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ABSTRACT 

Direct experimental studies of behaviour of the electron beam inside accelerator 

cavity are very difficult. Numerical simulations are, therefore powerful tools in the analysis 

of beam dynamics of present linear accelerator facilities as well as the future accelerators. 

This research work focuses on the beam dynamics of linear accelerator by analytical methods 

and computer simulations in order to predict the behavior and quality of the electron beam 

and minimize the beam loss. In this work, we have studied the beam dynamics of a 30 MeV 

standing wave, biperiodic, coupled cavity rf electron linac with the help of CST Microwave 

studio and ASTRA code to determine the optimized parameters for a nominal gain of energy 

of 30 MeV with minimum energy spread and keep the minimal growth of transverse 

emittance. This facilitates a safety operation of the linac and avoids induced radioactivity 

with hands on maintenance of the accelerating structure and components.  Further we have 

studied the beam dynamics of a 10 MeV rf electron linac in operation and validate our 

simulation results with the experimental data within the limit of experimental errors. We 

present the beam dynamics results of a 100 MeV, 100 kW standing wave rf electron linac 

with the help of CST MWS, ASTRA and ELEGANT beam dynamics codes along with bunch 

compression scheme with chicken magnet that comprises four dipoles and compare the 

results with a 100 MeV traveling wave rf electron linac structure. We have presented 

analytical expressions for the growth of transverse emittance in an RF gap which includes the 

coupling between the phase spread of the beam and spherical aberration. Using reduced 

envelope equation for a laminar beam the shift in frequency of oscillation of the beam 

envelope in the RF field is calculated. Also, Analytical expression is derived for beam optics 

in a solenoid field considering terms up to the third order in the radial displacement. Two 

important phenomena: effect of spherical aberrations in axial -symmetric focusing lens and 

influence of nonlinear space charge forces on beam emittance growth are discussed for 

different beam distributions. Chromatic aberration induced growth of emittance and 

distortion of phase space area is discussed. We have presented a new formulation for the 

aperture coupling problem in terms of Carlson Symmetric Integrals. The significance of such 

a method is that it considers the thickness of the aperture in to account to find the coupling 

coefficients between cavities unlike the earlier works which neglect the thickness of the 

aperture in aperture coupling problems. We have validated our theoretical model with the 

earlier works of aperture coupling taking thickness of the aperture tends to zero. 



5 
 

List of Publications arising from the thesis 

Journal 

1. “Beam dynamics studies and parametric characterization of a standing wave electron 

linac”, R Dash, J Mondal, A Sharma and K C Mittal, Journal of Instrumentation, 

2013, 8 T07002, 1-19. 

2. “Numerical evaluation of aperture coupling in resonant cavities and frequency 

perturbation analysis”, R Dash, B Nayak, A Sharma and K C Mittal, Journal of 

Instrumentation, 2014, 9 P01012, 1-14. 

3. “Effect of Spherical Aberration on the Emittance Growth and frequency of Oscillation 

of a Beam Crossing an RF Gap”, B Nayak, R Dash and K C Mittal, Nucl. Instr. and 

Meth. A, 2014, 746, 1-3. 

4. “Analysis of Transverse RMS Emittance Growth of a Beam induced by Spherical and 

Chromatic Aberration in a Solenoidal Field”, R Dash, B Nayak, A Sharma and K C 

Mittal, Nucl. Instr. and Meth. A, 2016, 807, 94-100. 

 

 

 

Conferences 

1. “Beam Dynamics Studies of a 30 MeV Standing Wave Electron Linac”, R Dash, J 

Mondal, A Sharma and K C Mittal, 25th North American Particle Accelerator 

Conference NA-PAC'13, Pasadena, USA, September 2013, 451-453. 

2. “Study of Beam Dynamics of a 30 MeV Standing Wave Electron Linac”, R Dash, J 

Mondal, A Sharma and K C Mittal, INPAC-2013, Kolkata, November 2013. 

3. “Beam dynamics studies of a 10 MeV standing wave electron linac”, R Dash, A 

Sharma and K C Mittal, 26th International Symposium on Discharges and Electrical 

Insulation in Vacuum,ISDEIV-2014,Mumbai, September 2014. 

4. “Numerical evaluation of aperture coupling in resonant waveguides and frequency 

perturbation analysis”, R Dash, B Nayak, A Sharma and K C Mittal, 26th 

International Symposium on Discharges and Electrical Insulation in Vacuum 

2014,ISDEIV-2014, Mumbai, September 2014. 

5. “Study of beam dynamics of a 100 MeV electron linac”, R Dash, B Nayak, A Sharma 



6 
 

and K C Mittal,  26th International Symposium on Discharges and Electrical 

Insulation in Vacuum 2014,ISDEIV-2014, Mumbai, September 2014. 

6. “Beam dynamics simulation studies of a 30 MeV electron linac”, R Dash, B Nayak, 

A Sharma and K C Mittal,  National Symposium on Vacuum Technology & Its 

Applications to Electron Beams, IVSNS-2015, Mumbai, November 2015. 

7. “Beam dynamics study of a 100 MeV RF electron linac”, R Dash, B Nayak, A 

Sharma and K C Mittal,  International Conference on Microwave, Optical and 

Communication Engineering, ICMOCE-2015, Bhubaneswar, December 2015. 

                           

                                                                           

                                                                                 Radhakanta   Dash 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

DEDICATIONS 

Dedicated to the Shree Balabhadra, Maa Subhadra, Shree Jagannath and Maa Lakshmee 

of Puri, Odisha 

Dedicated to Shree Lingaraj and Devi Parvati (Maa Bhavani), Bhubaneswar, Odisha 

Dedicated to Shree SiddhiVinayaka (Shree Ganesha), Mumbai 

Dedicated to Maa Sarala, Jhankad, Odisha 

 

 

 

 

 

 

 

 

 

 



8 
 

ACKNOWLEDGEMENTS 

At this point I express my heartfelt thanks to all who helped me to make this work a success. 

First of all, I express my sincere gratitude to Prof. Dr. Archana Sharma and Prof. Dr. Kailash 

C. Mittal to supervise my PhD thesis, and encourage me to work on a very interesting 

subject. I thank my Doctoral committee members for valuable suggestions. My sincere thank 

to Dr. Jayanta Mondal for valuable suggestions during my thesis work. I very much 

appreciate the friendship and enjoyable collaboration with Biswaranjan Nayak, who greatly 

supported me at various occasions, in particular during the theoretical calculations and 

analysis explaining beam dynamics related issues that is written in this thesis tome. I thank 

Susanta Nayak to help me on many occasions and friendliness. I am grateful to Siba P Sahoo 

to help me as a true friend. I thank Shuvendu Jena for valuable suggestions. Special thanks to 

Dr. K Flottmann and Dr. M. Dohlus for helping me to learn computer code ASTRA. I am 

grateful to Dr. M Borland to teach me the Elegant code. I thank Dr Eric Prebys and Dr S 

Krishnagopal for their valuable lectures. I thank R.I. Bakhtsingh to help me in many 

occassions. Thanks goes to V.T. Nimje, S. Acharya, Dr. K.V. Nagesh, R.K Rajawat, S.R. 

Ghodke, D. Bhattacharjee, A. Tilu and R. Tiwari for discussions on accelerator related issues. 

I thank my fellow students Dr C.S. Reddy, Dr. S.V Tiwari, P. Naresh for generous helps. I 

thank Mr A Gupte and his wife for their love and affection during my stay in Mumbai. I 

thank all the staff members of EBC and APPD, BARC, officials of HBNI and BARC for 

enabling me to do research work at a fascinating facility. My sincere thank to DAE, India to 

support my research work under DGFS program. My sincere gratitude to Dr B.B Padhy (my 

M.Tech thesis supervisor), who excited my curiosity about Free Electron Laser (which 

propelled me to choose my PhD thesis on Beam Dynamics of Linac) and from whom I learnt 

a lot on presentation skill of the research works. Finally, I would like to thank my parents, my 

brothers, my wife and other family members and my friends for their moral support. 



9 
 

CONTENTS 

 

                                                                                                                                                     Page No. 

SYNOPSIS                                                                                                                              14 

LIST OF FIGURES                                                                                                               23 

LIST OF TABLES                                                                                                                 28 

CHAPTER 1                                                                                                                           29 

INTRODUCTION                                                                                                             29 

CHAPTER 2                                                                                                                           34 

LITERATURE SURVEY                                                                                               34 

2.1. PERIODIC ACCELERATING STRUCTURES                                                  34 

2.2. COUPLED CAVITY LINACS AND BIPERIODIC STRUCTURE                  38 

2.3. FIGURES OF MERITS FOR LINACS                                                                 39 

2.4. CO-ORDINATE SYSTEM AND PHASE SPACE OF A PARTICLE               42 

2.5. EQUATION OF MOTION                                                                                     43 

2.6. BEAM EMITTANCE                                                                                              45 

2.7. SPACE CHARGE EFFECT ON BEAM                                                               48 

2.8. NUMERICAL SPACE CHARGE CALCULATION                                          50 

2.8.1 RMS ENVELOPE EQUATION WITH SPACE CHARGE                              51 

2.8.2 EMITTANCE GROWTH FROM SPACE CHARGE                                       52 

2.9. LONGITUDINAL PARTICLE DYNAMICS IN RF LINAC                             52 

2.10. TRANSVERSE PARTICLE DYNAMICS                                                        60 

2.10.1 TRANSVERSE RF FOCUSSING AND DEFOCUSSING                               60 

2.10.2 RADIAL IMPULSE NEAR THE AXIS IN AN ACCELERATING GAP       61 

2.10.3 COURANT SNYDER PARAMETERS AND HILL’S EQUATION               63 

2.11. ABERRATION IN LENSES                                                                               66 

2.11.1 SPHERICAL ABERRATION                                                                           66 

2.11.2 CHROMATIC ABERRATIONS                                                                       68 

CHAPTER 3                                                                                                                           70 

BEAM DYNAMICS STUDIES AND PARAMETRIC 

CHARACTERIZATION OF STANDING WAVE ELECTRON LINAC   70 

3.1. MULTIPARTICLE SIMULATION WITH SPACE CHARGE                         71 

3.2. BEAM DYNAMICS STUDIES OF A 30 MeV LINAC                                       73 



10 
 

3.2.1 STUDY OF SELF FIELD EFFECTS ON ELECTRON BEAM                       74 

3.2.1.1 EFFECT OF SPACE CHARGE ON BEAM DYNAMICS                           74 

3.2.1.2 BEHAVIOUR OF BUNCH WITH SELF FIELD EFFECT                          78 

3.2.2 PARAMETRIC CHARACTERIZATION OF INPUT BEAM                         85 

3.2.2.1 EVOLUTION OF EMITTANCE WITH SPACE CHARGE                         86 

3.2.2.2 EVOLUTION OF EMITTANCE WITH BEAM SIZE                                  86 

3.2.2.3 EVOLUTION OF EMITTANCE WITH DIVERGENCE                             88 

3.2.2.4 EVOLUTION OF EMITTANCE WITH BEAM ASPECT RATIO              88 

3.2.2.5 EFFECT OF VARIATION OF FIELD GRADIENT ON BEAM      

 QUALITY                                                                                                      90 

3.2.2.6 EFFECT OF SOLENOID FOCUSSING ON BEAM QUALITY                 90 

3.3. CONCLUSION                                                                                                        92 

CHAPTER 4                                                                                                                           93 

STUDY OF BEAM DYNAMICS FOR A 10 MeV INDUSTRIAL RF 

ELECTRON LINAC AND ITS VALIDATION WITH EXPERIMENTAL 

DATA                                                                                                                  93 

4.1. BEAM DYNAMICS STUDIES OF A 10 MeV LINAC                                       94 

4.1.1 LONGITUDINAL BEAM DYNAMICS                                                           97 

4.1.2 TRANSVERSE BEAM DYNAMICS                                                               99 

4.1.2.1 EFFECT OF SPACE CHARGE ON BEAM DYNAMICS                           99 

4.1.2.2 GROWTH OF  TRANSVERSE EMITTANCE                                           101 

4.1.2.3 STUDY OF DIVERGENCE OF THE BEAM                                             103 

4.2. COMPARISON OF EXPERIMENTAL DATA AND THEORETICAL BEAM 

 DYNAMICS SIMULATION                                                                                105 

4.3. CONCLUSION                                                                                                      107 

CHAPTER 5                                                                                                                         108 

STUDY OF BEAM DYNAMICS IN 100MeV, 100 kW ELECTRON 

LINAC                                                                                                              108 

5.1. BEAM DYNAMICS OF A 100 MEV STANDING WAVE STRUCTURE     109 

5.1.1 GENERAL LAYOUT OF THE LINAC                                                          109 

5.1.2 LONGITUDINAL BEAM DYNAMICS                                                         115 

5.1.3 TRANSVERSE DYNAMICS                                                                          118 

5.2. BEAM DYNAMICS OF A 100 MEV TRAVELLING  WAVE STRUCTURE                                                                                                                             

                                                                                                                                  121 



11 
 

5.2.1 GENERAL LAYOUT OF THE LINAC                                                          121 

5.2.2 LONGITUDINAL BEAM DYNAMICS                                                         125 

5.2.3 TRANSVERSE DYNAMICS                                                                          127 

5.4 CONCLUSION                                                                                                      131 

CHAPTER 6                                                                                                                         132 

EFFECT OF SPHERICAL ABERRATION ON THE EMITTANCE 

GROWTH OF A BEAM                                                                                 132 

6.1. ANALYTICAL FORMULATION OF THE PROBLEM  OF RF GAP          134 

6.1.1 EXPRESSION FOR SPHERICAL ABERRATION DUE TO ELECTRIC 

 FIELD                                                                                                               134 

6.1.2 EFFECT OF ABERRATION ON TRANSVERSE EMITTANCE                 135 

6.2. ANALYSIS OF ENVELOPE EQUATION INCLUDING SPHERICAL  

 ABERRATION DUE TO ELECTRIC FIELD                                                   137 

6.2.1 INVARIANT ENVELOPE SOLUTION                                                         137 

6.2.2 SOLUTION OF ENVELOPE EQUATION  AND FREQUENCY SHIFT BY 

 LINDSTEDT POINCARE METHOD                                                             140 

6.3. EFFECT OF SPHERICAL ABERRATION ON EMITTANCE GROWTH 

 DUE TO MAGNETIC FIELD AND SPACE CHARGE                                   142 

6.3.1 SPHERICAL ABERRATION INDUCED BY MAGNETIC FIELD             142 

6.3.2 SPHERICAL ABERRATION INDUCED BY SPACE CHARGE                 149 

6.3.3 EXPRESSIONS FOR TRANSVERSE EMITTANCE GROWTH OF  

 DIFFERENT BEAM DISTRIBUTIONS                                                         152 

6.3.3.1 UNIFORM DISTRIBUTION FUNCTION                                                  153 

6.3.3.2 GAUSSIAN DISTRIBUTION FUNCTION                                                153 

6.3.3.3 WATERBAG DISTRIBUTION FUNCTION                                             154 

6.3.3.4 PARABOLIC DISTRIBUTION FUNCTION                                             155 

6.4. EFFECT OF CHROMATIC ABERRATION ON EMITTANCE GROWTH       

                                                                                                                                  156 

6.4.1 PHASE-SPACE DISTORTION  DUE TO ENERGY SPREAD                    156 

6.4.2 EMITTANCE GROWTH DUE TO ENERGY SPREAD                               158 

6.5. CONCLUSION                                                                                                      162 

CHAPTER 7                                                                                                                         163 

NUMERICAL EVALUATION OF APERTURE COUPLING IN 

RESONANT CAVITIES AND FREQUENCY PERTURBATION 

ANALYSIS                                                                                                       163 



12 
 

7.1 ANALYTICAL FORMULATION OF THE PROBLEM                                 164 

7.2 DIPOLE MOMENTS IN TERMS OF CARLSON SYMMETRIC 

 ELLIPTICAL INTEGRALS                                                                                168 

7.3 FORMULATION OF THE PROBLEM FOR APERTURE OF ZERO 

 THICKNESS                                                                                                          170 

7.4 ANALYTICAL EXPRESSION OF CARLSON INTEGRALS FOR 

 CIRCULAR APERTURE                                                                                     173 

7.5 EFFECT OF FREQUENCY PERTURBATION ON COUPLING BETWEEN 

 CAVITIES DUE TO OPENING OF APERTURES ON CAVITY WALLS   174 

7.5.1 ELECTRIC COUPLING                                                                                  175 

7.5.2 MAGNETIC COUPLING                                                                                176 

7.6 EFFECT OF FREQUENCY PERTURBATION ON THE GROUP 

 VELOCITY OF ACCELERATING STRUCTURE                                          177 

7.6.1 GROUP VELOCITY OF ELECTRICALLY COUPLING STRUCTURE     178 

7.6.2 GROUP VELOCITY OF MAGNETICALLY COUPLING STRUCTURE   180 

7.7 EFFECT OF FREQUENCY PERTURBATION ON THE FIGUREOF MERIT 

 OF ACCELERATING CAVITIES                                                                      182 

7.8 CONCLUSION                                                                                                      184 

CHAPTER 8                                                                                                                         185 

SUMMARY AND CONCLUSION                                                                185 

REFERENCES                                                                                                                     187 

 

 

 

 

 

 

 

 

 



13 
 

LIST OF ABBREVIATIONS 

 

ASTRA -  A Space Charge Tracking Algorithm 

BARC -  Bhabha Atomic Research Centre 

CCL -  Coupled Cavity Linac 

CST MWS -  CST Microwave Studio 

EBC - Electron Beam Centre, Kharghar 

ELEGANT -  ELEctron Generation ANd Tracking 

LINAC -  Linear Accelerator 

RF -  Radio Frequency 

RMS -  Root Mean Square 

SW -  Standing Wave  

TWS -  Travelling Wave Structure 

TW -  Travelling Wave 



14 
 

SYNOPSIS 
 

Dynamics of charged particles in accelerators [1] is an important aspect in the design of high 

energy particle accelerators for the purpose of synchrotron radiation, free electron laser (FEL) 

and neutron generation. Beam dynamics studies of charged particles [2, 3] explore the 

behaviour and quality of beam taking into account constraints applied to the particle 

accelerators for high energy requirements along with manufacturing precision and strength of 

the steering and accelerating electromagnetic fields. To support the lattice design process, it 

is essential to study the beam dynamics of accelerator by analytical methods and computer 

simulations. These predict the beam size and emittance while transporting through accelerator 

cavities and focusing element and minimize the beam loss. 

Accelerator based neutron generation facilities are a promising and challenging technology to 

generate high quality radiation for various applications. Such neutron generation facilities are 

driven by bunches of highly relativistic electrons interacting with target materials to generate 

X- rays and produce neutrons by photo-nuclear or photo-fission process. The high power 

beam with low emittance is necessary to prevent beam hitting the cavity wall and producing 

secondary radiations. Direct experimental studies of behaviour of the electron beam inside 

accelerator cavity are very difficult. Beam diagnostics systems are not feasible to incorporate 

at all positions along the linac to measure beam characteristics. Lack of information can be 

supplemented by numerical simulation. It is also required to understand the beam dynamics 

to find ways of improvement. Numerical simulations are, therefore powerful tools in the 

analysis of beam dynamics of present linear accelerator facilities as well as the future 

accelerators. 
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Beam dynamics studies of a 100 MeV, 100 kW RF Electron Linear Accelerator is the focus 

of this thesis. Electron bunches accelerating in electric field inside accelerator cavities and 

bunch compression processes have a significant effect on the beam dynamics and the 

performance of accelerator for neutron generation. Beam dynamics in 10 MeV, 30 MeV and 

100 MeV electron linacs has been studied. Effect of space charge, emittance and aperture 

thickness in cavity cells has been analysed in depth. Spherical aberration in linacs has been 

studied analytically and computationally. Results are described in the following chapters. 

This thesis work has resulted in a no. of journal publications and conference presentations.  

The thesis is organized as follows: 

Chapter 1 of this thesis introduces the beam dynamics of linear accelerator based on the 

review of available literature on the beam dynamics study of particle accelerators. It is 

perceived that both theoretical treatment and numerical simulations are essential to 

understand the behaviour of beam in linacs for a high quality beam delivery system for the 

purpose of neutron generation for scientific researches and societal applications. These 

aspects of beam dynamics studies are presented in the following chapters. 

In Chapter 2 a review of the literature available on the beam dynamics of linear accelerator 

is presented and the concepts required in the remainder of the thesis are introduced. A special 

attention is given to the longitudinal and transverse dynamics of the beam in the phase space. 

The role of space charge and emittance growth in the linacs is discussed. Longitudinal 

dynamics is provided by an appropriate choice of the phase of the synchronous particle 

relative to the crest of the RF electric field [2, 3]. A longitudinal restoring force exists when 

the synchronous phase is chosen corresponding to a field that is rising in time. The early 

particles experience a smaller field and the late particles a larger field than the synchronous 

particle. The accelerated particles are formed in stable bunches that are near the synchronous 
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particle. Those particles outside the stable region slip behind in phase and do not experience 

any net acceleration.  

When off-axis particles enter a RF gap and are accelerated by a longitudinal RF electric field, 

they also experience radial RF electric and magnetic forces and there will be a net radial 

impulse, which occurs as a result of variation of electric field with time and radial 

displacement. As the velocity increases while the particle crosses the gap, the particle does 

not spend equal times in each half of the gap and most particles experience a field in the 

second half of the gap that is higher than the field in the first half, resulting in a net 

defocusing force. If the longitudinal forces provide focusing at a given point, the two 

transverse-force components cannot be focusing at the same point. 

The emittance [4, 5, 6] provides a quantitative basis, or a figure of merit, for describing the 

quality of the beam. It is closely related to two-dimensional projections of the volume 

occupied by the ensemble of particles in six-dimensional phase space. Nonlinear forces 

(aberrations) due to the external or space-charge fields and instabilities lead to a deterioration 

of the beam quality. For beams in particle accelerators, the normalized emittance [7] is a 

more useful quantity than the unnormalized emittance. Since in an ideal system (linear forces, 

no coupling) it remains constant. An increase of the normalized emittance is usually an 

indication that nonlinear effects are present in the system causing a deterioration of beam 

quality. 

The space-charge field [8], which is a result of Coulomb interactions in a multiparticle 

system reduces the effective focusing strength, causes growth in rms emittances [9]. The 

growth in rms emittance may lead to beam loss, which results in radioactivation of the 

accelerating structure 
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Chapter 3 of this thesis presents the results of the optimization of 30 MeV, 6 kW bi-periodic 

coupled cavity standing wave accelerator beam parameters and the limits of the possible 

beam quality. This electron accelerator is a general purpose facility for generation of 

bremsstrahlung X-rays and neutrons for different physics experiments.  This electron 

accelerator-based experimental neutron facility will be used for measurement of neutron 

cross-section (n,γ), (n, xn) and (n, f) reactions at different energies for various materials and 

material irradiation studies. For the pulsed mode operation of this linac, preferential operation 

parameters have been determined from the results of beam dynamics studies with the help of 

mutiphysics simulation code CST Studio [10] and beam dynamics code ASTRA [11]. The 

optimization approach is to keep the growth of transverse emittance and self field effects a 

minimum as well as to limit the radioactivity and the cost of the linac itself.  

Chapter 4 of this thesis presents the beam dynamics study and comparison of the results with 

experimental data for a 10 MeV, 10 kW standing wave electron linac that is operational at 

Electron Beam Centre, Kharghar, Navi Mumbai for industrial applications. The optimized 

output beam dynamics parameters are consistent with the output parameters of the 10 MeV 

lattice design [12] and experimental results [13, 14]. The effects of space charge, input beam 

size, beam divergence, emittance growth, energy spread, behavior of bunch and their effect 

on the beam quality have been studied. 

Chapter 5 of this thesis presents the lattice design and beam dynamics simulation of the 100 

MeV linac. Beam dynamics of a coupled cavity standing wave 100 MeV linac is studied and 

the behaviour of beam in the longitudinal and transverse phase space is presented. The 

electron beam is tracked in the injector section with the help of ASTRA [11] beam dynamics 

code and after injector section the electron bunches are tracked with ELEGANT [15] beam 

dynamics code up to the end. A four dipole based chicane magnet is used to compress the 

beam for a shorter pulse at the output. Further the beam dynamics studies of a travelling wave 
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cavity [7] have been done in the longitudinal and transverse phase space along with bunch 

compression. 

Chapter 6 of this thesis presents the effect of spherical aberration on the transverse emittance 

growth and frequency of oscillation of a beam envelope inside an RF Cavity. The coefficient 

of spherical aberration that arises due to third order terms of on-axis electric field component 

is discussed. An expression is derived for the growth of transverse emittance in an RF gap 

[16] which includes the coupling between the phase spread of the beam and spherical 

aberration. Further, using reduced envelope equation for a laminar beam, effect of aberration 

on the invariant envelope solution is discussed [17, 18]. An expression is found using 

Lindstedt-Poincare theory [19] for solution of the envelope equation. The shift in frequency 

of oscillation of the beam envelope in the RF field is calculated. 

Also in a medium energy beam transport line of a 6 MeV linac transverse emittance growth 

associated with spherical aberration [20] is analyzed. An analytical expression is derived for 

beam optics in a solenoid field considering terms up to the third order in the radial 

displacement. Two important phenomena: effect of spherical aberrations in axial -symmetric 

focusing lens and influence of nonlinear space charge forces [3] on beam emittance growth 

are discussed for different beam distributions. Further the nonlinear effect associated with 

chromatic aberration [21] that describes the growth of emittance and distortion of phase space 

area is discussed. 

Chapter 7 of this thesis presents a general formulation for numerical evaluation of the 

coupling between two identical resonant cavities by a small elliptical aperture in a plane 

common wall of arbitrary thickness. The aperture coupling is expressed in terms of electric 

and magnetic dipole moments and polarizabilities using Carlson symmetric elliptical integrals 

[22]. Carlson integrals have been numerically evaluated and under zero thickness 
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approximation, the results are compared with the complete elliptical integrals of first and 

second kind [23].  Further, Slater’s perturbation method [24] is applied to electrically and 

magnetically coupled cavities in order to find the frequency changes due to apertures of finite 

thickness on the cavity wall. 

Chapter 8 of this thesis presents the summary and conclusions. Based on the above studies 

the following conclusions have been made.  

a) It is found that space charge effect plays a pivotal role in the injector section and 1st 

cavity of the 30 MeV linac. A solenoid of length 15 cm and 15000 ampere turns 

over the injector section is necessary to compensate the space charge effect. With 

an output beam of size ~ 4.5 mm in the bore of aperture diameter 10 mm, and an 

energy spread of ~ 2.5% the beam loss on the cavity wall is minimized and the 

heavy irradiation of accelerator components is prevented. 

b) For a 10 MeV linac, space charge effect is minimized with a solenoid of 15000 

ampere turns and the beam satisfies the industrial norms to generate X rays. 

c) The 100 MeV linac beam dynamics study explores that although both standing 

wave linac and travelling wave linac are highly efficient for high energy beam, the 

travelling wave linac may be preferred because of its large aperture and versatility 

to deal with high current and high power beam. 

d) Spherical aberration that is induced due to third order term in the radial co-ordinate 

of the electric field of a RF cavity results in a growth of transverse emittance for a 

uniform beam distribution  and shifts the invariant envelope solution from its 

original value. Change in frequency of oscillation of the beam is found using 

Lindstedt –Poincare expansion method. 

e) Spherical aberration induced due to third order term in the radial co-ordinate of the 

magnetic field and space charge non-uniformity results in growth of transverse rms 



20 
 

emittance for uniform, Gaussian, parabolic and waterbag beam distributions. Also, 

distortion in phase space due to the energy spread of the beam gives rise to growth 

of rms emittance. 

f) It is found that numerical evaluation of elliptic integrals for electromagnetic 

coupling through small elliptic aperture gives a faster and efficient method for 

aperture coupling problems. Further, this method extends the concept of aperture 

polarizability to include apertures in walls of finite thickness and explains the well-

established zero wall thickness case. 

Finally some future scope of work has been outlined. 

a) Study of photo neutron generation using various target materials is to be carried out. 

b) Thermodynamical studies are to be carried out for heating of the accelerator 

components during high power beam generation and transport. 
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CHAPTER 1 
 

INTRODUCTION 

In pursuit of high energy and high intensity beam that serves as the platform for frontier 

science research, accelerators have been built with cutting edge technology and find 

applications in the field of academic research as well as industry [1]. Accelerator based 

radiation sources allow researchers to probe the structure of a wide range of samples with a 

resolution down to the level of atoms and molecules. The growing interest in accelerator 

beam can be credited to their potential to become standard diagnostic tool in a variety of 

fields of research, both basic and applied research in the chemical, materials, biotechnology 

and pharmaceutical sciences [2]. It is always challenging task to build accelerator facilities 

that require a critical design parameters of the accelerator components along with 

manufacturing precision for high energy requirements. To support the lattice design process 

in particle accelerators, it is essential to study the beam dynamics of charged particles [3] to 

predict the behaviour and quality of beam [4-6] while transporting through accelerator 

cavities and focusing element and minimize the beam loss.  The motivation behind our 

research work on the beam dynamics studies of electron linear accelerator is the development 

of indigenous particle accelerator technology to deliver high quality beam for societal 

applications. 

Owing to their functionality, efficiency and long-term reliability; electron accelerators have 

become more affordable to deliver beams with varying power and energy and are extensively 

used for various scientific and industrial applications [2, 7]. Electron Beams in the energy 

range of 0.1 MeV to 10 MeV find applications for industrial radiation processing like plastic 

modifications, food irradiation, pollution control and medical products sterilizations [2, 7, 8]. 
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Electrons beams in the energy range of 30 to 100 MeV are employed for neutron production 

[2, 9]. Electron linear accelerator based neutron generation facilities are driven by bunches of 

highly relativistic electrons interacting with target materials to generate X- rays and produce 

neutrons by photo-nuclear or photo-fission process. These neutron sources are inherently 

compact, economical, reliable, easy to handle, less hazardous in nature and most suitable for 

applications such as neutron capture and fission cross-section studies, radio-isotope 

production and basic neutron scattering experiments for material science studies [2, 7, 9]. 

Since secondary radiations must be kept to a minimum for safe operation and hands on 

maintenance of the hardware of accelerator, a major concern for these accelerator facilities is 

to prevent the beam hitting the cavity wall of linac for high power beam delivery with low 

emittance value. Further the operation of a high energy electron linac puts stringent demands 

on the peak current, transverse emittance and energy spread of the electron beam. 

Direct experimental studies of the behaviour of the electron beam inside accelerator cavity 

are very difficult. Further, beam diagnostics elements cannot be put at all positions along the 

linac to measure beam characteristics. On the other hand, analytical methods and computer 

simulations provide powerful tools in the beam dynamics studies [5, 10, 11] of linear 

accelerator facilities to understand the behaviour of beam in linacs and predict the beam 

energy, energy spread, beam size and emittance  for high quality beam delivery systems for 

the purpose of scientific researches and societal applications.  

Realizing the tremendous potential of electron beam in tune with the present and future 

scenario [2, 7, 8], Accelerator and Pulse Power Division (APPD), BARC has initiated the 

design and development of various types of industrial electron accelerators. A 10 MeV, 10 

kW standing wave electron linac, a 3 MeV DC linac and a 6 MeV linac for cargo scanning  

are operational at Electron Beam Center, Kharghar, Navi Mumbai for industrial applications. 

Based on the experience gained from available 10 MeV RF linac technology, a programme to 



31 
 

set up an experimental Neutron Facility using a 100 MeV, 100 kW pulsed normal conducting 

electron linac (S band) producing a pulsed neutron flux ~ 1014 n/cm2/s has been taken up. 

This facility consists of an electron Gun, linac cavities, RF power sources, beam diagnostics, 

X ray and neutron target, neutron diagnostics and many other sub systems.  This accelerator 

will be used for nuclear physics studies, generation of neutrons and neutron rich radioactive 

nuclei. In this thesis the lattice design and beam dynamics simulation of a coupled cavity 

standing wave 100 MeV linac [12] and a travelling wave cavity 100 MeV linac [13] have 

been studied and the behaviour of beam in the longitudinal and transverse phase space are 

investigated. The electron beam is tracked in the injector section with the help of ASTRA 

[14] beam dynamics code and after injector section the electron bunches are tracked with 

ELEGANT [15] beam dynamics code up to the end. A four dipole based chicane magnet is 

used to compress the beam for a shorter pulse at the output. 

Further, the beam dynamics of a 30 MeV, 6 kW bi-periodic coupled cavity standing wave 

electron linac under development for the purpose of neutron generation has been studied [16-

18]. To use this linac as an experimental tool as well as to limit the radioactivity and the cost 

of the linac itself, it is highly important for the linac to keep the growth of transverse 

emittance and self field effects a minimum. In order to predict the quality of electron beam 

[6], the electron-tracking code ASTRA [14] that takes the space charge of the beam in to 

account has been used to study the emittance evolution. This study has found the optimized 

beam parameters and the limits of the possible beam quality for different bunched beam.  

The existing 10 MeV electron linac facility [19] is being used for food preservation, medical 

sterilization, semiconductor irradiation, radiography, radiation therapy, etc. In addition, 

bremsstrahlung radiation generated from the electron beam can be employed for studying the 

radiation damage and chemistry of special materials like zirconium and its alloys. Beam 

dynamics studies of the 10 MeV, 10 kW bi-periodic coupled cavity standing wave electron 
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linac have been done [20] and the optimized output parameters are consistent with the 

simulation results of the 10 MeV lattice design [21] and experimental results [22, 23]. This 

study has explored the effects of space charge, input beam size, beam divergence, emittance 

growth, energy spread, behavior of bunch and their effect on the beam quality. 

The coefficient of third order terms of on-axis electric field component gives rise to spherical 

aberration [24]. An expression has been derived for the growth of transverse emittance in an 

RF gap [25] which includes the coupling between the phase spread of the beam and spherical 

aberration and leads to an increase in the beam size. The effect of spherical aberration on the 

solution of beam envelope equation using Lindstedt-Poincare theory [26] has been found and 

the shift in frequency of oscillation of the beam envelope in the RF field is calculated. Also 

coefficient of third order terms in the radial displacement of solenoidal magnetic field 

component gives rise to spherical aberration [27].  In a medium energy beam transport line of 

a 6 MeV linac, effect of spherical aberrations in axial -symmetric focusing lens and influence 

of nonlinear space charge forces [28] on beam emittance growth have been calculated for 

different beam distributions. Further the nonlinear effect associated with chromatic aberration 

[29, 30] that describes the growth of emittance and distortion of phase space area has been 

investigated. 

Earlier formulations [31, 32] for coupling of electromagnetic energy through a small aperture 

in a common wall between two regions are restricted in its application to conducting walls of 

zero thickness. In this thesis, the coupling between two identical resonant cavities by a small 

elliptical aperture in a plane common wall of finite thickness has been expressed in terms of 

electric and magnetic dipole moments and polarizabilities using Carlson symmetric elliptical 

integrals [33]. Carlson integrals [34] have been numerically evaluated and under zero 

thickness approximation, the results match with earlier formulation that involves the 

complete elliptical integrals of first and second kind [35].  Further, Slater’s perturbation 



33 
 

method [36] is applied to electrically and magnetically coupled cavities in order to find the 

frequency changes due to apertures of finite thickness on the cavity wall. 

The analytical and computational results of beam dynamics studies for electron linacs in this 

thesis are organized in the following chapters. In chapter 2, an overview of the linac 

structures and the dynamics of electron bunches in linear accelerators are presented and the 

concepts required in the remainder of the thesis are introduced. Chapter 3 deals with beam 

dynamics study and parametric characterization of a 30 MeV standing wave linac. Chapter 4 

gives the beam dynamics studies of a 10 MeV industrial electron linac and the comparison of 

the experimental results with those of numerical simulations within the limits of experimental 

error. The beam dynamics studies of 100 MeV linac structures are investigated in chapter 5. 

A comparison is made between standing wave linac and travelling wave linac options for 

high quality beam delivery. The following two chapters are dedicated to analytical studies for 

beam dynamics and linac cavity. Chapter 6 presents the analytical calculation for transverse 

emittance growth due to spherical aberration that is result of the  third order terms in the 

electric and magnetic field expansion respectively. Numerical investigation of the aperture 

coupling in resonant cavities and the frequency perturbation analysis is presented in chapter 

7. The last chapter gives summary and conclusions of the studies presented in this thesis and 

future scope of works. 
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CHAPTER 2 

LITERATURE SURVEY 

In this chapter we present a brief review of the literature available on beam dynamics of 

electron Linac. Section 2.1 gives a brief introduction to periodic accelerating structures. 

Section 2.2 discusses the bi-periodic coupled cavity linac. Section 2.3 studies the various 

figures of merits for beam injection and acceleration. Section 2.4 gives a brief introduction to 

co-ordinate system and the design trajectory of a linac. Section 2.5 discusses the equation of 

motion of the particles in the beam. Section 2.6 gives a brief discussion on emittance. Section 

2.7 discusses the effect of space charge on the accelerator beam. Section 2.8 discusses the 

longitudinal particle dynamics in an rf  linac. Section 2.9 gives a discussion on transverse 

particle dynamics in an rf  linac. Section 2.10 discusses the Courant Snyder parameters and 

Hill’s equation. Section 2.11 discusses a brief overview of the concept of aberration in 

charged particle optics. 

 

2.1.   PERIODIC ACCELERATING STRUCTURES 

The Linac technology requires the propagation of electromagnetic waves in transmission 

lines, waveguides, and cavities. There are no truly monochromatic waves in nature. A real 

wave exists in the form of a wave group, which consists of a superposition of waves of 

different frequencies and wave numbers. If the spread in the phase velocities of the individual 

waves is small, the envelope of the wave pattern will tend to maintain its shape as it moves 

with a velocity that is called the group velocity. 

Suppose the phase velocities of component waves are ��/�� and ��/��, where ��and �� 

are frequencies and �� and �� are wave numbers, then the mean phase velocity is defined as  
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�� =
� ��� �

�����
                                                                                                                           (2.1) 

The group velocity is defined as the velocity of the amplitude-modulation envelope, which is 

�� =
� ��� �

�����
                                                                                                                            (2.2) 

The phase velocity at any point on the curve is the slope of the line from the origin to that 

point, and the group velocity is the slope of the dispersion curve, or tangent at that point. 

For an electromagnetic wave to deliver a continuous energy gain to a moving charged 

particle, two conditions must be satisfied [10] :  

(1) the wave must have an electric field component along the direction of particle motion 

and 

(2)  the particle and wave must have the same velocity to maintain synchronism.  

The first condition is not satisfied by electromagnetic waves in free space, but can be satisfied 

by a transverse magnetic wave propagating in a uniform waveguide. However, the second 

condition is not satisfied for a uniform waveguide, because the phase velocity vp>c. The most 

widely used solution for obtaining phase velocity vp<c in linacs has been the use of 

accelerating structures with periodic geometries. A periodic structure has the property that its 

modes are composed of a Fourier sum of waves, some of which are suitable for synchronous-

particle acceleration. 

In a lossless uniform waveguide with azimuthal symmetry, the axial electric field for the 

lowest transverse-magnetic mode, the TM01 mode, is 

��(�,�,�)= ���(��)�
�(�� ����)                                                                                           (2.3) 
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Fig. 2.1 Dispersion curve for a uniform waveguide [10]. 

This describes a wave propagating in the +z direction, with wavenumber �� = 2� ��⁄  , where 

��   is the guide wavelength. 

The uniform waveguide has a dispersion relation �� = (�� )� + (���)
� ,where K is the 

cutoff wavenumber for the TM01 mode, related to the cutoff angular frequency by �� 	= �� . 

Then the phase velocity is �� =
�

��
=

�

� ��(�� )� � �⁄
. 

Because the phase velocity is always larger than c, the uniform guide is unsuitable for 

synchronous-particle acceleration, and the uniform waveguide is modified to obtain a lower 

phase velocity. Converting the uniform guide to a periodic structure perturb the field 

distribution by introducing a z-periodic modulation of the amplitude of the wave, giving a 

TM01 propagating-wave solution of the form �(�,�,�)= ��(�,�)�
�(������)  , where 

��(�,�) is a periodic function with the same period d as the structure.  

There are two basic types of periodic accelerating structures. 

(i) Travelling wave structure  

(ii) Standing Wave Structure 
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A comparative study of both the type of accelerator is given below [37]. 

 

Fig. 2.2 Travelling wave structure [37]. 

The TW structure consists of a cylindrical waveguide that is periodically loaded with 

conducting disks, as schematically shown in Figure 2.2. The microwave power travels in one 

direction, from input to output. Internal reflections from the periodic disks reduce the wave 

phase velocity below the speed of light, enabling particle acceleration as the waves and 

particle bunches travel synchronously down the structure. The unused microwave power at 

the high-energy end is usually coupled into a matched resistive load. TW linacs can be 

designed to operate in either constant impedance or constant gradient modes. If the 

accelerating cavities defined by the disks are identical, then the impedance per unit length is 

constant, and the accelerating gradient decreases as the transmitted power droops. If a 

constant gradient is desired, the diameter of the disk apertures is gradually decreased down 

the structure. For modern TW linacs, the phase advance per cavity is chosen to be 2� 3⁄  (i.e., 

three cavities per wavelength). 

In a SW linac both ends of the structure are effectively shorted, so that electromagnetic waves 

are reflected back and forth resulting in a standing wave pattern (as in a single resonant 

cavity). Both TW and SW structures can be thought of as series of individual resonators that 

are electromagnetically coupled. A TW linac is capacitively coupled through the disk 

apertures, which must be large and thin to obtain adequate coupling. In contrast, the SW linac 
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uses inductive coupling through peripheral slots from one cavity to its neighbors. The spatial 

concentration of the electric field at the electron bunch is therefore better in the SW structure, 

and the transit time characteristics are usually somewhat more favorable. As a result, the rf 

efficiency is significantly higher for a SW waveguide for the same accelerating gradient, 

although the SW cavity surfaces must be machined with greater precision. 

The TW structure is somewhat less complex, and usually less expensive per unit length to 

fabricate. It does not require an isolator or circulator, since it is a matched device, but it does 

require both input and output couplers. The larger radius apertures permit a somewhat higher 

beam current. On the other hand, since the cavities are much more tightly coupled, the SW 

accelerator is much more stable in phase with respect to temperature variations, and has much 

less tuning sensitivity. For applications in which physical space and rf power efficiency are 

important, and beam stability is essential, the SW accelerator offers a number of advantages, 

and it has become the linac structure of choice for most irradiation applications. 

2.2.   COUPLED CAVITY LINACS AND BIPERIODIC STRUCTURE 

The coupled-cavity linac or CCL (Fig. 2.3 ) consists of a linear array of resonant cavities, 

coupled together to form a multicavity accelerating structure. The CCL is used for 

acceleration of higher velocity beams of electrons and protons in the typical velocity range 

0.4<β<1.0. The individual cavities are sometimes called cells, and each cell usually operates 

in a TM010-like standing-wave mode. CCL structures provide two accelerating gaps per βλ. 

Most of the properties of the CCL can be understood from a model of N+1 coupled electrical 

oscillators [38]. There will be N+1 normal modes of the system, each with a characteristic 

resonant frequency and a characteristic pattern of the relative amplitudes and phases for the 

different oscillators. The properties of these N+1 normal modes can be determined by solving 

an eigenvalue problem. This is done in the following way. Kirchoff’s law is applied to the 

N+1 circuits, and the sum of the voltages around each loop is set to zero. The resulting N+1 
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simultaneous equations are solved for the eigenfrequencies and the corresponding 

eigenvectors. The eigenvector components give the currents in the individual oscillators for 

each normal mode. 

The π/2 normal mode of a chain of coupled oscillators has unique properties that would be 

especially important when the number of cells is large. It would be attractive to use this mode 

for a linac if we could devise a suitable geometry satisfying a synchronous condition for the 

particles, and resulting in high shunt impedance. To ensure synchronism in the π/2 normal 

mode in a periodic array of cavities, one can choose the cavity lengths so that the spacing 

between sequential excited cavities is βλ/2 corresponding to half an RF period. This gives the 

configuration shown in Fig. 2.4. 

2.3.   FIGURES OF MERITS FOR LINACS 

There are several figures of merit that are commonly used to characterize accelerating 

cavities, and we will define them in this section. Some of these depend on the power, which 

is dissipated because of electrical resistance in the walls of the cavities.  

The well-known quality factor of a resonator is defined in terms of the average power loss P 

as     �� =
� ��

��
                                                                                                                      (2.4) 

The shunt impedance is a figure of merit that is independent of the excitation level of the 

cavity and measures the effectiveness of producing an axial voltage V0 for a given power 

dissipated. The shunt impedance rs of a cavity is usually expressed in megohms, and is 

defined by [10] 

�� =
��
�

�
                                                                                                                                   (2.5) 
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Fig. 2.3 Coupled Cavity Linacs  [37]. 

 

(a) π/2 mode of periodic structure 

 

(b) Biperiodic on-axis-coupled structure 

 

(c) Biperiodic side-coupled structure 

Fig. 2.4  π/2 mode like operation of a cavity resonator chain [10]. 
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In an accelerating cavity we are really more interested in maximizing the particle energy gain 

per unit power dissipation. Consequently,we define an effective shunt impedanceof a cavity 

as 

� =
(���)

�

�
= ���

�                                                                                                                  (2.6) 

This parameter in megohms measures the effectiveness per unit power loss for delivering 

energy to a particle. For a given field both �� = ��� and P increase linearly with cavity 

length, as do both � and �� . For long cavities we use a figure of merit  called shunt impedances 

per unit length, that is independent of both the field level and the cavity length., Z, is  

� ≡
��

�
=

��
�

� �⁄
                                                                                                                          (2.7) 

The effective shunt impedance per unit length is 

��� =
�

�
=

(���)
�

� �⁄
                                                                                                                   (2.8) 

Another useful parameter is the ratio of effective shunt impedance to Q, often called r over Q, 

�

�
=

(���)
�

��
                                                                                                                              (2.9) 

At sufficiently high fields, room-temperature copper cavities will suffer electric breakdown 

or sparking. The mechanism  may be initiated by electron field emission and it has been 

suggested that protons, originating on the surfaces or perhaps from hydrogen in the residual 

gas, are involved in the discharge. Kilpatrick [39] analyzed the data on RF breakdown, and 

defined the conditions that would result in breakdown-free operation. The Kilpatrick results 

were expressed in a convenient formula by T. J. Boyd [40] given as 

�(���)= 1.64��
����.� ��⁄                                                                                                 (2.10) 
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Where f  is the frequency, and Ek in megavolts per meter is known as the Kilpatrick limit. 

2.4.     CO-ORDINATE SYSTEM AND PHASE SPACE OF A PARTICLE 

 A beam transport of accelerator system has a specified design trajectory [41]. This 

configuration is shown in Figure 2.5. The distance along this design trajectory is given by the 

independent variable s. There also exists the synchronous particle, which has a specified 

design velocity v(s) at each point s on the design trajectory. The relative velocity β=v/c and 

relativistic parameter γ=1/(1-β2)1/2 are always given with respect to this design velocity, 

unless otherwise noted. With respect to the synchronous particle, we construct a system of 

coordinates (x,y,z), that is, the synchronous particle is at the origin. The coordinates x,y,z 

represent displacements from the synchronous particle in the x, y, z directions, respectively. 

Locally, the z-coordinate is always aligned with the design trajectory. Specifically, the 

tangent vector of the design trajectory always points in the z-direction. Thus, the xy-plane 

represents the transverse plane while the z-direction is the longitudinal direction of beam 

propagation (in a local sense). Note that the coordinates (x,y,z) are not the inertial frame of 

the beam, they are laboratory coordinates that follow the beam. 

                          

Fig. 2.5 Design trajectory and co-ordinate system [41]. 
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The phase space (or state space) of the particle is defined by considering the momenta 

(x',y',z') normalized with respect to the synchronous particle. Let p(s)=γmv(s) represent the 

mechanical momentum magnitude of the synchronous particle. Then the x and y plane 

relative momentum x' and y' are given by 

�� ≡
��

��
=

��

�
=

���̇

���
 ̇                                                                                                           (2.11) 

�� ≡
��

��
=

��

�
=

���̇

���
 ̇                                                                                                           (2.22) 

For the z plane the situation is different since the coordinate z is defined to be the difference 

in longitudinal position from the synchronous particle, which is travelling at velocity v. 

Therefore, 

�� ≡
��

��
= lim∆�→ �

∆�

∆�
= lim∆�→ �

∆�∆�

∆��
=

∆�

�
                                                                         (2.23) 

Where ∆� is the difference in velocity � of the synchronous particle, Δβ is the difference in 

normalized velocity, Δp is the difference in longitudinal momentum p of the synchronous 

particle, and the last equality comes from relativistic mechanics. 

The complete set of phase space coordinates for a particle, including both position and 

normalized momentum, at location sis given by (x,x',y,y',z,z';s). This coordinate space, 

specifically with the normalized momenta x', y', and z', is also commonly called trace space. 

2.5.      EQUATION OF MOTION 

The force on a point charge q in an electromagnetic field, called the Lorentz force is given by 

� = �(� + (� × �))                                                                                                          (2.24) 

This equation is valid for static as well as time-dependent fields. The field vectors E and B 

obey Maxwell’s equations, which can be written for charged particle motion in vacuum as 
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�.� =
�

��
 , .� = 0 , � × � = −

��

��
 , � × � = ���+

�

��
��

��
                                                 (2.25) 

Where c is the speed of light. ∈� and ��  are the permittivity and permeability of free space 

respectively. 

The current density J and the space charge density ρ satisfy the continuity equation 

�.�+
��

��
= 0                                                                                                                       (2.26) 

The motion of a particle due to the Lorentz force of Equation (2.24) is determined by 

Newton’s equation 

��

��
= � = �(� + (� × �))                                                                                                 (2.27) 

Where P is the mechanical momentum and for relativistic mechanics =
��

���
��

��

 . 

We can write = ��� , where � =
�

� ����
  is the Lorentz factor and � = �/� is the ratio of the 

particle velocity � to speed of light in vacuum �. 

Substitution of the expression in equation of motion gives the relativistic equation of motion 

as [28] 

��
��

��
+ ��

��

��
= � = �(� + (� × �))                                                                             (2.28) 

Solving for the acceleration = ��/�� , we can  equation (2.28) in the form 

� =
��(�.�)�

�
                                                                                                                        (2.29) 

The main task of charged particle dynamics is to determine the particle motion by solving 

Newton’s equation for a given configuration of fields E and B. A special difficulty arises in 
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high-intensity beams, where the fields depend also on the particles’ electric and magnetic self 

fields, which in turn depend on the particles’ motion. 

Equation (2.28) is a vector equation that consists of a set of three second-order coupled 

differential equations. In cartesian coordinates these equations are of the form 

�

��
(���)̇= �	̇�� +̇ ��� =̈ ���� + �̇�� − �̇���  

�

��
(���̇)= �	̇��̇ + ���̈ = ���� + �̇�� − ��̇��                                                             (2.30) 

�

��
(���̇)= �	̇��̇ + ���̈ = ���� + ��̇� − �̇���  

 

In cylindrical coordinates(�,�	,�), the velocity vector is given by = ��,̇��,̇�̇� , and the 

equations of motion take the form 

�

��
(���)̇− �����̇ = ���� + ���̇� − �̇���  

�

�

�

��
�������̇= �(�� + �̇�� − ��̇�)                                                                                  (2.31) 

�

��
(���̇)= ���� + ��̇� − ���̇��   

2.6.  BEAM EMITTANCE 

In practice, the velocity spread of the beam from a given source may be considerably greater 

than the ideal thermal limit since many factors, such as temperature fluctuations in a plasma 

source, nonlinear forces (aberrations) due to the external or space-charge fields, and 

instabilities lead to a deterioration of the beam quality. The emittance provides a quantitative 

basis, or a figure of merit, for describing the quality of the beam [42]. It is closely related to 
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two-dimensional projections of the volume occupied by the ensemble of particles in six-

dimensional phase space as defined by the set of canonical coordinates (qi, pi). 

Most beams of practical interest have two planes of symmetry or are circularly symmetric. 

For the following discussion, assume that the beam propagates in the z-direction and has two 

planes of symmetry (x–z and y–z). The motion of each individual particle is defined by the 

three space coordinates(x, y, z) and the three mechanical momentum coordinates (Px,Py,Pz) 

at any given instant of time. An ensemble of particles forms a beam if their momentum 

component in the longitudinal direction is much larger than the momentum component in the 

transverse directions (i.e., in our case of cartesian coordinates if Px << Pz, Py << Pz). If the 

length of the beam is much greater than the diameter, we can treat the distribution as a 

continuous beam. On the other hand, if the length is comparable to the diameter, we deal with 

bunched beams. 

We consider a particle in the x–z plane with total momentum � = ���
� + ��

��
�/�

, where 

�� ≤ �� ≈ �. The slope of the trajectory is by definition �’		= ��/��= �̇�̇⁄ ≈ �� �⁄ . At any 

given distance z along the direction of beam propagation, every particle represents a point in 

x–x’ space, known as trace space. The area occupied by the points that represent all particles 

in the beam �� = ∫�����  is related to the emittance of the beam. However, the definition 

that the trace space area as emittance does not distinguish between a well-behaved beam in a 

linear focusing system and a beam with the same trace-space area but a distorted shape due to 

nonlinear forces [28]. 

We prefer, therefore, a definition of emittance that measures the beam quality rather than the 

trace-space area. A measure of the beam quality is the product of the beam’s width and 

divergence, where the divergence relates to the random (or thermal) velocity spread. To be 
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mathematically more precise, we will use the moments of the particle distribution in x–x’ 

trace space, �����,�������,�������� to define an rms emittance ∈��   by 

∈�� = ������	�������− ���������
�/�

                                                                                                     (2.32) 

The term �������� reflects a correlation between x and x’ which occurs, for instance, when the 

beam is either converging (e.g., after passing through a lens) or diverging (e.g., after passing 

through a waist); it is zero at the waist of an ideal uniform beam. The rms emittance provides 

the desired quantitative information on the quality of the beam. For the ideal uniform beams 

with linear focusing forces we call x the width, x’ the divergence, and ∈��  the emittance of the 

beam. The units of measurement for emittance are m-rad. However, since the typical widths 

and divergence angles of beams are in the range of mm (or cm) and milli radians, 

respectively, it is customary to use units of mm-mrad or cm-mrad. Also, the normalized 

longitudinal emittance is often given in units of “electronvolt-seconds”. 

Moreover, if there is no acceleration or deceleration (��=const), the area Ax in x–x’ trace 

space is also conserved. However, if there is an energy change (i.e. ��	≠  const), Ax and, the 

emittance ∈�� , do not remain constant, the change being inversely proportional to 

��	according to Liouville’s theorem . For this reason, we introduce the normalized rms 

emittance 

∈�� = ��� ̃                                                                                                                            (2.33) 

For beams in particle accelerators, the normalized emittance is a more useful quantity than 

the unnormalized emittance since in an ideal system (linear forces, no coupling) it remains 

constant. An increase of the normalized emittance is usually an indication that nonlinear 

effects causing a deterioration of beam quality are present in the system. 
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2.7.  SPACE CHARGE EFFECT ON BEAM 

The Coulomb effects in linacs are usually most important in non-relativistic beams at low 

velocities, because at low velocities the beam density is larger, and for relativistic beams the 

self-magnetic forces increase and produce a partial cancellation of the electric Coulomb 

forces. The net effect of the Coulomb interactions in a multiparticle system can be separated 

into two contributions. First is the space-charge field, the result of combining the fields from 

all the particles to produce a smoothed field distribution, which varies appreciably only over 

distances that are large compared with the average separation of the particles. Second are the 

contributions arising from the particulate nature of the beam, which includes the short-range 

fields describing binary, small impact-parameter Coulomb collisions. Typically, the number 

of particles in a linac bunch exceeds 108, and the effects of the collisions are very small 

compared with the effects of the averaged space-charge field [43]. 

The disadvantage of the space-charge fields is not only that they reduce the effective focusing 

strength, but also the nonlinear terms, a consequence of the deviations from charge-density 

uniformity, cause growth of the rms emittances, which degrades the intrinsic beam quality. 

One consequence of space-charge-induced emittance growth is the formation of a low-

density beam halo surrounding the core of the beam, which can be the cause of beam loss, 

resulting in radioactivation of the accelerating structure 

 To describe the space-charge field, we need to understand the properties of an evolving 

particle distribution, which requires a self-consistent solution for the particles and the 

associated fields. This is a problem, which has been formulated in terms of the coupled 

Vlasov–Maxwell equations, for which there are no generally successful analytic solutions in 

a linac, and computer simulation is the most reliable tool. Even the most advanced computer 

codes can use only a relatively small number of macroparticles to represent the actual particle 

distribution in a beam and to thereby “simulate” the effects of the mutual interaction between 



49 
 

the particles. Such codes, tracing thousands of macroparticles, have become indispensable 

tools for the study of beam physics and for the design of charged-particle beam devices in 

which self-field effects are important. 

In most practical beams, however, the collisional force is a relatively small effect, and the 

mutual interaction between particles can be described largely by a smoothed force in which 

the “graininess” of the distribution of discrete particles is washed out. The space-charge 

potential function in this case obeys Poisson’s equation, and the resulting force can be treated 

in the same way as the applied focusing or acceleration forces acting on the beam. A measure 

for the relative importance of collisional versus smoothed interaction, or single-particle 

versus collective effects, is the Debye length, λD, a fundamental parameter in plasma physics 

that can also be applied to charged particle beams. Debye length in a relativistic beam is  

�� =
���

� �
= �

��������
�

���
�
�/�

                                                                                                   (2.34) 

Where ���   is the rms random velocity and ��  is the plasma frequency. 

If the Debye length is large compared with the beam radius (λD>>a), the screening will be 

ineffective and single-particle behaviour will dominate. On the other hand, if the Debye 

length is small compared to the beam radius (λD<<a), collective effects due to the self fields 

of the beam will play an important role. 

When self-field effects dominate the beam physics (i.e., when λD<<a), it is convenient for the 

mathematical analysis to neglect the thermal velocity spread altogether and use a laminar-

flow model for the beam. In laminar flow, all particles at a given point are assumed to have 

the same velocity, so that particle trajectories do not cross. With collisions neglected, 

Liouville’s theorem that expresses continuity of particles in phase space, is 
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��

��
=

��

��
+ �.̇

��

��
+ �̇.

��

��
= 0                                                                                                (2.35) 

Where �(�,�,�) is the particle density in phase space. 

Expressing �̇ in terms of the sum of the external fields plus the smoothed self fields yields the 

Vlasov equation, [43] also known as the kinetic equation, or the collisionless Boltzmann 

equation 

��

��
+

�

��
.
��

��
+ � �� +

(�×�)

��
� .

��

��
= 0                                                                            (2.36) 

The Vlasov equation and Maxwell’s equations form a set of closed equations, which 

determine the self-consistent dynamics of a distribution of charges satisfying Liouville’s 

theorem.  

2.8.  NUMERICAL SPACE CHARGE CALCULATION 

Beam-dynamics codes used for simulation of intense linac beams normally include a 

subroutine for calculating the space-charge forces. In principle the effects of space-charge 

can be calculated by adding the Coulomb forces between all the particles. However, to 

represent bunches with a typical number of particles near 108 or more, this approach is 

impractical. Several methods for calculating space-charge forces have been developed [44]. 

The first method is based on the assumption of linear space charge forces. Linear space-

charge forces allow the use of analytical and matrix methods resulting in a significant 

simplification, but imply a uniform density distribution, which is rarely the case for a real 

beam. However, it has been discovered by [45, 46] that for ellipsoidal bunches, where the 

rms emittance is either constant or specified in advance, the evolution of the rms beam 

projections is nearly independent of the density profile. This means that for calculation of the 

rms dynamics, the actual distribution can be replaced by an equivalent uniform beam, which 

has the same rms values. 
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2.8.1 RMS ENVELOPE EQUATION WITH SPACE CHARGE 

Following the early work of [45, 46], the rms envelope equation that expresses the equation 

of motion of the rms beam size is given by 

��� + ��
�� −

��
�

��
−

�

�
= 0                                                                                                     (2.37) 

The second term is the focusing term, and the third term is the emittance term. The emittance 

term is negative and is analogous to a repulsive pressure force acting on the rms beam size. 

The last term in the above equation is the repulsive space-charge term. 

For a three-dimensional uniform ellipsoid describing a typical linac bunch, the rms envelope 

equations are 

��
�� + ��,�

� �� −
��,�
�

��
� −

���(���)

���������
= 0  

��
�� + ��,�

� �� −
��,�
�

��
� −

���(���)

���������
= 0                                                                                  (2.38) 

��
�� + ��,�

� �� −
��,�
�

��
� −

����

����
= 0  

Where we have defined a three-dimensional space-charge parameter �� =
���

��√�����������
 , 

� = ��� �⁄  is the average current over an rf period, N is the number of particles per bunch, λ 

is the RF wavelength. The quantity f is an ellipsoid form factor and is a function of the 

parameter = ��� � ����⁄  . The semi axes ri are related to the rms beam sizes ai by 

 �� = √5��	, � = �,�,�                                                                                                   (2.39) 
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2.8.2 EMITTANCE GROWTH FROM SPACE CHARGE 

Beams that are in equilibrium in the focusing channel of a linac experience no emittance 

growth. Unfortunately, beams observed in linac numerical simulations are rarely in 

equilibrium, and when they appear to be near equilibrium, any changes that occur in the 

focusing system produce changes in the beam, usually accompanied by emittance growth. 

Nonlinear forces that act on a nonequilibrium beam will cause the rms emittance to increase. 

Four different space-charge mechanisms [47] are responsible for emittance growth. First, 

when a high current, rms-matched beam is injected into the accelerator, the emittance can 

grow very rapidly as the charges redistribute to provide shielding of the external focusing 

field. This mechanism, called charge redistribution, is the fastest known emittance-growth 

mechanism, producing growth in only one quarter plasma period. Second, if the injected 

beam is not rms matched, additional energy from the mismatch oscillations of the beam is 

available for emittance growth. Even for relatively small mismatches, this mechanism can 

become the largest contributor to emittance growth. Third, for non-symmetric or anisotropic 

beams, there can be emittance transfer as a result of space-charge resonances that couple 

longitudinal and transverse oscillations, where in some cases the kinetic energies in the three 

planes may approach an approximate equalization, sometimes referred to as equipartitioning. 

In such cases, the emittance grows in a plane that receives energy, and decreases in a plane 

that looses energy. Finally, the periodic focusing structure can resonantly excite density 

oscillations in the beam, the most serious of which is the envelope instability. 

 

2.9.  LONGITUDINAL PARTICLE DYNAMICS IN RF LINAC 

The Longitudinal dynamics is provided by an appropriate choice of the phase of the 

synchronous particle relative to the crest of the accelerating wave. A longitudinal restoring 

force exists when the synchronous phase is chosen corresponding to a field that is rising in 
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time, as shown in Fig. 2.6. The early particles experience a smaller field and the late particles 

a larger field than the synchronous particle. The accelerated particles are formed in stable 

bunches that are near the synchronous particle. Those particles outside the stable region slip 

behind in phase and do not experience any net acceleration.  

We consider an array of accelerating cells (Fig. 2.7), containing drift tubes and accelerating 

gaps, designed at the nth cell for a particle with synchronous phase ��� , synchronous energy 

� ��, and synchronous velocity ���.We express the phase, energy, and velocity of an arbitrary 

particle in the nth cell as �� , � �  and �� . The particle phase in the nth cell is defined as the 

phase of the field when the particle is at the centre of the nth gap, and the particle energy for 

the nth cell is the value at the end of the nth cell at the centre of the drift tube. 

                            

Fig. 2.6 Stable Phase Oscillation [10].  

            

Fig. 2.7 The  Longitudinal Motion in Accelerating cells [10]. 
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We assume that the synchronous particle always arrives at each succeeding gap at the correct 

phase, and we consider particles with velocities that are close enough to the synchronous 

velocity that all particles have about the same transit-time factor. We now investigate the 

motion of particles with phases and energies that deviate from the synchronous values. 

The RF phase changes as the particle advances from gap n−1 to gap n according to the 

expression [10] 

�� = ���� + �
�����

�����
+ �

�	���	�	����
0	���	0	����

�                                                                           (2.40) 

where the half-cell length is ���� = ���,���
�
2�  with  � = �

�

�
	���	�	����

1	���	0	����
� 

The phase change during the time an arbitrary particle travels from gap n–1 to gap n relative 

to that of the synchronous particle is 

∆(� − ��)� = −2��
�� ����� �,����

�����,���
� ��,���

�                                                                                   (2.41) 

The difference equation for the energy change of a particle relative to that of the synchronous 

particle is  

∆(� − � �)� = �����cos�� − cos��,��                                                                         (2.42) 

Equations (2.41) and (2.42) form two coupled difference equations for relative phase and 

energy change of a standing wave linac that can be solved numerically for the motion of any 

particle. 

To study the stability of the motion, we convert the difference equations to differential 

equations and replace the discrete standing-wave fields by a continuous field. Then the 
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coupled difference equations, Equations (2.41) and (2.42) become the coupled differential 

equations 

��
���

� �(� �� �)

��
= −2�

(� �� �)

����
                                                                                               (2.43) 

�(� �� �)

��
= ����(cos� − cos��)                                                                                      (2.44) 

Combining these two equations, we get a nonlinear second-order differential equation for the 

phase motion as 

 ��
���

� �
�(� �� �)

���
+ 3��

���
� �

�����

��
� �

�(� �� �)

��
� + 2�

����

����
(cos� − cos��)= 0                     (2.45) 

Because phase is proportional to time, the more negative the phase, the earlier the particle 

arrival time relative to the crest of the wave. The phase difference (� − ��) between a 

particle and the synchronous particle is proportional to a spatial separation 

�− �� = −
��

��
(� − ��)                                                                                                     (2.46) 

We assume that the acceleration rate is small, and that ���, �� and �� are constant 

In case of an electron linac, after beam injection into electron linacs, the velocities approach 

the speed of light so rapidly that hardly any phase oscillations take place. The electrons 

initially slip relative to the wave and rapidly approach a final phase that is maintained all the 

way to high energy. The final energy of each electron with a fixed phase depends on the 

accelerating field and on the value of the phase. 

We introduce the following notation � ≡ �� =
� �� �

���
 , � ≡

��

��
���

��
 , � ≡

����

���
 , such that 

� � ≡
��

��
= �(cos� − cos��)                                                                                           (2.47) 
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� � ≡
��

��
= −��                                                                                                                  (2.48) 

� �� ≡
���

���
= −��(cos� − cos��)                                                                                   (2.49) 

Integrating the equation (2.49), we get 

�� � = −��(cos� − cos��)��                                                                                        (2.50) 

With = �� �′⁄  , and multiplying the equation (2.50) by �′ ,  and integrating we get  

�� �

�
+ �(sin� − � cos��)= ��                                                                                       (2.51) 

Where �� 	is the Hamiltonian. The first term of Eq. (2.51) is a kinetic energy term, and the 

second is the potential energy. The potential energy is 

�� = �(sin� − � cos��)                                                                                                 (2.52) 

The constant ��  depends on the initial conditions  (∆��,��) and is readily evaluated for any 

given set of the parameters ��	,�� , λ, E0, �� , and q/m. 

For each value of ��  , Equation (2.52) gives a possible trajectory in the �� − �  phase plane 

[28]. Several such trajectories are shown in Fig. 2.8.  

With the choice of the synchronous phase �� < 0  in the figure we see that the particle 

motion is stable provided that the initial conditions are within the so-called separatrix. 

Separatrix is the limiting stable trajectory that passes through the unstable fixed point at 

�� = 0  and � = −�� . Inside the separatrix, particles move on closed curves in a counter-

clockwise direction, as illustrated in the Fig. 2.8. 

Particles whose initial phase and/or energy values are outside the separatrix will not be 

trapped and accelerated by the wave. They move on unstable trajectories similar to the one 
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shown in Fig. 2.8. Thus the separatrix, also known in the literature as the rf bucket, separates 

the stable from the unstable trajectories. As shown in Fig. 2.8, the separatrix intersects the 

positive side of the � -axis at the point ���� = −�� , where �� < 0  represents the 

synchronous phase. 

 Setting = −�� , ∆� = 0  in Equation (2.51) yields the value 

�� = �(sin(−��)− (−��)cos(−��))  

Or  

�� = −�(sin�� − �� cos��)                                                                                           (2.53) 

that defines the trajectory for the separatrix. 

 We find that points on the separatrix must satisfy 

�� �

�
+ �(sin� − � cos��)= −�(sin�� − �� cos��)                                                    (2.54) 

The separatrix defines the area within which the trajectories are stable, and it can be plotted if 

the constants A and B are given. In common accelerator jargon, the separatrix is also called 

the fish, and the stable area within is called the bucket. There are two separatrix solutions for 

w=0, which determine the maximum phase width of the separatrix. One solution is �� = −�� 

which is a positive number for stable motion because �� is negative, and this point gives the 

maximum phase for stable motion. 

The point at � = �� and � = 0 is the other solution that gives the minimum phase for stable 

motion. The equation for the separatrix for this case becomes 

(sin�� − �� cos��)= (�� cos�� − sin��)                                                                    (2.55) 

and this can be solved numerically for  ��(��). 
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Fig. 2.8 At the top, the accelerating field is shown as a cosine function of the phase. 

The middle plot shows longitudinal phase-space trajectories, including the separatrix. 

The longitudinal potential well has its minimum as shown in the bottom plot [10]. 
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The total phase width of the separatrix is 

� = |��|+ |��|= −�� − ��                                                                                            (2.56) 

Then sin�� = −sin(�� + � )= −(��������� + ������� ��)                                      (2.57) 

Substituting equation (2.57) into equation (2.55), we get 

����� =
������

������
                                                                                                                  (2.58) 

When � ≪ 1 and �� ≪ 1 , ���� = � − � � 6⁄ + ⋯  , cos� = 1− � � 2⁄ + ⋯ ,  we get   

����� ≅ −
�

�
, which is a good approximation even up to �� ≈ 1. 

With �� = �� , we have � = 3|��| , �� = 2��.   At   �� = −90° , the phase acceptance is 

maximum, extending over the full 360° and there is no acceleration as shown in Fig. 2.9. 

 

                       

Fig. 2.9 Separatrix for ϕ� = −90° [10]. 
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2.10. TRANSVERSE PARTICLE DYNAMICS 

2.10.1 TRANSVERSE RF FOCUSSING AND DEFOCUSSING 

As can be seen from the electric-field lines in Fig. 2.10, when off-axis particles enter a gap 

and are accelerated by a longitudinal RF electric field, they also experience radial RF electric 

and magnetic forces. At first it might be thought that the oppositely directed radial electric 

forces in the two halves of the gap will produce a cancellation in the total radial momentum 

impulse. On closer examination, it is found that generally there will be a net radial impulse, 

which occurs as a result of three possible mechanisms: 

(1) the fields vary in time as the particle cross the gap;  

(2) the fields also depend on the radial particle displacement, which varies across the 

gap;            

(3) the particle velocity increases, while the particle crosses the gap, so that the particle  

does not spend equal times in each half of the gap.   

                   

Fig. 2.10 Electric Field Lines in an RF Gap [10]. 

For longitudinal stability we have seen that �� must be negative; which means the field is 

rising when the synchronous particle is injected. This means that most particles experience a 
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field in the second half of the gap that is higher than the field in the first half, resulting in a 

net defocusing force. This corresponds to mechanism (1), and for ion linacs this is the 

dominant effect, known as the RF-defocusing force. Mechanisms (2) and (3) are relatively 

more important in electron linacs than in most proton linacs. 

As a consequence of Earnshaw’s theorem and Laplace equation, if the longitudinal forces 

provide focusing at a given point, the two transverse-force components cannot both be 

focusing at the same point.  

2.10.2 RADIAL IMPULSE NEAR THE AXIS IN AN ACCELERATING GAP 

Assuming that for the mode of interest ��, ��, ��  are the only nonzero field components, 

the nonzero components of Maxwell’s equations are   

               
�

�

�(���)

��
+

���

��
= 0                        from    (∇.� = 0)    

             
���

��
−

���

��
= −

���

��
                         from  (∇ × �)� = −

���

��
                              (2.59) 
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We assume that near the axis, �� is approximately independent of  r, then 

�� = −
�

�
��                                                                                                                     (2.60) 

�� =
�

���
���

��
                                                                                                                    (2.61) 

We assume that the standing-wave electric-field solution for ��  near the axis looks like 

��(�,�,�)= ��(�)cos	(��+ �)                                                                                    (2.62) 

If we look at the shape of the amplitude ��(�) in a typical accelerating gap, shown in Fig. 

2.11, we see that when �� is increasing with respect to z at the beginning of the gap, �� is 

negative, which implies radial focusing. When �� is decreasing with respect to z at the end of 
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the gap, ��  is positive, which implies radial defocusing. These results are in accordance with 

Eq. (2.60). 

                              

Fig. 2.11 Longitudinal and radial electric fields in an RF gap [10]. 

If the field is rising in time, as is necessary for longitudinal focusing, the defocusing field 

experienced by a particle at the exit will be larger than the focusing field at the entrance. But, 

especially for very low velocities when there are large velocity changes in the gap, the 

particle spends less time in the exit half of the gap than in the entrance half. This can give rise 
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to a net focusing impulse, which is called electrostatic focusing, because it is the same 

focusing mechanism that is the basis for electrostatic lenses. 

2.10.3 COURANT SNYDER PARAMETERS AND HILL’S EQUATION 

The motion of a charged particle in the transverse planes, x(s) and y(s), can to a good 

approximation be considered as decoupled, so that one can write separate equations for each 

plane. The motion in the horizontal plane is described by the equation [48, 49] 

�

�(�)

�

��
��(�)

��

��
� + ��(�)�(�)=

�

�(�)

��(�)

�(�)
                                                                          (2.63) 

where x is the horizontal offset of the particle from the design trajectory at the longitudinal 

position s, � = �
����
�  is the relativistic factor , ρ(s) the bending radius at the location s. p is 

the particle design momentum and  Δp is the momentum deviation. Kx(s) is a function 

describing the focusing strength of the magnets at the position s. 

A similar equation can be written for the vertical offset, y. In the following we will denote by 

x the transverse particle offset, which can be either horizontal or vertical, unless otherwise 

specified. In the absence of acceleration, the γ factors cancel. In a linear accelerator, when not 

taking into account alignment errors and steering magnets, � = ∞  and the right-hand part of 

the equation vanishes. 

From equation (2.63) the particle position and slope, x and x’, can be obtained as a linear 

transformation from the initial values, �� and ��
�  . Transfer matrices can be used to track the 

motion through various sections of the accelerator: 

�
�
�′
�
��
= � �� �

�
�′
�
��

                                                                                                           (2.64) 

where M12 is the transfer matrix in the x plane from position s1 to position s2 in the 

accelerator . A matrix can be written for each component of the accelerator, so that M12 is 
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itself a product of matrices. The transfer matrices for common accelerator components can be 

found, for example, in [49]. 

The solution of the equation of motion (2.63) can be written in terms of the Twiss parameters, 

�� , ��  and a phase function μ: 

�(�)= � ∈ ��(�)cos(�(�)− ��)                                                                                       (2.65) 

��(�)= −�
∈

��(�)
[��(�)cos(�(�)− ��)+ sin(�(�)− ��)]                                                (2.66) 

��(�) is called the beta function and the other Twiss parameters can be derived from it. 

��(�)= −
�

�

���(�)
��
�  describes the convergence or divergence of the trajectory at the  

position s.  �(�)= ∫ ��
��(�)
�

�

�
 is the betatron phase advance and  �� = �(0) . ∈  is a constant 

describing the amplitude of the particle oscillations. From these equations it can be seen that 

particles execute   betatron oscillations  around the ideal trajectory. From the trigonometric 

relation ����(�)+ ����(�)= 1 for any argument ξ, one finds from equations (2.65) and 

(2.66), an invariant of motion, the so-called Courant-Snyder invariant: 

��(�)��(�)+ 2��(�)�(�)��(�)+ ��(�)��	�(�)= � = �	��������                                     (2.67) 

This equation defines the trajectory of one particle in the phase space (x, x’) as being an 

ellipse. The area of this ellipse is � ∈. 

For a bunch having many particles one can define an emittance with the help of the second-

order moments of the particle distribution [4] 

�����=
�

�
∑ ��(��− �)̅��  , �′�����=

�

�
∑ ����′�− �′��

�

�  , ��′����=
�

�
∑ ��(��− �)̅��′�− �′���           (2.68) 
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In equation (2.68) � ̅, �′�   are the average position and angle of the bunch, �� is the charge of 

the particle i and � = ∑ ���  . 

Of course, a bunch is normally made of identical particles. But to calculate the position and 

trajectory slopes of, for example, 1010 particles along a long accelerator would be impossible. 

Therefore it is practical to group many particles together in macro-particles or slices, often 

with different charges. 

RMS emittance ∈��   is defined as  ∈�� = ������	�������− ���������
�/�

                                              (2.69) 

The position and angles of the particles of a bunch can be represented in the transverse phase 

space (�	,�’	) . The ellipse defining the emittance can be seen. The beam transverse 

dimension and divergence can then be derived from the parameters of the ellipse, using the 

emittance and beta function. 

                

Fig. 2.12 Transverse phase space of a bunch. 
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The beta function at a certain point depends on the initial Twiss parameters and emittance. A 

lattice often used in high energy accelerators is the FODO cell. This consists of a focusing 

quadrupole (F), a drift space (O), a defocusing quadrupole (D) and another drift space (O). 

2.11. ABERRATION IN LENSES 

In practice, perfect lenses do not exist as nonlinearities in the focusing fields, and other 

effects cause imperfections or aberrations. These aberrations can be classified according to 

the source by which they are caused, as follows: (1) geometrical aberrations (spherical 

aberration, coma, curvatures of field, astigmatism, and distortion of the barrel, pin cushion, or 

rotational type); (2) chromatic aberrations(due to energy spread in the beam); (3) space-

charge effects; (4) diffraction(limits resolutions of electron microscopes); and (5) 

imperfection[such as mechanical misalignments, fluctuations (ripple) in the voltages and 

currents supplying the electric and magnetic lens elements, etc.]. 

In an ideal lens, all particles leaving a point ��	,��	 in the object plane will arrive at the same 

point ��	,��	  in the image plane. When aberrations are present, this is no longer the case, and 

particles emerging from an object point ��	,�� with different initial angles will arrive at 

different points  ��+ ∆��	,��+ ∆��			  in the image plane. We will  briefly discuss two types of 

aberrations that are of particular importance: the spherical aberration and the chromatic 

aberration. 

2.11.1 SPHERICAL ABERRATION 

The spherical aberration is a geometrical aberration that arises from third-order terms 

(��,���� , - etc) that are neglected in the paraxial ray equation. We note that �� terms are 

excluded by symmetry since the radial forces on a particle must change direction when the 

sign of � is changed. As an example, if one includes all terms up to third order in � and �� in 
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the equations for solenoidal magnetic lenses, we obtain in place of the paraxial ray equation 

the nonlinear equation [28] 

��� + �� + ����� − ��
��

�
� ���� + ��� −

�

�
�(���)� �� = 0                                                 (2.70) 

 

Fig. 2.13 Effect of Spherical Aberration [28]. 

To illustrate the effect of spherical aberrations, consider the case of a thin lens shown in Fig. 

2.13. Two particle trajectories emerge from an object point on the axis with angles �� and 

−��and pass through the midplane of the lens at radial distance  ��  and −��. Due to the ��
� 

term, they will experience a stronger force than in the perfect lens and as a result, they will 

cross the axis at angles �� and −��  before reaching the image plane of the perfect lens. For 

small angles ��, the displacement ∆�� at the image plane can be defined to good 

approximation by the relation ∆��= ����
� 

Where �� is the spherical aberration coefficient, which depends on the initial conditions and 

the lens geometry. The crossing angle �� depends on the initial angle �� , or the object 

distance �� . The crossover point is at a distance ∆�� upstream from the perfect image plane. 

If we consider the entire ensemble of trajectories within a beam, we find that the minimum 
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radius (waist of the beam envelope), which defines what is known in the literature as the disk 

of least confusion, is located at a distance of ∆�� < ∆�� upstream from the perfect image 

plane, as indicated in Fig. 2.13. If the object is at a large distance (�� ≫ ��, �� , �� ≈ ��), the 

incident rays are practically parallel to the axis. In this case, defining the spherical aberration 

coefficient as ��(∞ ) , we can show that the radius ∆�� of least confusion and the associated 

distance ∆��  are given by 

∆�� ≈
�

�
��(∞ )��

� , ∆�� ≈
�

�
∆��=

�

�
��(∞ )��

�                                                                  (2.71) 

For a unipotential or magnetic lens (�� = �� = �), the relation between the spherical 

aberration coefficient for infinite and finite object distance is found to be 

��(∞ )=
�

��
��(�)                                                                                                                (2.72) 

Where ��  defines the location of the ideal image plane, �� the object distance, and � the 

focal length of the lens. Spherical aberrations constitute a fundamental form of lens defects 

that, unlike the situation in light optics, cannot be eliminated completely. This is due to the 

constraints imposed on the field shapes by the conditions � × � = 0 , � ·� = 0 when space 

charge is neglected. (Unfortunately, space-charge effects tend to make things worse rather 

than better.) The ratio of the spherical aberration coefficient to the focal length, ��/�, is used 

as a figure of merit defining the quality of a lens.  

2.11.2 CHROMATIC ABERRATIONS 

Chromatic aberrations [28, 50] are due to the spread in kinetic energy that is inherent to some 

degree in any beam. They are different from geometrical aberrations in that they do not imply 

any nonlinear terms in the trajectory equations. Since the focal length �(or �� and ��  for 

bipotential lenses) depends on the momentum, particles with different momentum or energy 
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produce images at different distances from the lens. These images are perfect in the paraxial 

approximation, and the spread in the image locations, ∆��, depends on the momentum spread   

∆� in the beam. The variation of the focal length � with particle momentum responsible for 

this effect also produces a circle of least confusion of radius ��. We can calculate this radius 

by considering a parallel beam consisting of trajectories that enter the lens with zero initial 

slope (i.e., �� = 0 ). Particles of momentum � will cross the axis downstream from the lens at 

the focal distance �� . Those with a different momentum, say � + ∆�, will be focused at a 

point �� 	+ ∆�� , where ∆�� = (��/��)∆�. If the angle of convergence for the particle with 

momentum � is �, then the radius of the circle of least confusion is  

�� = � �
��

��
� ∆� = �� �

�

�

��

��
�                                                                                               (2.73) 

We now define a chromatic aberration coefficient �� for a lens by  

��

�
=

�

�
�
�

�

��

��
�                                                                                                                        (2.74) 

and writes �� = 2���
∆�

�
= 2���

∆�

���
                                                                                  (2.75) 

In the nonrelativistic limit one gets �� = ���
∆�

�
, where V is the voltage equivalent of the 

kinetic energy and ∆� represents half the total energy spread in the beam. For a thin, 

solenoidal magnetic lens we found that the focal length fis proportional to ��  and hence we 

get for the chromatic aberration coefficient the value	��/�	= 1.  
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CHAPTER 3 

BEAM DYNAMICS STUDIES AND PARAMETRIC 

CHARACTERIZATION OF STANDING WAVE ELECTRON 

LINAC 

 

The design of high energy range electron linac is subjected to a number of challenges for a 

The design of high energy range electron linac is subjected to a number of challenges for a 

high quality beam delivery to the users in application areas like material science and neutron 

spectroscopy. To use the linac as an experimental tool as well as to limit the radioactivity and 

the cost of the linac itself, it is highly important for the linac to keep the growth of transverse 

emittance and self field effects a minimum. A large emittance growth may result in beam 

losses. Possible counter measures include a machine design with a generous ratio between the 

bore aperture and the beam size and a shielding adapted to heavy beam losses. This approach 

however leads to high costs and to heavy irradiation of the accelerator components which in 

turn prevents hands-on maintenance. In this chapter we have studied the beam dynamics of a 

30 MeV, 6 kW bi-periodic coupled cavity standing wave electron linac under development at 

Electron Beam Centre (EBC) Kharghar, Navi Mumbai, India. This study has been carried out 

to find the optimized beam parameters and the limits of the possible beam quality for 

different bunched beams. In order to predict the quality of electron beam  [6] the electron-

tracking algorithm ASTRA [14] has been used. Although there are a few self-consistent 

space-charge codes that can be used to study the emittance evolution, we choose the ASTRA 

model [5] in order to provide a fast parametric study. 
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3.1.    MULTIPARTICLE SIMULATION WITH SPACE CHARGE 

The general equation of motion for a charged particle in an electromagnetic field [28] is  

 

��⃗

��
=

�⃗

���
                                                                                                                            (3.1) 

 

��⃗

��
= �(��⃗ +

�⃗

���
	х	B��⃗)                                                                                                         (3.2) 

                                                                                             

We can write the general expression for steady state TM010 electric field components in a 

biperiodic standing wave linac in π/2 mode as  

	�� = �� ∑ �� cos(���)sin(��+ ��)		
∞
���,���                                                                    (3.3) 

 

�� =
��

�
�� ∑ ���

∞
���,��� sin(���)sin(��+ ��)			                                                            (3.4) 

 

�� = �
��

�
�� ∑ ��cos	(���)cos	(��+ ��)

∞
���,���                                                              (3.5) 

with k=2π/λ = ω/c and an are the spatial harmonics that depend on the geometry of the 

cavity and can be computed using computer codes and measured using bead pull 

arrangements [51]. Due to symmetry even an’s vanish, a1=1. E0 is the amplitude of the 

fundamental harmonic component of rf wave. All higher harmonic amplitudes are normalized 

to the fundamental amplitude [52].  

For ASTRA code, the space-charge fields are calculated in the beam rest frame via 

Poisson’s equation in free space 

∇��(�,�,�)= −
�(�,�,�)

��
                                                                                                        (3.6) 

and Lorentz’s transformed back into the laboratory frame. Where V the electrostatic 

potential, ρ the charge density,  ϵ� the dielectric constant. ASTRA is based on Runge-Kutta 
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integration of 4th order with fixed time step through the user defined external electric and 

magnetic fields, taking into account the space charge field of the particle cloud. A cylindrical 

grid, consisting of rings and slices, is set up over the bunch extension for the space charge 

calculations. The code automatically updates the mesh size as the simulation progresses. The 

space charge effect is a principal cause of emittance growth when the beam energy is low. 

 The particles are distributed quasi-randomly following the Hammersley sequence, a quasi-

Monte Carlo deterministic method. In this way, statistical fluctuations are reduced and 

artificial correlations are avoided [14]. 

A uniform beam of radius R and density ρ can be represented by  

�(�)= �
�				��	� ≤ �
0					��		� > �

�                                                                                                       (3.7) 

 

For a uniformly charged cylindrical bunch of finite length L with a circular cross section of 

radius r, the longitudinal and the radial space charge electric field of the bunch are given by 

[53] 

��(�,� = 0)=
�

����
[� �� + ��(� − �)� − � �� + ���� + �|�|− �|�− �|]                   (3.8)    

                          

��(�,�)=
��

���
�[

���

� �����(���)�
+

�

� �������
]                                                                         (3.9) 

The outward force on the electrons in a uniform, cylindrical beam can be shown, by summing 

the induced magnetic force caused by the moving beam and the electrostatic force to be  

����� =
��

���

��̂

��
                                                                                                                    (3.10)                                                          

In all simulations presented, thermal emittance is taken into account, where thermal emittance 

is given by the relation 

��� = 	�
��

�
�

�� �

����
                                                                                                              (3.11)     
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For a cathode of radius 5 mm, temperature 1300 0C and 85 keV injection energy the thermal 

emittance has been calculated to be 0.48 π mm-mrad. This value of thermal emittance has 

been included in the input distribution of the macroparticles. 

3.2.   BEAM DYNAMICS STUDIES OF A 30 MeV LINAC 

Schematic of the accelerating module is shown in Fig.  3.1. A 85 keV thermionic Triode 

electron gun with Pierce Focusing electrode of ID 23 mm and angle ~ 67.50, serves as the 

source of electron beam. The cathode of the electron gun is a LaB6 Pellet of diameter 10 mm 

and thickness 1 mm. A filament power of approximately 260 W raises the temperature of the 

LaB6 pellet to about 1300 0C  to emit a dc current of 500 mA. The emitted electron beam 

from Pierce focusing gun has a size of 3.6 mm such that entrance of injector is placed at the 

waist of the beam envelope. The accelerating module of the accelerator contain an injection 

section and two accelerating sections of 22 cell and 23 cell respectively operating in π/2 

mode at a frequency of 2856 MHz .The injection section consists of three bunching cells and 

a power feed cell. The length of each accelerating cell is 52 mm, whereas the buncher cells 

are 45, 48 and 50 mm respectively. The bore radius is 5mm for all the buncher cells and 

accelerating cell. The effective shunt impedance for the buncher cells is ~ 80 MΩ/m, while 

for the accelerating cells, it is ~ 90 MΩ /m. The bunching cells have been optimized for 85 

keV injection. The separation gap between injection and first accelerating cavity as well as  

the  first accelerating cavity and the second cavity is 52 mm each.. 

 

Fig. 3.1 Schematic Layout of the 30 MeV Linac Test Facility 
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For all the simulations presented in the following, we have used 2.5 x 104 macro particles in 

uniform distribution with input parameters corresponding to a real rms width σx,y of 1.80 mm 

of the real beam and a micro bunch charge of -0.175 nC. The initial energy of the particles 

injected in the guide is 85 keV. 

For the present work the longitudinal electric field components on the symmetry axis (r=0) 

have been computed using CST MWS [54] as shown in Fig.  3.2. 

 

 

Fig. 3.2 CST Microwave studio result of Longitudinal Electric field profile for the 

entire accelerating structure of 30 MeV. Injector section (solid arrow), 1st  cavity 

(Dashed arrow), 2nd  cavity (Dash-dot-Dash arrow) 

 

3.2.1 STUDY OF SELF FIELD EFFECTS ON ELECTRON BEAM 

3.2.1.1 EFFECT OF SPACE CHARGE ON BEAM DYNAMICS 

The electron beam through the accelerating structure, starting from the injector section, has 

been tracked with ASTRA both with and without space charge over the desired final energy 

of 30 MeV. The input distribution is same for both the simulations.  



 

Fig. 3.3 ASTRA simulations for rms beam size without space charge effect (Dotted 

line) and with space charge effect (solid line) for a bunch of charge  0.175 nC

 

Fig. 3.3 gives the evolution of rms beam size for the nominal energy of 30 MeV. We have 

used a uniform distribution of particles having energy 85 ± 2 keV for the longitudinal 

direction with rms bunch length of 15.61 mm and Gaussian distribution in all transverse 

dimensions with rms beam sizes of 0.8 mm each. The results show that space charge gives 

rise to a transverse spread of the beam in the injection section and 1

To further study the effect of space charge on the beam we have varied the input bunch 

charge from 0.15 nC to 3 nC and the summary of the results are given in the Fi

clear that the rms beam size increases (together with the beam emittance) for larger bunch 

charges, which can lead to loss of beam through aperture. Therefore the initial bunch charge 

should be small enough to ensure no loss of beam through 

As linear space charge effects strongly influence bunch behaviour 

important to understand how bunch characteristics change with total charge per bunch. Table 

3.1 shows the values of several bunch attributes at the end of the linac as a function of the 

total charge per bunch. 
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ASTRA simulations for rms beam size without space charge effect (Dotted 

line) and with space charge effect (solid line) for a bunch of charge  0.175 nC

Fig. 3.3 gives the evolution of rms beam size for the nominal energy of 30 MeV. We have 

distribution of particles having energy 85 ± 2 keV for the longitudinal 

direction with rms bunch length of 15.61 mm and Gaussian distribution in all transverse 

dimensions with rms beam sizes of 0.8 mm each. The results show that space charge gives 

a transverse spread of the beam in the injection section and 1st   cavity at low energies. 

To further study the effect of space charge on the beam we have varied the input bunch 

charge from 0.15 nC to 3 nC and the summary of the results are given in the Fi

clear that the rms beam size increases (together with the beam emittance) for larger bunch 

charges, which can lead to loss of beam through aperture. Therefore the initial bunch charge 

should be small enough to ensure no loss of beam through the aperture.  

As linear space charge effects strongly influence bunch behaviour 

important to understand how bunch characteristics change with total charge per bunch. Table 

3.1 shows the values of several bunch attributes at the end of the linac as a function of the 

 

ASTRA simulations for rms beam size without space charge effect (Dotted 

line) and with space charge effect (solid line) for a bunch of charge  0.175 nC 

Fig. 3.3 gives the evolution of rms beam size for the nominal energy of 30 MeV. We have 

distribution of particles having energy 85 ± 2 keV for the longitudinal 

direction with rms bunch length of 15.61 mm and Gaussian distribution in all transverse 

dimensions with rms beam sizes of 0.8 mm each. The results show that space charge gives 

cavity at low energies. 

To further study the effect of space charge on the beam we have varied the input bunch 

charge from 0.15 nC to 3 nC and the summary of the results are given in the Fig.  3.4. It is 

clear that the rms beam size increases (together with the beam emittance) for larger bunch 

charges, which can lead to loss of beam through aperture. Therefore the initial bunch charge 

As linear space charge effects strongly influence bunch behaviour [46, 55-57] it is 

important to understand how bunch characteristics change with total charge per bunch. Table 

3.1 shows the values of several bunch attributes at the end of the linac as a function of the 



76 
 

 

Fig. 3.4 ASTRA simulations for rms beam size  as a function of space charge effect for 

bunch charges of  0.15 nC, 0.175 nC, 0.25 nC, 0.3 nC, 0.4 nC,  0.75 nC, 1 nC, 2 nC, 3 

nC 

The % transmission of the beam refers to the ratio of the no of active macroparticles having 

an average gain in energy of 30 MeV to the no of macroparticles injected from the gun 

having energy 85 ± 2 keV. 

 The general increasing nature of transverse emittance in Fig.  3.5 shows what we would 

expect: the beam has more of a tendency to diverge and % transmission decreases as we 

increase the bunch charge. If the bunch length is too long, then different regions of the bunch 

will be accelerated differently, resulting in a spread of the bunch energy in the longitudinal 

direction. While a decrease in the longitudinal emittance may reduce the bunch length, i.e. 

bunch will squeeze and the longitudinal energy spread decreases, but this results in increase 

of the charge density of the bunch. Consequently, a higher magnitude of self fields leads to 



 

increase in transverse emittance which causes

bunch should be an optimum value for efficient operation of linac.

 

However, as the bunch charge is increased to a higher value nonlinear space charge effects 

come into picture due to intense space charge effec

in the curves as shown in Fig. 3.5.The shapes of these curves are all likely to change 

significantly as we vary other parameters such as initial spot size, field strengths, cavity 

phases, etc-. For example, if we decrease the input rms beam size from 0.8 mm to 0.1 mm, 

the space charge effects becomes quite prominent and leads to growth of curve at a faster rate 

as shown in Fig. 3.5. 

 

Fig. 3.5 ASTRA simulations showing the effect of space charge o

emittance (solid line) and % transmission (Dash

0.8mm .Transverse emittance (Dashed line) and % transmission (Dotted line) for rms 

beam size of 0.1 mm. 
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increase in transverse emittance which causes overall transmission loss. So the charge per 

bunch should be an optimum value for efficient operation of linac. 

However, as the bunch charge is increased to a higher value nonlinear space charge effects 

come into picture due to intense space charge effect [58, 59]. This leads to the abrupt change 

in the curves as shown in Fig. 3.5.The shapes of these curves are all likely to change 

significantly as we vary other parameters such as initial spot size, field strengths, cavity 

. For example, if we decrease the input rms beam size from 0.8 mm to 0.1 mm, 

the space charge effects becomes quite prominent and leads to growth of curve at a faster rate 

ASTRA simulations showing the effect of space charge on transverse 

emittance (solid line) and % transmission (Dash-dot-Dash) for rms beam size of 

0.8mm .Transverse emittance (Dashed line) and % transmission (Dotted line) for rms 

 

overall transmission loss. So the charge per 

However, as the bunch charge is increased to a higher value nonlinear space charge effects 

. This leads to the abrupt change 

in the curves as shown in Fig. 3.5.The shapes of these curves are all likely to change 

significantly as we vary other parameters such as initial spot size, field strengths, cavity 

. For example, if we decrease the input rms beam size from 0.8 mm to 0.1 mm, 

the space charge effects becomes quite prominent and leads to growth of curve at a faster rate 

 

n transverse 

Dash) for rms beam size of 

0.8mm .Transverse emittance (Dashed line) and % transmission (Dotted line) for rms 
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Table 3.1. Study of beam parameters as a function of space charge 

Charge 
per  
Bunch  
(Q in 
nC) 

Output 
rms 
Beam 
size 
(xrms in 
mm) 

Transverse   
Emittance 

(ϵx in π mrad 
mm) 

Longitudinal 
  Emittance 
(ϵz in π keV- 
mm) 

Bunch 
Length 
(in mm) 

% 
transmission 

  

0.15 1.39 
1.43 
1.46 
1.50 
1.53 
1.56 

10.49 2217 3.3 52   
0.175 10.65 2198 3.3 52   
0.2 10.63 2176 3.3 51 Linear  

0.225 10.84 2159 3.3 51 Space  
0.25 10.92 2141 3.2 50 Charge  
0.275 10.96 2121 3.2 50 Effect  
0.3 1.59 11.08 2115 3.2 49 Regime  
0.35 1.63 11.24 2101 3.2 48   
0.4 1.68 11.44 2082 3.2 47   
0.45 1.71 11.46 2070 3.2 46   
0.5 1.74 11.5 2055 3.2 45   
0.75 1.87 11.7 1996 3.2 40   

1 1.93 11.79 1988 3.2 35   
1.5 1.98 11.68 2009 3.2 28   
2 2.00 12.12 2096 3.3 23   
3 2.04 13.68 2316 3.5 17   

 

 

3.2.1.2 BEHAVIOUR OF BUNCH WITH SELF FIELD EFFECT 

 

Assuming a uniform bunch we have studied the effect of space charge on two different 

values of charges per bunch 0.175nC, 0.75nC at the injector output, at the output of 1st  cavity 

and at the end of the linac. 

As shown in the Fig. 3.6 (a[(i), (ii), (iii)])  and (b[(i), (ii), (iii)]), the variation of the 

effective space charge field field on the bunch in radial direction takes place according to 

equation (3.9) and Lorentz force law. The magnitude of the space charge field is higher near 

the injector section and it becomes very small after accelerating sections. The green hatched 

area in the lower part of the plot indicates the extension of the bunch. Each line in the plot 

represents the field component at a different offset in the orthogonal direction. The offsets are 

equally distributed between plus/minus two times the rms-width.   �	= 	0 correspond to the 

centre of the bunch at the entrance of the injector section.   



 

 

(i)

(ii)
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Fig. 3.6 ASTRA Plot of radial space charge field acting 

nC (b) 0.75nC 

(b) 
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ASTRA Plot of radial space charge field acting on a bunch of charge (a) 0.175 

 

 

on a bunch of charge (a) 0.175 



 

From Fig. 3.7 (a[(i), (ii), (iii)]

field variation inside the bunch and outside the bunch is in accordance with equation (3.9). 

As shown in the Fig. 3.7(a[(i)]

=1.0 experience more radial electric field and the particles in the tail at z/σ

But as the bunch is accelerated the particle in the tail of the bunch moves

of the bunch and both the particles experience nearly same radial field. A large amount of 

charge per bunch implies larger space charge force. Due to the larger space charge repulsion 

in 0.750 nC bunch in Fig. 3.7(b),  the movement of t

and that in the head of the bunch at at z/σ

increase in beam size. 

(i)
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[(i), (ii), (iii)]) and (b[(i), (ii), (iii)]), we can find that the radial electric 

field variation inside the bunch and outside the bunch is in accordance with equation (3.9). 

[(i)]), initially particles in the head of the bunch of 0.175 nC at z/σ

=1.0 experience more radial electric field and the particles in the tail at z/σ

But as the bunch is accelerated the particle in the tail of the bunch moves

of the bunch and both the particles experience nearly same radial field. A large amount of 

charge per bunch implies larger space charge force. Due to the larger space charge repulsion 

in 0.750 nC bunch in Fig. 3.7(b),  the movement of the particle in the bunch tail at z/σ

and that in the head of the bunch at at z/σz = +1.0  towards the centre is reduced leading to the 

), we can find that the radial electric 

field variation inside the bunch and outside the bunch is in accordance with equation (3.9). 

), initially particles in the head of the bunch of 0.175 nC at z/σz 

=1.0 experience more radial electric field and the particles in the tail at z/σz = -1.0 less field. 

But as the bunch is accelerated the particle in the tail of the bunch moves towards the centre 

of the bunch and both the particles experience nearly same radial field. A large amount of 

charge per bunch implies larger space charge force. Due to the larger space charge repulsion 

he particle in the bunch tail at z/σz = -1.0 

= +1.0  towards the centre is reduced leading to the 
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Fig. 3.7 Radial space charge field 

bunch (a) 0.175 nC charge (b) 0.75 nC charge

 

3.2.2 PARAMETRIC CHARACTERIZATION OF INPUT BEAM

Emittance of a beam is a suitable parameter to define the qualities of a beam in terms of 

size and divergence of the beam. Beam emittance is given approximately by the product of 

spot size and divergence, and is proportional to the volume of the bounding r

bunch occupies in its region of six

phase space by a phase space vector,    

The normalized RMS emittance is defined by 

��,��� = ��� 〈��〉〈(�′)�〉− 〈��

 

Where βc is the velocity of the beam, γ is the Lorentz factor, u and u′ are the transverse 

coordinate and divergence of x or y, and < > denotes an RMS value. Equation (3.12) defines 

(b) 

(iii) 
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Radial space charge field acting on the bunch at different z/σz positions of the 

bunch (a) 0.175 nC charge (b) 0.75 nC charge 

PARAMETRIC CHARACTERIZATION OF INPUT BEAM

Emittance of a beam is a suitable parameter to define the qualities of a beam in terms of 

size and divergence of the beam. Beam emittance is given approximately by the product of 

spot size and divergence, and is proportional to the volume of the bounding r

bunch occupies in its region of six-dimensional phase space. We define each point in this 

phase space by a phase space vector,    � = (	�,�,�,��,��,��	). 

The normalized RMS emittance is defined by [45] 

〈��′〉�                                                                              

Where βc is the velocity of the beam, γ is the Lorentz factor, u and u′ are the transverse 

coordinate and divergence of x or y, and < > denotes an RMS value. Equation (3.12) defines 

 

acting on the bunch at different z/σz positions of the 

PARAMETRIC CHARACTERIZATION OF INPUT BEAM 

Emittance of a beam is a suitable parameter to define the qualities of a beam in terms of 

size and divergence of the beam. Beam emittance is given approximately by the product of 

spot size and divergence, and is proportional to the volume of the bounding region that each 

dimensional phase space. We define each point in this 

                                                                              (3.12) 

Where βc is the velocity of the beam, γ is the Lorentz factor, u and u′ are the transverse 

coordinate and divergence of x or y, and < > denotes an RMS value. Equation (3.12) defines 
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the normalized trace-space emittance, which is equivalent to the normalized RMS emittance 

for beams with small energy spread [5]. 

The thermal emittance as stated in equation (3.11) is defined as  

��� =
�

���
�〈��〉〈(��

�〉− 〈���〉
�   =

���

�
�

�� �

����
                                                                 (3.13)                                                                                        

All the simulations data presented in this section have been noted at z = 2.64 m, that is at the 

end of the linac. Except section 3.2.1, All the  ASTRA simulations have been carried out for 

different input beam parameters with phases equal to 137.84 degrees in the injector section, 

126.72 degrees in the 1st cavity, and 166.3 degrees  2nd  cavity respectively, and for an 

electric field gradient E0 = 24 MV/m. These absolute phase values give the maximum energy 

gain with minimum energy spread for a given input. In section 3.2.2, we have studied the 

evolution of emittance with different bunch charges, So the absolute phases have been chosen 

in accordance with the nominal value of energy gain and energy spread. The gradient is 

chosen in accordance with the Kilpatrick limit. 

3.2.2.1 EVOLUTION OF EMITTANCE WITH SPACE CHARGE 

ASTRA simulations have been carried out for charge per bunch Q = 0.175 nC, 0.2 nC, 0.3 

nC,..., 3 nC and the results are summarized in Table 3.1 

 

3.2.2.2 EVOLUTION OF EMITTANCE WITH BEAM SIZE 

In rf cavities the radial component of the electric field grows quadratically with radius up 

to half of maximum radius of the rf cavity, whereas the longitudinal electric field increases 

linearly toward higher radii. As a result, the variation of the beam size (due to RF focussing) 

depends nonlinearly on the value of the beam size itself, therefore an increase of the 

emittance, proportional to the fourth power of the beam radius, is to be expected when a 
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beam crosses a rf cavity .In order to numerically test this effect, we have tracked beams of 

charge 0.175 nC and of different transverse sizes through the rf cavity excited at the average 

field of 10.81 MV/m. The simulation results of variation of transverse beam sizes for a fixed 

input value of rms emittance are summarized in Table 3.2.  

From Table 3.2 we can clearly find two different regimes in the output beam, a space 

charge dominated region where the emittance growth is a function of space charge, and an 

emittance dominated region where the emittance growth is due to increase in the input beam 

size. Fig. 3.8 describes the transverse emittance as a function of input rms beam size. 

 

Table 3.2. Study of  emittance  growth  as a function of   input beam size  keeping a fixed  

emittance  of the  input  beam 

Input Rms 
 Beam size 

(xrms in mm) 

Input 
Rms 
Beam 
size 

(yrms in 
mm) 

Transverse   
Emittance 

(ϵx in π mrad mm) 

Transverse  
Emittance 

(ϵy in π mrad 
mm) 

% 
transmission 

 

0.2 0.2 11.96 11.86 33  
0.3 0.3 10.74 10.82 45 Space 

charge 
dominated 

regime 

0.4 0.4 10.44 10.59 50 

0.5 0.5 9.93 10.02 53 
0.6 0.6 9.61 9.66 54  
0.7 0.7 9.49 9.23 54  
0.8 0.8 9.44 9.01 54  
0.9 0.9 9.57 9.39 53  
1 1 9.84 9.70 52 Emittance 

dominated 
regime 1.1 1.1 10.18 9.96 51 

1.2 1.2 10.67 10.67 50 
1.3 1.3 11.22 11.33 49 
1.4 1.4 11.98 12.01 48  
1.5 1.5 12.64 12.69 47  
2 2 16.14 15.91 41  

2.5 2.5 18.74 18.25 35  

 

So we may observe that there exists an optimal initial beam size that minimizes the sum of 

the rf and space-charge induced emittance growth. 

 



 

Fig. 3.8 Evolution of transverse emittance with input beam size

 

3.2.2.3 EVOLUTION OF EMITTANCE WITH DIVERGENCE

In rf cavities the beam divergence strongly affects t

the emittance growth due to beam divergence we have taken an input beam of rms size 0.8 

mm and varied the beam divergence as given in Table 3.3. We find that the transverse 

emittance shows a linear growth with increase 

that bunch length gradually decreases. Thus while traversing a rf cavity the initial divergence 

is the effective factor in inducing more emittance growth in transverse directions, which leads 

to loss of electrons through the beam tube.

3.2.2.4 EVOLUTION OF EMITTANCE WITH BEAM ASPECT RATIO

We have studied the effect of the aspect ratio of the rms beam sizes in transverse direction 

and their effects on emittance growth. The summary of the results are given in Table 3.4. 

observe that for any beam, the emittance growth in one transverse plane of the beam as 

compared to the other plane is within space
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Evolution of transverse emittance with input beam size 

EVOLUTION OF EMITTANCE WITH DIVERGENCE

In rf cavities the beam divergence strongly affects the beam behaviour. In order to study 

the emittance growth due to beam divergence we have taken an input beam of rms size 0.8 

mm and varied the beam divergence as given in Table 3.3. We find that the transverse 

emittance shows a linear growth with increase in beam divergence.  To verify this we observe 

that bunch length gradually decreases. Thus while traversing a rf cavity the initial divergence 

is the effective factor in inducing more emittance growth in transverse directions, which leads 

ons through the beam tube. 

EVOLUTION OF EMITTANCE WITH BEAM ASPECT RATIO

We have studied the effect of the aspect ratio of the rms beam sizes in transverse direction 

and their effects on emittance growth. The summary of the results are given in Table 3.4. 

observe that for any beam, the emittance growth in one transverse plane of the beam as 

compared to the other plane is within space-charge statistical error. Thus we treat each plane 

 

EVOLUTION OF EMITTANCE WITH DIVERGENCE 

he beam behaviour. In order to study 

the emittance growth due to beam divergence we have taken an input beam of rms size 0.8 

mm and varied the beam divergence as given in Table 3.3. We find that the transverse 

in beam divergence.  To verify this we observe 

that bunch length gradually decreases. Thus while traversing a rf cavity the initial divergence 

is the effective factor in inducing more emittance growth in transverse directions, which leads 

EVOLUTION OF EMITTANCE WITH BEAM ASPECT RATIO 

We have studied the effect of the aspect ratio of the rms beam sizes in transverse direction 

and their effects on emittance growth. The summary of the results are given in Table 3.4. We 

observe that for any beam, the emittance growth in one transverse plane of the beam as 

charge statistical error. Thus we treat each plane 
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irrespective of the other plane, i.e. the two transverse planes behave independently of each 

other. 

Table 3.3. Study of  emittance  growth  as a function of   divergence of the  input beam 

Input Beam 
divergence 

(x’rms in mrad) 

Input Beam 
divergence 

(y’rms in mrad) 

Transverse  
Emittance 

(ϵx in π mrad 
mm) 

Transverse  
Emittance 

(ϵy in π mrad 
mm) 

Bunch 
Length 
(in mm) 

% 
transmission 

2.1 2.1 
3.1 
4.2 
5.2 
6.2 
7.3 

7.71 7.71 3.4 55 
3.1 7.81 7.85 3.3 55 
4.2 8.02 8.06 3.3 55 
5.2 8.26 8.30 3.3 54 
6.2 8.53 8.59 3.3 54 
7.3 8.97 8.89 3.3 54 
8.3 8.3 9.33 9.18 3.3 54 
9.4 9.4 9.67 9.52 3.3 53 
10.4 10.4 9.97 9.88 3.3 53 
11.5 11.5 10.34 10.24 3.3 52 
12.5 12.5 10.65 10.56 3.3 52 
13.5 13.5 10.92 10.95 3.3 51 
14.6 14.6 11.26 11.21 3.3 50 
15.6 15.6 11.48 11.45 3.3 50 
16.7 16.7 11.76 11.76 3.2 49 
17.7 17.7 12.11 12.05 3.2 48 
18.7 18.8 12.32 12.31 3.2 47 

 

Table 3.4. Study of  emittance  growth  as a function of   beam  aspect ratio  of the input 

            beam 

Rms Beam 
size 

(xrms in 
mm) 

Rms Beam 
size 

(yrms in 
mm) 

Transverse  
Emittance 

(ϵx in π mrad 
mm) 

Transverse  
Emittance 

(ϵy in π mrad 
mm) 

Bunch 
Length 
(in mm) 

% 
transmission 

 0.56 10.12 12.09 3.3 47 
 1.50 11.65 12.67 3.2 49 

0.82 2.00 9.24 17.83 3.1 46 
 2.50 8.94 21.02 3.1 43 
 3.00 8.69 23.56 3.1 39 
      

0.59  11.31 10.49 3.3 50 
1.50  13.65 10.33 3.2 49 
2.00 0.82 18.18 8.91 3.1 46 
2.50  21.18 8.58 3.1 43 
3.00  23.58 8.35 3.1 39 
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3.2.2.5 EFFECT OF VARIATION OF FIELD GRADIENT ON BEAM 

QUALITY 

As the output of the accelerator beam is a function of the input beam parameters like beam 

size and accelerator cavity parameter like field gradient etc-, we have studied the evolution of 

the beam subject to variation in field gradient. The results are given in Table 3.5 and from 

this we can estimate the changes in the output due to errors in the field gradient. An error of ± 

4% in the field gradient changes the output energy gain ≈  ± 4% and error in gradient of ± 8% 

changes the output energy gain ≈  ± 8%.  But the energy spread becomes significant once the 

field gradient is changed by -8% of its optimum value, which is undesirable. 

 

Table 3.5. Study of  output beam parameters as a function of  variation of field gradient 

Electric Field 
Gradient  
      (in MV/ m) 

Beam 
size 
(xrms in 
mm) 

Bunch 
Length 
    (in mm)  

Output 
Energy 

(in MeV)  

Energy 
spread 

 (in keV) 

Transverse  
Emittance 

( π mrad mm) 

22 1.46 3.6 27.5 1230 11.78 
23 1.45 3.4 28.8 908 11.21 
24 1.43 3.3 30.0 719 10.65 
25 1.41 3.2 31.2 648 10.03 
26 1.39 3.3 32.4 678 9.58 

 

 

3.2.2.6 EFFECT OF SOLENOID FOCUSSING ON BEAM QUALITY 

As the magnetic field plays an important role in focusing of the beam and prevents the loss 

beam through the cavity, we have studied the quality of beam subjected to solenoid focusing. 

An air core solenoid of length 15 cm and 15000 ampere-turns is applied over the injection 

section as shown in the Fig. 3.9. The longitudinal magnetic field of solenoid is plotted in Fig. 

3.10.The solenoid field reduce the beam diameter from ~ 8 mm to ~ 4.5 mm and improve the 



 

overall transmission ≈  9% . Fig. 3.11 describes th

length of the linac without solenoid and with solenoid.

 

Fig. 3.9 Schematic Layout of the 30 MeV Linac Test Facility with solenoid over the 

injector section 

 

 

Fig. 3.10 CST Particle S

section 

91 

≈  9% . Fig. 3.11 describes the computed beam envelope over the entire 

length of the linac without solenoid and with solenoid. 

Schematic Layout of the 30 MeV Linac Test Facility with solenoid over the 

Studio result of Solenoid magnetic field  profile over the injector 

e computed beam envelope over the entire 

 

Schematic Layout of the 30 MeV Linac Test Facility with solenoid over the 

 

profile over the injector 



 

Fig. 3.11 Computed beam envelope over the entire length of linac 

 

3.3.   CONCLUSION 

For a 30 MeV linac, the effects of the space charge and input beam parameters like 

variation of beam size, divergence, variation of field gradient 

[16, 18]. We have investigated the effect of horizontal plane and vertical plane on beam 

dynamics and found that both the planes can be treated separately excluding space charge 

effect. We conclude from these beam dynamics studies that space charge effect plays a 

pivotal role in the injector section and 1

solenoid of length 15 cm and 15000 ampere turns over the injector section to compensate the 

space charge effect. An energy spread of ~ 2.5% improves the quality of the output beam. 

With a beam size of ~ 4.5 mm in the bore of aperture diameter 10 

cavity wall is minimized and the heavy irradiation of accelerator components is prevented. 
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Computed beam envelope over the entire length of linac  

For a 30 MeV linac, the effects of the space charge and input beam parameters like 

variation of beam size, divergence, variation of field gradient have been studied theoretically 

. We have investigated the effect of horizontal plane and vertical plane on beam 

dynamics and found that both the planes can be treated separately excluding space charge 

effect. We conclude from these beam dynamics studies that space charge effect plays a 

pivotal role in the injector section and 1st cavity of the 30 MeV linac. We have 

solenoid of length 15 cm and 15000 ampere turns over the injector section to compensate the 

space charge effect. An energy spread of ~ 2.5% improves the quality of the output beam. 

With a beam size of ~ 4.5 mm in the bore of aperture diameter 10 mm, the beam loss on the 

cavity wall is minimized and the heavy irradiation of accelerator components is prevented. 

  

 

For a 30 MeV linac, the effects of the space charge and input beam parameters like 

e been studied theoretically 

. We have investigated the effect of horizontal plane and vertical plane on beam 

dynamics and found that both the planes can be treated separately excluding space charge 

effect. We conclude from these beam dynamics studies that space charge effect plays a 

cavity of the 30 MeV linac. We have applied a 

solenoid of length 15 cm and 15000 ampere turns over the injector section to compensate the 

space charge effect. An energy spread of ~ 2.5% improves the quality of the output beam. 

mm, the beam loss on the 

cavity wall is minimized and the heavy irradiation of accelerator components is prevented.  
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CHAPTER 4 

STUDY OF BEAM DYNAMICS FOR A 10 MeV INDUSTRIAL 

RF ELECTRON LINAC AND ITS VALIDATION WITH 

EXPERIMENTAL DATA 

 

Electron beam accelerator based industrial applications have boosted in the recent years 

contributing in many aspects of national economies. The distinct advantage of electron beam 

for radiation processing is used in diverse industries to enhance the physical and chemical 

properties of materials and to reduce undesirable contaminants such as pathogens or toxic by-

products. Utilization of electron beam for sterilization of medical devices, commercial 

processing of polymers, non-destructive testing, cargo scanning applications and food 

processing offers low cost techniques for irradiation of products in larger capacities [2, 7, 37]. 

A linear electron accelerator is usually considered to be a highly efficient source of electron 

beam for x-ray generation due to its flexible size depending upon beam power [2, 7, 37]. 

As a part of indigenous accelerator development programme for societal applications, a 10 

MeV electron linac is designed and developed by Accelerator and Pulse Power Division, 

BARC, India, and it is operational at Electron Beam Centre,  Kharghar, Navi Mumbai for 

industrial applications [19, 21, 23, 60, 61]. In this chapter we investigate the beam dynamics 

of this 10 MeV, 10 kW bi-periodic coupled cavity standing wave electron linac using the 

beam dynamics code ASTRA [14]. This beam dynamics study finds the optimized beam 

parameters and explores the quality of electron beam [5, 45]. The effects of space charge, 

input beam size, beam divergence, emittance growth, energy spread, behavior of bunch and 
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their effect on the beam quality have been studied. To validate the beam dynamics results, the 

simulation data is compared with the experimental observations.      

 

4.1.    BEAM DYNAMICS STUDIES OF A 10 MeV LINAC 

The picture of the 10 MeV linac along with a schematic layout is shown in Fig. 4.1. The 

linac consists of a DC thermoionic gun, followed by a bunching and accelerating section.  An 

electron gun having LaB6 cathode injects the beam of 50-70 keV in to the linac.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 10 MeV Linac (Courtsey: [21, 60]) and its Schematic  
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The accelerating cavity consists of 3 bunching cells and 14 accelerating cells operating in 

π/2 mode at a frequency of 2856 MHz. The length of each accelerating cell is 52 mm, 

whereas the buncher cells are 45, 48 and 50 mm respectively. The bore radius is 5 mm for all 

the buncher cells and accelerating cells. The effective shunt impedance for the buncher cells 

is ~80 MΩ/m, while for the accelerating cells; it is ~ 90 MΩ /m. Beam focusing is ensured by 

solenoids up to the bunching system exit. A klystron feeds   RF power into the linac cavity at 

2856 MHz. A vacuum level of 10-7 is maintained in the linac structure using a distributed 

turbo-cum-sputter-ion pumping system [62]. The output electron beam is scanned using C-

shaped scan magnet.  At the linac end the electron beam hits a tantalum foil and produces X-

rays. 

For the present work the longitudinal electric field components on the symmetry axis (r=0) 

have been computed using CST MWS [54] as shown in Fig. 4.2. Fig. 4.3 shows the solenoid 

field profile over the buncher section. For all the simulations presented in the following, we 

have used the following input beam parameters that are given in Table 4.1. A typical 

simulation result at the end of the linac is presented in Table 4.2.   

 

                 

Fig. 4.2 Accelerating Field Profile along the 10 MeV Cavity (from CST Microwave Studio)    
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Fig. 4.3 Solenoid Field profile over the bunching section (from CST Particle Studio)    

Table 4.1. Input beam parameter at injection 

Input  Beam Parameter 

No. of macro particles  25000  

Distribution  Gaussian  

Beam current  500 mA  

Energy  50 keV  

Energy Spread 2 keV  

Beam size  3.0  mm  

Transverse Emittance 6 π mm-mrad  

 

Table 4.2. Simulation Result at the Linac end 

Output Beam Parameter 

Energy 10.2 MeV 

Energy Spread 505 keV 

Bunch Length 4.237 mm 

beam size 8 mm 

Transverse Emittance 40.47      π 

mm-mrad 

%  of Transmission 47.96 % 
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4.1.1 LONGITUDINAL BEAM DYNAMICS 

                 

Fig. 4.4 Bunching process in the buncher section (upper part) and the shape of the bunch 

(lower part)     

                

Fig. 4.5 Energy gain along the 10 MeV linac.    
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Fig. 4.6 Energy spread along the 10 MeV linac    

                 

Fig. 4.7 Longitudinal position of particle (upper part) and the shape of the bunch (lower part)  
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Fig. 4.4 describes the particle tracking and formation of bunched beam in the buncher cells 

and the corresponding plot of the bunch. The red colour dots indicate the lost particles. The 

black colour dots indicate the standard particles that are tracked. The energy gain in each cell 

of the cavity of 10 MeV linac is shown in Fig. 4.5. The energy spread along the entire length 

is shown in Fig. 4.6. From these two pictures it is clear that the energy gain of 10 MeV is 

achieved with 5 % energy spread. This result shows that the 10 MeV linac can deliver good 

quality beam for industrial applications. Fig.4.7 describes the start-to-end longitudinal 

particle position and the shape of the bunch at the linac end.    

4.1.2 TRANSVERSE BEAM DYNAMICS 

4.1.2.1 EFFECT OF SPACE CHARGE ON BEAM DYNAMICS                                                                                     

  The electron beam through the accelerating structure has been tracked with ASTRA with 

space charge. Six probe particles are specified at ±0.5σ, ±1.0σ, ±1.5σ over the extension of 

the bunch. The radial space charge field acting on the probe particles is shown in Fig. 4.8. 

The space charge [28, 46, 63, 64] may lead to growth of beam size and the beam may hit the 

cavity wall. The effect of space charge on the probe particle trajectories is shown in Fig. 4.9. 

The hitting of the electron beam with the cavity wall may induce radioactivity in the linac 

structure. 

To compensate the space charge effect a solenoid is applied over the buncher section as 

shown in Fig. 4.1. The trajectories of the probe particles with a solenoid over the buncher 

section is plotted in Fig. 4.10. This leads to higher transmission efficiency.  

The beam envelopes with and without application of solenoid is shown in Fig. 4.11. It is clear 

that the solenoid focuses the beam in the buncher section and compensates the space charge 

field of the beam. 



100 
 

                 

Fig. 4.8 Radial space charge field profile along the linac  

                 

Fig. 4.9 Probe particle trajectory along the linac under space charge effect     

                 

Fig. 4.10 Probe particle trajectory along the linac with a solenoid over the buncher 

section     
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Fig. 4.11 Beam envelope with space charge (dotted line) and  with application of 

solenoid (solid line)     

4.1.2.2 GROWTH OF  TRANSVERSE EMITTANCE                                                                                              

Fig. 4.12 describes the transverse emittance growth along the linac. The plot shows that 

application of solenoid over the buncher cells reduces the emittance growth along the linac 

structure.  

                   

Fig. 4.12 Transverse emittance along the linac structure     
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To study the effect of variation of beam size on emittance growth, the input rms beam size 

is varied and the corresponding result is plotted in Fig. 4.13. Further the % transmission of 

the beam with variation of input beam size is plotted in Fig. 4.14. The decrease in beam 

transmission for small beam size can be attributed to intense space charge effect [19]-[22]. 

This shows that an optimum value of the input rms beam size should be chosen in order to 

prevent emittance growth and higher transmission efficiency. 

                 

Fig. 4.13 Growth of transverse emittance with input beam size    

                 

Fig. 4.14 % Transmission with variation of input beam size         
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4.1.2.3 STUDY OF DIVERGENCE OF THE BEAM                                                                                                                             

 

Fig. 4.15 Beam divergence along the linac     

 

Fig. 4.16 (a) Beam size (red oval) (b) Beam divergence (blue oval) after buncher section     
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Fig. 4.17 (a) Beam size (red oval), and (b) Beam divergence (blue oval) at the end of the 

linac     

The divergence of the beam is plotted along the linac structure, as shown in Fig. 4.15. It is 

clear that the divergence decreases along the linac and beam converges to a smaller spot size. 

This conclusion can be drawn from the phase plots of the beam size and divergence after the 

buncher section and at the end of the linac.  

In Fig. 4.16, the beam divergence after the buncher section is very high which is 20 mrad. At 

the end of the linac the divergence of the beam is 3.5  mrad as shown in Fig. 4.17.  
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4.2.      COMPARISON OF EXPERIMENTAL DATA AND THEORETICAL 

BEAM DYNAMICS SIMULATION 

It has been found that the optimized output beam dynamics parameters of 10 MeV linac 

are consistent with the output parameters of the 10 MeV lattice design [21] and experimental 

observations [22, 23, 65, 66]. A comparison between beam dynamics simulation results and 

experimental observations are presented in the Table 4.3. 

 

Table 4.3. Comparison of simulation data with experimental observation 

Beam Parameters ASTRA Simulation Results Experimental Observation 

Beam Energy 10 MeV 10 MeV 

Beam Energy Spread 5 % of energy gain 10 % of energy gain 

Beam Current 120 mA 100 mA 

Beam Size 8 mm 5-10 mm 

Beam Divergence 3 mrad 3-5 mrad 

% Transmission 24 % 20-25 % 

 

From the experimental results, the energy gain of the linac is observed to be 10 MeV [22, 65] 

which matches with our simulation result and validates the beam dynamics simulation results. 

The energy spread of the beam is found to be 10 % of the energy gain that is ≈ 1 

MeV. But from simulation we find the energy spread of the beam is 5% of the maximum 

energy gain which corresponds to ≈ 0.5 MeV. This mismatch is due to the fact that we have 

presented our result for a single bunch formed from an initial beam phase width of 1800 and 

tracked along the linac. But in actual experimental case there are 28560 numbers of full RF 

cycles in a macro pulse.  So it is believed that the energy spread of 10% is due the electrons 
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which are in decelerating phase. These electrons in the decelerating phase increase the 

longitudinal bunch length of the trailing bunch. An increase in longitudinal phase width 

proportionally increases the final energy spread in the output beam from the linac. 

The beam spot size has been measured to be 50 mm [22] on a glass plate which is 

being irradiated with 10 MeV beam and placed at a distance of 200 mm below the scan horn. 

The measured divergence angle 5 mrad [22], while the expected value of beam divergence is 

3-4 mrad [21].  So the beam spot size is ~ 10 mm. Further the beam spot size  has been 

measured [66] and it is of the order of 5-10 mm with a divergence ~ 3-4 mrad. From beam 

dynamics simulation we find the beam size to be 8 mm with a divergence ~ 3.5 mrad and the 

simulation data is consistent with experimental observations.  

We have taken 1800 phase injection of the electron beam into the linac and we get 48 

% transmission. This result matches with the the simulation using PARMELA beam 

dynamics code [21]. But in the experimental case the injected electron beam is of 10 µs pulse 

and the resonant frequency of linac cavity is 2856 MHz and one rf cycle is 0.35 ns. Thus the 

injected beam acts like a dc beam for the linac cavity and 3600 injection phase is considered. 

So for 3600 injection phase the simulated value of transmission efficiency is 24 %. 

Experimental observations give a transmission efficiency of 20-25 % [23]. Thus the 

simulated value of transmission of electron beam is consistent with experimental observation. 

The accelerator is operational at 10 MeV, 3 kW with a peak current of 100 mA [23]. 

With a transmission efficiency of 24% we get a beam current of 120 mA from beam 

dynamics simulation for an input beam current of 500 mA from electron gun. The simulation 

data matches with the experimental observation within experimental error. 
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4.3.    CONCLUSION 

For a 10 MeV linac, the effects of the space charge and typical beam parameters like 

variation of beam size, divergence, emittance growth have been studied theoretically. We 

conclude from these beam dynamics studies that space charge effect plays a pivotal role in 

the buncher and first few accelerating cells of the cavity of the 10 MeV linac. So a solenoid 

of strength 15000 Ampere-Turns is to be applied over the buncher section to compensate the 

space charge effect. Further the simulation results are consistent with the experimental results 

within the limit of experimental errors. 
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CHAPTER 5 

STUDY OF BEAM DYNAMICS IN 100MeV, 100 kW 

ELECTRON LINAC 

 

  Neutron sources have played an important role in various nuclear physics and material 

science experiments. Among the various types of neutron sources namely, nuclear reactor, 

radio-isotope and accelerator based neutron sources, reactor based neutron sources offer high 

neutron flux density but with poor resolution of the energy spectrum. Although the radio-

isotope based neutron sources offer low cost, quite accurately calculable neutron flux 

intensity, but they are not well suited for high- resolution measurements because of poor 

resolution of neutron energies. On the other hand, Accelerator based neutron sources [2, 7] 

are highly efficient to produce short burst of neutrons by photo-nuclear and photo-fission 

reaction mechanisms [9] over a broad continuous energy spectrum that extends from thermal 

energies to several MeVs. They have distinct advantages over reactor and radio-isotope based 

neutron sources and are used for neutron cross-section experiments with high resolution.  

A growing interest in electron beam based pulsed neutron generators have increased in the 

recent years because of their ergonomics. For neutron beam irradiation application areas like 

material science studies and measurement of neutron cross-section, scattering cross-section, 

capture cross section, fission cross section via  (n,γ), (n, xn) and (n, f) reactions at different 

energies for various materials linacs require 30-100 MeV pulsed electron beams of several 

kilowatts. A 100 MeV and 100 kW accelerator facility for neutron generation is under 

development at  Accelerator and Pulse Power Division, BARC, Mumbai. 
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The important components of the facility are an S-band electron linac,   beam transport 

system to the target complex, the neutron producing target. Considerable high beam power 

obviously demands minimizing the high-energy particles loss during their acceleration and 

transport. In this chapter, we present ASTRA [14] and ELEGANT [15] simulation results and 

beam dynamics study [5, 11, 28, 45] in the 100 MeV linac structure 

 

5.1.  BEAM DYNAMICS OF A 100 MEV STANDING WAVE STRUCTURE 

5.1.1 GENERAL LAYOUT OF THE LINAC 

    A schematic of the 100 MeV standing wave structure is given in Fig. 5.1 and the main 

design parameters are specified in Table 5.1. It consists of an injector section, two 

accelerating sections and a bunch compressor chicane in between two accelerating sections. 

The injector section consists of a DC thermionic gun, followed by a pre buncher and buncher 

section.  An electron gun having LaB6 cathode injects the beam of 85 keV into the linac. The 

prebuncher is a 2856 MHz cell with a length 65 mm, gap of 5 mm and diameter of 48.95. The 

buncher section consists of 4 coupled cavity biperiodic accelerating cells operating in π/2 

mode at a frequency of 2856 MHz  and each of length 45, 48, 50 and 52 mm respectively. 

The electron beam is being injected into the buncher cavitiy at an offcrest angle of 400. The 

accelerating sections consist of 10 S-band linacs SW1, SW2, …, SW10, each of which is 

composed of one standing wave cavity of length 0.884 m operating at a frequency of 2856 

MHz. Each of these linacs requires proper lattice design in order to minimize the transverse 

emittance. The Linac SW1 and SW2 include horizontal corrector and a vertical corrector, 

beam position monitor and quadrupoles.  

The accelerating cavity of 10 S-band linacs consists of 17 accelerating cells operating in π/2 

mode at a frequency of 2856 MHz. The length of each accelerating cell is 52 mm. The bore 

radius is 5mm for all the buncher cells and the accelerating cells. The effective shunt 
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impedance for the buncher cells is ~80 MΩ/m, while for the accelerating cells the effective 

shunt impedance is ~ 90 MΩ /m. The prebuncher and a buncher at 2856 MHz initiate the 

bunching of the 85 keV electrons injected from the electron gun and the final energy of the 

electron from the injector is 2.5 MeV. At this energy the effect of space charge is important. 

The effect of space charge on the beam envelope and corresponding emittance growth may 

lead to the loss of beam. So we ensure beam focusing by solenoids up to the bunching system 

exit to compensate space charge. The magnetic field strength of solenoid over the buncher 

cavity is 0.06. 

The SW1,…, SW5 linacs exist after the injector section and accelerate the bunched electron 

from the injector section from an energy of 2.5 MeV to an energy of 54 MeV with an off-

crest angle 30 and thus provides the necessary energy-time correlation that is required by the 

bunch compressor to compress the bunch. The bunch compressor is a 4 dipole chicane 

magnet and it compresses the beam from the SW5 linac from 50 ps to 20 ps. The SW6,…, 

SW10 linac exists between the bunch compressor and the beam transport line and these linacs 

accelerate the beam from 54 MeV to 100 MeV. The rms energy spread becomes 7% from 

10%.  

 Quadrupole doublets are placed in between each cavity sections along with drift spaces to 

focus the beam during acceleration. The length of quadrupole doublets are of 0.250 m each. 

The focusing strengths of doublets are 5.50 each. Further upstream the bunch compressor 

quadrupole triplet of length 0.05, 0.1 and 0.05 each having strength  6.5, -15, 25.0 

respectively along with steering magnets are used to focus the beam before it enters the 

chicane magnet. Downstream the bunch compressor quadrupoles of length 0.25 and strength 

4.0, -6.1, 10.6, -7.9, 4.8 are used to focus the beam before it enters the linac SW6.  
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             Fig.  5.2      Longitudinal electric field profile (from CST Microwave Studio)   

                                (a) Pre Buncher, (b) Buncher    

               

Fig. 5.3 Solenoid field profile (from CST Particle Studio)  
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To study the beam dynamics the longitudinal electric field components on the symmetry axis 

(r=0) of the prebuncher and buncher section have been computed using CST Microwave 

Studio [54]. The electric field profiles are shown in Fig. 5.2. The solenoid field profile is 

computed with CST Particle studio [54] and is shown in Fig. 5.3. The beam dynamics 

simulation of injector section is carried out with ASTRA [14] and that of linacs including 

bunch compressor is carried out with ELEGANT [15]. 

Table 5.1. Main specification of the 100 MeV standing wave electron Linac  

Parameters Values Unit 

RF Frequency 2856 MHz 

Beam Energy 100 MeV 

Beam Current (Max.) 250 mA 

Energy Spread (1σ) 7 % 

Emittance (1σ) 4 ×  10-7 m-rad 

Beam Pulse Width 8 µs 

Accelerating Structure 10 units/ 0.884 m 

Klystron 15 MW 

RF Pulse Width 10 µs 

RF Pulse Repetition rate (max.) 400 Hz 

 

Bunch Compressor  

In order to control the beam size at the bending section achromat, the energy spread of the 

beam at the end of the linac should be small. So we adopted a 4 dipole chicane system [67] 

which seems to be an economical and convenient approach for a relatively small-scale linac 

of 100 MeV [68]. The 4 dipole chicane magnet is designed to compress the bunch to have 
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shorter pulses at the output for high quality beam. From the results of longitudinal beam 

dynamics simulations the parameters of the bunch compressor is chosen to reduce the bunch 

length to 20 ps. The bunch length can be controlled by optimal choice of the momentum 

compaction factor R56 that is a function of the desired bunch compression ratio, energy 

spread and the rf phase angle of the linacs before the chicane magnet.  R56 value is not unique 

and it depends on the  bunch charge. R56  is determined from the design parameter of the 

chicane such as bending angles, bend lengths and drift lengths [67, 69]. For relativistic 

electrons and small bending angles the R56 value of the bunch compressor is given by  

��� ≈ −2��
� �∆� +

2

3
��� 

Where �� is the bending angle of the dipole, ∆� is the drift length between the first two and 

the last two dipoles. �� is the length of each dipole magnet. 

The bunch compressor of this accelerator facility provides a bunch compression in a factor of 

3. The design parameters for bunch compressor are given in Table-5.2. 

Table 5.2. Parameters of the bunch compressor for 100 MeV standing wave Linac 

Beam Energy 54 MeV 

Initial  bunch length 50 ps 

Final  bunch length 20 ps 

Magnetic Field 0.080743 T or 807.43 gauss 

R56 -60.8 mm 

Bending Angle 0.157 rad 

Maximum Dispersion 220 mm 

Length of Bending Magnet 35 cm 
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5.1.2 LONGITUDINAL BEAM DYNAMICS 

The phase space plot of the electron bunch after the injector section is shown in Fig. 5.4.   

Fig. 5.13 describes the longitudinal dynamics of the electron bunch during acceleration and 

compression processs. The bunched beam  after the  SW5 linac is shown in Fig. 5.5 (a). The 

4-dipole chicane compress the bunch  from 50 ps to 20 ps  as shown in Fig. 5.5 (b). The final 

bunch at the linac SW10 output as shown in Fig. 5.5 (c) indicates that that the energy gain of 

100 MeV is achieved with ≈ 7 % energy spread. Table 5.3 shows the typical beam parameters 

at injection and at the output. 

Table 5.3. Beam parameters at injection and at the output of 100 MeV  

           standing wave Linac  

Beam Parameter Input Value Output Value 

Energy 2.5 MeV 104.0 MeV  

Energy Spread 3 % 7 % 

Bunch Length 60 ps 20 ps 

Beam size 4.0 mm 8.0 mm 

Beam divergence 1.5 mrad 2.0 mrad 
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      (a)      

         (b)                                                                                                                       

                 (c)      

Fig. 5.4 Longitudinal dynamics of the bunch after injector section (a) bunch 

shape (b) beam size  (c) divergence     
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Fig. 5.5 Longitudinal dynamics of the bunch in 100 MeV standing wave linac 

(a) before compression (b) after bunch compressor  (c) at the end of linac 10     
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5.1.3 TRANSVERSE DYNAMICS 

The beam envelopes in two transverse planes is shown in Fig. 5.6. The quadrupole focusing 

scheme ensures a focused beam at the output. 

 

Fig. 5.6 Beam envelope in two transverse planes in 100 MeV standing wave 

linac     

The transverse emittance growth in the two transverse planes is plotted in Fig. 5.7 along the 

linac. The growth of transverse emittance along the linac is minimized to ensure delivery of a 

high quality beam with low loss. The divergence decreases along the linac and beam 

converges to a smaller spot size of diameter 8  mm as shown in Fig. 5.8.  

Fig. 5.9 shows the variation of Twiss parameter α along the linac. The value of αx,y ~ 0 

indicates that the beam envelope is parallel to the axis at the centre of the quadrupole lens. 

The variation of Twiss parameter β is shown in Fig. 5.10. The value of βy < 40 indicates that 

the envelope width is smaller in y-direction and the output beam is elliptical.  
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Fig. 5.7 Transverse emittance along the 100 MeV standing wave linac      

                               

                                                                        

Fig. 5.8 (a) Beam size, and (b) Beam divergence at the end of the 100 MeV 

standing wave linac     
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Fig. 5.9 Variation of Twiss parameter α along 100 MeV standing wave linac       

                   

Fig. 5.10 Variation of Twiss parameter β along 100 MeV standing wave linac     

    

The dispersion in the chicane magnet during bunch compression along with the twiss 

parameter β is shown in Fig. 5.11. The green coloured picture in this plot indicates the lattice 

profile over the entire length of the linac after injector section. 
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Fig. 5.11 Variation of Twiss parameter β and the dispersion in chicane for 100 

MeV standing wave linac       

 

5.2.BEAM DYNAMICS OF A 100 MEV TRAVELLING  WAVE STRUCTURE 

5.2.1 GENERAL LAYOUT OF THE LINAC 

     A schematic of the 100 MeV travelling wave structure is given in Fig. 5.12 and the main 

design parameters are specified in Table 5.4 and Table 5.5. It consists of an injector section, 

two accelerating sections and a bunch compressor chicane in between two accelerating 

sections. The injector section consists of a DC thermionic gun, followed by a pre buncher and 

buncher section, whose specifications are same as section 5.1.    

The accelerating sections consist of 10 S-band linacs TWS1, TWS2, …, TWS10, each of 

which is composed of one SLAC type travelling wave cavity of length 1.26 m operating at a 

frequency of 2856 MHz. Each of these linacs requires proper lattice design in order to 

minimize the transverse emittance. The Linac TWS1 and TWS2 include horizontal corrector 

and a vertical corrector,  beam position monitor and  quadrupoles. 
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Table 5.4. Main specification of the 100 MeV travelling wave electron Linac  

Parameters Values Unit 

RF Frequency 2856 MHz 

Beam Energy 100 MeV 

Beam Current (Max.) 500 mA 

Energy Spread (1σ) 5 % 

Emittance (1σ) 2 ×  10-7 m-rad 

Beam Pulse Width 4 µs 

Accelerating Structure 10 units / 1.26 m 

Klystron 6 units (30 MW) 

RF Pulse Width 5 µs 

RF Pulse Repetition rate (max.) 400 Hz 

 

The TWS1,…, TWS5 linacs exist after the injector section and accelerate the bunched 

electron from the injector section from an energy of 2.5 MeV to an energy of 53 MeV with an 

off-crest angle 8.80 and thus provides the necessary energy-time correlation that is required 

by the bunch compressor to compress the bunch. The bunch compressor is a 4 dipole chicane 

magnet and it compresses the beam from the TWS5 linac from 60 ps to 20 ps. The 

TWS6,…,TWS10 linac exists between the bunch compressor and the beam transport line and 

these linacs accelerate the beam from 53 MeV to 100 MeV. The rms energy spread becomes 

5% from 7%.  
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Quadrupole doublets are placed in between each cavity sections along with drift spaces to 

focus the beam during acceleration. The length of quadrupole doublets are of 0.250 m each. 

The focusing strengths of doublets are 5.50 each. Further upstream the bunch compressor 

quadrupole triplet of length 0.05, 0.1 and 0.05 each having strength  6.5, -15, 25.0 

respectively along with steering magnets are used to focus the beam before it enters the 

chicane magnet. Down stream the bunch compressor quadrupoles of length 0.25 and strength 

5.2, -6.1, 10.6, -7.9, 5.2 are used to focus the beam before it enters the linac TWS6.  

Table 5.5. Main specification of 100 MeV travelling wave accelerating structure 

Parameters Values Unit 

Operation RF Frequency 2856 MHz 

Operation Temperature 40 ± 0.2 ̊ C 

No. of cells 34 (regular cells) + 2 (coupler cells) 

Section Length 34.989783 mm 

Cell Length 1260 mm (36 cells) 

Phase shift per cell 120 ̊  (2π/3) 

Shunt Impedance 51.514 – 57.052 MΩ/m 

Q Factor 13806 - 13753 

Filing Time 215 ns 

 

To study the beam dynamics the longitudinal electric field components on the symmetry axis 

(r=0) of the prebuncher and buncher section have been computed using CST Microwave 

Studio [54]. The electric field profiles are shown in Fig. 5.2. The solenoid field profile is 

computed with CST Particle studio [54] and is shown in Fig. 5.3. The beam dynamics 
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simulation of injector section is carried out with ASTRA [14] and that of linacs including 

bunch compressor is carried out with ELEGANT. 

Bunch Compressor  

We adopted a 4 dipole chicane system which seems to be an economical and convenient 

approach for a relatively small-scale linac of 100 MeV. From the results of longitudinal beam 

dynamics simulations the parameters of the bunch compressor is chosen to reduce the bunch 

length to 20 ps. The bunch compressor of this accelerator facility provides a bunch 

compression in a factor of 3. The design parameters for bunch compressor are given in Table 

5.6. 

Table 5.6. Parameters of the bunch compressor for 100 MeV travelling wave Linac 

Beam Energy 53 MeV 

Initial bunch length 60 ps 

Final bunch length 20 ps 

Magnetic Field 0.05547 T or 554.7 gauss 

R56 -60.8 mm 

Bending Angle 0.157 rad 

Maximum Dispersion 220 mm 

Length of Bending Magnet 50 cm 

 

5.2.2        LONGITUDINAL BEAM DYNAMICS 

The phase space plot of the electron bunch after the injector section is shown in Fig. 5.4.   

Fig. 5.13 describes the longitudinal dynamics of the electron bunch during acceleration and 

compression processs. The  bunched beam  after the  TWS5 linac is shown in Fig. 5.13 (a).  
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       (a)  

       (b)   

       (c)  

Fig. 5.13 Longitudinal dynamics of the bunch in 100 MeV travelling wave linac 

(a) before compression (b) after bunch compressor  (c) at the end of linac 10     
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Table 5.7. Beam parameters at injection and at the output of 100 MeV travelling wave 

                linac 

Beam Parameter Input Value Output Value 

Energy 2.5 MeV 103.0 MeV  

Energy Spread 3 % 5 % 

Bunch Length 60 ps 20 ps 

Beam size 4.0 mm 2.4 mm 

Beam divergence 1.5 mrad 0.5 mrad 

 

The 4-dipole chicane compress the bunch  from 60 ps to 20 ps  as shown in Fig. 5.13 (b). The 

final bunch at the linac TWS10 output as shown in Fig. 5.13 (c) indicates that that the energy 

gain of 100 MeV is achieved with ≈ 5 % energy spread. Table 5.7 shows the typical beam 

parameters at injection and at the output. 

5.2.3 TRANSVERSE DYNAMICS 

The beam envelopes in two transverse planes is shown in Fig. 5.14. With the quadrupole 

focusing scheme the beam is focused to a smaller spot size.  

The transverse emittance growth in the two transverse planes is plotted in Fig. 5.15 along the 

linac. The minimized growth of  emittance along the linac ensures delivery of a high quality 

beam with low loss.  

The divergence decreases along the linac and beam converges to a smaller spot size of 

diameter 2.4 mm as shown in Fig. 5.16. 
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Fig. 5.14 Beam envelope in two transverse planes in 100 MeV travelling wave  

              linac      

                 

Fig. 5.15 Transverse emittance along the 100 MeV travelling wave linac     

Fig. 5.17 describes the variation of Twiss parameter α along the linac. The variation of Twiss 

parameter β is shown in Fig. 5.18. The value of βx,y < 40 indicates that the envelope width is 

smaller  and αx,y ~ 0 indicates that the beam envelope is parallel to the axis at the centre of the 

quadrupole lens.  
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Fig. 5.16 (a) Beam size, and (b) Beam divergence at the end of the 100 MeV 

              travelling wave linac  

                          

Fig. 5.17 Variation of Twiss parameter α along the 100 MeV travelling wave  

               linac 
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Fig. 5.18 Variation of Twiss parameter β along the 100 MeV travelling wave  

               linac  

The dispersion in the chicane magnet along with the twiss parameter β is shown in Fig. 5.19. 

The green coloured picture in this plot indicates the lattice profile over the entire length of the 

linac after injector section. 

        

Fig. 5.19 Variation of Twiss parameter β and the dispersion in chicane magnet  

               of 100 MeV travelling wave linac        
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5.4     CONCLUSION 

A start to end simulation for beam dynamics of a 100 MeV, 100 kW linac has been carried 

out. The effects of the space charge and typical beam parameters like variation of beam size, 

divergence, emittance growth have been studied theoretically. We conclude from these beam 

dynamics studies that the desired 100 MeV energy gain is achieved with about 7% energy 

spread in the output bunched beam for a standing wave linac and the desired 100 MeV energy 

gain is achieved with about 5% energy spread in the output bunched beam for a travelling 

wave linac.  

Further, the output beam in case of travelling wave linac is small in less diverged and spot 

size is small as compared to the standing wave linac. The corresponding growth of rms 

emittance along the linac are smaller. This ensures minimization of hitting of the beam 

against the cavity wall that may induce growth of radioactivity.  
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CHAPTER 6 

EFFECT OF SPHERICAL ABERRATION ON THE 

EMITTANCE GROWTH OF A BEAM 

 

  In an RF gap of an accelerator, the off-axis particles experience radial electric and magnetic 

forces. When these particles cross the gap, these forces vary with the radial displacement of 

the particles and particles experience a net radial impulse due to the time dependent harmonic 

electric field [10].  

Expansion of the radial electric field up to third order leads to a r� term whose coefficient 

gives rise to spherical aberration [24]. This term is responsible for growth of transverse 

emittance and hence increase the beam size. Taking uniform distribution of the beam, an 

expression has been derived for the growth of transverse RMS emittance of a bunch crossing 

an RF gap [70]. In [71] the transverse emittance growth due to spherical aberration has been 

discussed , but the correlation between the radial increment in momentum and phase spread is 

neglected. In our analysis we present a generalized expression for transverse emittance 

growth  which incorporates the correlation between third order radial term and phase spread 

of the bunch.  

Invariant envelope solution [72] of the reduced RMS envelope equation for a laminar beam 

is a minimum for a particle moving in the potential of a RF cavity [72, 73]. An analytical 

expression has been established for shift of this minimum in the presence of spherical 

aberration in section 6.2. The spherical aberration leads to a change in the frequency of 

oscillation of the beam envelope in an RF Cavity [74].  Using Lindstedt –Poincare method 
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[26], an analytical approach is used to find out the evolution of beam size and the frequency 

shift. 

For most optical elements used for focusing, deflecting, or otherwise manipulating beams 

of charged particles, the dominant effect is linear and the quantities that characterize it are 

focal lengths, positions of foci, principal planes, and nodal planes. The perturbations are then 

the geometric aberrations [75] which measure any departure from linear behaviour and are 

characterized by the geometric aberration coefficients. The focusing effect of a lens or other 

optical element may well be changed by mechanical or other imperfections [76, 77]. Lenses 

are subjected to parasitic aberrations such as deviation of roundedness from perfect circular 

symmetry, inhomogenity in the magnetic material of pole pieces, and misalignment of a 

sequence of lenses.  

 In practice, the final spot size of a beam focused by a magnetic lens depends on typical beam 

parameters, such as the emittance, variations in beam current, energy, envelope, envelope 

slopes and nonlinearity of the lens. In ideal case, all particles leaving a point in the object 

plane arrive at the same point in the image plane. When aberrations are present, particles 

emerging from an object point with different initial angles arrive at different points  in the 

image plane [78-82]. Spherical aberration is a geometrical phenomenon that arises from third 

order terms   which are neglected under the paraxial approximation [24, 83].  Spherical 

aberration in a solenoid gives rise to blurring of image and more importantly leads to growth 

of RMS emittance. Also nonuniformity of space charge introduces spherical aberration in the 

beam [28]. In earlier works the spherical aberration coefficient has been calculated for 

uniformly distributed beam taking into account the magnetic field only [43]. In this thesis we 

include the effect of both magnetic field and self field effects and evaluate the transverse rms 

emittance growth [84-87] due to spherical aberration for Uniform, Gaussian, Waterbag and 

parabolic distribution functions.  
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In section 6.3 of this thesis we have studied the effect of nonlinear terms of the magnetic 

field in the radial direction that leads to spherical aberration which in turn gives rise to 

transverse emittance growth. Also we have included the aberration due to nonuniformity of 

space charge for different beam distributions. In section 6.3.3, we have calculated the 

transverse rms emittance growth taking into account the combined effect of magnetic field 

and space charge.  

Chromatic aberration occurs [30, 88] when there is a spread in the  momentum of the charged 

particle beam passing through a magnetic lens. Focusing power of a magnetic lens depends 

inversely on the kinetic energy. So if electrons are present with different kinetic energies, 

they will be focused at a different distances from a lens; for any image plane, there will be a 

chromatic disk of confusion rather than a point focus. The spread in kinetic energy can arise 

from several causes like the statistics of the electron-emission process, ripple  in the 

accelerating voltage etc-.  In section 6.4 we have analysed the effect of energy spread of the 

beam which results in phase space distortion and transverse emittance growth. 

6.1. ANALYTICAL FORMULATION OF THE PROBLEM  OF RF GAP 

6.1.1 EXPRESSION FOR SPHERICAL ABERRATION DUE TO ELECTRIC 

FIELD 

     The standing wave electric field solution for ��		near the axis [10] is  

 ��(�,�,�)= ��(�)���(��+ �)                                                                                         (6.1) 

Radial momentum increment near the axis is  ∆�� = � ∫ (�� − ����)
�
�

�

�
�

�

��
���                  (6.2) 
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�

�
	
���

��
−

��

�

����

���
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Where we have included the third order term in the expansion of radial electric field.We have 

considered L as the rf gap length, β=v/c  is the relativistic factor,  �� is the azimuthal 

component of the magnetic field, q is the charge of the particle,  

The rate of change of field experienced by a moving particle is the sum of the spatial and 

temporal variation of the field, so 

���

��
=

���

��
−

�

��

���

��
                                                                                                                 (6.3) 

The integral over the total derivative vanishes if the interval L extends to zero field at both 

ends, or if the field is periodic with period L. The substitution of equation (6.3) in (6.2) and 

subsequent integration  leads to the  expression for the radial impulse as 

 ∆�� = −
��

��
∫ ��−

�

���

���

��
+

�

��

���

��
� +

��

�

����

���
� ��

�
�

�

�
�

�

                                                             (6.4) 

Using expression (6.1) in (6.4) for total radial impulse, we get ∆�� = ��� + 	���
�		          (6.5) 

where  �� = −
��

�������
∫ ��
�
�

�

�
�

�

(�)���(��+ �)  and      �� =
�

���
∫

����

���

�
�

�

�
�

�

	�� 

The ��	 term leads to spherical aberration and distortion of beam size. �� is the spherical 

aberration coefficient. 

 

6.1.2        EFFECT OF ABERRATION ON TRANSVERSE EMITTANCE 

  In this part the growth of transverse emittance of a bunched beam due to the third order 

term of the radial electric field is discussed. Evaluation of equation (6.5) using equation (6.1) 

gives the radial impulse as 
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∆�� = −
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�
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�� 

With origin at the electrical centre of the gap  and ��= ��, at t=0 the radial momentum 

increment is 

∆��(�= 0)= −
���

2������
���� � ��(�)

�
�
�

�
�
�

�����	��+
�

6��
�� �
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�� 

The above expression reduces to 

 ∆�� = � ′�����	+ ���
�                                                                                                                 (6.6) 

Where  

� ′ = −
��

2�2�2�2
� ��(�)

+
�
2

−
�
2

�����	�� 

As this transverse impulse depend on � , and �  varies from one end of the bunch to the other, 

there is a net increase in emittance which will be discussed below: 

RMS emittance is defined as �� =< �� > < ∆��
� > −< �∆�� >

� 

Under thin lens approximation, particle position remains unchanged while its radial 

momentum changes while crossing an RF gap. 

Assuming there is no correlation between � and �   , the rms  emittance becomes 
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�� = �′� < �� > < �� > < ����� > + ��
� < �� > < �� > + 2�′�� < �� > < �� > < ���� >

−�′� < �� > < �� > < ���� >< ���� > −�′�� < �� > < �� > < ���� > −�′�� < �� > <

�� > < ���� > −��
� < �� > < �� >                                                                                   (6.7) 

For an uniformly distributed beam, we can write 

< �� >= 2��

� + 2� 	  where R is the hard edge radius of the beam. 

Also, it is known that  < ���� >= ������(∆�)  and   < ����� >= �(��	,∆�) and  ∆�  is 

the half width of phase spread [70], �� is the synchronous phase. 

Where  

�(∆�)=
15

(∆��)
�
3

∆��
�
���∆�

∆�
− ���∆�� −

���∆�

∆�
� 

And  �(��	,∆�)=
�

�
[1 + (������ − ������)�(2∆�)] 

In the limit ∆� → 0,�(∆�)→ 1,�(�,∆�)→ ����	�� 

Substituting these values in the above expression (6.7), we find an expression for the 

growth of RMS emittance as  ∆� = �
�

��
���

�        

6.2.   ANALYSIS OF ENVELOPE EQUATION INCLUDING SPHERICAL  

ABERRATION DUE TO ELECTRIC FIELD 

6.2.1          INVARIANT ENVELOPE SOLUTION 

     Beam envelope equation for evolution of an axisymmetric relativistic bunched beam of 

spot size �(�)  under the effects of an external linear focusing channel of average strength �� 

is [73] 
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��� +
��

���
�� + ��� −

��

�����
−

��
�

������
= 0 where 

�� = �
��

��
�
�

�
���

������
�
�

 , ��,  �� =
��(�)

���
   are the external focusing strength ,  applied magnetic 

field and   beam perveance respectively, �� is the Alfven current (17 kA for electrons), � is the 

peak current in the bunch,  �(�) is a geometrical factor that describes the field distribution of 

the bunch [89]. 

Taking  �	� = � ��	�, such that  ��� +
��

���
�� =

�

� ��
����� −

� ����

� ��
	�	��,  

 the reduced envelope equation [72] becomes 

���� + �
��

��
�
�

��� +
�

�
� �	� − �

��

��
�
�
�

�	�
−

��
�

���
= 0                                                                     (6.8)    

 where  �� = �
���

������
�
�

, � =
��

���
 

Dropping the emittance term in the laminar regime, an obvious special solution of equation 

(6.8) is given by 

�	�� = �	��� = 0 

For laminar beam without aberration invariant envelope solution is 

σ	� = �
�

���� ��
= ��                                                                                                              (6.8a) 

The potential corresponding to the Hamiltonian of envelope equation (6.8) is 

  �� = �
��

��
�
�

��� +
�

�
�
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�
− �
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��
�
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�	��
�	�
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	+

��
�

��	�� 

We find that  �
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�
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 =0 and �
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= 2 �
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��
�
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��� +
�

�
� > 0   
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Hence  �� is a minimum. 

Taking aberration into account the reduced envelope equation becomes 

���� + �
��

��
�
�

��� +
�

�
� �	� − �

��

��
�
�
�

�	�
−

��
�

���
+ ���	�

� = 0                                                        (6.9) 

We get the corresponding envelope Hamiltonian as  � = 1
2� ��	�

� + �(�	�)	  with a time-

dependent modified potential  

� = �
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2�	��
+
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 Where   �� is the aberration coefficient and �� =
�

����
���

��
. 

For  �	�� = �	��� = 0, the  invariant envelope solution of a laminar beam  can be found out  

�
��
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��� +
1

4
��	�� − �
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� + ���	�
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The solution of above equation gives 
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We find that  

��
��

��	��
�
	�����

= 2 �
��

��
�

�

��� +
1

4
� +

��

��� +
1
4
�
+ 3

���

��� +
1
4
�
			> 0 

Thus without aberration term from expression (6.8a) ��
� is zero. That is the envelope solution 

has an invariant beam size. When we take aberration term in to account, the beam deviates 

from this Brillouin flow characteristics. 
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6.2.2 SOLUTION OF ENVELOPE EQUATION  AND FREQUENCY SHIFT BY 

LINDSTEDT POINCARE METHOD 

Equation of motion of a particle in reduced envelope form  in an RF Cavity is equivalent 

to equation of a simple harmonic oscillator [74] which is ���� + �
��

��
�
�

��� +
�

�
� �	� = 0   with 

its solution as �	�(�)= �������  where � = ��
��

��
�
�

��� +
�

�
�. 

But in the presence of spherical aberration the above equation takes the form 

���� + �
��

��
�
�

��� +
�

�
� �	� + ���	�

� = 0                                                                                (6.10) 

     Which is the reduced envelope equation (6.9) without space charge and emittance . The 

nonlinear term �� is treated as a small perturbation to the linearized equation and from this 

we can find an expression for shift in frequency of oscillation of the beam inside an RF 

Cavity. 

Equation (6.10) is  equivalent to  ���� + ��
��	� + ���

��	�� = 0 with the initial conditions 

�	�(0)= ��	and �	��(0)≈ 0 where  �� = ���
�. 

In order to make the analysis simpler, we take the approximation that particle has a very 

negligible initial divergence. 

Equation (6.10) can be solved with the help of Lindstedt-Poincare method [26, 90, 91]. 

Let us expand �	�  in an asymptotic series 

�	�(�)= ��	��(�)

�

���

��  
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Substituting Poincare type expansion for zeroth order  

��
�� + ��

��� = 0  and its first order correction 

  �	��
�� + ��

��	�� = −��
���

� 

zeroth order equation solution is ��(�)= �����(���)                                                     (6.11) 

Substituting (6.11) in first order equation and making use of the identity 

����� =
�

�
���� +

�

�
���3�  the result becomes an equation for a driven harmonic oscillator 

�	��
�� + ��

��	�� = −
��

���
�

4
[3���(���)+ ���(3���)] 

and its solution is   

�	��(�)= −
��

�

32
[���(���)− ���(3���)]−

3��
�

8
������(���) 

Hence up to first order perturbation theory, the solution of the equation (6.10) is 

�	�(�)= �����(���)− ��
� �

�

��
[���(���)− ���(3���)]−

�

�
������(���)� � + �(��)  

(6.12)  

But the presence of a secular term  
�

�
������(���)  in equation (6.12), leads to a linearly 

growing behaviour of  �	�(�). In particular, �	�(�) is unbounded for very large z since it grows 

more or less like ��� , which is unphysical.  

Hence to remove this term from the expression, we can introduce a new variable � = �� with 

� = ��	+ ��� + �(��) such that ���= �1−
� �

� �
�� � + �(��)                                   (6.13) 

Substituting the expression for  ���  into Poincare type perturbation solution (6.11) and 

expanding in � we arrive 
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�	�(�)= ������ + ��
� �

� �
������− ��

� �
�

��
[���� − ���3�]−

�

�
������ � + �(��)           (6.14) 

The secular term is cancelled if �� =
�

�
��

���. 

Resubstituting  � = ��, we have the uniform asymptotic expansion 

�	�(�)= �������− ��
� �

�

��
[�����− ���3��]� � + �(��)                                           (6.15) 

with new oscillation frequency � = �� �1 +
�

�
��

���                                                        (6.16) 

Expression (6.15) presents the effect of spherical aberration on the evolution of beam size 

�	�(�) of a particle moving inside a RF cavity and expression (6.16) gives the shift in 

frequency of oscillation which arises due to aberration. The above result is consistent with 

[74], when    aberration term is neglected. Thus with the help of Lindstedt-Poincare technique 

we can treat the third order perturbation term in an effective manner and find analytical 

expressions for beam size and oscillatory behaviour of an aberrated. 

 

6.3.   EFFECT OF SPHERICAL ABERRATION ON EMITTANCE GROWTH DUE 

TO MAGNETIC FIELD AND SPACE CHARGE 

6.3.1  SPHERICAL ABERRATION INDUCED BY MAGNETIC FIELD      

Magnetic field of the solenoid can be expanded up to second order in radial direction in 

terms of on -axis field components as  

 ��(�,�)= �(�)− ��

�
�"(�)+ 	…                                                                                       (6.17)                                                                                                                       

 ��(�,�)= −
�

�
�′(�)+

��

��
�′′′(�)+ 	…                                                                               (6.18)                                                                                             

where �(�)= ��(0,�), z is the distance along the solenoid axis, r is the radial distance from 

the solenoid axis and the prime denotes a derivative with respect to z.  
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Thus  equation of motion along the radial direction is 

��� =̈ �����̇ + ����̇�                                                                                                     (6.19) 

where � is the charge and �  is the mass of the charged particle. Dot (.) denotes derivatives 

with respect to time.	� and � are used as relativistic factors. 

Motion along the azimuthal direction is described using Busch’s theorem [28] 

����� =̇ �� ⁄ 2�                                                                                                           (6.20) 

where � is the magnetic flux enclosed by a circle of radius r. It is assumed that initially � ̇

is zero and particle is in field-free region. In the paraxial approximation we take 

 � = ����(�)			                                                                                                                  (6.21) 

If we substitute the  value of  � ̇in equation  (6.19) and consider terms  up to third order in r, 

we get the following equation for evolution of the radial co-ordinate  

                          � =̈ −
��

���
��(�)

�� �� −
�"(�)

��(�)
���   which reduces to  

 �����" = −
��

���
��(�)

�� �� −
�"(�)

��(�)
���                                                                                   (6.22) 

To study the effect of third order term in the expansion of magnetic field on the optics of 

beam, we take an example of a focusing solenoid  made up of iron core having length 270 

mm,  bore radius 75mm, pole gap 30 mm, no. of turns 136, as shown in Fig. 6.1. We have 

carried out simulation of this solenoid in the beam dynamics code ASTRA [14] for a 

Gaussian distribution electron beam for two magnetic field strengths of peak value 0.4 T and 

0.6 T respectively. ��  component of this solenoid for a magnetic field of strength 0.4 T  at 

� = 0 is shown in Fig. 6.2.  



 

Fig. 6.1 Picture of iron core solenoid

   

Fig. 6.2 Magnetic field profile on the axis of the solenoid
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Picture of iron core solenoid 

Magnetic field profile on the axis of the solenoid 
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The third order term in the expression for magnetic field expansion introduces nonlinearity 

for higher � and �′′ values. In order to study the effect of nonlinearity, we consider two 

different  rms beam radii 2mm and 17mm as well as  two different magnetic field of 

magnitude 0.4T and 0.6T respectively. To observe the effect of spherical aberration, at first 

we consider an input beam of rms radius 17 mm (which  is no longer under paraxial 

approximation) and track it in a peak solenoidal magnetic field of 0.4 T for two cases: one 

without third order term and the other with third order term of the magnetic field expansion 

�"(�)

��(�)
��. The beam size at the waist increases from a diameter of   1.2 mm to a diameter of 14 

mm due to the spherical aberration as shown in Fig. 6.3. As shown in Fig. 6.4 (a) and (b), the 

spherical aberration leads to the distortion of phase space and increase in effective emittance. 

Further, when the rms radius of a beam increases from 2 mm to 17 mm, the spherical 

aberration leads to the distortion of the phase space   as is evident from Fig. 6.4 (c) and Fig. 

6.4 (b). 

       

    (a)       
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 (b) 

Fig. 6.3 Beam Size at the focal point for a beam of  initial rms radius of 17 mm and 

peak B-field 0.4 T (a) without spherical aberration (b) with spherical aberration 

        

         (a) 
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           (b) 

           

           (c) 
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            (d) 

Fig. 6.4 Phase space plots of a beam at the waist (a) initial rms radius of 17 mm, peak 

B-field 0.4 T, without spherical aberration (b) initial rms radius of 17 mm, peak B-

field 0.4 T with spherical aberration (c) initial rms radius of 2 mm, peak B-field 0.4 T 

with spherical aberration (d) initial rms radius of 17 mm and peak magnetic field 0.6 

T with spherical aberration 

To observe the effect of magnetic field, for a particular beam radius, particles are tracked in 

two magnetic fields. When the magnetic field changes from 0.4 T to 0.6 T for a beam of 

initial rms radius 17 mm, the spherical aberration distorts and rotate the phase space and 

increase the emittance as shown in Fig. 6.4 (b) and Fig. 6.4 (d).   

Hence from the simulation results, we find that higher magnitude of rms beam radius and 

high magnetic field value introduce non-linearity in the beam optics. 

Further we have studied the effect of variation of magnetic field on the spherical aberration 

and the subsequent emittance growth. We find that the effect of spherical aberration is 
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minimum for a magnetic field of 0.4 T that corresponds to a beam diameter of 17 mm as 

shown in Fig.6.5. 
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Fig. 6.5 Variation of beam size and transverse emittance with magnetic field   

 

6.3.2 SPHERICAL ABERRATION INDUCED BY SPACE CHARGE 

In an ideal beam with uniform charge density, the electric field and hence the defocusing 

force are proportional to radius � [92]. In practice, the charge density is not uniform and this 

nonuniformity causes spherical aberration. We consider a space charge dominated Gaussian 

beam profile  of rms radius � in radial coordinate as 

�(�)=
�

�����
��� �−

��

���
�                                                                                                  (6.23) 

From Maxwell’s equation ∇.E = ρ/�� , radial electric field is 
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��(�)=
�

�������
�1 − ��� �−

��

���
��                                                                                  (6.24)  

where � is the beam current �� is the permittivity of free space. 

The nonlinear function in space charge field is expanded as  

��� �−
��

���
� ≈ 1−

��

���
                                                                                                       (6.25) 

From Ampere’s law ∫ B.dl= μ
� ∫ J.ds , the  azimuthal component of magnetic field is          

��=
��	��

�
 for 	� ≤ �                                                                                                             (6.26) 

With �(�)=
�
��  where � is the current density, � is the velocity of the beam and the equation 

of radial motion of a particle in this force field is   

 
�

��
(γm ṙ)= qE� − qβcBθ                                                                                                    (6.27)                               

If we use the expressions for E� and Bθ  the equation of motion reduces to 

�" = ���
�

����������
(1 −

��

���
)			                                                                                         (6.28) 

where �� =
�

�����
 and the dependence of ��	on radial and longitudinal coordinate is 

neglected. 

We include third order term for spherical aberration due to combined effect of the magnetic 

field and space charge such that the equation of motion becomes 

�" = −
����(�)�

���������
+

���(�)�′′(�)

���������
�� +

���

����������
� −

���

������������
��			                             (6.29) 
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Taking a thin lens approximation, we assume that the radial co-ordinate doesn’t change 

significantly inside the solenoid, but the slope � ′ = ��/��  gets a net impulse. Under this 

approximation, Integration of the equation (6.29) gives 

∆� ′ =
−��

4��������
����(�)	��− �

2���
����

��� �

+ 	
����

8��������
��(�)�′′(�)��− �

���
4�����������

����				 

                                                                                                                                            (6.20) 

We rewrite equation (6.20) in a compact form as  

∆� ′ = −
�

��
[1 + ���

�]						                                                                                                    (6.21) 

where  
�

��
=

��

���������
∫ ����

��� ,                                                                                     (6.22) 

�� =
�

∫����
���

��−
�

�
∫�(�)�(�)" +

��

������
�����                                                            (6.23) 

where  ��  is the spherical aberration term.             

and                                               ����
� = ��(�)−

����

����
                                                   (6.24) 

The physical significance of �� is that the fractional reduction in focal length for an off-axis 

particle incident at a distance � from the solenoid axis, is given by ���
� . A gaussian 

distributed electron beam of energy 6 MeV is tracked in a magnetic field of 0.4 T with 

different rms beam sizes. Equation (6.21) is numerically evaluated and  plotted in Fig. 6.6. 

The effect of the spherical aberration on the beam can be clearly observed as it decreases the 

focal length of the beam with an increase in rms beam sizes. 
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.  

Fig. 6.6 Variation of focal length of a Gaussian beam profile with and without 

aberration  

 

6.3.3 EXPRESSIONS FOR TRANSVERSE EMITTANCE GROWTH OF  

DIFFERENT BEAM DISTRIBUTIONS  

The rms radial emittance of a beam  ε� is defined as 

ε�
� =< r� > < r′� > −< rr′> �					                                                                                    (6.25) 

The quantities in the braces  < 	>  represent the average rms values. The spherical aberration 

coefficient C� changes with the beam distribution function. We can evaluate the transverse 

emittance growth due to aberration for Uniform, Gaussian, Waterbag and parabolic 

distribution functions [93] as discussed below. 
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6.3.3.1 UNIFORM DISTRIBUTION FUNCTION 

First we consider uniform distribution of the beam. In this case it is assumed that before 

entering the solenoid, r�
� ≈ 0 for all particles and � is unchanged under the thin lens 

approximation. 

For the calculation of emittance growth, as we assume initial r�
� ≈ 0, so ∆r′ = r′  . 

Substituting expression for  r′ from equation (6.21) in equation (6.25) 

ε�
� =

��

��
� [C� < r� > < r� > −C� < r� > �]					                                                                   (6.26) 

For uniform distribution, we can write   < r� >= 2 �� (n + 2)⁄   , where � is the hard edge 

radius of the beam. 

 Evaluation of equation (6.26) gives the expression for emittance growth for an uniform beam  

distribution due to spherical aberration in a thin solenoid lens as 

   ε� = �1 72� 	C�
��

��
    where dependence of �� on �  has been neglected assuming �(�) is 

negligible variation over the radial direction as compared to beam size. 

6.3.3.2 GAUSSIAN DISTRIBUTION FUNCTION 

For a beam having Gaussian distribution, taking particle motions are uncoupled,  the initial 

rms emittance is   		���	���� , where 		��� and 		����  are  initial rms values of the beam size and 

the divergence respectively. We assume that 		���� is very small. 

Gaussian Distribution function is defined as 

  �(�,� ′)=
�

�������′�

�
�

��

����
�
�
�

�′�

���′�
�	

                                                                                  (6.27)          
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The average rms values can be expressed as 

  < �� >=
�

�������′�
∫ �� �

�
��

����
�
�� ∫ �

�
�′�

���′�
�	
�� ′ = 5���

�                                                (6.28)                                                                             

  < �′� > 	=
�

��
� (5���

� + 40�����
� + 120��

����
�)                                                            (6.29)      

   < �� ′ > 	= −
�

��
(5���

� + 20�����
�)                                                                                (6.30) 

Hence, the rms emittance becomes 

   �� = 10√2
��

��
���

�                                                                                                            (6.31)      

6.3.3.3 WATERBAG DISTRIBUTION FUNCTION 

Distribution function of a beam with waterbag distribution  is 

 �(�)=
��

���
�1 −

��

��
�                                                                                                          (6.32)       

where � =
�

��
	  

We evaluate the rms values as 

 < �� > 	=
�

�
∫ ��
�

��
�(�)�� =

��

�
                                                                                        (6.33)   

   < �′� >=
�

��
� �

��

�
+

���
�

�
+

��
���

��
�                                                                                    (6.34)  

     < �� ′ >= −
�

��
�
��

�
+

���
�

�
�                                                                                             (6.35) 

So the expression for rms emittance growth is        �� =
���

�

�√���
                                          (6.36) 
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6.3.3.4 PARABOLIC DISTRIBUTION FUNCTION 

Distribution function of a parabolic beam is [28]  

   �(�)=
��

���
�1 −

��

��
�
�

                                                                                                      (6.37) 

The corresponding rms values can be written as 

 < �� > 	=
�

�
∫ ��
�

��
�(�)�� =

��

�
                                                                                        (6.38) 

 < �′� >=
�

��
� �

��

�
+

���
�

�
+

��
���

��
�                                                                                      (6.39) 

  < �� ′ >= −
�

��
�
��

�
+

���
�

��
�                                                                                                (6.40) 

Hence, the rms emittance is found to be 

�� =
���

�

����
                                                                                                                             (6.41) 

The above expressions for emittance growth can be used to estimate the upper limit of �� . 

For example, for a 6 MeV rf Linac ,one post-focusing solenoid (which is used to focus the 

beam after it exits from the Linac cavity) of length 270 mm, field strength 0.4 T will be used 

to focus the beam. For 6 MeV beam, the focal length is 100 mm, rms beam size is 3.5 mm 

with the emittance from the RF cavity is 4π mm-mrad. It will be desirable that emittance 

doesn’t increase by more than 5% of its value in the solenoid. Therefore, substituting the 

numbers in the formula, the maximum allowable value of ��  for Gaussian beam distribution 

is 29.60/m2. Using an approximate formula given in [94] �� =
1
(3.24��)�   where �  is the 

bore radius of the solenoid and �  is the length of the solenoid, one obtains that value of �� is 

41.2/m2  where � =75 mm. Taking the above analysis, we calculate the transverse rms 
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emittance growth for  uniform, Gaussian, Waterbag and parabolic beam distributions to be 

0.007 mm-mrad,  0.874 mm-mrad, 0.004 mm-mrad, 0.03 mm-mrad respectively.    

6.4.  EFFECT OF CHROMATIC ABERRATION ON EMITTANCE GROWTH 

6.4.1 PHASE-SPACE DISTORTION  DUE TO ENERGY SPREAD  

To study the effect of energy spread on area of phase space, it is assumed that the initial 

beam emittance is ε. Here we consider the first order term of spread in momentum with initial 

divergence of the beam is  ��
′  .  

Let us estimate the emittance growth of the beam passing through the solenoid lens. We 

assume that the position of the particle is not changed while crossing the lens, and only slope 

of the particle trajectory is changed. Neglecting �� term in equation (6.21), we take 

transformation from initial particle variables before lens (��,��′) to that after lens (�,�′) as  

  � = ��      

  � ′ = ��
′ −

��

��
(1− �)                                                                                                          (6.42) 

where  � = 2∆�/�  and � = �� �1 +
∆�

��
� 

Suppose the initial phase space is bounded by the ellipse 

�
��
�

��
� + �

��
′�

��
��� = 1 

where � = beam radius 

To find the deformation of the beam phase space after passing through the lens, let us 

substitute inverse transformation  

�� = � 
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��
′ = � ′ +

�

��
(1− �) 

The boundary of the new phase space volume occupied by the beam after passing through the 

lens at phase plane  (�,�′) is given by 

                                                 �
��

��
� � + ��� ′ +

�

��
� −

�

��
��

� ��

�
= �                                    (6.43) 

Let us introduce new variables (�,�) instead of  (�,�′) according to transformation 

�

�
= √����� 

�� ′ +
�

��
�
�

�
= √����� 

In terms of new variable the shape of the beam emittance is 

                                   � + �������� − �����2� = 1                                                     (6.44) 

where  � =
���

���
 

Without nonlinear perturbation = 0 , equation (6.44) describes ellipse (circle) in phase space. 

If � ≠ 0 then equation (6.44) describes distorted phase space ellipse.  

In this case the transformation (6.42) conserves the phase space area as Jacobian of this 

transformation equals to unity, where the Jacobian  

� = �

��

���

��

���′

��′

���

��′

���′

� = 1                                                                                                              (6.45) 
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So in this case the phase space area occupied by the beam before and after the magnetic lens 

are same, the effective area occupied by the beam is increased and hence there is a growth of  

emittance of the beam. 

6.4.2 EMITTANCE GROWTH DUE TO ENERGY SPREAD   

Under  thin lens approximation for solenoid lens, if we consider the first term of Taylor series 

expansion for the cosine and sine functions, the transformation matrix  M, [3, 70, 95]  from 

initial state (��,��
�) to final state(�,�′	) becomes 

    � = �
1 0

−�(η) 1
�                                                                                                           (6.46)      

where �(�)= �
��	

��
�
�

� =
�(�)

(���/�)�
   and η = 2∆�/� , 

�(0)= Focusing strength of solenoid without momentum spread.  

We write the expression for x and x’ correct up to  η� term as  

� = ��                                                                                                                                 (6.47) 

�� = ��
� −

�(�)

(���/�)�
≅ ��

� − �(0)�1− η +
�

�
η��                                                                (6.48) 

We can calculate the variation of second-order moments as follows: 

  ∆< �� > 	= 0                                                                                                                    (6.49) 

 ∆< �′� >=
�

�
[�(0)]� < η� > < ��

� > −
�

�
�(0)< η� > < ����

� >                                  (6.50) 

 ∆< ��� > �=
�

�
[�(0)]� < η� > < ��

� > �−
�

�
�(0)< η� > < ��

� > < ����
� >                 (6.51) 

Hence, there is a growth of emittance and the corresponding variation ∆�		is proportional to 

< η� >  . As  < η� >  is a non zero quantity, it introduces a correlation between � and 		��  . 
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      (a)  

 

 

      (b) 

Fig. 6.7 Relative Energy spread at the linac output  for injection of input bunch  (a) 

bunch length 10 ps (b) bunch length 100 ps 
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To study the effect of energy spread that gives rise to chromatic aberration of the beam that in 

turn leads to distortion of transverse phase space, we take an example of a 6 MeV, 160 mA , 

5 µs pulsed rf linac beam which is used for societal applications like cargo scanning and 

medical treatment. The accelerating cavity of the 6 MeV bi-periodic, coupled cavity linac 

consists of 3 bunching cells and 8 accelerating cells operating in π/2 mode at a frequency of 

2856 MHz. The length of each accelerating cell is 52 mm, whereas the buncher cells are 45, 

48 and 50 mm respectively. The bore radius is 5 mm for all the buncher cells and accelerating 

cells. The effective shunt impedance for the buncher cells is ~80 MΩ/m, while for the 

accelerating cells; it is ~ 90 MΩ /m.  

To compare our analysis with simulation, we consider an example where two different 

electron bunches having bunch lengths 100 ps and 10 ps respectively are injected  into the 

linac and track them through the accelerating cavities  in the beam dynamics code ASTRA to 

gain an energy of 6 MeV. We find that the energy spread of  the output beam of the linac  is 1 

%  for an input bunch of length 10 ps where as for an input bunch of length 100 ps, the 

energy spread of the output beam is 10 % as shown in Fig. 6.7.  

To study the effect of chromatic aberration on the transverse emittance growth, the beam 

coming out of the linac is focussed with the help of an iron core solenoid. The specification 

and field profile of this solenoid is as mentioned in Fig 6.1 and Fig. 6.2.  The transverse phase 

space plots in both the cases are shown in Fig. 6.8. Fig. 6.8 (b) shows that the phase space is 

more distorted. Fig. 6.8 (a) corresponds to transverse emittance of 4.614 pi mm-mrad while 

the Fig. 6.8 (b) corresponds to a transverse emittance of 14.79 pi mm-mrad. Hence a bunch 

with more spread in energy gives rise to a significant growth in transverse emittance, which 

supports  our theoretical analysis in section 6.4. 
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        (a) 

 

                                                           

    (b) 

Fig. 6.8 Transverse phase space plots after solenoid that correspond to  (a) bunch 

length 10 ps (b) bunch length 100 ps 
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This study tells that for requirements like cargo scanning and medical applications, where 

medium energy rf electron linacs are used and where beam quality (emittance) is the most 

important parameter,  low energy spread of the bunch is a desirable criteria. 

6.5.   CONCLUSION 

We have calculated the spherical aberration induced due to third order term in the radial co-

ordinate of the electric field of a RF cavity. Growth of RMS emittance due to spherical 

aberration for uniform distribution beam has been analyzed. Using reduced envelope equation 

we have shown that the invariant envelope solution shifts from its original value due to 

spherical aberration induced term. A mathematical expression is established for solution of 

beam trajectory equation and change in frequency of oscillation of the beam using Lindstedt 

–Poincare expansion method. 

Further, We have calculated the spherical aberration induced due to third order term in the 

radial co-ordinate of the magnetic field and space charge non-uniformity. The corresponding 

growth of rms emittance is evaluated for various types of beam distribution functions. This 

analysis can be used to estimate the limiting value of spherical aberration that can be 

tolerated for a given limiting value of acceptable emittance growth. We have derived an 

expression for spread in focal length due to the energy spread in the beam that experiences 

the external magnetic field and the self field forces together. 

A mathematical expression is established for distortion in phase space due to the energy 

spread of the beam. Finally, Using matrix method we have found out that the energy spread 

makes a non-linear correlation between � and  � ′ which gives rise to growth of rms 

emittance. Taking into account higher order terms of the radial magnetic field component, 

effect of other aberrations on rms emittance can be found in a similar approach. 

 

. 
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CHAPTER 7 

NUMERICAL EVALUATION OF APERTURE COUPLING IN 

RESONANT CAVITIES AND FREQUENCY PERTURBATION 

ANALYSIS 

 

The coupling of electromagnetic energy through a small aperture in a common wall between 

two regions is an important problem in electromagnetic engineering. The examples of such 

type of problem occurs in the design of waveguide, directional couplers, coupled resonator 

filters, apertures in a conducting screen, waveguide-fed apertures, cavity-fed apertures, 

waveguide-to-waveguide coupling, waveguide-to-cavity coupling, and cavity to-cavity 

coupling systems. Bethe’s theory [31] states that the coupling through a small circular 

aperture in a conducting plane wall of zero thickness. is equivalent to a combination of 

radiating electric and magnetic dipoles. Collins [32] modified Bethe’s theory taking elliptical 

integral formulation for the electric and magnetic dipole moments of the ellipsoidal dielectric. 

The work of Bethe and Collin apply to small apertures in the walls of zero thickness. The 

electrolytic tank method by Cohn [96-98] and the network analysis method in [99-102] 

polynomial approximation method [103] and Rayleigh series method in [104] gives analysis 

on aperture coupling. 

In section 7.1 of  this chapter we present a new formulation to obtain the expression for 

electric and magnetic dipole moments of the elliptic apertures in cavities in terms of Carlson 

Symmetric integrals [34], specifically for small apertures of finite thickness. Unlike some of 

the earlier approaches referred to above, the present formulation [33, 105] is not restricted in 

its application to conducting walls of zero thickness, and its use is particularly suitable when 
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numerical techniques are considered [106].  Carlson integral formulation consists of 

evaluation of elliptical integrals in terms of standard R functions instead of Legendre’s 

integrals. In these integral equations the interval of the integration is not required to begin or 

end at a singular point of the integrand. Furthermore, the Carlson Integrals lead to the 

Legendre integral formulation of the earlier work [32] by imposing   the condition that the 

thickness of the aperture tends to zero. We have given analytical expressions for Carlson 

integrals for the case of circular aperture.  

In section 7.5 and section 7.6, we have analysed the effect of frequency change due to the 

opening of apertures on the cavity walls in a manner similar to [107] and the results presented 

by the former have been modified in terms of Carlson integrals. 

In addition to the above we have proposed analytical formulae in terms of symmetric 

elliptic integral for various figures of merits of accelerating cavities such as quality factor 

(Q),   shunt impedance, filling time, wake loss parameter, cell geometry etc-.  

 

7.1  ANALYTICAL FORMULATION OF THE PROBLEM  

We consider the problem of coupling between two identical cavities 1 and 2 by means of a 

small elliptical aperture in a common side wall as shown in the Fig. 7.1. Although the 

aperture shapes can be considered to be  of various shapes like rectangular, diamond, rounded 

end slot, and ellipse, but the elliptical aperture problem can be solved exactly using elliptical 

integral techniques [103]. 

The aperture region is uniformly filled with a lossless material with electrical 

characteristics  and   and the cavity regions are assumed air filled ( 0 , 0 ). A plane wave 

is incident from cavity 1 onto the aperture. 
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Fig. 7.1 Two Cavities coupled by a small aperture 

 

If we let 1E , 1H  are the incident field and sE , and sH are the scattered field, with the 

aperture closed by a perfect magnetic wall, the following boundary conditions are satisfied on 

the magnetic wall in the aperture 

 1
ˆ 0sn H H                                                                                                                     (7.1)

 1
ˆ 0sn E E                                                                                                                        (7.2)                                                    

 The magnetic charge and the magnetic current distribution that exist on the aperture can 

be expressed as 

0
ˆ

s mn H                                                                                                                           (7.3) 

ˆ
s mn E J                                                                                                                             (7.4) 

 Since the two cavities are identical, a current mJ  will radiate identical fields into the two 

cavities. The effective dipole moments associated with the aperture current  mJ  and charge 

m   for radiation into the cavity 2 will be 2M  and   2P . The total field in the cavity 1 

is the sum of the incident fields and the field radiated by the dipole of strength 2M   and  

2P  and the other components cancel out.  
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A static field solution for the dipole moments of small elliptic and circular shaped 

apertures can be found quite readily [32]. In the practical applications of the theory, the static 

field solution gives results of small apertures [96]. 

 

                  

Fig. 7.2 (a) Dielectric ellipsoid                               (b) Permeable magnetic         

 

The dipole moments of the elliptical aperture can be obtained from the static dipole 

moments of a dielectric ellipsoid with semi axes 1 2 3, ,l l l  and placed in a uniform static electric 

field 0E  directed along the 3l  axis as shown in the Fig. 7.2.  The three principal axes are 

orthogonal and can be easily analyzed with the symmetry that usually exists for a practical 

aperture shape. In an analogy with [108] the electric dipole moment 3P  of the ellipsoid with 

the field 0E  applied along 3l axis is  

  

 
0 0

3

3 0 0

E V
P

L




 
                                                                                                         (7.5) 

Where   

     
1 2 3

3 31 10 2 2 22 2 2
1 2 3

2

l l l ds
L

s l s l s l




  

                                                                          (7.6)                 



167 
 

and 1 2 3

4

3
V l l l


  is the volume of the ellipsoid. 

We let  0 , such that the ellipsoid behaves like a perfect magnetic wall and its  net 

internal displacement flux becomes zero. The electric field at the wall satisfies the boundary 

condition as polarization charge developed cancels out the normal component of the applied 

field on the surface of the ellipsoid.   

The magnetic dipole moment M1 due to the field H1 along ��  axis and M2 due to field H2 

along axis �� are  

 
1

1

1 0 0

VH
M

L   


 
           ,                                                                                             (7.7) 

Where  

     
1 2 3

1 31 10 2 2 22 2 2
2 3 1

2

l l l ds
L

s l s l s l




  

                                                                           (7.8) 

and  

 
2

2

2 0 0

VH
M

L   


 
                                                                                                         (7.9) 

Where  

     
1 2 3

2 31 10 2 2 22 2 2
3 1 2

2

l l l ds
L

s l s l s l




  

                                                                        (7.10) 

If  we let   approach infinity , the internal magnetic field iH vanishes since 0
ˆ

en H  

equals 0
ˆ

in H  i.e the normal component of the the external field applied eH  is equal to the 

normal component of the internal field, hence the product iH  is finite . So as   approach 

infinity,  iH  tend to zero.  
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7.2   DIPOLE MOMENTS IN TERMS OF CARLSON SYMMETRIC ELLIPTICAL 

INTEGRALS 

     The integrals 1 2 3, ,L L L  may be evaluated in terms of Carlson Symmetric elliptic integrals 

of 2nd kind. 

Earlier approach by [32] used to consider the elliptical integrals of the form for which Jahnke 

and Emde tabulated solutions [109]. The limit of such an approach is that the thickness of the 

aperture is to be set to zero in order to use the elliptic integrals of the first kind and second 

kind K and E respectively. Carlson integral can lead to the elliptical integrals of the form K 

and E choosing the thickness of the aperture 3l  tends to zero. 

Therefore, the expression for the integral 3L  in terms of the Carlson Elliptical Integrals is 

 2 2 21 2 3
3 1 2 3, ,

3
D

l l l
L R l l l

                            
                                                                         (7.11) 

Where 

 
     

2 2 2
1 2 3 31 10 2 2 22 2 2

1 2 3

3
, ,

2
D

ds
R l l l

s l s l s l




  

                                                           (7.12) 

Similarly, the integrals L1 and  L2  can be written in terms of Carlson Integrals as 

  2 2 21 2 3
1 2 3 1, ,

3
D

l l l
L R l l l                                                                                                     (7.13) 

  and, 

  2 2 21 2 3
2 3 1 2, ,

3
D

l l l
L R l l l                                                                                                     (7.14) 

 The Carlson integrals can be written in a compact form as 



169 
 

 2 2 2
1 2 3 1, ,DR R l l l

 , 
 2 2 2

2 3 1 2, ,DR R l l l
 , 

 2 2 2
3 1 2 3, ,DR R l l l

  

    The dipole moment of  the aperture is one half of that of  an ellipsoidal dielectric, since 

only one side of the ellipsoid is under consideration while the ellipsoid has two sides with 

polarization charges on both the sides. Again the radiating dipole moment in the aperture is 

one-half of the moment of an aperture closed by a magnetic wall. Hence the effective 

radiating dipole moment in the aperture is one –quarter of the moment of a complete ellipsoid 

[32].   

Thus the dipole moments can be expressed as 

 3 0 0

1 2

P E
R R


  


                                                                                                        (7.15) 

1 1

1

M H
R


                                                                                                                          (7.16) 

2 2

2

M H
R


                                                                                                                         (7.17) 

    According to Bethe’s theory the dipole strengths of the scattered field are equal to the 

static dipole moments induced by the incident field, such that the electric dipole and magnetic 

dipole can be expressed as 

0 0 1
ˆ ˆ.eP  nn E                                                                                                                    (7.18) 

Where n̂  is normal to the magnetic wall surface 

0 1.mM  H                                                                                                                         (7.19) 

Where the electric polarizability of the aperture is determined to be 
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 1 2

e
R R


  


 

                                                                                            (7.20) 

and the dyadic magnetic polarizability of the aperture is  

                     1 2

m u u v v
R R

 
 a a a a                                                                                 (7.21) 

u vr u v a a  is the position vector in the localized rectangular coordinate system with the 

origin at the centre of the aperture. 

When the aperture polarizabilities concept is applied to the coupling between two lossless, 

identical waveguides or cavities through a small aperture of finite thickness, the coupling 

coefficient between the two cavities can be expressed as  

              m e
dv dv

 
 

 
  

t t n nH H E E

H H E E
                                                               (7.22) 

Where the subscript t and n denotes the tangential and normal components of the field values 

respectively. 

 

7.3   FORMULATION OF THE PROBLEM FOR APERTURE OF ZERO 

THICKNESS 

The complete elliptical integrals of first and second kinds can be expressed as [35] 

 

2 2 2 2

2 4 6 81 1.3 1.3.5 1.3.5.7
(e) 1 ...............

2 2 2.4 2.4.6 2.4.6.8
K e e e e

         
             

                        (7.23) 
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With   
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 
  
 

                                                                                 (7.25) 

    If we choose the thickness of the aperture  3l  tends to zero Carlson symmetric integrals 

reduces to the complete elliptical integrals of first and second kinds using the following 

expressions [110] 
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D DR e R e


                                                  (7.28) 

We have numerically evaluated equations (7.26), (7.27), (7.28) with the help of equations 

(7.23), (7.24), (7.25) and the plots shown in Fig. 7.3 give a comparison study of numerical 

evaluation of Carlson Symmetric integrals and complete elliptical integrals of first and 

second kind. 

These plots in Fig. 7.3, shows that the approximation of complete elliptical integrals of first 

and second kinds up to few order term matches closely with the Carlson integral inequalities 

for aperture of zero thickness. Both the curves will perfectly match when higher order terms 

are considered in approximations of K(e)  and E(e) . In section 7.5 and 7.6, we have 

discussed the physical significance of the plots, where we apply the Carlson integral 

technique to solve the effect of frequency perturbation due to an aperture of finite thickness. 



 

    

      

        

Fig. 7.3 Comparison of the plots for  Carlson Symmetric integrals (Solid Line) and

complete elliptical integrals of first and second kind (Dotted Line).
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Comparison of the plots for  Carlson Symmetric integrals (Solid Line) and

complete elliptical integrals of first and second kind (Dotted Line). 

 

 

 

Comparison of the plots for  Carlson Symmetric integrals (Solid Line) and 
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7.4   ANALYTICAL EXPRESSION OF CARLSON INTEGRALS FOR CIRCULAR 

APERTURE 

Following the procedure discussed in [41] an approximate analysis of the Carlson integral 

can be presented which is accurate for aperture of circular cross-section. We introduce a form 

factor   defined as 

 

 
  

1

2

3 2
2 2 10

2

1 cos
11

2 11 1 cosh
1

for 
dt

t t for 

















  

   
 



g
g    g<

gg
g

ggg g  g>
g

                       (7.29) 

 

Where     g  is a dimensionless quantity. 

Although    is defined by the integral expression, however, this integral may be expressed 

analytically in terms of elementary functions as described. 

Using the form factor we can approximate the elliptic integrals as : 
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The above approximations for the transverse plane elliptic integrals are only accurate up to 

order ε and approximations for longitudinal plane integrals are accurate up to order 2 . 

7.5   EFFECT OF FREQUENCY PERTURBATION ON COUPLING BETWEEN 

CAVITIES DUE TO OPENING OF APERTURES ON CAVITY WALLS 

Slater’s Pertubation formula [36, 51] describes the change in resonant frequency of a lossless 

resonant cavity when a small change in volume of  V  is introduced in the cavity wall. If 0  

is the resonant frequency before perturbation,   is the resonant frequency after perturbation, 

U is the total energy stored in the cavity, E and H are the electric and magnetic fields in the 

small volume  

             
 
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2 2
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2 2
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H E
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


                                                                          (7.33) 

The change in resonant frequency due to perturbation on the cavity walls can be written as 

                    0

0

m eW W

U

 



  
                                                                                (7.34) 

Where U is the total energy stored in the cavity.  

Bethe’s theory  considers that the aperture on the cavity wall is equivalent to electric and 

magnetic dipoles with their moments given by [eqns(7.15), (7.16), (7.17)]. These dipoles 

interact with applied driving electromagnetic field. The magnitude of these driving fields are  

0'
2

E
E  , 1

1

H
H '

2
 , 2

2

H
H '

2
   , where 0E , 1H  , 2H   the field values at the centre of the 

aperture before being perturbed. 

Taking the time average of the energy changes due to these electromagnetic dipoles, we have  
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With 
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7.5.1 ELECTRIC COUPLING 

Let us consider coupling between the two cavities through an aperture of finite thickness on 

the common wall. Assuming that the frequency of  electromagnetic field oscillation in both 

the cavities are same, the energy change in the first cavity due to the electric dipole is 

                   ,1 2

1 1

2 2
eW    1 1 1P E ' P E '                                                                       (7.39) 

Where 1P  is the dipole moment corresponding to the first cavity with the driving field 

1

2
1 1E ' E  and the driving field of the second cavity as seen by first cavity is 

1 32
2 2

1

2
le E ' E . 

1E  and 2E  are the electric fields at the centre of the aperture in the two cavities when the 

aperture is replaced by an ideal metallic boundary. 3
2l   is the thickness of the common wall 

where the aperture is located. 
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The frequency change of the first cavity due to electric coupling is 

                      2 2
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Now 
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          (7.42) 

Where   is the phase difference between 1E  and 2E . 

Thus the frequency change of the first cavity becomes 
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We can follow the same procedure to get the frequency change for second cavity. 

7.5.2 MAGNETIC COUPLING 

If the two cavities are magnetically coupled then the frequency change of the first cavity is  

  2 2
1 0,1 1 2 mW

U
 

 
  

 
                                                                                                      (7.44) 

The energy change in the first cavity due to the magnetic dipole is  

  ,1 2

1 1

2 2
mW   1 1 1M H ' - M H '                                                                                         (7.45) 

So we have  
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Now  
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Thus the frequency change of the first cavity due to magnetic coupling is 
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For the second cavity we can follow the same procedure accordingly. 

If this coupling aperture is located where electric field and magnetic fields do not vanish, the 

total frequency change is the due to the combined effects of  electric and magnetic and is 

given by   
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7.6  EFFECT OF FREQUENCY PERTURBATION ON THE GROUP VELOCITY 

OF ACCELERATING STRUCTURE 

The earlier work [107] discusses the dispersion relation of accelerating structure for coupling 

aperture of zero thickness. We proceed in a manner analogous to [107] and modify the 

previous expressions considering the finite thickness of the aperture. We  consider a periodic 

disc loaded accelerator structure as shown in the Fig. 7.4. 



 

According to Floquet’s theorem, cell to cell phase shift 

fundamental wave number and 

                  

Fig. 7.4 Electrically Coupled Slow wave structure

 

7.6.1 GROUP VELOCITY OF ELECTRICALLY COUPLING STRUCTURE

First we consider the case of electrical coupling structure

According to  equation (7.43), the resonant frequency after perturbation is 
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Where N  is the no of coupling apertures on the wall of each cavity

physical condition for these N
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So we can  write equation (7.51) as
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According to Floquet’s theorem, cell to cell phase shift D    

fundamental wave number and D  is the space periodicity of the periodic structure

 

Electrically Coupled Slow wave structure 

GROUP VELOCITY OF ELECTRICALLY COUPLING STRUCTURE

electrical coupling structure of Fig. 7.4. 

.43), the resonant frequency after perturbation is  
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is the no of coupling apertures on the wall of each cavity 

N  apertures are same ). 

mode), then 
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.51) as 

D   where   is the 

is the space periodicity of the periodic structure. 

GROUP VELOCITY OF ELECTRICALLY COUPLING STRUCTURE 

 

                     (7.51) 

 (assuming that the 

                       (7.52)
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It is very clear to observe that equation (7.53) is the dispersion relation of an electrically 

coupled slow wave structure. 

By comparing that obtained from an equivalent circuit  as shown in Fig. 7.5 

      2 2

2
1 cosk D                                                                                                   (7.54) 

Where  
2

'
Ck

C C
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
  . 

So we can write the coupling constant k in the dispersion relation as 
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Fig. 7.5 Equivalent circuit of electrically coupled slow wave structure 

We can write the resonant frequency as  
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The group velocity of this electrically coupled structure is  
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Where 2

1

e

E

E
  ,  1 0e      and in the normal accelerating structure 1e   

7.6.2 GROUP VELOCITY OF MAGNETICALLY COUPLING STRUCTURE 

Next we shall take into account the magnetic coupling structure (Fig. 7.6). According to  eqn 

(6.49), the resonant frequency after perturbation is  
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Fig. 7.6 Magnetically coupled slow wave structure 
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So we  can write  
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Fig. 7.7 Equivalent circuit of magnetically coupled slow wave structure 

 

By comparing that obtained from an equivalent circuit (Fig. 7.7) 
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Where � = �
�� . 

We can write the coupling constant for magnetically couple case as 
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We can write the resonant frequency as  

  2 321 2

2
1

1 cos
4

lH HN
D e

R U


 


    
  

                                                                          (7.63) 

The group velocity of this magnetically coupled structure is  
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Where 2

1
m

H
H

  ,    1 0m   and in the normal accelerating structure 1m  . 

7.7   EFFECT OF FREQUENCY PERTURBATION ON THE FIGUREOF MERIT 

OF ACCELERATING CAVITIES 

An important figure of merit of an rf accelerating cavity  as a resonator [10] is the quality 

factor ( 0Q ). It is defined as the ratio of the energy stored in the cavity (U ) to the energy lost 

due to rf  power dissipated on the cavity walls ( cP )  per radian of the rf cycle. The frequency 

dependence of the 0Q  is given by  
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For a magnetically aperture coupled cavity in 
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

 
mode, the modified 0Q  can be expressed as  
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For electrically aperture coupled cavity in 0Q  is  
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 Where the 
,

2
m  and 

,e
2

  are given by eqns (6.54) and (6.61) respectively. 
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Another Figure of merit of the rf cavity is the ratio  0r  over 0Q   denoted by ( 0

0

r
Q

) and 

defined as 
2
00

0 0

Er
Q U

 , where 0r  is the effective shunt impedance of the cavity. But the 

energy stored in the cavity (U ) is proportional to 2
0E  times the cross-sectional area of the 

cavity and the area varies as 2
0 . 

Thus the 

0
0

0

r
Q


. 

When the cavity is perturbed by aperture 0

0

r
Q

 is proportional to the perturbed frequency  . 

The diameter of the aperture of the accelerator structure through which the  beam is 

transmitted is inversely proportional to 0 . Hence after perturbation the aperture diameter 

varies as 1 . 

The filling time of rf power in the accelerator cavities varies as 
3

2
0


, hence the filling time 

changes with perturbation in frequency due to apertures.   

Another figure of merit , which is of interest for relativistic electron accelerator is the wake 

loss parameter Lk  which is defined as [111] 
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As 0r  varies as 

1
2

0
 and 0Q  varies as 

1
2

0


 , hence after the aperture perturbation Lk is 

proportional to the square of the perturbed frequency i.e. 2 . 
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7.8  CONCLUSION 

A general method for the electromagnetic coupling through small elliptic aperture has been 

developed. Explicit formulas for an elliptical aperture in a conducting plane excited by an 

incident plane wave have been derived.  The method is based on Carlson symmetric integral 

equations and the satisfaction of boundary conditions at the aperture. Previous techniques 

using Legendre integral is unable to consider the finite thickness of the aperture. We have 

shown that the new method, on the other hand, extends the concept of aperture polarizability 

to include apertures in walls of finite thickness that also explains the well-established zero 

wall thickness case. The numerical evaluation of elliptic integrals [33, 105] gives a faster and 

efficient  method for aperture coupling problems. We have found expressions for the 

frequency changes due to small aperture perturbation of appropriate thickness on the cavity 

wall, which may be useful for practical cavities and coupling structures. 
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CHAPTER 8 

SUMMARY AND CONCLUSION 

In this dissertation, the beam dynamics of a 100 MeV 100 kW electron accelerator has been 

carried out. The topic is of fundamental importance to future high energy machines for 

neutron generation purposes. Further the beam dynamics studies of a 30 MeV standing wave 

rf electron linac  and a 10 MeV standing wave rf electron linac for industrial purposes have 

been done.    Also, analytical calculations have been carried out for transverse emittance 

growth due to spherical aberration that arises due to the third order terms in the electric and 

magnetic field expansion respectively. Further numerical investigation of the aperture 

coupling in resonant cavities and the frequency perturbation analysis has been done. 

Based on the above studies the following conclusions have been made. 

a) It is found that space charge effect plays a pivotal role in the injector section and 1st 

cavity of the 30 MeV linac. A solenoid of length 15 cm and 15000 ampere turns 

over the injector section is necessary to compensate the space charge effect. With 

an output beam of size ~ 4.5 mm in the bore of aperture diameter 10 mm, and an 

energy spread of ~ 2.5% the beam loss on the cavity wall is minimized and the 

heavy irradiation of accelerator components is prevented. 

b) For a 10 MeV linac, space charge effect is minimized with a solenoid of 15000 

ampere turns and the beam satisfies the industrial norms to generate X rays. 

c) The 100 MeV linac beam dynamics study explores that although both standing 

wave linac and travelling wave linac are highly efficient for high energy beam, the 

travelling wave linac may be preferred because of its large aperture and versatility 

to deal with high current and high power beam. 
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d) Spherical aberration that is induced due to third order term in the radial co-ordinate 

of the electric field of a RF cavity results in a growth of transverse emittance for a 

uniform beam distribution  and shifts the invariant envelope solution from its 

original value. Change in frequency of oscillation of the beam is found using 

Lindstedt –Poincare expansion method. 

e) Spherical aberration induced due to third order term in the radial co-ordinate of the 

magnetic field and space charge non-uniformity results in growth of transverse rms 

emittance for uniform, Gaussian, parabolic and waterbag beam distributions. Also, 

distortion in phase space due to the energy spread of the beam gives rise to growth 

of rms emittance. 

f) It is found that numerical evaluation of elliptic integrals for electromagnetic 

coupling through small elliptic aperture gives a faster and efficient method for 

aperture coupling problems. Further, this method extends the concept of aperture 

polarizability to include apertures in walls of finite thickness and explains the well-

established zero wall thickness case. 

This study can be expanded in several directions to expand the application of the beam 

dynamics simulation for future high energy accelerators and to gain further insights of the 

high energy accelerators so to benefit its operation and reduce beam losses. 

Finally some future scope of work has been outlined. 

a) Study of photo neutron generation using various target materials is to be carried out. 

b) Thermodynamical studies are to be carried out for heating of the accelerator 

components during high power beam generation and transport. 
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