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Abstract

Mobile robots are continuously evolving to perform operations with reduced levels

of human intervention, allowing them to operate in remote or hazardous locations

almost autonomously. There is also huge interest in development of autonomous

vehicles for transporting humans to their destinations with increased comfort and

safety. Reliable perception of environment surrounding a robot is a key prerequisite

for its safe navigation. However, complex, unstructured and diverse outdoor envi-

ronments make perception task far from trivial compared to the structured indoor

environments. Sensors and algorithms are required to perceive and process data in

three dimensions. Rotating Laser Scanners are commonly used sensors for obtaining

range measurements to the surrounding objects with good spatial resolution. This

huge data is needed to be processed quickly for extracting meaningful information

about the surroundings.

This work exploits the structured nature of range data obtained from com-

monly used multi-beam laser scanners to develop algorithms for robot perception.

A novel measure called unevenness is introduced that essentially captures the na-

ture of surrounding terrain. It is computed at each point by comparing its range

with those of its neighbours. It succinctly captures small undulations or disconti-

nuities in the surface. Analytical expressions are derived for unevenness to study

its sensitivity with range, and to decide on a scheme for setting thresholds for de-

tecting obstacles at all ranges. Traversable region is obtained by connecting all the

i



points with unevenness less than a threshold. Detection of subtle discontinuities

using unevenness enables segmentation of discernible objects and features in robot's

environment. Unevenness further contributes in detection of key points within a

scan. Using only the key points instead of the entire point set not only accelerates

registration but improves accuracy.

Unevenness contributes to di�erent navigation tasks by processing data

from a single laser scan. It provides a clear boundary between object and ground

and between two objects leading to their easy identi�cation. Unevenness detects

traversable slopes while being una�ected by the roll and pitch of sensor caused by

robot's motion. Traversable region detection and segmentation are performed well

within real time. Registration using select key points using unevenness brings down

registration times to nearly a tenth compared to registration using the entire point

cloud. Experimental results are presented to demonstrate the e�cacy of unevenness

in all aspects of autonomous navigation.
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Chapter 1

Introduction

Mobile robotics is an important area of application of robots, where robots move

to di�erent locations to perform a set of assigned tasks. Developing autonomous

capabilities in these robots enable them to operate with minimum or no human

intervention, sometimes in locations which are hazardous or inaccessible to humans.

Autonomous mobile robots are �nding applications in industries, mining, rescue

and recovery, and planetary explorations. In addition, over the past few years,

there is a surge in research and development of driverless cars both in industry

and academia. These are aimed to transport occupants safely to their destinations

autonomously. Driverless cars relieve humans from the task of continuously driving

their vehicles, allowing them to either relax or perform other important tasks. An

automated systematic control of the vehicle is expected to enhance the safety and

comfort levels of its occupants. It is also likely to improve tra�c management on

busy roads, thus preventing accidents. For autonomous operations, a robot needs

to build a reliable model of its surrounding environment. Once the robot perceives

its surroundings, it can plan a safe trajectory towards the goal.

Perception is the task of acquiring knowledge about the robot's surround-
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ings. This is done by taking measurements from various sensors and then extracting

meaningful information from them [1]. Perception leads to both understanding the

nature of robot's surroundings and locating the robot with respect to its surround-

ing objects. As such, locating the robot in its environment is the most fundamental

problem to provide a mobile robot with autonomous capabilities[2]. Further, the

uncertainties in detecting position and identity of objects in the environment in-

crease in the presence of unstructured objects such as trees, bushes, pedestrians

etc. in a typical outdoor environment. The present research is aimed at developing

algorithms for improving the three-dimensional (3D) perception of a wheeled mo-

bile robot in outdoor environments using range data from Multi-beam rotating laser

scanners, where no prior map is available to the robot. The range data from a 3D

laser scanner is a set of points sampling the surfaces surrounding the robot. The

systematic way in which range data is acquired by the laser scanner is exploited by

our algorithms to build robot's perception.

Although Global Positioning System (GPS) appears to directly provide

robot's location in outdoor environments, GPS alone is not adequate [3]. GPS has

localization errors up to few meters, which could turn crucial in some situations.

Multi path errors and requirement of clear sky view make GPS less dependable. This

makes it essential for a robot to establish its location using the robustly detected

features within the environment. This is the primary step required by a robot to

complete its navigational tasks.

Mobile robot navigation in an outdoor environment poses increased dif-

�culty compared to that in an indoor environment because of the environmental

complexity. Features present in indoor environments are regular, environment is

structured, and the robot moves in a plane, which usually makes it su�cient to

perceive and represent the environment in two dimensions (2D). Traversable regions

of an indoor environment are usually a plane at a single level. Features like walls,
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doors and other obstacles are represented in this plane as lines and arcs. However,

the environments encountered by outdoor mobile robots are rarely structured and

features not regular in shape. Also, the robot's orientation keeps changing in three

dimensions (3D) as it moves on an uneven terrain, so it keeps seeing di�erent sections

of the surroundings with a 2D scanner. This makes a simple 2D perception inade-

quate for representing outdoor environments. It is also di�cult to model the variety

of objects or features that are present in outdoor environments. The unstructured

nature of robot's surroundings, uneven terrains and the ability or requirement of

robots to traverse such terrains in six Degrees of Freedom (6DOF) make it essential

for outdoor mobile robots to perceive environments in 3D. Another characteristic of

outdoor navigation is the need for representing large areas in which the robot moves

and the scalability of the maps as the area of operation increases.

The contribution of this work lies in exploiting the structured nature of

range data provided by rotating Multi-beam laser scanners when sampling the

robot's surroundings. This is accomplished by introducing a novel measure of un-

evenness that is computed at each range point using the neighbouring range data

from the laser scanner. A simple mathematical model is derived and analyzed to

project unevenness as a point attribute for developing robot perception. Uneven-

ness is obtained by comparing the expected and measured range di�erences be-

tween neighbouring range points in a laser scan. Unevenness largely overcomes the

shortcomings due to the sparse sampling of surroundings along the elevation angle.

Unevenness, introduced in this work, captures surface discontinuities between two

neighbouring range points very e�ectively in spite of data sparsity and even when

these two points are from di�erent surfaces but close to one another. Unevenness also

allows us (using a trick) to overcome the e�ect of small roll and pitch experienced

by the robot in motion on an uneven terrain. It also works well in environments

containing slopes, making it suitable for wheeled mobile robot navigation. Since the

methods are processed at a point level, there is a clear distinction between an object
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and ground and between two objects.

This thesis contributes to three important stages of robot navigation. Un-

evenness is �rst used to obtain traversable regions around a robot after detecting

obstacles. This helps the robot to traverse its environment by avoiding obstacles.

Points belonging to the non-traversable regions are then segmented to bring out

important discernible objects in the robot's environment. Unevenness is further uti-

lized in detection of key points within a scan which are used for registration of scans

that are taken at di�erent locations from a moving robot. This improves the quality

and speed of scan registration leading to more accurate robot localization.

1.1 Background

Progress of autonomous capabilities in robots can be traced back to Autonomous

Guided Vehicles (AGVs) that moved or glided over metal wires using magnetic

induction [4]. Wires are laid under �oor following the desired trajectories. Change

in trajectories would require re-laying of the wires underground. AGVs that could

track painted lines or stripes provided some �exibility, where it is possible to repaint

the trajectories over the �oor [5]. However, this required maintaining the �oor and

paint surfaces in a good shape for robust navigation. Further �exibility in navigation

is attained by using arti�cial markers called beacons placed at di�erent locations

around the area of robot operation [4]. These markers are continuously observed

by the moving robots from di�erent locations. By locating re�ective markers at

di�erent locations around an operating hall, an AGV with laser range �nders can

localize itself in the operating area. This approach allows �exibility in altering the

trajectories on-the-�y using software. All these approaches are suitable only for

industrial applications and within a limited area of operation because additional

infrastructure (wires, lines, beacons) is required for implementing robot navigation.
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It must also be noted that the robot trajectories must be obstacle free for safe

navigation.

Unlike in industrial applications, a dedicated navigation infrastructure is

generally not available for myriad of applications where autonomous mobile robots

can be potentially employed. All these environments are too complex to be mod-

elled. Driverless cars should understand their environments with dynamic tra�c

participants for safe navigation. The DARPA Grand challenge 2005 in o�-road

desert-like environment, and the Urban Challenge in 2007 in a simulated urban en-

vironment provided impetus for development of driverless cars. Figure 1.1 shows

the competition winning cars Stanley [6] and Boss [7] respectively. Interest is still

growing with several major corporations like Google and almost all the technology

and automobile companies getting involved in development of driverless cars. How-

ever, several challenges both technical and legal are to be overcome before they are

employed safely on public roads.

Figure 1.1. DARPA Competition Winners, Stanley (left) at 2005 Grand Challenge
and Boss (Right) at 2007 Urban Challenge.

Modelling the entire operating area by taking true measurements prior

to navigation is far from practical. In addition, autonomous robots may have to

operate in completely new locations or in areas that are constantly changing. For

this reason, it is important for robots to develop perception of environment at the

time of navigation. From the perceived environment, a robot can plan its navigation

by using the detected features. It has to primarily �nd a traversable region, which
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is free of obstacles, for planning its motion. Environment surrounding a robot has

to be built in the form of a map which is a compact representation that a robot can

understand. Once a map is available, the robot can localize itself in its environment

based on the sensor measurements and carry out navigation. Maps can be classi�ed

as either metric or topological. Metric maps have geometrical features present in

the map with information on the distances between features. Topological maps [8]

are higher level representations containing cognizable features forming graph nodes

with edges between the nodes representing connectivity between nodes. Another

representation is hybrid maps, which utilize both metric for local representation

and topological for higher or global level representation [9, 10].

Robot navigation can be local and reactive, wherein a robot traverses a

smooth traversable path by avoiding obstacles. However, this does not guarantee

that the robot will reach its goal. It may lead to local minimum or to oscillations

between two locations. Dynamic window approach [11] incorporates the dynamics of

the robots along with overall goal to reduce the search space to admissible velocities.

Similarly, a tentacle based navigation scheme [12] evaluates each of a set of pre-

calculated trajectories, called tentacles, depending on the vehicle speed. A clear

trajectory, preferably in the direction of current motion, is blended towards a global

trajectory de�ned with GPS waypoints. Lack of reliability of GPS is a drawback for

this approach.

A map can �rst be built by manually driving the robot in the operat-

ing environment. Using this map, the robot can then navigate autonomously [13].

Thrun [14] provides the history of robotic mapping, and surveys various probabilistic

models that are used for 2D mapping. In unknown environments, given the sensor

measurements, robot location should be known for constructing a map. But robot

location cannot be established without having a map. This mutual dependence

makes the problem di�cult to solve. Popular approach for solving this problem is
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called Simultaneous Localization and Mapping (SLAM), �rst introduced by Smith

and Cheeseman [15]. It concurrently maps the environment and locates the robot

in it. There are numerous solutions to the SLAM problem, most of them for 2D

maps, including Extended Kalman Filter [16], Particle Filter [17], Sparse Extended

Information Filter(SEIF) [18], FastSLAM [19] and GraphSLAM [20]. However, most

of the implementations are limited to small scale indoor environment with 3DOF

(x, y, θ) where x and y are the spatial coordinates and θ is the bearing; these al-

gorithms are not easily scaled to the 3D environment as they require complex rep-

resentation of the environment and much more memory. Robot pose should be in

6DOF (x, y, z, pitch, roll, yaw). However, if proper data association and correspon-

dence between features in successive scans are achieved, SLAM can be performed in

extensive outdoor environments [21]. For this, robust feature detection is essential.

Nüchter et al. [22] built 6D SLAM by incrementally registering the successive 3D

scans using the standard registration algorithms along with odometry, and then re-

laxing the constraints when either taking the known measurements or when visiting

the same spot again called loop closing. Borrmann et al.[23] similarly extend the

graph based 2D SLAM [20] to obtain a global representation of the environment by

building a network using a distance heuristic along with odometry based extrapo-

lation for obtaining 6DOF pose in 3D data. It also registers successive scans using

Iterative Closest Point [24] algorithm.

In order to overcome the complexities of 3D outdoor environments, partic-

ularly because of the huge data requirement needing large memory, high computa-

tional requirements and also to build a convenient navigation scheme, researchers

have represented outdoor environment using di�erent types of maps. In structured

environments, where robots traverse on plane surfaces, environments are su�ciently

well represented in 2D with obstacles and landmarks represented by simple features

like lines. This leads to 3D perception of environment by using simple 2D maps for

navigation [25]. Here, the complexity of map representation is reduced. Occupancy
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grids [26, 27] commonly represent robot environment in 2D with equally spaced grid

cells classi�ed as either obstacle or free based on the information of points present in

individual cells. All the data from di�erent sensors or the data from the same sensor

taken at di�erent robot locations can be fused onto the grid-cells [26]. However, 2D

representation leads to erroneous assumptions in non-�at terrains, making it essen-

tial to represent the environment in complete 3D. Occupancy grids are extended to

3D environment where 3D space is discretized into smaller cubic cells called voxels

[28] to represent free and occupied spaces. A 2.5D representation is commonly used

as a trade o� between completeness of 3D and simplicity of 2D representation, where

each grid cell contains some information about the column above it. For example,

elevation maps [29] are represented with values of highest point in each of the grid

cells. This representation is used by most teams participating in DARPA Urban

Challenge [30]. In addition to the regular rectangular grids, and in order to deal

with data sparsity, some methods use polar grids [31] or circular grids [32], where

size of cells increase with distance from the robot. Elevation maps however clas-

sify potentially traversable regions under over-hanging objects as obstacles, which

is not desirable. This may, for example, prevent a robot from seeing the regions

under trees or bridges as traversable. Map registration using data from di�erent

locations is also di�cult using elevation maps. Overhanging obstacles can be dealt

with by employing a safe height [31, 33] or by using extended elevation maps [34]

where points above a free space are safely discarded. Multi-level surface maps [35]

discretize points vertically projected on to a cell into discrete height levels thus al-

lowing robots to traverse on multiple surfaces like over and under the same bridge.

In addition to these, compact representations include Octomaps [36], where the re-

gions are represented using octrees [37]. The advantage here is that the maps are

compact and not limited to a �xed area. They can easily be extended as the robot

moves. Recently Saarinen et al.[38] employed 3D occupancy grids using normal

distributions in each cell, calling the scheme as 3D Normal Distribution Transform
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Occupancy Map (3D NDT-OM), which combines the compactness of the Normal

distribution transform [39] with the robustness of Occupancy grids.

In the approaches described using occupancy grids, a set of points within

a grid cell are grouped together and collectively classi�ed. This results in a lack of

clear boundary between di�erent objects or between an obstacle and ground. But,

for an outdoor mobile robot, it is desirable for the features to have clear boundaries.

This helps the robot to accurately segment and classify features containing only

the points belonging to them. This is essential for robust data association in a

scan and for feature correspondence between the scans. Objects are also needed to

be tracked to understand the behaviour of tra�c participants. For bringing clear

boundaries between objects, one has to use attributes at a point level. But given that

a point in isolation cannot give much meaningful information, points are needed to

be equipped with local description about the surroundings. Point level attributes in

robot literature include Intensity [40], Normals [41], Di�erence of Normals [42], Local

Convexity [43], Persistent Feature Histograms [44] and Unevenness Point Descriptor

(UPD) [45]. Of these, Intensity is not linear, thus making it di�cult to use. Intensity

values returned to the sensor also depend on the angle at which the laser strikes the

surface. While Normals, Di�erence of Normals, Local convexity and UPD take

into account both terrain irregularity and inclination, they depend on neighbouring

points which results in a smooth transition between ground and objects.

Given this background, a robot should develop a good perception in order

to solve the navigation problem. There is an incentive in developing robust schemes

that detect clear feature boundaries between ground and obstacles and also between

two objects. Unevenness, proposed in our thesis, does this by developing perception

at a point level without using grid based maps. Unevenness uses the range data from

a point's immediate neighbours, and information that is available in the structured

scan data. Unevenness as an attribute has a potential to contribute to di�erent
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stages in robot navigation as detailed in the subsequent chapters along with the

state-of-art techniques. Unevenness develops reasonably good perception in spite of

the data being sparse in the radial direction.

1.2 Research Methodology

Following are the underlying principles and assumptions implicit in the present

research work for outdoor mobile robot navigation.

� Robot perception is developed by using data from a multi-beam laser scanner

that quickly scans the robot surroundings and provides structured range data

leading to an organized point cloud with neighbourhood information.

� Experiments are carried out mainly on real data collected using our outdoor

mobile robot, and not on simulated data. A Velodyne HDL-32 scanner is

placed at a height of 1.3m above ground level to collect data at various loca-

tions in our campus. Thresholds are validated using obstacle boxes of di�er-

ent heights by placing them on a near �at surface of our lab terrace. Data is

collected by placing the scanner at the same 1.3m height using a stationary

stand. In addition, a Sick LMS291 laser scanner is mounted on the robot at

0.6m height and rotated in the yaw direction in a stop-scan-go fashion, and its

range data collected and processed. The purpose is to show that the proposed

methods are not speci�c to a single type of scanner.

� From the range data of a single 360◦ scan, we compute an unevenness �eld

around the robot. A threshold is applied to detect obstacles that need to be

avoided. A path for the robot can be planned within the traversable region.

Once the traversable points are removed, only obstacles remain. We again use

unevenness to segment these obstacles into distinct features. At a third stage,
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some of these features are selectively used for scan matching using Iterative

Closest Point (ICP) algorithm for localization of the robot.

� Robot is considered to be a point object. The thresholds for detection of ob-

stacles can be set according to the capabilities of the operating robot. For

example, robot width along with the wheel base and ground clearance deter-

mines the thresholds for obstacle detection and in planning a safe traversable

path.

� The nature of sampling by the laser scanner is such that data gets sparser

with distance resulting in smaller far away objects not being sampled by any

of the laser beams. However, these objects are eventually detected when the

robot moves close to them. Given the quick rate of data acquisition and slow

robot speed in our case, this poses no threat to the robot.

� Since the outdoor environments are complex and contain a variety of objects,

we focus on �nding su�cient number of robust features required for safe nav-

igation instead of obtaining perfect perception.

� Emphasis is placed on providing quantitative results for individual features

instead of that for the whole scan, given the di�culty of evaluating the large

number of points in a scan. However qualitative evaluations are included for

entire scans.

� We tried to develop algorithms that can be executed within the time inter-

val between two successive scans for the scanner rotating at 10Hz. This we

consider as real time.

� The methodologies try to clearly identify the objects and features at a point

level instead of coarsely identifying the regions in the environment.

� Since our robot moves at a slow speed (0.2m/s), and given the high rate

at which the scanner provides range data, motion corrections and sensor tilt
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(pitch and roll) compensations are not done prior to application of our algo-

rithms. This does not adversely a�ect detection as the robot movement is

very minute during the interval between reading the ranges of neighbouring

points. Once the perception is developed, the exact location of the points can

be corrected using data from the inertial sensors.

� Single 360◦ scans are processed individually as and when they are acquired.

Obstacle detection, traversability, segmentation and also the detection of key

points are done on individual scans.

� Results, where appropriate, are shown with individual features instead of the

entire scan for highlighting our contributions.

1.3 Thesis Overview

This thesis presents methods that improve 3D perception of a mobile robot in an

outdoor environment. 3D perception around a given robot position in an unknown

environment is developed by using a simple unevenness attribute obtained by using

only the range data from a rotating Multi-beam laser scanner. Unevenness with an

ability to capture subtle surface discontinuities is shown to clearly bring out features

at a point level and contribute to di�erent stages of robot navigation. This level of

perception is obtained in spite of data being sparse in the radial direction and in

complex outdoor environments. Algorithms developed assume no prior knowledge

of the environment; they are model free, and the proposed methods require no

prior training or machine learning. Chapters following the introduction with the

general background information on robot navigation are organized with each chapter

describing a single navigation stage along with the state of the art.

This chapter provides an overview of robot navigation problem and the
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need for reliable perception for mobile robots in order to navigate in complex outdoor

environments.

In chapter two, information on the types of sensors used with mobile robots

is presented. Laser scanning systems used for obtaining 3D laser scans, particularly

the Velodyne HDL-32 laser scanner, primarily used in our experiments, is described

in detail. The systematic nature in which the sensor scans the environment leading

to an organized range data is explained.

In chapter three, the novel point level attribute, which we call unevenness,

is introduced. This is central to our work. Unevenness is characterized for di�er-

ent obstacle heights and slopes across the ranges. Unevenness is shown to detect

traversable regions around the robot and it clearly brings out even smallest of obsta-

cle features from ground. It detects both positive and negative obstacles. Obstacles

are detected in spite of presence of slopes, and even when the robot experiences

pitch and roll. Immediate traversable region around the current robot location is

obtained within a short period, making this approach real time.

In chapter four, segmentation of discernible objects present in robot's en-

vironment is presented. Ability of unevenness in bringing out surface discontinuities

in the individual objects is demonstrated. Detection of �ner edges in the transverse

direction in addition to regular radial edges is shown to separate out even objects

which are close by. A point level region growing algorithm is used to grow segments.

Growth is restricted based on the unevenness values of individual points and de-

tection of edges using unevenness. Even though unevenness exploits the structured

nature of a scan, in theory it can only segment out rigid objects. It is shown that

a reasonable set of discernible features that are needed for robot navigation are

properly segmented, including moving objects like vehicles, pedestrians and even

bicycles. Segmentation is performed in real time.
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In chapter �ve, unevenness is used for improving quality and speed of scan

registration between successive scans obtained from a moving robot. Registration

aggregates point clouds obtained from di�erent locations leading to robot localiza-

tion. Robot pose is obtained as a result of convergence to a correct rigid transforma-

tion between successive scans. Unevenness detects key points within the individual

scans leading to good correspondence and accurate registration. It is shown that

registration with selected number of points not only improves registration speed but

also results in more accurate registration.

In chapter six, we conclude the thesis by looking at the advantages and

shortcomings that unevenness brings in improving robot perception. We also suggest

ways in which the concept of unevenness can be further extended and applied to

other areas of robot perception and navigation.
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Chapter 2

Sensors on Robot

For a mobile robot to navigate autonomously, it is not only necessary to sense its

surroundings, but it is also important to establish the state of the robot, i.e., its

position and orientation with respect to the objects around. For this, a mobile robot

is equipped with several sensors that provide information both on the surrounding

environments and the robot's internal state when negotiating a terrain. Sensors can

be primarily classi�ed into Perception, Motion or Localization sensors. Perception

sensors like cameras, stereos and laser scanners help robots in understanding the

nature of their surroundings prior to planning motion towards goal. Motion sen-

sors help a robot to traverse a terrain following a selected trajectory. Odometric

encoders and rotation sensors present on robot's wheels provide information on the

extent of robot movement. Magnetic compass provides direction information with

respect to earth's magnetic axis. Vibration sensors help determine surface roughness

when the robot is actually moving. Outdoor robots are also usually equipped with

a Global Positioning System (GPS) receiver for obtaining location (global) infor-

mation. Inertial Measurement Units (IMU) are commonly used along with GPS for

obtaining robot pose estimate. Measuring inertial changes along di�erent directional

and rotational axes, IMUs provide information on the accelerations and rotations
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experienced by robots. In addition, safety sensors like Radar (Range detection and

ranging) and 2D Laser bumper scanners prevent collisions by sensing nearby objects.

Battery level indicators sense robot's health. Data from several sensors are fused

and processed to obtain information on di�erent robot parameters.

Perception sensors sense the robot's surroundings. Information extracted

from these sensors is primarily used by robots to understand the surrounding envi-

ronment. Robot can then identify static and dynamic objects in its surroundings

for planning a safe motion towards its goal. Robot's localization information, i.e.

its current location and pose in the environment, is established with respect to the

detected robust features. Odometric sensors like wheel and rotary encoders provide

relative distances travelled by robot by measuring wheel rotations. The actual tra-

jectory traced by the robot however is di�erent from the trajectory computed using

odometry because of slippage of wheels at their points of contact with ground. With

time, this position error keeps on increasing, making it unreliable to depend purely

on odometry for robot localization. In order to overcome this, it is a common prac-

tice to obtain the location information of the robot by using the detected features

present in the environment. For example, visual odometry is obtained by analyzing

the positions of detected features in sequential camera images. Mars exploration

rovers determine the rover's pose [46] using visual odometry. A more comprehensive

technique for �nding robot pose is SLAM [15], where the robot incrementally builds

a map of the environment with its location present in it. A map can contain any-

thing between collections of sparse features to dense 3D point clouds. However, both

visual odometry and SLAM perform well with dense data obtained from perception

sensors.

Cameras are less expensive and are commonly used perception sensors

which capture environments in terms of grey level intensity images. Similarly, in-

frared or thermal cameras [47] capture thermal variations in the environment; this
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is particularly suitable for detecting negative obstacles, like ditches, particularly

during night [48]. Normal cameras capture a limited view of the environment as

they point in a single direction and depend on optical lenses for the Field-of-View

(FOV). Omni directional cameras overcome limited FOV by capturing image around

the sensor with 360◦ horizontal FOV. While images from di�erent types of cameras

provide continuous and intuitive representations that are suitable for human un-

derstanding, lack of depth information causes di�culties for robots in perceiving

distance to di�erent objects. Depth information helps robots to understand free

spaces and occlusions. There are also no illusions like shadows on road appearing as

di�erent objects (ditches). Camera images are also a�ected by illumination changes

depending on time and weather conditions. Stereo cameras [45, 49] provide infor-

mation on depth by calculating disparities between pair of images captured by twin

cameras o�set by a small distance. Bernini et al.[50] survey di�erent methods using

stereo cameras for real time obstacle detection on ground vehicles. Stereo cameras

are limited in FOV and range. Due to calculation of depth based on disparity of

a feature between two images, they are not very e�ective in sensing monotonic en-

vironments like deserts or plain terrains devoid of features. Time-of-Flight (TOF)

cameras provide distance information based on measured time interval between sig-

nal emanating from the sensor and detection of the re�ected pulse. While TOF

cameras provide quick dense measurements, they are small and have limited FOV,

failing to provide reasonable environmental representation.

2.1 Laser Scanners

Laser scanners or Lidars (Light detection and ranging) are a class of sensors com-

monly used in robotics, which measure distance using lasers. Here the measurement

device is one dimensional (1D), measuring the distance in terms of range in the
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pointed direction. A scanning mechanism helps in digitalizing the surroundings,

where the environment is represented using a set of discrete range points. Multi-

ple laser beams are �red in di�erent directions returning a range R for each beam

which is proportional to the time interval between a laser pulse release and return to

the detector after illuminating the nearest encountered surface. This kind of mea-

surement is called Time-of-Flight (TOF) technique. Other measurement principles

include Phase-Shift measurement or Triangulation [51]. A collection of these range

points along with the vertical and horizontal pointing angles φ and θ can be used to

obtain a point cloud P (x, y, z)T in 3D space R3 with each point p(x, y, z) and p∈P

representing the distance from the scanner to the sampled surface.

2.2 Two Dimensional Laser Scanners

Two-dimensional (2D) laser scanners are most commonly used by the robotics com-

munity. A 2D laser scanner contains a rotating mirror to sequentially direct laser

pulses at di�erent angles (angular resolutions typically 0.25◦,0.5◦ or 1◦) along a 2D

plane to obtain range measurements in di�erent directions. Commonly used 2D

scanners (Sick LMS291, Hokuyo UTM-30LX) with outdoor robots are shown in

Figure 2.1 along with a typical 2D scan in XY plane where each point p(x, y) is spa-

tially represented in two dimensions R2. 2D laser scans are mostly used with indoor

robots operating in structured indoor environments, where representation using 2D

maps is su�cient. Considering the complexity of the outdoor environments, and the

ability of outdoor robots to navigate terrains using six Degrees-of-Freedom (6DOF),

it is essential to perceive the environments in 3D.

Several researchers have come up with innovative mechanisms for obtaining

3D point clouds using 2D laser scanners. Multiple 2D laser scanners pointing in

di�erent directions can also be used for creating 3D perception. Thrun et al. [52]
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Figure 2.1. Common 2D Laser Scanners: Sick LMS291 and Hokuyo UTM-30LX
(Not to scale) along with a typical 2D Plot.

place one scanner horizontally for obstacle detection and another vertically to build

3D scan as and when the robot moves. Howard et al.[53] use a similar arrangement to

obtain a dense 3D map of the outdoor environment. Multiple 2D laser scanners are

placed on top of Stanley, the DARPA race winning robot [6] to generate a 3D patch

in front of robot. Triebel[54] generated 3D scan by placing the robot on a 4DOF

manipulator. Bosse and Zlot [55] built a scanning mechanism by placing a compact

Hokuyo scanner along with an Inertial Measurement Unit (IMU) on a spring based

mechanism which can be either carried by a walking human or be placed on a vehicle

so that with vibration the laser scanner points in di�erent directions to generate 3D

scan. Thrun et al.[56] mounted a 2D scanner on a helicopter which goes aerial for

obtaining a 3D scan. By placing a rotating mirror in front of a 2D scanner [57],

the laser beams from the scanners are directed along varying angles to obtain a 3D

scan.

Outdoor mobile robots commonly use scanning mechanism with an inde-

pendent external motor that rotates the whole 2D scanner along an axis [25, 58, 59,

60, 61]. Information of the motor rotation angle along with the range and direction

of laser beam of the 2D scanner determines location of points in 3D space. Initial

attempts include Surmann et al.[62] using a nodding scanner in the pitch direction.

Hähnel and Burgard [63] rotate the sensor in the yaw direction. Wulf and Wagner
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Figure 2.2. Scanning Con�gurations, starting from Left: Pitch Scan, Roll Scan,
Yaw Scan, Upward Yaw Scan.

[64] describe ways for rotating 2D scanners using external motors along with the

resulting scan densities that suit di�erent applications. They introduce another ro-

tation scheme called rolling scan which produces a hemispherical dense scan in front

of the scanner. Similar rotation is done by pointing the laser scanner upwards called

upward yaw scan. The axis of rotations and the resulting densities are replicated in

Figure 2.2 by giving a constant range. It can be seen that point densities are more

nearer to the axis of rotation and sparse in directions orthogonal to the rotation

axis.

Out of these scanning mechanisms, Pitch scan with a nodding mechanism

[61] and Yaw scan with a rotating mechanism [25] are commonly used with outdoor

mobile robots; some standard products are also available on these lines. The major

drawback of these approaches comes from the Stop-Scan-Go nature of scanning

which requires few seconds (Typically 10s) to complete a full 360◦ scan. This is

not desirable with the fast moving robots or in dynamic environments. Triebel [54]

place two Sick 2D scanners in back-to-back fashion facing away from each other to

rotate in the yaw direction with each scanner covering a 180◦ view, thus reducing

the scan acquisition time to half.
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2.3 Three Dimensional Laser Scanners

Three dimensional (3D) laser scanners scan the environment in 3D and produce a

point cloud. Earlier, 3D laser scanners (From Riegl, Leica) were mainly terrestrial

laser scanners which produced very dense point clouds. These scanners found appli-

cations in surveying, architecture and archaeology. High cost, weight and large data

storage requirement make them less suitable for autonomous vehicles. Multi-beam

rotating laser scanners are compact and are commonly used with autonomous out-

door mobile robots and driverless cars starting with the DARPA Urban challenge in

2007, where the majority of participants used Velodyne HDL-64 laser scanner as the

primary perception sensor for detecting obstacles [30]. These are the class of sensors

having laser head assemblies that rotates in the yaw direction. A family of Multi-

beam laser scanners along with the number of laser beams for each scanner is shown

in Figure 2.3. Important speci�cations of the individual scanners are tabulated in

Table 1. A set of laser diodes and detectors (16/32/64) are arranged such that they

�re lasers simultaneously at speci�ed pitch angles in a vertical plane. Density of

sampling in the radial direction depends on the number of lasers and speci�cally the

pitch angle resolution. The number of range returns equal to the number of di�er-

ent laser beams �red. The laser head assembly continuously rotates in the clockwise

direction and �re lasers at regular rotation intervals (Azimuth) before completing a

360◦ scan. Depending on the sensor model and the user settings, 5 to 20 scans are

obtained every second. This rate of rotation dictates the angular resolution in the

Azimuth (θ). Range points at increasing pitch angles(φ)at a given azimuth angle

(θ) will be referred as the radial direction, whereas those in the lateral direction at

a given pitch angle (φ) will be referred as the transverse direction for the purpose

of computing terrain unevenness.

Systematic scanning by the multi-beam laser scanners provides an ordered

point cloud where one beam from a laser at a �xed pitch angle (φ) samples the
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Figure 2.3. Velodyne Laser Scanners: HDL-64, HDL-32, VLP-16 (Number of laser
beams shown in Red).

Table 2.1: Important Speci�cations of Velodyne Laser Scanners.

environment very closely forming a ring like pattern on a level ground. In the

radial direction however the gap between adjacent rings increases with the lasers

pointing farther away. The resultant scan provides an ordered point cloud where

the information of neighbouring points is implicit, and one does not have to resort

to computationally expensive nearest neighbour search. Scan data contains range

values along with the laser beam pointing angles, and this information has been used

to advantage in this work for developing perception of the robot's surroundings.

Multi-Beam laser scanners commonly used with autonomous robots are

the Velodyne HDL-64 and HDL-32 scanners containing a set of 64 and 32 laser
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diodes/emitters respectively. More recently, a 16 beam Velodyne VLP-16 has been

developed which is light weight and less expensive, making it attractive for use in

research. In addition, when a 2D laser like the Sick scanner is rotated along the

yaw direction in the Stop-Scan-Go fashion, a similar ordered point cloud is obtained

with the number of rings equal to the number points in a single 2D scan. Our work

mainly uses a compact Velodyne HDL-32 sensor, which is described below in more

detail. In addition, a Sick LMS291 2D scanner is rotated along the yaw axis and

its range data collected and processed to demonstrate that the presented method

works even for such a setup.

2.4 Velodyne HDL-32 Raw Data

The Velodyne HDL-32 laser has a set of 32 laser diodes arranged in a vertical plane.

Lasers are �red with pitch angles φ between −30.67◦to + 10.67◦. The di�erence in

pitch angles between consecutive laser beams is either 1.33◦or1.34◦ [65]. Negative

angles are for lasers pointing towards ground. Positive angles point above the sen-

sor eye level and detect large obstacles like buildings and trees at faraway distances.

Velodyne sensors are interfaced through an Ethernet connection. User Datagram

Protocol (UDP) packets are parsed to obtain the required data �elds. In addition,

Velodyne HDL-32 provides data from built-in inertial sensors and an external GPS

receiver for global location information. Scanner scans its environment by continu-

ously rotating in a horizontal plane and �ring a set of 32 lasers at di�erent azimuth

angles (θ). In our case, the scanner rotates at 10Hz enabling the sensor to collect

360◦ scans in every 0.1second. In one sensor head rotation, the environment is sam-

pled with upto 70000 points. The angular resolution along the azimuth (θ) is about

0.164◦. This results in a FOV of 41.33◦ × 360◦, where each laser returns a range R.

The resulting scan is a set of points P (R, θ, φ)T representing the environment with
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each point giving distance to the surface sampled by a laser. The set of points P in

3D space can be represented in Cartesian coordinates p(x, y, z) ∈ P . The x, y and

z coordinates are calculated using the following equations for a scanner rotating in

the clockwise direction. Rotation angle θ is the clockwise rotation angle starting

from the axis left of the robot which is negative X-axis according to our coordinate

system (See Figure 2.4).

Figure 2.4. Velodyne Coordinate system.

x = −R cosφ cos θ

y = −R cosφ sin θ

z = R sinφ

(2.1)

Lasers spreading out of a HDL-32 scanner are shown in Figure 2.5 along

with a sample scan in Figure 2.6, where the robot is moving towards the north

direction. A set of 32 individual lasers are shown in di�erent colours with their
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Figure 2.5. Velodyne HDL-32 Laser spread.

Figure 2.6. Sample Point-cloud with each colour points sampled by one laser beam.
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pointing or the pitch angles φv, where v = 1 to 32. In the �gure a slight roll

experienced by the robot towards left causes the circular rings to compress in that

direction. The individual UDP data packets from the scanner are processed by

parsing the packet contents of each point p in the point cloud P (p ∈ P ) for Range

(R) along with the rotation or azimuth angle (θ) based on the available order of the

elevation or pitch angles (φ). Additionally, for each point, Velodyne sensors return

intensity values (I). While intensity values are also used for developing perception

[40], they are often very noisy. They are also non-linear in nature; hence this work did

not use intensity values. Apart from data packets, Velodyne scanner also outputs

status packets providing information on global position in terms of latitude and

longitude obtained from a separate connected GPS receiver along with the universal

time for synchronization between di�erent readings. Status packets also provide the

inertial measurements along the three axes for pitch roll and yaw. There are three

readings each for the rate of rotation and rate of accelerations along the three axes

[65].

The resulting data from Velodyne scanners is sparse in the radial direction

i.e. along the pitch angles. Because of the di�erence between the consecutive pitch

angles being constant (1.33◦), as one goes away from the scanner, starting from

the inner most laser, the distance between the points sampled by consecutive laser

beams increases(Figure 3.1 and Figure 3.2 in Chapter 3). However, in the transverse

direction the data is very dense. This is because the angular resolution between the

neighbouring points in this direction being very small (≈ 0.16◦). This data requires

speci�c algorithms for the purpose of extraction of useful information.

Several problems need to be addressed when working with data from 3D

Laser scanners. Laser scanners sample surfaces in terms of points. A point in

isolation cannot provide any meaningful surface information. Also since the object

surfaces are only sampled with a set of points, a complete recovery of the entire
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geometry of object's surface is di�cult. This is particularly so when sampling non

continuous surfaces like trees or vegetation. These correspond to violations of the

sampling theorem [66].

Figure 2.7. A car sampled by laser scanner with intensity values.

To present the challenges of 3D scan data, Figure 2.7 shows a part of laser

scan containing a car sampled by di�erent laser points. A subset of points represents

an object (car) and the traversable regions (road) under it. An alternative is to

build surfaces using neighbouring points. However that also proves di�cult given

the non-uniform nature of scan along the radial and transverse directions and also

because of the fact that di�erent surface patches look alike. It is di�cult to establish

correspondence between points or surfaces measured at di�erent times from di�erent

locations, since exactly the same point is rarely sampled from two locations from

a moving robot. It can also be observed that near the surface discontinuities, the

points are not too far apart. The range di�erence between two neighbouring points

lying on two di�erent surfaces is also very small to be e�ectively used for detecting

a boundary. For example, in Figure 2.7, it can be observed that the points on the

car tyre and the road surfaces are very close to one another, making it di�cult to

detect tyre edge using distance or range measurements.

Location of the sampled surface point is not only dependent on the laser's
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range, but also on the pitch (φ) and rotation (θ) angles at which the laser beam is

�red. It is thus necessary to have accurate values of these angles. Variation of laser

pointing angles (intrinsic) from the pre-speci�ed values and placement o�sets of the

scanner with respect to the vehicle frame (extrinsic) also a�ect the measurement

accuracy of range values. Range measurements are very sensitive to error in rota-

tions; a small error in angle causes a large error in range measurement. Calibration

is thus required to overcome these o�sets and make corrections to pointing angles.

Calibration of the lasers is a research �eld in itself. While it is easy to calibrate sin-

gle beam lasers by using hand measurement against the ground truth, this becomes

di�cult with the multiple beam laser scanners.

Muhamad and Lacroix[67] perform a supervised calibration using a dedi-

cated calibration target based on an optimization process which gives precise opti-

mization parameters for laser calibration starting from an initial estimate. However,

optimization is performed by comparison of scanned data with ground truth. This

is tedious and becomes di�cult with increasing number of lasers. Sheehan et al.

[68] perform automatic self-calibration of laser scanners as a task of maximizing the

point cloud quality. They use the Renyi Quadratic Entropy to measure the degree

of organization in a point cloud. By expressing entropy as a function of unknown

system parameters, calibration parameters of the sensor are deduced using an online

optimization mechanism. Levinson and Thrun [69] provide a novel fully unsuper-

vised calibration method which also recovers the extrinsic pose of the laser scanner

with respect to the vehicle frame. Here no calibration target, labelling or manual

measurement is needed. Calibration is done relying on a weak assumption that the

points tend to lie on a continuous surface. An energy function is de�ned to penalize

points far away from the surface de�ned by the points of other sensors. They are

able to obtain calibration of all the sensor parameters in a few seconds of running of

the vehicle. Manufacturers of the laser scanners perform calibration on individual

units at their dedicated calibration facilities before shipping, the knowledge of which
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is not available to the users, but for the calibration parameters. The present work

uses such parameters as are provided by the manufacturer of Velodyne HDL-32.

2.5 Organized Range Data

Figure 2.8. Top: Point cloud represented as Range image (Range HSV coded),
Bottom: Organization of Range data.

The organized nature of scan from these sensors can be represented using

a 2D range image as shown in Figure 2.8. Here the horizontal axis represents the

scanner rotation angle (θ) starting from left. Vertical axis represents the pitch angle

index v starting with the lowest pointing angle from the bottom. Each point can be

indexed for range Ru,v by using rotation angle index u as in θu and index of elevation

angle v as in φv. A range image can be considered a data matrix indexed for range

using u and v.

Figure 2.8 shows a range image obtained from one complete scanner ro-

tation where the range values Ru,v are encoded in terms of Hue Saturation Values

(HSV) starting with Red for near ranges to Purple for far ranges (Max range for

HDL-32 is 80m). Range image is little stretched along the vertical direction to im-
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prove visualization. Ru,v is range of point pu,v returned by a laser beam with azimuth

angle θu and pitch angle φv. At the centre and left of the image, there are two buses,

and to the right there is a utility vehicle (jeep). A vertical pole-like object near the

front wheel of the bus is a cylindrical communication antenna present on our robot,

which being near is encoded in bright red. The value of max in vmax is 32 for the

HDL-32. The maximum value max in umax is the number of azimuth angles (θu) at

which the range readings are taken. Scanner rotating at 10Hz frequency results in

horizontal max to be between 2100 to 2200 depending on the number of data pack-

ets in one rotation. Bottom image Figure 2.8 shows the organized nature of data

points with each node pu,v representing a data point connected to its neighbouring

points.

Each vertical column contains ranges obtained at one azimuth angle (θu).

Each row consists of ranges obtained by the laser that �res at pitch angle (φv) while

the sensor rotates through (θ1 to θumax). Representation of the range data in this

fashion allows the processing algorithms to access neighbouring points directly using

indices of points without resorting to computationally expensive nearest neighbour

search methods like the k-d trees [70].

2.6 Data conditioning

Raw range data from the laser scanners is conditioned prior to processing by per-

ception algorithms for obstacle detection, segmentation or localization. Data is �rst

pre-processed for reducing noise. Noise in range measurement, in addition to the

rough nature of the scanned surfaces makes the use of raw data di�cult for di-

rect processing, since we are trying to detect very small discontinuities. One way

to reduce noise is by smoothening of data, taking the average of ranges from the

neighbouring points. Taking averages however results in smoothening of valid edges,
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which is not desirable. Bilateral �ltering [71] can be applied to reduce noise while

preserving the object edges. Techniques for de-noising of data like Weiner deconvo-

lution [72] can also be used. However, these techniques require signi�cant additional

processing. As the data from HDL-32 used in our experiments is dense in the trans-

verse direction and sparse in the radial directions, �ltering is applied only in the

transverse direction, i.e. along the individual rings of a laser scan. A simple me-

dian �lter [73] with a window size of three points is applied. A narrow window size

helped in retaining narrow features such as poles. Median �ltering removes points

with abnormal deviations from its neighbours.

Figure 2.9. Top: Raw data, Bottom: Processed range image after �lling missing
points.

In addition to noise, raw data contains some points which do not return any

range. Specular re�ections are the primary reason for such points, where a detector

does not detect any re�ected beam. Although it is possible to interpolate for the

missing data points using range values from their neighbours, we perform a simple

look-at-immediate-transverse-neighbours and �ll the missing range values. As the

data is dense along a ring, and the surface being contiguous, the range values of

immediate neighbours are usually similar; we thus �ll with the value of least range

from the immediate neighbouring points into a point which does not contain any

range.
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Substituting for null ranges in the raw range image with valid range values,

the structure of an organized range image and the continuity of the object surfaces

is maintained. In Figure 2.9, the top image shows range image with raw data

with several black boxes scattered throughout the image. These are locations in the

range matrix with zero values within surfaces that otherwise are supposed to contain

some range values. It is observed during experiments that the number of specular

re�ections is more on a sunny day particularly around noon. The bottom image

shows the processed image where most of the void points are given values from

their neighbours ensuring smooth object surfaces. Conditioning of points in this

fashion will allow unevenness (described later) to be applied on continuous surfaces

using neighbouring points. Presence of void points makes it di�cult to calculate

unevenness, as it relies on range values of neighbouring points. This conditioned

data is then processed by perception algorithms to bring out prominent features in

the robot's surroundings.
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Chapter 3

Unevenness and Traversability

This chapter introduces a novel measure of terrain unevenness that is central to this

research work. Unevenness is developed by exploiting the structured nature of range

data obtained from the multi-beam rotating laser scanners. Unevenness is shown

to be sensitive to discontinuities in the scanned surface. That enables it to bring

out clear boundaries between an object and ground and between two overlapping

objects. In addition to detecting regular obstacles like trees, buildings and vehicles

for the robot to avoid colliding with them, unevenness detects smaller obstacles

such as road boundaries and pavement edges. Detection of stones or kerbs is also

essential, as otherwise the robot may try to drive over them and hurt or destabilise

itself. It is also important to detect negative obstacles like ditches and potholes so

that the robot can avoid getting stuck in them.

This chapter de�nes unevenness (Ω) and then proceeds to derive an analytic

expression for it in terms of range data. The resulting unevenness �eld is analysed in

order to set thresholds for detecting obstacles at di�erent ranges. Obstacle detection

is faster because it is done as and when the data is received column wise, i.e.

along the radial direction. Subsequently the traversable region around the robot is
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obtained as a connectivity graph by connecting the non obstacle ground regions.

Unevenness is shown to be robust in detection of obstacles in spite of terrain slopes

and sensor tilts caused by the pitch and roll experienced by a moving robot.

3.1 State of the Art

Obstacle detection and traversability are active areas of research in robot navigation.

Papadakis[74] classi�es methods employed for classifying terrain as a stage preceding

motion planning. Primary classi�cation is into Proprioceptive and Exteroceptive

sensory data processing methods. Proprioceptive sensors like vibration sensors gauge

the nature of surface when the vehicle moves over the terrain [75]. Exteroceptive

sensors including Cameras, Time-of-Flight cameras [76], Stereo cameras [45, 49]

and Laser scanners perceive the environment from the robot's perspective. This is

essential for safe navigation of autonomous vehicles. In some approaches, multiple

sensors are used [76, 77, 78]. Because of high accuracy, �eld-of-view and direct range

reading, most methods including ours primarily use Laser scanners. Laser scanners

provide a direct measurement of range to the nearest intercepted object.

Data representation is primarily in the form of point clouds, but Occu-

pancy grids [27] are commonly used for spatial representation of the environment.

Occupancy grids can be in 2D, or in 3D called voxels [49, 79, 80]. Some approaches

[25, 81] build 2D maps from 3D range data. Here substantial information is lost due

to projection of data onto 2D grid, making them suitable only to environments with

predominantly �at terrains. A 2.5D representation is commonly used as a trade-o�

between completeness of 3D and the simplicity of 2D representation. It was used

successfully [30] in DARPA challenge where the height di�erence or elevation map

was the most common approach in determining obstacles [3, 7, 82] [12]. The height

of point from perceived ground gives elevation of the region. This approach faces
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di�culty in dealing with overhanging objects like tree branches, where a potentially

traversable region under a tree is labelled as non-traversable. Overhanging obstacles

are dealt with by employing a safe height [3, 31] or by using extended elevation maps

[34] where the obstacles above a free space are safely discarded. Points in a grid

cell are discretized into di�erent levels based on heights called Multi Level Surface

Maps [35] allowing vehicles to traverse on multiple surfaces, like over and under the

same bridge.

Polar grids overcome the problem of non-uniform data distribution present

in the regular rectangular grids. They provide natural distribution of 3D laser scan

with discretization along the rotation angle and returned ranges. Several implemen-

tations [31, 32, 83] use polar grids for detecting obstacles. Korchev et al [84] perform

real time segmentation using min-map, max-map and di�erence-map to remove even

non-�at ground and then do the 8 connected component analysis and compare per-

formances using rectangular and polar grids. Himmelsbach et al. [32] bin polar

segments in radial direction. Each bin has a single representative point reducing

the number of data points. Piece-wise line-�tting is done to segment ground and

obstacle points. Points are classi�ed as ground when the line segment has slope and

height di�erence smaller than their respective thresholds.

Unevenness detects obstacles at a point level, where each point is classi�ed

as either belonging to ground or to an obstacle. Point level detection leads to

real time processing of the data points at a sensor rotation angle starting from the

inner most point and proceeding outwards. This overcomes the problem of under-

segmentation. Chang et al.[85] primarily use slope between last classi�ed ground

and the next point for detection of obstacles. For detecting large objects faraway, a

height di�erence threshold of 1m is set. This does not detect smaller obstacles, which

unevenness is able to detect. Shneier et al. [78] learn the nearby regions using sensors

like stereo or Lidars using a similar approach [85] and then predict the traversable
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nature of regions beyond the sensor range by using camera images. Steinhauser et

al.[86] identify points belonging to road surface by �tting lines to traversable points

beginning from the innermost point. Traversable regions are detected beyond the

obstacles again by �tting lines. Wulf et al. [25] detect obstacles by �nding edges

on scans both in the horizontal direction based on range discontinuity and in the

vertical direction by locating an obstacle point that is vertically above a ground

point. This method however is suited only for predominantly �at terrains. Slopes

at times are traversable if they are within the navigational capability of the robot;

so a terrain with slope less than a given threshold can be traversable [31, 77, 78, 87].

Morton and Olson [87] use a Height-Length-Density (HLD) terrain classi�er which

even deals with partial observability for detecting obstacles. Cells are classi�ed using

con�dence levels.

Segmentation into ground and obstacle points can be model based, where

primitive shapes like cylinders [88] are �tted into data. Goron et al. [89] �t planes

in dense data regions containing background information like walls and traversable

ground regions before segmenting the sparse foreground data clusters. Murarka

and Kuipers [49] use stereo data to �t planes for �nding ground planes and inclines

before connecting them to form a traversable region. Nguyen [31] adapts this method

for Velodyne sensor, but using a polar grid containing maximum height values in

each cell. After �tting the planes between the adjacent cells using maximum height

values, adjacent plane segments are connected into drivable regions. Reina et al.

[45] uses an Unevenness Point Descriptor (UPD) to capture terrain irregularity and

inclination using normals obtained from point's neighbourhood using stereo data.

This works on slopes but is not real time and lacks sharp distinction between ground

and obstacles.

Vasudevan et al. [90] propose Gaussian Processes for modelling terrain

using sparse data. For sparse data, Douillard et al. [79] improves over Gaussian

36



processes with outlier rejection for ground segmentation, called Gaussian Process

Incremental Sample Consensus (GP-INSAC). Following this, Das and Waslander[91]

removed ground using GP-INSAC before segmenting non-ground points into clusters

that are subsequently used for scan registration. Chen et al. [83] report real-time

performance with polar grid processing information using a one dimensional con-

tinuous Gaussian Regression in the radial direction and a non-stationary covariance

function to determine ground points. This adapts to terrain undulations, making

it robust to rough terrains. However, the method shows incorrect results by de-

tecting smaller obstacles such as steps as traversable and uphill roads as obstacles.

Santamaria-Navarro et al. [76], apart from detecting obstacles in real time using

Time-of-Flight cameras, use a Velodyne Lidar data, and classify the traversable

region using a high-level o�ine classi�cation method. Gaussian processes as a re-

gression tool is used to learn terrain parameters for classifying the terrain.

Graph based approaches using weighted graphs are built based on similari-

ties between the connected nodes. Surface direction, edges, curvatures and smooth-

ness are used as attributes for similarity for construction of graphs. Moosmann

et al. [43] perform segmentation using local convexity criteria after building a 2D

graph. Convexity is obtained after calculating point normals using four neighbours.

Results show the method to detect ground even in non-�at areas. Kuthirummal et

al. [59] use graphs to connect traversable cells containing point height histograms

for both Lidar and stereo data. The method performs in real time and does not

need pitch roll compensation. Guo et al. [92] using graph based approach classify

the points into 4 classes of reachable, drivable, obstacle or unknown regions with

Markov Random Fields (MRFs) using gradient cues of road geometry. MRFs also

�nd implementations in Anguelov et al. [93] and Wolf et al. [60], where classi�cation

obtained from Hidden Markov Models (HMM) is re�ned using MRFs.

Principal Component Analysis (PCA) on unit regions analyzes spatial dis-
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tribution of points from the obtained eigenvectors. By applying PCA on individual

voxels, Lalonde et al. [80] classify regions into scatter, linear or surface. Surface

represents traversable regions, scatter represents obstacles and linear regions have

features like wires. Pellenz et al. [81] apply PCA recursively on non-�at regions to

overcome data sparsity in a grid and recursively grow traversable region. Sinha and

Papadakis [94] assess traversability based on features extracted through PCA by ex-

ploring the spatial distribution of the interiors in individual gaps or the orientation

distribution of corresponding contour with focus on negative obstacles. PCA is also

performed on scaled spin images to obtain point features for further classi�cation in

Anguelov et al. [93]. Larson et al. [95] use eigenvectors to get �at regions and their

surface normals to compute slope.

In contrast to the methods described above, unevenness identi�es the

traversable region without using normals, classi�cation, plane �tting, Gaussian Re-

gression, PCA or MRFs, which are computationally expensive or require training

for classi�cation. Traversability is obtained by a simple and e�cient method on a

single frame of sparse laser data primarily by computing an unevenness �eld using

only the ranges and the scan geometry of a rotating laser scanner.

3.2 Obstacle detection in radial direction

The rotating head of Velodyne laser scanner �res a set of lasers (32 for HDL-32) in a

vertical plane, which scan the terrain along a radial direction. The way in which the

sensor scans the environment was explained in chapter 2. At a given rotation angle

(θ) at which lasers are �red, obstacles can be detected along the radial direction

starting from the inner most range point and proceeding outwards. This procedure

is repeated at each rotation angle (θ) at which the lasers are �red. In terms of range

image, obstacle detection is performed column wise starting with the bottom pixel
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in each column.

Figure 3.1. Laser points in the radial direction.

Figure 3.2. Sample laser scan of a terrace.

Figure 3.1 shows a set of laser beams in the radial direction at a rotation

angle θ. Only nineteen laser beams are shown, but a total of 24 laser beams sample

the ground from an erect sensor. Remaining higher beams are intercepted by either

vertical obstacles or return no range when not intercepting any object. The distance

interval between the consecutive ground points gradually increases with distance

from the sensor. Distance interval is far greater for higher ranges (say between

R22 and R23). The resulting scan with 360◦ rotation results in a set of concentric

circular ring like patterns on a �at ground. Figure 3.2 shows a sample scan taken

over our lab terrace where the terrace �oor is sampled by circular rings, but the

boundary walls and clutter disturb the circular patterns. Obstacles can be detected

by evaluating the following parameters between two consecutive range points [96] in

the radial direction. An outer point among the consecutive points can be classi�ed

as an obstacle using
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1. Height di�erence: When the height di�erence between the two points is

greater than a threshold.

2. Ring distance: When the distance between the consecutive points is less

than a distance threshold.

3. Slope: If the slope intercepted between the consecutive points is greater than

a threshold.

4. Range di�erence: When the di�erence between ranges of two consecutive

points is less than an expected range threshold.

Considering the nature of point distribution, height di�erence between suc-

cessive points for a vertical obstacle depends on range. The di�erence at nearby

ranges is very small and it typically increases with range. Distance between two

points (horizontal) also increases with range and is also a�ected by the roll and

pitch experienced by a moving vehicle resulting in compression and expansion of

inter ring distances. Similarly, expansion and compression occurs because of slopes

present in the terrain. On the other hand, smaller elevation changes between closer

points cause higher slopes at nearby ranges and same obstacle heights result in very

small slopes at distant ranges. All these factors cause di�culties in setting thresh-

olds across ranges. The approach using the range di�erence better adapts to the

terrain slopes and tilts experienced by the sensor when the expected range di�erence

is made a function of the inner point's range [3, 33]. This is the idea with which

the concept of unevenness is built and developed. Since unevenness is dependent

on the di�erence in ranges and angles between the corresponding beams and not on

the absolute pitch angle (φ), as we shall describe in the coming sections, unevenness

can be used with advantage even with beams that sample higher objects.

Figure 3.3, shows obstacle detection along the radial direction using both

the height di�erence method and unevenness. Height di�erence method detects
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Figure 3.3. Obstacle detection on an upward slope, Left: Environment with robot,
Centre: height di�erence method, Right: Detection using unevenness

large part of traversable slope away from the sensor as obstacle region which is not

desirable. Setting a higher height threshold will not detect smaller obstacles like

foot path edges. Unevenness being insensitive to smaller slopes detects most of

the slope as traversable even when it detects the smaller height obstacle-like boxes

(10cm, 20cm, 30cm) and footpath edges as obstacles.

3.3 Unevenness

The range of inner point can be used to calculate the expected range di�erence

between consecutive laser beams on a �at ground. This expected range di�erence

(δRe) can be computed and compared against the measured range di�erence (δRm)

that is readily available from sensor readings (δRm = Ru,v − Ru,v−1, where u is the

column number along the direction of sensor rotation). Unevenness (Ω) depends on

the ratio of measured range di�erence (δRm) to the expected range di�erence (δRe).

We interpret this ratio ( δRm

δRe
) as indicative of evenness of the terrain at the point

of measurement. For an even surface, this ratio will be close to unity. Unevenness

can now be seen as deviation of this ratio from unity. To capture the traversability

of a point, we de�ne unevenness Ω as
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Table 3.1: Terrain variations and the respective Unevenness (Ω) values.

Ω = 1− δRm

δRe

(3.1)

Here, a value of unevenness (Ω) close to zero indicates that the point is on

an even surface. On the other hand, values away from zero represent the degree of

unevenness of the surface sampled by the point. A positive value indicates a positive

obstacle, and a negative value indicates a negative obstacle, i.e., a depression. Values

of δRm and δRe indicate nature of terrain. The unevenness (Ω) for di�erent terrain

possibilities for classifying point pu,v depending on its inner neighbour pu,v−1 are

listed in Table 3.1.

Unevenness across all the points sampling the robot's surroundings intu-

itively represents the terrain surrounding a robot. Although range di�erence be-

tween neighbouring laser beams is used earlier in DARPA challenge by Stanford's
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Junior [3], the unevenness based approach presented here is novel and original. As

detailed later, unevenness (Ω) varies with range and hence needs to be characterized

for setting thresholds for the detection of obstacles. Even though we describe the

method using a Velodyne HDL-32 Laser scanner, we show later that the method

can be adapted to a rotating Sick 2D scanner.

Figure 3.4. Consecutive laser beams in radial direction.

Figure 3.4 shows a laser at pitch angle φ and a neighbouring laser at pitch

angle φ + δφ, on an even ground. It is possible to relate the di�erence in ranges

δR between the adjacent lasers to the corresponding di�erence in their pitch angles

δφ. Our sign convention considers the pitch angles φ to be positive as seen from the

ground (see Figure 3.4). As a result, δφ is negative as we move to higher beams and

longer ranges.

With reference to Figure 3.4, the laser sensor is positioned at height H

above ground; the range R of laser beam and its pitch angle φ are related as

R =
H

sinφ
(3.2)

Taking di�erential on both sides of Equation 3.2, and then substituting H
R

in place of sinφ, a relation between di�erence in ranges δR and di�erence in pitch

angle δφ(negative value)between two adjacent lasers can be obtained.
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δR ≈ −R
√
R2 −H2

H
∗ δφ (3.3)

Since δφ is negative, the expression results in a positive value for δR. A

positive value for cosφ is assumed because φ lies in the �rst quadrant (0◦ ≤ 0 ≤

90◦). This relationship between δφ and δR is only approximate. It is more so at

higher ranges, where δR increases in leaps and bounds. However, this relationship

holds reasonably well at closer range (≤ 10m), and is useful for the purpose of

characterising the terrain.

When the measured range di�erence δRm between two consecutive ranges

at a certain azimuth angle is signi�cantly di�erent (quanti�ed later) from the ex-

pected range di�erence δRe as obtained from Equation 3.3, the outer range may be

considered an obstacle point. Measured range may be a�ected by sensor tilt or ter-

rain slope. To overcome this uncertainty, it is a common practice [3, 33] to use the

measured range Rm at the inner range point in the right hand side of Equation 3.3,

and not to use absolute values of φ, as in Equation 3.1 to compute R. With that,

Equation 3.3 can be rewritten as

δRe ≈
−Rm

√
R2
m −H2

H
∗ δφ (3.4)

Figure 3.5. Virtual sensor reorientation based on measured range Rm.

This equation forms the basis for detection of obstacles. It is the use of

Rm (and not Re) on the right hand side of Equation 3.4 that makes the resulting
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value of δRe relatively insensitive to terrain slopes or small variations in pitch and

roll of the vehicle. The use of measured range Rm to compute expected range

di�erence amounts to reorienting the sensor such that the point appears to be on

level ground (see Figure 3.5). That is how it expects range di�erence according to

the slope of terrain. The (virtual) sensor reorientation also ensures that angle φ for

any intercepted point lies in the 1st quadrant (0◦ to 90◦)for slopes, sensor tilts or

even for overhanging obstacles.

3.3.1 Unevenness �eld

Figure 3.6. Unevenness �eld: (Clockwise from top left) camera image of terrace,
Unevenness (Ω) image of terrace: top view, front view, front view enlarged.

Unevenness computed across all the sampled points in a scan using Equa-

tion 3.1 results in an unevenness �eld that represents the nature of terrain sur-

rounding a robot. This �eld is visualized in Figure 3.6 for the terrace scan data.

Unevenness value, being small, is magni�ed a 1000 times along the geometric z-axis.

Close to sensor, even the �at terrace shows considerable unevenness. This is because
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of the rough nature of terrace surface, which causes relatively high deviation when

the surface is sampled densely close by (radial). The obstacles (boxes) further away

are somewhat magni�ed in terms of unevenness. The walls look smaller in terms of

unevenness even though they are quite tall. Thus unevenness, the way it is de�ned,

is very sensitive close to the sensor and the sensitivity reduces progressively as the

range increases.

3.4 Modelling and characterizing unevenness

Unevenness Ω is characterized across the range of laser measurements by considering

two consecutive laser beams with the inner laser at pitch angle φ sampling the

ground and the next higher laser with pitch angle φ + δφ intercepting an obstacle

at a height of −δH above ground. Negative sign for height change is because of

decrease in sensor height with respect to the point of interception of the laser beam.

Figure 3.7. Obstacle at the outer ring

The situation, as shown in Figure 3.7, corresponds to a slope α of the

terrain between the two beams. With respect to Equation 3.2, on an even ground,

we do not expect H to vary with laser beams at di�erent pitch angles φ, as all the

lasers hit ground at same level. Hence, variation in range R is entirely caused by

variation in φ. Therefore our expected range di�erence δRe is obtained by taking

di�erential on both sides of Equation 3.2 , while treating H as a constant.
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δRe = − H

sin2 φ
cosφδφ (3.5)

But when the beam at φ + δφ is intercepted by an obstacle, height H of

sensor above the point of interception will also change. Now, allowing the height of

sensor H also to vary, the di�erential of Equation 3.2 becomes

δRm =
δH

sinφ
− H

sin2 φ
cosφδφ (3.6)

It may be noted that in Equation 3.6, δH is negative for a positive obstacle,

so it tends to reduce the range di�erence, whereas δφ also being negative, tries to

add to the range di�erence. Here we identify range di�erence in Equation 3.5 as the

expected range di�erence δRe, as it happens on an even ground. Likewise, the range

di�erence δRm in Equation 3.6 corresponds to what will actually be obtained in

presence of an obstacle, which is why it is identi�ed with measured range di�erence

δRm.

Using Equation 3.5 and Equation 3.6, unevenness Ω can be expressed as

Ω = 1− δRm

δRe

=
tanφ

H

(
δH

δφ

)
(3.7)

From the shaded triangle in Figure 3.7

cos
(π

2
− φ− α

)
= sin (φ+ α) =

−Rδφ
δs

(3.8)

Also from the shaded triangle
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sinα =
−δH
δs

(3.9)

Using Equation 3.8 and Equation 3.9,

δH

δφ
=

Rsinα

sin (φ+ α)
(3.10)

Now substituting Equation 3.10 for unevenness Ω in Equation 3.7

Ω =
sinα

cosφsin (φ+ α)
(3.11)
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Figure 3.8. Plot of unevenness(Ω) versus Range(R) for di�erent slopes (α).

The unevenness value obtained here is because of slope α between two
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consecutive points. In Figure 3.8 unevenness (Ω) values for varying ranges R are

plotted for di�erent values of slope α. Ranges are obtained for a sensor height H of

1.3m using Equation 3.2. From the plot, it can be seen that unevenness is higher

for higher values of slopes. In order to detect obstacles, one can think of setting

unevenness thresholds based on slopes. However, that proves to be di�cult, as

even small surmountable obstacles placed close by gives rise to large slopes between

neighbouring rings, whereas a small slope at far away distance actually corresponds

to a very large obstacle.

Instead of setting unevenness thresholds based on slope between points on

neighbouring rings, one can set thresholds based on the inter ring height b(same as

−δH in Figure 3.7) of obstacle. If d is projection of range R on ground, δd the

projection of δs on ground (see Figure 3.7), we can determine the slope α resulting

from an obstacle of height b.As the intercepted obstacle height b can be seen to cause

a change in sensor's height −δH , we can substitute b in place of −δH.

Relating the height of obstacle to its slope

tanα =
b

δd
(3.12)

Relating sensor height H with pitch angle φ,

d =
H

tanφ
(3.13)

Di�erentiating the above equation on both sides

δd =
δH

tanφ
− H

sin2 φ
δφ (3.14)
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Substituting for δd in Equation 3.12 and using b = −δH as seen from

Figure 3.7 we get

tanα =
b

−b
tanφ
− H

sin2 φ
δφ

=
−b sinφ

b cosφ+Rδφ
(3.15)

Expanding Equation 3.11 for unevenness Ω and dividing by sinα

Ω =
1

cos2 φ+ cosφ sinφ 1
tanα

(3.16)

Now substituting for tanα from Equation 3.15

Ω =
−b

R cosφδφ
(3.17)

Substituting for cosφ, the unevenness Ω can be expressed as

Ω =
−b√

R2 −H2δφ
(3.18)

Figure 3.9 plots unevenness Ω values for di�erent values of b at di�erent

ranges R. For a given obstacle height b, unevenness Ω decreases with increase in

range R. Close to sensor, however, unevenness increases steeply for a given obstacle

height.

3.4.1 Setting Thresholds using obstacle interception height

Probability of detection or even interception of small obstacle diminishes with dis-

tance. The nature of 3D scan allows a robot to �rst detect smaller obstacles nearby.
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Figure 3.9. Plot of unevenness (Ω) versus Range (R)

Smaller objects faraway are subsequently detected when the robot moves towards

them. Bigger size obstacles such as walls, trees, humans or other vehicles are in-

tercepted and detected by lasers even from a distance. For this reason, obstacle

threshold in terms of interception height bth is set smaller near the sensor for detect-

ing smaller obstacles like road edges or kerbs. Threshold is then increased linearly

with range R using proportionality constant f .

bth = a+ fR (3.19)

This relation is heuristic but worked well for detecting obstacles across the

ranges. For positive obstacles, we set value of a+ (plus sign for positive obstacles;

similarly, minus for negative obstacles) at 20mm. This is the smallest obstacle height

at least range. It overcomes high sensitivity of unevenness close to the sensor. We

then set obstacle height of 50cm at the largest range of 56m which is the farthest
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distance sampled by the laser on ground for an erect sensor height of 1.3m. Propor-

tionality constant for positive obstacle f+ is thus obtained as 0.0086. For classifying

a point with range R as obstacle, the threshold unevenness(Ω+
th) is computed for

the obstacle interception height threshold bth obtained using Equation 3.19. When

unevenness (Ω) obtained for the same point using equation Equation 3.1 is more

than threshold unevenness(Ω+
th), the point is classi�ed as positive obstacle.

Figure 3.10. Obstacle slopes for obstacle height b in both positive and negative
directions

For negative obstacles, the outer point lies below the level of inner point.

From Figure 3.10, the negative obstacle subtends a much smaller angle (α− ) com-

pared to positive obstacle angle (α+ ) for the same obstacle height (b). Negative

obstacle is intercepted at depth b below ground only when it is far from the inner

point compared to positive obstacle of same height. This shows the asymmetry be-

tween positive and negative obstacles with range. Detection of negative edges is a

challenging but important task. While even smaller negative obstacles near robot

are easily detectable, they do not scale well with increase in range. Between two

adjacent laser beams, the negative obstacle interception height does not increase in

the same proportion as that for the positive obstacles. This is well known fact in

literature [74, 87, 94] and that's why the negative obstacles are treated separately

using absence of data. So we set smaller thresholds for detecting negative obstacles.

We start with a minimum obstacle height (read depth) a− of mere 10mm (heuristic)

at the shortest range for negative obstacles. However trying to detect a 50cm nega-

tive obstacle at 56m range, we obtain f− to be 0.00875. Here a point is classi�ed as
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negative obstacle when its unevenness (Ω) is less than unevenness threshold (Ω−
th).

A point can thus be classi�ed as non-obstacle when its unevenness lies between the

unevenness thresholds in both positive and negative directions (Ω−
th ≤ Ω ≤ Ω+

th).

In order to see the basis for setting di�erent thresholds for detecting positive and

negative obstacles, Figure 3.11 plots unevenness curves for di�erent inter-ring ob-

stacle heights (b) against range for both positive and negative obstacles. It shows

the asymmetry particularly for ranges near to the sensor. Curves for initial heuristic

thresholds heights b+th and b
−
th are also plotted.
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Figure 3.11. Plots for unevenness(Ω) versus Range (R) showing asymmetry for
positive and negative obstacles.

3.4.2 Setting threshold using unevenness

When intercepted by a vertical obstacle (α = 90◦), there is a limiting interception

height between the consecutive laser beams, which we call bmax, depending on range

R, which using Equation 3.15 after substituting for α = 90◦ evaluates to
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bmax =
R2δφ√
R2 −H2

(3.20)

Figure 3.12. Obstacle interception heights (b) for di�erent values of Unevenness
(Ω) versus Range (R), Inset: Plots in the near range.

Close to the sensor, bmax is small and increases almost linearly with R.

This de�nes and limits the sensitivity of the sensor to obstacles at di�erent ranges.

We plot in Figure 3.12, the values of obstacle interception heights (b) against range

for di�erent values of unevenness (Ω) using Equation 3.18. We also superimpose

bmax on the same plot. It is observed that constant unevenness curves correspond

roughly to a linear increase in the value of b with range, only slightly deviating close

to the sensor (origin). The pattern is similar for the bmax curve. That is why it

makes sense to set obstacle threshold at a constant level of unevenness. The values

of unevenness threshold Ωth can be set according to the robot's ability to negotiate

an uneven terrain.

In our experiments with our wheeled mobile robot, we set the unevenness

54



threshold at 0.4 (Ωth = 0.4). This threshold detects obstacles of 2cm at the closest

range of 2.6m and 50cm at the farthest range of 56m when Velodyne HDL-32 is

at height of 1.3m on a level ground. Due to 2cm being very small, sensor noise

and the rough nature of ground near to sensor often results in detection of spurious

obstacle points. In order to overcome this sensitivity, we set 4cm as the minimum

obstacle height to be classi�ed as an obstacle point. This comes at about 4.5m

range of the Ω = 0.4 curve. We depict this in the inset of plot in Figure 3.12

which is essentially a subplot for showing curves in the near ranges. The black line

with asterisks is the �nal threshold line for obstacle detection in our experiments.

As the obstacle interception height is not measurable, at near ranges (R < 4.5m)

unevenness threshold Ωth is calculated using Equation 3.18 with the value of b set

at 4cm. Henceforth we shall refer to the threshold unevenness for positive obstacles

as Ω+
th.
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For negative obstacles, i.e., depressions in the terrain, the same Equa-

tion 3.18 holds with the only di�erence that the value of b is now negative. The

resulting unevenness will also be negative. However, unlike positive obstacles, neg-

ative obstacles are not so easily visible to the laser scanner because of occlusion by

ground or other positive obstacles. So the scanner manages to acquire range data

from only the shallow part of a depression. Because of this and the asymmetry as

explained earlier with Figure 3.11, we set a lower magnitude of threshold for nega-

tive obstacles compared to positive obstacles. We set it at Ω−
th = −0.2 for detection

of negative obstacles at longer ranges (Rm > 5m). At closer distance, a constant

height threshold of bth = −4cm is maintained.

The unevenness Ω at a point, obtained using Equation 3.1 from measured

ranges is compared against the unevenness thresholds Ω−
th and Ω+

th at the speci�ed

range for detecting obstacles. When the measured unevenness Ω lies outside these

two thresholds, the point is classi�ed as an obstacle; otherwise it is a non-obstacle

point. In this way, obstacle points are detected in the radial direction from the range

data at each azimuth θ. This is shown as function radial_edge(u,v) in Algorithm

3.1 .

3.5 Obstacle edge detection in transverse direction

Dense nature of range data along the transverse direction allows for obstacle detec-

tion along an individual ring based solely on unevenness that is calculated in the

radial direction using the method described in the previous section. For example,

a sudden change in unevenness value between two neighbouring points along the

ring indicates an obstacle edge. However if an obstacle edge is aligned in the radial

direction, radial_edge may miss this edge. In order to take care of such situations

and also to provide a basis for aggregating traversable region using region growing,
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we additionally detect obstacles using range di�erence between neighbouring points

along each ring. For this, a Transverse unevenness (Γ) is de�ned in the same way as

radial unevenness (Ω). The estimated arc length δRe over level ground between two

neighbouring points (now transverse) separated by angular interval δθ is Rδθ. HDL-

32 scanner rotating at 10Hz has δθ ≈ 0.16◦. The measured arc length δRm however

will be approximately δR (see Figure 3.13), as Rδθ is much smaller in comparison.

We de�ne transverse unevenness as

Γ =
δRm

δRe

≈ δR

Rδθ
(3.21)

Figure 3.13. Neighbouring lasers in transverse direction, Left: Side view, Right:
Illustration with top view.

In Figure 3.13, one laser hits ground with range R, while its immediate

neighbour encounters obstacle at height g from perceived ground. Taking ratios of

similar sides,

δR

R
=

g

H
(3.22)

Using Equation 3.22, Transverse unevenness threshold Γth for an edge

height gth is rewritten as

Γth =
gth
Hδθ

(3.23)
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Figure 3.14. Obstacle detection in the transverse direction.

While Equation 3.21 computes transverse unevenness for a point with

respect to its neighbour, Equation 3.23 gives threshold for obstacle edge detec-

tion given a height threshold gth. For positive obstacles, transverse unevenness is

negative, and it is positive for negative obstacles. Unevenness within thresholds

(|Γ| ≤ Γth) signi�es no edge (function transverse_edge in Algorithm 3.2).

Edge detection in the transverse direction is shown in Figure 3.14 on the

terrace scan with obstacle boxes by setting threshold gth = 4cm. The transverse
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edge points are shown in red. The edges at boxes are highlighted in inset. The

terrace discontinuities are also properly detected as edges. Even at places where the

ring has missing data points, the edges are detected.

3.6 Traversability Map

Previous sections describe how individual points are classi�ed into obstacle and non

obstacle points. In order to plan a path towards the goal, the robot should obtain

the regions that it can actually reach without colliding with obstacles. This is called

the traversable region. There can be isolated regions in the environment that are

locally traversable but not reachable from the robot's current position. Addition-

ally, some locally planar obstacle surfaces are classi�ed as non-obstacles, like steps

in front of a building or planar surfaces (bonnet, roof) of vehicles which are actu-

ally not traversable. For determining the entire traversable region, all non-obstacle

points starting from the current robot's position are identi�ed and connected into a

convenient graph-like data structure. The traversability map so formed in terms of

connectivity graph can be used conveniently to plan a path for the robot [49].

One way to obtain the local traversability map is by performing a point

level region growing [97] by connecting all the non-obstacle points starting from a

traversable point in front of the robot. Neighbouring points in radial and transverse

directions are connected until an obstacle edge is detected. The high number of

data points (up to 70,000) present in a scan requires 90 − 160ms to compute the

traversability map (graph) on an Intel i3, 32-bit, 3.2GHz processor with 4GB of

RAM. Although this is quite e�cient, it is not real-time considering that the Velo-

dyne supplies a scan every 100ms. Instead of growing region at the point level, we

may grow region at the cell level to improve execution time. It also reduces the

number of false (spurious) connections that arise at the point level because of sensor
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noise and imprecision.

Unlike the traditional polar grid [31, 32, 83, 84] where points are binned in

both radial and transverse directions, we bin points only in the transverse direction

(Algorithm 3.3). Given the density of Velodyne HDL-32 data, we bin points along

each ring with each cell containing points within one degree of azimuth. In the

radial direction, the number of cells is equal to the number of lasers (32 cells).

A cell Ccol,row in the grid stores the list of points contained in col bin along the

azimuth and the laser index row = v contained in it. Based on the obstacle and

edge detections in both radial and transverse directions, the cells containing these

points are marked as obstacle or non-obstacle. A cell is classi�ed an obstacle cell

even when it contains a single obstacle point. All non-obstacle cells starting from a
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seed cell close to the robot (C90,2 in our case) are then joined using region growing

similar to [97], but now with cells. It �nally provides all cells belonging to the

traversable region. Region growing is performed in Algorithm 3.4 using 4 neighbour

connect function Region_Grow, which connects neighbouring cells in both radial

and transverse directions.

All the cells within the given unevenness and range discontinuity thresh-

olds, and not otherwise marked as obstacle cells, are connected to form a traversable

region if there is a physical connectivity to the initial seed cell. Once the traversabil-

ity map is obtained, the points in the point cloud can be displayed according to the

traversability attribute of the cells that they belong to. The traversability map, so

formed, around the current position of the robot, provides the basis for planning

onward motion of the robot towards its goal.

3.7 Results

For validation of methods for detection of obstacles using unevenness, experiments

were �rst carried out placing Velodyne sensor on a stationary stand at a similar

height to that when placed on the mobile robot (1.3m) and data is taken on the
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near level terrace of our lab building with the farthest boundary wall being 20m

from the sensor. Data is then collected with the sensor on the mobile robot and

from di�erent locations in our campus with a variety of semi urban environments

containing roads, slopes and lawns. The environments also contain moving objects

like humans and tra�c like buses and cars. As our robot moved at a low speed

(0.2m/s) during our experiments, we have not made corrections for the vehicle's

motion. These corrections can be done as a pre-processing step [86] for determination

of exact location of the range points. The results are presented in two subsections;

the initial part shows qualitative results for obstacle detection only in the radial

direction using proposed method. In the second part, we show the traversability

maps built from the data collected from a moving mobile robot. We also present a

quantitative comparison of the results with the method by Chang et al. [85] applied

to the same data.

3.7.1 Obstacle detection

Unevenness is �rst characterized by placing three boxes of known heights 10cm, 20cm

and 30cm as obstacles on the terrace �oor. Horizontal distances of these boxes are

increased in steps of 1m from the sensor. This helped in understanding the nature

of unevenness with distance in order to set appropriate thresholds for detecting ob-

stacles. In the experiments, by tuning the unevenness threshold (Ωth), the obstacles

are detected at all locations when the lasers hit the obstacles.

Figure 3.15 shows the experimental setup for evaluating the obstacle de-

tection method and the resulting scan after obstacle detection (bird's eye view).

Results in this section show the non-obstacle and traversable points in green; ob-

stacle points are shown in red. When the obstacles are placed at 5m, a threshold

of Ωth = 0.4 detects the boxes as obstacles, while most of the terrace is detected
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Figure 3.15. Terrace experiment; Left: Velodyne on a stationary stand with boxes
as obstacles, Middle: Ωth = 0.4 for boxes placed at 5m, Right: Ωth = 0.2 for boxes
placed at 16m.

as traversable. Walls surrounding the terrace and clutter are rightly detected as

obstacles. When the boxes are placed further away at 16m, boxes are detected as

obstacles only on reducing the threshold to Ωth = 0.2. However, the reduced thresh-

old caused many points near to the sensor to be detected as obstacle points. These

spurious points can be seen as red dots on the inner circular rings. This shows the

rationale in setting an additional criteria of minimum height threshold (4cm) before

classifying the point as obstacle apart from the constant unevenness threshold of 0.4

(Ωth = 0.4).

Figure 3.16. Obstacle detection with sensor subjected to tilts in di�erent direc-
tions.

Insensitivity of unevenness based approach to overcome sensor tilts is shown
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by subjecting the sensor to tilts in di�erent directions on the lab terrace with the

obstacle boxes. This simulates pitch and roll experienced by a moving vehicle with

the compression of rings in the direction of tilt. Figure 3.16 shows detection of boxes

as obstacles in spite of the sensor being tilted in di�erent directions. Repeatedly

the boxes are clearly separated from the traversable planar region for di�erent direc-

tions of sensor tilt. The two right most images show correct classi�cation even for

extreme cases where all the 32 lasers intercept the �oor. This experiment validates

the virtual sensor reorientation model based on the measured range as explained

with Figure 3.5 for overcoming terrain slopes in addition to pitch and roll of the

vehicle.

Figure 3.17. Top: Obstacle boxes on a slope in lawn, Bottom: Part of the scans
showing obstacles detected when the robot is in motion towards the boxes (Left to
Right).

Figure 3.17 shows detection with obstacle boxes present on a slope in a gar-

den lawn. Boxes are repeatedly detected while the slope is shown as traversable from

a moving robot from a distance of 20m and towards the boxes. Here the threshold

is increased to Ωth = 0.6 to accommodate the rough nature of lawn comprising grass

blades and leaves. In spite of the shape of the rings at the top getting disturbed

(adapting) according to the slope, the terrain is detected as traversable unless there
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is a steep portion within the slope.

Figure 3.18. Part of a scan showing positive obstacles in Red (Top) and negative
edges Blue (Bottom).

In addition to the positive edges, Unevenness also detects the di�cult to

detect negative obstacles. In Figure 3.18, the bottom image shows road edges de-

tected as negative edges, while the footpath is detected as a positive edge (Top

image). The high sensitivity of unevenness allows it to detect small undulations

such as road edges. People present in the scan are detected as positive obstacles.

A set of positive obstacle edges are seen clearly distinguished from the ground with

each ring being a positive edge to the preceding ring.
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3.7.2 Traversability

Traversability of a region is obtained by connecting the non-obstacle cells starting

from the position of the vehicle. Region growing removes locally planar regions

which are not reachable by the robot from its current position. For example, in

Figure 3.19, the points sampling the vehicle's bonnet are initially detected as non-

obstacles. On region growing, this region is identi�ed as not reachable (points shown

in black in the right image). Similarly, planar regions like footpaths can be shown

as not reachable or non-traversable regions with region growing when there is no

connecting path.

Figure 3.19. Vehicle scan, Left: Without region growing, Right: With Region
growing.

First, the images of resulting scans representing di�erent environments are

qualitatively presented and evaluated in Figure 3.20 and Figure 3.20. Quantitative

results for the same scans are presented in Table 3.2. The variety of environments

included �at roads, slopes and lawns. The environments also contained dynamic

obstacles like humans and vehicles. The results are compared to the results obtained

by a method presented in Algorithm 3.5. For comparison, only the data ahead of

the robot is considered where traversability map is built with 180× 32 cells.

Algorithm 3.5 describes a method for comparison by Chang et al.[85],which

also detects obstacles column wise in a range image starting from the bottom pixel

which is near the ground. This method is similar to our method in processing

the scan. A point is considered an obstacle point when either the slope from the
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previously detected ground point is greater than the slope threshold or when the

height di�erence to ground is greater than the speci�ed obstacle height threshold.

We carry out a quantitative comparison of our method with this method applied on

the same environments by setting a height di�erence threshold γ as 4cm(same as

ours) and the slope threshold β as 25◦ (set quite high to make it more tolerant to

slopes). The results reported by Chang et al.[85] however set a height threshold of

1m, which may be acceptable in secluded outdoor environments for detecting large

objects faraway, but for urban environment, such a high threshold fails to detect

most obstacles. A smaller threshold on height on the other hand leads to most of

the points away from the sensor to be detected as obstacles because of the increasing

inter-ring distance between the points. This could probably be overcome by setting

a range based threshold. Our method overcomes this problem in spite of sparse data

by using a constant threshold based on unevenness and not on either height or slope.

Quantitative results are presented for the same scans (Figure 3.20 and

Figure 3.21)based on manually comparing the scans with ground truth. False clas-
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Figure 3.20. Obstacle detection, Left: Chang's method, Right: Proposed
method, Top to bottom environments: Upslope, Down slope, Flat road. (Green
for traversable, Red for obstacle and Black for not reachable �at regions).
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Figure 3.21. Obstacle detection, Left: Chang's method, Right: Proposed method,
Top to bottom environments: Road junction, Vehicle descending a slope, parked
vehicles (Green for traversable, Red for obstacle and Black for not reachable regions).
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Table 3.2: Comparison of false detections, M1: Chang's Method, M2: Proposed
Method.

si�cation of cells can be either because of false positives or false negatives, where

the former detects actual traversable region as obstacle and the latter detects an

obstacle region as traversable. False negatives are to be avoided at all cost as it

may result in the robot misinterpreting obstacle regions as traversable which could

harm the robot. For ease of quantitative comparison, instead of measuring ground

truth at point level, a rectangular metric grid is built with each cell covering an

area of 1m × 1m. The points obtained in the polar grid are then superimposed

onto the rectangular grid. The false positives and the false negatives are marked

by the human operator based on ground truth. A graphical user interface (GUI)

is developed for this purpose, where the user can point out cells which are wrongly

classi�ed. Even a single wrong point in the cell is punished by classifying the cell as

false classi�cation.

From Table 3.2, it can be concluded that the proposed method gives less

number of wrong classi�cations both in terms of False Positives and False Negatives.

It performs well particularly when the environments contain slopes while giving

comparable results for scans in other environments. The number of false detections

is more in scan 1 because of a small region that got connected to the footpath. In

scan 4, the number of false positives (indicated by *) is high for both the methods

but more for our method; this is because the lawn beyond the road is almost at the
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same height as the road and the road boundary is not intercepted by any of the

lasers. This causes that region to be shown as traversable by both the methods,

but because of the smaller height di�erence threshold most points in method 1 get

detected as obstacles.

Figure 3.22. Traversability for a fast moving vehicle.

In Figure 3.22, we test the method with data from a fast moving vehicle.

This is an externally recorded data, where the sensor height H is arrived at 1.8m

after trying height thresholds for ground. Here again the road is correctly classi�ed

as traversable with regions beyond the road edges including trees as obstacles. Few

points falling on the vehicle itself as obstacles can be safely ignored. An o�set is

observed on individual rings between the start and end of frame data (behind the

vehicle to the left). These o�sets are to be corrected as in Steinhauser et al.[86].

However, the method classi�es the points correctly because the detection of obstacles

is on the basis of range data from neighbouring points, which are acquired in quick

succession and processed immediately. Detection of obstacle nature of points (Radial

and Transverse) and population of 180×32 grid is executed within 15−20ms, while

region growing of traversable region took about 5 − 10ms on an Intel i3, 32 − bit,

3.2GHz processor with 4GB of RAM.
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3.7.3 Traversability using Sick Scanner

Figure 3.23. Clockwise starting from top left: Environment, Top view of scan,
Arrangement of a Rotating Sick Scanner on our Robot, Front view of the scan.

The proposed unevenness method is not limited to Velodyne scanners alone.

Experiments are conducted with an outdoor Sick Laser scanner to show the adapt-

ability of the method with other sensors. The Sick scanner is placed at a height

of 0.6m above ground as shown in Equation 3.23. The scanner is rotated in yaw

direction [64] in the stop-scan-go fashion where the scan is taken for each rotation of

1◦ by the motor. Instead of 32 laser readings in the vertical direction for the Velo-

dyne HDL-32, there are 180 readings with φ between −45◦and+45◦ (v = 180). The

pitch angle di�erence between the consecutive points is 0.5◦(δφ). Here the di�erence

between pitch angles (δφ) being smaller than Velodyne HDL-32, the threshold for

detection is set higher at Ωth = 0.6. It can be seen in Equation 3.23 that only the

pavement on which the robot is located is properly detected as traversable. The

tree tops are shown as obstacles even if they are above the traversable region. The

small regions near to the robot in the scan shown in red colour are because of the
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laser points hitting the plate under the scanner; otherwise there is clear distinction

between the traversable and obstacle regions. For clarity, both the front and the top

views are shown.

3.8 Conclusion

Conceptually and computationally the measure of unevenness is simple and e�cient.

Unevenness computed over all sampled points form an unevenness �eld around the

robot. Traversable region is obtained as a connectivity graph in real time on a

standard desktop computer. For this purpose, points in the transverse direction

are binned into a non-homogeneous (polar) grid where cells grow bigger with dis-

tance from the sensor. Results show the e�ective and e�cient detection of both the

obstacles and traversable regions.

Unevenness is robust against small sensor tilts during locomotion, and it

works well on slopes. This is demonstrated with experimental results against a stan-

dard method [85] that uses both height and slope between neighboring range points

to detect obstacles. Unevenness out-performs the compared method particularly on

and around slopes.

Unevenness is characterized through analysis to arrive at a reasonable pol-

icy for setting thresholds for detecting obstacles. Thresholds are in�uenced primar-

ily by the di�erence in pitch angle (δφ) between neighbouring laser beams and are

needed to be adjusted accordingly depending on δφ for di�erent sensors. Thresh-

olds should also be tuned depending on the nature of operating terrain (surfaced

road/o�-road/lawn etc.), wheel dimension and con�guration of the mobile robot.

But once set, it works well over all ranges by detecting the regions that should

better be avoided during navigation.
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Since our mobile robot moved at a low speed of 0.2m/s, the results are with-

out corrections for motion; the points are classi�ed using the neighbouring ranges.

Given the quick nature of scan, this does not a�ect point classi�cation in any man-

ner. However, motion corrections [86] are needed when the points are mapped into

the world coordinate system.

Unevenness is shown to bring out clear boundaries between objects. The

obstacles thus detected, including the smallest of features, can be used in the ad-

vanced stages of navigation like segmentation, registration and localization which

are the subjects of the subsequent chapters.
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Chapter 4

Segmentation using Unevenness

In addition to detection of traversable region surrounding a mobile robot, autonomous

mobile robots are required to robustly identify di�erent discernible objects that are

present in its environment. These individual objects when properly identi�ed can

be used as features in the advanced stages of robot navigation. For example, points

belonging to important static features can be selected for registration. SLAM algo-

rithms can use these robust features as landmarks. By Detection and Tracking of

Moving Objects (DATMO), robots can do motion planning by estimating the move-

ment of fellow tra�c participants. In addition, semantic labelling of segmented ob-

jects (cars, cyclists, and pedestrians) helps in understanding their generic behaviour.

Obstacle detection using unevenness, which depends on the range di�erence between

the neighbouring points, has been described in detail in the previous chapter. Scan is

segmented into distinct objects by again using the measured range and the expected

range di�erence between the consecutive points in terms of unevenness (Ω). Using

this approach, important discernible features present in the robot's environment are

segmented so that they can be used to advantage for robot navigation.

Borrowing the de�nition of segmentation from the Image processing �eld
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[98], segmentation of a laser scan is considered as partitioning of scan into set of

non-overlapping regions whose union is the entire scan. The extent of segmenta-

tion however depends on the nature of application. For example, at a coarse level,

segmentation is restricted to ground and obstacles, while at a �ner level the entire

scene are segmented into di�erent objects. An object can be further segmented

within itself, like a human �gure getting segmented to show individual body parts.

For robot navigation, apart from identifying the traversable ground, it is su�cient

to segment important individual objects to be used as either landmarks or moving

objects. For example, people or vehicles identi�ed as segments are either avoided

or tracked. In general, it is su�cient for a robot to segment robust landmarks and

moving objects in addition to ground.

Segmentation in general, and for outdoor environments in particular, suf-

fers from both under and over segmentation. In the former, a segment has more

points than those sampling an object, and in the later, a single object gets de-

composed into multiple segments. Because of its complex nature, segmentation in

outdoor environment is subjected to both over and under-segmentation. These add

to the di�culties in developing methods for perfect segmentation. Otherwise an

Ideal segmentation of point cloud could be de�ned using the following conditions.

In this work, segmentation is again performed on ordered range data from

a Velodyne laser scanner. The cloud, being ordered, encodes the neighbourhood

information in the scan, which aids in segmentation without resorting to compu-

tationally expensive search for nearest points. Results on segmentation are shown

with data collected from our outdoor robot while moving in and around our campus.
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Figure 4.1. Segmentation showing individual features after removing ground

Figure 4.1 shows segmentation of a single scan after removing the ground

segment. Even when there is some amount of over-segmentation, several objects and

features are distinctly segmented. It can be noted that the speed breaker which in

general is traversable is also segmented. This can be used as a feature for navigation.

In the commonly used grid based methods, it is di�cult to set the size of

grid cells. This sometimes causes close objects to be segmented together. Segmen-

tation using unevenness (Ω) overcomes this problem by operating at a point level,

resulting in clear separation between objects. For example, a person walking on

ground will be clearly segmented out of ground, instead of few ground points which

belong to the cell getting segmented along with the person. As will be shown in the

results section, this approach also separates very close objects. Also, the extent of

control that can be exercised in segmentation by varying the thresholds based on

unevenness (Ω) is presented. Unevenness is assigned as an attribute to each point

and region growing is performed to bring out discernible segments present in the

robot's environment.
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4.1 State of the Art

Segmentation of point clouds has been an active research area in robot navigation

and computer vision. A few algorithms dealing with obstacle segmentation are model

based and try to �t features, e.g., shapes such as cylinders [88], planes [89] or any

other predominant feature likely to be present in the environment. But it is di�cult

to model the variety of objects encountered in the outdoor environments. Model

based algorithms are also computationally expensive and are di�cult to implement

in real time.

Segmentation algorithms using point clouds can also be classi�ed based on

projection of the data into either Grid based or Range based methods. Grid based

methods are commonly used where in points in a scan are �rst discretized into grid

cells and then segmented. Grids can be either 2D grids or 3D. 2D representation

is less accurate considering the elevation changes in the outdoor terrain as all the

points are projected to a plane. This causes all the points vertically above a grid

cell to segment together. 3D grids are usually discretized into 3D voxels [99] before

clustering them into segments. They consume lot of memory and are di�cult to

implement in real time.

Several methods dealing with segmentation prefer to remove ground por-

tion in a scan before carrying out the clustering of non-ground points [32, 79, 86, 100].

Ground that acts as a physical link connecting di�erent objects is removed in the �rst

stage of segmentation to facilitate further segmentation of non-ground points. Stein-

häuser et al.[86] �t lines in the radial direction of scan for obtaining the traversable

ground region and then segments the non-ground points by clustering them using

region growing. Himmelsbach et al.[32] improves over his earlier method[100] by

segmenting the ground �rst by �tting lines to the ground points by using a circular

grid. Remaining non-ground points are segmented using fast connected component
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analysis. Further re�nement of segments is done by looking at vertical displacement

between the points belonging to the same cell. This is claimed to separate vehicles

under the trees. The results are reported to be real time.

Doullaird et. al. [99] presents the pipeline for segmentation of point clouds

for robotic applications using the voxel grids. After the scan is represented using vox-

els, the ground region is segmented �rst before clustering the remaining non-ground

voxels into objects. Doullaird et al.[79] further present algorithms for segmentation

of both dense and sparse point cloud data. Ground segmentation for dense data is

carried out by clustering together the adjacent voxels based on their vertical means

and variances. The largest portion found by this method is the ground segment.

Non-ground objects are then partitioned using local adjacencies. In addition, dis-

similar voxels below the �at voxels are merged into a segment. For example, the

�at portion of a car roof is merged with the non-�at voxels below it. In addition to

grids, ground can be modelled using either mesh or Gaussian Processes. A terrain

mesh is built for separating ground by calculating terrain gradients for dense data or

by using an iterative Gaussian Process Incremental Sample Consensus (GP-INSAC)

for sparse data.

Grounds sampled by sparse data sensors may require interpolation for

bridging gaps in the data. Ground can be detected for sparse data using Gaus-

sian Processes (GP) regression [90], which is an iterative approach to a probabilistic

method that can be applied across multiple scans from the sensor for continuous

ground surface estimation. Gaussian Process methods separate the ground by con-

sidering ground points as inliers and the objects and clutter as outliers. In GP-

INSAC[79, 83, 91], deterministic iterations are performed by progressively �tting

the model (ground) from a single seed of high quality inliers and not by iterating

over randomly selected seeds. Mesh based methods on the other hand are applied

on a single scan with the mesh built between the points to model the terrain and
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the obstacles. Douillard et al. [79] builds a terrain mesh and separates ground by

calculating terrain gradients or by using an iterative GP-INSAC for sparse data.

Remaining non-ground points are clustered using voxel adjacency. Several methods

of segmentation for various types of point clouds (sparse and dense) are presented

and compared and reported for near real-time performance.

Korchev et al.[84] performs real time segmentation using min-map, max-

map and di�erence-map and then does the 8-connected component analysis and

compares the performance using both the rectangular and the polar grids. However,

grid based methods su�er from under-segmentation. Other way of projecting the

data is with respect to the rotation of the laser scanner. A range image is thus

formed with each cell containing the range with implicit neighbourhood informa-

tion. Normal intensity image segmentation algorithms from image processing �eld

can thus be adapted to range images. Hoover et al.[101] does an experimental com-

parison of the methods dealing with the range image segmentation. His method

involves �tting of a local surface and then carrying out clustering.

Unlike the Grid methods that are also applied to unordered clouds, there

are several methods [43, 86, 93, 102] which work using the point's neighbourhood

information. Information on the neighbourhood helps in quickly building the at-

tributes for a point which help towards segmentation and region growing. Normal

vectors can be computed [43, 102] for a point without resorting to computation-

ally expensive plane �tting or sum of least squares or RANSAC. Klasing et al.[103]

use Radially Bound Nearest Neighbours (RBNN) for clustering segments using Eu-

clidean distance. Real-time performance is achieved because points already attached

to clusters are excluded when searching for neighbours. Clusters are merged based

on presence of a common point with radial distance within threshold. Klasing et

al.[102] further improves RBNN by calculating local normals with the incoming data

and clustering using Euclidean and angular distances. Ioannou et al. [42] uses dif-
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ference between normals obtained from large and small support radius, segmenting

even smaller features like kerbs and windows. Implementation uses PCL libraries

[104].

It is easier to build graphs with neighbourhood information and carry out

graph based segmentation. Moosmann et al.[43] use local convexity as an attribute in

combination with vertical structures for obtaining segmentation and reports the per-

formance to be near real time. Other attributes like edges [86], curvature [105, 106],

smoothness constraint [107] or surface direction [108] can also be used for building

graphs. Golovinskiy and Funkhouser [109] build 3D graph, and by using K-nearest

neighbours (KNN) algorithm, segment objects while penalizing weak connections

between object and background with min-cut. However, the method requires infor-

mation on object locations. Angulov et al.[93] performs segmentation using machine

learning techniques. Points in the cloud are segmented by supervised learning meth-

ods using Markov Random Fields (MRF). As this approach involves training and

labelling, this is also not real time.

In contrast to the methods described above, terrain unevenness is a simple

measure used for segmentation without resorting to any kind of model �tting. Apart

from being simple and e�cient, the presented method is robust to terrain slopes and

robot's roll and pitch.

4.2 Segmentation

Unevenness, the way it is de�ned in the previous chapter, captures the smallest of

surface discontinuities present in the scan. Considering virtual sensor reorientation

( Figure 3.5 in chapter 3), points belonging to a continuous surface have similar

unevenness. Change in unevenness indicates surface discontinuity in terms of gap
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in the terrain or change in surface orientation. Unevenness can thus be used with

advantage for segmenting the point cloud into di�erent objects. Given the nature

of ordered scan, segmentation can be done using standard region growing, stopped

only by detection of edges using di�erence in unevenness. A näve way of detecting

edges using unevenness is by using the di�erence between unevenness values of the

neighbouring points. When the di�erence is greater than a threshold, it signi�es an

edge where the region growing must stop.

Figure 4.2. Surface segmentation by region growing using di�erence in unevenness
(δΩ).

Figure 4.2 shows surface segmentation with region growing using di�erent

threshold values of di�erence in unevenness (δΩth). Surface discontinuity is detected

when the di�erence in unevenness (δΩ) between neighbouring points exceed these

thresholds. A threshold of δΩth = 0.6 segments two persons walking close by as

individual segments. Only few noisy segments are present. On reducing threshold

to δΩth = 0.06, di�erent body surfaces (hands, heads, thighs, shin, and heel) appear

as di�erent segments. Further reduction δΩth = 0.04 results in over-segmentation

bringing out even the irregular cloth surfaces and body curvatures. This shows

sensitivity of unevenness in bringing out surface discontinuities. Smaller thresholds

also result in over-segmentation of ground which is because of unevenness decreasing
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with range (analyzed in the previous chapter). Given the robot navigation prob-

lem, instead of segmenting surfaces, it is adequate to segment objects as individual

segments. The basis of our approach is seen from Figure 4.3, where points either

belong to ground with smaller unevenness, or to objects with unevenness close to 1.

The overall segmentation approach is detailed in Algorithm 4.1.

Using unevenness as point attribute, segmentation is performed in two

stages. First, points belonging to traversable ground region are detected and re-

moved before segmenting non-ground points. Points of an object are connected if

they have unevenness around 1 using 4-neighbourhood connectivity. Large obsta-

cles in general are vertical with slopes α around 90◦. This results in unevenness

values close to 1 because of the ranges of two consecutive points being nearly equal.

But with irregular obstacles, this unevenness varies around 1. To accommodate for

little convexities and concavities present in obstacles, limiting thresholds around 1

are set during region growing. Growth is also restricted with edges detected in the

transverse direction using unevenness.

Figure 4.3 shows a representative diagram wherein a robot �res laser beams

in a vertical plane onto a tree. Unevenness (Ω) values are indicated at each point.

Starting from nearest laser (Point A) and proceeding outwards, points till E are

on or near ground having unevenness near 0 because the expected and measured

ranges at these points are similar. Point C samples a small bump resulting in a

small positive unevenness (Ω > 0). Due to decreased range at C, the measured

range at point D, even on ground, exceeds the expected range (D
′
in inset) resulting

in unevenness (Ω)to have a small negative value. Points from F to K sample the
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Figure 4.3. Robot and its environment showing unevenness(Ω) values for di�erent
points, Inset: Virtual sensor reorientation.

tree with unevenness (Ω) around 1, because ranges of adjacent points on faraway

objects are similar. Depending on higher laser being closer or farther from the lower

laser, unevenness (Ω) is greater or less than 1. In summary it can be observed that

the points sampling the ground have unevenness near to 0 while points sampling

the relevant obstacles have unevenness close to 1.

In order to accelerate the entire segmentation, we detect and remove ground

in a slightly di�erent fashion without using region growing like in the previous

chapter. At each rotation angle, at which the lasers are �red, range points are
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processed starting from the innermost or closest. Each range point is classi�ed

as either ground or non-ground using the unevenness value. However, a minimum

height threshold of 4cm is maintained for classifying an object as obstacle. Detection

of ground points is described as function detect_ground( ) in Algorithm 4.2.

4.2.1 Segmentation of Non-ground points

Points after removing Ground are further segmented into distinct features or objects

using region growing with 4 point neighbourhood. In Figure 4.4, the unevenness (Ω)

curves are plotted across pitch angles (φ) to understand how unevenness varies with

di�erent obstacle slopes (α) using the relationship as in equation Equation 3.11 that

is derived in the previous chapter.
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Figure 4.4. Unevenness values for sloped obstacles with pitch angles (φ).

This time unevenness is plotted against pitch angles (φ) and not range,

because obstacles can encounter a laser beam at di�erent ranges. Unevenness (Ω)

is seen converging to 1 at 0◦ pitch angle (φ = 0◦) for all slopes. This is the angle at
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which obstacles are intercepted at sensor's eye level. Around this point, unevenness

is around 1 with degree of deviation depending on the amount of slope deviating from

90◦. Laser beams around eyelevel (−10◦ ≤ +10◦)usually are the ones encountering

vertical obstacles. This is the region where 90◦ slope (α = 90◦)curve is around 1.

This provides justi�cation for using unevenness around 1 for growing an object.

In summary, segmentation of objects is done by standard region growing

[97] with 4-point neighborhood by setting appropriate thresholds so as to accom-

modate irregular obstacle shapes while growing objects. In [97] similar intensity

pixels starting from a seed point or points are connected and assigned a region by

looking at immediate neighbours. Here obstacle points are grown based on value of

unevenness for a point to be around 1 (e1 ≤ 1 ≤ e2). Here e1 and e2 are the lower

and upper limits for unevenness to restrict region growing. Points on ideal vertical

obstacles (walls) have unevenness Ω = 1. In addition to noise, most obstacles are
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far from being perfectly vertical. Tree trunks, humans and vehicles have curved

surfaces causing unevenness to deviate from 1. This can be seen as change in slope

from 90◦ compared to vertical obstacles.

In addition, we restrict region growing in presence of edges in transverse

direction. If an edge is detected in the transverse direction (transverse_edge) in

the way it is de�ned for transverse obstacle detection in Chapter 3 (Algorithm 3.2),

region growing is stopped in the transverse direction. An edge is considered when

the transverse unevenness is greater than the unevenness threshold in that direction

(|Γ| ≥ Γth). Although high point density along a ring allows di�erence in radial un-

evenness (δΩ) alone to capture most edges, transverse_edge separates very close

objects, for example a person standing near a distant wall where the di�erence δΩ is

very small. In addition to radial and transverse edges, we conservatively halt region

growing when the range di�erence between neighbouring points exceeds 10% of the

query point's range. This is to avoid even a single false connection at point level

that could cause under-segmentation. Entire non-ground points are segmented using

Grow_Object function (Algorithm 4.3) by providing unchecked obstacle points as

seeds. Function In_Grid (Algorithm 4.4) restricts region growing within the range

image.

4.3 Results

Segmentation is performed on single scans collected by robot across our campus

with scanner at height H = 1.3m. Extensive experimentation were performed with
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limiting threshold values of e1 and e2 conservatively kept at 0.6 and 1.8. Transverse

height threshold (gth) is kept at 40mm. These thresholds can be tuned to control

the degree of segmentation. Our robot mainly moved on roads and green lawns.

Apart from regular buildings and trees, environments contained dynamic objects

like people and other tra�c participants.

4.3.1 Experiments in structured environment

Validation of segmentation algorithms and evaluation of thresholds on unevenness is

done on data where the scanner was placed on stationary stand over the lab terrace

(structured environment) at 1.3m height. Three boxes of heights 10cm, 15cm and

20cm are placed on �oor at di�erent horizontal distances from sensor. Figure 4.5

shows segmentation on the lab terrace data when boxes are at 5m distance. Floor

in center image, as with all traversable regions in this section, is shown in Green

(Ground). Right image shows three distinct segmented boxes after removing ground.

Highlighted rectangular portion shows door (Brick Red) and ladder (Blue) leaning

on wall. Terrace boundary walls are segmented into multiple segments (Purple, dark

Caramel, Yellow) because of transverse edge restriction in region growing.

Figure 4.5. Terrace segmentation, Top left: Terrace scene, Centre: Segmented
scan, Right: Ground removed, Bottom left: Highlighted Rectangle portion.
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Table 4.1: Confusion matrix for terrace data.

There is clear separation between ground and obstacle points with very few

wrong classi�cations. This is also observed from the confusion matrix (Table 4.1).

This gives the actual number of correctly and incorrectly classi�ed points against

the ground truth for both the ground and object points. High number of obstacle

points classi�ed as ground points is because of local planarity in steps in front of a

door. Only 12 object points otherwise are classi�ed as ground points. In this data,

no ground point is classi�ed as object point. Errors are calculated as a percentage

against ground truth.

Figure 4.6. Transverse edge detection: Left, lab terrace (Google map) with sensor
position (Red dot), Centre, gth = 40mm, Right gth = 10mm.

The ability of transverse edge detection in di�erentiating close by objects

is demonstrated in Figure 4.6. Here, when the transverse threshold (gth) is reduced

from 40mm to 10m, it brings out even small projections (Green and Purple) ahead

of walls as distinct segments (gth = 10mm).

89



4.3.2 Unstructured outdoor environments

Figure 4.7. Outdoor segmentation, Clockwise from top left: Segmented scan, after
removing ground, after removing smaller segments (points ≤ 5), aerial image of
scene (google map), and selected side view.

Complexity of outdoor environments and the subjective nature of segmen-

tation make quantitative evaluation against ground truth very di�cult. Figure 4.7

shows such segmentation in an outdoor environment along with an aerial map of the

region. The results are evaluated qualitatively by observing di�erent segments. The

algorithm properly segments the lawn edges, small walls around fountain and circu-

lar structures (label 5). However, complex objects, local planarity and occlusion in

outdoor environments result in some over-segmentation. Porous tree canopies get

over-segmented, even when tree trunks are properly segmented. Segmentation of

trunk is not trivial, with Bargoti et al. [110] segmenting trunks in apple orchards

using both Lidar and camera. Removing segments containing fewer points improves
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visualization of important segments without disturbing nature of objects or their

positions. Side view shows pedestrian (Yellow) and vehicles closely parked under

trees getting separately segmented. Circular ring structure (Magenta, label 4) oc-

cludes wall (label 6) from robot's position causing over-segmentation. Most distant

trees are well segmented.

4.3.3 Object over-segmentation

Figure 4.8. Segmentation with trees.

Figure 4.8 shows di�culties when segmenting trees nearby (≈ 10m). Data

sparsity and porous canopies result in over-segmentation. In left image, while tree

trunk (Cyan) is properly segmented, remaining portion segments into di�erent clus-

ters. This is subjective as segments represent clusters separated by some distance.

Limited sensor view in vertical direction also contributes to discontinuities. Right

image shows another tree with trunk and its branches segmented together (Red) but

sub branches (Green) and leaf clusters segmented separately owing to discontinuities

in unevenness.

4.3.4 Segmentation on slopes

Proper traversable ground detection even on slopes is the advantage accrued from

using unevenness. Figure 4.9 shows two di�erent slopes (approximately 9.9◦ and
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Figure 4.9. Segmentation with ramps, left: First ramp with bicycle in inset, right:
Second ramp.

12.9◦ as traversable. Left image in inset shows bicycle (pink) parked very close

to the ramp as di�erent segment. Separating such close objects is di�cult with

traditional range di�erence [103] or voxel methods [79].

4.3.5 Density variation and execution speeds

Depending on environment, segmentation at full data density executes in 15−30ms

on desktop computer with Intel corei3, 3.2GHz clock and 4GB RAM. This can be

considered as realtime performance since the scanner rotates once in 100ms. It may

be noted that region growing is computation intensive and not computation of un-

evenness. Moosmann et al. [43] reported 600ms with reduced density and considers

it real time. The algorithms using unevenness are considerably faster. Segmenta-

tion can be further accelerated by reducing the scan density. Figure 4.10 shows

segmentation of a bicyclist by reducing data density in the transverse direction by

interleaving points according to the indicated resolutions. Reduction in densities

brings down the execution times but also result in over-segmentation because of

loss of neighbourhood connectivity. This brings trade-o� between speed and seg-

mentation e�ciency. Reasonable segmentation is however achieved with half the
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density.

Figure 4.10. Bicyclist segmentation for di�erent data densities along with execu-
tion times (whole scan).

4.3.6 Quanti�cation of individual segment results

Quantitative evaluation is done on selected individual segments. Figure 4.11 shows

individual features collected across scans. Features are clearly separated from ground

and contain only few outliers (di�erent colour points). Quantitative evaluations, per-

formed using Precision, Recall and F-score according to Goutte and Gaussier[111],

are tabulated in Table 4.2. Precision is the ratio of number of correctly segmented

points to number of segmented points, while recall is ratio of number of correctly

segmented points to number of object points. F-score is a test measure considering

both precision and recall which accounts for both commission and omission errors

in giving an overall quantitative measure for segmentation.
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Figure 4.11. Features collected from di�erent scans.

Table 4.2: Measurement tests for features in Figure 4.11
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F − Scrore = 2 ∗ (precision× recall)
(precision+ recall)

(4.1)

Clear separation of objects from ground gives high precision values. Pre-

cision values of Car, Cyclist and Railing are less than 1 as some points fall outside.

While precision indicates under-segmentation, recall indicates over-segmentation.

Low recall values are obtained for the vehicles when a few lasers pass through win-

dows hitting other surfaces. Similarly, disturbance caused by trees lead to low recall

values. Most rigid objects return high values. Overall segmentation e�ciency with

variety of objects using F-score indicates e�cient point level segmentation.

4.4 Conclusion

It is possible to perform an e�cient segmentation of relevant objects around a robot

at a point level using unevenness in spite of environmental complexity. Unevenness

has the ability to capture distinct surfaces in spite of data being radially sparse.

Unevenness brings out enough features that can be used by robot for its navigation.

It detects surface discontinuities even in presence of terrain slopes or pitching and

rolling of robot. Segmentation is carried out using only the ordered range data

from the Laser scanner. Objects are grown into segments using point level region

growing within the pre-speci�ed unevenness limits. Unlike most methods involving

grids or attributes calculated using set of neighbouring points, objects get clearly

separated. Method performs segmentation in real time and the execution speed can

be further accelerated by reducing density in the transverse direction. Depending

on environment and objects, thresholds may need slight adjustments. Segmented

features have the potential to be used for robot localization and scan registration

which is the subject of our next chapter.
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Chapter 5

Scan Registration

A robot equipped with laser scanners can only sample a limited area surrounding

it from its current position. This is because of a limited range (80m for HDL32) of

the sensor, and also because of occlusions where the scanners are unable to sample

regions behind the obstacles. Some of the occluded or out of range regions may

be visible to the robot from a di�erent location. That is why it is required to

aggregate scans collected by the robot at regular intervals of motion. An ideal

approach for aggregating scans is by transformation of current scan to the previous

scan when the relative pose di�erence between the two scans is known. Even when

a robot is equipped with wheel encoders, Inertial Measurement Units (IMU) and

Global Positioning Systems (GPS), the pose di�erence between the two scans cannot

be accurately and reliably measured. This is because of measurement errors in

sensors. Measurement of di�erence in robot pose between two locations is a�ected by

slippage between wheel and ground. IMUs are sensitive to their exact placement and

orientation on robot. GPS is unreliable without clear sky; multipath re�ections in

presence of buildings and other structures also reduce its accuracy. Instead of trying

to measure the relative pose di�erence between two locations, the popular approach

for aggregating scans is by obtaining the rigid transformations between scans taken
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at di�erent locations by a moving robot by using the scan data itself. Transformation

is obtained by matching one scan against the other. This is called registration.

Successive registration of scans by obtaining a series of rigid transformations results

in tracing the trajectory of the robot.

Registration aggregates multiple scans into a common coordinate frame.

Coarse measurements between scans obtained from the odometric sensors are input

as initial estimates for the registration algorithms. When a moving robot success-

fully registers scans starting from its initial position, the robot poses at which the

scans are taken can be established. This eventually results in a map with points

aggregated from all the scans. This largely overcomes the problem of non-uniform

point density of a single scan. Each feature or object in the environment can now

be modelled without problems of occlusion. Detected features are useful for Seg-

mentation, Simultaneous Localization and Mapping (SLAM) or Motion planning.

Figure 5.1 shows the result of aggregating points by registering �ve scans from a

moving robot. Points from each scan are shown in a di�erent colour with the centre

of the circle being around the position of the scanner for that scan.

Figure 5.1. Registration of �ve successive scans from a moving robot.
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Registration can primarily be performed using metric (distance) informa-

tion of points when there is a su�cient overlap between two scans. In addition,

other point attributes such as colour and intensity can also be used to establish

correspondence between points. The registration problem �nally amounts to �nd-

ing a transformation (rotation and translation) between two scans after establishing

(robust) correspondence between the points and matching the scans. Nüchter [51]

classi�es the scan matching approaches into two categories.

1. Matching as an optimization Problem: Here a cost function is used to

evaluate the quality of alignment between the scans. Scans are registered by

determining the rigid transformation that minimizes the cost function. Rigid

transformation includes both rotation and translation components.

2. Feature based matching: Extracts few distinguishing features from the

scans and uses them as corresponding features for calculating the alignment.

The Iterative Closest Point, or sometimes called the Iterative Correspond-

ing Point (ICP), is a well-established and popular method for scan registration. Besl

and McKay [24] is the most cited work on registration, with several variants of ICP

published in literature in the last few decades. These along with other popular reg-

istration algorithms are described in the next section. The ICP algorithm registers

two scans when an initial guess for the relative poses between the scans is pro-

vided. The algorithm computes the translation and rotation between the scans such

that they match together. This is done by iteratively minimizing the error between

the closest or the corresponding points. Rusinkiewicz [112] decomposed the whole

registration process into the following stages and compared convergence rates for

di�erent ICP variants. An e�cient variant is then developed for fast registration.

1. Selection: Selection of su�cient number of points in a scan for successful

registration.
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2. Matching: Establishing point correspondences between scans for calculating

error metric.

3. Weighting: Providing weights between point pairs using strength of corre-

spondence.

4. Rejection: Points degrading registration are ignored based on the quality of

match.

5. Error Metric: Assigning an error metric based on the point pairs.

6. Minimizing error: Minimizing the error metric.

It is computationally expensive to generate correspondences for all the

points between two scans. Registration for high resolution scans is accelerated by

using a subset of points instead of the entire point cloud. Entire point set is then

transformed using the rigid transformation obtained from registering the subsets.

Two points, being always collinear, bring ambiguity about rotation and are not

enough for registration. Theoretically a minimum of three corresponding points

from each scan are needed for calculating translation and rotation between scans

[113]. Di�erent approaches can be used for subsampling the scans. Simplest and

a natural way of sub sampling is selecting a uniform distribution of points [114]

with each point getting an equal probability of selection. Because of non-uniform

scan density with distance from the scanner, uniform point density is obtained by

spatial discretization with each cell containing similar number of points. Other ways

include random sampling [115] or selection of points with High intensity gradient

[116]. Rusinkiewicz and Levoy's [112] select points such that the distribution of

normals among the selected points is as large as possible. This allows selection of

points representing small features. The more appropriate subsampling should thus

retain points based on the importance of features sampled by them.
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Selection of points input to the registration algorithms is an important

step for improving the overall execution times. As search for neighbouring point

accounts for nearly 90% time in overall registration process, registration is acceler-

ated by either speeding nearest point search or by reducing the number of points.

Post detection of unique and distinguishing features in a scan, one can select only

points sampling those features for registration ignoring the remaining points during

determination of transformation. This reduces the number of searches resulting in

speeding up of registration.

Figure 5.2. ICP registration without initial guess (top), with initial guess (bottom).
Here the robot moved 2m between the scans.

The measure of unevenness, introduced earlier in this thesis, leaves feature

signatures in scans apart from detection of obstacles and traversable regions. Using

unevenness, points representing level surfaces, like the traversable portions or other

locally planar regions, can be ignored for scan matching. Removal of ground points

reduces the chances of the algorithm to converge to a local minimum. This problem

is acute with high density of points on the ground near to the sensor. This region gets

sampled as concentric rings with comparatively higher point density in transverse

directions. This can be seen in Figure 5.2. During search for closest points for

correspondence during the registration process, points on the rings closer to each
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other in the two scans have the tendency to pair with one another. Due to the

huge number of points on the rings, these matches will dominate other genuine

matching pairs, whose contribution to the calculation of rigid transformation thus

getting diminished. This has a potential to cause the algorithm to converge to

a local minimum. The transformation thus obtained will result in incorrect scan

registration. Using unevenness, only points that improve registration are selected

for �nding correspondence. For example, smaller feature signatures like road edges

or uneven portions of a road obtained using unevenness are utilized for establishing

correspondence and subsequent registration.

5.1 State of the Art

The prominence of registration methods started in the early 1990s with almost si-

multaneous independent publications of three papers related to registration. The

most popular and widely cited among them for the Iterative closest points is by Besl

and McKay [24] for registration of scans using point-to-point matching. The ICP

relies on �nding the rigid transformation with the rotation and translation compo-

nent that minimizes the sum of Euclidean distances between the model (reference)

and the data scans. The corresponding point in the reference scan is the point with

the least Euclidean distance to the query point in the data scan to be matched.

Chen and Medioni [117] were more speci�c for aligning of range images by using

the point-to-plane variant of ICP, assuming that most of the data is locally planar.

Zhang [118] describes ICP for scan registrations using free-form edges and surfaces

from the stereo images and adds a robust method for outlier rejection for selecting

the points for scan matching. Other approaches include Blas and Levine [119] using

the point-to-projection method for matching. Park and Subbarao [120] introduce

a point-to-plane registration by combining with the high-speed advantage of the
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point-to-projection matching for fast and accurate matching.

Other approaches for matching are the Iterative Dual Sampling by Lu and

Milios [20] where the point matching is improved by having two sets of correspon-

dence for global scan matching. Censi [121] performs scan matching as a probability

distribution approximation problem for global registration of scans. Hähnel and

Burgard [63] compute a probability density for each pair of scans and then per-

forms the registration using a greedy hill-climbing search in the likelihood space and

show that the probabilistic model gives less estimation error compared to the ICP

method. Pulli [122] performs registration of multiple large scans by �rst aligning

the scans pair wise to obtain the constraints before registering large datasets from

di�erent views. Rusinkiewicz [112] compares di�erent variants of ICP with focus on

convergence speed. Comparisons are carried out for di�erent schemes at di�erent

stages of registration such as sampling, �nding corresponding points, giving weights

and rejection of points. Pomerleau [123] does an extensive study on the di�erent

variants of the ICP and relates them into an unique framework and provides a more

structured methodology for evaluation of the geometric registrations for robotic ap-

plications.

As the density of points becomes sparse away from the scanner, when the

robot moves, the density of points at a spatial location will not be the same in

di�erent scans, making it di�cult for the ICP to �nd corresponding points in the

two scans for all the points. To overcome this, Segal et al.[124] combine the point-to-

point and the point-to-plane variants of ICP into a single probabilistic framework to

create a kind of plane-to-plane matching called the Generalized-ICP (GICP) wherein

the local surface normal of each of the points in the two scans is calculated using the

local neighbourhood for matching similar surface structures between the two scans.

Use of structural information reduces the e�ects of improper correspondence because

of noise. This improves convergence rate compared to conventional ICP. Pandey
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et al. [125] extend the GICP by registering the already co-registered points from a

camera image and a 3D point cloud from a Laser scanner. The point correspondence

between scans is performed by high dimensional feature descriptors such as Scale

Invariant Feature Transform (SIFT) [126] or Speeded up Robust Features (SURF)

[127] to the 3D points and the �nal re�nement is done by GICP. All variants of ICP

require establishing corresponding points using nearest neighbor searches, which are

a bottleneck for these algorithms. For �nding correspondence of all the points, the

complexity of searches will be O
(
n2
)
. Searching the nearest point using a k-d tree

[70] is the most common approach used for accelerating the search with complexity

reduced to O
(
nlogn

)
. Nüchter [61] introduces cached k-d tree with a novel search

procedure with a pointer to the predecessor node, accelerating the search by a further

50% compared to the conventional k-d tree search.

Alternative approaches using the Normal Distribution Transform (NDT)

are the class of registration algorithms proposed to overcome the problem of cor-

respondence encountered by the ICP variants. The �rst of these approaches was

proposed by Biber and Straÿer[128] for 2D environment, where the 2D scan was

discretized into cells and each cell is assigned a Normal transform which will lo-

cally model the probability of measuring a point. The normal distributions give a

piecewise smooth representation of the location with di�erential probability density.

Using this representation, standard numerical optimization methods are applied for

registering the scans. Here matching of a point in the data set is done in terms of

probability of its occurrence in the reference scan that is represented with normal

distributions. Magnusson et al. [39] extended the NDT to 3D scan registration,

particularly for mapping underground mines. Here the space is discretized into vox-

els and each voxel is assigned a Normal distribution. The NDT represents scans as

a set of Gaussian distributions that models the surface of the reference scan as a

Probability Density Function (PDF). Stoyanov et al.[129] extend NDT further by

using a distribution to distribution matching between the scans instead of point-
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to-distribution matching used in the earlier methods. Both the reference and the

data scans are represented as Gaussian distributions. Registration of the scans is

performed by minimization of the L2 distance between the distribution sets of the

two scans. NDT representation however results in discontinuities at the border of

the cells. To overcome this problem, Das and Waslander [91] propose to segment the

scan into clusters after removing the ground region and then assign a Normal distri-

bution to each of the clusters and calling the method as Segmented Region Growing

NDT (SRG-NDT). With this approach, there is considerable speedup in registration

without a�ecting the accuracy. More recently Kim and Lee[130] proposed a Super

Voxel Normal Distribution Transform (SV-NDT), where they consider plane to be

the best surface to be modeled without losing information on local surface struc-

tures. Super Voxels are generated at the partitioning stage. The SV-NDT method

is shown to be more robust compared to the regular NDT methods. In general, the

reduction in the number of points also improves the registration speed for other reg-

istration algorithms (GICP, NDT) because of the reduced number of computations

point wise.

5.2 Registration of scans using ICP

The ICP method proposed by Besl and McKay [24] is the basic method for regis-

tration of the scans using point to point matching. The scan taken by the robot

in the current pose, called Data scan D, has to be registered against the reference

scan taken at the previous pose, called Model scan M . Registration �nds a rigid

transformation (R, t) that minimizes a cost function. Here R is the rotation matrix

and t is the translation vector. The cost function is computed as
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E(R, t) =
Nm∑
i=1

Nd∑
j=1

wi,j‖mi − (Rdj + t)‖2 (5.1)

Here wi,j is the weight of correspondence between points mi and dj in

model and data scans respectively. Weight wi,j is set 1 if the ith point in the model

scan is same as the jth point in data scan. When there is no correspondence, wi,j

is set zero.ICP algorithm iteratively minimizes the cost function Equation 5.1 by

repeating the following two steps

In each iteration step, the ICP algorithm identi�es the closest point for each

data point as the corresponding point and determines (R, t) that would minimize

the cost function E(R, t).

For all the steps in iteration, the error keeps reducing, i.e. Ek+1 ≤ Ek. Since

the error is bounded, the ICP algorithm is shown to converge to a minimum [24].

In robot applications, two scans do not completely overlap, so a maximum tolerable

distance dmax is set for a point such that there is no corresponding point beyond this

distance. The algorithm can be terminated when the criterion for convergence is

met or when it reaches the maximum number of iterations maxiterations. During

each iteration, the algorithm tries to minimize cost function (Equation 5.1)and tries

to maximize the number of corresponding points.
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5.2.1 Solution for Rigid transformation

An important step in ICP algorithm is the calculation of rigid transformation (R, t)

in each iteration step till the algorithm converges. Solutions for �nding the trans-

formation include both direct and indirect solutions [51]. The direct solutions, also

called as closed form solutions, give the solution in one step without resorting to

the iterative processes that need an initial guess to be provided. Examples of the

closed solutions include the popular methods by Arun[131] using the Singular Value

Decomposition(SVD), and the method by using unit quaternion by Horn[113]. The

indirect methods for the solution include the Gauss-Newton, Levenberg-Marquardt

or the gradient descent methods. The indirect methods result in higher execution

times because of the need to perform several evaluations on Equation 5.1 before

arriving at the solution.

The cost function in Equation 5.1 can be reduced to

E(R, t) =
1

N

N∑
i=1

wi,j‖mi − (Rdj + t)‖2 (5.2)

Here,

N =
Nm∑
i=1

Nd∑
j=1

sgnwi,j (5.3)

The points mi and dj are the corresponding points and can be represented

as a tuple(mi, dj). sgn is the sign function.

The di�culty in minimizing the error function lies in enforcing the or-

thonormality constraint for the rotation matrix. In most of the algorithms, the

computation of rotation matrix R is done �rst, and then the translation vector t is

obtained. For this separation, �rst the centroids of both the point sets are obtained
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cm =
1

N

N∑
i=1

mi

cd =
1

N

N∑
i=1

di

(5.4)

Proceeding further, two point sets M
′
and D

′
are obtained such that

M
′
=
{
m

′

i = mi − cm
}

1...N

D
′
=
{
d

′

i = di − cd
}

1...N

(5.5)

Now E(R, t) from Equation 5.2 can be written using Equation 5.4 and

Equation 5.5 as

E(R, t) =
N∑
i=1

‖m′

i −Rd
′

i − (t− cm + Rcd︸ ︷︷ ︸
t̃

)‖2 (5.6)

When considering that all the points refer to the translation from the cen-

troids (t̃). For �nding only the rotation, this can be considered to be zero [51].

Therefore, the error function is now represented only with the rotation component.

E(R, t) =
N∑
i=1

‖m′

i −Rd
′

i‖
2 (5.7)

5.2.2 Computing the Transformation using Singular Value

Decomposition (SVD)

The algorithm for �nding the rigid transformation by means of least square error

was proposed by Arun [131] to �nd out the rotation (R) and translation (t). The op-

timal rotation is obtained by Singular Value Decomposition (SVD) of the correction
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matrix. Correction matrix is given as

H =
N∑
i=1

m
′

i

T
d

′

i (5.8)

For �nding the SVD of H

H = UAV T (5.9)

Here U and V are the orthonormal 3×3 matrices and A is a 3×3 diagonal

matrix.

X = V UT (5.10)

For �nding the validity of the obtained rotation R, its determinant needs

to be evaluated.

if det(X) = +1 , then R = X

det(X) = −1 , The algorithm fails

However, for true cases involving point sets, the algorithm does not fail.

Once the rotation matrix R is obtained, the translation vector t is obtained using

the translation experienced by the centroids

t = cd −Rcm (5.11)

This way both Rotation R and Translation t components are obtained.

The method is explained in Algorithm 2.
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5.3 Detection of Key points using unevenness

Computation of closest point pairs between two scans is the crucial step for regis-

tration using ICP algorithm. A naïve implementation for searching nearest points

between two scans require O(|ND||NM |) evaluation operations, where ND and NM

are the number of points in the data and the model scans respectively. This result

in a complexity of O
(
n2
)
for �nding nearest neighbours for all points where for a

single point, n nearest neighbor search operations are required by the naïve method.

There are several approaches for �nding nearest neighbour search [132].State of the

art algorithms �nd the nearest point by dividing the space recursively into subspaces

represented by trees. Algorithms like octrees [37] divide space uniformly. Others

like Vornoi, Delaunay or k-d tree perform non uniform subdivision of the underlying

space. K-d tree, which is a generalized binary search algorithm, is generally used

for nearest neighbour search in ICP algorithms. The search complexity is O
(
nlogn

)
with k-d trees. Apart from accelerating search procedures, registration speed can

be improved by considering only a subset of points in each scan instead of the entire

point cloud. The selected points called key points represent important features in a

scan that aid in accurate registration while �ltering out points that could degrade

registration.

In general, scan points can be categorized into ground and non-ground

points. As explained earlier in chapter 3, the points sampling the ground from the

rotating laser scanners form ring like patterns. Objects present in the environment

disturb these patterns. Using the unevenness (Ω) as de�ned earlier (chapter 3),

the points belonging to ground and those belonging to vertical objects are easily

determined. Ground points having unevenness less than a given obstacle threshold

(Ω ≤ Ωth) can be �ltered out. We propose and demonstrate that registration can

be performed more e�ciently by selecting only the points belonging to important

objects, which we call key points, instead of the entire point cloud. Particularly,
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vertical objects are considered robust features for registration. Instead of explicitly

determining the ground points before �ltering them and then detecting the vertical

obstacles, key points are directly selected using the points whose unevenness values

are close to 1(Ω ≈ 1).

Figure 5.3. Key points in scan (Orange), Left: Semi urban environment 6213
(ξ = 0.1), Right: Urban environment 11568 points (ξ = 0.05).

Depending on the environment, a key point selection threshold (ξ) is tuned

such that it gives enough points in a scan with unevenness close to 1 (fabs(1−Ω) ≤

ξ) for registration, i.e. points having unevenness between 1− ξ and 1 + ξ. In highly

structured urban environments, the value of ξ is kept tight (small) so that points

with unevenness in a narrow window around one are selected. In environments not

having many notable vertical structures, the value of ξ is relaxed to accommodate

points sampling little convex or concave surfaces as key points. For example, points

belonging to tree trunk which is not perfectly vertical are selected when the threshold

is relaxed. Figure 5.3 shows key points (Orange) within two scans (≈ 55000 points)

in di�erent environments. In the urban environment, primarily containing buildings,

a tighter threshold (ξ = 0.05) detects more number of points (11568) compared to a

relaxed threshold (ξ = 0.1) in a semi urban environment (6213 points). In structured

environments, most points sampling structured building walls have unevenness very

close to one. It can be observed that only few footpath edge points are detected as
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Table 5.1: Number of key points for di�erent thresholds along with execution times.

key points. All footpath edge points get added to key point list when the threshold is

further relaxed (ξ = 0.5); but this increases the number of key points. Threshold can

be further reduced to bring down the number of key points to accelerate registration.

In a semi-urban environment, a relatively high value of threshold (ξ = 0.1) brings

out 6213 key points, a majority of which sample the huge building; otherwise the

count will be even less. Points sampling the important features like truck, lamp

post and pedestrians are detected as key points (inset). This relaxed threshold

selects points sampling tree trunks as key points, while rejecting tree tops. However,

tree tops far away are selected as key points because range of consecutive points

on vertical objects far away is nearly the same. In general, the threshold (ξ) is

tuned to obtain su�cient number of points spread over di�erent objects to carry out

registration. Even a small robust point set results in accurate registration compared

to registration with a higher number of points.

Selection of key points list from a scan using key point threshold (ξ) is

detailed in algorithm 3. The number of key points selected using di�erent values of

ξ is tabulated in Table 5.1 along with the time taken for registration of two scans

from a structured environment using ICP from robot positions separated by 2m. It

can be seen that, correct registration is achieved even with points as low as 4000.

From the table, it can be observed that the execution times are reduced to

nearly one-tenth of the execution time for full point cloud. With these reduced exe-

cution times and considering the speed at which the Velodyne scans the environment

(10Hz), every third scan can be registered. Within this time, our robot operating
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at 2m/s would also have moved less than 60cm. The farthest we have registered the

scans with correct alignment in a semi urban environment is 8m. Although most of

the mapping using registration is done o�ine, this way scans can be considered to

have been registered in real time.

5.4 Error quanti�cation with registration using Key

points

We demonstrate that not only the speed of execution, but the accuracy of registra-

tion is also increased by using key points. Error in registration is determined by

comparing against the ground truth. Since it is di�cult to obtain the ground truth

from a moving robot in absence of prior map, the Velodyne laser scanner placed

on a stationary stand was moved on a grid as shown in Figure 5.4. The scans so

collected were registered and compared with known displacements of the scanner.
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Figure 5.4. (From left): Aerial view with Grid overlay (inset: Velodyne on a
stationary stand), Grid with red squares as scan locations, Sequence S1, Sequence
S2, Sequence S3, Arrows show directions at start and end.

A set of 33 scans are taken on a near level road in front of our lab building.

The scans are taken at locations arranged in a grid like fashion as shown Figure 5.4

where the grid is approximately overlaid on the aerial image of the environment.

Grid is constituted with readings along three columns (A,B,C) along the positive

X-axis with 11 readings in each column in the positive Y-axis. The distance between

neighbouring scan locations is 2m. Scan locations shown as red square markers in

the grid are marked by stretching long strings and by measuring the distances be-

tween locations using a measuring tape. After recording the scans, a standard ICP

algorithm is applied across the series of scans. Implementation used the Mobile

Robot Programming Toolkit (MRPT) library [133] where a k-d tree is used to ac-

celerate search for the nearest points. Registrations are performed without giving

any initial guess between the scans.

Instead of comparing the results for a single registration between two scans,

a sequence of registrations are performed akin to robot movement starting from one

location and covering all the 33 scan locations. Three set of sequences (S1, S2, S3)
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are considered where the robot starts from the start arrow and moves towards the

end arrow by following the path indicated by green lines joining red markers. The

three sequences cover straight, lateral and cross movements by the robot. Each scan

sequence required 32 registrations, with each registration providing the set of six

errors including three errors along X, Y and Z axes and three errors along rotations

in the Yaw, Pitch and Roll. Errors are measured by using the distances according

to the ground truth and result from the ICP registration. The errors obtained from

registrations across the three sequences are aggregated (total 96 registrations) and

plotted as error distributions using box plots. A box plot produces a box and whisker

plot for each column of errors. The box has lines at the lower quartile, median, and

upper quartile values. Whiskers extending from each end of the box represent the

most extreme values within 1.5 times the interquartile range. Outliers in data if any

with values beyond the ends of the whiskers are displayed with a red "+" sign.

Figure 5.5 shows box plots for the execution speed and the number of key

points selected for di�erent values of thresholds (ξ). Compared to the full point size,

it can be seen that the number of key points decrease with decrease in (ξ). This is

in line with the values given in Table 5.1 for a single registration. The registration

time is accelerated to one-tenth compared to full point set and the number of points

used for registration (key points) is reduced to one-sixth using the same algorithm.

Further acceleration is possible by optimizing the nearest neighbour search, like

cached k-d tree [61] with the reduced point set.

Error distributions including both the translational and rotational com-

ponents compared to the ground truth are again shown using the box plots (see

Figure 5.6). Plots are made using the 96 registrations, with each registration con-

taining six di�erent errors. From the error plots, it is observed that the errors are

generally decreasing with the reduction in the number of key points by reducing the

value of ξ. It can be seen that the median value of all the errors is nearest to zero
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di�erent Key point thresholds (ξ).
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when the number of key points are the least (ξ = 0.03) a value at which all the

registrations in the sequences were successfully performed. However, the majority

of registrations were successful even when ξ is as low as 0.005 with points less than

4000. This validates the fact that by selecting robust key points for registration in-

stead of the entire point cloud, the accuracy of registration is increasing in addition

to its speed. It may also be noted that the detection of key points using uneven-

ness (Ω) is simple and direct using only the ordered range data and needs no extra

computational e�ort. It also registers scans accurately without being provided with

initial guess.

From the error distributions in the plots, it can be seen that the transla-

tional errors (X,Y and Z) are present to an extent of few centimeters and not zero

as it should be in the ideal case. Notably X error is extended to 7cm(70mm) for

the boxes and to 20cm for the whiskers. This error is consistent across the plots

for di�erent values of ξ and in fact improves for low values of ξ. These small er-

rors are systematic because of the way ground truths are manually marked using

the stretched strings for measuring distances and then placing the stationary stand

with the scanner. This explains more error in X direction. Similarly, some play be-

tween the stand and sensor has led to errors in the Yaw direction (along the scanner

rotation). However, this is less than 2◦ in most cases. The Pitch and the Roll errors

are however signi�cantly lower (≤ 0.5◦) even for full clouds. Since the road on which

the scans are taken contains some irregularities and is not perfect level surface, there

are some outliers in the plots marked by red "+" signs. Outliers are particularly

present in the pitch and roll errors which explain surface irregularities causing sensor

tilts. Number of outliers appears to be more because of small range in errors. But

signi�cantly the overall observation indicates error to be close to zero and to reduce

with reduction in ξ. While the Z error also shows overall improvement with decrease

in ξ, there are a few scans (see outliers) in which the errors are more with reduced

point set compared to full clouds. This is understandable in absence of ground
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points in the key points, which would have served as a reference in the z-direction.

The key points are usually present as horizontal lines; this at times causes points in

one horizontal line to incorrectly correspond to points in another horizontal line at

a di�erent height in the other scan. The absence of ground points whose presence

otherwise could have restrained o�set in the Z direction cause these errors. This

can be overcome by presenting the ICP algorithm with initial guess particularly in

the Z direction, but since the methodology in this work refrained from using initial

guesses, the results are reported as it is even for z-coordinate. This error can also be

mitigated when the data in the radial direction is dense (example HDL-64 scanner).

Another way to overcome z error is by purposefully injecting selected points from

the ground into the key points before registration.

5.5 Qualitative Results

Figure 5.7. Top view of registration result of 15 scans. Inset (Selected portion).

The quality of registration can be evaluated by looking at the crispness of

features in the registered scan [91, 134]. Crispness voxelizes point cloud and gives

the number of cells containing points. Here crispness is not quantized as we do not
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compare against other methods, but only evaluate scans visually. Less number of

occupied voxels indicates high crispness. When the scans are properly registered,

the features in the scan appear very sharp. Improper registration leads to points

getting scattered. Figure 5.7 shows result of ICP registration of 15 scans (sequence

S2) using only the selected key points for the quantitative evaluation. Each scan is

represented by a di�erent colour. In the view from top, one can see that the walls

are along straight lines. This shows image crispness. Image in the inset shows a

rectangular room with the right wall also sampled as a rectangle. The wall geometry

is rectangular because of the scans from both sides of the wall. The walls from the

top view are nearly straight but for the perspective view of the image viewer where

the walls away from the center appear oblique.

Figure 5.8. Closer top view of registration.

Figure 5.8 shows the top view of the registered scans in a di�erent location.

Di�erent objects in the scans are labeled. It can be seen that with registration the

density of scan points across the regions become uniform, and individual objects get
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sampled by more points.

5.6 Conclusion

Registration of scans not only aggregates points from di�erent scans taken from

di�erent locations of a moving robot, but also results in robot localization within

the environment. The speed of execution however is related quadratically to the

number of points contained in each scan. Execution of the registration algorithms

can thus be accelerated by selecting a set of key points from a scan that sample

robust features instead of full point set. A rigid transformation obtained using

only the key point set is applied to transform all the points in the scan against

a model scan. In this chapter, unevenness with simple selection criteria is used

to select enough number of points for registration. Registration using key points

selected using unevenness not only accelerates the registration but also improves

the accuracy of registration. Points are selected without explicit ground detection

or feature modeling. The success rate of registration is high in spite of the algorithm

not being provided with any initial guess of relative poses between the scans. The

selection of key points is based on selecting the vertical features in an environment,

which form robust features. The key point selection threshold (ξ) is needed to

be tuned based on the environment such that it selects enough number of points

to perform registration. While the work details about registration using the ICP

algorithm in detail, similar results can be replicated using the Generalized ICP

(GICP) and the Normal Distribution Transform (NDT).
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Chapter 6

Conclusions and Outlook

Developing reliable perception of the surrounding environments in three dimensions

is the most important requirement for building autonomous capabilities in an out-

door mobile robot. It is also important for the developed algorithms to execute

on-board in real time. This allows the robot to quickly respond to the dynamically

changing environments. This work is developed using the Multi-beam rotating laser

scanners that are currently used with most autonomous vehicles. A novel measure

called unevenness is developed for the purpose of improving robot perception by

exploiting the ordered nature in which these sensors scan the environments. Algo-

rithms developed around unevenness contribute to multiple stages of robot naviga-

tion in developing perception when no prior maps of the environment are available

to the robot.

Inputs to the developed algorithms are the ordered range measurements

from the three dimensional (3D) laser scanners. These sensors provide precise range

measurements by sampling the surrounding environment in quick time. Sparse data

in the radial direction may result in lasers not intercepting smaller obstacles at far

away distance. They may only get detected when the robot moves closer to them.
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However, reasonable size of objects which are more than 4cm high are detected

till 10m range. Given the quick nature of scanning and general operating speed of

autonomous mobile robots, this presents no concern for safe navigation. The data,

on which the algorithms are applied, have not been corrected for motion of the robot.

The algorithms for perception are shown to work without problem as the relative

motion between the neighbouring points in a scan is very minute. However, when

mapping the points into the world coordinates, the motion should be compensated.

The presented work develops around a notion of unevenness that is com-

puted using the ratio of the measured and the expected range di�erence between

the neighbouring points of an ordered point cloud. Detection of smallest of disconti-

nuities in the direction of evaluation of the scanned points, in spite of terrain slopes

or sensor tilts caused by robot motion, is the forte of unevenness. This robustness is

achieved because of unevenness using the measured ranges for estimating expected

range di�erences between neighbouring points and not depending on the absolute

pitch angles. Calculation of unevenness is simple, and requires very simple pre-

processing steps for conditioning raw sensor data for noise reduction using a simple

median �lter. In order to maintain the order of range data, very few points that

return no ranges because of specular re�ections are assigned ranges of their nearest

neighbours in the transverse direction.

Algorithms using unevenness process the range data at a point level. Un-

evenness is �rst used for detection of obstacles around the robot. Ability of uneven-

ness to detect smallest of surface discontinuities allowed detection of clear boundaries

between objects and ground and between two nearby objects. This clear separation is

advantageous in not only detecting smaller objects but in also using them as features

for navigation. Analysing the unevenness �eld surrounding a robot by assigning un-

evenness values to individual points, a reasonable policy for setting thresholds on

unevenness for our mobile robot is arrived at. Thresholds can be tuned according to
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the nature of the environment and the ability of the robot. Obstacle edges are also

detected along the transverse direction to detect edges that are radially aligned and

those missed by checking unevenness only in the radial direction. Considering the

point density in the transverse direction, the points within one degree of rotation

are binned into a grid cell. Traversable region is then detected as a connectivity

graph by connecting all the non-obstacle cells using region growing by starting from

an assured ground point in front of the robot.

Unevenness contributes to segmentation of important discernible objects in

the individual scans obtained while the robot moves. Objects are segmented by using

the standard region growing algorithm using the neighbourhood information present

in the ordered point cloud. Growth of a segment is regulated using the unevenness

values of the points calculated in the radial direction, as also by the detection of

edges using unevenness in the transverse direction. The ability of unevenness in

segmenting small surface changes even within an object is demonstrated. It has

been assumed that the majority of relevant objects to be segmented are nearly

vertical in nature, thus limiting the range of unevenness values for growing objects.

Results show that unevenness successfully segments objects which are very close to

one another. As in the case of obstacle detection, the thresholds that restrict the

growth of an object using region growing can be tuned according to the �neness to

which the objects are desired to be segmented. Since the point wise segmentation

using unevenness clearly de�nes the object boundaries, it becomes advantageous to

use static objects as landmarks across the scans. Also, because of fast scanning,

moving dynamic objects like vehicles and pedestrians are also properly segmented.

Dynamic objects recognised as single segments can be tracked for their motion across

the scans. This approach for segmentation however su�ers when segmenting porous

objects like tree tops. Lack of continuity in unevenness values prevents the whole

tree canopy to be recognised as a single segment. However, the ability to properly

detect the rigid trunk of a tree, which can be used as landmarks instead of the entire
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tree, has been demonstrated.

Unevenness has been further extended for accelerating scan registration

between the successive scans that are collected from di�erent locations from a moving

robot. Scan registration is performed by using only the selected number of points

instead of the entire point cloud. Points sampling the features that are likely to result

in the correct rigid transformation between the two scans are input to the standard

registration algorithms while �ltering out points mostly belonging to ground that

are likely to cause convergence to local minima. Results also show that selection of

key points using unevenness not only speeds up registration, but also improves the

registration accuracy. Quicker registration makes it easier to quickly aggregate scans

from a moving robot to overcome data sparsity. This approach is validated using the

experimental results with reasonable ground truth information. Results show proper

registration for distances between the scans of up to 8m without providing the initial

estimate between them. Again, the thresholds on unevenness for selecting the key

points can be tuned to adapt to the nature of the operating environments. For an

urban environment, a narrow unevenness window around one selects only the points

belonging to perfectly vertical objects. Selection window can be relaxed to a certain

degree in natural non-urban environments to include points from objects with curved

surfaces. Window size is determined primarily to select su�cient number of points

to be input to the registration algorithms. Selection of the key points required no

explicit detection of the objects or features.

Proposed methods are evaluated using scans taken from a Velodyne HDL-

32 laser scanner placed on an outdoor mobile robot and taken to di�erent locations

across our campus. Unevenness at di�erent ranges are evaluated for setting thresh-

olds by using data where obstacle boxes of known heights are placed on the lab

terrace that has a near level surface. In addition, unevenness has been computed

for data collected using a Sick 2D laser scanner using a stop-scan-go method. Here
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the thresholds are slightly modi�ed to take care of changes in scan angles.

There are some drawbacks with the approaches using unevenness. Primar-

ily the method needs the data to be ordered and to have information on the angles

at which the lasers are �red when collecting the data. Unevenness being very sensi-

tive and dependent on the pitch angle di�erence is needed to be accurately provided

with these values using proper calibration techniques. Some sensors or the publicly

available data sets may not provide such accurate information. Since unevenness is

computed across data obtained from a single laser scan with range and angle infor-

mation, it is not possible to apply unevenness on data in XYZ format. Unevenness

also cannot be used on aggregated point clouds, something which grid based meth-

ods are capable of handling. Sparse data from a single scan does not sample some

objects, particularly the smaller ones at faraway distances. A surface edge or the

boundary between two objects is also sometimes missed because of this. For exam-

ple, a vehicle kept under a tree could get segmented along with the tree when one

point falls on the vehicle and the next on the tree and both are in the same vertical

plane. But, in general, all rigid objects are properly segmented. Also, the spacing

between the vertical points in the sparse data sometimes leads to registration errors

in the Z direction where a wrong horizontal line is selected for correspondence. The

thresholds using unevenness depend on the nature of operating environment and the

type of vehicle used and is needed to be tuned accordingly and is not constants. Al-

though unevenness is computed for data from fast moving vehicles without motion

correction (as the displacement o�set between neighbouring points is small due to

fast scanning), it will be interesting to see if unevenness is signi�cantly a�ected for

very fast moving vehicles when there is appreciable o�set between the neighbouring

points. But given all these drawbacks, the method is advantageous to use since the

type of the vehicle and the nature of the operating environment is known before-

hand. Velodyne lidars are also commonly used with mobile robots, and the angular

information of the lasers is also known along with the factory provided calibration
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angles, which can be further tuned using other standard calibration algorithms.

Even when the data is sparse faraway, since the scans are acquired in quick time

most signi�cant objects are detected in time to cause any harm to the robot.

Ideally, the unevenness based algorithms need to be compared extensively

with existing algorithms on standard datasets available on the Internet. However,

the standard datasets generally report point cloud data in cartesian world coordi-

nates. As a result they cannot be used directly to compute unevenness. Unevenness

is computed from range data at speci�ed angular intervals in the sensor coordinate

system, and that is available directly from a 3D laser scanner like Velodyne. This

is the main reason for reporting experimental results in this thesis from range data

collected in our campus. Exceptions are datasets made available as examples by

Velodyne in required format, which we have analysed in Figure 3.22.

Another point to note is that this thesis primarily introduces the concept

of unevenness and demonstrates how it can be used to advantage in di�erent aspects

of navigation, viz., obstacle detection, segmentation and scan registration. Because

of spreading our studies over these three disparate areas, an extensive study of a

single area (comparing with existing methods on some standard data sets) has not

been possible. Such detailed studies and comparisons of unevenness based method

with existing algorithms for each individual area can possibly be taken up separately

as future work.

Despite successful implementation of the proposed algorithms in real time

on experimental data, the concept of unevenness has further potential to be exploited

for contributing to the �eld of robot navigation. While this work used the calibrated

laser pointing angles provided by the manufacturer, unevenness can intuitively be

used for calibration of exact pointing angles from the data taken on a level ground

without requiring any external targets. When the pitch angle di�erence between two

consecutive lasers is di�erent from the prede�ned values, the resultant unevenness
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value on a level ground deviates from the expected value. Methods can thus be

formalized to perform intrinsic calibration of laser beams pointing angles.

Methods using unevenness in this work primarily processed single scans to

detect features or key points. Unevenness could be extended for processing multiple

scans for Detection and Tracking of Moving Objects (DATMO). This allows detec-

tion of dynamic objects to be tracked in the robot's environment. Robot trajectories

can be planned according to the motion of tra�c participants. More importantly,

points belonging to dynamic objects can be �ltered out for scan registration. Un-

evenness can be extended for use in SLAM by detecting robust landmarks in a

scan and also by using unevenness signatures in successive scans. It must be noted

that unevenness varies with range for a given obstacle size which should be com-

pensated for when checking correspondence across scans. Unevenness can also be

exploited to bring out generic characteristics of commonly found objects in outdoor

environments. For example, human �gures exhibit �xed number of surface varia-

tions across their bodies, so do trees and other objects. They can be generically

labelled to generate semantic maps using advanced computer science concepts in

machine learning. Practically an entire navigation scheme can be developed around

the notion of unevenness.
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