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ABSTRACT  

A free standing structure/body is a common appearance in many of the industries and 

household. Due to various reasons, they are not fixed to the base which gives rise to an 

important question - What will happen to the body, in case of an earthquake? This research 

emanated from this basic question and attempted to ascertain stability of a free standing body 

subjected to seismic excitations. Surveying past the existing literature on the subject, it was 

observed that seismic stability of free standing bodies of simple shapes like parallelepiped, 

cylinder etc. has been explored by the various researchers with the underlying assumption of a 

rigid body. However, not much of work was available without the above mentioned 

assumption, i.e. for a flexible body. This research was carried out with the objective to study 

effects of various system parameters like geometrical characteristics of the body, base 

excitation characteristics and interfacial contact properties on the dynamics of a flexible vis-à-

vis rigid body. Analytical formulation was carried out to determine conditions for initiation 

termination, and sustenance of the possible motions like rocking, sliding and rocking cum 

sliding from the rest state. Closed form analytical solution was obtained with some basic 

assumptions, for the limited cases of pure rocking and pure sliding mode of motion. A more 

generic numerical formulation of the problem was carried out in two dimensions and a solution 

was obtained using a developed FORTRAN code. Extensive experimental studies were carried 

out on the geometrically similar rigid and flexible test specimens. Experimental and numerical 

studies highlighted some novel findings. A new parameter known as base excitation frequency 

was observed to govern motion initiation of a body from the rest state in addition to the other 

three known parameters of aspect ratio, coefficient of friction and amplitude of base excitation. 

Three dimensional motion initiation criteria diagram was developed for the rigid test specimen 



II 

 

using frequency as an independent parameter. Flexible specimens were observed to be 

susceptible to a particular range of base excitation frequencies corresponding to free rocking 

frequencies of the specimens. Studies revealed that for the base excitation frequencies matching 

the specimen’s free rocking frequency an uplift occurred at base excitation amplitudes lower 

than the statically required minimum value. This highlighted a new phenomenon of frequency 

induced uplift/rocking in a flexible body. Motion initiation criteria diagram was developed for 

the flexible specimen considering the effect of frequency induced rocking. Compared to the 

available diagram for a rigid body, an increase in the rocking and slide/rock region was 

observed. A clear distinction in the dynamic behavior of geometrically similar rigid and 

flexible body was highlighted. Overturning curves indicating two possible modes of 

overturning for both the rigid and flexible specimens were developed by varying frequency and 

amplitude of base excitations.  

A three dimensional model of a glove box structure, extensively used in the nuclear facilities 

across the world, was analyzed using nonlinear finite element analysis tools. Three possible 

configurations were examined for the seismic stability. Recommendations for the safe 

operation, in case of an earthquake, and guidelines to determine requirement of fixing a glove 

box with the base have been discussed.    
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CHAPTER 1 INTRODUCTION 

1.1 General Overview 

In many applications, some critical systems are not anchored to the base. The common 

examples are laboratory equipment, medical equipment in hospitals, vending machines, 

common household goods etc. In the case of an earthquake, there is a historical evidence that 

these free-standing systems pose a serious threat to human lives and valuables. The seriousness 

of damages caused by excessive sliding and overturning of free-standing systems motivated 

many regulatory agencies to frame guidelines for seismic hazard mitigation. For example, 

Federal Emergency Management Agency (FEMA) of United States has framed a practical 

guide known as FEMA E74 [1], to help general public from seismic hazards arising due to free 

standing nonstructural components (NSCs). When unrestrained, inertial forces may cause them 

to slide, rock, strike other objects or overturn during an earthquake. File cabinets, emergency 

generators, free-standing bookshelves, office equipment, and items stored on shelves or racks 

can all be damaged as they move and impact other items, fall, overturn or become disconnected 

from attached components.  As the objective is a higher level of earthquake protection, it is 

important to understand the realistic behavior of free-standing NSCs. The failures of these 

components during an earthquake may result in injuries or fatalities, cause costly property 

damage; and force the closure of residential, medical and manufacturing facilities, businesses, 

and government offices until appropriate repairs are completed. These components can be 

broadly divided into four main categories viz. mechanical, electrical, storage racks and 

monuments. The first step to improving their performance is to observe and understand their 

behavior under real earthquakes. The following paragraph discusses the behavior and failures 

of some free-standing nonstructural components under real earthquakes.  
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In the 1994 Northridge Earthquake and the 2010 Christchurch New Zealand Earthquake, 

damage to free-standing industrial storage racks has been reported. Damage has ranged from 

dislodged contents from the racks to partial collapse of racking systems as shown in Fig.1-1 

below. 

 

Figure 1-1 Failure of free-standing racks and office furniture in the 1994 Northridge Earthquake (FEMA 

74, 1994). 

Nonstructural components, such as mechanical and electrical equipment and distribution 

systems and architectural components, account for 75-85% of the original construction costs 

of a typical commercial building. For example, a high-tech fabricating facility may have 

contents that are worth many times the value of the building and built-in components of the 

building.  The nonstructural property losses can be much larger if they occur at library and 

museum facilities whose function is to store and maintain valuable contents. For example, as a 

result of the 1989 Loma Prieta Earthquake, two libraries in San Francisco each suffered over a 

million dollars in damage to building contents. Many of the artworks were toppled and 

damaged during the earthquake. 
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In addition to life safety and property loss considerations, there is an additional possibility that 

equipment damage will make it difficult or impossible to carry out the functions that were 

normally accomplished in a facility.  Similarly, mechanical components like compressed gas 

cylinders and fire extinguishers are anchored to carts for mobility and carts kept free-standing. 

In the case of a seismic excitation, they are vulnerable to damage. Unanchored cylinders may 

slide, overturn, and roll; connected piping may be damaged. Contents may be flammable or 

hazardous which makes leaking more dangerous. During magnitude-6.7, Northbridge 

earthquake in 1974 many of the free-standing gas cylinders were overturned due to inertial 

forces generated by seismic motions as shown in Fig.1-2. 

Moreover, there are electrical and communications equipment like tall, narrow floor-mounted 

electrical items in sheet metal cabinets such as electrical control panels, motor control centers, 

switchgear etc. In the case of earthquake excitation, there is a possibility of overturning or 

sliding due to the absence of anchorage or inadequate anchorage, loss of function due to the 

failure of internal components caused by inertial forces. In addition to that, damaged electrical 

equipment may cause electrical hazards and fire hazards.  

In the Mexico earthquake during 1985, many free-standing electrical equipment were toppled 

due to inertial forces as shown in Fig.1-3. Similarly, unanchored control panels of a power 

plant had been damaged due to excessive sliding and overturning during Haiti earthquake as 

shown in Fig.1-4. All these failures indicate behavior of free-standing components. It can be 

observed that failure of any free-standing component is mainly governed by the rigid body 

sliding and rotational motion arising due to inertial forces. If this rigid body motion is arrested 

with adequate anchoring, then seismic performance can be enhanced.  
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Figure 1-2 Unanchored tanks inside fenced enclosure overturned in the 1994 magnitude-6.7 Northridge 
Earthquake (Photo courtesy of OSHPD, FEMA E-74) 

 

Figure 1-3 Overturned equipment in the 1985 magnitude-8 Mexico Earthquake, note absence of 
anchorage of equipment base to the floor (Photo courtesy of Degenkolb Engineers, FEMA E-74). 

 

Figure 1-4 Damage to unanchored electrical cabinets at a power plant in Port-au-Prince in the 2010 
magnitude-7 Haiti Earthquake (Photos courtesy of Eduardo Fierro, BFP Engineers, FEMA E74). 
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In a nuclear industry, some critical equipment like glove boxes as shown in Fig.1-5 are not 

anchored to the base. When excited by a base excitation, these equipment may respond in rigid 

body modes like sliding, rocking, lift-off or in flexural deformations. Stability and integrity of 

glove boxes are of prime concern. Any breach of integrity or stability due to seismic excitations 

may have serious safety consequences. [2]  

The research carried out as a part of this thesis emanated from a fundamental question - Does 

a free-standing glove box is seismically safe for earthquake excitations? Hence all the studies 

carried out focuses on the generic evaluation of seismic performance of free-standing systems 

like glove boxes. Initial studies present experimental and numerical studies on simple test 

models representing rigid and flexible components. Finally, extensive studies carried out to 

determine the seismic stability of actual free-standing glove boxes are presented. 

 

Figure 1-5 Glove boxes freely standing in a radiological laboratory 

 

1.2 Problem Statement and Scope of Work 

Excited by a base excitation, a free-standing body, resting on a rigid floor may undergo various 

possible rigid body modes of motion like sliding, rocking, rotation, a combination of sliding-
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rocking-rotation and even complete lift off from the base. In addition to that, a component with 

a finite stiffness can also exhibit flexible modes of motion.  

Important parameters which affect stability of a free-standing body can be given as below: 

i. Base motion characteristics like harmonic, pulse and seismic or random excitations. 

ii. Geometric properties of the structure like, mass distribution, inertia and aspect ratio. 

iii. Contact interface properties in tangential and normal direction.  

Consider an arbitrary two-dimensional body, resting freely on a rigid floor, and subjected to 

base excitations in horizontal (�̈�𝑋 Rg) and vertical (�̈�𝑌 Rg) directions, as shown in Fig.1-6. Parameters 

required to represent any three-dimensional rigid component in two dimensions are location of 

center of gravity (c.g.) and position of rocking edges with respect to the center of gravity. In 

present case distance of c.g. is given by R1 (B1, H) from the left rocking edge (OL) and by R2 

(B2, H) from the right rocking edge (OR). Critical angles of rotation about left and right edges 

are given by α1 and α2 respectively. Critical angle about any edge of a rocking body is the 

maximum uplift angle above which a body becomes unstable and overturn by the inertial 

moment arising due to self-weight. Asymmetric body shown in Fig.1-6 can be simplified for 

numerical calculations by assuming uniform mass distribution around C.G. This reduces the 

number of parameters required for defining position and shape of the body at any instant of 

time. In a simplistic case of a rectangular symmetric body, R1=R2, B=B1=B2 and α=α1=α2. 

This rectangular block representation of a rigid body in two dimensions is widely referred in 

the literature.   
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Figure 1-6 A free-standing body in two dimensions subjected to base excitations 

Hence, with the assumption of a symmetrical rectangular rigid body as shown in Fig. 1.7, 

equations of motion for possible modes of rigid body motions can be derived. Different 

possible modes of motion are sliding, rocking, uplift, rotation (in three dimensions) and any 

combination of the above. For a simple sliding motion, equations of motion can be framed by 

taking equilibrium of all the forces acting on the body. Derived equations of motion (Eqns.1.1 

& 1.2) are nonlinear due to the presence of friction at contact points. 

                                          M �̈�𝑋 (t) + Sgn ( �̇�𝑋(𝑡𝑡) ) FF (t) +M �̈�𝑋 R g(t) =0                                                        

1.1 

FF (t) = µ M (g ± �̈�𝑌 Rg(t))                                                                        1.2 

Here, M- mass of the block, FF (t) - frictional resistance at the interfaces and X(t)- sliding 

displacement of the block. Similarly, Equations of motion for rocking motion can be obtained 

by taking equilibrium of moments about either center of gravity or pivoting edge. Balancing 

moments around a pivoting edge, we can write: 

                                 I �̈�𝜃 = M �̈�𝑋g (t). R Cos (α-θ) – FN (t). Sin (α-θ)                                                       1.3 

                                                FN (t) = M (g ± �̈�𝑌 Rg (t))                                                              

1.4 

α2 
OL OR �̈�𝑋g(t)                                                          

�̈�𝑌g(t)                                                          R1 

B1 

H α1 

X 

Y 

B2 

ϴ 

R2 
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Here, I- mass moment of inertia about an edge, FN (t) - time dependent normal reaction force, 

θ (t) - angular rotation from the base. Moment equilibrium equations (Eqn.1.3) can be written 

about both the pivoting edges. Derived equations will be similar in form, with a difference of 

sign of vertical force component. Hence, derived equations are discontinuous which can be 

suitably integrated by using a scalar parameter whose sign depends on the rotation of the block. 

Moreover, every change of direction involves an impact with the base, which adds nonlinearity 

in otherwise discontinuous equations of motion.  

The mathematical formulation in two dimensions should consider three possible rigid body 

motions a body can undergo. A meticulous investigation of various boundary conditions like 

motion initiation, transition between different modes and motion termination is required for 

obtaining time-varying solution. An analytical solution is possible only for very limited cases 

like small rotation without impact or pure sliding motion with linear friction law. To find exact 

position of the body during motion, it is required to numerically integrate governing equations 

of motion and consistently check for transition conditions from one mode of motion to the 

other.  

 

Figure 1-7 A Symmetrical rectangular rigid body in two dimensions 
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Consider a simple cantilever model, as shown in Fig.1-8, where mass of a body is lumped at 

the center of gravity. Two beam elements are connected together for representing effective 

height and width of the block.  In case of a rigid body, beams are considered as very stiff and 

body may slide or rock rigidly as shown in the Fig.1-8. Removing the rigid body assumption, 

introduces additional degree of freedom, due to elastic bending of the beam (shown by dotted 

blue line). This adds one more dimension to the existing nonlinear problem. It is important to 

note that equations of motion developed with a rigid body assumption, neither consider elastic 

effects arising due to stiffness nor vibrational damping due to material characteristics.  

 

 

Figure 1-8 Simple beam model showing possible rigid body and flexible planar motions of a body 

subjected to base excitations 

In Fig.1-8, base accelerations in X and Y directions are given by �̈�𝑋 Rg and �̈�𝑌 R g respectively. 

Equations of motion to be framed in a fixed Cartesian Coordinate system considering dynamic 

equilibrium of all the forces acting on the body.  

Dynamic behavior of free-standing flexible bodies is geometrically nonlinear due to large 

displacements/rotations and low strains. Study of its behavior requires investigation of various 

parameters affecting stability and integrity.  

α 

R 

Rigid body motion 

Elastic motion 
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Y 
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The scope of work includes finding solution of the dynamic problem and identifying variables 

affecting seismic stability of free-standing rigid and flexible bodies. Further, develop a generic 

methodology to ascertain requirement of anchoring of nonstructural components. This research 

shall clearly bring out advantages and disadvantages of anchoring over not anchoring of a 

component.   

This research is undertaken with a mandate of providing an answer to the persisting question 

“Whether a Glove box shall be anchored to the floor or not?” 

With this objective in mind, experimental and numerical studies are planned to evolve a simple 

and robust methodology which can assist future nuclear facility designers to take an informed 

and correct decision about anchoring/non-anchoring of glove boxes.   

1.3 Organization of Work 

The thesis is divided into seven chapters. Chapter 1 (present chapter) is the introduction chapter 

which gives brief outline of the work. The problem being studied is discussed. It briefly 

highlights scope of the research. 

Chapter 2 gives background of the problem being studied. It presents relevant literature 

available on the topic. Reported work on dynamics of flexible and rigid freestanding structure 

is presented. Surveying past research, the pertinent aspects of each work is recognized and 

placed in context. Although a major portion of literature is presented in this chapter, still some 

of the literature having direct relevance with the chapters is presented there. Hence some 

overlap between them is inevitable. Gap areas are highlighted and objectives of research are 

underlined.   

Chapter 3 explores fundamental dynamics of a free-standing rigid body. A three- 

dimensional rigid test model was fabricated and tested on a shake table. A rigid parallelepiped 
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model was deliberately selected to utilise and compare data readily available in the literature. 

An Analytical formulation for the symmetric model in two dimensions is presented. Moreover, 

experimental findings of shake table testing are highlighted and compared with the numerical 

calculations.   

Chapter-4 presents dynamics of a free-standing flexible body. A flexible test model was 

fabricated using plates and beam sections. Effects of finite stiffness on dynamic behaviour of 

a non-structural component are presented. Moreover, experimental and numerical results 

highlighting significance of natural rocking frequency of a flexible structure in initiation of 

rocking motion are presented. A comparison between experimental and numerical results of 

geometrically similar rigid and flexible test models is drawn. Important differences in 

fundamental dynamic behaviour of geometrically similar (same aspect ratios) rigid and flexible 

bodies are highlighted. 

After analysing behaviour of rigid and flexible test models in Chapters 3 and 4, Chapter-

5 investigates dynamics of a glove box, used as a containment structure in nuclear facilities. 

Seismic stability of this component under design basis and beyond design basis earthquakes is 

studied. It is a flexible structure, which is critical component of a nuclear facility. Similarities 

in fundamental dynamic behaviour of flexible test models analysed in Chapter-4 and flexible 

glove box structure are highlighted. Effects of free rocking frequencies in motion initiation are 

studied. It also presents a generalised methodology to evaluate requirement of anchoring of a 

glove box to the floor. This can act as a guideline for existing and future facilities, which can 

help the decision makers to take informed decision to prevent components failures and damage 

during earthquakes. 

Chapter-6 further extends work done in Chapter-5 to present generalized methodology 

for assessment of seismic stability of multiple interconnected glove boxes. Methods developed 



12 

 

in Chapter-5 are extended to a more generic case of series of interconnected glove boxes. Two 

configurations are considered. In the first configuration, both the boxes are connected by a 

flexible link (material transfer tunnel) which can constrain relative motion between the boxes 

to a very limited extent. While in the second configuration, relative movement between the 

boxes is completely arrested using rigid links. Chapter-6 investigates case of the first 

configuration while Chapter-7 discusses the details of second possible configuration. It also 

compares seismic stability of both the configurations 

Chapter 8 highlights important results and final conclusions drawn from the study 

carried out as a part of this research program. Significant contributions to the scientific 

community are highlighted. Finally, it gives the direction for the possible future work in the 

field of dynamics of free-standing components and discusses limitations of the present work.  
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CHAPTER 2 LITERATURE SURVEY 

 

2.1 Outline  

Seismic stability of free-standing bodies with limited permissible uplift has been attracting the 

interest of researchers for more than a century now. Studies carried out in the field of structural 

dynamics were driven by the basic assumption that foundation can undergo limited uplift. This 

resulted in the evolution of analytical models which can very well handle the rocking motion 

of a structure but doesn’t allow any sliding. However, there were few systematic studies which 

consider effects of all possible modes of motion (rocking and sliding) in the developed 

analytical model. Many of the studies considered the body to be rigid, while few of them relaxes 

rigid body assumption in deriving equations of motion. Therefore, for a clear understanding, 

this chapter is divided into two main sections. Section 2.2 ensembles literature available on the 

dynamics of a freestanding rigid body subjected to base excitations. It is further divided into 

three parts; first part present works carried out considering pure rocking motion, while the 

second and third part present works carried out considering the pure sliding motion and 

combination of both respectively. Section 2.3 ensembles literature available on the dynamics 

of a flexible body subjected to base excitations. This section is also divided into two parts. The 

first part gives literature available on the pure rocking behavior of flexible bodies, while second 

part gives literature available on the combination of rocking and sliding behavior of flexible 

bodies. Further, Section 2.4 presents shake table test data generated as a part of extensive 

testing carried out by a team of engineers from BARC and CPRI. Finally, Section2.5 highlights 

the gap areas existing in the present literature and the direction for the present research work.   
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2.2 Dynamics of Freestanding Rigid Bodies  

A large part of research available on the subject stems from the basic premise that a 

freestanding body can be assumed as a rigid body. Motivated by the overturning stability of a 

structure, significant amount of research was carried out by engineers working in the domain 

of structural dynamics and earthquake engineering. Some of the early investigations in the field 

started with the observations on the uplift, rocking, or overturning, of a variety of slender 

structures such as equipment, retaining walls, liquid storage tanks, and rigid building structures 

following strong earthquakes. The need to understand and predict these failures, along with a 

craving to estimate levels of ground motions by examining overturning of slender structures, 

had motivated a number of studies on the rocking response of rigid blocks [3] [4] [5] [6] . 

2.2.1 Rocking Mode of Motion  

A free-standing structure can be modeled as a rigid body allowed to uplift or rock on the rigid 

foundation. This was a predominant assumption with which a lot of researchers had carried out 

research work. However, there were studies which had incorporated effects of foundation 

flexibility on overall dynamics of a freestanding structure. These studies were more relevant 

for the civil structure which stands on the soil. Hence soil-structure interaction modeling 

became important. The simplest and most widely used analytical model of a rocking structure 

was a rectangular, uniform, rigid mass resting on a rigid base and pivoting about its corners 0 

or 0' as shown in the Fig.2-1. On changing direction of rocking from one edge to the other 

(impact), energy is lost. The first systematic study of the dynamic response of a rigid yet slender 

block supported on a base undergoing horizontal acceleration was presented by Housner [7]. 

He examined the free and forced vibration responses to rectangular and half-sine pulse base 

accelerations. It was assumed that the limiting friction force is large enough to ensure that no 

sliding will occur between the block and supporting foundation. Using an energy approach, he 
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presented an approximate analysis of the dynamics of a rigid block subjected to a white-noise 

excitation, uncovering a scale effect that explained why the larger (larger R in Fig. 2-1) of two 

geometrically similar blocks (same aspect ratio) could survive the excitation while the smaller 

block topples. Housner also pointed out that the overturning potential of a pulse is characterized 

not merely by its acceleration amplitude but by the product of its acceleration amplitude and 

duration. This work was limited only to the study of rocking behavior of a rigid block. No 

consideration of sliding motion or combination of both was given while deriving governing 

equations of motion. 

 

Figure 2-1 A simple rectangular rigid block model 

Motivated by the need to investigate the response of solid concrete blocks used as radiation 

shields in particle accelerator laboratories, Aslam et al. [8], conducted shake table and 

analytical studies on the rocking and overturning of rectangular blocks of various sizes, R, and 

aspect ratios. It was concluded that, in general, the rocking response of blocks subjected to 

earthquake motion was in line with the conclusions derived from single pulse excitations. 

However, when artificially generated motions were used, the response showed high sensitivity 

to the coefficient of restitution, base geometry and characteristics of the input motion. 

Yim et.al [9], numerically investigated the rocking response of a rigid block. They investigated 

the effect of geometric properties of the block (slenderness and size) and variation of ground 

O O’ �̈�𝑋g(t)                                                          

�̈�𝑌g(t)                                                          R 

2B 

2H 

α 



16 

 

motion on the rocking response and observed no systematic trend. Hence, it was concluded that 

probabilistic estimation of rocking behavior was more reliable and accurate than deterministic 

studies. It was observed that the probability of a block exceeding a certain response level, or of 

overturning, increases with increase in ground motion intensity, decrease in aspect ratio and 

decrease in size. 

Ishiyama [10], investigated rigid body motions of a free-standing body subjected to base 

excitations. He introduced significance of tangent coefficient of restitution to estimate the 

magnitude of the tangent impulse at the instant of impact. The numerical investigation was 

carried out to determine criteria for the overturning of rigid bodies. He observed that the 

motions after impact from translation jump are greatly influenced by the normal and tangent 

restitution coefficients. The Importance of two factors: horizontal acceleration and the velocity 

of the floor were highlighted in determining overturning stability.  

Lipscombe [11] experimentally and analytically investigated the free rocking of a prismatic 

block supported on a rigid stationary base. It was reported that the free‐rocking response of 

short blocks depends critically on bouncing after each impact. Out‐of‐plane effects were 

significant and hence can’t be ignored for short blocks. However, they found that the response 

of slender blocks was easier to predict.  

Makris and Roussos [12], examined in depth the transient rocking response of a rigid block 

subjected to trigonometric pulses and near-source ground motions. They showed that under a 

half-sine pulse, a block overturns during its free-vibration regime and not at the instant the 

pulse expires. The coherent component of some near-source acceleration records was 

examined. It was concluded that the toppling of smaller blocks was more sensitive to peak 

ground acceleration, while the toppling of larger blocks was more sensitive to incremental 

ground velocity. Furthermore, the high-frequency fluctuations that override a long duration 
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pulse will topple a small block, while a large block will topple because of the long duration 

pulse itself. 

Zhang and Makris [13]studied the effect of cycloidal pulses on the overturning potential of a 

rigid block. The dynamic interface forces that develop during rocking motion were derived, 

and it was shown that the level of the friction coefficient needed to sustain rocking motion 

during the entire duration of the pulse is an increasing function of the acceleration level of the 

pulse. They established that under cycloidal pulses, a free-standing block can overturn with 

two distinct modes: (1) by exhibiting one or more impacts; and (2) without exhibiting any 

impact. The existence of the second mode resulted in a safe region that was located on the 

acceleration-frequency plane over the minimum overturning acceleration spectrum. This safe 

region contained acceleration amplitudes with magnitudes larger than the minimum 

overturning acceleration (which corresponds to mode 1) and was unable to overturn the block. 

It was found that the shape of this region depends on the coefficient of restitution and is 

sensitive to the nonlinear nature of the problem. The transition from mode 1 to mode 2 is sudden 

and results in a finite jump in the minimum overturning acceleration spectrum. They concluded 

that the sensitive nonlinear nature of the problem, in association with the presence of the safe 

region that embraces the minimum overturning acceleration spectrum, complicates further the 

task of estimating the peak ground acceleration by only examining the geometry of freestanding 

objects that either overturned or survived a ground shaking. 

Makris and Konstantinidis [14], investigated systematically the fundamental differences in a 

fixed base SDOF oscillator system and rocking base SDOF oscillator system. The idea was to 

evaluate the effectiveness of response spectrum method for the structures allowed to uplift. The 

study concluded that a rocking structure cannot be replaced by an equivalent SDOF oscillator 

and that the simple design approach presented in Priestley et al. [15] and adopted in FEMA 
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356 [16] was flawed. This conclusion motivated the proposal to use the rocking spectra as an 

additional measure of earthquake intensity. Together with the response spectra, rocking spectra 

can provide a more lucid picture of the kinematic characteristics of ground motions and their 

implications on the response of rigid, yet slender, structures. It was also concluded that exact 

rocking spectra (plots of max angle (ф) versus the frequency parameter (p) and max angular 

velocity (∅̇) versus (p) emerge as distinct intensity measures of a ground motion.  

Prieto et al. [17] presented a Dirac-delta interaction as an impact mechanism alternative to the 

classical method of using the coefficient of restitution to account for energy lost during the 

impact of a rocking block. The agreement with the classical system was excellent for slender 

block and for small rotations and good agreement was found with the experimental data. The 

approach was attractive in that it appears amenable to a more generalized formulation for the 

case of a multi-block assembly in rocking motion. 

Prieto & Lourenco [18], introduced a formulation for the rocking motion of a rigid block. The 

traditional piecewise equations were replaced by a single ordinary differential equation. In 

addition, damping effects were introduced by means of impulsive forces instead of using the 

coefficient of restitution as done earlier. 

Chen et.al [19] explored the feasibility of utilizing a rocking mechanism as an effective means 

of seismic isolation. Authors have performed experiments on a scaled down model and 

subsequently numerical simulations to demonstrate the effectiveness of rocking mechanism for 

seismic isolation of viaduct pier structures. It was also shown that stronger the earthquake 

intensity the more pronounced the control efficiency. 

Pena et.al [20]performed extensive shake table tests to study the rocking response of granite 

stones with different geometrical characteristics. Various tests were performed like free 

vibration, harmonic, and random base excitations. They compared generated experimental data 
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with the numerical results available in the literature. They highlighted effects of three-

dimensional motions during two directional testing (horizontal and vertical) for a nearly square 

base parallelepiped blocks. Hence concluded that it is important to consider three- dimensional 

effects even for two-directional excitations for square base structures. 

Zhang et.al [21]proposed multiple impact model with coulomb friction that allows one to 

correctly determine rocking behavior of a rigid block. They used free rocking experiments to 

fit the impact law parameters. Several existing experimental records were utilized to 

benchmark the proposed impact model. 

Egidio et.al. [22]analyzed the rocking response of a three-dimensional parallelepiped block. 

Main objectives were: experimental characterization of the overturning of a rigid block in the 

shape of a parallelepiped and with a square base and validation of the results obtained by the 

model developed by Zulli et.al [23]through a campaign of experimental tests. The experiments 

with a rigid wooden block had shown that the angular region of 3D rocking motion, where the 

overturning amplitude was smaller than the one of a 2D rocking motion, decreases for higher 

periods of the excitation. The experimental results confirmed that, for near-square based bodies, 

a three-dimensional model provides more accurate results than the classical bi-dimensional 

models. 

Dimitrakopoulos and Paraskeva [24]investigated seismic fragility of single degree of freedom 

rocking structures within a probabilistic framework. They focused on slender rigid structures 

that exhibit negative stiffness during rocking. The analysis considered ground motions with 

near-fault characteristics, either solely coherent pulses or synthetic ground motions that 

include, in addition, a stochastic high-frequency component. They proposed normalized 

fragility curves that estimate the overturning tendency, as well as the peak response rotation of 

a rocking structure. The study advocated the use of dimensionless–orientation less Intensity 
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Measures (IM’s), a normalized description almost indifferent to the amplitude and the 

predominant frequency of the excitation or the size and the slenderness of the rocking structure. 

Importantly, they highlighted a critical peak ground acceleration, below and above which, peak 

rocking response scales differently. 

2.2.2 Sliding Mode of Motion  

Sliding is a possible mode of motion of a freestanding structure provided that some conditions 

are fulfilled. Under favorable values of coefficient of friction and amplitude of base excitation, 

sliding initiation may take place. In a way, sliding may be a favorable response since it doesn’t 

involve risk of overturning. Nevertheless, large displacements may hamper integrity of the 

structure itself and even endanger stability and integrity of a nearby structure. Hence there is 

always a need to constrain sliding displacements within allowable limits.  

The sliding of a freestanding object is governed by the frictional resistance of the contact 

interface between the object and the base on which it rests. The French physicists Amonton 

[25] and Coulomb [26] were the first to note that dry friction is a manifestation of the roughness 

along the contact between bodies. Amonton observed that the force of friction is directly 

proportional to the weight of the object and that friction is independent of the surface area in 

contact. Coulomb added that the friction force of an object in motion is independent of the 

velocity 

The sliding response of a rigid mass on a moving base had been examined by investigators 

within the context of earthquake engineering for the purpose of estimating sliding 

displacements of nonstructural components and equipment such as the ones that are of interest 

in this study. The solution for the response of a rigid block subjected to a rectangular pulse 

base acceleration provided by Newmark in 1965 had generated interest [27]. Using an 

ensemble of 75 earthquake records, Choi and Tung [28]obtained numerical solutions for the 
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maximum sliding displacement of a rigid body subjected to those ground motions and to floor 

motions of a 5-story building. After an averaging procedure, the peak sliding responses were 

compared to the responses estimated by Newmark's formula [27]for a rectangular pulse. The 

authors concluded that Newmark's formula can be used with a reasonable accuracy. 

Garcia and Soong [29]investigated the vulnerability of a sliding rigid body to a suite of 

synthetic earthquake motions generated on the basis of current seismic codes. Sliding 

displacements and absolute accelerations above a defined value were considered as failure 

modes. A collection of fragility curves (curves that give the conditional probability of failure: 

the probability that some quantity, e.g., sliding displacement of a piece of equipment, will 

exceed a certain threshold, given the intensity of the excitation) were generated using Monte-

Carlo simulations for different friction coefficients with peak base acceleration being the 

random variable. In a companion paper, Garcia and Soong [30]investigated the response of a 

restrained rigid body with restrain breakage and excessive absolute accelerations being the 

failure modes. Fragility curves were again generated using Monte-Carlo simulation. 

Hutchinson and Chaudhuri [31]conducted shake table and field experiments on different 

bench-shelf configurations and small equipment and contents mounted on benches and shelves. 

They observed a significant amplification in acceleration between the benches or shelves and 

the floors, ranging from 1.4 up to 4.3 for different boundary conditions. It was concluded that 

unless the amplification effect is taken into account, estimated sliding displacements of small 

equipment mounted on shelves and benches above floor level will, in general, be un-

conservative. 

Taniguchi and Miwa [32] proposed a simple procedure for estimating absolute maximum slip 

displacement of a freestanding rigid body placed on the ground or floor of linear/nonlinear 

multistory building during an earthquake. They used displacement induced by the horizontal 
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sinusoidal acceleration to approximate the absolute maximum slip displacement. The effect of 

vertical acceleration was considered to reduce the friction force.  

2.2.3 Combination of Sliding and Rocking Mode of Motion 

Under suitable values of system parameters like coefficient of friction and amplitude of base 

excitation, a free-standing structure, in a plane, can undergo combination of sliding and rocking 

motion.  

Ishiyama [10]investigated response of a freestanding rigid block in a plane and subjected to 

one-dimensional base excitation. He investigated motions of a rigid body in response to 

earthquake excitations, using the computer simulation program which classified the types of 

motion into six (rest, slide, rotation, slide rotation, translation jump and rotation jump). Several 

types of simulations were conducted to study the characteristics of motions and overturning of 

bodies. Criteria for the overturning of bodies were proposed after experiments and simulations 

of frequency sweep tests. He concluded that it is possible to estimate the lower limits of the 

maximum horizontal acceleration and velocity of the input excitations from the overturning of 

bodies. 

Shenton and Jones [33] [34]presented general two-dimensional formulation for the response of 

free-standing rigid bodies to base excitation. The behavior was described in terms of five 

possible modes of response viz. sliding, rocking, slide-rocking, and free flight. A model 

governing impact from a rock, slide-rock or free flight mode was derived from first principles 

using classical impact theory. This model assumed a point impact and non-zero coefficient of 

friction. A generalized formulation for the planar rigid body dynamics was presented. In a 

companion paper, approximate closed-form solution for a single-mode, steady-state slide-rock 

response resulting from a harmonic ground acceleration was presented. The approximate 

solution was developed using the method of slowly varying parameters and was valid for a 
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rectangular block undergoing small angles of rotation at the frequency of base excitation. 

Impacts with the foundation were assumed to be perfectly plastic and frictional impulses were 

included. Periodic solutions were found to exist in general only for relatively high amplitudes 

of ground acceleration and frictionless than the inverse aspect ratio of the block. The rock 

component of the response was sensitive to changes in aspect ratio and friction and insensitive 

to changes in ground acceleration. The slide component of response was approximately equal 

to the amplitude of ground displacement and found to be insensitive to changes in friction and 

aspect ratio. The accuracy of the approximate solution was shown to depend heavily on the 

magnitude of impulse applied during impact.  

Early researchers had a feeling that initiation of combined rocking and sliding motion from rest 

state was not possible. Only after analytical formulation presented by Shenton and Jones [35], 

possibility of initiation of combination of sliding and rocking motion from the rest was shown.  

Their work resulted in evolution of motion initiation criteria diagrams [35] as shown in Fig.2-

2. This diagram pictorially represented initiation of any planar mode of motion from the rest 

state. Boundaries of various possible planar modes of motion were shown in the diagram. 

Abscissa of the figure is represented by a non-dimensional amplitude parameter-Ag, given as 

𝑋𝑋�̈�𝑔(𝑡𝑡)= Ag.f(t). Where, f (t) is the time-varying component of base acceleration. On the other 

side, ordinate of the graph is given by a non-dimensional term µs, representing coefficient of 

friction. The results demonstrated that it was incorrect to assume that a rock mode will govern, 

if static friction coefficient (µs) is simply greater than the inverse aspect ratio of the block (B/H 

<µs). Here, B and H was width and height of the block respectively. A slide-rock mode governs 

for friction greater than the inverse aspect ratio, but less than that given by Eqn.2.1. 

�𝑓𝑓𝑥𝑥
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Here fx and fy were horizontal and normal reactions at the base respectively. ϒ and Ag are 

inverse of aspect ratio and amplitude of base motion respectively. Value of friction required to 

sustain a rock mode increases with the magnitude of base acceleration. These results suggested 

that analyses of pure-rocking response, in which the available static friction was just greater 

than the width-to-height ratio of the body, was most likely in error (i.e., could not be physically 

realized). The criteria derived demonstrated a more natural transition from pure sliding to pure 

rocking when viewed in the µs versus Ag parameter space, than found in the traditional criteria 

for initiation. 

 
Figure 2-2 Motion initiation criteria diagram for a block of aspect ratio of four 

Further working on diagrams proposed by Shenton and jones, Shao and Tung [36], carried out 

extensive numerical calculations to develop motion initiation criteria diagrams for various 

possible values of aspect ratios. Using an ensemble of 75 real earthquakes records, they plotted 

graphs showing mean plus standard deviation of the sliding distance relative to the base. Graphs 

showing the probability of overturning during rocking mode of motion were developed.   

Andreaus and Casini [37] and Jeong et.al [38]investigated influence of nonlinearities 

associated with impact and sliding upon the rocking behavior of a rigid block, subjected to two-
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dimensional horizontal and vertical excitation. Highly nonlinear nature of the problem was 

mathematically revealed using a series of Poincare maps and bifurcation diagrams. 

Taniguchi [39] investigated non-linear seismic responses of free-standing rectangular rigid 

bodies on horizontally and vertically accelerating rigid foundations. The responses were 

classified into two initial responses namely pure sliding and rocking and four subsequent 

responses including combination of sliding and rocking motions. The equations of motion 

governing the lift-off, slip and lift-off–slip interaction motions and boundary conditions 

corresponding to commencement and termination of the motions were derived. Numerical 

calculations using two recorded accelerograms were carried out to examine effects of 

earthquake properties on the response. Intensities and the value of friction coefficients were 

varied. In addition, to highlight the effects of vertical ground motion on the responses, the 

intensity of vertical ground motion was also varied. It was concluded that the body on a low-

grip foundation may avoid overturning, even though subjected to high-intensity base 

excitations, while it should be allowed to have large slip displacement. In contrast, the body on 

a high-grip foundation may be overturned. Sufficient friction can be used to judge the grip 

condition during the entire motion. The long-period earthquake may raise the risk of large slip 

displacement and overturning of the body, since it may possess prolonged favorable horizontal 

accelerations for a slip and lift-off. The lift-off–slip interaction motion may occur in limited 

conditions and may reduce the slip displacement. The vertical accelerations helped to begin the 

lift-off–slip interaction motion by sufficiently reducing the friction. Since vertical accelerations 

add irregularities to responses of the body, it cannot be ignored when evaluating the responses 

of the body. In addition, to simulate actual motions of the body, governing equations of motion 

derived from a view of non-linear discontinuous systems were necessary. 
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Egidio and Contento [40], analyzed influence of the base isolation on the behavior of rigid 

blocks representing works of art. In order to better understand the behavior of a real base 

isolated art object, it had been modelled as non-symmetric rigid body, where the centre of 

gravity was not equally distant from the two base corners. The rigid body was sat upon a base 

which was connected to a linear viscoelastic device representing a passive control system. 

Security stops had been introduced to prevent the breaking of the isolation devices for very 

high displacements of the oscillating base. Both rocking and sliding motions had been 

considered in the model. Exact nonlinear equations of motion were written for the different 

phases of motion: full-contact, sliding, rocking, slide-rocking; transition phase conditions were 

also derived. Two different kinds of collapse condition were considered: the fall from the 

oscillating base of the rigid block, and the overturning of the body. To evaluate the performance 

of the base isolation, the results had been compared with those obtained for the non-isolated 

rigid block for two types of external excitations: impulsive and seismic excitations. They also 

generated motion initiation criteria diagrams for the base isolated free-standing structures.  

Extensive experimental and numerical investigation to study seismic behavior of freestanding 

laboratory equipment was carried out by Konstantinidis and Makris [41] [42].  In the earlier 

paper [41], authors presented experimental and analytical studies on the seismic vulnerability 

of freestanding laboratory equipment located on various floor levels of a research laboratory 

building located at the University of California, Berkeley, campus—herein referred to as the 

UC Science Building. The equipment of interest included low-temperature refrigerators, 

freezers, incubators, and other heavy equipment. The study investigated the response of 

equipment to moderately strong motions (50 and 10% probability of being exceeded in 50 

years) which resulted in Peak Ground Displacements (PGD) or Peak Floor Displacements 

(PFD) that could be accommodated by the shake table at the Pacific Earthquake Engineering 

Research (PEER) Center, University of California, Berkeley. Shake table tests showed that 
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there was no incidence of overturning due to excessive uplift. Uplift rotations ranged from very 

low, for two of the three specimens, to moderate, for the third, never exceeding 50% of the 

stockiness, α (the angle between a vertical line and the line that passes through the pivoting 

point and the center of mass of the equipment). For motions in this hazard level, the equipment 

tested exhibited excessive sliding displacements, reaching up to 60 cm. The results of the tests 

were used to develop a dimensionless Engineering Demand Parameter (EDP) (a parameter that 

quantifies the response of the equipment), as a function of the Intensity Measure (IM) (a 

parameter of the excitation that corresponds to a certain seismic hazard level). Ready-to-use 

fragility curves, which give the probability that the EDP will exceed a specific limit c, were 

generated. 

In the companion paper [42], they investigated the seismic response of freestanding equipment 

when subjected to strong earthquake motions (2% probability of being exceeded in 50 years). 

A two-step approach was followed because the displacement limitations of the shake table do 

not permit full-scale experiments. First, shake table tests were conducted on quarter-scale 

wooden block models of the equipment. The results were used to validate the commercially 

available dynamic simulation software Working Model 2D. Working Model was then used to 

compute the response of the full-scale freestanding equipment when subjected to strong, 2% in 

50 years hazard motions. The response was dominated by sliding, with sliding displacements 

reaching up to 70 cm. A physically motivated dimensionless intensity measure and the 

associated engineering demand parameter were identified with the help of dimensional 

analysis, and the results of the numerical simulations were then used to obtain a relationship 

between the two that leads to ready-to-use fragility curves. 

In an effort to understand effect of asymmetric mass distribution of a freestanding structure on 

its seismic stability, Wittich and Hutchinson [43]carried out an extensive shake table testing. 
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They presented dynamic tests on single, stiff unattached model structures. The centre of mass 

of the structure was systematically translated vertically and horizontally to investigate the 

effects of geometric eccentricities on the bodies seismic response. The primary modes of 

rocking, sliding, and twisting as well as interactive modes were recorded for the duration of 

numerous earthquake motions. The magnitude and direction of response were experimentally 

correlated with the geometric variations in the various models. These tests indicated that even 

for symmetric structures with uniaxial shaking, multiple modes, and three-dimensional 

responses were probable. Furthermore, certain asymmetric geometries exhibited both increased 

rocking (and overturning) as well as increased sliding when compared with their symmetric 

counterparts. A final aspect of this study compared the free rocking response of symmetric and 

asymmetric structures to classical, two-dimensional rocking analysis. While the theoretical 

values for the coefficient of restitution yielded a significant overestimation in the simulation 

(up to ≈90%), reduced coefficients greatly improved the performance of the model.  

It is important to observe that none of the studies mentioned above, highlighted effects of base 

excitation frequencies on the motion initiation (sliding, rocking and a combination of two) of 

a rigid body.  

2.3 Dynamics of Freestanding Flexible Bodies  

Structural engineers working in the field of earthquake engineering had generated interest in 

examining seismic response of relatively flexible structures. This interest was generated mainly 

from the premise that some of the civil structures may be allowed to undergo limited uplift 

when subjected to earthquake motion. If the soil-structure interaction is ignored, then a civil 

structure standing on a rigid ground and allowed to uplift can be assumed as a freestanding 

body with limited rocking motion. This basic presumption led to formulation of analytical 

models for civil structure, which were analogous to that of a free-standing body with pure 
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rocking motion without sliding. This section is divided into two parts. First part presents 

research work carried out on the dynamics of flexible bodies considering only rocking motion 

whereas second part focuses on research work carried out for studying combined effect of all 

possible mode of motion. 

2.3.1 Rocking Mode of Motion 

Motivated by the need to investigate seismic stability of a flexible structure, with a limited 

foundation uplift, researchers had investigated rocking dynamics of a flexible structure. These 

studies were mainly focused on to study the dynamic behavior of structures allowed to uplift 

and assess effect of uplift on structural deformations and quantify the base isolation effect 

provided by rocking motion.  

The initial investigation that dealt with the uplift of the foundation in flexible system was 

experimental research conducted by Muto et al. [44], on the dynamical response of a lumped 

mass structure which in its fixed-base condition behaves as a single-degree-of-freedom system. 

Later, Meek [45], considered the same structural model and, from the analysis of the dynamical 

behavior in small displacements, concluded that uplifting leads to a favorable reduction in the 

maximum transverse deformation of the structure. Meek also conducted other studies on 

braced-core multistory buildings and found that tipping greatly reduces the base shear and 

moment, making a more economical design possible. 

Yim and Chopra [9] considered the typical structural lumped mass model that, in its fixed base 

condition, has a single degree of freedom, and pointed out the influence of earthquake intensity, 

geometric parameters, soil flexibility and p-δ effects on the response of uplifting structures. 

They observed that, apart from very stiff structures, the uplift has the effect of reducing the 

structural deformations and forces. Later Yim and Chopra [46], developed simplified 

procedures to consider the beneficial effects of foundation-mat uplift in computing the 
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earthquake response of structures which behave essentially as single-degree-of-freedom 

systems in their fixed-base condition. 

Initial analytical analysis of the dynamic behavior of a simplified model of a multistory 

building, supported by an elastic foundation and allowed to uplift, was done by Psycharis [47] 

[48].The building was modeled as an n-degree-of-freedom shear-type frame while the 

foundation was represented by a viscously damped two-spring model which permitted uplift. 

The study showed that the dynamic behavior of structures allowed to uplift may be very 

different from the response of fixed base ones. From the analysis of the applications performed, 

Psycharis concluded that the uplift often decreases the structural response. He also observed 

that this is not a general result because the dynamical behavior of structures is strongly affected 

either by the structural parameters or by the nature of the excitation. Later, Psycharis [49] 

conducted a parametric study to evaluate the effect of base-uplift on the maximum response of 

a single degree of freedom structure on elastic soil for harmonic excitation and small 

displacements. 

Till that time, all the studies on the effect of foundation uplift on the dynamical behavior of 

flexible systems had been conducted under the hypothesis of small displacements and therefore 

without considering the eventual overturning of the system. Oliveto et.al. [50] removed 

limitation of small displacements and presented analytical formulation considering overturning 

of the structure.  The study had been conducted with reference to the model already considered 

by Meek, Psycharis, Yim and Chopra. Equations of motion had been formulated by using 

appropriate Lagrangian coordinates which led to a simple form and to a physical interpretation 

of the main characteristics of the dynamical behavior. The conditions for uplift had been 

expressed in terms of a critical displacement and of the correspondent velocity. The critical 

displacement turned out to be smaller for stiff structures and larger for flexible ones and was 
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greatly affected by the vertical acceleration especially for flexible system. In particular, it 

increased when the vertical ground acceleration was directed upwards and decreases when was 

directed downwards. It had also been shown that the damping has the effect of reducing the 

critical displacement. Results led to the conclusion that the uplift has the effect of reducing the 

structural response and of modifying the frequency of the elastic oscillation. A scale effect had 

been observed showing that, when comparing two structures with the same geometrical ratio 

h/b and the same dynamic characteristics but different height of the mass center, the shorter 

one is more prone to uplift and overturning than the taller. It was shown that the minimum 

overturning impulse of a flexible system was always smaller than the corresponding impulse 

for the rigid system. Moreover, low and flexible structures overturn for an impulse only slightly 

larger than the uplifting one, while stiff and tall structures require an impulse several times 

larger. These latter structures may, therefore, benefit considerably from uplifting without a real 

danger of overturning. On the contrary, low and flexible structures were very resilient to uplift 

but they may overturn soon after they had uplifted thus canceling out the beneficial effects.  

Acikgoz and Dejong [51], investigated fundamental dynamics of flexible rocking structures. 

Based on the analytical model proposed earlier [50], they derived nonlinear equations of 

motion, using a Lagrangian formulation for large rotations. Particular attention was devoted to 

the transition between successive phases; a physically consistent classical impact framework 

was utilized alongside an energy approach. The fundamental dynamic properties of the flexible 

rocking system were compared with those of similar linear elastic oscillators and rigid rocking 

structures, revealing the distinct characteristics of flexible rocking structures. In particular, 

parametric analysis was performed to quantify the effect of elasticity on uplift, overturning 

instability, and harmonic response. Invariably, rigid rocking structures uplift when the 

excitation amplitude exceeds g tanα. On the contrary, flexible rocking structures behave like 

linear elastic oscillators until uplift occurs. Therefore, the minimum amplitude required for 
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uplift depends on the respective vibration characteristics of the system and the ground motion, 

and the geometry of the structure. They noted that until uplift occurs, the behavior of the system 

is governed by resonance and the scale and slenderness of the structure have no influence on 

this behavior. They carried out dimensional analysis which indicated importance of 

dimensionless term ω/ωn over ω/p and ωn/p. They observed that the minimum excitation 

amplitude required for uplift of a flexible structure may be much lower than what is required 

for a rigid structure, particularly when ω/ωn is close to unity. Alternatively, for high ratios of 

ω/ωn, flexible structures require high amplitudes to uplift. In these cases, a rigid body will uplift 

when a flexible rocking structure may not.All these findings suggested that the interaction of 

rocking and elasticity cause an altogether distinct response, which demands meticulous 

attention. 

More recently, Vassiliou et.al [52]investigated rocking response of a deformable cantilever 

structure. They extended previously developed analytical models to account for the influence 

of the column and the foundation masses on the behavior of top-heavy deformable elastic 

cantilever columns rocking on a rigid support surface. The column was treated as a continuous 

dynamic system with uniformly distributed stiffness EI and mass, and a concentrated mass on 

the top and bottom of the cantilever. Rocking uplift and overturning spectra for the deformable 

elastic cantilever model excited by sinusoidal ground motions were constructed. The presence 

of the column and base masses decreased the uplifted frequency (compared to the model with 

a single mass at the top) and therefore emphasized the effect of column flexibility. However, it 

was shown that for large structures or relatively high- frequency sinusoidal pulses, the effect 

of flexibility was still not detrimental to the stability of the structure. Thus, large deformable 

cantilever structures, such as tall bridge columns, chimneys and wind turbines, uplift and rock 

without overturning under dynamic ground motion excitation. This remarkable property can 

be used to limit the design bending moments and shear forces at the base of large deformable 
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structures, thus making them more economical to construct while keeping the risk of 

overturning less than or equal to the risk of collapse of the corresponding fixed base structures.  

In a companion paper, Truniger et.al. [53] presented experimental validation of the analytical 

results obtained earlier by Vassiliou et.al [52]. A series of experiments were performed to 

validate analytical models for rocking of deformable cantilever structures with massive 

columns and concentrated masses at the base and the top of the cantilever developed in a 

companion paper [52]. Specimens with four different fundamental vibration frequencies, 

mounted on two different uplifting bases, were excited by analytical pulses and real ground 

motions using a shaking table. The increase of viscous damping during flexural vibrations of 

the column in the uplifted configuration as observed by Acikgoz and Dejong [51], was not 

experimentally observed. Instead, a very small damping value (smaller than the fixed base 

damping value, but consistent with experimental observations) was used. 

2.3.2 Combination of Sliding and Rocking Mode of Motion 

There is absolute dearth of generic research available on fundamental dynamics of a flexible 

free-standing structure allowed to undergo all possible modes of motion. Most of the studies 

mentioned above focused only on the rocking mode of motion assuming sufficient frictional 

resistance to avoid sliding mode of motion.  

In an effort to study effectiveness of base isolation system of a flexible structure, Wang and 

Guild [54] performed numerical analysis. They had investigated behavior of a structure 

incorporating the mechanism of uplift in the base mat and the foundation and the mechanism 

of sliding between the superstructure and the basement. The idea was to study the possible 

beneficial effects, as compared to a structure permitting partial base uplift only. A two-mass 

model of system uplift with sliding was proposed. The equations of motion for the phase of 

full contact, phase of base uplift and transformation of these two phases were derived. The 
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numerical integration of the equations of motion was carried out. The time history of the top 

floor displacement of the proposed system, as compared with that of a conventional system 

with uplift but no sliding mechanism, showed that no sharp peak and high-frequency responses 

occurred. Both the time history and response spectrum results showed that the total 

displacement of the top floor for the proposed system was considerably reduced, as compared 

with that of the conventional system allowing partial base uplift only. Both analyses also show 

that the maximum amount of uplift for the proposed system is greatly reduced as compared 

with that of the conventional system. They concluded that the structure with both uplift and 

sliding mechanisms was superior to that with only the uplift mechanism. Not only is the 

response of the structure reduced, but also the amount of uplift was greatly reduced because of 

the added sliding mechanism. 

Apart from the above-mentioned research carried out by Wang and Guild [54], we could not 

find any more research on this subject. Hence a generic research is necessary which can 

highlight effects of flexibility on all possible modes of motion of a free-standing structure 

subjected to base excitations.  

2.4    Glove Boxes Shake Table Test Data 

Full-scale shake table testing of glove boxes was carried out in Japan. Fujita et. al. [55] and 

Miura et. al. [56] conducted tests on glove boxes fixed to the floor and it was concluded from 

the tests that the glove boxes kept working when subjected to design basis earthquake 

acceleration. It is important to note that these boxes were not free-standing and hence these 

results are not relevant to the case presented in this thesis. To evaluate seismic stability and 

integrity of a free-standing glove box system, it was decided to carry out full-scale shake table 

testing of the glove boxes used in nuclear facilities across India. In supervision of my guides, 

a task force was formed including engineers from Bhabha Atomic Research Centre (BARC) 
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and Central Power Research Institute (CPRI) [57]. The objective of these tests were to qualify 

glove boxes for design basis earthquake loading. Three possible configurations of glove boxes 

were evaluated. In the first case, seismic stability of a single glove box (with mass of machinery 

and radiation shielding) was analyzed. In the second case, seismic stability of two glove boxes 

interconnected through a flexible transfer tunnel was analyzed. In the third case, seismic 

stability of two glove boxes interconnected with rigid cross bracings in addition to flexible 

transfer tunnel was analyzed. Test results obtained, were provided to carry out this research. 

They were utilized for validating finite element models of glove boxes being developed later 

in Chapter-5, 6 and 7. Test setup and procedure is discussed briefly in the next section for the 

three configurations.  

2.4.1 Shake Table Testing of a Single Glove box 
 

2.4.1.1 Test Setup and Procedure  

To determine seismic stability of a freestanding glove box structure for various configurations 

extensive shake table testing was carried out on the full-scale glove box structure. The objective 

of these tests was to observe and evaluate effect of seismic excitation on various operational 

and functional parameters related to safe handling of radioactive material inside the glove box. 

Critical parameters observed were leak tightness, sliding displacement and rocking. The leak 

tightness was important from the viewpoint of containment of radioactivity.  

For testing, actual laboratory conditions were simulated. Such as, test floor was prepared in a 

way that it represents the actual laboratory conditions in which the glove box is generally used. 

The glove box was subjected to a number of pseudo base acceleration time histories 

synthetically generated from the ground design response spectrum of an Indian nuclear power 

plant. The peak base acceleration was varied from 0.1g to 0.4 g in steps of 0.1g in all the three 

directions. The applied vertical acceleration was 2/3rd of the horizontal acceleration.  
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The required response spectra was the 5% damping response spectra for safe shutdown 

earthquake for the plant site [58] and evaluated according to the regulatory requirements [59].  

Required response spectrum and test response spectrum used for testing are shown in Fig.2-3. 

The glove box was mounted on tri-axis shake table and preliminary dynamic test (Sine sweep 

test) was carried out to determine natural frequency of the structure. Low amplitude base 

excitation (0.05g) was given to simulate fixed base boundary conditions for the glove box. 

Fundamental frequency evaluated for fixed base condition was 7.5Hz. Before carrying out 

shake table testing static friction coefficient was determined between floor and GBs. Different 

amplitude base excitations were given to the glove box system. It was observed that glove box 

train started moving after overcoming sliding friction at 0.15g peak base acceleration. Hence, 

coefficient of friction value was considered as 0.15. After preliminary testing, shake table tests 

were conducted simulating earthquake, corresponding to the required response spectrum as 

mentioned above. The response of the structure in terms of accelerations, displacements, and 

strains at various identified locations was monitored. Fig.2-4 shows the locations of fifteen 

numbers of accelerometers (A1-A15) and two number of displacement sensors (D31-D32). 

Accelerometer number (A12) was not working and hence removed. Shake table time history 

signals were filtered by band pass filter with a range of 0.5 to 50 Hz. Response signals recorded 

from accelerometers mounted on glove box were unfiltered. Accelerometers used were of 

force-balanced type (FGP instrumentation, France) with a sensitivity of 20mV/g and a 

frequency range of 0.1 to 500 Hz. While the data acquisition system used was from M/s 

Servotest, UK with a data collection rate of 1,00,000/- samples per second. 
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Figure 2-3 Test and required response spectrum for shake table testing 

 

 

 

 

Figure 2-4 Schematic showing positions of various sensors during shake table testing 
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Single GB structure is generally used in mainly three types of operating conditions in 

laboratory. In the first case, it is used as a maintenance or storage box to store various tools or 

in process inventory. To simulate this case in testing, it was assumed that mass of tools/in 

process inventory is very less than the mass of GB structure and hence can be safely ignored. 

In the second case, GB houses process equipment of considerable weight. To simulate this case 

in testing, a dead load of 250Kgs in form of a solid box was bolted to the GB base. In the third 

case, GB can have a radiation lead shield fastened on one side glass panel. To simulate this 

case, actual lead shield 96Kg load was bolted to the GB front panel. Then shake table tests 

were carried out for the above-mentioned three cases as given below: 

1. Case 1: Single glove box structure. See Fig.2-5(a) 

2. Case 2: Single glove box structure with dead load of 2.5 KN. See Fig.2-5(b) 

3. Case 3: Single glove box structure with eccentric load of 0.96 KN. See Fig.2-5(c).  

For each of the above-mentioned cases the glove box was tested for two conditions; In one 

condition one-inch ventilation pipe connected at the top of the box was kept free to move ,while 

in other condition ventilation pipe was fixed to a rigid frame mounted(fixed) on the shake table. 

These two conditions simulate the actual two field conditions, one in which the glove box is 

having long flexible ventilation system attached to it and the other in which the ventilation 

system is of small length and rigidly connected to a support. The integrity of pressure boundary 

was checked during tests by actually monitoring the pressure changes inside the box during 

and after shake table testing. Leak testing was carried out after each test for two hours at the 

pressure of -250 Pa and then again for two hours at -750 Pa, as per the regulatory guidelines 

[60] [61] [2].  
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Figure 2-5 Shake table test setup. (a) Single standalone Glove box, (b) Glove box with central mass, (c) 
Glove box with eccentric mass 

 

2.4.1.2  Test Results 

During shake table testing various parameters were observed and recorded viz. sliding 

displacement of the structure, accelerations, and strains at different locations and leak rate 

during and after testing. Leak rate and sliding displacement were the most critical parameters 

from the radiological safety considerations. It was observed during testing that rigid body 

motions were predominant. Strains recorded by strain gauges were of very low magnitude (< 

240µm/m).  Glove box sustained design basis ground motion of 0.2g PGA.  

2.4.2 Shake Table Testing of Flexibly Interconnected Glove Boxes 

2.4.2.1 Test Set Up 

Shake table tests were carried out on two freestanding glove boxes (1m x 1m x 1m, 370 Kg 

each) interconnected to each other by a material transfer tunnel (see Fig.2-6 and Table.2-1). 

The test floor was prepared such that it represents the actual laboratory conditions in which the 

GBs are used. The response of the structure in terms of acceleration, displacement, and strain 

at different locations was monitored during testing. Seventeen numbers of accelerometers (A1-
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A17), two numbers of displacement sensors (D1-D2) and twenty-six numbers of strain gauges 

(S1-S26) were mounted on GBs as shown in Fig.2-7. To avoid clutter, locations of strain gauges 

are not shown. 

 

Figure 2-6 Test set of interconnected glove boxes with a flexible transfer tunnel 

 

Table 2-1 Dimensions and properties of interconnected glove boxes 

Glove box shell(top structure) 
Length(m) Width(m) Height (m) Thickness(m) Material of construction 

1 1 1 0.003 Stainless steel (304) 
Bottom supporting plate 

Length(m) Width(m) Thickness(m) Material of construction 
0.96 0.96 0.009 Mild steel 

Carriage (stand) 

Length(m) Width(m) Height (m) Thickness(m) Material of construction 
1 1 1 0.006 Mild steel 
     

Material transfer tunnel 
Length(m) Outer Diameter(m) Thickness(m) Material of construction 

0.3 0.25 0.003 Stainless steel(304) 
 

Material transfer tunnel 
Pressure regulating valve 
(PRV) 

X 

Y 

Z 
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Figure 2-7Acceleration and Displacement sensors mounted on glove boxes as viewed from North direction 

 

Interconnected GBs were subjected to a number of base acceleration time histories 

synthetically generated from the design response spectrum of an Indian nuclear power plant. 

The peak base acceleration was varied from 0.1g to 0.4 g in steps of 0.1g in all the three 

directions. The applied vertical acceleration was 2/3rd of the horizontal acceleration. The 

required response spectra was same as given earlier in Section 2.4.1.1. 

2.4.2.2 Test Results  

Two glove boxes interconnected through a material transfer tunnel were initially subjected to 

base excitations up to 0.2g peak base acceleration (design value). Generally, when GBs are 

mounted at higher floors they can be subjected to floor acceleration values closer to 0.4g. To 

simulate this condition, GBs were also subjected to higher base excitations up to 0.4g peak 

base acceleration (PBA) values.  The natural frequency of interconnected GBs was evaluated 

to be 8.0Hz in lateral flexure in X and Z direction. One of the glove boxes had an eccentric 
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mass of 96 kg simulating lead shielding while other glove box had 250 Kg fixed central mass 

simulating static load of machinery kept inside. The material transfer port was fixed between 

the two glove boxes with the help of O-rings. It functioned as a flexible leak tight connection 

between the two boxes. Due to the space constraints, interconnected GBs were tested by 

applying simultaneous motion along three directions up to 0.2g PBA value. For 0.3 g and 0.4g 

pba values, two motions one horizontal motion along the transverse direction (X direction) of 

the train and one vertical motion were applied.  

The integrity of pressure boundary was checked during tests by actually monitoring the 

pressure changes inside the box during and after shake table testing. Leak testing was carried 

out after each test run, for two hours at the negative pressure of 250 N/m2 and then, again for 

two hours at a negative pressure of 750 N/m2, as per the regulatory guidelines [61] [60] [2]. 

Leak rates were recorded as air leakage volume fraction as a percentage of glove box volume 

per hour and given in Table2-2. 

Table 2-2 Measured leak rate after shake table testing 

S.No Peak base acceleration  
value (in g) 

Leak rate (% of GB volume per hour) 

1 0.1 No leakage * 

2 0.2 No leakage* 

3 0.3 0.040 

4 0.4 0.054 

*No measurable change in manometer reading observed during leak testing 

Like the case of a single box, here also rigid body motions like sliding and rocking dominated 

the response. Strains recorded by the strain gauges were of very low value. Max strain observed 

was only 240µm/m. Hence these test results indicated low deformations and large 

displacements (slip/rocking). 
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2.4.3 Shake Table Testing of Rigidly Interconnected Glove Boxes 

Previous results of shake table experiments for two glove boxes interconnected by a flexible 

material transfer tunnel highlighted inherent limitations in design. At higher peak ground 

accelerations, relative sliding and rotational motions between both the boxes caused breach of 

integrity and leak tightness of the system could not be retained. On the basis of experimental 

findings, it was decided to modify design to improve seismic stability. Both the carriages 

(stands) of glove boxes were rigidly fixed to each other using structural members as shown in 

Fig.2-8. This cross bracing using L-shaped angles was done to constrain relative movement 

between both the boxes. Horizontal angles for cross and diagonal members (size 40x40x5mm 

thick) were chosen and interconnected at two locations. No modification was done in material 

transfer tunnel connection with the boxes. It was still flexibly connected to the boxes using O-

rings. After performing these design modifications, shake table experiments were carried out 

to investigate seismic performance of interconnected GBs. The objective of testing was to 

observe predominant modes of motion of GB system and there effect on stability. Critical 

parameters of GB system like the leak tightness, negative pressure and structural integrity were 

checked during and after the shake table testing.  

2.4.3.1 Test Set Up 
 

Two freestanding glove boxes (1m x 1m x 1m, 370 Kg each), interconnected to each other by 

a material transfer tunnel and cross bracing were placed on the tri-axial shake table for testing 

as shown in Fig.2-9. Test floor was also prepared similar to laboratory conditions in which the 

GBs are used. The response of the structure in terms of accelerations, displacements, and strains 

at different locations was monitored during testing. Seventeen numbers of accelerometers (A1-

A17), two numbers of displacement sensors (D1-D2) and twenty-six numbers of strain gauges 



44 

 

(S1-S26) were mounted on GBs. Locations of various sensors are shown in Fig.2-10. To avoid 

clutter, location of strain gauges is not shown in the figure. Input base motions were same as 

used earlier. 

2.4.3.2 Test Results and Observations 
 

Initially, glove boxes were subjected to base excitations up to 0.2g peak ground acceleration 

(design value). Subsequently, they were subjected to floor acceleration values up to 0.4g.  

Leak testing was carried out after each test run, for two hours at the negative pressure of 250 

Pa and then, again for two hours at a negative pressure of 750 Pa. Strains recorded throughout 

testing were of very low magnitude. Maximum strain value recorded during testing was 220µm 

per meter. 

 It was observed that interconnected glove boxes could retain leak tightness and integrity up to 

0.4g pba value of seismic excitation. 
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Figure 2-8 Modified design of interconnected glove boxes (Plan and Elevation view), carriages are 
connected with cross members 

Cross members 
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Figure 2-9 Experimental set up of two glove boxes with carriages connected through structural members 
(cross bracings) at two locations 

 

 

Figure 2-10 Acceleration and Displacement sensors mounted on glove boxes as viewed from North 
direction 
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2.5  Gap Areas and Directions for Research 

As described earlier, majority of research on the dynamics of freestanding components is 

restricted, either to the overall dynamic behavior of a rigid body (as given in Section2.2), or to 

the limited extent on rocking behavior of a flexible body (as given in Section2.3).  

The paucity of available literature on the dynamics of freestanding flexible bodies, signifies a 

need, of a more comprehensive research.  

As described in Section.2.2.3, Shenton and Jones [62] proposed motion initiation 

criteria diagrams for free-standing rigid blocks. These diagrams are regularly followed and 

referred in the literature [36] [39] [40]. These plots highlight dependence of initiation of any 

mode of motion of a free-standing component on three main parameters which are aspect ratio 

(A.R.), coefficient of friction (µs) and peak amplitude of base excitations (Ag).  However, there 

are other three important parameters viz. frequency of base excitation, stiffness (flexibility) and 

natural frequency of a component. Effect of these parameters on initiation of a mode of motion 

requires further investigation. Hence, it is planned to study effect of additional parameters on 

motion initiation and highlight the missing linkages. Moreover, study of dynamics of 

freestanding flexible body under planar modes of motion like sliding, rocking and combination 

of these two, requires thorough investigation. 

In addition to that, overall dynamics of flexible structure was not studied. Acikgoj and 

Dejong [51] investigated rocking stability of a flexible body. Proposed cantilever beam model 

was developed using single mass lumped at the center of gravity. Bending stiffness of the beam 

was considered. Vassiliou et.al. [52] improved model proposed by Acikgoj and Dejong. They 

proposed cantilever model using continuous beam and consistent mass formulation. Mass was 

lumped at top and bottom locations. Both these studies were based on the assumption of no 

sliding motion that means considering pure rocking motion only. Hence a generic study 
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including effects of sliding, rocking and combination of two on the dynamics of a freestanding 

flexible body is required.  

Hence, the present research shall include systematic study of effects of various 

parameters on all possible planar modes of motion of a rigid and flexible bodies. In addition to 

that, effect of these parameters on initiation, termination, and sustenance of any mode of motion 

and hence on overall seismic stability shall be reconnoitered. Reflective investigation of 

interaction of elastic and rigid body motions of a free-standing component, when subjected to 

base excitation, is contrived. It includes experimental and numerical investigation of test 

specimens representing geometrically similar rigid and flexible structures. Generalized results, 

stemming from this investigation will be applied to a more complex case of a glove box, 

extensively used in nuclear facilities. This nonstructural component is a leak tight structure 

which works under negative pressure. It is a safety-related mechanical component, whose 

integrity and functionality is very critical for any nuclear fuel fabrication/reprocessing facility. 

In lieu of available findings of shake table testing, detailed assessment of seismic stability of 

the glove boxes is envisaged. Further, it is planned to carry out extensive numerical analysis to 

evaluate seismic stability of series of interconnected glove boxes for various possible 

operational configurations. It is also envisaged to develop a generic methodology to ascertain 

requirement of anchoring (fixing to the base) of a glove box. 
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CHAPTER 3 DYNAMICS OF FREE-STANDING RIGID BODIES 

SUBJECTED TO BASE EXCITATIONS 

 

3.1 Introduction and Outline  

Generally, many freestanding components like office and laboratory furniture, mechanical and 

electrical equipment, art objects in a museum, vending machines etc. behave rigidly when 

subjected to base excitations. Although, most of these systems may have flexibility, however, 

their seismic response is largely governed by rigid body motions with low strains. This 

hypothesis is deeply rooted in historical real life failures of free-standing systems. As discussed 

in Chapter-1, the majority of seismic failures of freestanding systems were due to either 

overturning or excessive sliding motion. Hence, seismic stability is largely controlled by rigid 

body behavior of these systems. 

To the best of author’s knowledge, effects of base excitation frequency on initiation, 

termination, and amplification of any mode of motion of a free-standing rigid component has 

not been studied. Here, a functional relationship between the frequency of excitation and 

initiation and sustenance of any particular mode of motion from rest state for a parallelopiped 

rigid block is developed and demonstrated using shake table experiments.  

In this chapter, rigid body assumption is retained in all the formulations and numerical 

solutions. Section 3.2 presents fundamental dynamics of a free-standing rigid body. 

Mathematical formulation of the problem, with underlying rigid body assumption, is presented. 

To determine critical parameters influencing stability, experimental studies were carried out 

and presented in Section 3.3. Further to that, numerical results, obtained from time integration 

of the nonlinear equations of motion and finite element solution of test models are presented in 

Section 3.4. Then, Section 3.5 presents a novel three-dimensional motion initiation criteria 
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diagram developed for a rigid body. At the end of the chapter, significant contributions of this 

research, adding to the existing knowledge base are highlighted in Section 3.6. 

3.2  Two-dimensional Analytical Model 

In this section, equations of motion for possible planar modes of motion like pure rocking, pure 

sliding and a combination of both are derived. Equations of motion and conditions for initiation 

& termination of pure sliding and rocking mode of motion are presented; Further equations of 

motion for the simultaneous occurrence of sliding and rocking mode of motions are derived. 

Finally, generic equations of motion, governing all possible planar modes of motion for a rigid 

body are presented. These equations can be used to determine the position of a rectangular rigid 

body when subjected to one/two-dimensional base excitations.  

3.2.1 Sliding Mode of Motion 

Consider a symmetric rectangular rigid block at rest relative to a moving base, as shown in 

Fig.3-1. The block has mass (M), Mass moment of inertia (I) about either edge OL or OR, width 

(2B), height (2H), and aspect ratio A.R. = H/B. The bottom of the block is in surface contact 

with the ground. The normal reaction at the base is denoted by FN. The coefficient of Coulomb 

friction: Static and dynamic coefficients-µ (assumed as same). The Friction force is given by 

Ff. Slip displacements of the block relative to the base are denoted by X and Y. The horizontal 

and vertical base accelerations are denoted by �̈�𝑋𝑔𝑔  and �̈�𝑌𝑔𝑔  with respect to fixed frame of 

reference and are assumed to be a function of time.  
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Figure 3-1 Free body diagram of a rigid block undergoing pure sliding motion 

Equation of motion governing the slip displacement (X) of the body on base is derived by using 

equilibrium of forces (Newton’s Law) in X direction. Here, equations of motion and conditions 

for initiation and termination of sliding mode of motion are established and are given below:  

1. Equations of motion  

a) Slide initiation from rest state 

The block starts slipping, when the horizontal inertia force due to base motion exceeds 

the static frictional force at the contact surface as given below: 

   M�̈�𝑋𝑔𝑔(𝑡𝑡) > µs M (g+�̈�𝑌𝑔𝑔(𝑡𝑡))      3.1 

b) While sliding 

Equation of motion during sliding mode of motion can be written as 

below: 

                         M�̈�𝑋𝑔𝑔(𝑡𝑡) + M �̈�𝑋(𝑡𝑡) +  FF = 0       3.2 

                   Where, FF = µ Sgn(Ẋ) M (g+ �̈�𝑌𝑔𝑔(𝑡𝑡)) 
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Here Sgn(Ẋ) is the Signum function which gives the sign of variables, defined by: Sgn(Ẋ)= +1 

for Ẋ >0 ,  Sgn(Ẋ)= -1 for Ẋ < 0 ,  

Now, derived equations of motion for sliding motion may further be simplified by assuming 

harmonic base excitations as given below:  

               �̈�𝑋𝑔𝑔(𝑡𝑡)= Ag g sin( 2𝜋𝜋
𝑇𝑇

t), �̈�𝑌𝑔𝑔(𝑡𝑡)= AY g sin( 2𝜋𝜋
𝑇𝑇

t)                    3.3 

Where T- Time period of input motion (assuming same for both the directions), Ag, AY –non 

dimensional parameters indicating Amplitude of input acceleration in X and Y direction 

respectively. On replacing values of �̈�𝑋𝑔𝑔(𝑡𝑡)and �̈�𝑌𝑔𝑔(𝑡𝑡) in Eqn. 3.2, we get:  

             Ag g sin( 2𝜋𝜋
𝑇𝑇

t) + �̈�𝑋(𝑡𝑡)+ Sgn(Ẋ) µ g (1+AY sin( 2𝜋𝜋
𝑇𝑇

t)) = 0  

Or     �̈�𝑋(𝑡𝑡) = - g {Ag sin( 2𝜋𝜋
𝑇𝑇

t) + Sgn(Ẋ) µ (1+AYsin( 2𝜋𝜋
𝑇𝑇

t)) }        3.4   

Further, the equations can be normalized using following substitutions:  

                     U = X /gT2 and 𝜏𝜏= t/T.  

On substituting these values in Eqn.3.4, we get equation of motion in non-dimensional form as 

below:  

                   �̈�𝑈(𝜏𝜏) = - { Ag sin( 2𝜋𝜋𝜏𝜏) + µ Sgn(�̇�𝑈) (1+AYsin( 2𝜋𝜋𝜏𝜏)) }                   3.5 

In this equation all the derivative are with respect to non-dimensional time parameter 𝜏𝜏.  

c)  Slide termination condition  

The sliding motion continues until the relative velocity between the body and base 

becomes zero. Hence the condition is given below: 

�̇�𝑋(𝑡𝑡) = 0 or  �̇�𝑈(𝑡𝑡) = 0                                         3.6 
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The slide motion initiates from the rest mode when the condition in Eqn. 3.1 is satisfied and 

the condition given by Eqn.3.13 should not be satisfied; otherwise, rocking will start before 

sliding. Once sliding starts the body follows Eqn.3.2, until the condition in Eqn. 3.6 is satisfied. 

A slide mode is valid provided the normal reaction is greater than zero (FN >0).Moreover, 

during each cycle of harmonic base excitation, slip starts only after a certain threshold 

amplitude of the wave is reached given by Eqn.3.1. 

2. Analytical solution  

The equation of motion derived for sliding mode of motion is nonlinear and hence calls for a 

numerical solution. This can be solved by numerical integration methods (e.g. Newmark-beta 

and Runge kutta time integration methods) by considering equilibrium of forces at every small 

time steps.  

However, an attempt is made to solve the equation analytically for a particular case of half 

sinusoidal horizontal base excitation [32].  

Vertical excitation is assumed to be zero. Hence Eqn.3.5 can be written in simplified form as:  

�̈�𝑈(𝜏𝜏) = - (Ag 𝑠𝑠𝑠𝑠𝑠𝑠( 2𝜋𝜋𝜏𝜏) + µ Sgn(�̇�𝑈))                 3.7 

Eqn.3.7 is valid from the time of onset of slip determined from Eqn.3.1 up to the time of slip 

termination to be calculated.  Time of onset of slip can be calculated from Eqn.3.1 and is given 

below: 

𝜏𝜏0 =  1
2𝜋𝜋

sin−1 𝜇𝜇
𝐴𝐴𝑔𝑔

       3.8 

For determining the time of slip termination, we use Eqn.3.6.On integrating with time, slip 

velocity can be given as below:  

�̇�𝑈(𝜏𝜏) =  −∫�𝐴𝐴𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠 ( 2𝜋𝜋𝜏𝜏) + 𝑆𝑆𝑆𝑆𝑠𝑠(�̇�𝑈)𝜇𝜇�.𝑑𝑑𝜏𝜏                            3.9 

Now, the time of slip termination (𝜏𝜏1) is calculated by equating Eqn.3.9 to zero 
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𝐴𝐴𝑔𝑔
2𝜋𝜋

cos(2𝜋𝜋𝜏𝜏1) + 𝑆𝑆𝑆𝑆𝑠𝑠(�̇�𝑈)𝜇𝜇𝜏𝜏1 + 𝐶𝐶 = 0                3.10 

Where, C is the constant of integration which is given by:  

    𝐶𝐶 = −𝐴𝐴𝑔𝑔
2𝜋𝜋

cos(2𝜋𝜋𝜏𝜏1) − 𝑆𝑆𝑆𝑆𝑠𝑠(�̇�𝑈)𝜇𝜇𝜏𝜏1                                                  3.11 

Hence slip displacement can be determined by integrating �̇�𝑈(𝑡𝑡) again, from time 𝜏𝜏0to 𝜏𝜏1 as 

given below: 

𝑈𝑈(𝜏𝜏) = ∫ �𝐴𝐴𝑔𝑔
2𝜋𝜋

cos(2𝜋𝜋𝜏𝜏1) + 𝑆𝑆𝑆𝑆𝑠𝑠(�̇�𝑈)𝜇𝜇𝜏𝜏1 + 𝐶𝐶� .𝑑𝑑𝜏𝜏𝜏𝜏1
𝜏𝜏0

     3.12 

3.2.2 Rocking Mode of Motion  

Consider same rectangular block subjected to base motion in both horizontal and vertical 

directions. In this case, it is assumed that coefficient of friction is sufficiently high such that 

static friction is not overcome by inertial force. The block will rotate about either of the edges 

OR or OL depending upon the base motion as shown in Fig.3-2 below. It is further assumed 

that there is no bouncing of the block and impact of the block with the base during the transition 

of rocking from one edge to another is not considered. 

The block is assumed to be rigid and uniform so that its centre of gravity coincides with the 

geometric center, which is at a distance R from any corner. The angle α of the block is given 

by tan (α) = B/H .The base accelerations (�̈�𝑋 Rg & �̈�𝑌 Rg) with respect to fixed frame of reference are 

assumed to be a function of time. 
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Figure 3-2 Free body diagram of a rigid block undergoing pure rocking motion 
 

1. Equations of motion  

a) Rocking initiation condition from rest state 

The rocking initiation condition from rest for a rectangular rigid body subjected to base 

accelerations are derived from the equilibrium of the overturning moment and the resisting 

moment around a pivoting vertex.  

     M (�̈�𝑋 Rg ) R Cos 𝛼𝛼 > M (g + �̈�𝑌 Rg) R Sin 𝛼𝛼                     3.13       

b) While Rocking about an edge  

Once rocking starts, the block will start rotating about either of the edge depending on the 

base acceleration. While rocking, the equations of motion are derived by taking moment 

equilibrium about either of the edge (See Fig.3-2). When there is a rotation, the angular 

displacement is denoted by θ; Here the positive value of θ corresponds to rotation about 

vertex OR and its negative value corresponds to rotation about OL. For the rotation about 

vertex OR , where θ >0, the equation of motion is given below: 
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Io 𝜃𝜃(𝑡𝑡)̈  + M (g + �̈�𝑌 Rg ) R sin(𝛼𝛼 −  𝜃𝜃(𝑡𝑡)) - M (�̈�𝑋 Rg) Rcos(𝛼𝛼 −  𝜃𝜃(𝑡𝑡)) = 0                   

3.14 

Similarly for rotation about vertex OL ,  where θ(t) <0 ,we have: 

Io 𝜃𝜃(𝑡𝑡)̈  - M (g + �̈�𝑌 Rg ) R Sin(𝛼𝛼 +  𝜃𝜃(𝑡𝑡)) - M (�̈�𝑋 Rg) RCos(𝛼𝛼 +  𝜃𝜃(𝑡𝑡)) = 0    

 3.15 

These equations are piecewise continuous. Block rotates about any one edge due to base 

excitation and may come back and hit the base and then again start rocking about other edge 

or the same edge depending on the base motion. Every impact with the base leads to energy 

dissipation and hence variables have to be adjusted accordingly. This is a nonlinear problem 

where the impact has to be accounted properly to know the response of block with time. 

Hence, energy dissipation considering inelastic collision can be derived by conservation of 

energy before and after impact. Post-impact velocity is lesser than pre-impact velocity by a 

factor known as coefficient of restitution as given below: 

                 𝜃𝜃(𝑡𝑡)̇  𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 = 𝑟𝑟. �̇�𝜃(𝑡𝑡) 𝑝𝑝𝑟𝑟𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡                                        3.16 

On further simplifying Eqn.3.14, we obtain: 

             Io 𝜃𝜃(𝑡𝑡)̈ = M (Ẍg) R cos (α− θ) - M (g + Ÿg) R sin (α− θ(t))               

3.17 

On expanding sin (α− θ) and cos(α− θ) ,assuming small values of rocking angle( ) and 

considering only the first term of Taylor Series expansion of Sine and Cosine functions, we  

get the linearized equation of motion as given below:  

 𝜃𝜃(𝑡𝑡)̈ = p2 {Ag Sin α + (1+Ay) Cos α} (t) + p2 {Ag Cos α + (1+Ay) Sin α}               

3.18 



57 

 

Here  is the critical angle. If θ(t) >   , then the body will topple due to gravity alone under 

static conditions. p is the system frequency given by p2= MgR/Io .Where Ẍg=Agg and Ÿg 

=Ayg. Where, Ag and Ay represent time-varying amplitude of horizontal and vertical ground 

motion respectively. 

Now, Eqn.3.18 can be non-dimensionalised by the following change of variables:  

                              ∅= θ /𝛼𝛼    and   𝜏𝜏= p t  

On making the substitutions we get the non dimensionalized form as:  

  ∅̈ - {Ag sin 𝛼𝛼 + (1+Ay) cos 𝛼𝛼} ∅ = 1/ 𝛼𝛼 {Ag cos 𝛼𝛼 - (1+Ay) sin 𝛼𝛼}                    3.19      

c) Rocking termination condition  

Rocking motion continues to sustain till net overturning moment arising due to effective 

inertial forces are overcome by net restoring moment arising due to vertically downward 

normal forces. In the absence of inertial forces, rocking motion slowly decays down due 

to energy dissipation in multiple impacts with the base. The condition for rocking 

termination can be given as: 

   M (�̈�𝑋(𝑡𝑡)) R cos 𝛼𝛼 < FN(t) R sin 𝛼𝛼       3.20 

2. Analytical Solution  

It is possible to obtain an analytical solution of Eqn.3.19 for a limited case of rocking about a 

vertex without considering changes in direction of motion and associated impacts. Here we 

shall present analytical solution from the time of starting of rocking about one edge up to the 

time of termination of a half cycle when the block hits back the base, indicated by the condition  

�̇�𝜃 = 0 . Following parameters are considered for obtaining a solution: 
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Constant horizontal acceleration (Ẍg) and vertical acceleration (Ÿg), Ag=0.5, Ay= 0.1, B=150, 

H=600, 𝛼𝛼 = 0.245, R=618, p = 3.45, I0= 4/3MR2, µ=0.6   

 It is important to check that sliding should not start before rocking using Eqn.3.1. It is clear 

from the parameters that slipping doesn't start and the block goes directly into the rocking mode 

because it satisfies the condition given by Eqn.3.1.On substituting these values in Eqn.3.19, we 

get:  

                                    ∅̈ = 1.2∅ +  0.894                                  3.21 

On solving Eqn.3.21, for both homogenous and forcing function and using initial conditions 

as,   ∅= 0 at 𝜏𝜏 =0 and ∅̇ =0 at 𝜏𝜏 =0, we finally get:  

   ∅ = 0.745 {Cosh 𝜏𝜏 − 1}                  3.22 

 This is a hyperbolic equation indicating the lifting of the block from the base. It is a well-

known solution available in the literature [7] [39] .Similarly, on solving Eqn.3.19 using 

following parameters: sinusoidal horizontal acceleration [Ẍg = Ag g sin (2πωt)] and constant 

vertical acceleration (Ÿg) 

On simplification, we get a final equation in the following form: 

         ∅̈ = Ag/ 𝛼𝛼 Sin (2π 𝜉𝜉 t) −  (1+Ay) (1- ∅)                 

3.23 

 Here,  𝜉𝜉  is frequency ratio given by the ratio of applied base excitation frequency to system 

natural frequency of free vibration. On solving the Eqn.3.23, we get: 

     ∅  =  A 𝑝𝑝�1+𝐴𝐴𝐴𝐴 𝜏𝜏   +    B 𝑝𝑝−�1+𝐴𝐴𝐴𝐴 𝜏𝜏   −  {Ag Sin (2π  𝜉𝜉  𝜏𝜏 ) / 𝛼𝛼 (4𝜋𝜋P

2  𝜉𝜉P

2 +  1+ Ay)} +  1                  

3.24 
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Where A and B are constants and determined by the initial conditions. For Ag= 0.5, Ay=0.1, 

B=150, H=600, 𝛼𝛼 = 0.245, R=618, p = 3.45, I0= 4/3MR2, µ=0.6, 𝜉𝜉 =1, we get: 

∅(𝜏𝜏) = 1 − 0.35 𝑝𝑝1.05𝜏𝜏 − 0.65 𝑝𝑝−1.05𝜏𝜏 − 0.005 sin (2 π 𝜏𝜏)                                         3.25 

It is interesting to observe that solution obtained for the equation of motion as given in 

Eqn.3.25, exhibits an exponential increase in rocking angle with time. However, it is also 

observed that low- amplitude harmonic component is present in the solution due to the forcing 

function. This result could be interpreted by the reader that responses of two rigid blocks with 

the same aspect ratio are identical. This is not the case because the size of the block (not its 

aspect ratio) is hidden in 𝜏𝜏 (the non-dimensional time) through the frequency parameter p. 

Therefore it should be noted that the rocking response is not only aspect-ratio dependent, but 

also size dependent for a given aspect ratio. [63] 

3.2.3 Combination of Sliding and Rocking Mode of Motion 

For a particular combination of system parameters, a rigid body can simultaneously undergo 

sliding and rocking mode of motions. In this section, firstly transition conditions from one 

mode of motion to the other are derived. Then, equations of motion are written for a generic 

case of rigid block undergoing any possible planar mode of motion.  

1) Analytical formulation  

The equation of motion for a rigid rectangular block of mass (M) and mass moment of inertia 

(Io) about an edge, subjected to base motion can be obtained by taking equilibrium of various 

forces and moments acting on the body at any instant of time. As shown in Fig.3-3, various 

forces acting on a block undergoing sliding and rocking rigid body motions, can be categorized 

as below: 

a) Inertial force  
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These forces arise due to net effective acceleration, due to the resultant of all forces acting on 

the block. It is given as 𝐹𝐹𝐼𝐼���⃗ (t), which is a time-varying vector corresponding to net inertial forces 

acting on the block. Its value can be given as in Eqn.3.26 below: 

              𝐹𝐹𝐼𝐼���⃗ (t) = M �̈�𝑋                                                                                    3.26 

Here, M is the mass of the block and �̈�𝑋 is the net resultant acceleration of the block due to all 

acting forces.  

 

Figure 3-3 Rectangular rigid block subjected to various forces during rocking and sliding motions 

 

b) Contact forces 

At the line of contact between the block and base, there will be contact forces which can be 

divided into two categories viz. a normal force acting perpendicular to the contact surface 

known as a normal reaction and a horizontal force acting tangentially to the normal direction 

known as frictional force.  A time-varying frictional force given as 𝐹𝐹𝐹𝐹����⃗ (t), will act at the contact 

interface between body and base as given in Eqn.3.27 and Fig.3-3. During pure sliding motion, 

a line of action of frictional force will be at the bottom edge of the block. However, this will 
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change to almost a point contact about either of the left/right vertices, as rocking initiates. The 

direction of frictional force will be opposite to the direction of motion (velocity) as given by a 

Signum function. Time-varying normal force (𝐹𝐹𝑁𝑁����⃗ (t)) will be acting at contact interface as given 

by Eqn.3.28.  In addition to these forces, there will be an impact force arising due to change in 

direction of rotation of the block. This force is intermittent in nature and its magnitude can be 

obtained by using conservation of momentum principle.  

𝐹𝐹𝐹𝐹����⃗ (t) = Sgn(�̇�𝑋) µ 𝐹𝐹𝑁𝑁����⃗ (t)               3.27 

𝐹𝐹𝑁𝑁����⃗ (t) = M (g ±𝑌𝑌�̈�𝑔)                           3.28 

c) Rotational forces 

During rocking or a combination of rocking- sliding motion, rotational forces will be acting on 

the block. Two forces namely centrifugal (𝐹𝐹𝐶𝐶����⃗ (t)) and tangential force (𝐹𝐹𝑇𝑇����⃗ (t)) are acting at center 

of gravity (C.G) of the block. The direction of centrifugal and tangential forces will be normal 

and tangential to the line joining C.G. with the center of rotation respectively as shown in Fig.3-

3. They are given by Eqn. 3.29 &3.30 respectively. 

𝐹𝐹𝐶𝐶����⃗ (t) = M.R.�̇�𝜃(𝑡𝑡)2       3.29 

𝐹𝐹𝑇𝑇����⃗ (t) = M.R.�̈�𝜃(𝑡𝑡)      3.30 

d) Body force 

As the block is having a finite volume and density, hence gravitational force will act at the C.G. 

of the block. Its direction is vertically downwards and magnitude is equaled to mass times 

gravitational acceleration as given by W in Eqn.3.31. 

W = M.g       3.31 
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Please note the sign conventions as given in Fig.3-3. Anticlockwise rotation is considered as 

positive. All the forces described above shall be present in case motion of the block is a 

combination of sliding and rocking. In the next sections, we shall initially derive equations of 

motion for individual modes of motion, then these equations will be suitably transformed into 

a generic equation of motion applicable to all possible modes of motion.  

2) Initiation of sliding motion from rocking motion 

The sliding mode can also start from rocking mode of motion, provided that the dynamic 

frictional force at the interface is overcome by a net horizontal force acting on the block at that 

instant of time. The frictional force is derived from the instantaneous dynamic normal reaction 

acting at the rocking corner of the block (See Fig.3-3 for free block diagram). The equation of 

motion can be written as: 

                        FF(t) < M �̈�𝑋 (t)          3.32 

Where FF is a frictional force at a particular instant when the block is in a rotational motion 

with an effective net horizontal acceleration value of �̈�𝑋. Here frictional force is evaluated by a 

dynamic normal reaction FN at a particular instant. 

                 FF(t) = µs FN (t)          3.33 

 FN(t) = M(g+ �̈�𝑌 Rg(t)) - FT(t) Sin(α-θ(t)) - FC (t)Cos(α-θ(t))    3.34 

Where α is the critical angle. θ(t) is angle of rotation of the block from base.  FT (t) is the 

tangential force due to rotation and FC (t) is the centrifugal force. 

3) Initiation of rocking motion from sliding motion 
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There is a possibility that rocking may initiate while the block is sliding. This is possible if 

overturning moment arising due to the net horizontal acceleration of the block overcomes 

restoring moment due to net vertical force at a particular instant.  

              M (�̈�𝑋(𝑡𝑡)) R cos 𝛼𝛼 > M (g + �̈�𝑌g(t)) R sin 𝛼𝛼      3.35 

4) Generic equations of motion 

After deriving boundary conditions, for initiation, transition and termination of the different 

planar mode of motion, generic equations of motion required to be solved to obtain position 

and state of the rectangular block at any instant of time are presented. They are given below: 

M �̈�𝑋(t)+ Sgn(�̇�𝑋(𝑡𝑡)) FF(t) = M �̈�𝑋 Rg(t)     3.36 

 Io �̈�𝜃(𝑡𝑡) = M �̈�𝑋 Rg (t). R Cos (α±θ (t)) – λ FN (t). Sin (α±θ (t))    

 3.37 

Where, λ is a parameter determining the direction of rocking of the body. Position of CG from 

either of the left edge can be calculated using Eqn. 3.38. 

  XCG= XOL+ R.Sin(α-θ)                                                                       3.38 

Where, XCG and XOL are the position of center of gravity and left edge at any point of time. 

Eqns. 3.36 and 3.37 can be solved numerically using suitable time integration scheme. 

3.2.4 Numerical Solution  

The equations of motion Eqn.3.38 and Eqn.3.39 are second order Ordinary Differential 

Equations (ODE’s). A free-standing rectangular block subjected to base excitations has two 

degrees of freedom given by sliding displacement(X) and rocking angle (θ). Hence these 

equations of motion shall be solved simultaneously using numerical time integration scheme 

appropriate for the single degree of freedom systems.  
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In the present case, central difference method was used to compute the response of a rigid 

rectangular block subjected to base excitations. A numerical code in FORTRAN language was 

developed which can integrate equations of motion given by Eqns.3.36 and 3.37. It checks for 

initiation and termination of any mode of motion using boundary conditions defined earlier and 

calculates the position of the block in terms of sliding displacement(X) and angular rotation 

(θ). Central difference scheme was utilized for time integration with a fixed time step of 1e-4 

Sec. Experimentally evaluated values of coefficient of restitution and friction were used in 

numerical solution. Since, experiments were carried out on a unidirectional shake table, only 

horizontal component of base excitation was utilized for numerical studies neglecting vertical 

component. Comparison of results for a two-dimensional rigid body numerical model and 

shake table experiments are presented in Section 3.4.5. 

3.3 Experimental Investigation 

3.3.1 Objectives and Introduction  

Experiments were carried out to evaluate the influence of various system parameters on the 

dynamic stability of a freestanding rigid body. Three different test specimens were fabricated 

to simulate rigid body behavior. These specimens were considered as a rigid body for the range 

of frequencies encountered in seismic response (0-33Hz). All the specimens had fundamental 

deformation frequency higher that 33Hz. Hence they were practically rigid for seismic studies.  

Objectives of testing were twofold: firstly, to determine the fundamental dynamic behavior of 

free-standing test specimens when subjected to base excitations and secondly, to analyze 

effects of variation in system parameters like contact properties, base excitation characteristics 

and slenderness on the overall seismic stability. A variation in slenderness was achieved by 

keeping the base dimensions same and varying heights to obtain three different aspect ratios of 

two, three and four. Similarly, a variation in contact properties was achieved by using four 
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different surfaces as a base material. Further, base excitation properties like peak amplitude 

and frequency were varied by simulating different harmonic and seismic excitations. It shall 

be noted that the interest of studying responses under harmonic excitations is in the analysis of 

the stationary part of the response. The transient phase, which is due to the at rest initial 

conditions, is of little interest.  As a consequence, the amplitude of the stationary part of the 

sliding response shall be regarded as the output of interest [63]. The objective of the present 

research was initiated with the interest of determining seismic stability of free standing critical 

nuclear components like glove boxes. Any movement due to sliding or rocking may cause 

undesirable interaction with the adjacent structure or breach of integrity/leak tightness. Hence, 

it was utmost important to check the damage if any, due to peak values of sliding displacement 

and rocking. Hence, with this objective in mind, output of interest is selected as peak values of 

sliding displacement and rocking angle. 

Details of test setup/facility are given below: 

3.3.2 Test Set up and Specimens 

A uni-axial hydraulic shake table, available at Bhabha Atomic Research Centre (BARC) was 

utilized for carrying out various experiments on test specimens. This facility uses a double-

acting, double-ended, heavy-duty actuator that operates under a precision servo valve control 

in closed-loop servo hydraulic systems. Table.3-1 provides important details of the shake table. 

Table 3-1 Technical specifications of the Shake Table 

Capacity 

(Kg) 

Maximum Force 

(KN) 

Displacement range 

(m) 

Dimensions 

(m) 

500 250 ±0.075 1X1 
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This actuator was connected to one end of the shaking table using swivels and fixtures. Uni-

directional piezoelectric accelerometers were used for recording accelerations at various 

desired locations. Three parallelepiped rigid box type specimens were fabricated for 

experiments. Details of specimens are given in Table 3-2 Typical test setup for a test specimen 

(TS1), having an aspect ratio of four is shown in the Fig.3-4 (a). The position of various 

accelerometers can also be seen in the figure. Fig.3-4(b) shows other two test specimens having 

an aspect ratio of three (TS2) and two (TS3). The direction of the table movement was along 

X-axis as shown in Fig.3-4(a). Accelerometers A1, A2 & A4, A3 were mounted on the 

specimens to record accelerations in Z, X and Y direction respectively. Physical and 

mechanical properties of three test specimens are also given in the Table.3-2. Data acquisition 

and processing system were used to analyze accelerometer readings.  From the accelerometer 

readings, displacement and rocking angle values were calculated using numerical integration 

and simple mathematic formulas. [63] 

 

Shake table 

Actuator 

Accelerometer 

Figure 3-4 (a) Test set up showing test specimen with aspect ratio of four (TS1) with the 
accelerometers, (b) test specimens with aspect ratios of three and two (TS2, TS3)  

(a) 

(b) 
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3.3.3 Preliminary Dynamic Characteristics 

Before carrying out actual testing, various dynamic characteristics of the specimens were 

evaluated. These were free rocking frequency (henceforth denoted by ωr), critical angle 

(henceforth denoted by α), fundamental frequency in flexure with fixed base conditions 

(henceforth denoted by ωn), the damping ratio (ξ) and coefficients of friction (µ) between the 

specimen and different materials to be used as a base surface. Please note that ω in this thesis 

refers to cyclic frequency with a unit of cycles/sec or Hz. it shall not be confused with the 

circular frequency (Rad/sec) 

3.3.3.1  Free rocking frequencies and critical angle 

The critical angle is the angle of rotation about an edge above which a freestanding structure 

overturns by gravity itself. This can be easily computed from the geometry of the specimen. 

However, this was experimentally determined by uplifting the specimens to remove errors if 

any, arising due to manufacturing processes. Similarly, ωr of the test specimens for different 

values of initial uplift (angular displacement about an edge) was evaluated. Experiments were 

performed for different values of initial uplift starting from 1mm up to the 20mm and finally 

for the critical value of uplift corresponding to the critical angle of each test specimen. Uplift 

was physically realized by lifting the specimen from one edge by pivoting it on diagonally 

opposite edge. Accelerometers readings obtained from accelerometer-A2, mounted on the test 

specimens, were analyzed using Fast Fourier Transform (FFT). From the FFT, the frequency 

corresponding to the highest peak in Fourier spectra was selected as free rocking frequency 

corresponding to a particular value of initial uplift. All the three specimens were tested 

sequentially to obtain values for rocking frequencies. Approximate analytical evaluation of 

rocking frequency can be carried out by using the below- mentioned formula for the natural 

time period [7]: 
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   𝑇𝑇 = 4
𝑝𝑝

 cosh−1 � 1

1 –𝜃𝜃𝛼𝛼
�                3.39  

Where T is the natural time period of rocking, p is a geometrical parameter given by Eqn. 3.39, 

α is critical angle and θ is the angle of rotation about either corner in a vertical plane. This 

equation is valid only for a slender block and small rotations (θ).  

   𝑝𝑝 =  �𝑀𝑀 𝑔𝑔 𝑅𝑅
𝐼𝐼

                    3.40    

Here M is the mass, I is the corresponding mass moment of inertia (defined with respect to 

either edge) and R is defined as R2=b2+h2 , where 2b is the width and 2h is the height of the 

block. 

Experimentally determined values of α and ωr for different specimens are given in Table.3-2 

and Fig.3-5 respectively. Critical values of rocking frequencies (ωrc) for each specimen is also 

given in the parenthesis in the same column of Table.3-2. As expected, ωr decreased non-

linearly with increasing amplitude of rocking. All of these properties are listed in Table.3-2. 
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Figure 3-5 Variation of Free rocking frequencies with amount of uplift for test specimens (TS1, TS2 & 
TS3) 

 

 

 

Table 3-2 Physical and Material properties of test specimens 

TS AR D 

(m) 

t 

(m) 

p 

(Hz) 

α 

(Rad) 

R 

(m) 

M 

(Kg) 

ωr 

(ωrc) 

Hz 

C.G 

(x,y) 

(m) 

Material 

properties 

TS1 4 (0.3, 

0.3, 

0.003 3.34 0.245 0.62 38 1.5-

6.3 

0.15,0.6 Mild Steel 

E= 210GPa, 

TS- Test Specimen, AR- Aspect ratio, D- Dimension (length, width, height), t-sectional 
thickness, p-frequency parameter, α -critical angle, R- diagonal length, M-mass, ωr – free 
rocking frequency, , ωrc – critical rocking frequency C.G.- relative position of centre of 
gravity from any vertex (x,y),  
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1.2) (0.9) ρ = 7800Kg/m3 

ν = 0.3 

TS2 3 (0.3, 

0.3, 

0.9) 

0.004 3.77 0.322 0.47 38 2-8.2 

(1.2) 

0.15,0.45 Same as above 

TS3 2 (0.3, 

0.3, 

0.6) 

0.005 4.42 0.463 0.34 35 3-

11.7 

(1.8) 

0.15,0.30 Same as above 

 

3.3.3.2  Evaluation of coefficient of friction 

A simple pull test was carried out to determine values of coefficient of friction between the 

steel test specimen (TS1) and various surfaces used for experiments. Four surfaces used were 

plywood, high-density polyethylene (HDPE), aluminum and steel. They were selected in such 

a way that different modes of motion from rest could be simulated when excited by a base 

excitation. As per the available literature, plywood generally has a low coefficient of friction 

(µ) (between 0.1-0.3) with a steel structure. This can be used to simulate sliding mode from the 

rest when excited by base excitation above a predefined amplitude. Similarly, HDPE has µ 

value between 0.2-0.4 with a steel surface. This can be used to simulate sliding-rocking motion 

from the rest state. Further, aluminum and mild steel have higher values of µ between 0.3-0.5 

and 0.7-0.8 respectively, which can be utilized to simulate rocking motion from rest. By 

suitable selection of base material, it is possible to simulate all possible modes of motion, which 

a rigid block can undergo when excited by a base motion. In addition to that, it is possible to 

examine effects of the base excitation frequency on these modes. A simple fixture for manually 

pulling the block with the load cell was arranged and readings were recorded to a data recorder. 
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Fig.3-6 shows the plot of load versus time. Peak value of load before starting of slip was 

considered for evaluation of coefficient of friction value for a particular base material.  

Experimentally determined values of static coefficient of friction of test specimen with 

plywood, HDPE, aluminum, and steel were 0.15, 0.32, 0.48 and 0.72 respectively. After 

evaluating coefficient of friction values, free rocking experiments were performed to study 

impact damping property of the specimens given by the coefficient of restitution.  

 

Figure 3-6 Coefficient of friction of test specimen with different base materials 

 

3.3.3.3  Evaluation of coefficient of restitution 

When a body is undergoing rocking motion, every change in direction of rotation is associated 

with impacts at edges. Due to this impact, instantaneous reduction in angular velocity of the 

block takes place. To account for this reduction in velocity and subsequent loss of energy, the 

coefficient of restitution is utilized.  Hence, two-dimensional rigid body analytical model 

described in Section3.2 requires coefficient of restitution value as an input. Numerical solution 

of equations of motion derived for pure rocking and combination of rocking and sliding mode 
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of motion requires coefficient of restitution value to modify angular velocity after impact. 

Hence, the coefficient of restitution was evaluated as a ratio of angular velocities before and 

after impact. Experimental data obtained from the free rocking experiments (Section3.3.3.1) 

was utilized to calculate the coefficient of restitution. Numerical integration was carried out to 

obtain velocities from recorder accelerometer (A4) reading located on the bottom edge of the 

specimen. Then, using distance of the accelerometer from the rocking edge, angular velocities 

were calculated. For every instant of impact, identified from change of rocking angle, reduction 

in velocity was determined as a ratio given by coefficient of restitution.  For each experimental 

case, multiple readings were taken to improve the accuracy of the results.  Average of the 

calculated values obtained for different experimental cases is tabulated in Table.3-3. These 

values were then utilized for numerical calculations (Eqn.3.16). 

Table 3-3 Coefficient of restitution values for different base materials used in 
experiments 

Base material Coefficient of restitution (average value) 

Steel 0.98 

Aluminum 0.97 

HDPE 0.95 

Wood 0.94 

 

3.3.4 Dynamics of a Pure Rocking Motion  

After carrying out preliminary dynamic investigations, rocking dynamics of the test specimens 

was examined. All the three test specimens (TS1, TS2 and TS3) were kept on a steel plate fixed 

to the shaking table. Steel surface was selected because of its evaluated higher value of 

coefficient of friction (µs=0.72), which favors pure rocking motion without slipping. Synthetic 

time history corresponding to design response spectra of a nuclear power plant site in India was 
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used as a base motion [59] [58]. Test response spectra used was same as given in Fig.2-3. To 

find out, synthetic time history corresponding to 0.8g PGA value, synthetic time history at 0.3g 

was suitably scaled up and used as shown in Fig.3.7 (a). [63] Details of procedure used for 

generation of design response spectra and its compatible time history were already discussed 

in Section 2.4.1.1.  

The objective of testing was to observe the response of three different test specimens to seismic 

base excitation. The input base excitation is shown in Fig.3-7(a) and frequency contents of 

input signal, extracted using FFT are shown in Fig.3-7(b).  

 

Figure 3-7 (a)Time variation of input base excitation at 0.8g PGA and (b) frequency contents on input base 

excitation 

Input base excitation as shown in Fig. 3-7(a) was given to the test specimens TS1, TS2 and 

TS3. Acceleration time history recorded by A2 accelerometer located at the top of the 

specimens are plotted in Fig.3-8. Similarly, variation of rocking angle of the specimens with 

time is shown in Fig.3-9. TS1 and TS2 overturned by the base excitation and hence rocking 

angle time history only up to the overturning is plotted. These results indicated following 

important behavior of test specimens: 

1. Acceleration response recorded on top of all the specimens indicated higher values 

compared to the base excitation. Acceleration values observed were 1.3 times the 

(a) (b) 
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excitation for TS1 (Refer Fig.3-8 (a), (b)), three times for TS2 (Refer Fig.3-8 (a), 

(c)) and six times for TS3 (Refer Fig.3-8 (a), (d)). These observations indicated 

amplification of accelerations. This point would be further discussed in Section 

3.3.4.2. 

2. Test specimens TS1 and TS2 overturned due to base excitation as shown in Fig.3-

9. However, TS3 could sustain the effect of ground shaking. This observation 

highlighted effect of slenderness for specimens of same base dimensions. This 

observation requires thorough investigation on overturning behavior of the 

specimens which is carried out in Section3.3.4.4. 

3. Fast Fourier Transform of acceleration time histories shown in Fig3-8 was carried 

out to find out frequency contents of response. Same is plotted in Fig.3-10. 

Frequency contents of all the specimens were dissimilar. TS1 and TS2 had lower 

number of frequencies in the response and peaking was observed at around 1Hz. 

On the other side, TS3 had wider frequency spectrum with multiple frequency 

peaking. It would be interesting to observe effects of individual frequencies on the 

response of the specimens. This aspect would be further studied in Sections 3.3.41 

to 3.3.4.3. 
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Figure 3-8 Time variation of accelerations recorded on, (a) shake table and A2 accelerometer for 
specimens (b)TS1, (c)TS2 and (d)TS3 

 

Figure 3-9 Rocking angle time histories for specimens, (a) TS1, (b) TS2 and (c) TS3 
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Figure 3-10 FFT of acceleration responses of (a) TS1, (b) TS2 and (c) TS3 

After carrying our random motion testing, specimens were subjected to harmonic base 

excitations. The objective was to examine effects of base motion characteristics, slenderness 

and contact properties on the rocking response. Sine waves of varying frequencies (ω) were 

given as a base acceleration. Values of Xg and µs were selected in such a way to simulate pure 

rocking motion without any sliding.  

Effects of frequencies and slenderness on various important parameters like initiation of 

motion, overturning instability, response amplification and peak response characteristics of the 

specimens were examined. 

3.3.4.1  Rocking Motion Initiation 

For a free-standing body, it is vital to know the initiating mode of motion from rest state, when 

excited by a base excitation. It is widely observed that initial mode of motion dominates general 

dynamic response of a free-standing body and plays an important role in determining overall 

stability of a free-standing body. During testing, the objective was to examine effects of 

variation in excitation frequency on initiation of rocking motion. Specimens were excited by 

amplitudes lesser than what is statically required for rocking initiation. For example, specimen 

TS1 was excited by a harmonic base excitation of peak amplitude (Xg = 0.25g). This value of 
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acceleration is transition value above which TS1 should initiate rocking motion. Amplitude 

values corresponding to the initiation condition above which specimens are expected to go into 

the rocking motion are given in Table.3-4. Conditions derived earlier were utilized for checking 

initiation of rocking and sliding motion for these values. In this case, for Xg = 0.25g and 

µs=0.72, using Eqns. 3.1 and 3.13, one can check that Xg < µs (no sliding condition) and Xg < 

𝑆𝑆 tan𝛼𝛼= 0.25(no rocking condition). Similarly, rocking initiation conditions can be estimated 

for other two test specimens (TS2 and TS3) using Eqns.3.1 and 3.13. We get, Xg ≤ 𝑆𝑆 tan𝛼𝛼= 

0.33g for TS2 and Xg ≤ 𝑆𝑆 tan𝛼𝛼= 0.5g for TS3. It is still easier to check initiation of any mode 

of motion by using motion initiation criteria diagrams developed by Shenton and Jones [35] as 

shown in Fig.2-2, for an aspect ratio of four.  

For all the experiments, sinusoidal waves of different frequencies varying from 0.5Hz to 10 Hz 

were given as base excitations. Input base excitations and test matrix are shown in Fig.3-11 

and Table.3-4 respectively. For brevity, only one case of harmonic base excitation of 2Hz for 

each amplitude is plotted. That means out of total 66 test cases, input base excitations 

corresponding to 6 (i.e. only one frequency for one amplitude) are plotted.  

All the test runs corresponding to Table.3-4 resulted in no rocking initiation, which means rest 

region bounded by the vertical line Ag= B/H and inclined line Ag= µs in Fig.2-2, was observed 

to be unconditionally stable to any variation of base excitation characteristics. In other words, 

statically estimated rest region of Fig.2-2 is valid for all the cases of dynamic excitations as 

well.  

Table 3-4 Experiments performed to observe effect of base motion characteristics on the test specimens in 
the rest state 

Test 

Run 

Specimen Xs* 

(g) 

Input Base excitations 

 

Output/ 

Results 
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Figure 3-11 Input time histories for six test cases: a) Xg=0.25g, 2Hz, b) Xg=0.2g, 2Hz, c) Xg=0.33g, 2Hz, d) 
Xg=0.3g, 2Hz, e) Xg=0.5g, 2Hz, f) Xg=0.45g, 2Hz 

 

Peak Amplitude(g)           Frequencies(Hz) 

1 TS1 0.25       0.25                        0.5,1,2,3,4,5,6,7,8,9,10 Rest state 

2 TS1 0.25        0.2                          0.5,1,2,3,4,5,6,7,8,9,10 Rest state 

3 TS2 0.33       0.33                        0.5,1,2,3,4,5,6,7,8,9,10 Rest state 

4 TS2 0.33       0.3                           0.5,1,2,3,4,5,6,7,8,9,10 Rest state 

5 TS3 0.5       0.5                           0.5,1,2,3,4,5,6,7,8,9,10 Rest state 

6 TS3 0.5       0.45                        0.5,1,2,3,4,5,6,7,8,9,10 Rest state 

*Xs = g. 𝐭𝐭𝐭𝐭𝐭𝐭𝜶𝜶,statically determined minimum base amplitude required for uplift 
initiation 
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Now after carrying out an investigation in the rest region for a rigid body, experiments were 

again performed to investigate effects of base motion characteristics on rocking mode of 

motion. Sets of experiments carried out for the rest state were repeated again with the fixed 

value of amplitude equals to 0.8g. This amplitude was selected because it can initiate rocking 

mode of motion for all the three test specimens. Test point corresponding to Ag=0.8 and 

µs=0.72 can be located in Fig.2-2, lying in the region corresponding to rocking mode of motion. 

Input base excitations for only two test cases corresponding 2Hz and 10Hz out of total 11 are 

shown in Fig.3-12. Details of performed experiments are given in Table.3-5. 

 

 

 

Table 3-5 Details of various experiments performed to observe effects of base motion characteristics on 
the rocking response of test specimens 

Test 
Run 

Specimen Input Base excitations 
Peak Amplitude(g)Frequencies(Hz) 

Coefficient 
of friction 

(µ) 

Output/ 
Results 

1 TS1    0.8                  0.5,1,2,3,4,5,6,7,8,9,10 0.72 Rocking initiation 
only for lower 
frequencies  

2 TS2    0.8              0.5,1,2,3,4,5,6,7,8,9,10 0.72 Rocking initiation 
only for lower 
frequencies 

3 TS3    0.8              0.5,1,2,3,4,5,6,7,8,9,10 0.72 Rocking initiation 
only for lower 
frequencies 
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Figure 3-12 Input base excitations. a) Xg=0.8g, 2Hz, b) Xg=0.8g, 10Hz 

The rocking response of specimens for different harmonic frequencies is given in Fig. 3-13. 

Test specimens TS1, TS2 and TS3 overturned for frequencies lesser than 2Hz, hence these 

points are excluded from the graph. However, at 2Hz, TS1 and TS2 overturned while TS3 

remained in the rocking phase of motion. For a frequency of 2Hz, less slender specimen (TS3) 

was observed to be stable and prevented overturning. However, more slender specimens (TS1, 

TS2) overturned. Two factors govern the overturning of a body subjected to harmonic 

excitation viz. peak value of acceleration and velocity. While peak acceleration value 

determines uplift of a body, peak velocity determines overturning of the body.  Peak velocity 

(Vpeak) is the lower limit of the maximum velocity required to overturn a rectangular rigid 

body subjected to harmonic excitation is given by Eq. 3.41. [10]  

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉 = 0.4 �8𝑔𝑔𝑔𝑔(1−cos𝛼𝛼)
3 cos𝛼𝛼

                                              3.41 

Using Eqn.3.41, Vpeak for TS1, TS2 and TS3 was calculated and compared with different test 

cases shown earlier in Table 3.5, where overturning happened. Comparison is shown in 

Table.3-6. Maximum velocity of the shake table (excitation) in Table.3-6 was calculated by the 

numerical integration of recorded acceleration time history. It can be observed from the table 

that slender specimens (TS1 and TS2) overturned at 2Hz frequency while TS3 retained rocking 

motion [63].   
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Table 3-6 Table showing minimum velocities required to overturn a specimen versus recorded peak 
values of velocities for different test runs 

Test 

Specimen 

Vpeak 

(m/sec) 

Test Run 1 Test Run 2 Test Run 3 

0.5Hz 1Hz 2Hz 0.5Hz 1Hz 2Hz 0.5Hz 1Hz 2Hz 

Maximum velocity of excitation (m/sec) 

TS1 0.283 1.75 0.875 0.436   

TS2 0.326  1.765 0.884 0.421  

TS3 0.499   1.77 0.88 0.431 

 

Further to that, slenderness has an insignificant effect on peak rocking angles at higher 

frequencies (frequencies higher than required for overturning) as shown in Fig.3-13.  

The Figure indicates a gradual decrease in peak rocking angles with increase of base excitation 

frequency. Irrespective of the value of slenderness, rocking angles decreased with increasing 

frequencies. The Physical explanation behind this behavior can be given by the fact that as the 

frequency of harmonic excitation increases, effective time span available to cause uplift 

decreases thereby decreasing rocking angles. Moreover, one of the cause of the reduced effect 

of higher frequency input motion is that, for a given acceleration, the higher the frequency the 

lower the velocity of input motion [63].  

Hence, it can be concluded that base motion characteristics have a significant effect on 

initiation of rocking mode of motion from the rest state. The frequency of base excitation 

affected rocking motion initiation; while lower harmonic frequencies aided uplifting, higher 

frequencies diminished rocking motion to a virtual zero value. These results highlighted an 

interesting fact that even for a sufficiently high amplitude (more than what is statically required 

for uplift), it is possible to have a rest state (no motion). These findings have also raised 

questions about the validity of Fig.2-2. The prevalent hypothesis that initiation of any mode of 

motion from rest state depends only on three parameters (Ag, µs and B/H) is not adequate. 
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Hence, an addition of an extra parameter known as base excitation frequency (ω) is required to 

complete and correct Fig.2-2. Section 3.5 discusses details of numerical calculations carried 

out to redevelop motion initiation criteria maps (Fig.2-2) into three-dimensional map 

incorporating effects of frequency of base excitation. Next Subsection 3.3.4.2 discusses details 

about the response amplification and Amplification factor. 

 

 

Figure 3-13 Variation of peak rocking angles of test specimens TS1, TS2 and TS3 with frequency of base 
excitation for Xg=0.8g 

3.3.4.2  Response Amplification 

For a free-standing body, it’s important to understand and evaluate response of the body 

relative to the applied forcing function. In this case, base acceleration acted as a forcing 

function. Hence, it is imperative to establish a relation between applied forcing function and 

response of the body with respect to parameter like base acceleration. Any amplification or 

reduction in this parameter shall be of special interest to the designers. As observed in random 

motion test (seismic base excitation) performed earlier, amplification of acceleration takes 

place in rocking mode of motion. To further investigate the cause of this amplification and 

establish a relation between frequencies of base excitations and acceleration amplification, 
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harmonic motion test were carried out. The objective of testing was to independently evaluate 

the role of each frequency on acceleration amplification. Applied input base accelerations were 

same as already given in Table.3-5 and Fig.3-12. For brevity, accelerometers readings (A1, A2 

& A4) are plotted for two cases; firstly for 2Hz as shown in Fig.3-14 (a, c, e, g, i) and secondly 

for 10 Hz base excitation frequency as shown in Fig.3-14 (b, d, f, h, j). Following are the 

important observations: 

1. Peak acceleration amplitude recorded on top of the block by accelerometer A2 for 

2Hz frequency was around 2g [see Fig.3-14(c)] .It was 2.4 times the acceleration 

value recorded at the shake table (input motion). Similarly, values recorded by A1 

for 2Hz frequency were of high amplitude [see Fig.3-14 (a)]. The reason for such 

an amplification stems from the fact that every rocking cycle, invariably had 

multiple impacts with the base, which led to a sudden rise in angular as well as 

linear acceleration. These impacts can be identified from Fig.3-14(a) by observing 

peaks of acceleration time histories. Time of impacts can also be obtained from 

rocking angle time histories corresponding to change in rocking angle from 

positive to a negative value or vice versa [refer Fig.3-14(i,j)]. For that time instant, 

a sharp jump in acceleration shall be observed in Fig.3-14(a). This signifies impact 

corresponding to change of rotational motion. 

2. Results highlighted an inherent property of rocking motion, where the impact was 

considered as an energy-dissipating phenomenon, but at the same time resulted in 

transmitting higher accelerations at top of the block. This behavior would be further 

discussed in Section.3.3.6 on contact-impact behavior. 

3. Acceleration values recorded by A1 and A2 for a frequency of 10Hz were around 

0.8g [see Fig.3-14(b, d)].  These values were of the same amplitude as the base 
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acceleration (0.8g).Hence, there was no amplification of base motion at 10 Hz 

frequency.  

4. Peak acceleration recorded in lateral direction (along Y-axis) by A3 for 2Hz 

frequency was 0.6g [see Fig.3-14 (e)]. The presence of motion in the third direction 

was recorded during experiments. This was expected because of square base of the 

specimens. The third directional motion would have been much lower had the third 

dimension be significantly larger than the width of the blocks. However, the scope 

of present research was not to study the three-dimensional effects arising due to 

two-dimensional planar motion. Hence, we would not discuss it further.  

Experimental results plotted in Fig.3-14 highlights few important properties of pure rocking 

motion of a rigid rectangular body. Foremost of them is an amplification of base motion and 

its dependence on base excitation frequencies. In the next subsection, a term amplification 

factor is defined which can be used to quantify amplification of base motion in a rocking mode 

of motion. 

3.3.4.3  Amplification Factor 

Amplification factor (AF) is defined as a dimensionless number given as ratio of output 

quantity to input quantity. This quantity can be given by a parameters like acceleration or 

velocity. There may be two main reasons for the failure of a freely standing nonstructural 

component; firstly, it may fail due to overturning Instability and secondly, it may fail due to 

high accelerations at certain locations. Hence, acceleration amplification is an important 

stability parameter which needs discussion. Experimental results revealed that rocking motion 

is associated with sudden jumps in acceleration values at discrete time intervals (refer Fig3-

14(c) and Section 3.3.4.2). These high acceleration jumps may be a concern for a designer/user 

of a facility as it may endanger integrity or functionality of a component. Variation of 
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acceleration AF, with frequencies of base excitation for a constant amplitude of base excitation, 

is evaluated using shake table testing results. These are shown for all the three test specimens 

(TS1, TS2 and TS3) in Fig.3-15. In the figure, some of the points corresponding to low 

frequencies are missing because they correspond to the overturning of the test specimen. The 

case of overturning is treated separately in the next section. Experimental results revealed few 

important properties of free-standing nonstructural components as given below: 

1) AF for all the specimens TS1, TS2 and TS3 was greater than unity for all 

frequencies varying from 2 Hz to 10 Hz. This indicated significant amplification of 

base acceleration when recorded at top of the specimens. 

2) There was a consistent nonlinear decrease in the AF from 2 Hz up to 10 Hz and 

thereafter AF attained a finite value greater than unity. As observed from Fig.3.14 

(i) and Fig.3.14 (j), low-frequency excitation of 2Hz resulted in higher rocking 

angles compared to 10Hz frequency excitation. Hence associated impacts and 

subsequent acceleration jumps (AF) were higher at low frequency excitations.   

3) As the slenderness of the specimen has decreased from TS1 to TS3, AF has 

increased. The reason for this change was a decrease in coefficient of restitution or 

increase of energy dissipation with a decrease of slenderness. Moreover, for a 

shorter specimen (TS3), acceleration peak due to impact was transferred faster to 

the top. While for the case of the larger specimen (TS1), attenuation effect arising 

due to structural vibrations reduces acceleration peaking at the top and hence AF.  

Hence, AF for a more slender component (TS1) was lower than that of a less slender 

component (TS3), for a given excitation frequency.  

These results are generic in nature and are equally applicable to a seismic base excitation also 

as seen earlier in this section.  
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Figure 3-14 Acceleration and rocking angle time histories recorded by various accelerometers for the test 
specimen TS1. (a, c, e. g,i) represents a response to harmonic base excitation of Xg=0.8g, ω=2Hz and (b, d, 

f, h,j) represents a response to harmonic base excitation of Xg=0.8g, 10Hz 
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Figure 3-15 Variation of amplification factors of test specimens TS1, TS2 &TS3 with base excitation 
frequencies 

 

3.3.4.4  Overturning Instability  

As stated earlier, one of the prime cause of failure of a NSC is by overturning. Experiments 

were performed on test specimen TS1, to evaluate effects of base motions characteristics on 

the overturning instability. The test specimen was subjected to sinusoidal pulses of 1sec 

duration given by �̈�𝑋𝑔𝑔= A. Sin (2πωt).  A systematic variation in amplitude (A) and frequency 

(ω) of pulse was done to investigate different possible modes of overturning failures. Two 

modes of overturning failures are possible for a rigid body [64] [22]. Mode-1 is defined as 

overturning in the direction opposite to initial motion with impacts (single or multiple), 

whereas Mode-2 is defined as overturning in the initial direction of motion without an impact 

as shown in Figure 3-16 below. The curve was plotted mainly with the help of the experimental 

data. However, due to limitations of the available shake table facility, numerical simulation 
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was also used. As stated earlier, the shake table utilized for testing can generate a maximum 

displacement of ±0.075 m; hence only possible combinations of Xg and ω were such that 

                                     �Xg
𝜔𝜔2�  ≤ 0.075 𝑝𝑝                                                                             3.42 

Base excitation values which were outside the range given in Eqn.3.55 were generated 

numerically using finite element (FE) software. Three-dimensional model of the test specimen 

was developed and benchmarked using available experimental results and then utilized for 

generating overturning curves for the test specimen. Detailed discussion on finite element 

solution is provided in Section.3.4.  

 

Figure 3-16 Schematic showing two possible modes of overturning 

 

The dimensionless overturning curve plotted for the test specimen TS1 identifies various zones 

corresponding to Mode1 and Mode2 overturning failures as shown in Fig.3-17. It also identifies 

safe zone where there is no possibility of the overturning of the structure. Following important 

conclusions about the behavior of the specimen can be drawn as below: 

1. In the amplitude/frequency space, two different modes of overturning failures and three 

different regions exist for a rigid rocking body. Lower frequencies (ω/p) of excitations 

starting from zero up to 0.3 correspond to a region where a rigid body transforms from 

 

Direction of base  

acceleration 

Mode-1 
overturning 

Mode-2 
overturning 
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stable rocking phase to overturning without any impact (Mode2 failure) with the increase 

of amplitude value. This region is shown as R1 in Fig.3-17. In the mid frequency region 

(0.3 to 3.3), with the increase of amplitude, a rigid body TS1 first transforms from a stable 

rocking motion to overturning with one or more impacts; then with further increase of 

amplitude finally overturns without any impact. This frequency region (0.3-3.3) is given 

by R2 in Fig.3-17. High-frequency region (ω/p>3.3), R3 has similar attributes as that of the 

R1 region.  

2. Mode1 failure was observed to be a complex behavior, in which for a certain combination 

of frequency and amplitude the specimen had multiple impacts with the base before 

overturning. This also affected the total time required for overturning. Mode2 failures were 

prompt taking less than a second, while on the other side Mode1 failures were slow and 

even for some cases it took the specimen around 7 seconds to overturn. More investigation 

is required on this subject.  

 

Figure 3-17 Dimensionless overturning curve for TS1 showing various regions of Mode1, Mode2 failures 

with the variation in frequency and amplitude parameters 
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3.3.5 Dynamics of a Pure Sliding Motion  

After studying the rocking response of a rigid body and effects of various parameters on it, it 

is planned to investigate the case of a pure sliding motion. Generally, sliding is a prevalent 

mode of motion in low grip bases. In a case of a freestanding body, sliding may be sometimes 

beneficial from the point of view of input energy dissipation; however, excessive sliding may 

be dangerous for integrity and stability of the body and its nearby objects.  The amplitude of 

the stationary part of the sliding response is regarded as the output of interest and hence 

compared for different frequencies. 

Similar to the case of pure rocking motion discussed in the last section, here also basic 

dynamics of sliding motion is evaluated.  

All the three test specimens (TS1, TS2 and TS3) were kept on a plywood plate fixed to the 

shaking table. Plywood surface was selected because of its evaluated lower value of the 

coefficient of friction (µs=0.15), which favors pure sliding motion. Synthetic time history 

corresponding to a nuclear power plant site in India was used as a base motion [58] [59]. Test 

response spectrum was shown in Fig.2-3.The objective of testing was to observe the response 

of test specimens to seismic base excitation. Input base excitation was same as earlier, as shown 

in Fig.3-7(a) and frequency contents of the input signal, extracted using FFT are shown in 

Fig.3-7(b). Acceleration time history recorded by the A2 accelerometer located at the top of 

the specimens are plotted in Fig.3-18. Similarly, variation of slip with time for the specimens 

is shown in Fig.3-19. Slip displacements were calculated by using numerical integration of 

acceleration values of suitable accelerometers. It shall be noted that henceforth, all the values 

of sliding displacements were calculated with reference to the shake table, unless otherwise 

specified. [63] 

Test results indicated following important behavior of test specimens: 
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1) Acceleration time histories recorded at top of the specimens by A2 indicated a 

significant reduction in accelerations. This signifies response reduction in the 

specimens. In quantitative terms, peak accelerations recorded for TS1, TS2 and 

TS3 were same at 0.15g. This indicates a fivefold reduction in accelerations. 

2) There was no effect of the slenderness of the specimens on peak acceleration 

response. All the specimens had same peak acceleration values (0.15g) despite 

variation in slenderness. The reason for this peak at a constant value is 

connected to coefficient of friction value between the specimens and the base. 

As evaluated earlier, contact surface used had µ=0.15. Once base excitation 

exceeds this value (0.15g), slip motion initiates. This point requires further 

investigation and hence shall be elaborated in the Section 3.3.5.1. 

3) Despite random nature of input seismic excitation, response recorded was 

symmetric and ordered. The response followed the base motion till the time slip 

starts i.e. up to 2secs of excitation. This can be easily observed from comparison 

of Fig.3-19 and Fig.3-18. After initiation of slip motion, the response was 

largely ordered with the uniform peaks and symmetric behavior along X-axis. 

This is quite interesting and requires further studies which are carried out in 

Sections 3.3.5.1.  

4)  Despite variation of slenderness and other physical properties like mass and 

moment of inertia, slip displacement of all the test specimens followed a single 

path. In other words, slip displacements of all the specimens were exactly the 

same as shown in Fig.3-19. This independence of slip displacement can be well 

explained by referring to equations of motion of a rigid body during sliding 

phase as derived in Section3.2.1. Eqn.3.2 derived earlier for slip motion is 
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independent of mass, moment of inertia and slenderness of the rigid body, hence 

slip motion doesn’t depends on these physical parameters.   

 

 

Figure 3-18 Acceleration time histories recorded at, (a) shake table and (b, c, d) TS1, TS2 and TS3 by 
accelerometer A2 

 

 

Figure 3-19 Slip displacements of test specimens (a) TS1, (b) TS2 and (c) TS3 
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3.3.5.1  Slip behavior 

After carrying out random motion testing, experiments were carried out with harmonic 

excitations to study behavior of sliding motion for individual frequencies. Test matrix for these 

experiments is given in Table.3-6. Same base material (plywood) was used to carry out 

experiments. Similar to the case of pure rocking discussed in Section3.3.4, tests were carried 

out using sine waves of varying frequencies (ω) as base accelerations for a duration of 5secs. 

Values of Xg= 0.8g and µs=0.15 were selected in such a way to simulate pure sliding motion 

without any uplift. Here, objective of testing was to observe stability parameters like response 

amplification and peak sliding response of the specimens. Effects of variation of base excitation 

frequency (ω) and slenderness value on these parameters, were studied. Acceleration time 

histories at various locations were recorded by the accelerometers mounted on the test 

specimens as shown in Fig.3-4(a).Accelerometers recordings of A1 and A3 were of very low 

amplitude and hence insignificant to be reported. Values of accelerometers A2, A4, and sliding 

displacement for the frequency of 2Hz are shown in Figs.3-20 (a), (c) and (e) respectively. 

Similar values for 10Hz are shown in Figs.3-20 (b), (d), and (f). Following are the observations:  

1. Peak acceleration values recoded by accelerometer A2 at 2Hz and 10Hz were 

around 0.16g (see Fig.3-20 (a, b). This indicated a fivefold reduction of amplitude 

when compared with the shake table excitation (0.8g). Moreover, it can also be 

observed that frequency of base excitation has no effect on acceleration response 

recorded by A2.  

2. It is interesting to note that for a sinusoidal input base excitation, output 

acceleration appears to be in form of a rectangular pulse. During a harmonic cycle, 

as base excitation force overcomes limiting static frictional force, sliding initiates 

(See Fig.3-20). Once sliding starts, the body continues to move with a virtual 
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constant acceleration, giving a rectangular pulse look to the acceleration profile. 

This state of constant acceleration continues, till the point input sine wave reverses 

its direction and its magnitude grows more than that of frictional resistance. This 

process repeats itself for every stick-slip cycle.  

3. There was insignificant variation in response acceleration time histories recorded 

on the specimens with frequency of the base excitation. The basic shape of the 

profile remained same with the only change in the duration of a cycle. 

4. Maximum sliding displacement observed was 26mm at 2Hz frequency [see Fig.3-

20 (e)] and 1.6mm at 10Hz frequency [see Fig.3-20 (f)]. These readings 

highlighted a substantial reduction (around 16 times) in displacement amplitude 

with increasing frequency of excitation. It shall be noted that the input shake table 

displacement was divided by a factor 25 resulting in the reduced slip. The same 

reason is valid for the root cause of the reduced effect of high frequency input 

motions, with displacement in place of velocity. [63]  

5. There was a large reduction observed in the amplitude of the sliding displacement 

with the frequency of base excitation. The physical explanation for the same can 

be obtained by comparing the time available to the input excitation in initiating 

and sustaining sliding motion. As the frequency of excitation increases, time 

available for the net sliding force to cause slip reduces, which in turn reduces slip 

displacement significantly as quantified in the earlier point. 

6. A shift of sliding displacement centerline was observed as shown in Fig.3-20(e). 

This indicates a net final displacement after termination of base excitation. 

Variation of displacement with time was similar to the input excitation with a 

phase difference between the two. However, centerline shift happened in the initial 

cycle, signified net final slip from the original position.  
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7. The maximum value of slip was recorded for a sinusoidal excitation of 1sec. 

Stationary part of slip values are plotted for various frequencies in Fig.3-21. It can 

be observed that slip behavior is also dependent on base excitation frequencies. 

The stationary value of sliding displacement varied from 0.07m at 1Hz to 0.001m 

at 10Hz frequency as shown in Fig.3-21. Similar to the rocking angle for rocking 

motion as observed in Section.3.3.4, in this case, response quantity (slip 

displacement) reduced considerably with an increase of frequency. The reason for 

such a behavior can again be physically explained by observing the difference in 

net available time required for slip displacement. As the frequency increases, the 

effective time of base motion causing slip decreases and hence slip displacement 

reduces. It is worth noting again that slip displacement is independent of 

specimen’s slenderness value as was recorded earlier during seismic motion 

testing also.   

 

Table 3-7 Details of various experiments performed to observe effects of base motion characteristics and 

slenderness on the sliding response of specimens 

Test 
Run 

Specimen                           Input Base excitations 
Peak Amplitude(g)       Frequencies(Hz) 

Coefficient 
of friction 
(µ) 

1 TS1     0.8                    0.5,1,2,3,4,5,6,7,8,9,10 0.15 

2 TS2     0.8                   0.5,1,2,3,4,5,6,7,8,9,10 0.15 

3 TS3      0.8                   0.5,1,2,3,4,5,6,7,8,9,10 0.15 
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Figure 3-20 Acceleration time histories recorded by various accelerometers for the test specimen TS1. (a, 
c, e) represents a response to harmonic base excitation of Xg=0.8g, ω=2Hz and (b, d, e) represents a 

response to harmonic base excitation of Xg=0.8g, ω=10Hz 

 

  

Figure 3-21 Variation of amplitude of stationary part of  slip displacement with frequency of excitation 
for TS1, TS2 and TS3 (Xg=0.8g, µ=0.15) 
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3.3.5.2  Response Amplification 

Acceleration amplification for sliding motion was evaluated for all the three test specimens. 

Experimental results highlighted following important points: 

1. In general, Acceleration amplification in sliding motion was lesser than rocking motion 

for similar base excitation parameters. As observed from Fig.3-22, recorded value of 

AF was around 0.2.  

2. AF value was found to be independent of base excitation frequency and was completely 

defined by the coefficient of friction value. Moreover, the slenderness of the specimens 

had no effect on the AF. Hence, AF value was observed to be independent of parameters 

like frequency and amplitude of excitation and slenderness value (aspect ratio) of the 

specimen.  

3. AF value of less than unity makes sliding an attractive alternate over the rocking motion 

as far as energy dissipation is considered. It can also be generalized that sliding motion 

substantially reduced acceleration transmitted to the top.  Hence, sliding motion could 

be considered as an effective way of dissipating input energy added into the system by 

the base excitation without further transmitting it.  
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Figure 3-22 Acceleration amplification factor variation with frequency for TS1, TS2 and TS3 

 

3.3.6 Dynamics of Combination of Rocking and Sliding Motion 

After studying dynamics of a free-standing rigid body in pure rocking and sliding motion, it 

was formulated to test the specimens in a combination of rocking and sliding mode of motion. 

It is apparent form motion initiation criteria diagram shown in Fig.2-2, that there is a narrow 

region pertaining to the combination of sliding and rocking motion. In addition to that, it can 

also be observed that this band reduces in size with the reduction of aspect ratio from four to 

two. Experimentally, it was difficult to arrange a suitable combination of µs and Ag values 

which could simulate this mode of motion. However, this combined mode of motion was 

simulated by using HDPE as a base material which had µs=0.32, as determined experimentally, 

with the steel test specimens. It can be noticed from Fig.2-2, that for a value of µs=0.32 and 

Xg>0.5g, it is possible to simulate a combination of rocking and sliding mode of motion for 

test specimen TS1. Hence it was decided to perform experiments only on the TS1 and study its 

dynamic behavior. Specimen TS1 was subjected to harmonic base excitations of varied 

frequencies. Shake table experiments were carried out for the conditions (µs=0.32, Xg=0.8g 

and ω=0.5 to 10Hz). 
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Figure 3-23 Acceleration, sliding displacement and rocking angle response time histories recorded for test 
specimen TS1 (f=2Hz, µ=0.32, Xg=0.8g) 
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A combination of sliding and rocking motion initiated from the rest state. Accelerometer 

readings (A1, A2, A3 & A4), sliding displacement and rocking angle for frequencies of 2Hz 

and 10 Hz are plotted in Fig.3-23.(a to l) as shown below. Following were the significant 

interpretations from Fig.3-23.  

1. Similar to rocking motion, here also peak acceleration amplitude recorded on top 

of the block by A2 for 2Hz frequency was 2g as shown in Fig.3-23(c). Hence, this 

mode of motion was also characterized by significantly high amplitudes of 

accelerations at the top [see Fig. 3-23(a, c)]. This indicated a predominance of 

rocking behavior over sliding motion.  Acceleration amplification at the top was of 

the same order as observed in the pure rocking, thereby overshadowing the effect 

of reduction in acceleration amplitude observed in pure sliding motion. 

2. As the frequency of base excitation increased from 2 Hz to 10 Hz, the amplitude 

of peak sliding displacement was reduced from 0.009m to 0.0017m [see Fig.3-23(i, 

j)]. Similarly, the peak value of rocking angle was also decreased from 0.06 radian 

to 0.002 radian [see Fig.3-23 (k, l)]. In addition to that, peak acceleration recorded 

at the top was reduced by one-third [see Fig.3-23 (c, d)].  

3. Three-dimensional behavior of the block was again observed for the cases of 

combination of rocking and sliding motion. As shown in Fig.3-23(e,f), significant 

accelerations were recorded in the lateral direction (along Y-axis). This behavior 

underlined the need to consider three-dimensional effects while modeling and 

performing numerical simulations. 

Before proceeding to study dynamics of flexible freestanding bodies, it is vital to understand 

the contact-impact behavior of the problem. Next section deliberates on this intricate 

phenomenon. 
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3.3.6.1  Contact- Impact behaviour 

For a rocking and combination of sliding rocking motion, impact behavior is significant for the 

thorough understanding of the motion. It was observed in the experimental results that impact 

phenomenon dominates characteristics of motion and acceleration amplification takes place in 

specimens. Recorded data by various accelerometers (A1, A2, A3 and A4), slip displacement 

and rocking angle for a time period of 5 secs is plotted in Fig.3-24. For better understanding, 

acceleration, velocity and displacement time histories recorded by the accelerometers located 

at the shake table, A1 and A2 are plotted for a duration of 1sec in Fig.3-24. In addition to that, 

Fig.3-25 highlights variation of rocking angle and slip displacement of the specimen TS1, for 

a duration of 1sec.  

  
Figure 3-24 Acceleration, velocity and displacement variations for TS1 as recorded by accelerometers 

(f=2Hz, µ=0.32, Xg=0.8g) 
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Figure 3-25 Experimental results for rocking angle and sliding displacement for a duration of 1 sec 
(f=2Hz, µ=0.32, Xg=0.8g) 

 

Following observations for the contact-impact phenomenon in a combination of sliding-

rocking motion are made (refer Fig.3-23, Fig.3-24 and Fig.3-25): 

1. Acceleration time histories records highlighted multiple impacts across the contacting 

surfaces. This was evident in form of multiple jumps in acceleration time histories 

recorded on the top of the specimen by A2 (horizontal)and A1(vertical) during impacts 

as shown in Fig.3.23(a and c) for 2Hz frequency of base excitation. This was possible 

only for the case of a three-dimensional structure having a surface contact with the base.  

2. It is interesting to note that impacts were reduced significantly for higher base excitation 

frequency of 10Hz. This point can be observed on comparing Figs.3-23(a) and 3-23(b). 

Reason for this is similar to the case of pure rocking, where lower frequencies of base 

excitations were observed to cause higher uplift and subsequent increase of acceleration 
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jumps during impacts. This led to the reduction of amplification factor with the increase 

of frequency. 

3. Specimen exhibited simultaneous slip and rocking motion during experiments as 

observed from Figs.3-23(i) and 3-23(k). Magnitude of slip displacement and rocking 

angle was found to be a decreasing function of base excitation frequency. With the 

increase of frequency from 2Hz to 10Hz, peak values of slip displacements and rocking 

angles reduced from 9mm and 0.07radians to 1mm and 0.005radians respectively. 

4. For a harmonic base excitation of 2Hz frequency and µ=0.32, impacts occurred at 0.12, 

0.47, 0.81 and 0.96secs in a time of 1 sec [see Fig.3-24(i) or Fig.3-25]. The frequency 

of impact observed was twice of that of the excitation frequency. That means every 

cycle of excitation involved two impacts of the block with the base. 

5. For particular time instants, corresponding to impact, a sharp peak in acceleration was 

recorded. It was also noted that pre-impact (prior to edge contact) and post peaks (after 

edge contact) were significant. This owed to surface contact prior and after actual edge 

contact with the base. 

6. It was examined in a sliding-rocking motion that in certain regions of the rocking time 

history, combination of sliding-rocking motion was predominant; while in other 

regions, pure rocking motion was observed as shown in Fig.3-25. Hatched regions in 

the figure correspond to a combination of sliding and rocking motion. However, 

intermediate regions correspond to pure rocking motion with almost no sliding 

displacement i.e. maximum variation in calculated sliding displacement was less than 

0.0004mm.  

Since, presence of three-dimensional motion has been experimentally observed during shake 

table testing, a three-dimensional numerical model of the specimen is required for carrying out 

numerical studies. It is proposed to develop a three-dimensional model which can accurately 
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predict the dynamics of a free-standing rigid body subjected to base excitations. The developed 

generic model will be benchmarked with the existing experimental data. Next section gives the 

details of development and benchmarking of a three-dimensional finite element model.  

3.4 Finite Element Modelling and Analysis 

While performing experiments on the rigid parallelepiped test specimens, significant lateral 

accelerations (perpendicular to the line of action of base excitations) and movement was 

observed.  Test results highlighted the importance of considering three-dimensional effects 

while accurately analyzing a parallelepiped block. Earlier research carried out by Egidio [65] 

and Pena [20] highlighted that for a square base parallelepiped structure three-dimensional 

effects cannot be neglected. Hence, to accurately predict dynamic response of a three-

dimensional rigid parallelepiped structure, three-dimensional finite element model of test 

specimens was developed. Modelling and analysis procedure used for carrying out numerical 

calculations is presented. Three-dimensional finite element model of the test specimens (TS1, 

TS2 and TS3) were prepared in FE software. They were kept free-standing on the floor and the 

floor was subjected to different types of base excitations. In the coming sections, details of 

modelling and meshing techniques, boundary conditions, and contact interactions are provided. 

3.4.1 Part modelling 

All the test specimens were fabricated out of mild steel material. Sectional thickness was 3, 4 

and 5mm respectively for TS1, TS2 and TS3. As the thickness was very less in comparison 

with longitudinal and lateral dimensions, shell elements were used for modelling.  Here, a four 

node general-purpose shell element (S4R) with reduced integration and hourglass control was 

chosen. This element is capable of taking finite membrane strains. This element is suitable for 

analysing thin to moderately-thick shell structures. The element has four nodes with six degrees 

of freedom at each node (i.e. translations in the x, y, and z-axes, and rotations about the x, y, 



105 

 

and z-axes). This element allow transverse shear deformation. This element uses thick shell 

theory as the shell thickness increases and become discrete Kirchhoff thin shell elements as the 

thickness decreases; the transverse shear deformation becomes very small as the shell thickness 

decreases. Hence this is a versatile shell element which is best suited for a contact analysis. In 

the present case, the shake table was very stiff in comparison with the test specimens. 

Moreover, stresses and strains in the shake table were of no research interest to us, hence it was 

modelled as a rigid body. Rigid element R3D4, which is a three-dimensional, 4-noded bilinear 

quadrilateral element was selected for analysis.  This element doesn’t have any mass properties 

and is defined with the help of a reference point. All the boundary condition were applied at 

the reference point because only the rigid body reference node has independent degrees of 

freedom. For a three-dimensional element, the reference node has three translational and three 

rotational degrees of freedom; for planar and axisymmetric elements the reference node has 

degrees of freedom 1, 2, and 6 (rotation about the 3-axis).The nodes attached to rigid elements 

have only slave degrees of freedom. The motion of these nodes is determined entirely by the 

motion of the rigid body reference node. For planar and three-dimensional rigid elements the 

only slave degrees of freedom are translations.  

Since the rigid elements are not deformable, they do not use numerical integration points, and 

there are no optional formulations. In addition to this, there are no element output variables. 

The only output from rigid elements is the motion of the nodes. Reaction forces and reaction 

moments are available at the rigid body reference node. Details of various material properties 

are given in Table.3-8 
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Table 3-8 Properties of various materials used in finite element analysis 

Material  Density 
(Kg/m3 ) 

Modulus of Elasticity 
(GPa) 

Poisson ratio 

Aluminum  2100 70 0.3 

Steel 7800 210 0.3 

HDPE 970 1 0.1 

Wood 500 12 0.05 

 

All the three test specimens were assembled on top of the rigid floor as shown in Fig.3-26. 

Contact constraints were applied at the contacting surfaces between floor and specimens. Next 

section describes more about the interactions and boundary conditions applied.  

 

 

Figure 3-26 Finite element assembly of the three test specimens (TS1, TS2, TS3) mounted on the top of a 
rigid shake table  
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3.4.2 Contact interactions and boundary conditions    

While creating an assembly of three test specimens and rigid floor, contact constraint was 

defined. In the present case, surface based contact formulation was used for defining the 

contact. The rigid floor was selected as a master surface and contacting surfaces on the 

specimens were selected as slave surfaces. In addition to the contacting surfaces between the 

floor and the test specimens, other surfaces perpendicular to the direction of base excitation 

(i.e. X-axis), lying in the YZ plane, were also selected as slave surfaces. They were selected 

because of the possibility of contact with the master surface in case of overturning of the 

specimens.  Contacting surfaces are shown with dots in the Fig.3-27.  

 

Figure 3-27 Contact interaction between the master surface (floor) and slave surfaces (on the specimens) 

 

Contact properties were defined in the normal and tangential directions. In tangential 

directions, Coulomb friction model was used to relate the maximum allowable frictional (shear) 

stress across an interface to contact pressure between contacting bodies. The Coulomb friction 

model defines critical shear stress, (τcrit) at which sliding of the surfaces starts as a fraction of 
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the contact pressure (p), between the surfaces. (τcrit = µp) The stick/slip calculations determine 

when a point transitions from sticking to slipping or from slipping to sticking. This friction 

model assumes that µ is the same in all directions (isotropic friction). 

 Similarly, in the normal direction, hard contact was selected to account for normal 

pressure/over closure relationship. For numerical enforcement of contact constraints in 

tangential and normal direction, Penalty algorithm was used. [66] [67] [68] [69] [70]. Two 

configurations (path) based contact tracking scheme was used in a finite sliding formulation 

with surface to surface discretization. All the rigid body rotational motions of the floor were 

constrained and actual recorded time histories of base excitations were applied at reference 

node of the floor.  

3.4.3 Modal Frequency Analysis 

Before carrying out dynamic analysis of test specimens, it is important to understand 

fundamental dynamics characteristics of the specimens. Natural frequencies of the test 

specimens in the fixed based boundary condition were evaluated using FE software. Lanczos 

solver was used for eigenvalue extraction. The fundamental frequencies of TS1, TS2 and TS3 

are tabulated in Table.3-9. First three fundamental mode shapes for test specimens TS1, TS2 

and TS3 are shown in Fig.3-28, Fig.3-29 and Fig.3-30 respectively. Displacement gradients are 

shown by color scheme, whereas blue color indicates lowest displacement value and red color 

indicates the highest. 

 It can be observed from Fig.3-28, Fig.3-29 and Fig.3-30 that fundamental mode of deformation 

of these rigid structures does not include bending of the complete structure about fixed end. 

This is a typical behavior of a box type of rigid block which in fundamental mode undergoes 

deformations of individual panels (sides), but not bending of the entire structure about the 

centroidal axis. 
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Table 3-9 First three modal frequencies of the test specimens 

Mode Modal Frequencies(Hz) 
TS1 TS2 TS3 

1 93 94 186 
2 121 127 248 
3 131 134 248 

 

 
Figure 3-28 Fundamental modal shapes of test specimen TS1 in fixed base boundary condition, (a) Un-

deformed shape, (b) Mode1, (c) Mode2 & (d) Mode3 

 

 
Figure 3-29 Fundamental modal shapes of test specimen TS2 in fixed base boundary condition, (a) Un-

deformed shape, (b) Mode1, (c) Mode2 & (d) Mode3 

 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure 3-30 Fundamental modal shapes of test specimen TS3 in fixed base boundary condition, (a) Un-

deformed shape, (b) Mode1, (c) Mode2 & (d) Mode3 

 

3.4.4 Numerical solution  

Implicit solver was used to carry out numerical solution. Solver uses the Hilber-Hughes-

Taylor [71] time integration scheme for a numerical integration. The Hilber-Hughes-Taylor 

operator is an extension of the Newmark beta-method. Numerical parameters associated with 

the Hilber-Hughes-Taylor operator were tuned differently for moderate dissipation and 

transient fidelity applications. This time integration operator is implicit, which means that the 

operator matrix must be inverted and a set of simultaneous nonlinear dynamic equilibrium 

equations must be solved at each time increment. The solution was done iteratively using 

Newton's Raphson method. [66]. The principal advantage of this operator is that it is 

unconditionally stable for linear systems; there is no mathematical limit on the size of the time 

increment that can be used to integrate a linear system. Nodal accelerations and displacements 

at locations where actually sensors were installed during shake table experiments were 

obtained. Next section compares results obtained from the numerical models presented in this 

chapter with the experimental results. 

3.4.5 Validation of Numerical Models 

In the present chapter, two types of numerical models were presented. Firstly, a two-

dimensional analytical mode was presented in Section3.2 and then a three-dimensional finite 

(a) (b) (c) (d) 
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element model was presented in Section3.4. It is important to validate these models using 

generated experimental data. Test specimen TS1 is selected for validation of numerical models. 

Numerical results for sliding and rocking mode of motions is compared with the corresponding 

test results. In addition to that, amplification factors for all the three modes of motion of TS1 

are compared. This comparison shall be valid for other two specimens also because of 

similarity in modelling and analysis methodology. Comparison of experimental results with 

two-dimensional and three-dimensional model is presented below. Comparison of results for 

amplification factors in sliding, rocking and sliding-rocking mode is presented in Fig.3-31, 

Fig.3-32and Fig.3-33 respectively. Comparison of sliding displacements and rocking angles 

are presented in Fig.3-34 and Fig.3-35 respectively.  

 

Figure 3-31 Comparison of acceleration AF obtained by experiments, 3D FEA model and 2D analytical 
model of TS1 in sliding motion 
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Figure 3-32 Comparison of acceleration AF obtained by experiments, 3D FEA model and 2D analytical 
model of TS1 in rocking motion 

 

 

 

Figure 3-33 Comparison of acceleration AF obtained by experiments, 3D FEA model and 2D analytical 
model of TS1 in sliding-rocking motion 
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Figure 3-34 Comparison of sliding displacement obtained by test, FEA and numerical code for TS1 
(µ=0.15 and ω=2Hz) 

 

 

Figure 3-35Comparison of rocking angle obtained by test, FEA and numerical code forTS1 (µ=0.72 and 
ω=2Hz) 

 

 

 

 



114 

 

Following points can be observed from Fig3-31 to Fig.3-35: 

1. In general, three-dimensional FEA, two-dimensional numerical code and shake 

table experiment results were in good agreement and indicated similar trends.  

2. Maximum variation in amplification factor for sliding mode was 2.7% between 

experiment and FE results and 2.9% between experiment and numerical results as 

shown in Fig.3-31. Similarly, for rocking motion maximum variation was 9% 

between experiment and FE results and 7.6% between experiment and numerical 

results as shown in Fig.3-32. For the sliding-rocking motion maximum variation 

was 8.3% between experiment and FE results and 7.8% between experiment and 

numerical results as shown in Fig.3-33. 

3. For sliding displacements, the maximum difference between experiment and FEA 

result was 12 percent of experiment value as shown in Fig.3-34. This difference 

occurred only near the peaks of the curve, while at other places difference was less 

than 1 percent. On the other side, the maximum difference between experimental 

and numerical code results was 31 percent of experiment value. Again, this 

happened only near the peaks, whereas at other places difference was insignificant. 

4. For the rocking angle, the maximum difference between experimental and FEA 

result was 13 percent of the experimental value, which occurred at t=0.6sec as 

shown in Fig.3-35. Rest of the time difference was insignificant to mention. 

However, the difference between experimental and 2D code result was around 47 

percent of experiment value for a peak at t= 2.1sec, whereas it was lesser than this 

values at rest of the peaks. At other places, 2D code results accurately matched 

with the experiment values. 

5. Three-dimensional model FEA results were coherent with the corresponding 

experiment results. Variation of various parameters like amplification factor, 
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sliding displacement and rocking angle was accurately predicted by analysis. 

However, some variations were observed due to inevitable errors in modelling and 

contact properties input.  

6. Two-dimensional numerical code results were also coherent with the experiment 

values. Code results satisfactorily predicted the response of three-dimensional 

parallelepiped block. Errors in estimation of rocking angles were attributed to 

three-dimensional effects and errors in estimating values of input contact 

parameters like coefficient of friction and restitution. Hence, it can be concluded 

that F.E. analysis could be utilized in study of behavior of a freestanding structure. 

3.5 Three-dimensional Motion Initiation Criteria Diagram  

Experimental and numerical results presented in Section3.3.4.1 signified the importance of 

frequency of base excitation for determining initiation of any mode of motion from the rest 

state. The frequency of excitation whether it was harmonic or random was observed to have a 

pivotal role in exciting different modes of motion for a rigid test specimens. It can be easily 

understood, that generally initial mode of motion dominates the response unless there is a 

variation in amplitude or frequency content of the base excitation. To introduce effects of base 

excitation frequencies in 2D motion initiation criteria diagram as shown in Fig.2-2, it is 

redeveloped into 3D diagrams. 

Numerical calculations were carried out using FE model of test specimen TS1, for different 

values of the parameters like Ag, µs and ω. FE results were used to redraw Fig.2-2, with the 

frequency of excitation as one of the parameters. This is named as initiation criteria diagram as 

shown in Fig.3-36.  In addition to that a 2D projection of these plots on YZ and XY axis has 

been taken and shown in Fig. 3-37 and Fig.3-38 respectively. These diagrams identify various 

regions corresponding to different modes of motion.  
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Developed motion initiation criteria diagrams accentuate following important characteristics 

of a freestanding rigid block subjected to base excitations.  

1. For any combination of parameters (µ, Ag and AR), lies a value of frequency 

above which a freestanding structure subjected to harmonic/periodic base 

excitation shall practically be in a state with very low motion. The state of low 

motion is shown in the diagrams by the points, given by following conditions:  

a. Maximum value of the angle of rotation (rocking angle) calculated during 

numerical simulation should be less than 0.003 radians. 

b.  Maximum sliding displacement calculated during numerical simulation 

should be less than 1mm. 

2. It was observed that with the increase of frequency, motion of the body (rocking, 

sliding or slide/rock) reduces significantly. For example, for an amplitude of 0.8g 

and c.o.f of 0.2, sliding displacement was as large as 70mm which reduced to 

0.7mm for a frequency of 10Hz. Hence this value of frequency which reduced 

the amplitude below a defined value given above is termed as cut off frequency. 

3. In the sliding region and sliding-rocking region, cut off frequency increased as a 

nonlinear function of peak base acceleration amplitude. While In the rocking 

region, it increased linearly with the peak base excitation amplitude.  

4. For a fixed value of amplitude, cut off frequency decreased non-linearly with 

increasing µ, until structure was lying in slide-rock zone (µ< 0.4). Afterwards, as 

the value of coefficient of friction was increased up to rocking zone cut off 

frequency attained a constant value.  



117 

 

5. It was noted in the rocking zone, for a fixed value of amplitude, cut off frequency 

was independent of coefficient of friction. 

 

Figure 3-36 Initiation criteria diagram (Fig.3-7) replotted with frequency as an axis, showing various 
possible modes of motion for a rigid block of four aspect ratio (S-sliding, R-rocking, SR-slide/rock, Rst- 

rest state) 

 

 

Figure 3-37 YZ plane projection of 3D motion initiation diagram 
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Figure 3-38 XY plane projection of 3D motion initiation diagram 

 

3.6  Outcomes and Discussions 

The behavior of a three-dimensional parallelepiped structure subjected to base excitation is 

highly nonlinear. When subjected to periodic, harmonic or seismic base excitation, it can 

undergo different modes of motion. Initiation of any particular mode from rest and hence 

stability is governed by various parameters including frequency of base excitation. It was 

observed that for any given value of other parameters, there exists a frequency above which 

structure remains in the rest state and is completely stable. For the designers of the freestanding 

systems, this could be a useful information in selection and optimization of operating 

parameters for inherent safety of the structures from base excitation. We observed that cutoff 

frequencies for the sliding mode of motion were higher compared to other two modes of motion 

making it inherently unstable. Nevertheless, amplification factor was observed to be below 

unity irrespective of the frequency of base excitation. Hence, a sliding freestanding system 

does not amplify base motion; however, the prime concern is sliding displacement. If there is 

no safety concern from the sliding displacement, then the designers can allow calculated slip 
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to dissipate energy input into the system by base excitation. Generally, designers have a very 

little control over the base motion characteristics especially in the case of seismic excitation. 

Nonetheless, they can have some flexibility in selecting coefficient of friction by appropriate 

selection of base material.  

Rocking and combination of sliding and rocking mode of motion are predominant in low- 

frequency range. Especially frequencies pertaining to free rocking frequencies of a structure 

has a tendency to cause uplift, even at an amplitude lower then statically required for it.  Base 

isolation can be quite effective to filter off these low frequencies of base excitation and hence 

enhancing the stability of the system by limiting rocking motion. The rocking mode is not 

inherently safe for a structure because it not only amplifies base motion but also may lead to 

overturning of the structure.  In the case of a seismic excitation, low frequency and high 

amplitude waves are more dangerous for the stability of a structure. It was observed that for a 

rocking mode amplification factor was always above unity, irrespective of the cutoff frequency. 

Hence input energy dissipation via frictional sliding is more efficient and safer than via impact 

in the rocking motion. As the frequency of impact increases, more amplification takes place 

making any system located on top part of the structure vulnerable to damage.  After studying 

the dynamic behavior of a rigid body, dynamics of a flexible body is explored in the next 

chapter. 
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CHAPTER 4 DYNAMICS OF A FREE-STANDING FLEXIBLE 

BODY SUBJECTED TO BASE EXCITATIONS 

 

4.1 Introduction and Outline  

In the last chapter, the fundamental dynamic behavior of a free-standing rigid body subjected 

to base excitations was presented. Analytical formulation and numerical solutions were 

presented on the basic premise of rigid body motions. In this chapter, basic assumption of the 

predominance of rigid body motions is removed and comprehensive studies are performed, 

considering possible elastic motions of a flexible free-standing bodies subjected to base 

excitations. As discussed earlier in Section 2.3, the majority of available research on the subject 

is focused on a single degree of freedom cantilever type of model, which has a limited 

applicability.   

In this chapter, extensive experiments were carried out on flexible test specimens, 

geometrically similar to rigid specimens discussed in Chapter-3. Effect of body’s flexibility on 

initiation of any particular mode of motion from rest was investigated. In addition to that, 

overall stability of body in terms of overturning potential for rocking motion or maximum 

allowable slip for sliding motion was studied. Further, the effect of flexibility on amplification 

factor was examined. 

Section 4.2 of this chapter present details of experiments carried out on flexible free-standing 

bodies. Then, Section 4.3 presents a numerical investigation and provides in-depth analysis of 

behavior. Section.4.4 of the chapter highlights important findings of the research carried out 

and finally Section.4.5 summarizes the chapter with final conclusions.  
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4.2 Experimental Investigation   

4.2.1 Objectives and Introduction  

Flexible test specimens of three different aspect ratios were tested on a uni-directional shake 

table. The objective of this testing was to observe dynamic behavior of flexible freestanding 

bodies when subjected to base excitations. Experiments carried out were similar to those 

performed earlier for the geometrically similar rigid specimens (TS1, TS2 & TS3). The intent 

was twofold; firstly to observe overall dynamics of a flexible body and secondly, to investigate 

effect and interaction of elastic motions on rigid body motions and overall dynamics of the 

problem. The aim was also to observe differences in the response of geometrically similar 

flexible and rigid test specimens when subjected to identical loading and boundary conditions. 

4.2.2 Test Set up and Specimens 

A uniaxial hydraulic shake table available at Bhabha Atomic Research Centre (BARC) having 

dimensions of 1m x 1m was used for testing. Details of the shake table were already provided 

in the last chapter in Table.3-1. Three flexible test specimens TS4, TS5 and TS6 of aspect ratios 

four, three and two respectively were fabricated in such a way that they were geometrically 

similar to the three rigid specimens TS1, TS2 and TS3 tested earlier. These specimens had top 

and bottom plates which were bolted to each other through four columns. Using a single set of 

plates, three different specimens can be created by interchangeably using channels of different 

lengths.  Details of the specimens are provided in Table.4-1. Three different base materials 

were bolted sequentially to the shake table to generate three different values of coefficient of 

friction (µ) with the specimens. This was to simulate three possible modes of motion viz. 

sliding, rocking, and combination of them. The test set up and specimens are shown in Fig.4-

1. Five accelerometers (A1 to A5) were mounted on the test specimens at the locations exactly 

similar to earlier cases as shown in Fig.3-4. A5 was mounted on the shake table. 
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Figure 4-1 Test set up showing different test specimens.(a) TS4, (b) TS5, (c) TS6 and (d) high-speed 

videography arrangement 

4.2.3 Preliminary Dynamic Characteristics 

Before carrying out shake table testing, important dynamic properties of the specimens were 

evaluated. These were free rocking frequency (henceforth denoted by ωr), critical angle 

(henceforth denoted by α), fundamental frequency in fixed base conditions (henceforth denoted 

by ωn) and coefficients of friction (µ) between the specimen and different materials to be used 

as a base material. Various dynamic properties of test specimens are given in Table.4-1. 

(a) (b)

(c) (d) 
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4.2.3.1  Free rocking frequencies and critical angle 

To rule out any deviation from the theoretical value, critical angle was experimentally 

determined by uplifting the specimens up to the point of self-overturning. Similarly, free 

rocking frequencies (ωr) of the test specimens were evaluated for different values of initial 

uplift. Uplift was simulated by providing angular displacement about a pivoting edge. 

Experiments were performed for different values of initial uplift starting from 0.001m up to 

0.020m of uplift and finally just below the value of critical uplift corresponding to critical 

angles. Accelerometers readings obtained from accelerometer-A2, mounted on the test 

specimens, were analyzed using Fast Fourier Transform (FFT), to obtain free rocking 

frequencies. All the three specimens were tested sequentially to obtain values for rocking 

frequencies. Fig.4-2 displays variation of free rocking frequencies with initial uplift for flexible 

test specimens. Experimentally evaluated values of rocking frequencies are given in Table.4-

1. For each specimen, the frequency corresponding to a critical value of uplift is also given in 

a bracket under the same column. 

4.2.3.2  Evaluation of coefficient of friction 

A simple pull test was carried out to determine values of coefficient of friction between rigid 

block and various surfaces used for experiments. Four surfaces used were plywood, high-

density polyethylene (HDPE), aluminum and steel. They were selected in such a way that 

different modes of motion of the block from rest state could be simulated when excited by a 

base excitation. Evaluated values of coefficients of friction were same as estimated earlier and 

given in Section.3.3.3.2.  
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Figure 4-2 Free rocking frequencies of flexible test specimens TS4, TS5 and TS6 

 

Table 4-1 Physical and geometrical details of test specimens 

TS AR D 
(m) 

Sectional 
Details 

(m) 

p 
(Hz) 

α 
(rad) 

R 
(m) 

M 
(kg) 

ωr 
(ωrc) 
Hz 

ωn 
(Hz) 

TS4 4 0.3X0.3
X1.2 

Top & bottom 
plate- 0.023 

Columns 
(L shaped)- 

0.025X0.025X
0.003 

2.91 0.24 0.62 38 1-5 
(0.63) 

7.8 

TS5 3 0.3X0.3
X0.9 

Same as above 3.33 0.32 0.47 36 1.5-
7.2 

(0.8) 

11.8 

TS6 2 0.3X0.3
X0.6 

Same as above 3.99 0.46 0.34 35 2.2-
11.2 
(1.1) 

21.4 
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4.2.4  Dynamics of a Pure Rocking Motion  

After carrying out preliminary dynamic investigations, rocking dynamics of the test specimens 

was examined. All the three test specimens viz. TS4, TS5 and TS6 were kept on a steel plate 

which was fixed to the shake table. Steel surface was selected because of its evaluated higher 

value of coefficient of friction (µs=0.72), which may favour pure rocking motion without 

slipping. Synthetic time history corresponding to a nuclear power plant site in India was used 

as a base motion. [59] [58].The objective of testing was to observe response of test specimens 

to seismic base excitation. Input base excitation is shown in Fig.4-3(a) and frequency contents 

of an input signal, extracted using FFT are shown in Fig.4-3(b). Input base excitation as shown 

in Fig.4-3(a) was given to the test specimens TS4, TS5 and TS6. Acceleration time histories 

recorded by A2 accelerometer located at the top of the specimens are plotted in Fig.4-4. 

Similarly, a variation of rocking angle of the specimens with time is shown in Fig.4-5. Both 

the figures are plotted, only up to the time of overturning. Fig.4-6 plots FFT of acceleration 

history recorded by A2 for TS4, TS5 and TS6.  

 

TS- Test Specimen, AR- Aspect ratio, D- Dimension (length, width, height), p-frequency 
parameter, α -critical angle, R- diagonal length, M-mass, ωr – free rocking frequency, ωrc – 

critical rocking frequency, C.G.- relative position of centre of gravity from any vertex 
(x,y), ωn – fundamental frequency 
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Figure 4-3 (a)Time variation of input base excitation at 0.8g PGA and (b) frequency contents on input 
base excitation 

 

 

Figure 4-4 Time variation of accelerations recorded by A2 accelerometer for specimens (a)TS4, (b)TS5 
and (c)TS6 

 

 

Figure 4-5 Rocking angle time histories for specimens, (a) TS4, (b) TS5 and (c) TS6 

 

(a) (b) 
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Figure 4-6 Fast Fourier Transform of acceleration signal recorded by A2 for, (a) TS4, (b) TS5 and (c) TS6 

 

These results indicate following important behavior of test specimens: 

1. All the acceleration time histories for specimens TS4, TS5 and TS6 featured 

amplifications from the base values.  Amplification values were 1.25 for TS4, 2 for TS5 

and 2.5 for TS6 as shown in Fig.4-4. This would be further explored by performing 

more experiments in coming sections. Effects of slenderness were also observed in the 

response. TS6 (less slender) specimen exhibited more number of peaks in acceleration 

time histories when compared with TS4 and TS5 as shown in Fig.4-4. The reason for 

the same would be clear in next few points.  

2. Rocking angle time histories for the specimens showed few significant observations. 

More slender specimens TS4 and TS5 overturned in just 6secs, while less slender 

specimen TS6 took almost double the time (12 secs) to overturn. Moreover, it can also 

be observed that a number of times TS6 impacted with the floor is much higher than 

the number of impacts made by TS4 and TS5. This is clearly visible from Fig.4-4 and 

Fig.4-5. Sudden spikes in acceleration time histories can be attributed to impacts 

associated with the change of rocking directions. Every reversal of rocking direction as 

shown in Fig.4-5 corresponds to a peak in acceleration time history as observed in 

Fig.4-5. 



128 

 

3. FFT of output response for all the three specimens contains low-frequency contents. 

The highest peak in FFT of TS4 is at 0.68Hz, while that of TS5 is at 0.7Hz.It is 

interesting to notice that these frequencies resemble critical rocking frequencies of these 

specimens. On the other side, FFT of TS6 has many distinct peaks varying from 0.7Hz 

to 1.5 Hz. Here again, these frequencies lie in the range of free rocking frequencies of 

the specimen. Rocking angle time history (Fig.4-5) indicates a gradual increase in 

rocking angle with time. Every rocking angle below critical angle has its signature 

frequency lying in the range of free rocking frequencies of that specimen. Hence, the 

presence of these frequencies in FFT is technically justified. This point shall be further 

studied in the next sections.      

After carrying out random motion testing, specimens were tested for Sine waves of varying 

frequencies (ω) and peak amplitudes (Xg) given as a base acceleration. Stability parameters 

like the initiation of motion, overturning instability, response amplification and peak response 

characteristics of the specimens were examined. Effects of variation of base excitation 

frequency (ω) and peak amplitude (Xg) on these parameters were studied. Detailed discussion 

on these stability parameters would be followed in the next coming sections. Acceleration time 

histories at various locations were recorded by accelerometers mounted on the test specimens.  

4.2.4.1  Rocking Motion Initiation 

The objective of testing was to explore relationship between base excitation frequencies and 

initiation of rocking motion of flexible bodies of different slenderness, below a statically 

determined amplitude of base excitation. A total number of seventeen different experimental 

runs were performed as shown in Table4-2. For brevity, base input excitations for test runs-1 

to 6 are plotted in Fig.4-7. It is easier to understand input base motions for rest of the test cases 

because they were sinusoidal excitations of 5sec durations. Specimens were excited by 
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amplitudes lesser than what is statically required for rocking initiation. As per the rigid body 

dynamics, we can determine the value of acceleration which is transition value above which 

TS4 should initiate rocking motion. We can use equations derived earlier for checking that the 

rocking and sliding motion shall not initiate for this value. In this case, for Ag = 0.25g and 

µs=0.72, using Eqns. 3.1 and 3.13, we can check that Ag < µs (no sliding condition) and Ag ≤ 

𝑆𝑆 tan𝛼𝛼= 0.25(no rocking condition). Similarly, rocking initiation conditions can be estimated 

for other two test specimens (TS5 and TS6) using Eqns.3.1 and 3.13. We get, Ag ≤ 𝑆𝑆 tan𝛼𝛼= 

0.33g for TS5 and Ag ≤ 𝑆𝑆 tan𝛼𝛼= 0.5g for TS6. The minimum value of rocking angle required 

to satisfy rocking initiation condition was set as 0.003 radians. This angle corresponds to an 

uplift of 1mm for all the test specimens (TS1 to TS6).  

Table 4-2 Details of tests performed on the flexible test specimens 

Test 
Run 

Specimen Xs* 
(g) 

Input Base excitations 
Peak Amplitude(g) Frequencies(Hz) 

Output/Results 

1 TS4 0.25 0.2             Earthquake time history Rocking initiation 

2 TS4 0.25 0.15           Earthquake time history No Rocking 
initiation 

3 TS5 0.33 0.3              Earthquake time history Rocking initiation 

4 TS5 0.33 0.25           Earthquake time history No Rocking 
initiation 

5 TS6 0.5 0.45           Earthquake time history Rocking initiation 

6 TS6 0.5 0.4              Earthquake time history No Rocking 
initiation 

7 TS4 0.25 0.2            1Hz- 20Hz (step size-1Hz) Rocking initiation 
for 3Hz-6Hz 
frequencies  

8 TS4 0.25 0.15          1Hz- 20Hz (step size-1Hz) Rocking initiation 
for 4Hz-6Hz 
frequencies 

9 TS4 0.25 0.1            1Hz- 20Hz (step size-1Hz) Rocking initiation 
for 5Hz frequency 

10 TS5 0.33 0.3           1Hz- 20Hz (step size-1Hz) Rocking initiation 
for 3Hz-8Hz 
frequencies 
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11 TS5 0.33 0.25         1Hz- 20Hz (step size-1Hz) Rocking initiation 
for 5Hz-8Hz 
frequencies 

12 TS5 0.33 0.2           1Hz- 20Hz (step size-1Hz) Rocking initiation 
for 6Hz-8Hz 
frequencies 

13 TS5 0.33 0.15         1Hz- 20Hz (step size-1Hz) Rocking initiation 
for 7Hz frequency  

14 TS6 0.5 0.45        1Hz- 20Hz (step size-1Hz) Rocking initiation 
for 4Hz-12Hz 
frequencies 

15 TS6 0.5 0.4          1Hz- 20Hz (step size-1Hz) Rocking initiation 
for 8Hz-12Hz 
frequencies 

16 TS6 0.5 0.3          1Hz- 20Hz (step size-1Hz) Rocking initiation 
for 9Hz-11Hz 
frequencies 

17 TS6 0.5  0.25        1Hz- 20Hz (step size-1Hz) Rocking initiation 
for 10Hz 
frequency 

*Xs = g. 𝐭𝐭𝐭𝐭𝐭𝐭𝜶𝜶 , statically determined minimum base amplitude required for uplift 
initiation 

 

Initially test specimens were subjected to random seismic motion as shown in test runs 

from 1 to 6 in Table.4-2.Peak ground acceleration (PGA) values of synthetic time histories 

were kept below statically determined minimum amplitude (Xs) required for rocking initiation. 

Experimental results for all the three specimens (TS4, TS5 and TS6), as shown in Table.4-2, 

indicated an unexpected trend of initiation of rocking motion in some test cases (Test runs-1, 

3 and 5) at an amplitude below Xs values. It can be observed from Fig.4-8, that the peak value 

of rocking angle is 0.0035, which indicated 1mm uplift of the specimen. This unusual dynamic 

behavior was the motivation to carry out further investigation on the role of individual 

frequencies of base excitations in initiating uplift. 
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Figure 4-7 Input seismic base excitations for test runs from 1 to 6 (a-f) 

 

 

 

Figure 4-8 Rocking motion initiation of TS4 for 0.2g PGA seismic base excitation (test run-1) 

 

Subsequent to seismic motion testing (test runs 1-6), Sinusoidal waves of different frequencies 

varying from 1Hz up to 20 Hz in a step of 1Hz were given as base excitations. The amplitude 
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of sinusoidal waves were also varied, in steps, from 0.2g to 0.1g for TS4, 0.3g to 0.15g for TS5 

and from 0.45g to 0.25g for TS6. Test details are given in Table.4-2 (test runs-7-17). Since 

there were numerous sinusoidal input base excitations which can be easily visualized, hence 

not plotted.  

Results for all the test cases (Test Runs 7-17) as given in Table.4-2 are plotted in form of 

normalized curves as shown in Figs.4-9 to 4-11. These curves were plotted by selecting peak 

value of rocking angle corresponding to every frequency of base excitation. Ordinate of these 

graphs indicate peak rocking angle values normalized using critical angle, whereas abscissa 

indicates base excitation frequencies normalized using specimen’s fundamental modal 

frequency. In addition to these figures Fig.4-12 shows the response of all the three specimens 

in a single plot. This is a dimensional plot of the response. Moreover, Fig.4.13 shows the 

variation of peak rocking angles and peak sliding displacements for the test specimen TS4 with 

the frequencies varying from 1Hz to 10Hz for a fixed amplitude of 0.2g. 

 

Figure 4-9 Normalized curves showing variation of peak rocking angle with the frequency of base 
excitation for different peak amplitude values for specimen TS4 
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Figure 4-10 Normalized curves showing variation of peak rocking angle with the frequency of base 
excitation for different peak amplitude values for specimen TS5 

 

 

Figure 4-11 Normalized curves showing variation of peak rocking angle with the frequency of base 
excitation for different peak amplitude values for specimen TS6 
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Figure 4-12 Variation of peak rocking angle with frequency and amplitude of base excitation for different 
test specimens TS4, TS5 and TS6 

 

 

Figure 4-13 Variation of peak rocking angle and sliding displacement of the specimen TS4 for 0.2g 
amplitude and varying frequencies 
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These results unveiled novel findings of the rocking behavior of the flexible bodies. Important 

experimental findings are as follows:  

1. A strong relationship exhibited between free rocking frequencies of a flexible specimen 

and amplitude of base excitations required for uplift. Experimental results indicated 

uplift of flexible specimens TS4, TS5 and TS6, at an amplitude of base excitation, much 

lower than what is statically required for uplift initiation, as shown in Fig.4-9 to Fig.4-

11. This peculiar behavior was present only for the range of frequencies corresponding 

to ωr of TS4, TS5 and TS6 as can be verified from Figs.4-9 to 4-11 with Fig4-2/Table 

4-1. 

2. The explanation for such a behavior can be due to the capability of low amplitude 

rocking frequency pulses to excite elastic motions/vibrations in a flexible body and 

force uplift. Hence, this rocking motion was not only initiated by the amplitude, but by 

the frequencies of base excitation. This phenomenon of initiation of rocking motion at 

amplitudes much lesser than statically required to cause uplift in a flexible free-standing 

body is unique and not reported earlier. It can be asserted that, a flexible structure is 

vulnerable to uplift, if base excitation frequencies matches structure’s free rocking 

frequencies.  

3. There was an observable difference between the response of the specimens to seismic 

excitations and harmonic excitations of the same amplitude. For example, 0.2g PGA 

seismic excitation could initiate uplift in TS4 with a peak rocking angle of 0.0035 

radians as shown in Fig. 4-8. On the other side, a harmonic excitation of similar 

amplitude has generated a rocking angle of 0.026 radians for a frequency of 3Hz as 

interpreted from Fig.4-9, nearly a seven-fold increase in magnitude. This indicates the 

capability of a harmonic motion to build up and sustain rocking motion. The possible 
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reason behind this difference could be found in the very nature of seismic and harmonic 

excitations. On one side, the seismic motion is random in nature with diverse frequency 

contents. Every frequency in excitation has certain amplitude and signal power 

associated with it. On the other side harmonic motion has a single frequency associated 

with it and which has full signal power. Hence, it can be inferred that, where frequency 

induces rocking motion, effect of harmonic excitation in initiation and building up of 

motion is maximum.    

4. A systematic trend was observed between Xg and ωr of all the flexible test specimens 

(TS4, TS5 &TS6). As Xg decreased, magnitude of peak rocking angle (ϴmax) also 

decreased, as shown in Figs.4-9, 4-10 &4-11. Reduction in rocking angle was attributed 

to the reduction of inertial disturbing forces responsible for uplift. In addition to that, 

frequency band responsible for uplift was also reduced. For example, in the case of TS4 

as shown in Fig.4-9, frequency ratio (ω/ωn) band corresponding to uplift was varying 

from 0.27 to 0.75, for a value of Xg equals to 0.2g. This band reduced to a single value 

of ω/ωn = 0.62, for Xg = 0.1g. Moreover, a positive shift was observed in frequency 

values corresponding to maximum uplift angle with the decrease in values of Xg. For 

example, in Fig.4-9, value of ω/ωn corresponding to ϴmax/α = 0.086 and Xg= 0.2g was 

0.37, which increased to 0.62 for ϴmax/α = 0.02 and Xg= 0.1g. A similar trend was 

observed for other two cases also as shown in Figs.4-10 & 4-11. This observation can 

be explained by the fact that rocking frequencies of a body are inversely proportional 

to the amplitude of uplift. Hence, as the magnitude of peak base excitation decreases, 

the amplitude of uplift also decreases, hence excitation frequency corresponding to the 

peak of uplift angle increases. More importantly, for a flexible body, there exists a 

singular set of values, of minimum amplitude (Xg) and frequency of base excitation 

(ω), which has the potential to initiate uplift. These are termed as Xf and ωf .Below the 
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minimum amplitude value (Xf), excitation frequency values has no influence on uplift 

initiation. It is further shown that there exists a range of values of Xg where ωr of a 

flexible structure dominates the rocking response. This range is bounded on the upper 

side by the statically determined value of the amplitude of base motion required for 

uplift (Xs) and on the lower side by a value termed as Xf which can be evaluated 

numerically/experimentally.   

5. These observations have a direct effect on the validity of two-dimensional (Fig.2-2) and 

three-dimensional (developed in Section3.5) motion initiation criteria diagrams 

developed for a rigid body. Since frequency induced rocking phenomenon exists in a 

flexible body, these diagrams are not valid for a flexible body. Hence, they are required 

to be redeveloped for a flexible body. This subject is discussed in more details in 

Section4.3.   

6. It is important to note, that the widely referred two degrees of freedom, lumped mass, 

cantilever model available in the literature [50], failed to predict the functional 

relationship between the initiation of rocking motion and free rocking frequencies of a 

flexible structure. Acikgoz and Dejong [51]presented a graph (Refer Fig.4 of the 

reference paper) which highlighted that minimum excitation amplitude required for 

uplift of a flexible structure was lower than what is required for a rigid structure, 

particularly when base excitation frequency matches with fundamental modal 

frequency of the structure (ω/ωn=1). On the other hand, for high ratios of ω/ωn flexible 

structure required higher amplitudes to uplift. Experimental findings in our research 

highlighted the reduction in amplitude required for uplift for a range of frequencies 

corresponding to (ωr) but not up to the value of ωn (see Fig.4-9, 4-10 &4-11). At base 

frequencies higher than ωn, there was practically zero uplift (< 0.1mm) for the flexible 
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specimen. Hence it is clear, that simplified model used in numerical analysis by 

Acikgoz and Dejong was unable to correctly predict the dynamic behavior of three-

dimensional flexible bodies.    

7. The response of flexible specimens exhibited uplift at values of excitation frequencies 

matching with their free rocking frequencies as shown clearly in Fig.4-12. It was also 

observed from Fig.4-13 that for the values of frequencies corresponding to free rocking 

frequencies of TS4 viz. 3Hz to 6Hz rocking initialized. However, with the further 

increase of frequency up to the specimen’s fundamental modal frequency (8Hz) rocking 

motion vanished and sliding initiated.  

4.2.4.2  Response Amplification 

In many critical free-standing equipment, it is important to control accelerations and associated 

displacements when subjected to base excitations. For example, excessive accelerations at the 

top of an equipment used for a medical facility may render it unusable. Similarly, some loose 

items lying on top of shelves may be dislodged due to excessive accelerations and may hit 

adjacent components. Hence, it is always important to know the response amplification of a 

free-standing structure/equipment in terms of acceleration applied at the base. In case of a fixed 

flexible structure, it can be calculated as a transmissibility factor.Here, response amplification 

factor (AF) for flexible test specimens is evaluated, as the ratio of acceleration obtained at top 

of the structure to the applied base acceleration. Variation of amplification factor with the 

frequency of base excitation for rocking mode of motion is plotted in Fig.4-14 below. 
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Figure 4-14 Amplification factors for test specimens TS4, TS5 and TS6 in pure rocking motion 

 

Following important points were noted: 

1. In general, response amplification factors obtained were higher than unity for all the 

flexible test specimens. However, the minimum value observed was 1 for TS4, 1.2 for 

TS5 and 1.3 for TS6 at 10 Hz base excitation frequency.  

2. Acceleration amplification was observed to be dependent on slenderness of the 

specimens. With the decrease in slenderness and increase of rigidity of the specimens, 

amplification of acceleration increased. Less slender bodies (TS6) can easily transmit 

acceleration peaks generated due to impacts with the base, however, more slender 

bodies (TS4) reduces acceleration pulses transmission to the top of the body. Higher 

structural vibrations arising due to impact and better damping properties results in a 

lower transmission of impact accelerations to the top. 

3. Amplification factors for all the specimens reduced with the increase of the frequency 

of base excitations. Higher frequency of base motion is less effective in uplift initiation 



140 

 

because effective time a specimen sees peak base acceleration reduces drastically 

thereby reducing overall rocking motion and associated impacts causing lower AF. 

4.2.4.3  Overturning instability  

In dynamics of a free-standing rocking structure, it is critical to understand overturning 

phenomenon. Effect of the flexibility of a structure in determining overturning instability has 

been investigated. Here the objective was to experimentally evaluate overturning instability of 

a flexible test specimen TS4 subjected to sine pulse base excitations. As mentioned earlier in 

Section 3.3.4.1, the overturning curve was plotted partially with the help of the experimental 

data and rest with the help of FE simulations. Three-dimensional model of the test specimen 

was developed in a finite element software. FE model was benchmarked using available 

experimental results and then utilized for generating the overturning curve. Details of FE 

modelling and analysis along with the benchmarking results are given in Section- 4.4.  

The dimensionless overturning curve plotted for the flexible test specimen TS4 identifies 

various zones corresponding to Mode1 and Mode2 overturning failures as shown in Fig.4-15. 

It also identifies safe zone where there is no possibility of the overturning of the structure.  

In the amplitude/frequency space, two different modes of overturning failures and three 

different regions exist for a flexible rocking body. Lower frequencies (ω/p) of excitations 

starting from zero up to 0.35 correspond to a region where with the increase of amplitude value, 

the specimen transforms from stable rocking phase to overturning without any impact (Mode2 

failure). This region is shown as R1 in Fig.4-15. In the mid frequency region (0.35 to 4.1), with 

the increase of amplitude, a flexible body TS4 first transforms from a stable rocking motion to 

overturning with one or more impacts; then with further increase of amplitude finally overturns 

without any impact. This frequency region (0.35-4.1) is given by R2 in Fig.4-15. High- 

frequency region R3 (ω/p>4.1) has similar attributes as that of the R1 region.  
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Figure 4-15 Overturning curve for TS4 showing various regions of failures due to rocking instability 

 

4.2.5  Dynamics of a Pure Sliding Motion  

The base material used for the experimental set up was now changed to plywood to simulate 

sliding mode of motion. Similar to the experiments performed earlier for rigid specimens, a set 

of experiments were carried out to evaluate sliding behavior of flexible specimens. The 

objective of testing was to observe sliding dynamics and investigate effects of parameters like 

base motion characteristics and slenderness value on it.  

All the three test specimens (TS4, TS5 and TS6) were kept on a plywood plate fixed to the 

shaking table. Plywood surface was selected because of its evaluated lower value of the 

coefficient of friction (µs=0.15), which favors pure sliding motion. Synthetic time history used 

as a base motion was similar to the one used earlier for rigid specimens (TS1, TS2 and TS3) as 

shown in Fig.3-7. Acceleration time histories recorded by accelerometers located at the top of 
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the specimens and shake table are plotted in Fig.4-16. Variation of slip and rocking angles with 

time is shown in Fig.4-17 and Fig.4-18 respectively.  

 

Figure 4-16 Acceleration response recorded at (a) shake table, top of the specimens (b) TS4, (c) TS5 and 
(d) TS6 

 

Figure 4-17 Variation of sliding displacement with time for (a)TS4, (b)TS5 and (c) TS6 

 

Figure 4-18 Rocking angle variation with time for (a)TS4, (b)TS5 and (c)TS6 
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These results highlighted following important behavior of test specimens: 

1) Acceleration time histories recorded at top of the specimens TS4, TS5 and TS6 

indicated a significant reduction in accelerations. This signifies response 

reduction in the specimens. Quantitatively, peak accelerations recorded for TS4, 

TS5 and TS6 were around 0.5g. This indicates around one half reduction in 

accelerations. 

2) There was no effect of the slenderness of the specimens on peak acceleration 

response. All the specimens had same peak acceleration values (0.5g) despite 

variation in slenderness.  

3) Slip displacements for all the three specimens were obtained as shown in Fig.4-

17. Slip motion time history was, by and large identical for all the three 

specimens. However, a slight difference in peak slip displacement values was 

observed. For example peak slip displacement for TS4 was 0.0017m, TS5 was 

0.0012m and TS6 was 0.0015m. In this case, flexibility (stiffness) of the 

specimens has contributed towards the variation in sliding behavior.  

4) A peculiar behavior of the specimens was observed during the experiments. As 

per the input parameters, Xg =0.8g PGA and µs= 0.15, all the specimens were 

expected to follow pure sliding motion without any uplift. However, specimen 

TS4 exhibited uplift from the base and sliding cum rocking motion was 

observed. It can be seen from Fig.4-18 that significant rocking motion is present 

with the peak rocking angle value of 0.12 radians, which corresponds to an uplift 

of 36mm. This unexpected behavior requires further investigation. More 

experiments were carried out to further explore this phenomenon and results 

and discussions are given in the next section. 
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4.2.5.1  Sliding behaviour  

After initial random motion testing of the specimens, it was decided to subject them to 

harmonic base excitations. Specimens were subjected to a sinusoidal excitation of peak 

amplitude (Xg) equals to 0.8g and frequencies (ω) varying from 0.5Hz to 10Hz. Duration of 

harmonic wave was 5 secs. Details of tests performed are given in Table.4-3. Objective of 

testing was to observe effect of variation of base excitation frequency and slenderness of the 

specimens on sliding behavior.  

Table 4-3 Experiments performed to observe sliding behavior of test specimens 

Test 
Run 

Specimen Xs* 
(g) 

Input Base excitations 
Peak Amplitude(g)  
Frequencies(Hz) 

Output/Results 

1 TS4 0.15 0.8                  
0.5,1,2,3,4,5,6,7,8,9,10 

Sliding and rocking motion 
observed for 1Hz to 7Hz 
frequencies 

2 TS5 0.15 0.8                   
0.5,1,2,3,4,5,6,7,8,9,10 

Sliding and rocking motion 
observed for 7Hz-9Hz 
frequencies 

3 TS6 0.15 0.8                  
0.5,1,2,3,4,5,6,7,8,9,10 

Pure Sliding motion observed for 
all the frequencies 

Xs – Minimum amplitude required to initiate slip motion 
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Figure 4-19 Response time histories of test specimen TS4. (a ,c, e, g)- Response recorded for 2Hz and (b, 
d, f, h) - response recorded for 10Hz base excitation frequencies 

 

For brevity, experimental results for the specimen TS4 are plotted in Fig.4-19. Whereas, peak 

rocking angles and slip displacements are plotted in Fig.4-20 and Fig.4-21 respectively. The 

basic dynamic behavior for all the three specimens was similar and hence plotting response for 

one out of three is adequate for understanding.  
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Figure 4-20 Variation of peak rocking angle of specimens TS4, TS5 and TS6 with base excitation 
frequencies 

 

 

Figure 4-21 Variation of peak slip displacements of specimens TS4, TS5 and TS6 with base excitation 
frequencies 
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Following were the important findings from Fig.4-19 to Fig.4-21: 

1. A peculiar observation was presence of rocking motion in the response. For the given 

combination of coefficient of friction and amplitude of base motion, expected response 

was pure sliding motion as observed earlier in case of a rigid specimen in Section 3.3.5. 

However, a significant rocking motion was observed as shown in Fig.4-19(g) for 2 Hz 

frequency of excitation. This behavior resembles with the rocking phenomenon 

observed earlier in Section-4.2.4. Despite unfavorable conditions for rocking initiation 

low amplitude rocking motion initiated. To further clarify this phenomenon, refer Fig.4-

20. It can be clearly seen from the figure, that for base excitation frequencies 

corresponding to free rocking frequencies of TS4, rocking motion was observed. 

Similarly for the test specimen TS5, rocking motion was present in a narrow frequency 

range of 7 Hz to 9Hz. This frequency range is on the higher side of free rocking 

frequencies (ωr) of this specimen. This effect was prominent in specimens of higher 

slenderness values like TS4 and TS5. However, it was absent in specimen TS6. This 

indicates that more slender structure is susceptible to frequency induced rocking 

phenomenon.    

2. Similar to the observations of seismic motion testing presented in Fig.4-16, in general, 

acceleration responses at the top of the specimens were reduced. Acceleration records 

of accelerometer A2 of TS4 indicated significant reduction for 10Hz frequency as 

shown in Fig.4-19(d). In quantitative terms peak acceleration reduced to 0.4g which is 

half of the applied value. However, acceleration response at 2Hz base frequency 

presented no significant reduction as shown in Fig.4-19(c). Acceleration spikes were 

observed in Fig.4-19(c). These spikes correspond to impacts arising due to rocking 

motion. On comparing Fig.4-19(c) with Fig.4-19(g), it can be clearly seen that every 



148 

 

change in rocking direction led to impact and consequently spikes in acceleration time 

history. It is still interesting to notice, the presence of multiple spikes on every impact. 

The reason behind them is the free vibrations emanating from the site of impact and 

transmitting up to top of the specimen. Free vibrations associated with impact is a 

unique feature of a flexible body and were insignificant in the rigid body as seen earlier 

in Fig.3-19(c). 

3. Slenderness of the specimens has a significant effect on the frequency induced rocking 

behavior as seen in Fig.4-20, while it has no significance on overall sliding behavior. 

Slip displacement were observed to be independent of slenderness values as shown in 

Fig.4-21. However frequency of excitation has an influence on peak slip displacements. 

Slip value reduces from as high as 0.07m at 1Hz to 0.001m at 10Hz, almost a 70 fold 

reduction. 

4.2.5.2  Response Amplification  

Acceleration amplification for sliding motion was evaluated for all the three test specimens. 

Experimental results are plotted in Fig.4-22. Following important points can be observed: 

1. In general, for flexible specimens, acceleration amplification in sliding motion was 

lesser than unity. This indicates reduction in acceleration values transmitted to top of 

the specimens. However, for a single case of 2Hz frequency for TS4, its value reached 

unity. Reason for it was presence of frequency induced rocking (peak rocking angle = 

0.07radians) for that frequency. It can also be observed that AF value was constantly 

maintained at 0.62 for all the three test specimens. However, variation from this value 

was observed for particular frequencies where rocking motion in the specimen was 

observed. For example, for base excitation frequencies varying from 1-7Hz, AF of TS4 

was higher than 0.625. Similarly, for base excitation frequencies varying from 7-9Hz, 
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AF of TS5 was higher than 0.625. The reason for the same was presence of rocking 

motion, as observed in Fig.4-22, along with the sliding motion for these particular 

frequencies.  

2. Acceleration amplification was observed to be a nonlinear function of base excitation 

frequencies for all the test specimens.  

3. Sliding motion in flexible bodies has an inherent advantage of low response 

amplification and higher energy dissipation due to friction.  

 

Figure 4-22 Acceleration amplification factor variation with frequency of base excitation for TS4, TS5 

and TS6 

 

4.3 Motion Initiation Criteria Diagram for Flexible Bodies 

Experimental results highlighted peculiar behavior of a flexible body. Anomalous presence of 

rocking motion in the rest and sliding mode of motion, requires development of new motion 

initiation criteria diagram for a flexible body. As discussed earlier in Section3.5, two-
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dimensional motion initiation criteria diagram available in literature [62] is valid only for a 

range of frequencies below cutoff frequency plane of developed three-dimensional diagram 

(Refer Fig.3-33 and Fig.3-34). It was also observed that cutoff frequencies for any given state 

of a body, generally have higher values (>10Hz). In the case of a flexible body, it was observed 

that much below cutoff frequencies, a range of frequency exists (pertaining to free rocking 

frequencies of the specimen) where rocking phenomenon is predominant. Hence existence of 

rocking phenomenon as discussed in Sections-4.2.4 to 4.2.5 in rest and sliding state of motion 

is required to be incorporated in a redeveloped diagram. In the present research, two-

dimensional motion initiation criteria map is developed for a test specimen TS4 for a range of 

frequencies corresponding to free rocking frequencies (ωr) of the specimen. It is worth 

mentioning that outside this range of frequencies up to the cutoff frequency plane, motion 

initiation criteria diagram available in the literature [62] shall be valid. Numerical calculations 

using FE method were performed to develop motion initiation criteria diagram for a flexible 

body of four aspect ratio. Numerical simulation was carried out by exciting the specimen with 

harmonic waves of frequencies covering the range of free rocking frequencies of TS4. In this 

case, several numerical simulations were carried out for a frequency range of 1Hz to 7Hz, 

corresponding to ωr value of TS4. Position of boundary lines demarcating different zones was 

evaluated using sinusoidal excitation because it gives a conservative estimate over the 

seismic/random excitation. Experimental results carried out in Section-4.2.4 and 4.2.5, 

highlighted the fact that harmonic motion can induce higher uplift than the similar amplitude 

seismic motion. Various regions corresponding to different modes of motion for a flexible body 

can be seen in Fig.4-23.  

Flowing conclusions can be drawn from Fig.4-23: 
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1. Developed initiation criteria diagram has significant differences from the existing one. 

Effect of specimen flexibility can be readily observed from this figure. Boundary line 

demarcating transition between rest and rock region for a rigid body has moved to the 

left for a flexible body, thereby increasing effective rocking area. Hence, for a flexible 

body, rocking motion initiates at a lower amplitude of 0.1g instead of 0.25g for the 

geometrically similar rigid body.  

2. Boundary line demarcating transition between slide and slide/rock state has moved 

vertically downward thereby increasing effective slide/rock area. Moreover shifting 

of boundary between slide and slide/rock area indicates higher tendency of a flexible 

body to undergo a combined rocking and sliding motion than its rigid counterpart. 

These two observations adversely affect seismic stability of a flexible body because 

of reduction in available rest area.   

3. Developed initiation criteria diagrams bring out two distinct phenomenon. Firstly, 

amplitude induced sliding or rocking motion and secondly frequency induced rocking 

motion. The first phenomenon is well known in literature and is observed to be the 

governing factor in deciding initiation of motion from rest. On the other hand, second 

phenomenon is a novel outcome of this research. Frequency induced rocking was not 

known in the past and hence was not considered to effect dynamics of a flexible free-

standing body. This phenomenon has a predominant role in rocking initiation even at 

very low amplitudes. Induced low amplitude rocking motion leads to multiple impacts 

with the base. It is associated with two counteracting effects. Firstly, multiple impacts 

lead to energy dissipation via inelastic collisions, radiation damping and thermal 

effects. Secondly, sudden acceleration jumps arising due to impacts will lead to high 

value of acceleration amplification factors.  
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4. Frequency induced rocking leads to low amplitude rocking motion as observed in 

Fig.4-23 and discussed earlier in Sections 4.2.4 and 4.2.5. It cannot lead a 

body/structure to overturn. Hence this phenomenon is not a safety concern as far as 

overturning of the structure is concerned. On the other side, this may be very useful 

mechanism in dissipating ground energy pumped into the body via ground 

motions/base excitations. A frequency-controlled rocking can be an attractive and 

safer mechanism for energy dissipation in earthquake control of flexible structures. 

This can be a potential candidate for passive control of structures.    

5. Significant reduction in the stable region (rest state) of a flexible body is observed. 

This reduction is attributed to presence of additional frequency induced when 

compared to the Fig.2-2. Applicability of this diagram is for the frequency range 

corresponding to free rocking frequencies of the flexible body which are governed by 

geometrical properties like slenderness (AR), diagonal length(R), moment of inertia 

(I) and mass of the body.  

6. Presence of frequency induced uplift at an amplitude lower than statically required for 

uplift can have a destabilizing effect on the stability of a flexible body. There is always 

a possibility of subsequent building up of rocking motion, once initial uplift is 

available. Even if, this instability doesn’t lead to overturning, it can be a cause of 

higher accelerations at top of the body, arising due to multiple impacts with the base. 

7. In the traditional diagram available for a rigid body as shown in Fig.2-2, the horizontal 

line given by µs= B/H demarcates transition between pure sliding and a combination 

of sliding and rocking mode of motion. However in Fig.4-23, this line has shifted 

downwards from 0.25g to 0.15g. That means that sliding motion is restricted only for 

low values of coefficient of friction (µ<0.15).  
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8. A flexible body has an anomalous tendency of uplift at lower amplitudes if frequency 

of base excitation excites its free rocking phenomenon. Free vibrations caused by base 

excitation frequencies causes uplift and lead to low amplitude rocking motion both in 

the rest state or sliding state of motion.  

 

Figure 4-23 Motion initiation diagram for a flexible test specimen TS4 (AR=4, p=2.9, α=0.24), showing 
different phases of motion 

 

4.4 Finite Element Modelling and Analysis 

Three-dimensional finite element models of the test specimens were used for obtaining 

numerical solution. Three-dimensional finite element models of all the three test specimens 

viz. TS4, TS5 and TS6 were prepared in FE software. Part modelling and analysis technique is 

discussed in the next section. 
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4.4.2 Part modelling 

All the three test specimens were fabricated out of mild steel material. Details of geometric and 

physical properties are already given in Table.4-1. As the thickness is less in comparison with 

longitudinal and lateral dimensions, shell elements were used for modelling top and bottom 

plates while three-dimensional beam elements were used for modelling four angles joining top 

and bottom plates.   

A four node general-purpose shell element (S4R) with reduced integration and hourglass 

control was chosen. A three-dimensional beam element B31 was used for modelling four 

angles of L shaped section connecting top and bottom plates. Timoshenko beam (B31) allows 

for transverse shear deformation. This can be used for thick as well as slender beams. B31 

beam is linearly interpolated and well suited for cases involving contact, such as the laying of 

a pipeline in a trench or on the seabed or the contact between a drill string and a well hole, and 

for dynamic versions of similar problems (impact).  

In the present case, floor was very stiff in comparison with the test specimens and hence was 

modelled with rigid element R3D4, which is a three-dimensional, 4-noded bilinear 

quadrilateral element was selected for analysis.   

All the three test specimens were assembled on top of the shake table as shown in Fig.4-24. 

Contact constrains were applied at the contacting surfaces between floor and specimens. Next 

section describes more about the interactions and boundary conditions applied. Material 

properties of test specimens were similar to that given earlier in Table.3-7. 

4.4.3 Contact interactions and boundary conditions  

While creating assembly of three test specimens and rigid floor, contact constraint was defined. 

In present case, surface based contact formulation was used for defining the contact. Rigid floor 

was selected as a master surface and contacting surfaces on the specimens were selected as 
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slave surfaces. In addition to the contacting surfaces between floor and the test specimens, four 

connecting beams perpendicular to the direction of base excitation (i.e. X-axis), lying in the 

YZ plane, were also selected as slave surfaces. They were selected because of the possibility 

of contact with the master surface in case of overturning of the specimens.  Contacting surfaces 

are shown with dots in the Fig.4-25. Contact properties were defined in the normal and 

tangential directions. In tangential directions, Coulomb friction model was used to relate the 

maximum allowable frictional (shear) stress across an interface to contact pressure between 

contacting bodies. Similarly, in normal direction, hard contact was selected to account for 

normal pressure/over closure relationship. For numerical enforcement of contact constraints in 

tangential and normal direction, Penalty algorithm was used. Two configurations (path) based 

contact tracking scheme was used in a finite sliding formulation with surface to surface 

discretization. However node to surface discretization was used for generating contact between 

beam element and the rigid surface. All the rigid bodies motion of floor were constrained and 

actual recorded time histories of base excitations were applied at reference node of the floor. 

Gravitational force was applied as a body force to the entire model. 
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Figure 4-24 Finite element model of test specimens TS4, TS5 and TS6 

 

 

 

Figure 4-25 FE Model of test specimens standing freely on the rigid floor. Contact interactions and 
boundary conditions are indicated. 

 

4.4.4 Modal Frequency Analysis 

To evaluate fundamental dynamic property of test specimens, it is important to know 

fundamental frequencies of the test specimens. Natural frequencies of the test specimens in the 
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fixed based boundary condition were evaluated using FE software. Lanczos solver was used 

for eigenvalue extraction. The fundamental frequencies of TS4, TS5 and TS6 are tabulated in 

Table.4-4. First three fundamental mode shapes of specimens TS4, TS5 and TS6 are shown in 

Figs.4-26, 4-27 & 4-28 respectively. Displacement gradients are shown by color scheme, 

whereas blue color indicates lowest displacement value and red color indicates the highest.  

Table 4-4 Modal frequencies of test specimens TS4, TS5 and TS6 

Mode Modal Frequencies(Hz) 
TS4 TS5 TS6 

1 7.8 11.8 21.4 
2 7.8 11.8 21.4 
3 15.7 24.3 44.5 

 

 

 

Figure 4-26 Fundamental mode shapes of TS4. (a) un-deformed shape, (b) first mode shape, (c) second 
mode shape, (d) third mode shape 

(a) (b) (c) (d) 
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Figure 4-27 Fundamental mode shapes of TS5. (a) un-deformed shape, (b) first mode shape, (c) second 
mode shape, (d) third mode shape 

 

 

 

Figure 4-28 Fundamental mode shapes of TS5. (a) un-deformed shape, (b) first mode shape, (c) second 
mode shape, (d) third mode shape 

 

4.4.5 FE Model Validation 

Three-dimensional finite element model was utilized to perform numerical calculations on test 

specimens TS4, TS5 and TS6. Implicit solver was used to carry out numerical solution. Nodal 

accelerations and displacements at locations where actually sensors were installed during shake 

table experiments were obtained. 

In order to validate numerical model, test specimen TS4 was selected. 

Experimental results obtained for sliding mode of motion of TS4 are compared with the FE 

analysis results. Experimental results for the test run-1 of Table.4-3 are used for benchmarking 

(a) (c) (d) (b) 

(a) (b) (c) (d) 
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analysis results. Peak slip displacements, peak rocking angles and acceleration amplification 

factors for the test run-1 are compared in the Figs.4-29, 4-30 and 4-31 respectively. Following 

are the observations: 

1. In general finite element analysis results closely matched experimental values. 

Maximum deviation from the experimental results for peak slip displacements was 7.6 

percent for 3Hz frequency as shown in Fig.4-29. For all other frequencies deviation was 

lesser than this. 

2. For peak rocking angle, maximum deviation of 8.3 percent was observed at 6Hz base 

excitation frequency. Deviations at all other values was observed to be lesser than that.  

3. Similarly for acceleration amplification factors, maximum deviation of 10 percent was 

observed at 2Hz frequency. Rest all points were well within this range. 

Comparison of analysis results with the available experimental data indicated a good 

coherence. Hence the developed FE model is suitable for performing numerical calculations 

for test specimens TS4, TS5 and TS6. Moreover, model validation results of TS4 are valid for 

TS5 and TS6 also, because of similarity in used modelling and analysis methodology. 
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Figure 4-29 Comparison of maximum slip displacements obtained from FEA and experimental results 

 

 

 

Figure 4-30 Comparison of maximum rocking angles obtained from FEA and experimental results 
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Figure 4-31 Comparison of acceleration amplification factors obtained from FEA and experimental 
results 

 

4.5 Comparison of Dynamics of Rigid and Flexible bodies 
 

In this section, comparison is drawn for geometrically similar pair of test specimens viz. TS1 

and TS4, TS2 and TS5, TS3 and TS6. Dynamic behavior of these specimens under sliding and 

rocking mode of motion is compared. Different parameters important for stability and integrity 

are compared and presented.  

4.5.2 Sliding Mode of Motion 

For a free-standing nonstructural component (rigid or flexible), comparison is drawn for 

important parameters of sliding mode of motion.  

4.5.2.1  Peak Response 

Peak slip displacement is compared for geometrically similar test specimens. For the harmonic 

testing at Xg=0.8g (peak base acceleration) and ω = 0.5Hz to 10Hz, comparison is carried out 
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between rigid and flexible test specimens. Fig.4-32 and Fig.4-33 presents variation of peak slip 

displacements and peak rocking angles respectively for all the six test specimens. 

 

Figure 4-32Variation of peak slip displacement of test specimens with frequency of excitation 

 

 

Figure 4-33 Variation of peak rocking angle of test specimens with frequency of excitation 
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Following are the important observations: 

1. In general, there was a small difference observed between sliding behavior of 

geometrically similar rigid and flexible specimen. For geometrical pair of TS1 and TS4, 

maximum variation in peak slip was 0.006m, 0.010m and 0.007m at 1Hz, 2Hz and 3Hz 

frequency respectively. For all other frequencies difference was less than 0.005m as 

shown in Fig.5-1. This indicates that flexibility of a specimen effects its sliding 

dynamics. Rigid specimen TS1 consistently slipped higher displacements than the 

geometrically similar flexible TS4 for the frequencies ranging from 1Hz to 7Hz. For 

frequencies higher than 8Hz, slip difference was minimal (<1mm).It is interesting to 

note that for frequencies ranging from 1Hz to 7Hz, specimen TS4 was undergoing 

sliding cum rocking motion which can be seen by comparing Fig.4-32 and Fig.4-33. 

Moreover, these frequencies lie in the range of specimen’s free rocking frequencies and 

hence frequency induced rocking motion was present as discussed in Section 4.2.5.1. 

Physical explanation of higher slip displacement of a rigid specimen TS1 compared to 

a flexible specimen TS4 for a particular range of frequencies corresponding to free 

rocking frequencies can be provided by energy balance approach. Energy input to the 

shake table in form of base excitations was used in generating sliding or rocking motion 

and a part of it is dissipated via frictional resistance or impact during rocking. In case 

of a rigid specimen only frictional sliding was the mechanism available for energy 

dissipation. On the other hand, in case of flexible specimen, due to presence of rocking 

motion for certain frequencies, additional impact mechanism was available for energy 

dissipation. Moreover, there was a presence of structural damping which also acts as an 

energy dissipating mechanism, although much smaller than impact. Hence, due to 

presence of frequency induced rocking motion, effective slip displacement of flexible 

specimen reduced.   
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2. Slip displacements of TS2 and TS5 were observed to be identical and difference was 

less than 0.002m for all the frequencies except 7Hz, 8Hz and 9Hz. At 7Hz, 8Hz and 

9Hz, difference in slip displacement was 0.0065, 0.005 and 0.0072m respectively. It 

can be observed that these frequencies lie in the range of free rocking frequencies of 

TS5, and hence frequency induced rocking motion was present as shown in Fig.4-33. 

Using the energy balance approach discussed in the first point, this difference of slip 

behavior can be justified. 

3.  Test specimens TS3 and TS6 displayed identical slip behavior. Difference of slip 

displacement for entire range of frequencies was less than 0.001m. It is worth noting 

that flexible specimen TS6 did not initiate rocking motion in the range of test 

frequencies as shown in Fig.4-33. Hence, no difference in sliding behavior of specimens 

was observed. 

4. Test response of geometrically similar flexible and rigid test specimens highlighted an 

important property. Sliding behavior of a rigid body is exactly identical to geometrically 

similar flexible body provided that frequency induced rocking behavior is not present. 

In case of presence of frequency induced rocking motion, significant dissimilarities are 

possible.  

5. Effect of slenderness of rigid specimens for the same base dimensions was limited. 

Maximum variation in slip displacement observed was 0.005m for TS1 and TS3 at 1Hz 

frequency. For all other frequencies difference was less than this value. Similarly, for 

flexible test specimens maximum difference in peak slip displacement between TS3 

and TS6 was 0.007m at 2Hz frequency. 

6.  An important difference between sliding behavior of rigid and flexible bodies is 

presence of rocking motion with sliding. As shown in Fig.4-33, flexible specimen TS4 

was rocking for a wide range of frequencies (1Hz-7Hz), while geometrically similar 
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rigid specimen TS1 was not rocking at all. It can also be observed that none of the rigid 

specimens TS1, TS2 and TS3 initiated rocking motion while slender flexible specimens 

TS4 and TS5 initiated rocking motion. Moreover, it can also be observed that less 

slender flexible specimen TS6 behaved like rigid body and did not initiate uplift. 

4.5.2.2  Acceleration Amplification  

After observing differences in peak response quantities for sliding motion, now acceleration 

amplification factors of all the six specimens are compared. Fig.4-34 displays variation of 

amplification factors with frequency of base excitations. Following important points are 

observed. 

1. A large variation in amplification factor was observed for geometrically similar TS1 

and TS4 specimens. AF value for TS1 was 0.19 irrespective of frequency of excitation. 

On the other side AF value for TS4 varied from as high as 1 for 2Hz to 0.62 for 10Hz 

frequency as shown in Fig4-34. It means AF value of flexible specimen was dependent 

on frequency of base excitation, however same was independent of base excitation for 

a rigid specimen. The main reason behind high values of AF for TS4 was presence of 

frequency induced rocking motion.  

2. AF value for TS5 was also observed to be dependent of frequency of base excitations. 

However variation in value was not much as was in case of TS4. On the other hand, AF 

value for geometrically similar TS2 remained at 0.19 irrespective of frequencies. It can 

be generalized that amplification factor of a rigid body for given contact conditions, is 

independent of slenderness and frequency of base excitations. On the other side, 

amplification factor of flexible body for same set of contact conditions is dependent of 

slenderness and frequency of base excitations. Moreover, in spite of presence of rocking 

motion or not, flexible specimens had higher AF values than geometrically similar rigid 
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specimens. The physical explanation for such a behavior is presence of free vibrations 

in a flexible specimen, even in case of pure sliding motion. These free vibrations are 

not sufficient to cause uplift but they can increase acceleration values transmitted to the 

top of a flexible specimen.        

 

 

Figure 4-34 Variation of amplification factor of test specimens with frequency of base excitation 

 

4.5.3 Rocking Mode of Motion 

After comparing dynamic response of geometrically similar rigid and flexible test specimens 

in a sliding mode of motion, now differences in rocking mode of motion are discussed. Four 

main parameters are compared viz. initiation of motion, peak response, acceleration 

amplification and overturning instability. Next sections gives detail for the same. 
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4.5.3.1  Motion initiation  

Initiation of rocking mode of motion for geometrically similar pairs of test specimens under 

similar boundary conditions are compared. Rocking initiation diagrams for geometrically 

similar pairs of TS1 and TS4, TS2 and TS5, TS3 and TS6 are plotted in Fig.4-35, Fig.4-36 and 

Fig.4-37 respectively as given below.  

 

 

Figure 4-35 Non dimensional graph showing variation of peak rocking angle with frequency ratio for TS1 
and TS4 
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Figure 4-36 Non dimensional graph showing variation of peak rocking angle with frequency ratio for TS2 
and TS5 

 

 

Figure 4-37 Non dimensional graph showing variation of peak rocking angle with frequency ratio for TS3 
and TS6 
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With respect to Figs. 4-35 to 4-37, following are the conclusions: 

1. Flexible specimen (TS4) initiated rocking motion at an amplitude of base excitation as 

low as 0.1g. However, it is interesting to note that geometrically similar rigid specimen 

TS1, could not initiate rocking motion up to 0.25g amplitude of base excitation. This 

observation highlights importance of free rocking frequencies which were responsible 

for this uplift initiation. 

2. Similarly, flexible specimen (TS5) initiated rocking motion at an amplitude of base 

excitation as low as 0.15g. On the other side, geometrically similar rigid specimen TS2, 

could not initiate rocking motion up to 0.33g amplitude of base excitation. Once again 

this was due to frequency induced rocking motion. 

3. Similar to other two cases, flexible specimen (TS6) initiated rocking motion at an 

amplitude of base excitation as low as 0.25g but geometrically similar rigid specimen 

TS1, could not initiate rocking motion up to 0.5g amplitude of base excitation. These 

observations indicate importance of frequency induced rocking phenomenon in flexible 

bodies. It is further highlighted that slenderness of the body has no direct effect on 

initiation of rocking motion. Free rocking frequencies of rigid specimens could not 

induce uplift, although there values were comparable to those for flexible specimens. 

 

4.5.3.2  Peak Response  

After observing differences in uplift behavior of test specimens, now peak rocking angles of 

geometrically similar specimens for different frequencies of base excitations are compared. All 

the specimens were subjected to harmonic excitation of Xg=0.8g and ωr= 0.5Hz to 10Hz. 

Results of geometrically similar TS1 and TS4, TS2 and TS5, TS3 and TS6 specimens are 

plotted in Fig.4-38, Fig.4-39 and Fig.4-40 respectively as shown below.  
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Figure 4-38 Comparison of peak rocking angles of specimens TS1 and TS4 

 

 

Figure 4-39 Comparison of peak rocking angles of specimens TS2 and TS5 
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Figure 4-40 Comparison of peak rocking angles of specimens TS3 and TS6 

 

 Following important points can be noted: 

1. Specimens TS1 and TS4 showed similar rocking behavior and overturned for 

frequencies of base excitations from 0.5Hz to 2Hz as shown in Fig.4-38. For 

frequencies higher than 2Hz, there was a marginal difference in peak rocking angles of 

both the specimens. Maximum difference observed was 0.02 radians (around 1 degree) 

at 3Hz frequency. With the increase of frequencies this difference reduces to a meagre 

value of 0.001radian.For a particular frequency, flexible specimen rocked slightly more 

than the geometrically similar rigid specimen. Frequency of base excitation had a 

reducing effect on peak rocking angles. With an increase of frequency from 3Hz to 

10Hz angle reduced by tenfold. This is consistent with the earlier observations made in 

Chapters-3 and 4 and indicates presence of cutoff frequencies above which no rocking 

motion can exist. Here it is important to highlight that flexibility of the specimen has 
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very limited effect on rocking behavior, for the entire range of frequencies for a given 

amplitude and base conditions.  

2. Specimens TS2 and TS5 showed similar rocking behavior up to 2Hz frequency and 

both overturned. For frequencies higher than 2Hz, both the specimens had similar 

rocking behavior as shown in Fig.4-39. Maximum difference of 0.02 radians was 

observed at 4Hz, while it was much lesser at other frequencies. Frequency of excitation 

again had a reducing effect on rocking angles. 

3. Specimens TS3 and TS6 (refer Fig.4-40) also showed similar rocking behavior up to 

1Hz frequency and both overturned. For rest of the frequencies differences was meagre, 

maximum being 0.03 radian at 2Hz. 

Hence it can be interpreted from these results that rigid and flexible specimens rocking 

behaviors are identical except for the differences in overturning (Refer Subsection 4.5.2.4) and 

rocking initiation behavior ((Refer Subsection 4.5.3).  

4.5.3.3  Acceleration Amplification  

After discussing differences in peak response quantities for rocking motion, now acceleration 

amplification factors of all the six specimens are compared. Fig.4-41 displays variation of 

amplification factors with frequency of base excitations. AF corresponding to overturning are 

not plotted, since they have very high values. Rest of the points in rocking regions are plotted 

in the graph. Following important points can be observed. 

1. At a fixed base amplitude, acceleration amplification factor for a rigid specimen TS1 is 

higher than its flexible counterpart TS4, for all frequencies of base excitation. This 

difference has a value of 0.3 at 2Hz which decreases to zero at 10Hz. At 10Hz, 

amplification factor graph of both the specimens reach a value of unity asymptotically. 

Rigid specimen amplified base acceleration higher than the flexible one. This behavior 
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can be explained by the presence of energy dissipating damping mechanism in a flexible 

body. Moreover, a flexible body can absorb a significant amount of energy by local 

elastic/plastic deformations during impact and hence generate a milder acceleration 

spike. This results in lower acceleration amplification and transmission to top of the 

body. 

2. Similarly, AF for TS2 was much higher than the flexible counterpart TS5. The 

difference observed was as high as 4 at 2Hz frequency which reduced to 0.3 at 10Hz as 

shown in Fig.4-40. Higher rigidity and smaller dimension of TS2 led to higher 

acceleration amplification compared to TS1. 

3. AF for TS3 was the highest and reached a value of 11 at 2Hz frequency. On the other 

side, flexible counterpart TS6 had a value of 4. That means the difference in AF was as 

high as 7. In this case also AF value decreased with increasing frequency, however even 

at 10Hz frequency AF for TS3 was 2. This highlights an important property of rigid 

bodies. In case of rocking rigid bodies applied base acceleration can be amplified 

manifold at the top. This observation has a significant effect on integrity and 

functionality of any component mounted/located at the top location. 
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Figure 4-41 Acceleration amplification factors for all the specimens TS1 to TS6 

 

4.5.3.4  Overturning Instability 

It shall be interesting to compare overturning behavior of geometrically similar rigid and 

flexible bodies. For this comparison, TS1 and TS4 were selected. Both are geometrically 

similar with equal value of slenderness (α=0.24). Overturning curves of both the specimens are 

plotted in a single graph as shown in Fig.4-42. Following are the observations with respect to 

graph. 

1. For low frequency region (ω/p <0.3), rigid specimen TS1 fails in Mode-2, if amplitude 

of base excitation is increased. Flexible specimen TS4 also exhibits similar behavior 

and fails in Mode-2 with the increase of amplitude of base excitations. However, in 

case of TS4 the low frequency range is higher (ω/p <0.35).  In this region slope of curve 

for TS4 is lesser than TS1. This means that for a given frequency, it requires higher 

amplitude to overturn a rigid specimen (TS1) than the flexible one (TS4).   

2. In mid frequency range both the specimens first undergo Mode1 failure and then Mode 

2 failure with the increase of amplitude. This frequency range differs for both the 
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specimens. For TS1, it’s between 0.3 and 3.3, while it’s 0.35 to 4.1 for TS4. In this 

frequency range, higher amplitudes are required to cause Mode2 failures then the low 

frequency range. However, presence of Mode1 failure reduces stability. It was observed 

during experiments, that Mode1 failure takes larger time than the Mode2 failure, which 

means if base excitation is present continuously for a required minimum time than only 

the Mode1 failure takes place. Moreover, Mode1 failure was observed to be 

accompanied by multiple rocking cycles and subsequent impacts with the base. In case 

of a flexible specimen, area corresponding to Mode1 failure is higher than 

geometrically similar rigid specimen. This means that in a mid-frequency range, 

flexible specimens has a higher tendency for Mode1 failure than the rigid specimen.  

3. At higher frequencies, ω/p>3.3 for TS1 and ω/p>3.3 for TS4, both the specimens 

overturn with Mode2 failure with increase of acceleration value. Generally, it requires 

very large accelerations (A/gtanα> 48 for TS1 and A/gtanα> 56 for TS4) to overturn 

the specimens at higher frequencies. Usually such high amplitudes are not encountered 

in a seismic excitation.  

 

Figure 4-42 Overturning curves of geometrically similar test specimens TS1 and TS4 
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4.5.4 Motion Initiation Criteria  

As discussed in Chapters 3 and 4, significant differences were observed in motion initiation 

criteria’s of rigid and flexible specimens. 2D and 3D plots of motion initiation criteria diagrams 

for TS1 were already shown in Figs.2-3 and 3-33 respectively. Similarly, 2D plot for TS4 was 

shown in Fig.4-21. Now, differences between these plots will be discussed in the following: 

1. In two dimensions, a rigid block TS1 can undergo three possible modes of motion 

from rest viz. sliding, rocking and a combination of sliding and rocking.  Boundaries 

corresponding to various modes of motion are indicated in Fig.2-2 and Fig.3-33. In 

case of a rigid block, frequency of base excitation was also found to play an important 

role in determining initiation of a particular mode of motion and hence a 3D plot 

(Fig.3-33) was prepared to include effect of frequency as a third axis. It was observed 

that above a critical value of frequency (cut off frequency) a state of no motion exists. 

However, existing boundaries as shown in Fig.2-2 were observed to be valid below a 

plane defined by cutoff frequencies (Refer Fig.3-34).  On the other side, in case of a 

flexible body TS4, existing boundaries in the two-dimensional map (Fig.2-2) were 

found to be dependent on frequency of base excitation, even at a values well below 

cutoff frequencies. Hence a new two-dimensional plot was prepared as shown in Fig.4-

21. Interestingly, there were few major differences between Fig.2-2 for TS1 and Fig.4-

21 for TS4. The foremost important difference was leftward shifting of boundary 

demarcating rest and rocking mode of motion. For a rigid block TS1, this boundary 

was defined by a vertical line Xg= g tanα. This boundary was found to be incorrect for 

a flexible body TS4. Experimental findings in Chapter-4, highlighted the presence of 

rocking motion and its effect on initiation of rocking motion from rest state. Flexible 

specimen started rocking at an amplitude of base excitation lesser than that given by 
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the vertical line Xg= g tanα. Hence, for TS4 this line has shifted to 0.1g. That means a 

negative shift of 0.15g from the existing value of 0.25g. This observation has a 

significant effect on stability of a flexible body in comparison to a rigid one. Due to 

this negative leftward shifting of the boundary, rest region for TS4 has considerably 

reduced. In other words, it can be interpreted that a flexible body is more prone to 

rocking initiation compared to a geometrically similar rigid body.  

2.  For a flexible specimen TS4, presence of rocking motion was observed in the region 

pertaining to sliding mode of motion. This means, when a rigid specimen TS1 was 

sliding its counterpart TS4 was undergoing a combination of sliding and rocking 

motion. The horizontal line given by µs= B/H which demarcates transition between 

pure sliding and a combination of sliding and rocking mode of motion for a rigid body 

TS1 was shifted vertically downwards for TS4. Now after this shift, transition from 

slide/rock mode to sliding occurred at µs=0.15, instead of the earlier value of 0.25. 

This indicates an increase in combination of sliding and rocking motion for the body. 

As discussed earlier, presence of rocking motion in the sliding mode increases 

acceleration amplifications. This observation is also significant from the stability point 

of view, since presence of rocking motion in sliding mode of motion adds concern for 

overturning check.   

3. Motion initiation diagram for a flexible body has significantly lesser available rest area 

than its rigid counterpart. It has the highest rocking area and then slide/rock area. This 

indicates potentially unstable nature of a flexible body in terms of motion initiation. 
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4.6 Outcomes and Discussions 

In this chapter, results of systematic experimental work performed on flexible test specimens 

of different aspect ratios was presented. Research carried out highlighted following specifics 

of dynamic behavior of flexible test specimens subjected to base excitations: 

Dynamics of free-standing flexible bodies/NSC was studied using simple test models. 

Experimental and numerical studies highlighted novel findings. It was observed that initiation 

of rocking motion from rest state is a strong function of free rocking frequencies of a flexible 

body. For a specific set of base excitation frequencies corresponding to free rocking 

frequencies of a body, initiation of rocking motion is possible for an amplitude of base 

excitation, lower than statically required for uplift initiation. This observation can have 

significant repercussions of the stability of a flexible free-standing bodies. Initial uplift may be 

further amplified by any subsequent base excitation and thus may lead to even overturning of 

the body. 

In addition to that, presence of rocking motion was observed in otherwise sliding mode 

of motion. This phenomenon was again dependent of frequencies of base excitations and was 

present only for frequencies in the range of free rocking frequencies. This observation has a 

direct effect on acceleration amplification factors and moreover, on energy dissipation due to 

impacts in addition to frictional dissipation. 

Motion initiation criteria diagram for a flexible test specimen of four aspect ratio was 

developed. Effect of flexibility of the body on existing boundary conditions was demonstrated. 

Shifting of boundaries corresponding to transition from rest to rocking and Slide/rock to sliding 

mode of motion was observed. Reduction in area corresponding to rest state was observed. 

This can have an adverse effect on seismic stability of the body. 
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Various stability parameters like motion initiation, overturning instability, 

amplification factors, sliding and rocking dynamics were investigated and compared for 

geometrically similar rigid and flexible test specimens. Next chapter shall highlight seismic 

stability of an actual safety related component known as a glove box. 
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CHAPTER 5 SEISMIC STABILITY OF A MECHANICAL 

CONTAINMENT SYSTEM: A GLOVE BOX  

 

5.1  Introduction and Outline 

Earlier chapters (Chapters3 and 4) brought out vital information about the dynamics of free-

standing rigid and flexible bodies subjected to base excitations. Simple test specimens were 

analyzed to understand basic dynamic behavior of these bodies. Effects of variation of different 

system parameters on stability and integrity of such bodies was contemplated. Outcomes 

signified fundamental differences in response of a rigid and flexible body. By now, it is clear 

that both the cases shall be treated separately and appropriate solution technique is required to 

solve contact-impact dynamics problem arising due to base excitation. Now, in light of these 

findings, dynamics of a complex mechanical structure known as a glove box, shall be 

excogitated.  

Nuclear facilities across the world use glove boxes as a primary containment structure for 

handling radiotoxic materials. In a fuel fabrication facility, three levels of confinements are 

provided for the safe handling of radiotoxic materials viz. tertiary, secondary and primary 

confinement. Tertiary confinement is provided by the outer civil structure of the facility. 

Secondary confinement is provided by the inner civil structure and ventilation system whereas 

primary confinement is provided by the glove box. Glove boxes (GB) are designed as Class I 

component as per the ASME Section III NB guidelines [72]. It is a safety related mechanical 

structure provided with ventilation and pressure regulatory system to maintain internal negative 

working pressure. Generally, it acts as a leak tight system with very low permissible leak rates 

of the order of 0.05% of its volume per hour as given by the relevant standards [60] [61] [2]. It 

is fabricated out of heat treated and annealed stainless steel sheets. Present research focuses on 
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glove boxes used in fuel fabrication facilities in India. Generally, they are not anchored to the 

ground due to various operational and maintenance reasons and hence stands freely on floor as 

shown in Fig.5-1. A negative pressure of 250 N/m2 is maintained with the help of a ventilation 

system. Glove ports and gauntlets are provided through which process and maintenance 

operations are performed. These boxes are anchored to a mild steel framework (stand) through 

bolts and the framework is placed freely on the floor. Generally they are arranged in series, 

wherein, a material transfer tunnel interconnects them to each other (see Fig.5-1). Dimensional 

details of a typical glove box is given in Table.5-1. Glove box is a classic example of a 

freestanding structure used in a nuclear industry.    

  As a part of research work carried out for this doctoral program, it is required to assess 

seismic stability and integrity of glove boxes. As mentioned earlier, glove box is a complex 

mechanical system which has various other auxiliary systems attached to it. Although it is 

standing freely on the floor, it has various piping like exhaust piping, service piping etc., which 

connects various service headers supported on the roof with the glove boxes. Consequently, as 

such it cannot be considered as a free-standing structure. However on the premise of a 

pragmatic assumption, it can be assumed as a freestanding structure. The underlying 

assumption here is that a flexible long piping connect boxes with the main header. Hence, in 

lieu of available flexibility in the piping system, restraining of free rigid body motions is 

limited, and thus can be safely ignored. Further, it is important to note that glove boxes are also 

used in different configurations. One of the configuration or layout is shown in Fig.5-1, 

whereas many boxes are interconnected to each other via material transfer tunnel. In another 

configuration, glove boxes are used as a standalone boxes with no interconnection. Hence 

formulation and solution of this problem requires deep excogitation. In this chapter, we will 

deliberate numerical formulation and solution for the case of a single standalone glove box 

system. However, case of multiple interconnected glove boxes will be discussed in the next 
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two chapters (Chapter-6 and Chapter-7). Finally, as an outcome, a generalized formulation and 

solution methodology will be proposed to help designers in deciding on anchoring of glove 

boxes. 

Section 5.2 of this chapter gives detail of various fundamental dynamic properties of a glove 

box structure. Then, Section 5.3 presents numerical formulation and solution technique for the 

case of a single standalone glove box using finite element software.  

Section 5.4 presents results and findings on seismic stability assessment of a glove box 

structure. A parallel is drawn between the cases of a flexible body mentioned in Chapter-4 with 

that of a glove box. Then, Section 5.5 presents a novel methodology for evaluation of slip 

distance of a freestanding body. Developed method is valid only for a rigid body under sliding 

mode of motion. However it gives good conservative results of final slip displacement. 

Section 5.6 presents result on validation of numerical methods used in this chapter.  

In Section 5.7, motion initiation criteria diagram for a glove box structure is developed. This 

can be used as an effective tool for decision making on anchoring of the glove boxes with the 

floor. Finally, Section 5.8 brings out important observations and conclusions made from the 

systematic study carried out in this chapter. 
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Figure 5-1 A fuel fabrication laboratory showing various glove boxes freely standing on the floor 

 

Table 5-1 Dimensional details of a glove box structure 

Glove box shell(top structure) 
Length(m) Width(m) Height (m) Thickness(m) Material of 

construction 
1 1 1 0.003 Stainless steel 

(304) 
Bottom supporting plate 

Length(m) Width(m) Thickness(m) Material of 
construction 

0.960 0.960 0.009 Mild steel 
Carriage (stand) 
 
Length(m) Width(m) Height (m) Thickness(m) Material of 

construction 
1 1 1 0.006 Mild steel 

5.2 Dynamic Properties Evaluation  

Before assessing seismic stability of a glove box system, it is required to find out its 

fundamental physical and dynamic properties. Free rocking frequencies (ωr) and fundamental 

Material transfer port  

Stand (Carriage)  

Ventilation lines  Glove ports  
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modal frequencies (ωn) of a glove box were evaluated. Moreover, motion initiation criteria 

diagram for the case of a glove box was prepared.   

5.2.1 Free Rocking and Natural Frequencies 

Novel findings in Chapter-4 highlighted significance of free rocking frequency in initiating 

rocking instability in a freestanding flexible body. Hence it is imperative to first study free 

rocking characteristics of a glove box. Various important properties of a freestanding body like 

critical angle (α), frequency parameter (p), Moment of inertia (I) and diagonal length (R) were 

evaluated. Equivalent two-dimensional model is shown in Fig.5-2, which gives various 

important properties of a GB.   

To evaluate free rocking frequencies, initial angular rotation about an edge was given to initiate 

uplift. Once desired uplift was achieved, angular rotation was stopped and then the glove box 

was allowed to rock freely till rocking ends. Acceleration time histories at the top of the glove 

box were extracted and then Fast Fourier Transform (FFT) was done to determine free rocking 

frequencies about both horizontal axis (X and Z axis). Free rocking angles time history for few 

different cases of uplift are given in Figs.5-3 and 5-4. Fig.5-3 represents variation of rocking 

angle with time for different values of uplift of glove box about X-axis in ZY plane. Similarly, 

Fig.5-4 represents variation of rocking angle with time for different values of uplift of glove 

box about Z-axis in XY plane. After performing FFT on these values, free rocking frequencies 

for different uplifts starting from 0.001m up to 0.020m, about both X and Z axis are given in 

Fig.5-5. Coordinate system used in this chapter can be seen in Fig.5-6. 



185 

 

 

Figure 5-2 Equivalent rigid block diagram of glove box showing various parameters 

 

 

Figure 5-3 Free rocking of glove box about X-Axis in ZY plane for different values of uplift 
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Figure 5-4 Free rocking of glove box about Z-Axis in XY plane for different values of uplift 

 

 

Figure 5-5 Free rocking frequencies of a glove box about X and Z axis with different values of uplift 
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These figures indicated similar trends as observed earlier for the cases of test specimens TS1-

TS6. There was progressive reduction in free rocking frequency with the increase of uplift. 

Further, to find out fundamental mode shapes and Eigen frequencies of a glove box in fixed 

base conditions, Sine sweep test was carried out with a sweep rate of 0.5 octave per minute. 

All evaluated parameters are consolidated in Table.5-2. 

Table 5-2 Important characteristics of a glove box  

 

5.3 Finite Element Analysis and Solution 

Outcomes and results of extensive shake table testing carried out on six test specimens in 

Chapter3 and Chapter4 indicated need of an accurate three-dimensional finite element model 

for numerical calculations. Taking cue from these findings, it was decided to analyze glove box 

system using refined three-dimensional model. Nonlinear dynamic analysis had been carried 

out for determining the response of GB structure to three directional seismic loading. Following 

were the main objectives of the testing. 

5.3.1 Objectives and Assumptions 

Objective of analysis was twofold. Firstly, to develop a precise analysis model for carrying out 

numerical studies with the help of available experimental data; secondly, to utilize the 

AR 
 

pZZ 
(Hz) 

pXX 
(Hz) 

α 
(Rad) 

R 
(m) 

M 
(Kg) 

ωr 
(Hz) 

C.G 
(x,y) 
(m) 

ωn 
(Hz) 

2.5 1.97 1.85 0.41 1.33 382 1.7-4.9 
(along Z-axis) 

2-4.7 
(along X-axis) 

0.526,1.22 7.5,7.5,15.2 

AR-aspect ratio, pxx-frequency parameter about XX direction, pyy- frequency parameter 
about YY direction, α-critical angle, R-diagonal length, M-mass, ωr-free rocking 
frequency, C.G.- location of centre of gravity from an edge, ωn- fundamental frequencies 
in modes 1,2 and 3,  
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developed and benchmarked finite element model for carrying out studies beyond design basis 

events. The main objective of FE analysis was, not only to check rigid body displacements and 

rotations but also to analyze the effect of elastic motions on overall seismic response. ABAQUS 

software was used to analyze glove box structure for seismic loading. 

Finite element analysis was carried out with certain valid assumptions in line with the subject 

of research pursued for this doctoral program. Important assumptions are listed below: 

1. In numerical analysis, glove box system was assumed to be a freestanding body. Which 

means that pressure regulating valve and connected piping were assumed to be flexible 

enough, not to constrain rigid body motions of the glove box. Thus main concern was 

to evaluate stability and integrity of the system. 

2. Scope of analysis was, not to evaluate leak tightness of the structure which was already 

tested during shake table experiments. Hence, various connections, between glass 

panels and stainless steel frame, between aluminum panel and stainless steel frame were 

modelled as integral one (monolithic). However, material properties were suitably 

selected for all the panels as given in Table.5-3.  

3. Actual test conditions of PVC sheet glued to concrete floor was not simulated in finite 

element analysis. Frictional properties evaluated during shake table testing were used 

an input to the FE model. Floor was modeled as a rigid body. This is a realistic 

assumption because objective of analysis was to assess seismic stability of the glove 

boxes and not to study floor material behavior which was sufficiently rigid because of 

underlying concrete slab. 

With the above mentioned objectives and assumptions, extensive finite element analysis was 

carried out. Next section provide details of finite element modelling and analysis methodology. 



189 

 

5.3.2 Part Modelling 

As mentioned earlier, glove box frame is made up of 3 mm thick stainless steel sheets. As the 

thickness was very less in comparison with longitudinal and lateral dimensions, shell elements 

were used for modelling.  Here, a four node general-purpose shell element (S4R) with reduced 

integration and hourglass control was selected. GB top frame has an exhaust filter casing which 

has a HEPA filter inside it. HEPA filter box casing was also modeled with the shell element 

S4R. GB carriage structure (stand) was modelled by three nodes linear beam elements (B31) 

with 6 degrees of freedom at each node.  

Different masses were lumped at appropriate places in the finite element model. For example, 

mass of gauntlets was lumped at respective glove ports, mass of HEPA filter was lumped at 

filter casing, piping and pressure regulatory valve mass was lumped at filter casing. Masses 

were lumped as a dead weight only and no rotary inertia was assigned. Similarly for the test 

cases of glove box with a central mass of machinery and eccentric mass of lead shield, masses 

were lumped at appropriate places in the FE model. 

Ventilation pipe connected at the top of glove box was assumed long and flexible enough to 

allow free movement of GB on the floor. Other case where ventilation pipe was rigidly 

connected to structure was not considered for analysis. In the present case, floor was very stiff 

in comparison with the test specimens. Moreover, stresses and strains in the floor were of no 

research interest to us, hence it was modelled as a rigid body. Rigid element R3D4, which is a 

three-dimensional, 4-noded bilinear quadrilateral element was selected for.Various material 

properties used for glove box structure are given in Table.5-3. Glove box assembly consisting 

of glove box and floor is shown in Fig.5-6. 
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Figure 5-6 Glove box finite element model 

 

Table 5-3 Material and physical properties of glove box structure 

 
S.No 

 
Material Description 

Mechanical Properties 

Young’s 
Modulus(GPa) 

Density 
(KN/m3) 

Poisons 
ratio 

Thickness 
(m) 

1 Stainless steel glove box 
frame 

210 8 0.3 0.003 

2 Mild steel bottom supporting 
plate, carriage(stand) 

210 8 0.3 0.009, 
0.006 

3 Aluminum side panels 70 2.7 0.35 0.01 

4 Front/back glass panels 74 2.53 0.2 0.01 

 

Mesh verification report for the glove box model was generated. It was observed that there was 

no analysis error, but there were certain analysis warnings arising out of poor aspect ratios of 

few quad elements. This was as expected because of complex geometry of the glove box 

structure 
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5.3.3 Contact Interactions and Constraints 

As indicated in assembly drawing shown in Fig.5-6, glove box structure was contacting floor 

at four different points. Actually there was contact between four levelling screws supporting 

carriage and the bottom floor. The bottom surface of levelling screw was modelled with shell 

elements. Reason for selecting shell elements instead of using beam element to represent 

levelling screw was better performance and accuracy of shell to shell surface contact 

interaction. Abaqus uses surface to surface contact discretization when shell elements on the 

slave side (levelling screw) are in contact with shell elements of rigid floor on the master side. 

However if levelling screw is modelled as a beam element, then Abaqus uses node to surface 

discretization which is less accurate in terms of contact pressure and accuracy. Contact was 

created between four contacting surfaces corresponding to levelling screw and rigid floor. 

Contacting surfaces are shown with dots in the Fig.5-7. Contact properties were defined in the 

normal and tangential directions. Experimentally evaluated value of coefficient of friction was 

used for analysis. During shake table testing, glove box started sliding when the base 

acceleration changed from 0.1g to 0.2g. Hence, the coefficient of friction between the floor and 

legs of the glove box was taken as 0.15. The stick/slip formulation define a surface in the 

contact pressure–shear stress space along which a point transitions from sticking to slipping. 

In present analysis default model was used which assumes that the friction coefficient does not 

depend on field variables like slip rate, contact pressure and average temperature at contact 

point. For enforcement of friction constraint default Penalty method was used. This method 

permits some relative motion between surfaces in contact when they should be sticking. This 

value is known as elastic slip. The value of allowable elastic slip was chosen by the software 

to provide a conservative balance between efficiency and accuracy. Hence, default value was 

chosen to avoid any numerical convergence difficulties. Similarly, contact formulation in 
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normal direction depends on two main factors: i) -Pressure-Overclosure relationship and ii) - 

Contact Constraint Enforcement Method.  

i. Pressure-Overclosure Relationship- There are mainly two types of pressue-overclosure 

relationships available in Abaqus namely soft and hard. In this case, hard pressure – 

over closure relationship was chosen which minimizes the penetration of the slave 

surface into the master surface at the constraint locations and does not allow the transfer 

of tensile stress across the interface. With this relationship, software applies impact 

algorithm and destroys kinetic energy of the nodes on the surface when impact occurs.  

ii. Contact Constraint Enforcement Methods- they determine how contact constraints 

imposed by a physical pressure -over closure relationship are resolved numerically in 

an analysis. There are three contact constraint enforcement methods available in 

Abaqus, namely direct method, Penalty method and Augmented Lagrange method. In 

the present analysis, Penalty method was used. It is a stiff approximation of hard 

contact. With this method, the contact force is proportional to the penetration distance, 

so some degree of penetration will occur. Advantages of the penalty method are that 

numerical softening associated with the penalty method can mitigate over constraint 

issues and reduce the number of iterations required in an analysis. The penalty method 

can be implemented such that no Lagrange multipliers are used, which allows for 

improved solver efficiency 

Interested readers can refer to these references [66] [67] [68] [69] [70]. Two configurations 

(path) based contact tracking scheme was used in a finite sliding formulation with surface to 

surface discretization. Surface to surface discretization was used for generating contact 

between levelling screw (slave surface) and the floor (master surface). 
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5.3.4 Loads and Boundary Conditions 

A glove box structure is subjected to various kinds of loading during normal operation. These 

include dynamic pressure loading, static equipment load, body forces (due to gravity), and 

eccentric loads arising due to lead shields. Apart from these operational loads there shall be 

service loads arising due to base excitations including seismic. For the present study, all the 

loads are considered to act simultaneously on a glove box structure. Details of applicable 

loadings and boundary conditions are given below: 

1. Dynamic pressure load 

Internal faces of glove box is subjected to dynamic pressure loading. In actual operation 

negative pressure of 250Pa is maintained using pressure regulatory valve. However, this 

pressure is not static and slightly varies with time. In practical terms, these variations can 

be assumed negligible and hence a constant pressure of -250Pa can be applied on all the 

internal faces of the glove box. 

2. Static equipment load 

There is a constant static loading at the bottom supporting face of the glove box arising due 

to the equipment or storage container. In the present case it is lumped uniformly at the 

bottom surface of the glove box. 

3. Eccentric load 

Glove boxes are commonly provided with lead shielding on the operating face. Thickness 

of this shielding depends on type and amount of radiological material being handled. 

Generally this shielding is mounted on the operating face of the glove box where operator 

stands for performing various operations. Hence this acts as an eccentric load for the glove 
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box. In present analysis calculated mass of the lead shield is assumed to be distributed 

uniformly across the operating face.  

4. Body force 

There is uniform body force arising due to gravity. This is constant in magnitude and acts 

vertically downward across the glove box model 

5. Seismic base excitation 

In case of an earthquake loading, it is important to assess stability and integrity of the glove 

box system. In present model, real earthquake time histories were applied as a boundary 

conditions at the reference point of the floor. 

Top frame of the glove box was welded to the bottom carriage through a bottom supporting 

plate. To include this behavior in the glove box model, multi-point constraint was applied at 

the interface of top frame and bottom carriage. This constraint merges degrees of freedom of 

connecting nodes by using a beam element. All these loading and boundary conditions are 

shown in Fig.5-7. 

 

Figure 5-7 Glove box model showing various loadings, contact and boundary conditions 
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5.3.5 Modal Frequencies 

A flexible structure undergoes various possible modes of deformation when rigid body degrees 

of freedom are constrained. These modes of deformations know as Eigenvectors have different 

frequencies which are known as Eigen frequencies. These frequencies plays a significant role 

in determining overall response of a structure to dynamic loading. These Eigen vectors and 

frequencies can only be determined after fixing rigid body modes of motions. In case of a 

freestanding structure, effect of these frequencies is not clear. There are many research papers 

which consider structures’ natural frequencies to  control dynamic response due to base 

excitations [51] [73] [65]. However, research presented here contradicts those findings. As 

observed in Chapter.4, that free rocking frequencies of the flexible test specimens dominated 

the dynamic response, with a meagre contribution from fundamental modal frequencies. This 

phenomenon will be further tested and elaborated for the case of a glove box. Fundamental 

frequencies of the glove box were evaluated earlier during shake table testing as given in 

Section 5.2. Now, they will be evaluated using FE model. Bottom surface of the carriage i.e. 

levelling screws were fixed and then Lanczos solver was used to extract Eigen values and Eigen 

modes up to a frequency value of 30Hz. Three eigenvalues were extracted corresponding to 

90% mass participation. Eigen frequencies corresponding to these eigenvalues were 7.4Hz, 

7.5Hz and 15Hz. Mode shapes corresponding to these frequencies are shown in Fig.5-8. In this 

figure color scheme is displaying displacement gradient over the glove box model. Red color 

indicates highest displacement while blue color indicates lowest.  
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Figure 5-8 Fundamental mode shapes of a glove box in fixed base boundary condition. (a) Un-deformed 
shape, (b) first mode shape, (c) second mode shape and (d) third mode shape 

 

5.3.6 Numerical Solution  

Implicit solver was used to perform dynamic analysis to obtain response of structure to three-

dimensional base excitation. Abaqus uses the Hilber-Hughes-Taylor time integration scheme 

[71] for numerical integration. For a moderate dissipation contact-impact problem, default 

values of parameters for the Hilber-Hughes-Taylor integrator used are given below [74]: 

α = –0.41421, β = 0.5, ϒ = 0.91421 

These parameters can be adjusted, to vary the amount of artificial numerical damping. The 

numerical damping grows with the ratio of the time increment to the period of vibration of a 

(a (b

(c (d
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mode. Negative values of α provide damping; whereas α = 0, results in no damping (energy 

preserving) and is exactly the trapezoidal rule (called as Newmark beta-method, with β = 0.25 

and ϒ = 0.5). The setting α = –1/3, provides the maximum numerical damping. It gives a 

damping ratio of about 6% when the time increment is 40% of the period of oscillation of the 

mode being studied. Allowable values of α, β and ϒ are: - 1
2

 ≤ 𝛼𝛼 ≤ 0  ,  𝛽𝛽 > 0 ,   𝛾𝛾 ≥ 1
2

 . 

Moreover, two percent of critical damping was used as material damping for analysis. This 

value is in agreement with the damping value for welded steel structure given in relevant codes 

[75]. 

5.4 Seismic Stability Assessment  

In a bid to develop a generic glove box model, suitable to handle any variation in system input 

parameters, three-dimensional finite element model of the glove box system using FEM was 

developed.  Model benchmarking results shall be presented later in Section 5.7. 

Now, results of analysis carried out to study effects of variation of different system parameters 

on the stability and integrity of the glove box system are presented. Similar to the shake table 

tests carried out earlier and described in Section 2.4.1, glove box was analyzed for three-

dimensional, simultaneous seismic base excitations for different peak ground accelerations 

varying from 0.1g to 0.3g. Synthetic time histories used in analysis for peak base accelerations 

varying from 0.1g up to 0.3g are shown in Fig.5-9. Simulations were carried out for the three 

cases described earlier in Section 2.4.1 and repeated here for clarity. 

• Case 1- Single glove box structure.  

• Case 2- Single glove box structure with dead load of 2.5 KN.  

• Case 3- Single glove box structure with eccentric load of 0.96 KN. 
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Nodal output response at various locations corresponding to accelerometers A1, A5 and A9 

(Refer Fig.2-9 shown earlier) were obtained. Final glove box displacement values after the end 

of seismic excitations were obtained.  

Variation of peak nodal acceleration values for Case1 and Case2 of glove box is plotted in 

Fig.5-10 and Fig.5-11 respectively. It shall be noted that peak base acceleration was varied 

from 0.1g to 0.3g. Similarly, Fig.5-12 shows peak nodal acceleration values obtained for Case3 

of GB. Fig.5-13 shows glove box final horizontal displacements (X and Z direction) for all the 

three analysis cases.  

 

Figure 5-9 Input base acceleration time histories. (a) 0.1g PGA in Z-direction, (b) 0.1g PGA in X-

direction, (c) 0.1g PGA in Y-direction(vertical), (d) 0.2g PGA in Z-direction, (e) 0.2g PGA in X-direction, 

(f) 0.2g PGA in Y-direction(vertical), (g) 0.3g PGA in Z-direction, (h) 0.3g PGA in X-direction, (i) 0.3g 

PGA in Y-direction(vertical) 
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Figure 5-10 Peak response acceleration of glove box at accelerometer locations of A5, A9 and A1 for 

Case-1.  

 

Figure 5-11 Peak response acceleration of glove box for Case-2 

 

Figure 5-12 Peak response acceleration of glove box for Case-3 
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Figure 5-13 Final horizontal (X&Z) displacements of glove box for different test cases 

 

To understand frequency distribution of response signals, Fast Fourier Transform (FFT) of 

nodal acceleration time histories is obtained. FFT graphs for only Case-1 of single glove box 

are plotted for brevity. Fig.5-14(a,b,c) shows FFT of input base excitations given to the shake 

table in Z , X and Y direction for 0.1g peak base accelerations respectively. Fig.5-15 (a,b,c) 

shows FFT of acceleration time histories at locations corresponding to A1(Z), A5(X) and 

A9(Y) accelerometers respectively at 0.1g peak base acceleration. Similarly, Fig.5-15(d,e,f) 

and Fig.5-15(g,h,i) shows FFT of acceleration time histories at locations of A1(Z), A5(X) and 

A9(Y) accelerometers for 0.2g and 0.3g PGA respectively. Following observations can be 

drawn from the analysis results: 

a) It was observed for all the three cases that peak accelerations achieved at the top of GB 

and final GB displacements were nonlinear functions of peak base accelerations. Both 

accelerations and displacements increased nonlinearly with peak base excitations as 

seen from Fig.5-10 to Fig.5-13.  
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b) It was observed that in general, addition of central load (Case-2) and eccentric load 

(Case3) to the glove box increased peak accelerations as shown in Fig.5.11 and 

Fig.5.12. However due to eccentric loading, rotational instability was also observed.  

c) Acceleration response was unequal in both the horizontal directions as seen in Figs 5-

10 to 5-12. This was due to uneven distribution of mass and unequal stiffness of the 

structure. 

d) As observed for the Case-1 as shown in Fig.5-15 (a,b,d,e,g,h), FFT of acceleration 

response of glove box in horizontal directions showed low frequency contents. The 

reason for the same was occurrence of rigid body motions (sliding and rocking). It is 

important to observe that at 0.1g PGA value, glove box was in rest state because that 

value of amplitude was not sufficient to initiate sliding or rocking motion. Hence it was 

expected that like the case of a fixed structure frequency response obtained from FFT 

should peak at first fundamental modal frequency of 7.5Hz. Contrary to the expectation, 

frequency response peaked at a much lower frequency of around 5Hz as shown in Fig.5-

15(a,b). This behaviour can be well explained from earlier test results of flexible test 

specimens carried out in Chapter-4. As observed earlier for test specimens TS4, TS5 

and TS6, in absence of amplitude induced sliding or rocking motion, it was possible to 

have frequency induced rocking motion. Hence, presence of frequency induced rocking 

led to peaking of response at 5Hz, which corresponds to free rocking frequency of the 

glove box as seen earlier in Fig.5-5.     

e) Negative (downward) shift of frequency, corresponding to peak amplitude in FFT for 

horizontal directions(X and Z) with increase of peak base acceleration can be observed 

by comparing Fig.5-15(a),(d) and (g). This decrease in frequency with increase of peak 
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base acceleration can be attributed to increase of rigid body motions (sliding, rotation 

and rocking) with increase of base excitations. 

f) It is interesting to observe that as peak base acceleration was increased, amplitude of 

rocking of glove box increased thereby reducing frequency contents of output signal. 

This fact can be explained by the earlier observations on free rocking frequencies of a 

specimen. As amplitude of rocking increases, frequency decreases and vice versa.   

Now after analysing response of glove box for seismic excitations, it is clear that 

predominant behaviour is rigid body motions (mainly sliding). Hence, a simplified 

numerical method is developed which can evaluate sliding displacements of a free-standing 

component. Next section discusses the details of proposed method. 

 

 

 

Figure 5-14 FTT of input acceleration time history for 0.1g PGA value. (a) Z-direction, (b) X-direction 
and (c) Y-direction 
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Figure 5-15 FFT of response acceleration time histories of glove box for Case-1 (a,b,c)- Z, X and Y 
direction for 0.1g PGA, (d,e,f)- Z, X and Y direction for 0.2g PGA, (g,h,i)- Z, X and Y direction for 0.3g 

PGA 

 

5.5  Numerical method to estimate sliding displacement 

The American Society of Civil Engineers (ASCE) have devised a simplified methodology to 

ascertain the sliding distance of a free-standing body [75]. The theory behind the method is 

reproduced here from the code for better understanding and clarity.  

Firstly, define an effective coefficient of friction, μe, by 

                         μe = μ [1-0.4 Av/g]                                                                                       5.1     

Whereas μ is static coefficient of friction, Av is peak vertical acceleration and g is acceleration 

due to gravity. Fig.5-16 shows the resisting force, FRS versus displacement diagram for a rigid 

body of mass M, with sliding resisted by an effective friction coefficient μe as given by Eqn.5.1. 

From the figure a relation between FRS and μe can be established as given below:  
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                                          FRS = μ e M g       5.2 

 

 

Figure 5-16 Sliding force displacement diagram extracted from ASCE code 

 

Also shown in Fig.5-16 is an equivalent linear force deflection stiffness K e , which absorbs 

the same work done when displaced by δs (sliding displacement), where 

                   K e = 2 FRS / δs = 2 μ e M g / δs = Cs M /δs             5.3 

Where Cs is a sliding coefficient defined as; 

Cs = 2 μ e g             

 5.4  

The effective frequency of this equivalent linear system is  

fes = 1/ 2 Π [K e  / M]1/2   = 1/ 2 Π [Cs / δs] 1/2    

 5.5   

Now, vector horizontal spectral acceleration, SAVH, which would displace this equivalent linear 

system by a distance δs, is given by: 

                                    SAVH= Ke δs / M           5.6                                                                             
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Thus for this equivalent linear system, 

δs = Cs / (2 Π fes) ²                                                     5.7 

where fes is the lowest natural frequency at which the horizontal 10% damped vector spectral 

acceleration SAVH equals Cs, where  

SAVH = [SAH1²   + 0.16 SAH2²] 1/2         5.8 

In which SAH1 and SAH2 are the 10% damped spectral accelerations for each of the two 

orthogonal horizontal components, where SAH1 is the larger of the two spectral accelerations. 

Hence equivalent sliding displacement can be evaluated by using Eqn.5.7 

 Now utilising values of μe, Cs and fes obtained from the ASCE code given above, we 

apply energy conservation methodology to find out equivalent sliding displacement. In present 

case of glove box structure, it was observed that strains obtained from shake table testing were 

of very low magnitude. Hence, it can be assumed that contribution from strain energy and 

material damping term is not significant. The main source of energy dissipation is via rigid 

body sliding (frictional dissipation).  Hence writing equation for energy balance for a particular 

cycle, we get:  

Energy input to the table (E) = Energy dissipated in friction (Fd) + kinetic energy of the system 

(KE) 

E = Fd + KE                5.9 

Now, E = W. ∆D. g                                       5.10   

where W- weight of glove box in Kgs, 

           ∆D- Maximum displacement of the table, 

           g- acceleration due to gravity. 
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Also Fd = 4. μe . N. ∆d                               5.11 

Where μe - equivalent coefficient of friction, 

          N- Normal reaction, 

          ∆d- sliding displacement of glove box 

Similarly, KE- 1/2. m. v2                              5.12 

Where, m- mass of the glove box 

v2= (∆d. w)2= ∆d2 (2π fes )2                              5.13 

Eqn.5.9 is valid for that case when sliding starts. Hence, it would be used to evaluate sliding 

displacements for 0.2g and 0.3g peak base accelerations. For the case of 0.1g, peak base 

excitation negligible sliding displacement was observed in test results. Hence, Eqn.5.9 cannot 

be applied to this case. Now we calculate values of fes, μe and Cs for all the cases and substitute 

them in Eqn.5.9to get the results. For better understanding sample calculation for one case of 

0.2g peak base acceleration is shown here: 

First find out equivalent coefficient of friction (μe) from Eqn.5.1 as: 

μe = 0.15(1-0.4*2.2/9.81) = 0.136  

It is to be noted that value of Av is obtained from 10% damped response spectrum for the site. 

Now determining Cs from Eqn.5.4 

Cs = 2*0.136*9.81= 2.679 m/sec2 

Now for this Cs we have to find out corresponding minimum frequency (fes) from 10% damped 

spectral horizontal response spectra for acceleration SAvh value calculated from Eqn.5.8. We 

get fes = 1.2Hz corresponding to Cs value from 10% damped response spectra. Now from test 
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data, we know that the maximum table displacement (∆D) was 40mm. Hence, by using 

Eqn.5.9, we get a quadratic equation in ∆d, given as below: 

10517 ∆d2 + 1975 ∆d – 145 = 0          5.14 

On solving Eqn.5.14, we get positive root as ∆d= 56mm. similarly ∆d can be evaluated for case 

of 0.3g peak base excitation. Final values of sliding displacements, obtained from energy 

conservation method are given below: 

a) for 0.2g peak base acceleration 

∆d= 56mm 

b) for 0.3g peak base acceleration 

∆d= 102mm 

Similarly sliding displacement can also be evaluated by using ASCE code. Eqn.5.7 gives 

sliding displacement values as given below: 

a) for 0.1g peak base acceleration 

∆d= 4mm 

b) for 0.2g peak base acceleration 

∆d= 47mm 

c) for 0.3g peak base acceleration 

∆d= 124mm 

Comparison of final sliding displacements observed from test results, evaluated by FE analysis, 

ASCE code and energy conservation methodology is done in the next section.  
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5.6  Validation of Finite Element and Numerical Method Results 

Developed finite element model was benchmarked using available shake table test data. 

Important recorded parameters like accelerations and displacements were compared. It was 

decided to compare peak acceleration response and final glove box displacements obtained 

from test and FE analysis for three different test cases 1-3 as given below. 

Case 1: Single glove box structure.  

Case 2: Single glove box structure with dead load of 2.5 KN  

Case 3: Single glove box structure with eccentric load of 0.96 KN 

Comparison is plotted in Figs.5-17 to 5-20. In addition to that, Fig.6-21 displays frequency 

contents of output response recorded by accelerometers A1 (Z), A5(X) and A9(Y) during shake 

table testing for Case-1 at 0.1g peak ground acceleration. This graph is compared with FFT of 

analysis response, as given earlier in Fig.5-15. Considering the data presented in Fig.5-17 to 

Fig.5-21, it can be observed that test and analysis results are in good agreement to each other. 

Maximum deviation observed is below 10 percentage. Hence, it can be concluded that 

developed finite element analysis model accurately predicted the response of glove box system 

and this model can be utilized to assess seismic stability and integrity of the glove box system 

subjected to different loading conditions.   
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Figure 5-17 Comparison of peak accelerations obtained from test and analysis for case1 of single glove 
box 

 

Figure 5-18 Comparison of peak acceleration obtained from test and analysis for case2 of glove box with 
central load 
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Figure 5-19Comparison of peak acceleration obtained from test and analysis for case3 of glove box with 
eccentric load 

 

 

Figure 5-20 Comparison of final displacements obtained from test, FE analysis and numerical method for 
case1 of single glove box 
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Figure 5-21 FFT of acceleration signal recorded during shake table testing for case1 of glove box ,(a,b,c)- 

Z, X and Y direction for 0.1g PGA, ),(d,e,f)- Z, X and Y direction for 0.2g PGA, (g,h,i)- Z, X and Y 

direction for 0.3g PGA 

5.7  Motion Initiation Criteria Diagram 

After understanding dynamics of a glove box structure, it is important to find out answer 

to a persisting question by the facility designers- “Whether a glove box requires to be anchored 

to the base?” To provide an appropriate answer, it’s important to understand initiation of 

motion of a glove box, when subjected to base excitations. Glove box is a flexible structure 

with finite stiffness in bending. Hence its behavior is similar to the test specimens (TS4-6) 

tested in Chapter-4. In Chapter-4, motion initiation criteria diagram for a flexible test specimen 

TS4 was developed as given in Fig.4-21. Similar diagram is required to be developed for a 

glove box which can assist designers in determining possible mode of motion a glove box can 

undergo when subjected to base excitations. As highlighted earlier in Chapter-4 and again in 

this chapter, presence of frequency induced rocking motion is important when frequencies of 

excitations coincide with range of free rocking frequencies of a body. Hence, motion initiation 
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diagram for a glove box is developed for range of frequencies corresponding to free rocking 

frequencies of the glove box.   

FE analysis was carried out to determine regions corresponding to frequency induced 

rocking motions. Finally, a motion initiation criteria map for a glove box is developed as shown 

in Fig.5-22. Now this diagram can act as a guideline for deciding anchoring of the glove box. 

If the parameter values like µs and Ag are selected in such a way that glove box is lying in the 

region corresponding to rest state of the map, then it will be in stable state. In other words, a 

glove box will not initiate any mode of motion when subjected to base excitations. 

 At present, PVC sheets being used in laboratories have a lower value of µs=0.15, due 

to which Sliding cum rocking motion initiates when amplitude of base excitation crosses 0.15g 

value. To avoid occurrence of this motion, it is suggested to fix steel plates locally on the areas 

of contact of carriage legs with the floor. That means four legs will be in contact with the steel 

plates which gives higher value of coefficient of friction. Coefficient of friction value between 

steel and steel was experimentally determined earlier and found to be 0.72.  

Now corresponding to µs=0.72, glove box shall remain in rest state till amplitude of 

base excitation is below 0.3g as can be easily seen from Fig.5-27. That means for any type of 

base excitation (random, harmonic etc.) with a maximum value of base excitation up to 0.3g, 

glove box structure will not initiate any mode of motion and hence remains in rest state. For, 

peak base excitation values between 0.3g -0.4g, glove box will initiate frequency induced 

rocking motion. Although, even in this state there are no chances of overturning instability, but 

higher acceleration amplification will take place. Hence, it can be conclude that glove box 

structure can remain free-standing without any risk of sliding or rocking instability up to 0.3g 

peak base acceleration value.  
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As a guideline to designers of future fuel fabrication facility, it is suggested to locally 

increase coefficient of friction value by providing steel sheets of minimum dimensions (0.1m 

length , 0.1m width, 0.006m thickness) at four contact points between stand(levelling screws) 

and floor. This will help in making glove box system seismically safe up to 0.3g pba value. For 

higher base accelerations a case study can be done by performing FE analysis and finding 

optimal solution. 

 

 

Figure 5-22 Motion initiation diagram for a flexible body showing different regions for a glove box in a 
free rocking frequency sensitive zone 

 

5.8  Outcomes and Discussions 

The seismic stability of the glove box structure was evaluated for the design and beyond 

design level of accelerations under various configurations. It was observed that the 

predominant mode of motion was sliding however very low amplitude rocking was also 

observed. The single glove box with various configurations with and without internal and 
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eccentric mass, maintained integrity. Hence, the single glove box structure is safe for the 

designed seismic loads and anchoring of the structure with floor is not required.  

Many important observations were made for seismic behaviour of freestanding 

structure, which were peculiar and different from seismic response of a fixed base structure. 

Important of them was peaking of horizontal acceleration response at frequencies different and 

lower than fundamental frequencies obtained for GB structure in fixed base conditions. Hence, 

even when structure was not sliding at 0.1g peak base acceleration, there was no peaking of 

response at GBs fundamental frequencies and in fact peaking was observed at much lower 

frequency of 5Hz corresponding to free rocking frequency of a glove box. This can be 

explained by the presence of frequency induced rocking behaviour discussed earlier in Chapter-

4 for a flexible specimen.  

Frequency response of a freestanding glove box in horizontal direction for 0.2g and 

0.3g PGA values also peak at a lower frequencies. This peaking can be explained from earlier 

observations drawn in Chapter-4 for flexible test specimens (TS4, TS5 and TS6). As observed 

earlier for a flexible body, frequency induced rocking motion was accompanied with sliding 

motion. Since sliding motion is random in nature and does not have any signature frequency; 

hence, FFT of output response of a glove box has lower frequency contents pertaining to free 

rocking frequencies of the glove box. Moreover, negative shifting of peaks of FFT with 

increase of base excitations can be explained by reduction of free rocking frequencies with 

increasing amplitude of motion associated with higher peak base accelerations.      

 Nonlinear dynamic analysis results were coherent with the test results. Finite element 

software (ABAQUS) can be successfully utilised to predict the seismic response of free-

standing structures. Estimation of sliding distance using energy conservation method and 

ASCE code, gives good conservative results. This method can also be utilized for obtaining 
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quick estimates of sliding displacements of glove box. However, it gives only single maximum 

(equivalent) value. It can also be observed that as the excitation peak base acceleration value 

increases, corresponding displacement values also increases. While the peak acceleration value 

increases with base excitation, average acceleration obtained at higher excitations are less than 

the corresponding values at lower excitation due to onset of slipping. 
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CHAPTER 6 SEISMIC STABILITY OF FLEXIBLY 

INTERCONNECTED GLOVE BOXES  

6.1 Introduction and Outline 

In the last chapter we have examined seismic stability of a single glove box structure for various 

possible load combinations and configurations. It was observed that the stability of the glove 

box system depends on various parameters like base excitation characteristics, contact surface 

behaviour and glove box mass distribution.  

Now, in this chapter we deliberate on a more complex and generalised problem. Here we shall 

focus on the case of multiple freestanding glove boxes connected to each other. Two different 

types of connection will be studied. First type of connection can be with a flexible link which 

allows limited relative motion between the two interconnected glove boxes. This will be 

discussed in the present chapter. However, second type of connection considered is by a rigid 

link which doesn’t allow any relative motion between the two and is the subject for Chapter-7. 

These two cases are of prime importance because of their wide applicability in working 

laboratories. Generally, glove boxes are used in series with interconnection between them to 

carry out material exchange. Hence these two cases has wide applications and thus are required 

to be evaluated. A series of shake table testing was carried out by a team of engineers at BARC 

to evaluate seismic performance of two interconnected glove boxes using synthetic earthquake 

time history. These results are used for this research program. We had evaluated these available 

test results and further used them in developing and benchmarking finite element model. This 

chapter shall focus on assessment of seismic stability of multiple connected free-standing glove 

boxes.  

The glove boxes are generally used in series, where a material transfer tunnel interconnects 

them to each other as shown in Fig.6-1. A material transfer tunnel is simply supported on 
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circular ports using O-rings. It is made up of stainless steel. In the event of an earthquake, 

freestanding interconnected glove boxes may freely slide or rotate on the floor, causing a 

breach of integrity and leak tightness. Material transfer tunnel is not welded to glove boxes to 

facilitate easy removal of boxes for decontamination and maintenance operations. Tunnel acts 

as a weak link between the two glove boxes and thus restrains relative movement between 

them.  

 

Figure 6-1 Multiple glove boxes interconnected by material transfer tunnels 

 

Hence, it is necessary to check that the relative displacement between glove boxes is not 

excessive to cause breach of integrity for earthquake loading. Relative displacement of the 

tunnel beyond the allowed limit may lead to the slipping of the tunnel from O-rings and 

subsequent breach of integrity.  

Section 6.2 presents finite element formulation and solution for the case of interconnected 

glove boxes. In this section both the boxes were assumed to be connected by a flexible tunnel. 

Finite element analysis results and important observations are presented for seismic stability 

and integrity of the glove box system in Section 6.3.  

Material transfer 
tunnel 
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Section 6.4 extends the numerical method developed earlier using energy conservation method 

to the present case of flexibly interconnected glove boxes. Then, Section 6.5 present validation 

results for used numerical methods. Finally, chapter is concluded in Section 6.6, with the 

discussion on outcomes and results.  

6.2  Finite element analysis and solution 

6.2.1 Objectives and Assumptions 

To establish the adequacy and appropriateness of analysis methods, finite element analysis 

(FEA) had been carried out on a full-scale three-dimensional model of interconnected glove 

boxes. The main objective of FE analysis was to check seismic stability of the glove boxes and 

thus evaluate displacements and rotations. FE analysis was carried out with the following 

assumptions: 

1. In numerical analysis, interconnected glove boxes were assumed as freestanding 

structures. Which means that pressure regulating valve and connected piping was 

assumed to be flexible enough, not to constrain rigid body motions of the glove box. 

Thus main concern was to evaluate stability and integrity of the system. 

2. Scope of analysis was, not to evaluate leak tightness of the structure which was already 

tested during shake table experiments. Hence, various connections, between glass 

panels and stainless steel frame, between aluminum panel and stainless steel frame were 

modelled as integral one (monolithic). However, material properties was suitably 

selected for all the panels as given in Table.  

3. Actual test conditions of PVC sheet glued to concrete floor was not simulated in finite 

element analysis. Frictional properties evaluated during shake table testing were used 

an input to the FE model. Floor was modeled as a rigid body. This is a realistic 

assumption because objective of analysis was to assess seismic stability of the glove 
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boxes and not to study floor material behavior which was sufficiently rigid because of 

underlying concrete slab. 

4. Gaskets (O-rings) used to fit material transfer tunnel with the transfer ports located on 

both the connecting glove boxes was not modeled. In F.E.A, contact interaction 

behavior arising due to gaskets was simulated by using test evaluated coefficient of 

friction value. This was a realistic assumption, since scope of this analysis was not to 

find out the deformations and related stresses in the gaskets. 

6.2.2 Part Modelling 

Interconnected glove boxes and floor were modelled using finite elements with contact 

between legs and floor as shown in Fig.6-2. Glove boxes frame and interconnected material 

transfer tunnel were modelled as four nodes shell elements (S4R) with 6 degrees of freedom at 

each node. Supporting structure (stand) was modelled as three nodes linear beam elements 

(B31) with 6 degrees of freedom at each node. The connection between tunnel and port was 

considered as a frictional joint. This was a realistic assumption, since tunnel was simply 

supported on the ports by using O-rings. We evaluated value of coefficient of friction by pull 

tests and found it to be 0.4, which was used for analysis. Ventilation pipes connected to glove 

boxes were assumed to be flexible enough to allow the free movement of GBs on the floor. 

Various material properties used in FE analysis are given in Table.6-1. Finite element model 

of two free-standing glove boxes interconnected by a material transfer tunnel is shown in Fig.6-

2. In this case, critical point was to model contact interaction between the tunnel and both the 

glove boxes at each ends. Mesh verification report was generated and no analysis errors were 

observed. 
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6.2.3 Contact Interactions and Constraints 

Contact properties in tangential direction were defined by taking coefficient of friction (µ) 

value as 0.15. Coulomb friction model was used to relate the maximum allowable frictional 

(shear) stress across an interface to contact pressure between contacting bodies. Contact 

properties for contact between material transfer tunnel and material transfer ports of two glove 

boxes were defined using surface to surface contact discretization. Penalty method was used to 

enforce contact constraint between mating surfaces. Tunnel was selected as a master surface 

and two other surfaces (material transfer ports) were selected as slave surfaces. Finite 

deformation formulation was used for numerical analysis. 

Table 6-1 Material properties of interconnected glove boxes 

 
S.No 

 
Material Description 

Mechanical Properties 

Young’s 
Modulus 

(109 N/m2) 

Density 
(Kg/m3) 

 

Poisons 
ratio 

Thickness 
(m) 

1 Stainless steel glove box frame 
and material transfer tunnel 

210 8000 0.3 0.003 

2 Mild steel bottom supporting plate 
and carriage(stand) 

210 8000 0.3 0.009, 
0.006 

3 Aluminum side panels 70 2700 0.35 0.01 

4 Front/back glass panels 74 2530 0.2 0.01 
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Figure 6-2 Finite element model of two interconnected glove boxes 

 

 

6.2.4 Loads and Boundary Conditions 

Two interconnected glove boxes were subjected to various kinds of loading during analysis. 

These include dynamic pressure loading, static equipment load, body forces (due to gravity), 

and eccentric loads arising due to lead shields and seismic load. For the present study, all the 

loads are considered to act simultaneously on a glove box structure. Details of applicable 

loadings and boundary conditions are given below: 

1. Dynamic pressure load 

A constant pressure of -250Pa was applied all across the internal surfaces of both the 

boxes. In addition to that same amount of pressure was also applied on the internal 

surface of material transfer tunnel. 

2. Static equipment load 
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One of the glove box was applied with a constant static loading at the bottom supporting 

face to simulate load arising due to the equipment or storage container. Mass was 

lumped uniformly at the bottom surface of the glove box. 

3. Eccentric load 

In the present analysis, one of the glove box was modeled with eccentric lead shield. 

Effective weight of the shield was distributed all across front side panel of the box.  

4. Body force 

This was uniformly applied to all the parts of the assembly. This was constant in 

magnitude and acts vertically downward. 

5. Seismic base excitation 

Synthetic earthquake time histories were applied as a boundary conditions at the 

reference point of the floor to simulate earthquake loading. 

Top frame of the glove box was welded to the bottom carriage through a bottom supporting 

plate. To include this behavior in the glove box model, multi-point constraint was applied at 

the interface of top frame and bottom carriage. This constraint merges degrees of freedom of 

connecting nodes by using a beam element. All these loading and boundary conditions are 

shown in Fig.6-3. 
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Figure 6-3 FE model of interconnected glove boxes showing various loads and boundary conditions 

 

6.2.5 Modal Frequencies 

Modal analysis was carried out to determine natural frequencies of interconnected GBs. Bottom 

surface of the carriage i.e. levelling screws were fixed and then Lanczos solver was used to 

extract Eigen values and Eigen modes up to a frequency value of 30Hz. Three eigenvalues were 

extracted corresponding to 90% mass participation.  First two eigenvalues in flexure mode were 

determined as7.8Hz and third value in rotation about vertical axis was 8.7Hz as shown in Fig.6-

4 (b, c and d) respectively. Displacement gradients were represented by colour scheme where 

red colour represents highest displacement and blue colour indicates lowest displacement 

value.  
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Figure 6-4 Different mode shapes of interconnected glove boxes in fixed base conditions. (a) un-deformed 
shape, (b) first mode shape, (c) second mode shape, (d) third mode shape 

 

6.3  Seismic Stability Assessment  

Seismic stability and integrity of interconnected glove boxes was evaluated. After carrying out 

modal analysis, nonlinear seismic analysis had been carried out using time integration method. 

Implicit solver was used to perform dynamic analysis. Moreover, two percent of critical 

damping was used as material damping for analysis. This value is in agreement with the 

damping value for welded steel structure given in relevant codes (ASCE, 2005). For calculating 

(a) 

(c) 

(b) 

(d) 
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mass and stiffness related constants for Rayleigh damping, frequency range from 7.8Hz to 

50Hz was considered. 

The floor had been given base excitation simultaneously in three directions starting from 0.1g 

peak value up to 0.2g peak value. For 0.3g and 0.4g pba values, only two-dimensional (one 

horizontal and one vertical) excitation was given, in line with the conducted test procedure. 

Input time history used in analysis was same as recorded at shake table during testing as 

described earlier in the last chapter. In FE analysis, accelerations and displacements time 

histories were obtained at locations where sensors were installed during shake table testing.  

Fast Fourier Transform (FFT) of acceleration time history results obtained from analysis was 

then carried out. Total six number of accelerometer (three on each GB in X, Y and Z direction) 

locations were taken for FFT analysis. Location of these accelerometers were already given in 

Fig.2-9. Details are as given below:  

A1, A4 and A6 --- Accelerometers located on GB2 to record the response of structure in X, Y 

and Z direction (vertical) respectively. 

A11, A13 and A16 -- Accelerometers located on GB1 to record the response of structure in X, 

Y and Z direction (vertical) respectively. 

Objective of analysis was to study rigid body motions (sliding, rocking) and flexural 

deformations of the structure during seismic event. Input time histories were similar to those 

used for the case of a single glove box discussed in last chapter and shown in Fig.5-9. Peak 

values of accelerations obtained for different peak base excitations from 0.1g up to 0.4g pba 

value is given in Fig.6-5.  Fast Fourier transforms of acceleration time histories are presented 

in Figs.6-6 to 6-9. Following observations and conclusions can be drawn: 
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1. Peak value of accelerations recorded by various accelerometers exhibited nonlinear 

relationship with peak base excitation. Magnitude of peak accelerations increased 

disproportionately with the magnitude of base excitation as shown in Fig.6-5. 

2. Response in X (A1 & A11) and Y (A4 & A13) direction was dominated by rigid body 

motions (sliding and low amplitude rocking). For 0.1g pba value, no sliding motion was 

observed. In FFT for 0.1g pba value as shown in Fig.6-6, peaks at low frequencies of 

around 3Hz can be observed. Similar to the case of a single standalone glove box, here 

also this low frequency corresponds to free rocking frequency of the glove box 

structure. Negative shift in frequency, corresponding to peak amplitude of FFT, with 

increase of base excitation from 0.1g to 0.4g was observed as can be seen from Fig.6-3 

to Fig.6-9. This was due to increase of rigid body motions with peak base excitations 

and reduction of free rocking frequencies with increase of amplitude of rocking 

motions. 

3. FFT spectra for Y (A4 & A13) direction for 0.3g and 0.4g peak base accelerations, did 

not indicate negative frequency shift. This was as expected, due to absence of input 

base excitation given in Y direction. 

4. For base excitation values up to 0.2g, relative sliding between two glove boxes was 

limited to 0.007m. Hence, material transfer tunnel maintained its position. However, at 

0.3g pba value, material transfer tunnel tilted from its position. At 0.4g pba, relative 

displacement increased to 0.025m causing material transfer tunnel to slip off from the 

O-rings and breach of integrity was observed 

5. Strains obtained in analysis were of very low magnitude. Maximum strain value was 

240µm per meter. This indicated that there was insignificant deformations in the glove 
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boxes, as depicted during shake table testing also. Hence, contribution of flexural mode 

in overall response was limited.  

Next section discusses a simple numerical methodology to quickly estimate sliding 

displacements of interconnected glove boxes. 

 

 

 

Figure 6-5 Maximum acceleration values obtained by analysis, at various sensors locations for 0.1-0.4g 
peak base acceleration 
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Figure 6-6 FFT of response time history at 0.1g peak base acceleration (FE Analysis) 

 

 

 

Figure 6-7 FFT of response time history at 0.2g peak base acceleration (FE Analysis) 

 



229 

 

 

 

Figure 6-8 FFT of response time history at 0.3g peak base acceleration (FE Analysis) 

 

 

Figure 6-9 FFT of response time history at 0.4g peak base acceleration (FE Analysis) 

 

6.4  Numerical Method to Estimate Sliding Displacement 

A simplified numerical method as developed in last chapter was extended to this case also to 

estimate maximum sliding displacement of a free-standing structure. Details of this method 
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were already presented in Section 5.5. Here, for clarity sample calculations for few cases are 

shown. 

Energy conservation principle was applied for a full sliding cycle to determine equivalent 

sliding displacement. In the present case of interconnected glove boxes, it was observed that 

strains obtained in the structure due to shake table testing were of very low magnitude. Hence, 

it can be assumed that contributions from strain energy and material damping terms were not 

significant. We also observed that magnitude of rocking was very less during testing. Hence, 

energy loss due to impacts between base and legs would be of small magnitude and hence can 

be ignored. However, for higher base excitations when rocking phenomenon would be 

considerable, these losses should be considered for the energy balance. In the present case, 

main source of energy dissipation is via rigid body sliding (frictional dissipation).  Hence, we 

can write an equation of energy balance for a particular cycle of maximum sliding as: 

Using Eqn.5.14 derived earlier, for all the cases from 0.2g pba to 0.4g pba equivalent sliding 

displacement could be evaluated. This method gives a single equivalent value for the sliding 

displacement of a freestanding structure.  

For 0.1g pba, Eqn.5.14 was not valid, since sliding had not started for that pba value. For better 

understanding of readers, a sample calculation for the case of 0.2g pba is presented. 

Initially, calculate equivalent coefficient of friction (μe); 

 μe = 0.15(1-0.4*2.1/9.81) = 0.137  

Here the value of Av is obtained from 10% damped response spectrum for 0.2g pba as shown 

in Fig.6-10 Now sliding coefficient (Cs) can be calculated as given below: 

 Cs = 2 X 0.137 X 9.81= 2.69  
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Figure 6-10 Response Spectrum for 10% damping in (a) horizontal and (b)vertical direction 

                                                                               

Now corresponding to Cs value evaluated above, equivalent sliding frequency (fes) was 

determined from 10% damped response spectrum (SAVH) (see Fig.6-10). In the present case, 

it was 1.1Hz. From the available test data, we get maximum table displacement value for 0.2g 

pba value as 40mm. In addition, mass of interconnected GBs was 1093Kg.   

Now, we get a quadratic equation in terms of sliding displacement (δs) as a variable.  

 26105 δs2 + 5876 δs – 429 = 0                                                                     6.1 

On solving for δs, we finally get δs= 0.058m (considering positive value).  

Similarly, the above-mentioned steps can be repeated for 0.3g and 0.4g pba values. After 

solving for all the cases, we get the following results: 

1. for 0.2g peak base acceleration 

δs = 0.058m 

2. for 0.3g peak base acceleration 

δs = 0.091m 

3. for 0.4g peak base acceleration 

(a) (b) 
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δs = 0.134m 

We can also evaluate the conservative sliding displacement by using the ASCE code method, 

given by Eqn. 5.7. On solving Eqn.5.7, we get the following results: 

4. for 0.1g peak base acceleration 

δs = 0.004m 

5. for 0.2g peak base acceleration 

δs = 0.056m 

6. for 0.3g peak base acceleration 

δs = 0.105m 

7. for 0.4g peak base acceleration 

δs = 0.165m 

Values of final sliding displacements obtained from the test, FE analysis, energy method and 

ASCE code are compared in next section for better understanding (see Fig.6-12). 

6.5  Validation of Finite Element and Numerical Method Results 

Developed finite element model was benchmarked using available shake table test data. 

Important recorded parameters like accelerations and displacements are compared. To check 

the validity and accuracy of analysis results, peak acceleration and final displacement values 

obtained from FE analysis are compared with the corresponding test values and shown in 

Figs.6-11 and Fig.6-12 respectively. Fig.6-12 also compares displacement values obtained 

from developed numerical method and ASCE code method. Furthermore, frequency contents 

of acceleration time histories are checked by comparing F.F.T. of acceleration time history 

obtained by FE analysis as shown in Figs.6-6 to 6-9, with that of corresponding test results as 



233 

 

shown in Figs.6-13 to 6-16. Comparison of test results with analysis results indicates following 

important points: 

1. Peak accelerations recorded during tests were found to be coherent with the 

corresponding analysis values. Maximum deviation observed was 14 percent of test 

value for A1 accelerometer in case of 0.4g pba (Refer Fig.6-11). Deviations for all other 

accelerometers readings were also more than 10 percent of test values for the case of 

0.4g pba. However, for cases from 0.1g to 0.3g pba values, deviations were below 10 

percent of test values. 

2. Analysis values for final sliding displacements were in good agreement with the 

corresponding test values. Maximum deviation observed was 8 percent of the test value 

in the X direction for 0.4g pba (Refer Fig.6-12). All other variations were well below 8 

percent.     

3. For the case of 0.1g peak base acceleration, maximum deviation observed in peak value 

of amplitude of F.F.T. data is 5 percent of test value (Refer Fig.6-6 and Fig.6-13). 

However, it was 10, 12 and 13 percent for the cases of 0.2g, 0.3g and 0.4g peak base 

acceleration respectively (Refer Figs.6-7, 6-8, 6-9 and Figs.6-14, 6-15, 6-16). 

4. Peaking of amplitude at lower frequency (around 3Hz) for horizontal directions F.F.T. 

was observed in analysis results, in line with the test results. Further, negative sift of 

frequency with increasing peak base acceleration value was also observed. 

Hence, it can be inferred that analysis methods are adequate to predict non-linear behaviour of 

interconnected freestanding glove boxes. 
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Figure 6-11 Comparison of peak accelerations obtained by testing and analysis for various accelerometers 

 

 

 

Figure 6-12 Comparison of final displacements of interconnected glove boxes obtained by test and 
numerical methods 
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Figure 6-13 FFT of acceleration signal recorded by accelerometers (a) A1, (b)A4, (c) A6, (d) A11, (e)A13 
and (f) A16 for 0.1g pba value during shake table testing 

 

 

Figure 6-14 FFT of acceleration signal recorded by accelerometers (a) A1, (b)A4, (c) A6, (d) A11, (e)A13 
and (f) A16 for 0.2g pba value during shake table testing 
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Figure 6-15 FFT of acceleration signal recorded by accelerometers (a) A1, (b)A4, (c) A6, (d) A11, (e)A13 
and (f) A16 for 0.3g pba value during shake table testing 

 

 

 

Figure 6-16 FFT of acceleration signal recorded by accelerometers (a) A1, (b)A4, (c) A6, (d) A11, (e)A13 
and (f) A16 for 0.4g pba value during shake table testing 
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6.6  Outcomes and Discussions 

It was clear from the results presented above, that the response of the system was highly 

nonlinear due to the presence of friction and vertical impact with floor. Low frequency rigid 

body motions (sliding and rocking) dominated test response in horizontal directions. A negative 

frequency shift with increasing peak base acceleration was observed in horizontal direction 

motion, indicating a predominance of rigid body motions at higher base excitations. Further, 

high frequency (around 30Hz) impacts were noted in vertical direction response due to the 

presence of low amplitude rocking motion. Frictional sliding dissipated major portion of energy 

input to the system. For correct prediction of the response of a freestanding system subjected 

to base excitations, it is very important to accurately model and represent contact dynamics.  

Interconnected GBs maintained leak tightness and integrity up to design basis acceleration of 

0.2g. Both GBs moved as a single structure and no relative movement was observed. Tests 

were also performed to check their stability for higher base accelerations which normally occur 

when they are located on higher floors for operations. It was observed that at 0.3g peak base 

acceleration value, relative motion was there and material transfer port connecting two glove 

boxes was tilted. At 0.4g peak base acceleration, substantial relative motion between two 

interconnected GB’s was observed and breach of integrity was observed at 0.4g peak base 

acceleration. 

Owing to the highly nonlinear behavior of the system due to presence of friction and impact at 

contact points, contact parameters were required to be meticulously selected in FE analysis. 

Implicit solver was used to analyze the system. Analysis results were found to be in good 

agreement with the corresponding test values. Simplified numerical method developed using 

an energy conservation technique provided a good quick estimate of maximum sliding 



238 

 

displacement. This could be useful for determining upper bounds on displacements and hence, 

helpful in designing glove boxes layout.  

To improve seismic stability for higher base acceleration values, modifications in glove box 

design is required. The other alternative could be to anchor glove boxes with the floor. 

Although, anchoring can enhance seismic stability of the system by arresting rigid body 

motions, it increases elastic motions like bending and related structural deformation. Relative 

deformations in the structural members, especially at the joint between glass and metal panel 

may compromise leak tightness of the system. Hence, keeping in mind above-mentioned 

constraints, designers have to maintain a fine balance between rigid body motions and elastic 

deformations. In present case, two glove boxes were interconnected by a flexible connection. 

Hence, it is important to constrain motion between the boxes before anchoring the boxes with 

the floor. Next chapter discusses a case where both of these boxes are rigidly connected to each 

other, in addition to a flexible connection via transfer port. 
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CHAPTER 7 SEISMIC STABILITY OF RIGIDLY INTER-

CONNECTED GLOVE BOXES  

7.1  Introduction and Outline 

In last chapter, we deliberated seismic stability of two glove boxes interconnected by a material 

transfer tunnel. We elaborated that the connection between material transfer tunnel and glove 

boxes was through deformable gaskets. This linkage can constrain sliding and rocking motion, 

till the frictional resistance at the contacting interface is overcome by external disturbing forces. 

Hence, for higher amplitudes of peak base excitations, relative sliding and rocking/rotational 

motion was observed. Integrity of the glove box system was breached at 0.4g peak ground 

acceleration seismic excitation. 

 To improve the seismic performance of interconnected glove boxes, it was proposed to 

rigidly connect both the boxes with each other. A cross bracing using mild steel angles was 

bolted between carriages (stands) of both the boxes. The objective of this cross bracing was to 

constrain relative displacements and rotations between the boxes. After this design 

modification, glove boxes were analyzed again using FE software. Research performed as a 

part of this chapter has been published in a peer reviewed journal.  

Section 7.2 discusses finite element modeling and analysis methodology and gives detail of 

modal frequencies of interconnected glove boxes. 

Section 7.3 reports numerical simulations carried out using FE methods to assess seismic 

stability of a glove boxes. After this Section 7.4 gives detail of numerical method for quick 

estimation of slip distance for free-standing body.  Then, Section 7.5 presents validation results 

for numerical models viz. finite element model and energy conservation based numerical 

method. Finally, conclusions are drawn in Section 8.6.  
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7.2  Finite Element Analysis and Solution 

Finite element analysis (FEA) has been carried out on full scale three-dimensional modified 

design model of interconnected GBs. The main objective of FE analysis was to check 

displacements and rotations of the interconnected gloveboxes. However, objective of analysis 

was not to evaluate leak tightness of structure during seismic excitations. Hence, various 

connections, between glass panels and stainless steel frame, between aluminum panel and 

stainless steel frame were modelled as the integral one (monolithic). Various material 

properties were provided as an input for analysis as given in Table.7-1. Interconnected glove 

boxes and floor was modelled using finite elements with contact generated between legs and 

floor as shown in Fig.7-1. Glove boxes frame and interconnected material transfer tunnel were 

modelled as four nodes shell elements (S4R) with 6 degrees of freedom at each node. 

Supporting structure (stand) and structural cross bracing was modelled as three nodes linear 

beam elements (B31) with 6 degrees of freedom at each node. The connection between tunnel 

and port was considered as a frictional joint. Contact properties in tangential direction were 

defined by taking coefficient of friction (µ) value as 0.15. For numerical enforcement of contact 

constraints in tangential and normal direction, Penalty algorithm was used. The mass of the 

filter box, eccentric shield, central load, regulating valve, clamping strips, glove ports, gauntlet 

etc. were lumped at appropriate places and was effective in three translational degrees of 

freedom. 
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Figure 7-1 Finite element model of two interconnected glove boxes showing various constraints and 
contact interactions 

 

Table 7-1 Mechanical properties of modified glove box structure 

 
S.no 

 
Material Description 

Mechanical Properties 

Young’s 
Modulus 

(GPa) 

Density 
(Kg/m3) 

Poisons 
ratio 

Thickness 
(mm) 

1 Stainless steel glove box 
frame and material 

transfer tunnel 

210 8000 0.3 3 

2 Mild steel bottom 
supporting plate and 

carriage(stand) 

210 8000 0.3 9,6 

3 Aluminium side panels 70 2700 0.35 10 

4 Front/back glass panels 74 2530 0.2 10 

5 Structural members (L 
shaped angles) 

210 8000 0.3 5 
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7.2.1 Modal Frequencies 

Modal analysis was first carried out to determine natural frequency of interconnected 

GB’s. Lanczos method was used to calculate eigenvalues. First two eigenvalues in flexure 

mode were determined to be 8.1Hz and 8.2 Hz and third value in rotation about vertical axis 

was 10Hz as shown in Fig.7-2. In the figure, displacement gradients are represented by color 

scheme, where red and blue colors indicate highest and lowest value of displacement. After 

carrying out modal analysis, nonlinear seismic analysis had been carried out using time 

integration method. Next section presents finite element analysis results to determine seismic 

stability of modified interconnected glove boxes structure. 

 

Figure 7-2 fundamental mode shapes of Interconnected glove boxes 

 

(a) Un-deformed 
 

(b) First mode shape 
  

(c) Second mode shape 
  

(d) Third mode shape 
  



243 

 

7.3  Seismic Stability Assessment 

The FE model had been given base excitation simultaneously in three directions starting 

from 0.1g peak value up to 0.4g peak value. Input time histories used in analysis were same as 

recorded at shake table during testing. In FE analysis, accelerations and displacements time 

histories, obtained at locations where sensors were installed during shake table testing are 

plotted. Peak acceleration values obtained from the finite element analysis at locations of 

various sensors is plotted in Fig.7-3. 

Fast Fourier Transform (FFT) of acceleration time histories obtained at locations 

corresponding to various accelerometers was obtained. Total six number of accelerometers 

(three on each GB in X, Y and Z direction) were taken for FFT analysis. Location of these 

accelerometers was already shown in Fig.2-12. Details are as given below: 

A1, A4 and A6 --- Accelerometers located on GB2 to record the response of structure in 

X, Y and Z direction (vertical) respectively. 

A11, A13 and A16 -- Accelerometers located on GB1 to record the response of structure 

in X, Y and Z direction (vertical) respectively. 

FFT of response accelerations is plotted in Figs.7-4 to 7-7. Following observations can be 

drawn from the analysis results: 

1. Acceleration response increased nonlinearly with peak base excitation as shown in 

Fig.7-3. 

2. Response in X (A1 & A11) and Y(A4 & A13)  direction was dominated by rigid body 

motions (sliding and low amplitude rocking).Negative shift in frequency corresponding 

to peak amplitude of FFT, with increase of base excitation was observed. This was due 

to increase of rigid body motions, with peak base excitations. In FFT, observed peaks 
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at low frequencies of around 3Hz was predominantly due to rigid body motions like 

sliding and frequency induced rocking. (Refer Fig.7-4)  

3. FFT spectra for Y (A4 & A13) direction for 0.3g and 0.4g peak base accelerations, 

doesn’t indicate negative frequency shift. This was as expected, from the absence of 

input base excitation given in Y direction.  

4. Interconnected GBs maintained integrity up to 0.4g PGA value. This shows that rigidly 

connected glove boxes have performed seismically better than corresponding boxes 

without rigid links. 

After carrying out finite element analysis of modified configuration of glove boxes, numerical 

method results for estimation of slip displacements are discussed in next chapter. 

 

 

Figure 7-3 Maximum acceleration values obtained by FE analysis at accelerometer locations for 0.1-0.4g 
peak base acceleration 

 



245 

 

 

Figure 7-4 FFT of response time history at 0.1g peak base acceleration (FE Analysis) 

 

 

Figure 7-5 FFT of response time history at 0.2g peak base acceleration (FE Analysis) 
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Figure 7-6 FFT of response time history at 0.3g peak base acceleration (FE Analysis) 

 

 

 

Figure 7-7 FFT of response time history at 0.4g peak base acceleration (FE Analysis) 
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7.4  Numerical Method to Estimate Sliding Displacement 

The simplified numerical method is further extended to estimate maximum sliding 

displacement of modified configuration of glove boxes with rigid links. Methodology for 

obtaining equivalent sliding displacement is same as described earlier in Chapter-5. Hence, not 

repeated again here.   

On solving for δs by using quadratic equations developed earlier, we finally get these results:  

1. for 0.2g peak base acceleration 

δs = 57mm 

2. for 0.3g peak base acceleration 

δs = 91mm 

3. for 0.4g peak base acceleration 

δs = 134mm 

We can also evaluate the conservative sliding displacement by using the ASCE code method 

and results are as below: 

1. for 0.1g peak base acceleration 

δs = 4mm 

2. for 0.2g peak base acceleration 

δs = 56mm 

3. for 0.3g peak base acceleration 

δs = 105mm 

4. for 0.4g peak base acceleration 

δs = 165mm 

Comparison of final sliding displacements obtained from the test, FE analysis, energy method 

and ASCE code is shown in Fig.7-9.   
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7.5  Validation of Finite Element and Numerical Method Results 

Developed finite element model was benchmarked using available shake table test data. 

Important recorded parameters like accelerations and displacements were compared. To check 

the validity and accuracy of analysis results, peak acceleration and final displacement values 

obtained from FE analysis were compared with the corresponding test values and shown in 

Figs.7-8 and Fig.7-9 respectively. Fig.7-9 also compares displacement values obtained from 

developed numerical method and ASCE code method. Furthermore, frequency contents of 

acceleration time histories are checked by comparing F.F.T. of acceleration time history 

obtained by FE analysis as shown in Figs.7-4 to 7-7, with that of corresponding test results as 

shown in Figs.7-10 to 7-13. Comparison of test results with analysis results indicates following 

important points: 

1. Peak accelerations recorded during tests were found to be coherent with the 

corresponding analysis values. Maximum deviation in analysis value observed was 12 

percent of test value for A1 accelerometer in case of 0.4g pba (Refer Fig.7-8). 

Deviations for all other accelerometers readings were below 10 percent of test values. 

2. Analysis values for final sliding displacements were in good agreement with the 

corresponding test values. Maximum deviation observed was 12 percent of the test 

value in the X direction for 0.4g pba (Refer Fig.7-9). All other variations were well 

below 12 percent.     

3. For the case of 0.1g peak base acceleration, maximum deviation observed in peak value 

of amplitude of F.F.T. data is 8 percent of test value (Refer Fig.7-4 and Fig.7-10). 

However, it was 19, 11 and 14 percent for the cases of 0.2g, 0.3g and 0.4g peak base 

acceleration respectively (Refer Figs.7-5, 7-6, 7-7 and Figs.7-11, 7-12, 7-13). 
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4. Peaking of amplitude at lower frequency (around 3Hz) for horizontal directions F.F.T. 

was observed in analysis results, in line with the test results. Further, negative sift of 

frequency with increasing peak base acceleration value was also observed. 

 

 

Figure 7-8 Comparison of peak base accelerations obtained by Test and FE analysis 
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Figure 7-9 Comparison of final displacement of interconnected glove boxes obtained by different methods 

 

 

Figure 7-10 FFT of acceleration signal recorded by accelerometers (a) A1, (b)A4, (c) A6, (d) A11, (e)A13 
and (f) A16 for 0.1g pba value during shake table testing 
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Figure 7-11 FFT of acceleration signal recorded by accelerometers (a) A1, (b)A4, (c) A6, (d) A11, (e)A13 
and (f) A16 for 0.2g pba value during shake table testing 

 

 

 

Figure 7-12 FFT of acceleration signal recorded by accelerometers (a) A1, (b)A4, (c) A6, (d) A11, (e)A13 
and (f) A16 for 0.3g pba value during shake table testing 
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Figure 7-13 FFT of acceleration signal recorded by accelerometers (a) A1, (b)A4, (c) A6, (d) A11, (e)A13 
and (f) A16 for 0.4g pba value during shake table testing 

 

7.6  Observations and Discussion 

Modified configuration of Interconnected GBs (with structural cross bracing) maintained 

integrity up to 0.4g peak ground acceleration value. As mentioned earlier, design modification 

were carried out to improve seismic stability of the interconnected glove box system. Hence, 

here we would briefly present comparison of both the cases and examine effect of introducing 

cross bracing on seismic stability of the system. Relative sliding displacements in both the 

horizontal directions of the glove boxes is compared. Fig.7-14 shows the comparison of relative 

sliding motion between the two boxes. It can be observed that in case of glove boxes 

interconnected only with a material transfer tunnel, relative displacement at 0.4g PGA value 

was of the order of 25mm, which led to the fall of the tunnel and hence breach of integrity. 

However, on the other hand, it was observed in case of modified design (glove boxes connected 

with structural cross members in addition to transfer tunnel), relative sliding motion between 
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the boxes was reduced to less than 0.1mm. This also had repercussions on the leak tightness of 

the system as shown earlier in Table.2-2. Modified design successfully withstood seismic 

excitations up to 0.4g PGA value, without any leakages. 

 

Figure 7-14 Comparison of peak relative displacements between two glove boxes in the earlier and 
modified design 

 

In addition to that, FE analysis results were throughout coherent with the test results. Simplified 

numerical method predicted conservative displacement values as shown in Fig.7-9. Hence, this 

can be effectively utilized for estimating upper bounds on displacements. 

Behavior of free-standing interconnected glove boxes on floor subjected to base excitation 

was nonlinear. Modified design of interconnected glove boxes sustained earthquake motion up 

to 0.4g peak base acceleration value without breach of integrity and leak tightness. Numerical 

calculations performed can give the facility designers a confidence that the free-standing glove 

boxes are also seismically safer. Hence this study would enable, the designers of a new facility, 

to take a judicious decision about anchoring of glove boxes with the floor.  
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Owing to the highly nonlinear behavior of the system due to presence of friction and 

impact at contact interfaces, FE analysis contact parameters were required to be meticulously 

selected to accurately represent the contact behavior. Analysis results were found to be in good 

agreement with test values. Hence, FE methods can be utilized for analyzing the system. 

Simplified numerical method developed using an energy conservation technique provided a 

good quick estimate of maximum sliding displacement.  
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CHAPTER 8 CONCLUSIONS, CONTRIBUTIONS AND 

DIRECTIONS FOR FUTURE RESEARCH 

The research carried out as a part of this doctoral program produced certain important 

outcomes. A generic investigation of the stability of a free-standing body subjected to base 

excitation was presented. An investigation on fundamental dynamics of flexible and rigid free-

standing bodies was carried out. A clear distinction in dynamic behavior of a rigid and flexible 

body, when excited by a base excitations, was highlighted. Seismic stability of geometrically 

similar rigid and flexible test models of varying frequency parameters had been investigated. 

Supported by experimental and numerical investigations, effect of system parameters like base 

motion characteristics and aspect ratio on stability of a free-standing body was explored. 

Conclusions are given in the next section.  

8.1  Conclusions  
 

1. Base excitation frequency influences initiation of any mode of motion from rest state. 

With the increase of excitation frequency, motion of a body diminishes to a very low 

value corresponding to no motion state.  

2. Experimental and numerical investigation revealed differences in dynamic response of 

geometrically similar rigid and flexible bodies. Free rocking frequencies were found 

to govern stability of a flexible free-standing structure.  

3. It was shown that a flexible body can initiate rocking motion below the statically 

required minimum value of g.tanα, if it is excited by frequencies corresponding to its 

free rocking frequencies. On the other hand, a rigid body could not initiate rocking 

motion below a value of g.tanα. This indicated seismic vulnerability of a flexible body 

compared to geometrically similar rigid body to a particular range of frequencies 

pertaining to free rocking frequencies of the body. 
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4. Amplification factor for rocking motion of a rigid body was dependent on amplitude, 

frequency and aspect ratio of the body. However for sliding motion it was independent 

of all three parameters. Similarly for a flexible body AF for rocking was dependent on 

amplitude, frequency and aspect ratio of the body. On the other hand for sliding motion, 

AF was independent of aspect ratio but not of amplitude and frequencies of base 

excitation.  

5. Values of parameters like rocking angles and sliding displacement were found to be 

strongly dependent on frequencies of base excitations in addition to the amplitude 

value. Both of them were observed to be inversely proportional to the frequencies of 

excitations as discussed in Sections 3.3.4 and 3.3.5.    

6. Motion initiation criteria diagrams were developed for flexible bodies. This is the first 

time such a diagram is presented for a flexible body. Main feature of this diagram was 

increase of rocking and slide/rock region with the increase in flexibility. This resulted 

in lesser available rest region which in turns adversely affects seismic stability. 

7. Overturning potential of rigid and flexible bodies was evaluated. Developed 

overturning curves highlighted presence of two distinct modes of failure. Higher 

probability of Mode-1 failure was observed in a flexible test specimen than the rigid 

one of same aspect ratio.   

8. Rigid body motions dominated seismic response of a glove box. On a low grip base 

(µs=0.15), despite of predominance of sliding motion, presence of low amplitude 

rocking motion was observed. A generalized and simple methodology was proposed in 

Section 5.7 to help the facility designers in taking a judicious decision about anchoring 

of the glove boxes.  
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8.2  Contributions  
 

The following are specific innovative and novel contributions from the research work carried 

out as a part of this PhD. 

1. Base excitation frequency was determined as a parameter governing motion initiation 

of a body from rest state. Three-dimensional motion initiation criteria diagrams were 

developed, using frequency as an independent axis.  

2. Dynamics of a free standing flexible body was observed to be influenced by a new 

parameter known as free rocking frequencies. This research highlighted a phenomenon 

of frequency induced uplift/rocking in a flexible body. 

3. A relationship between amplitude of base motion required to uplift and free rocking 

frequencies of a flexible body was experimentally established and discussed in Section 

4.2.4.  

4. A methodology was proposed to determine requirement of anchoring (fixing to the 

base) of a free standing glove box. By using developed motion initiation criteria 

diagrams (Refer Fig.5.22), user can take a judicious decision about fixing/not fixing of 

the body. Discussion for enhancing stability of a glove box without anchoring was done. 

8.3  Directions for Future Research 
 

Present research focussed on evaluating dynamic behaviour of rigid and flexible free-standing 

bodies when subjected to base excitations. Extensive experimental and numerical results were 

presented and logical conclusions were drawn. However, it is felt that there are some areas 

which require further studies and if thoroughly investigated can lead to more scientific 

breakthroughs as given below. 
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1. For a rigid body of square base, planar excitations can lead to a response in the 

third direction. Same was observed during shake table testing of rigid test 

specimens. Hence it can be a subject of future study to investigate effects of 

motions in third dimension and its repercussions on stability of a body. Moreover, 

as noted response of specimens with the same aspect ratios (α value) will be 

different for different sizes (R value). Hence, blocks with the same aspect ratio but 

different sizes can be tested in rocking mode of motion. [63] 

2. Frequency induced rocking phenomenon can be further investigated for flexible 

bodies of different stiffness. Effects of stiffness of a body in frequency induced 

rocking and its effect on overturning instability can be a future course of work. 

3. Mode1 overturning failure was observed to be a complex behavior, in which for a 

certain combination of frequency and amplitude the specimen had multiple impacts 

with the base before overturning. This also affected total time required for 

overturning. Mode2 failures were prompt taking less than a second, while on the 

other side Mode1 failures were slow and even for some cases it took the specimen 

around 7 seconds to overturn. More investigation is required on this subject, which 

shall be taken up as future course of activities 

4. Three-dimensional motion initiation criteria diagram for a flexible free-standing 

body can be developed. This requires evaluation of cut off frequencies 

corresponding to all possible states of a flexible body and then map them to form a 

three-dimensional diagram. This can be a significant contribution to the scientific 

community, since by looking at a simple diagram it would become possible to 

predict probable motion of a flexible body. Different diagrams can be built for 

different aspect ratios. 
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5. Effect of frequency induced vibrations on overturning instability of a flexible body 

can be taken for future studies. This can also include an interesting investigation of 

possibility of rocking resonance in a flexible body.  
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