LMDdi is of the form 2ki ·x 6= ti, whereki = κ(x,di) andm+1≤

i ≤ n. In addition, suppose each LMIl i is of the form(ai ·x+ui ≤ bi ·x+vi), where

ai , bi constants such that(ai 6= 0)∨ (bi 6= 0), ui , vi are linear terms free ofx, and

n+ 1 ≤ i ≤ r. Let us express eachai · x appearing in the LMIs such thatai 6= 0

in the equivalent form 2ki ·ei · x, whereki = κ(x,ai · x) andei is an odd number.

Similarly, let us express eachbi · x appearing in the LMIs such thatbi 6= 0 in the

equivalent form 2k
′
i ·e′i ·x, wherek′i = κ(x,bi ·x) ande′i is an odd number.

Without loss of generality, letk1 be the minimum ofk1, . . . ,km. It can be

observed that the LME 2k1 ·x = t1 can be used to eliminate the occurrences ofx in

other LMEs, and in the LMDs and the LMIs withκ(x, .) at least as large ask1 in
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the following way.

– Each LME 2ki ·x= ti for 2≤ i ≤mcan be equivalently expressed as 2µi ·t1 =

ti where eachµi = ki −k1.

– Each LMD 2ki ·x 6= ti for m+1≤ i ≤ n, such thatk1 ≤ ki can be equivalently

expressed as 2µi · t1 6= ti where eachµi = ki −k1.

– Each occurrence ofx of the form 2ki · ei · x in the LMIs for n+ 1 ≤ i ≤ r

such thatk1 ≤ ki can be equivalently expressed as 2µi · t1 · ei where each

µi = ki −k1.

– Each occurrence ofx of the form 2k
′
i · e′i · x in the LMIs for n+ 1 ≤ i ≤ r

such thatk1 ≤ k′i can be equivalently expressed as 2µ′i · t1 · e′i where each

µ′i = k′i −k1.

Hence, it can be observed that∃x.A can be equivalently expressed asC1 ∧

∃x.C2, whereC1 is a conjunction of LMCs free ofx, andC2 is a conjunction of

the LME 2k1 · x = t1 and those LMIs and LMDs fromA with κ(x, .) less thank1,

after substitution of the occurrences of 2k1 ·x by t1.

For the remainder of the chapter, we adopt the convention that algorithms for

eliminating a single variable will have names starting with“QE1 ”,while those for

eliminating multiple variables will have names starting with “QE ”.

Proposition 3, Lemma 1, and Lemma 2 yield us a simple heuristic QE1 Layer1

that forms the core of Layer1 of our QE algorithm. Given a conjunction of LMCs

A and a variablex to be quantified,QE1 Layer1computes∃x.A asC1∧∃x.C2

based on Lemma 2. If theκ(x, ·) of all LMDs and LMIs inA are at least as large

ask1 (as in Lemma 2), thenC2 consists of the single LME 2k1 ·x= t1. In this case,
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∃x.C2 simplifies to 2p−k1 · t1 = 0 (see Proposition 3), andQE1 Layer1suffices to

compute∃x.A. However, in general,C2 may contain LMDs and LMIs withκ(x, ·)

values less thank1. We describe techniques to address such cases in the following

sections.

Analysis of Complexity: Consider a conjunction of LMCs with a subset of vari-

ables in its support to be eliminated. Letn be the number of LMCs in the con-

junction, v be the number of variables its support, ande be the number of vari-

ables to be eliminated. It can be observed that for a variablex to be eliminated,

Layer1 performsO(n · v) multiplications and additions in the worst-case. As-

suming that arithmetic operations onp-bit numbers take timeO(Q(p)) in the

worst-case, whereQ(p) is a polynomial onp such thatp ≤ Q(p) ≤ p3, elimi-

nation of a variable hence has a worst-case time complexity of O(n · v ·Q(p)).

Observe that eliminating a variable does not increase the number of LMCs in the

conjunction. Hence eliminatinge variables has a worst-case time complexity of

O(e·n ·v ·Q(p)). Note that reading and writing an LMC withv variables in sup-

port takesO(v · p) time. Hence readingn LMCs as input and writing them back

after eliminating the variables takesO(n · v · p) time. Hence Layer1 has a worst-

case time complexity ofO(e· n · v ·Q(p) + n · v · p). Sincep ≤ Q(p) ≤ p3, this

reduces toO(e·n·v·Q(p).

3.3 Layer2: Dropping Unconstraining LMIs and LMDs

Formally, our goal in this section is to expressC2, obtained after application of

QE1 Layer1, asC∧D∧ I , where (i)D is a conjunction of (zero or more) LMDs in

C2, (ii) I is a conjunction of (zero or more) LMIs inC2, (iii) C is the conjunction of
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the remaining LMCs inC2, and (iv)∃x.(C) ⇒∃x.(C∧D∧ I). Since∃x.(C∧D∧

I) ⇒∃x.(C) always holds, this would allow us to compute∃x.C2, or equivalently

∃x.(C∧D∧ I), as∃x.C. We say thatD andI areunconstrainingLMDs and LMIs,

respectively, in such cases.

Given C, D and I satisfying conditions (i), (ii) and (iii) above, checking if

condition (iv) holds requires solving a quantified bit-vector formula in general.

This can be done by using an SMT solver such as Z3 that supportsquantified

bit-vector formulae. Alternatively bit-blasting followed by QBF solving or bit-

level QE can be used. However applying such techniques can beexpensive, as

demonstrated in our experiments. In the following discussion, we focus on finding

sufficient and polynomial time computable conditions for condition (iv) to hold.

Let x[i] denote theith bit of a bit-vectorx, wherex[0] denotes its least signifi-

cant bit. Fori ≤ j, let x[i : j] denote the slice of bit-vectorx consisting of bitsx[i]

throughx[ j]. Given slicex[i : j], its value is the natural number encoded by the

bits in the slice. A key notion used in the subsequent discussion is that of “adapt-

ing” a solution of a constraint to make it satisfy another constraint. Formally, we

say that a solutionθ1 of a conjunctionϕ of LMCs can be adapted with respect to

slicex[i : j] to satisfy a (possibly different) conjunctionψ of LMCs if there exists

a solutionθ2 of ψ that matchesθ1 except possibly in the bits of slicex[i : j].

Example: Consider the LMCs(x = y+ z) (mod 8) and (4y+ z≤ x) (mod 8).

Let θ1 be the solutionx = 1, y = 1, z= 0 of (x = y+ z) (mod 8), and letθ2 be

the solutionx = 5, y = 1, z= 0 of (4y+z≤ x) (mod 8). Note thatθ2 matchesθ1

except in the bits of slicex[2 : 2]. Hence we can say thatθ1 can be adapted with

respect to slicex[2 : 2] to satisfy(4y+z≤ x) (mod 8).

The central idea in the second layer of our QE algorithm is to efficiently com-
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pute an under-approximationη of the number of ways in which anarbitrary so-

lution of C can be adapted to satisfyC∧D∧ I . It is easy to see that ifη ≥ 1, then

∃x.(C) ⇒ ∃x.(C∧D∧ I). We illustrate this idea below through an example. We

will use this as a running example throughout this section.

Example: Consider the problem of computing∃x.(C∧D∧ I), whereC ≡ (z =

4x+y), D ≡ (x 6= z+7), andI ≡ (6x+y≤ 4) and all LMCs have modulus 8. We

claim that an arbitrary solution ofC can be adapted to satisfyC∧D∧ I . Note thatC

constrains only slicex[0 : 0], whereasI constraints slicex[0 : 1] andD constraints

slicex[0 : 2]. Therefore, the value of slicex[1 : 2] does not affect satisfaction ofC,

and the value of slicex[2 : 2] does not affect satisfaction ofC∧ I . Any solutionof C

can be adapted with respect to slicex[1 : 1] to satisfyI by choosing value of slice

x[1 : 1] such that 6x lies between−y and 4−y. Sincex[0 : 0] is unchanged, each

such adapted solution must also satisfyC∧ I . For example, the solutionx = 1,

y= 0, z= 4 ofC can be adapted with respect to slicex[1 : 1] to obtain the solution

x = 3, y = 0, z = 4 of C∧ I . Moreover,any solutionof C∧ I can be adapted

with respect to slicex[2 : 2] to satisfyD by choosing value for slicex[2 : 2] that

differs from the most significant bit ofz+ 7. Sincex[0 : 1] is unchanged, each

such adapted solution also satisfiesC∧D∧ I . For example, the solutionx = 3,

y = 0, z = 4 of C∧ I can be adapted with respect to slicex[2 : 2] to obtain the

solutionx = 7, y = 0, z= 4 ofC∧D∧ I . In this case, Layer2 computes the under-

approximationη of the number of ways in which an arbitrary solution ofC can be

adapted to satisfyC∧D∧ I as≥ 1, thus inferring that∃x.(C) ⇒∃x.(C∧D∧ I).

Our technique of dropping unconstraining LMCs is conceptually similar to

clause-elimination procedures used in SAT solvers. Given apropositional for-

mula in CNF, clause-elimination procedures identify redundant clauses and drop
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them without changing the satisfiability or unsatisfiability of the formula. The

works in [70, 71, 72] focus on different kinds of redundant clauses such as tau-

tological clauses, subsumed clauses, blocked clauses, andcovered clauses, and

present procedures to eliminate them. The recent work by Kiesl et. al in [73]

presents more generalized redundant clauses called set-blocked clauses and super-

blocked clauses, and gives detailed complexity analysis ofthe problem of elimi-

nating them.

We now present procedureQE1 Layer2, that applies the technique described

above to problem instances of the form∃x.C2, obtained after invokingQE1 Layer1.

QE1 Layer2initially expresses∃x.C2 as∃x.(C∧D∧ I), whereC denotes 2k1 ·x=

t1 andD∧ I denotes the conjunction of LMDs and LMIs inC2. If η (as defined

above) is at least 1, thenD∧ I is dropped fromC2. Otherwise, the LMCs in

D∧ I with the largestκ(x, ·) value (i.e. LMCs whose satisfaction depends on the

least number of bits ofx) are identified and included inC, and the above process

repeats. If all the LMIs and LMDs in∃x.C2 are dropped in this manner, then

∃x.C2 reduces to∃x.(2k1 ·x= t1), andQE1 Layer2can return the equivalent form

2p−k1 · t1 = 0. Otherwise,QE1 Layer2returns∃x.C3, whereC3 is a conjunction

of possibly fewer LMCs compared toC2, such that∃x.C3 ≡ ∃x.C2.

Before presenting the details of computingη, we present the following propo-

sition.

Proposition 4. Let x1, . . . ,xn be r-bit numbers and b be an r-bit odd number such

that b·x1, . . . ,b ·xn take distinct consecutive values. Letℓ be a number such that

1≤ ℓ ≤ r. If n < 2ℓ, then the values of x1[0 : ℓ−1], . . . ,xn[0 : ℓ−1] are distinct.

Otherwise, if n≥ 2ℓ, then the values of x1[0 : ℓ−1], . . . ,xn[0 : ℓ−1] span the entire

range0,1, . . . ,2ℓ−1.
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Example of Proposition 4: Supposer = 3, b = 3, andn = 5. Let b · x1, b · x2,

b ·x3, b ·x4, b ·x5 be 2,3,4,5,6. By multiplying by the multiplicative inverse ofb

modulo 2r , i.e., 3, we get the corresponding values ofx1, x2, x3, x4, x5 as 6, 1, 4,

7, 2.

– Case 1: Letℓ be 3. Hencen < 2ℓ. The values ofx1[0 : ℓ−1], x2[0 : ℓ−1],

x3[0 : ℓ−1], x4[0 : ℓ−1], x5[0 : ℓ−1] are 6, 1, 4, 7, 2, which are distinct.

– Case 2: Letℓ be 2. Hencen≥ 2ℓ. The values ofx1[0 : ℓ−1], x2[0 : ℓ−1],

x3[0 : ℓ−1], x4[0 : ℓ−1], x5[0 : ℓ−1] are 2, 1, 0, 3, 2, which span the entire

range 0,1, . . . ,2ℓ−1.

Proof of Proposition 4. The proof is based on the following observations:

1. The values of(b·x1)[0 : ℓ−1], . . . ,(b·xn)[0 : ℓ−1] are consecutive.

2. (b·xi)[0 : ℓ−1] is equivalent tob[0 : ℓ−1] ·xi[0 : ℓ−1] for 1≤ i ≤ n.

3. b[0 : ℓ−1] is odd.

Sinceb[0 : ℓ−1] is odd, it has a multiplicative inverse(b[0 : ℓ−1])′ modulo 2ℓ.

Note that(b[0 : ℓ−1])′ is also odd modulo 2ℓ. Since(b·xi)[0 : ℓ−1] is equivalent

to b[0 : ℓ−1] · xi[0 : ℓ−1] for 1≤ i ≤ n, we get values ofx1[0 : ℓ−1], . . . ,xn[0 :

ℓ− 1] by multiplying the values of(b · x1)[0 : ℓ− 1], . . . ,(b · xn)[0 : ℓ− 1] by

(b[0 : ℓ−1])′ modulo 2ℓ.

Observe that for 1≤ i ≤ n and 1≤ j ≤ n such thati 6= j, xi[0 : ℓ−1] = x j [0 :

ℓ−1] iff (b·xi)[0 : ℓ−1] = (b·x j)[0 : ℓ−1]. Since the values of(b·x1)[0 : ℓ−1],

. . . ,(b ·xn)[0 : ℓ−1] are consecutive, it follows that, ifn < 2ℓ, then the values of

x1[0 : ℓ−1], . . . ,xn[0 : ℓ−1] are distinct. Ifn≥ 2ℓ, then the values of(b ·x1)[0 :
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ℓ−1], . . . ,(b·xn)[0 : ℓ−1] are consecutive and they span the range 0,1, . . . ,2ℓ−1.

Hence it is obvious that the values ofx1[0 : ℓ−1], . . . ,xn[0 : ℓ−1] also span the

range 0,1, . . . ,2ℓ−1.

Computing η: Let I be
Vn

i=1(l i), where eachl i is an LMI of the formsi ⊲⊳ ti, the

operator⊲⊳ is in {≤,≥}, si is a linear term withx in its support, andti is a linear

term free ofx. Note that this implies some loss of generality, since we disallow

LMIs of the forms⊲⊳ t, where boths andt havex in their support. However, our

experiments indicate that this is not very restrictive in practice. Lets1, . . . ,sr be

the distinct linear terms inI with x in their support. We partitionI into I1, . . . , Ir ,

where eachI j is the conjunction of only those LMIs inI that contain the linear

term sj . We assume without loss of generality that eachI j contains the trivial

LMIs sj ≥ 0 andsj ≤ 2p−1. Let I j haven j LMIs, of which the firstmj(< n j)

are of the formsj ≥ tq, where 1≤ q≤ mj . Let the remaining LMIs inI j be of the

form sj ≤ tq, wheremj +1≤ q≤ n j .

Consider the inequalityZ j : u j ≤ sj ≤ v j , whereu j denotes max
mj
q=1(tq) andv j

denotes min
n j
q=mj+1(tq). AlthoughZ j is not a LMI, it is semantically equivalent to

I j . For notational convenience, let us denoteκ(x,sj) by k j . Clearly, the value of

slicex[p− k j : p−1] does not affect the satisfaction ofZ j . We wish to compute

the number of ways, sayNj , in which an arbitrary solution ofC can be adapted

with respect to slicex[0 : p− k j − 1] to satisfyZ j . Towards this end, we com-

pute an integerδ j in {0, . . . ,2p−1} such thatδ j ≤ max(v j −u j +1,0) for every

combination of values of other variables. Intuitively,δ j represents the minimum

number ofconsecutivevalues thatsj can take for every combination of values of

other variables, if we were to treatsj as a freshp-bit variable and ifZ j were to be

satisfied.
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Example: In our running example, whereC ≡ (z = 4x+ y), D ≡ (x 6= z+ 7),

and I ≡ (6x+ y ≤ 4), we haves1 = 6x+ y and I1 ≡ (6x+ y ≥ 0) ∧(6x+ y ≤ 4)

∧(6x+ y ≤ 7). HenceZ1 is (0 ≤ 6x+ y ≤ 4) and thusu1 = 0 andv1 = 4. Note

that p = 3, k1 = 1, and the value of slicex[2 : 2] does not affect the satisfaction

of (0≤ 6x+ y≤ 4). We are trying to computeN1, the number of ways in which

an arbitrary solution of(z= 4x+y) can be adapted with respect to slicex[0 : 1] to

satisfy(0≤ 6x+y≤ 4). Treating 6x+y as a fresh variablef gives us(0≤ f ≤ 4).

As f can take fiveconsecutivevalues in(0≤ f ≤ 4), δ1 is 5.

Lemma 3. For every combination of values of variables other than x, there exist

at least⌊δ j/2k j⌋ distinct values that x[0 : p−k j −1] can take while satisfying Zj .

Example of Lemma 3: In our example,Z1 ≡ (0≤ 6x+y≤ 4), p = 3, k1 = 1 and

δ1 = 5. Note that, for every value ofy, there are at least⌊δ1/2k1⌋ = ⌊5/21⌋ = 2

distinct values thatx[0 : 1] can take while satisfying(0≤ 6x+y≤ 4).

Proof of Lemma 3. δ j is the minimum number ofconsecutivevalues thatsj can

take for every combination of values of other variables, if we were to treatsj as

a freshp-bit variable and ifZ j : u j ≤ sj ≤ v j were to be satisfied. However, in

general,sj is of the form 2k j ·b j ·x+w j , wherew j is a linear term free ofx, andb j

is an odd number. Therefore, for every combination of valuesof variables other

thanx, there exist at least⌊δ j/2k j⌋ consecutivevalues thatb j [0 : p−k j −1] ·x[0 :

p−k j −1] can take while satisfyingZ j . Sinceb j is odd,b j [0 : p−k j −1] is odd.

Let us apply Proposition 4 on theseconsecutivevalues ofb j [0 : p−k j −1] ·x[0 :

p−k j −1] with n = ⌊δ j/2k j⌋, r = ℓ = p−k j andb = b j [0 : p−k j −1]. Note that

⌊δ j/2k j⌋ < 2p−k j , sinceδ j < 2p. Therefore, using Proposition 4, we have: for

every combination of values of variables other thanx, there exist at least⌊δ j/2k j⌋
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distinctvalues thatx[0 : p−k j −1] can take while satisfyingZ j .

Lemma 3 indicates that there are at least⌊δ j/2k j⌋ ways in which an arbitrary

solution ofC can be adapted with respect to slicex[0 : p− k j −1] to satisfyZ j .

Hence,Nj ≥ ⌊δ j/2k j⌋. For notational convenience, we denote⌊δ j/2k j⌋ by N̂j .

To understand howδ j is computed in general, recall that for everyg in {1. . .mj}

and for everyh in {mj + 1. . .n j}, we havetg ≤ sj ≤ th. For every such pair

of indices g and h, let δg,h be an integer in{0, . . . ,2p − 1} such thatδg,h ≤

max(th− tg + 1,0) for every combination of values ofth andtg. The value ofδ j

can then be obtained as the minimum of allδg,h values. For reasons of simplicity

and efficiency, we compute the values ofδg,h conservatively using the following

Proposition.

Proposition 5. 1. If tg and th are constants and th ≥ tg, thenδg,h = th− tg +1.

2. If th is a constant, tg can be expressed as2τ · t, whereτ is an integer such

that0≤ τ ≤ p−1, and th ≥ 2p−2τ, thenδg,h = th− (2p−2τ)+1.

3. If tg is a constant, th can be expressed as2τ · t +a, whereτ is an integer such

that0≤ τ ≤ p−1, and amod 2τ ≥ tg, thenδg,h = a mod 2τ − tg +1.

4. Otherwiseδg,h = 0.

Example of Proposition 5:

1. Supposetg = 1 andth = 6. Therefore, max(th− tg +1,0) = th− tg +1 = 6.

Sinceδg,h ≤ max(th− tg +1,0), we can setδg,h to 6.

2. Supposetg = 4y, th = 14, andp= 4. Heretg is of the form 2τ ·t, whereτ = 2

andt = y. Observe that the maximum possible value of 4y with modulus 16
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is 2p−2τ = 12, i.e., 4y ≤ 12. Therefore, max(th− tg + 1,0) = max(14−

4y+1,0) ≥ 14−12+1 = 3. Hence 3 can be used asδg,h.

3. Supposetg = 0, th = 4y+7, andp= 4. Hereth is of the form 2τ ·t +a, where

τ = 2, t = y, anda = 7. Observe that the minimum possible value of 4y+7

with modulus 16 isa mod 2τ = 7 mod 4= 3, i.e., 4y+ 7 ≥ 3. Therefore,

max(th− tg +1,0) = max(4y+7−0+1,0) ≥ 3−0+1 = 4. Hence 4 can

be used asδg,h.

4. Supposetg = y, th = z. In such cases we setδg,h to 0.

Proof of Proposition 5. δg,h is an integer in{0, . . . ,2p−1} such thatδg,h≤max(th−

tg +1,0) for every combination of values ofth andtg.

1. If tg and th are constants andth ≥ tg, then max(th − tg + 1,0) reduces to

th− tg +1. Therefore, it is obvious thatth− tg +1 can be used asδg,h.

2. Consider the case whenth is a constant,tg can be expressed as 2τ · t, where

τ is an integer such that 0≤ τ ≤ p− 1, andth ≥ 2p − 2τ. Sincetg is a

multiple of 2τ, the possible values oftg are 0,2τ, . . . ,2p − 2τ. Hence the

maximum possible value oftg is 2p−2τ, i.e.,tg ≤ 2p−2τ. This implies that

th−(2p−2τ)+1≤max(th−tg+1,0). Henceth−(2p−2τ)+1 can be used

asδg,h.

3. Consider the case whentg is a constant,th can be expressed as 2τ · t + a,

whereτ is an integer such that 0≤ τ ≤ p−1, anda mod 2τ ≥ tg. Let a =

2τ ·a1 +a2, wherea2 = a mod 2τ anda1 ≥ 0. Henceth can be expressed as

2τ · (t + a1)+ a2. Since 2τ · (t + a1) is a multiple of 2τ, the possible values

of 2τ · (t + a1) are 0,2τ, . . . ,2p − 2τ. Hence the possible values ofth are
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Figure 3.1: Slicing of bits ofx by k0, . . . ,kr

a2,2τ +a2, . . . ,2p−2τ +a2. Therefore, the minimum possible value ofth is

a2, i.e.,th ≥ a2, which implies thata2− tg +1≤ max(th− tg +1,0). Hence

a2− tg +1, i.e.,a mod 2τ − tg +1 can be used asδg,h.

4. Consider the case when none of the above conditions is true.Since 0≤

max(th− tg +1,0), we can useδg,h as 0 in this case.

Let D be
Vm

i=1(di), where eachdi is an LMD of the form 2κ(x,di) · x 6= tdi ,

wheretdi is a linear term free ofx. Let k0 denoteκ(x,C), and letC be such that

k0 is greater than both maxm
i=1κ(x,di) and maxrj=1k j (recall thatk j = κ(x,sj)). To

simplify the exposition, suppose further thatk1 > .. . > kr . We partition the bits

of x into r +2 slices as shown in Fig. 3.1, whereslice0 representsx[0 : p−k0−1],

slicej representsx[p− k j−1 : p− k j − 1] for 1 ≤ j ≤ r, and slicer+1 represents

x[p− kr : p−1]. Note that the value ofslice0 potentially affects the satisfaction

of C as well as that ofZ1 throughZr , the value ofslicej potentially affects the

satisfaction ofZ j throughZr for 1 ≤ j ≤ r, and the value ofslicer+1 does not

affect the satisfaction of anyZ j or C.

Let Z0 denoteTrue. Let θ be a solution ofC ∧ Z0 ∧ . . . ∧ Zi, where 0≤ i < r.
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Note that bits inslicei+1 throughslicer+1 do not affect satisfaction ofC ∧ Z0 ∧ . . .

∧ Zi. Let Yi, j denote the number of ways in whichθ can be adapted with respect

to bits inslicei+1 throughslicej, to satisfyZ j , wherei < j ≤ r. Sinceslice0 through

slicei are unchanged, each such adapted solution must also satisfyC ∧ Z0 ∧ . . . ∧

Zi.

Lemma 4. An arbitrary solution of C∧ Z0 ∧ . . . ∧ Zi for 0≤ i < r can be adapted

with respect to bits inslicei+1 throughslicej, to satisfy Zj for i < j ≤ r in at least

⌊N̂j/2p−ki⌋ ways. Moreover, if we focus only onslicei+1, then there are at least

min(⌊N̂j/2p−ki⌋,2ki−ki+1) distinct values ofslicei+1 in the corresponding adapted

solutions.

Example of Lemma 4: In our running example, sincep = 3, k0 = 2, k1 = 1, the

bits of x are partitioned into three slices:slice0 is x[0 : 0], slice1 is x[1 : 1] and

slice2 is x[2 : 2]. Clearly, the value ofslice0 potentially affects the satisfaction of

(z= 4x+ y) as well as that of(0 ≤ 6x+ y ≤ 4). The value ofslice1 potentially

affects the satisfaction of(0 ≤ 6x+ y ≤ 4), but not that of(z= 4x+ y), and the

value of slice2 does not affect the satisfaction of(z = 4x+ y) or (0 ≤ 6x+ y ≤

4). Let θ be a solution of(z = 4x+ y). Using Lemma 4, there exists at least

⌊N̂1/2p−k1⌋= ⌊2̂/23−2⌋= 1 way in whichθ can be adapted with respect to bits in

slice1 to satisfy(0≤ 6x+y≤ 4). Sinceslice0 is unchanged, the adapted solution

must satisfy(z= 4x+y) ∧(0≤ 6x+y≤ 4).

Proof of Lemma 4. Recall that for every combination of values of variables other

thanx, there exist at least̂Nj consecutivevalues thatb j [0 : p− k j −1] · x[0 : p−

k j −1] can take while satisfyingZ j , whereb j [0 : p−k j −1] is odd modulo 2p−k j .

Let us apply Proposition 4 on theseconsecutivevalues ofb j [0 : p−k j −1] ·x[0 :
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p− k j −1] with n = N̂j , r = p− k j , ℓ = p− ki andb = b j [0 : p− k j −1]. Using

Proposition 4, we have: for every combination of values of variables other thanx,

(i) if N̂j < 2p−ki , there exist at least̂Nj distinctvalues thatx[0 : p−ki −1] can take

while satisfyingZ j , and (ii) if N̂j ≥ 2p−ki , the values thatx[0 : p−ki −1] can take

while satisfyingZ j span the entire range 0,1, . . . ,2p−ki −1.

Using Lemma 3, we know that, for every combination of values of variables

other thanx, there exist at least̂Nj distinct values that can be assigned tox[0 :

p−k j −1] (i.e. bits inslice0 throughslicej) while satisfyingZ j . This implies that

for every combination of values of variables other thanx and for any arbitrary

value of x[0 : p− ki − 1] (i.e. bits in slice0 through slicei), there exist at least

⌊N̂j/2p−ki⌋ distinct values that can be assigned tox[p− ki : p− k j −1] (i.e. bits

in slicei+1 throughslicej) while satisfyingZ j . Hence, an arbitrary solution ofC ∧

Z0 ∧ . . . ∧ Zi for 0≤ i < r can be adapted with respect to bits inslicei+1 through

slicej, to satisfyZ j for i < j ≤ r in at least⌊N̂j/2p−ki⌋ ways.

In order to prove our claim on values ofslicei+1 in the corresponding adapted

solutions, again apply Proposition 4 on values ofb j [0 : p−k j −1] ·x[0 : p−k j −1]

with n= N̂j , r = p−k j , ℓ = p−ki+1 andb= b j [0 : p−k j −1]. We have: for every

combination of values of variables other thanx, (i) if N̂j < 2p−ki+1, there exist at

leastN̂j distinct values thatx[0 : p− ki+1−1] can take while satisfyingZ j , and

(ii) if N̂j ≥ 2p−ki+1, the values thatx[0 : p−ki+1−1] can take while satisfyingZ j

span the entire range 0,1, . . . ,2p−ki+1 −1. In other words, for every combination

of values of variables other thanx, there exist at least min(N̂j ,2p−ki+1) distinct

values thatx[0 : p−ki+1−1] can take while satisfyingZ j .

We have already seen that, for every combination of values ofvariables other

thanx, (i) if N̂j < 2p−ki , there exist at least̂Nj distinctvalues thatx[0 : p−ki −1]
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can take while satisfyingZ j , and (ii) if N̂j ≥ 2p−ki , the values thatx[0 : p−ki −1]

can take while satisfyingZ j span the entire range 0,1, . . . ,2p−ki −1. This implies

that, for every combination of values of variables other than x and for any arbitrary

value of x[0 : p− ki − 1] (i.e. bits in slice0 through slicei), there exist at least

min(⌊N̂j/2p−ki⌋,⌊2p−ki+1/2p−ki⌋) = min(⌊N̂j/2p−ki⌋,2ki−ki+1) distinctvalues that

can be assigned tox[p−ki : p−ki+1−1] (i.e. bits inslicei+1) while satisfyingZ j .

Therefore, if we focus only onslicei+1 in the aforementioned adapted solutions,

then there are at least min(⌊N̂j/2p−ki⌋,2ki−ki+1) distinctvalues ofslicei+1.

Using Lemma 4, we haveYi, j ≥ ⌊N̂j/2p−ki⌋. For notational convenience, let

us denote min(⌊N̂j/2p−ki⌋,2ki−ki+1) by αi, j .

Lemma 4 indicates that a solutionθ of C ∧ Z0 ∧ . . . ∧ Zi for 0≤ i < r can be

adapted to satisfyC ∧ Z0 ∧ . . . ∧ Zi ∧ Z j for i < j ≤ r by using at leastαi, j dif-

ferent values ofslicei+1. Let the corresponding set of values ofslicei+1 be denoted

Sθ
i+1, j . If

Tr
j=i+1Sθ

i+1, j is non-empty, there exists a common value ofslicei+1 that

permits us to adaptθ with respect toslicei+1 throughslicer to satisfyZi+1 through

Zr , respectively. It is therefore desirable to have|
Tr

j=i+1Sθ
i+1, j | ≥ 1. Using the

Inclusion-Exclusion principle, we find that|
Tr

j=i+1Sθ
i+1, j | ≥ (∑r

j=i+1αi, j)− (r −

i − 1) · 2ki−ki+1. Note that the lower bound is independent ofθ. For notational

convenience, let us denote the lower bound byWi+1.

If Wi+1 ≥ 1 for all i ∈ {0, . . . r −1}, an arbitrary solutionθ of C can be adapted

to satisfyC ∧ Z0 ∧ . . . ∧ Zr as follows. SinceW1 ≥ 1, we choose a value ofslice1,

sayv1, from
Tr

j=1Sθ
1, j . Let θ1 denoteθ with slice1 (possibly) changed to have

valuev1. Thenθ1 satisfiesC∧Z1. SinceW2 ≥ 1, we can now choose a value of

slice2, sayv2, from
Tr

j=2Sθ1
2, j , and repeat the procedure until we have chosen values

for slice1 throughslicer. Finally, sinceslicer+1 does not affect the satisfaction of
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C or of anyZi, we can choose an arbitrary value forslicer+1. Clearly, there are at

least(∏r−1
i=0 |Wi+1|) ·2kr ways in which values of different slices can be chosen, so

as to adaptθ to satisfyC ∧ Z0 ∧ . . . ∧ Zr . Let us denote(∏r−1
i=0 |Wi+1|) ·2kr by µI .

Example (Continued): We haveY0,1 ≥ ⌊N̂1/2p−k0⌋ = 1. Alsoα0,1 = min ( ⌊ N̂1 /

2p−k0 ⌋ ,2k0−k1) = min(1,22−1) = 1. HenceW1 = (∑1
j=1α0,1)−(1−0−1) ·2k0−k1

= α0,1 = 1. Note that there is at least one way of adapting an arbitrarysolution

of (z = 4x+ y) with respect toslice1 to satisfy(z = 4x+ y) ∧(0 ≤ 6x+ y ≤ 4).

Moreover, there are at least two ways of adapting an arbitrary solution of(z= 4x+

y) with respect toslice1 through toslice2 to satisfy(z= 4x+y) ∧(0≤ 6x+y≤ 4)

as indicated byµI = W1 ·2k1 = 1·21 = 2.

Let us now consider each LMDdi in D. Recall that eachdi is of the form

2κ(x,di) · x 6= tdi . Note thatdi constrains only slicex[0 : p− κ(x,di)− 1]. It can

be observed that for every combination of values of variables other thanx, there

is exactly one way of choosing value for slicex[0 : p−κ(x,di)−1] such thatdi

is violated. This means that there are 2κ(x,di) ways of choosing values forslice0

throughslicer+1 such thatdi is violated. Thus for every combination of values

of variables other thanx, ∑m
i=1(2

κ(x,di)) is an over-approximation of the number

ways of choosing values forslice0 throughslicer+1 such thatD is violated. Let us

denote∑m
i=1(2

κ(x,di)) by µD. We have already seen that there are at leastµI ways

of adapting an arbitrary solutionθ of C to satisfyC ∧ Z0 ∧ . . . ∧ Zr . As µD is an

over-approximation of the number of such adapted solutionsthat can violateD,

there are at leastµI −µD ways of adaptingθ to satisfyC ∧ Z0 ∧ . . . ∧ Zr ∧ D.

Example (Continued): In the example, we have,d1≡ (x 6= z+7) andκ(x,d1) = 0.

Note that for every value ofz+7, there is exactly one way of choosing value for

slice x[0 : 2] such thatd1 is violated. µD = 2κ(x,d1) = 1, and henceµI −µD = 1.
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Thus there is at least one way of adapting an arbitrary solution of (z= 4x+y) to

satisfy(z= 4x+y) ∧(0≤ 6x+y≤ 4) ∧(x 6= z+7).

It can be observed that the above reasoning can be extended tothe general

casek1 ≥ . . . ≥ kr . Let πi for 0 ≤ i < r be the number ofZ j ’s with k j < ki for

i < j ≤ r. Using the Inclusion-Exclusion principle,Wi+1 above then changes to

(∑r
j=i+1αi, j)− (πi −1) ·2ki−ki+1.

Theorem 1. If η = µI −µD ≥ 1, then∃x.(C∧D∧ I) ≡ ∃x.(C)

As mentioned earlier, the procedureQE1 Layer2 applies this technique to

problem instances of the form∃x.C2, obtained after invokingQE1 Layer1to find

unconstraining LMDs and LMIs. If all the LMIs and LMDs in∃x.C2 are un-

constraining, then∃x.C2 reduces to∃x.(2k1 ·x = t1), andQE1 Layer2returns the

equivalent form 2p−k1 · t1 = 0.

Example (Continued): QE1 Layer2drops the LMI(6x+ y ≤ 4) and the LMD

(x 6= z+ 7) as they are unconstraining in∃x.((z= 4x+ y) ∧(6x+ y ≤ 4) ∧(x 6=

z+7)). The problem instance thus reduces to∃x.(z= 4x+y), which is equivalent

to (4y+4z= 0). Hence the final result is(4y+4z= 0).

In general,QE1 Layer2returns∃x.C3, whereC3 is a conjunction of possibly

fewer LMCs compared toC2, such that∃x.C3 ≡∃x.C2. The next section describes

techniques to eliminate quantifiers from such problem instances.

Analysis of Complexity: Consider a conjunction of LMCs with a subset of vari-

ables in its support to be eliminated. Letn be the number of LMCs in the conjunc-

tion,vbe the number of variables in its support, andebe the number of variables to

be eliminated. Consider the elimination of a variablex inside Layer2. Recall that

Layer2 can be applied only when all LMIs involvingx are of the forms⊲⊳ t, where

⊲⊳∈ {≤,≥}, s is a linear term withx in its support, andt is a linear term free ofx.
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Let r be the number of distinct linear terms withx in the support appearing in the

LMIs. As observed above, computingη requiresO(r2) arithmetic operations in

the worst-case. Note thatr ≤ n. Assuming that each arithmetic operation onp-bit

numbers take timeO(Q(p)) in the worst-case, wherep≤ Q(p) ≤ p3, elimination

of a variable hence has a worst-case time complexity ofO(n2 ·Q(p)). Observe that

eliminating a variable does not increase the number of LMCs inthe conjunction.

Hence eliminatingevariables has a worst-case time complexity ofO(e·n2 ·Q(p)).

Since readingn LMCs as input and writing the result takesO(n·v· p) time, Layer2

has a worst-case time complexity ofO(e·n2 ·Q(p)+n· p·v).

3.4 Layer3: Fourier-Motzkin Elimination for LMIs

In this section, we present a Fourier-Motzkin (FM) style QE algorithm for com-

puting∃x.C3 obtained above. Recall thatC3 obtained above, in general, contains

LMDs, LMIs, and a single LME. We propose converting the LMDs and the LME

in C3 to LMIs using the equivalences(t1 = t2) ≡ (t1 ≥ t2) ∧ (t1 ≤ t2) and(t1 6= t2)

≡ ¬(t1 = t2). This, in general, convertsC3 to a Boolean combination of LMIs.

However, as we will see in Chapter 4, a QE algorithm for conjunctions of LMCs

can be extended to a QE algorithm for Boolean combinations of LMCs. Hence,

in the remainder of this section, we will focus on QE fromconjunctions of LMIs.

There are two fundamental problems when trying to apply FM elimination for

reals to a conjunction of LMIs:

1. Wrap-around behaviour:Recall that FM elimination normalizes each in-

equalityl w.r.t. the variablex being quantified by expressingl in an equiva-

lent formx ⊲⊳ t, where⊲⊳∈ {≤,≥} andt is a term free ofx. However, due
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to wrap-around behaviour, the equivalences (i)(t1 ≤ t2) ≡ (t1+ t3 ≤ t2+ t3)

and (ii) (t1 ≤ t2) ≡ (a · t1 ≤ a · t2) used for normalizing inequalities do not

hold for LMIs in general. For example,(2≤ 3 (mod 4)), but(2+1> 3+1

(mod 4)). Similarly, (1≤ 2 (mod 4)), but (1 ·2 > 2 ·2 (mod 4)). Hence,

normalizing an LMI w.r.t. a variable is much more difficult than normaliz-

ing in the case of reals. Moreover, unlike in the case of realsand integers,

presence of equalities does not always simplify QE in modular arithmetic.

For example, as observed in Section 2.2,∃x.((2x= 3y+2) ∧ (3x> 4z+3))

can be simplified to∃x.((6x = 9y+6) ∧ (6x > 8z+6)) on integers. How-

ever this simplification cannot be done in modular arithmetic in general.

2. Lack of density:Even if we could normalize LMIs w.r.t. the variable being

quantified, due to the lack of density of integers, FM elimination cannot be

directly lifted to normalized LMIs. For example∃x.((y≤ 4x)∧ (4x≤ z)) is

equivalent to(y≤ z) in reals, whereas this is not true in modular arithmetic

with modulus 2p, wherep≥ 3.

This motivates us to (i) define a (weak) normal form for LMIs, and (ii) adapt

FM elimination to achieve QE from normalized LMIs. Recall that Omega Test

(see Subsection 2.2.2) also defines a normal form for inequalities over integers,

and adapts FM elimination over reals for QE from normalized inequalities over

integers. However, Omega Test cannot be directly used for QEfrom LMIs – us-

ing Omega Test for QE from LMIs requires converting the LMIs to equivalent

constraints inTZ; the resulting formula is inTZ, and converting the resulting for-

mula back to modular arithmetic is difficult. Moreover our experiments indicate

that, using Omega Test for QE from theTZ constraints arising from LMIs incurs

considerable performance overhead.
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A (weak) normal form for LMIs: We say that an LMIl with x in its support is

normalized w.r.t. xif it is of the form a · x ⊲⊳ t, or of the forma · x ⊲⊳ b · x, where

⊲⊳∈ {≤,≥}, andt is a linear term free ofx. We will henceforth useNF1 to refer

to the first normal form (a · x ⊲⊳ t) andNF2 to refer to the second normal form

(a·x ⊲⊳ b·x). A Boolean combination of LMCsϕ is said to be normalized w.r.t.x

if every LMI in ϕ with x in its support is normalized w.r.t.x.

We will now show that every LMI withx in its support can be equivalently ex-

pressed as a Boolean combination of LMCs normalized w.r.t.x. Before going into

the details of normalizing LMIs, it would be useful to introduce some notation.

We defineΩ(t1, t2) as the condition under whicht1 + t2 overflows ap-bit repre-

sentation, i.e.,t1 + t2 interpreted as an integer exceeds 2p−1. Note thatΩ(t1, t2)

is equivalent to both(t2 6= 0)∧ (t1 ≥−t2) and(t1 6= 0)∧ (t2 ≥−t1).

Example: Suppose we wish to normalize the LMI(x+ 2 ≤ y) modulo 8 w.r.t.

x. Adding the additive inverse of 2 modulo 8, i.e, 6 to both sides of the LMI,

the left-hand sidex+ 2 changes tox and the right-hand sidey changes toy+ 6.

However, note that(x+ 2≤ y) is not equivalent to(x ≤ y+ 6). If Ω(x+ 2,6) ≡

Ω(y,6), then(x+2≤ y) ≡ (x≤ y+6) holds; otherwise(x+2≤ y) ≡ (x > y+6)

holds. Note thatΩ(x+2,6) ≡ Ω(y,6) can be equivalently expressed as(x≤ 5) ≡

(y≥ 2). Hence,(x+2≤ y) can be equivalently expressed in the normalized form

ite(ϕ,(x≤ y+6),(x> y+6)), whereϕ denotes(x≤ 5) ≡ (y≥ 2), andite(α,β,γ)

is a shorthand for(α∧β)∨ (¬α∧ γ).

In this example, theΩ predicate allowed us to perform a case-split and nor-

malize each branch. The following Lemma generalizes this idea.

Lemma 5. Let l1 : (a·x+t1≤ b·x+t2) be an LMI, where t1 and t2 are linear terms

without x in their supports. Then, l1 ≡ ite(ϕ, l2,¬l2), where l2 ≡ (a · x−b · x ≤
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t2− t1), andϕ is a Boolean combination of LMCs normalized w.r.t. x.

Before we present the proof of Lemma 5, it would be useful to present a propo-

sition.

Proposition 6. Let l1 be an LMI t1 ≤ t2, and let t3 be a linear term. Then l1 ≡

ite(ϕ1∧ (ϕ2⊕ϕ3),(t1 + t3 > t2 + t3),(t1 + t3 ≤ t2 + t3)), whereϕ1 ≡ (t3 6= 0),

ϕ2 ≡ (−t3 ≤ t1), ϕ3 ≡ (−t3 ≤ t2) andϕ2⊕ϕ3 denotes exclusive-or ofϕ2 and

ϕ3.

Proof of Proposition 6. Note that(t1 ≤ t2) ≡ ψ1∨ψ2∨ψ3∨ψ4, where

– ψ1 ≡ (t1 ≤ t2)∧Ω(t1, t3)∧Ω(t2, t3)

– ψ2 ≡ (t1 ≤ t2)∧Ω(t1, t3)∧¬Ω(t2, t3)

– ψ3 ≡ (t1 ≤ t2)∧¬Ω(t1, t3)∧Ω(t2, t3)

– ψ4 ≡ (t1 ≤ t2)∧¬Ω(t1, t3)∧¬Ω(t2, t3)

It can be seen that,

– ψ1 ≡ (t1 + t3 ≤ t2 + t3)∧Ω(t1, t3)∧Ω(t2, t3)

– ψ2 ≡ false, sinceΩ(t1, t3)∧¬Ω(t2, t3) ⇒ (t1 > t2). However, we can write

ψ2 as(t1 + t3 > t2 + t3)∧Ω(t1, t3)∧¬Ω(t2, t3) as well, which is equivalent

to false, sinceΩ(t1, t3)∧¬Ω(t2, t3) ⇒ (t1 + t3 < t2 + t3).

– ψ3 ≡ (t1 + t3 > t2 + t3)∧¬Ω(t1, t3)∧Ω(t2, t3)

– ψ4 ≡ (t1 + t3 ≤ t2 + t3)∧¬Ω(t1, t3)∧¬Ω(t2, t3)
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Expressingψ1∨ψ2∨ψ3∨ψ4 in terms ofites, we have,

(t1 ≤ t2) ≡ ite(Ω(t1, t3)⊕Ω(t2, t3),(t1 + t3 > t2 + t3),(t1 + t3 ≤ t2 + t3))

Expanding theΩ’s using the formulaΩ(α,β) ≡ (β 6= 0)∧ (α ≥−β), whereα, β

are linear terms, we have,

(t1 ≤ t2) ≡ ite(ϕ1∧ (ϕ2⊕ϕ3),(t1 + t3 > t2 + t3),(t1 + t3 ≤ t2 + t3))

where,ϕ1 ≡ (t3 6= 0), ϕ2 ≡ (−t3 ≤ t1), andϕ3 ≡ (−t3 ≤ t2).

We can now prove Lemma 5.

Proof of Lemma 5. Consider an LMIl1 : a·x+ t1 ≤ b·x+ t2, wheret1 andt2 are

linear terms withoutx in their supports. Using Proposition 6, witha · x+ t1 in

place oft1, b·x+ t2 in place oft2 and−b·x− t1 in place oft3,

l1 ≡ ite(ϕ1∧ (ϕ2⊕ϕ3),(a·x−b·x > t2− t1),(a·x−b·x≤ t2− t1))

where,ϕ1 ≡ (b · x+ t1 6= 0), ϕ2 ≡ (b · x+ t1 ≤ a · x+ t1), andϕ3 ≡ (b · x+ t1 ≤

b·x+ t2).

Note that the LMIs(a·x−b·x> t2− t1) and(a·x−b·x≤ t2− t1) are normal-

ized w.r.t.x, whereasϕ2 andϕ3 are not. Hence, let us try to normalizeϕ2 andϕ3

w.r.t. x.

Considerϕ2 ≡ (b · x+ t1 ≤ a · x+ t1). Using Proposition 6, withb · x+ t1 in

place oft1, a·x+ t1 in place oft2 and−t1 in place oft3,

ϕ2 ≡ ite((t1 6= 0)∧ ((t1 ≤ a·x+ t1)⊕ (t1 ≤ b·x+ t1)),(b·x > a·x),(b·x≤ a·x))

Using the observations(β≤α+β)≡¬Ω(α,β) andΩ(α,β)≡ (β 6= 0)∧(α≥−β)

for linear termsα andβ, and simplifying,(t1 6= 0)∧ ((t1 ≤ a·x+ t1)⊕ (t1 ≤ b·x+
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t1)) is equivalent to(t1 6= 0)∧ ((−t1 ≤ a·x)⊕ (−t1 ≤ b·x)). Hence,

ϕ2 ≡ ite((t1 6= 0)∧ ((−t1 ≤ a·x)⊕ (−t1 ≤ b·x)),(b·x > a·x),(b·x≤ a·x))

Similarly, considerϕ3 ≡ (b · x+ t1 ≤ b · x+ t2). Using Proposition 6, with

b·x+ t1 in place oft1, b·x+ t2 in place oft2 and−b·x in place oft3,

ϕ3 ≡ ite((b·x 6= 0)∧ ((b·x≤ b·x+ t1)⊕ (b·x≤ b·x+ t2)),(t1 > t2),(t1 ≤ t2))

≡ ite((b·x 6= 0)∧ ((−b·x≤ t1)⊕ (−b·x≤ t2)),(t1 > t2),(t1 ≤ t2))

Putting everything together,

l1 ≡ ite(ϕ1∧ (ϕ2⊕ϕ3),(a·x−b·x > t2− t1),(a·x−b·x≤ t2− t1)),where

ϕ1 ≡ (b·x+ t1 6= 0)

ϕ2 ≡ ite((t1 6= 0)∧ ((−t1 ≤ a·x)⊕ (−t1 ≤ b·x)),(b·x > a·x),(b·x≤ a·x))

ϕ3 ≡ ite((b·x 6= 0)∧ ((−b·x≤ t1)⊕ (−b·x≤ t2)),(t1 > t2),(t1 ≤ t2))

Hencel1 can be equivalently expressed as,ite(ϕ, l2,¬l2), wherel2 ≡ (a·x−b·

x≤ t2− t1), andϕ ≡ ¬ϕ1∨ (ϕ2 ≡ ϕ3). Note thatϕ here is a Boolean combination

of LMCs normalized w.r.t.x.

Modified FM for normalized LMIs: We begin by illustrating the primary idea

through an example.

Example: Consider the problem of computing∃x.C, whereC≡ (y≤ 4x)∧ (4x≤

z) with modulus 16. Note that∃x.C is “the condition under which there exists a

multiple of 4 betweeny andz, wherey ≤ z”. Note that if x,y,z were reals, then

we would have obtained(y≤ z) for ∃x.C. However, as in the case of integers, this

would over-approximate∃x.C in the case of fixed width bit-vectors.
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If (y ≤ 12)∧ (z≥ y+ 3) holds, then the difference betweeny andz is ≥ 3.

In this case, existence of a multiple of 4 betweeny andz is guaranteed. Thus

(y ≤ z)∧ (y ≤ 12)∧ (z≥ y+ 3) ⇒ ∃x.C. Note that this case is conceptually

similar todark shadowin Omega test.

It can be seen that if(y > 12), then there does not exist anyx such that(y≤

4x). Hence, if(y > 12), then∃x.C is false. If (z< y+ 3), then∃x.C is true iff

one of the following conditions holds: (i)(y ≤ z) andy is a multiple of 4, i.e.,

(y≤ z)∧ (4y = 0), (ii) (y≤ z) and(y > z (mod 4)), i.e.,(y≤ z) ∧(4y > 4z).

Hence∃x.C is equivalent to(y ≤ z)∧ ϕ, whereϕ is the disjunction of the

following three formulas: (i)(z≥ y+ 3)∧ (y ≤ 12), (ii) (z< y+ 3)∧ (4y = 0),

(iii) (z< y+3)∧ (4y > 4z).

The following Lemma generalizes this idea.

Lemma 6. Let l1 : (t1 ≤ a · x) and l2 : (a · x ≤ t2) be LMIs in NF1 w.r.t. x. Let

k beκ(x,a · x). Then,∃x.(l1∧ l2) ≡ (t1 ≤ t2)∧ϕ, whereϕ is the disjunction of

the formulas: (i)(2p−k · t1 = 0), (ii) (t2 ≥ t1 + 2k − 1)∧(t1 ≤ 2p− 2k), and (iii)

(t2 < t1 +2k−1)∧(2p−k · t1 > 2p−k · t2).

Proof of Lemma 6. Note that∃x.(l1∧ l2) ≡ ∃x.(l ′1∧ l ′2), wherel ′1 ≡ (t1 ≤ 2k ·x)

andl ′2 ≡ (2k ·x≤ t2), since the multiples of 2k and 2k ·eare the same modulo 2p

for any odd numbere∈ {1, . . . ,2p−1}.

Now ∃x.(l ′1∧ l ′2) ≡ ∃x.ψ1∨∃x.ψ2∨∃x.ψ3∨∃x.ψ4, where

– ψ1 ≡ l ′1∧ l ′2∧ (2p−k · t1 = 0)

– ψ2 ≡ l ′1∧ l ′2∧ (2p−k · t1 6= 0)∧ (t2 ≥ t1 +2k−1)∧ (t1 ≤ 2p−2k)

– ψ3 ≡ l ′1∧ l ′2∧ (2p−k · t1 6= 0)∧ (t2 < t1 +2k−1)
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– ψ4 ≡ l ′1∧ l ′2∧ (2p−k · t1 6= 0)∧ (t1 > 2p−2k)

Consider∃x.ψ1. This is equivalent to∃x.(ψ1∧ (t1 ≤ t2)), since(t1 ≤ t2) is

an LMI implied by ψ1. It can be seen that∃x.(ψ1∧ (t1 ≤ t2)) is equivalent to

(2p−k · t1 = 0)∧ (t1 ≤ t2), since given any solution to(2p−k · t1 = 0)∧ (t1 ≤ t2),

we can satisfyl ′1∧ l ′2 by setting 2k · x = t1. Note that setting 2k · x = t1 is always

possible, since 2p−k ·t1 = 0⇒∃x.(2k ·x= t1) (see Proposition 3). Hence,∃x.ψ1≡

(2p−k · t1 = 0)∧ (t1 ≤ t2).

Consider∃x.ψ2. Note that the difference betweent1 andt2 here is≥ 2k−1,

which implies that there exists a multiple of 2k betweent1 andt2. Hence it can be

seen that(t1 ≤ t2)∧ (2p−k · t1 6= 0)∧ (t2 ≥ t1 +2k−1)∧ (t1 ≤ 2p−2k) ⇒ ∃x.ψ2.

Implication in the other direction is obvious. Hence,∃x.ψ2 ≡ (t1 ≤ t2)∧ (2p−k ·

t1 6= 0)∧ (t2 ≥ t1 +2k−1)∧ (t1 ≤ 2p−2k).

Consider∃x.ψ3. This implies(2p−k · t1 > 2p−k · t2). Hence∃x.ψ3 ≡ ∃x.(ψ3∧

(2p−k · t1 > 2p−k · t2)). This is equivalent to(t1 ≤ t2)∧ (2p−k · t1 6= 0)∧ (t2 < t1 +

2k−1)∧ (2p−k · t1 > 2p−k · t2), as the existence of a multiple of 2k betweent1 and

t2 is implied by(t1 ≤ t2)∧(2p−k ·t1 6= 0)∧(t2 < t1+2k−1)∧(2p−k ·t1 > 2p−k ·t2).

Consider∃x.ψ4. This is equivalent tofalse, since given(t1 > 2p−2k), there

exists not2 such thatl ′1∧ l ′2 holds.

Putting everything together, it can be seen that∃x.(l1∧ l2) ≡ (t1 ≤ t2)∧ϕ,

whereϕ is the disjunction of the formulas: (i)(2p−k · t1 = 0), (ii) (t2 ≥ t1 +2k−

1)∧(t1 ≤ 2p−2k), and (iii) (t2 < t1 +2k−1)∧(2p−k · t1 > 2p−k · t2).

Suppose we wish to compute∃x. I , whereI is a conjunction of LMIs normal-

ized w.r.t. x. Let I ≡ I1∧ I2, whereI1 is the conjunction of LMIs inI that are

in NF1, andI2 is the conjunction of LMIs inI that are inNF2. In addition, let
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a1, . . . ,an be the distinct non-zero coefficients ofx in LMIs in I1, and letI1,i de-

note the conjunction of LMIs inI1 in which the coefficient ofx is ai. Finally,

let ∆(t1, t2,k) denote the result of computing∃x.((t1 ≤ a · x)∧ (a · x ≤ t2)) using

Lemma 6, wherek denotesκ(x,a ·x). It is easy to see that Lemma 6 can be used

to compute∃x. I1,i, for everyi ∈ {1, . . .n}. Similar to FM elimination, we parti-

tion the LMIs l i, j : ai · x ⊲⊳ t j in I1,i into two setsΛ≤ andΛ≥, whereΛ⊲⊳ = {l i, j |

l i, j is of the formai ·x⊲⊳ t j}, for ⊲⊳∈ {≤,≥}. We assume without loss of general-

ity that the trivial LMIsai ·x≤ 2p−1 andai ·x≥ 0 are present inΛ≤ andΛ≥ re-

spectively. We can now compute∃x. I1,i as
V

(ai ·x≤tp)∈Λ≤, (ai ·x≥tq)∈Λ≥

(
∆

(
tq, tp,κ(x,ai ·x)

))
.

Each conjunction of LMIs such asI1,i above, where all LMIs are inNF1w.r.t.

x, and have the same coefficient ofx are said to be “coefficient-matched” w.r.t.

x. Similarly, a Boolean combination of LMCsϕ is said to be coefficient-matched

w.r.t. x if all LMIs in ϕ with x in their support are inNF1 w.r.t. x and have the

same coefficient ofx. In the special case whenI2 ≡ true andn = 1, i.e., whenI is

a conjunction of LMIs coefficient-matched w.r.t.x, ∃x. I reduces to∃x. I1,1.

Unfortunately, convertingI to coefficient-matched form w.r.t. a variable is

inefficient in general. Hence we propose convertingI to coefficient-matched form

w.r.t. x only in the following cases, where it can be done without muchloss of

efficiency: (a)I2 ≡ true, n = 2 anda2 = −a1, and (b)I2 ≡ true and everyai is of

the form 2ki ·e, wheree is an odd number in{1, . . . ,2p−1} independent ofi.

In case (a) above,I can be equivalently expressed as a Boolean combination

of LMCs coefficient-matched w.r.t.x by using the following Proposition.

Proposition 7. (−t1 ≤−t2) is equivalent to(t1 = 0) ∨ ((t2 6= 0)∧ (t1 ≥ t2)).

Example of Proposition 7: Consider the problem of computing∃x. I , whereI ≡

(y≤ 2x) ∧ (6x≤ z) with modulus 8. Using Proposition 7,(6x≤ z) is equivalent
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to (2x = 0) ∨ ((z 6= 0) ∧ (2x≥−z)). Thus∃x. I can be equivalently expressed as

∃x.ϕ, whereϕ is the disjunction of(y≤ 2x) ∧ (2x = 0) and(y≤ 2x) ∧ (z 6= 0) ∧

(2x≥−z). Note thatϕ is coefficient-matched w.r.t.x.

Proof of Proposition 7. (−t1 ≤ −t2) is equivalent to the disjunction of(t1 = 0)

∧ (−t1 ≤ −t2) and(t1 6= 0) ∧ (−t1 ≤ −t2). Note that(t1 = 0) ∧ (−t1 ≤ −t2) is

equivalent to(t1 = 0). Moreover,(t1 6= 0) ∧ (−t1 ≤−t2) is equivalent to(t1 6= 0)

∧ (t2 6= 0) ∧ (−t1 ≤ −t2), which is equivalent to(t1 6= 0) ∧ (t2 6= 0) ∧ (t1 ≥ t2).

Hence(−t1 ≤−t2) is equivalent to the disjunction of(t1 = 0) and(t1 6= 0) ∧ (t2 6=

0) ∧ (t1 ≥ t2), which can be simplified to(t1 = 0) ∨ ((t2 6= 0)∧ (t1 ≥ t2)).

We explain the idea behind case (b) by an example before considering the

general case.

Example: Consider the problem of computing∃x. I , whereI ≡ (y≤ 2x) ∧(x≤ z)

with modulus 8. It can be shown thatx≤ z can be equivalently expressed as the

disjunction of (i) Ω(x,x)∧Ω(z,z)∧ (2x ≤ 2z), (ii) ¬Ω(x,x)∧¬Ω(z,z)∧ (2x ≤

2z), and (iii) ¬Ω(x,x)∧Ω(z,z). Hence,∃x. I can be equivalently expressed as

∃x.ϕ′, whereϕ′ is the disjunction of (i)Ω(x,x)∧Ω(z,z)∧(2x≤ 2z)∧(y≤ 2x), (ii)

¬Ω(x,x)∧¬Ω(z,z)∧ (2x≤ 2z)∧ (y≤ 2x), and (iii)¬Ω(x,x)∧Ω(z,z)∧ (y≤ 2x).

Note thatΩ(x,x) andΩ(z,z) can be equivalently expressed asx ≥ 4 andz≥ 4

respectively. However, on closer inspection, it can be seenthat occurrences ofx≥

4 in ∃x.ϕ′ arising fromΩ(x,x) are unconstraining, and can therefore be dropped.

Thus∃x.ϕ′ can be equivalently expressed as∃x.ϕ, whereϕ is the disjunction of

(2x≤ 2z)∧ (y≤ 2x) and(z≥ 4)∧ (y≤ 2x). Note that∃x.ϕ is equivalent to∃x. I

and is coefficient-matched w.r.t.x.

In general, given∃x. I such thatI2 ≡ true and theai ’s have the samee (as

defined above), we have the following Lemma.
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Lemma 7. Let I1 be a conjunction of LMIs inNF1 w.r.t. x. Let a1, . . . ,an be the

distinct non-zero coefficients of x in LMIs in I1. Let each ai , for 1≤ i ≤ n, be of the

form 2ki ·e, where e is an odd number in{1, . . . ,2p−1} independent of i. Then,

∃x. I1 can be equivalently expressed as∃x.ϕ, whereϕ is a Boolean combination

of LMCs coefficient-matched w.r.t. x.

Proof of Lemma 7. Our proof makes use of the following claims.

Claim 1. An LMI a·x≤ t in NF1can be equivalently expressed as the disjunction

of formulas: (i)Ω(a·x,a·x)∧Ω(t, t)∧(2a·x≤ 2t), (ii) ¬Ω(a·x,a·x)∧¬Ω(t, t)∧

(2a·x≤ 2t), and (iii) ¬Ω(a·x,a·x)∧Ω(t, t).

Claim 2. An LMI a·x≥ t in NF1can be equivalently expressed as the disjunction

of formulas: (i)Ω(a·x,a·x)∧Ω(t, t)∧(2a·x≥ 2t), (ii) ¬Ω(a·x,a·x)∧¬Ω(t, t)∧

(2a·x≥ 2t), and (iii) Ω(a·x,a·x)∧¬Ω(t, t).

Proof of Claim 1. Note that(a·x≤ t) ≡ ψ1∨ψ2∨ψ3∨ψ4, where

– ψ1 ≡ (a·x≤ t)∧Ω(a·x,a·x)∧Ω(t, t)

– ψ2 ≡ (a·x≤ t)∧Ω(a·x,a·x)∧¬Ω(t, t)

– ψ3 ≡ (a·x≤ t)∧¬Ω(a·x,a·x)∧Ω(t, t)

– ψ4 ≡ (a·x≤ t)∧¬Ω(a·x,a·x)∧¬Ω(t, t)

It can be seen that,

– ψ1 ≡ Ω(a·x,a·x)∧Ω(t, t)∧ (2a·x≤ 2t)

– ψ2 ≡ false, sinceΩ(a·x,a·x)∧¬Ω(t, t) ⇒ (a·x > t)

– ψ3 ≡ ¬Ω(a·x,a·x)∧Ω(t, t), since¬Ω(a·x,a·x)∧Ω(t, t) ⇒ (a·x < t)
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– ψ4 ≡ ¬Ω(a·x,a·x)∧¬Ω(t, t)∧ (2a·x≤ 2t)

Hence the result.

Proof of Claim 2. Similar to the proof of Claim 1.

Without loss of generality, leta1 > a2 > .. . > an, i.e., 2k1 ·e> 2k2 ·e> .. . >

2kn ·e. This implies that (i)k1 > k2 > .. . > kn, and (ii)a1 = 2k1−ki ·ai for 2≤ i ≤ n.

Now consider each LMIai · x ⊲⊳ t j in I1, where 2≤ i ≤ n and ⊲⊳∈ {≤,≥

}. It can be seen that the above Claims can be used to expressai · x ⊲⊳ t j as an

equivalent Boolean combination of LMCs, involving (i) the LMI(2ai · x ⊲⊳ 2t j),

(ii) Ω(ai · x,ai · x), and (iii) Ω(t j , t j). Moreover, the above claims can be used

repeatedly to expressai · x ⊲⊳ t j as an equivalent Boolean combination of LMCs,

involving (i) the LMI (2k1−ki ai · x ⊲⊳ 2k1−ki t j), i.e., (a1 · x ⊲⊳ 2k1−ki t j), (ii) Ω(ai ·

x,ai · x), Ω(2ai · x,2ai · x),. . ., Ω(2k1−ki−1ai · x,2k1−ki−1ai · x), and (iii) Ω(t j , t j),

Ω(2t j ,2t j),. . ., Ω(2k1−ki−1t j ,2k1−ki−1t j).

It can be seen thatΩ(ai ·x,ai ·x), Ω(2ai ·x,2ai ·x),. . ., Ω(2k1−ki−1ai ·x,2k1−ki−1ai ·

x) can be equivalently expressed as(ai ·x≥2p−1), (2ai ·x≥2p−1), . . ., (2k1−ki−1ai ·

x≥2p−1) respectively. SimilarlyΩ(t j , t j), Ω(2t j ,2t j),. . ., Ω(2k1−ki−1t j ,2k1−ki−1t j)

can be equivalently expressed as(t j ≥ 2p−1), (2t j ≥ 2p−1), . . ., (2k1−ki−1t j ≥ 2p−1)

respectively. HenceI1 can be equivalently expressed as a Boolean combination of

LMCs ϕ′, involving (i) LMIs of the form(a1 ·x⊲⊳ 2k1−ki · t j), (ii) LMIs of the form

(ai ·x≥ 2p−1), (2ai ·x≥ 2p−1), . . ., (2k1−ki−1ai ·x≥ 2p−1), and (iii) LMIs of the

form (t j ≥ 2p−1), (2t j ≥ 2p−1), . . ., (2k1−ki−1t j ≥ 2p−1).

We can expressϕ′ equivalently as
r

W

ℓ=1
Cℓ, where eachCℓ is a conjunction of

LMCs. Hence∃x.ϕ′ is equivalent to
r

W

ℓ=1
(∃x.Cℓ). Observe that eachCℓ involves

three kinds of LMIs: (i) LMIs of the form(a1 ·x⊲⊳ 2k1−ki ·t j), (ii) LMIs of the form



91

(ai ·x≥ 2p−1), (2ai ·x≥ 2p−1), . . ., (2k1−ki−1ai ·x≥ 2p−1) and/or their negations,

and (iii) LMIs of the form (t j ≥ 2p−1), (2t j ≥ 2p−1), . . ., (2k1−ki−1t j ≥ 2p−1)

and/or their negations. LetCℓ,1 be the conjunction of the first kind of LMIs inCℓ.

Similarly, letCℓ,2 andCℓ,3 respectively be the conjunctions of the second and the

third kinds of LMIs inCℓ. Hence we haveCℓ ≡ Cℓ,1∧Cℓ,2∧Cℓ,3.

Therefore∃x.Cℓ ≡ (∃x.(Cℓ,1 ∧Cℓ,2))∧Cℓ,3, sinceCℓ,3 is free of x. More-

over, by applying Theorem 1 on∃x.(Cℓ,1 ∧Cℓ,2), it can be proved thatCℓ,2 is

unconstraining in∃x.(Cℓ,1∧Cℓ,2). Hence∃x.Cℓ can be equivalently expressed as

∃x.(Cℓ,1)∧Cℓ,3. Note that the coefficient ofx in Cℓ,1 is a1. This implies that
r

W

ℓ=1
Cℓ

can be equivalently expressed as a Boolean combination of LMCscoefficient-

matched w.r.t.x, with coefficient ofx asa1.

Note that normalizing a given conjunction of LMIs w.r.t. a variable and then

converting it to coefficient-matched form transforms it to aBoolean combination

of LMCs in general. We make use of one of the techniques in Chapter 4 for

eliminating quantifiers from such Boolean combinations of LMCs.

In cases other than those covered in cases (a) and (b) above, we propose com-

puting∃x. I usingmodel enumeration, i.e., by expressing∃x. I in the equivalent

form I |x←0∨ . . .∨ I |x←2p−1 whereI |x←i denotesI with x replaced by the constant

i.

The procedure that computes∃x.C3 (whereC3 is obtained fromQE1 Layer2)

using techniques mentioned in this section is calledQE1 Layer3(see Algorithm 1).

Initially, the LMDs and the single LME in the conjunction areconverted to LMIs

using the equivalences(t1 = t2) ≡ (t1 ≥ t2)∧ (t1 ≤ t2) and(t1 6= t2) ≡ ¬(t1 = t2).

This in general yields a Boolean combination of LMCsϕ1. If ϕ1 is a conjunction

of LMIs coefficient-matched w.r.t.x, then∃x.ϕ1 is computed using the modified
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FM elimination in Lemma 6. Otherwise,∃x.ϕ1 is computed either by convert-

ing ϕ1 to coefficient-matched form w.r.t.x, followed by QE from the resulting

Boolean combination of LMCs, or by model enumeration.

Algorithm 1: QE1 Layer3
Input : Conjunction of LMCsC, Variable to eliminatex

Output : Boolean combination of LMCsψ equivalent to∃x.C

1 ϕ1 := convertToLMIs(C); // convert LMEs and LMDs to LMIs

2 if ϕ1 is a coefficient-matched conjunction w.r.t. xthen

3 ψ := modifiedFM(ϕ1, x);

// Apply modified FM based on Lemma 6

4 else

5 if model enumeration is selected to compute∃x.ϕ1 then

6 ψ := modelEnumerate(ϕ1, x); // Apply model enumeration

7 else

8 ϕ2 := coefficientMatch(ϕ1, x);

// ϕ1 in general is a Boolean combination

9 ψ := QEFromBooleanCombination(ϕ2, x);

// Eliminate x from Boolean combination ϕ2;

// (see Chapter 4 for details)

10 return ψ;

Analysis of Complexity: Consider a conjunction of LMCs with a subset of vari-

ables in its support to be eliminated. Letn be the number of LMCs in the conjunc-

tion, v be the number of variables in its support, ande be the number of variables
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to be eliminated. Note that Layer3 resorts to model enumeration in the worst

case. Consider the elimination of the first quantified variable, say,x1 by model

enumeration.

Elimination of x1 by model enumeration involves creating 2p copies of the

conjunction, and then replacingx1 by a constant in each copy. Replacingx1 by

constant and then simplifying takesO(n) arithmetic operations in the worst-case

for each copy. Assuming that each arithmetic operation onp-bit numbers take

time O(Q(p)) in the worst-case, wherep ≤ Q(p) ≤ p3, elimination ofx1 from

each copy hence has a worst-case time complexity ofO(n·Q(p)). Since there are

2p such copies, elimination ofx1 has a worst-case time complexity ofO(n·Q(p) ·

2p).

Elimination ofx1 generates a formula with 2p disjuncts, where each disjunct

can haven LMCs. In a similar manner as above, it can be seen that elimination of

the second quantified variable, say,x2 has a worst-case time complexity ofO(n ·

Q(p) ·22·p). Proceeding like this, it can be seen that elimination ofe quantified

variables has a worst-case time complexity ofO
(
n·Q(p) ·

(
2p +22·p + . . .2e·p

))
,

which reduces toO(n·Q(p) ·2(e+1)·p).

After elimination ofe variables, we have a formula with 2e·p disjuncts, where

each disjunct can haven LMCs. Writing each disjunct involvingn LMCs takes

O(n · v · p) time. Hence writing the result takesO(n · v · p ·2e·p) time. Therefore

Layer3 has a worst-case time complexity ofO(n·Q(p) ·2(e+1)·p +n·v· p·2e·p).

3.5 Project: Combining Layers

Recall thatQE1 Layer1, QE1 Layer2, andQE1 Layer3try to eliminate a single

quantifier from a conjunction of LMCs. These procedures can beextended to
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eliminate multiple quantifiers by invoking them iteratively. Thus we have proce-

duresLayer1, Layer2, andLayer3- extensions ofQE1 Layer1, QE1 Layer2, and

QE1 Layer3respectively, to eliminate multiple quantifiers.

Algorithm 2: Project
Input : Conjunction of LMCsA, Set of variables to eliminateX

Output : Boolean combination of LMCsψ equivalent to∃X.A

1 ϕ1 := Layer1(A, X); // for each x ∈ X, Apply QE1 Layer1

2 if ϕ1 has no quantifiersthen

3 ψ := ϕ1;

4 else

// Let ϕ1 ≡ A1∧∃Y.B

5 ϕ2 := Layer2(B, Y); // for each x ∈ Y, Apply QE1 Layer2

6 if ϕ2 has no quantifiersthen

7 ψ := A1 ∧ ϕ2;

8 else

// Let ϕ2 ≡ A2∧∃Z.C

9 ϕ3 := Layer3(C, Z); // for each x ∈ Z, Apply QE1 Layer3

10 ψ := A1 ∧ A2 ∧ ϕ3;

11 return ψ;

We now present the overall QE algorithmProject (see Algorithm 2) for com-

puting∃X.A, whereA is a conjunction of LMCs over a set of variablesV such that

X ⊆V. Initially Project tries to compute∃X.A usingLayer1. This reduces∃X.A

to an equivalent conjunction of LMCsϕ1. If all variables inX are eliminated
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by Layer1, thenϕ1 is free of quantifiers. In this case,∃X.A is equivalent toϕ1,

andProject returnsϕ1. Otherwise,ϕ1 is equivalent to the conjunction ofA1 and

∃Y.B, whereA1, B are conjunctions of LMCs,Y ⊆ X, andX \Y is the subset of

variables inX that are eliminated byLayer1. Project then tries to compute∃Y.B

usingLayer2.

Layer2reduces∃Y.B to an equivalent conjunction of LMCsϕ2. If all variables

in Y are eliminated byLayer2, thenϕ2 is free of quantifiers. In this case∃X.A is

equivalent toA1∧ϕ2, andProject returnsA1∧ϕ2. Otherwise,ϕ2 is equivalent to

the conjunction ofA2 and∃Z.C, whereA2, C are conjunctions of LMCs,Z ⊆Y,

andY \Z is the subset of variables inY that are eliminated byLayer2. Project

calls Layer3 to compute∃Z.C. Layer3computesϕ3, a Boolean combination of

LMCs equivalent to∃Z.C, andProjectreturnsA1∧A2∧ϕ3.

Let x be the variable being eliminated. Line-8 ofQE1 Layer3 generates a

Boolean combination of LMCsϕ2 coefficient-matched w.r.t.x. Line-9 ofQE1 Layer3

then callsQEFromBooleanCombinationin order to eliminatex from ϕ2. This

eventually gets reduced to eliminatingx from a bunch of conjunctions of LMCs.

Eliminating x from each such conjunction of LMCs results in a new recursive

Project call. Because of this feedback, the control flow insideProject is not lin-

ear.

Note that each new recursiveProjectcall may in turn callQE1 Layer3. How-

ever it can be observed that this mutual recursion betweenQE1 Layer3andProject

does not result in infinite recursion. To see this, note that in each of the recursive

Projectcalls, all LMIs involvingx are coefficient-matched w.r.t.x. Hencex will

be certainly eliminated byLayer1, Layer2, or modifiedFMinside these recursive

Projectcalls. This guarantees that the recursion terminates.
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3.6 Experimental Results

We performed experiments to (i) evaluate the performance and effectiveness of

the layers inProjectand (ii) compare the performance ofProjectwith alternative

QE techniques. All the experiments were performed on a 1.83 GHz Intel(R) Core

2 Duo machine with 2GB memory running Linux, with a timeout of1800 sec-

onds. We used the same variable ordering in all experiments using BDDs [14].

We performed depth-first traversal of the Boolean formulas from which the BDDs

were created. The variables were ordered in the order they were encountered

in the depth-first traversal. InProject, inside the layers, when there were multi-

ple variables to eliminate, we used a simple lexicographic variable elimination

order. Moreover, insideLayer3, the variables with constraints in coefficient-

matched form were eliminated before the variables which required transformation

to Boolean combination. In experiments involving Omega Test, we used Pugh et

al.’s implementation of Omega Test from [68].

Benchmarks: We used a benchmark suite consisting of 198lindd benchmarks [28]

and 39vhdl benchmarks. Each of these benchmarks is a Boolean combination of

LMCs with a subset of the variables in their support existentially quantified.

Thelindd benchmarks reported in [28] are Boolean combinations of octagonal

constraints over integers, i.e., constraints of the forma·x+b·y≤ k wherex, y are

integer variables,k is an integer constant, anda,b∈ {−1,1}. We converted these

benchmarks to Boolean combinations of LMCs by assuming the size of integer

as 16 bits. Although these benchmarks had no LMEs explicitly, they contained

LMEs encoded as conjunctions of the form(x− y ≤ k)∧¬(x− y ≤ k−1). We

converted each such conjunction to an LMEx− y = k as a pre-processing step.
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The total number of variables, the number of variables to be eliminated, and the

number of bits to be eliminated in thelindd benchmarks ranged from 30 to 259,

23 to 207, and 368 to 3312 respectively.

Thevhdl benchmarks were obtained in the following manner. We took a set

of word-level VHDL designs. Some of these are publicly available designs ob-

tained from [69], and the remaining are proprietary. We derived the symbolic

transition relations of these VHDL designs. Thevhdl benchmarks were obtained

by quantifying out all the internal variables (i.e. neitherinput nor output of the

top-level module) from these symbolic transition relations. Effectively this gives

abstract transition relations of the designs. The coefficients of the variables in

these benchmarks were largely odd. These benchmarks contained a significant

number of LMEs (arising from assignment statements in the VHDL programs).

The total number of variables, the number of variables to be eliminated, and the

number of bits to be eliminated in thevhdl benchmarks ranged from 8 to 50, 2 to

21, and 10 to 672 respectively.

Evaluation of Project: We performed QE from the benchmarks using the al-

gorithms in Chapter 4, and analyzed theProjectcalls that were generated during

this process. Recall thatLayer3 involves transforming a conjunction of LMCs

to a Boolean combination of LMCs and QE from this Boolean combination. This

results in new (recursive)Projectcalls. Hence two kinds ofProjectcalls were gen-

erated while performing QE from the benchmarks: (i) the initial/original Project

calls, and the (ii) aforementioned recursiveProjectcalls. In the subsequent discus-

sion, whenever we mention “Projectcalls”, it refers to the initial/originalProject

calls, unless stated otherwise.

The total number ofProject calls generated from thelindd andvhdl bench-
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Table 3.1: Details ofProjectcalls (figures are perProjectcall)

Type Vars Qnt LMIs LMEs LMDs
Contr Time

L1 L2 L3 L1 L2 L3 Pr

lindd 39.9 38.1 (88, 0, 18.9) (60, 0, 10.1) (35, 0, 8.1) 51 44 5 3 5 13149 674

vhdl 8.6 7.2 (4, 0, 0.3) (16, 0, 5.8) (31, 0, 2.0) 95 4.5 0.5 2 6 161 3

Vars : Average number of variables,Qnt : Average number of quantifiers,LMIs : (Maximum, minimum, average)

number of LMIs,LMEs : (Maximum, minimum, average) number of LMEs,LMDs : (Maximum, minimum, average)

number of LMDs,Contr : Average contribution of a layer,L1 : Layer1, L2 : Layer2, L3 : Layer3, Pr : Project, Time :

Average time spent per quantifier eliminated in milliseconds

marks were 52,836 and 8,027 respectively. Statistics of theseProject calls are

shown in Table 3.1. The contribution of a layer is measured asthe ratio of the

number of quantifiers eliminated by the layer to the number ofquantifiers to be

eliminated in theProject call multiplied by 100. The time spent per quantifier

eliminated for a layer is measured as the ratio of the time spent inside the layer to

the number of quantifiers eliminated by the layer. The contributions of the layers

and the times taken by the layers per quantifier eliminated for individual Project

calls fromlindd benchmarks are shown in Fig. 3.2, Fig. 3.3 and Fig. 3.6, and those

for individual Projectcalls fromvhdl benchmarks are shown in Fig. 3.4, Fig. 3.5

and Fig. 3.7. TheProjectcalls here are sorted in increasing order of contribution

from Layer1.

Layer1andLayer2were cheap and eliminated a large fraction of quantifiers

in bothlindd andvhdlbenchmarks. This underlines the importance of our layered

framework. The relatively large contribution ofLayer1 in theProject calls from

vhdl benchmarks was due to significant number of LMEs in these problem in-

stances.Layer3was found to be the most expensive layer. Most of the time spent

in Layer3was consumed in the recursiveProjectcalls. NoLayer3call in our ex-

periments required model enumeration. The large gap in the time per quantifier
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Figure 3.2: Contribution of (a)Layer1and (b)Layer2for lindd benchmarks
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Figure 3.3: Contribution ofLayer3for lindd benchmarks

in Layer2and that inLayer3 for both sets of benchmarks points to the need for

developing additional cheap layers betweenLayer2andLayer3as part of future

work.

Comparison of Project with alternative QE techniques: We compared the

performance ofProjectwith QE based on linear integer arithmetic using Omega

Test, and also with QE based on bit-blasting. We implementedthe following al-

gorithms for this purpose: (i)Layer1Blast: this procedure first quantifies out

the variables usingLayer1(recall thatLayer1 is a simple extension of the work

in [79]), and then uses bit-blasting and BDD based bit-level QE [14] for the re-

maining variables. (ii)Layer1OT, Layer2OT: Layer1OT first quantifies out the
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Figure 3.4: Contribution of (a)Layer1and (b)Layer2for vhdlbenchmarks
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Figure 3.5: Contribution ofLayer3for vhdlbenchmarks

variables usingLayer1, and then uses conversion to linear integer arithmetic and

Omega Test for the remaining variables.Layer2OT first quantifies out the vari-

ables usingLayer1followed byLayer2, and then uses conversion to linear integer

arithmetic and Omega Test for the remaining variables.Layer2OT helps us to

compare the performance ofLayer3with that of Omega Test.

We collected 100 instances of QE problem for conjunctions ofLMCs aris-

ing from the algorithmQE SMT (see Section 4.2) when QE is performed on the

benchmarks. We performed QE from these conjunction-level problem instances

usingProject, Layer1Blast, Layer1OT, andLayer2OT. Fig. 3.8(a) and 3.8(b)

compare the QE times taken byProjectagainst those taken byLayer1Blastand
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Figure 3.6: Cost of layers forlindd benchmarks

Figure 3.7: Cost of layers forvhdlbenchmarks

Layer1OT for each of these conjunction-level problem instances.

Project could successfully eliminate quantifiers in all of the 100 instances.

Layer1Blastwas unsuccessful in in 68 cases andLayer1OT were unsuccessful in

65 cases. These cases are indicated by the topmost points in Fig. 3.8(a) and 3.8(b)

respectively. In most cases whereLayer1BlastandLayer1OT were successful,

the times taken by all the three algorithms were comparable.However there were

a few cases whereLayer1Blast andLayer1OT performed better thanProject.
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We found that these cases involvedLayer3, and most of the time consumed by

Projectwas spent insideLayer3.

We compared the times consumed byLayer3in Projectwith those consumed

by Omega Test inLayer2OT (see Fig. 3.9). There were 51 problem instances

which requiredLayer3. Omega Test timed out in 37 of them. In 13 of the remain-

ing 14 cases, Omega Test performed better thanLayer3. Our analysis revealed

that these cases were simpler in terms of number of LMCs and number of vari-

ables to be eliminated. HoweverLayer3 incurred several recursiveProject calls

in these cases.
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Figure 3.8: Plots comparing (a)Project and Layer1Blast and (b)Project and

Layer1OT (All times are in milliseconds)

Comparison of Layer2 with alternative techniques: Recall that given∃x.(C∧

D∧ I), whereC is a conjunction of LMCs,D is a conjunction of LMDs andI is a

conjunction of LMIs,Layer2checks if∃x.(C)≡∃x.(C∧D∧ I) holds.Layer2per-

forms this check by computing an efficiently computable under-approximation of

the number of ways in which an arbitrary solution ofC can be engineered to satisfy

C∧D∧ I . We compared the performance ofLayer2with a BDD based alternative
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Figure 3.9: Plot comparingLayer3and Omega Test (All times are in milliseconds)

technique to perform this check. We implemented a procedureBddBasedLayer2

for this purpose.BddBasedLayer2computes BDDs for∃x.(C) and∃x.(C∧D∧ I),

and then checks if these BDDs are the same.∃x.(C)≡∃x.(C∧D∧ I) holds iff the

BDDs for ∃x.(C) and∃x.(C∧D∧ I) are the same. We then implemented proce-

dureProjectWithBddBasedLayer2which is a variant ofProject that usesBddBas-

edLayer2in place ofLayer2.
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Figure 3.10: Plot comparingLayer2andBddBasedLayer2(All times are in mil-

liseconds)

We performed QE from the 100 conjunction-level problem instances using



104

ProjectWithBddBasedLayer2. For each problem instance, we then compared the

time consumed byLayer2 in Project with that consumed byBddBasedLayer2

in ProjectWithBddBasedLayer2(see Fig. 3.10).Layer2outperformed the BDD

based alternative technique in all the 100 problem instances.

3.7 Conclusions

The need for efficient techniques for bit-precise QE cannot be overemphasized.

In this chapter, we presented such a bit-precise and practically efficient QE algo-

rithm for conjunctions of LMCs. Our experiments demonstrated that our modu-

lar arithmetic based algorithm for QE outperforms linear integer arithmetic and

bit-blasting based QE techniques. Moreover, our algorithmkeeps the quantifier

eliminated formula in modular arithmetic, which allows further modular arith-

metic level reasoning on the quantifier eliminated formula.It is interesting to see

how we can extend this algorithm to eliminate quantifiers from arbitrary Boolean

combinations of LMCs. Next chapter presents results of our investigations in this

direction.



Chapter 4

Extending Quantifier Elimination to

Boolean Combinations

In Chapter 3, we presented a QE algorithmProject for conjunctions of LMCs

which is bit-precise and efficient in practice. The motivation behind the develop-

ment of this algorithm was its applications in formal verification and analysis of

word-level RTL designs and embedded programs. However, thesymbolic tran-

sition relations of word-level RTL designs and embedded programs involve ar-

bitrary Boolean combinations of LMCs, not necessarily conjunctions of LMCs.

Hence, the QE problem instances that arise in formal verification and analysis of

such designs and programs involve QE from arbitrary Boolean combinations of

LMCs. Thus extendingProject to eliminate quantifiers from arbitrary Boolean

combinations of LMCs is an important problem. We address thisproblem in this

chapter.

As a motivating example, consider the synchronous circuit shown in Fig. 4.1,

with the relevant part of its functionality described in VHDL in Fig. 4.2. The

105
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circuit comprises a controller and three 8-bit registers,A, B, andX. The controller

switches between three states, 0, 1, and 2. In state 0, the values ofA andB are read

from inputsInA andInB respectively, and are stored in corresponding registers. In

addition, the value ofX is initialized to 0, and the control moves to state 1. State

1 implements the iterative algorithm: ifX +A≤ B, the value ofX is incremented,

that of A is doubled, and the circuit continues to iterate in state 1. If, however,

X + A > B, the circuit checks if the value ofX equalsB+ 1. If so, the control

moves to state 0 via state 2. Otherwise, the control moves directly to state 0 from

state 1.

Figure 4.1: An example circuit

The symbolic transition relation,R, for this circuit can be obtained by conjoin-

ing the following equality relations, where primed variables refer to values of the
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...

if (clock’event and clock = ’1’) then

case state is

when "00" => A <= InA;

B <= InB; X <= x"00"; state <= "01";

when "01" => if (X + A <= B) then

X <= X+’1’; A <= x"02"*A;

elsif (X = B+’1’) then state <= "10";

else state <= "00"; end if;

when others => state <= "00";

end case;

end if;

....

Figure 4.2: VHDL program for example circuit

corresponding unprimed variables after the next rising edge of the clock.

state
′ = ite(state = 0,1, ite(state = 1, ite(X+A ≤ B,1, ite(X = B+1,2,0)),0))

A
′ = ite(state = 0, InA, ite(state = 1, ite(X+A ≤ B,2 ·A,A),A))

B
′ = ite(state = 0, InB,B)

X
′ = ite(state = 0,0x00, ite(state = 1, ite(X+A ≤ B,X+1,X),X))

In the above equalities,A,A′,B,B′, InA, InB,X, andX′ refer to bit-vectors of width

8, whereasstate andstate′ refer to bit-vectors of width 2. Furthermore, all op-

erations and comparisons involvingA,A′,B,B′, InA, InB,X, andX′ are unsigned

operations modulo 28, and those involvingstate and state′ are unsigned opera-
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tions modulo 22. Sincea = ite(b,c,d) represents(b∧ (a = c))∨ (¬b∧ (a = d)),

the transition relationR above is a Boolean combination of LMCs.

The above circuit computes the smallest 8-bit non-negativeintegerX such that

2X · InA+X > InB, where all the operations are modulo 28. If the smallest value

of X thus computed isInB+ 1, the control enters state 2; otherwise it returns to

state 0. For example, supposeInA = 1 andInB = 150. Inside state 1, the value of

A overflows to zero after 8 iterations and remains as zero thereafter. The value of

X is incremented in each iteration until it becomes 151. Now that X+A ≤ B is

false andX = B+1 is true, the control moves to state 2. Observe that 151 is the

smallest 8-bit non-negative integerX such that 2X ·1+X > 150 modulo 28.

This circuit has the property that if it starts in state 0, then the value ofA is

always less than 255·X when it visits state 2. The value ofA may exceed 255·X

and even overflow during the modulo 28 multiplications in state 1. However, when

it reaches state 2,A is less than 255·X. To see why this istrue, observe that in

state 2, bothX+A > B andX = B+ 1 aretrue; henceX+A > X+ 255 istrue,

where 255 is the additive inverse of 1 in modulo 28. Note that sinceA ≤ 255,

X+A > X+255 impliesX 6= 0. Moreover, sinceA ≤ 255, if the operationX+A

overflows, thenX+A ≤ X+255 holds forX 6= 0. But we haveX+A > X+255.

Hence the operationX+A should not overflow. This implies thatA is less than the

additive inverse ofX modulo 28. Since 255·X is the additive inverse ofX modulo

28, we haveA < 255·X.

Suppose we wish to verify this property for the firstN time steps of operation

of the circuit using bounded model checking. This involves unrolling the tran-

sition relationN times, conjoining the unrolled relation with the negation of the

property, and feeding the resulting formula to an SMT solver[10]. Observe thatR
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contains primed and unprimed versions of all variables in the circuit. Hence, un-

rolling R a large number of times can give a formula with a very large number of

variables. While the number of variables in an SMT formula is not the sole deter-

minant of performance of SMT solving, formulas with large numbers of variables

typically lead to performance bottlenecks in SMT solving.

A common approach to circumventing this problem is to use an abstract tran-

sition relationR′ that relates values of only a chosen subset of variables relevant to

the property being checked, while abstracting the relationbetween the other vari-

ables. In general, the set of states reached usingR′ overapproximates the exact set

of reachable states. Therefore, ifN-step bounded model checking usingR′ fails

to give a counterexample, then the property holds inN steps of operation of the

circuit.

In our example, an abstract transition relationR′ can be obtained by computing

∃B∃B′∃InB. R. An equivalent quantifier-free version ofR′ is given below.

((state = 0)∧ (state′ = 1)∧ (A′ = InA)∧ (X′ = 0x00)) ∨

((state = 1)∧ (state′ = 1)∧ (A′ = 2 ·A)∧ (X′ = X+1)) ∨

((state = 1)∧ (state′ = 2)∧ (A′ = A)∧ (X′ = X)∧ (X+A > X+255)) ∨

((state = 1)∧ (state′ = 0)∧ (A′ = A)∧ (X′ = X)∧ϕ) ∨

((state 6= 0)∧ (state 6= 1)∧ (state′ = 0)∧ (A′ = A)∧ (X′ = X))

whereϕ is the disjunction of the formulas(X+A 6= 0)∧(X 6= 1) and(X+A 6= 0)∧

(X 6= 0)∧ (X ≤ X+A+255).

It can indeed be verified that bounded model checking usingR′ (instead of

R) suffices to show that if the circuit starts in state 0, the value of A is always

less than 255·X (mod 256) when it visits state 2. SinceR′ does not containB,

B′ or InB, the number of variables inN unrollings of R′ is less than that inN
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unrollings ofR. This often leads to better performance of SMT solving during

bounded model checking usingR′ than during bounded model checking using

R. In practice, this can translate to a problem being solved within given time

constraints, as opposed to timing out. Since transition relations of word-level RTL

designs involve Boolean combinations of LMCs,building an abstract transition

relation requires existentially quantifying variables from Boolean combinations

of LMCs.

The above example illustrates the potential advantages of using an abstract

transition relation obtained by existentially quantifying a subset of variables from

the original transition relation. However, the effectiveness of this approach de-

pends crucially on the choice of variables to quantify, on the availability of effi-

cient techniques to obtain a quantifier-free version of the abstract transition rela-

tion, and on the amenability of the obtained abstract transition relation to efficient

reasoning.

Let ϕ be a Boolean combination of LMCs over a set of variablesV. We wish

to compute a Boolean combination of LMCsψ equivalent to∃X.ϕ, whereX ⊆V.

As we saw in Chapter 2, the problem of extending a QE algorithm for conjunc-

tions of constraints to Boolean combinations of constraintsis encountered in other

first order theories such as linear real arithmetic and linear integer arithmetic as

well. The techniques to solve this problem for these theories essentially transform

the input Boolean combination of constraints to DNF and then apply the QE algo-

rithm for conjunctions of constraints on each conjunction (monome) in the DNF.

Section 2.4 gives a detailed survey of these techniques. Among these, the work by

Chaki et. al. in [28] makes use of decision diagrams to represent Boolean combi-

nations of octagonal constraints, and proposes efficient QEtechniques that work
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on decision diagrams. The work by Monniaux in [29] proposes an SMT solving

based approach for extending Fourier-Motzkin to arbitraryBoolean combinations

of constraints in linear real arithmetic. Our work in this chapter is motivated by

the ideas introduced in these works.

Contributions: We present approaches to extendProject to eliminate quanti-

fiers from Boolean combinations of LMCs. We introduce a new decision diagram

called Linear Modular Decision Diagram (LMDD) that represents Boolean com-

binations of LMCs, and present algorithms for QE from LMDDs. We then present

an SMT solving based approach and a hybrid approach that tries to combine the

strengths of the LMDD and SMT solving based approaches. Experiments demon-

strate the effectiveness of our techniques and indicate that the LMDD and SMT

solving based approaches are incomparable, whereas the hybrid approach inherits

the strengths of both LMDD and SMT solving based approaches.The experi-

ments also demonstrate the utility of these techniques in bounded model checking

of word-level RTL designs.

4.1 Linear Modular Decision Diagrams

A Linear Modular Decision Diagram (LMDD) is a data structurewhich represents

Boolean combinations of LMCs. They are BDDs[51] with nodes labeled with

LMEs or LMIs.

Formally an LMDD is a Directed Acyclic Graph (DAG) where the vertex set

contains two terminal nodes 0 and 1 with out-degree zero and aset of non-terminal

nodes with out-degree two. Each non-terminal nodeu is labeled with an LME or

LMI denoted asP(u). The children of a non-terminal nodeu are denoted byH(u)
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and L(u), and the node is denoted by the triple(P(u),H(u),L(u)). The child

H(u) is called high child and the childL(u) is called low child. The edge set

contains edges(u,H(u)) and(u,L(u)) for every non-terminal nodeu. An LMDD

with root nodeu represents a formulaF(u) defined asF(0) = false, F(1) = true,

F(u) = ite(P(u),F(H(u)),F(L(u))), whereite(α,β,γ) denotes(α∧β)∨ (¬α∧γ).

To simplify the notation, we will not distinguish between nodeu and the formula

F(u) represented by it.

Example: Fig. 4.3 shows an LMDD corresponding to the formulaite(x≤ y (mod 4),

m = 2n+ 7 (mod 8), m 6= 3n+ 5 (mod 8)). Note that the thick lines and dot-

ted lines represent the edges(u,H(u)) and (u,L(u)) respectively for each non-

terminal nodeu.

We define Reduced Ordered LMDDs similar to the way Reduced Ordered

BDDs are defined. Let¹ be an ordering on the LMCs labeling the nodes of an

LMDD f . The LMDD f is ordered w.r.t¹ if for every pair of non-terminal nodes

u, v in f such thatv is a child ofu, we haveP(u) ¹ P(v). An LMDD f is ordered

if there exists some ordering¹ on the LMCs labeling the nodes off such that

f is ordered w.r.t.¹. For example, the LMDD in Fig. 4.3 is ordered w.r.t. the

orderx≤ y (mod 4) ¹ m= 2n+7 (mod 8) ¹ m= 3n+5 (mod 8). An LMDD

is reduced iff (i) there are no duplicate nodes and (ii) thereare no redundant nodes

(a redundant node is a non-terminal nodeu such thatH(u) = L(u)). The LMDD

in Fig. 4.3 is a reduced LMDD. Hereafter we use LMDD to refer toReduced

Ordered LMDD.

The procedures for performing the basic operations on LMDDsand for con-

struction of LMDDs are simple extensions of the corresponding procedures for

BDDs.
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Figure 4.3: Example of an LMDD

Given LMDDs f andg, the functionApply(op, f , g) constructs an LMDD for

f op g, whereop is a binary operation. The implementation ofApply is similar

to the implementation of the corresponding operation on BDDs. The case where

either f or g is a terminal is straightforward. Consider the case where both f and

g are non-terminals. IfP( f ) andP(g) are the same, thenf op g is constructed as

(P( f ), H( f ) op H(g), L( f ) op L(g)). Otherwise ifP( f ) ¹ P(g) then, f op g is

constructed as(P( f ), H( f ) op g, L( f ) op g). Similarly if P(g) ¹ P( f ) then, f op

g is constructed as(P(g), f op H(g), f op L(g)).

Given LMDDs f andg, the functionsANDandORconstruct LMDDs forf ∧

g and f ∨ g respectively. They are implemented usingApply. The functionNOT
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that negates an LMDDf is implemented asApply(⊕, f , 1), where⊕ denotes

the exclusive-or operation. Given LMDDsf andg, and an LMCc, the function

ITE constructs an LMDD forite(c, f ,g). The implementation ofITE is similar to

that of Apply. The functioncreateLMDDconstructs an LMDD from a Boolean

combination of LMCsϕ. Initially the LMDDs for the individual LMCs inϕ are

constructed. Then LMDD forϕ is constructed recursively from the LMDDs for

its sub-formulas usingApply.

4.1.1 Quantifier Elimination from LMDDs

The problem we wish to solve in this subsection can be formally stated as follows.

Given an LMDD f representing a Boolean combination of LMCs over a set of

variablesV, we wish to compute an LMDDg equivalent to∃X. f , whereX ⊆V.

The algorithms presented in this subsection use the following helper functions:

i) Vars: returns the set of variables in an LMC, ii)getConjunct: computes the

conjunction of LMCs in a given set, and iii)isUnsat: determines if the conjunction

of LMCs in a given set is unsatisfiable.

A straightforward algorithm to compute∃X. f is to applyProject to each path

originating from the root off . We call this algorithmAll Path QElim (see Algo-

rithm 3). To compute∃X. f , we callAll Path QElimwith argumentsf , {} andX.

All Path QElim performs a recursive traversal off collecting the set of LMCsS

containing any of the variables inX that it encountered along the path from the

root of f . If the path leads to a 1-terminal and if the conjunctionCs of LMCs in S

is theory-consistent, thenProject is called to compute∃X.Cs.

Example: Consider the problem of computing∃X. f , where f is the LMDD in

Fig. 4.4 andX = {x}. As all LMCs in this example have modulus 8, we will
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Algorithm 3: All Path QElim
Input : LMDD f , Set of LMCsS, Set of variables to eliminateX

Output : LMDD for ∃X.( f ∧Cs), whereCs is the conjunction of LMCs inS

1 if f = 0 or isUnsat(S)then

2 return 0;

3 if f = 1 then // f is theory-consistent 1-terminal

4 Cs := getConjunct(S);

5 π := Project(Cs, X);// π ≡ ∃X.Cs

6 return createLMDD(π);// π ≡ ∃X.( f ∧Cs)

// traverse down

7 c := P( f );

8 if Vars(c)∩ X == {} then // c is free of variables to eliminate

9 return ITE(c, All Path QElim(H( f ), S, X), All Path QElim(L( f ), S,

X));

10 else // c contains variables to eliminate

11 return OR(All Path QElim(H( f ), S∪ {c}, X), All Path QElim(L( f ), S

∪{¬c}, X));

not specifically write “(mod 8)” for brevity. Note that there are two paths inf

leading to 1-terminal with theory-consistent context: (i)(3x+ 2y = 0) → (4x+

m≤ 2) → (2x+ m= 0) and (ii) (3x+ 2y 6= 0) → (2x+ n = 0). All Path QElim

reduces∃X. f into the disjunction of (i)∃x.((3x+ 2y = 0) ∧ (4x+ m≤ 2) ∧

(2x+ m = 0)) and (ii) ∃x.((3x+ 2y 6= 0) ∧ (2x+ n = 0)). Project computes

∃x.((3x+2y= 0) ∧ (4x+m≤ 2) ∧ (2x+m= 0)) as(m≤ 2) ∧ (4y+m= 0) and

∃x.((3x+2y 6= 0) ∧ (2x+n = 0)) as(4n = 0). Thus the final result is LMDD for
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((m≤ 2) ∧ (4y+m= 0)) ∨ (4n = 0).

Figure 4.4: Example LMDD to illustrate QE

Recall thatAll Path QElim is similar to the algorithm proposed in Cavada et

al’s work in [27] (see Subsection 2.4.2). As observed in [28], because of the

dependence of the result of a recursive call on the contextS, if the same LMDD

node is encountered following two different paths, then theresults of the calls

are not the same in general. HenceAll Path QElim is not amenable to dynamic

programming usually employed in the implementation of decision diagram oper-

ations. The number of recursive calls is linear in the numberof paths inf , which

can be exponential in the number of nodes inf .

In the following discussion we present a more efficient algorithm QE LMDD
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to compute∃X. f . QE LMDD makes use of an algorithm calledQE1 LMDD that

eliminates a single variablex from f (see Algorithm 4). To compute∃x. f , we

call QE1 LMDD with argumentsf , {} andx. QE1 LMDD performs a recursive

traversal of the LMDDf collecting the set of LMCsSx containingx that it en-

countered along the path fromf .

In general,QE1 LMDD ( f , Sx, x) computes an LMDD for∃x.( f ∧CSx), where

CSx denotes the conjunction of LMCs inSx. Let Ex be the set of LMEs inSx. Let

each LMEei in Ex be of the form 2ki · x = ti, whereki = κ(x,ei) and 1≤ i ≤ n

(recall the definition ofκ from Section 3.1). Without loss of generality, letk1

be the smallest amongk1, . . . ,kn. Let g be any internal non-terminal node off

represented as(P(g),H(g),L(g)). Let us denoteP(g) by c. It can be observed that

if c hasx in its support, thenc can be simplified by replacing the occurrences of

2k1 ·x in it by t1. Let c′ be the simplified LMC. Note that ifκ(x,c)≥ k1, thenc′ we

get, is free ofx. Thus, ifκ(x,c) ≥ k1, theng can be simplified to(c′,H(g),L(g)),

wherec′ is free ofx.

We call the procedure that performs the selection of LME withthe minimum

κ among the LMEs inEx asselectLME. The ProceduresimplifyLMDD(see Algo-

rithm 5) performs simplification off using the selected LME as described above.

The proceduresimplifyLMC in Algorithm 5 simplifiesc to c′ using the selected

LME.

If simplifyLMDD is successful in eliminating all occurrences of variablex us-

ing the selected LME, thensimplifyLMDD returns a simplified LMDDf ′ such

that∃x.( f ∧CSx) is equivalent tof ′ ∧∃x.(CSx). Note that∃x.(CSx) can be com-

puted byProject. In this case,QE1 LMDD returns without any further recursive

calls. If simplifyLMDD is unable to eliminate all occurrences of variablex, then
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Algorithm 4: QE1 LMDD
Input : LMDD f , Set of LMCsSx, Variable to eliminatex

Output : LMDD for ∃x.( f ∧CSx),

whereCSx is the conjunction of LMCs inSx

1 if f = 0 or isUnsat(Sx) then

2 return 0;

3 if f = 1 then // theory-consistent 1-terminal

4 CSx := getConjunct(Sx);

5 π := Project(CSx, {x});// π ≡ ∃x.CSx

6 return createLMDD(π);// π ≡ ∃x.( f ∧CSx)

// simplification using LMEs

7 Ex := set of LMEs inSx;

8 if Ex 6= {} then

9 e1 := selectLME(Ex);

10 f ′ := simplifyLMDD( f , e1, x);

11 if f ′ is free of xthen

12 CSx := getConjunct(Sx);

13 π := Project(CSx, {x});// π ≡ ∃x.CSx

14 return AND( f ′, createLMDD(π));// f ′∧π ≡ ∃x.( f ∧CSx)

15 else

16 f ′ := f ;

// traverse down

17 c := P( f ′);

18 if c is free of xthen

19 return ITE(c, QE1 LMDD(H( f ′), Sx, x), QE1 LMDD(L( f ′), Sx, x));

20 else

21 return OR(QE1 LMDD(H( f ′), Sx ∪ {c}, x), QE1 LMDD(L( f ′), S

∪{¬c}, x));
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Algorithm 5: simplifyLMDD

Input : LMDD f , LME e1 : 2k1 ·x = t1, Variable to eliminatex

Output : LMDD f simplified usinge1

1 if f = 0 or f = 1 then

2 return f ;

3 c := P( f );

4 if c is free of xthen

5 return ITE(c, simplifyLMDD(H( f ), x, e1), simplifyLMDD(L( f ), x,

e1));

6 else

7 c′ := simplifyLMC(c, e1, x);// if κ(x,c) ≥ k1, then c′ is free

of x

8 return ITE(c′, simplifyLMDD(H( f ), x, e1), simplifyLMDD(L( f ), x,

e1));
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QE1 LMDD proceeds by recursively traversing the simplified LMDDf ′.

Example: Let us understand howQE1 LMDD computes∃x. f , where f is the

LMDD in Fig. 4.4. QE1 LMDD callssimplifyLMDDwith argumentsH( f ), (3x+

2y = 0) andx. Note that the LME(3x+2y = 0) is equivalent to(x = 2y) modulo

8. simplifyLMDDeliminates all occurrences ofx in H( f ) using(x= 2y), and thus

simplifiesH( f ) as shown in Fig. 4.5. Letg be the simplified LMDD, which is

free ofx (shown in different colour in Fig. 4.5). Notice that∃x.(H( f )∧ (x = 2y))

is equivalent tog∧∃x.(x = 2y). Since∃x.(x = 2y) is true, ∃x.(H( f )∧ (x = 2y))

is equivalent tog. However,L( f ) cannot be simplified in this manner, as there are

no LMEs involvingx in its context.QE1 LMDD performs traversal ofL( f ), and

calls Project to compute∃x.((3x+ 2y 6= 0) ∧ (2x+ n = 0)). Project computes

∃x.((3x+2y 6= 0) ∧ (2x+n = 0)) as(4n = 0). Thus the final result is LMDD for

g∨ (4n = 0).

It can be observed that if the same LMDD node is encountered with the same

LME following two different paths, then the results of the calls to simplifyLMDD

must be the same. HencesimplifyLMDDcan be implemented with dynamic pro-

gramming. Moreover, although the result of each recursive call to QE1 LMDD

depends on the contextSx, the number of LMCs inSx is usually very small, as only

the LMCs containingx are collected inSx. HenceQE1 LMDD is still amenable

to dynamic programming.

QE1 LMDD can be repeatedly invoked to compute∃X. f . This is imple-

mented in the algorithmQE LMDD. The order in which variables are selected

for elimination inQE LMDD has a crucial impact on the sizes of the intermediate

and final LMDDs. In our ordering scheme, we selected the variable occurring

in the least number of LMDD nodes as the next variable to be eliminated. Intu-



121

Figure 4.5: Example forsimplifyLMDD

itively, this ordering scheme usually results in smaller contexts (i.e., smallerSx’s),

and more opportunities for dynamic programming.

In practice, the strategy of eliminating one variable at a time and simplifica-

tion of LMDDs using the LMEs in the context provide significant opportunities for

reuse of results through dynamic programming. As a result ofthese,QE LMDD

in practice clearly outperformsAll Path QElim, as also demonstrated by our ex-

periments.
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4.2 QE using SMT Solving

In recent years there has been significant progress in SMT solvers for bit-vector

arithmetic. In this section we present an approach for QE from Boolean combi-

nations of LMCs that leverages progress in SMT solvers for bit-vector arithmetic.

Given a Boolean combination of LMCsϕ over a set of variablesV, we wish to

compute a Boolean combination of LMCsψ equivalent to∃X.ϕ, whereX ⊆V.

We initially present an algorithmAll SMT(see Algorithm 6) to compute∃X.ϕ,

which is a straightforward extension of the All-SMT loop given in Section 2.4.

Initially the satisfiability ofϕ is checked using an SMT solver. Ifϕ is unsatisfi-

able, then∃X.ϕ is false. Otherwise, the solutionm1 of ϕ obtained from the solver

is generalized to a conjunction of LMCsC1 such thatC1 ⇒ ϕ. The SMT solver

is now called to check ifϕ∧¬C1 is satisfiable. Ifϕ∧¬C1 is unsatisfiable, then

∃X.ϕ is equivalent to∃X.C1. Otherwise, the solutionm2 of ϕ∧¬C1 obtained is

generalized to a conjunction of LMCsC2 such thatC2 ⇒ ϕ. This loop is repeated

until the formula given to the SMT solver becomes unsatisfiable. Each iterationi

of the loop generates a conjunction of LMCsCi such thatCi ⇒ ϕ, for 1≤ i ≤ n.

Finally ∃X.ϕ is equivalent to∃X.C1 ∨ ·· · ∨ ∃X.Cn. Project is used to compute

∃X.Ci, for 1≤ i ≤ n.

Generalize1(see Algorithm 7) uses the method suggested in [29] for general-

izing a solutionmof ϕ to a conjunction of LMCsC such thatC⇒ ϕ. Generalize1

computesC as follows. FirstC is initialized to true. Each LMCc in ϕ is then

evaluated with values given to variables in its support as per m. If c evaluates to

true underm, i.e.,m |= c, thenc is conjoined withC. Otherwise, ifc evaluates to

false underm, i.e.,m |= ¬c, then¬c is conjoined withC. It is easy to see that the

conjunctionC returned impliesϕ.
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Algorithm 6: All SMT
Input : Boolean combination of LMCsϕ, Set of variables to eliminateX

Output : Boolean combination of LMCsψ equivalent to∃X.ϕ

1 H := ϕ;

2 ψ := false;

3 while H is satisfiabledo

4 m := a solution ofH;// m |= H and m |= ϕ

5 C := Generalize1(ϕ, m);// C⇒ ϕ

6 π := Project(C, X);// π ≡ ∃X.C

7 ψ := ψ ∨ π;

8 H := H ∧ ¬C;

9 return ψ;// ψ ≡ ∃X.ϕ

Algorithm 7: Generalize1
Input : Boolean combination of LMCsϕ, A solutionmof ϕ

Output : A conjunctionC of LMCs such thatC⇒ ϕ

1 S:= set of LMCs inϕ;

2 C := true;

3 for c∈ Sdo

4 if m |= c then

5 C := C ∧ c;

6 else

7 C := C ∧ ¬c;

8 return C;
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Let us understand the working ofAll SMTwith an example. We will use this

as a running example throughout this section.

Example: Consider the problem of computing∃X.ϕ, whereϕ is (y = 4x) ∧((x 6=

z) ∨ (x 6= w)) with modulus of all LMCs as 8, andX = {x}. Let m1 : x = 1, y = 4,

z = 0, w = 0 be the solution ofϕ from the SMT solver. Note thatGeneralize1

generalizesm1 to the conjunctionC1 : (y = 4x) ∧ (x 6= z) ∧ (x 6= w), andProject

computes∃x.C1 asπ1 : (2y = 0). As ϕ ∧ ¬C1 is satisfiable, the next iteration of

the loop starts. Letm2 : x= 1, y= 4, z= 1, w= 0 be the solution ofϕ ∧ ¬C1 from

the SMT solver. The conjunctionC2 from Generalize1obtained by generalizing

m2 is (y= 4x) ∧(x= z) ∧ (x 6= w), andπ2 ≡ ∃x.C2 is (y= 4z) ∧ (z 6= w). Note that

ϕ ∧ ¬C1 ∧ ¬C2 is satisfiable, and the third iteration starts. Let solutionm3 of ϕ ∧

¬C1 ∧ ¬C2 bex = 1, y = 4, z= 0, w = 1. The conjunctionC3 from Generalize1

is (y = 4x) ∧(x 6= z) ∧ (x = w), andπ3 ≡ ∃x.C3 is (y = 4w) ∧ (z 6= w). The loop

now terminates asϕ ∧ ¬C1 ∧ ¬C2 ∧ ¬C3 is unsatisfiable. The result of QE isπ1

∨ π2 ∨ π3, i.e.,(2y = 0) ∨ ((y = 4z) ∧ (z 6= w)) ∨ ((y = 4w) ∧ (z 6= w)).

As mentioned in Section 2.4, the work by Monniaux in [29] improves the

All-SMT loop in the following ways.

1. Instead of¬C, ¬∃X.C is conjoined with the formulaH, checked for satisfi-

ability. This is called “interleaving projection and modelenumeration”. It is

observed that this enables pruning the solution space of theproblem, which

results in early termination of the algorithm.

2. Before computing∃X.C, C is generalized by dropping unnecessary con-

straints that do not affect the validity ofC ⇒ ϕ. GeneralizingC by drop-

ping unnecessary constraints simplifiesC, and reduces the time to compute

∃X.C. Moreover, it results in generalized∃X.C, which increases the size of
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solution space pruned by conjoining¬∃X.C with H.

Algorithm 8: QE SMT
Input : Boolean combination of LMCsϕ, Set of variables to eliminateX

Output : Boolean combination of LMCsψ equivalent to∃X.ϕ

1 H := ϕ;

2 ψ := false;

3 while H is satisfiabledo

4 m := a solution ofH;// m |= H and m |= ϕ

5 C := Generalize1(ϕ, m);// C⇒ ϕ

6 C′ := Generalize2(ϕ, C);// C⇒C′ and C′ ⇒ ϕ

7 π := Project(C′, X);// π ≡ ∃X.C′

8 ψ := ψ ∨ π;

9 H := H ∧ ¬π;

10 return ψ;// ψ ≡ ∃X.ϕ

Our algorithmQE SMT (see Algorithm 8) makes use of these optimizations

to compute∃X.ϕ. The algorithmQE SMT calls the procedureGeneralize2for

generalizingC by dropping unnecessary constraints fromC. ThusC′ computed by

Generalize2is such thatC⇒C′ andC′ ⇒ ϕ. The implementation ofGeneralize2

in [29] works as follows. For each constraintc in C, it is checked to see ifC⇒ ϕ

remains valid even after droppingc from C. If C ⇒ ϕ remains valid even after

droppingc from C, thenc is unnecessary and is dropped fromC. Otherwise if

the implicationC ⇒ ϕ becomes invalid after droppingc from C, thenc is not

dropped fromC. Checking the validity ofC ⇒ ϕ involves an SMT solver call.

However, in our experiments with LMCs, we have found that thisimplementation
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of Generalize2is prohibitively time consuming as the number of SMT solver

calls is equal to the number of constraints inC. Hence our implementation of

Generalize2makes use of a cheaper technique to achieve generalization.

Our technique is based on analysis of the Boolean skeleton of the formula

ϕ. Boolean skeletonP of ϕ is the representation of Boolean structure ofϕ as a

Directed Acyclic Graph (DAG), with leaves representing LMCsin ϕ and internal

nodes as¬, ∧, and∨. As every LMC inϕ appears inC in its original or negated

form,C effectively gives an assignment of Boolean values to the leaves ofP. We

now perform a bottom-up traversal ofP to evaluateP using the values assigned to

the leaves. LetB(n) be the value assigned to a noden in P during the evaluation.

For each noden, we find a subsetS(n) of LMCs inC that are sufficient to evaluate

n to B(n). Table 4.1 shows howB(n) and S(n) are computed for the different

nodes inP under different conditions. LetS(r) be the set of LMCs found in this

way for the rootr of P. C′ is computed as the conjunction of LMCs inS(r). It is

easy to see thatC⇒C′ andC′ ⇒ ϕ.

Example: In our example, whereϕ is (y= 4x) ∧((x 6= z) ∨ (x 6= w)), consider the

case whenC is (y = 4x) ∧(x = z) ∧ (x 6= w). The Boolean skeletonP of ϕ is n1

∧ (n2 ∨ n3), wheren1, n2, n3 denote(y = 4x), (x 6= z), (x 6= w) respectively. Note

that B(n1) = true, B(n2) = false, andB(n3) = true. Also S(n1) = {n1}, S(n2)

= {¬n2}, andS(n3) = {n3}. Let n4 be the node(n2 ∨ n3). SinceB(n2) = false,

B(n3) = true, andn4 is (n2 ∨ n3), we haveB(n4) = true. Note thatB(n3) = true is

sufficient to makeB(n4) = true. HenceS(n4) = S(n3) = {n3} as per Table 4.1. Let

r be the root node ofP, i.e., the noden1 ∧ n4. SinceB(n1) = true, B(n4) = true,

we haveB(r) = true. Sincer is n1 ∧ n4, bothB(n1) andB(n4) should betrue for

B(r) to betrue. Hence we haveS(r) = S(n1)∪S(n4) = {n1,n3}. ThereforeC′ is
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Table 4.1: Computation ofB(n) andS(n) insideGeneralize2

noden Condition B(n) S(n)

LMC c
c appears inC true {c}

¬c appears inC f alse {¬c}

¬n1

B(n1) = true f alse S(n1)

B(n1) = f alse true S(n1)

n1∧n2

B(n1) = true∧ B(n2) = true true S(n1)∪S(n2)

B(n1) = true∧ B(n2) = f alse f alse S(n2)

B(n1) = f alse∧ B(n2) = true f alse S(n1)

B(n1) = f alse∧ B(n2) = f alse f alse smaller amongS(n1) andS(n2)

n1∨n2

B(n1) = true∧ B(n2) = true true smaller amongS(n1) andS(n2)

B(n1) = true∧ B(n2) = f alse true S(n1)

B(n1) = f alse∧ B(n2) = true true S(n2)

B(n1) = f alse∧ B(n2) = f alse f alse S(n1)∪S(n2)
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n1∧n3, i.e.,(y = 4x) ∧ (x 6= w).

Let us understand the working ofQE SMT on this example. Letm : x = 1,

y = 4, z= 1, w = 0 be the solution ofϕ from the SMT solver in the first iteration.

Note thatGeneralize1generalizesm to the conjunctionC : (y = 4x) ∧ (x = z) ∧

(x 6= w). As we just saw,Generalize2generalizesC to C′ : (y = 4x) ∧ (x 6= w).

Projectcomputes∃x.C′ asπ : (2y = 0). Note thatϕ ∧ ¬π is unsatisfiable, and the

algorithm terminates. The result of QE isπ, i.e.,(2y = 0).

Note that the optimizations inQE SMT helped us in early termination of the

loop in this example.All SMThad taken 3 iterations, whereasQE SMTfinished in

just 1 iteration. In practice, these optimizations providesignificant improvement

in performance, as we will see in Section 4.4.

4.3 Hybrid Approach

The factors that contribute to the success of the LMDD-basedapproach are the

presence of large shared sub-LMDDs and the strategy of eliminating one vari-

able at a time. Both factors contribute to significant opportunities for reuse of

results through dynamic programming. The success of the SMT-based approach

is attributable primarily to pruning of the solution space achieved by interleaving

of projection and model enumeration. In the following discussion, we present a

hybrid approach that tries to combine the strengths of thesetwo approaches.

We illustrate the idea with the help of an example.

Example: Consider the working ofQE LMDD on the example of computing

∃X.ϕ, whereϕ is (y = 4x) ∧((x 6= z) ∨ (x 6= w)) with modulus of all LMCs as 8,

andX = {x}. Fig. 4.6 shows LMDD forϕ with order(y= 4x)¹ (x= z)¹ (x= w).
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The LMDD nodes are denoted asf1, f2, f3, f4, and f5. Recall thatQE LMDD

Figure 4.6: Example for hybrid approach

calls QE1 LMDD with argumentsf1, {} andx to compute∃x.ϕ. QE1 LMDD(

f1, {}, x ) makes recursive callsQE1 LMDD( f2, {y = 4x}, x ) andQE1 LMDD(

f5, {y 6= 4x}, x ). QE1 LMDD( f2, {y = 4x}, x ) makes further recursive calls

QE1 LMDD( f4, {y = 4x, x 6= z}, x ) andQE1 LMDD( f3, {y = 4x, x = z}, x ).

QE1 LMDD( f4, {y = 4x, x 6= z}, x ) callsProject to compute∃x.((y = 4x) ∧

(x 6= z)), and returns LMDD for(2y = 0). QE1 LMDD( f3, {y = 4x, x = z}, x )

returns LMDD for(y = 4z) ∧ ite( z= w, 0, 1), andQE1 LMDD( f5, {y 6= 4x}, x

) returns 0. Thus the result of QE is LMDD for(2y = 0) ∨ ((y = 4z) ∧ ite(z= w,

0, 1)). Note that effectivelyQE1 LMDD splits∃x.ϕ into three sub-problems: (i)

∃x.( f4 ∧ (y = 4x) ∧ (x 6= z)), (ii) ∃x.( f3 ∧ (y = 4x) ∧ (x = z)), and (iii)∃x.( f5 ∧

(y 6= 4x)). The result of QE is the disjunction of the results of these sub-problems.
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Note that∃x.ϕ is actually equivalent to(2y = 0), the result of the first sub-

problem∃x.( f4 ∧ (y = 4x) ∧ (x 6= z)). Hence we could have avoided the compu-

tation of the sub-problems∃x.( f3 ∧ (y = 4x) ∧ (x = z)) and∃x.( f5 ∧ (y 6= 4x)).

We call such sub-problems whose computation can be avoided as “redundant”

sub-problems. We can infer that the sub-problems∃x.( f3 ∧ (y = 4x) ∧ (x = z))

and∃x.( f5 ∧ (y 6= 4x)) are redundant, from the fact thatf3 ∧ (y = 4x) ∧ (x = z)

∧ (2y 6= 0) and f5 ∧ (y 6= 4x) ∧ (2y 6= 0) are unsatisfiable.

In general, suppose we wish to compute∃X. f , where f denotes an LMDD

representing a Boolean combination of LMCs over a set of variablesV andX ⊆V.

We can derive a set of sub-problems of the form∃X.( fi ∧Ci), for 1≤ i ≤ n, where

fi denotes an LMDD andCi denotes a conjunction of LMCs, such that∃X. f is

equivalent to
Wn

i=1(∃X.( fi ∧Ci)). Let g denote
Wm

i=1(∃X.( fi ∧Ci)), where 1≤

m< n. A sub-problem∃X.( f j ∧Cj), wherem+1≤ j ≤ n, is redundant iff j ∧Cj

∧ ¬g is unsatisfiable.

Our hybrid algorithmQE Combined(see Algorithm 9) makes use of this idea

to identify redundant sub-problems. InitiallyQE Combinedselects a satisfiable

pathπ in the LMDD f using a functionselectPath. Subsequently, the algorithm

simplify(see Algorithm 10) is invoked, which traverses the pathπ, in order to split

f into an equivalent disjunction
Wn

i=1( fi ∧Ci), where fi denotes an LMDD andCi

denotes a conjunction of LMCs.( fi ∧Ci) is represented in Algorithm 10 as a pair

〈 fi , Ci〉.

In order to split LMDD f , simplify is called with argumentsf , π, C all initial-

ized totrue, andS initialized to{}. simplifycollects( fi ∧Ci), for 1≤ i ≤ n in the

setS in the following way. The pathπ is traversed recursively starting from the

root node off , conjoining withC all LMCs encountered onπ. In each recursive
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Algorithm 9: QE Combined
Input : LMDD f , Set of variables to eliminateX

Output : Boolean combination of LMCsg equivalent to∃X. f

1 π := selectPath( f );

2 S:= {};// set of sub-problems

3 C := true;

4 simplify( f , π, C, S);

5 g := false;

6 for each〈 fi ,Ci〉 ∈ Sdo

7 if fi ∧Ci ∧ ¬g is satisfiablethen

8 h := QE LMDD Context( fi , Ci, X);

9 g := g∨ h;

10 return g;

call, if f is a terminal, then〈 f , C〉 is inserted inS. Otherwise iff is a non-terminal

and nodeH( f ) appears inπ, then〈L( f ), C∧¬P( f )〉 is inserted inS. Similarly if

f is a non-terminal and nodeL( f ) appears inπ, then〈H( f ), C∧P( f )〉 is inserted

in S. Fig. 4.7 illustrates the splitting scheme followed bysimplify.

Example (Continued): In the case of LMDD in Fig. 4.6, using the path(y = 4x)

→ (x 6= z) → 1 asπ splits the LMDD into (i)〈 f4, (y = 4x) ∧ (x 6= z)〉, (ii) 〈 f3,

(y = 4x) ∧ (x = z)〉, and (iii) 〈 f5, (y 6= 4x)〉.

The functionselectPathselects the pathπ in the following way. First, a solu-

tion m of f is generated using an SMT solver call. The root node off is selected

as the first node inπ. The LMCP( f ) labeling the root node off is then evaluated

with values given to variables in its support as perm. If P( f ) evaluates totrue
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Algorithm 10: Simplify
Input : LMDD f , Satisfiable pathπ,

ConjunctionC of LMCs encountered alongπ

Output : Set of sub-problemsS

1 if f = 1 then

2 S:= S∪ { 〈 f , C〉 };

3 else

4 if node H( f ) is in π then

5 S:= S∪ { 〈L( f ), C∧¬P( f )〉 };

6 simplify(H( f ), π, C∧P( f ));

7 else

8 S:= S∪ { 〈H( f ), C∧P( f )〉 };

9 simplify(L( f ), π, C∧¬P( f ));

underm, thenH( f ) is selected as the next node inπ. Otherwise ifP( f ) evaluates

to false underm, thenL( f ) is selected as the next node inπ. The LMC label-

ing the child of f thus selected as the next node inπ is then evaluated underm.

These steps are iteratively repeated until 1-terminal is encountered, each iteration

adding a new node toπ. Note that encountering 1-terminal is guaranteed sincem

is a solution off .

QE Combinednow computesg ≡ ∃X. f as
Wn

i=1(∃X.( fi ∧Ci)) in the follow-

ing manner. In order to compute∃X.( fi ∧Ci), QE Combinedmakes use of an

algorithm QE LMDD Context. QE LMDD Context is a variant ofQE LMDD

that eliminates a set of variables from an LMDD conjoined with a set of LMCs.
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Figure 4.7: Derivingfi ∧Ci from pathπ

QE Combinedinitially setsg to false. In the first iteration of the loop, the satisfi-

ability of f1∧C1 is checked. Iff1∧C1 is satisfiable, theng is set to∃X.( f1∧C1).

Otherwise if f1∧C1 is unsatisfiable, then the sub-problem∃X.( f1∧C1) is redun-

dant and is not computed. In the second iteration, the satisfiability of f2∧C2∧¬g

is checked. Iff2∧C2∧¬g is satisfiable, then∃X.( f2∧C2) is computed and is

disjoined withg. Otherwise if f2∧C2∧¬g is unsatisfiable, then∃X.( f2∧C2) is

not computed. This loop is repeated until all the sub-problems are considered. It

can be observed thatg is equivalent to
Wi

j=1

(
∃X.( f j ∧Cj)

)
after theith iteration

of the loop, which implies thatg is equivalent to
Wn

j=1

(
∃X.( f j ∧Cj)

)
when the

loop is terminated.

Example (Continued): In our example, in the first iteration of the loop, the sat-

isfiability of f4 ∧ (y = 4x) ∧ (x 6= z) is checked. Sincef4 ∧ (y = 4x) ∧ (x 6= z)
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is satisfiable,g is set to(2y = 0), the result of∃x.( f4 ∧ (y = 4x) ∧ (x 6= z)). In

the second iteration, the satisfiability off3 ∧ (y = 4x) ∧ (x = z) ∧ (2y 6= 0) is

checked. Sincef3 ∧ (y = 4x) ∧ (x = z) ∧ (2y 6= 0) is unsatisfiable,∃x.( f3 ∧

(y = 4x) ∧ (x = z)) is not computed. Similarly, in the third iteration of the loop,

the satisfiability off5 ∧ (y 6= 4x) ∧ (2y 6= 0) is checked. Note thatf5 ∧ (y 6= 4x)

∧ (2y 6= 0) is unsatisfiable. Hence∃x.( f5 ∧ (y 6= 4x)) is also not computed. The

final result of QE is(2y = 0).

Note that unlikeQE SMT, QE Combineddoes not explicitly interleave pro-

jections inside model enumeration. However disjoining theresult of∃X.( fi ∧Ci)

with g, and computing∃X.( fi ∧Ci) only if fi ∧Ci ∧¬g is satisfiable, helps in

avoiding the computation of redundant sub-problems. This enables pruning the

solution space of the problem, as achieved inQE SMT.

4.4 Experimental Results

We performed experimental evaluation of our QE techniques in three different

ways. First we performed experiments to evaluate the performance and effective-

ness ofQE LMDD, QE SMT, andQE Combined. We then compared the perfor-

mance ofQE SMTwith alternative QE techniques based on bit-blasting and con-

version to linear integer arithmetic. Finally we performedexperiments to evaluate

the utility of our QE techniques in verification.

The experiments were performed on a 1.83 GHz Intel(R) Core 2 Duoma-

chine with 2GB memory running Linux, with a timeout of 1800 seconds. We

implemented our own LMDD package for carrying out QE experiments involv-

ing LMDDs. In all our experiments, we used simplifyingSTP [102] as the SMT
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solver. We selected simplifyingSTP, because it has a variable eliminator [79]

which is considered as suitable for solving bit-vector formulas involving LMEs.

In all experiments using LMDDs, we used the same ordering on LMCs labeling

the LMDD nodes. We performed depth-first traversal of the DAGrepresentations

of formulas from which the LMDDs were created; LMCs were ordered in the

order they were encountered in the depth-first traversal.

Simplification heuristics: We used the following simplification heuristics in our

implementation.

1. The LMDs with modulus 2 were converted to equivalent LMEs.For ex-

ample, the LMDx+ y 6= 1 (mod 2) was converted tox+ y = 0 (mod 2).

We observed that this helps in easy elimination of existentially quantified

variables involved in LMCs with modulus 2.

2. In a non-terminal LMDD nodeu, if P(u) is an LME, then it is kept in a

normal form 2k · x = t, wherex is the variable appearing first in lexico-

graphical ordering between the names of variables in the support of P(u),

andk = κ(x,P(u)) (recall the definition ofκ from Section 3.1). This allows

identification of equivalent LMEs during LMDD creation and hence more

compact LMDDs.

Evaluation of QE SMT, QE LMDD, and QE Combined: We used the same

benchmark suite consisting of 198lindd benchmarks and 39vhdl benchmarks,

that we used for experiments in Chapter 3. Each of these benchmarks is a Boolean

combination of LMCs with a subset of the variables in their support existentially

quantified. The details of these benchmarks can be found in Section 3.6. As

mentioned in Section 3.6, the total number of variables, thenumber of variables
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to be eliminated, and the number of bits to be eliminated in the lindd benchmarks

ranged from 30 to 259, 23 to 207, and 368 to 3312 respectively.The total number

of variables, the number of variables to be eliminated, and the number of bits to

be eliminated in thevhdl benchmarks ranged from 8 to 50, 2 to 21, and 10 to 672

respectively.

We measured the time taken byQE SMT, QE LMDD, andQE Combinedfor

QE from each benchmark. ForQE LMDD andQE Combined, this included the

time to build the initial LMDD. We observed that each approach performed better

than the others for some benchmarks (see Fig. 4.8 and Fig. 4.9). Note that the

points in Fig. 4.9 are scattered, while the points in Fig. 4.8(a) and 4.8(b) are more

clustered near the 45◦ line. This shows thatDD andSMT based approaches are

incomparable, whereas the hybrid approach inherits the strengths of bothDD and

SMT based approaches. Hence, given a problem instance, we recommend the

hybrid approach, unless the approach which will perform better is known a-priori.
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Figure 4.8: Plots comparing (a)QE SMTandQE Combinedand (b)QE LMDD

andQE Combined(All times are in seconds)

In order to evaluate the effectiveness of our simplifications in QE LMDD, we
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Figure 4.9: Plot comparingQE SMTandQE LMDD (All times are in seconds)

compared the time taken byQE LMDD with that taken byAll Path QElim for

QE from each benchmark (see Fig. 4.10(a)).All Path QElim succeeded only in a

few cases. This is not surprising, as the LMDDs for the benchmarks contained a

huge number of paths. InQE LMDD, the single variable elimination strategy and

the simplification of LMDDs usingsimplifyLMDDhelped in achieving significant

reuse of results through dynamic programming. This helped in avoiding path enu-

meration, which resulted in considerable performance gains overAll Path QElim.

In order to evaluate the effectiveness of our generalization technique based

on analysis of Boolean skeleton of formulae inGeneralize2, we implemented a

variant ofQE SMTcalledQE SMTMod. QE SMTMod is the same asQE SMT

except that it uses the implementation ofGeneralize2as proposed in [29]. Recall

from Subsection 4.2 that the implementation ofGeneralize2in [29] makes use

of SMT solver calls to identify unnecessary LMCs. We comparedthe time taken

by QE SMT andQE SMTMod for QE from each benchmark (see Fig. 4.10(b)).

QE SMT outperformedQE SMTMod except in a few cases. On profiling, we

found that most of the time taken byQE SMTMod was spent in the SMT solver

calls inGeneralize2. In the few cases whereQE SMTMod performed better than



138

Table 4.2: Comparison between QE algorithms

Benchmark D T V B AQ QL AS QS M QS

i choosecb.smt 299 42 33 528 8 8 TO 50 1

i cb print.smt 428 61 48 768 390 6 TO 764 18

i gnt text view clicked.smt 589 86 68 1088 414 15 TO 836 11

i checkfor ext cb.smt 378 50 39 624 1230 12 TO 188 5

i connect2Serverwith af.smt 427 54 43 688 TO 14 TO 226 6

i contextmenu.smt 757 102 81 1296 TO 37 TO 439 5

i bmedit action.smt 607 83 66 1056 TO 12 TO 361 5

i SoundBeep.smt 516 72 57 912 TO 18 TO 1337 23

i actionmovePage.smt 702 104 83 1328 TO 24 TO 437 8

i add face.smt 531 73 58 928 TO 12 TO 104 3

i avi checkfile.smt 660 113 90 1440 TO 17 TO 684 13

i CuddEquivDC.smt 681 101 80 1280 TO 54 TO 1718 21

i gnt treeclicked.smt 658 87 69 1104 TO 21 TO TO 24

i CuddbddLeqUnless.smt 783 106 84 1344 TO 53 TO TO 37

i checkidleness.smt 704 91 72 1152 TO 36 TO TO 42

i addTriangleRecur.smt 776 116 92 1472 TO 24 TO TO 49

i commandsubstcompletionfunction.smt 627 100 79 1264 TO 16 TO TO 53

i gnt treesizechanged.smt 752 107 85 1360 TO 24 TO TO 20

i bashquotefilename.smt 640 92 73 1168 TO 18 TO TO 45

i cb message.smt 544 79 63 1008 TO 30 TO TO 69

All times are in seconds. TO: > 1800 seconds,D: Dag size of the formula,T:

Total number of variables,V: Number of variables to be eliminated,B: Number

of bits to be eliminated,AQ: Total time taken byAll Path QElim, QL : Total time

taken byQE LMDD, AS: Total time taken byAll SMT, QS M : Total time taken

by QE SMTMod, QS: Total time taken byQE SMT
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Figure 4.10: Plots comparing (a)All Path QElimandQE LMDD and (b)QE SMT

andQE SMTMod (All times are in seconds)

QE SMT, the SMT solver based generalization inQE SMTMod was more ef-

fective which helped in faster termination of the All-SMT loop. The comparison

indicates that our generalization technique based on analysis of the Boolean skele-

ton of formulae inGeneralize2is a cheaper and effective alternative to the SMT

solver based generalization technique in [29]. Table 4.2 gives the comparison be-

tween the times taken by the different QE algorithms for a sample of 20 lindd

benchmarks.

Recall that inQE Combined, we converted∃X. f , where f is an LMDD, into

an equivalent disjunction of sub-problems, and then gave these sub-problems to

QE LMDD Contextseparately. Our analysis revealed that this helped in iden-

tifying redundant sub-problems. However, it was observed that splitting∃X. f

into sub-problems and computing the sub-problems separately, reduced scope

for reuse of results through dynamic programming when compared to computing

∃X. f directly usingQE LMDD. We could also observe that using a more eager

strategy for splitting into subproblems (i.e., a strategy that generates more sub-
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problems) in place ofsimplify, further reduced scope for reuse of results, although

it improved opportunity for identifying redundant sub-problems. On the other

hand, using a less eager strategy improved reuse of results,but gave lesser oppor-

tunity for identifying redundant sub-problems. Hence, although reuse of results

and splitting into subproblems contribute towards successof the hybrid approach,

they act against each other. In our experiments, we found that the splitting scheme

in simplifyachieves a trade-off between them.

Comparison with Alternative QE Techniques: We wanted to understand how

QE SMT would perform if a bit-blasting or linear integer arithmetic based al-

ternative QE algorithm is used in place ofProject. In order to do this, we first

computed the average times taken byProjectfor QE from conjunction-level prob-

lem instances arising fromQE SMT when QE is performed on each benchmark.

We also computed the average times taken byLayer1Blast, Layer1OT, and

Layer2OT (see Section 3.6) for QE from these conjunction-level problem in-

stances. For each benchmark, we then compared the average QEtimes taken

by Project against those taken byLayer1Blast andLayer1OT (see Fig. 4.11(a)

and 4.11(b)). Subsequently, for each benchmark, we compared the average time

consumed byLayer3 in the Project calls with that consumed by Omega Test in

theLayer2OT calls (see Fig. 4.12). For a large number of benchmarks, we ob-

served that the bit-blasting or linear integer arithmetic based alternative QE al-

gorithm was unsuccessful in eliminating quantifiers from the conjunction-level

problem instances. These benchmarks are indicated by the topmost green circles

in Fig. 4.11(a), Fig. 4.11(b), and Fig. 4.12. Note that, for these benchmarks we

could not compute the average times consumed by the bit-blasting or linear integer

arithmetic based alternative QE algorithm, as the algorithm was unsuccessful in
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eliminating quantifiers from the conjunction-level problem instances. There were

a few cases where Omega Test performed better thanLayer3. This was due to the

relatively larger number of recursiveProjectcalls in these cases.
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Figure 4.11: Plots comparing average times consumed by (a)Project and

Layer1Blast and (b)Project and Layer1OT when used insideQE SMT (All

times are in milliseconds). Topmost green circles indicatethe benchmarks for

whichLayer1Blastor Layer1OT was unsuccessful.

We also wanted to understand howQE SMTwould perform if the BDD based

alternative techniqueBddBasedLayer2(see Section 3.6) is used in place ofLayer2

insideProject. In order to do this, for each benchmark, we first computed theav-

erage time consumed byLayer2when QE is performed usingQE SMT. For each

benchmark, we then computed the average time consumed byBddBasedLayer2

when BddBasedLayer2is used in place ofLayer2 inside Project. Fig. 4.13(a)

compares these times. Many points corresponding to different benchmarks are

merged in Fig. 4.13(a), since the average times consumed inLayer2were signif-

icantly small compared those consumed inBddBasedLayer2. We provide a com-

parison of the total times in Fig. 4.13(b) for better exposition. The plots clearly
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Figure 4.12: Plot comparing average times consumed byLayer3and Omega Test

when used insideQE SMT(All times are in milliseconds). Topmost green circles

indicate the benchmarks for which Omega Test was unsuccessful.

demonstrate thatQE SMTperforms poorly when the BDD based alternative tech-

nique is used in place ofLayer2. Note that here again, topmost green circles in

Fig. 4.13(a) and Fig. 4.13(b) indicate the benchmarks for which QE was unsuc-

cessful whenBddBasedLayer2was used in place ofLayer2.

Utility of our QE algorithms in verification: Recall from Section 3.6 that the

vhdl benchmarks were obtained by quantifying out a subset of internal variables

from the symbolic transition relations of word-level VHDL designs. The quanti-

fier eliminated formulae give abstract transition relations of the VHDL designs. In

order to evaluate the utility of our QE algorithms, we usedQE LMDD to compute

these abstract transition relations, and then used these abstract transition relations

for checking safety properties of the VHDL designs using bounded model check-

ing.

In order to check if the safety property holds for the firstN cycles of opera-

tion, we first unrolled the transition relationN times, and conjoined the unrolled

relation with the negation of the property. The resulting formula was then given to
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Figure 4.13: Plot comparing (a) average times and (b) total times consumed by

Layer2andBddBasedLayer2when used insideQE SMT (All times are in mil-

liseconds). Topmost green circles indicate the benchmarksfor which BddBased-

Layer2was unsuccessful.

an SMT solver for checking satisfiability. Next, we obtainedan abstract transition

relationR′ usingQE LMDD. The abstract transition relation was then unrolledN

times and was conjoined with the negation of the property to obtain a formula,

which was given to the SMT solver to check satisfiability.

All the SMT solver calls were unsatisfiable, which implies that the properties

hold for the firstN cycles of operation of the designs, and the abstract transition

relations are sufficient to prove the properties. Table 4.3 gives a summary of the

results for 16 designs. machine1 to machine12 are modified versions of bench-

marks from ITC99 benchmark suite [69]. The remaining designsare proprietary.

The table clearly shows the significant performance benefit of using abstract tran-

sition relations computed byQE LMDD in these verification exercises.

For all the designs except machine12, all the internal variables were elimi-

nated from the transition relation in order to obtain the abstract transition relation.
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Table 4.3: Experimental results on VHDL programs

Design LOC TR
N=500

NA QL

machine1 363 (592, 22, 580) TO(TO) 52(7, 23)

machine2 373 (594, 22, 436) TO(TO) 30(6, 1)

machine3 383 (620, 25, 439) TO(TO) 33(6, 3)

machine4 253 (439, 26, 677) 1471(1441) 24(2, 0)

machine5 253 (439, 26, 509) 1443(1413) 25(2, 0)

machine6 363 (406, 17, 64) 78(53) 17(1, 1)

machine7 379 (440, 22, 69) 221(196) 22(1, 3)

machine8 251 (286, 20, 157) 193(177) 13(2, 0)

machine9 251 (286, 20, 485) 331(315) 13(2, 0)

machine10 363 (406, 17, 420) TO(TO) 16(0, 1)

machine11 363 (593, 22, 96) TO(TO) 40(8, 4)

machine12 363 (406, 17, 420) TO(TO) 220(4, 187)

board1 404 (400, 24, 194) 1442(1424) 21(12, 1)

board2 373 (420, 24, 194) TO(TO) 14(5, 1)

board3 503 (573, 54, 361) TO(TO) 16(5, 1)

board4 415 (422, 28, 198) 241(223) 62(9, 2)

All times are in seconds. TO: > 1800 seconds,LOC : Lines of code,TR:

Transition relation details (dag size, number of variables, number of bits),NA:

Without abstraction : total time (simplifyingSTP time),QL : With QE LMDD for

abstraction : total time (QE LMDD time, simplifyingSTP time),N: Number of

BMC unrollings
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For machine12, a manually chosen subset of internal variables were eliminated.

It was observed that in all the cases,Layer1andLayer2were sufficient to elim-

inate the variables, without any call toLayer3. Layer2was needed only in five

cases: machine6 through machine10. In these casesLayer2eliminated 12.5%

to 40% of the quantified variables.

We performed limited preliminary experiments to evaluate the utility ofLayer1

andLayer2as preprocessing steps for conjunctions of LMCs before finding sat-

isfying assignments for the conjunctions using an SMT solver. Towards this end,

we generated 9 sets of random benchmarks. Each set included 5benchmarks that

are randomly generated conjunctions of LMCs with the same number of variables,

LMEs, LMDs and LMIs. The moduli of all LMCs in all benchmarks was fixed

to 224. The number of variables varied from 20 to 50. The number of LMCs was

chosen as twice the number of variables.

In order to properly evaluate the effectiveness ofLayer1andLayer2, we gen-

erated three types of benchmarks. Type-1 benchmarks contained an equal mix of

LMEs, LMDs, and LMIs. The benchmarks in set1, set4, and set7 in Table 4.4

were of this type. These benchmarks allowed us to evaluate the effectiveness of

Layer1. In type-2 benchmarks, 80% of constraints were LMDs and the remaining

were LMIs. The benchmarks in set2, set5, and set8 in Table 4.4 were of this

type. Finally, in type-3 benchmarks, 80% of constraints were LMIs and the re-

maining were LMDs. The benchmarks in set3, set6, and set9 in Table 4.4 were

of type-3. Type-2 and type-3 benchmarks allowed us to evaluate the effectiveness

of Layer2on different mixes of constraints.

We first measured the time taken by simplifyingSTP to solve each benchmark.

We then eliminated variables in the support of each benchmark usingLayer1and
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Layer2. This yields a potentially simplified benchmark with fewer variables in

the support. We then measured the time taken by simplifyingSTP to solve each

preprocessed benchmark. Table 4.4 gives a summary of the results. Preprocessing

helped in cases of type-2 benchmark sets set2, set5, and set8. Preprocessing in

these cases completely solved the problem instances. In other cases preprocessing

either caused additional overhead or was of not much use.

Table 4.4: Experimental results on preprocessing usingLayer1andLayer2

Set V E D I NP PR AP

set1 20 14 13 13 1763 1572 2688

set2 20 0 36 4 3270 251 0

set3 20 0 4 36 3208 655 3245

set4 30 20 20 20 8415 4769 9216

set5 30 0 54 6 7423 533 0

set6 30 0 6 54 7203 1651 7218

set7 40 28 26 26 223880 11255 171207

set8 40 0 72 8 14115 1150 0

set9 40 0 8 72 14343 3561 13238

All times are in milliseconds. V: Number of variables,E: Number of LMEs,D:

Number of LMDs,I : Number of LMIs,NP: Average time taken by

simplifyingSTP for solving the benchmarks in the set without preprocessing,PR:

Average time for preprocessing the benchmarks in the set,AP: Average time

taken by simplifyingSTP for solving the benchmarks in the set after

preprocessing

We also performed limited preliminary experiments to evaluate the utility of
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our QE techniques for computing Craig interpolants for Boolean combinations of

LMCs. Towards this end, we generated a set of interpolation benchmarks. Each

benchmark is a pair of formulas(ϕ,ψ), whereϕ, ψ are Boolean combinations

of LMCs which are mutually inconsistent. We denote the set of variables in the

support of bothϕ andψ asY. The set of variables in the support ofϕ but not in

the support ofψ is denoted asX. Similarly, the set of variables in the support of

ψ but not in the support ofϕ is denoted asZ.

Note that∃X.ϕ serves as an interpolant for(ϕ,ψ). In fact, ∃X.ϕ is the

strongestinterpolant for(ϕ,ψ). For each interpolation benchmark, we first used

QE Combinedto compute∃X.ϕ. For each benchmark, we then used Mathsat to

compute an interpolant (Mathsat makes use of work in [67] forinterpolant com-

putation). We then compared the time taken by Mathsat to compute interpolant

with that taken byQE Combinedto compute∃X.ϕ. Table 4.5 gives a summary of

the results for 10 benchmarks. Since interpolation is an approximation of QE, it

is amenable to simplifications that QE may not be able exploit. Nevertheless our

experiments show that the two techniques are incomparable.In some cases, an

interpolant can be computed faster than the quantifier-eliminated formula, while

in other cases, QE using our techniques can be done much faster than computing

an interpolant using the techniques encoded in MathSAT.

Considering the three sets of experiments that we performed for evaluating

the utility of our QE techniques, it can be seen that our techniques are convinc-

ingly useful for computing abstract transition relations in bounded model check-

ing. Our experiments showed that applying our techniques often translates to a

model checking problem being solved within given time constraints, as opposed

to timing out. However the other two sets of experiments – applying our tech-
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Table 4.5: Experimental results on computing interpolants

Benchmark |X| |Y| |Z| W MS QC

benchmark1 5 16 12 16 12 36

benchmark2 6 15 8 16 45 44

benchmark3 8 10 6 8 0 3

benchmark4 17 23 11 32 7 275

benchmark5 17 23 10 32 6 142

benchmark6 21 25 8 32 TO TO

benchmark7 12 7 7 22 TO 16

benchmark8 10 17 8 32 0 29

benchmark9 3 10 3 32 TO 12

benchmark10 4 14 3 16 TO 7

All times are in seconds. TO: > 1800 seconds,|X|: Number of variables in set

X, |Y|: Number of variables in set Y,|Z|: Number of variables in set Z,W:

Maximum bit-width of a variable,MS: Time taken by Mathsat,QC: Time taken

by QE Combined
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niques in solving conjunctions of LMCs and for computing Craiginterpolants for

Boolean combinations of LMCs – gave mixed results. Exploring other applica-

tions of our techniques is part of future work.

4.5 Conclusions

Extending QE algorithms that work on conjunctions on constraints to eliminate

quantifiers from arbitrary Boolean combinations of constraints is an important

problem. In this chapter, we presented three approaches forextending a QE al-

gorithm for conjunctions of LMCs to eliminate quantifiers from Boolean combi-

nations of LMCs. Our experiments indicated that the LMDD and SMT solving

based approaches are incomparable, and our hybrid approachinherits the strengths

of both LMDD and SMT solving based approaches. The experiments also demon-

strated the effectiveness of our QE approaches and their utility in computing ab-

stract transition relations in bounded model checking of word-level RTL designs.

Our approaches clearly made the difference between successful and timed out ver-

ification runs. In the next chapter, we will focus on QE from propositional logic.



Chapter 5

Quantifier Elimination for

Propositional Formulas

In this chapter, we focus on techniques for QE from propositional formulas that

are based on Skolem functions. Skolem functions, introduced by Thoraf Skolem

in the 1920s, have long occupied a central role in mathematical logic. Formally,

given a first-order logic formulaF(x,y), a Skolem functionfor x in F is a func-

tion ψ(y) such that substitutingψ(y) for x in F yields a formula equivalent to

∃x.F(x,y), i.e. F(ψ(y),y) ≡ ∃x.F(x,y). Classically, Skolem functions have been

used to prove fundamental theorems in logic. More recently,with the advent of

fast SAT solvers and theorem provers, several practically relevant problems have

been encoded as quantified formulas, and can be solved by generating Skolem

functions.

We focus on the case where the formulaF is propositional. It follows from

the definition of Skolem function that QE can be achieved by substituting Skolem

functions for existentially quantified variables. Other than QE, Skolem functions

150
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have many important applications. Skolem functions are used as certificates [8]

for satisfiable Quantified Boolean Formulas (QBFs) by QBF solvers. The problem

of synthesizing a circuit or program [9] that satisfies the specificationSpec(I ,O),

whereI is the set of inputs andO is the set of outputs reduces to computing Skolem

functionsψ(I) for variables inO in the formulaSpec(I ,O).

Motivating Application: As mentioned in Chapter 1, our primary motivation

for studying Skolem function generation comes from the problem of computing

disjunctive decompositions of sequential circuits represented as symbolic transi-

tion functions [6]. The disjunctive decomposition problemasks the following:

Given a sequential circuit, can we obtain “component” sequential circuits, each of

which has the same state space as the original circuit, but only a single transition

going out of every state such that the set of state transitions of the original circuit

is the union of the sets of state transitions of the components ? We illustrate the

disjunctive decomposition problem with the help of an example.

Consider a sequential circuit as shown in Figure 5.1. The circuit consists of

a combinational logic block and a set of flip-flops (denoted asF/F). The circuit

has state variablesy1,y2 and a single inputx. The state transition behaviour of the

circuit is specified by its symbolic transition function, shown inside the combina-

tional block, wherey′1 andy′2 refer to next state versions ofy1 andy2 respectively.

The state transition diagram of the circuit is shown on the right in Figure 5.1. Each

state in the state transition diagram is labeled by a valuation of the state variables,

and each edge is labeled by the valuation of the input variable that enables the

corresponding state transition.

Two components of this circuit are shown in Figure 5.2 and Figure 5.3, along
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Figure 5.1: An example sequential circuit
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NOTCOVERED= true

Figure 5.2: First component of example sequential circuit
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NOTCOVERED=
¬x∧((¬y1∧y2)

∨(y1∧¬y2))

Figure 5.3: Second component of example sequential circuit

with their state transition diagrams. Note that all states in the components have

single outgoing transitions and all state transitions of the original circuit are present

in at least one of the two components.

The goal of disjunctive decomposition is to come up with symbolic transition

functions for the components, given the symbolic transition function for the orig-

inal sequential circuit. This problem can be trivially solved if the state transition

diagram for the original circuit is constructed. However constructing the state

transition diagram may not always be feasible for circuits with large numbers of

state variables.

A naive approach to solve this problem is to substitute all possible values for

the input variables in the symbolic transition function of the original sequential

circuit one-by-one to generate all components. Letmbe the number of input vari-

ables. The above approach would generate 2m components. If there is a state in the

state transition diagram of the circuit that has 2m outgoing transitions, i.e., a state
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that goes to different states for all possible valuations ofinput variables, then at

least 2m components are needed to compute the disjunctive decomposition. How-

ever, such a scenario arises very rarely in practice. Moreover, in state transition

diagrams of circuits that arise in practice, often there area lot of state transitions

that are labeled by multiple valuations of input variables.We can exploit this

feature to reduce the number of components generated.

Let X be the set of input variables andY be the set of present state vari-

ables. Let NOTCOVERED(X, Y) be a propositional formula that captures the

set of transitions that are not present in any of the components generated so far.

Such transitions that are not present in any of the components generated so far

are said to be transitions that arenot coveredby the components. For example

in Fig. 5.3 after generating the first component, the transitions corresponding to

input 0 from state 01, and input 0 from state 10 are not covered, as characterized

by NOTCOVERED(x,y1,y2) = ¬x∧ ((¬y1∧y2)∨ (y1∧¬y2)).

Generating a new component requires choosing values of input variables as

functions of the present state such that for every state, theoutgoing transition

enabled by the chosen values of input variables is not covered by the components

generated so far. If all outgoing transitions from a state are covered, then we can

choose any of the outgoing transitions for that state.

It can be observed that the process of choosing values of input variables as

functions of the present state as above, essentially reduces to finding functions

ψ(Y) such that∀Y.(∃X.NOTCOVERED(X,Y)⇒ NOTCOVERED(ψ(Y),Y)) holds.

Since∀Y. (¬∃X.NOTCOVERED(X,Y) ⇒ ¬NOTCOVERED(ψ(Y),Y)) holds for

anyψ(Y), we are actually interested in computingψ(Y) such that∃X. NOTCOV-

ERED (X,Y) ≡ NOTCOVERED (ψ(Y),Y). Recalling the definition of Skolem
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functions, this is the same as generating Skolem functions for variables inX in

the formula NOTCOVERED(X, Y).

For example in Fig. 5.2, initially NOTCOVERED(x,y1,y2) is true. Note that

(y1∧¬y2) ∨ (¬y1∧y2) is a Skolem function forx in true. Selecting the outgoing

transition enabled by choosingx as(y1∧¬y2) ∨ (¬y1∧y2) for every state gives us

the first component. NOTCOVERED(x,y1,y2) after generating the first component

is ¬x∧ ((¬y1∧ y2)∨ (y1∧¬y2)). Note that(y1∧ y2) ∨ (¬y1∧¬y2) is a Skolem

function forx in ¬x∧ ((¬y1∧y2)∨ (y1∧¬y2)), and selecting the outgoing transi-

tion enabled by choosingx as(y1∧y2) ∨ (¬y1∧¬y2) for every state gives us the

second component.

In computation of disjunctive decompositions, if all outgoing transitions from

a state are already covered by the components generated so far, then∃X. NOT-

COVERED(X, Y) is not valid, although it can be satisfiable. For example, in

Fig. 5.2, all outgoing transitions from state 00 as well as state 11 are covered

by the first component. Hence∃X.NOTCOVERED(X, Y) after generation of the

first component, i.e.,∃x. (¬x∧ ((¬y1∧y2)∨ (y1∧¬y2))) is not valid, although it

is satisfiable. Therefore, in general, we need to find Skolem functions for vari-

ables inX in NOTCOVERED(X, Y) irrespective of the validity of∃X. NOTCOV-

ERED(X, Y).

Let F(X,Y) be a propositional formula, whereX andY denote the sequences

of variables(x1, . . .xn) and(y1, . . .ym), respectively. Suppose we are interested in

generating Skolem functions for variables inX in F(X,Y). Moreover, suppose

F(X,Y) is in Negation Normal Form. There are two interesting cases here: (i)

F(X,Y) is a disjunction of sub-formulas, and (ii)F(X,Y) is a conjunction of sub-

formulas.
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The case whereF(X,Y) is a disjunction of sub-formulas is easy to solve.

For example, letF(X,Y) be of the formF1∨F2. Let ψ1 be a Skolem function

for xi in F1, andψ2 be a Skolem function forxi in F2. It can be observed that

((∃xi.F1)∧ψ1) ∨ ((¬∃xi.F1)∧ψ2) can be used as a Skolem function forxi in F .

Note that this avoids treatingF1∨F2 as a single monolithic formula, and computes

Skolem function forxi in F from Skolem functions forxi in F1 andF2.

The case whereF(X,Y) is a conjunction of sub-formulas is the harder case.

Interestingly, for several problem instances, the specification ofF(X,Y) is avail-

able in such afactoredform, i.e. as conjunction of simpler sub-formulas, each

of which depends on a subset of variables appearing in the formulaF(X,Y). Ex-

isting algorithms for Skolem function generation ignore any such factored form

and treat the conjunction of factors as a single monolithic function. We show that

exploiting the factored form can yield significant performance advantages when

generating Skolem functions.

We are not aware of other techniques for Skolem function generation that ex-

ploit the factored form of a formula. As mentioned in Section2.5.2, earlier work

on Skolem function generation essentially belong to one of four categories. The

first category includes techniques that extract Skolem functions from a proof of

validity of ∃X. F(X,Y) [17, 16, 93]. In problem instances where∃X. F(X,Y) is

valid (and it forms an important sub-class of problems), these techniques can usu-

ally find succinct Skolem functions if there exists a short proof of validity. How-

ever, in several other important classes of problems such asQE and computation

of disjunctive decomposition, although the formula∃X. F(X,Y) is satisfiable, it

may not be valid, and techniques in the first category cannot be applied.

The second category of techniques for Skolem function generation includes
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techniques that use templates of candidate Skolem functions [9]. Template-based

techniques are effective only when the set of candidate Skolem functions is known

and small. While this is a reasonable assumption in some domains [9], it is not

possible to identify a small set of candidate Skolem functions in other domains.

BDD-based techniques [94] are yet another way to compute Skolem functions.

Unfortunately, these techniques are known not to scale well, unless custom-crafted

variable orders are used. The last category includes techniques that use cofactors

to obtain Skolem functions [18, 6]. These techniques do not exploit the factored

representation of a formula and, as we show experimentally,do not scale well to

large problem instances.

Contributions: Our main technical contribution is a SAT-based Counter-

Example Guided Abstraction-Refinement (CEGAR) algorithm for generating Skolem

functions from factored formulas. Unlike competing approaches, our algorithm

exploits the factored representation of a formula and leverages advances made in

SAT-solving technology. The factored representation is used to arrive at an ini-

tial abstraction of Skolem functions, while a SAT-solver isused as an oracle to

identify counter-examples that are used to refine the Skolemfunctions until no

counter-examples exist. We present a detailed experimental evaluation of our al-

gorithm over a large class of benchmarks. We also present experiments that com-

pare performance of our algorithm vis-a-vis state-of-the-art algorithms [18, 17].

Our experiments show that on several large problem instances, we outperform

competing algorithms both in terms of time and Skolem function size.
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5.1 Preliminaries

We use lower case letters (possibly with subscripts) to denote propositional vari-

ables, and upper case letters to denote sequences of such variables. We use 0 and

1 to denote the propositional constantsfalse and true, respectively. LetF(X,Y)

be a propositional formula, whereX andY denote the sequences of variables

(x1, . . .xn) and (y1, . . .ym), respectively. We are interested in problem instances

whereF(X,Y) is given as a conjunction of factorsf 1(X1,Y1), . . . f r(Xr ,Yr), where

eachXi (resp.,Yi) is a possibly empty sub-sequence ofX (resp.,Y). For notational

convenience, we useF and
Vr

i=1 f i interchangeably throughout this chapter. The

set of variables inF is called thesupportof F , and is denotedSupp(F). Given

propositional formulasF andΨ, we useF [xi 7→ Ψ] to denote the formula obtained

by substituting every occurrence of the variablexi in F with Ψ. This is also con-

ventionally calledfunction composition. If X is a sequence of variables andxi is

a variable, we useX \xi to denote the sub-sequence ofX obtained by removingxi

(if present) fromX. Abusing notation, we also useX to denote the set of elements

in X, when there is no confusion.

Definition 1. Given a propositional formula F(X,Y), a Skolem functionfor xi ∈

X in F(X,Y) is a functionψ(X \xi ,Y) such that∃xi.F ≡ F [xi 7→ ψ].

Example: Consider the propositional formulax1∧y1 . It can be observed thaty1

and 1 are two Skolem functions for the variablex1 in x1∧y1, since (i)∃x1.(x1∧y1)

is equivalent toy1, (ii) (x1∧y1)[x1 7→ y1] is equivalent toy1, and (iii)(x1∧y1)[x1 7→

1] is equivalenty1.

Notice that a Skolem function forxi in F need not be unique. The following

proposition from [18, 6] characterizes the space of all Skolem functions forxi in



159

F .

Proposition 8. A functionψ(X \ xi ,Y) is a Skolem function for xi in F(X,Y) iff

F [xi 7→ 1]∧¬F[xi 7→ 0] ⇒ ψ andψ ⇒ F [xi 7→ 1]∨¬F[xi 7→ 0].

Proof of Proposition 8. For any given value of variables inX \ xi∪Y, there are

four possible cases:

1. ¬F[xi 7→ 1] ∧ ¬F[xi 7→ 0]: For this value of variables inX \ xi∪Y, F is 0

irrespective of the value ofxi . Hence irrespective of whetherψ is 0 or 1, it

is a Skolem function forxi in F(X,Y).

2. F [xi 7→ 1] ∧ ¬F[xi 7→ 0]: For this value of variables inX \xi∪Y, xi must be

1 for F to become 1. Henceψ must be 1 for it to become a Skolem function

for xi in F(X,Y).

3. ¬F[xi 7→ 1] ∧ F [xi 7→ 0]: Similar to case-2,xi must be 0 forF to become 1.

Henceψ must be 0 for it to become a Skolem function forxi in F(X,Y).

4. F [xi 7→ 1] ∧ F [xi 7→ 0]: Similar to case-1, irrespective of whetherψ is 0 or

1, it is a Skolem function forxi in F(X,Y).

Hence,ψ is a Skolem function forxi in F iff F [xi 7→ 1] ∧ ¬F[xi 7→ 0] ⇒ ψ and

¬F[xi 7→ 1] ∧ F [xi 7→ 0] ⇒ ¬ψ, i.e., F [xi 7→ 1] ∧ ¬F[xi 7→ 0] ⇒ ψ and ψ ⇒

F [xi 7→ 1] ∨ ¬F[xi 7→ 0].

The functionF [xi 7→ 0] (resp.,F [xi 7→ 1]) is called thenegative(resp.,positive)

cofactorof F with respect toxi, and plays a central role in the study of Skolem

functions for propositional formulas. In particular, it follows from Proposition 8

thatF [xi 7→ 1] is a Skolem function forxi in F .
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The above definition of a Skolem function for a single variable can be nat-

urally extended to a vector of variables. GivenF(X,Y), a Skolem function vec-

tor for X = (x1, . . .xn) in F is a vector of functionsΨ = (ψ1, . . . ,ψn) such that

∃x1. . . .∃xn.F ≡ (· · ·(F [x1 7→ ψ1]) · · · [xn 7→ ψn]). A straightforward way to obtain

a Skolem function vectorΨ is to first obtain a Skolem functionψ1 for x1 in F ,

then computeF ′ ≡ ∃x1.F and obtain a Skolem functionψ2 for x2 in F ′, and so on

until ψn has been obtained. More formally,ψi can be computed as a Skolem func-

tion for xi in ∃x1. . . .∃xi−1.F, starting fromψ1 and proceeding toψn. Note that

∃x1. . . .∃xi−1.F can itself be computed as(· · ·(F [x1 7→ ψ1]) · · · [xi−1 7→ ψi−1]).

Definition 2. The “Can’t-be-1” function for xi in F, denotedCb1[xi](F), is defined

to be(¬∃x1. . . .∃xi−1.F) [xi 7→ 1]. Similarly, the “Can’t-be-0” function for xi in F,

denotedCb0[xi](F), is defined to be(¬∃x1. . . .∃xi−1.F) [xi 7→ 0]. When X and F

are clear from the context, we useCb1[i] andCb0[i] for Cb1[xi](F) andCb0[xi](F),

respectively.

Intuitively, in order to makeF evaluate to 1, we cannot setxi to 1 (resp. 0) when-

ever the valuation of{xi+1, . . .xn}∪Y satisfiesCb1[i] (resp.,Cb0[i]). The following

proposition follows from Definition 2 and from our observation about computing

a Skolem function vector one component at a time.

Proposition 9. The function vectorΨ=(¬Cb1[1], . . .¬Cb1[n]) is a Skolem func-

tion vector for X in F.

Note that the support ofψi in Ψ, as given by Proposition 9, is{xi+1, . . .xn}∪Y.

If we want a Skolem function vectorΨ such that every component function has

only Y (or a subset thereof) as support, this can be obtained easilyby repeatedly
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substituting the Skolem function for every variablexi in all other Skolem functions

wherexi appears. We often denote such a Skolem function vector asΨ(Y).

5.2 A Monolithic Composition Based Algorithm

Our algorithm is motivated in part by cofactor-based techniques for computing

Skolem functions, as proposed by Jiang et al [18] and Trivedi[6]. GivenF(X,Y)=
Vr

i=1 f i(Xi,Yi), the techniques of [18, 6] essentially compute a Skolem function

vectorΨ(Y) for X in F as shown in algorithmMonoSkolem(see Algorithm 11).

In this algorithm, the variables inX are assumed to be ordered by their indices.

While variable ordering is known to affect the difficulty of computing Skolem

functions [18], we assume w.l.o.g. that the variables are indexed to represent a

desirable order. We describe the variable order used in our study in Section 5.4.

MonoSkolemworks in two phases. In the first phase, it implements a straight-

forward strategy for obtaining a Skolem function vector, assuggested by Proposi-

tion 9. Specifically, steps 3 and 4 ofMonoSkolembuild a monolithic conjunction

Fi of all factors that havexi in their support, before computingψi. This restricts

the scope of the quantifier forxi to the conjunction of these factors. In Step 6,

we use¬Cb1[i] for the Skolem functionψi. After computingψi from Fi, step 7

discards the factors withxi in their support, and introduces a single factor rep-

resenting∃xi.Fi in their place. Note that eachψi obtained in this manner has

{xi+1, . . .xn} ∪Y (or a subset thereof) as support. Since we want each Skolem

function to have supportY, a second phase of “reverse” substitutions is needed.

In this phase (see Algorithm 12), the Skolem functionψn(Y) obtained above is

substituted forxn in ψ1, . . .ψn−1. This effectively renders all Skolem functions
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independent ofxn. The process is then repeated withψn−1 substituted forxn−1 in

ψ1, . . .ψn−2 and so on, until all Skolem functions have been made independent of

x1, . . .xn, and have onlyY (or subsets thereof) as support.

MonoSkolemcan be further refined by combining steps 6, 7 and by directly

defining ψi in terms ofFi. However, we introduce the intermediate step using

Cb0[i] andCb1[i] to motivate their central role in our approach. Indeed instead

of ¬Cb1[i], we could use any Skolem function forxi in F in Step 6 of the above

algorithm. In fact, Jiang et al [18] compute a Skolem function for xi in F as an in-

terpolant of¬Cb1[i]∧Cb0[i] andCb1[i]∧¬Cb0[i], while Trivedi [6] observes that

the function(¬Cb1[i]∧ (Cb0[i]∨ g)) ∨ (Cb1[i]∧ Cb0[i]∧ h) serves as a Skolem

function forxi in F whereh andg are arbitrary propositional functions with sup-

port in X \ {xi} ∪Y. Since computing interpolants using a SAT solver is often

time-intensive and does not always lead to succinct Skolem functions [18], we

simply use¬Cb1[i] as a Skolem function in Step 6. Proposition 9 guarantees the

correctness of this choice.

Let us consider an example to understandMonoSkolem. We will use this as a

running example throughout this chapter.

Example: Let X be(x1,x2,x3) andY be(y1,y2). Let F(X,Y) be the conjunction

of factors(y1∧x1)∨ (¬y1∧¬x1), (x1∧x2)∨ (¬x1∧¬x2), (x2∧x3)∨ (¬x2∧¬x3),

and(x3∨ y2). For brevity, we will use the notation(α ⇔ β) to denote(α∧β) ∨

(¬α∧¬β). Thus, our factors are(y1 ⇔ x1), (x1 ⇔ x2), (x2 ⇔ x3), and(x3∨y2).

Suppose we wish to compute Skolem function vector(ψ1,ψ2,ψ3) for (x1,x2,x3)

in F .

In MonoSkolem, initially, we haveFactors = {(y1 ⇔ x1), (x1 ⇔ x2), (x2 ⇔ x3),

(x3∨ y2)}. Since(y1 ⇔ x1) and(x1 ⇔ x2) are the factors withx1 in support,F1
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Algorithm 11: MonoSkolem

Input : Prop. formulaF(X,Y) =
Vr

j=1 f j(Xj ,Yj), whereX = (x1, . . .xn)

Output : Skolem function vectorΨ(Y)

// Phase 1 of algorithm

1 Factors :=
{

f j : 1≤ j ≤ r
}

;

2 for i in 1 to ndo

3 FactorsWithXi := { f : f ∈ Factors andxi ∈ Supp( f )};

4 Fi :=
V

f∈FactorsWithXi f ;

5 Cb0[i] := ¬Fi[xi 7→ 0]; Cb1[i] := ¬Fi[xi 7→ 1];

6 ψi := ¬Cb1[i];

// In general, ψi is an interpolant of ¬Cb1[i]∧Cb0[i]

// and Cb1[i]∧¬Cb0[i]

7 Factors := (Factors\FactorsWithXi)∪{Fi[xi 7→ ψi]};

// Phase 2 of algorithm

8 return ReverseSubstitute(ψ1, . . . ,ψn);

Algorithm 12: ReverseSubstitute
Input : Functionsψ1(x2, . . . ,xn,Y),ψ2(x3, . . . ,xn,Y), . . . ,ψn(Y)

Output : Function vectorΨ(Y)

1 for i = n downto2 do

2 for j = i−1 downto1 do ψ j = ψ j [xi 7→ ψi ];

3 return Ψ(Y) = (ψ1(Y), . . . ,ψn(Y));

is (y1 ⇔ x1) ∧ (x1 ⇔ x2). Note thatF1[x1 7→ 0] is ¬y1∧¬x2 andF1[x1 7→ 1] is

y1∧x2. Hence,Cb0[1] is y1∨x2, Cb1[1] is¬y1∨¬x2, andψ1 is y1∧x2. Replacing
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the factors(y1 ⇔ x1) and (x1 ⇔ x2) by the single factorF1[x1 7→ ψ1], we have

Factors = {(y1 ⇔ y1∧x2)∧ (y1∧x2 ⇔ x2), (x2 ⇔ x3), (x3∨y2)}.

Next, Skolem functionψ2 is computed. NowF2 is (y1 ⇔ y1∧x2)∧ (y1∧x2 ⇔

x2) ∧ (x2 ⇔ x3). Note thatF2[x2 7→ 0] is ¬y1∧¬x3 andF2[x2 7→ 1] is y1∧ x3.

Hence,Cb0[2] is y1 ∨ x3, Cb1[2] is ¬y1 ∨¬x3. ψ2 is y1 ∧ x3, andFactors gets

changed to{(y1 ⇔ y1 ∧ x3)∧ (y1 ∧ x3 ⇔ x3), (x3 ∨ y2)}. Finally, F3 is (y1 ⇔

y1∧x3)∧ (y1∧x3 ⇔ x3) ∧ (x3∨y2). F3[x3 7→ 0] is ¬y1∧y2 andF3[x3 7→ 1] is y1.

Also Cb0[3] is y1∨¬y2, Cb1[3] is¬y1, andψ3 is y1. Factors becomes{(y1∨y2)}.

This completes the first phase ofMonoSkolem. Thus, after the first phase,

we have(ψ1,ψ2,ψ3) = (y1 ∧ x2, y1 ∧ x3, y1). In the second phase, firstψ3 is

substituted forx3 in ψ2. This makesψ2 = y1. Now ψ2 is substituted forx2 in ψ1,

which makesψ1 = y1. Hence, after the second phase, we have(ψ1,ψ2,ψ3) = (y1,

y1, y1).

Observe thatMonoSkolemworks with amonolithicconjunction (Fi) of factors

that havexi in their support. Specifically, it composes each such monolithic con-

junction Fi with a cofactor ofFi in Step 7 to eliminate quantifiers sequentially.

This can lead to large memory footprints and more time-outs when used with

medium to large benchmarks as confirmed by our experiments. This motivates us

to ask if we can develop a cofactor-based algorithm that doesnot suffer from the

above drawbacks ofMonoSkolem.

5.3 CEGAR for Generating Skolem Functions

We now present a new CEGAR [105] algorithm for generating Skolem function

vectors, that exploits the factored form ofF(X,Y). Like MonoSkolem, our new
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algorithm, namedCegarSkolem, works in two phases, and assumes that the vari-

ables inX are ordered by their indices. The first phase of the algorithmconsists

of the core abstraction-refinement part, and computes a Skolem function vector

(ψ1, . . .ψn), whereψi has{xi+1, . . .xn}∪Y, or a subset thereof, as support. Unlike

in MonoSkolem, this phase avoids composing monolithic conjunctions of factors,

yielding simpler Skolem functions. The second phase of the algorithm performs

reverse substitutions, similar to that inMonoSkolem.

Before describing the details ofCegarSkolem, we introduce some additional

notation and terminology. Given propositional functionsf and g, we say that

f refines gandg abstracts fiff f ⇒ g. GivenF(X,Y) and a vector of functions

ΨA = (ψA
1 , . . .ψA

n), we say thatΨA is anabstract Skolem function vectorfor X in F

iff there exists a Skolem function vectorΨ = (ψ1, . . .ψn) for X in F such thatψA
i

abstractsψi , for everyi ∈ {1, . . .n}. Instead of usingCb0[i] andCb1[i] to compute

Skolem functions, as was done inMonoSkolem, we now use theirrefinements,

denotedr0[i] andr1[i] respectively, to compute abstract Skolem functions. For

convenience, we representr0[i] andr1[i] as sets of implicitly disjoined functions.

Thus, if r1[i], viewed as a set, is{g1,g2}, then it isg1 ∨ g2 when viewed as a

function. We abuse notation and user1[i] (respectively,r0[i]) to denote a set of

functions or their disjunction, depending on the context.

5.3.1 Overview of Our CEGAR Algorithm

Algorithm CegarSkolemhas two phases. The first phase consists of a CEGAR

loop, while the second phase does reverse substitutions. The CEGAR loop has

the following steps.
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– Initial abstraction and refinement. This step involves constructing re-

finements ofCb0[i] and Cb1[i] for every xi in X. By Proposition 9, this

gives an initial abstract Skolem function vectorΨA. This step is imple-

mented in Algorithm 13 (InitAbsRef), which processes individual factors

of F(X,Y) =
Vr

j=1 f j(Xj ,Yj) separately, without considering their conjunc-

tion. As a result, this step is time and memory efficient if theindividual

factors are small and simple.

– Termination Condition. Once InitAbsRefhas computedΨA, we check

whetherΨA is already a Skolem function vector. This is achieved by con-

structing an appropriate propositional formulaε, called the “error formula”

for ΨA (details in Subsection 5.3.3), and checking for its satisfiability. An

unsatisfiable formula implies thatΨA is a Skolem function vector, and we

are done with the first phase. Otherwise, a satisfying assignment π of ε

is used to improve the current refinements ofCb1[i] andCb0[i] for suitable

variablesxi in X.

– Counterexample guided abstraction and refinement.This step is imple-

mented in Algorithm 14:UpdateAbsRef, and leads to a refinement of the

abstract Skolem function vectorΨA.

Thus, the overall CEGAR loop starts with the first step and thenrepeats the sec-

ond and third steps until a Skolem function vector is obtained. In the next three

subsections, we discuss the algorithms implementing thesesteps in detail.
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Algorithm 13: InitAbsRef

Input : Prop. formulaF(X,Y) =
Vr

j=1 f j(Xj ,Yj), whereX = (x1, . . .xn)

Output : Abstract Skolem function vectorΨA = (ψA
1 , . . . ,ψA

n), and

refinementsr0[i] andr1[i] for eachxi in X

1 for i in 1 to ndo

2 r0[i] := /0; r1[i] := /0; // Initializing

3 for j in 1 to r do

4 f := f j ; // Consider factor separately

5 for i in 1 to ndo

6 if xi ∈ Supp( f ) then

7 r0[i] := r0[i]∪{¬ f [xi 7→ 0]};

8 r1[i] := r1[i]∪{¬ f [xi 7→ 1]};

// Skolem function for xi in f

9 ψi, f := f [xi 7→ 1];

10 f := f [xi 7→ ψi, f ]; // f [xi 7→ ψi, f ] ≡ ∃xi. f

11 for i in 1 to ndo

12 ψA
i := ¬r1[i];

// Interpreting r1[i] as a function

13 return ΨA=(ψA
1 , . . .ψA

n) andr0[i],r1[i] for each xi∈X
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5.3.2 Initial Abstraction and Refinement

Algorithm InitAbsRef (see Algorithm 13) starts by initializing eachr1[i] and

r0[i], viewed as sets, to the empty set. Subsequently, it considers each factor

f in
Vr

j=1 f j(Xj ,Yj), and determines the contribution off to Cb0[i] andCb1[i],

for every xi in the support off . Specifically, if xi ∈ Supp( f ), the contribu-

tion of f to Cb0[i] is (¬∃x1. . . .∃xi−1. f ) [xi 7→ 0], and its contribution toCb1[i]

is (¬∃x1. . . .∃xi−1. f ) [xi 7→ 1]. These contributions are accumulated in the sets

r0[i] andr1[i], respectively, and thenxi is existentially quantified fromf and the

process repeated with the next variable in the support off . Once the contributions

from all factors are accumulated inr0[i] andr1[i] for eachxi in X, InitAbsRef

computes an abstract Skolem functionψA
i for eachxi in F by complementing

r1[i], interpreted as a disjunction of functions.

Example: Consider the execution ofInitAbsRef in our example of computing

Skolem function vector(ψ1,ψ2,ψ3) for (x1,x2,x3) in (y1 ⇔ x1) ∧ (x1 ⇔ x2) ∧

(x2 ⇔ x3) ∧ (x3∨y2). Initially r0[i] = /0 andr1[i] = /0, for 1≤ i ≤ 3. InitAbsRef

now considers the first factor(y1 ⇔ x1), and determines the contribution of this

factor toCb0[1] andCb1[1]. Since(y1 ⇔ x1)[x1 7→ 0] is¬y1 and(y1 ⇔ x1)[x1 7→ 1]

is y1, the contribution of(y1 ⇔ x1) to Cb0[1] is y1 and the contribution toCb1[1]

is ¬y1. Hencer0[1] gets changed to{y1} andr1[1] gets changed to{¬y1}. The

factor(y1 ⇔ x1) now gets changed to∃x1.(y1 ⇔ x1), i.e., 1.

InitAbsRefthen proceeds with the next factor(x1 ⇔ x2), and determines its

contribution toCb0[1] and Cb1[1]. Note that the contribution of(x1 ⇔ x2) to

Cb0[1] is x2 and contribution toCb1[1] is¬x2, which are accumulated inr0[1] and

r1[1] respectively. Thusr0[1] becomes{y1, x2} andr1[1] becomes{¬y1, ¬x2}.

The factor(x1 ⇔ x2) gets changed to∃x1.(x1 ⇔ x2), i.e., 1. Subsequently, the
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factor(x2 ⇔ x3) is considered.r0[2] andr1[2] are updated to{x3} and{¬x3} re-

spectively. Finally, the factor(x3∨y2) is considered, andr0[3], r1[3] are updated

to {¬y2} and{0}.

Thus, finally we have,r0[1] = {y1, x2}, r1[1] = {¬y1, ¬x2}, r0[2] = {x3},

r1[2] = {¬x3}, r0[3] = {¬y2}, andr1[3] = {0}, when interpreted as sets. When

interpreted as disjunctions,r0[1] = y1∨x2, r1[1] = ¬y1∨¬x2, r0[2] = x3, r1[2]

= ¬x3, r0[3] = ¬y2, andr1[3] = 0. Since the abstract Skolem functionψA
i for

eachxi in F is obtained by complementingr1[i], we have,ψA
1 = y1∧x2, ψA

2 = x3,

andψA
3 = 1.

Recall from Section 5.2 that, for this example,Cb0[1] = y1 ∨ x2, Cb1[1] =

¬y1∨¬x2, Cb0[2] = y1∨x3, Cb1[2] = ¬y1∨¬x3, Cb0[3] = y1∨¬y2, andCb1[3] =

¬y1. Observe thatr0[i] andr1[i] are refinements ofCb0[i] andCb1[i] respectively,

for eachxi, sincer0[i] ⇒ Cb0[i] and r1[i] ⇒ Cb1[i], whenr0[i] and r1[i] are

interpreted as disjunctions.

Note that executing steps 4 through 10 ofInitAbsReffor a specific factorf is

operationally similar to executing steps 1 through 7 ofMonoSkolemwith a single-

ton set of factors, i.e.Factors = { f}. This highlights the key difference between

InitAbsRefandMonoSkolem: while MonoSkolemworks with monolithic conjunc-

tions of factors and their compositions,InitAbsRefworks with individual factors,

without ever considering their conjunctions. Lemma 8 asserts the correctness of

InitAbsRef.

Lemma 8. The vectorΨA computed byInitAbsRefis an abstract Skolem function

vector for X in F(X,Y). In addition,r0[i] andr1[i] computed byInitAbsRefare

refinements ofCb0[i](F) andCb1[i](F) for every xi in X.

Proof of Lemma 8. Consider the ordered pair( j, i) of loop indices correspond-
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ing to the nested loops in steps 3−10 and 5−10 of algorithmInitAbsRef. Every

update ofr0[i] andr1[i] in steps 7 and 8 ofInitAbsRefcan be associated with

a unique ordered pair of loop indices. Define a linear ordering ¹ on the loop

index pairs as:( j, i) ¹ ( j ′, i′) iff j < j ′, or j = j ′ and i ≤ i′. Note that this rep-

resents the ordering of loop index pairs in successive iterations of the loop in

steps 5−10 of InitAbsRef. We use induction on( j, i), ordered by¹, to show that

r0[i] andr1[i], as computed byInitAbsRef, are refinements ofCb0[i] andCb1[i].

The base case follows from the initialization in steps 1 and 2of InitAbsRef. To

prove the inductive step, consider an update ofr0[i] andr1[i] in steps 7 and 8,

respectively, ofInitAbsRef. The functionf used in steps 7 and 8 is easily seen to

be∃x1. . . .∃xi−1. f j . Since f j is a factor ofF , we also haveF ⇒ f j . It follows

that∃x1. . . .∃xi−1.F ⇒ ∃x1. . . .∃xi−1. f j ≡ f . Taking the contrapositive gives

¬ f ⇒ ¬∃x1. . . .∃xi−1.F. Therefore,¬ f [xi 7→ a] ⇒ (¬∃x1. . . .∃xi−1.F)[xi 7→ a]

for every propositional constanta. Recalling the definitions ofCb0[i] andCb1[i],

we get¬ f [xi 7→ 0] ⇒ Cb0[i] and¬ f [xi 7→ 1] ⇒ Cb1[1]. By the inductive hypothe-

sis,r0[i] andr1[i] are refinements ofCb0[i] andCb1[i] prior to executing step 7 of

InitAbsRef. Therefore, the updated values ofr0[i] andr1[i], as computed in steps

7 and 8 ofInitAbsRef, are also refinements ofCb0[i] andCb1[i]. This completes

the induction.

Sincer1[i] ⇒ Cb1[i] for everyxi in X when we reach step 11 ofInitAbsRef, it

follows from Proposition 9 thatψA
i = ¬r1[i] abstracts a Skolem function forxi in

F . Hence,ΨA, as computed byInitAbsRef, is an abstract Skolem function vector

for X in F .



171

5.3.3 Termination Condition

GivenF(X,Y) and an abstract Skolem function vectorΨA, it may happen thatΨA

is already a Skolem function vector forX in F . We therefore check ifΨA is a

Skolem function vector before refinement. Towards this end,we define theerror

formulafor ΨA asF(X′,Y)∧
Vn

i=1(xi ⇔ ψA
i )∧¬F(X,Y), whereX′=(x′1, . . .x

′
n) is

a sequence of fresh variables with no variable in common withX. The idea is that

the first term in the error formula checks the satisfiability of ∃X.∃Y.F(X,Y). If

it is indeed satisfiable, then the second term assigns the values of the variables to

the values given by the abstract Skolem functions and then the third term checks

if this assignment violates the validity of the formula. Thus,

Lemma 9. The error formula forΨA is unsatisfiable iffΨA is a Skolem function

vector for X in F.

Example of Lemma 9: In our example, the error formula is(y1 ⇔ x′1) ∧ (x′1 ⇔ x′2)

∧ (x′2 ⇔ x′3) ∧ (x′3∨y2) ∧ (x1 ⇔ y1∧x2) ∧ (x2 ⇔ x3) ∧ (x3 ⇔ 1) ∧ ¬((y1 ⇔ x1)

∧ (x1 ⇔ x2) ∧ (x2 ⇔ x3) ∧ (x3∨y2)). Note that the error formula is satisfiable. A

satisfying assignment is(y1 = 0), (y2 = 1), (x′1 = 0), (x′2 = 0), (x′3 = 0), (x1 = 0),

(x2 = 1), (x3 = 1). It can be observed that(y1∧x2, x3, 1) is not a Skolem function

vector forX in F .

Proof of Lemma 9. Let ε be the error formula forΨA. Supposeε is unsatisfiable.

By definition ofε, F(X′,Y)∧
Vn

i=1(xi ⇔ ψA
i )∧¬F(X,Y), whereX′=(x′1, . . .x

′
n) is

unsatisfiable. This implies thatF(X′,Y)∧¬F ′(Y) is unsatisfiable, whereF ′(Y)

denotes
(
· · ·

(
F [x1 7→ ψA

1]
)
· · · [xn 7→ ψA

n]
)
. Thus∃Y.∃X′. (F(X′,Y)∧¬F ′(Y)) is

false, i.e.,∀Y.∀X′. (F(X′,Y) ⇒ F ′(Y)) is true. This implies that∀Y.∃X′.(F(X′,Y)
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⇒ F ′(Y)) is true, i.e., ∀Y.(∃X′.F(X′,Y) ⇒ F ′(Y)) is true. Therefore,ΨA is a

Skolem function vector forX in F .

Supposeπ is a satisfying assignment ofε. By definition ofε, π is a satisfying

assignment ofF(X′,Y) and of
Vn

i=1

(
xi ⇔ ψA

i

)
∧¬F(X,Y), considered separately.

Thus, the values ofx1, . . .xn given byψA
1 , . . .ψA

n respectively, causeF to evaluate

to 0 for the valuation ofY in π. However, there exists a valuation ofX (viz. same

as that ofX′ in π) that causesF to evaluate to 1 for the same valuation ofY in

π. Hence,ΨA is not a Skolem function vector forX in F , as witnessed by the

valuation ofY in π.

Satisfiability of the error formula can be checked using anySAT solver. If

the error formula turns out to be satisfiable, we use a satisfying assignment of the

formula to refineΨA, as explained below.

5.3.4 CounterExample-Guided Abstraction and Refinement

Let ε be the error formula forΨA, and letπ be a satisfying assignment ofε. We call

π a counterexampleof the claim thatΨA is a Skolem function vector. For every

variablev∈ X′∪X∪Y, we useπ(v) to denote the value ofv in π. Satisfiability of

ε implies that we need to refine at least one abstract Skolem function ψA
i in ΨA to

make it a Skolem function vector. SinceψA
i is¬r1[i] in our approach, refiningψA

i

can be achieved by computing an improved (i.e. more abstract) version ofr1[i].

Algorithm UpdateAbsRefimplements this idea by usingπ to determine which

r1[i] should be rendered abstract by adding appropriate functions tor1[i], viewed

as a set.

Before delving into the details ofUpdateAbsRef, we state some key results.
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In the following, we useπ |= f to denote that the formulaf evaluates to 1 when

the variables inSupp( f ) are set to values given byπ. If π |= f , we also sayf

evaluates to 1 underπ. We user0[i]init andr1[i]init to refer tor0[i] andr1[i], as

computed by algorithmInitAbsRef. SinceUpdateAbsRefonly adds tor1[i] and

r0[i], viewed as sets, it is easy to see thatr0[i]init ⇒ r0[i] andr1[i]init ⇒ r1[i],

viewed as functions (recall these functions are simply disjunctions of elements in

the corresponding sets).

The following Lemma forms the basis for the refinement that weperform in

the algorithmUpdateAbsRef.

Lemma 10. Let π be a satisfying assignment of the error formulaε for ΨA. Then

the following hold.

(a) π |= ¬Cb0[n]∨¬Cb1[n].

(b) There exists k∈ {1, . . .n−1} such thatπ |= r1[k]∧r0[k].

(c) There exists no Skolem function vectorΨ = (ψ1, . . .ψn) such thatψ j ⇔ ψA
j

for all j in {k+1, . . .n}.

(d) There exists l∈ {k+1, . . .n} such that xl = 1 in π, andπ |= Cb1[l ]∧¬r0[l ].

Example of Lemma 10: Recall that our running example,π is (y1 = 0), (y2 =

1), (x′1 = 0), (x′2 = 0), (x′3 = 0), (x1 = 0), (x2 = 1), (x3 = 1). SinceCb0[3] =

y1 ∨¬y2 and Cb1[3] = ¬y1, clearly π |= ¬Cb0[3]∨¬Cb1[3]. Recall thatr0[1]

= y1 ∨ x2 andr1[1] = ¬y1 ∨¬x2. Hence,π |= r1[1]∧ r0[1] and k = 1. Note

that we have(ψA
1 ,ψA

2,ψA
3) = (y1∧ x2, x3, 1). It can be observed that there exists

no Skolem function vectorΨ = (ψ1,ψ2,ψ3) such thatψ2 ⇔ ψA
2 andψ3 ⇔ ψA

3.



174

Finally observe that sincer0[3] is ¬y2, Cb1[3]∧¬r0[3] is ¬y1∧ y2. Also π |=

Cb1[3]∧¬r0[3] andl = 3.

For clarity of exposition, we postpone the proof of Lemma 10 to the end of

this section.

Algorithm 14 (UpdateAbsRef) uses Lemma 10 to compute abstract versions

of r0[i] andr1[i], and a refined version ofΨA, whenΨA is not a Skolem function

vector. The algorithm takes as inputs the current versions of r0[i] andr1[i] for all

xi in X, and a satisfying assignmentπ of the error formula for the current version

of ΨA. Sinceπ |= F(X′,Y) andπ |= ¬F(X,Y), and since the value of everyxi

in π is given byψA
i , there exists at least oneψA

l , wherel ∈ {1, . . .n}, that fails to

generate the right value ofxl when the value ofY is as given byπ. UpdateAbsRef

works by identifying such an indexl and refiningψA
l . SinceψA

i = ¬r1[i], the

refinement ofψA
l is effected by updating (abstracting) the correspondingr1[l ] set.

In fact, the algorithm may, in general, end up abstracting not onlyr1[l ], but several

r0[i] andr1[i] as well in a sound manner.

As shown in Algorithm 14,UpdateAbsReffirst finds the largest indexk such

thatπ |= r0[k]∧ r1[k]. Lemma 10b guarantees the existence of such an index in

{1, . . .n−1}. We assume access to a function calledGeneralizethat takes as argu-

ments an assignmentπ and a functionϕ such thatπ |= ϕ, and returns a functionξ

that generalizesπ while satisfyingϕ. More formally, ifξ = Generalize(π, ϕ), then

Supp(ξ) ⊆ Supp(ϕ), π |= ξ andξ ⇒ ϕ. Thus, in steps 2 and 3 ofUpdateAbsRef,

we compute generalizations ofπ that satisfyr0[k] andr1[k], respectively. The

functionµ computed in step 4 is therefore such thatπ |= µ andµ⇒ r0[k]∧r1[k].

The functionGeneralize(π, ϕ) can be implemented in several ways. Since

π |= ϕ, we could return a conjunction of literals corresponding tothe assignment
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Algorithm 14: UpdateAbsRef
Input : r0[i] andr1[i] for all xi in X,

Satisfying assignmentπ of error formula, i.e.

F(X′,Y)∧
Vn

i=1

(
xi ⇔ ψA

i

)
∧¬F(X,Y)

Output : Improved (i.e. refined)ΨA = (ψA
1 , . . .ψA

n), and

Improved (i.e. abstracted)r0[i] andr1[i] for all xi in X

1 k := largestj such thatπ satisfiesr0[ j]∧r1[ j];

2 µ0 := Generalize(π, r0[k]);

3 µ1 := Generalize(π, r1[k]);

4 µ := µ0∧µ1;

5 l := k+1;

6 while true do // current guess: ψA
l to be refined

7 if xl ∈ Supp(µ) then

8 if xl = 1 in π then

9 µ1 := µ[xl 7→ 1];

10 r1[l ] := r1[l ] ∪ {µ1};

11 if π satisfiesr0[l ] then

12 µ0 := Generalize(π, r0[l ]);

13 µ := µ0∧µ1;

14 else

15 break;

16 else

17 µ0 := µ[xl 7→ 0];

18 r0[l ] := r0[l ] ∪ {µ0};

19 µ1 := Generalize(π, r1[l ]);

20 µ := µ0∧µ1;

21 l := l +1 ;

22 ΨA = (¬r1[1], . . .¬r1[n]);

23 return r0[i] andr1[i] for all xi in X, andΨA
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π, or the functionϕ itself. From our experiments, it appears that the first option

leads to low memory requirements, but increased run-time due to large number of

invocations ofUpdateAbsRef. The other option leads to higher memory require-

ments, but reduced run-time due to fewer invocations ofUpdateAbsRef. For our

study, we letGeneralize(π, r1[k]) return one of the functions inr1[k] (viewed as

a set) that evaluate to 1 underπ. We follow a similar strategy forGeneralize(π,

r0[k]) as well. This appears to give us a reasonable tradeoff between time and

space requirements.

Example (Continued): In the example,k = 1 since (i)π |= r1[1]∧r0[1], (ii) π 6|=

r1[2]∧r0[2], and (iii)π 6|= r1[3]∧r0[3]. Sincer1[1] = ¬y1∨¬x2, r0[1] = y1∨x2,

π |= ¬y1 andπ |= x2, Generalize(π, r1[1]) returns¬y1, andGeneralize(π, r0[1])

returnsx2. Henceµ at step 4 isx2∧¬y1. Note thatπ |= µ andµ⇒ r0[1]∧r1[1].

Using Definition 2,Cb1[k]∧Cb0[k] is equivalent to(¬∃x1. . . .∃xk−1.F) [xk 7→

0] ∧ (¬∃x1. . . .∃xk−1.F) [xk 7→ 1], which is equivalent to¬∃x1. . . .∃xk.F. Since

r1[k]⇒ Cb1[k] andr0[k]⇒ Cb0[k], this implies thatr0[k]∧r1[k]⇒¬∃x1. . . .∃xk.F.

Sinceµ⇒ r0[k]∧r1[k], we have,µ⇒¬∃x1. . . .∃xk.F. This means that any ab-

stract Skolem function vector that produces values ofx1, . . .xn (given value ofY

as inπ) for which µ evaluates to 1, cannot be a Skolem function vector. Since the

support ofµ is {xk+1, . . .xn}∪Y, one of the abstract Skolem functionsψA
k+1, . . .ψ

A
n

must be refined.

The loop in steps 6–21 ofUpdateAbsReftries to identify an abstract Skolem

functionψA
l to be refined, by iteratingl from k+1 to n. Clearly, if xl 6∈ Supp(µ),

the value ofψA
l underπ is of no consequence in evaluatingµ, and we ignore

such variables. Ifxl ∈ Supp(µ) and if xl = 1 in π, thenπ |= µ[xl 7→ 1]. More-

over, it can be observed thatµ at this step (i.e. at step 9) is such thatµ ⇒
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¬∃x1. . . .∃xl−1.F. Hence,µ[xl 7→ 1] ⇒ (¬∃x1. . . .∃xl−1.F)[xl 7→ 1]. Recalling

the definition ofCb1[l ], we haveµ[xl 7→ 1] ⇒ Cb1[l ], and thereforeµ[xl 7→ 1] can

be added tor1[l ] (viewed as a set) yielding a more abstract version ofr1[l ]. Steps

8–10 ofUpdateAbsRefimplement this update ofr1[l ].

Example (Continued): Recall thatk = 1 andµ at step 4 isx2∧¬y1. l = 2, and

sincex2 ∈ Supp(µ) andx2 = 1 in π, we reach step 9. Note thatµ[x2 7→ 1] = ¬y1

⇒ Cb1[2] = (¬y1∨¬x3). After adding¬y1, r1[2] becomes{¬x3, ¬y1} viewed as

a set, and¬x3∨¬y1 when viewed as a disjunction.

Sinceπ |= µ[xl 7→ 1], we haveπ |= r1[l ] after step 10. If it so happens that

π |= r0[l ] as well, then we haveπ |= r0[l ]∧ r1[l ], wherer1[l ] refers to the up-

dated refinement ofCb1[l ]. In this case, we have effectively found an indexl > k

such thatπ |= r0[k]∧ r1[k]. We can therefore repeat our algorithm starting with

l instead ofk. Steps 11–13 followed by step 21 of algorithmUpdateAbsRefef-

fectively implement this. Steps 11–13 updateµ, and step 21 incrementsl by 1,

so that the implicationµ⇒¬∃x1. . . .∃xl−1.F is preserved. If, on the other hand,

π 6|= r0[k], then we have found anl that satisfies the conditions in Lemma 10d.

We exit the search for an abstract Skolem function in this case (see steps 14–15).

Example (Continued): As we saw, at step 10,r1[2] is updated to¬x3∨¬y1. Note

thatr0[2] = x3, andπ |= x3. Thus we reach step 12.Generalize(π, r0[2]) returns

x3. Henceµ at step 13 isx3∧¬y1. The value ofl is now incremented to 3, and

the next iteration of the loop starts. Sincex3 ∈ Supp(µ) andx3 = 1 in π, we reach

step 9. Note thatµ[x3 7→ 1] = ¬y1 ⇒ Cb1[3] = ¬y1. Adding¬y1 to r1[3] makes it

{¬y1}. Sincer0[3] = ¬y2, andπ does not satisfyr0[3], we exit from the loop.

If xl = 0 in π, a similar argument as above shows thatµ[xl 7→ 0] can be added

to r0[l ]. Steps 17–18 ofUpdateAbsRefimplement this update. As before, it is
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easy to see thatπ |= r0[l ] after step 18. Moreover, sinceπ |=
Vn

i=1(xi ⇔ ψA
i ) and

ψA
i ≡ ¬r1[l ], in order to havexl = 0 in π, we must haveπ |= r1[l ]. Therefore, we

have once again found an indexl > k such thatπ |= r0[k]∧r1[k], and can repeat

our algorithm starting withl instead ofk. Steps 19–21 of algorithmUpdateAbsRef

effectively implement this.

Once we exit the loop in steps 6–21 ofUpdateAbsRef, we compute the re-

fined Skolem function vectorΨA as(¬r1[1], . . .¬r1[n]) in step 22 and return the

updatedr0[i], r1[i] for all xi in X, and alsoΨA.

Example (Continued): Recall that, we changedr1[2] to ¬y1∨¬x3, andr1[3] to

¬y1. Thus after exit from the loop, we have,r1[1] =¬y1∨¬x2, r1[2] =¬y1∨¬x3,

andr1[3] = ¬y1. The refined Skolem function vectorΨA is (y1∧x2, y1∧x3, y1).

Note thatr1[2] andr1[3] have become more abstract after refinement, which has

led to more refinedψA
2 andψA

3 .

We now present the proof of Lemma 10.

Proof of Lemma 10. Part (a):Consider an assignmentπ′ of variables inX ∪Y,

such thatπ′(xi) = π(x′i) for all xi ∈ X, andπ′(y j) = π(y j) for all y j ∈Y. Sinceπ |=

ε, by definition ofε, we haveπ |= F(X′,Y). This implies thatπ′ |= F(X,Y) and

hence,π′ |= ∃x1. . . .∃xn−1.F. If xn = 1 in π′, we getπ′ |= (∃x1. . . .∃xn−1.F) [xn 7→

1], or equivalently,π′ |= ¬Cb1[n]. If xn = 0 in π′, by a similar argument,π′ |=

¬Cb0[n]. Therefore,π′ |= ¬Cb1[n]∨¬Cb0[n]. Sincexn is the variable with the

highest index inX, bothCb1[n] andCb0[n] have onlyY as their support. Since

π′(y j) = π(y j) for all y j ∈Y, it follows thatπ |= ¬Cb1[n]∨¬Cb0[n] as well.

Part (b):Sinceπ |= ε, by definition of ε, we haveπ |= ¬F(X,Y). SinceF =
Vr

q=1 f q, there existsj ∈ {1, . . . r} such thatπ |= ¬ f j . Without loss of generality,

assume thatSupp( f j) 6= /0 (otherwise,f j can be removed from
Vr

q=1 f q). Let xk
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be the variable with the smallest index inSupp( f j). We claim thatxk = 0 in π,

and prove this by contradiction.

If possible, letxk = 1 in π. Then,π |= (¬ f j)[xk 7→ 1]. Sincexk is the lowest in-

dexed variable inSupp( f j), it follows from algorithmInitAbsRefthat(¬ f j)[xk 7→

1] ∈ r1[k]init , whenr1[k]init is viewed as a set. This implies that(¬ f j)[xk 7→

1] ⇒ r1[k]init , whenr1[k]init is viewed as a function. Hence,π |= r1[k]init , and

sincer1[k]init ⇒ r1[k], we haveπ |= r1[k]. By definition of ε, we also have

π |= (xk ⇔ ψA
k ), whereψA

k = ¬r1[k]. It follows that xk = ψA
k = 0 in π. This

contradicts our assumption (xk = 1), and hencexk must be 0 inπ.

Sincexk = 0 in π, following the same reasoning as above, we can show that

π |= r0[k]. Furthermore, sinceπ |= (xk ⇔ ψA
k ) andψA

k = ¬r1[k], havingxk = 0 in

π implies thatπ |= r1[k]. Hence,π |= r0[k]∧r1[k]. It now follows from part (a)

thatk 6= n and hencek∈ {1, . . .n−1}

Part (c):We prove this by contradiction. If possible, let there be a Skolem function

vector Ψ such thatψi ⇔ ψA
i for all i in {k+1, . . .n}. Sinceπ |= F(X′,Y), it

follows that π |= ∃x1. . . .∃xn.F. Therefore, by definition of Skolem functions,

π |= (· · ·(F [x1 7→ ψ1]) · · · [xn 7→ ψn]). Since we have assumedψi ⇔ ψA
i for all i

in {k+1, . . .n} and sinceπ |=
Vn

i=1(xi ⇔ ψA
i ), it follows that π |= (· · ·(F [x1 7→

ψ1]) · · · [xk 7→ ψk]). However, we know from part (b) thatπ |= r0[k]∧ r1[k]

and henceπ |= Cb0[k]∧ Cb1[k]. Recalling the definitions ofCb0[k] andCb1[k],

we getπ |= (¬∃x1. . . .∃xk.F). This contradicts our inference above, i.e.π |=

(· · ·(F [x1 7→ ψ1]) · · · [xk 7→ ψk]). Hence our assumption is wrong, i.e. there is no

Skolem function vectorΨ such thatψi ⇔ ψA
i for all i in {k+1, . . .n}.

Part (d):We prove this by contradiction. If possible, supposexl = 0 in π, or

π |= ¬Cb1[l ]∨ r0[l ] for all l ∈ {k+1, . . .n}. For convenience of notation, let us
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call this assumptionA in the discussion below.

If xl = 0 in π, then sinceπ |=
Vn

i=1(xi ⇔ ψA
i ) and ψA

i = ¬r1[i] for all i ∈

{1, . . .n}, it follows thatπ |= r1[l ]. Sincer1[l ] ⇒ Cb1[l ], we haveπ |= Cb1[l ] as

well. It is also easy to see that wheneverπ |= ¬Cb1[l ], thenπ |= ¬r1[l ] as well.

Therefore, ifxl = 0 in π or if π |= ¬Cb1[l ], then bothCb1[l ] andr1[l ] evaluate to

the same value underπ.

Consider the subcase of assumptionA wherexl = 0 in π, or π |= ¬Cb1[l ],

for all l ∈ {k+1, . . .n}. From the discussion above, eitherπ |= Cb1[l ]∧ r1[l ] or

π |= ¬Cb1[l ]∧¬r1[l ] for all l ∈ {k+1, . . .n}. Now consider the Skolem function

vectorΨ given by Proposition 9. Sinceψl = ¬Cb1[l ] andψA
i = ¬r1[l ], it follows

that there exists a Skolem function vector, viz.Ψ, such thatψl ⇔ ψA
l for all l in

{k+1, . . .n}. This contradicts the assertion in part (c) above. Hence we cannot

havexl = 0 in π or π |= ¬Cb1[l ], for all l ∈ {k+1, . . .n}.

If assumptionA has to hold, there must therefore exist somel ∈ {k+1, . . .n}

such thatxl = 1 in π andπ |= Cb1[l ]∧r0[l ]. Sincer0[l ] ⇒ Cb0[l ], we must have

π |= Cb1[l ]∧ Cb0[l ] in this case. From part (a), we know thatπ |= ¬Cb0[n]∨

¬Cb1[n]. It follows that l is strictly less thann, and we can repeat the entire

argument above with assumptionA restricted to indices in{l +1, . . .n}. Note

that{l +1, . . .n} is non-empty (sincel < n), and is a strict subset of{k+1, . . .n}

(sincel ∈ {k+1, . . .n}). Therefore, restricting assumptionA to smaller subsets

of indices can only be done finitely many times, after which there won’t be any

l in the set of indices under consideration such thatxl = 1 in π andπ |= Cb1[l ]∧

r0[l ]. This shows that assumptionA is false, thereby proving the assertion in part

(d).

Lemma 11. Algorithm UpdateAbsRefalways terminates, and renders at least
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oner1[i] strictly abstract, and at least oneψA
i strictly refined, for i∈ {1, . . .n}.

Proof of Lemma 11. By Lemma 10a, we know thatπ |= ¬Cb0[n]∨¬Cb1[n], and

thereforeπ |= ¬r0[n]∨¬r1[n]. Since steps 12–13 or 17-20 ofUpdateAbsRef

can be executed only whenπ |= r0[l ]∧r1[l ], and sincel is incremented in every

iteration of the loop in steps 6–21, it follows that steps 14–15 must be executed

for somel ≤ n. Therefore, algorithmUpdateAbsRefalways terminates.

It is easy to see from the pseudo-code of algorithmUpdateAbsRefthat steps

7–10 and 14-15 must be executed before exiting the while loop(steps 6–21) and

terminating. Before executing step 10, we havexl = 1 in π andπ |=
Vn

i=1(xi ⇔ψA
i )

. SinceψA
l ≡ ¬r1[l ] before step 10, withxl = 1 in π, it must be the case that

π |= ¬r1[l ] before step 10. However, sinceπ |= µ[xl 7→ 1] in step 9, we have

π|=r1[l ] after step 10. Therefore, executing step 10 rendersr1[l ] strictly abstract

than what it was earlier. This also implies thatψA
l ≡¬r1[l ] is strictly refined when

UpdateAbsRefreturns in step 23.

TheCegarSkolemalgorithm can now be implemented as shown in Algorithm 15.

Theorem 2. CegarSkolem(F(X,Y)) terminates and computes a Skolem function

vector for X in F

The proof of this follows from Lemmas 8, 9 and 11.

Proof of Theorem 2. By Lemma 11, we know that every invocation ofUpdate-

AbsRefrenders at least oner1[i] strictly abstract than what it was earlier. Since

r1[i] is a propositional function, it has finitely many minterms and can be ren-

dered strictly abstract only finitely many times. From Proposition 9, we also know
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Algorithm 15: CegarSkolem

Input : Propositional formulaF(X,Y) =
Vr

j=1 f j(Xj ,Yj), where

X = (x1, . . .xn)

Output : Skolem function vectorΨ(Y) for X in F

1 (ΨA, {r0[i],r1[i] : 1≤ i ≤ n}) := InitAbsRef(
Vr

j=1 f j );

2 ε := F(X′,Y)∧
Vn

i=1(xi ⇔ ψA
i )∧¬F(X,Y);

3 while ε is satisfiabledo

4 Let π be a satisfying assignment ofε;

5 (ΨA, {r0[i],r1[i] : 1≤ i ≤ n}) :=

UpdateAbsRef({r0[i],r1[i] : 1≤ i ≤ n}, π);

6 ε := F(X′,Y)∧
Vn

i=1(xi ⇔ ψA
i )∧¬F(X,Y);

7 Ψ(Y) := ReverseSubstitute(¬r1[1], . . .¬r1[n]);

8 return Ψ(Y);
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that (¬Cb1[1], . . .¬Cb1[n]) is indeed a Skolem function vector, and therefore by

Lemma 9, its error formula is unsatisfiable. The terminationof CegarSkolem

follows immediately from the above observations. Sinceε is unsatisfiable when

CegarSkolemterminates, it follows from Lemma 9 that the vector of functions

returned is a Skolem function vector forX in F .

Example (Continued): As we saw, the refined Skolem function vectorΨA is

(y1 ∧ x2, y1 ∧ x3, y1). Hence, the new error formula is(y1 ⇔ x′1) ∧ (x′1 ⇔ x′2)

∧ (x′2 ⇔ x′3) ∧ (x′3∨y2) ∧ (x1 ⇔ y1∧x2) ∧ (x2 ⇔ y1∧x3) ∧ (x3 ⇔ y1) ∧ ¬((y1 ⇔

x1) ∧ (x1 ⇔ x2) ∧ (x2 ⇔ x3) ∧ (x3∨ y2)), which is unsatisfiable. Recall from

Section 5.2 that(y1∧x2, y1∧x3, y1) is a Skolem function vector forX in F . After

ReverseSubstitute, we have(ψ1,ψ2,ψ3) = (y1, y1, y1).

5.3.5 Variants

In this subsection, we describe some variants ofCegarSkolemthat we explored.

Notice thatCegarSkolemterminates only when the error formulaε becomes unsat-

isfiable. Hence the performance ofCegarSkolemcrucially depends on the number

of CEGAR iterations and the time consumed in SAT solver calls that check the

satisfiability of the error formulaε. The primary motivation behind exploring

these variants was to simplify the SAT solver calls and to reduce the number of

CEGAR iterations.

Optimization Using Interpolants

Recall that at step 10 ofUpdateAbsRef, µ1 is added tor1[l ] to obtain a more

abstract version ofr1[l ]. Recall thatµ1 ⇒ Cb1[l ]. Henceµ1 ∧ F(X,Y) ∧ xl is
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unsatisfiable. Letν be an interpolant ofµ1 andF(X,Y) ∧ xl . Note thatµ1 ⇒ ν

andν ∧ F(X,Y) ∧ xl is unsatisfiable. Hence rather than addingµ1 to r1[l ], we

can addν to r1[l ]. Similarly, at step 18 ofUpdateAbsRef, rather than addingµ0,

we can add an interpolant ofµ0 andF(X,Y) ∧ ¬xl to r0[l ].

Simplification of ε

The error formulaε in CegarSkoleminvolves two copies ofF : F(X′,Y) and

¬F(X,Y). It turns out thatε can be simplified by replacing the occurrence of

¬F(X,Y) by a simpler formula.

Definition 3. Theα function for xi in F, denotedα[xi](F), is defined to be(∃x1.

. . . ∃xi−1.F)[xi 7→ 1] ∧ (¬∃x1. . . .∃xi−1.F) [xi 7→ 0]. Similarly, theβ function for

xi in F, denotedβ[xi](F), is defined to be(∃x1. . . .∃xi−1.F) [xi 7→ 0] ∧ (¬∃x1. . . .

∃xi−1.F) [xi 7→ 1]. When X and F are clear from the context, we useα[i] andβ[i]

for α[xi](F) andβ[xi](F), respectively.

We changeInitAbsRef so that it computes refinements ofα[i] and β[i] de-

noted aŝα[i] and β̂[i] (seeInitAbsRefMod1: Algorithm 16). We represent̂α[i]

andβ̂[i] as sets of implicitly disjoined functions. Note thatInitAbsRefMod1con-

siders each factorf in
Vr

j=1 f j(Xj ,Yj) and accumulates the contribution off to

α[i] in α̂[i] for everyxi in the support off . Similarly the contribution off to

β[i] are accumulated in̂β[i]. If xi ∈ Supp( f ), the contribution off to α[i] is

(∃x1. . . .∃xi−1. f ) [xi 7→ 1] ∧ (¬∃x1. . . .∃xi−1. f ) [xi 7→ 0], and its contribution to

β[i] is (∃x1. . . .∃xi−1. f ) [xi 7→ 0] ∧ (¬∃x1. . . .∃xi−1. f ) [xi 7→ 1].

InitAbsRefMod1 also computeŝα[i] ∧ β̂[i], which we call as badi. We for-

mally defineα̂[i], β̂[i], and badi as follows.



185

Definition 4. Theα̂ function for xi in F =
Vr

j=1 f j , denoted̂α[xi](F), is defined to

be
Wr

j=1

((
∃x1. . . .∃xi−1. f j

)
[xi 7→ 1]∧

(
¬∃x1. . . .∃xi−1. f j

)
[xi 7→ 0]

)
. Similarly the

β̂ function for xi in F, denoted̂β[xi](F), is defined to be
Wr

j=1(
(
∃x1. . . .∃xi−1. f j

)

[xi 7→ 0] ∧
(
¬∃x1. . . .∃xi−1. f j

)
[xi 7→ 1]). When X and F are clear from the con-

text, we usêα[i] andβ̂[i] for α̂[xi](F) andβ̂[xi](F), respectively.

Definition 5. Thebadfunction for xi in F =
Vr

j=1 f j , denotedbadxi(F), is defined

to beα̂[xi](F) ∧ β̂[xi](F). When X and F are clear from the context, we usebadi

for badxi(F).

Notice thatInitAbsRefMod1computesψA
i as¬r1[i]∨r0[i] unlike InitAbsRef

which computesψA
i as¬r1[i]. Similarly, we changeUpdateAbsRefso that it

computesΨA as(¬r1[1]∨r0[1]init , . . .¬r1[n]∨r0[n]init ), wherer0[i]init denotes

r0[i] as computed byInitAbsRefMod1. The changed version ofUpdateAbsRef

is calledUpdateAbsRefMod1. As we will see, these changes are important for

applying the simplification onε that we describe here.

Sincer0[i]init ⇒ Cb0[i], for any valuation of variables(xi+1, . . .xn) andY, if

r0[i]init evaluates to 1, then any Skolem function forxi in F should also evaluate

to 1. Hence using¬r1[i]∨ r0[i]init instead of¬r1[i] asψA
i does not cause any

loss of correctness. Thus Theorem 2 can be proved on the variant of CegarSkolem

that callsInitAbsRefMod1 andUpdateAbsRefMod1 in place ofInitAbsRefand

UpdateAbsRef.

More interestingly, these changes allow us to use a different version of the

error formula.

Lemma 12. The formulaε′ defined as F(X′,Y)∧
Vn

i=1(xi ⇔ ψA
i )∧ (bad1∨ . . .∨

badn−1) for ΨA computed as(¬r1[1]∨r0[1]init , . . .¬r1[n]∨r0[n]init ) is unsatisfi-

able iffΨA is a Skolem function vector for X in F.
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Algorithm 16: InitAbsRefMod1

Input : Prop. formulaF(X,Y) =
Vr

j=1 f j(Xj ,Yj), whereX = (x1, . . .xn)

Output : Abstract Skolem function vectorΨA = (ψA
1 , . . . ,ψA

n), r0[i], r1[i],

α̂[i], β̂[i], and badi for eachxi in X

1 for i in 1 to ndo

2 r0[i] := /0; r1[i] := /0; α̂[i] := /0; β̂[i] := /0; // Initializing

3 for j in 1 to r do

4 f := f j ; // Consider factor separately

5 for i in 1 to ndo

6 if xi ∈ Supp( f ) then

7 r0[i] := r0[i]∪{¬ f [xi 7→ 0]};

8 r1[i] := r1[i]∪{¬ f [xi 7→ 1]};

9 α̂[i] := α̂[i]∪{ f [xi 7→ 1]∧¬ f [xi 7→ 0]};

10 β̂[i] := β̂[i]∪{ f [xi 7→ 0]∧¬ f [xi 7→ 1]};

// Skolem function for xi in f

11 ψi, f := f [xi 7→ 1];

12 f := f [xi 7→ ψi, f ]; // f [xi 7→ ψi, f ] ≡ ∃xi. f

13 for i in 1 to ndo

14 ψA
i := ¬r1[i]∨r0[i];

15 badi := α̂[i]∧ β̂[i];

// Interpreting r1[i], r0[i], α̂[i], β̂[i] as functions

16 return ΨA=(ψA
1 , . . .ψA

n), r0[i],r1[i], α̂[i], β̂[i], andbadi for each xi∈X
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Proof of Lemma 12. Proof in one direction is easy. Let us assume thatψA
1 , . . . ,ψA

n

are Skolem functions for variablesx1, . . . ,xn in F . Let us consider any solutionπ

of F(X′,Y), i.e.,F(x′1, . . . ,x
′
n,Y). Let vY be the value assigned to the variables in

Y by π. Let ψA
1, . . . ,ψA

n evaluate tov1, . . . ,vn for Y = vY. Note thatF(x1, . . . ,xn,Y)

[x1 7→ v1] . . . [xn 7→ vn] [Y 7→ vY] is true, sinceψA
1, . . . ,ψA

n are Skolem functions for

variablesx1, . . . ,xn in F . Suppose some badj is true for (x1 = v1), . . . ,(xn = vn),

(Y = vY), where 1≤ j ≤ n−1. This means that botĥα[ j] andβ̂[ j] aretrue, which

actually implies that one of the factors will evaluate tofalse for (x1 = v1), . . .

,(xn = vn), (Y = vY), i.e., F will evaluate tofalse for (x1 = v1), . . . ,(xn = vn),

(Y = vY). This means that bad1, . . . ,badn−1 should befalse for (x1 = v1), . . .

,(xn = vn), (Y = vY). Hence, ifψA
1 , . . . ,ψA

n are Skolem functions for variables

x1, . . . ,xn in F , then for any valuevY of variables inY for which there exists

x′1, . . . ,x
′
n such thatF(x′1, . . . ,x

′
n,Y) is satisfiable, bad1, . . . ,badn−1 should befalse,

and henceε′ should befalse. This means thatε′ is unsatisfiable.

Let us consider the proof in the other direction.

In the nestedfor loop in Algorithm 16 steps 3–12, we make an additional

assumption thatxi ∈ Supp( f ) is alwaystrue. This assumption is only to simplify

the notation, and the proof can be done even without this assumption. We denote

∃x1. . . .∃xi. f 1, . . ., ∃x1. . . .∃xi. f r as f 1
i , . . . , f r

i . The factorsf 1, . . . , f r are denoted

as f 1
0 , . . . , f r

0. We defineωi , for 2 ≤ i ≤ n, as (badi ∨ (α̂[i]∧ωi−1[xi 7→ 1]) ∨

(β̂[i]∧ωi−1[xi 7→ 0]) ∨ (ωi−1[xi 7→ 1]∧ωi−1[xi 7→ 0])), andω1 as bad1.

Let us assume thatε′ is unsatisfiable. Note that ifF(x′1, . . . ,x
′
n,Y) is unsatisfi-

able, then anyψA
1, . . . ,ψA

n are Skolem functions for variablesx1, . . . ,xn in F .

The interesting case is whenF(x′1, . . . ,x
′
n,Y) is satisfiable. This implies that for

any valuevY of variables inY such thatF(x′1, . . . ,x
′
n,Y) is satisfiable, bad1, . . . ,badn−1
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arefalse. In the following, we will prove that in this case,ψA
1, . . . ,ψA

n are Skolem

functions for variablesx1, . . . ,xn in F . Our proof makes use of the following

claims.

Claim 3. ψA
i is a Skolem function for xi in f 1

i−1∧ . . . ∧ f r
i−1.

Claim 4. F(x1, . . . ,xn,Y) [x1 7→ ψA
1 ] . . . [xn 7→ ψA

n] is equivalent to( f 1
n ∧ . . .∧ f r

n)

∧ ¬bad1[x2 7→ ψA
2] . . . [xn 7→ ψA

n ] ∧ . . .∧ ¬badn−1[xn 7→ ψA
n] ∧ ¬badn.

Claim 5. ∃x1. . . .∃xn.F(x1, . . . ,xn,Y) is equivalent to( f 1
n ∧ . . .∧ f r

n) ∧ ¬ωn.

Claim 6. For any value vY of variables in Y such that F(x′1, . . . ,x
′
n,Y) is sat-

isfiable, and values of x1, . . . ,xn such that(x1 = ψA
1), . . . ,(xn = ψA

n) for which

bad1, . . . ,badn−1 are false, ωn evaluates tofalse.

Proof of Claim 3. Recall that the Skolem functionψA
i has the form¬r1[i]∨r0[i]init .

Hence,

– Case 1: For the values of the other variables for whichxi must be set to

true for f 1
i−1∧ . . . ∧ f r

i−1 to becometrue, α̂[i] is true. Hence there exists

an f j
i−1 such that¬ f j

i−1[xi 7→ 1] is false and¬ f j
i−1[xi 7→ 0] is true. Since

¬ f j
i−1[xi 7→ 0] ⇒ r0[i]init , ψA

i is true.

– Case 2: For the values of the other variables for whichxi must be set tofalse

for f 1
i−1∧ . . . ∧ f r

i−1 to becometrue, β̂[i] is true. Hence there exists anf j
i−1

such that¬ f j
i−1[xi 7→ 1] is true and¬ f j

i−1[xi 7→ 0] is false. Since¬ f j
i−1[xi 7→

1] ⇒ r1[i], we haver1[i] = true and¬r1[i] = false. Moreover, sincef 1
i−1∧

. . . ∧ f r
i−1 is true, there cannot exist anyf k

i−1 such that (i)¬ f k
i−1[xi 7→ 1] is

true and¬ f k
i−1[xi 7→ 0] is true or (ii) ¬ f k

i−1[xi 7→ 1] is false and¬ f k
i−1[xi 7→ 0]
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is true. This means that for allf k
i−1, we have¬ f k

i−1[xi 7→ 0] asfalse. Hence

r0[i]init is false, and henceψA
i is false.

Similarly, it can be observed that

– Case 3: For the values of the other variables for whichxi can be set totrue

or false for f 1
i−1∧ . . . ∧ f r

i−1 to becometrue, ψA
i is true.

– Case 4: For the values of the other variables for which one of the factors in

f 1
i−1∧ . . . ∧ f r

i−1 cannot be satisfied,ψA
i is α̂[i].

– Case 5: For the values of the other variables for whichα̂[i] is true andβ̂[i]

is true, ψA
i is true.

Note that in each of these cases,( f 1
i−1∧ . . . ∧ f r

i−1) [xi 7→ ψA
i ] is equivalent to

∃xi.( f 1
i−1∧ . . . ∧ f r

i−1), and henceψA
i is a Skolem function forxi in f 1

i−1∧ . . . ∧ f r
i−1.

(end of proof of Claim 3)

Proof of Claim 4. From Claim 3,F(x1, . . . ,xn,Y) [x1 7→ψA
1 ] is equivalent to∃x1.( f 1

0∧

. . . ∧ f r
0). Note that∃x1.( f 1

0∧ . . . ∧ f r
0) is equivalent to( f 1

1∧ . . . ∧ f r
1) ∧ ¬bad1.

Similarly, F(x1, . . . ,xn,Y) [x1 7→ ψA
1 ] [x2 7→ ψA

2] is equivalent to(( f 1
1∧ . . . ∧ f r

1)

∧ ¬bad1) [x2 7→ ψA
2 ]. Note that( f 1

1∧ . . . ∧ f r
1) [x2 7→ ψA

2 ] is equivalent to( f 1
2∧ . . .

∧ f r
2) ∧ ¬bad2. HenceF(x1, . . . ,xn,Y) [x1 7→ ψA

1] [x2 7→ ψA
2] is equivalent to( f 1

2∧

. . . ∧ f r
2) ∧ ¬bad2 ∧ ¬bad1[x2 7→ ψA

2].

Proceeding in this manner, it can be proved thatF(x1, . . . ,xn,Y) [x1 7→ ψA
1] . . .

[xn 7→ ψA
n ] is equivalent to( f 1

n ∧ . . .∧ f r
n) ∧ ¬bad1[x2 7→ ψA

2] . . . [xn 7→ ψA
n] ∧ . . .∧

¬badn−1[xn 7→ ψA
n] ∧ ¬badn. (end of proof of Claim 4)

Proof of Claim 5. We will prove that∃x1. . . .∃xi.F(x1, . . . ,xn,Y) is equivalent to

( f 1
i ∧ . . .∧ f r

i ) ∧ ¬ωi for 1≤ i ≤ n using induction oni.
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Base case is easy to prove. Notice that∃x1.F(x1, . . . ,xn,Y) is equivalent to

( f 1
1 ∧ . . .∧ f r

1)∧¬bad1. Note that bad1 is the same asω1. Hence,∃x1.F(x1, . . . ,xn,Y)

is equivalent to( f 1
1 ∧ . . .∧ f r

1) ∧ ¬ω1.

Suppose∃x1. . . .∃xi−1.F(x1, . . . ,xn,Y) is equivalent to( f 1
i−1 ∧ . . .∧ f r

i−1) ∧

¬ωi−1. Note that∃x1. . . .∃xi.F(x1, . . . ,xn,Y) is ∃xi.(( f 1
i−1∧ . . .∧ f r

i−1) ∧ ¬ωi−1).

It can be observed that this is equivalent to( f 1
i ∧ . . .∧ f r

i ) ∧ ¬ (badi ∨ (α̂[i]∧

ωi−1[xi 7→ 1]) ∨ (β̂[i]∧ωi−1[xi 7→ 0]) ∨ (ωi−1[xi 7→ 1]∧ωi−1[xi 7→ 0])), which is

the same as( f 1
i ∧ . . .∧ f r

i ) ∧ ¬ωi. (end of proof of Claim 5)

Proof of Claim 6. Consider any valuevY of variables inY such thatF(x′1, . . . ,x
′
n,Y)

is satisfiable, and values ofx1, . . . ,xn such that(x1 = ψA
1), . . . ,(xn = ψA

n) for which

bad1, . . . ,badn−1 are false. Let ψA
1 , . . . ,ψA

n evaluate tov1, . . . ,vn undervY. This

means that badn−1[xn 7→ vn][Y 7→ vY] is false, badn−2[xn−1 7→ vn−1][xn 7→ vn][Y 7→

vY] is false, . . ., and bad1[x2 7→ v2] . . . [xn 7→ vn] [Y 7→ vY] is false. Note that

badn[Y 7→ vY] is alsofalse, sinceF(x′1, . . . ,x
′
n,Y) is satisfiable forY = vY.

Recall thatωi is badi ∨ (α̂[i]∧ωi−1[xi 7→1])∨ (β̂[i]∧ωi−1[xi 7→0])∨ (ωi−1[xi 7→

1]∧ωi−1[xi 7→ 0]). Note thatωi is a formula on variablesxi+1, . . . ,xn,Y. Let us

evaluate each disjunct inωi for (xi+1 = vi+1), . . . ,(xn = vn), (Y = vY).

– Consider badi. We have badi[xi+1 7→ vi+1] . . . [xn 7→ vn] [Y 7→ vY] is false.

– Consider̂α[i]∧ωi−1[xi 7→ 1]. Let α̂[i] be true for (xi+1 = vi+1), . . . ,(xn =

vn), (Y = vY). From Claim 3, we know thatψA
i is a Skolem function for

xi in f 1
i−1∧ . . . ∧ f r

i−1. Hence, ifα̂[i] is true, thenψA
i is true, i.e.,vi is true.

Therefore, if̂α[i] is true, thenα̂[i]∧ωi−1[xi 7→ 1] is the same asωi−1[xi 7→ vi]

for (xi+1 = vi+1), . . . ,(xn = vn), (Y = vY).
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– Consider̂β[i]∧ωi−1[xi 7→ 0]. Let β̂[i] betrue for for (xi+1 = vi+1), . . . ,(xn =

vn), (Y = vY). From Claim 3, we know thatψA
i is a Skolem function forxi

in f 1
i−1∧ . . . ∧ f r

i−1. Hence, ifβ̂[i] is true, thenψA
i is false, i.e., vi is false.

Therefore, if̂β[i] is true, thenβ̂[i]∧ωi−1[xi 7→ 0] is the same asωi−1[xi 7→ vi]

for (xi+1 = vi+1), . . . ,(xn = vn), (Y = vY).

– Considerωi−1[xi 7→ 1]∧ωi−1[xi 7→ 0]. It can be written asωi−1[xi 7→ vi]∧

ωi−1[xi 7→ ¬vi].

Hence,ωi reduces to eitherωi−1[xi 7→ vi ] or ωi−1[xi 7→ vi] ∧ ωi−1[xi 7→ ¬vi]

for (xi+1 = vi+1), . . . ,(xn = vn), (Y = vY) where 1≤ i ≤ n. Sinceω1 is bad1 and

bad1[x2 7→ v2] . . . [xn 7→ vn] [Y 7→ vY] is false, ωn evaluates tofalse for (Y = vY).

(end of proof of Claim 6)

Consider any valuevY of variables inY such thatF(x′1, . . . ,x
′
n,Y) is satisfiable,

and values ofx1, . . . ,xn such that(x1 = ψA
1), . . . ,(xn = ψA

n) for which bad1, . . . ,badn−1

arefalse. Using Claim 6,ωn evaluates tofalse. SinceF(x′1, . . . ,x
′
n,Y) is satisfiable

for (Y = vY), badn is false. Now using Claim 4 and Claim 5, bothF(x1, . . . ,xn,Y)

[x1 7→ ψA
1] . . . [xn 7→ ψA

n ] and∃x1. . . .∃xn.F(x1, . . . ,xn,Y) evaluate to to the same

value( f 1
n ∧ . . .∧ f r

n). Thus for any valuevY of variables inY such thatF(x′1, . . . ,x
′
n,Y)

is satisfiable,F(x1, . . . ,xn,Y) [x1 7→ψA
1 ] . . . [xn 7→ψA

n ] iff ∃x1. . . .∃xn.F(x1, . . . ,xn,Y).

HenceψA
1, . . . ,ψA

n are Skolem functions for variablesx1, . . . ,xn in F .

Note thatε′ uses(bad1 ∨ . . .∨ badn−1) in place of¬F(X,Y). As the bad

functions are constructed by considering the individual factors separately without

constructing their conjunctions, we expect(bad1∨ . . .∨badn−1) to be a function

simpler than¬F(X,Y). The variant ofCegarSkolemthat usesInitAbsRefMod1,
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UpdateAbsRefMod1andε′ instead ofInitAbsRef, UpdateAbsRefandε is called

CegarSkolemMod1.

Refining Skolem Functions Bottom-Up

The error formulaε in CegarSkolemchecks the correctness of a vector of Skolem

functions. Supposeε is satisfiable. As per Lemma 9, this implies thatψA
1, . . .ψA

n

are not Skolem functions forx1, . . .xn in F . However, it may happen thatψA
k+1, . . .ψ

A
n

are already Skolem functions forxk+1, . . .xn in F for 1≤ k< n, and satisfiability of

ε is happening due to the reason that some of the Skolem functions inψA
1, . . .ψA

k

are still abstract. In such situations, it is useful to checkif a specific Skolem

function is correct, rather than checking the correctness of a vector of Skolem

functions. We can modify the error formula to achieve this.

Lemma 13. The formulaεk defined as F(X′,Y)∧
Vn

i=1(xi ⇔ ψA
i )∧¬F(X,Y) ∧

¬x′k∧xk∧ (x′k+1 = xk+1)∧ . . .∧ (x′n = xn) is unsatisfiable iffψA
k is Skolem function

for xk in F, where1≤ k < n.

Proof of Lemma 13. Note thatεk is ε with the additional constraints(xk = 1),

(x′k = 0) and (x′k+1 = xk+1), . . ., (x′n = xn). The constraints(x′k+1 = xk+1), . . .

(x′n = xn) are added under the assumption thatψA
k+1, . . . ,ψ

A
n are Skolem functions

for variablesxk+1, . . . ,xn in F . This is a reasonable assumption to make, since as

we will see, we will fix the Skolem functionsψA
k+1, . . . ,ψ

A
n before fixingψA

k . Since

ψA
k is an abstract Skolem function, the constraints(xk = 1) and(x′k = 0) capture

the only condition under which our choice ofψA
k is wrong.

We present a variant ofCegarSkolemcalledCegarSkolemMod2 (see Algo-

rithm 17) that fixes the Skolem functions in a pre-defined order using Lemma 13.
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Algorithm 17: CegarSkolemMod2

Input : Propositional formulaF(X,Y) =
Vr

j=1 f j(Xj ,Yj), where

X = (x1, . . .xn)

Output : Skolem function vectorΨ(Y) for X in F

1 (ΨA, {r0[i],r1[i] : 1≤ i ≤ n}) := InitAbsRef(
Vr

j=1 f j );

2 for k in n to1 do

3 εk := F(X′,Y)∧
Vn

i=1(xi ⇔ ψA
i )∧¬F(X,Y)∧¬x′k∧xk∧ (x′k+1 =

xk+1)∧ . . .∧ (x′n = xn);

4 while εk is satisfiabledo

5 Let π be a satisfying assignment ofεk;

6 (ΨA, {r0[i],r1[i] : 1≤ i ≤ n}) :=

UpdateAbsRef({r0[i],r1[i] : 1≤ i ≤ n}, π);

7 εk := F(X′,Y)∧
Vn

i=1(xi ⇔ ψA
i )∧¬F(X,Y)∧¬x′k∧xk∧ (x′k+1 =

xk+1)∧ . . .∧ (x′n = xn);

8 ε := F(X′,Y)∧
Vn

i=1(xi ⇔ ψA
i )∧¬F(X,Y);

9 if ε is unsatisfiablethen

10 break;

11 Ψ(Y) := ReverseSubstitute(¬r1[1], . . .¬r1[n]);

12 return Ψ(Y);
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CegarSkolemMod2 initially checks the satisfiability ofεn. If εn is unsatis-

fiable, thenψA
n is a Skolem function forxn in F . Otherwise ifεn is satisfiable,

thenCegarSkolemMod2callsUpdateAbsRefto refineψA
1, . . .ψA

n . Then the satis-

fiability of εn is again checked, and this loop repeats untilψA
n becomes a Skolem

function forxn in F . The first iteration of thefor loop thus fixes Skolem function

for xn. The subsequent iterations fix Skolem functions for variablesxn−1, . . . ,x1.

After fixing the Skolem function forxk, the satisfiability ofε is checked to see

if ψA
1, . . .ψA

n are Skolem functions forx1, . . .xn in F . If ε is unsatisfiable, then

CegarSkolemMod2makes an early exit from thefor loop.

5.4 Experimental Results

5.4.1 Benchmarks

The Skolem function generation benchmarks were obtained byconsidering se-

quential circuits from the HWMCC10 benchmark suite [107], and by formulat-

ing the problem of disjunctively decomposing the circuit into components as a

problem of generating Skolem function vectors. Each benchmark is of the form

∃X.F(X,Y), whereF(X,Y) is a conjunction of factors, and was generated in the

following manner.

The HWMCC10 benchmarks are circuits in .aig format. In order to gener-

ate our benchmarks, we first read each circuit, and then extracted the symbolic

transition function of the circuit. Let(x′1 = f1(X, I))∧ . . .∧ (x′n = fn(X, I)) be the

symbolic transition function extracted, whereX = (x1, . . . ,xn) is the present state,

X′ = (x′1, . . . ,x
′
n) is the next state,I = (i1, . . . , im) are the inputs, andf1, . . . , fn are

transition functions for the state variablesx1, . . . ,xn respectively. We generated
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benchmarks of the form∃X.F(X,Y) from each symbolic transition function in

the following manner.

The first benchmark is of the form∃I . ((x1 6= f1(X, I))∨ . . .∨ (xn 6= fn(X, I))).

Note that for a given stateX, a value of variables inI that satisfies the formula

(x1 6= f1(X, I))∨ . . .∨ (xn 6= fn(X, I)) gives an outgoing edge fromX which is

not a self-loop. Hence the benchmark represents the problem: Generate Skolem

functions for inputs in I such that the outgoing edge enabledby the chosen values

of inputs is not a self-loop.

To perform factorization, we did one-level of Tseitin encoding [100]. LetZ =

{Z1, . . . ,Zn} be the Tseitin variables introduced. Two versions of the benchmark

were generated after Tseitin encoding: (i)∃I .((Z1 = (x1 6= f1(X, I))) ∧ . . . ∧

(Zn = (xn 6= fn(X, I))) ∧ (Z1∨ . . .∨Zn)), and (ii)∃I .∃Z.((Z1 = (x1 6= f1(X, I)))

∧ . . . ∧ (Zn = (xn 6= fn(X, I))) ∧ (Z1∨ . . .∨Zn)).

The second benchmark is of the form∃I .(( f1(X,TRUE) 6= f1(X, I)) ∨ . . . ∨

( fn(X,TRUE) 6= fn(X, I))), whereTRUE indicates that all inputs are set totrue.

Note that for a given stateX, a value of variables inI that satisfies the formula

( f1(X,TRUE) 6= f1(X, I)) ∨ . . . ∨ ( fn(X,TRUE) 6= fn(X, I)) gives an outgoing

edge fromX which is not leading to the same state as led by the edge enabled

when values of all inputs aretrue. Hence the benchmark represents the problem:

Generate Skolem functions for inputs in I such that the outgoing edge enabled by

the chosen values of inputs is such that it is not leading to the same state as led by

the edge enabled when values of all inputs aretrue.

As in the case of the first benchmark, to perform factorization, we introduced

Tseitin variables and did one-level of Tseitin encoding. Let Z = {Z1, . . . ,Zn} be

the Tseitin variables introduced. Two versions of the benchmark were generated:
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(i) ∃I .((Z1 = ( f1(X,TRUE) 6= f1(X, I))) ∧ . . . ∧ (Zn = ( fn(X,TRUE) 6= fn(X, I)))

∧ (Z1∨ . . .∨Zn)), and (ii)∃I .∃Z.((Z1 = ( f1(X,TRUE) 6= f1(X, I))) ∧ . . . ∧ (Zn =

( fn(X,TRUE) 6= fn(X, I))) ∧ (Z1∨ . . .∨Zn)).

The third benchmark is similar to the first benchmark of the form ∃I .(x1 6=

f1(X, I)) ∨ . . . ∨ (xn 6= fn(X, I))). However, we added a formulaA(X) : (x1 =

f1(X,g1(X))) ∧ . . . ∧ (xn = fn(X,gn(X))) as an additional disjunct, whereg1(X),

. . . ,gn(X) are functions ofX. Thus we have,∃I .((x1 6= f1(X, I)) ∨ . . . ∨ (xn 6=

fn(X, I)) ∨ A(X)). We then did one-level of Tseitin encoding and existentially

quantified the Tseitin variables to get the final benchmark as∃Z.∃I .((Z1 = (x1 6=

f1(X, I))) ∧ . . . ∧ (Zn = (xn 6= fn(X, I))) ∧ (Zn+1 = A(X)) ∧ (Z1 ∨ . . .∨ Zn ∨

Zn+1)), whereZ = {Z1, . . . ,Zn+1} are the Tseitin variables. The additional dis-

junct A(X) guarantees that∃Z.∃I .((Z1 = (x1 6= f1(X, I))) ∧ . . . ∧ (Zn = (xn 6=

fn(X, I))) ∧ (Zn+1 = A(X)) ∧ (Z1∨ . . .∨Zn∨Zn+1)) is valid. Note that for any

given stateX, the variablesZ1, . . . ,Zn becomefalse when the only outgoing edge

from X is a self-loop. However in this caseZn+1 is true irrespective of the values

of the functionsg1(X), . . . ,gn(X). Hence∃Z.∃I .((Z1 = (x1 6= f1(X, I))) ∧ . . . ∧

(Zn = (xn 6= fn(X, I))) ∧ (Zn+1 = A(X)) ∧ (Z1∨ . . .∨Zn∨Zn+1)) is true for any

X.

After generating these benchmarks from the symbolic transition function ex-

tracted from each circuit, the benchmarks such that the number of existentially

quantified variables is less than 20 are avoided from the benchmark-suite. Sim-

ilarly the benchmarks for which none of the algorithms used in the experiments

could generate Skolem functions are also avoided. Finally we have 424 bench-

marks.

We divided the benchmarks into two categories: a) TYPE-1 benchmarks
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where∃X.F(X,Y) is valid, and b) TYPE-2 benchmarks where∃X.F(X,Y) is

invalid. Among the 424 benchmarks, 160 are TYPE-1 benchmarks and 264are

TYPE-2 benchmarks.

5.4.2 Experimental Methodology

For experimental evaluation, we ranCegarSkolemand MonoSkolemon all the

benchmarks. We also compared the performance ofCegarSkolemwith tools that

generate Skolem functions from the proof of validity of∃X.F(X,Y). Since these

tools generate Skolem functions only for valid∃X.F(X,Y) formulas, and require

the input to be in.qdimacs format, we converted each of the TYPE-1 benchmarks

into .qdimacs format using Tseitin encoding.

We generated QRAT proofs for the TYPE-1 benchmarks using thebloqqer [108]

tool, and then used theqrat-trim tool [17] to generate Skolem functions from the

QRAT proofs. We refer tobloqqer + qrat-trim asBloqqer below. We also gener-

ated the cube-resolution proofs in QRP format for the TYPE-1 benchmarks using

the QBF solverDepQBF [106], and then used theQBFcert framework [109] to

generate Skolem functions from the QRP proofs. We refer toDepQBF + QBFcert

asDepQBF below.

Our implementations ofMonoSkolemandCegarSkolemmake use of the ABC [99]

library to represent and manipulate functions as AIGs. ForCegarSkolem, we used

the default SAT solver provided by ABC, which is a variant of MiniSAT. We used

a simple heuristic to order the variables, and used the same ordering for both

MonoSkolemand CegarSkolem. In our ordering, variables that occur in fewer

factors are indexed lower than those that occur in more factors.
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We used the following metrics to compare the performance of the algorithms:

(i) max/average size of the generated Skolem functions in a Skolem function vec-

tor, where the size is the number of nodes in the AIG representation of the func-

tion, and ii) total time taken to generate the Skolem function vector (excluding any

input format conversion time), in seconds. The experimentswere performed on a

1.87 GHz Intel(R) Xeon machine with 128GB memory running Ubuntu 12.04.4.

The maximum time given to the algorithms for execution was 7200 seconds, i.e.,

2 hours. Main memory usage was restricted to 32GB.

5.4.3 Results and Discussion

The 160 TYPE-1 benchmarks and 264 TYPE-2 benchmarks covereda wide

spectrum in terms of the number of factors, the total number of variables and

the number of variables to be eliminated. For instance, in the TYPE-1 category,

the number of factors varied from 44 to 7034, total number of variables varied

from 94 to 9782 and the number of variables to eliminate varied from 60 to 4751.

Amongst the TYPE-2 benchmarks, the number of factors variedvaried from 24

to 3956, the total number of variables varied from 70 to 5963,and the variables to

eliminate varied 21 to 2689.

We first presentCegarSkolemvsBloqqer results andCegarSkolemvsDepQBF

results on the TYPE-1 benchmarks followed byCegarSkolemvs MonoSkolem

results on all the benchmarks. We then present the results ofour experiments on

the variants ofCegarSkolemdiscussed in Subsection 5.3.5. We also discuss the

results of experiments onCegarSkolemwith different factor sizes, ordering, and

generalization functionGeneralize.
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CegarSkolem vs Bloqqer
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Figure 5.4: Time taken byCegarSkolemvs time taken byBloqqer on TYPE-1

benchmarks (in seconds). Topmost points indicate benchmarks whereBloqqer

couldn’t generate Skolem functions; rightmost points indicate benchmarks where

CegarSkolemcouldn’t generate Skolem functions.

Figure 5.4 shows the total time taken byCegarSkolemandBloqqer on the 160

TYPE-1 benchmarks. Recall from Subsection 2.5.2 thatbloqqer can generate

Skolem functions only in the cases where validity of∃X.F(X,Y) can be estab-

lished only by preprocessing. In other cases it gives aNOT VERIFIED message,

and cannot generate Skolem functions. Among the 160 TYPE-1 benchmarks,

Bloqqer could successfully generate Skolem functions for 148 benchmarks; it

gaveNOT VERIFIED message for the remaining 12.CegarSkolem, on the other

hand, was able to successfully generate Skolem functions for 154 benchmarks.
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Figure 5.5: Maximum size of Skolem function byCegarSkolemvs maximum

size of Skolem function byBloqqer. Topmost points indicate benchmarks where

Bloqqer couldn’t generate Skolem functions; rightmost points indicate bench-

marks whereCegarSkolemcouldn’t generate Skolem functions.

In 4 casesCegarSkolemtimed out, and in 2 cases it ran out of memory during

construction of initial abstract Skolem functions inInitAbsRef.

Among the 142 remaining benchmarks which bothCegarSkolemandBloqqer

successfully solved, for 88 benchmarks, time taken by both were comparable.

The ratio of time taken byBloqqer to time taken byCegarSkolemfor these bench-

marks was greater than 0.5 and less than 2.0. For 29 benchmarksCegarSkolem

clearly outperformedBloqqer. The ratio of time taken byBloqqer to time taken by

CegarSkolemfor these benchmarks was 2.0 - 30.3. For 25 benchmarks,Bloqqer

outperformedCegarSkolemby a factor of 2 or more. For 13 benchmarks among
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them, the ratio of time taken byCegarSkolemto that byBloqqer was 2.1 - 88.6. For

12 benchmarks,CegarSkolemtook significantly more time compared toBloqqer

(almost 3 - 4 orders of magnitude). On profiling, we found thatin all of these

cases, more than 70% of the time taken byCegarSkolemwas spent in the function

ReverseSubstitute, due to larger sizes of Skolem functions generated.

There were 9 large benchmarks, with 1000+ factors and 1000+ variables to

eliminate. Bloqqer could not generate Skolem functions for 8 of these and took

> 1 hour for the remaining one.CegarSkolemsuccessfully generated Skolem

functions for each of these in under 20 minutes.

For each Skolem function vector generated, we also comparedin Figure 5.5

the maximum size of a Skolem function generated by the two algorithms. We

chose to use the maximum size instead of average size for thiscomparison because

of the following reason. A large number of auxiliary variables are introduced

while converting a benchmark to.qdimacs format via Tseitin encoding. All such

auxiliary variables must be existentially quantified, and the sizes of Skolem func-

tions of these auxiliary variables are typically very small. This significantly skews

down the average size of generated Skolem functions. Note that CegarSkolem

does not require the benchmarks to be converted to.qdimacs format, and hence

does not require Tseitin encoding, or introduction of auxiliary variables.

For most benchmarks, as shown in Figure 5.5, the maximum sizes of Skolem

functions obtained byCegarSkolemweresmallerthan those generated byBloqqer.

Specifically, among the 142 benchmarks which bothCegarSkolemandBloqqer

successfully solved, for 100 benchmarks, the ratio of maximum Skolem function

size generated byBloqqer to that byCegarSkolemwas more than 2. For 89 of

them the ratio was in the range 5.0 - 766.0. For 29 benchmarksBloqqer generated
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Skolem functions that are smaller than those generated byCegarSkolemby a fac-

tor of 2 or more. For 8 of them, the Skolem functions generatedby CegarSkolem

were bigger than those generated byBloqqer by more than 3 orders of magnitude.

Thus our analysis shows that CegarSkolemperforms better on larger benchmarks,

and generates smaller Skolem functions on most benchmarks.

CegarSkolem vs DepQBF

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01  0.1  1  10  100  1000  10000  100000

T
im

e 
in

 D
ep

Q
B

F
 +

 Q
B

F
ce

rt

Time in CegarSkolem

FA

FA            

Figure 5.6: Time taken byCegarSkolemvs time taken byDepQBF on TYPE-1

benchmarks (in seconds). Topmost points indicate benchmarks whereDepQBF

couldn’t generate Skolem functions; rightmost points indicate benchmarks where

CegarSkolemcouldn’t generate Skolem functions.

Figure 5.6 shows the total time taken byCegarSkolemandDepQBF on the

160 TYPE-1 benchmarks. Figure 5.7 compares the maximum sizes of Skolem
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Figure 5.7: Maximum size of Skolem function byCegarSkolemvs maximum size

of Skolem function byDepQBF. Topmost points indicate benchmarks whereDe-

pQBF couldn’t generate Skolem functions; rightmost points indicate benchmarks

whereCegarSkolemcouldn’t generate Skolem functions.

functions generated byCegarSkolemwith those generated byDepQBF. The re-

sults clearly demonstrate thatCegarSkolem outperformsDepQBF both in terms of

time and Skolem function size on all benchmarks.

Among the 160 TYPE-1 benchmarks,DepQBF could generate Skolem func-

tions only for 7 benchmarks. For 150 benchmarks, the QRP prooffiles could not

be generated; the files were huge (> 32GB) and we ran out of disk space allocated.

Among the remaining 10 benchmarks for which the QRP files couldbe generated,

for 3 benchmarks, theQBFcert framework ran out of memory during extraction

of Skolem functions from the QRP proofs.
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CegarSkolem vs MonoSkolem

The performance of these two algorithms on both TYPE-1 and TYPE-2 cate-

gories of benchmarks is shown in Figure 5.8 and Figure 5.9. Figure 5.8 gives

the average sizes of Skolem functions generated in a Skolem function vector. We

measured average sizes here, since both algorithms generated Skolem functions

for exactly the same set of variables. Figure 5.9 shows the total time taken in

seconds. From Figure 5.8, it is clear that the Skolem functions generated by

CegarSkolemare on an averagesmaller than those generated byMonoSkolem.

There is no instance on whichCegarSkolemgenerates Skolem functions that are

larger on average than those generated byMonoSkolem.

Due to repeated calls to the SAT-solver, we expectedCegarSkolemto take

more time thanMonoSkolem. From Figure 5.9, we can see thatCegarSkolemdoes

indeed take more time on some benchmarks but on most of them, the total time

taken by both algorithms wasless than100 seconds. On profiling, we found that

CegarSkolemspent most of its time on SAT solving. On 38 benchmarks where

CegarSkolemtook greater than 100 but less than 300 seconds,MonoSkolemper-

formed significantly worse taking more than 1000 seconds. Wefound the degra-

dation ofMonoSkolemwas due to the large sizes of Skolem functions generated;

these were of the order of 1 million whereas those generated by CegarSkolemwere

less than 8000.Large Skolem function sizes imply more time spent in function

composition and reverse-substitution. This overhead was considerably greater

than that incurred by SAT-solving, resulting inMonoSkolemtaking significantly

more time.

We noticed that for 101 benchmarks where the sizes of Skolem functions gen-

erated were even larger (of the order of 107), MonoSkolemcould not generate the
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Figure 5.8: Average Skolem function size byCegarSkolemvs average Skolem

function size byMonoSkolem. Topmost points indicate benchmarks where

MonoSkolemcouldn’t generate Skolem functions; rightmost points indicate

benchmarks whereCegarSkolemcouldn’t generate Skolem functions.

Skolem functions. In 8 of these cases, the memory consumed byMonoSkolem

increased rapidly, resulting in a memory out. In 10 cases, itran out of time. In

an overwhelming 83 cases, the Skolem functions generated during the execution

of MonoSkolemwere so huge that the integer used in the underlying ABC library

for storing the level of AIG nodes overflowed. This resulted in assertion failure

in the ABC library. Notice thatCegarSkolemgenerated Skolem functions for all

of these benchmarks. The rightmost points indicate 12 caseswhereCegarSkolem

could not generate Skolem functions. Among these, 10 were time-outs and 2 were

memory-outs.MonoSkolemsucceeded in 6 of these cases. BothCegarSkolemand
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Figure 5.9: Time taken byCegarSkolemvs time taken byMonoSkolem(in sec-

onds). Topmost points indicate benchmarks whereMonoSkolemcouldn’t gener-

ate Skolem functions; rightmost points indicate benchmarks whereCegarSkolem

couldn’t generate Skolem functions.

MonoSkolemfailed on 6 cases; onlyBloqqer could generate Skolem functions for

these benchmarks. In the 2 memory-out cases forCegarSkolem, it ran out of

memory during construction of initial abstract Skolem functions in InitAbsRef.

MonoSkolemalso ran out of memory in these cases.

Analysis of CegarSkolem

CegarSkolemcould generate Skolem functions for 412 of the 424 benchmarks.

For 197 of these benchmarks the initial abstract Skolem functions were correct,

and most of the time was spent in the SAT solver. For the remaining 227 bench-
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marks thatCegarSkolemsolved, the number of CEGAR iterations varied from 1

to 3121. For all benchmarks on whichCegarSkolemtimed out, we noticed that

there were large subsets of factors that shared many variables in their supports.

As a result,CegarSkolemcould not exploit the factored representation effectively,

requiring many refinements. On averaging over all benchmarks, we found that

more than 33% of the time spent byCegarSkolemwas for SAT-solving. This

leads to the natural suggestion that we could use more efficient SAT solvers to im-

prove the performance ofCegarSkolem. Since SAT-solving technology continues

to improve every year, we hope to leverage this to improve theperformance of

CegarSkolemfurther.

Variants of CegarSkolem

When optimizations using interpolants were enabled, the performance ofCe-

garSkolemcrucially depended on the size of the interpolants computedand time

to compute the interpolants. However, we observed that the interpolants gener-

ated by ABC were often not succinct, and computing the interpolants was often

time-intensive.

We measured the time taken byCegarSkolemMod1andCegarSkolemMod2

for generation of Skolem functions for the benchmarks, and the average sizes of

the Skolem functions generated. We compared the average sizes of the Skolem

functions generated byCegarSkolemMod1with those generated byCegarSkolem

(see Fig 5.10). The comparison clearly indicated that the Skolem functions gen-

erated byCegarSkolemwere smaller in size compared to those generated by

CegarSkolemMod1. Recall that the Skolem functions generated byCegarSkolem

are of the form¬r1[i], whereas the Skolem functions generated byCegarSkolemMod1
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have the form¬r1[i]∨ r0[i]init . Bigger Skolem functions inCegarSkolemMod1

were due to the additional disjunctr0[i]init in the Skolem functions.
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Figure 5.10: Average Skolem function size byCegarSkolemvs average Skolem

function size byCegarSkolemMod1. Topmost points indicate benchmarks where

CegarSkolemMod1 couldn’t generate Skolem functions; rightmost points indi-

cate benchmarks whereCegarSkolemcouldn’t generate Skolem functions.

We then compared (in Fig 5.11) the time taken byCegarSkolemMod1for gen-

eration of Skolem functions with the time taken byCegarSkolem. We also com-

pared the number of CEGAR iterations needed byCegarSkolemMod1 with the

number of CEGAR iterations needed byCegarSkolemfor the benchmarks where

both the algorithms succeeded in generating Skolem functions (see Fig 5.12) (it-

erations+1 used in the plot to include cases with zero iterations).

The time taken by both the algorithms were roughly the same for almost
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Figure 5.11: Time taken byCegarSkolemvs time taken byCegarSkolemMod1

(in seconds). Topmost points indicate benchmarks whereCegarSkolemMod1

couldn’t generate Skolem functions; rightmost points indicate benchmarks where

CegarSkolemcouldn’t generate Skolem functions.
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Figure 5.12: Number of CEGAR iterations byCegarSkolemvs number of CE-

GAR iterations byCegarSkolemMod1.
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all the benchmarks. We observed that due to bigger sizes of Skolem functions,

CegarSkolemMod1spent more time in reverse-substitution compared to that spent

by CegarSkolem. Recall that the error formulaε′ in CegarSkolemMod1 differs

from the error formulaε in CegarSkolemin two ways: (i) the abstract Skolem

function ψA
i is ¬r1[i]∨ r0[i]init instead of¬r1[i], and (ii) (bad1∨ . . .∨ badn−1)

is used in place of¬F(X,Y). For each benchmark, we measured the total time

taken by the SAT solver calls that check the satisfiability ofε in CegarSkolem. We

call this ε-time for the benchmark. Similarly for each benchmark we measured

the total time taken by the SAT solver calls that check the satisfiability of ε′ in

CegarSkolemMod1. We call thisε′-time for the benchmark. It was observed that

ε′-time is greater thanε-time for many benchmarks. There were benchmarks with

ε′-time < ε-time, but in most of these cases, the time saved in SAT calls was less

than the additional time incurred in reverse-substitution.

There were 4 benchmarks on whichCegarSkolemMod1 timed out andCe-

garSkolemcould generate the Skolem functions. Interestingly, on these bench-

marksCegarSkolemperformed worse when compared toBloqqer due to huge

Skolem functions and consequent expensive reverse-substitution. The Skolem

functions generated insideCegarSkolemMod1 for these benchmarks were even

bigger which resulted in timing out inside the reverse-substitution phase.

We compared the average sizes of Skolem functions generatedbyCegarSkolemMod2

with those generated byCegarSkolem(see Fig 5.13), and the time taken byCe-

garSkolemMod2 for generation of Skolem functions with the time taken byCe-

garSkolem(see Fig 5.15). We also compared the number of CEGAR iterations

needed byCegarSkolemMod2with the number of CEGAR iterations needed by

CegarSkolem(see Fig 5.14).Our analysis indicated that both the algorithms be-
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haved very similar in all the cases, resulting in similar execution times and Skolem

function sizes. Considerable differences in execution times were observed only in

a very fewcases. We found that these differences were due to differences in the

time spent in SAT calls.
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Figure 5.13: Average Skolem function size byCegarSkolemvs average Skolem

function size byCegarSkolemMod2. Topmost points indicate benchmarks where

CegarSkolemMod2 couldn’t generate Skolem functions; rightmost points indi-

cate benchmarks whereCegarSkolemcouldn’t generate Skolem functions.

Effect of ordering on CegarSkolem

In the variable ordering that we used inCegarSkolem, variables occurring in fewer

factors are indexed lower than those occurring in more factors. In order to under-

stand the effect of this ordering on the performance ofCegarSkolem, we used a
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Figure 5.14: Time taken byCegarSkolemvs time taken byCegarSkolemMod2

(in seconds). Topmost points indicate benchmarks whereCegarSkolemMod2

couldn’t generate Skolem functions; rightmost points indicate benchmarks where

CegarSkolemcouldn’t generate Skolem functions.
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Figure 5.15: Number of CEGAR iterations byCegarSkolemvs number of CE-

GAR iterations byCegarSkolemMod2.
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variant ofCegarSkolemcalledCegarSkolemLexicothat uses lexicographical or-

dering on the variables.

We measured the time taken byCegarSkolemLexicofor generation of Skolem

functions for the benchmarks, and the average sizes of the Skolem functions

generated. In Fig 5.16 we compare the average sizes of the Skolem functions

generated byCegarSkolemLexicowith those generated byCegarSkolem, and in

Fig 5.17 we compare the time taken byCegarSkolemLexicowith the time taken

by CegarSkolem.
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Figure 5.16: Average Skolem function size byCegarSkolemvs average Skolem

function size byCegarSkolemLexico. Topmost points indicate benchmarks where

CegarSkolemLexicocouldn’t generate Skolem functions; rightmost points indi-

cate benchmarks whereCegarSkolemcouldn’t generate Skolem functions.

The results clearly indicate that the ordering that we used in CegarSkolem
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Figure 5.17: Time taken byCegarSkolemvs time taken byCegarSkolemLexico

(in seconds). Topmost points indicate benchmarks whereCegarSkolemLexico

couldn’t generate Skolem functions; rightmost points indicate benchmarks where

CegarSkolemcouldn’t generate Skolem functions.
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gives better performance. In order to analyze the results indetail, we compared

the number of CEGAR iterations needed byCegarSkolemLexicowith the number

of CEGAR iterations needed byCegarSkolem(see Fig 5.18).
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Figure 5.18: Number of CEGAR iterations byCegarSkolemvs number of CE-

GAR iterations byCegarSkolemLexico.

Our analysis revealed that, in general, the abstract Skolemfunctions generated

by InitAbsRefin CegarSkolemwere more refined compared to those generated by

InitAbsRefin CegarSkolemLexico. Due to this,CegarSkolemLexicospent more

time inside the CEGAR loop compared toCegarSkolem. This also resulted in

bigger Skolem functions inCegarSkolemLexico, and consequently more time in

reverse-substitution.
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Effect of choice of factors onCegarSkolem

In order to understand how a different choice of factors would affect the perfor-

mance ofCegarSkolem, we used a variant ofCegarSkolemcalledCegarSkolemClause.

CegarSkolemClausetakes benchmarks in.qdimacs format as input. In the.qdimacs

version of a benchmark∃X.F(X,Y), the formulaF(X,Y) appears as a conjunc-

tion of clauses, and thus each clause becomes a factor.

We executedCegarSkolemClauseon the.qdimacs versions of TYPE-1 bench-

marks, and measured the time taken for generation of Skolem functions and the

maximum sizes of the Skolem functions generated. We chose touse the maximum

sizes of Skolem functions instead of average sizes, sinceCegarSkolemClause

takes benchmarks in.qdimacs format as input. As mentioned before, the sizes

of Skolem functions of the Tseitin variables in the.qdimacs format are typi-

cally very small, which significantly skews down the averageSkolem function

sizes. In Fig 5.19 we compare the maximum sizes of the Skolem functions gen-

erated byCegarSkolemClausewith those generated byCegarSkolem, and in

Fig 5.20 we compare the time taken byCegarSkolemClausewith the time taken

by CegarSkolem. We also measured the number of CEGAR iterations needed

by CegarSkolemClause, and compared with the number of CEGAR iterations

needed byCegarSkolem(see Fig 5.21).

The initial abstract Skolem functions generated byInitAbsRefinsideCegarSkolemClause

were significantly smaller than those generated insideCegarSkolem. However

the initial abstract Skolem functions generated insideCegarSkolemClausewere

more abstract compared to those generated insideCegarSkolem. As a result of

this, as shown in Fig 5.21, the number of CEGAR iterations needed by Ce-

garSkolemClausewere significantly more than the number of CEGAR iterations
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Figure 5.19: Maximum Skolem function size byCegarSkolemvs maximum

Skolem function size byCegarSkolemClause. Topmost points indicate bench-

marks whereCegarSkolemClausecouldn’t generate Skolem functions; rightmost

points indicate benchmarks whereCegarSkolemcouldn’t generate Skolem func-

tions.
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Figure 5.20: Time taken byCegarSkolemvs time taken byCegarSkolemClause

(in seconds). Topmost points indicate benchmarks whereCegarSkolemClause

couldn’t generate Skolem functions; rightmost points indicate benchmarks where

CegarSkolemcouldn’t generate Skolem functions.
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Figure 5.21: Number of CEGAR iterations byCegarSkolemvs number of CE-

GAR iterations byCegarSkolemClause.
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needed byCegarSkolem.

In most of the benchmarks, due to the increased number of CEGARitera-

tions, CegarSkolemClauseperformed worse compared toCegarSkolem. How-

ever, the smaller initial abstract Skolem functions helpedCegarSkolemClausein

13 benchmarks, where it clearly outperformedCegarSkolem(see Fig 5.20). In

11 of these cases,CegarSkolemperformed bad due to huge Skolem functions

and consequent expensive reverse-substitution. In 2 casesCegarSkolemran out

of memory during construction of initial abstract Skolem functions inInitAbsRef.

Although the number of CEGAR iterations inCegarSkolemClausewere much

more than those inCegarSkolemfor these benchmarks, the simpler initial Skolem

functions helpedCegarSkolemClauseto avoid the blow-up in Skolem function

sizes.

Experiments with different Generalize

In CegarSkolemwe used the functionGeneralizethat takes as arguments, an as-

signmentπ and a functionϕ such thatπ |= ϕ, and returns a functionξ that gener-

alizesπ while satisfyingϕ. Recall thatϕ here is a disjunction of functions which

can also be viewed as a set of functions. Our implementation of Generalize(π, ϕ)

in CegarSkolemreturnsone of the functionsin ϕ (viewed as a set) that evaluates

to 1 underπ. There are several other ways of implementingGeneralize(π, ϕ). For

example,Generalize(π, ϕ) can return the disjunction ofall functionsin ϕ (viewed

as a set) that evaluate to 1 underπ. We call the variant ofCegarSkolemthat uses

this implementation ofGeneralize(π, ϕ) asCegarSkolemMod3.

We measured the time taken byCegarSkolemMod3for generation of Skolem

functions for the benchmarks, and the average sizes of the Skolem functions
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generated. In Fig 5.22 we compare the average sizes of the Skolem functions

generated byCegarSkolemMod3 with those generated byCegarSkolem, and in

Fig 5.23 we compare the time taken byCegarSkolemMod3with the time taken

by CegarSkolem.
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Figure 5.22: Average Skolem function size byCegarSkolemvs average Skolem

function size byCegarSkolemMod3. Topmost points indicate benchmarks where

CegarSkolemMod3 couldn’t generate Skolem functions; rightmost points indi-

cate benchmarks whereCegarSkolemcouldn’t generate Skolem functions.

We observed that both the algorithms behaved very similar onall benchmarks,

resulting in similar execution times and Skolem function sizes. There were many

cases where the number of CEGAR iterations needed byCegarSkolemMod3was

less than those needed byCegarSkolem(see Fig 5.24). However, the functions re-

turned byGeneralize(π, ϕ) calls inCegarSkolemMod3were bigger in size when
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Figure 5.23: Time taken byCegarSkolemvs time taken byCegarSkolemMod3

(in seconds). Topmost points indicate benchmarks whereCegarSkolemMod3

couldn’t generate Skolem functions; rightmost points indicate benchmarks where

CegarSkolemcouldn’t generate Skolem functions.
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compared to those returned byGeneralize(π, ϕ) calls inCegarSkolem. Hence al-

though the number of CEGAR iterations, and consequently number of invocations

of UpdateAbsRefand SAT checks inCegarSkolemMod3were fewer than those

in CegarSkolem, the individual invocations ofUpdateAbsRefand SAT checks in

CegarSkolemMod3were more expensive. Effectively the execution times of the

algorithms did not show much difference.
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Figure 5.24: Number of CEGAR iterations byCegarSkolemvs number of CE-

GAR iterations byCegarSkolemMod3.

5.5 Conclusions

We presented a CEGAR algorithm for generating Skolem functions from factored

propositional formulas. Our experiments show that for complex functions, our
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algorithm significantly out-performs state-of-the-art algorithms.

Our techniques for generation of Skolem functions can be extended to more

generic cases. One of these is the case where the formulaF(X,Y) involves unin-

terpreted predicates. Formally, given a Boolean formulaF(X,Y) on variables in

X∪Y involving uninterpreted predicatesP1, . . . ,Pn, we wish to generate Skolem

functionψ(X \xi,Y) for xi ∈ X in F(X,Y). It can be observed that the results that

we proved in this chapter hold in spite of the presence of uninterpreted predicates.

As an example, LetX be(x1,x2) andY be(y1). LetF(X,Y) be the formulaP1(x2)

∧ x1 ∧ y, whereP1 is an uninterpreted predicate. Suppose we wish to compute

Skolem function vector(ψ1,ψ2) for (x1,x2) in F . Note thatψ1 can be computed

asF [x1 7→ 1] = P1(x2) ∧ y. Now∃x1.F is F [x1 7→ ψ1], i.e.,P1(x2) ∧ y. In a similar

manner,ψ2 can be computed asP1(1) ∧ y. After substitutingψ2 for x2 in ψ1, we

have(ψ1,ψ2) = (P1(P1(1)∧y) ∧ y, P1(1) ∧ y).

Techniques for generating Skolem functions have many otherpotential ap-

plications which we have not fully explored. For example, suppose we have a

Boolean formulaF(X,Y) on variables inX∪Y, whereX is {x1, . . . ,xn}. More-

over, supposeF(x′1,x2, . . . ,xn,Y)∧ F(x′′1,x2, . . . ,xn,Y)∧ (x′1 6= x′′1) is unsatisfiable,

wherex′1 andx′′1 are fresh variables. In this case, the value ofx1 is completely de-

termined by the values of variables inX \x1∪Y. We callx1 a dependent variable

and the variables inX \ x1∪Y independent variables. The problem of expressing

x1 as a function of the independent variables reduces to findingSkolem function

ψ(X \ x1,Y) for x1 in F . We would like to explore such applications of Skolem

functions in future.



Chapter 6

Conclusions and Future Works

This dissertation presented techniques to improve the scalability of formal verifi-

cation and analysis tools for hardware and software systems.

We presented practically efficient and bit-precise techniques for quantifier

elimination from linear modular constraints. Our techniques outperform alternate

quantifier elimination techniques, and keep the final resultin modular arithmetic.

Many key operations performed by underlying algorithms in formal verification

and analysis tools essentially boil down to quantifier elimination from formulas

involving linear modular constraints. Specifically we showed the utility of our

techniques in one such formal verification activity — in computing abstract sym-

bolic transition relations for improving the scalability of bounded model checking

of word-level RTL designs.

We also presented an efficient algorithm to generate succinct Skolem functions

for propositional formulas. Our algorithm exploits the factored form of input for-

mulas, and directly benefits from advances in SAT solving technology. Moreover

unlike existing techniques in literature, our algorithm neither requires proof of

227
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satisfiability nor resorts to memory-intensive compositions. The algorithm finds

application in disjunctive decomposition of sequential circuits which is useful in

improving the scalability of reachability analysis.

There are several promising directions for future work.

– Developing a quantifier elimination procedure for full bit-vector arithmetic

is an interesting research direction. Other than linear modular arithmetic

operations, bit-vector arithmetic primarily includes extractions, concatena-

tions, non-linear multiplications and bit-wise operations [13]. The work by

Bruttomesso et. al. in [110] shows that constraints in the core bit-vector

theory consisting of only equalities, extractions and concatenations can be

equivalently expressed as a conjunction of equalities on slices of variables

involved in the constraints. The slices can be replaced by fresh variables

to generate equisatisfiable linear modular equalities. It is interesting to see

how our quantifier elimination techniques can be extended tohandle con-

straints involving non-linear multiplications. Bit-wise operations may not

be amenable to word-level reasoning and may require bit-level quantifier

elimination. A layered framework like that of ours looks promising for such

a quantifier elimination procedure for the full bit-vector arithmetic, since the

amenability to word-level reasoning and simplifications varies considerably

across different operations in the bit-vector theory.

– Quantifier elimination problem instances that arise in practice frequently

mix expressions from different theories. The problem of reasoning on for-

mulas in combined theories is well studied in the context of decision pro-

cedures. There are well established techniques such as Nelson-Oppen com-

bination method [111] that helps to come up with a decision procedure for
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a combined theory, given decision procedures for the individual theories.

However the problem ofquantifier elimination from combined theoriesis

largely unaddressed to the best of our knowledge. Specifically it is inter-

esting to study how the quantifier elimination techniques introduced in this

thesis can be extended to work in combined theories such as combination of

linear modular arithmetic and equality over uninterpretedfunctions, combi-

nation of linear modular arithmetic and array logic etc.

– Another interesting research direction is to understand how the ideas intro-

duced in this dissertation can be used in decision procedures for bit-vector

formulas. Clearly some of the techniques we proposed such as identifying

and dropping unconstraining LMIs and LMDs can be useful in bit-vector

solvers. Given a conjunction of LMCs, dropping unconstraining LMIs and

LMDs gives another conjunction of LMCs which is potentially simpler and

equisatisfiable to the original conjunction of LMCs. This canbe beneficial

in performing word-level simplifications in lazy and layered bit-vector solv-

ing frameworks such as that of MathSAT [84]. Recall from Section 4.4 that

our limited preliminary experiments in this direction gavemixed results.

– Our CEGAR based algorithm for generation of Skolem functions admits op-

timizations which we would like to explore as part of future work. One such

important optimization is the opportunity to refine using multiple counterex-

amples in parallel. This would allow us to significantly improve on our run

times. Building portfolio Skolem function generators that run several algo-

rithms in parallel is yet another direction to explore.
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