
Formal Verification and Automated analysis of
Software Product Lines

By

Ganesh Khandu Narwane

(Enrollment Number: ENGG01201104001)

Bhabha Atomic Research Centre, Mumbai

A thesis submitted to the

Board of Studies in Engineering Sciences

In partial fulfillment of requirements

for the degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

September, 2018

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfilment of requirements for an

advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in

the Library to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permis-

sion, provided that accurate acknowledgement of source is made. Requests for

permission for extended quotation from or reproduction of this manuscript in

whole or in part may be granted by the Competent Authority of HBNI when in his

or her judgement the proposed use of the material is in the interests of scholarship.

In all other instances, however, permission must be obtained from the author.

Ganesh Khandu Narwane

DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out

by me. The work is original and has not been submitted earlier as a whole or in

part for a degree/diploma at this or any other Institution/University.

Ganesh Khandu Narwane

1

List of publications arising from the thesis

Journals

1. Design Variability Verification and Compositional Modeling in Real Time

Software Product Lines, Ganesh Khandu Narwane, Shankara Narayanan

Krishna, Jean-Vivien Millo and S Ramesh., Sadhana journal, 2018. (Ac-

cepted and to appear)

2. A Cost Effective Approach for Analyzing Software Product Lines, Ganesh

Khandu Narwane, Shankara Narayanan Krishna, Anup Kumar Bhattachar-

jee, Lecture Notes in Computer Science, 2014, vol 8337. Springer, ISBN

978-3-319-04482-8, 5–22.

3. Traceability analyses between features and assets in software product lines,

Ganesh Khandu Narwane, José A. Galindo,Shankara Narayanan Krishna,

David Benavides, Jean-Vivien Millo and S Ramesh., Entropy Journal, 2016,

Volume 18, doi: http://dx.doi.org/10.3390/e18080269.

Conferences

1. Compositional modeling and analysis of automotive feature product lines,

Shankara Narayanan Krishna, Ganesh Khandu Narwane, S. Ramesh, Ashutosh

Trivedi, DAC, 2015, doi: http://doi.acm.org/10.1145/2744769.2747928,

57:1–57:6.

2. Compositional Verification of Software Product Lines, Jean-Vivien Millo,

S. Ramesh, Shankara Narayanan Krishna, Ganesh Khandu Narwane, IFM,

http://dx.doi.org/10.3390/e18080269
http://doi.acm.org/10.1145/2744769.2747928

2

2013, doi: http://dx.doi.org/10.1007/978-3-642-38613-8_8, 109–

123.

3. Tracing SPLs precisely and efficiently, Swarup Mohalik, S. Ramesh, Jean-

Vivien Millo, Shankara Narayanan Krishna, Ganesh Khandu Narwane, SPLC,

2012, doi: http://doi.acm.org/10.1145/2362536.2362562, 186–195.

Others

1. Automated Analysis Operations in Software Product Lines, Ganesh Khandu

Narwane, A. K. Bhattacharjee and Krishna S., SACI, 2014, Symposium on

Advances in Control and Instrumentation.

http://dx.doi.org/10.1007/978-3-642-38613-8_8
http://doi.acm.org/10.1145/2362536.2362562

Dedicated to my Family, Teachers and Friends

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my guide Dr. A. K. Bhattacharjee and

Prof. Krishna S. for there invaluable guidance, suggestions and encouragement

during the course of this work.

I am indebted to Prof. Ashutosh Trivedi, Prof. S. Akshay, Dr. Ramchandra

and Dr. Shetal for the discussions and suggestions during the work. I am grateful

to my doctoral committee members Dr. Kallol Roy, Dr. Archana Shrama, Dr.

Gopika Vinod, Dr. V. H. Patankar and Dr. B. Dikshit for their valuable sugges-

tions.

I thanks my colleagues and friends Amol, Prateek, Ajith, Hrishi, Devendra,

Kakasaheb and Chandrakant for their help and support. Finally, I thanks my par-

ents for their love and encouragement.

Ganesh Khandu Narwane

1

SYNOPSIS

In a Software Product Line (SPL), the central notion of implementability provides

the requisite connection between specifications and their implementations, lead-

ing to the definition of products. While it appears to be a simple extension of the

traceability relation between components and features, it involves several subtle

issues that were overlooked in the existing literature. In the current research, a

precise and formal definition of implementability over a fairly expressive trace-

ability relation is been introduced. The consequent definition of products in the

given SPL naturally entails a set of useful analysis problems that are either re-

finements of known problems or are completely novel. This proposal also in-

troduce, a new approach to solve these analysis problems by encoding them as

Quantified Boolean Formulae (QBF) and solving them through Quantified Satis-

fiability (QSAT) solvers. QBF can represent more complex analysis operations,

which cannot be represented by using propositional formulae. The methodology

scales much better than the SAT-based solutions hinted in the literature and were

demonstrated through a tool called SPLAnE (SPL Analysis Engine) on a large

set of SPL models. Now a days, most of the systems are composed of software-

implemented components often interacting with physical subsystems under real-

time constraints. The developed components are managed as a Software Product

Lines (SPLs) to derive the variants products as per the requirements. Variabil-

ity is a central to SPL and it is observed that variability is expressed differently

at different levels of abstraction during the various phases of development, like

requirements, design and implementation. A natural problem in this context is

the conformance of variability information expressed at different levels. Unlike

many existing approaches to SPL modeling, our work does not assume a single

2

global view of variation points, even within the same level of abstraction. In our

view, an SPL is a concurrent composition of features, where each feature exhibits

independent variability. This enables incremental addition of variability. Design

variability verification, in particular, checks whether the variability expressed at

the design level conforms to that at the requirement level. This work proposes

a novel notion called design variability verification applicable to real-time Soft-

ware Product Lines (SPL). This work introduce and study a formal model of such

feature product lines capable of capturing variability and real-time behavior. The

notion of conformance to relate the variability at different levels of abstraction

and propose a compositional method of verifying conformance of multiple fea-

tures is define. The procedure is compositional in the sense that the verification of

an entire SPL consisting of multiple features is reduced to the verification of the

individual features. Feature level verification essentially involves standard model

checking while, in the second step, a Quantified Boolean Formula (QBF) is syn-

thesized and solved. The method has been implemented and demonstrated in a

tool SPLEnD (SPL Engine for Design Verification) on a couple of fairly large

case studies. SPLEnD uses SPIN tool for the feature level conformance, while the

state of the art QBF solver CirQit is used for the SPL level conformance. SPLEnD

easily handles the evolution of SPL by addition of new features and modification

of existing features.

Contents

1 Introduction 9

1.1 Motivating Example . 12

1.1.1 Contribution . 20

1.2 SPL with behavioral Features . 21

1.3 SPL with timed behavioral Features 27

2 Related Works 29

2.1 Related Work . 29

2.2 Related work with FSMv and TSMv 35

3 SPL Analysis Engine 40

3.1 SPLAnE Framework: Traceability and Implementation 40

3.1.1 Specification and Implementation 40

3.1.2 Traceability . 42

3.1.3 The Implements Relation 43

3.2 Analysis Operations . 54

3.2.1 SPL Model Verification 55

3.2.2 Complete and Sound SPL 56

3

4

3.2.3 Product Optimization . 57

3.2.4 SPL Optimization . 59

3.2.5 Generalization and Specialization in SPL 61

3.3 Validation . 63

3.3.1 SPLAnE Architecture 65

3.3.2 Experimentation . 66

3.3.3 Threats to Validity . 83

4 SPL Engine for Design verification 85

4.1 Modeling features and SPLs . 85

4.1.1 Modeling the behavior of a single feature 86

4.1.2 Modeling the behavior of a SPL 91

4.1.3 Feature Level Verification 99

4.1.4 SPIN Encoding . 101

4.1.5 System Level Variability Verification 113

4.2 Experimental Results with SPLEnD 116

4.3 Modeling features and SPLs with time 117

4.3.1 Design Conformance : Feature Level 119

4.3.2 Refinement and Parallel Composition 122

4.3.3 Conformance Checking 123

5 Tools 128

5.1 SPLAnE Tool . 128

5.1.1 Features of SPLAnE . 130

5.2 SPLEnD Tool . 133

5.2.1 Feature Level Verification(1st Check) 135

5

5.2.2 SPL Level Variability Verification(2nd Check) 136

5.3 Extra features of SPLEnD: . 136

5.3.1 Addition of Features . 136

5.3.2 Converting predicate . 137

6 Conclusions and Future Works 141

6.1 Conclusions . 141

6.2 Future Work . 142

6.3 Future Work: Hybrid State Machine with variability 144

6.3.1 Improving SPLEnD GUI: 145

List of Figures

1.1 Feature model: virtual machine. 14

1.2 Component model: Linux virtual machine-based system. 16

1.3 Preconfigured virtual machines. 20

1.4 The proposed verification approach. 26

2.1 Product line hierarchy. 32

3.1 Impact on QSAT scalability on Real SPLOT models with the in-

crement in Cross Tree Constraints (CTC) levels. 74

3.2 Boxplot for QSAT scalability on large random SPL models with

the increment in CTC levels. 77

3.3 QSAT scalability on large random SPL models with the increment

in CTC levels. 78

3.4 SPLAnE required time vs. FaMa required time in front of real and

large Debian based feature models. 80

3.5 SPLAnE required time vs. FaMa required time in front of random

and large SPL models. 81

3.6 SPLAnE required time vs. FaMa required time. 83

4.1 Door lock FSMv . 88

6

7

4.2 Desdl: the FSMd abstracted from the design of the feature Door

lock. 89

4.3 a) Reqdu: Door unlock FSMr and b) Desdu: Door unlock FSMd. . 93

4.4 FSMr for feature: UserInter f ace. 101

4.5 FSMd for feature: UserInter f ace. 102

4.6 Execution time of QBF for Scalability 117

4.7 A TSMv A and its timed automata variant A ↓(x=1,y=1,z=0) 119

4.8 TSMvd Ad
i along with the corresponding TSMvrAr

i 121

4.9 TSMvr for power window controller 126

4.10 TSMvd for power window controller 127

5.1 SPLANE reasoning process . 131

5.2 SPLEnD’s framework and approach. 135

5.3 Architecture of SPLEnD . 135

5.4 Snapshot of SPLEnD: Loading a project 137

5.5 Snapshot of SPLEnD: The FSMr of the feature LiftGlass 138

5.6 Snapshot of SPLEnD: conformance mapping 139

5.7 Snapshot of SPLEnD: SPL conformance failed: An invalid con-

figuration. 140

5.8 Snapshot of SPLEnD: Converting a predicate from Requirement

to design. 140

List of Tables

1.1 Traceability relation for the virtual machine. 19

3.1 Properties and Formulae . 64

3.2 Hypotheses and design of experiments. 68

3.4 Hypotheses and design of experiments. Cont... 1 69

3.6 Hypotheses and design of experiments. Cont... 2 70

3.7 Time complexity for properties and formulae with SPLAnE rea-

soner: CirQit. (# means the “Number” of features and components.) 72

8

Chapter 1

Introduction

Software Product Line Engineering (SPLE) is a software development paradigm

supporting the joint design of closely-related software products in an efficient and

cost-effective manner. The starting point of a Software Product Line (SPL) is the

scope, which defines all of the possible features of the products in the SPL. The

scope is said to define the problem space of the SPL, describing the expectations

and objectives of the product line. The description is typically organized as a

feature model [1] that expresses the variability of the SPL in terms of relations or

constraints (exclusion, requires dependency) between the features and defines all

of the possible products in the product line.

An important step in SPLE is the development of core assets, a collection of

reusable artifacts. The core assets contains the components, and we use the term

component to represent any artifacts that contribute to product development, like

code, design, documents, test plan, hardware, etc. A component is an abstract

concept of any assets used in products. The core assets define the solution space

of the SPL and are developed to meet the expectations outlined in the problem

9

10

space [2]. They are developed for systematic reuse across the different products in

the SPL [3, 18]. The variability in core assets across the components is represented

by a component model. The components in a component model may also have

exclusions and require dependency constraints, similarly to feature models. Given

the problem and solution spaces for an SPL, as defined by the scope and the core

assets, the next important step is traceability, which involves relating the elements

(features, core assets) at these two levels [2].

The focus of this work is formal modeling and analysis of traceability in an

SPL. There are many relationships possible; one of the most useful and natural one

is the implementability relation that associates each feature in the scope with a set

of core assets that are required for implementing the feature(s) [4]. The integra-

tion of variabilities of the problem space and the solution space using traceability

relation is proposed in this work. For example, one could be interested in checking

whether every product in the problem space has a correspondence in the solution

space, i.e., every product represented in the feature model can be implemented

using the existing assets considering the implementability relation. Another ex-

ample is the property to check every asset of an SPL that needs to be maintained

not only because it is involved in some implementations, but the asset is the only

option.

Let us consider an example from the cloud computing domain. The company

offers a service to rent computers on a cloud with different possible software con-

figurations using Linux-based distributions. In the back-end, instead of providing

physical machines, the company provides virtual machines with some software

package installed on them. Thus, the configuration of machines can be generated

on demand according to the needs of the users. In order to improve the speed of

11

the creation of a new machine, there are pre-configured machines ready to launch.

In this example, the possible configurations offered to the users define the

problem space. The set of available Linux packages implementing the features is

the core assets. The pre-configured machines can be seen as another set of assets

(limited, but available immediately).

The following are some examples of relevant analyses that could arise in this

example:

– Check if at least one of the pre-configured machines covers the needs of a

new user configuration.

– Check if at least one of the pre-configured machines realizes (exactly) the

needs of a new user configuration.

– Check if there are dead packages, i.e., packages that cannot be in any of the

virtual machines.

In the literature, formal modeling and analysis of variability at the feature

model level have been studied extensively, and several efficient tools have been

built to carry out the analyses [5, 19]. The main idea behind all of these works is

that the variability analysis can be reduced to constraints and variables modeling

the feature level variability [20, 2, 21, 22, 23, 24, 25, 26, 27]. While there are

several recent works on traceability, most of them have confined themselves to an

informal treatment [28, 29, 30, 31]. Some works have chosen a formal approach

for representing the traceability and configuration of features [6].

In the past, most of the work [5, 19] has encoded variability analysis opera-

tions in propositional formulae. There are various SAT solvers, like SAT4j [32],

or MiniSAT [33], or PicoSAT [34], which can be used to check the satisfiability of

12

a propositional formula. We propose a novel approach for modeling traceability

and other notions relating features and core assets using the Quantified Boolean

Formula (QBF). QBF is a generalization of SAT Boolean formulae in which the

variables may be universally and existentially quantified. The Quantified Satisfi-

ability (QSAT) solver is used to check the satisfiability of the QBF. In this work,

we make use of the well-known QSAT solver, CirQit [35] and RAReQS-NN [36].

The proposed method has been implemented in a tool that is integrated with

the FaMa framework [37]. This tool, called SPLAnE (SPL Analysis Engine) [38],

can model feature models, core assets (component models) and a traceability rela-

tions. SPLAnE is a feasible solution for the automated analysis of feature models

together with asset relations.

1.1 Motivating Example

In this report, we present cloud computing as a product line. The feature model

and the component model are used to manage the variability across the scope and

core assets, respectively.

Feature Models

Feature models have been used to describe the variant and common parts of the

product line since Kang [39] has defined them. The sets of possible valid com-

binations of those features are represented by using different constraints among

features. The feature model in Figure 1.1 represents the features provided by the

cloud computing. Two different kinds of relationships are used: (i) hierarchical

relationships, which describe the options for variation points within the product

13

line; and (ii) cross-tree constraints that represent constraints among any features

of the feature tree. Different notations have been proposed in the literature [5];

however, most of them share the following relationship flavors:

Four different hierarchical relationships are defined:

– mandatory: this relationship refers to features that have to be in the product

if its parent feature is in the product. Note that a root feature is always

mandatory in feature models.

– optional: this relationship states that a child feature is an option if its parent

feature is included in the product.

– alternative: it relates a parent feature and a set of child features. Concretely,

it means that exactly one child feature has to be in the product if the parent

feature is included.

– or: this relationship refers to the selection of at least one feature among a

group of child features, having a similar meaning to the logical OR.

Later, two kinds of cross-tree relationships are used:

– requires: this relationship implies that if the origin feature is in the product,

then the destination feature should be included.

– excludes: this relationship between two features implies that, only one of

the feature can be present in a product.

14

Figure 1.1: Feature model: virtual machine.

Cloud computing technology provides ready to use infrastructure for the clients.

The cloud system reduces the cost of maintaining the hardware and software, and

also reduces the time to build the infrastructure on the client side. The client pays

only for the hardware and software used based on the duration. The feature model

for cloud computing is shown in Figure 1.1. The root feature VirtualMachine is a

mandatory feature by default. The mandatory relationship is present between the

feature VirtualMachine and UserInter f ace, so the feature UserInter f ace has to

be present if feature VirtualMachine is present in the product. The optional rela-

tionship is present between the feature Language and VirtualMachine, so it is op-

tional to have feature Language in the products. The feature GUI has alternative

relationship with its child features {KDE,GNOME,XFCE}. Hence, if feature

GUI is selected in a product, then only one of its child feature has to be present

15

in that product. The feature Server has or relationship with its child features

{Tomcat,Glass f ish,Klone}. Hence, if feature Server is selected in a product,

then at least one of its child feature has to be present in that product. The feature

C++ requires the feature C to be present in a product. The presence of feature

Tomcat in a product does not allow the feature Klone and vice versa. The client

can request for a system with the set of features called a speci f ication. The mini-

mum set of features in the specification should contain features {VirtualMachine,

UserInter f ace, Console } as they are mandatory features. We can term this as

commonality across all the products of an SPL. The specification F = {VirtualMachine,

UserInter f ace, Console, GUI, KDE, Language, C } is valid for the creation

of a virtual machine because it satisfies all the constraints in the feature model.

The specification F = { VirtualMachine, UserInter f ace, Console, GUI, KDE,

Language, C++} is not valid because it contains a feature C++ so it is necessary to

select feature C.

Component model: Similar to a feature model, same notations can be used

to represent variability amongst the components present in core assets of an SPL,

we call it a Component Model (CM). The variability amongst the components can

also be represented by any other models like the Orthogonal Variability Model

(OVM), Varied Feature Diagram (VFD) and Free Feature Diagrams (FFDs) [6,

40]. The component model in Figure 1.2 represents the resources available to cre-

ate a virtual machine. The cloud computing technology will create a virtual ma-

chine that contains a set of components required to implement the features present

in the client speci f ication. Such set of components is called an implementation.

The implementation C = {LinuxCore, IUser, IConsole, Terminal, ILanguage,

C-lang, c-lib } is valid because it satisfies all the constraints on the component

16

model, so a virtual machine can be created with these components. The im-

plementation C = {LinuxCore, IUser, IConsole, ILanguage, C-lang, c-lib } is in-

valid, because the component Terminal or XTerminal or both are required to

satisfy the component model constraints.

Figure 1.2: Component model: Linux virtual machine-based system.

Table 1.1 shows the traceability relation between the features and the compo-

nents. The entry in the row of feature Glass f ish means the component Glass f ishApp

implements the feature Glass f ish. Similarly, the feature Console can be imple-

mented by the set of components: {IConsole,XTerminal} or {IConsole,Terminal}.

For each feature in the client specification, the traceability relation gives the re-

quired sets of components. In the feature model, the effective features are only the

leaf features. The traceability of a parent feature like the feature GUI can be im-

plemented by the set of components: {IGUI}. The feature GUI can be abstracted

by eliminating all of its child features {KDE,GNOME,XFCE}; this allows to

analyze the SPL at a higher level of abstraction.

Figure 1.3 shows the four preconfigured virtual machines. The preconfigured

machines show the set of components from the component model shown in Fig-

ure 1.2.

17

Software product lines can contain a large set of different products. Therefore,

facing the complexity of the feature models that represent the products within an

SPL is hard. To help in such a difficult task, researchers rely on the computer-

aided extraction of information from feature models. This extraction is usually

known as the automated analysis in the area. To reason about those models, the

relationships existing in the feature model are processed through a CSP (Con-

straint Satisfaction Problem), SAT, BDD (Binary Decision Diagrams) solver or

a specific algorithm. Later, the operation is used to extract specific information

from the model. An SPL with twelve leaf features can result in a search space

of 212 possible products. Analysis of such a huge search space is a non-trivial

task. Some interesting analyses that could performed in this scenario of a Virtual

Machine Product Line (VMPL) are as follows:

1. Check if at least one of the pre-configured machines covers the needs of a

new user configuration: In VMPL, there is always a need to check the exis-

tence of any virtual machine as per the given user specification. For exam-

ple, the specification F={VirtualMachine, UserInter f ace, Console, GUI,

GNOME} should be first analyzed to check the existence of any imple-

mentation that implements F . The implementation C={LinuxCore, IUser,

IConsole, Terminal, IGUI, GNOMEApp, IServer, TomcatApp} (equiv-

alent to preconfigured Virtual Machine 2 in Figure 1.3) provides all the

features in the specification F , it means that there exists a pre-configured

machine which covers the user specification F .

2. Check if at least one of the pre-configured machines realizes (exactly) the

needs of a new user configuration: Multiple implementations may cover a

given user specification F . We can analyze the VMPL to find the realized

18

implementation for the user specification. For example, the implementation

C={LinuxCore, IUser, IConsole, Terminal, IGUI, GNOMEApp} (equiva-

lent to preconfigured Virtual Machine 3 in Figure 1.3) exactly provides all

the feature in the specification F .

3. Check if there are dead packages: Actual VMPLs contain a huge number of

components for Linux systems. The components that are not present in any

of the products are termed as dead elements in the product line. In the given

VMPL, none of the components is dead.

19

Feature Components Feature Components

VirtualMachine {{LinuxCore}} f1 {{c1}}

UserInter f ace {{IUser}} f2 {{c2}}

Language {ILanguage} f8 {{c14}}

Server {{IServer}} f12 {{c10}}

Console
{{IConsole,XTerminal},

f3 {{c3,c4},{c3,c5}}
{IConsole,Terminal}}

GUI {{IGUI}} f4 {{c6}}

KDE {{KDEApp}} f5 {{c7}}

GNOME {{GNOMEApp}} f6 {{c8}}

XFCE {{XFCEApp}} f7 {{c9}}

C {{C-lang,c-lib}} f9 {{c15,c16,c17}}

C++ {{C-lang,c-lib,gcc,c++ lib}} f10 {{c15,c16,c17,c20}}

Java {{OpenJDK},{OracleJDK}} f11 {{c18},{c19}}

Tomcat {{TomcatApp}} f13 {{c11}}

Glass f ish {{Glass f ishApp}} f14 {{c12}}

Klone {{KloneApp}} f15 {{c13}}

Table 1.1: Traceability relation for the virtual machine.

20

Figure 1.3: Preconfigured virtual machines.

1.1.1 Contribution

The following summarizes the contributions towards formalizing and analyzing

SPL models efficiently:

– A simple and abstract set-theoretic formal semantics of SPL with variability

and traceability constraints is proposed.

– A number of new analysis problems, useful for relating the features and

core assets in an SPL, are described.

– Quantified Boolean Formulae (QBFs) are proposed as a natural and efficient

way of modeling these problems. The evidence of the scalability of QSAT

21

for the analysis problems in large SPLs (compared to SAT) is also provided.

– We present a tool named SPLAnE that enables SPL developers to perform

existing operations in the literature over feature diagrams [5] and many new

operations proposed in this report. It also allows one to perform analy-

sis operations on a component model and SPL model. We used the FaMa

framework to develop SPLAnE that makes it flexible to extend with new

analyses of specific needs.

– We experimented on our approach with a number of models, i.e.: (i) real and

large Debian models; (ii) randomly-generated SPL models from ten features

to twenty thousand features with different levels of cross-tree constraints;

and (iii) SPLOT repository models. The experimental results also give the

comparison across two QSAT solvers (CirQit and RaReQS) and three SAT

solvers (Sat4j, PicoSAT and MiniSAT).

– An example from the cloud computing domain is presented to motivate the

practical usefulness of the proposed approach.

1.2 SPL with behavioral Features

Large industrial software are often developed as Software Product Line (SPL) with

a common core set of features which are developed once and reused across all the

products of the family. The products in an SPL differ on a small set of features

which are specified using variation points. A central aspect of SPLs is variability

modeling and analysis, many early works on SPL modeling focused on this. One

of the most prominent models for capturing variability is feature diagrams [41].

22

Feature Diagrams (as well as other variability description formalisms), assume a

global view of SPL as they start with a complete list of features and the variation

points using a single vocabulary. All the subsequent SPL assets, like requirement

documents, design models, source codes, test cases, documentations, share the

same definition and vocabulary as presented by [7] and [8]. However, the as-

sumption of a single homogeneous and transverse view of variability description

across the entire life cycle of software development seems to impose a waterfall

model of development which is limited and inflexible. We give a few instances of

the limitations.

First, SPL developers naturally tend to use different representations and vocab-

ulary of variability at different stages of development: at the requirement level, a

more abstract and intuitive description of variation points are used, while at the

design level, the efficiency of implementation of variation points is of primary

concern. For example, consider the case of an automotive SPL, where one varia-

tion point is the region of sales (eg. Asia Pacific, Europe, North America, South

America and Africa). At the requirement level, this variation point is expressed di-

rectly as an enumeration variable assuming one value for every region. Whereas,

at the design level, the variation point is expressed using two Boolean variables;

by setting the values of the Boolean variables appropriately, the behavior specific

to one of the four regions is selected at the time of deployment.

Second, SPLs often evolve during their long lifetime as new features and vari-

abilities are added, removed, or combined during the evolution. A unique and

transverse view of the variability requires to maintain the global consistency. A

simple change such as combining two variation points into one or splitting one

in many requires to propagate this change in every asset impacted at every level

23

of abstraction (from requirement document to test case) and there is not yet auto-

matic method to perform these changes automatically and consistently. Here one

can cite preliminary attempt in this direction by [9].

Third, the end user companies use off-the-shelf components (hardware or soft-

ware) to implement their features. For example, the Adaptive Cruise Controller

(ACC) feature of an automotive SPL can be implemented by either an off-the-

shelf ACC component or a combination of off-the-shelf sub-components such as

the tracking system (using radar), maximal authorized speed detection system (us-

ing GPS map information), and an in-house sub-component depending upon the

company specific philosophy. In both cases, there is a distinction (at least in the

vocabulary) between the variability as it is expressed in the SPL where company

specific philosophy (and keyword) would be respected and the variability offered

by the off-the-shelf component that is as generic as possible even though it might

be domain specific. The management of this distinction in a single homogeneous

and transverse view of the variability would impose a very rigid development

methodology.

Fourth, the features are not Boolean anymore thanks to Cordy et. al. [10]. It is

not enough to say that a product line of personal computers offers printing facili-

ties. One would like to specify, whether it is 2D or 3D printing, black and white or

color, A2, A3, or A4. One can add sub-features in the feature diagram but such ad-

dition tends to overload the feature diagram and increase the number of cross-tree

constraints. Instead, it is natural to consider that a feature has parameters.

In order to overcome the above limitation, we propose a SPL modeling frame-

work that does not start with a global view of variability. The framework al-

lows different vocabularies of variability for different levels of abstraction: the

24

requirement models can use one vocabulary for expressing variability while the

design models can employ a different variability vocabulary. Further, the pro-

posed framework is compositional as it allows addition of variabilities as new

feature are added. The constraints relating variabilities in different functions can

be added along with them. Further, the framework supports both Boolean and non

Boolean variabilities with multiple attributes.

One important problem with the use of different variability description at dif-

ferent levels of abstraction is to maintain the consistency across the levels. Con-

sider the automotive SPL described earlier, where one variation point at the re-

quirement level is the region of sale. The same variability is described at the

design level as a pair of boolean values. For consistency, we need to check, for ex-

ample, the behavior of the product when the variation point assumes the value Eu-

ropean market, at the requirement level, matches with that of the design with the

variability expressed at the design level as a pair of boolean values (true, f alse).

In SPL based on a single view of variability, such a mapping is trivial and no

special checks are required.

We refer to this problem, generically as variability verification and when the

consistency of variabilities expressed at the design and requirement levels, we call

this design variability verification. We present here a formal methods based so-

lution to this problem. This proposed solution is based upon a simple notion of

consistency of varaibilities at the design and requirement levels: For every vari-

ability at the design level (or loosely, for every product at the design level), there

is a varaibility at the requirement level (again loosely, a product at the requiremen

level), such that the behavior of the design corresponds to that of the requirement.

For the formalization, the proposed framework extends the standard finite state

25

machine model, which we call Finite State Machines with Variability, in short,

FSMv. The behavior and variability of a feature at the requirement and design

level can be modeled using FSMv. We define a conformance relation between

FSMvs to relate the requirement and design models. This relation is based upon

the standard language containment of state machines.

One unique feature of FSMv is that it provides a compositional operator for

composing the feature state machines. The variability information in a state ma-

chine is not derived from a single global variability description and hence incre-

mental addition of features and variabilities is possible using this operator.

One challenge in the variability verification is the analysis complexity: the

number of products is exponential in the number of variation points and hence

product centric analyses are not scalable. We propose a compositional approach

in which every feature of the SPL is first analyzed independently; the per-feature

analysis results are then combined to get the analysis result for the whole SPL. The

proposed verification approach exploits the compositional structure of the FSMv

models to contain the analysis complexity.

The variability verification is to be contrasted with the many recent works

on SPL behavior verification by [12] and [13]. The latter works focus on property

based verification of SPLs which involve checking whether a property holds for all

products in a SPL or if not which products do not satisfy the property. In contrast,

the variability verification is concerned with the correspondence of design level

variability with that of requirements.

Figure 5.2 summarizes the proposed approach. It shows an SPL composed of

features f1 to fn. Each feature has an FSMv model of its requirements (called

FSMr) and an FSMv model derived from its design (called FSMd). The proposed

26

Figure 1.4: The proposed verification approach.

analysis method checks whether the FSMd of every feature conforms to its FSMr

(1st check). The output of this first step is a conformance relation Φi between

each pair of FSMri and FSMdi. The obtained conformance relations Φ1, . . . ,Φn

are then used to check whether the actual behavior of the entire SPL conforms to

the expected one (2nd check). The 2nd check is done by synthesizing a Quantified

Boolean Formula (QBF) and answering its satisfiability. There is no need to build

the entire behavioral model of the SPL in the second step. We have built a pro-

totype tool SPLEnD based upon this approach. This tool performs the first check

using SPIN ([14]) while the well-known QBF SAT solver CirQit ([15]) is used for

the second step. We have experimented with the tool using modest industrial size

examples with very encouraging results.

27

1.3 SPL with timed behavioral Features

Automotive systems are undoubtedly becoming one of the most complex con-

sumer electronic systems with more and more critical functionality being realized

in software. The need for variability among various subclasses of related products

adds another dimension to this complexity—it is typical for large automotive man-

ufacturers to build and sell millions of vehicles world-wide with different vehicle

types, brands, and options under varying regulatory and legal requirements. In

order to cope up with complexity and variability at such scale, automotive man-

ufacturers are turning toward product line engineering approach [11]. Product

line engineering approach is a framework to develop products family rather than

individual products. The key idea is to develop and maintain common require-

ment and design artifacts for functions and subsystems with well defined variation

points and constraints among these variation points. At the time of deployment,

the desired variants fulfilling the constraints can be chosen to arrive at a single

product. The electronic and software subsystems in a modern vehicle perform a

variety of functions which can be abstractly viewed as a collection of features.

Each feature, typically, is a distinct functionality often visible to the user of the

vehicle and may involve repeatedly reading a set of sensors, performing some

control computations, and producing some outputs on a set of actuators.

FSMv, however, can not satisfactorily model features expressing real-time

constraints or hybrid behavior consisting of interplay between discrete switch-

ing with the continuous dynamics of the physical environment. Following Alur-

Dill timed automata [16] approach for specifying real-time systems and hybrid

automata approach [17] for modeling hybrid behaviors, we introduce generaliza-

tions of timed and hybrid automata with variability. We refer to these two models

28

as timed state machine with variability (TSMv) and hybrid state machine with vari-

ability (HSMv). These models can also be considered as FSMv augmented with

continuous variables whose dynamics in each state is given via ordinary differen-

tial equations. We wish to highlight that while for timed automata a number of ver-

ification problems—including reachability—are decidable, for very modest sub-

classes of hybrid automata simple reachability problems are undecidable. How-

ever, there are mature and efficient tools—such as UPPAAL (www.uppaal.org)

and PHAVER (http://www-verimag.imag.fr/˜frehse/phaver_web/)—to rea-

son with timed and hybrid automata. Due to space limitation, we introduce TSMv

in detail, while only sketch the HSMv model emphasizing the key difference from

TSMv.

We introduce a compositional operator to combine multiple features into a

feature product line. Each product is a collection of features respecting the given

constraints. The features being the atomic objects in any composition, the mod-

els capturing them are typically small in the number of discrete/continuous vari-

ables and states. Our verification approach is a compositional one: we first verify

the design conformance of individual features to their respective requirements.

Thanks to the manageable sizes of the TSMv and HSMv at the feature level, this

check is relatively economical. We then put together the results obtained at the

feature level, and synthesize a quantified boolean formula (QBF) whose satisfia-

bility ensures the conformance of the entire system of feature designs against the

requirements.

www.uppaal.org
http://www-verimag.imag.fr/~frehse/phaver_web/

Chapter 2

Related Works

2.1 Related Work

Automated Analysis of Feature Models: The automated analysis of feature

models has been around for more than 20 years [5]. Up to 30 different analysis

operations have been presented. However, there is a lack of support for implemen-

tation assets and their relations with the variability management. In this report, we

extend the variability management analysis with the automated analysis of feature

models among the implementation of the different features. White et al. [42] pre-

sented an approach to automate the configuration in SPLs by transforming feature

model and configurations in Constraint Satisfaction Problem (CSP). The CSP is

used to diagnose errors in the selected features. In the case of invalid configu-

ration, it repairs the selected features. Authors also verified their approach on

the feature models in the range of 100 to 5000 features. Bagheri et al. shows

the approach to construct feature models with its constraints using a propositional

formulae [43]. They also explained the formalism to configure a semi-automated

29

30

feature model. Soltani et al. gives the configurations process based on artificial

intelligence planning technique to derive product from a feature model automati-

cally according to the stakeholders requirements, were the stakeholders may have

diverse business and limited resources [44].

Traceability in SPLs: While there is a fairly large body of work in the lit-

erature on different facets of SPL, in the following we mention only those which

address traceability as a primary aspect. Four important characteristics of a vari-

ability model, namely, consistency, visualization, scalability and traceability are

defined in [21]. A variability management model that focuses on the traceability

aspect of the notion of problem and solution spaces is presented in [2]. Anquetil

et al. [20] formalize the traceability relations across the problem and solution

space and also across domain and product engineering. In [24], the notion of

product maps is defined which is a matrix giving the relation between features

and products. Consistency analysis of product maps is presented in [25]. Zhu et

al. [27] define a traceability relation from requirements to features and also from

features to architectures, with consistency analysis. Reference [26] represents a

method to identify the traceability between feature model and architecture model.

Czarnecki’s work [3, 22, 23] on giving semantics to features in feature models by

mapping them to other models has been found useful at the requirements level.

However, none of the works mentioned above present the formal approach for

analyses operations, nor it address the role of traceability in the implementability

aspect of SPLs.

Implementation derivation: Borba et al. [45] build on the idea of automatic

generation of products from assets by relying on feature diagrams and configu-

ration knowledge (CK) [3]. A CK relates features to assets specifying that as-

31

sets implement possible feature combinations. The reference [45] lays theoretical

foundations on refining and evolving SPLs. The notion of traceability in [45]

is general; however, unlike the reference [45], the focus of our report is on the

implementability of SPLs.

Template-based traceability: In [22, 23], the authors propose a template-

based approach for mapping feature models to annotated models expressed in Uni-

fied Modeling Language (UML) or a domain-specific modeling language. Based

on a particular configuration of features, an instance of the template is created by

evaluating presence conditions in the model. The reference [23] gives a verifi-

cation procedure which establishes that no ill-formed template instances will be

produced given a correct configuration of the feature model. The procedure takes

a feature model and an annotated template, which is an instance of a class model

(like UML) and a set of OCL (Object Constraint Language) rules. The rules are

written with respect to the class model, and each OCL constraint is an invariant

on some class c. The final verification is done by checking the validity of a propo-

sitional formula. Our notion of traceability is more general than instantiating a

template based on the presence of a set of features; moreover, our analysis op-

erations require an encoding into QSAT and we have experimental evidence to

suggest that the QSAT encoding performs well over SAT-based procedures (Fig-

ure 3.6).

Variability Management: The report that is the closest to our work is that

by Metzger et al. [6] and deserves a detailed comparison. In this report, PL vari-

ability refers to the variations in the features of the system and software vari-

ability refers to the variations among the software system artifacts. In our report,

we follow a different terminology to bring out the product line hierarchy clearly

32

(shown in Figure 2.1): a scope consists of all the features, a variant specification

(referred to as just “specification”) is a subset of features, product line specifi-

cation (PL specification) is a set of variant specifications. On the other hand,

core assets comprise all the components, a variant implementation (referred to as

just “implementation”) is a subset of components, product line implementation

(PL implementation) is a set of variant implementations. The PL variability of

Metzger et al. is analogous to PL specifications and software variability is anal-

ogous to PL implementations. In Metzger et al., PL variability is represented as

OVM (Orthogonal Variability Model) and software variability is represented as

FD (Feature Diagrams). In our report, we give set-theoretic semantics to SPLs

in lieu of the visually appealing notations such as FD, VFD and OVM. The ad-

vantage is that in these semantics the core concepts, analysis problems, and the

solution methods can be expressed in a clearer and more concise manner.

Figure 2.1: Product line hierarchy.

The traceability among PL and software variability is represented in Metzger

33

et al. using X-links. One type of X-links is of the form f ⇔ V1∨V2∨∨ . . .Vn

which says a feature f is present iff at least one of the variations Vi is present in

the software variability. However, it cannot capture the fact that a feature may be

implemented by different sets of software artifacts which may require constraints

of the form f ⇔ (c11 ∧ c12 ∧ c13)∨(c21 ∧ c22 . . .)∨ The other type of trace-

ability constraints suggested in Metzger et al. is simple propositional formulae.

However, not all propositional constraints provide the intuitive and strong imple-

mentability relations between the implementations and specifications. The defini-

tion of traceability in our report captures the above-mentioned class of constraints

and is used to define a reasonable notion of a relation between implementations

and specifications.

Marcilio et al. presented the experimental results to prove the SAT-based ap-

proach to analyze a variability models like feature model is easy [46]. Authors

have used feature models with maximum of 10,000 features. To increase the

hardness, feature models where added with 10%, 20% and 30% of cross-tree con-

straints (CTC). They found that realistic feature models are not difficult for SAT

solvers.

Steven et al. present the heuristic to generate a feature model from an existing

system using reverse engineering [47]. They used three real system as Linux,

eCos and FreeBSD. The Linux has a variability model represented by Kconfig

Language and eCos has Component Definition Language, where as FreeBSD has

a list of features. The approach was able to successfully generate the feature model

from Linux, eCos and FreeBSD systems.

Mikolás et al. presents a meta model which is mechanically formalized from

the feature models in the literature [48]. This meta model is used for feature

34

modeling and reasoning about it. Larger size SPLs development involves manip-

ulating many parts in FMs. The report [49] propose an compositional approach to

develop complex SPLs with the help of complimentary operators like aggregate,

merge and slice. Along with reasoning, the report present methods for correction

of anomalies, update and extraction and reconciliation of FMs.

The SAT-based definition of products in Metzger et al. allows causally unre-

lated components and features as products of the SPL. At other times, it is too

restrictive in that it does not allow additional components in an implementation

which do not provide any feature, but are forced to be with other components be-

cause of, say, packaging restrictions. It seems necessary to strike the right balance

between the strictness of X-links and the general propositional constraints for a

reasonable definition of implementability. This is provided by the definition of the

relation Covers in our report.

Metzger et al. propose a number of analysis problems; in the terminology of

that report, they are realizability, internal competition, usefulness, flexibility and

common and dead elements. We have redefined these in our report from the per-

spective of the new implements relation. Moreover, we have described some new

and useful SPL analysis problems (superfluous, redundancy, critical component,

extraneous features). In Metzger et al., it was noted that the satisfiability-based

formulation needed to enumerate and check all the implementations and specifi-

cations in order to solve certain analysis problems. Hence, the cumulative com-

plexity of satisfiability checking may be prohibitive for large SPLs. The QSAT

based formulation proposed in our report obviates this problem and gives efficient

solution methods scalable to large, real-life case studies. Figure 3.6 gives a com-

parison of SAT and QSAT approaches for the analysis operation soundness and

35

completeness. The time complexity shown in the figure shows the superiority of

the QSAT approach over SAT-based approaches for some analysis problems. On

a bigger case study (ESPL in Section 3.3), which had 290 features and an equal

number of components, the SAT-based approach failed to solve any of the analysis

problems.

2.2 Related work with FSMv and TSMv

Feature Based Analysis : [50] explore feature-aware verification to automati-

cally detect feature interactions in a software product line. A language was de-

veloped to specify individual features in separate and composable units; based on

these feature-local specifications, feature interactions were detected in a product

line by either (i) generating all the products and checking them one by one, or (ii)

generate one product that contains all the features. The email product line with 10

features and 40 products, with 27 feature interactions was checked. [51] presents

a programming language oriented approach, that presents a core calculus for fea-

ture composition. The features may contain various kinds of software artifacts,

like source code in various languages, models and documents. The composition

is done uniformly across features with different artifacts in a type-safe way. [52]

view features as state machines, and CTL model checking is used to verify prop-

erties of individual features. Compositional verification of features is done by

checking the consistency of interface labels assigned by the CTL model checking

algorithm at the feature level.

36

Behavioral Conformance : [53] propose the use of modal transition systems

(MTS) over labeled transition systems for modeling and analysis of product line

architectural behavior. MTS can model optional and required behavior via may

and must transitions. A conformance algorithm for MTS is then presented: a

fixed point algorithm that computes Cartesian product of states, and eliminates

pairs that are invalid according to the relation.

The FTS+ proposed by [12] has some similarities with FSMv, but has a moti-

vational difference. The aim of FTS+ is to model the entire SPL and hence there

is a single global machine with a single global vocabulary for expressing variabil-

ities; the variability information represents the presence/absence of features in the

SPL. In contrast, our approach is based upon a different view of SPL: a feature

with variability is an increment in functionality and an SPL is a collection of fea-

tures. We use a single FSMv to model a feature and a whole SPL is modeled as a

parallel composition of FSMv machines. The difference in viewpoint has another

consequence: FTS+ models, since they model the entire SPL, tend to be large

and hence has high analysis complexity; some abstraction techniques are hence

used ([54]). Whereas, each FSMv models a fraction of functionality and hence

can be analyzed easily. [55] use MTS for modeling product behavior and use the

logic MHML for model checking. The approaches in [55] as well as [12] use

transition systems for expressing system behavior; feature variability constraints

are expressed using feature diagrams in [12], while in [55], MHML is used to do

this. [12] needs an extra component, a logic for checking properties, while in the

case of [55], the MTS+MHML framework is sufficient.

37

Compositional Verification : [56] propose compositional verification for hier-

archical SPLs. Here, Simple Hierarchical Variability Models (SHVM) are used

to specify the variability of product artifacts. However, in an SHVM, the number

of derivable products is restricted by the fact that there is no means of defining

constraints between variation points. [57] uses Event-B composition techniques

for feature based product line development. A feature is considered as a basic

modular unit in the Rodin tool, and two case studies have been evaluated.

SAT Solving : [58] was the first to propose the use of propositional logic for ex-

pressing relationships between requirements in a product line model. Using this,

a product line model can be represented as a logical expression; this can be instan-

tiated by the selected requirements. Further, it can be checked if the selected set is

valid or not. [59] explores the fundamental connection between feature diagrams,

grammars and propositional logic formulas. This connection paved the way for

the use of SAT solvers that provide automated support to debug feature models.

Other Approaches and SPL Tools : Many other behavioral models have also

been proposed [60, 61, 62, 63] which are usually coupled with a variability model

such as OVM [8], the Czarnecki feature model [7], or VPM [64] to attain a fair

level of variability expressibility. Unlike all these approaches, FSMv capture the

variability in an explicit way which we find more intuitive. The Variation Point

Model (VPM) of Hassan Gomaa [64] distinguishes between variability at the re-

quirement and design levels but no design verification approach has been pre-

sented. In a recent paper, Jorges et al. [65] present a constraint based approach

38

for variability modeling. Here, architectural as well as behavioral constraints are

captured by using temporal logics; synthesis algorithms are then used to com-

pute solutions. Kathrin Berg et al. [2] propose a model for variability handling

throughout the life cycle of the SPL. Andreas Metzger et al. [6] and Riebisch

M. et al. [31] provide a similar approach but they do not consider the behavioral

aspect. In our proposed approach, we extract the relation between requirement

and design level variability from a behavioral analysis. [66] present a tool VMC,

for the modeling and analysis of product lines. The product family is represented

as an MTS, along with extra variability constraints, and all the valid products are

automatically generated. The tool implements the algorithm presented in [55].

A demonstration of the main features of VMC can be seen in [67]. Kathi Fisler

et al. [68] have developed an analysis based on three-valued model checking of

automata defined using step-wise refinement. Later on, Jing Liu et al. [69] have

revisited Fisler’s approach to provide a much more efficient method. Recently,

Maxime Cordy et al. have extended Fisler’s approach to LTL formula [70]. Kim

Lauenroth et al. [71] as well as Andreas Classen et al. [12, 54], and Gruler et al.

[72] have developed model checking methods for SPL behavior. These methods

are based on the verification of LTL/CTL/modal µ calculus formula.

All these verification methods assume a global view of variability and hence

the representation of variability information is identical in both specification and

the design. By contrast, in our work the specification and design involve variabil-

ity information at different levels of abstraction and hence one needs mapping in-

formation between the two levels. Furthermore, our formalism allows incremental

addition of functionality and variability and enables compositional verification.

39

Many other behavioral models have also been proposed [60, 61, 62, 63] which

are usually coupled with a variability model such as OVM [8], Czarnecki feature

model [7], or VPM [64] to attain a fair level of variability expressible. Unlike

all these approaches, FTS+ [12] and FSMv capture in more intuitive way. While

our extensions of FSMv handle timed and hybrid systems, the only other product

line model known to handle time constraints is the feature timed automata (FTA)

introduced in [73]. FTA are an extension of timed automata where the transitions

allow featured clock constraints. However, [73] does not use variability in the

clock constraints or in the dynamics of the continuous variables unlike TSMv and

HSMv.

Chapter 3

SPL Analysis Engine

In this chapter, we give the definitions of traceability and implementation in an

SPL. These definitions are illustrated using a virtual machine product line exam-

ple.

3.1 SPLAnE Framework: Traceability and Imple-

mentation

3.1.1 Specification and Implementation

The set of all features found in any of the products in a product line defines the

scope of the product line. We denote the scope of a product line by F . A scope

F consists of a set of features, denoted by small letters f1, f2 Specifications

are subsets of features in the scope and are denoted by F1,F2, . . . , with possible

subscripts. On the other hand, the collection of components in the product line

defines the core assets and is denoted as C . Small letters c1,c2 . . . , etc. represent

40

41

components. Implementations (subsets of components) are denoted by capital

letters C1,C2 . . . with possible subscripts. A Product Line (PL) specification is a

set of speci f ications in an SPL, denoted as F ∈℘(℘(F)\ { /0}). Similarly, a

Product Line (PL) implementation is denoted as C ∈℘(℘(C) \ { /0}). In VMPL,

the scope, core assets, specifications and implementations are as follows:

– Scope F = { f1 : VirtualMachine, f2 : UserInter f ace, f3 : Console, f4 :

GUI, f5 : KDE, f6 : GNOME, f7 : XFCE, f8 : Language, f9 : C, f10 : C++,

f11 : Java, f12 : Server, f13 : Tomcat, f14 : Glass f ish, f15 : Klone }

– Core Assets C = {c1 : LinuxCore, c2 : IUser, c3 : IConsole, c4 : XTerminal,

c5 : Terminal, c6 : IGUI, c7 : KDEApp, c8 : GNOMEApp, c9 : XFCEApp,

c10 : IServer, c11 : TomcatApp, c12 : Glass f ishApp, c13 : KloneApp, c14 :

ILanguage, c15 :C-lang, c16 : c-lib, c17 : gcc, c18 : OpenJDK, c19 : OracleJDK,

c20 : c++ lib }

– PL Specification F ={

F1 : {VirtualMachine, UserInter f ace, Console } or { f1, f2, f3},

F2 : {VirtualMachine, UserInter f ace, Console, GUI, KDE } or { f1, f2,

f3, f4, f5 },

F3 : {VirtualMachine,UserInter f ace,Console, Server, Tomcat, Glass f ish

} or { f1, f2, f3, f12, f13, f14 },

F4 : {VirtualMachine,UserInter f ace,Console, GUI, KDE, Server, Tomcat

} or { f1, f2, f3, f4, f5, f12, f13 },

F5 : {VirtualMachine, UserInter f ace, Console, GUI, KDE, Language,

Java, Server, Tomcat } or { f1, f2, f3, f4, f5, f8, f11, f12, f13 }

}, where F1,F2,F3, F4 and F5 are some specifications.

42

– PL Implementation C={

C1 : {LinuxCore, IUser, IConsole, XTerminal } or {c1, c2, c3, c4 },

C2 : {LinuxCore, IUser, IConsole, Terminal } or {c1, c2, c3, c5 },

C3 : {LinuxCore, IUser, IConsole, Terminal, IGUI, KDEApp } or {c1, c2,

c3, c5, c6, c7 },

C4 : {LinuxCore, IUser, IConsole, Terminal, IServer, TomcatApp,

Glass f ishApp } or {c1, c2, c3, c5, c10, c11, c12 },

C5 : {LinuxCore, IUser, IConsole, Terminal, IGUI, KDEApp, IServer,

KloneApp, Glass f ish } or {c1, c2, c3, c5, c6, c7, c10, c12, c13 },

C6 : {LinuxCore, IUser, IConsole, Terminal, IGUI, KDEApp, IServer,

TomcatApp, Glass f ish } or {c1, c2, c3, c5, c6, c7, c10, c11, c12 },

C7 : {LinuxCore, IUser, IConsole, Terminal, IGUI, KDEApp, ILang,

OpenJDK, IServer, TomcatApp } or {c1, c2, c3, c5, c6, c7, c14, c18, c10, c11

}

}, where C1 to C7 are some implementations.

3.1.2 Traceability

We present a formalism for two variation of traceability relation: (i) 1 : M map-

ping and (ii) N : M mapping. In traceability relation, 1 : M mapping is between a

feature and a set of component sets, where as N : M is a mapping between feature

set and a set of component sets.

Traceability with 1 : M mapping: A feature is implemented using a set of non-

empty subset of components in the core asset C . This relationship is modeled by

the partial function T : F →℘(℘(C)\{ /0}). When T (f) = {C1,C2,C3}, we in-

terpret it as the fact that the set of components C1 (also, C2 and C3) can implement

43

the feature f . When T (f) is not defined, it denotes that the feature f does not

have any components to implement it.

Traceability with N : M mapping: A set of features can be implemented using

a set of non-empty subset of components in the core asset C . This relationship

is modeled by the partial function T : (℘(F)\{ /0})→℘(℘(C)\{ /0}). It may

happen that, two features f1 and f2 can be implemented by a single component

c1. In this case, T ({ f1, f2}) = {C1}, where C1 = {c1}.

Definition 1 (SPL). An SPL Ψ is defined as a triple 〈F ,C ,T 〉, where F ∈℘(℘(F)\

{ /0}) is the PL specification, C ∈℘(℘(C)\{ /0}) is the PL implementation and T

is the traceability relation.

3.1.3 The Implements Relation

A feature is implemented by a set of components C, denoted implements(C, f),

if C includes a non-empty subset of components C′ such that C′ ∈ T (f). It is

obvious from the definition that if T (f) = /0, then f is not implemented by any set

of components. In VMPL, f5 is implemented by implementations C3, C5, C6 and

C7, but not by implementations C1, C2 and C4.

We define the formula to check the feature is traceabile as, f ormula T (f) =∨
j=1..k

∧
ci∈C j

pci =
∨

j=1..k
∧

ci∈C j
wi, and one of the disjuncts C j is TRUE, the

entire expression for f ormula T (f) evaluates to TRUE.

The formula f orm implements f (x1, . . . ,xn) which takes n Boolean values (0

or 1) as arguments, corresponding to the bit vector C̄ of an implementation C and

evaluates to either TRUE or FALSE.

44

f orm implements f (x1, . . . ,xn)= ∀pc1 . . . pcn {[
∧n

i=1(xi⇒ pci)]⇒ f ormula T (f)}

In order to extend the definition to specifications and implementations, we

define a function Provided by(C) which computes all the features that are imple-

mented by C: Provided by(C) = { f ∈ F |implements(C, f)}.

In VMPL, Provided by(C1) = { f1, f2, f3} and Provided by(C3) = { f1, f2, f3, f4,

f5}. With the basic definitions above, we can now define when an implementation

exactly implements a specification.

Definition 2 (Realizes). Given C∈C and F ∈F , Realizes(C,F) if F =Provided by(C).

The realizes definition given above is rather strict. Thus, in the above example,

the implementation C3 realizes the specification F2, but it does not realize F1 even

though it provides an implementation of all the features in F1. In many real-life

use-cases, due to the constraints on packaging of components, the exactness may

be restrictive. We relax the definition of Realizes in the following.

Definition 3 (Covers). Given C∈C and F ∈F , Covers(C,F) if F ⊆Provided by(C)

and Provided by(C) ∈ F .

The additional condition (Provided by(C) ∈ F) is added to address a tricky

issue introduced by the Covers definition. Suppose the scope F consisted of only

two specifications { f1} and { f2}. Let’s say that the two variants (f1 and f2) are

mutually exclusive features. The implementation C = {c1,c2} implements the

feature f1, assuming T (f1) = {{c1}} and T (f2) = {{c2}}. Without the provi-

sion, we would have Covers(C,{ f1}). However, since Provided by(C)= { f1, f2},

it actually implements both the features together, thus violating the requirement of

mutual exclusion. In the VMPL, the implementation C6 covers the specifications

45

F1, F2, F3 and F4. The set of products of the SPL is now defined as the specifica-

tions and the implementations covering them through the traceability relation.

Definition 4 (SPL Products). Given an SPL Ψ = 〈F ,C ,T 〉, the products of the

SPL, denoted by a function Prod(Ψ) which generate a set of all specification-

implementation pairs 〈F,C〉 where Covers(C,F).

Thus, in the VMPL example, we see that there are many potential products.

Valid products are 〈C1,F1〉,〈C2,F1〉, 〈C3,F1〉, 〈C3,F2〉, 〈C4,F1〉, 〈C4,F3〉

Lemma 1. (Implements) Given an SPL, a set of components C, and a feature f ,

implements(C, f) iff f orm implements f (v1, . . . ,vn), where C̄ = 〈v1, . . . ,vn〉, eval-

uates to TRUE.

Proof. (⇒) : Let T (f) = {C1, . . . ,Ck} and assume implements(C, f). By defi-

nition, there is a C j ∈ T (f) such that C j ⊆ C. Let C j = {pc`1
, . . . , pc`m}. Then,

v`i = 1 for all i = 1, . . . ,m. We have to show that

∀pc1 . . . pcn{[
n∧

i=1

(vi⇒ pci)]⇒ f ormula T (f)}.

Let 〈w1, . . . ,wn〉 be an assignment of boolean values (TRUE or FALSE) to

the propositional variables pc1 . . . pcn such that
∧n

i=1(vi ⇒ pci) =
∧n

i=1(vi ⇒ wi)

evaluates to TRUE. Since v`i = 1 for all i = 1, . . . ,m, this implies w` j = 1 for all

j = 1, . . . ,m as well. Therefore, for C j ∈ T (f), (
∧

ci∈C j
wi) = w`1 ∧ ·· · ∧w`m =

TRUE.

Assume that implements(C, f) does not hold. Then, for every C j ∈ T (f), C j 6⊆C.

This implies that for all j ∈ {1 . . .k}, there is a c j ∈C j \C. Define an assignment

to the propositional variables as follows: vi = 1 for pci such that ci ∈C and 0 for

the rest. Hence, v j = 0 for the proposition pc j corresponding to component c j 6∈C.

46

This assignment evaluates the antecedent
∧n

i=1(vi ⇒ pci) to TRUE. But the

consequent f ormula T (f) =
∨

j=1..k
∧

ci∈C j
pci = FALSE for the above assignment

because each disjunct is falsified by the presence of an assignment v j = 0 for

the proposition pc j 6∈ C. Therefore, f orm implements f (v1, . . . ,vn) evaluates to

FALSE.

Lemma 2. (Realizes, Covers) Given a set of components C and a set of features

F, let C̄ = (c′1, . . . ,c
′
n) and F̄ = (f ′1, . . . , f ′m). Then the following statements hold:

1. C covers F iff f covers(c′1, . . . ,c
′
n, f ′1, . . . , f ′m)

2. C realizes F iff f realizes(c′1, . . . ,c
′
n, f ′1, . . . , f ′m)

Proof. Suppose C̄ = (c′1, . . . , c′n) and F̄ = (f ′1, . . . , f ′m). If C covers F , then

Provided by(C) = { f | Implements(C, f)} will contain F . Pick f ∈ F . Since F ⊆

Provided by(C), ∃C1 ∈ T (f),C1 ⊆C. We then have Ĉ⇒ Ĉ1 and Ĉ1⇒ f ormula

T (f). Therefore, f orm implements f (c′1, . . . , c′n) holds. Hence, it will be the case

that p f ′i
⇒ f orm implements fi(c

′
1, . . . , cn) for every f ′i ∈ F̄ . Hence, f covers(c′1,

. . . , c′n, f ′1, . . . , f ′m).

Conversely, suppose f covers(c′1, . . . , c′n, f ′1, . . . , f ′m). Then∧m
i=1(p f ′i

⇒ f orm implements fi(c
′
1, . . . , c′n)) holds. If f covers(c′1, . . . , c′n, f ′1,

. . . , f ′m) holds, then (1) either p f ′j
= 0, or (2) p f ′j

= 1 and f orm implements f j(c
′
1, . . . ,c

′
n)

holds. As seen in Lemma 1, f orm implements fi(c
′
1, . . . ,c

′
n) holds good when

there exists a set C ji ∈ T (fi) such that C ji ⊆ C. Since this is true for all fi, we

have
⋃

ji C ji ⊆C. Therefore, Provided by(C)⊇ Provided by(
⋃

ji C ji). By the for-

mula f covers(c′1, . . . ,c
′
n, f ′1, . . . , f ′m), whenever p f ′i

= 1, there exists C ji ⊆C which

implements fi. Therefore, C implements possibly a superset of F , hence covers

F .

47

The proof for realizes is similar. The only difference is that the implication is

both ways, which ensures that C implements F exactly.

Lemma 3. (Completeness, Soundness) Let Ψ = (F ,C ,T) be an SPL, with F =

{ f1, . . . , fm} and C = {c1, . . . ,cn}.

1. Ψ is complete iff

∀ f ′1 . . . f ′m[CONF(f ′1, . . . , f ′m)⇒∃ c′1 . . . c′n[CONI(c′1, . . . ,c
′
n)∧ f covers(c′1,

. . . , c′n, f ′1, . . . , f ′m)]]

2. Ψ is sound iff

∀ c1 . . . cn[CONI(c1, . . . , ck)⇒∃ f1 . . . f j[CONF(f1, . . . , f j)∧ f covers(c1,

. . . , ck, f1, . . . , f j)]]

Proof. Let Ψ = (F ,C , T) be an SPL with n components and m features. Let C

= {S1, . . . , Sk}. Given a tuple of component parameters c′1, . . . , c′n where each c′i

is 0 or 1, the predicate CONI(c′1, . . . , c′n) is defined as

∨
j

∧
ci∈S j

c′i

Then CONI(c′1, . . . ,c
′
n) is satisfied iff {c′k | c′k = 1}= Sl for some Sl ∈C . CONF(f ′1,

. . . , f ′m) is defined similarly.

1. Assume that the SPL is complete. Then for every F ∈ F , there exists some

C ∈ C such that Covers(C,F). Pick any F ∈F and its corresponding C ∈ C .

Let F̄ = (f ′1, . . . , f ′m) and C̄ = (c′1, . . . ,c
′
n). Then CONF(f ′1, . . . , f ′m) will be 1

iff there exists a set Fj ∈F such that F̄j(i)= 1 iff f ′i = 1. Since Covers(C,F)

holds for all F ∈F , we have by Lemma 2, f covers(c′1, . . . ,c
′
n, f ′1, . . . , f ′m) is

true for every tuple (f ′1, . . . , f ′m) such that f ′i = 1 iff ∃Fj ∈F such that F̄j(i)=

48

1. That is, for every tuple (f ′1, . . . , f ′m) that satisfies the feature constraints,

there exists some tuple (c′1, . . . ,c
′
n) such that f covers(c′1, . . . ,c

′
n, f ′1, . . . , f ′m)

holds. Thus,

∀ f ′1 . . . f ′m.{[CONF(f ′1, . . . , f ′m)⇒∃ c′1 . . . c′n[CONI(c′1, . . . ,c
′
n)∧ f covers(c′1,

. . . , c′n, f ′1, . . . , f ′m)]} holds.

Conversely, assume ∀ f ′1 . . . f ′m.{[CONF(f ′1, . . . , f ′m)⇒∃ c′1 . . . c′n[CONI(c′1,

. . . , c′n) ∧ f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]} holds. Then for all possible

ways of satisfying CONF(f ′1, . . . , f ′n) (i.e, over all F ∈ F), there exists

some tuple satisfying CONI(c′1, . . . , c′n) such that f covers(c′1, . . . , c′n, f ′1,

. . . , f ′m). Each tuple satisfying CONF(f ′1, . . . , f ′n) corresponds to a set in

F . Corresponding to each such set, there is a tuple (c′1, . . . ,c
′
n) satisfying

[CONI(c′1, . . . ,c
′
n)∧ f covers(c′1, . . . ,c

′
n, f ′1, . . . , f ′m)] : that is, there is some

C ∈ C with C̄ = (c′1, . . . ,c
′
n) such that f covers(c′1, . . . ,c

′
n, f ′1, . . . , f ′m). This

says that for every F ∈ F , there exists some C ∈ C such that C covers F .

Hence, Ψ is complete.

2. The proof of soundness is similar.

Lemma 4. (Existentially Explicit Features) Given a set of features F, let F̄ =

(f ′1, . . . , f ′m). Then F is existentially explicit iff

∃c′1 . . .c′n[CONI(c′1, . . . ,c
′
n)∧ f realizes(c′1, . . . ,c

′
n, f ′1, . . . , f ′m)].

Proof. Suppose F is existentially explicit. Then there exists a C ∈ C such that

C realizes F . By Lemma 2, C realizes F iff f realizes(c′1, . . . , c′n, f ′1, . . . , f ′m).

CONI(c′1, . . . , c′n) is true iff there exists a C ∈ C such that C̄ = (c′1, . . . , c′n).

49

Hence, if F is existentially explicit, ∃c′1, . . . , c′n[CONI(c′1, . . . , c′n)∧ f realizes(c′1,

. . . , c′n, f ′1, . . . , f ′m)] holds.

Conversely, assume ∃c′1, . . . , c′n[CONI(c′1, . . . , c′n) ∧ f realizes(c′1, . . . , c′n, f ′1,

. . . , f ′m)] holds. Then, there exists a C ∈ C with C̄ =(c′1, . . . , c′n) and f realizes(c′1,

. . . , c′n, f ′1, . . . , f ′m). Again, by Lemma 2, f realizes(c′1, . . . , c′n, f ′1, . . . , f ′m) iff C

realizes F , with C̄ = (c′1, . . . , c′n), F̄ = (f ′1, . . . , f ′m). That is, for F ∈ F , there

exists a C ∈ C such that C covers F . Hence, F is existentially explicit.

Lemma 5. (Universally Explicit Features) Given a set of features F, let F̄ =

(f ′1, . . . , f ′m). Then F is universally explicit iff ϕF holds, where ϕF is given by

∃c′1 . . .c′n[CONI(c′1, . . . , c′n) ∧ f realizes(c′1, . . . , c′n, f ′1, . . . , f ′m)]∧

∀c′1 . . . c′n{[(CONI(c′1, . . . , c′n)∧ f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]⇒ f realizes(c′1,

. . . , c′n, f ′1, . . . , f ′m)}.

Proof. Assume F is universally explicit. Then by definition, (i) there exists a C ∈

C such that C realizes F and (ii) for all C ∈ C , C covers F ⇒C realizes F .

The first point (i) can be expressed as ∃c′1 . . . c′n[CONI(c′1, . . . , c′n)∧ f realizes(

c′1, . . . , c′n, f ′1, . . . , f ′m)] (recall that CONI(c′1, . . . , c′n) holds iff there exists a C ∈ C

with C̄ = (c′1, . . . , c′n), and f realizes(c′1, . . . , c′n, f ′1, . . . , f ′m) holds iff C realizes

F by Lemma 2).

To formalize the second point (ii), we have to consider all possible component

tuples (c′1, . . . , c′n) satisfying CONI(c′1, . . . , c′n), such that f covers(c′1, . . . , c′n, f ′1,

. . . , f ′m) holds. For each such tuple, we have to ensure that f realizes(c′1, . . . , c′n,

f ′1, . . . , f ′m) holds. This is true iff ∀c′1 . . . c′n{[(CONI(c′1, . . . , c′n) ∧ f covers(c′1,

. . . , c′n, f ′1, . . . , f ′m)]⇒ f realizes(c′1, . . . , c′n, f ′1, . . . , f ′m)} holds. Clearly, if F is

universally explicit, then ϕF holds.

Conversely, assume ϕF holds. Now, ∃ c′1 . . . c′n[CONI(c′1, . . . , c′n)∧ f realizes(

50

c′1, . . . , c′n, f ′1, . . . , f ′m)] holds whenever there is a tuple (c′1, . . . , c′n) satisfying

CONI(c′1, . . . , c′n) for which f realizes(c′1, . . . , c′n, f ′1, . . . , f ′m) is true. This

corresponds to a set in C ∈ C with C̄ = (c′1, . . . , c′n) which realizes F . ∀c′1 . . .

c′n{[(CONI(c′1, . . . , c′n) ∧ f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]⇒ f realizes(c′1, . . . ,

c′n, f ′1, . . . , f ′m)} considers all possible tuples (c′1, . . . , c′n) satisfying CONI(c′1, . . . ,

c′n) for which, whenever f covers(c′1, . . . , c′n, f ′1, . . . , f ′m) is true, so is f realizes(

c′1, . . . , c′n, f ′1, . . . , f ′m). By definition, each tuple satisfying CONI(c′1, . . . , c′n)

corresponds to a set C ∈ C . The formulae holds iff for each such C ∈ C , when-

ever C covers F , C realizes F . Therefore, F is universally explicit whenever ϕF

holds.

Lemma 6. (Unique Implementation) Given a set of features F, let F̄ =(f ′1, . . . , f ′m).

Then F has a unique implementation iff ϕU holds. ϕU is given by

∃c′1 . . .c′n[CONI(c′1, . . . ,c
′
n)∧ f covers(c′1, . . . ,c

′
n, f ′1, . . . , f ′m)]∧

∀d′1 . . .d′n{[CONI(d′1, . . . ,d
′
n)∧ f covers(d′1, . . . ,d

′
n, f ′1, . . . , f ′m)]⇒ (∧n

i=1(d
′
i⇔ c′i)}

Proof. Let F have a unique implementation. Then there exists a C ∈ C which

covers F and for all C′ ∈ C which covers F , C = C′. Two implementations C,C′

are same when C̄ = C̄′. That is, C̄(i) = C̄′(i) for all 1 ≤ i ≤ n. As given by the

definition of CONI(c′1, . . . ,c
′
n), CONI(c′1, . . . ,c

′
n) is satisfiable iff there exists some

C ∈ C with C̄ = (c′1, . . . ,c
′
n). Such a C covers F iff f covers(c′1, . . . ,c

′
n, f ′1, . . . , f ′m)

as given by Lemma 2. We have to check that there is a unique C ∈ C that can

cover F - for this, we enumerate over all possible tuples (d′1, . . . ,d
′
n) that satisfy

CONI(d′1, . . . ,d
′
n), and then ensure that (d′1, . . . ,d

′
n) = (c′1, . . . ,c

′
n). This check is

given by ∀d′1 . . . d′n{[CONI(d′1, . . . , d′n) ∧ f covers(d′1, . . . , d′n, f ′1, . . . , f ′m)] ⇒

(∧n
i=1 (d

′
i ⇔ c′i)} Thus, if F has a unique implementation, we have ϕU holds.

The converse is similar.

51

Lemma 7. (Common, live and dead elements)

1. A component c is common iff

∀c′1, . . . , c′n, f ′1, . . . , f ′m{[CONI(c′1, . . . , c′n)∧CONF(f ′1, . . . , f ′m)∧ f covers(c′1,

. . . , c′n, f ′1, . . . , f ′m)]⇒ pc} holds.

2. A component c is live iff

∃ c′1, . . . , c′n, f ′1, . . . , f ′m{[CONI(c′1, . . . , c′n)∧CONF(f ′1, . . . , f ′m)∧ f covers(c′1,

. . . , c′n, f ′1, . . . , f ′m) ∧pc}

3. A component c is dead iff

∀ c′1, . . . , c′n, f ′1, . . . , f ′m{[CONI(c′1, . . . , c′n)∧CONF(f ′1, . . . , f ′m)∧ f covers(c′1,

. . . , c′n, f ′1, . . . , f ′m)]⇒¬pc} holds.

Proof. 1. Assume that c is a common component. Then by definition, for all

〈F,C〉 ∈ Prod(Ψ), c ∈ C. To enumerate all possible 〈F,C〉 for F ∈ F and

C ∈ C , we consider all possible tuples (c′1, . . . ,c
′
n) as well as (f ′1, . . . , f ′m)

for which CONI(c′1, . . . ,c
′
n)∧CONF(f ′1, . . . , f ′m) holds. Clearly, every pair

of tuples satisfying CONI(c′1, . . . ,c
′
n)∧CONF(f ′1, . . . , f ′m) corresponds to a

pair 〈F,C〉. For each such pair 〈F,C〉 of tuples to be in Prod(Ψ), we check

if C covers F . By Lemma 2, this holds iff f covers(c′1, . . . ,c
′
n, f ′1, . . . , f ′m).

Clearly, for all pairs of tuples for which this is true, if an element is common,

then it will evaluate to 1. This is given by saying ∀c′1, . . . , c′n, f ′1, . . . ,

f ′m{[CONI(c′1, . . . , c′n) ∧ CONF(f ′1, . . . , f ′m) ∧ f covers(c′1, . . . , c′n, f ′1, . . . ,

f ′m)]⇒ pc}. Note that in f covers(c′1, . . . , c′n, f ′1, . . . , f ′m), we are evaluating

over all possible values of pc1, . . . , pcn . In particular, for c = ci, we are

checking that whenever c′i = 1 in a product, then pci = 1.

The converse is similar.

52

2. Assume c is live. Then there is a pair 〈F,C〉 ∈ Prod(Ψ) such that c ∈ C.

The existence of a pair 〈F, C〉 ∈ Prod(Ψ) is expressed by saying ∃ c′1, . . . ,

c′n, f ′1, . . . , f ′m[CONI(c′1, . . . , c′n) ∧ CONF(f ′1, . . . , f ′m)∧ f covers(c′1, . . . ,

c′n, f ′1, . . . , f ′m)]. Clearly, if c is in one such tuple, pc = 1. This is written

by conjuncting pc and obtaining ∃c′1, . . . ,c′n, f ′1, . . . , f ′m{[CONI(c′1, . . . ,c
′
n)∧

CONF(f ′1, . . . , f ′m)∧ f covers(c′1, . . . ,c
′
n, f ′1, . . . , f ′m)∧ pc}. The converse is

similar.

3. This is similar to 1.

Lemma 8. (Superflous) A component ci is superflous iff ∀ c′1, . . . , c′n, f ′1, . . . , f ′m{[c′i
∧ CONI(c′1, . . . , c′n) ∧ CONF(f ′1, . . . , f ′m) ∧ f covers(c′1, . . . ,c

′
i, . . . , c′n, f ′1, . . . ,

f ′m)]⇒∃ d′1, . . . , d′n[¬d′i ∧CONI(d′1, . . . , d′n) ∧ f covers(d′1, . . . ,d
′
n, f ′1, . . . , f ′m)]}.

Proof. Assume ci is superflous. Then by definition, for all C ∈ C containing ci

and which covers F , there exists C′ ∈ C which does not contain ci and which

covers F . First consider all C ∈ C containing ci which covers F . This is given by

considering all tuples (c′1, . . . , c′n) and (f ′1, . . . , f ′m) which satisfy CONI(c′1, . . . ,

c′n) ∧ CONF(f ′1, . . . , f ′m), c′i = 1, for which f covers(c′1, . . . ,c
′
i, . . . , c′n, f ′1, . . . ,

f ′m) holds. The pairs 〈C, F〉 are enumerated by considering all tuples satisfying

CONI(c′1, . . . , c′i, . . . , c′n) ∧CONF(f ′1, . . . , f ′m), and for those in Prod(Ψ), we need

to check that C covers F . Now, if such a C contains ci, then c′i = 1 in the tuple (c′1,

. . . , c′n). To check if there exists a pair in Prod(Ψ) which does not contain the ith

component ci, among all tuples (c′1, . . . , c′n), we check if there exists a tuple (d′1,

. . . , d′n) such that CONI(d′1, . . . , d′n) ∧ f covers(d′1, . . . ,d
′
n, f ′1, . . . , f ′m) holds and

where d′i = 0. This is expressed by ¬d′i . Thus, if ci is superflous, we have ∀ c′1, . . . ,

53

c′n, f ′1, . . . , f ′m{[c′i ∧CONI(c′1, . . . , c′n) ∧CONF(f ′1, . . . , f ′m) ∧ f covers(c′1, . . . , c′n,

f ′1, . . . , f ′m)]⇒ ∃ d′1, . . . , d′n[¬d′i ∧ CONI(d′1, . . . , d′n) ∧ f covers(d′1, . . . ,d
′
n, f ′1,

. . . , f ′m)]} holds.

The converse is similar.

Lemma 9. (Redundant) A component ci is redundant iff

∀ c′1, . . . , c′n f ′1 . . . , f ′m{[c′i ∧CONI(c′1, . . . , c′n)∧CONF(f ′1, . . . , f ′m)∧ f covers(c′1,

. . . , c′n, f ′1, . . . , f ′m)]⇒ f covers(c′1, . . . , ¬c′i, . . . , c′n, f ′1, . . . , f ′m)}

Proof. Suppose ci is redundant. Then for every C ∈ C containing ci, there exists

a C′ ∈ C , C′ ⊆ C, ci /∈ C′, and Provided by(C) = Provided by(C′). First, we

have to enumerate all tuples (c′1, . . . ,c
′
n) for which we have CONI(c′1, . . . ,c

′
n) and

c′i (i.e, enumerate all members of C containing ci). Now, we have to look at the

sets of features F that these implementations cover - by definition of covers, this

means that the set Provided by(C) is in F , and F ⊆ Provided by(C). This basi-

cally means to look at all tuples (f ′1, . . . , f ′m) such that CONF(f ′1, . . . , f ′m) (which

correspond to some element of F) and f covers(c′1, . . . ,c
′
n, f ′1, . . . , f ′m) (which

are covered by C). This is expressed by specifying ∀c′1, . . . ,c′n, f ′1, . . . , f ′m{[c′i ∧

CONI(c′1, . . . ,c
′
n)∧CONF(f ′1, . . . , f ′m)∧ f covers(c′1, . . . ,c

′
n, f ′1, . . . , f ′m)]}. For each

such C covering F , we want to say that there exists a C′ ⊆C which covers F and

which does not contain c′i. This is expressed by saying that there exists a tuple

(d′1, . . . ,d
′
n) for which (i) CONI(d′1, . . . ,d

′
n) holds, (ii) f covers(d′1, . . . ,d

′
n, f ′1, . . . , f ′m)

holds, (iii) ¬c′i holds, and (iv)(
∧n

i=1 c′i ⇒
∧n

i=1 d′i). This last condition checks

that C′ ⊆ C. Thus, the required formula to hold is ∀ c′1, . . . , c′n f ′1 . . . , f ′m{[c′i ∧

CONI(c′1, . . . , c′n) ∧ CONF(f ′1, . . . , f ′m) ∧ f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]⇒ ∃

d′1 . . . d′n[¬d′i ∧ (
∧n

i=1 c′i⇒
∧

d′i) ∧ CONI(d′1, . . . , d′n) ∧ f covers(d′1, . . . , d′n, f ′1,

. . . , f ′m)]}.

54

The converse is similar.

Lemma 10. (Critical) A component c is critical for f j iff ∀ pc1, . . . , pcn { f ormula T

(f j)⇒ pc}.

Proof. Assume c is critical for f j. Then, every implementation which does not

contain c cannot implement f j. In other words, every implementation in C which

implements f j must contain c. Lets look at T (f j) = {C1, . . . , Ck}. Then, c must

belong to all the Ci’s. Clearly, if this is the case, then whenever
∨k

i=1
∧

d∈Ci
pd

is true, so must be pc : Assume there exists Cl ∈ T (f j) such that c /∈ Cl . Then

clearly, we have an assignment of pc1, . . . , pcn where
∧

d∈Cl
pd is true, but pc = 0

(as c /∈Cl). Thus, c is critical for f j iff ∀pc1, . . . , pcn{ f ormula T (f j)⇒ pc}.

Lemma 11. (Extends) Let F and F ′ be subsets of features. Let F̄ = (f1, . . . , fm)

and F̄ ′=(f ′1, . . . , f ′m). Then F ′ extends F iff
∧m

i=1(fi⇒ f ′i) is true. F ′ is extendable

iff ∃ f ′1, . . . , f ′m[
∧m

i=1 fi⇒ f ′i)].

Proof. If F ′ extends F , then F̄(i) = 1⇒ F̄ ′(i) = 1. Then clearly,
∧m

i=1(fi⇒ f ′i)

is true. Conversely, if
∧m

i=1(fi ⇒ f ′i), then whenever fi = 1, f ′i = 1. That is,

F̄(i) = 1⇒ F̄ ′(i) = 1. Clearly, then F ′ extends F . If F is extendable, then there

exists some F ′ such that F ′ extends F . This is same as existentially quantifying

the variables of F ′ such that the implication holds.

3.2 Analysis Operations

Given an SPL Ψ = 〈F ,C ,T 〉, we define the following analysis problems. The

problems center around the new definition of an SPL product.

55

3.2.1 SPL Model Verification

Questions: Is it a valid SPL model? Is it a void SPL model? Is the SPL model

complete?

A given SPL model Ψ = 〈F ,C ,T 〉 is valid, if there exists a specification and

implementation. Let’s assume a feature model with three features f1, f2 and f3.

The feature f1 is the root and the features f2 and f3 are the mandatory children

of f1. An excludes relation exists between f2 and f3. The feature model cannot

have any specification because of excludes relation and such SPL model is not a

valid model. An SPL models should be validated before analyzing any operations

over it. Large and complex SPLs undergoes continuous modification, such SPLs

has to be verified for its validity after every modification. In case of VMPLs, after

adding new features, components and cross-tree constraints, a validity of model

should be tested. “Is the virtual machine feature model and component model

valid?”, such questions must be verified before further analysis of VMPL.

If all the features have a traceability relation with the components which im-

plement them, such a traceability relation is called as complete traceability relation.

If there exists a feature which does not have a traceability relation with any compo-

nents, then such a traceability relation is called an incomplete traceability relation.

When a SPLs are under development, all the features many not have its corre-

sponding components developed. The operation complete traceability relation

help us to identify such features and proceed for its components development.

The preliminary properties valid model and complete traceability relation should

hold before analyzing any other properties. Let us assume an SPL model 〈F ,C ,T 〉

which is a valid model but none of the implementations Ci cover any of the speci-

fication Fj. Such a model is called void product model, i.e., the model is not able

56

to return a single product. In SPL model, it may happen that a feature model is

valid, a component model is valid and a traceability is also complete, but the SPL

model is not able to generate a single product. This is possible if no specification

covers any of the implementation. A question like, “Do a Virtual Machine Prod-

uct Line can generate at least one virtual machine ?” is very important to conduct

further analysis of a product line.

3.2.2 Complete and Sound SPL

Question: Is the SPL model adequate for all the user specifications? Do all im-

plementation has it corresponding specification? Which are the useful implemen-

tations? Is there at least one implementation which realizes a given user specifi-

cation?

The completeness property of the SPL relates to the implementability of a

specification. A specification F is implementable if there is an implementation

C such that Covers(C,F). Completeness determines if the PL implementation

(set of implementation variants) is adequate to provide implementations for all

the variant specifications in the PL specification. An SPL 〈F ,C ,T 〉 is complete

if for every F ∈ F , there is an implementation C ∈ C such that Covers(C,F).

The soundness property relates to the usefulness of an implementation in an SPL.

An implementation is said to be useful if it implements some specification in the

scope. An SPL 〈F ,C ,T 〉 is sound if for every C ∈ C , there is a specification

F ∈ F such that Covers(C,F). The completeness and soundness are very cru-

cial properties of any SPLs. Is a VMPL is able to provide a virtual machine for

every valid requirements (specifications) from users?, if YES then the VMPL is

complete. If there is some specification which cannot be implemented by any of

57

the implementation in the PL implementation, then such PL implementation is

not adequate to fill the wish of all the user specifications. In VMPL, there may be

such requirements for which no virtual machine can be generated. In such case,

either feature model, component model or traceability relation should be analyzed

to figure out the actual problem. On the other hand, PL implementation may pro-

vide huge set of implementation where as PL specification may be answered by

a subset of PL implementation. In case of VMPL, we may end up with such vir-

tual machine which may not get covered by any of the user specifications. Such

machine should be removed from the pre-configured machine list.

3.2.3 Product Optimization

Questions: Do the given specification and implementation forms a product? Is

there an implementation which provides all the features in a given user specifica-

tion? Is there an implementation exactly meeting a given user specification? Is

there only one implementation for a given specification?

Given a specification, we want to find out all the variant implementations that

cover the specification. This is given by a function FindCovers(F) = {C|

Covers(C,F) }. At times, it is necessary for a premier set of features to be pro-

vided exactly for some product variants. For example, a client company with a

critical usage of the product would limit the risk of feature interaction. In this

case, we want to find out if there is an implementation that realizes the specifica-

tion. A specification is existentially explicit if there exists an implementation C

such that Realizes(C,F). Dually, it is universally explicit if for all implementa-

tions C ∈ C , Covers(C,F) implies Realizes(C,F). Multiple implementations may

implement a given specification. This may be a desirable criterion of the PL im-

58

plementation from the perspective of optimization among various choices. Thus,

the specifications which are implemented by only a single implementation are to

be identified. F ∈ F has a unique implementation if |FindCovers(F)|= 1.

Is there a virtual machine which provide all the features as per the client

specification? A Covers is more relaxed version where a specification is imple-

mented by an implementation, but the implementation may contain extra compo-

nents which may not require to implement any of the features in a specification.

It may happen that, the cloud may have such pre-configured virtual machines

which provides all the features as per user specifications. Furthermore, this pre-

configured machines has extra components which are not required to support any

of the features in user specifications. This may result in redundancy of compo-

nents in a virtual machine. Is there a virtual machine which provides exactly all

features as per the client specification? The tighter version of cover is realize,

which strictly does not allow any extra components which are not required for

features implementation present in a specification. A realize is the optimized ver-

sion of cover operation. Finding the optimized virtual machine on cloud which

match the exact user specifications is achieved by realize. Is there at least one

virtual machine which provides exactly all the features as per the client specifica-

tion? The existentially explicit operations guarantee the presence of at least one

implementation which is realized by a given specifications. It means, in VMPL

for a user specification there exists at least one virtual machine which realizes it

and this guarantees the presence of at least one optimized configuration. The uni-

versally explicit is the tighter version of existentially explicit, which means all the

implementation covers by a given specification implies that it is realization. For

universally explicit specifications, cloud always ’produces’ the optimized virtual

59

machine. Is a given user specification has only one virtual machine provided by

cloud? In VMPL, there may be some specification which is covered by only one

virtual machine, such implementations are unique.

3.2.4 SPL Optimization

Questions: Is an element is present across all the products? Is an element is

used in at least single product? Is an element not in use? Which all elements are

redundant in a given product? Which are the extra features provided by a product

apart from the given user specification?

Identification of common, live and dead elements in an SPL are some of the

basic analyses operations in the SPL community. We redefine these concepts

in terms of our notion of products: An element e is common if for all 〈F,C〉 ∈

Prod(Ψ), e ∈ F ∪C. An element e is live if there exists 〈F,C〉 ∈ Prod(Ψ) such

that e ∈ F ∪C. An element e is dead if for all 〈F,C〉 ∈ Prod(Ψ), e 6∈ F ∪C. Now a

days with the advance in technology, business changes it requirements so quickly

that, existing products in market get replaced by another advance product in a

very short time span. As the SPLs evolves, new cross-tree constraints get added

or removed, this results in change of products. Due to such modification, few

features or components in SPL may become live or dead. Is the component c is

present in at least one virtual machine provided by VMPL? Is the component c

is not present in any of the virtual machines provided by VMPL? The common

property find all the common elements (features or components) across all the

products. This operation is required to create a common platform for a SPL. Is the

component c is present in all the virtual machines provided by VMPL?

There may be certain implementations that are useful but the implementable

60

specifications are not affected if these implementations are dropped from the PL

implementation. These implementations are called superfluous. Formally, an im-

plementation C ∈ C is superfluous if for all F ∈F such that Covers(C,F), there is

a different implementation D ∈ C such that Covers(D,F). Superfluousness is rel-

ative to a given PL implementation. If in an SPL Ψ, F = {{ f}}, C = {{a},{b}}

and T (f) = {{a},{b}}, then both the implementations {a} and {b} are super-

fluous with respect to Ψ, whereas if either {a} or {b} is removed from the PL

implementation, the remaining implementation ({b} or {a}) is not superfluous

anymore (with respect to the reduced SPL). The feature Java in VMPL, can be

implemented by component OpenJDK or OracleJDK. Such traceability results in

many superfluous implementations . Superfluousness for a specification guaran-

tees the presence of alternate implementations.

Which are the components in the virtual machines that can be removed with-

out impacting the user specification? A component is redundant if it does not

contribute to any feature in any implementation in the SPL. A component c ∈ C is

redundant if for every C ∈ C , we have Provided by(C) = Provided by(C \{c}).

An SPL can be optimized by removing the redundant components without af-

fecting the set of products. Redundant elements may not be dead. Due to the

packaging, redundant elements can be part of useful implementations of the SPL

and hence be live. Is the component c is required for any of the features in a user

specification? A component c is critical for a feature f in the SPL scope F , when

the component must be present in an implementation that implements the feature

f : for all implementations C ∈ C , (c 6∈ C =⇒ ¬implements(C, f)). This defi-

nition can be extended to specifications as well: a component c is critical for a

specification F , if for all implementations C ∈ C , (c 6∈C =⇒ ¬Covers(C, F)).

61

A virtual machine may contain components which may not be required for any

of the features in a user specifications, but it may remain due to packaging. Such

components are redundant but not critical.

Can virtual machine provide more features with the same set of components?

When a specification is covered (but not realized) by an implementation, there

may be extra features (other than those in the specification) provided by the im-

plementation. These extra features are called extraneous features of the imple-

mentation. Since there can be multiple covering implementations for the same

specification, we get different choices of implementation and extraneous features

pairs: Extra(F) ≡ {〈C,Provided by(C)\F〉|Covers(C, F)}. User may demand

for virtual machines with some specification. The available pre-configured ma-

chine provide all the features in user specification, and also provide few more

features which are extraneous.

3.2.5 Generalization and Specialization in SPL

Questions: Is the union of two or more products result in a new product? What is

the difference between two products?

In an SPL, sometimes there is a need to check the aggregation relationship

between the specifications, implementations or products. Is there a virtual ma-

chine which has features provided by a given set of virtual machines? The union

property on two specifications will result in a new specification which has fea-

tures of both the specifications. Let’s say specification F1 has features { f1, f2, f3}

and specification F2 has features { f2, f5, f7}. The union property will check for

some specification F which has features of specifications F1 and F2, so F should

have features { f1, f2, f3, f5, f7}. Assume an excludes relation between features

62

f3 and f5, then the union property will return FALSE. In VMPL, the user al-

ways demand a virtual machines which has equivalent features of two or more

machines. The union property is used to verify the combination of two or more

virtual machines is valid. Similar to specifications, this property can be applied

on implementations or products.

In an SPL, most of the time there is a need to distinguish between the mul-

tiple specifications or implementations or products. Is there a virtual machine

whose features are present in all virtual machines in a given set? The intersection

property on multiple specifications will check the existence of any specification

which is common to those specifications. Let’s say specification F1 = { f1, f2, f3}

and F2 = { f1, f2, f7}, then the intersection property applied on specification F1

and F2 will result in specification F = { f1, f2}. The distinguishable features or

variants between F1 and F2 are obtained as F1 \ F = { f3} and F2 \ F = { f7}.

A specification which is contained in all the specifications of an SPL is called

core speci f ication. The intersection property applied on a given SPL model will

result in a core speci f ication. Similar to specifications, this property can be ap-

plied to implementations or products.

In the literature, different analysis problems in SPLs are usually encoded as

satisfiability problems for propositional constraints [59] and SAT solvers such as

Yices [74] or Bddsolve [75] are used to solve them. As it has been noted in [6],

it is not possible to cast certain problems such as completeness and soundness

as a single propositional constraint. However, we observe that these problems

need quantification over propositional variables encoding features and compo-

nents. The expressive logic formalism, Quantified Boolean Formula (QBF) as

compared to propositional logic, is necessary to encode such analysis problems.

63

The Boolean satisfiability problem for a propositional formula is then naturally

extended to a QBF satisfiability problem (QSAT).

Given an SPL Ψ, each of the properties listed in Table 3.1 holds if and only if

the corresponding formula evaluates to true.

3.3 Validation

In order to validate the approach presented in this report, a tool SPLAnE [38] for

the automated analysis of SPL models has been developed. SPL models consists

of feature models with traceability relationships to the component models (Core

assets). The Virtual Machine Product Line (VMPL) case study based on cloud

computing concepts is presented and analyzed.

The tool SPLAnE provide analysis operations: valid model, complete trace-

ability, void product model, implements, covers, realizes, soundness, complete-

ness, existentially explicit, universally explicit, unique implementation, common,

live, dead superfluous, redundant, critical, union and intersection. SPLAnE en-

code each analysis operation in single QBF. The tool FaMa [37] provide analysis

operations—commonality, core features, dead feature, detect error, explain error,

filter question, unique feature, variability question, valid configuration, variant

feature and valid product [5]. FaMa encode each analysis operation in single

propositional formula. Every analysis operation of FaMa can be encoded in QBF

and can be solved by SPLAnE , where as the formula like soundness cannot be

encoded in a single SAT formula. To compare our QSAT approach with SAT ap-

proach we implemented analysis operation provided by SPLAnE on FaMa. There

are few analysis operations provided by SPLAnE like valid model, complete trace-

64

Table 3.1: Properties and Formulae
Properties Formula

Valid Model ∃p f1 . . . p fm∃pc1 . . . pcn [CONI]∧ [CONF]

Complete Traceability ∃pc1 . . . pcn{(T (p f1) ∧ ·· · ∧ T (p fm)) =⇒ (pc1 ∨ pc2 ∨ ·· · ∨

pcn)}

Void Product Model ∃p f1 . . . p fm ∃pc1 . . . pcn [CONI] ∧ [CONF] ∧ ¬ f covers(pc1,

. . . , pcn, p f1, . . . , p fm)

Implements(C, f) C̄ = (v1, . . . ,vn) f orm implements f (v1, . . . ,vn)

Covers(C,F) f covers(v1, . . . ,vn,u1, . . . ,um)

Realizes(C,F) f realizes(v1, . . . ,vn,u1, . . . ,um)

C̄ = (v1, . . . ,vn), F̄ = (u1, . . . ,um)

Ψ complete ∀p f1 . . . p fm{CONF ⇒

∃pc1 . . . pcn [CONI ∧ f covers(pc1, . . . , pcn, p f1 , . . . , p fm)]}

Ψ sound ∀pc1 . . . pcn {CONI ⇒∃p f1 . . . p fm [CONF ∧ f covers (pc1,

. . . , pcn, p f1, . . . , p fm)]}

F existentially explicit ∃pc1 . . . pcn{CONI ∧ f realizes(pc1, . . . , pcn,u1, . . . ,um)}

F̄ = (u1, . . . ,um)

F universally explicit ∃pc1 . . . pcn{CONI ∧ f realizes(pc1, . . . , pcn,u1, . . . ,um)} ∧

F̄ = (u1, . . . ,um) ∀pc1 . . . pcn {[(CONI ∧ f covers(pc1, . . . , pcn,u1, . . . ,um)]⇒

f realizes(pc1, . . . , pcn,u1, . . . ,um)}.

F has unique implementation ∃pc1 . . . pcn [CONI ∧ f covers(pc1, . . . , pcn,u1, . . . ,um)]∧

F̄ = (u1, . . . , um) ∀qc1 . . . qcn ((CONI[qc1 . . . qcn] ∧ f covers(qc1, . . . , qcn, u1,

. . . , um))⇒ (∧n
l=1 (pcl ⇔ qcl)))]

ci common ∀pc1 . . . pcn p f1 . . . p fm {(CONI ∧CONF ∧

f covers(pc1, . . . , pcn, p f1 , . . . , p fm)) ⇒ pci}

ci live ∃pc1 . . . pcn , p f1 . . . p fm {(CONI ∧CONF∧

f covers(pc1, . . . , pcn, p f1 , . . . , p fm))∧ pci}

c dead ∀pc1 . . . pcn p f1 . . . p fm{(CONI ∧CONF∧

f covers(pc1, . . . , pcn , p f1, . . . , p fm)) ⇒¬pci}

C superfluous ∀p f1 . . . p fm[(CONF ∧ f covers(v1, . . . ,vn, p f1, . . . , p fm))⇒

C̄ = (v1, . . . ,vn) ∃pc1 . . . pcn(CONI ∧∨i=1..n(pci 6= vi)∧

f covers(pc1, . . . , pcn , p f1, . . . , p fm))]

ci redundant ∀pc1 . . . pcn p f1 . . . p fm{(pci ∧CONI ∧CONF∧

f covers(pc1, . . . , pcn , p f1, . . . , p fm))⇒

f covers(pc1, . . . ,¬pci, . . . , pcn , p f1 , . . . , p fm)}

ci critical for f j ∀pc1 . . . pcn [f orm implements f j(pc1 . . . pcn)⇒ pc j]

Union ∃p f11, . . . , p f1n ∃p f21, . . . , p f2n ∃ f1, . . . fn { f1⇔ (p f11 ∨p f21)

. . . fn⇔ (p f1n ∨p f2n) ∧ [CONF]}

Intersection ∃p f11, . . . , p f1n ∃p f21, . . . , p f2n ∃ f1, . . . fn { f1⇔ (p f11 ∧ p f21)

. . . fn⇔ (p f1n ∧ p f2n) ∧[CONF]}

65

ability, void product model, implements, covers, realizes and live which uses only

one existential quantifiers or universal quantifier, and can be encoded in SAT and

executed with FaMa. The operations like soundness, completeness, existentially

explicit and universally explicit cannot be encoded in single SAT, so for experi-

mental comparison such formula is executed with FaMa in iteration.

3.3.1 SPLAnE Architecture

SPLAnE (Software Product Line Analysis Engine) is designed and developed to

analyze the traceability between the features and implementation assets. Nowa-

days, there is the large set of tools that enable the reasoning over feature models.

However, none of them is capable of reasoning over the feature model and a set of

implementations as described throughout this report. For the sake of reusability

and because it has been proven to be easily extensible [76, 77], we chose to use the

FaMa framework [37] as the base for SPLAnE . The FaMa framework provides

a basic architecture for building FM analysis tools while defining interfaces and

standard implementation for existing FM operations in the literature such as Valid

Model or Void Product Model.

On the one hand, SPLAnE benefits from being a FaMa extension in different

ways. Fama is capable to analyze SAT based problems only across feature model.

SPLAnE can analyze more complex problems encoded in QBFs across feature

model, component model and traceability relation. For example, SPLAnE can

read a large set of different file formats used to describe feature models. It is also

possible to perform some of the existing operations in the literature to the feature

model prior to executing the reasoning over the component layer. On the other

hand, FaMa was not designed for reasoning over more than one model. There-

66

fore, different modifications have been addressed to fill this gap. Namely, (i) we

modified the architecture to enable this new extension point into the FaMa archi-

tecture; (ii) created a new reasoner for a new set of operations; (iii) implemented

the operations, and (iv) defined two new file formats to store and input traceability

relationships and component models in SPLAnE .

The reasoning process performed by SPLAnE is shown in the Figure 5.1. First,

SPLAnE takes as input a feature model, a traceability relationship and a compo-

nent model. The SPLAnE parser creates the SPL model from this input files. Sec-

ond, SPLAnE constructs the QBF/QCIR formula based on the selected analysis

operations. QBF is further encoded in qpro format, this is done by SPLAnE trans-

lator. qpro [78] and QCIR [79] format is a standard input file format in non-

prenex, non-CNF form. Later, SPLAnE invokes the QSAT solver CirQit [35] or

RaReQS [36] in the back-end to check the satisfiability of the generated QBFs in

qpro/QCIR format. The choice of the tool is based upon its performance: CirQit

has solved the most number of problems in the non-prenex, non-CNF track of

QBFEval’10 [80]. RaReQS [36] is a Recursive Abstraction Refinement QBF

Solver. Table 3.1 shows the analysis operations provided by SPLAnE .

The design of SPLAnE makes it possible to use different QSAT solvers. Fur-

thermore, SPLAnE can now work hand in hand with other products based on

FaMa such as Betty [37], which enables the testing of feature models. SPLAnE is

now available for download with its detailed documentation from the website [38].

3.3.2 Experimentation

In this section, we go through the different experiments executed to validate our

approach. The experiments was conducted with (i) Real Debian models, (ii) Ran-

67

domly generated models and (iii) SPLOT (Software Product Line Online Tools)

Repository models. Each analysis operation was executed with two QSAT solver

(CirQit and RaReQS) and three SAT solver (Sat4j [32], PicoSAT [34] and Min-

iSAT [33]). All experiments was run on a 3.2 GHz i7 processor (Intel Corporation,

Santa Clara, CA, USA) machine with 16 GB RAM.

68

Table 3.2: Hypotheses and design of experiments.

Hypotheses of Experiment 1

Null Hypothesis

(H0)

SPLAnE does not scale when coping with SPLOT model repository.

Alt. Hypothesis

(H1)

SPLAnE does scale when coping with SPLOT model repository.

Models used as input

Feature Model for TPL, MPPL and ESPL were taken from [81]. ECPL

is taken from [82]. VMPL is presented in current report. SPLOT

repository. The 69,800 SPL models were generated from 698 SPLOT

Models.

Blocking variables

For each SPLOT model, we used 10 different topology and 10 level of

cross-tree constraints to get 100 SPL models. Percentages of cross-tree

constraints were 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% and

50%.

Hypotheses of Experiment 2

Null Hypothesis

(H0)

SPLAnE does not scale when coping with randomly generated SPL

models.

Alt. Hypothesis

(H1)

SPLAnE does scale when coping with randomly generated SPL mod-

els.

Model used as in-

put

1000 Randomly generated SPL Models.

Blocking variables

We generated 10 random feature models with the number of features

as 10, 50, 100, 500, 1000, 3000, 5000, 10,000, 15,000 and 20,000.

For each feature model, 100 SPL models were generated by changing

it to 10 different topology across 10 different cross tree constraints.

Number of components in each model were three-times the number of

features. Percentages of cross-tree constraints: 5%, 10%, 15%, 20%,

25%, 30%, 35%, 40%, 45% and 50%.

69

Table 3.4: Hypotheses and design of experiments. Cont... 1

Hypotheses of Experiment 3

Null Hypothesis (H0)
The use of SPLAnE will not result in a faster executions of op-

erations than SAT-based techniques in front of a real very-large

SPL models.

Alt. Hypothesis (H1)
The use of SPLAnE will result in a faster executions of opera-

tions than SAT-based techniques in front of a real very-large SPL

models.

Model used as

input

We used as input the Debian variability model extracted from

[77] that you can find at [38]

Hypotheses of Experiment 4

Null Hypothesis (H0)
The use of SPLAnE will not result in a faster executions of oper-

ations than SAT-based techniques in front of randomly generated

SPL models.

Alt. Hypothesis (H1)
The use of SPLAnE will result in a faster executions of opera-

tions than SAT-based techniques in front of randomly generated

SPL models.

Model used as

input

We used as input random models varying from ten features to

twenty thousand features.

70

Table 3.6: Hypotheses and design of experiments. Cont... 2

Hypotheses of Experiment 5

Null Hypothesis (H0)
The QSAT based reasoning technique is not faster as compare

to SAT based technique for operations like completeness and

soundness.

Alt. Hypothesis (H1)
The QSAT based reasoning technique is faster as compare

to SAT based technique for operations like completeness and

soundness.

Model used as input
We used as input random models varying from ten features to

twenty thousand features and SPLOT repository models.

Constants

QSAT and SAT

solvers

CirQit solver [35], RaReQS solver [36], Sat4j [32], PicoSAT

[34] and MiniSAT [33]

Heuristic for

variable selec-

tion in the QSAT

and SAT solver

Default

Alt.: Alternative; T PL: Tablet Product Line; MPPL: Mobile Phone Product Line;

ESPL: Electronic Shopping Product Line; ECPL: Entry Control Product Line.

Experiment 1: Validating SPLAnE with Feature Models from the SPLOT

Repository

To illustrate the SPL analysis method described in the report, we considered case

studies of various sizes. Concretely, the following SPLs were used: Entry Con-

71

trol Product Line (ECPL), Virtual Machine Product Line (VMPL), Mobile Phone

Product Line (MPPL), Tablet Product Line (TPL) and Electronic Shopping Prod-

uct Line (ESPL). The TPL, MPPL, and ESPL models were taken from the SPLOT

repository [81]. More details of the ECPL models can be found at [82]. Table 3.7

gives the number of features, components in each SPL model, and the execution

time taken by various analysis operations on SPLAnE reasoner: CirQit.

The SPLOT repository is a common place where a practitioners store feature

models for the sake of reuse and communication. The SPLOT repository contains

small and medium size feature models, most of it are conceptual and few are real-

istic. We extracted 698 feature models from the SPLOT repository. These feature

models were given as an input to extended Betty tool to generate corresponding

SPL models. Usually, components models which represent the solution space

of SPLs are larger in size. So, the generated component models contain three-

times more components then the number of features present in the corresponding

feature model. SPLAnE generated the random traceability relation between fea-

ture model and component model to generate a complete SPL model. Further, to

increase the complexity of experiments, each SPL model is generated using 10

different topologies and 10 different level of cross-tree constraints with percent-

age as {5,10,15,20,25,30,35,40,45,50}, resulting in a total of 100 SPL models

per SPLOT model. So from 698 SPLOT models, we got 69800 SPL models. The

percentage of cross-tree constraint is defined by the percentage of constraints over

the number of features. Basically it is the number of constraints depending on the

number of features. For example, if we specify a 50% percentage over a model

with 10 features, then we have five cross-tree constraints.

72

Table 3.7: Time complexity for properties and formulae with SPLAnE reasoner:

CirQit. (# means the “Number” of features and components.)

SPL name ECPL VMPL MPPL TPL ESPL

#Features 8 15 25 34 290

#Components 12 20 41 40 290

Analysis Operations Time (ms) Time (ms) Time (ms) Time (ms) Time (ms)

Valid Feature Model 10 14 14 20 35

Valid Component Model 12 15 13 12 37

Valid SPL Model 14 16 15 28 40

Void Product Model 18 25 23 29 55

Valid Speci f ication 7 13 11 17 45

Valid Implementation 9 15 13 12 48

Complete Traceability 0 1 0 1 1

Implements 8 10 9 10 22

Realizes 10 26 24 14 78

Covers 12 13 10 14 74

Completeness 18 30 26 284 2135

Soundness 350 2120 1323 730 6550

Common 15 22 19 28 74

Live 18 45 61 25 82

Dead 11 20 18 27 65

Redundant 14 24 19 21 38

Critical 10 14 15 19 34

Union over Speci f ications 14 18 16 26 45

Union over Implementations 18 30 25 35 37

Union over Products 18 24 20 32 48

Intersection over Speci f ications 9 14 11 22 37

Intersection over Implementations 11 17 16 28 28

Intersection over Products 15 20 21 19 46

73

The tool SPLAnE was executed with 69800 SPL models to verify the QSAT

scalability when applying it to feature modeling. SPLAnE provides an option

to select any one of the two QSAT reasoners (CirQit and RaReQS). Figure 3.1

shows the box plot, representing the QSAT behavior with increase in cross-tree

constraints for few analysis operations on real models taken from the SPLOT

repository. This experiment was executed with the QSAT reasoner CirQit. The

results for experiment 1 (Section 3.3.2) shows that for the small and medium size

real models, all analysis operations does not take much execution time which mo-

tivated us to experiment with large size models. The overall results for experiment

1 (Section 3.3.2) point out that the null hypothesis H0 was wrong, thus, resulting

in the acceptance of the alternative hypothesis H1.

74

COMMON COMPLETENESS COVERS CRITICAL IMPLEMENTS

LIVE NOTCRITICAL SOUNDNESS VALIDMODEL VOIDPRODUCTMODEL

0

500

1000

1500

2000

2500

3000

3500

4000

0

500

1000

1500

2000

2500

3000

3500

4000

R
E

A
L−

F
M

−
1.

xm
l

R
E

A
L−

F
M

−
10

.x
m

l
R

E
A

L−
F

M
−

11
.x

m
l

R
E

A
L−

F
M

−
12

.x
m

l
R

E
A

L−
F

M
−

13
.x

m
l

R
E

A
L−

F
M

−
14

.x
m

l
R

E
A

L−
F

M
−

15
.x

m
l

R
E

A
L−

F
M

−
16

.x
m

l
R

E
A

L−
F

M
−

17
.x

m
l

R
E

A
L−

F
M

−
18

.x
m

l
R

E
A

L−
F

M
−

19
.x

m
l

R
E

A
L−

F
M

−
2.

xm
l

R
E

A
L−

F
M

−
20

.x
m

l
R

E
A

L−
F

M
−

3.
xm

l
R

E
A

L−
F

M
−

4.
xm

l
R

E
A

L−
F

M
−

5.
xm

l
R

E
A

L−
F

M
−

6.
xm

l
R

E
A

L−
F

M
−

7.
xm

l
R

E
A

L−
F

M
−

8.
xm

l
R

E
A

L−
F

M
−

9.
xm

l

R
E

A
L−

F
M

−
1.

xm
l

R
E

A
L−

F
M

−
10

.x
m

l
R

E
A

L−
F

M
−

11
.x

m
l

R
E

A
L−

F
M

−
12

.x
m

l
R

E
A

L−
F

M
−

13
.x

m
l

R
E

A
L−

F
M

−
14

.x
m

l
R

E
A

L−
F

M
−

15
.x

m
l

R
E

A
L−

F
M

−
16

.x
m

l
R

E
A

L−
F

M
−

17
.x

m
l

R
E

A
L−

F
M

−
18

.x
m

l
R

E
A

L−
F

M
−

19
.x

m
l

R
E

A
L−

F
M

−
2.

xm
l

R
E

A
L−

F
M

−
20

.x
m

l
R

E
A

L−
F

M
−

3.
xm

l
R

E
A

L−
F

M
−

4.
xm

l
R

E
A

L−
F

M
−

5.
xm

l
R

E
A

L−
F

M
−

6.
xm

l
R

E
A

L−
F

M
−

7.
xm

l
R

E
A

L−
F

M
−

8.
xm

l
R

E
A

L−
F

M
−

9.
xm

l

R
E

A
L−

F
M

−
1.

xm
l

R
E

A
L−

F
M

−
10

.x
m

l
R

E
A

L−
F

M
−

11
.x

m
l

R
E

A
L−

F
M

−
12

.x
m

l
R

E
A

L−
F

M
−

13
.x

m
l

R
E

A
L−

F
M

−
14

.x
m

l
R

E
A

L−
F

M
−

15
.x

m
l

R
E

A
L−

F
M

−
16

.x
m

l
R

E
A

L−
F

M
−

17
.x

m
l

R
E

A
L−

F
M

−
18

.x
m

l
R

E
A

L−
F

M
−

19
.x

m
l

R
E

A
L−

F
M

−
2.

xm
l

R
E

A
L−

F
M

−
20

.x
m

l
R

E
A

L−
F

M
−

3.
xm

l
R

E
A

L−
F

M
−

4.
xm

l
R

E
A

L−
F

M
−

5.
xm

l
R

E
A

L−
F

M
−

6.
xm

l
R

E
A

L−
F

M
−

7.
xm

l
R

E
A

L−
F

M
−

8.
xm

l
R

E
A

L−
F

M
−

9.
xm

l

R
E

A
L−

F
M

−
1.

xm
l

R
E

A
L−

F
M

−
10

.x
m

l
R

E
A

L−
F

M
−

11
.x

m
l

R
E

A
L−

F
M

−
12

.x
m

l
R

E
A

L−
F

M
−

13
.x

m
l

R
E

A
L−

F
M

−
14

.x
m

l
R

E
A

L−
F

M
−

15
.x

m
l

R
E

A
L−

F
M

−
16

.x
m

l
R

E
A

L−
F

M
−

17
.x

m
l

R
E

A
L−

F
M

−
18

.x
m

l
R

E
A

L−
F

M
−

19
.x

m
l

R
E

A
L−

F
M

−
2.

xm
l

R
E

A
L−

F
M

−
20

.x
m

l
R

E
A

L−
F

M
−

3.
xm

l
R

E
A

L−
F

M
−

4.
xm

l
R

E
A

L−
F

M
−

5.
xm

l
R

E
A

L−
F

M
−

6.
xm

l
R

E
A

L−
F

M
−

7.
xm

l
R

E
A

L−
F

M
−

8.
xm

l
R

E
A

L−
F

M
−

9.
xm

l

R
E

A
L−

F
M

−
1.

xm
l

R
E

A
L−

F
M

−
10

.x
m

l
R

E
A

L−
F

M
−

11
.x

m
l

R
E

A
L−

F
M

−
12

.x
m

l
R

E
A

L−
F

M
−

13
.x

m
l

R
E

A
L−

F
M

−
14

.x
m

l
R

E
A

L−
F

M
−

15
.x

m
l

R
E

A
L−

F
M

−
16

.x
m

l
R

E
A

L−
F

M
−

17
.x

m
l

R
E

A
L−

F
M

−
18

.x
m

l
R

E
A

L−
F

M
−

19
.x

m
l

R
E

A
L−

F
M

−
2.

xm
l

R
E

A
L−

F
M

−
20

.x
m

l
R

E
A

L−
F

M
−

3.
xm

l
R

E
A

L−
F

M
−

4.
xm

l
R

E
A

L−
F

M
−

5.
xm

l
R

E
A

L−
F

M
−

6.
xm

l
R

E
A

L−
F

M
−

7.
xm

l
R

E
A

L−
F

M
−

8.
xm

l
R

E
A

L−
F

M
−

9.
xm

l

Input model

T
im

e
in

 m
ill

is
ec

on
ds

Figure 3.1: Impact on QSAT scalability on Real SPLOT models with the incre-

ment in Cross Tree Constraints (CTC) levels.

Experiment 2: Validating SPLAnE with Randomly Generated Large Size

SPL Models

In this experiment we have compared scalability of SPLAnE and FaMa based

analysis techniques over a large size randomly generated SPL models. The Betty

tool suite [83] is used to generate random feature models relying on the ap-

proach of Thüm et al. [84]. SPLAnE extended the Betty tool suite to gener-

ate a set of random SPL models. Those models were generated for a number

75

of features ranging from ten features to twenty thousand features. Concretely,

{10,50,100,500,1000,3000,5000,10,000,15,000,20,000} features with three-

times larger size of each component models. For each SPL model, 10 different

topologies were generated to avoid the threats to internal validity. Further, to in-

crease the complexity of experiments, 10 different levels of cross-tree constraints

{5,10,15,20,25,30,35,40,45,50} were added. Each randomly generated SPL

models consists of a feature model, a component model and a traceability relation.

Note that, for model with 20,000 features there are 60,000 components in compo-

nent model, which result in 80,000 variables in a generated SPL model. For each

model, 10 different topologies and 10 levels of cross-tree constraints will result in

100 random SPL models, so in total 1000 SPL model were generated. The tool

SPLAnE was executed against randomly generated 1000 SPL models to check

the scalability of our approach with all analysis operations. Figure 3.2 shows the

box plot for randomly generated large size SPL models. For data clarity we plot-

ted only eight analysis operations for all models (except models with 50 features)

and {10,20,30,40,50} cross-tree levels of constraints. The experiment 2 (Sec-

tion 3.3.2 was executed with SPLAnE reasoner: RaReQS. The plot clearly shows

the QSAT approach is more scalable even with 80,000 variables in a SPL model

with maximum 50% constraints. The Figure 3.2 shows that the execution time for

all analysis operation grows with the increase in number of features. Figure 3.3

shows the graph plot for the same results, which help to clearly distinguish the

behavior of each analysis operations against the Cross Tree Constraints (CTC)

levels. From the graphs we observed that, the number of features in a model has

more impact on the execution time than the different levels of CTC. The levels of

CTC has very less impact on the execution time. The operation soundness takes

76

more time as it checks for all implementations there exist a specification and the

number of components are three times more than the number of features. The

operation completeness takes less time as compared to soundness, but takes more

time compared to all remaining operations. In completeness we checked for all

specifications there exist an implementation, here the number of features are less

compared to the number of components. So the completeness requires less exe-

cution time compared to soundness. The results for experiments 2 (Section 3.3.2)

shows that, SPLAnE can scale up to 80,000 variables size models and this rule out

the hypothesis H0 with no option to accept the alternative hypothesis H1.

77

●

●
●
● ●

●
●

●

●

●

COMMON COMPLETENESS COVERS CRITICAL

IMPLEMENTATION LIVE SOUNDNESS VOIDPRODUCTMODEL

20000

40000
60000
80000

100000120000140000160000

20000

40000
60000
80000

100000120000140000160000

10 10
0

50
0

10
00

30
00

50
00

10
00

0

15
00

0

20
00

0 10 10
0

50
0

10
00

30
00

50
00

10
00

0

15
00

0

20
00

0 10 10
0

50
0

10
00

30
00

50
00

10
00

0

15
00

0

20
00

0 10 10
0

50
0

10
00

30
00

50
00

10
00

0

15
00

0

20
00

0

Number of features

T
im

e
in

 m
ill

is
ec

on
ds

 (
lo

g1
0

sc
al

e)

Figure 3.2: Boxplot for QSAT scalability on large random SPL models with the

increment in CTC levels.

78

10 20 30 40 45 50

100

10000

100

10000

100

10000

100

10000

100

10000

100

10000

100

10000

100

10000

C
O

M
M

O
N

C
O

M
P

LE
T

E
N

E
S

S
C

O
V

E
R

S
C

R
IT

IC
A

L
IM

P
LE

M
E

N
TAT

IO
N

LIV
E

S
O

U
N

D
N

E
S

S
V

O
ID

P
R

O
D

U
C

T
M

O
D

E
L

10 50 10
0

50
0

10
00

30
00

50
00

10
00

0
15

00
0

20
00

0 10 50 10
0

50
0

10
00

30
00

50
00

10
00

0
15

00
0

20
00

0 10 50 10
0

50
0

10
00

30
00

50
00

10
00

0
15

00
0

20
00

0 10 50 10
0

50
0

10
00

30
00

50
00

10
00

0
15

00
0

20
00

0 10 50 10
0

50
0

10
00

30
00

50
00

10
00

0
15

00
0

20
00

0 10 50 10
0

50
0

10
00

30
00

50
00

10
00

0
15

00
0

20
00

0

Number of features

T
im

e
in

 m
ill

is
ec

on
ds

 (
lo

g
sc

al
e)

Figure 3.3: QSAT scalability on large random SPL models with the increment in

CTC levels.

Experiment 3: Comparing SPLAnE and FaMa Approach in Front of Real

and Large Debian Models

This experiment checks the behavior of SPLAnE reasoners (CirQit and RaReQS)

and FaMa reasoners (Sat4j, PicoSAT and MiniSAT) on real and large Debian

models with the analysis operation presented in the report. We used the feature

model extracted from Debian distributions [77]. This model encodes the vari-

ability present in the Ubuntu 10.04 distribution packaging system. We used four

79

initial models containing the data from the repositories: main (7065 features), re-

stricted (7098 features), multiverse (8122 features) and universe (26,338 features).

To generate the SPL model from this real feature model, we used the same actual

models as component models and added 1:1 traceability relation from each fea-

tures to components. Consider, the universe Debian model with 26,338 features

then its corresponding SPL model will contain 52,676 variables.

Figure 3.4 shows the performance of SPLAnE reasoners (CirQit and RaReQS)

and FaMa reasoners (Sat4j, PicoSAT and MiniSAT) against the proposed analysis

operations. We see that both approaches scale for all operations in first three De-

bian models except the completeness and soundness where QSAT is clearly more

efficient. For completeness and soundness operations, FaMa reasoners was not

able to solve even a single instance of the Debian models. For the fourth model,

i.e., universe Debian model, FaMa reasoners was not able to solve any of the

analysis operations. Whereas QSAT reasoners against completeness and sound-

ness operations, was able to solve first three Debian models (main, restricted,

multiverse), but was not able to solve the huge universe Debian model (26,338

features) in the given timeout (two hours). Overall, for the operations where both

approaches scale up, QSAT is faster than SAT. This experiments clearly accepts

the hypothesis H1.

80

COMMON COMPLETENESS COVERS IMPLEMENTATION

LIVE SOUNDNESS VALIDMODEL VOIDPRODUCTMODEL

16

1024

65536

4194304

16

1024

65536

4194304

m
ai

n

m
ai

n−
re

st
ric

te
d

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se
−

un
iv

er
se

m
ai

n

m
ai

n−
re

st
ric

te
d

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se
−

un
iv

er
se

m
ai

n

m
ai

n−
re

st
ric

te
d

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se
−

un
iv

er
se

m
ai

n

m
ai

n−
re

st
ric

te
d

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se
−

un
iv

er
se

Repositories used

T
im

e
in

 m
ill

is
ec

on
ds

 (
lo

g
sc

al
e)

solver msat psat qcir qrare Sat4j

Figure 3.4: SPLAnE required time vs. FaMa required time in front of real and

large Debian based feature models.

Experiment 4: Comparing SPLAnE and FaMa Scalability in Front of Ran-

domly Generated Large Size Models

In this experiment, we checked the behavior of SPLAnE reasoners (CirQit and

RaReQS) and FaMa reasoners (Sat4j, PicoSAT and MiniSAT) on randomly gen-

erated SPL models taken from experiments 2 (Section 3.3.2). Figure 3.5 shows

the scalability of SPLAnE reasoners and FaMa reasoners against randomly gen-

erated models. The results are only shown for large models from 1000 features

81

to 20,000 features with 50% cross-tree constraints. Here, the feature model with

10,000 features means its corresponding SPL model contains 40,000 variables

with 50% CTC. The results clearly shows that, the SAT reasoners are not able

to solve any analysis operations after getting a models of size 10,000 features or

more. For completeness and soundness operations, SAT reasoners was not able

to solve any SPL models after 1000 features. The QSAT reasoners were able to

solve all analysis operations on the random SPL models. The results deny the

hypothesis H0 with no option left to accept the hypothesis H1.

COMMON COMPLETENESS COVERS CRITICAL

LIVE SOUNDNESS VALIDMODEL VOIDPRODUCTMODEL

16

512

16384

524288

16

512

16384

524288

R
M

−
01

00
0

R
M

−
03

00
0

R
M

−
05

00
0

R
M

−
10

00
0

R
M

−
15

00
0

R
M

−
20

00
0

R
M

−
01

00
0

R
M

−
03

00
0

R
M

−
05

00
0

R
M

−
10

00
0

R
M

−
15

00
0

R
M

−
20

00
0

R
M

−
01

00
0

R
M

−
03

00
0

R
M

−
05

00
0

R
M

−
10

00
0

R
M

−
15

00
0

R
M

−
20

00
0

R
M

−
01

00
0

R
M

−
03

00
0

R
M

−
05

00
0

R
M

−
10

00
0

R
M

−
15

00
0

R
M

−
20

00
0

Repositories used

T
im

e
in

 m
ill

is
ec

on
ds

 (
lo

g
sc

al
e)

solver msat psat qcir qrare Sat4j

Figure 3.5: SPLAnE required time vs. FaMa required time in front of random and

large SPL models.

82

Experiment 5: Comparing SPLAnE with FaMa based Reasoning Techniques

The tool SPLAnE improves the performance with the set of models obtained from

SPLOT and random SPL models. In this experiment, we are comparing QSAT

based technique with SAT based techniques over the analysis operations. From

the SPLOT models used in the experiment 1 (Section 3.3.2) we took those marked

as realistic. FaMa supports analysis operations expressed using propositional for-

mulae. We acknowledge that there are analysis operations such as completeness

and soundness that cannot be expressed using single propositional formulae like

QBF. For example, the formula with 3 boolean variable can end up with 8 propo-

sitional formulae and for soundness or completeness analysis operation this all 8

formulae needs to be verified. So, for comparing QSAT vs. SAT reasoning, such

operations where written in the FaMa tool suite with loop statements (for or while)

for traversing the whole set of solutions. Here, the loop allows us to express such

operations (completeness, soundness, etc.) to its equivalent QSAT formula but

note that, the complete operations cannot be expressed using standalone proposi-

tional formula. Later, we executed the analysis operations with SPLAnE reasoner

(CirQit and the FaMa reasoner) Sat4j.

Figure 3.6 shows the results for QSAT vs. SAT based reasoning for few anal-

ysis operations on real models taken from the SPLOT repository. QSAT performs

better than SAT encoded formulae for every analysis operations. The execution

of all models is available on website at [38] as well as the scripts used to generate

this data. The first noticeable results are that SPLAnE overtakes all executions

of all operations when comparing to the standard FaMa version (which is using

Sat4j as a solver). Moreover, we see improvements of more than 70% (note the

log scale) when talking about the soundness operation. Therefore, after trying to

83

refute the null hypothesis H0 (for experiment 5 (Section 3.3.2)) with no luck, we

have to accept the alternative hypothesis H1 which states that SPLAnE is faster

and scalable than previously standard SAT-based techniques.

COMPLETENESS COVERS CRITICAL IMPLEMENTS

NOTCRITICAL SOUNDNESS VALIDMODEL VOIDPRODUCTMODEL

10000

20000

30000
40000
50000
60000
70000

10000

20000

30000
40000
50000
60000
70000

R
E

A
L−

F
M

−
10

R
E

A
L−

F
M

−
11

R
E

A
L−

F
M

−
12

R
E

A
L−

F
M

−
13

R
E

A
L−

F
M

−
14

R
E

A
L−

F
M

−
15

R
E

A
L−

F
M

−
16

R
E

A
L−

F
M

−
17

R
E

A
L−

F
M

−
18

R
E

A
L−

F
M

−
19

R
E

A
L−

F
M

−
2

R
E

A
L−

F
M

−
20

R
E

A
L−

F
M

−
3

R
E

A
L−

F
M

−
4

R
E

A
L−

F
M

−
5

R
E

A
L−

F
M

−
6

R
E

A
L−

F
M

−
7

R
E

A
L−

F
M

−
8

R
E

A
L−

F
M

−
10

R
E

A
L−

F
M

−
11

R
E

A
L−

F
M

−
12

R
E

A
L−

F
M

−
13

R
E

A
L−

F
M

−
14

R
E

A
L−

F
M

−
15

R
E

A
L−

F
M

−
16

R
E

A
L−

F
M

−
17

R
E

A
L−

F
M

−
18

R
E

A
L−

F
M

−
19

R
E

A
L−

F
M

−
2

R
E

A
L−

F
M

−
20

R
E

A
L−

F
M

−
3

R
E

A
L−

F
M

−
4

R
E

A
L−

F
M

−
5

R
E

A
L−

F
M

−
6

R
E

A
L−

F
M

−
7

R
E

A
L−

F
M

−
8

R
E

A
L−

F
M

−
10

R
E

A
L−

F
M

−
11

R
E

A
L−

F
M

−
12

R
E

A
L−

F
M

−
13

R
E

A
L−

F
M

−
14

R
E

A
L−

F
M

−
15

R
E

A
L−

F
M

−
16

R
E

A
L−

F
M

−
17

R
E

A
L−

F
M

−
18

R
E

A
L−

F
M

−
19

R
E

A
L−

F
M

−
2

R
E

A
L−

F
M

−
20

R
E

A
L−

F
M

−
3

R
E

A
L−

F
M

−
4

R
E

A
L−

F
M

−
5

R
E

A
L−

F
M

−
6

R
E

A
L−

F
M

−
7

R
E

A
L−

F
M

−
8

R
E

A
L−

F
M

−
10

R
E

A
L−

F
M

−
11

R
E

A
L−

F
M

−
12

R
E

A
L−

F
M

−
13

R
E

A
L−

F
M

−
14

R
E

A
L−

F
M

−
15

R
E

A
L−

F
M

−
16

R
E

A
L−

F
M

−
17

R
E

A
L−

F
M

−
18

R
E

A
L−

F
M

−
19

R
E

A
L−

F
M

−
2

R
E

A
L−

F
M

−
20

R
E

A
L−

F
M

−
3

R
E

A
L−

F
M

−
4

R
E

A
L−

F
M

−
5

R
E

A
L−

F
M

−
6

R
E

A
L−

F
M

−
7

R
E

A
L−

F
M

−
8

Input model

T
im

e
in

 m
ill

is
ec

on
ds

 (
lo

g
sc

al
e)

Solver qcir Sat4j

Figure 3.6: SPLAnE required time vs. FaMa required time.

3.3.3 Threats to Validity

Even though the experiments presented in this report provide evidence that the

solution proposed is valid, there are some conditions that may affect their validity.

In this section, we discuss the different threats to validity that affect the evaluation.

External Validity: The inputs used for the experiments presented in this report

84

try to mimic realistic feature models. However, SPLOT models are not necessarily

realistic. To ease off this threat we decide to used feature models based on the De-

bian repository. Furthermore, the random feature models may not reflect the same

structure as other realistic models. The major threats to the external validity are:

– Population validity, the models may not be realistic. To reduce these threats,

we generated the models as in [84] and implemented in the Betty tool [83].

We also used models coming out the Debian repositories to provide more

realistic topologies.

– Ecological validity: While external validity, in general comes with the gen-

eralization of the results to other contexts (e.g., using other models), the

ecological validity faces the threats affecting the experiment materials and

tools. To prevent the threats of third party threads running on the machines,

SPLAnE analyses were executed 10 times and then averaged.

Internal validity: The CPU capabilities required when analyzing an SPL model

depend on the number of features, components and percentage of cross-tree con-

straints. However, there might be some variables affecting the performance, such

as the topology, so we generated 10 different topologies for each SPL model.

Construct validity: The results look promising in terms of time required to

solve problems related to the feature model. However, we can not grant its validity

with models more than 20,000 features.

Chapter 4

SPL Engine for Design verification

4.1 Modeling features and SPLs

We use a slightly different notion of feature from the one used in the SPL lit-

erature. In prior works such as in [41], a feature is an incremental function or

computation and a system is composed of a core function with an optional list

of features. The core function with one or more features satisfying the variabil-

ity constraints define the set of all products in the SPL. An important point to

be noted is that the system exhibits variability but not the features. In contrast,

our approach considers a feature as a basic unit of functionality and a system is a

composition of features. Here, each feature may exhibit variability and the system

variability is inherited from that of its constituent features. We adopted this termi-

nology as it is consistent with the automotive application domain, which triggered

this work. Recent research activities start considering the case of feature with

attributes ([10]).

In this section, we focus on individual features and their modeling with and

85

86

without time. As noted in the introduction, we restrict ourselves in this report to

only two levels of abstraction in the development life-cycle: the requirement and

design levels.

4.1.1 Modeling the behavior of a single feature

A feature, as mentioned above, exhibits variability. In order to describe a feature,

we introduce, Finite State Machines with Variability (FSMv), an extension of finite

state machines, Let Var be a finite set of variables, each taking a value ranging over

a finite set of values. Given x ∈Var, and let Dom(x) denote the finite set of values

x can assume. We define, AVar, to be the following set of atomic formulas over Var

and the values in the domains of variables in Var: x = a, x 6= a, for a ∈ Dom(x),

and x = y, x 6= y for x,y ∈ Var. Define ∆ ::= AVar | ¬∆ | ∆∧∆ | ∆∨∆ |∆⇒ ∆ to

be the set of all well formed predicates over Var.

Definition 1 (FSMv). An FSMv is a tuple A = 〈Q,q0,Σ,Var,E,ρ〉 where:

(1) Q is a finite set of states; q0 is the initial state; (2) Σ is a finite set of events; (3)

Var is a finite set of variables; (4) E ⊆ Q×∆×Σ×Q gives the set of transitions.

A transition t = (s,g,a,s′) represents a transition from state s to state s′ on event

a; the predicate g is called a guard of the transition t; g defines the variability

domain of the transition; (5) ρ ∈ ∆ is a consistent predicate called the global

predicate.

The variables in Var determine the variability allowed in the feature with each

possible valuation of the variables corresponding to a variant. The allowed values

of the variables are constrained by the global predicate ρ. For example, if ρ is

((x = 1)∨ (x = 2))∧ (y 6= x), then the allowed variants are those for which the

87

values for the pairs (x,y) are (1,2),(2,1) (with y ∈ {1,2}). The predicate in a

transition determines the variants to which the transition is applicable. While

drawing a transition t = (s,g,a,s′), the edge connecting s to s′ is decorated with

g : a. When g is the predicate “true”, we simply write a on the edge.

Definition 2 (Configuration). A configuration, denoted by π, is an assignment of

values to the variables in Var. The set of all configurations is denoted by ΠVar, or

Π, when Var is clear from the context. Define Π(ρ) = {π | π |= ρ} to be the set

of all those configurations that satisfy ρ. The elements of Π(ρ) are called valid

configurations. Given a valid configuration π and a transition t = (s,g,a,s′), we

say that t is enabled by π if π |= g.

As a concrete example of an FSMv, consider the feature Door lock in an au-

tomotive SPL which controls the locking of the doors of a car. The expected

behaviour of this feature is modeled using the FSMv Reqdl described pictorially

in Figure 4.1. In the initial state, this feature becomes active when all the doors

are closed. The doors are locked when either the speed of the vehicle exceeds a

predefined value or the gear is shifted out of park. An unlock event reactivates the

feature.

There are three configurations for this feature all of which are described us-

ing the two variables: Transmissiondl = {Auto,Manual} and DL User Pre f =

{Speed,Park}. The global predicate (ρ) associated with the machine is ρ =

{Manual → Speed}. To avoid clutter in the diagram, we write any atomic for-

mula, x = i, simply as i, in the global predicate as well as in guards. ρ ensures that

in every valid configuration, the variable Transmissiondl having the value Manual

implies that DL User Pre f takes the value Speed. This captures the fact that in

manual transmission, there is no park position on the gearbox. The set of events

88

start

AllDoorsClosed

OneDoorOpened
Speed:Speed >n

Auto & Park: ShiftOutOfPark
lock

Unlock

Figure 4.1: Door lock FSMv

for the state machine is {AllDoorsClosed, OneDoorClosed, Shi f tOuto f Park,

Speed > n, Lock, Unlock }. In the state machine diagram, the transition labeled

Auto&Park:ShiftOutofPark, denotes the fact that this transition is applicable only

when DL User Pref is set to Park; and the transmission is automatic. the ShiftOut-

ofPark denotes the event required for taking this transition.

Requirement against Design As we can see from the above example, in the

requirement of a product line, the variability is usually discussed in terms of vari-

ation points, like Transmission Type, User Preference. These variation points

are at a high level of abstraction and focused on clarity and expressibility. The

restriction of the possible configurations is expressed as general constraints on

these variation points, e.g., the global predicate Manual =⇒ Speed in the Door

lock example. In contrast, in a design, the variability description is constrained

by efficiency, implementability, ease of reconfiguration and deployment consid-

erations. For instance, in the automotive applications, one often finds a list of

Boolean valued calibration parameters which are set appropriately at the time of

deployment to obtain a specific variant. Further, the constraint on the calibration

parameters (ρ) also takes the special form of the list of the possible configurations

of the different calibration parameters in order to easily configure the design. The

89

start

Park: AllDoorsClosed

OneDoorOpened

Speed: AllDoorsClosed

OneDoorOpened

ShiftOutOfPark

Lock

Lock

Speed >n

Park: ShiftOutOfPark

Speed: Unlock

Figure 4.2: Desdl: the FSMd abstracted from the design of the feature Door lock.

primary concern in the choice of calibration parameters and their constraints, is

ease of deployability which constrains the number of variables used and the type

of constraints.

FSMv can capture both the design as well as the requirements of a feature. We

distinguish the requirement and design models by denoting them FSMr and FSMd

respectively. Thus Figure 4.1 presents the FSMr, Reqdl , of the feature Door lock.

Figure 4.2 describes FSMd, Desdl , the design model of the Door lock feature.

The structure of Desdl is similar to Reqdl except that the top elliptical shaped

state in Figure 4.1 is split into two states (the top and the bottom elliptical shaped

states) in Figure 4.2. The top state is for auto-transmission whereas the bottom one

is for manual transmission as can be seen from the configuration label of the two

transitions going from the initial state. One major difference to be noted in these

two machines is the variability representation. One variable Cp1 = {Park,Speed}

encode the possible configurations in the FSMd. The box in Figure 4.2 depicts

the set of possible values of these, park or speed, corresponding the the user

preference but the transmission does not appear.

90

Variants of FSMv and Conformance Having described the design and require-

ment behaviour of a feature f , we now define the notions of variants and confor-

mance. A variant of an FSMv corresponds to one of the several possible behaviors

of the feature (at the design, requirement level respectively).

Definition 3 (Variant of an FSMv). Let A = 〈Q,q0,Σ,Var,E,ρ〉 be an FSMv and

π ∈ Π(ρ) be a valid configuration of A . A variant of A is the standard finite

state machine (FSM) obtained from the state machine of A, by retaining only the

transitions t = (s,g,a,s′), and states s,s′ such that π |= g. Once the relevant states

and transitions are identified, we remove the guards g from all the transitions; The

resultant FSM is denoted A ↓ π.

In the example of FSMr for the feature Door lock, the variant Reqdl ↓ 〈Auto, Park〉

does not contain the transition with the event Speed > n.

Given a feature f , and a (FSMd, FSMr) pair corresponding to f , we define a

notion of conformance. We say that the design of f conforms to the requirements

of f , iff every variant of the FSMd has a corresponding FSMr variant. Given an

FSMv A , we associate with each configuration π of A the language of the FSM

A ↓ π, denoted by L(A ↓ π). We say that an FSMd Ad conforms to an FSMr Ar if

and only if the behaviour of every variant of Ad is contained in the behaviour of

some variant of Ar.

Definition 4 (The conformance mapping Φ). Let Ar and Ad be a pair of FSMr

and FSMd respectively with global predicates ρr and ρd . Let Πd,Πr be the set of

all design, requirement configurations. Then Ad conforms to Ar if there exists a

mapping Φ : Πd(ρ
d)→ 2Πr(ρ

r) as follows: For any πd ∈Πd(ρ
d), Φ(πd) = {πr ∈

Πr(ρ
r) | L(Ad ↓ πd)⊆ L(Ar ↓ πr)}. Φ is called the conformance mapping, and the

conformance via Φ is denoted Ad ≤Φ Ar.

91

In the feature Door lock, Φ(〈Speed〉) = {〈Manual,Speed〉, 〈Auto,Speed〉}

and Φ(〈Park〉) = {〈Auto,Park〉}.

4.1.2 Modeling the behavior of a SPL

In general, an SPL contains multiple features. Each feature may bring its own

variability and there could be constraints relating the variabilities among different

features. The behavior of the whole system is a composition of the behavior of the

features. There exists in the literature several kinds of compositions [85, 86]. Our

focus in this report is variability and SPL modeling and hence we restrict ourselves

to one of the well-known compositions, namely synchronous composition. By

no means, our study is complete as far as the compositions are concerned. We

believe that the issues related to the interaction of variability and composition will

be similar to the one discussed here and the present work is a starting point for

studying other compositions.

We define a parallel composition operator over FSMv to model an SPL. The

features in an SPL can interact and we follow one of the standard methods of

allowing the composed FSMv models to share some common events, which cor-

respond to two-party handshake communication events. A distinguishing aspect

of the proposed parallel operator is that it takes into account the constraints over

variability information across the composed machines.

Definition 5 (Parallel composition of FSMv).

Let Ai = 〈Qi,qi
0,Σi,Vari,Ei,ρi〉, i ∈ {1,2} be two FSMv’s with Var1∩Var2 = /0.

Let H = Σ1 ∩Σ2 be the set of handshaking events. Let ρ12 be a predicate over

Var1∪Var2, such that ρ12∧ρ1∧ρ2 is consistent. ρ12 is the composition predicate

92

capturing the possible constraints between the variabilities of the two composed

features. Let ρ = ρ12∧ρ1∧ρ2.

The parallel composition of A1 and A2 denoted by A = A1 ‖ A2 is a tu-

ple 〈Q1×Q2,(q1
0,q

2
0),Σ1∪Σ2,Var1∪Var2,E,ρ〉 with transitions defined as fol-

lows: Consider a state (s1,s2) ∈ Q1×Q2, and transitions (s1,g1,a1,s′1) ∈ E1 and

(s2,g2,a2,s′2) ∈ E2.

(1) If a1 = a2 = a ∈ H, define ((s1,s2),g1 ∧ g2,a,(s′1,s
′
2)) ∈ E, if g1 ∧ g2 is con-

sistent. This transition is enabled under a valid configuration π ∈Π(ρ), such that

π |= g1∧g2.

(2) If a1 ∈ Σ1\H, define ((s1,s2),g1,a1,(s′1,s2)) ∈ E. This transition is enabled

under valid configurations π such that π |= g1.

(3) If a2 ∈ Σ2\H, define ((s1,s2),g2,a2,(s1,s′2)) ∈ E. This transition is enabled

under valid configurations π such that π |= g2.

For illustration, consider the feature Door unlock which automates the unlock-

ing of the doors in a vehicle. Figure 4.3-a gives the FSMr of the feature extracted

from the requirements. From the initial state, the feature becomes active when

the event Lock happens. As soon as either the key is removed from ignition or the

gear is shifted to park position, the doors get unlocked and the feature Door unlock

becomes inactive. Figure 4.3-b presents the FSMd of the feature Door unlock. It

is quite similar to the requirement except that the active state is split in two: the

feature reacts to the ignition Off event in one state, and to the Shift Into Park event

in another state.

Let us consider the composition of the two FSMr’s of the features Door lock

and Door unlock. The handshake events between the two features are Lock and

Unlock. In the composition, we introduce the following composition predicate:

93

Transmissiondl = Transmissiondu, which brings out the natural constraints that

the transmission status has to be the same. The valid configurations after compo-

sition are restricted by the composition predicate. We provide a few definitions to

define composite valid configurations.

Transmissiondu:{Auto, Manual}
DU_User_Pref:{Key, Park} Unlock

Key:
IgnitionOff

Auto & Park:
ShiftIntoPark

Lock

ManualKey

DU requirement

Cp2:{Park,Key}

Park:Lo
ck Ke

y:
Lo

ck

Unlock

DL design

a) b)

Figure 4.3: a) Reqdu: Door unlock FSMr and b) Desdu: Door unlock FSMd.

Definition 6 (Composing Configurations).

For i = 1,2, let Ai=(Qi,qi
0,Σi,Vari,Ei,ρi) be two FSMv’s, and let A = A1 ‖ A2

be as given by Definition 5. Let ρ = ρ12 ∧ ρ1 ∧ ρ2 be the global predicate of

A . Consider two valid configurations π1 ∈ Π(ρ1) and π2 ∈ Π(ρ2) of A1 and A2.

The composition of π1,π2 denoted π1 + π2 is a configuration over Var1 ∪Var2

such that (i) π1 +π2 agrees with π1 over Var1, agrees with π2 over Var2, and (ii)

π1 +π2 |= ρ.

Lemma 5. Let A1 and A2 be two FSMv’s. For each valid configuration π of

A1 ‖A2, there are valid configurations π1 of A1 and π2 of A2 such that π= π1+π2.

Proof. Let π∈Π(ρ) with ρ= ρ12∧ρ1∧ρ2 be a valid configuration of A1 ‖A2. ρ1

and ρ2 are the global predicates of A1, A2 respectively, and ρ12 is the composition

94

predicate of A1, A2. By definition of valid configuration, π |= ρ; hence π |= ρ1 and

π |= ρ2. Since π is a configuration over Var1∪Var2, let us consider the restriction

of π on Var1, call the resulting configuration π1. Then π1 |= ρ1. Similarly, call the

restriction of π on Var2 as π2. Then π2 |= ρ2. Then, π1,π2 are respectively valid

configurations of A1 and A2. Hence, by definition 6, we obtain π = π1 +π2.

In the example of feature Door Lock, the configuration 〈Auto, Speed〉 from

Reqdl can be composed with 〈Auto, Key〉 from Reqdu because the transmission is

Auto in both (which is specified in the composition predicate Transmissiondl =

Transmissiondu). 〈Auto,Speed,Auto,Key〉 is a configuration of the parallel com-

position of Reqdl with Reqdu. The parallel composition of FSMv’s is such that

each variant of the composition of two FSMv’s is equal to the composition of

variants of the individual FSMv’s.

Lemma 6 (Variants of a composed FSMv). Let A1 and A2 be two FSMv’s. Let π

be a valid configuration of A1 ‖A2. Then L([A1 ‖A2] ↓ π) = L(A1 ↓ π) ‖ L(A2 ↓ π).
1

We review some preliminary definitions before the proof. In the following, we

denote by the same ‖, the following operations: (i) shuffle of words, (ii) shuffle

of languages, (iii)parallel composition of FSMs, and (iv) parallel composition of

FSMv. The context would be clear in each case avoiding any confusion.

Definition 7. Let Σ1, . . . ,Σn be n finite sets of symbols. Let Σ be a finite set.

Given a word w ∈ Σ∗, we denote by w ↓ Σi, the unique subword of w over Σ∗i .

For example, if Σ1 = {a,b,e},Σ2 = {a,e, f}, and if we consider w = ae f ede f r ∈

{a,d,e, f ,r}∗, then w ↓ Σ1 = aeee and w ↓ Σ2 = ae f ee f .
1The right hand side ‖ refers to the standard communicating finite state machine composition.

95

Definition 8 (Asynchronous Shuffle).

Let Σ1, . . . ,Σn be n finite sets. Let Σ = ∪n
i=1Σi. Consider n words u1,u2, . . . ,un,

ui ∈ Σ∗i . The asynchronous shuffle of u1, . . . ,un denoted u1 ‖ · · · ‖ un is defined as

{w | w ↓ Σi = ui}.

As an example, consider Σ1 = {a,b,c, f},Σ2 = {a,d,e, f},Σ3 = {c,d, f}, and

the words u1 = abc f ,u2 = ad f e,u3 = dc f . Then the word w = abdc f e is in

u1 ‖ u2 ‖ u3 since, w ↓ Σi = ui for i = 1,2,3. Similarly, the word w′ = adbc f e is

also in u1 ‖ u2 ‖ u3. However, the word w′′ = aebc f d is not in u1 ‖ u2 ‖ u3, since

w′′ ↓ Σ2 = ae f d, not u2.

The definition of shuffle can be extended from words to languages. We use

the same notation ‖ for the shuffle of sets, as well as for the shuffle of words.

The asynchronous shuffle of two languages L1,L2 is defined as L1 ‖ L2 = {w1 ‖

w2 |w1 ∈ L1,w2 ∈ L2}. For example, if L1 = {abc f ,abb f} is a language over Σ1 =

{a,b,c, f} and L2 = {ad f e} is a language over {a,d,e, f}, then L1 ‖ L2 = {abc f

‖ ad f e, abb f ‖ ad f e} ={abcd f e, adbc f e, abdc f e, abbd f e, abdb f e, adbb f e}.

Definition 9 (Asynchronous product).

Let Mi = (Qi,qi,Σi,δi) and M j = (Q j,q j,Σ j,δ j) be complete FSMs. The asyn-

chronous product of Mi,M j is defined as the FSM Mi ‖M j = (Qi×Q j,(qi,q j),Σi∪

Σ j,δ) where

1. δ((q,q′),a) = (δi(q,a),δ j(q′,a)),a ∈ Σi∩Σ j,

2. δ((q,q′),a) = (δi(q,a),q′),a ∈ Σi,a /∈ Σ j,

3. δ((q,q′),a) = (q,δ j(q′,a)),a ∈ Σ j,a /∈ Σi.

On the common events, both FSMs move in parallel; otherwise, they move inde-

pendent of each other.

96

Proof. of Lemma 6:

It is known that L(Mi ‖ M j) = L(Mi) ‖ L(M j). Consider a valid configuration π

of A1 ‖ A2. As seen in Lemma 5, we can find valid configurations π1 of A1 and

π2 of A2 such that π = π1 +π2. The initial state of A1 ‖ A2 is (q1
0,q

2
0), where q1

0

is the initial state of A1 and q2
0 is the initial state of A2. By definitions 5 and 9,

if we consider a string w = a1a2 . . .an ∈ L[A1 ‖ A2] ↓ π, then we can find strings

w1 ∈ L(A1 ↓ π) = L(A1 ↓ π1) and w2 ∈ L(A2 ↓ π) = L(A2 ↓ π2) such that w can

be written as an asynchronous shuffle of w1 and w2 in the sense of definition 8.

Hence, L[A1 ‖ A2] ↓ π ⊆ L(A1 ↓ π) ‖ L(A2 ↓ π). The converse can be shown in a

similar way.

Refinement and Parallel Composition The definition of parallel composition

naturally lends itself to a notion of addition of conformance mappings between

design and requirement pairs. Consider FSMr’s R1,R2 corresponding to two fea-

tures f1, f2. Let D1,D2 be the corresponding FSMd’s. Let ρr
1,ρ

r
2 be the global

predicates of R1,R2, and let ρd
1,ρ

d
2 be the global predicates of D1,D2 respectively.

Assume that D1≤Φ1 R1 and D2≤Φ2 R2. Let ρr = ρr
12∧ρr

1∧ρr
2 be the global predi-

cate of R1 ‖ R2; likewise, let ρd = ρd
12∧ρd

1∧ρd
2 be the global predicate of D1 ‖D2.

We now want to ask if D1 ‖ D2 conforms to R1 ‖ R2. This amounts to computing

a conformance mapping between D1 ‖ D2 and R1 ‖ R2 given Φ1,Φ2. Consider

any valid configuration πd of D1 ‖ D2. By Lemma 5, we can write πd as πd
1 +πd

2 ,

where πd
1,π

d
2 are valid configurations of D1,D2 respectively. Since D1 ≤Φ1 R1

and D2 ≤Φ2 R2, there exists valid configurations πr
1 ∈Φ1(π

d
1) and πr

2 ∈Φ2(π
d
2) in

R1,R2 respectively. Given this, the addition of Φ1,Φ2 is defined as follows:

Definition 10 (Addition of conformance mappings).

97

The addition of conformance mappings Φ1,Φ2 is defined to be a mapping Φ =

Φ1 +Φ2 as follows. For every valid configuration πd = πd
1 +πd

2 of D1 ‖ D2,

Φ(πd) = {πr | πr is a valid configuration of R1 ‖ R2,π
r = π

r
1 +π

r
2

for valid configurations π
r
1 ∈Φ1(π

d
1),π

r
2 ∈Φ2(π

d
2)}

Note that by Definition 10, Φ could be empty: Consider a valid configuration

πd = πd
1 +πd

2 of D1 ‖ D2. If there is no valid configuration πr of R1 ‖ R2 which is

a composition of valid configurations πr
1 ∈Φ1(π

d
1),π

r
2 ∈Φ2(π

d
2), then Φ is empty

(or there is no conformance mapping Φ between D1 ‖D2 and R1 ‖ R2). If Φ exists,

then we can say the following:

Lemma 7 (Conformance of composition). Let R1 and R2 be two FSMrs corre-

sponding to features f1, f2, and let D1 and D2 be the corresponding FSMds. Let

D1 ≤Φ1 R1 and D2 ≤Φ2 R2. Let Φ = Φ1 +Φ2 and πd be a valid configuration of

D1 ‖ D2. Then, ∀πr ∈Φ(πd), L([(D1 ‖ D2) ↓ πd])⊆ L([(R1 ‖ R2) ↓ πr]).

Proof. Given a valid configuration πd of D1 ‖ D2, we can write it as πd
1 + πd

2 ,

where πd
1,π

d
2 are respectively valid configurations of D1,D2 (Lemma 5). Since

D1 ≤Φ1 R1 and D2 ≤Φ2 R2, there exist valid configurations πr
1 ∈Φ1(π

d
1) and πr

2 ∈

Φ2(π
d
2) such that L(D1 ↓ πd

1)⊆ L(R1 ↓ πr
1) and L(D2 ↓ πd

2)⊆ L(R2 ↓ πr
2).

Since Φ has been computed, for every valid configuration πd of D1 ‖ D2,

there exists some valid configuration πr of R1 ‖ R2, πr ∈ Φ(πd). As πr is valid,

πr |= ρr
12∧ρr

1∧ρr
2; hence, πr can be written as πr

1 +πr
2, where πr

1,π
r
2 are respec-

tively valid configurations of R1,R2 (Lemma 5), and πr
1 ∈ Φ1(π

d
1), πr

2 ∈ Φ2(π
d
2)

by definition 10.

L([(D1 ‖D2) ↓ πd]) = L(D1 ↓ πd
1) ‖ L(D2 ↓ πd

2) by lemma 6. Similarly, L([(R1 ‖

R2) ↓ πr]) = L(R1 ↓ πr
1) ‖ L(R2 ↓ πr

2). This along with the observation that L(D1 ↓

98

πd
1)⊆L(R1 ↓ πr

1) and L(D2 ↓ πd
2)⊆L(R2 ↓ πr

2) gives L([(D1 ‖D2) ↓ πd])⊆L([(R1 ‖

R2) ↓ πr]).

The ECPL case study: First, let us remind that in the feature Door lock, Φ(〈Park〉)=

{〈Auto,Park〉} and Φ(〈Speed〉) = {〈Manual,Speed〉, 〈Auto,Speed〉}. Also, in

the feature Door unlock, Φ′(〈Key〉)= {〈Manual,Key〉, 〈Auto,Key〉} and Φ′(〈Park〉)=

{〈Auto,Park〉}. Note that the conformance mapping of Door lock is noted Φ

whereas the one of Door unlock is noted Φ′.

In the FSMr Reqdl ‖ Reqdu with ρr : Transmissiondl = Transmissiondu.

Any configuration with Transmissiondl =Auto and Transmissiondu =Manual

is invalid. However, Φ(〈Park〉) contains a single configurations where Transmis-

siondl = Auto and Φ′(〈Key〉) contains a configuration where Transmissiondu =

Manual and Φ(〈Park〉)+Φ′(〈Key〉) is a valid configuration of Desdl ‖Desdu with

ρd : true.

Does the design conform to the requirement? Yes because Φ′(〈Key〉) contains

another configuration where Transmissiondu = Auto and Φ(〈Park〉)+ Φ′(〈Key〉)

is not an empty set: Φ(〈Park〉)+ Φ′(〈Key〉) = {〈Auto, Park, Auto, Key〉}. Simi-

larly, Φ(〈Park〉)+ Φ′(〈Park〉) = {〈Auto, Park, Auto, Park〉},

Φ(〈Speed〉)+ Φ′(〈Park〉) = {〈Auto, Speed, Auto, Park〉}, and

Φ(〈Speed〉)+ Φ′(〈Key〉) = {〈Auto, Speed, Auto, Key〉,〈Manual, Speed, Manual, Key〉}.

It may append that the addition of conformance mappings leads to an invalid

design configuration i.e. a design configuration of the composed machine that

does not conform to any requirement configuration. Let assume a variant of the

ECPL case study where in the feature Door unlock,

Φ(〈Speed〉) = {〈Manual,Speed〉} and Φ(〈Park〉) = {〈Auto,Park〉}.

99

Also, in the feature Door unlock,

Φ′(〈Key〉) = {〈Manual,Key〉} and Φ′(〈Park〉) = {〈Auto,Park〉}.

In this hypothetical case, Φ(〈Speed〉)+Φ′(〈Park〉) and Φ(〈Park〉)+Φ′(〈Key〉)

are empty because the corresponding requirement configurations are incompatible

with respect to the composition constraint: Transmissiondl =Auto and Transmissiondu =

Manual.

So the design does not conform to the requirement. However, if we consider

the composition predicate ρd : Cp1 = Park ⇔ Cp2 = Park, then 〈Speed〉 and

〈Park〉 are not compatible anymore (〈Park〉 and 〈Key〉 neither) and as a result the

design conforms to the requirement: Φ(〈Park〉) +Φ′(〈Park〉) = {〈Auto, Park, Auto, Park〉}

and Φ(〈Speed〉)+ Φ′(〈Key〉) = {〈Manual, Speed, Manual, Key〉}.

4.1.3 Feature Level Verification

In the last section, we introduced FSMv for modeling the behavior of a feature and

illustrated how they can express variability at two different levels of description.

We also defined a conformance relation to formally relate the variabilities at two

different levels of abstraction. In this section, we will give an automatic procedure

for checking the conformance relation.

Let f be a feature whose requirement and design level descriptions are given

by FSMr Req f and FSMd Des f , respectively. The proposed verification method,

directly following the definition of conformance, computes a mapping Φ such that

Des f ≤Φ Req f . A straightforward approach to computation is to identify for each

design configuration, one or more requirement configuration. The conformance

checking fails if there does not exist any requirement configuration for a design

configuration.

100

Algorithm 1, given below, presents a possible implementation using the stan-

dard automata containment algorithm [87], as implemented in the well-known

model checking tool SPIN [14]. Algorithm 1 runs the full verification algorithm

of SPIN for every pair (πd,πr) of design and requirement configurations (Details

about the SPIN encoding is given below). SPIN(i.e. pan(.exe)) returns the list of

pairs for which the conformance condition is violated. Every other pair is added

to the conformance mapping Φ.

Algorithm 1 implements the conformance checking using SPIN.
Input : Des f , Req f .

Output : The mapping Φ when Des f ≤Φ Req f

1. Generate a ProMeLa file which contains Req f , Des f , the environment, the

conformance condition expressed as a never claim, and the initialization se-

quence.

2. Launch the full verification algorithm of SPIN

3. Build the mapping Φ from the output of SPIN.

4. Conclude whether the design conforms to the requirement

if ∀πd ∈Π(ρd), Φ(πd) 6= /0 then

return true along with (Φ)

else

return f alse along with (πd) {where πd has no correspondence through Φ}

end if

101

4.1.4 SPIN Encoding

In this section, we tried to explain input models to SPLEnD using User Inter f ace

feature from Banking Software Product Line (BSPL). Figure 4.4 is the FSMr

for feature User Inter f ace, which has UI as an event with global predicate ρ =

{¬(uip=Disable)}. There is only one boolean variable, Var = {uip : {Enable,Disable}}.

Figure 4.4: FSMr for feature: UserInter f ace.

Figure 4.5 is the FSMd for feature User Inter f ace. This FSMd shares the

event UI with the FSMr and has global predicate ρ = {(type = 2D∨ type = 3D)}.

There are two variables, Var = {type : {2D,3D},graphics : {Enable,Disable}}.

SPLEnD represent any FSMvs in XML format. The XML file corresponding

to the FSMr in Figure 4.4 is as below:

<?xml version=’1.0’>

<FSMv>

<type>R</type>

102

Figure 4.5: FSMd for feature: UserInter f ace.

<name>UserInterface_req</name>

<states>

<s initial=true>1</s>

<s>2</s>

</states>

<set_of_sets_of_final_states>

<group_of_final_states>

<s>2</s>

</group_of_final_state>

</set_of_sets_of_final_states>

<events>

<e>UI</e>

</events>

<variables>

103

<variable>

<v_name>uip</v_name>

<value>Enable</value>

<value>Disable</value>

</variable>

</variables>

<rho>

<conjunct>not(uip=Disable)</conjunct>

</<rho>

<vds>

<predicate>

<id>1</id>

<equ>(uip=Enable)</equ>

</predicate>

</vds>

<transitions>

<t>

<start>1</start>

<end>2</end>

<vdid>1</vdid>

<events>UI</events>

</t>

</transitions>

</FSMv>

104

The XML file for the FSMd in Figure 4.5 is as below:

<?xml version=’1.0’>

<FSMv>

<type>D</type>

<name>UserInterface_des</name>

<states>

<s initial=true>1</s>

<s>2</s>

</states>

<set_of_sets_of_final_states>

<group_of_final_states>

<s>2</s>

</group_of_final_state>

</set_of_sets_of_final_states>

<events>

<e>UI</e>

</events>

<variables>

<variable>

<v_name>type</v_name>

<value>2D</value>

<value>3D</value>

</variable>

<variable>

<v_name>graphics</v_name>

105

<value>Enable</value>

<value>Disable</value>

</variable>

</variables>

<rho>

<conjunct>or(type=2D,type=3D)</conjunct>

</<rho>

<vds>

<predicate>

<id>1</id>

<equ>(type=2D)</equ>

</predicate>

<predicate>

<id>2</id>

<equ>and(type=3D,graphics=Enable)</equ>

</predicate>

</vds>

<transitions>

<t>

<start>1</start>

<end>2</end>

<vdid>1</vdid>

<events>UI</events>

</t>

<t>

106

<start>1</start>

<end>2</end>

<vdid>2</vdid>

<events>UI</events>

</t>

</transitions>

</FSMv>

These two XML files (one for FSMd and other for FSMr) along with predicate

constraints file, are given as input to SPLEnD, which creates the ProMeLa model

for the feature User Inter f ace. Below is the format ProMeLa model create by

SPLEnD to input SPIN.

#define d_type_2D 0

#define d_type_3D 1

#define d_graphics_Enable 0

#define d_graphics_Disable 1

#define r_uip_Enable 0

#define r_uip_Disable 1

107

/*The Events*/

#define evt_UI 0

/*The states of the design model*/

#define des_1 0

#define des_2 1

#define des_error 2

/*The states of the requirement model*/

#define req_1 0

#define req_2 1

#define req_error 2

/*this channel is use to forward the event

in both des as well in req. from environment*/

chan evts_req= [0] of {byte};

chan evts_des= [0] of {byte};

/*State variable*/

byte req_state;

108

byte des_state;

/*Initialization variables*/

byte vp_uip;

byte vp_type;

byte vp_graphics;

byte flag;

proctype environmentModel(){

do

::flag==0 -> flag=1; atomic{if

::(1)-> evts_des! evt_UI; evts_req!evt_UI;

fi;}

od;

};

proctype requirementModel() {

mtype currentEvent;

req_state=req_1;

do

::flag==2-> evts_req?currentEvent;

if

109

::req_state== req_1 -> if

::vp_uip==r_uip_Enable && currentEvent==

evt_UI -> req_state=req_2;

::else -> req_state= req_error;

fi;

::req_state== req_2 -> if

::else -> req_state= req_error;

fi;

::else -> req_state = req_error;

fi;flag=0;

od;

};

proctype designModel() {

mtype currentEvent;

des_state=des_1;

do

::flag==1-> evts_des?currentEvent;

if

::des_state== des_1 -> if

::vp_type==d_type_2D && currentEvent==

evt_UI -> des_state=des_2;

::(vp_type==d_type_3D && vp_graphics

==d_graphics_Enable)

110

&& currentEvent== evt_UI -> des_state=des_2;

::else -> des_state= des_error;

fi;

::des_state== des_2 -> if

::else -> des_state= des_error;

fi;

::else -> des_state = des_error;

fi;flag=2;

od;

};

/*never claim definintion*/

never {

TO_init:

if

::(flag==0 && req_state==req_error &&

des_state!=des_error)

->printf("vp_uip:%d,vp_type:%d,vp_graphics:%d\n",

vp_uip ,vp_type ,vp_graphics);

goto accept_S9

::(1) -> goto TO_init

fi;

accept_S9:

if

::(1) -> goto TO_init

111

fi;

}

init{

flag=0; atomic{ if

:: (1)-> vp_uip=r_uip_Enable;

fi;}

atomic{

if

:: (1)->vp_graphics=d_graphics_Enable ;

vp_type=d_type_2D ;

:: (1)->vp_graphics=d_graphics_Disable ;

vp_type=d_type_2D ;

:: (1)->vp_graphics=d_graphics_Enable ;

vp_type=d_type_3D ;

:: (1)->vp_graphics=d_graphics_Disable ;

vp_type=d_type_3D ;

fi;}

atomic {

run environmentModel();

run requirementModel();

run designModel();

}

}

The above ProMeLa model is given as an input to SPIN. Internally SPIN generate

112

pan.c (c program) file corresponding to this ProMeLa model. SPIN execute

pan.c to generate executable file called as pan.exe. pan.exe is executed to generate

the conformance mapping. SPLEnD collect conformance mapping results from

SPIN. Similarly, Φ is constructed for all other features.

After construction of Φ for all features, SPLEnD created the QBF for the

composite FSMd’s and FSMr’s. This QBF is converted to ’qpro’ format which is

an input format for CirQit QBF solver. CirQit verified this QBF, and returned the

results to SPLEnD.

Lemma 8 proves the correctness of Algorithm 1.

Lemma 8. Given FSMd Des f and FSMr Req f for a feature f , let (πd,πr) be a pair

of design and requirement configurations. Then, L(Des f ↓ πd) 6⊆ L(Req f ↓ πr) if

and only if ¬error(Des f)∧ error(Req f).

Proof. Assume L(Des f ↓ πd) 6⊆ L(Req f ↓ πr). Then there exists a word w ∈

L(Des f ↓ πd) which is prefixed by u.e, with u a finite prefix of a word in L(Req f ↓

πr), and e an event such that u.e is not a prefix of any word in L(Req f ↓ πr). In

such a situation, Des f does not go to the error state but Req f does.

Conversely, if L(Des f ↓ πd)⊆ L(Req f ↓ πr), then whenever Des f is not in an

error state, Req f will also not be in an error state. In simple word, we found a word

in L(Des f) which is not in L(Req f). Or in other words, we can say that, there is

a path in design model which don’t confirm with any of the path in requirement

model.

It must be noted that even though we are exhaustively checking whether every

variant of the design conforms to some variant of the requirement. we are doing

113

it only at the feature level. Our experience with real systems is that the number of

variants at the feature level is very small. Our experimental results shows that our

approach scales well in realistic applications.

4.1.5 System Level Variability Verification

In this section, we extend the variability verification to a system consisting of two

or more features. Let us consider the case when we have n features f1, f2, . . . , fn,

whose designs and requirements are described by FSMd D1,D2, . . . ,Dn and FSMr

R1,R2, . . .Rn respectively. Further, let Di ≤Φi Ri for 1≤ i≤ n. Following Lemma

8, we can check that for each valid design configurations πD1‖···‖Dn of D1 ‖ · · · ‖

Dn, the existence of a configuration πR1‖···‖Rn of R1 ‖ · · · ‖ Rn such that πR1‖···‖Rn is

a composition of valid requirement configurations computed via Φ1, . . . ,Φn. We

then have D1 ‖ · · · ‖ Dn conforms to R1 ‖ · · · ‖ Rn via a conformance mapping

Φ which is nothing but Φ1 + · · ·+Φn. The existence of conformance mapping

can thus be shown by checking that Φ is non empty. This check is formulated

naturally as satisfiability of a quantified boolean formula.

QBF Formulation : Given FSMd’s D1, . . . ,Dn and FSMr’s R1, . . . ,Rn, (1) Let

Var(Di)= {xi1, . . . ,xidi} be the set of variables of design Di, and Var(Ri)= {yi1, . . . ,yiri},

the set of variables of requirement Ri. Let πd
i : (xi1 = a1, . . . ,xidi = adi) be a con-

figuration of Di. We denote this by πd
i (xi1, . . . ,xidi), which is the conjunction∧di

l=1(xil = al);

(2) Given n FSMd’s and n FSMr’s check if Di conforms to Ri for all 1 ≤ i ≤ n

using Algorithm 1. This gives the map Φi. Assume Di has m distinct configu-

rations πd
i1, . . . ,π

d
im. For 1 ≤ j ≤ m, let Φi(π

d
i j) = {πr

i j1 , . . . ,π
r
i jk}, where each of

114

πr
i j1, . . . ,π

r
i jk are configurations of Ri, that have been mapped by Φi to some con-

figuration πd
i j of Di. Φi(π

d
i j) can be written as the formula πr

i j1 ∨·· ·∨πr
i jk .

(3) The conformance mapping Φi between Di and Ri has the form
∧m

j=1 Φi(π
d
i j).

(4) Let ϕd
i, j = ρd∧ρd

i ∧ρd
j and ϕr

i, j = ρr∧ρr
i ∧ρr

j represent respectively the propo-

sitional formula which ensure the consistency of the global predicates of Di,D j

and Ri,R j along with the compositional predicates ρd and ρr. Given a set S ⊆

{1,2, . . . ,n}, ϕd
S and ϕr

S can be appropriately written. For example, let S= {1,2,3}

then ϕd
1,2,3 = ρd ∧ρd

1 ∧ρd
2 ∧ρd

3 ∧ρd
1,2∧ρd

1,3∧ρd
2,3

The QBF for conformance checking is given by

Ψ = ∀x11 . . .x1d1x21 . . .x2d2 . . .xn1 . . .xndn[ϕ
d
1,2,...,n⇒

∃y11 . . .y1r1y21 . . .y2r2 . . .yn1 . . .ynrn(Φ1∧·· ·∧Φn∧ϕ
r
1,2,...,n)]

The theorem below asserts that the QBF Ψ holds iff a conformance mapping Φ

exists such that D1 ‖ · · · ‖ Dn ≤Φ R1 ‖ · · · ‖ Rn.

Theorem 9. Given an SPL, let { f1, . . . , fn} be the set of features in a chosen

product. Let Di,Ri be the FSMd and FSMr for feature fi. Then D1 ‖ · · · ‖ Dn

conforms to R1 ‖ · · · ‖ Rn iff Ψ, as defined above, is satisfiable.

Proof. Given Di ≤Φi Ri, for 1 ≤ i ≤ n, assume that D1 ‖ · · · ‖ Dn conforms to

R1 ‖ · · · ‖ Rn. Then, by definition of conformance, it means that for all valid

configurations πd of D1 ‖ · · · ‖ Dn, there exists a valid configuration πr of R1 ‖

· · · ‖ Rn such that L([D1 ‖ · · · ‖ Dn] ↓ πd) ⊆ L([R1 ‖ · · · ‖ Rn] ↓ πr). Let Φ be the

conformance mapping such that πr ∈Φ(πd).

πd is a valid configuration of D1 ‖ · · · ‖ Dn implies that πd |=
∧

S⊆{1,2,...,n}ρd
S ,

where ρd
S is the global predicate of Di1 ‖ · · · ‖ Di j , when S = {i1, . . . , i j}. Using

115

Lemma 5 repeatedly, we can then say that πd = πd
1 + · · ·+πd

n for valid configu-

rations πd
i of Di. Since πr ∈ Φ(πd), by definition of conformance mappings, πr

must be a valid configuration of R1 ‖ · · · ‖ Rn, hence πr = πr
1 + · · ·+πr

n (Lemma

5), such that πd
i ∈ Φ(πr

i), for valid configurations πr
i of Ri. πr is valid means

πr |=
∧

S⊆{1,2,...,n}ρr
S.

Given the above, we show that the QBF Ψ is satisfiable. The LHS of the

QBF Ψ is the formula ϕd
1,2,...,n, which is the conjunction ρd

S for all subsets S of

{1,2, . . . ,n}. The forall quantifier outside would thus evaluate all configurations

of D1 ‖ · · · ‖Dn that satisfy ϕd
1,2,...,n; that is, which satisfy

∧
S⊆{1,2,...,n}ρd

S : hence,

all valid configurations of D1 ‖ · · · ‖ Dn.

For the QBF to hold good, for all valid configurations of D1 ‖ · · · ‖ Dn that

have been evaluated on the LHS, we must find some configuration of R1 ‖ · · · ‖ Rn

that satisfies Φ1∧ ·· ·∧Φn∧ϕr
1,2,...,n : (i) any configuration π of R1 ‖ · · · ‖ Rn that

satisfies ϕr
1,2,...,n would be valid; (ii) further, if it has to satisfy Φ1 ∧ ·· · ∧Φn, it

must agree with πr
i ∈ Φi(π

d
i) over Var(Ri) for all 1 ≤ i ≤ n. By Lemma 5, this

means that π can be written as πr
1+ · · ·+πr

n. Thus, for the QBF to hold, we must be

able to find for each valid configuration πd of D1 ‖ · · · ‖ Dn, a valid configuration

πr of R1 ‖ · · · ‖ Rn which can be written as πr
1 + · · ·+πr

n, where πr
i ∈ Φi(π

d
i) for

each i. But this is exactly what the mapping Φ which checks for conformance of

D1 ‖ · · · ‖ Dn with R1 ‖ · · · ‖ Rn does. Since we assume that Φ exists, the QBF

holds.

The converse can be shown in a similar way : that is, if the QBF Ψ holds, then

D1 ‖ · · · ‖ Dn will conform to R1 ‖ · · · ‖ Rn.

116

4.2 Experimental Results with SPLEnD

SPLEnD was used to verify an Entry Control Product Line (ECPL) that has 6-7

features and a Banking Software Product Line that has 100 features. Besides this,

we experimented with several random SPLs with 5000 to 25000 features and all

these were handled efficiently by SPLEnD.

We evaluated SPLEnD on a few case studies.

Entry Control Product Line (ECPL): This is an SPL from the automotive domain.

ECPL had 7 features, each feature was modeled with an (FSMd, FSMr) pair with

less than 10 states and 3-4 variables. The feature level conformance check was

completed in all cases in less than or equal to 0.43 seconds. ECPL being a small

case study, we tried checking conformance of the entire SPL by composing the

individual FSMd, FSMr; this took 11 seconds to complete.

Banking Software Product Line (BSPL): This is an SPL controlling the software

for ATM, Bank as well as mobile banking. This had 25 features. The FSMd, FSMr

for all the features were modeled with less than 10 states and had 3-4 variables

each. The conformance check was completed in all cases in less than or equal

to 0.027 seconds; following this, SPLEnD synthesized the QBF to verify confor-

mance at the SPL level. This check was completed in 0.005 seconds. QBF solving

clearly outperforms the classical way of computing the product and checking for

conformance, as can be seen in the ECPL versus BSPL case.

Scalability Check: Encouraged by the result from BSPL, we checked the scalabil-

ity of our approach by generating random SPLs with 5000 to 25,000 features. The

FSMd, FSMr in each case had 3 to 8 states and 2 variables each. For this exper-

iment, we kept variables with binary domain only and this allow us to use them

directly in QBFs. The conformance check at the feature level was completed in

117

less than 0.25 seconds in each case; the synthesized QBF formula had 10,000 (5k

for design and 5k for requirement) to 50,000 variables. Let x denote the number

of variables in the SPL design/requirement; Figure 4.6 shows the time taken in

seconds in each case by SPLEnD.

x 104 2×104 3×104 4×104 5×104

Time(sec) 4.47 25.77 65.67 119.49 196.69

Figure 4.6: Execution time of QBF for Scalability

4.3 Modeling features and SPLs with time

Timed State Machine with variability: we propose a real-time extension of

FSMv by permitting time-critical transitions. Following [16] we use clock vari-

ables to model time such that the clock variables grow uniformly within each state.

Recall that we denote by V the finite set of variables used for modeling the vari-

ability. Without loss of generality, assume that the domain of each variable x ∈V

is finite and ranges over N. Let Exp(V) denote expressions of the form ∑
n
i=1 aixi

involving xi ∈ V and ai ∈ Z. Let C be a finite set of clock variables. Let ci ∈C

and let c ∈ N. The set Φ(C) of clock constraints can be inductively defined using

the following grammar:

ϕ ::= ci ∼ Exp | ci ∼ c | ϕ∧ϕ

where ∼∈ {<,>, 6=,=,≥,≤}. We are now in the position to define real-time

extensions of FSMv.

Definition 10 (TSMv). A timed state machine with variability (TSMv) is a tuple

A = (L,s0,Σ,V ,E,C,ρ) where:

118

– L is a finite set of locations; s0 is the initial location;

– Σ is a finite set of events;

– V is a finite set of variables;

– E ⊆ L×∆×Φ(C)×R×Σ×L is the set of transitions;

– C is a finite set of clocks; and

– ρ ∈ ∆ is a consistent global predicate.

For a transition e = (s,g,ϕg,R,a,s′) ∈ E there is a transition from location s to

location s′ on event a; the predicate g ∈ ∆ is called a guard of the transition e;

g is consistent and defines the variability domain of the transition; ϕg ∈ Φ(C) is

called the clock constraint associated with g; and R ∈ 2C is a set of clocks which

are reset on transition e. The variables in V determine the variability allowed in

the feature with each valuation of the variables corresponds to a variant.

An TSMv is deterministic iff for all locations l, whenever e1 =(l,g1,ϕ,R1,a, l1)

and e2 = (l,g2,ψ,R2,a, l2) are two transitions from l, the clock constraints ϕ and

ψ are mutually disjoint, that is ϕ∧ψ is unsatisfiable. Generally, while captur-

ing the requirements of a feature product line, the variability is at a high level

of abstraction, and does not focus on implementability issues. The variability is

expressed through constraints on the variation points. For example, in Figure 4.7,

the global predicate ¬(y∧ z) restricts the possible configurations by a constraint

on the variation points. On the other hand, in a design, the variability description

is driven by efficiency, and ease of deployment. The level of abstraction in the

variability is thus different in the requirement and the design of a product line. To

capture this fact, we assume that the FSMv modeling the requirements as well as

the design of a feature has disjoint variables and clocks. We distinguish the FSMv

of the requirements and design by denoting them TSMvr and TSMvd respectively.

119

A B

CDE

a,c1 ≤ 2x+3y?

x⇒ y,{c1,c2}
b,c2 < y?

¬(x∧ z)

a,c2 = 2y?

y,{c1}
c

z∨ y

a,c2 < 3(x− z)∧ c1 < x? ¬y⇒ z,{c1,c2}

A B

CDE

a,c1 ≤ 5?

{c1,c2}
b,c2 < 1?

a,c2 = 2?

{c1}
c

a,c2 < 3∧ c1 < 1? {c1,c2}

Figure 4.7: A TSMv A and its timed automata variant A ↓(x=1,y=1,z=0)

4.3.1 Design Conformance : Feature Level

Let Ad
i be the TSMvd modeling the behavior of the design of feature fi, and let Ar

i

be the TSMvr modeling the behavior of the requirements of feature fi respectively.

For simplicity, we assume that Ar
i is deterministic. Let Vi and Ci be the finite set of

variables and clocks of Ad
i , with Vi∩V j = /0 and Ci∩C j = /0 for i 6= j. In a similar

way, we assume that the variables and clocks of any two TSMvr are disjoint. Given

A , and a configuration π (an assignment of values to V), we denote by A ↓ π, as

in the untimed case, the variant of A with respect to π. In this case, Ad ↓ π is a

timed automata while Ar ↓ π is a deterministic timed automata.

We say that an TSMvd Ad conforms to an TSMvr Ar if and only if the behavior

of every variant of Ad is contained in the behavior of some variant of Ar. This

amounts to checking the language inclusion A ⊆ B, where A is a timed automata

and B is a deterministic timed automata. This is known to be decidable [16].

Definition 11 (The conformance mapping Φ). Let Ar and Ad be a pair of TSMvr

120

and TSMvd respectively with global predicates ρd and ρr. Let Πd and Πr be

the set of all design and requirement configurations. Then Ad conforms to Ar,

denoted Ad ≤Φ Ar, if there exists a mapping Φ : Πd(ρ
d)→ 2Πr(ρ

r) such that ∀πd ∈

Πd(ρ
d),∃πr ∈Πr(ρ

r) satisfying

L(Ad ↓ πd)⊆ L(Ar ↓ πr).

Φ is called the conformance mapping.

Note that the conformance mapping gives for each design configuration πd , the

set of all requirement configurations πr such that the timed language L(Ad ↓ πd)

is contained in the timed language L(Ar ↓ πr). The feature level conformance can

thus be done by checking inclusion of the respective timed automata for design

and requirement and computing the Φ mappings. As in the untimed case, we

extend these mappings to check for conformance at the product line level. We

first define the parallel composition of TSMv.

Consider the pairs (Ad
1 ,Ar

1) and (Ad
2 ,Ar

2) modeling the real time behavior of

the design as well as the requirements of features f1, f2 respectively. Figure 4.8

depicts this. The variables used in Ad
1 are {x1,y1}, along with clock variables

{c1,c2}. The global predicate of Ad
1 is ρd

1 = y1⇒ x1. The variables used in Ad
2

are {x3,y3}, along with clock variables {e1,e2}. The global predicate of Ad
2 is

ρd
2 = (x3 ∨ y3)∧ (y3 ⇒ ¬x3). The variables used in Ar

1 are {x2,y2}, along with

clock variable {d1}. The global predicate of Ar
1 is ρr

1 = ¬(x2∧ y2). The variables

used in Ar
2 are {x4,y4,z4}, along with clock variable { f1}. The global predicate of

Ar
2 is ρr

2 = (y4⇒¬z4)∧ x4. It can be seen that Ad
1 ≤Φ1 Ar

1 with the conformance

mapping given by Φ1[(1,1)] = {(1,0)}, Note that (0,1) is not a valid configura-

tion of Ad
1 . Similarly, it can be seen that Ad

2 ≤Φ2 Ar
2 with the conformance map-

121

D1 D′1Ad
1

Ad
2 D2 D′2

Ar
1 R1 R′1

R2 R′2Ar
2

a,c1 ≤ 2x1− y1?

x1∧ y1,{c2}

b,c2 = 2y1?

{c1,c2}
a,e1 ≤ x3 +3y3?

¬y3,{e2}

b,e2 = 2x3?

{e1,e2}

c,e1 = 1?

y3,{e1}

a,d1 ≤ x2 + y2?

x2∧¬y2,{d1}

b,0≤ d1 ≤ 3(x2− y2)?

{d1}

a, f1 ≤ x4?

b, f1 = x4 + y4− z4?

y4,{ f1}

c

Figure 4.8: TSMvd Ad
i along with the corresponding TSMvrAr

i .

ping given by Φ2[(1,0)] = {(1,1,0)}, Φ2[(0,1)] = {(1,1,0),(1,0,1),(1,0,0)}.

Note that (0,0) and (1,1) are not valid configurations of Ad
2 .

The parallel composition of two timed state machine with variability Ax =

(Qx,qx
0,Σx,Vx,Ex,Cx,ρx), x ∈ {1,2} with V1 ∩V2 = /0 and C1 ∩C2 = /0, given a

set H = Σ1 ∩Σ2 of handshake events is defined in the usual way. Let ρ12 be a

predicate over V1 ∪V2, such that ρ12 ∧ ρ1 ∧ ρ2 is consistent. ρ12 is the compo-

sition predicate capturing the possible constraints between the variabilities of the

two composed features. Let ρ = ρ12 ∧ρ1 ∧ρ2. Transitions on H in the compo-

sition must respect the conjunction of guards on the respective transitions of Ax,

as well as the conjunction of clock constraints. Further, all valid configurations of

the composition respect ρ. The composition of A1,A2 is denoted A1 ‖ A2. Con-

sider two valid configurations π1 ∈ Π(ρ1) and π2 ∈ Π(ρ2) of A1 and A2. The

composition of π1,π2, denoted π12 is a configuration over V1∪V2 such that π12

agrees with π1 over V1, and agrees with π2 over V2, and π12 |= ρ. π12 is a valid

configuration of A and we denote it by π12 = π1+π2. The parallel composition of

TSMv’s is such that each timed variant of the composition of two TSMv’s is equal

122

to the composition of the timed variants of the individual TSMv’s.

Lemma 12. Let A1 and A2 be two TSMv’s. For each valid configuration π of

A1 ‖A2, there are valid configurations π1 of A1 and π2 of A2 such that π= π1+π2.

Moreover,

L([A1 ‖ A2] ↓ π) = L(A1 ↓ π) ‖ L(A2 ↓ π).

4.3.2 Refinement and Parallel Composition

The definition of parallel composition naturally lends itself to a notion of addi-

tion of conformance mappings between design and requirement pairs. Consider

TSMvr’s R1,R2 corresponding to two features f1, f2. Let D1,D2 be the corre-

sponding TSMvd’s. Let ρr
1,ρ

r
2 be the global predicates of R1,R2, and let ρd

1,ρ
d
2

be the global predicates of D1,D2 respectively. Assume that D1 ≤Φ1 R1 and

D2 ≤Φ2 R2. Let ρr = ρr
12 ∧ρr

1 ∧ρr
2 be the global predicate of R1 ‖ R2; likewise,

let ρd = ρd
12 ∧ ρd

1 ∧ ρd
2 be the global predicate of D1 ‖ D2. D1 ‖ D2 conforming

to R1 ‖ R2 amounts to computing a conformance mapping between D1 ‖ D2 and

R1 ‖R2, given Φ1,Φ2. Consider any valid configuration πd of D1 ‖D2. By Lemma

12, πd = πd
1 + πd

2 , where πd
1,π

d
2 are valid configurations of D1,D2 respectively.

Since D1 ≤Φ1 R1 and D2 ≤Φ2 R2, there exists valid configurations πr
1 ∈ Φ1(π

d
1)

and πr
2 ∈ Φ2(π

d
2) in R1,R2 respectively. Given this, the addition of Φ1,Φ2 is de-

fined as follows: The addition of conformance mappings Φ1,Φ2 is defined to be a

mapping Φ = Φ1 +Φ2 as follows. For every valid configuration πd = πd
1 +πd

2 of

D1 ‖D2, Φ(πd) is the set all valid configurations πr of R1 ‖R2, where πr = πr
1+πr

2,

and πr
1 ∈Φ1(π

d
1),π

r
2 ∈Φ2(π

d
2) are valid configurations of R1 and R2, respectively.

Lemma 13 (Composition Conformance). Let R1 and R2 be two TSMvr machines

123

corresponding to features f1, f2, and let D1 and D2 be the corresponding TSMvd

machines. Let D1 ≤Φ1 R1 and D2 ≤Φ2 R2. Let Φ = Φ1 +Φ2 and πd be a valid

configuration of D1 ‖ D2. Then, ∀πr ∈ Φ(πd), L([(D1 ‖ D2) ↓ πd]) ⊆ L([(R1 ‖

R2) ↓ πr]).

Let us now revisit the (TSMvd,TSMvr) pairs seen in Figure 4.8. Consider

Ad
1 ‖ Ad

2 along with the global compositional predicate ρd
1,2 = y1, and Ar

1 ‖ Ar
2,

along with the global compositional predicate ρr
1,2 = x2∧(x2⇒ y4). It can be seen

that L(Ad
1 ‖ Ad

2) is same as L(Ad
1) and L(Ad

2) for the configuration (x1 = 1,y1 =

1,x3 = 1,y3 = 0), and is the empty set for all other valid configurations. Similarly,

the parallel composition L(Ar
1 ‖Ar

2)⊇ L(Ar
1) and L(Ar

2). The configurations (x2 =

1,y2 = 0,x4 = 1,y4 = 0,z4 = 0) and (x2 = 1,y2 = 0,x4 = 1,y4 = 0,z4 = 1) are not

valid for Ar
1 ‖ Ar

2, thanks to the compositional predicate ρr
1,2 = x2∧ (x2⇒ y4). It

can be seen that Ad
1 ‖Ad

2 ≤Φ Ar
1 ‖Ar

2, where Φ is given by Φ[(x1 = 1,y1 = 1,x3 =

1,y3 = 0)] = {x2 = 1,y2 = 0,x4 = 1,y4 = 1,z4 = 0}, Φ(x1 = 1,y1 = 1,x3 = 0,y3 =

1)] = {(x2 = 1,y2,x4 = 1,y4 = 1,z4)}. Note that Φ is indeed the composition of

Φ1 and Φ2, respecting the compositional predicates ρd
1,2∧ρr

1,2.

4.3.3 Conformance Checking

Lemma 13 shows how to extend the conformance mappings of individual features

to multiple features, by pairwise composition. Assuming we have two features

f1, f2, along with appropriate constraints on how the features interact when com-

posed. Let Ri be the the TSMvr modeling the expected behavior and variability

of fi, and Di the TSMvd extracted from the design of fi. Let ρr
12 and ρd

12 be the

compositional predicates for R1 ‖ R2 and D1 ‖ D2 respectively. Now we state the

variability conformance problem for the composition as follows: Does there exist

124

a conformance mapping Φ such that D1 ‖ D2 ≤Φ R1 ‖ R2?

A compositional approach to solve the problem is to:

1. check if the design of fi conforms to its requirement;

2. check if every valid configuration of D1 ‖ D2 can be mapped to a valid

configuration of R1 ‖ R2.

This is the conformance condition.

Given the global predicates ρd
1,ρ

d
2 as well as compositional global predicate

ρd
1,2, let ϕd

1,2 = ρd
1 ∧ ρd

2 ∧ ρd
1,2 be the global compositional predicate governing

the composition of the TSMvd D1,D2. In a similar way, we can define ϕr
1,2, the

global compositional predicate governing the composition of TSMvr R1,R2. Hav-

ing computed the conformance mappings Φ1,Φ2 at the feature level, we can check

the truth of the QBF formula

Ψ
def
= ∀X [ϕd

{1,2}⇒∃Y (Φ1∧Φ2∧ϕ
r
{1,2})],

where X is the set of all the variables in D1,D2 while Y is the set of all the vari-

ables in R1,R2. Recall that the variables across any pair of TSMvd or TSMvr are

disjoint. Hence, the satisfaction of pairwise conformance, along with composi-

tional constraints ensure the existence of a solution. The QBF approach extends

to arbitrary number of designs and requirements : ϕd
S =

∧
i∈S ρd

i ∧
∧d

i, j∈S ρd
i, j cap-

tures the global compositional predicate for S.

Theorem 14. Given a product line consisting of n features { f1, . . . , fn}, let Di,Ri

be the TSMvd and TSMvr for feature fi. Then D1 ‖ · · · ‖Dn conforms to R1 ‖ · · · ‖

Rn if and only if Ψ holds.

125

Power Window Controller Modeling: Figure 4.9 illustrates the modeling of

an automotive example, the power window controller PWC [88] at requirement

level. PWC, in response to user requests, controls the movement of one or more

windows. The user can request basic up/down movement (up, down) of the win-

dows, as well as express up and down movement (Xup, Xdn) which moves the

windows to fully closed or open positions; these latter event happens when the

user releases the up/down request before a fixed unit of time (xpTR). The Xup

and Xdn are optional. The controller has an option of detecting an obstacle (like

finger or hand) whenever it has the express up option, and retracting the win-

dow. The controller also checks the events of reaching the extreme ends of the

window positions (top, bottom) before a fixed duration (closeTR). The variability

in the model is expressed using the variables ob, exp, xpTR, closeTR where ob

captures the presence/absence of obstacles detection feature, exp capture whether

the feature express up/express down are active and d is the clock variable for

measuring the elapse of time. xpTime is a fixed unit time for up/down request.

closeTime is a fixed unit time to fully close or open the window. The global pred-

icate ρ = exp→ ob (means the presence of express up/down feature require the

presence of obstacle detection feature), constraints the variability allowed in the

system. Similarly, figure 4.10 represent the modeling of the PWC at design level.

126

Unknownstart Obstacle

FullyUpDownPressed

Express

up
,c:

=0
do

wn,c
:=

0

¬ ex
p: rel

ea
se

ex
p:c<

xp
TR?,r

ele
ase

top

bottom
ob

R
:o

bs

obR: noObs

exp: c=xpTR?,Xup

exp: c=xpTR?,Xdn

ex
p:

c≤
cl

os
eT

R
?,

to
p

ex
p:

c≤
cl

os
eT

R
?,

bo
tto

m

obR ∧ exp: obs

up,c:=0

down,c:=0

Figure 4.9: TSMvr for power window controller

127

Unknownstart Obstacle

FullyUp

FullyDown

PressedUp

PressedDown

ExpressUp

ExpressDown

up
,d:

=0

down,d:=0

¬ ex
pU: rel

ea
se

ex
pU:d<

xp
Tim

e?
,re

lea
se

¬
expD: release

expD:d<xpTime?,release

top

bottom

ob
:o

bs

ob:
obs

ob: noObs

expU: d=xpTime?,Xup

ex
pD

: d
=x

pT
im

e?
,X

dn
ex

pU: d≤
clo

seT
im

e?
,to

p

expD: d≤closeTime?,bottom

do
wn,d

:=
0

up,d:=0

ob ∧ expU: obs

ob ∧ expD: obs

Figure 4.10: TSMvd for power window controller

Chapter 5

Tools

5.1 SPLAnE Tool

The Software Product Line (SPL) paradigm aims to jointly design a family of

closely related software products in an efficient and cost-effective manner. In an

SPL, there is a collection of features called the scope and a collection of reusable

components called core assets, which are developed once for the entire product

line family. Subsets of features from the scope specify the possible products in

the family, which are then implemented by subsets of components from the core

assets. The various products arising out of an SPL are specified as variations of

one another. Some of these variability constraints [82], [5] are (i) specified using

cross-tree constraints between features (components), like include, exclude rela-

tions, or (ii) by specifying whether a feature (component) is mandatory/optional.

A mapping between the features and sets of components implementing them is

called a traceability relation. A subset of features satisfying the feature level vari-

ability constraints is called a specification; the set of all specifications is called

128

129

a PL specification. Likewise, an implementation is a set of components satisfy-

ing the component level variability constraints; the set of all implementations is

called a PL implementation. The SPL framework is defined [82] as a 3-tuple en-

tity 〈F ,C ,T 〉, where F is a PL specification, C is a PL implementation and T

is the traceability relation. Integrating the variability across the specification and

implementation levels and analyzing an SPL using the traceability relation is a

challenging task : for instance, how do we check whether the PL implementation

is adequate for providing implementation for all the specifications in the PL spec-

ification? In this report, we introduce a tool SPLAnE that is capable of analyzing

several important and useful analysis operations on SPLs (see table 3.7 for a list

of analysis operations).

SPLAnE (Software Product Line Analysis Engine) is designed and developed

to analyze SPLs. Most of the existing state of the art tools in the product line do-

main (FaMa [37], FeatureIDE [89], FLAME [90], FAMILIAR [91] and SPLAR

[81]) provide analysis operations based only on the PL specifications (given in

the form of Feature Model/Orthogonal Variability Models/Domain-Specific Lan-

guage). None of these tools have the capability to reason over PL specifications

and PL implementations together.

FAMILIAR presents a Domain-Specific Language (DSL) which is used for

management of large scale feature models and provides a script for reasoning over

it [91]. FeatureIDE is designed as an IDE for the AHEAD tool suite [92], which

integrates activities of all phases of software product line engineering. It uses

the Feature-Oriented Software Development (FOSD) [92] approach for designing

and implementing applications based on features. It is more about managing fea-

ture models visually, and no analysis over SPLs is provided. FLAME is a formal

130

framework for the specification of analysis operations on feature models [90]. It

uses the Z specification language to encode feature models in Prolog. FLAME

has automatically validated 18,000 test cases automatically generated using meta-

morphic testing techniques. SPLAR is the reasoning mechanism of SPLOT [81].

SPLOT is a web application for creating feature models online. SPLAR provides

very few (3) analysis operations, namely number of products, dead features and

valid.

SPLAnE takes as inputs (i) a PL specification given as a feature model, (ii)

a PL implementation given as a component model, (similar to feature models,

introduced in [82] for representing PL implementations), and (iii) a traceability

relation. SPLAnE then parses the feature model, the component model and the

traceability relation and synthesizes the SPL model. The user can now select

any analysis operation (SPLAnE has 23 available ones). Based on the choice of

the analysis operation, SPLAnE constructs a QBF formula Ψ. The formula Ψ

constructed is such that Ψ is satisfied iff the chosen analysis operation holds good

on the SPL model. SPLAnE then invokes the QSAT solver CirQit [35] in the

back-end to check the satisfiability of Ψ. Ψ is encoded in the QPRO format, the

standard input file format in non-prenex, non-CNF form for CirQit. Figure 5.1

shows the reasoning process in SPLAnE .

5.1.1 Features of SPLAnE

1. SPLAnE as an extension of FaMa: FaMa is the state of the art analysis

engine used in the industry for feature models analysis. The FaMa frame-

work is the core part of the FaMa tool which provides generic SPL related

APIs which allow the inheritance of all the basic functionalities of FaMa

131

Figure 5.1: SPLANE reasoning process

to any extension. For example, FaMa framework provides support for rea-

soning over orthogonal variability models [76] and Debian based distribu-

tions [93]. Because of this, we chose the FaMa framework [94] as base

for SPLAnE . The FaMa framework provides out of the box basic archi-

tecture for building feature model analysis tools while defining interfaces

and standard implementation for some feature model operations[5] such as

“VoidFM” or “Products”. From FaMa Tool, we specifically used feature

model creater, reader and parser module in SPLAnE . On the other hand,

FaMa does not provide any reasoning mechanism that takes as input more

than one model. Therefore, different modifications have been addressed to

bridge this gap. Concretely, i) we modified the FaMa framework to enable

the triple (feature model,component model, traceability relation) as input ii)

created a new module in FaMa framework for QSAT reasoners; iii) imple-

mented several new analysis operations and re-implemented existing FaMa

analysis operations, and iv) defined two new file formats to store and input

132

traceability relations and component models in SPLAnE .

Being part of the FaMa ecosystem allowed the reutilisation of some FaMa

artefacts. This also allowed reutilisation of other FaMa ecosystem tools

such as the FaMaTestSuite[95] and Betty [95] for detecting coding errors

on SPLAnE . For the sake of re-utilization and coding efforts optimization,

SPLAnE has been built on top of the FaMa framework. Like FaMa, multiple

QSAT solvers can be plugged in SPLAnE . Thanks to the FaMa framework,

SPLAnE can be (i) easily integrated (FaMa framework has a java interface,

implementing a query based interaction), (ii) easily extendible, and (iii) easy

to configure (FaMa fraework is configured by means of an unique XML file,

easing its maintenance and configuration to adapt the tool to the user needs).

2. Analysis operations: SPLAnE provides 23 analysis operations when rea-

soning over feature models, component models and traceability relations at

the same time. That apart, SPLAnE can reason over a large set of exist-

ing analysis operations [5] using only feature models. For these operations

on feature models, SPLAnE extends the existing FaMa framework adding

QSAT reasoning capabilities.

3. Multiple File Formats: One of the benefits of using FaMa framework is the

reusability of code. In this case, the FaMa ecosystem enables SPLAnE to

read and write into the most used file formats in the feature modelling area.

Among others, FaMa is able to read different feature diagram notations such

as xml or plain text, thus, enabling SPLAnE to cooperate with other feature

modelling ecosystems. For example, SPLAnE can reason over the feature

models stored in the splot[81] feature model repository by using the .splx

133

format.

4. Multiple Reasoners: Depending on the analysis operation we are executing,

different solvers may perform better. For example, for counting the number

of products (this operation is called #products), a BDD based solver such as

javaBDD [96] will perform faster than a CSP solver. Among other solvers,

FaMa enables the use of SAT solvers for the reasoning of feature models

while providing a concrete reasoning method that uses SAT4j as a solver.

As an inherited capability, SPLAnE can plug and unplug various reasoners,

thereby, using the best solver for each operation. An appealing use of this

characteristic is to compare SAT vs QSAT for each analysis operation.

5. Scalability: The QBF encoding easily outperforms the SAT approach. It

must be noted that SPLAnE is the first tool that performs SPL anlaysis op-

erations using the QBF encoding; all the previous tools use only the SAT

encoding.

5.2 SPLEnD Tool

The requirements and designs which is input to SPLEnD are a kind of state ma-

chines, called Finite State Machines with Variability (FSMv) which is an extension

of finite state machines, introduced in [97]. FSMv is capable of capturing vari-

ability information and is used to model the behavior and variability of a feature at

the requirement and design level. The FSMv that models the design of a feature is

called an FSMd, while the FSMv that models the requirements is called an FSMr.

The theory of a tool and the modeling of SPLs is explained in [97].

134

Figure 5.2 summarizes the approach followed in SPLEnD. It shows an SPL

composed of features f1 to fn. Each feature has an FSMv model of its require-

ments (FSMr) and an FSMv model derived from its design (FSMd). SPLEnD

first checks whether the FSMd of every feature conforms to its FSMr (1st check).

The output of this step is a conformance relation between each pair of FSMr and

FSMd. The obtained conformance relations are then used to check whether the

design of the entire SPL conforms to the requirements (2nd check). The first step

is a standard model checking step where SPLEnD uses SPIN [14]. For the second

step, SPLEnD constructs a Quantified Boolean Formula(QBF) and uses the QBF

solver CirQit [15]. While the first step explicitly enumerates all feature varia-

tions and filters only those which satisfy the requirements, the second step avoids

the enumeration explicitly and captures symbolically all the feature combinations

using the QBF formula.

Figure 5.3 describes the overall architecture of SPLEnD. It takes as input the

FSMds and FSMrs of a list of features along with the composition constraints at

the requirement and design levels. The first check is delegated to SPIN [14] and

the second check is done by the QBF solver CirQit [15]. The users of SPLEnD

load an SPL project in the tool, which consists of two lists of XML files corre-

sponding to the designs (FSMd) and requirements (FSMr) of all the features in the

SPL. On loading the project, SPLEnD displays the table of (FSMd, FSMr) pairs,

of all the features. Since 1-to-1, 1-to-n, n-to-1, and n-to-m mappings are possible

between features of the design and features of the requirement, a .property file is

given to express the mapping of each feature or group of features. When a map-

ping involves a group of features, this group is defined by i) a name, ii) a list of

plain FSMvs that compose the group and a group level composition constraint that

135

limit the possible configurations of the group in order to maintain consistency.

Figure 5.2: SPLEnD’s framework and approach.

SPIN

CirQit

SPLEnD

ProMeLa files

Feature Conformance mapping

QBF formula

SPL Conformance mapping

Feature n:
 FSMd
 FSMr

Feature …:
 FSMd
 FSMr

Feature 2:
 FSMd
 FSMr

Feature 1:
 FSMd
 FSMr

Composition constraints:
 Design
 Requirement

Figure 5.3: Architecture of SPLEnD

5.2.1 Feature Level Verification(1st Check)

On selection of a particular (FSMd, FSMr) pair in the table, users can see the

FSMr and FSMd corresponding to each feature (Figure 5.5) and compute the con-

formance mapping. In Figure 5.6, SPLEnD displaying the conformance mapping

for a pair of (FSMd,FSMr) for the case study ECPL. The time taken for the same

is also shown. In case there is a non-conformance between a (FSMd, FSMr) pair,

136

the list of illegal configurations are displayed; the user can also see the FSMs cor-

responding to the violation, these FSMs are shown with their edges in red color.

5.2.2 SPL Level Variability Verification(2nd Check)

Once the conformance checking is successfully completed for all features inde-

pendently (1st check), the next step is to check the conformance at the SPL level.

The SPL level variability is usually defined with a feature diagram [41] bring-

ing constraints across features. These compositions constraints limit the possible

configurations of the SPL at the requirement level and at the design level. Thus

the SPL level conformance checks that every valid SPL design configuration con-

forms to a valid SPL requirement configuration.

To do so in SPLEnD,the user clicks the SPL Conformance button; this checks

in one pass whether the design of all products in the SPL conform to the require-

ments. SPLEnD displays the result of the check as a YES/NO answer and the

time taken for the same in the lower part of the window, see Figure 5.7. In case

of non-conformance, SPLEnD gives a configuration of the design of the SPL that

does not conform to any requirement’s configuration.

5.3 Extra features of SPLEnD:

5.3.1 Addition of Features

The user can add features to an existing SPL by simply adding the XML files

corresponding to the design and requirement of the new feature on the appropriate

folders. The project needs to be reloaded, and conformance checking will be

137

carried out for the new (FSMd, FSMr) pair. Figure 5.4 shows the GUI when the

SPL model is loaded in SPLEnD.

5.3.2 Converting predicate

One can give to SPLEnD a predicate defined using the vocabulary from the re-

quirement level and SPLEnD translates it to the equivalent predicate at the design

level using the individual conformance mapping. The purpose of this extra fea-

ture is to allow expressing properties (for model checking) at the requirement

level where the variability is expressed naturally and get the automatic conversion

to the design level vocabulary in order to check this property on the design code

as shown in figure 5.8.

Figure 5.4: Snapshot of SPLEnD: Loading a project

138

Figure 5.5: Snapshot of SPLEnD: The FSMr of the feature LiftGlass

139

Figure 5.6: Snapshot of SPLEnD: conformance mapping

140

Figure 5.7: Snapshot of SPLEnD: SPL conformance failed: An invalid configura-

tion.

Figure 5.8: Snapshot of SPLEnD: Converting a predicate from Requirement to

design.

Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this report, we stress the need to jointly analyze the specification and the imple-

mentation of SPLs. Thus, we have started from a formal definition of the notion

of traceability and a set theoretical-based framework. We imported existing anal-

yses and propose new analyses, such as superfluousness, explicitness, redundant,

union, intersection, valid model, void product model, complete traceability, etc.

The analysis problems have been translated into Quantified Boolean Formula and

solved efficiently using a QBF solver. The approach is supported by a software

tool called SPLAnE and integrated with the existing FaMa framework. We con-

ducted a detailed experimentation with SPLAnE on: (i) large Debian models;

(ii) randomly-generated models; and (iii) SPLOT models. We executed all anal-

ysis operations with five solvers, i.e., two QSAT solvers (CirQit and RaReQS)

and three SAT solvers (Sat4j, PicoSAT and MiniSAT). Further, we experimented

SPLAnE for scalability. The experiments are also conducted on the QSAT ap-

141

142

proach vs. the SAT approach. For scalability, we took the extended Betty tool

and generated a random set of SPL models ranging from five to 50 percent of

cross-tree constraints, with 10 different topology and from 10 features to 20,000

features. The scalability result shows that the tool SPLAnE was able to analyze

such huge SPL models. The comparison between SAT vs. QSAT results clearly

shows that our approach improved the performance by 70% over the SAT-based

approach for the analysis operations, like soundness and completeness.

6.2 Future Work

In future work, we plan to focus on the following extension aspects of this report:

– More solvers: Currently, we have implemented SPLANE analysis opera-

tions using a reduced number of QSAT and SAT solvers. In the future we

plan to add some SMT (Satisfiability Modulo Theories) solvers to this list

and proceed with comparative study detecting the pros and cons of each

approach.

– Granularity: In this report we have considered that the traceability relation

exists at the level of features and components. However, A traceability

relation can be extended to map a feature with a part of components or a

component can be decompose into sub-component to perform a granular

mapping or multi-level mapping.

– Logic paradigms: We have focused on SAT solving techniques, however,

there are some other approaches such as BDD that are appealing for the

same usage. In the future, we plan to do a comparison between a QSAT

143

approach presented in report and quantification over BDD with the imple-

mentation across all the analysis operation.

– Experimentation: In this report, we have evaluated our approach in a diverse

set of scenarios however, we focused in examples containing only 1:m rela-

tionships. In the future work we plan to extend the experimentation to n:m

relationships to see if this has implications in the scalability of our solution.

This work can be extended in different directions:

For now, the answer of SPLAnE when performing an analysis is close to be-

ing binary. Either the analysis succeeds or it fails, and a partial counterexample

is given. SPLAnE returns valuations for which the analysis fails, but it is cum-

bersome for the end user to exploit this information. We would like to derive a

diagnosis from this raw information that would orient the user to the source of the

failure.

The proposed semantic model of the SPL treats specifications and implemen-

tations as sets of features and components, respectively. When richer structures,

such as multi-sets are imposed on these elements, it will affect the definitions of

traceability and implements. Then, the underlying logic has to be redesigned to

handle the extra expressive power, which will have an implication on the analysis

algorithms.

Existing works [98, 97] go beyond Boolean variability and suggest that a fea-

ture is not only present or absent, but can be parameterized and that constraints

exist between the different configurations of the features. In [97], the authors pro-

vide a tool-supported method to relate the variability as it is expressed in the spec-

ification and the variability as it is realized in the implementation, for each feature

144

separately. These (traceability) relations could be integrated into SPLAnE and

analyzed.

We also expect that the success of SPLAnE will be established when some

requests for new analyses come from end users. The fifteen analyses defined in

the article have been taken up from existing works or created by ourselves, but we

hope that new analysis ideas will come from usage.

6.3 Future Work: Hybrid State Machine with vari-

ability

In this section we introduce an extension of FSMv to allow modeling hybrid sys-

tems. It is quite natural to consider situations where the behavior of a feature is

governed by ODEs over continuous variables x1, . . . ,xn. In this case, the contin-

uous variables evolve at different rates, possibly depending on different variation

points.

Definition 15 (HSMv). A hybrid state machine with variability HSMv is a tuple

A=(L,s0,Σ,V ,E,X ,Fl,ρ) where

– L,s0,Σ,V and ρ as in the case of TSMv.

– E ⊆L×∆×Φ(X)×R×Σ×L is the set of transitions such that e=(s,g,ϕg,R,a,s′)

represents a transition from location s to location s′ on event a; the predi-

cate g ∈ ∆ is called a guard of the transition e; g is consistent and defines

the variability domain of the transition; ϕg ∈ Φ(X) is called the constraint

associated with g; R ∈ 2X is a set of variables which are reset on transition

e; X is a finite set of continuous variables, and Fl : L→ Exp|X | is a flow

145

function, that associates to each location, a vector of rates. The continuous

variables in X grow at the rate specified by the flow function. Exp is an

expression on the variables V as defined in section 4.3.

Note that the choice of values to the variables in V which decides the variant,

also decides the rate of each continuous variable at each location. Every valid

configuration gives rise to a variant, a singular hybrid automata [17]. Depending

on how the Fl function is defined, we can obtain as variants, linear hybrid au-

tomata or rectangular hybrid automata. As seen in section 4.3, we obtain HSMv

modeling the requirements as well as the design of a feature separately. The the-

ory presented in the case of TSMv can be extended to the hybrid case, as long

as the language inclusion problem for hybrid automata is decidable. This is eas-

ily seen, if we assume that the HSMv are all initialized, or have the strong reset

condition. In these cases, we can still compute the conformance mappings at the

feature level, and use it to check conformance at the feature product line level by

synthesizing a QBF formula.

6.3.1 Improving SPLEnD GUI:

We plan to improve SPLEnD by introducing editors for drawing FSMr/FSMd.

Also we would like to be able to export the design of the entire SPL including

all the variants in the input format of SNIP. The idea is to allow the checking of

LTL properties on every variants of the SPL in an efficient way from SPLEnD.

The added value of SPLEnD would be to allow the user to express the property

using the requirement vocabulary and then automatically translate it to the design

vocabulary using the conformance mapping.

Bibliography

[1] Czarnecki K, Wasowski A. Feature Diagrams and Logics: There and Back

Again. In: SPLC; 2007. p. 23–34.

[2] Berg K, Bishop J, Muthig D. Tracing software product line variability: from

problem to solution space. In: SAICSIT ’05. South African Institute for

Computer Scientists and Information Technologists; 2005. p. 182–191.

[3] Czarnecki K, Eisenecker UW. Generative Programming: Methods, Tools,

and Applications. New York, NY, USA: ACM Press/Addison-Wesley Pub-

lishing Co.; 2000.

[4] Clements PC, Northrop LM. Software product lines: practices and patterns.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.; 2001.

[5] Benavides D, Segura S, Cortés AR. Automated analysis of feature

models 20 years later: A literature review. Inf Syst. 2010;35(6):615–

636. Available from: http://dx.doi.org/10.1016/j.is.2010.01.001.

doi:10.1016/j.is.2010.01.001.

[6] Metzger A, Heymans P, Pohl K, Schobbens PY, Saval G. Disambiguating

the Documentation of Variability in Software Product Lines: A Separation

146

http://dx.doi.org/10.1016/j.is.2010.01.001

147

of Concerns, Formalization and Automated Analysis. In: RE; 2007. p. 243–

253.

[7] Czarnecki K, Eisenecker UW. Generative programming - methods, tools and

applications. Addison-Wesley; 2000.

[8] Metzger A, Pohl K. Variability Management in Software Product Line En-

gineering. In: ICSE Companion; 2007. p. 186–187.

[9] Tischer C, Boss B, Müller A, Thums A, Acharya R, Schmid K. Developing

long-term stable product line architectures. In: Proceedings of the 16th In-

ternational Software Product Line Conference - Volume 1. SPLC ’12. New

York, NY, USA: ACM; 2012. p. 86–95. Available from: http://doi.acm.

org/10.1145/2362536.2362551. doi:10.1145/2362536.2362551.

[10] Cordy M, Schobbens PY, Heymans P, Legay A. Beyond boolean product-

line model checking: dealing with feature attributes and multi-features. In:

Notkin D, Cheng BHC, Pohl K, editors. ICSE. IEEE / ACM; 2013. p. 472–

481.

[11] Flores R, Krueger CW, Clements PC. Second-Generation Product Line En-

gineering: A Case Study at GM.;. Systems and Software Variability Man-

agement pages 223–250, Springer, 2013.

[12] Classen A, Heymans P, Schobbens PY, Legay A. Symbolic Model Checking

of Software Product Lines. In: Proceedings of ICSE 2011; 2011. p. 321–330.

[13] ter Beek MH, Gnesi S, Mazzanti F. VMC: A Tool for the Analysis of Vari-

ability in Software Product Lines. ERCIM News. 2013;2013(93).

http://doi.acm.org/10.1145/2362536.2362551
http://doi.acm.org/10.1145/2362536.2362551

148

[14] Holzmann GJ. The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley Professional; 2003.

[15] Goultiaeva A, Bacchus F. Exploiting QBF Duality on a Circuit Representa-

tion. In: AAAI; 2010. .

[16] Alur R, Dill DL. A Theory of Timed Automata. Theor Comput Sci.

1994;126(2):183–235.

[17] Alur R, Courcoubetis C, Henzinger TA, Ho PH. Hybrid Automata: An Al-

gorithmic Approach to the Specification and Verification of Hybrid Systems.

In: Hybrid Systems I. vol. 736 of LNCS. Springer-Verlag; 1993. p. 209–229.

[18] Pohl K, Böckle G, van der Linden F. Software Product Line Engineering -

Foundations, Principles, and Techniques. Springer; 2005.

[19] Pohl K, Metzger A. Variability Management in Software Product Line

Engineering. In: Proceedings of the 28th International Conference on

Software Engineering. ICSE ’06. New York, NY, USA: ACM; 2006. p.

1049–1050. Available from: http://doi.acm.org/10.1145/1134285.

1134499. doi:10.1145/1134285.1134499.

[20] Anquetil N, Grammel B, Galvao Lourenco da Silva I, Noppen JAR, Shakil

Khan S, Arboleda H, et al. Traceability for Model Driven, Software Product

Line Engineering. In: ECMDA Traceability Workshop Proceedings, Berlin,

Germany. Norway: SINTEF; 2008. p. 77–86.

[21] Beuche D, Papajewski H, Schröder-Preikschat W. Variability Manage-

ment with Feature Models. Sci Comput Program. 2004 Dec;53(3):333–352.

http://doi.acm.org/10.1145/1134285.1134499
http://doi.acm.org/10.1145/1134285.1134499

149

Available from: http://dx.doi.org/10.1016/j.scico.2003.04.005.

doi:10.1016/j.scico.2003.04.005.

[22] Czarnecki K, Antkiewicz M. Mapping Features to Models: A Template Ap-

proach Based on Superimposed Variants. In: Proceedings of the 4th Interna-

tional Conference on Generative Programming and Component Engineering.

GPCE’05. Berlin, Heidelberg: Springer-Verlag; 2005. p. 422–437.

[23] Czarnecki K, Pietroszek K. Verifying Feature-based Model Templates

Against Well-formedness OCL Constraints. In: Proceedings of the

5th International Conference on Generative Programming and Compo-

nent Engineering. GPCE ’06. New York, NY, USA: ACM; 2006. p. 211–

220. Available from: http://doi.acm.org/10.1145/1173706.1173738.

doi:10.1145/1173706.1173738.

[24] DeBaud JM, Schmid K. A Systematic Approach to Derive the Scope of Soft-

ware Product Lines. In: Proceedings of the 21st International Conference

on Software Engineering. ICSE ’99. New York, NY, USA: ACM; 1999. p.

34–43. Available from: http://doi.acm.org/10.1145/302405.302409.

doi:10.1145/302405.302409.

[25] Eisenbarth T, Koschke R, Simon D. A Formal Method for the Analysis of

Product Maps. In: Requirements Engineering for Product Lines Workshop,

Essen, Germany; 2002. .

[26] Satyananda TK, Lee D, Kang S, Hashmi SI. Identifying Traceability be-

tween Feature Model and Software Architecture in Software Product Line

using Formal Concept Analysis. In: ICCSA Workshops; 2007. p. 380–388.

http://dx.doi.org/10.1016/j.scico.2003.04.005
http://doi.acm.org/10.1145/1173706.1173738
http://doi.acm.org/10.1145/302405.302409

150

[27] Zhu C, Lee Y, Zhao W, Zhang J. A Feature Oriented Approach to Map-

ping from Domain Requirements to Product Line Architecture. In: Software

Engineering Research and Practice; 2006. p. 219–225.

[28] Anquetil N, Kulesza U, Mitschke R, Moreira A, Royer JC, Rummler A, et al.

A Model-driven Traceability Framework for Software Product Lines. Softw

Syst Model. 2010 Sep;9(4):427–451. Available from: http://dx.doi.

org/10.1007/s10270-009-0120-9. doi:10.1007/s10270-009-0120-9.

[29] Cavalcanti YaC, do Carmo Machado I, da Mota PA, Neto S, Lobato LL,

de Almeida ES, et al. Towards Metamodel Support for Variability and Trace-

ability in Software Product Lines. In: Proceedings of the 5th Workshop on

Variability Modeling of Software-Intensive Systems. VaMoS ’11. New York,

NY, USA: ACM; 2011. p. 49–57. Available from: http://doi.acm.org/

10.1145/1944892.1944898. doi:10.1145/1944892.1944898.

[30] Ghanam Y, Maurer F. Extreme Product Line Engineering: Managing Vari-

ability and Traceability via Executable Specifications. In: AGILE; 2009. p.

41–48.

[31] Riebisch M, Brcina R. Optimizing Design for Variability Using Trace-

ability Links. In: Proceedings of the 15th Annual IEEE International

Conference and Workshop on the Engineering of Computer Based Sys-

tems. ECBS ’08. Washington, DC, USA: IEEE Computer Society; 2008. p.

235–244. Available from: http://dx.doi.org/10.1109/ECBS.2008.37.

doi:10.1109/ECBS.2008.37.

[32] SAT4J-solver; 2010. http://www.sat4j.org/.

http://dx.doi.org/10.1007/s10270-009-0120-9
http://dx.doi.org/10.1007/s10270-009-0120-9
http://doi.acm.org/10.1145/1944892.1944898
http://doi.acm.org/10.1145/1944892.1944898
http://dx.doi.org/10.1109/ECBS.2008.37
http://www.sat4j.org/

151

[33] MiniSAT-solver,;. http://minisat.se/.

[34] Biere A. PicoSAT;. http://fmv.jku.at/picosat/.

[35] Goultiaeva A, Bacchus F. CirQit; 2013. http://www.cs.utoronto.ca/

˜alexia/cirqit/.

[36] Janota M, Klieber W. RAReQS-NN;. http://sat.inesc-id.pt/

˜mikolas/sw/rareqs-nn/.

[37] Benavides D, Segura S, Trinidad P, Cortés AR. FAMA: Tooling a Frame-

work for the Automated Analysis of Feature Models. In: VaMoS; 2007. p.

129–134.

[38] SPLAnE-Tool Website;. http://www.cse.iitb.ac.in/˜splane/.

[39] Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS. Feature-Oriented

Domain Analysis (FODA) Feasibility Study. Software Engineering Institute

of Carnegie Mellon University; 1990. CMU/SEI-90-TR-21.

[40] Schobbens PY, Heymans P, Trigaux JC, Bontemps Y. Generic semantics of

feature diagrams. Computer Networks. 2007;51(2):456–479.

[41] Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS. Feature-Oriented

Domain Analysis (FODA) Feasibility Study. Software Engineering Institute

of Carnegie Mellon University; 1990. CMU/SEI-90-TR-21.

[42] White Ja, Benavides Dc, Schmidt DCb, Trinidad Pc, Dougherty

Bb, Ruiz-Cortes Ac. Automated diagnosis of feature model con-

figurations. Journal of Systems and Software. 2010;83(7):1094–

1107. Cited By 24. Available from: http://www.scopus.com/

http://minisat.se/
http://fmv.jku.at/picosat/
http://www.cs.utoronto.ca/~alexia/cirqit/
http://www.cs.utoronto.ca/~alexia/cirqit/
http://sat.inesc-id.pt/~mikolas/sw/rareqs-nn/
http://sat.inesc-id.pt/~mikolas/sw/rareqs-nn/
http://www.cse.iitb.ac.in/~splane/
http://www.scopus.com/inward/record.url?eid=2-s2.0-77953132059&partnerID=40&md5=2f87ba959d35ef385ba7e9a2f3c75379
http://www.scopus.com/inward/record.url?eid=2-s2.0-77953132059&partnerID=40&md5=2f87ba959d35ef385ba7e9a2f3c75379

152

inward/record.url?eid=2-s2.0-77953132059&partnerID=40&md5=

2f87ba959d35ef385ba7e9a2f3c75379. doi:10.1016/j.jss.2010.02.017.

[43] Bagheri E, Di Noia T, Ragone A, Gasevic D. Configuring software product

line feature models based on stakeholders’ soft and hard requirements. In:

SPLC. vol. 6287 LNCS; 2010. p. 16–31. Cited By 5.

[44] Soltani Sa, Asadi Ma, Hatala Ma, Gašević Db, Bagheri Eb. Au-

tomated planning for feature model configuration based on stakehold-

ers’ business concerns. In: ASE; 2011. p. 536–539. Cited By 4.

doi:10.1109/ASE.2011.6100118.

[45] Borba P, Teixeira L, Gheyi R. A theory of software product line refinement.

Theor Comput Sci. 2012;455:2–30.

[46] Mendonca M, Wasowski A, Czarnecki K. SAT-based analysis of feature

models is easy. In: Software Product Lines, 13th International Conference,

SPLC 2009, San Francisco, California, USA, August 24-28, 2009, Proceed-

ings; 2009. p. 231–240. Available from: http://doi.acm.org/10.1145/

1753235.1753267. doi:10.1145/1753235.1753267.

[47] She S, Lotufo R, Berger T, Wasowski A, Czarnecki K. Reverse engineering

feature models. In: Taylor RN, Gall H, Medvidovic N, editors. Proceed-

ings of the 33rd International Conference on Software Engineering, ICSE

2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. ACM; 2011. p. 461–

470. Available from: http://doi.acm.org/10.1145/1985793.1985856.

doi:10.1145/1985793.1985856.

http://www.scopus.com/inward/record.url?eid=2-s2.0-77953132059&partnerID=40&md5=2f87ba959d35ef385ba7e9a2f3c75379
http://www.scopus.com/inward/record.url?eid=2-s2.0-77953132059&partnerID=40&md5=2f87ba959d35ef385ba7e9a2f3c75379
http://www.scopus.com/inward/record.url?eid=2-s2.0-77953132059&partnerID=40&md5=2f87ba959d35ef385ba7e9a2f3c75379
http://www.scopus.com/inward/record.url?eid=2-s2.0-77953132059&partnerID=40&md5=2f87ba959d35ef385ba7e9a2f3c75379
http://doi.acm.org/10.1145/1753235.1753267
http://doi.acm.org/10.1145/1753235.1753267
http://doi.acm.org/10.1145/1985793.1985856

153

[48] Janota M, Kiniry J. Reasoning about Feature Models in Higher-Order Logic.

In: Software Product Lines, 11th International Conference, SPLC 2007, Ky-

oto, Japan, September 10-14, 2007, Proceedings; 2007. p. 13–22. Avail-

able from: http://doi.ieeecomputersociety.org/10.1109/SPLINE.

2007.36. doi:10.1109/SPLINE.2007.36.

[49] Acher M, Collet P, Lahire P, France RB. Separation of concerns in

feature modeling: support and applications. In: Proceedings of the

11th International Conference on Aspect-oriented Software Development,

AOSD 2012, Potsdam, Germany, March 25-30, 2012; 2012. p. 1–

12. Available from: http://doi.acm.org/10.1145/2162049.2162051.

doi:10.1145/2162049.2162051.

[50] Sven Apel PW Hendrik Speidel, Rhein A, Beyer D. Detection of feature

interactions using feature-aware verification. In: ASE; 2011. p. 372–375.

[51] Apel S, Hutchins D. A calculus for uniform feature composition. ACM

Trans Program Lang Syst. 2010;32(5).

[52] Harry C Li SK, Fisler K. Verifying cross-cutting features as open systems.

In: FSE; 2002. p. 89–98.

[53] Dario Fischbein VB Sebastian Uchitel. A Foundation for Behavioural Con-

formance in software product line architectures. In: ROSATEA; 2006. p.

39–48.

[54] Cordy M, Classen A, Perrouin G, Schobbens PY, Heymans P, Legay A.

Simulation-based abstractions for software product-line model checking. In:

ICSE; 2012. p. 672–682.

http://doi.ieeecomputersociety.org/10.1109/SPLINE.2007.36
http://doi.ieeecomputersociety.org/10.1109/SPLINE.2007.36
http://doi.acm.org/10.1145/2162049.2162051

154

[55] Patrizia Asirelli SG Maurice H terBeek, Fantechi A. Formal Description of

Variability in Product Line Families. In: SPLC; 2011. p. 130–139.

[56] Ina Schaefer DG, Soleimanifard S. Compositional Algorithmic Verification

of Software Product Lines. In: FMCO; 2010. p. 184–203.

[57] Ali Gondal MP, Butler M. Composing Event-B specifications - case study

experience. In: Software Composition; 2011. p. 100–115.

[58] Mannion M. Using Firts-Order Logic for Product Line Model Validation.

In: SPLC; 2002. p. 176–187.

[59] Batory D. Feature Models, Grammars, and Propositional Formulas. In:

Proceedings of the 9th International Conference on Software Product Lines.

SPLC’05; 2005. p. 7–20.

[60] Larsen KG, Nyman U, Wasowski A. Modal I/O automata for interface and

product line theories. In: Proceedings of the 16th European conference on

Programming. ESOP’07. Berlin, Heidelberg: Springer-Verlag; 2007. p. 64–

79. Available from: http://dl.acm.org/citation.cfm?id=1762174.

1762183.

[61] Raclet JB, Badouel E, Benveniste A, Caillaud B, Legay A, Passerone R.

Modal interfaces: unifying interface automata and modal specifications. In:

EMSOFT; 2009. p. 87–96.

[62] Fantechi A, Gnesi S. Formal Modeling for Product Families Engineering.

In: SPLC’08, editor. SPLC. IEEE Computer Society; 2008. p. 193–202.

http://dl.acm.org/citation.cfm?id=1762174.1762183
http://dl.acm.org/citation.cfm?id=1762174.1762183

155

[63] Gruler A, Leucker M, Scheidemann K. Calculating and Modeling Common

Parts of Software Product Lines. In: SPLC; 2008. p. 203–212.

[64] Gomaa H, Olimpiew EM. Managing Variability in Reusable Requirement

Models for Software Product Lines. In: ICSR; 2008. p. 182–185.

[65] Jörges S, Lamprecht AL, Margaria T, Schaefer I, Steffen B. A constraint-

based variability modeling framework. STTT. 2012;14(5):511–530.

[66] Maurice H terBeek FM, Sulova A. VMC: A Tool for Product Variability

Analysis. In: FM; 2012. p. 450–454.

[67] Maurice H terBeek SG, Mazzanti F. Demonstration of a Model Checker for

the analysis of product variability. In: SPLC; 2012. p. 242–245.

[68] Krishnamurthi S, Fisler K. Foundations of incremental aspect model-

checking. ACM Trans Softw Eng Methodol. 2007;16(2).

[69] Liu J, Basu S, Lutz RR. Compositional model checking of software product

lines using variation point obligations. Autom Softw Eng. 2011;18(1):39–

76.

[70] Cordy M, Schobbens P, Heymans P, Legay A. Behavioural modelling and

verification of real-time software product lines. In: 16th International Soft-

ware Product Line Conference, SPLC ’12, Salvador, Brazil - September 2-7,

2012, Volume 1; 2012. p. 66–75. Available from: http://doi.acm.org/

10.1145/2362536.2362549. doi:10.1145/2362536.2362549.

http://doi.acm.org/10.1145/2362536.2362549
http://doi.acm.org/10.1145/2362536.2362549

156

[71] Lauenroth K, Metzger A, Pohl K. Quality Assurance in the Presence of

Variability. SSE, Institut fur Informatik und Wirtschaftsinformatik, univerti-

tat Duisburg Essen; 2011.

[72] Gruler A, Leucker M, Scheidemann K. Modeling and Model Checking Soft-

ware Product Lines. In: Proceedings of the 10th IFIP WG 6.1 international

conference on Formal Methods for Open Object-Based Distributed Systems.

FMOODS ’08. Berlin, Heidelberg: Springer-Verlag; 2008. p. 113–131.

Available from: http://dx.doi.org/10.1007/978-3-540-68863-1_8.

doi:10.1007/978-3-540-68863-1 8.

[73] Cordy M, Schobbens PY, Heymans P, Legay A. Behavioural modelling and

verification of real-time software product lines. In: SPLC (1); 2012. p. 66–

75.

[74] YICES; 2010. http://yices.csl.sri.com/.

[75] BDDSolve; 2010. http://www.win.tue.nl/˜wieger/bddsolve/.

[76] Roos-Frantz F, Galindo JÁ, Benavides D, Ruiz-Cortés A. FaMa-OVM: A

Tool for the Automated Analysis of OVMs. In: Proceedings of the Interna-

tional Software Product Line Conference, SPLC 2012. ACM. ACM; 2012.

p. 250–254. doi:10.1145/2364412.2364456.

[77] Galindo JA, Benavides D, Segura S. Debian Packages Repositories as Soft-

ware Product Line Models. Towards Automated Analysis. In: Proceed-

ings of the 1st International Workshop on Automated Configuration and

Tailoring of Applications, Antwerp, Belgium, September 20, 2010; 2010.

http://dx.doi.org/10.1007/978-3-540-68863-1_8
http://yices.csl.sri.com/
http://www.win.tue.nl/~wieger/bddsolve/

157

p. 29–34. Available from: http://ceur-ws.org/Vol-688/acota2010_

paper5_galindo.pdf.

[78] Seidl M. QPRO Format;. http://qbf.satisfiability.org/gallery/

qpro.pdf.

[79] Gallery Q. QCIR-G14: A Non-Prenex Non-CNF Format for Quanti-

fied Boolean Formulas;. http://qbf.satisfiability.org/gallery/

qcir-gallery14.pdf.

[80] Peschiera C, Pulina L, Tacchella A, Bubeck U, Kullmann O, Lynce I. The

Seventh QBF Solvers Evaluation (QBFEVAL’10). In: SAT; 2010. p. 237–

250.

[81] Mendonca M, Branco M, Cowan D. S.P.L.O.T.: Software Product Lines

Online Tools. In: Proceedings of the 24th ACM SIGPLAN Conference

Companion on Object Oriented Programming Systems Languages and Ap-

plications. OOPSLA ’09. New York, NY, USA: ACM; 2009. p. 761–

762. Available from: http://doi.acm.org/10.1145/1639950.1640002.

doi:10.1145/1639950.1640002.

[82] Mohalik S, Ramesh S, Millo JV, Krishna SN, Narwane GK. Tracing SPLs

precisely and efficiently. In: SPLC (1); 2012. p. 186–195.

[83] Segura S, Galindo JA, Benavides D, Parejo JA, Cortés AR. BeTTy: bench-

marking and testing on the automated analysis of feature models. In: Va-

MoS; 2012. p. 63–71.

[84] Thüm T, Batory DS, Kästner C. Reasoning about edits to feature mod-

els. In: 31st International Conference on Software Engineering, ICSE

http://ceur-ws.org/Vol-688/acota2010_paper5_galindo.pdf
http://ceur-ws.org/Vol-688/acota2010_paper5_galindo.pdf
http://qbf.satisfiability.org/gallery/qpro.pdf
http://qbf.satisfiability.org/gallery/qpro.pdf
http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf
http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf
http://doi.acm.org/10.1145/1639950.1640002

158

2009, May 16-24, 2009, Vancouver, Canada, Proceedings; 2009. p.

254–264. Available from: http://dx.doi.org/10.1109/ICSE.2009.

5070526. doi:10.1109/ICSE.2009.5070526.

[85] Milner R. A Calculus of Communicating Systems. Secaucus, NJ, USA:

Springer-Verlag New York, Inc.; 1982.

[86] Hoare CAR. Communicating Sequential Processes. Commun ACM. 1978

Aug;21(8):666–677. Available from: http://doi.acm.org/10.1145/

359576.359585. doi:10.1145/359576.359585.

[87] Vardi MY, Wolper P. An automata-theoretic approach to automatic program

verification. In: Proceedings of LICS 1986; 1986. p. 322–331.

[88] Mathwork/Matlab. Automotive Power Window System;. http://in.

mathworks.com/products/simulink/model-examples.html?file=

/products/demos/simulink/PowerWindow/html/PowerWindow1.html.

[89] Kastner C, Thum T, Saake G, Feigenspan J, Leich T, Wielgorz F, et al. Fea-

tureIDE: A tool framework for feature-oriented software development. In:

Software Engineering, 2009. ICSE 2009. IEEE 31st International Confer-

ence on. IEEE; 2009. p. 611–614.

[90] Durán A, Benavides D, Segura S, Trinidad P, Ruiz-Cortés A. FLAME:

FAMA Formal Framework (v 1.0). Seville, Spain; 2012. ISA–12–TR–02.

[91] Acher M, Collet P, Lahire P, France R. FAMILIAR: A Domain-Specific Lan-

guage for Large Scale Management of Feature Models. Science of Computer

Programming (SCP) Special issue on programming languages. 2013;p. 55.

doi:http://dx.doi.org/10.1016/j.scico.2012.12.004.

http://dx.doi.org/10.1109/ICSE.2009.5070526
http://dx.doi.org/10.1109/ICSE.2009.5070526
http://doi.acm.org/10.1145/359576.359585
http://doi.acm.org/10.1145/359576.359585
http://in.mathworks.com/products/simulink/model-examples.html?file=/products/demos/simulink/PowerWindow/html/PowerWindow1.html
http://in.mathworks.com/products/simulink/model-examples.html?file=/products/demos/simulink/PowerWindow/html/PowerWindow1.html
http://in.mathworks.com/products/simulink/model-examples.html?file=/products/demos/simulink/PowerWindow/html/PowerWindow1.html

159

[92] Batory D, Sarvela JN, Rauschmayer A. Scaling Step-Wise Refine-

ment. IEEE Transactions on Software Engineering. 2004;30(6):355–371.

doi:http://doi.ieeecomputersociety.org/10.1109/TSE.2004.23.

[93] Galindo JA, Benavides D, Segura S. Debian Packages Repositories as Soft-

ware Product Line Models. Towards Automated Analysis. In: ACoTA; 2010.

p. 29–34.

[94] Trinidad P, Benavides D, Ruiz-Cortés A, Segura S, Jiménez A. FAMA

Framework - Poster. In: 12th Software Product Lines Conference (SPLC).

IEEE Computer Society Press. Limerick, Ireland: IEEE Computer Society

Press; 2008. p. 359. Available from: http://doi.ieeecomputersociety.

org/10.1109/SPLC.2008.50. doi:10.1109/SPLC.2008.50.

[95] Team F. http://www.isa.us.es/fama/?FaMa Current Projects; 2012.

[96] Vahidi A. JDD: a pure Java BDD and Z-BDD library; 2015. https://

bitbucket.org/vahidi/jdd.

[97] Millo JV, Ramesh S, Krishna SN, Narwane GK. Compositional Verification

of Software Product Lines. In: IFM; 2013. p. 109–123.

[98] Cordy M, Schobbens PY, Heymans P, Legay A. Beyond Boolean Product-

line Model Checking: Dealing with Feature Attributes and Multi-features.

In: Proceedings of the 2013 International Conference on Software Engineer-

ing. ICSE ’13. Piscataway, NJ, USA: IEEE Press; 2013. p. 472–481. Avail-

able from: http://dl.acm.org/citation.cfm?id=2486788.2486851.

http://doi.ieeecomputersociety.org/10.1109/SPLC.2008.50
http://doi.ieeecomputersociety.org/10.1109/SPLC.2008.50
https://bitbucket.org/vahidi/jdd
https://bitbucket.org/vahidi/jdd
http://dl.acm.org/citation.cfm?id=2486788.2486851

