
CONCURRENT AND PARALLEL SYSTEMS:

ROBUST ENHANCEMENT OF PERFORMANCE

by

ANSHU S ANAND

 ENGG01201104011

Bhabha Atomic Research Centre, Mumbai

A thesis submitted to the

Board of Studies in Engineering Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

February, 2019

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the

Library to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission,

provided that accurate acknowledgement of source is made. Requests for permission

for extended quotation from or reproduction of this manuscript in whole or in part

may be granted by the Competent Authority of HBNI when in his or her judgment the

proposed use of the material is in the interests of scholarship. In all other instances,

however, permission must be obtained from the author.

ANSHU S ANAND

DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by

me. The work is original and has not been submitted earlier as a whole or in part for a

degree / diploma at this or any other Institution / University.

ANSHU S ANAND

List of Publications based on this thesis

Journal Publications

1. “STMs in Practice: Partial Rollback vs Pure Abort Mechanisms”, Anshu S Anand, R. K.
Shyamasundar, Sathya Peri, Concurrency and Computation: Practice and Experience,
Wiley, 2018, DOI:10.1002/cpe.4465.

2. “A Deadlock-free lock-based synchronization for GPUs”, Anshu S Anand, Akash
Srivastava, R. K. Shyamasundar, Concurrency and Computation: Practice and
Experience, Wiley, 2018, DOI:10.1002/cpe.4991.

Communicated

1. “Software Transactional Memory as a parallel Programming Paradigm”, Anshu S
Anand, R. K. Shyamasundar and Anup K. Bhattacharjee, communicated and under
review in BARC Newsletter.

Conference Publications

1. “Opacity proof for CaPR+ algorithm”, Anshu S Anand, R. K. Shyamasundar, Sathya
Peri, In proceedings of the 17th international conference on distributed computing and
networking, ICDCN ’16, Singapore, ACM, 2016, DOI: 10.1145/2833312.2833445.

2. “Scaling Computation on GPU Using Powerlists”, Anshu S Anand, R. K. Shyamasundar,
In proceedings of the IEEE 22nd International Conference on High Performance
Computing Workshops (HiPCW), Bangalore, IEEE, 2015, DOI:
10.1109/HiPCW.2015.14.

Anshu S. Anand

DEDICATED

to

THE ALMIGHTY GOD

ACKNOWLEDGEMENTS

First and foremost, I would like to express deepest gratitude to my guide Prof. R. K.

Shyamasundar for the guidance and support at every stage of my research work. His

enthusiasm and passion for research has been an inspiration and has played an

instrumental role in keeping me motivated. He has always made himself available,

even when he had been traveling, through emails. His encouragement, advices and

suggestions throughout this period, especially during the revision of papers, have

helped me evolve as a better researcher.

I would also like to express sincere gratitude to my supervisor Dr. A. K.

Bhattacharjee for his guidance and encouragement during this time. His friendly

attitude helped me confide in him my problems, and his advices have indeed helped

me sail through. I thank him for his support throughout in spite of his busy schedule.

I thank my doctoral committee chairman Prof. A.P. Tiwari for his continuous

support and valuable suggestions during my research work and for monitoring my

progress every year. I would like to express my sincere thanks to the doctoral

committee members for their critical comments and suggestions during annual review

presentations.

I thank Prof. Sathya Peri, our collaborator from IIT Hyderabad for his

significant contributions in this research work. The numerous brainstorming sessions

and discussions with him and his students were very helpful and has contributed a lot

in this work. I would also like to thank Dr. Anjil Srivastava, Dr. N V Narendra Kumar

and Dr. Vishwas Patil for being a mentor and friend alike. Their advices, feedbacks

and constructive criticisms have played a vital role in this long journey. I also thank

Akash for his contributions to this work.

I would also like to thank TIFR and IIT for providing the necessary

infrastructure for me to carry out this work, and to the Computer Centre, BARC and

CUDA Centre of Excellence, IIT Bombay for providing access to their computational

facilities to carry out the experiments. Special thanks to Mr. Ravikumar, TIFR for

facilitating access to the Tilera machines at TIFR, and for being a good friend. I am

indebted to Homi Bhabha National Institute, Mumbai for giving me this opportunity

to carry out the research work, and to Department of Atomic Energy (DAE) for

providing me the generous DAE Graduate Fellowship.

I would like to thank my friends and colleagues at TIFR and IIT, especially

Namrata, Tejas, Deepthi and Nikita for their moral support and company. I want to

give special thanks to Namrata and Vatsala Aunty for making my stay at Mumbai as

comfortable as never before.

I extend my heart-felt thanks to my parents, family and friends for their love,

care and support. In addition, I want to thank my wife, Ashwini for her patience in this

entire endeavor, who has sacrificed so much.

Above all, I express my indebtedness to the “ALMIGHTY” God, for all his

blessings and kindness, without which this work would not have been performed.

CONTENTS
PaPage No.

SYNOPSIS i

LIST OF FIGURES ii

LIST OF TABLES iv

CHAPTER 1 INTRODUCTION

1.1. Objective

1.2. Organization of the thesis

1

8

10

CHAPTER 2 A PERFORMANCE EFFICIENT SOFTWARE TRANS-
ACTIONAL MEMORY

11

 2.1. Software Transactional Memory

 2.2.1. Literature Survey

 2.2.2. System Model

2.2. Enhanced Automatic Checkpointing and Partial Rollback
(CaPR+) Algorithm

 2.2.1. Data Structures used in CaPR+ Algorithm

 2.2.2. Description of CaPR+ Algorithm

 2.2.3. Correctness of Transactional Memories

12

12

20

23

25

27

35

CHAPTER 3 COMPARATIVE PERFORMANCE EVALUATION OF
CAPR+ ALGORITHM

3.1. Benchmarks for STMs

3.2. Performance Evaluation of CaPR+ Algorithm

3.2.1. Comparative Evaluation of Abort and Partial
Rollback mechanisms

3.2.2. Comparative Performance of CaPR+ with
CaPR+ (abort)

3.2.3. Comparative performance of CaPR+ with
RSTM

3.3. Integrated Partial Rollback-Abort Framework

3.4 Discussion

 45

45

48

49

53

55

57

59

CHAPTER 4 A DEADLOCK-FREE LOCK-BASED SYNCHRONIZA-
TION FOR GPUS

4.1. Background

4.1.1. Overview of GPU architecture

4.1.2. CUDA programming model

4.2. Deadlocks

4.2.1. Classic Deadlocks

4.2.2. Deadlock Scenarios in GPUs

61

64

64

65

67

67

69

4.2.3. Overcoming Deadlocks in GPUs

4.3. Modelling Circular Deadlocks

4.4. Deadlock-free lock algorithms for GPUs

4.4.1. Prev-Deadlockfree: A Naive Deadlock Prevention
Algorithm

4.4.2. Par-Deadlockfree: An efficient Deadlock
Prevention Algorithm

4.4.3. Proof of Deadlock Freedom

4.5. Performance Evaluation

4.5.1. Prev-Deadlockfree vs Par-Deadlockfree

4.5.2. Comparative Evaluation of Par-Deadlockfree with
existing works

4.6. Discussion

75

79

82

84

87

93

94

95

96

98

CHAPTER 5 EXPLOITING PARALLELISM AND RECURSION TO
REALIZE PERFORMANCE

5.1. Background

5.1.1. Characteristics of GPU

5.1.2. Powerlists

5.2. Specifying Matrix Multiplication using Powerlists

5.3. Realizing Matrix Multiplication keeping in view the GPU
Parameters

5.3.1. Matrix Multiplication Algorithm: An Illustrative
Example

5.3.2 Realizing the Matrix Multiplication Algorithm

5.4. Scaling Matrix Multiplication over a Cluster of GPUs

5.4.1. Matrix Multiplication : An Illustration

5.4.2. Computing matrix multiplication over GPUs

5.4.3. Method of computing large matrices over GPU
cluster using cuBLAS

5.4.4. Experimental Results

5.5. Powerlists and Oblivious algorithms

5.5.1. Cache-Oblivious Algorithms

5.5.2. Multi-core Oblivious Algorithms

5.6 . Discussion

99

102

102

102

105

109

110

112

123

125

126

127

133

145

146

148

153

CHAPTER 6 CONCLUSIONS AND FUTURE SCOPE 155

REFERENCES 159
CHAPTER

SYNOPSIS

The ever-increasing need for computational power for solving large problems has led to the design

of many concurrent and parallel systems. The largest of High Performance Computing (HPC)

systems today are comprised of thousands of multicore processors and accelerators/special purpose

hardware. However, the parallel programming languages have not been able to address the

challenges brought about by the increased level of parallelism made available by the hardware. In

this work, solutions have been provided to problems pertaining to the Performance, Productivity

and Robustness challenges of concurrent and parallel systems.

In the context of concurrent systems, an efficient Software Transactional Memory (STM)

has been proposed, which would provide a good way to address both application performance and

productivity. In the context of parallel systems, powerlist data structure has been used to provide a

high-level framework for performance and productivity. Powerlist is a robust data-structure that

allows us to utilize recursion and parallelism in an unified manner. Further, to address robustness

concerns, the variety of deadlocks possible in GPU applications has been discussed and two lock-

based deadlock-free synchronization mechanisms have been presented: Prev-Deadlockfree and Par-

Deadlockfree, for GPU architectures that overcomes these issues. An STM framework for GPUs

has been proposed by us that internally uses the deadlock-free locks. This framework is expected to

simultaneously address all the three challenges of multi-core programming, namely performance,

productivity and robustness, thereby widening the scope of GPGPU computing.

LIST OF FIGURES

Page No.

2-1 Pictorial representation of History H1 25

2-2 Local workspace of T1 and the global workspace 34

2-3 Pictorial representation of the modified History H2 42

3-1 Execution time for STAMP benchmark applications with CaPR+ and
CaPR+(Abort)

51

3-2 Speedup of CaPR+ Algorithm w.r.to CaPR+(Abort) 54

3-3 Speedup of CaPR+ Algorithm w.r.to RSTM 56

3-4 Speedup of the hybrid implementation w.r.to CaPR+ , CaPR+(Abort), and
RSTM

58

4-1 The GPU architecture and CUDA programming model 67

4-2 Resource allocation graphs: (a) Holding a resource. (b) Requesting a
resource. (c) Deadlock

69

4-3 Shared Memory lock unit 73

4-4 Example to illustrate lock stealing 78

4-5 Example to illustrate the problem with lock stealing 78

4-6 Extended resource allocation graphs: (a) Holding a resource. (b) Requesting
 a resource. (c) SIMD Deadlock

80

4-7 Extended resource allocation graph of circular deadlock (at Line 3 of
 Table 4.2)

81

4-8 Extended resource allocation graph of circular deadlock (at Line 7 of
 Table 4.2)

81

4-9 Extended resource allocation graphs of circular deadlock with threads from
different warps

82

4-10 Comparative evaluation of Prev-Deadlockfree and Par-Deadlockfree 96

4-11 Comparative evaluation of DMR implementations 97

5-1 Cooley-Tukey algorithm for computing FFT 100

5-2 Code snippet of kernel invocation 117

5-3 Code snippet of the matrix multiplication kernel 118

5-4 GPU Memory Hierarchy 120

5-5 Comparison of results achieved- best i Vs predicted i 122

5-6 Performance Comparison of global memory and shared memory versions
with CUBLAS benchmark

122

5-7 Tree representation of the matrix partitioning 125

5-8 Execution with 4 processes, combining all the MPI transfers together,
and CUDA transfers

134

5-9 Execution with 16 processes, combining all the MPI transfers together,
and CUDA transfers

135

5-10 Execution with 64 processes, combining all the MPI transfers together,
and CUDA transfers

136

5-11 Comparison of Total Execution times for 1, 4, 16 and 64 processes 137

5-12 Comparison of Total Execution times for 1, 4, 16, 64 processes(in log) 138

5-13 GPU implementation of radix-R Stockham algorithm 143

5-14 The HM model for 5 levels of cache 148

5-15 Multicore-oblivious matrix transposition algorithm 149

5-16 The multicore oblivious FFT algorithm 151

LIST OF TABLES

Page No.

2.1 Properties ensured by STM protocols 18

2.2 Local Data Block 26

2.3 Shared object Store 26

2.4 Checkpoint Log 27

2.5 Global List of Active Transactions 27

2.6 Shared Memory 28

3.1 STAMP applications 47

4.1 Scheme 1 74

4.2 Example to illustrate circular deadlock within a warp 74

4.3 Example to illustrate circular deadlock across warps 75

4.4 Summary of various deadlock scenarios and their solutions 79

4.5 Example to illustrate Prev-Deadlockfree 86

4.6 Execution Time-line for the example in Table 4.5 87

4.7 Example to illustrate efficiency of Par-Sychronize1 89

4.8 Example to illustrate Par-Deadlockfree 93

5.1 GPU parameters 102

5.2 Number of blocks, block size, dimension and shared memory required
at the different levels of recursion

113

5.3 Time taken for Matrix Multiplication with global memory(in ms) 119

5.4 Time taken for Matrix Multiplication with global memory(in ms) 119

5.5 Time taken for Matrix Multiplication with shared memory(in ms) 121

5.6 Time taken for Matrix Multiplication with shared memory(in ms) 121

5.7 Description of parameters used in the library functions 128

5.8 Shows the number of GPUs for which the best performance is achieved
for different matrix sizes

136

5.9 Execution times of radix-R Stockham implementation 144

5.10 Execution times of cuFFT 144

Chapter 1

INTRODUCTION

Starting from the early days of programming using machine language when programs

were represented by plugged interconnecting wires, the programming languages have

today evolved to high-level machine-independent programming languages. However,

the evolution was not smooth, and witnessed several challenges that had to be over-

come [1]. We provide a brief account of the challenges faced by the programming

community.

The First software crisis

The first software crisis was witnessed in 1960s and 1970s, when people were still us-

ing assembly language. The assembly languages were not portable as every hardware

architecture had its own instruction set, and thus, a program had to be completely

rewritten when moving to a different architecture. Also, since assembly language in-

structions operated at bit-level and register-level, the low level of abstraction made it

very difficult to write and maintain large programs. It was felt that higher abstraction

and portability was needed, without loosing performance. The solution to this crisis

came in the form of high-level languages like fortran and C for Von-Neumann ma-

chines, where programmers wrote codes in the high-level language, and the compiler

translated them into machine codes. A high-level language hides properties of the

processor like processor registers, instruction-set and functional units, thus providing

1

a higher level of abstraction than assembly languages. They provided programmers

with a unified view of uni-processors comprising of a single flow of control and a single

memory image, which considerably reduced the programmers’ burden.

The second software crisis

The second software crisis was witnessed during the 80s and 90s. As computational

needs increased, the software applications grew larger and larger. However, it was

becoming increasingly difficult to build and maintain such complex applications with

millions of lines of code, developed by hundreds of programmers. There was a need

to get more composability and maintainability to ease the programmers’ burden of

building and maintaining large programs. This shift in the scale of applications led

to increased focus on software system management. Software management needed to

focus from software requirements to realization and at the same time manage migra-

tion of systems to new technology or new requirements. Object oriented programming

was a solution to the second software crisis. Other solutions include better tools like

Component libraries, Purify and better software engineering methodology like design

patterns, specifications, testing, code reviews etc.

Performance was really not an issue, as it was believed that performance was

best improved by creating faster and more efficient processors. Thus, performance

was left to Moore’s law which states that the number of transistors in a chip would

double every 18-24 months. However, during this period, there was also considerable

effort in further improving performance using parallel processing, which refers to

the simultaneous use of multiple compute resources to solve a given computational

problem. Many programming models have been proposed for parallel programming.

Parallel programming models provide an abstract view of the hardware and memory

architectures, and allow us to expose concurrency in parallel algorithms. Parallel

programming models can be broadly classified on the basis of problem decomposition

as follows:

1. Data parallel model

2

With data parallel model, same or similar computations are performed on dif-

ferent data repeatedly. A typical example of data parallelism is any image

processing algorithm that applies a filter to each pixel of the image. OpenMP

is an API that is based on compiler directives that can express a data parallel

model.

2. Task parallel model

In task parallel model, independent works are encapsulated in functions to be

mapped to individual threads, which execute asynchronously. Loop iterations

are a source of task parallelism, where each iteration can be considered as a

separate task. Thread libraries (e.g., the Win32 thread API or POSIX threads)

are designed to express task-level concurrency.

3. Hybrid models

Sometimes, more than one model may be applied to solve one problem, resulting

in a hybrid algorithm model. A database is a good example of hybrid models.

Tasks like inserting records, sorting, or indexing can be expressed in a task-

parallel model, while a database query uses the data-parallel model to perform

the same operation on different data.

To parallelize a program, it has to be first decomposed into smaller computations

that are then distributed onto different processors for execution. Two of the most

common decomposition techniques used for parallelization are:

1. Functional decomposition: It is used to introduce concurrency in the problems

that can be solved by different independent tasks. The computation is divided

into disjoint tasks that are then run concurrently.

2. Data decomposition: It works best on an application that has a large data

structure. The goal of data decomposition is to partition the data structure

into multiple parts, which are then operated on by parallel tasks. The tasks

performed on the data partitions are usually similar. There are different ways

3

to perform data partitioning: partitioning input/output data or partitioning

intermediate data.

Thus, work distribution using these decomposition techniques is typically derived

from task or data parallelism, which varies from problem to problem. For problems

with large data structures, data decomposition may be more appropriate than func-

tional decomposition. Task and data decomposition may also be combined to expose

more parallelism. The programmer starts by using one of these patterns, and then

further splits up tasks using the other pattern. A special case of such a combination

is pipelining.

Thus, programmers relied on exploiting these types of parallelism in software for

improving performance of sequential programs. However, the use of parallel hardware

(eg. superscalar, VLIW architectures) to exploit parallelism in software does not

necessarily translate into proportional performance gain. Amdahls law [2] gives a

limit on the speedup that can be expected from the parallel execution of a code. It

states that the performance improvement gained using some faster mode of execution

is limited by the fraction of the time the faster mode can be used. Thus, time to run

the parallelized application, Tparallel is given by

Tparallel = ((1− P) +
P

N
) ∗ Tserial +O(N) (1)

where Tserial: time to run an application in serial version,

P: parallel portion of the process,

N: number of processors,

O(N): parallel overhead in using N threads.

Further, scalability remains an issue i.e. continuing to achieve this speedup with

increase in the number of processors is difficult because of the following reasons:

1. there may not be enough concurrent jobs to keep the CPUs busy

2. shared work queues become a bottleneck

4

3. finding finer-grained parallelism is a challenge.

The development of parallel applications is really hard since parallel programming

brings with it problems that were not encountered during sequential programming like

deadlocks, race-conditions, non-determinism, communication, synchronization, load-

balancing etc. All these issues presented some new important challenges which were

not addressed by the parallel programming languages. Further, they have not been

able to address the issues of natural specification of parallel algorithms and handling

of the architectural features to achieve performance concurrently. In other words,

there is a large gap between languages that are too low level, requiring specification

of many details that obscure the meaning of the algorithm, and languages that are

too high-level, making the performance implications of various constructs unclear.

However, in the context of sequential computing, standard languages such as C or

Java do a reasonable job of bridging such a gap. The main challenge is to bridge

the gap between specification and realization (implementation) that would preserve

natural specification of programs and at the same time enable realization of efficient

programs on different architectures.

The third Software Crisis: 2002 -

During the start of the last decade, sequential performance was left behind by Moore’s

law. General-purpose unicores stopped performance scaling due to various reasons.

It was becoming increasingly difficult to find any more parallelism in sequential pro-

grams, since ILP causes a super-linear increase in execution unit complexity (and

associated power consumption) without linear speedup in application performance.

This is referred to as ILP wall. Moreover, the sustained increase in clock frequency

was primarily due to Moore’s law. For almost three decades, Moore’s Law was aided

by Dennard scaling [3] to keep the processor power within limit. Dennard scaling

law states that as the size of transistors reduces, their power density stays constant.

However, due to physical limitations, it was difficult to further reduce the size of

transistors and power consumption, while also increasing the operating speed [4].

5

Consequently, the chip operating frequency has stagnated at about 4.7 GHz. This

limit on the scaling of clock speeds is referred to as Power wall. Further, the DRAM

access latency is still not in line with processor speeds (referred to as Memory wall),

which masks the processor speed improvements.

Due to these concerns, the performance growth in uni-processors gradually came

to an end. The computer architects have eventually moved to energy-saving multi-

core designs, in which multiple low-power processors are packed onto a single chip

that replicate the performance of a single, faster processor. Multi-cores architectures

typically aim to exploit thread-level parallelism by executing multiple threads on the

different cores, thereby aiming to improve the throughput. Unfortunately, the per-

formance of applications is not improved by merely increasing the number of cores

in a chip. Ideally, upgrading to an n-core computer should result in n-fold increase

in computational power. This, unfortunately, is not the case due to Amdahl’s law

and also because most real world computational problems cannot be efficiently par-

allelized without incurring the costs of the expensive inter-processor communication

and synchronization operations.

Hardware has evolved at a rapid pace from uni-processors with pipelining, su-

perscalar architecture, branch prediction, etc. to multi-core architectures to clusters.

However, software has not kept the same pace. The existing parallel programming

languages have not been able to address the challenges brought about by the increased

level of parallelism made available by the hardware. In the current context, the main

challenges of multi-core programming are as below [5]:

1. Application Performance

To attain good application performance, the programmer needs to write the

code cleverly to exploit maximum possible parallelism, while also being care-

ful enough to get the desired (correct) results. The various factors affecting

performance are:

(a) Coverage - refers to the extent of parallelism available in an algorithm.

Amdahl’s law gives a limit on the potential program speedup, which is

6

given by the fraction of code that can be parallelized.

(b) Granularity - refers to granularity of partitioning among processors. Fine-

grained parallelism offers scope for better performance as compared to

coarse-grained parallelism at the cost of higher complexity. However, too

small granularity may also result in high communication overhead.

(c) Locality - programs tend to reuse data and instructions they have used

recently. Temporal locality states that recently accessed memory addresses

are likely to be referenced again in the near future, while spatial locality

states that objects whose addresses are near one another are likely to be

referenced in the near future. Thus, computations must be reordered to

maximize use of data fetched for optimal performance.

2. Productivity

Since programming for multi-cores is hard, it has been the exclusive domain

of a small number of expert programmers. Moreover, achieving performance

and functional correctness simultaneously can be a serious impediment to a

programmer’s productivity. Therefore, it is important to simplify programming

to extend the domain to ordinary programmers.

3. Robustness

Concurrent programs are hard to test and debug, due to the added complexity

of expressing concurrency in programs, and also because for the same inputs,

the bugs may not be reproducible in different runs. Therefore, the onus is on

the programmer to write programs that are free of bugs such as data races,

deadlocks, livelocks etc. In typical parallel programs, some type of coordi-

nation and exchange of data is necessary to realize the given task while also

preventing occurrence of these bugs. In shared memory environments, each

processor has complete access to the shared memory, so exchange of data is not

required. They employ various synchronization primitives to ensure consistency

of shared data and can also be used as a means to coordinate computations. In

distributed systems, this is realized with communication primitives that allow

7

sending messages and data from one node to another. Efficient synchroniza-

tion primitives help in developing reliable parallel software since it allows us to

structure programs as a set of synchronized operations on fine-grain objects.

1.1 Objective

In this work, we are concerned with arriving at a paradigm for enhancing performance

and productivity of concurrent and parallel systems in a robust manner. In partic-

ular, we attempt to provide solutions to address the three challenges of multi-core

programming discussed above:

1. Performance,

2. Productivity and

3. Robustness

In this thesis, we address the following specific problems that are part of challenges

highlighted above:

1. Software Transactional Memory (STM) provides an abstraction that aids in

programmer’s productivity. Keeping this in view, our specific contributions

are:

(a) An improved and simplified STM algorithm for multi-threaded programs,

CaPR+ has been presented that implements Partial-Rollback mechanism

and proof of correctness using Opacity, a correctness criterion for STMs,

has been established.

(b) An extensive comparative evaluation of the Abort and Partial Rollback

mechanisms for STMs has been carried out. Based on the findings, an

integrated partial rollback-abort framework has been proposed and also

implemented, that benefits from the advantages of both mechanisms. Fur-

ther, several execution instances have been shown for which the hybrid

8

implementation outperforms all the implementations considered in our ex-

periments. This work is the first to propose such a hybrid framework and

to implement it.

2. Graphics Processing Units (GPUs) have evolved from graphics applications to

general purpose applications, often referred to as GPGPU computing. Hence,

it is important while transforming multi-threaded programs to GPU programs,

that deadlock-free property is preserved. Towards this goal, our contributions

are:

(a) We have described possible deadlock scenarios in GPUs, and presented a

formal model for SIMD and circular deadlocks in GPUs.

(b) We have presented a novel, deadlock-free, lock-based synchronization mech-

anism for GPUs, establish its correctness and discuss its performance.

3. Recursion and concurrency are often considered as prime factors affecting per-

formance. In this thesis, we use an existing robust data-structure - Pow-

erlist [103] that allows us to utilize recursion and parallelism in an unified

manner.

(a) Matrix multiplication algorithm has been presented in a novel way, ex-

pressed in the powerlist notation, and a powerlist based approach has been

presented for GPUs that predicts how threads for an application should

be mapped to the GPU cores, based on the GPU parameters (eg. no. of

streaming multiprocessors (SM), no. of cores per SM etc.).

(b) The usefulness of powerlists to automatically partition the matrices has

been demonstrated. In particular, we provide a library of powerlist oper-

ations that facilitate partitioning and merging of sub-problems.

(c) A scheduling algorithm for matrix multiplication across a cluster of GPUs

has been presented, thereby overcoming cuBLASs limitation to schedule

an application across the cluster. An extension of this approach to Fast

Fourier Transforms (FFT) has also been devised.

9

(d) An observation has been made that most of Cache Oblivious and Multicore-

Oblivious algorithms are recursive in nature, and how they can be easily

expressed using powerlists.

1.2 Organization of the thesis

The following chapters give an account of the work undertaken in this thesis. Chap-

ter 2 provides a literature survey of Software Transactional Memory and gives the

system model. Further, We give an overview of the Enhanced Automatic Check-

pointing and Partial Rollback (CaPR+) algorithm, give the proof of “Opacity“, a

candidate correctness criterion, for the CaPR+ algorithm. In Chapter 3, we com-

paratively evaluate partial rollback and abort mechanisms, and present an integrated

partial rollback-abort framework that exploits the advantages of both mechanisms.

In Chapter 4, we present a novel deadlock-free lock-based synchronization mechanism

for GPUs. In Chapter 5, we give a brief overview of the powerlist notation, present

the powerlist specification for matrix multiplication and give a powerlist based ap-

proach for GPUs that predicts how threads for an application should be mapped to

the GPU cores, based on the underlying hardware. Further, we discuss our method

of scaling matrix multiplication and FFT over a cluster of GPUs using cuBLAS and

Powerlists. Finally, we report our observation that powerlists can be used to specify

most of Cache-Oblivious and Multicore-Oblivious algorithms. This is followed by

conclusion in Chapter 6.

10

Chapter 2

A Performance Efficient Software

Transactional Memory

Conventional synchronization primitives like locks and compare-and-swap (CAS) pose

several challenges to the programmers and affect their productivity and/or perfor-

mance significantly. Locks are difficult to manage, especially in large systems. Al-

though coarse grained locking simplifies productivity, performance takes a hit since it

limits parallelism. Whereas fine-grained locking trades off performance with produc-

tivity. Further, locks cannot be easily composed. On the other hand, CAS operates

on only one word, increasing the complexity. The challenges posed by these low-level

synchronization primitives led to the search of alternative parallel programming mod-

els to make the process of writing concurrent programs easier. Transactional Memory

(TM) is a promising programming memory in this regard. TMs significantly improve

the programmers’ productivity, since they abstract out the low-level synchronization

details from the user. Thus, TMs are by design productive. In this work, we optimize

Software Transactional Memories (STM), a subclass of TMs, for performance. In

particular, we present an optimized algorithm, Automatic Checkpointing and Par-

tial Rollback (CaPR+) algorithm that implements partial rollback, as opposed to

abort mechanism, implemented by most STMs. We discuss the proof of correctness

of CaPR+ algorithm through Opacity, a popular correctness criterion for STMs. This

proof of opacity has been published in [6]. We also perform an exhaustive performance

11

evaluation of the partial rollback and abort mechanisms, which has been published

in [7].

In the next section, we give a literature survey of STMs and the system model.

In Section 2.2, we describe our proposed STM algorithm - CaPR+, and establish

its proof of correctness. Finally in Section 3, we perform an exhaustive comparative

evaluation of partial rollback and abort implementation of STMs through CaPR+,

and discuss our idea of implementing an integrated abort-partial rollback framework

for TMs.

2.1 Software Transactional Memory

2.1.1 Literature Survey

Transactional memory draws inspiration from database transactions. Transactions

have been in use in databases successfully for decades. A database transaction speci-

fies a semantics in which a transaction is oblivious to the presence of other transactions

accessing the database and hence the programmers live in a simpler, more familiar

sequential programming world. The model limits the allowable interactions between

the transactions in such a way that even concurrent executions of transactions pro-

duce predictable, reproducible results. Hence, maximum parallelism is obtained if

none of the transactions are trying to access the same data.

Although programming-language transactions have some similarity to the database

transactions, their implementation and execution environments differ greatly, as op-

erations in transactional databases typically involve disk accesses, whereas programs

typically store data in memory. Due to this difference, it is also known as transac-

tional memory (TM).

TM enables communication among threads running in a shared address space by

executing lightweight, in-memory transactions [63].

12

A database transaction has four specific attributes: failure atomicity, consistency,

isolation, and durability - collectively known as the ACID properties [9].

1. Atomicity: also known as all or none, it requires that all the operations in

a transaction complete successfully, or that none of these actions appear to

have started. If some of the operations of a transaction fail, the transaction

is not allowed to finish successfully since the effects of a failed operation or

transaction should not be visible to other transactions. A transaction that

completes successfully commits and one that fails aborts.

2. Consistency: If a transaction modifies the state of the world, then its changes

should take the system from one consistent state to another consistent state.

3. Isolation: It requires the transactions to not interfere with each other while

they are running. This property makes transactions an attractive programming

model for parallel computers.

4. Durability: It requires that once a transaction commits, its result is persistent

and is available to all subsequent transactions.

Of these ACID properties, only the Durability property does not hold good from

Transactional Memories, as unlike storage in disks, volatile memory is inherently not

a durable resource.

TM provides the programmers with certain high-level constructs. With these con-

structs in hand, the programmer just has to identify and demarcate atomic blocks of

code that should appear to execute atomically and in isolation from other threads.

Also, accesses to shared memory is allowed only through the read/write transactional

operations. The underlying transactional memory implementation then implicitly

takes care of the correctness of concurrent accesses to the shared data. The TM

might internally use fine- grained locking, or some non-blocking mechanism, but this

is hidden from the programmer and the application. Thus, if the TM is implemented

correctly, the programmer is less likely to introduce concurrency bugs in the code than

if he or she had to handle locks explicitly. Each transaction performs operations on

13

shared data, and then either commits or aborts. On a successful commit, the effects

of all its operations become immediately visible to other transactions; whereas in the

event of an abort, all of its operations are rolled back and none of its effects are visible

to other transactions. This allows the transactions to be atomic, i.e. programmers

get the illusion that every transaction executes all its operations instantaneously, at

some unique point in time.

Transactional memory can be implemented in hardware known as Hardware

Transactional Memory [10] (HTM), in software - called Software Transactional Mem-

ory [11] (STM) or a hybrid of the two [12]. HTMs harness the power of the existing,

efficient cache coherence mechanisms, as a result of which they have been found to

have high performance and strong atomicity. HTM implementations typically main-

tain transactional meta-data in processor’s cache, and the cache coherence mecha-

nisms are employed to detect conflicts that may arise due to concurrent execution

of transactions. Intel and IBM have recently introduced commodity processors with

integrated HTM support [111, 112, 113, 114]. However, most of these are best effort

implementations, i.e., a transaction may abort and retry because of various hardware

limitations, apart from due to data conflicts as usual. Unlike HTMs, STMs allow

transactions to be bounded. The main advantages of STMs are flexibility and the

ease of implementation since they are implemented in software. Due to these factors,

our work is based on STMs.

We now discuss the different design choices for implementing an STM.

STM design choices

Several STM implementations have been proposed, which are mainly classified based

on the following metrics [9]:

1. shared object update(version management)

It describes the mechanism by which the writes are done to the memory. There

are two approaches of version management:

14

(a) eager version management

It means that the transaction directly modifies the data in memory. Hence,

it is also known as direct update. The transaction maintains an undo log

to hold the values written by it. If later, this transaction conflicts with

another transaction, and consequently aborts, the old values held in the

undo log are restored in the memory. Eager version management requires

that pessimistic concurrency control be used for a transaction’s writes;

this is necessary because the transaction requires exclusive access to the

locations if it is going to write to them directly.

(b) lazy version management

This approach is also known as deferred update because the updates are

made to the transaction only during the commit operation of the transac-

tion. All the updates made by the transactions are saved in a local copy

of the shared object. In this way, these are non-blocking implementations.

And when the transaction is about to commit, the value of the private

copy of the shared object is copied into the shared object.

2. Conflict detection

Conflict detection deals with how the conflicts are detected among different

transactions. Based on this, the different strategies for conflict detection can

be classified as:

(a) Eager conflict detection

With eager conflict detection, a conflict is detected when a transaction

declares its intent to access data or at the transaction’s first reference to

the data, i.e. conflicts are detected as the transaction proceeds.

(b) Lazy conflict detection

With lazy conflict detection, conflict are detected at commit time of the

transaction.

3. Concurrency Control

15

The three events - conflict, detection, resolution can occur at different times.

Based on the times at which these events take place, there are two approaches

to concurrency control:

(a) Pessimistic Concurrency Control

With pessimistic concurrency control, all three events occur at the same

point in execution-when a transaction is about to access a location, the

system detects a conflict, and resolves it. It allows a transaction to claim

exclusive ownership of data prior to proceeding, preventing other transac-

tions from accessing it.

(b) Optimistic concurrency control

In optimistic concurrency control, all the three events - conflict, detection

and resolution can happen after a conflict occurs. It allows multiple trans-

actions to access data concurrently and to continue running even if they

conflict, as long as the TM detects and resolves these conflicts before a

transaction commits.

4. Granularity

STMs may also be distinguished as word-based or object-based, based on the

granularity on which they perform logging.

5. Lock-based or Obstruction-free

Lock-based STMs use blocking mechanisms like locks, while obstruction-free

STMs do not employ blocking mechanisms, thereby guaranteeing progress even

when some of the transactions are delayed.

6. Visible or Invisible reads

A read operation performed by a transaction may be visible or invisible to other

transactions.

7. Eager or Lazy acquisition of objects

A transaction can commit only when all the objects updated by it have been

16

acquired. In this scenario, the acquisition can take place either at the time the

object is first updated (eager), or at commit time (lazy).

With visible reads, the committing transaction that updates an object can see

all the reader transactions and ask them to abort. In the case of an STM with

invisible reads, conflict detection is achieved through validation. A transaction needs

to validate its read-set in order to ensure that the objects being accessed by it are

not stale - i.e., they have not been updated by other committing transactions. In the

event of a conflict, conflict resolution takes place by using the abort mechanism to

undo the effects of a transaction, and re-executing it from start. Most STMs employ

an abort mechanism for conflict resolution. The decision of which transaction should

be allowed to proceed, and which to abort, is done by a contention manager. Several

contention management policies have been devised, some of them can be found in

works by Scherer et. al. [69], Guerraoui et. al. [70], and Spear et. al. [71].

17

Table 2.1: Properties ensured by STM protocols

System RSTM [75] TL2 [66] JVSTM [67] LSTM [65] LSA-RT [68] CaPR+

Lock-based no yes yes yes no yes

Single version yes yes no yes no yes

Invisible reads no yes yes no yes no

Clock-free yes no no yes no yes

Opacity yes yes yes yes yes yes

18

Liveness and Progress

The different notions of liveness and progress are as given below:

1. Deadlock-free/ Non-blocking Transactions do not mutually block each other

such that none of them will commit.

2. Starvation-freedom/ wait-freedom Every transaction commits infinitely often.

3. Livelock-freedom/ Progress Transaction commits occur infinitely often.

4. Obstruction-freedom If a transaction takes an infinite number of steps in isola-

tion, it commits infinitely often.

Fair STM implementations are required to ensure the deadlock-free and starvation-

free properties. Several STM implementation are available, like the Intel C++ STM

compiler [13] provides language support for STM in C++, JVSTM [14] is a Java

library that implements a multi-versioned STM, SwissTM [15]- a library- based

STM system for C/C++ designed mainly to support large transactions, the IBM

XL C/C++ compiler [16] etc.

Most of the implementations use abort mechanism for canceling the effects of

operations executed within a transaction, and this incurs significant costs. Instead

of re-performing the entire operations in the transaction, a partial rollback operation

re-performs only a part of the operations, back to a checkpoint. This checkpoint can

be set by either the programmer or the system. This may significantly reduce the

overheads associated with full transaction abort.

The use of partial rollback was first illustrated by Koskinen and Herlihy in [42].

Waliullah and Stenstrom [59] suggested using checkpoints in HTMs. In the work

by Lupei [43], the partial rollback operation is based only on shared data that does

not support local data which requires extra effort from the programmer in ensuring

consistency. Gupta et. al. [45],[44] give an STM algorithm that supports both shared

and local data for partial rollback. Alice et. al. [60] give another STM that supports

both shared and local data. Our work is based on that of Gupta et. al. [45].

19

The Automatic Checkpointing and Partial Rollback(CaPR) algorithm, is an algo-

rithm to realize STMs. It is based on continuous conflict detection, lazy versioning

with automatic checkpointing, and partial rollback. Basically, as a transaction pro-

ceeds, checkpoints are created automatically, and the changes intended on the shared

objects are actually made to their local copy. As it commits, these changes are

updated to the shared objects. This may lead to conflicts in other concurrent trans-

actions. Such conflicting transactions undergo partial rollback by rolling back to the

latest checkpoint(that was recorded earlier) such that they are able to observe all the

updates done by the committed transactions, and then continue with their execution.

We now describe the system model in the following section.

2.1.2 System Model

The notations defined in this section have been inspired from [41]. We assume a

system of n processes (or threads), p1, . . . , pn that access a collection of objects via

atomic transactions. The processes are provided with the following transactional

operations : begin tran() operation, which invokes a new transaction and returns the

id of the new transaction; the write(x, v, i) operation that updates object x with value

v for a transaction i, the read(x) operation that returns a value read in x, tryC ()

that tries to commit the transaction and returns commit (c for short) or abort (a for

short), and tryA() that aborts the transaction and returns A. The objects accessed

by the read and write operations are called as t-objects. For the sake of presentation

simplicity, we assume that the values written by all the transactions are unique.

Operations write, read and tryC may return a, in which case we say that the

operations forcefully abort. Otherwise, we say that the operation has successfully

executed. Each operation is equipped with a unique transaction identifier. A trans-

action Ti starts with the first operation and completes when any of its operations

returns a or c. Abort and commit operations are called terminal operations. For a

transaction Tk, we denote all its read operations as Rset(Tk) and write operations

Wset(Tk). Collectively, we denote all the operations of a transaction Ti as evts(Tk).

20

Histories. A history is a sequence of events, i.e., a sequence of invocations and

responses of transactional operations. The collection of events is denoted as evts(H).

For simplicity, we only consider sequential histories here: the invocation of each

transactional operation is immediately followed by a matching response. Therefore,

we treat each transactional operation as one atomic event, and let <H denote the

total order on the transactional operations incurred by H. With this assumption the

only relevant events of a transaction Tk are of the types: rk(x, v), rk(x,A), wk(x, v),

wk(x, v, A), tryCk(C) (or ck for short), tryCk(A), tryAk(A) (or ak for short). We

identify a history H as tuple 〈evts(H), <H〉.

Let H|T denote the history consisting of events of T in H, and H|pi denote

the history consisting of events of pi in H. We only consider well-formed histories

here, i.e., (1) each H|T consists of a read-only prefix (consisting of read operations

only), followed by a write-only part (consisting of write operations only), possibly

completed with a tryC or tryA operationa, and (2) each H|pi consists of a sequence of

transactions, where no new transaction begins before the last transaction completes

(commits or a aborts).

We assume that every history has an initial committed transaction T0 that initial-

izes all the data-objects with 0. The set of transactions that appear in H is denoted

by txns(H). The set of committed (resp., aborted) transactions in H is denoted by

committed(H) (resp., aborted(H)). The set of incomplete or live transactions in H is

denoted by incomplete(H) (incomplete(H) = txns(H)−committed(H)−aborted(H)).

For a history H, we construct the completion of H, denoted H, by inserting ak

immediately after the last event of every transaction Tk ∈ incomplete(H).

Transaction orders. For two transactions Tk, Tm ∈ txns(H), we say that Tk precedes

Tm in the real-time order of H, denote Tk ≺RTH Tm, if Tk is complete in H and the last

event of Tk precedes the first event of Tm in H. If neither Tk ≺RTH Tm nor Tm ≺RTH Tk,

then Tk and Tm overlap in H. A history H is t-sequential if there are no overlapping

transactions in H, i.e., every two transactions are related by the real-time order.

For two transactions Tk and Tm in txns(H), we say that Tk precedes Tm in conflict

aThis restriction brings no loss of generality [61].

21

order, denoted Tk ≺COH Tm if: (a) (w-w order) ck <H cm and Wset(Tk)∩Wset(Tm) 6=

∅; (b) (w-r order) ck <H rm(x, v), x ∈ Wset(Tk) and v 6= A; (c) (r-w order)

rk(x, v) <H cm and x ∈ Wset(Tm) and v 6= A. Thus, it can be seen that the

conflict order is defined only on operations that have successfully executed.

Valid and legal histories. Let H be a history and rk(x, v) be a read operation in H.

A successful read rk(x, v) (i.e v 6= A), is said to be valid if there is a transaction Tj

in H that commits before rK and wj(x, v) is in evts(Tj). Formally, 〈rk(x, v) is valid

⇒ ∃Tj : (cj <H rk(x, v)) ∧ (wj(x, v) ∈ evts(Tj)) ∧ (v 6= A)〉. The history H is valid if

all its successful read operations are valid.

We define rk(x, v)’s lastWrite as the latest commit event ci such that ci precedes

rk(x, v) in H and x ∈ Wset(Ti) (Ti can also be T0). A successful read operation

rk(x, v) (i.e v 6= A), is said to be legal if transaction Ti (which contains rk’s lastWrite)

also writes v onto x. Formally, 〈rk(x, v) is legal ⇒ (v 6= A)∧(H.lastWrite(rk(x, v)) =

ci)∧ (wi(x, v) ∈ evts(Ti))〉. The history H is legal if all its successful read operations

are legal. Thus from the definitions we get that if H is legal then it is also valid.

Opacity. We say that two histories H and H ′ are equivalent if they have the same set

of events. Now a history H is said to be opaque [50, 63] if H is valid and there exists

a t-sequential legal history S such that (1) S is equivalent to H and (2) S respects

≺RTH , i.e ≺RTH ⊂≺RTS . By requiring S being equivalent to H, opacity treats all the

incomplete transactions as aborted.

Implementations and Linearizations. A (STM) implementation is typically a library

of functions for implementing: readk, writek, tryCk and tryAk for a transaction Tk.

We say that an implementation Mp is correct w.r.t to a property P if all the histories

generated by Mp are in P . The histories generated by an STM implementations

are normally not sequential, i.e., they may have overlapping transactional operations.

Since our correctness definitions are proposed for sequential histories, to reason about

correctness of an implementation, we order the events in a non-concurrent history in a

sequential manner. The ordering must respect the real-time ordering of the operations

in the original history. In other words, if the response operation oi occurs before the

invocation operation oj in the original history then oi occurs before oj in the sequential

22

history as well. Overlapping events, i.e. events whose invocation and response events

do not occur either before or after each other, can be ordered in any way.

We call such an ordering as linearization [46]. Now for a (non-sequential) history

H generated by an implementation M , multiple such linearizations are possible. An

implementation M is considered correct (for a given correctness property P) if every

its history has a correct linearization (we say that this linearization is exported by

M).

We assume that the implementation has enough information to generate an unique

linearization for H to reason about its correctness. For instance, implementations that

use locks for executing conflicting transactional operations, the order of access to locks

by these (overlapping) operations can decide the order in obtaining the sequential

history. This is true with STM systems such as [65, 64, 62] which use locks.

In the next section, we present our enhanced Automatic Checkpointing and Partial

Rollback(CaPR+) Algorithm.

2.2 Enhanced Automatic Checkpointing and Par-

tial Rollback(CaPR+) Algorithm

An STM system may be implemented as either a language construct or a library. A

language construct enables compiler optimizations to improve performance and static

analyses for compile-time safety guarantees, while the library approach offers greater

flexibility to the language designers to experiment with various TM implementations,

before infusing it into a language. In this section, we present the enhanced Automatic

Checkpointing and Partial Rollback(CaPR+) algorithm that has been implemented

as a library by us. CaPR+ is an optimized version of CaPR algorithm that has

been modified in several aspects. In particular, most of the data structures have been

simplified and the global transaction scheduler has been replaced by a policy that lets

any transaction that is able to acquire locks on all objects in its write-set, to commit.

CaPR+ algorithm has been presented in greater detail than CaPR algorithm like

23

usage of locks and implementation details of partial rollback mechanism for better

understanding and also to reason about the correctness of the algorithm. The different

implementation features incorporated in CaPR+ algorithm are as follows:

1. object-based granularity

2. lock-based STM

3. visible reads

4. lazy update of shared objects

5. lazy acquisition of objects

In face of a conflict, an STM should ensure that the conflict is resolved by can-

celing the effects of operations performed by the particular transaction. Most of the

existing implementations use abort mechanism to resolve conflicts, by aborting the

transaction(s) in conflict, and re-starting it. In this process, all the work done by

the transaction is lost, and the transaction is re-executed from scratch. The main

idea behind CaPR+ Algorithm is the use of partial rollback mechanism for conflict

resolution. Partial rollback utilizes some of the work already done by the transaction,

and instead of re-executing the transaction from the start, it rolls back to the latest

intermediate point that resolves the conflict, and continues execution from there.

Consider a live transaction Ti which has read a value u for t-object x. Suppose

a transaction Tj writes a value v to t-object x and commits. When Ti executes the

next memory operation (after cj), Ti is rolled back to the step before the read of x.

We denote that Tj has invalidated Ti’s read of x. Ti then reads x again.

The following example illustrates this idea. Consider the following history:

H1 : r1(x, 0)r2(x, 0)r1(y, 0)r1(z, 0)w2(y, 10)c2w1(x, 5).

In this history, when T1 performs any other memory operation such as a read after

C2, it will then be rolled back to the step r1(y) causing it to read y again. Rolling

back to an earlier point, say r1(x, 0) also resolves the conflict, but would redundantly

read the value of x as 0. On the other hand, if it rolls back to a later point, this

24

action does not resolve the conflict, as the value of y read by T1(0) is now stale, and

may cause problems later.

C2

r1(y, 0) r1(z, 0) w1(x, 5)

r2(x, 0)T2

T1 r1(x, 0)

w2(y, 10)

Figure 2-1: Pictorial representation of History H1

An important point to note is that partial rollback necessitates creation of check-

points at intermediate points, to which the transactions could rollback to, in case of a

conflict. Each transaction is executed speculatively, since all the updates on a shared

object occur to its local copy stored by the STM. The actual updates to the shared

objects are effected only during the commit operation. All these data - checkpoints,

copies of local and shared objects etc. are stored by CaPR+ in data structures main-

tained by it. The data structures used by the CaPR+ Algorithm are discussed in the

following section.

2.2.1 Data Structures used in CaPR+ Algorithm

The various data structures used in the CaPR+ Algorithm are categorized into local

workspace and global workspace, depending on whether the data structure is visible

to the local transaction or every transaction. The data structures in local workspace

start with letter l - referring to local, and g for those in global workspace. The data

structures used in the local workspace are as follows:

1. Local Data Block (l LDB) - whenever a transaction reads a local data object

for the first time, an entry is added to its l LDB. Each entry in the local data

block consists of the local object and its current value in the transaction (Table

2.2).

2. Shared Object Store (l SOS) - Each entry in the l SOS (shown in Table 2.3)

stores the address of the t-object, its value, a read flag, and a write flag. Both

the read and write flags have 0 as their initial value. Value 1 in read/write

25

flag indicates the object has been read/written by the transaction, respectively.

Whenever a transaction reads a shared object for the first time, an entry is

added to the Shared Object Store of the transaction, and the Read flag of this

entry is set to 1. Any update to the shared object by the transaction is stored

locally in the value field of l SOS, and the Write flag is set to 1. The Read/Write

flag is used by the commit operation to determine the transaction’s read/write

set, respectively.

3. Checkpoint Log (l CPLog) - Whenever a transaction reads a shared object for

the first time, a checkpoint is created that captures the state of the l LDB

and l SOS at that point of time. These checkpoints are later used to partially

rollback the transaction in case of a conflict. The l CPLog (Table 2.4) keeps a

log of all the checkpoints, where each entry stores:

(a) the shared object whose read initiated the log entry,

(b) the program location from which the transaction should proceed after a

rollback, and

(c) the current snapshot of the transaction’s local data block and the shared

object store.

Table 2.2: Local Data Block

Object Value
100 24
200 10

Table 2.3: Shared object Store

Object Current Value Read flag Write flag
1100 20 1 0
1500 30 1 1

The data structures in the global workspace are:

26

Table 2.4: Checkpoint Log

Victim Shared
Object

Program
Location

LDB
Snapshot

SOS
Snapshot

1100 1 (100, 24) NULL

1500 2
(100, 24),
(200, 10)

(1100, 20)

Table 2.5: Global List of Active Transactions

Transaction
ID

Status
Flag

Conflict Objects

1 1 1100, 1500
2 0 NULL

1. Global List of Active Transactions (g Actrans) - Each entry in this list (Ta-

ble 2.5) contains a) a unique transaction identifier, b) a status flag that indicates

the status of the transaction, as to whether the transaction is in conflict with

any of the committed transactions, and c) a list of all the objects in conflict

with the transaction. This list is updated by the committed transactions.

2. Shared Memory (g SM) - Each entry in the shared memory (Table 2.6) stores

a) a shared object, b) its value, and c) an active readers list that stores the

transaction IDs of all the transactions reading the shared object.The acreaders

list is used by a committing transaction to identify the conflicting transactions.

2.2.2 Description of CaPR+ Algorithm

The CaPR+ algorithm is shown in Algorithm 1. As discussed before, with an STM,

programmers just need to

• identify atomic blocks within the application,

• demarcate them as transactions, and

• replace all shared memory accesses within the transaction by STM calls for

reading/writing the objects. (This could also be performed by an STM com-

piler, which would reduce the programming complexity but may also result in

27

Table 2.6: Shared Memory

Shared
object

Value
List of
active readers

1100 20 1, 2
1500 10 1, 2

degrading performance due to over-instrumentation.)

The various functions defined in the CaPR+ algorithm are: TM Begin, TM End,

ReadTx, WriteTx, CommitTx, and Partially Rollback. The description of the various

functions defined by the CaPR+ algorithm is given below:

1. ReadTx: When reading object o, the transaction first checks for the presence of

o in its l LDB, and if present, its value is returned. If not, l SOS is checked. If

the object is present in neither l LDB nor l SOS, the read request is directed to

the shared memory. Since o is being read for the first time by the transaction,

an entry is created in the l SOS that stores a copy of o, and the entry’s read flag

is set to 1. A checkpoint entry is also created and stored in the l CPLog. Finally,

to make the reader visible, the transaction’s id, t, is added to o’s readers’ list.

When the object is found in either l LDB or l SOS, its value is stored in the

output structure str that is returned by the function. The transaction then

retrieves the value of the object from str.

2. WriteTx: A write operation simply updates locally the value of the local/shared

object in the corresponding entry of o in l LDB/l SOS. If the object is found

in l SOS, its write flag is set to 1.

3. commitTx: The commit operation is not visible to the programmer, it is invoked

implicitly at the end of a transaction by the EndTx call. It first finds the write-

set, t.WS of the transaction by looking for objects in l SOS with write flag =

1. To prevent deadlock, objects in t.WS are sorted and locks are obtained in

this order. This prevents deadlock by ensuring that the circular wait condition

for a deadlock to occur never holds true. Next, it finds the active readers of all

objects in t.WS by referring to g SM, sorts them and obtains locks on them.

28

On successfully acquiring all the locks, the transaction updates all the values

of shared objects from l SOS to Shared Memory (g SM). Now, in order to

maintain consistency, all the conflicting transactions need to be rolled back.

Towards this, all the transactions which have read any of the objects written by

the transaction, t, are made to roll back by setting their status flags to RED,

and their conflict objects’ list is pointed to t.WS. This information is later used

by the conflicting transactions to identify the appropriate checkpoint to which

it needs to rollback. Finally, for every object o read by t, t is removed from o’s

active readers list, and all the locks acquired are released.

4. Partially Rollback: Whenever a transaction finds its status flag to be RED,

it rolls back by identifying the appropriate checkpoint and applying it. In

order to identify the safest checkpoint, it looks at the conflict objects list in

g Actrans, and finds the object, o in the conflict objects list that has been read

earliest by t. With this o, transaction t looks into the cplog entry of o for the

checkpoint associated with object o. This is the safest checkpoint, that restores

the consistency of the transaction. The corresponding snapshot is applied to its

l LDB and l SOS. Finally, its status flag is set to GREEN, and returns the new

program location from which it continues the execution. To apply a checkpoint,

the state of l LDB and l SOS captured in the snapshot is restored in the l LDB

and l SOS data structures and the value of the transaction’s program counter

is replaced with the corresponding value in the selected checkpoint’s Program

Location. Finally, all the subsequent entries in the checkpoint log are deleted.

We have implemented the CaPR+ algorithm as a library in C+. Our implemen-

tation uses the concurrent containers provided by Intel’s Threading Building Blocks

(TBB) library [74] to allow multiple threads to concurrently access and update the

shared containers, safely. In particular, these concurrent containers are used to im-

plement the data structures in the global workspace, which are shared among all the

transactions. We discuss the performance of CaPR+ in detail in Section 3.2.

1: procedure ReadTx(t, o, pc, str)

29

2: if o is in t’s local data block then

3: str.val← o.val from l LDB;

4: return l← 1(Success);

5: else if o is in t’s shared object store then

6: str.val← o.val from l SOS;

7: return l← 1(Success);

8: else if o is in shared memory then

9: obtain locks on o, & the entry for t in g Actrans;

10: if t.status flag = RED then

11: Unlock locks on t and o;

12: PL = partially Rollback(t);

13: update str.PL = PL;

14: return l← 0(Rollback);

15: create checkpoint(o, pc);

16: str.val← o.val from Shared Memory;

17: add t to o’s readers’ list;

18: add o into l SOSand set its read flag to 1;

19: release locks on o and t;

20: return l← 1(Success);

21: else . o not in shared memory

22: return l← 2(Error);

23: procedure WriteTx(o, t)

24: if o is a local object then

25: update o in local data block;

26: else if o is a shared object then

27: if o is in l SOS then

28: update o in l SOSand set its write flag to 1;

29: else

30: insert o in l SOSand set its write flag to 1;

30

31: procedure commitTx(t)

32: Assign t’s write-set, t.WS = {o|o is in l SOSand o’s write flag = 1; }

33: Sort t.WS, obtain locks on all objects in t.WS;

34: Initialize A = {t};

35: for each object o in the t.WS

36: A = A ∪ active readers of o;

37: Sort ’A’, obtain locks on all transactions in A;

38: if t.status flag = RED then

39: release all locks;

40: PL = partially Rollback(t);

41: update str.PL = PL;

42: return l← 0(Rollback);

43: for each object, wo in t.WS

44: update wo.value in SM← local copy of wo;

45: for each transaction rt in wo’s active readers’ list,

46: rt’s conflict objects’ list = rt’s conflict objects’ list ∪ t.WS;

47: set rt’s status flag to RED;

48: delete t from actrans;

49: for each object, ro in t’s readers-list

50: delete t from ro’s active readers list;

51: release all locks;

52: return 0;

53: procedure Partially Rollback(t)

54: find the conflicting write-set from g Actrans

55: identify safest checkpoint (earliest conflicting object read by t);

56: find the l CPLog entry of the victim object, apply the selected checkpoint;

57: delete t from active reader’s list of all objects rolled back;

58: reset status flag to GREEN;

59: nullify conflict pointer of t’s g Actrans entry;

31

60: return PL (the new program location);

Implementation of Partial Rollback

With abort, a transaction discards all the work already done by it and restarts execu-

tion from beginning. However with partial rollback, a transaction must first restore

the execution context and then roll back to the latest point within the transaction

that resolves the conflict. As discussed in the earlier section, restoring of execution

context is accomplished using the snapshots stored in l CPLog. Rollback to the ap-

propriate checkpoint entails transfer of control. This can be achieved either using

setjmp/longjmp or goto. Although, in general, the use of goto is discouraged, its us-

age greatly simplifies the implementation. Implementing rollback using loops is also

possible, but it makes the code quite complicated due to multiple loop-control/return

statements as exit points. Moreover, with large applications, the code can become

clumsy and unmanageable. However, the main drawback of goto is that it allows

transfer of control only within a function. Thus, if a function is called from within a

transaction, goto cannot be used. The only way to overcome this problem is to inline

all the functions. Although, this is possible for applications with small transactions,

the code becomes clumsy for other applications, and is also very hard to debug.

Longjmp is a better alternative that implements non-local goto. It allows control

to be transferred from one function to another. The initial version of our implemen-

tation was realized using longjmp/setjmp. However, once you return from a function,

you cannot jump back to a point within the function, without corrupting the stack.

This may lead to inconsistent results, and may even crash the application.

This convinced us to implement rollback using a combination of both setjmp/-

longjmp and goto. With this approach, a transaction saves the execution context at

its beginning, and contines execution. Since goto is used, we use labels to identify

checkpoints that occur at read operations. Labels are also assigned to function calls.

Now, there may be arbitrary levels of nesting of functions, which forces us to use a

data structure that stores the program counter, pc. pc essentially captures the labels

associated with reads and function calls. The state of pc is recorded by transactions

32

in l CPLog while capturing the snapshots. In case of a conflict, the transaction uses

longjmp to jump to the start of the transaction, and then goto is used to jump to the

appropriate label. Rollback is accomplished successfully when the pc stored in the

snapshot of the appropriate l CPLog entry matches the current pc, at which point,

the rollback flag is set to 0, and execution continues as usual. Local jump is realized

using a combination of labels as values, a static array that serves as a jump table, and

the computed goto statement. We show a simplified code snippet below of a sample

transaction that illustrates the implementation.

1: TM_BEGIN ();

2: Static void *array ={&&c0, &&c1 , ..., &&c4};

3: int val = setjmp(env);

4: if(rollback == 1)

5: goto *array[pr];

6: c0: func1 ();

.

.

.

15: c4: start = (int)TM_SHARED_READ(global_i);

16: if(rollback == 1)

17: longjmp(env , 1);

18: TM_SHARED_WRITE(global_i , (global_i + 1));

19: TM_END ();

The usage of goto and longjmp/setjmp to implement rollback necessitates supplemen-

tary code. In this listing, the additional code inserted is in lines 2-5 and 16-17. On

detecting a conflict at line 16, the transaction jumps to line 3 using longjump, and

then jumps locally to the appropriate checkpoint captured in pr, using goto. With

minor additions, this works well even with codes with arbitrary levels of nesting of

functions. Please note that even though the listing above looks complex, most of

the additional code has been abstracted out using macros in our implementation,

with only marginal inputs required from the user. We now give an illustration of the

working of CaPR+ for a better understanding.

33

An illustration of the working of CaPR+

Consider two concurrent transactions T1 and T2, with transaction IDs 1 and 2 re-

spectively. Figure 2-2 shows the state of data structures in the local workspace of T1,

and the data structures of the global workspace. Two transactions conflict if their

read/write sets overlap, and there is at least one write operation in common.

Object Value

100 24

200 10

Local Data Block

Object Current
Value

Read
Flag

Write
 Flag

1100 20 1 0

1500 30 1 1

Victim
Object

Program
Location

Local Snapshot

LDB SOS

1100 1 (100, 24) NULL

1500 2 (100, 24),
(200, 10)

(1100, 20)

Shared Object Store

Checkpoint Log

Transaction
ID

Status Flag Conflict
Objects

1 1100, 1500

2 NULL

Shared Object Value List of active
readers

1100 20 1, 2

1500 10 1, 2

List of Active Transactions

Shared Memory

Global WorkspaceLocal Workspace
(of Transaction 1)

Figure 2-2: Local workspace of T1 and the global workspace.

All the updates made to the local objects are recorded in l LDB, while l SOS

stores a copy of all the shared objects read by the transaction. Any update to any

of the shared objects is effected on l SOS rather than on g SM. On encountering a

readTx operation, the transaction checks for the presence of that object in l LDB,

and then in l SOS. If the object is present in any of them, its value is immediately

returned. Otherwise, the transaction creates an entry for this object in l CPLog, and

creates a checkpoint i.e., it stores the current state of l SOS and l LDB into the local

snapshot field of l CPLog, and the current program location (the transaction rolls

back to this location in case of a conflict due to this object). The transaction then

34

looks into g SM, makes a copy of the object in l SOS, and sets its Read Flag to 1.

Any further calls of writeTx to this object modifies its copy in l SOS.

Figure 2-2 shows a situation where transaction T1 and T2 are in conflict, and T2,

in its commit phase, has changed T1’s status flag to RED and stored T2’s write set

in the conflict objects’ list of T1’s g Actrans entry. Now, as soon as T1 performs

the next memory operation (readTx/commitTx), it finds its status flag to be RED,

and rolls back. It first looks at the conflict objects’ list to identify the victim object

(the object which was read earliest by T1) - in this case object with address 1100. It

then looks for the l CPLog entry of the victim object and applies the checkpoint by

restoring the state of l LDB and l SOS to that specified in the local snapshot. T1

then deletes the irrelevant entries from l LDB, l SOS and l CPLog, and changes its

status flag to GREEN, completing the rollback process. T1 then rolls back to the

program location specified in the l CPLog entry and proceeds with execution from

this location.

We now give a detailed account of the various correctness criteria for STMs and

then give a proof of correctness of CaPR+.

2.2.3 Correctness of Transactional Memories

From a programmers point of view, transactions appear like critical sections that

are protected by global locks. It appears that all transactions are executed sequen-

tially, and the aborted transactions are rolled back completely. However, in practice,

transactions do not run sequentially. TMs are supposed to make use of the paral-

lelism provided by the underlying hardware, and should not limit the parallelism of

transactions executed by different processes or threads. A history contains sequences

of interleaved events from multiple concurrent transactions. Although executing the

transactions in parallel may help improve the performance of the application by effi-

ciently utilizing the underlying hardware, the correctness may be compromised with.

To this end, it becomes important to specify correctness guarantees expected of the

different TM implementations.

35

Correctness criteria from databases provide some intuition for the semantics of

TM systems, but they do not consider all of the complexities. First, they specify

how committed transactions behave, but they do not define what happens while a

transaction runs. Second, criteria such as serializability assume that the database

mediates on all access to data, and so they do not consider cases where data is

sometimes accessed via transactions and sometimes accessed directly.

Some of the correctness criteria defined for databases are:

1. linearizability [46]

each of these operations appears to execute atomically at some point between

when it is invoked and when it completes.

2. Serializability [47]

It states that the result of executing concurrent transactions on a database must

be identical to a result in which these transactions executed serially.

3. Strict Serializability [48]

It requires that if transaction T1 completes before transaction T2 starts, then

T1 must occur before T2 in the equivalent serial execution.

4. Snapshot Isolation [49]

It allows the reads that a transaction performs to be serialized before the trans-

actions writes. The reads must collectively see a valid snapshot of memory,

but SI allows concurrent transactions to see that same snapshot and then to

commit separate sets of updates that conflict with the snapshot but not with

one another.

In [50], a correctness criterion for TM, called opacity has been proposed. While

strict serializability preserves the order of conflicting operations between transactions,

and the order of non-overlapping transactions, Opacity ensures, in addition, that

aborting(and live) transactions do not see an inconsistent state of the memory, which

can be disastrous in STMs.

It is a safety property that captures the following requirements:

36

1. all operations performed by every committed transaction appear as if they hap-

pened at some single, indivisible point during the transaction lifetime.

2. no operation performed by any aborted transaction is ever visible to other trans-

actions (including live ones), and

3. every transaction always observes a consistent state of the system.

The reason why it requires aborted and live transactions to access only consistent

states is that a transaction that accesses an inconsistent state can cause various prob-

lems, even if it is later aborted. This can be illustrated by the following example-

Consider two shared objects x and y. A programmer may require that y is always

equal to x2, and x ≥ 2. Clearly, the programmer will then take care that every

transaction, when executed as a whole, preserves the assumed invariants. Assume

the initial value of x and y is 4 and 16, respectively. Let T1 be a transaction that

performs the following operations:

x.write(2);

y.write(4);

tryC → C1;

Consider another transaction T2 that is executed by some process pi concurrently

with T1. Then, if T2 reads the old value of x (4) and the new value of y (also 4), the

following problems may occur, even if T2 is to be aborted later.

If T2 tries to compute the value of 1/(y− x), then a divide by zero exception will

be thrown, which can crash the process executing the transaction or even the entire

application.

Also, if pi enters the following loop:

vx← x.read;

vy ← y.read;

while vx = vy do

array[vx]← 0;

37

vx← vx+ 1;

and pi reads vx = vy = 4, then unexpected memory locations could be overwrit-

ten, apart from the fact that the loop would need to span the entire value domain.

Formally, opacity can be defined as:

Definition 1 A history H is opaque if there exists a sequential history S equivalent

to some history in set Complete(H), such that

1. S preserves the real-time order of H, and

2. every transaction Ti ε S is legal in S.

Virtual World Consistency [119] is another correctness criteria that is similar to

opacity for committed transactions, but weaker than opacity for aborted transactions.

It states that

1. no transaction (committed or aborted) reads values from an inconsistent global

state,

2. the consistent global states read by the committed transactions are mutually

consistent (in the sense that they can be totally ordered)

3. while the global state read by each aborted transaction is consistent from its

individual point of view, the global states read by any two aborted transactions

are not required to be mutually consistent.

In [116], 2 correctness criteria have been introduced - TMS1 and TMS2. TMS1

requires the behavior observed by committed transactions to be justified by a single

execution, while allowing active and aborted ones to be justified by different execu-

tions. TMS2 is less permissive than TMS1. In [115], Lesani et. al. proved that

opacity is weaker than TMS2 but stronger than TMS1.

We now establish the correctness of CaPR+ algorithm by giving the proof of opac-

ity for CaPR+. We used conflict opacity, a stronger criteria than opacity, to arrive at

38

the proof. In particular, we first show the graph characterization of conflict opacity,

i.e., a history H is co-opaque if the corresponding conflict graph is acyclic. We then

show that for any history generated by CaPR+ algorithm, the corresponding conflict

graph is acyclic. This shows that every history generated by CaPR+ algorithm is

co-opaque, and hence opaque.

We now give the formal definition of conflict opacity, show the graph characteri-

zation of conflict opacity, and then give the proof of opacity.

Conflict Opacity

In this section we describe Conflict Opacity (CO), a subclass of opacity using conflict

order (defined in Section 2.1.2). This subclass is similar to conflict serializability for

databases, whose membership can be tested in polynomial time (in fact it is closer to

order conflict serializability) [72, Chap 3].

Definition 2 A history H is said to be conflict opaque or co-opaque if H is valid

and there exists a t-sequential legal history S such that (1) S is equivalent to H and

(2) S respects ≺RTH and ≺COH .

From this definition, we can see that co-opaque is a subset of opacity.

Graph characterization of co-opacity

Given a history H, we construct a conflict graph, CG(H) = (V,E) as follows: (1)

V = txns(H), the set of transactions in H (2) an edge (Ti, Tj) is added to E whenever

Ti ≺RTH Tj or Ti ≺COH Tj, i.e., whenever Ti precedes Tj in the real-time or conflict

order.

Note, since txns(H) = txns(H) and (≺RTH ∪ ≺COH) = (≺RT
H
∪ ≺CO

H
), we have

CG(H) = CG(H). In the following lemmas, we show that the graph characterization

indeed helps us verify the membership in co-opacity.

Lemma 1 Consider two histories H1 and H2 such that H1 is equivalent to H2 and

H1 respects the conflict order of H2, i.e., ≺COH1⊆≺COH2 . Then, ≺COH1 =≺COH2 .

39

Proof. Here, we have that ≺COH1⊆≺COH2 . In order to prove ≺COH1 =≺COH2 , we have to show

that ≺COH2⊆≺COH1 . We prove this using contradiction. Consider two events p, q belong-

ing to transaction T1, T2 respectively in H2 such that (p, q) ∈≺COH2 but (p, q) /∈≺COH1 .

Since the events of H2 and H1 are same, these events are also in H1. This im-

plies that the events p, q are also related by CO in H1. Thus, we have that either

(p, q) ∈≺COH1 or (q, p) ∈≺COH1 . But from our assumption, we get that the former is not

possible. Hence, we get that (q, p) ∈≺COH1⇒ (q, p) ∈≺COH2 . But we already have that

(p, q) ∈≺COH2 . This is a contradiction.

Lemma 2 Let H1 and H2 be equivalent histories such that ≺COH1 =≺COH2 . Then H1 is

legal iff H2 is legal.

Proof. It is enough to prove the ‘if’ case, and the ‘only if’ case will follow from

symmetry of the argument. Suppose that H1 is legal. By contradiction, assume that

H2 is not legal, i.e., there is a read operation rj(x, v) (of transaction Tj) in H2 with

lastWrite as ck (of transaction Tk) and Tk writes u 6= v to x, i.e., wk(x, u) ∈ evts(Tk).

Let rj(x, v)’s lastWrite in H1 be ci of Ti. Since H1 is legal, Ti writes v to x, i.e.,

wi(x, v) ∈ evts(Ti).

Since evts(H1) = evts(H2), we get that ci is also in H2, and ck is also in H1. As

≺COH1 =≺COH2 , we get ci <H2 rj(x, v) and ck <H1 rj(x, v).

Since ci is the lastWrite of rj(x, v) in H1 we derive that ck <H1 ci and, thus,

ck <H2 ci <H2 rj(x, v). But this contradicts the assumption that ck is the lastWrite

of rj(x, v) in H2. Hence, H2 is legal. From the above lemma we get the following

interesting corollary.

Corollary 3 Every co-opaque history H is legal as well.

Based on the conflict graph construction, we have the following graph characterization

for co-opaque.

Theorem 4 A legal history H is co-opaque iff CG(H) is acyclic.

40

Proof.

(Only if) If H is co-opaque and legal, then CG(H) is acyclic: Since H is co-opaque,

there exists a legal t-sequential history S equivalent to H and S respects ≺RTH and

≺COH . Thus from the conflict graph construction we have that CG(H)(= CG(H)) is

a sub graph of CG(S). Since S is sequential, it can be inferred that CG(S) is acyclic.

Any subgraph of an acyclic graph is also acyclic. Hence CG(H) is also acyclic.

(if) If H is legal and CG(H) is acyclic then H is co-opaque: Suppose that CG(H) =

CG(H) is acyclic. Thus we can perform a topological sort on the vertices of the

graph and obtain a sequential order. Using this order, we can obtain a sequential

schedule S that is equivalent to H. Moreover, by construction, S respects ≺RTH =≺RT
H

and ≺COH =≺CO
H

.

Since every two events related by the conflict relation (w-w, r-w, or w-r)in S

are also related by ≺CO
H

, we obtain ≺COS =≺CO
H

. Since H is legal, H is also legal.

Combining this with Lemma 2, we get that S is also legal. This satisfies all the

conditions necessary for H to be co-opaque.

Proof of Opacity for CaPR+ Algorithm

In this section, we will describe some of the properties of CaPR+ algorithm and

then prove that it satisfies opacity. In our implementation, only the read and tryC

operations access the memory. Hence, we call these memory operations. The main

idea behind our algorithm is that when a transaction’s read is invalidated, it does

not abort but rather gets rolled back to an intermediate point. In the worst case, it

could get rolled back to the first step of the transaction which is equivalent to the

transaction being aborted and restarted. Thus with this algorithm, a history will

consist only of incomplete (live) and committed transactions.

To precisely capture happenings of the algorithm and to make it consistent with

the model we have discussed so far, we modify the representation of the transactions

that are rolled back. Consider a transaction Ti which has read x. Suppose another

transaction Tj writes to x and then commits. Thus, when Ti performs its next memory

operation, say mi (which could either be a read or commit operation), it will be rolled

41

back. We capture this rollback operation in the history as two transactions: Ti.1 and

Ti.2.

Here, Ti.1 represents all the successful operations of transaction Ti until it executed

the memory operation mi which caused it to roll back (but not including mi). Trans-

action Ti.1 is then terminated by an abort operation ai.1. Then, after transaction Tj

has committed transaction Ti.2 begins. Unlike Ti.1 it is incomplete. It also consists

of all same operations of Ti.1 until the read on x. Ti.2 reads the latest value of the

t-object x again since it has been invalidated by Tj. It then executes future steps

which could depend on the read of x. With this modification, the history consists of

committed, incomplete as well as aborted transactions (as discussed in the model).

In reality, transaction Ti could be rolled back multiple times, say n. Then the

history H would contain events from transactions Ti.1, Ti.2, Ti.3....Ti.n. But it must be

noted that all the invocations of Ti are related by real-time order. Thus, we have that

Ti.1 ≺RTH Ti.2 ≺RTH Ti.3.... ≺RTH Ti.n

With this change in the model, the history H1 is represented by H2 as follows,

H2 : r1.1(x, 0)r2.1(x, 0)r1.1(y, 0)r1.1(z, 0)w2.1(y, 10)c2.1w1(x, 5)a1.1r1.2(x, 0)r1.2(y, 10).

For simplicity, from now on in histories we will denote a transaction with a Greek

letter subscript such as α, β, γ, etc., regardless of whether it is invoked for the first

time or has been rolled back. Thus in our representation, transactions Ti.1 and Ti.2

could be denoted as Tα and Tβ respectively.

r1.2(x, 0) r1.2(y, 10)

w2.1(y, 10)

T1.2

c2.1r2.1(x, 0)T2.1

T1.1 r1.1(x, 0) r1.1(y, 0) r1.1(z, 0)
a1.1

w1.1(x, 5)

Figure 2-3: Pictorial representation of the modified History H2

We will now prove the correctness of this algorithm. We start by describing a

property that captures the basic idea behind the working of the algorithm.

Property 5 Consider a transaction Ti that reads t-object x. Suppose another trans-

action Tj writes to x and then commits. In this case, the next memory operation

42

(read or tryC) executed by Ti after cj returns abort (since the read of x by Ti has been

invalidated).

For a transaction Ti we define the notion of its successful final memory opera-

tion(sfm). As the name suggests, it is the last successfully executed memory oper-

ation of Ti. If Ti is committed, then sfmi = ci. If Ti is aborted, then sfmi is the

last memory operation, in this case a read operation, that returned ok before being

aborted.

For proving correctness, we use the graph characterization of co-opacity described

in Section 2.2.3.

Consider a history Hcapr generated by the CaPR+ algorithm. Let CG(Hcapr) be

the conflict graph of Hcapr. We show that this graph denoted, gcapr, is acyclic.

Lemma 6 Consider a path p in gcapr abstracted as: Tα1 → Tα2 →→ Tαk. Then,

sfmα1 <Hcapr sfmα2 <Hcapr <Hcapr sfmαk.

Proof. We prove this using induction on k.

Base Case, k = 2. In this case the path consists of only one edge between transactions

Tα1 and Tα2. Let us analyse the various types of edges possible:

• real-time edge: This edge represents real-time. In this case Tα1 ≺RTHcapr
Tα2.

Hence, we have that sfmα1 <Hcapr sfmα2.

• w-w edge: This edge represents w-w order conflict. In this case both transactions

Tα1 and Tα2 are committed and sfmα1 = cα1 and sfmα2 = cα2. Thus, from the

definition of this conflict, we get that sfmα1 <Hcapr sfmα2.

• w-r edge: This edge represents w-r order conflict. In this case, cα1 <Hcapr

rα2(x, v) (v 6= A). For transaction Tα1, sfmα1 = cα1. For transaction Tα2,

either rα2 <Hcapr sfmα2 or rα2 = sfmα2. Thus in either case, we get that

sfmα1 <Hcapr sfmα2.

• r-w edge: This edge represents r-w order conflict. In this case, rα1(x, v) <Hcapr

cα2 (where v 6= A). Thus sfmα2 = cα2. Here, we again have two cases: (a) Tα1

43

terminates before Tα2. In this case, it is clear that sfmα1 <Hcapr sfmα2. (b)

Tα1 terminates after Tα2 commits. The working of the algorithm is such that, as

observed in Property 5, the next memory operation executed by Tα1 after the

commit operation cα2 returns abort. From this, we get that the last successful

memory operation executed by Tα1 must have executed before cα2. Hence, we

get that sfmα1 <Hcapr sfmα2.

Thus in all the cases, the base case holds.

Induction Case, k = n > 2. In this case the path consists of series of edges starting

from transactions Tα1 and ending at Tαn. From our induction hypothesis, we know

that it is true for k = n − 1. Thus, we have that sfmα1 <Hcapr sfmα(n−1). Now

consider the transactions Tα(n−1), Tαn which have an edge between them. Using the

arguments similar to the base case, we can prove that sfmα(n−1) <Hcapr sfmαn. Thus,

we have that sfmα1 <Hcapr sfmαn.

In all the cases, we have that sfmα1 <Hcapr sfmαn. Hence, proved.

Using Lemma 6, we show that gcapr is acyclic.

Lemma 7 Graph, gcapr is acyclic.

Proof. We prove this by contradiction. Suppose that gcapr is cyclic. Then there is a

cycle going from Tα1 → Tα2 →→ Tαk → Tα1.

From Lemma 6, we get that sfmα1 → sfmα2 → → sfmαk → sfmα1 which

implies that sfmα1 → sfmα1. Hence, the contradiction.

Theorem 8 All histories generated by CaPR+ are co-opaque and hence, CaPR+

satisfies the property of opacity.

Proof. Proof follows from Theorem 5 and Lemma 8.

Thus, it is proved that CaPR+ algorithms satisfies Opacity, thereby establishing

its correctness.

We have also extensively evaluated CaPR+ algorithm for performance. We discuss

it in detail in the next chapter.

44

Chapter 3

Comparative Performance

Evaluation of CaPR+ Algorithm

In this chapter, we discuss the performance evaluation of CaPR+ algorithm on var-

ious benchmark applications. In particular, we carry out an extensive comparative

performance evaluation of the Abort and Partial Rollback mechanisms for STMs. For

purposes of comparison, we have used the state-of-the-art RSTM system and for the

Partial Rollback, and we have used our CaPR+ algorithm. We first give an account

of the various benchmarks used in evaluating performance of STM implementations.

3.1 Benchmarks for STMs

Although many Hardware Transactional Memory (HTM), Software Transactional

Memory(STM) and Hybrid systems have been proposed, their runtime overhead are

yet to be reduced to an acceptable mark, so as to enable them to be embraced by the

industry and academia. To this end, the measurement of the performance of TM sys-

tems plays an important role as incorrect measurement may mislead the researchers

who may end up trying to optimize irrelevant aspects of the implementations. More-

over, the main issue in the evaluation of trade-offs in different systems is that the

direct comparison is difficult for systems that are based on different programming

languages. This motivates the need for a suitable benchmark that enables the em-

45

pirical evaluation of all the relevant aspects required or expected of a good TM system.

Existing benchmarks may be categorized into micro-benchmarks and individual

(or set of) applications. Micro-benchmarks are composed of transactions that execute

a few operations on a data structure. These are typically easy to develop, parameter-

ize, and port across systems. They may be useful in cases when a particular aspect of

the implementation is to be selectively evaluated. However, they do not allow us to

evaluate the whole implementation exhaustively. On the other hand, full applications

have transactions that consist of many operations over many data structures, and

may include a significant amount of non-transactional code as well.

Red-black trees and hash-tables are examples of micro-benchmarks used for evalu-

ating TM systems. The short and simple transactions of micro-benchmarks are good

for testing mechanics of STM itself and comparing low-level details of various imple-

mentations. STMBench7 [53] is another candidate benchmark for evaluating STM

implementations. Their motivation was to come up with a comprehensive benchmark

suite that is able to produce a set of workloads that:

1. corresponds to realistic, complex, object-oriented applications which benefit

from multi-threading

2. does not depend on any particular STM or programming language

3. are easy to use and provides results which can be readily interpreted.

However STMBench7 targets only a specific class of applications, i.e., CAD/-

CAM. Other benchmarks include SPLASH-2 [54], SPEComp [55], BioParallel [56],

MineBench [57] etc, but almost all of them lack in dealing with a wide range of trans-

actional behaviors - contention, length of transactions, and sizes of their read and

write sets. This leads us to another benchmark called STAMP [58] (Stanford Trans-

actional Applications for Multi-Processing). It is a comprehensive benchmark suite

that includes eight applications spanning different classes of applications, and thirty

variants of input parameters and data sets that exercise a wide range of transactional

46

behaviors. We have used STAMP benchmarks extensively for our experiments in this

work.

STAMP Benchmarks

Table 3.1: STAMP applications

Application Domain Description
bayes machine learning Learns structure of a Bayesian

network
genome bioinformatics Performs gene sequencing
intruder security Detects network intrusions
kmeans data mining Implements K-means clustering

labyrinth engineering Routes paths in maze
ssca2 scientific Creates efficient graph

representation
vacation online transaction Emulates travel reservation

processing system
yada scientific Refines a Delaunay mesh

Stanford Transactional Applications for Multi-Processing (STAMP) is a compre-

hensive benchmark suite that includes eight applications spanning different classes

of applications, and thirty variants of input parameters and data sets that exercise

a wide range of transactional behaviors. The main features of benchmarks thrusted

upon by the authors are:

1) Breadth - the benchmark must target a variety of algorithms and application do-

mains.

2) Depth - it must cover a wide range of transactional characteristics - transaction

lengths, contention and size of read and write sets.

3) The amount of time spent in executing the transactions should be varied.

4) Portability- it must be compatible with a large variety of TM systems.

Table 1 depicts the different applications and their brief description.

47

3.2 Performance Evaluation of CaPR+ Algorithm

In this section, we evaluate CaPR+ using the kmeans, genome, ssca2, labyrinth and

vacation applications of the STAMP benchmark suite [58]. This involves the following

steps:

1. To adapt the benchmarks for CaPR+ algorithm, change lib/tm*.

2. Also modify the application code by changing the operations to those defined

by the library of CaPR+ algorithm(Read, write etc).

3. Configure and compile the CaPR+ library.

4. Modify STAMP to point to the libstamp directory(that includes the CaPR+

library) :

(a) In (STAMP)/common/Makefile.stm, change -ltl2 to -lcapr

(b) In (STAMP)/common/Defines.common.mk, change STM to the relative

path to (CaPR+)/libstamp.

5. compile the benchmark application and run it with the appropriate parameters.

To analyze the performance of Partial Rollback mechanism devised for the CaPR+

algorithm, we first modify the original implementation of CaPR+ algorithm to get

another version of the same, that aborts the ongoing transaction, and restarts from

the beginning of the transaction instead of rolling back to an earlier point(checkpoint).

We then use the STAMP benchmark applications and run them with these two ver-

sions of CaPR+ algorithm implementation and RSTM [75], and evaluate the perfor-

mance of the two mechanisms. In particular, we perform a comparative evaluation of

CaPR+ under the following variations:

1. We derive a version of CaPR+ implementing pure abort (CaPR+(abort)), and

then compare it with CaPR+ (that implements partial rollback) for the STAMP

benchmark applications.

48

2. We comparatively evaluate the performance of CaPR+ with CaPR+(abort),

with varied transactional delays in the STAMP benchmark applications.

3. We comparatively evaluate the performance of CaPR+ with respect toRSTM [75],

a state-of-the-art STM implementation, with varied transactional delays in the

STAMP benchmark applications.

Experimental Framework

The experiments were performed on the following platform: Intel Xeon E5-2650V4 -

comprising 24 cores/48 threads, operating at 2.20 GHz. For concurrent access and

update of the shared containers, Intel TBB 2017 Update 2 was used. The STMs

CaPR+, CaPR+(abort) and RSTM (Release 7) were compiled using gcc v4.8.4,

with Ubuntu 14.04.5 as the operating system. The results were averaged over a set of

5 test runs, and the standard deviation is displayed as error bars for each experiment.

The differences in performance obtained for different iterations are not statistically

significant as the variations observed in results are very small as compared to the

mean for most of the experiments.Also, the claims we make are for large transac-

tional delays, in which case the standard deviation is negligible as compared to the

mean values of the results over different iterations.

3.2.1 Comparative Evaluation of Abort and Partial Rollback

mechanisms

In order to analyze the performance of partial rollback mechanism with abort pre-

cisely, we derived a light-weight version of the CaPR+ implementation that imple-

ments abort mechanism (CaPR+(abort)), and compare it with the CaPR+ imple-

mentation. This is realized by eliminating the bookkeeping required by the CaPR+ al-

gorithm like checkpointing. The comparison is performed using the kmeans, genome,

ssca2, labyrinth and vacation applications of the STAMP benchmarks [58]. We ob-

serve the execution times of the benchmark applications with CaPR+ and CaPR+(Ab-

49

ort) for different number of threads (1, 2, 4, 8, 16, 32, and 64). Each experiment

(e.g., execution of the ssca2 benchmark using CaPR+ with 4 threads) is repeated

5 times, and a graph is plotted with the arithmetic mean of the observed execution

times. The standard deviations observed for the experiment are displayed as error

bars. Note that for most of the observations, the standard deviation is so small that

the error bar appears as a small horizontal line.

The results for all experiments in this section have been shown in Figure 3-1. The

results show CaPR+(Abort) performs much better as compared to CaPR+ in most

of the experiments. We discuss results of each of the applications in detail below:

Experiment 1: kmeans - kmeans partitions a data set into k clusters, such that each

data object belongs to the cluster with the nearest mean. There are 4 execution con-

figurations for kmeans corresponding to contention (high/low) and input size (smal-

l/large), with large input size denoted by ’+’. For eg., kmeans-high + denotes the

execution configuration with high contention and large input. For kmeans, it is ob-

served that CaPR+(Abort) performs better. This can be explained by the small

length of transactions in kmeans, which renders rollback less useful. With large in-

puts, CaPR+ lags significantly behind CaPR+(Abort) with one thread, however, the

performance gap narrows with increase in threads, with the least performance gap

observed with 8 threads. This can be explained by the increase in number of roll-

backs/aborts with increase in threads.

Experiment 2: Genome - Genome takes as input a large number of DNA segments,

and matches them to reconstruct the original source genome. It uses transactions

quite frequently, as it operates continuously on shared data structures and a signifi-

cant amount of execution time is spent in transactions.

From the results, we observe that for a single thread, the abort mechanism per-

forms well, and then as the number of threads increases, performance of CaPR+ grad-

ually increases. The overall best performance is achieved for 32 threads for CaPR+.

Another important point to note is that with more number of threads, there is higher

contention, leading to more rollbacks/aborts. This is apparent from the results, and

50

1 2 4 8 16 32 64

Threads

0

1

2

T
im

e

(
s
)

Kmeans-low

CaPR+

CaPR+(Abort)

1 2 4 8 16 32 64

Threads

0

1

2

3

T
im

e

(
s
)

Kmeans-high

CaPR+

CaPR+(Abort)

1 2 4 8 16 32 64

Threads

0

1000

2000

3000

T
im

e

(
s
)

kmeans-low+

CaPR+

CaPR+(Abort)

1 2 4 8 16 32 64

Threads

0

500

1000

1500

T
im

e

(
s
)

kmeans-high +

CaPR+

CaPR+(Abort)

1 2 4 8 16 32 64

Threads

0

0.2

0.4

0.6

T
im

e

(
s
)

genome

CaPR+

CaPR+(Abort)

1 2 4 8 16 32 64

Threads

0

1

2

T
im

e

(
s
)

×10 4 genome +

CaPR+

CaPR+(Abort)

1 2 4 8 16 32 64

Threads

0.2

0.4

0.6

0.8

T
im

e

(
s
)

ssca2

CaPR+

CaPR+(Abort)

1 2 4 8 16 32 64

Threads

0

200

400

T
im

e

(
s
)

ssca2+

CaPR+

CaPR+(Abort)

1 2 4 8 16 32 64

Threads

0

0.1

0.2

T
im

e

(
s
)

labyrinth

CaPR+

CaPR+(Abort)

1 2 4 8 16 32 64

Threads

0

5

10

T
im

e

(
s
)

vacation-low

CaPR+

CaPR+(Abort)

1 2 4 8 16 32 64

Threads

0

5

10

15

T
im

e

(
s
)

vacation-high

CaPR+

CaPR+(Abort)

1 2 4 8 16 32 64

Threads

0

5000

10000

15000

T
im

e

(
s
)

vacation-low +

CaPR+

CaPR+(Abort)

Figure 3-1: Execution time for STAMP benchmark applications with CaPR+ and
CaPR+(Abort)

51

justifies why the performance takes a hit beyond 32 threads. This is also because of

over-subscribing as only 48 cores are at disposal.

Experiment 3: SSCA2 - SSCA2 (Scalable Synthetic Compact Applications 2) con-

structs an efficient graph data structure using adjacency arrays and auxiliary ar-

rays [58].

For ssca2, there is only a marginal difference in performance. This is explained

by the fact that the amount of contention is relatively low for ssca2 due to infrequent

concurrent updates of the same adjacency list. This is because of the large number

of graph nodes resulting in fewer conflicts, and hence fewer aborts/rollbacks.

Experiment 4: Labyrinth- This application is a path finding algorithm based on Lee’s

algorithm [97] for maze routing. For labyrinth too, abort fares better throughout as

compared to rollback. This is because labyrinth has large read and write sets, which

adds to the overhead of checkpointing for the rollback mechanism. The best perfor-

mance is observed for 4/8 threads, and thereafter the performance drops sharply for

both rollback and abort. This is because of the high amount of contention due to

several transactional accesses to memory.

Experiment 5: Vacation - Vacation implements a travel reservation system, where

a number of client threads perform reservation/cancellation/update operations on

the database. The results of vacation show a similar trend for every execution, with

performance of CaPR+ improving gradually with increase in number of threads. Al-

though vacation spends most of its time in transactions, the performance gap remains

significantly high even with 16/32 threads. This is due to lesser number of rollbacks

witnessed due to low contention among threads.

The performance of CaPR+ and CaPR+(Abort) for the above applications show

the superiority of the abort mechanism over partial rollback in general. However, the

results also suggest that CaPR+ performs better than CaPR+(Abort) in applications

52

that witness large number of rollback. It is also observed that for applications with

short transactions, CaPR+ trails CaPR+(Abort), while, for executions with large

inputs like genome+, the overhead in checkpointing due to large read sets outweighs

the gain achieved due to rollback. This leads us to experiment by modifying these

applications to have transactions of varying transactional lengths. This is realized

by inserting local transactional delays of varied lengths within transactions. This is

because increasing the time spent by the application in transactions results in more

conflicts for applications with high contention. Now, for these variants of the STAMP

benchmark applications, we compare the performance of CaPR+ with CaPR+(abort)

and RSTM [75] to see how it varies with change in transactional length.

3.2.2 Comparative Performance of CaPR+ with CaPR+(abort),

with varied transactional delays in the STAMP bench-

mark applications

In this experiment, we compare the performance of CaPR+ with CaPR+(abort),

but with transactional delays introduced in the transactions of STAMP benchmark

applications. In particular, we simulate the transactions to resemble varying trans-

actional lengths, by adding arbitrary local transactional code of varying lengths/du-

ration ranging from 0.1 ms to 100ms. Due to infrequent concurrent updates in ssca2

and vacation, introduction of delay in the transactions does not serve any purpose

as the number of rollbacks/aborts witnessed in these cases is very small. Hence, we

consider only kmeans, genome and labyrinth applications for experiments in this and

the following section.

For better understanding of the comparative performance of CaPR+ with respect

to CaPR+(Abort), we plot bargraphs to depict the speedup of CaPR+ with respect

to CaPR+(Abort), for varying local transactional loads. The speedup is given by

tCaPR+(Abort)/tCAPR+ , where tCaPR+ is the arithmetic mean of the execution times

of CaPR+ for the set of test runs for the particular experiment, and likewise for

tCaPR+(Abort). Thus, a speedup value less than 1 indicates tCaPR+(Abort) < tCaPR+ ,

53

0.1ms 1ms 10ms 100ms

Transactional delay

0.95

1

1.05

1.1

S
p
e
e
d

U

p

kmeans-low

1 Thread

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

0.1ms 1ms 10ms 100ms

Transactional delay

0.9

0.95

1

1.05

1.1

S
p
e
e
d

U

p

kmeans-high

0.1ms 1ms 10ms 100ms

Transactional delay

0.9

0.95

1

1.05

1.1

S
p
e
e
d

U

p

genome

0.1ms 1ms 10ms 100ms

Transactional delay

0.5

1

1.5

S
p
e
e
d

U

p

labyrinth

Figure 3-2: Speedup of CaPR+ Algorithm w.r.to CaPR+(Abort)

54

implying better performance of CaPR+(Abort), while a speedup greater than one

indicates better performance of CaPR+. The results are shown in Figure 3-2.

The results for kmeans show that CaPR+(Abort) performs much better than

CaPR+ for small delays(0.1ms and 1ms). However, for larger delays (10ms and

100ms), CaPR+ performs better than CaPR+(Abort), with up to 7% and 9% per-

formance gain obtained for kmeans-low and kmeans-high, respectively (Figure 3-2).

With genome, the speed-up doesn’t gain much with increase in delay to 1ms and

10ms, but with 100ms, the speed-up varies sharply and a performance gain of 13.5%

is achieved for CaPR+. For labyrinth, the gain is quite significant, with upto 51%

performance gain observed with 8 threads.

An important point to note is that with increase in transactional delay, the perfor-

mance of CaPR+ gets better as compared to CaPR+(abort), although the speed-up

achieved is not of the same scale as with RSTM (discussed in Section 3.2.3). Another

observation is that for every experiment, the speed-up increases with increase in the

number of threads, except for with 64 threads. This is because the underlying system

consists of only 48 cores.

3.2.3 Comparative performance of CaPR+ with RSTM, with

varied transactional delays in the STAMP benchmark

applications

In this experiment, we make a comparison of the performance of CaPR+ and RSTM [75],

with varying transactional delays in the kmeans, genome and labyrinth applications.

As before, we plot bargraphs to depict the speedup of CaPR+ with respect to RSTM,

for the kmeans, genome and labyrinth applications of the STAMP benchmark suite,

with varying local transactional loads. From the results obtained, we draw the fol-

lowing conclusions:

The execution time of both RSTM and CaPR+ increases uniformly, as the trans-

actional delay increases (by a factor of 10). In the case of RSTM, the execution

time increases proportionately, by the factor of 10 with increase in delay. CaPR+ is

55

0.1ms 1ms 10ms 100ms

Transactional delay

0.8

0.9

1

1.1

S
p

e
e

d
 U

p

kmeans-low

0.1ms 1ms 10ms 100ms

Transactional delay

0.9

0.95

1

1.05

1.1

1.15

S
p

e
e

d
 U

p

kmeans-high

0.1ms 1ms 10ms 100ms

Transactional delay

0.9

1

1.1

1.2

1.3

S
p

e
e

d
 U

p

genome

1 Thread

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

0.1ms 1ms 10ms 100ms

Transactional delay

0

0.5

1

1.5

S
p

e
e

d
 U

p

labyrinth

Figure 3-3: Speedup of CaPR+ Algorithm w.r.to RSTM

56

designed to partially roll back so that on encountering a conflict, the work performed

by a transaction is not completely wasted. As a result, for CaPR+, the increase in

execution time is not proportional to the increase in the delay. The 10-fold increase

in execution time is not witnessed here.

With the introduction of delay in transactions, kmeans now spends a significant

amount of its time in transactions. The results for kmeans show that CaPR+ performs

better than RSTM for delays greater than 0.1ms in all cases. For both kmeans-low

and kmeans high, the maximum performance gain witnessed is 8%.

In the case of genome, as observed in the Section, the performance gain achieved

by CaPR+ is visible only for large delays. An important point to note is that although

RSTM performs better for small delays, CaPR+ catches up with RSTM with increase

in delay, and in fact, fares better than RSTM for 10ms delay with 32 threads. With

100ms delay, the speed-up achieved is an impressive 1.31x. With labyrinth, the speed-

up achieved is quite significant (1.6x). The reason for the high speed-up can be

attributed to the increased number of aborts witnessed in RSTM.

3.3 Integrated Partial Rollback-Abort Framework

From the results in Section 3.2, we observe that rollback mechanism is expected to

perform well with applications in which transaction lengths are relatively longer and

the contention among threads is also high. With smaller transactions, the overhead

incurred in book-keeping exceeds the performance improvement achieved using roll-

back. In these circumstances, it makes sense for us to run the transactions using

the abort mechanism. Towards this, we propose an integrated abort-partial rollback

framework, that provides support for the user to tag some transactions (typically

with long transaction length), to run with the partial rollback mechanism, and others

to run with the abort mechanism, which entails minimum bookkeeping. This allows

us to extract maximum benefit by exploiting both mechanisms simultaneously.

To demonstrate the utility of our idea, we realize the hybrid framework by adapt-

ing CaPR+’s interface to also allow support for abort mechanism, such that it allows

57

users to statically tag transactions of an applications to run with either of abort or

rollback. An interesting point to note is that this implementation may result in mul-

tiple transactions with different mechanisms(abort/rollback) executing concurrently,

without any issue.

kmeans,0.1,16 kmeans,1,64 kmeans-high,1,32 genome,0.1,16 genome,1,64

Application, Transactional delay, threads

0.9

0.95

1

1.05

1.1

1.15

1.2

S
p

e
e

d
 U

p

CaPR+

CaPR+(Abort)

RSTM

Figure 3-4: Speedup of the hybrid implementation w.r.to CaPR+, CaPR+(Abort),
and RSTM

We plot graphs to depict the speedup of hybrid implementation w.r.to CaPR+,

CaPR+(Abort), and RSTM , for the kmeans, genome and labyrinth applications of

the STAMP benchmark suite, with varying local transactional loads, and number

of threads. However, this time, assigning transactions to either of abort/rollback

mechanisms entails exploring all possible choices.

We show results of select experiments in Figure 3-4, in particular, of applications

with less transactional delay. The outcome of these experiments are quite promising

as we were able to obtain instances where the hybrid implementation performs better

than all the three- CaPR+, CaPR+(Abort), and RSTM . Although the speed-up

witnessed is marginal, the fact that it performs better than other implementations

for 0.1ms delay demonstrates the feasibility of the hybrid approach.

A drawback of this static implementation is that it requires the user to identify

and tag transactions to run with abort/rollback. The task of choosing the optimal

combination is not trivial, due to which brute-force search had to be used in our

experiments. Moreover, contention in the application may not be determined/known

58

to the user a priori. In order to address the same, we need to provide an additional

instrumentation mechanism which measures the contention. One way to achieve this

is to keep track of the average number of conflicts occurring in the execution per unit

time. This information could be used by the transactions to determine dynamically

the mechanism to which it should subscribe: abort or partial rollback. This dynamic

implementation provides additional flexibility to dynamically switch a transaction

from partial rollback to abort and back, even during its execution. The switch from

partial rollback to abort can be done anytime during its execution. However, switch-

ing a transaction from abort to partial rollback, during the transaction’s lifetime,

may lead to inconsistent results or in the worst case lead to program crash(rolling

back to an intermediate point without restoring the state may lead to segmentation

fault). This can be avoided by performing the switch only after the transaction has

completely aborted, and before it continues with its execution.

3.4 Discussion

The comprehensive analysis of Abort and Partial Rollback carried out in this work has

led to the conclusion that partial rollback is better-off only for applications with large

transactions and high contention among threads, with upto 1.6x speedup achieved

for CaPR+ with respect to RSTM for large transactional delays of the order of

100ms. However, this also suggests that a partial rollback based STM may not be

practical for most applications, where most of the transactions are short. This result

helped us to arrive at the integrated partial rollback-abort framework, that exploits

the advantages of both mechanisms. This hybrid implementation is found to be more

performance efficient than all the other implementations considered in this study, and

is able to attain improvements upto 8%, even when the transactional delays ar of the

order of 0.1ms to 1ms. Although a static implementation of the hybrid approach has

been presented in this study, the dynamic implementation is expected to be more

59

efficient and productive, which can dynamically switch between mechanisms based

on the length of transactions and the contention. This makes it a good candidate for

automatic optimization purposes. We plan to employ machine learning techniques

in future to realize this hybrid implementation that can automatically gauge the

parameters and switch between mechanisms dynamically, leading to better flexibility

and performance.

60

Chapter 4

A Deadlock-free lock-based

synchronization for GPUs

Graphics processor units (GPUs) have traditionally been used for data-parallel or

task-parallel applications that involve minimal inter- (thread) block communication

due to their ability to efficiently exploit thread level parallelism (TLP). However, as

synchronization support was made available gradually, GPUs are increasingly being

used for general purpose computation. This is also referred to as General Purpose

GPU (GPGPU) Computing. Irregular algorithms, in particular, are receiving consid-

erable attention from the GPU community because of their challenges. Their complex

memory accesses and data dependent control-flow patterns make them difficult to par-

allelize. Moreover, the lack of efficient inter- (thread) block communication support

adds to the challenges posed to a programmer.

Threads from different thread blocks communicate via global memory accesses

while threads within a thread block communicate through shared memory Since con-

current accesses to global memory may result in data-race, recent GPUs provide

inter-block communication support in the form of atomic operations for single 32/64-

bit words. These atomic operations can be leveraged to construct fine-grained locks

but current lock implementations are either prone to deadlocks or result in inferior

hardware utilization.

61

A GPU is built of multiple streaming multiprocessors (SM), each of which are

composed of multiple scalar processors. GPU threads, on the other hand, are or-

ganized as blocks, each of which is mapped to a single SM. Threads within a block

execute in groups of 32 called a warp such that all the threads in a warp execute the

same instruction. Synchronization mechanisms in GPUs can be classified based on

the level of this thread hierarchy at which it acts i.e. coarse-grained (thread block),

medium-grained (warp), or fine-grained (thread). Global barriers have been imple-

mented by Xiao and Feng [87] to provide coarse-grained synchronization, but they

result in performance degradation due to reduced TLP. Compute Unified Device Ar-

chitecture (CUDA), an application programming interfaces (API) for heteregeneous

programming on NVIDIA GPUs, provides medium-grained synchronization support

in the form of the barrier function syncthreads(), which has been widely adopted,

although the programmer must ensure that it is not used inside a divergent branch.

However, there is no explicit support by CUDA for synchronization of threads across

different blocks (fine-grained synchronization).

In order to expand the scope of GPGPU computing, it is important to provide

adequate fine-grained inter-block synchronization support while also handling con-

currency issues that may arise due to fine-grained synchronization. In this work,

we discuss different ways in which deadlocks can occur in GPU applications due to

the existing synchronization mechanisms. This work focuses on deadlocks due to

fine-grained locks: SIMD deadlock, deadlock due to circular locking and alias dead-

lock. SIMD deadlock occurs due to the SIMT execution paradigm of GPUs. Sarnath

[93, 91, 83] has proposed a locking scheme using branch divergence that prevents

SIMD deadlocks.However, there is still a possibility of deadlocks due to circular lock-

ing in the presence of nested locks. Although deadlocks in GPUs due to circular

locking are similar to deadlocks in CPUs, since GPUs are comprised of thousands

of cores and are capable of executing millions of threads, it becomes very difficult

to debug in the event of a deadlock due to the huge amount of debug data analysis

62

required [88, 89]. It becomes even more difficult for the programmer to verify that

for every possible input, the irregular memory access patterns among the concurrent

tasks would never result in a deadlock. Thus, providing a deadlock-free locking solu-

tion would considerably save the programmers efforts. Xu et al. [84] have proposed a

solution based on lock stealing that prevents deadlocks due to circular locking within

a warp. However, its limitations make it impractical to be used in irregular applica-

tions. First, due to the use of lock-stealing, any changes made by a thread to shared

data before a lock is stolen from it, has to be undone using a rollback operation.

Moreover, this support has to be provided by the programmer. Second, since inter-

warp lock stealing is not allowed, circular locking due to threads from different warps

is still possible.

In this work, we have described possible deadlock scenarios in GPUs, and present

a formal model for SIMD and circular deadlocks in GPUs. We have presented a novel

lock-based deadlock-free synchronization mechanism for GPU architectures that uses

the solution based on branch divergence to avoid SIMD deadlock, and at the same time

also avoids deadlocks due to circular locking for intra-warp and inter-warp threads.

It may be noted that the solutions provided here are very much applicable to circular

deadlocks in CPUs as well and differs signifcantly from similar algorithms proposed

for classical deadocks. We have also established the correctness of Par-Deadlockfree

algorithm. We evaluated the efficacy of our approach by implementing the Delaunay

Mesh Refinement using our synchronization mechanisms and comparing it with the

performance of the three-phase DMR that uses global barriers, and our performance

analysis shows that the overhead is quite reasonable. This work has been published

in [86].

This chapter is organized as follows: In the next section, we give a background

of the GPU architecture and CUDA, the GPU programming model used in this

work. In Section 4.2, we discuss the problem of deadlocks in CPUs and GPUs.

In Section 4.2.1, we discuss handling of deadlocks in CPUs, and discuss modelling

of classic deadlocks using Resource Allocation Graphs (RAG). In Section 4.2.2, we

63

provide a detailed account of the existing synchronization mechanisms in GPUs and

the deadlock conditions arising from their use. Existing solutions to overcome some

of these deadlocks in GPUs have been discussed in Section 4.2.3. In Section 4.3,

we present a formal model for SIMD and circular deadlocks in GPUs. In Section

4.4, we present our efficient, deadlock-free, and livelock-free lock implementation -

Par-Deadlockfree. The performance of the proposed algorithm and comparison with

existing mechanisms is discussed in Section 4.5.

4.1 Background

4.1.1 Overview of GPU architecture

This work primarily focuses on NVIDIA GPUs, however, the fundamental principles

and certain characteristics overlaps with other architectures as well. A GPU is built

of multiple streaming multiprocessors (SM), which are composed of multiple scalar

processors. For example, NVIDIA TITAN X, a GPU based on the pascal architec-

ture comprises of 28 SMs, each SM comprising 128 cores, making for a total of 3584

cores. GPU threads are organized as blocks, each of which is mapped to a single

SM. Threads within a block execute in groups of 32 called a warp. Each warp on

a multiprocessor executes in lock-step.Since threads in a warp execute one common

instruction at a time (but with different data), lockstep execution can be thought of

as having an inherent barrier after every instruction. This is also referred to as the

Single Instruction Multiple Thread (SIMT) execution model.

Every multiprocessor of a GPU device has a on-chip shared memory, that is avail-

able to all the threads within a block, and registers that are private to each thread.

Shared memory is equivalent to a user-managed cache: The application has to explic-

itly allocate and access it [36]. The global memory and texture memory are available

to all the threads of all blocks, but are off-chip and hence have a high latency than

the shared memory.

64

A multiprocessor may handle several warps at a given time and switching between

these warps is done to abstract memory latencies and pipeline stalls. This is also

referred to as latency hiding. For maximum efficiency, all the threads in a warp must

agree on their execution path. However, this may not be always possible due to branch

divergence. Branch divergence occurs in the presence of a data-dependent conditional

branch. The warp then serially performs execution of each branch path taken, halting

threads not on that path. The threads converge after the completion of every path.

However, only threads in the same warp face branch divergence; threads in different

warps execute independently regardless of their respective execution paths. Branch

divergence in GPUs can also be explained using the predicated lock-step execution

semantics presented by Collingbourne et al. [106]: an if condition is evaluated into a

Boolean variable e, the if statement is removed and the statements inside the if block

are predicated by the associated Boolean variable. A predicated statement is now a

no-op (no-operation) if e evaluates to false.

4.1.2 CUDA programming model

In order to execute general purpose programs on heterogeneous systems built of mul-

ticore CPUs and GPUs, various application programming interfaces (APIs) are avail-

able such as CUDA [36], OpenCL [76, 77] and OpenACC [78]. OpenCL ((Open

Computing Language)) is a programming language standard that enables the pro-

grammer to structure an applications computation as kernels, enabling higher uti-

lization of parallelism naturally available in hardware constructs. However, it is hard

to rewrite the existing codes from scratch using these programming models. Ope-

nACC is an open standard that enables the application developers to migrate their

applications to heterogeneous systems mainly by inserting compiler directives into

the existing code.

CUDA [36] is a high performance programming platform specially designed for

NVIDIA GPUs. It extends the C programming model to provide functions for parallel

execution of thousands of threads onto a GPU device from a host CPU. Instructions

to be executed by each thread is called a kernel and is defined using the global

65

specifier. An example of a kernel in CUDA is shown below:

// Kernel d e f i n i t i o n

g l o b a l void printElement (f l o a t ∗ d vec to r)

{

i n t index = threadIdx . x ;

p r i n t f (” Thread ID : %d value : %d” , index , d vec to r [index]) ;

}

CUDA allows a large number of threads to be created that execute a GPU kernel.

These threads are grouped into blocks and blocks make up a grid. A kernel is invoked

by the host, which requires the number of blocks in the grid and threads per block,

also referred to as ‘kernel execution parameters’, to be specified by the programmer.

However, modern architectures are capable of launching kernels from within a kernel,

without any CPU involvement. This is also referred to as Dynamic Parallelism.

Kernel invocation is illustrated in the following example:

i n t main ()

{

. . .

// Kernel i nvoca t i on with one block o f N threads

printElement<<<1, N>>>(d vec to r) ;

. . .

}

General computation on the GPU proceeds as follows: memory is allocated on the

GPU by the host, data is copied from CPU memory to the allocated GPU memory,

the kernel is invoked and finally, after the execution of kernel, the output data is

copied back to the host.

Figure 4-1 illustrates the GPU architecture and CUDA programming model. It

shows a kernel execution where two thread blocks are assigned to each streaming

multiprocessor.

66

Global Memory

CUDA Programming Model

CUDA Device

Thread
Block

CUDA
thread

Shared
Memory

Streaming
Multiprocessor

Scalar
Processor

Figure 4-1: The GPU architecture and CUDA programming model

4.2 Deadlocks

In this section, we shall describe the problem of deadlocks in classic architectures as

well as GPUs.

4.2.1 Classic Deadlocks

Deadlock is the situation in which multiple processes in a system are blocked forever

because of requirements that cannot be satisfied. Coffman et al. [107] listed the

conditions that must simultaneously hold, for a deadlock to occur in multi-process

systems. They are mutual exclusion, hold and wait, no preemption, and circular wait.

Deadlock-free mechanisms have conventionally been devised for CPUs. Classically,

deadlocks are handled broadly on the following lines:

1. deadlock prevention: ensure that at least one of Coffman’s conditions for dead-

locks does not hold true.

2. deadlock avoidance: the system has a priori resource usage information. For

67

each resource request, it then decides dynamically if the request can be granted,

so as to avoid a deadlock, and

3. deadlock detection and resolution: allows the system to enter a deadlock state

and then takes action to recover.

Deadlock prevention algorithms eliminate one of Coffman’s conditions to prevent

deadlocks. Hold-and-Wait condition can be handled by requiring a process to request

and be allocated all its resources at start. This requirement may result in poor re-

source utilization and starvation. The first algorithm given by us - Prev-Deadlockfree

is based on this idea. Imposing a total ordering on all resources eliminates circular

deadlock condition, whereas allowing processes to pre-empt resources from other pro-

cesses eliminates the no-preemption condition. Wait-Die and Wound-Wait are two

algorithms based on timestamps given by RosenKrantz et al. [117]. With Wait-die,

an older process waiting for a younger process is allowed to wait while a younger

process waiting for an older process is killed. Wound-Wait gives priority to an older

process, and pre-empts the younger process if the younger process is in possession of

a resource needed by the older process.

Banker’s algorithm is a deadlock avoidance algorithm by Dijkstra [118] that re-

quires a safety check to be performed on every resource request, to decide whether

allocation of the resource leads to a safe state, which incurs significant overhead.

Further Banker’s algorithm is centralized as opposed to our solution, adding to the

overhead.

Modeling Classic Deadlocks

Holt [122] showed that classic deadlocks can be modelled using Resource Allocation

Graphs (RAG), a directed graph, G(V, E).V consists of two partitions: P = {P1,

P2, P3, ..., Pn} is the set of active processes, and R = {R1, R2, R3, ..., Rm} is the

set of resources. Processes are represented by a circular node, while the resources

are represented using a square. Similarly, E also consists of two partitions: request

edges (Pi → Rj) to indicate that Pi is waiting for the resource Rj, while assignment

68

edges (Rj → Pi) indicate that Rj has been allocated to Pi. A cycle in RAG indicates

presence of a deadlock.

R

A

B

S

VU

D

C

 (a) (b) (c)

Figure 4-2: Resource allocation graphs: (a) Holding a resource. (b) Requesting a
resource. (c) Deadlock.

Figure 4-2(a) is a simple RAG to show that resource R has been allocated to

process A. Figure 4-2(b) shows that process B is waiting for resource S. A deadlock

involving two processes and two resources is shown in Figure 4-2(c), where Process

C has been allocated resource U and is waiting for resource T. While Process D has

been allocated T and is waiting for C to release U. Thus both C and D are waiting

for each other to release an object, leading to a deadlock.

4.2.2 Deadlock Scenarios in GPUs

As far as GPUs are concerned, their distinct characteristics result in new challenges,

which renders the existing solutions for CPUs unworthy. As opposed to CPUs, GPUs

are built on SIMD architecture. They execute thousands of threads concurrently and

operate on very large data sets. All of these factors amplify the challenges of program-

ming for GPUs. Due to this reason, deadlocks may arise because of the programming

model used for programming GPUs. SIMD deadlocks is an example of a deadlock

in GPUs that arises due to the SIMD execution paradigm. The use of fine-grained

locks is necessary to prevent data races without degrading performance significantly.

However, the use of locks increases the complexity of writing and debugging appli-

cations, and may result in deadlocks as well. Deadlocks in GPUs do not get the

necessary attention for the simple reason that the usual GPU applications involve

minimal synchronization. The increasing attention to GPGPU computing has led to

introduction of a variety of synchronization mechanisms for GPUs, which in turn,

69

allow more applications to be computed on GPUs like irregular algorithms. However,

their complex memory accesses and control flow patterns increase the possibility of

deadlocks. The GPU solutions should address the challenges discussed in Section 4.4,

and at the same time should also lead to good hardware utilization. Before describing

the deadlock scenarios in GPUs, we discuss various synchronization mechanisms in

GPUs.

GPU Synchronizations

Synchronization mechanisms in GPUs can be classified into three granularities based

on the level of thread hierarchy at which it acts:

1. coarse-grained

Coarse-grained synchronization is used when synchronization is required among

thread blocks. It can be easily realized through CPU by terminating the current

kernel, calling cudaThreadSynchronize function(blocks the host code execution

until the device has completed all preceding requested tasks), and re-launching

a new kernel. However, the involvement of CPU results in significant perfor-

mance degradation. Global barrier was first implemented by Volkov and Dem-

mel [123] that used the off-chip GPU memory to enable synchronization across

GPU thread blocks. Two global barriers have been implemented by Xiao and

Feng [87] that are based on syncthreads (a CUDA command to synchronize

warps in the same thread block). One is lock-based that uses a mutex variable

and an atomic add operation to implement the global barrier, while the other

is lock-free that uses arrays and eliminates the need for mutex and atomic op-

erations. All of these mechanisms avoid the kernel launch overhead by allowing

synchronization without the involvement of CPU.

2. medium-grained

Medium-grained synchronization is used to achieve synchronization among warps

in a thread block. GPU provides hardware support for medium-grained warp

70

barriers in the form of the barrier function syncthreads() that acts as a barrier

for all warps in a block, and has been widely adopted.

3. fine-grained

Fine-grained synchronization is used to achieve synchronization among threads

in thread blocks. It is realized using atomic operations, that are guaranteed to

be performed without interference from other threads. Fine-grained locks can

be built using basic atomic operations provided by CUDA Programming model.

We now illustrate the possible deadlock scenarios in GPUs due to the use of these

synchronization mechanisms, and also discuss the existing solutions to overcome some

of them.

Deadlock Scenario due to global barrier usage

Using global barriers may lead to deadlocks in the following way. Since execution

of thread blocks in CUDA is non-preemptive, the unscheduled blocks will not be

able to preempt the active blocks, and thus, never reach the barrier. This is because

execution of thread blocks in CUDA is non-preemptive, due to which the unscheduled

blocks will not be able to preempt the active blocks, and thus never reach the barrier.

Thus, the active blocks would keep on waiting for the unscheduled blocks to reach

the barrier, leading to a deadlock.

Illustration

Consider an example where five thread blocks with Ids B1 - B5 are created for ex-

ecuting a kernel (consisting of a global barrier) on a GPU with only four SMs. At

any point of time, only four blocks can be scheduled to the SMs. Without any loss of

generality, let us assume that blocks B1 - B4 have been scheduled. On reaching the

global barrier, blocks B1 - B4 wait for B5 to reach the barrier. However, since B5 is

not able to preempt blocks B1 - B4, it is never scheduled and is not able to reach the

barrier, leading to a deadlock.

71

Deadlock Scenario due to syncthreads()

Calls to syncthreads() get compiled into the bar.sync instruction of the PTX (parallel

thread execution) instruction set architecture. All the threads in a warp are stalled

until the barrier completes, and the arrival count for the barrier is incremented by

the warp size [94]. The synchronization completes when the arrival count has been

incremented by each of the warps in the thread block. If none of the threads of a

warp take the execution path that consists of the syncthreads() function, the arrival

count is never incremented for that warp, leading to a deadlock.

Illustration

Consider the following code snippet of a GPU kernel with kernel execution configu-

ration parameters set to 1 block, 64 threads.

i f (threadIdx . x > 32){

//some computation ;

sync th r ead s () ;

//some computation ;

}

//some more computation ;

Consider 2 threads T16 (with ID=16, and belonging to warp W0) and T40 (with

ID=40, and belonging to warp W1). Clearly, thread T16 does not satisfy the if con-

dition and hence does not execute the if block. Due to this, arrival count is never

incremented for this warp (W0). As a result, T40 and other threads (of W1) keep

on waiting for this arrival count to be incremented, and do not progress. Whereas

threads of W0 wait at the end of if block for the threads of W1 to continue with the

lockstep execution, leading to a deadlock.

Alias Deadlock

As opposed to global memory that is visible to all the threads, shared memory is

visible only to threads on a block. However, being on-chip, it has lesser memory

72

access latency and higher bandwidth as compared to global memory. Shared memory

provides fast atomic access using a module called lock unit, as described by Coon et

al. [95](See Figure 4-3). The lock unit comprises of flags called lock bits that indicate

the current status of a lock in the corresponding location in Storage resource. Multiple

locations in the Storage resource are aliased to a single lock bit, using hashing. This

aliasing leads to the possibility of a deadlock when a thread in possession of the lock

bit of a memory location tries to fetch an aliased location of the same lock bit.

Figure 4-3: Shared Memory lock unit

SIMD Deadlocks

Consider a simple lock implementation using atomic operations as given below:

bool l o ck (Mutex ∗mutex){

i f (atomicCAS (mutex , 0 , 1) == 1)

return f a l s e ;

else

return t rue ;

}

void unlock (Mutex ∗mutex){

atomicExch (mutex , 0) ;

}

Now, using spinlock to realize locking on GPUs may lead to a deadlock. Consider

the locking scheme of Table 4.1.

73

Table 4.1: Scheme 1

T1 T2
while(! lock (&x)); while (! lock (&x));

Critical Section Critical Section

unlock (&x); unlock (&x);

Here, threads T1 and T2 within a warp compete for a spinlock, implemented using

atomicCAS, i.e atomic compare-and-swap operation. Since T1 and T2 belong to the

same warp, they execute in lockstep due to the SIMD execution. Now, if T1 obtains

the lock, it exits the while loop and waits at the start of critical section for T2 to

converge, while T2 spins forever, waiting for T1 to release the lock; eventually leading

to a deadlock. This is referred to as a SIMD deadlock.

Deadlock Scenario due to circular locking

Deadlocks due to circular locking may happen due to threads within a warp, and

across warps as well. We discuss both the scenarios here.

Circular Deadlock within a warp

In the presence of nested locks, there is a possibility of deadlocks due to circular

wait. Consider the example from Table 4.2, and suppose there is just one warp for

execution (when kernel execution parameter is given as one block of say, 16 threads).

Table 4.2: Example to illustrate circular deadlock within a warp

Thread T1 Thread T2
1) lock(a1); lock(a2);
2) //critical section 1 //critical section 1
3) lock(a2); lock(a1);
4) //critical section 2 //critical section 2
5) unlock(a2); unlock(a1);
6) unlock(a1); unlock(a2);
7) lock(a3); lock(a5);
8) lock(a4); lock(a6);
9) //critical section 3 //critical section 3
10) unlock(a4); unlock(a6);
11) unlock(a3); unlock(a5)

74

Assuming this code is free of SIMD deadlocks, let us see what happens when

this is executed. Since Threads T1 and T2 belong to the same warp, they execute

in lockstep. T1 acquires lock on a1, while T2 acquires lock on a2. This leads to a

deadlock at Line 3 (Table 4.2), as both of them are now waiting for each other to

release the locks already possessed by them.

Circular Deadlock across warps

Having discussed the case of circular deadlock involving threads within a warp, let

us now see what happens when a thread from a different warp requests a common

resource. With multiple warps, a similar situation may arise. Consider the example

shown in Table 4.3.

Table 4.3: Example to illustrate circular deadlock across warps

Thread Ti Thread Tj Thread Tk
1 lock(a1); lock(a2); lock(a3)
2) lock(a2); lock(a3); lock(a1)
3) //critical section //critical section //critical section
4) unlock(a2); unlock(a3); unlock(a1);
5) unlock(a1); unlock(a2); unlock(a3);

Suppose Threads Ti and Tj belong to the same warp Wm, and Thread Tk belongs

to a different warp Wn, irrespective of whether Wn is in the same or different thread

block as Wm. It is to be noted that since Tk belongs to a different warp, its operations

may be arbitrarily interleaved with the operations of Ti and Tj, both of which execute

in lockstep. Consider an execution where Ti acquires lock on a1 simultaneously with

Tj on a2. Now, if Tk acquires lock on a3 before Tj, it results in a circular deadlock

since all of Ti, Tj and Tk are then waiting for each other to release their locks.

4.2.3 Overcoming Deadlocks in GPUs

In this section, we discuss solutions for overcoming deadlock scenarios described

above.

75

Deadlock due to global barrier usage

A simple solution to prevent this deadlock is to restrict the number of blocks to be

less than or equal to the number of SM, as described by Xiao and Feng [87]. To

ensure two or more blocks are not scheduled on the same SM, each block needs to

be allocated all available shared memory on an SM. Although this solution prevents

deadlock, it limits the scalability significantly, since it limits the number of thread

blocks (and hence threads) that can be used in a kernel.

Deadlock due to syncthreads()

Deadlocks due syncthreads() can be avoided by ensuring that syncthreads() does

not appear inside conditional codes, as stated in the CUDA programming guide [36].

Alias Deadlocks

Li et. al [92] have provided a solution that mandates the programmer to responsibly

handle this deadlock by preventing illegal access to locked locations in the main

storage, by using the lock bits appropriately as the lock unit is not configured to

track ownership of locks.

SIMD Deadlocks

SIMD deadlocks can be prevented using Scheme 2, first proposed by Sarnath [93, 91,

83], which uses a divergence mechanism to separate the execution paths of the con-

flicting threads within a warp. This mechanism uses nested while and if statements,

and a local variable ‘done’ to ensure that execution paths of the divergent threads

(belonging to the same warp) are serialized to prevent them from blocking each other.

/∗Scheme 2 : Try−l o c k ∗/

done = f a l s e ;

while (done == f a l s e){

i f (l o ck (&mutex)){

c r i t i c a l s e c t i o n . . .

76

unlock(&mutex) ;

done = true ;

}

}

In scheme 2, divergence can happen in two cases: one due to while statement

and another due to if condition. Due to divergence in Scheme 2 as a result of the

if condition, the execution paths are separated into two: one for the threads that

have acquired the respective locks, and another for the failed threads, which wait for

the successful threads to complete the critical section and unlock the locks. At this

point, all the threads converge and continue their execution, thereby avoiding the

SIMD deadlock.

Consider the example shown in Table 4.1. To prevent SIMD deadlock, we trans-

form this code to acquire locks using Scheme 2. Suppose one of the threads, say T1,

acquires the lock. This leads to a divergence due to if statement. In accordance with

predicated semantics explained earlier, T1 executes the critical section and releases

the lock, while T2 remains idle all this while. At the end of if block, the threads

converge again and continue execution, but this time T1 evaluates the while condition

to false. T2 continues execution, acquires the lock, executes the critical section and

releases the lock, while T1 remains idle. Both the threads now converge again and

continue their execution.

Circular Deadlocks

There are two cases of circular deadlocks:

1. due to threads within a warp

2. due to threads across warps

We discuss only the first case here, for which a solution exists.

77

Circular Deadlocks within a warp

Xu et al. [84] have proposed a pre-emptive solution for GPUs based on lock stealing

that prevents deadlocks due to circular locking within a warp. Consider the example

in Figure 4-4.

Thread1 Thread2

lock(a1) lock(a2)

lock(a2) lock(a1)

//Critical section //Critical section

unlock(a2) unlock(a1)

unlock(a1) unlock(a2)

Thread 1 stealing

 lock on a2

Figure 4-4: Example to illustrate lock stealing.

With their solution, circular deadlock is handled by letting the thread with smaller

ID, in this case Thread 1, to steal the lock on a2. Now that Thread 1 has acquired

all the required locks, it can proceed to completion, and then Thread 2 proceeds.

However, their solution is wrong because due to the use of lock-stealing, a thread may

have made updates to shared data before a lock is stolen from it. This is illustrated

using the example in Figure 4-5. In this example, Threads 1 and 2 have acquired

Thread1 Thread2

lock(a1)
//C. S. 1

lock(a2)
//C.S. 1

lock(a2) lock(a1)

//C.S. 2 //C.S. 2

unlock(a2) unlock(a1)

unlock(a1) unlock(a2)

Thread 1 stealing

 lock on a2

Figure 4-5: Example to illustrate the problem with lock stealing.

locks on a1 and a2, and have executed their respective critical sections and written

to a1 and a2. Similar to the previous example, when Thread 1 requests for lock on

a2 (Line 3), that is held by Thread 2, Thread 1 with the smaller ID gets to steal

the lock (on a2) from Thread 2. However, since Thread 2 has finished executing the

critical section, it may have made updates to a2. For consistency, these updates need

to be rolled back. Their solution requires the programmer to handle this rollback

operation by writing a procedure to undo the shared updates already performed by

78

the thread. Although their solution is able to handle circular deadlock within a warp,

circular locking due to threads across different warps is still possible since inter-warp

lock stealing is not allowed.

Table 4.4: Summary of various deadlock scenarios and their solutions

Synchronization
Granularity

Deadlock Scenario Possible Solution

Coarse-grained Using global barriers no. of blocks <= no. of SMs

medium-grained
Using syncthreads()
in conditional code

No use of syncthreads() in
conditional code

Fine-
grained

Alias Deadlock use lock bits appropriately
SIMD Deadlock Use Scheme 2
Circular Locking within a warp Lock stealing
Circular Locking across warps No existing solutions

Table 4.4 summarizes the various deadlock scenarios and their possible solutions

discussed in this section. There exists no satisfactory solution in the literature that

handles circular deadlocks in GPUs due to threads across different warps. In this

work, we provide an integrated solution to handle circular deadlocks of both the cases

discussed above, i.e., within a warp and across warps. Before discussing our solution

to the above two cases, let us formally model the circular deadlocks in GPUs.

4.3 Modelling Circular Deadlocks

In this section, we shall discuss graph based modelling of circular deadlocks in GPUs.

First, let us model deadlocks within a warp which follows SIMD execution.

Due to the SIMD execution, the Resource Allocation Graphs discussed in Sec-

tion 4.2.1 cannot be used to model deadlocks in GPUs in the existing form. To

overcome this limitation, we provide an extension to Resource Allocation Graphs

that enables modelling of deadlocks in GPUs. We refer to them as Extended Re-

source Allocation Graphs, (ERAG). Similar to RAG, an ERAG also is a directed

graph G(V, E), but with an additional node type and an edge type. Threads (as

opposed to processes in a CPU) in a GPU are represented as circles, and resources

as squares. Now since all the threads in a warp execute in lockstep, we model a warp

79

as a composite node, comprising of one node for each thread in the warp. A warp is

shown as a composite node in Figure 4-6.

Request edges and assignment edges are same as before. Due to lockstep execution,

if one of the threads, say Ti, in a warp Wk gets blocked (eg. waiting for a lock), all the

other threads in the warp also get blocked, waiting for Ti. This waiting is captured as

an edge between Ti and every other Tj in Wk. We refer to this edge (Tj → Ti) as wait

edge. It is to be noted that unlike request and assignment edges that connect a thread

and a resource, wait edges connect two threads (of the same warp). Having described

all the possible nodes and edges, we now show the ERAGs for a) thread holding a

resource, b) thread requesting a resource, and c) SIMD deadlock in Figure 4-6.

Figure 4-6: Extended resource allocation graphs: (a) Holding a resource. (b) Re-
questing a resource. (c) SIMD Deadlock.

In Figure 4-6 (c), thread T0 is allocated the resource R, and when T1 requests R,

it waits for T0 to release R. However, T0 cannot proceed as it is waiting for T1 (due to

lockstep execution), leading to a deadlock. This deadlock is captured by ERAG as a

cycle involving the sole request and assignment edges and the wait edge between T0

and T1. An important point to be noted is that if locks are acquired using Scheme

2, the wait edges that result in SIMD deadlock do not appear on the ERAG. Thus

SIMD deadlock will never occur, when used with Scheme 2.

Having discussed ERAG, let us now model circular deadlocks within a warp. As-

suming there are no SIMD deadlocks (these can be handled using Scheme 2, and hence

no wait edges appear in ERAG), the ERAG for circular deadlock for the example in

Table 4.2 is shown in Figure 4-7. Here, threads T1 and T2 have acquired locks on a1

and a2 respectively (represented by assignment edges in the ERAG). Now, when T1

80

W: . . . T
31

T
1

T
0

T
2

a2

a1

Figure 4-7: Extended resource allocation graph of circular deadlock (at Line 3 of
Table 4.2).

requests lock on a2 (represented by a request edge), it gets blocked since a2 is held by

T2. Similarly, when T2 requests lock on a1, a cycle is formed, resulting in a deadlock.

As other threads do not participate in the deadlock, their assignment edges have been

obscured in the ERAG for simplicity.

This deadlock will not immediately prevent other threads of the same warp from

executing (assuming they attempt to acquire different locks). However, as these

threads converge after the execution of Line 6, they wait for T1 and T2 to converge,

which are deadlocked. This stalls the execution of all the other threads in the warp

as well. This blocking is due to lockstep execution, and is captured as a wait edge.

The ERAG at this point is shown below (Figure 4-8):

W: . . . T
31

T
1

T
0

T
2

a2

a1

Figure 4-8: Extended resource allocation graph of circular deadlock (at Line 7 of
Table 4.2).

It is to be noted that since these wait edges appear at the end of the nested

interval (Lines 1 - 6), the threads (except T1 and T2) have not requested any of the

locks, and consequently will never be part of a circular deadlock (and SIMD deadlock

as well), since there will be no outgoing request edges or incoming assignment edges

81

from these thread nodes.

Modelling circular deadlocks due to threads across warps

Circular deadlock due to threads across warps can be modeled as an ERAG as shown

in Figure 4-9.

Wn: T
l

T
k

a3

Wm: T
j

T
i

a1 a2

Figure 4-9: Extended resource allocation graphs of circular deadlock with threads
from different warps.

Figure 4-9 shows the ERAG for the example shown in Table 4.3. This ERAG

illustrates a state where thread Ti is waiting for Tj to release lock on a2, Tj is waiting

for Tk to release a3, while Tk is waiting for Ti to release a1. Thus, none of them can

make forward progress, resulting in a deadlock.

Assuming there is no SIMD deadlocks in each of the warps (which can be handled

using Scheme 2), the intra-warp wait edges are not present in the ERAG. Due to

this reason, the modelling becomes the same for both the cases, and hence the same

solution can be used to handle circular deadlocks both within and across warps. In

the following section, we shall discuss our solution explicitly for circular deadlocks

within and across warps.

4.4 Deadlock-free lock algorithms for GPUs

As discussed in the previous section, synchronizations in GPUs have to be handled

carefully due to the challenges introduced by the SIMD paradigm. Our objective is

to arrive at lock-based GPU synchronizations that offer the following properties:

1. Deadlock-freedom

82

2. Livelock-freedom

3. Efficiency

In this section, we present ‘Prev-Deadlockfree’, a naive deadlock-free lock im-

plementation, and then systematically arrive at a more efficient deadlock-free lock

implementation, referred to as ‘Par-Deadlockfree’.

Consider the example in Table 4.2. Suppose thread T1 has acquired a1, and before

it requests a2, some other thread, say T2 (may or may not belong to the same warp)

has acquired a2. In this case, T1 is required to wait for T2 to release a2. Now, when

T2 requests a1, it leads to a deadlock. In this example, there are two nested intervals:

lines 1-6 form interval I1, and lines 7-11 form interval I2. Towards this, we identify

all the nested intervals in the given source code. This is important because after the

completion of an interval, it can no more be party to a deadlock. So we limit our

scope to intervals, rather than the entire code. We say that a1 is the ‘outermost

resource’ in the interval I1. All the resources contained within the lock and unlock

operations of the outermost resource are said to be the ‘dependent resources’ of the

outermost resource, regardless of whether there is further level of nesting of locks.

To implement the example of Table 4.2, the first step is to transform the calls

to lock and unlock operations as per Scheme 2, to prevent SIMD deadlocks. With

Scheme 2, the actual code of Thread 1 and Thread 2 (for brevity, code for only Lines

1-6 is shown) would transforma to as given below:

/* THREAD 1 */ /* THREAD 2 */

done1 = false; done1 = false;

while (done1==false){ while (done1 == false){

if (lock(a1)){ if (lock(a2)){

/*C.S. 1*/ /*C.S. 1*/

done2 = false; done2 = false;

while (done2==false){ while (done2 == false){

athis transformation can be automated easily using macros.

83

if (lock(a2)){ if (lock(a1)){

/*C.S. 2*/ /*C.S. 2*/

unlock(a2); unlock(a1);

done2 = true; done2 = true;

} }

} }

unlock(a1); unlock(a2);

done1 = true; done1 = true;

} }

} }

Although this code prevents SIMD deadlock, it is still susceptible to circular dead-

locks.

We now present our solution to this circular deadlock problem. We first give a

naive lock algorithm, Prev-Deadlockfree, that is deadlock-free but limits the amount

of parallelism. We improve upon this algorithm and incrementally arrive at our lock

algorithm through two attempts - Par-Synchronize1 and Par-Synchronize2. In pursuit

of more efficiency, we arrive at Par-Synchronize1 that offers more parallelism than

Prev-Deadlockfree, but is still prone to deadlocks. Par-Synchronize2 introduces an

additional check to prevent deadlocks, but is prone to livelocks. This leads us to

Par-Deadlockfree that is deadlock-free, livelock-free and also offers more parallelism

as compared to Prev-Deadlockfree.

4.4.1 Prev-Deadlockfree: A Naive Deadlock Prevention Al-

gorithm

This algorithm is based on deadlock prevention. It prevents deadlock by ensuring

that the ‘hold and wait’ condition never holds true. This is realized by requiring

threads to acquire all the resources in an interval before they can start execution of

the interval. This algorithm looks at the resource usage information of the interval

under consideration, and grants access to an outermost resource only if it is able to

84

acquire its lock and the locks of all its dependent resources. The algorithm assumes

that the dependent set for each outermost resource in an interval is known. The

algorithm is given in Algorithm 1.

Algorithm 1 Prev-Deadlockfree

1: procedure lock(x)

2: if x is a dependent resource then

3: return true

4: else . x is an outermost resourcel

5: status ← Acquire locks on all resources(outermost+ dependent)

6: if status = failure then

7: release all locks, return false

8: else . status = success

9: return true

10: procedure unlock(x)

11: release lock on x

end

On calling the lock function for an outermost resource x, locks are acquired on

x and its dependent resources (line 5, Algorithm 1). In case of failure in acquiring

lock of any of the resources, the (already) acquired locks are revoked (line 7). Unlock

function is trivial, the lock is released, irrespective of whether it is an outermost

resource or a dependent resource.

Illustration of Prev-Deadlockfree

Consider the following example (Table 4.5) comprising of threads T1, T2 and T3,

executing in parallel, where Threads T1 and T2 belong to same warp, where as T3 is

from a different warp.

Table 4.6 gives the execution time-line for the above example. Suppose the current

state of lock vector (for a1, a2, a3, a4) is lock: (0, 0, 0, 0).

85

Table 4.5: Example to illustrate Prev-Deadlockfree

T1 T2 T3
lock(a1); lock(a3); lock(a2);
critical section 1; critical section 1; critical section 1;
lock(a2); lock(a4); lock(a4);
critical section 2; critical section 2; critical section 2;
unlock(a2); unlock(a4); unlock(a4);
unlock(a1); unlock(a3); unlock(a2);
non-critical section; non-critical section; non-critical section;

Here, Threads T1, T2 and T3 require locks on a1, a3 and a2 respectively. Thread

T1 can acquire lock on a1 only if it can set a1.lock=1 and a2.lock=1. Similarly for

T2 and T3. Suppose T3 is able to acquire lock on a2, which means it would have set

a2.lock=1 and a4.lock=1, which restrains T1 and T2 from obtaining their locks. T3

continues its execution, while T1 and T2 keep checking for their respective locks. As

soon as a4 is released by T3, T2 is able to acquire lock on a3. This leads to branch

divergence(due to if condition of Scheme 2) and T2 continues its execution, while T1

is disabled. After a3 is unlocked by T2, both T1 and T2 converge. Now, again, T1

and T2 diverge(this time, due to while condition of Scheme 2) and T1 continues its

execution while T2 is disabled. After a1 is unlocked by T1, both threads converge and

execute to completion.

Limitation

Like most of the synchronization techniques, Prev-Deadlockfree also involves certain

trade-offs. First, it needs to figure out the dependent set of an interval in advance.

Another drawback is due to the requirement of acquiring all the dependent locks

beforehand, that results in hardware underutilization and minimal throughput.

To overcome the latter drawback, we present our improved solution to address

circular deadlocks in GPUs that is more efficient than Prev-Deadlockfree.

86

Table 4.6: Execution Time-line for the example in Table 4.5

Thread T1 Thread T2 Thread T3
lock(a1)→ false lock(a3)→ false lock(a2)→true
lock(a1)→ false lock(a3)→ false critical section 1;
lock(a1)→ false lock(a3)→ false lock(a4)→true
lock(a1)→ false lock(a3)→ false critical section 2;
lock(a1)→ false lock(a3)→ false unlock(a4)
lock(a1)→ false lock(a3)→ true unlock(a2)

critical section 1; non critical section;
lock(a4)→ true
critical section 2;
unlock(a4)
unlock(a3)

lock(a1)→ true
critical section 1;
lock(a2)→ true
critical section 2;
unlock(a2)
unlock(a1)
non critical section; non critical section;

4.4.2 Par-Deadlockfree: An efficient Deadlock Prevention

Algorithm

To overcome the limitations of Prev-Deadlockfree, we propose Par-Deadlockfree, an

improved lock algorithm that is also based on deadlock prevention. For a better

understanding, we arrive at Par-Deadlockfree by step-by-step development through

Par-Synchronize1 and Par-Synchronize2, enhancements over Prev-Deadlockfree that

offer more parallelism, but are still prone to deadlocks/livelocks.

Par-Synchronize1

In order to improve the hardware utilization, instead of acquiring locks on all the

dependent resources, Par-Synchronize1 maintains a boolean called ‘bool’ for each de-

pendent resource, which indicates if that resource is a dependent resource for some

(already acquired) resource. Then, a request for lock on an outermost resource x by

87

thread Ti is granted under the following conditions:

1. The lock for x is available. (line 9)

2. The value of bool for x is 0 (x=1 implies there’s some thread Tj for which x is

the dependent resource. So the grant of x to Ti would cause Tj to wait for Ti

to release x.). (line 8)

3. All of x’s dependent resources have their bool value 0 (ensures none of its de-

pendent resources are required by other threads (already dependent resource).).

(lines 10-11)

While condition 1 is obvious, conditions 2 and 3 just require that the outermost

resource x and its dependent resources are themselves not the dependent resources of

any other resources. We capture the three conditions in Par-Synchronize1.

Algorithm 2 Par-Synchronize1

1: procedure lock(x)

2: if x is a dependent resource then

3: if atomicCAS(x.lock, 0, 1)=1 then

4: return true

5: else

6: return false

7: else . x is an outermost resource

8: if x.bool = 0 then

9: if atomicCAS(x.lock,0,1) then

10: status ← Acquire bool on all dependent resources;

11: if status = failure then

12: release all bools

13: release lock on x

14: return false

15: return true

88

16: else

17: return false

18: else

19: return false

20: procedure unlock(x)

21: x.lock = 0

22: if (x is a dependent resource) then

23: x.bool = 0

end

If x is a dependent resource, the implementation just checks for the availability of

lock on x. If x is an outermost resource, it checks for the 3 conditions listed above.

In case the 3rd condition is not satisfied, it revokes the bool value to 0 for all the

resources (line 12), revokes the lock on x and returns false(lines 13-14). If all the 3

conditions are satisfied it returns true(line 15).

The third condition may lead to livelock because if condition 3 fails, the algorithm

requires Ti to revoke the bool values to 0 for each element in x’s dependent set. We

avoid this by keeping the resources in the dependent set in a sorted sequence.

Note: Par-Synchronize1 offers more parallelism than Prev-Deadlockfree.

We show this using the following example.

Table 4.7: Example to illustrate efficiency of Par-Sychronize1

Thread T1 Thread T2
lock(a1); lock(a2);
//critical section 1 //critical section 1
lock(a2); lock(a1);
//critical section 2 //critical section 2
unlock(a2); unlock(a1);
unlock(a1); unlock(a2);

89

Suppose the state at the beginning of its execution for locks and bools on (a1,a2,a3,a4)

is - lock:(0,1,0,0), bool:(0,0,0,0).

This indicates that the lock on resource a2 is already acquired by some other

thread. Prev-Deadlockfree would not admit this request (lock(a1)) as it requires lock

on a2 also to be acquired. However, with Par-Synchronize1, we just check the bool

value for a2, find it to be 0, and hence satisfies all the 3 conditions. Thus, request for

a1 by T1 can be granted.

Limitation

Evidently, Par-Synchronize1 provides far better hardware utilization and throughput

in comparison with Prev-Deadlockfree. However, a major drawback of this algorithm

is its failure to avoid deadlock in certain scenarios.

Consider the example shown in Table 4.3 where two threads from different warps

execute in parallel. Here, lock(a1) is called from Thread T1, which finds a1.bool to

be zero (step 9, Algorithm 2). As a result, T1 will proceed further. However, if at the

same time, T2 is in step 11, this will find a1.bool to 0, change it to 1 and secure the

lock on a2, resulting in deadlock.

Par-Synchronize2

To resolve this issue, two approaches are proposed:

1. Par-Synchronize2 introduces an additional check of the outermost resource’s

bool.

2. The dependent set is modified to include the outermost resource in the set, to

ensure prevention of deadlock.

Before granting a lock, a check is made whether bool of the outermost resource

is set to 0 or not. If it is 1 (x.bool=1), granting of the lock may result in deadlock

since the outermost resource is also in dependent set of some other thread. There-

fore, all the bools that are acquired by present thread are released. This approach

90

successfully resolves the issue of deadlock. However, due to the rollback strategy

adopted, it may result in livelock as two threads may wait infinitely for bools of their

respective dependent resources. This shortcoming is illustrated using the example

shown in Table 4.3. Suppose Threads T1 and T2 belong to the same warp. Since

initially a1.bool = 0 and a2.bool = 0, both the threads will proceed further and

try making bools of their dependent set to 1 i.e T1 will make a2.bool = 1 and T2

will make a1.bool = 1. The additional checking step of T1 will find a1.bool = 1

and T2 will find a2.bool = 1, hence both the thread will perform the rollback and

repeat the same steps, resulting in livelock.

We now discuss our Par-Deadlockfree algorithm that is deadlock-free, livelock-free

and at the same time offers more efficiency than Prev-Deadlockfree.

Par-Deadlockfree

Par-Deadlockfree provides a better approach to solve the deadlock/livelock issues

of Par-Synchronize1 and Par-Synchronize2 by performing certain modification in the

dependent set and overcoming the limitations of livelocks. Like majority of its atomic

operation based synchronization peers, Par-Synchronize1 falls into deadlock due to

simultaneous modification on shared data (i.e. bool vector) by multiple threads. In

order to solve this, LOCK function of Par-Deadlockfree sets the outermost resource’s

bool in addition to its lock to 1, thus ensuring that no other thread will attempt to

acquire this resource.

After acquiring all the bools of modified dependent set (Step 9, Algorithm 3) and

lock on the resource (Step 13), bool of the outermost resource is released (Step 14).

In case any of the bools or lock is already acquired, rollback takes place i.e. bool of

every resource in modified dependent set is made 0 (Step 11/17). Hence, lock will not

be granted. To obtain lock on a dependent resource, it just checks the availability of

lock, and if acquired, it sets its bool to 0.

Intuitively, UNLOCK function changes lock of the resource to 0. The algorithm is

given in Algorithm 3.

91

Algorithm 3 Par-Deadlockfree

1: procedure lock(x)

2: if x is a dependent resource then

3: if atomicCAS(x.lock,0,1)=1 then

4: release bool on x, return true

5: else

6: return false

7: else . x is an outermost resource

8: status ← Acquire bool on all resources(outermost+ dependent)

9: if status = failure then

10: release all bools, return false

11: else . status = success

12: if atomicCAS(x.lock,0,1) = 0 then

13: release bool on x

14: return true

15: else . x is already locked

16: release all bools

17: return false

18: procedure unlock(x)

19: release lock on x

end

Illustration of Par-Deadlockfree

We illustrate Algorithm 3 using the example below (Table 4.8):

In this example, Threads T1 and T2 belong to the same warp, while Thread T3

belongs to a different warp. Suppose T1 and T3 acquire their respective locks and

proceed to their critical section 1, however, T2 cannot acquire a3.lock since

a3.bool is set to 1 by T3. Since T1 and T2 are in the same warp, T2 is disabled till

both the threads agree on the same execution path due to branch divergence (as a

92

Table 4.8: Example to illustrate Par-Deadlockfree

Thread T1 Thread T2 Thread T3
lock(a1); lock(a3); lock(a2);
critical section 1; critical section 1; critical section 1;
lock(a2); lock(a4); lock(a4);
critical section 2; critical section 2; critical section 2;
unlock(a2); unlock(a4); unlock(a4);
unlock(a1); unlock(a3); unlock(a2);
non-critical section; non-critical section; non-critical section;

result of failed if condition of Scheme 2). T1 tries to acquire a2.lock which is held by

T3, hence T1 will keep on checking for a2.lock and finally will be granted a2.lock

only after a2.lock is released by T3. Eventually, after T1 releases a1.lock, both T1

and T2 converge. Now, T2 can proceed further, assuming a3.bool has been set to 0

by some other thread in the meanwhile.

Consider another example where T3 tries to acquire locks for a2 and then a1

instead of a4. Clearly, if both T1 and T3 are allowed to acquire a1 and a2 respectively,

it will lead to a deadlock. However, Par-Deadlockfree does not permit this as the

thread which acquires its outermost resource first would have changed its dependent

set’s bool to 1, thereby restricting the other thread to acquire its outermost resource.

A formal proof of deadlock freedom for the more general case involving n threads is

discussed below.

4.4.3 Proof of Deadlock Freedom

Theorem: Par-Deadlockfree is deadlock-free.

Proof (by contradiction):

Let us assume that a deadlock occurs, involving n threads, leading to cyclic wait.

Suppose the cycle formed is as follows:

T1 → T2 → T3 → ...→ Tn → T1.

Consider Thread T1. For T1,

1. Tn → T1 ⇒ T1 has already acquired some resource, say a1.

93

2. T1 → T2 ⇒ T1 is waiting for some resource, say a2, to be released by thread T2.

This could happen only if lock(a1) precedes lock(a2) in thread T1. This implies

that at the point when lock(a1) is acquired, bool(a2) = 1, regardless of whether a1

is an outermost resource for the interval in consideration. This is true because the

algorithm acquires bool for all dependent resources at the time of acquiring lock of

outermost resource.

Since bool(a2) = 1, thread T2 could not have acquired lock(a2) after lock(a1).

⇒ T2.lock(a2) → T1.lock(a1).

Similarly, we have

⇒ T3.lock(a3) → T2.lock(a2)

.

.

⇒ Tn.lock(an) → Tn−1.lock(an−1)

⇒ T1.lock(a1) → Tn.lock(an).

By transitivity, we get T1.lock(a1) → T1.lock(a1), which is not possible, thereby

contradicting our assumption, thereby establishing that Par-Deadlockfree is deadlock-

free.

4.5 Performance Evaluation

We first analyze the performance of the Prev-Deadlockfree and the proposed Par-

Deadlockfree lock algorithms. To achieve this, we model the kernel as an interval

similar to that of the example shown in Table 4.2 and carry out the experiments.

Further, to compare the performance of our algorithm with existing works, we use

the Delaunay Mesh Refinement application implemented using different synchroniza-

tion mechanisms. For a Delaunay triangulation, none of the points lie inside the

94

circumcircle of any of its triangle. Delaunay Mesh Refinement imposes certain qual-

ity constraints on such a Delaunay triangulation or mesh (For example no triangle

has an angle of less than 30 degrees). It involves iteratively processing the mesh for

triangles that violate the quality constraint (also called bad triangles), until no more

bad triangles are left.

Experimental Framework

The experiments were performed on a compute node with following configuration: 2

Intel(R) Xeon(R) CPU E5-2620@ 2.00GHz with 24 cores, 2 Tesla K40 GPUs, 32 GB

RAM and 30 GB SWAP. The Tesla K40 GPU comprises 2880 cores running at 745

MHz, with 12 GB memory. We used CentOS 7.1.1503 with gcc-4.8.3 and CUDA-7.0

for compilation.

4.5.1 Prev-Deadlockfree vs Par-Deadlockfree

For comparing the performance of Prev-Deadlockfree and Par-Deadlockfree, we have

written a micro-benchmark application whose kernel is modeled as an interval similar

to that of the example shown in Table 4.2. Arbitrary delays are introduced into the

kernel that resemble critical sections. We then perform experiments by varying the

number of blocks and observe the execution time and locking failures for the proposed

algorithms. The delay, number of objects and block size are kept constant throughout

the experiments. The results are shown in Figure 4-10. The execution times are in

logarithmic scale to address skewness in values of observed data.

It is evident from Figure 4-10 that Par-Deadlockfree performs better than Prev-

Deadlockfree. Par-Deadlockfree executes faster in all cases except for 1 block, in

which case Prev-Deadlockfree is faster by up to 10%. The maximum improvement

is achieved by Par-Deadlockfree with 8 blocks, with performance gain of 32% been

observed, while the average gain observed over all cases for Par-Deadlockfree is 5%.

95

1 8 64 512 4096

Number of Blocks

-1

0

1

2

3

4

5

6

7

E
x
e
c
u
ti
o
n
 t
im

e
 (

lo
g
)

Prev-Deadlockfree

Par-Deadlockfree

Figure 4-10: Comparative evaluation of Prev-Deadlockfree and Par-Deadlockfree

4.5.2 Comparative Evaluation of Par-Deadlockfree with ex-

isting works

For comparison of Par-Deadlockfree with existing works, we have modified the DMR

implementation of the LonestarGPU project by Burtscher, Nasre and Pingali [110]

to use Par-Deadlockfree for synchronization, and compare its performance with

1. the original DMR implementation of LonestarGPU that uses the 3-phase conflict

resolution scheme proposed by Nasre, Burtscher and Pingali [109].

2. DMR implemented using the lock stealing based synchronization mechanism

proposed by Yunlong et al. [84]. The pseudo code for the GPU implementation

of DMR using Par-Deadlockfree is shown in Algorithm 4.

Algorithm 4 Delaunay Mesh Refinement

1: procedure refineMesh(Mesh mesh)

2: count ← checkTriangles(mesh)

3: while count > 0 do

4: refine(wl)

5: count ← checkTriangles(mesh)

6: procedure refine(worklist wl)

7: for each triangle t in wl do

8: if if t is bad and not deleted then

96

9: S ← Create cavity

10: S = S
⋃

t

11: Sort S and lock all triangles in S in order

12: if locking of any triangle fails then

13: unlock all triangles locked

14: release all bools and continue

15: create new cavity by re-triangulating

16: delete triangles in old cavity from mesh

17: add triangles in new cavity to mesh

18: unlock all triangles locked

end

The benchmark inputs for DMR are used from the Galois project by Keshav et

al.[108]. Each experiment is repeated 5 times, and a graph is plotted with the arith-

metic mean of the observed execution times. The execution times are in logarithmic

scale to address skewness in values of observed data. The results are shown in Figure

4-11.

large massive 250k

Benchmark Inputs

0

1

2

3

4

5

6

E
x
e

c
u

ti
o

n
 t

im
e

 (
lo

g
)

Lock stealing

LonestarGPU

Par-Deadlockfree

Figure 4-11: Comparative evaluation of DMR implementations

From the results, we see that Par-Deadlockfree outperforms LonestarGPU DMR

implementation for all the benchmark inputs with up to 13.5x speedup observed

for the smallest input. When compared to the lock stealing implementation, Par-

Deadlockfree performs better for smaller inputs, however it lags for the 250k input,

97

although marginally (8%). 250k, the largest test input, consists of a mesh with 0.5

million triangles, of which half of them are bad initially. The marginal performance

decline of Par-Deadlockfree can be justified by the fact that it gives an additional

guarantee of deadlock-freedom.

4.6 Discussion

Par-Deadlockfree provides a deadlock-free GPU synchronization mechanism that is

efficient in-spite of its simplicity. However, an important concern is the difficulty in

managing locks in large applications. Improper use of locks may affect the correctness

of the application. Moreover, Par-Deadlockfree limits its scope to applications where

the resource usage information is known in advance. This limitation can be overcome

by using it for optimistic concurrency control mechanisms like Transactional Memory.

Transactional Memories (TM) allow pieces of code earmarked as transactions to run

atomically by executing them optimistically. With a lazy TM, all the write operations

to shared objects are performed on their local copies, and changes to these objects

are reflected in the shared memory only when the transaction commits. Thus, TM

provides a high level abstraction, where he/she just has to identify the transactions

in an application, and the TM implementation takes care of all the synchronization

and communication. The implementation may internally use locks.

Par-Deadlockfree is a suitable candidate for the implementation of such a TM

for GPUs, since a transaction would precisely know its resource usage information

at commit time. Running transactions optimistically with an appropriate contention

manager is also expected to offer better efficiency as it would allow maximum transac-

tions with disjoint write-sets to commit. Moreover, the high-level abstraction offered

by TMs also increases productivity of the programmer. The characteristics of GPUs

would require the usage of appropriate data structures for book-keeping that are

efficient and light-weight.

98

Chapter 5

Exploiting parallelism and

recursion to realize performance

Multi-core computers have now emerged as the mainstream computing platform.

Graphic Processor Units (GPU), in particular, have evolved into highly parallel many-

core processors with high throughput and memory bandwidth that make them suit-

able for compute-intensive applications, that can be expressed as data-parallel compu-

tations. While GPU lends itself to a high level of parallelism, leveraging it optimally

is considerably difficult. CUDA allows the programmer to partition the problem into

sub-problems, known as blocks, that can be assigned to the different multiproces-

sors, while each of the sub-problems itself is partitioned and solved in parallel by

multiple threads within the multiprocessor. Although CUDA simplifies programming

to an extent by abstracting some of the low-level details from the user, the user is

still required to specify the execution parameters, keeping in mind the multi-level

memory hierarchy and other GPU parameters. The application needs to be tuned to

arrive at the optimal execution parameters. Scaling computations on clusters is even

more challenging due to the added complexity of multiplicity of nodes, and inter-node

communication.

We address this problem using Powerlist, a data structure that enables us to

specify parallel algorithms. Powerlist allows us to represent several algorithms con-

cisely because of the use of recursion and also because it avoids explicit indexing of

99

a powerlists elements using the operations defined on them. We demonstrate the ex-

pressive power of powerlists through Cooley-Tukey algorithm [100], a widely popular

algorithm for computing Fast Fourier Transform (FFT). The cooley-Tukey algorithm

is shown below:

Figure 5-1: Cooley-Tukey algorithm for computing FFT [101].

Since Powerlist is able to capture both parallelism and recursion at the same time,

it is able to express the above algorithm succinctly as a recursive definition in the

powerlist notation as follows:

fft. < a >=< a >

fft.(pq) = fft.p+ u ∗ fft.q|fft.p− u ∗ fft.q

where, u =< ω0, ω1,, ωN−1 >, N is the length of p, ω is the 2 ∗ Nth principal

root of 1.

This concise description of the Cooley-Tukey algorithm is possible due to the

astraction provided by powerlist. This abstraction can be leveraged to shield the user

from the programming complexity resulting from the multi-level memory hierarchy

of multi-core architectures.

In this chapter, we show how powerlists can be leveraged on parallel systems com-

100

prising of GPUs to enhance both performance and productivity. We first provide a

method to arrive at the kernel execution parameters from the GPU characteristics,

that results in optimal performance. This approach helps in making the programmer

oblivious to the underlying hardware (GPU) parameters, thereby improving perfor-

mance and productivity considerably, as the same program can now execute efficiently

at different GPUs without any additional effort. We then extend this work to allow

computations to be scaled across a cluster of GPUs. In particular, we implement a

library of powerlist operations that automates the partitioning and merging of sub-

problems. This library is then used to provide a scheduling algorithm for matrix

multiplication across a cluster of GPUs, thereby overcoming the CUDA Basic Linear

Algebra Subroutines (cuBLAS) library’s limitation to schedule an application across

the cluster. This work has been published in [98].

The chapter has been organized as follows: in the next section, we provide a back-

ground of the GPU architecture and CUDA programming model as well as a brief

overview of the powerlist data structure. In Section 5.2, we present powerlist specifica-

tions for the matrix multiplication algorithm. In Section 5.3, we present a powerlist-

based approach for GPUs that predicts how threads for an application should be

mapped to the GPU cores, based on the underlying hardware parameters. We then

extend this work to allow computations to be scaled across a cluster of GPUs in Sec-

tion 5.4. We demonstrate this high-level framework through SGEMM subroutine of

cuBLAS library, wherein the partitioned matrices are automatically scheduled over a

GPU cluster. In Section 5.5, we report our observation that powerlists can be used

to specify most of Cache-Oblivious and Multicore Oblivious algorithms.

101

5.1 Background

5.1.1 Characteristics of GPU

The overview of GPU architecture and the CUDA programming model has been dis-

cussed in Section 4.1. In this section, we discuss various architectural parameters of

GPU that affect the performance of GPU applications. Table 5.1 lists some of these

parameters that influence the performance, and the corresponding values for Tesla

M2050, the GPU used in our experiments:

Table 5.1: GPU parameters

S.No GPU Parameter Denoted by
Value

(for Tesla
M2050)

1 No. of multiprocessors per GPU M 14
2 No. of cores per multiprocessor N 32
3 Max no. of threads per MP tmp max 1536
4 Max no. of threads per block thb max 1024
5 Max no. of registers per block rgb max 32768
6 Max no. of thread blocks per MP bmp 8
7 Shared memory per block(and MP) SM avail 48KB
8 Warp size w size 32

The programmer is required to understand these detailed hardware features and

its constraints to optimize programs for high performance. The application needs to

be tuned for these parameters for optimal performance. To simplify this task, we show

how powerlists can be used to optimally predict the kernel execution configuration

parameters.

We now give an overview of the powerlist data structure.

5.1.2 Powerlists

Powerlist was introduced by Jay Misra in 1994 [103]. Powerlist is a data structure

that enables us to specify parallel algorithms. It highlights the role of both paral-

lelism and recursion, and in fact many recursive algorithms like FFT, Batcher Sort,

102

Prefix-Sum etc. can be described succinctly using powerlists [33], [105].

Formally, a powerlist can be described as a list whose length is equal to a power of

two. A list whose length is not a power of two can also be represented as a powerlist

by padding it up with (junk) elements. The elements of a powerlist are enclosed

within angular brackets. The base powerlist is a list containing one element, 〈a〉,

also called singleton. Larger powerlists can be composed from two smaller powerlists

of equal length and same type by using the zip(./) and tie(|) operations defined below:

p|q (tie operation): concatenates the elements of the p and q powerlists.

p ./ q (zip operation): interleaves the elements of p and q.

Example:

1) 〈2, 3〉|〈1, 4〉 = 〈2, 3, 1, 4〉

2) 〈2, 3〉 ./ 〈1, 4〉 = 〈2, 1, 3, 4〉

Clearly, the composition of powerlists using tie and zip operations results in a

larger powerlist of double the length of the component powerlists. Conversely, any

(non-singleton) powerlist can be expressed as the zip or tie of two smaller powerlists

of half its length. This way, zip and tie operations can also be used as deconstructors

to break down the lists. The commutativity law is the only law that relates | and ./,

and is given by,

(p|q) ./ (u|v) = (p ./ u)|(q ./ v)

Multi-Dimensional Array

An n-dimensional array can be represented by a powerlist of depth n-1. For example,

we represent a 2-dimensional matrix, having m rows and n columns, by a powerlist

having m elements, each of which is a powerlist containing n elements, one for each

column. This necessitates application of operations to elements of any specified di-

mension. This is made possible by defining operations |′, ./′, |”, ./ ” etc. where |′

103

applies the operation | to the powerlists in dimension 1. Similarly, |” applies | to

powerlists in dimension 2 and so on, and likewise for the zip operation.

Example:

1) << 2 >,< 3 >> | << 1 >,< 4 >>=<< 2 >,< 3 >,< 1 >,< 4 >>

2) << 2 >,< 3 >> |′ << 1 >,< 4 >>=<< 2, 1 >,< 3, 4 >>

Powerlists can also be mapped onto hypercubes [33], [105]. An n-dimensional

hypercube can be viewed as a graph with 2n nodes where each node is represented by

an n-bit binary string. So, if we denote an element of a powerlist of length 2n by a

n-bit binary string, representing its position in the powerlist, it can be mapped onto

a hypercube of size 2n to the node with the same label. Several hypercube algorithms

have been listed in [33] and [105].

Misra has given the powerlist representation of matrices in [103], and given al-

gorithms for FFT, Batcher-sort, Prefix-Sum etc. In [33], J. Kornerup has given an

algorithm for matrix multiplication using powerarrays, a higher dimension structure

than powerlists. However, this leads to complex recursive specification of matrix

multiplication. So, in the following section, we provide two algorithms for matrix

multiplication using the powerlist notation. [34] gives a quadtree representation for

matrices, and gives an algorithm for matrix multiplication. It is a divide and con-

quer algorithm, partitioning the matrices into blocks, and expressing the result as a

sum of products of these smaller blocks. Whereas with powerlists, the subproblems

are independent from one another, so that they can be computed in parallel, and no

consolidation is required. Another advantage of using powerlist is that it completely

exposes the inherent concurrency in the application and allows us to have a concise

functional description of parallel programs. Moreover, since index notations are not

used, they allow us to work at a high level of abstraction. Thus, powerlist represen-

tation becomes very relevant in the context of computing matrix multiplication for

large matrices, and for other computations which are divide and conquer in nature.

In the following section, we demonstrate how Powerlists can be used to specify

104

computations.

5.2 Specifying Matrix Multiplication using Pow-

erlists

For simplicity, we demonstrate specification of computations using powerlists through

matrix multiplication.

Consider a matrix A. Since we want to represent it in the powerlist notation, we

require its length to be n = 2k. Although this appears to be a serious limitation, it can

be handled easily, by zero-padding the matrices to obtain the required dimensions,

without affecting the results significantly. It could be represented in the powerlist

notation as a powerlist of powerlists, where each of the row or column forms a powerlist

of scalar objects. For example, the first row of the matrix A is given by the powerlist,

p = 〈a1,1, a1,2, · · · , a1,n〉.

Then, matrix A is given by the powerlist,

A = 〈〈a1,1, a1,2, · · · , a1,n〉, 〈a2,1, a2,2, · · · , a2,n〉, ...,

〈an,1, an,2, · · · , an,n〉〉

Notation: A matrix here is represented as a powerlist of powerlists. For operations,

quite often, it is necessary to use the dimensions of the matrices. For this purpose, we

need to use different operators to indicate the partitioning or merging of partitioned

matrices. In the case of 2-dimensions, | denotes the concatenation of powerlists, and

|′ represents concatenation of powerlists of powerlists. For example,

1) 〈〈a〉, 〈b〉〉|〈〈c〉, 〈d〉〉 = 〈〈a〉, 〈b〉, 〈c〉, 〈d〉〉

2) 〈〈a〉, 〈b〉〉|′〈〈c〉, 〈d〉〉 = 〈〈a, c〉, 〈b, d〉〉

We can interpret the above as follows: | increases the dimensions of the matrix by

increasing the number of rows, while |′ increases the number of columns.

105

Matrix Multiplication: Algorithm 1

Let A and B be the input matrices. Then, the multiplication of A and B is given by

M(A,B) where M is defined below through rules 1, 2, 3 and 4 given below:

Case A: Matrix A and B are 1× 1 matrix, i.e., A = 〈〈x〉〉, and B = 〈〈y〉〉. Then,

M(〈〈x〉〉, 〈〈y〉〉) = 〈〈x× y〉〉 (1)

Here, 〈〈x〉〉 and 〈〈y〉〉 are singleton elements (or a 1 × 1) matrix and × denotes the

classical multiplication of numbers.

Case B: A and B consist of more than one row and column. Let A = r|s, and

B = u|v; Then

M(r | s, u |′ v) = (M(r, u) |′ M(r, v)) | (M(s, u) |′ M(s, v)) (2)

Rule 2 partitions the powerlists corresponding to the two matrices recursively and

terminates when matrices reduce to matrices consisting of one row or one column.

An important thing to note is how Rule 2 is able to precisely capture the partitioning

of the A, B and C matrices. Matrix A is partitioned horizontally into 2 blocks r and s

while matrix B is partitioned vertically into u and v, thereby giving 4 blocks of matrix

C, as given in the RHS of Rule 2.

This gives us a clear idea about how at any level, the subproblems are independent

of each other, and hence can be computed in parallel.

Case C: Each matrix consists of only one row(or column) but more than one el-

ement. i.e., A = m|′n, and B = p|′q. Then,

M(m|′n, p|q) = S(M(m, p) , M(n, q)) (3)

106

At this point, row i and column j obtained could be further partitioned recursively

using rule 3 until we get singletons. S() captures the addition operation to evaluate

the sum of products.

We now define the rule,

S(〈〈x〉〉, 〈〈y〉〉) = 〈〈x+ y〉〉 (4)

Rule 4 computes the sum of two singleton elements x and y.

Altogether, the computation of matrix multiplication can be captured by using pow-

erlists through the four rules described above.

For illustration, let us computeM(r1, c1) from above that computes the product of one

row (of A) and one column (of B) to give the corresponding element of C (M(r1, c1)

itself is obtained after recursive application of Rule 2 that partitions A into rows and

B into as many columns).

Let r1 = 〈〈a1, a2, a3, a4〉〉 and c1 = 〈〈b1〉, 〈b2〉, 〈b3〉, 〈b4〉〉

Then,

M(r1 , c1) = M(〈〈a1, a2, a3, a4〉〉, 〈〈b1〉, 〈b2〉, 〈b3〉, 〈b4〉〉)

= M(〈〈a1, a2〉〉|′〈〈a3, a4〉〉, 〈〈b1〉, 〈b2〉〉|〈〈b3〉, 〈b4〉〉)

rule 3−−−→

S(M(〈〈a1, a2〉〉, 〈〈b1〉, 〈b2〉〉),M(〈〈a3, a4〉〉, 〈〈b3〉, 〈b4〉〉))

rule 3−−−→

S(S(M(〈〈a1〉〉, 〈〈b1〉〉),M(〈〈a2〉, 〈〈b2〉〉)),

S(M(〈〈a3〉〉, 〈〈b3〉〉),M(〈〈a4〉〉, 〈〈b4〉〉)))

Now, the powerlists consists of only singleton elements or matrices of size 1 × 1,

107

and hence Rule 3 cannot be applied further. Instead rule 1 is now applied to get,

M(r1 , c1) = S(S(〈〈a1 × b1〉〉, 〈〈a2 × b2〉〉)) ,

S(〈〈a3 × b3〉〉, 〈〈a4 × b4〉〉)))

rule 4−−−→

S(〈〈a1 × b1 + a2 × b2〉〉, 〈〈a3 × b3 + a4 × b4〉〉)

rule 4−−−→

〈〈a1 × b1 + a2 × b2 + a3 × b3 + a4 × b4〉〉

We have shown how the computation of matrix multiplication can be captured

by using powerlists. We have seen through illustrations how partitioning is achieved

by using the tie and zip operations as deconstructors, that are defined on powerlists.

Similarly, the merging can be achieved by using the same tie and zip operations as

constructors for combining the partial results.

Matrix Multiplication: Algorithm 2

In the partitioning scheme discussed above, we apply Rule 2 recursively until we

obtain single row/column, and then Rule 3 is applied to partition the row/column.

However, it is also possible to apply Rule 3 to partition the matrices rather than

just rows/columns. This leads us to an efficient but more complicated partitioning

scheme of blocked matrix multiplication [36]. We now show how the same rules

discussed above could be utilized to arrive at the partitioning scheme of blocked

matrix multiplication. Rule 2 partitions matrix A horizontally and B vertically, while

Rule 3 partitions A vertically and B horizontally. Thus, we represent this partitioning

scheme by integrating Rule 2 and Rule 3, so as to partition A and B matrices along

108

both the dimensions, and is given by Rule 5 below:

M(A,B) = M(A1|A2, B1|′B2) =

M([(A11|′A12)|(A21|′A22)], [(B11|B12)|′(B21|B22)])

= (S(M(A11, B11),M(A12, B12))|′

S(M(A11, B21),M(A12, B22)))|

(S(M(A21, B11),M(A22, B12))|′

S(M(A21, B21),M(A22, B22))) (5)

Comparison of the algorithms

Algorithm 2 saves a lot of global memory bandwidth, while also allows us to take

advantage of the faster shared memory for reducing the number of accesses to global

memory. However, for our purpose, Algorithm 1 is preferred, as we utilize it just for

partitioning the input matrices, while the actual computation is performed by the

efficient cuBLAS library. The advantage is that the partitioning scheme of Algorithm

1 allows us to partition the problem into independent subproblems, where each of

the subproblems is computed using cuBLAS. The resultant product matrices thus

obtained just needs to be arranged using | and |′ operations to obtain the final product.

Where as Algorithm 2 clearly involves further consolidation of the product matrices

using Rule 5. For this reason, we use Algorithm 1 in our method for computing

matrix multiplication.

In the next section, we show how this algorithm can be exploited for realizing

matrix multiplication on GPUs.

5.3 Realizing Matrix Multiplication keeping in view

the GPU Parameters

While multicore computers enable us to handle various parts of an application in par-

allel, writing programs to extract maximum possible performance is hard. In partic-

109

ular, Graphics Processing Unit (GPU) architecture imposes additional programming

constraints. Although the CUDA programming model abstracts these constraints,

making the kernel code independent of the GPU parameters like number of available

multiprocessors etc, the programmer is still required to decompose the problem aptly

into a grid of blocks. The number of blocks per grid and the number of threads per

block, both of which together (along with the dimensions) constitute the execution

configuration parameters, play an important role in determining the performance of

the application. This is because these parameters directly affect latency hiding (oc-

cupancy) and resource utilization. It is also to be noted that these parameters also

depend on resource constraints (register and shared memory). So it becomes neces-

sary for the programmer to identify the suitable execution configuration parameters

for the program for which the best performance is obtained, which are dependent on

the GPU parameters. Some of the work on providing guidelines to CUDA program-

mers have been listed in [35], [32], [31].

In this work, we demonstrate how, using powerlists, the parameters of multi- core

architectures and in particular GPUs, can be effectively utilized to predict the optimal

kernel execution configuration parameters. Thus, this approach becomes productive

from the perspective of the programmer. We now illustrate our approach through

matrix multiplication.

5.3.1 Matrix Multiplication Algorithm: An Illustrative Ex-

ample

Given a multicore system with n cores, a problem could be partitioned manually into

subproblems, and assigned to the available n cores. This partitioning is not a trivial

problem. Having fine granularity for the blocks facilitates better load balancing and

higher parallel efficiency, while having coarse granularity provides better performance

in sequential execution on a single core. The key then is to identify the crossover point,

and could be easily found if this algorithm is expressed in terms of powerlists. The

110

ability of powerlists to model both parallelism and recursion allows us to recursively

divide the problem into subproblems, till we arrive at an optimal granularity keeping

in view the various hardware parameters and constraints. And then the subproblems

could be solved in parallel by the multiple cores.

With GPUs, we also have several parameters(discussed in the previous section)

that make the task of identifying the crossover point more difficult. We provide a

method to arrive at this crossover point at which the optimal performance is achieved,

keeping in view the available GPU parameters. By automatically computing this

crossover point, it becomes possible for us to derive the execution configuration pa-

rameters for the GPU kernel from it, thus making it productive from the programmers’

point of view, as now he is neither required to understand the underlying GPU fea-

tures and its constraints in depth, nor is he required to tune the program manually

for better performance, thus greatly reducing his effort.

We have used matrix multiplication algorithm for illustration rather than algo-

rithms like FFT etc. (even though the visible results for FFT would be superior) for

simplicity of presentation.

Given two n×n matrices A and B, we compute matrix C = A * B.

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n

∗B =


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n

 = C =


c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n
...

...
. . .

...

cn,1 cn,2 · · · cn,n


Then,

ci,j =
n∑
k=1

ai,k ∗ bk,j (6)

The classical naive algorithm is shown in Algorithm 5.

Algorithm 5 Compute C = A ∗B

111

1: for i = 1 to n do

2: for j = 1 to n do

3: for k = 1 to n do

4: c[i][j] = c[i][j] + a[i][k] ∗ b[k][j]

end

The complexity of the algorithm is obviously O(n3) where n is the dimension of

the matrix.

Now, let us consider a multicore system with n2 cores. Intuitively from Equa-

tion(5.4.1), it follows that if we can compute n2 elements of C in parallel, then we

would have computed the matrix, C in linear time. To realize this, we could directly

partition the problem into n2 threads and assign them to the available n2 cores such

that all of the threads evaluate in parallel one element of the resultant matrix, C.

But when n is very large, the problem has to be partitioned by the programmer ap-

propriately for the best performance, which is a challenging task as the programmer

needs to know how to utilize the hardware resources effectively.

One of the ways to overcome the problem is to partition the problem appropriately

and our claim is, that this is possible with the use of powerlists. In the next section,

we show how powerlists can be exploited to realize matrix multiplication on GPUs.

5.3.2 Realizing the Matrix Multiplication Algorithm

Given the parameters for a particular GPU, let us see how the matrix multiplication

algorithm in powerlist notation, presented in the previous section, can be transformed

into a GPU program. As shown above, the algorithm works by dividing the prob-

lem recursively by deconstructing the matrices, and then reconstructing them again

from the partial results. Mapping this algorithm onto the GPU entails dividing the

matrix, C into several blocks, and assigning these blocks to the available multipro-

cessors which compute the results after loading the corresponding sub-matrices from

Matrices A and B, and store them into C.

112

We now show how we deconstruct the matrices A and B of matrix length 2n and

size denoted by SIZE(= 22n) using the rules for matrix mulitplication given in Sec-

tion 5.2. A is represented as the concatenation of two submatrices r and s, while B as

that of submatrices u and v. From Rule 2, we represent C(= M(A,B)), in terms of

the submatrices M(r, u),M(r, v),M(s, u) and M(s, v). This computation can be cap-

tured in a CUDA program by partitioning it into 4 blocks of threads (each consisting

of SIZE/4 threads), one for each of the 4 submatrices M(r, u),M(r, v),M(s, u) and

M(s, v).

So, at the next (second) level of recursion, M(r, u) is again expressed as a function

of 4 submatrices, requiring 16 blocks altogether, each of size SIZE/16 = 22n−4. The

block length then, is given by the square root of the block size, i.e 2n−2.

One of the ways to improve the performance of a GPU program is to reduce the

number of accesses to global memory by loading parts of matrices A and B into

the shared memory. This is because shared memory accesses are much faster as

compared to global memory, and will be discussed in detail in Section 5.3.2. At

this(second) level of recursion, to compute a block, we need to load one submatrix

each from A and B of size blocklength ∗matrixlength, thereby requiring memory of

size 2 ∗ 2n−2 ∗ 2n = SIZE/2.

Table 5.2 shows the number of blocks, corresponding block size, block length and

shared memory requirement at each of the possible levels of recursion.

Table 5.2: Number of blocks, block size, dimension and shared memory required at
the different levels of recursion

Level No. of blocks Block size Dimension Shared Memory
required

0 1 SIZE 2n 2 ∗ SIZE
1 4 SIZE/4 2n−1 SIZE
2 16 SIZE/16 2n−2 SIZE/2
3 64 SIZE/64 2n−3 SIZE/4
i 4i SIZE/4i 2n−i SIZE/(2i−1)
n 4n 1 1 2

113

Evaluating the Optimal Depth of Recursion

In order to implement the Matrix Multiplication algorithm on a GPU, we need to

identify the execution configuration parameters, i.e. the number of blocks and the

block size, from which the block and the grid dimensions can be derived. For this,

the depth of recursion needs to be identified for which the optimal performance is

achieved. In this section, we give a method that attempts to arrive at such an optimal

depth of recursion, with respect to the GPU parameters and the constraints.

Let us assume the size of the matrices to be 2n ∗ 2n.

Based on the number of blocks, and the number of threads per block, several cases

can be identified, and analyzed individually for their time complexity. These are as

follows:

Case 1: Number of blocks ≤ M (Number of SMs) and Number of threads per block

≤ N

In this case, all the blocks are assigned instantaneously to the SMs, and are computed

in parallel, Hence the time taken is determined by the time taken by any SM. Again,

by the same argument, all the threads are computed within a single batch, and hence

the time taken by any SM is given by the time taken by any of the threads (say O(t)).

Thus,

timetaken = O(t) (7)

Case 2: Number of blocks ≤ M (Number of SMs) and Number of threads per block

≥ N

Here, the time taken by any of the SMs is determined by the number of batches

in which the threads are processed. Hence,

timetaken = d(blockSize/N)e ∗O(t) (8)

114

Case 3: Number of blocks ≥ M (Number of SMs) and Number of threads per block

≤ N

Here, as Number of blocks ≥ M, all the blocks cannot be processed in parallel.

The computation spans over several batches in each of which M blocks are computed

in parallel. Hence,

timetaken = d(Numberofblocks/M)e ∗O(t) (9)

Case 4: Number of blocks ≥ M (Number of SMs) and Number of threads per block

≥ N

In this case, several batches of M parallel blocks are computed. Within each block,

as the number of threads per block ≥ N, the threads also are computed in batches of

N threads each. Thus,

timetaken = d(Numberofblocks/M)e ∗ d(blockSize/N)e ∗O(t) (10)

The case 4, by itself, is the most general case, as all the expressions of time can

be deduced by substituting the values of number of blocks and number of threads per

blocks in the above expression. Further, the time taken is also a factor of the number

of resident warps (warps resident on a multiprocessor), which itself is a factor of the

number of resident blocks (blocks resident on a multiprocessor). This number is very

much dependent on the GPU parameters discussed in Section 5.1.1, and can be given

by:

numWarps = d(numResBlocks ∗ blockSize)/warpSizee (11)

where numResBlocks is the number of resident blocks and is given by the following

expression that aims to capture the constraints imposed by the GPU:

115

numResBlocks = min(bNumberofblocks/Mc, brgbmax/rgbc,

btmpmax/blockSizec, bSMavail/SMreqdc, 8) (12)

So, the expression for the time taken is given by,

timetaken = (d(Numberofblocks/M)e ∗ d(blockSize/N)e ∗O(t))/numWarps (13)

Further, if the shared memory required per block is more than the available shared

memory, the blocks need to be further divided into sub-blocks, which further reduces

the execution time by a factor of the block size, which has been discussed in Sec-

tion 5.3.2 in detail. Then, the time taken is given by,

timetaken = (d(Numberofblocks/M)e ∗ d(blockSize/N)e ∗O(t))

/(numWarps ∗ blockSize) (14)

The problem in hand is to identify the optimal depth of recursion (level) at which

we will be able to get the most efficient implementation of the matrix multiplication

algorithm. Let us assume this level to be i. From Table 5.2, we substitute the values

of the number of blocks, number of threads per blocks(which is same as the Block

size) for the level i along with the other parameters in Equation 14. Doing this gives

us the following expression of time complexity in terms of i.

timetaken = (
d22i
14
e ∗ d22n−2i−5e ∗ 22i

dnumResBlocks ∗ 22n−2i−5e ∗ 22n
) (15)

And then the optimal value of i can be found by considering this expression of time

complexity as a function of i and minimizing this function for the values of i. We

now demonstrate how this optimal value of i is used for translation of powerlist

specifications into a CUDA program.

116

void MatrixMult (Matrix A, Matrix B, Matrix C){
. . .

// S p e c i f y i n g the dimensions
dim3 dimBlock (2ˆ(n−o p t i) , 2ˆ(n−o p t i)) ;
dim3 dimGrid (2ˆ opt i , 2ˆ o p t i) ;
// Invok ing the k e r n e l
MatrixMultiply<<<dimGrid , dimBlock>>>(d A , d B , d C) ;

. . .
}

Figure 5-2: Code snippet of kernel invocation

Using Powerlist Specifications for Translation into a CUDA Program

Given matrices A, B of size 2n ∗ 2n, we wish to derive an efficient CUDA program

from the specifications of the matrix multiplication algorithm in the powerlist no-

tation. The most important step is to identify the kernel execution configuration

parameters for which the maximum performance is achieved, which requires us to

specify the grid and block dimensions. These dimensions are directly dependent on

the optimal level of recursion, which we refer to as opti. In terms of the rules for

matrix multiplication from Section 5.2, opti level of recursion means that the Rule 2

is applied opti number of times. From Table 5.2, at level opti, we have number of

blocks= 4opti . This corresponds to saying that the matrix multiplication problem is

partitioned into 4opti blocks and each of these blocks are assigned to the M streaming

multiprocessors of the GPU. Section 5.3.2 discusses how we find opti. Once the opti-

mal depth of recursion, i is estimated, we can directly compute the values of number

of blocks and the block size from Table 5.2, and use them to arrive at the CUDA

program for matrix multiplication. Thus, at level opti, the block length is 2n−i, so

the dimensions of the block are given by 2n−i ∗ 2n−i and, the dimensions of the grid is

then 2i∗2i. The invocation of the kernel is then given by the code snippet in Figure 5-2.

When the kernel is launched, the blocks are assigned to the streaming multipro-

cessors. A streaming multiprocessor further has N cores. The threads within a block

leverage this parallelism and each of the threads is responsible for computing only one

117

Figure 5-3: Code snippet of the matrix multiplication kernel

g l o b a l void MatrixMult iply (Matrix A, Matrix B,
Matrix C){

f loat va l = 0 ;
int row = blockIdx . y ∗ blockDim . y + threadIdx . y ;
int c o l = blockIdx . x ∗ blockDim . x + threadIdx . x ;

i f (row > A. he ight | | c o l > B. width)
return ;

for (int i = 0 ; i < 2ˆn ; ++i)
va l = va l + A. e lements [row ∗ 2ˆn + i]

∗ B. e lements [i ∗ 2ˆn + c o l] ;
C. e lements [row ∗ C. width + c o l] = va l ;

}

element of the matrix C. Hence the kernel function is described by the code snippet

in Figure 5-3.

Experimental Results

To evaluate the efficacy of our method, we conducted experiments that involved

varying the level of recursion, i for different matrix sizes (square matrices of length

= power of 2), and observing the kernel execution times. The experiments were

conducted on the Nvidia Tesla M2050, that has 14 multiprocessors, each having 32

cores, letting 448 threads run simultaneously. It has 48KB shared memory and allows

32k registers per block. The results are presented in tables 5.3 and 5.4. The entries

with value ‘N.A’ indicates that the execution configuration parameters corresponding

to these entries are invalid because the thread block size is greater than 1024, and

hence the kernel failed to launch.

The results show that for matrix sizes greater than 256×256, the best performance

is achieved for the block size 1024, the largest possible block size for this GPU. As

expected the execution time is much higher for executions with small block sizes.

118

Table 5.3: Time taken for Matrix Multiplication with global memory(in ms)

Matrix size
level # blocks 8x8 16x16 32x32 64x64 128x128 256x256
0 1 0.0143 0.0204 0.0337 N.A N.A N.A
1 4 0.0118 0.0121 0.0199 0.0339 N.A N.A
2 16 0.0115 0.0120 0.0295 0.0251 0.0544 N.A
3 64 0.0119 0.0123 0.0164 0.0248 0.0523 0.2404
4 256 0.0145 0.0185 0.0346 0.0710 0.3482
5 1024 0.0296 0.0580 0.1379 0.5561
6 4096 0.1419 0.3817 1.0936
7 16384 1.3197 3.9690
8 65536 15.2366

Table 5.4: Time taken for Matrix Multiplication with global memory(in ms)

Matrix size
level # blocks 512x512 1024x1024 2048x2048 4096x4096 8192x8192
4 256 2.0277 N.A N.A N.A N.A
5 1024 2.9280 16.8560 N.A N.A N.A
6 4096 4.6038 25.2952 132.9967 N.A N.A
7 16384 10.2599 36.1883 208.0879 1067.5977 N.A
8 65536 35.4952 97.4814 242.6834 1714.8394 8832.1172
9 262144 133.3535 322.9157 793.2737 2337.0413 17724.4531
10 1048576 1254.0564 3061.1614 6371.4443 22213.8516
11 4194304 10389.6152 24952.7461 51490.3633
12 16777216 97949.1641 200577.1094

Using Shared Memory for Matrix Multiplication

As per the algorithm, computing one block (of block length l) of the matrix C(of

matrix length N) requires loading the corresponding submatrices A and B each of

size l ∗N . However in practice, each of the threads load 2N elements from the global

memory, resulting in 2 ∗ l2 ∗ N loads. Since global memory accesses are very slow,

this may leave the threads idle for hundreds of clock cycles, for each access. We

may therefore instead utilize the shared memory, which is upto 100 times faster than

the global memory(since it is on-chip). Figure 5-4 depicts the memory hierarchy for

Fermi architecture [37]. The shared memory is utilized by first loading the full or

parts of these submatrices into the shared memory. This results in only 2 ∗N/l loads

per thread and 2 ∗ l2 ∗ (N/l) loads per block from the global memory to the shared

119

memory, thereby eliminating redundant accesses to global memory. Now that these

submatrices are available for every thread on the block for computing, the threads

access the elements of A and B matrices from the shared memory, resulting in faster

computation.

However in this case we still need to access the global memory in addition to the

shared memory, and it should be the case that as we increase the matrix size, beyond

one point, using shared memory should be advantageous. We show this through

experiments which show that for matrix sizes 1024x1024 and beyond, using shared

memory gives better results.

Figure 5-4: GPU Memory Hierarchy

Experimental Results

With the shared memory version of the algorithm, we observed the execution times

by varying the level of recursion, i for different matrix sizes, the results of which are

given in Tables 5.5 and 5.6.

This implementation involves splitting the submatrices further into sub-blocks if

the original submatrices from A and B do not fit into the shared memory, adding

up the product of the corresponding sub-blocks from A and B. Comparing it with

120

Table 5.5: Time taken for Matrix Multiplication with shared memory(in ms)

Matrix size
level # blocks 8x8 16x16 32x32 64x64 128x128 256x256
0 1 0.0484 0.0374 0.0711 N.A N.A N.A
1 4 0.0205 0.0149 0.0231 0.0499 N.A N.A
2 16 0.0211 0.0144 0.0176 0.0452 0.0869 N.A
3 64 0.0226 0.0159 0.0188 0.0317 0.0729 0.3143
4 256 0.0260 0.0339 0.0675 0.1961 0.3253
5 1024 0.0949 0.1809 0.5817 0.5680
6 4096 0.5932 1.2428 5.2327
7 16384 5.2260 9.6159
8 65536 41.3438

Table 5.6: Time taken for Matrix Multiplication with shared memory(in ms)

Matrix size
level # blocks 512x512 1024x1024 2048x2048 4096x4096 8192x8192
4 256 2.0450 N.A N.A N.A N.A
5 1024 2.2680 15.9815 N.A N.A N.A
6 4096 4.2161 17.6467 124.9091 N.A N.A
7 16384 17.8364 33.3412 140.3770 995.6590 N.A
8 65536 100.6139 142.4077 265.6320 1118.0102 7997.3862
9 262144 343.3006 651.3238 1229.2145 2137.0495 9030.3408
10 1048576 3724.3792 5230.4233 9837.1474 17549.9843
11 4194304 31313.9824 47548.2460 79042.2109
12 16777216 304358.1562 1131193.1250

the results in Tables 5.3 and 5.4, we find that the performance with shared memory

lags for matrix sizes till 512, but gets better thereafter. Moreover in these cases, the

best performance is achieved for block sizes 1024(and block length 32). This may be

explained by the fact that with larger block length, the number of global memory

accesses are reduced more.

To evaluate the optimality of our approach described in Section 5.3.2, we compare

the best results obtained from the experiments, with the results for the values of opti

(optimal level of recursion) predicted by our approach for the different matrix sizes.

Figure 5-5 shows the bar graph, comparing the logarithm of the time taken for the

predicted values of i and the values of i for which the best performance is achieved.

The results demonstrate the accuracy of our approach, it is able to predict the

121

8 16 32 64 128 256 512 1024 2048 4096 8192
−5

0

5

10

Matrix length

T
im

e
 t

a
k
e

n
 (

lo
g

)

shared memory − best "i"

shared memory − predicted "i"

Figure 5-5: Comparison of results achieved- best i Vs predicted i. The graph spans
both sides of the x-axis since the values on the y-axis are logarithm of the time.

optimal value of ‘i’ almost everywhere except at some instances(for matrix sizes 64,

128 and 1024).

8 16 32 64 128 256 512 1024 2048 4096 8192
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Matrix length

T
im

e
 t

a
k
e

n
 (

lo
g

)

without shared memory

shared memory

benchmark

Figure 5-6: Performance Comparison of global memory and shared memory versions
with CUBLAS benchmark

For comparison, we executed the SGEMM code of the cuBLAS library for different

matrix sizes. The results have been plotted as a semilog graph and are shown in

figure 5-6. Results show that our code (without shared memory) performs better

for matrix sizes up to 128x128, but lags for greater matrix sizes. Thus, to get the

122

best performance of the GPUs it is necessary to consider the cache hierarchy as well.

Thus, taking into account such details and the need for complex atomic operations in

real-life scenarios, it is necessary to effectively use the shared memory to enhance the

performance and at the same time be simple enough to keep the productivity intact.

From this result, we see that cuBLAS provides an efficient implementation of ma-

trix multiplication since it is a proprietary code and is heavily optimized. This led us

to explore cuBLAS to see if we could integrate our approach onto cuBLAS. However,

since we could not obtain the source code of cuBLAS from NVIDIA, we embarked in

a different direction, by using cuBLAS as a black box for efficient computation on a

single GPU, and using a framework comprising cuBLAS, powerlists and MPI to scale

computation over a cluster of GPUs. We describe this method in detail in the next

section.

5.4 Scaling Matrix Multiplication over a Cluster

of GPUs

The NVIDIA CUDA [36, 35] Basic Linear Algebra Subroutines (cuBLAS) library [99]

is a GPU-accelerated version of the complete standard BLAS library that delivers fast

performance for computing the various subroutines(that involves matrix multiplica-

tion) on a single GPU. It consists of BLAS GPU routines that are optimized for dense

matrices/vectors. However, the cuBLAS API does not support computation of these

subroutines across a cluster of GPUs. Although a multi-GPU version of cuBLAS is

available- known as cuBLAS-XT [99], it only supports scaling across multiple GPUs

connected to the same motherboard. If we have several GPUs across a cluster, we

cannot schedule an application across them to arrive at an energy efficient computa-

tion. Further, owing to resource constraints, it may not be possible for us to compute

matrix multiplication of large matrices on a single GPU. For instance, Nvidia Tesla

M2090 GPU has a memory of 6 GB, which is enough to multiply matrices with size

less than 16384×16384. For larger matrices, the computation fails due to shortage of

123

memory. This motivates us to explore the possibility of using appropriate scheduling

to perform scaling up of the computation across a cluster of GPUs. To realize this, we

propose a high level framework based on the abstraction provided by powerlists. We

demonstrate our approach through the matrix multiplication problem for simplicity

although this approach could also be applied to other problems like FFT, prefix-sum

etc that are recursive in nature.

We utilize the powerlist data structure which facilitates automatic partitioning

of the matrices and the cuBLAS API for efficient matrix multiplication of the sub-

matrices at the individual GPUs. Powerlist allows us to represent several algorithms

concisely because of the use of recursion and also because it avoids explicit indexing

of a powerlist’s elements using the operations defined on them. By employing these

operations, it is possible to automate the partitioning process by eliminating the need

for the user to partition the matrices. This abstraction provided by powerlist allows

us to shield the user from the programming complexity resulting from the multi-level

memory hierarchy. To achieve this, we have implemented powerlist operations as a

library that automates the partitioning process. After partitioning, the appropriate

sub-matrices are loaded to the GPUs as required, and then the SGEMM subroutine

of the cuBLAS API is invoked to compute the matrix multiplication efficiently at the

individual GPUs. The resultant sub-matrices are then gathered at the root site to ob-

tain the resultant matrix. This method is similar to the map-reduce paradigm [102],

where the matrices are mapped to appropriate partitioned matrices and sent to ap-

propriate members of the clusters and the results are gathered to obtain the resultant

matrix.

For performance evaluation, we compare the experimental results of our implemen-

tation with the matrix multiplication on a single GPU using cuBLAS. The results are

very encouraging, and show that for matrices of size beyond 4096× 4096, significant

performance gain is achieved with our implementation on the cluster of GPUs.

124

� �

Level-0

Level-16

Level-1

�
�
�

64k

�

�
�
�

64k

�
��

=

64k

� =

=�

�

1

CBA

3
2
k

64k

32k

6
4
k

1
 1

Figure 5-7: Tree representation of the matrix partitioning

5.4.1 Matrix Multiplication : An Illustration

Consider the computation of C = A * B, where all of A, B and C are matrices of

size 64k× 64k. The complexity of the naive classical matrix multiplication algorithm

is O(n3), where n is the length/width of the matrix. An efficient way to compute

this in parallel is to use the blocked matrix multiplication algorithm as described in

[36] that improves temporal locality. Later, in Section 5.2, we show how the blocked

matrix multiplication [36] can be captured precisely using powerlists.

In our partitioning scheme, the matrix C is partitioned recursively into four smaller

blocks of equal size, where A is partitioned horizontally into two, along the rows

while B is partitioned along the columns. We demonstrate in Figure 5-7 how we

can recursively partition the matrix multiplication computation into smaller sub-

problems. At first level of recursion, A and B matrices are divided into two partitions,

while matrix C is partitioned into 4. Thus, at level 1, the computation is divided into

4 sub-problems. At level 2, we have 16 subproblems. This goes on till level 16, when

we get subproblems of size [1× 64k]*[64k × 1] = [1× 1].

Now, based on the number of GPUs in the underlying cluster(80 in our case)

125

and the configuration of the individual GPUs, we might want to stop partitioning

at some intermediate level so as to utilize the cuBLAS package to compute the in-

dividual subproblems efficiently, assuming that cuBLAS has been optimized with

respect to the whole GPU. In general, at any level i, we get 4i subproblems of size

[(64k/2i)× 64k]*[64k × (64k/2i)]=[(64k/2i)× (64k/2i)], each of which are computed

using cuBLAS at a single GPU.

The computation can be carried out in parallel at 4i GPUs, each computing one of

the 4i blocks of matrix C, after loading the corresponding blocks of A and B matrices

and utilizing the cuBLAS library to compute a block of matrix C. However, the dis-

advantage here is that the user is concerned with partitioning the matrices first, and

then after computation, the resultant sub-matrices need to be stitched together appro-

priately to obtain the final result. This needs to be completely automated such that

the user becomes oblivious to the partitioning concerns. Towards this, we describe a

method as to how the powerlist notation can be used to express matrix multiplica-

tion, and how the partitioning and multiplication can be accomplished automatically

using powerlists.

5.4.2 Computing matrix multiplication over GPUs

Since cuBLAS does not provide support for computation over a cluster of GPUs,

it becomes difficult to compute large matrices efficiently by utilizing the capability

of cuBLAS. To enable computation of larger matrices, we arrive at an algorithm to

schedule the computation across a cluster of GPUs, using our representation with

Powerlists while also utilizing the cuBLAS library for computing the subproblems on

the individual GPUs.

Scheduling the computation across a cluster involves partitioning the matrices,

which we propose to automate through Powerlists. Partitioning is achieved by using

the tie and zip operations as deconstructors, that are defined on Powerlists. Similarly,

the merging can be achieved by using the same tie and zip operations as constructors

for combining the partial results. The advantage of using Powerlist is that it com-

126

pletely exposes the inherent concurrency in the application and allows us to have a

concise functional description of parallel programs. Moreover, since index notations

are not used, they allow us to work at a high level of abstraction.

Consider the computation of C = A * B. It can be specified in the Powerlist

notation using rule 2.

Thus, at the first level of recursion, we get the following partitioning:

M(A1|A2, B1|′B2) = M(A1, B1)|′M(A1, B2)|M(A2, B1)|′M(A2, B2)

A :



 ∗B :



 = C :




As we see, matrix A is partitioned into 2 submatrices by the tie operation. tie

operation here is used as a deconstructor to partition A into 2 submatrices A1 and

A2. Similarly B is also partitioned but vertically along the columns into B1 and B2

by applying tie in the second dimension i.e. along the columns.

This rule can be applied recursively for partitioning, where in at each level of

recursion, A and B matrices are divided into two partitions, while matrix C is par-

titioned into 4. This corresponds to dividing the computation into 4 subproblems,

and computing them using 4 GPUs. This shows how the level of recursion relates to

the number of GPUs. The GPUs then individually compute the subproblems using

the SGEMM subroutine of cuBLAS, following which the partial results are stitched

together using the tie operation as constructor to obtain the resultant matrix, C.

5.4.3 Method of computing large matrices over GPU cluster

using cuBLAS

In this section, we describe a method to automatically partition the matrices for

efficient computation of matrix multiplication, schedule them on the GPU cluster

and finally gather the partial results to obtain the resultant matrix.

127

Even though we have described the multiplication of matrices using Powerlist

specifications in Section 5.4.2, the user is not required to give a Powerlist specification

of the matrices. In practice, a matrix can be stored as a 1-D array in row-major layouta

which can very well capture the representation of a matrix as a Powerlist.

Powerlists provide operations zip and tie that avoid explicit indexing of a Pow-

erlist’s elements. We utilize this property to automate the partitioning and merging

of subproblems, and towards this, we implement these operations as a library, which

allows us to treat these operations as a black box and use them.

The library is comprised of functions tie and zip as given below:

tie(A:Array(m,...n), dim:Integer, level:Integer, cons:Binary)

zip(A:Array(m,...n), dim:Integer, level:Integer, cons:Binary)

The parameters of the functions tie and zip, and their interpretations are described

in Table5.7:

Parameter In/Out Meaning
Array(m,...,n) in/out array of size m*...*n
dim input the dimension on which operation is to be

applied
level input level of recursion

cons input
specifies whether operation is to be applied
as a constructor(=1) or deconstructor(=0)

Table 5.7: description of parameters used in the library functions.

Both tie and zip functions take the array as input and perform the corresponding

operation on the array, interpreting it as a Powerlist. The operation is applied on

the dimension dim, at the level l, provided as input by the user. Each of the zip

and tie operations can be used as both constructors and deconstructors, so although

their implementations are different, we provide them as a single function, with an

additional parameter-cons to differentiate them. For efficiency, we have implemented

the functions for computation on a GPU.

For instance, the matrix A is represented as shown below:

aThe actual implementation stores the matrices in column-major layout, as the cublassgemm
subroutine for computation of matrix multiplication takes the input matrices in column-major layout.

128

A :


a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15


Then, the tie operation used for partitioning matrix A is represented as

tie(A:Array(4,4), 1, 2, 0); This function partitions matrix A into 4 submatrices, along

the columns, and stores them back into A.

We now explain the MatrixMultiply algorithm for computing matrix multipli-

cation, as given in Algorithm 1. Consider matrices A and B, of dimensions M × N

and N × P respectively. The MatrixMultiply procedure takes these matrices as

input, along with the number of GPUs, Q, and gives the resultant matrix, C, where

C = A ∗B.

It is possible to partition the original problem into a large number of subprob-

lems. However, we may not be able to split the problem into larger number of logical

subproblems. Hence, we may have to limit the level to which we recursively partition

the matrices. Let us see how we arrive at an appropriate level, depending on the

number of available GPUs, Q. From Figure 5-7, we see that at each level, the number

of subproblems increases by a factor of 4. Thus, if we stop the recursion at level 1,

we obtain 4 subproblems at the leaves of the tree, which corresponds to solving the

4 subproblems at 4 different GPUs, using cuBLAS. Similarly at level 2, we obtain

42 = 16 subproblems, requiring 16 GPUs. Thus, log4Q corresponds to the maxi-

mum level of recursion possible, based on the maximum possible subproblems that

could be mapped to the available GPUs. Similarly, as the matrix A/B is partitioned

horizontally/vertically into 2 at each level, the maximum possible level of recursion

is log2M/log2P , respectively. We choose the minimum of these expressions as the

default level(there is also an option for the user to specify the level), given by:

level = min(log2(min(M,P), log4Q)); (16)

Now, given this level, the procedure MatrixMultiply to compute the matrix mul-

tiplication can be given as in Algorithm 6.

129

Algorithm 6 Algorithm

1: procedure MatrixMultiply(A(M,N), B(N,P), C(M,P), Q)

2: level = min(log2(min(M,P), log4Q));

3: numProcess = 4level;

4: tie(A(M,N), 0, level, 0); /* Partition A */

5: tie(B(N,P), 1, level, 0); /* Partition B */

6: for i = 1 to numProcess do /*send partitions of A and B to the MPI processes */

7: MPI Send(A+ (j/2) ∗ (Matrix Size/2), j)

8: MPI Send(B + (j%2) ∗ (Matrix Size/2), j)

9: end for

10: cudaMemCpy(d A, A,..,cudaMemcpyHostToDevice);

/* transfer A to the GPU device */

11: cudaMemCpy(d B, B,..,cudaMemcpyHostToDevice);

/* transfer B to the GPU device */

12: cublasSgemm(d A, d B, d C,...);

/* multiply matrices using cuBLAS */

13: cudaMemCpy(C, d C,..,cudaMemcpyDeviceToHost);

/* transfer C to the host */

14: MPI Gather(C,..);

15: for i = 0 to 4level do /* Merge the partial results */

16: tie(C + i ∗ M∗P
4level

(M
2level

, N
2level

), 1, level, 0);

17: tie(C(M
2level

, N), 0, level, 1)

end

The complete elucidation of the MatrixMultiply procedure is given below.

130

Elucidation of the MatrixMultiply Procedure

Consider the computation of C = A * B, where

A :


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

 ∗B :


b1,1 b1,2 b1,3 b1,4

b2,1 b2,2 b2,3 b2,4

b3,1 b3,2 b3,3 b3,4

b4,1 b4,2 b4,3 b4,4

 = C :


c1,1 c1,2 c1,3 c1,4

c2,1 c2,2 c2,3 c2,4

c3,1 c3,2 c3,3 c3,4

c4,1 c4,2 c4,3 c4,4



Suppose the target cluster has 4 GPUs. From step 2, we get level = 1. This is because

although the maximum level of recursion based on the dimensions(M = P = 4) is 2,

at the second level of recursion, total 16 GPUs would have been required. So for level

1, we get numProcess = 4 from step3. Steps 4 and 5 correspond to partitioning of A

and B matrices. It is given by recursion on tie(dim=0) to A, and on tie(dim=1) to

B at first level of recursion. This gives us the partitions of A and B at level one as

follows:

A0 :

 a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

A1 :

 a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4



B0 :


b1,1 b1,2

b2,1 b2,2

b3,1 b3,2

b4,1 b4,2

B1 :


b1,3 b1,4

b2,3 b2,4

b3,3 b3,4

b4,3 b4,4



Now, given these partitions, the appropriate submatrices are to be sent by the

root process to the other processes. Since we use MPI(Message Passing Interface) for

communication over the cluster, this is accomplished using the MPI send procedure

as given in steps 6-9. These steps are carried out by the root process, while the non-

root processes invokes the MPI Recv procedure to receive the input submatrices.

In steps 10-11, each of the processes copy the partitioned submatrices of A and B

to their GPU devices using cudaMemCpy. At this stage, all the input submatrices

are available at the GPUs. In step 12, the cublasSgemm subroutine of the cuBLAS

library is invoked by the processes to compute the partial results on the respective

GPUs. As a result, we obtain the 4 submatrices C0, C1, C2 and C3 of matrix C,

131

where,

C0 :

 c1,1 c1,2

c2,1 c2,2

C1 :

 c1,3 c1,4

c2,3 c2,4

C2 :

 c3,1 c3,2

c4,1 c4,2

C3 :

 c3,3 c3,4

c4,3 c4,4



Step 12 offloads the data from the GPU device, back to the host process. In

step 13, the partial results at all the processes are gathered at the root process using

MPI Gather. At this stage, all the submatrices gets stored into the matrix, C.

However, these submatrices need to be stitched together appropriately so as to obtain

the final resultant matrix, C. This is accomplished using steps 14-16 by the root

process. Step 15 is performed twice, once to combine C0 and C1, and then to combine

C2 and C3 along the columns. This gives us the following submatrices:

C01 :

 c1, 1 c1, 2 c1, 3 c1, 4

c2, 1 c2, 2 c2, 3 c2, 4

C23 :

 c3, 1 c3, 2 c3, 3 c3, 4

c4, 1 c4, 2 c4, 3 c4, 4


This is followed by step 16, which is trivial since it just needs to concatenate the

submatrices along the rows, thereby providing the final resultant matrix, C.

Generality of the specifications

Powerlists require its dimensions to be a power of two. For matrices with dimensions

not a power of 2, the computation can still be ensured by padding the matrices

appropriately. Padding can be an important performance concern. In this section,

we show how padding is accomplished and that it does not impede the performance

significantly. Consider a matrix of size 36x32. This could be padded up by zeros to a

matrix of size 64x64. Till now, we have considered only square matrices of dimensions

2n×2n for illustration. However, our approach applies to rectangular matrices as well

without any additional efforts. So now, the matrix needs to be padded up to a matrix

of dimensions 64x32. In general, any matrix with dimensions (2m + l) × 2n, where

l < 2m needs to be padded up to a matrix of dimensions 2m+1 × 2n.

Experiments to study the effect of this padding revealed significant overhead, with

up to 90% slowdown in some computations.

A solution to this is to pad the matrix with dimensions (2m + l)× 2n to another

132

matrix with dimensions (2m+2t)×2n, where, 2t−1 < l ≤ 2t. So now, the computation

of C = A ∗B, where A is a matrix of size (2m + l)× 2n, B is of size (2n)× 2p, is given

by C = A1 ∗B|A2 ∗B,

where A1 is of size 2m × 2n, and A2 of 2t × 2n.

To illustrate this, let us consider the computation A ∗ B = C, where A is of size

70× 64, B of size 64× 64, C of size 65× 64. Instead of padding A to a matrix of size

128× 64, we pad it by zeros to the matrix A’ of size 72× 64. Now, the computation

C = A′ ∗ B can be split into two as C = A1 ∗ B|A2 ∗ B, where A1 is of size 64× 64

and A2 of size 8 × 64. This involves considering them as two independent problems

and computing them using our method. The resultant matrix C is then obtained by

applying tie operation on the two results which is as simple as concatenating the two

resultant submatrices.

With this solution, the overhead now can reduced considerably, thereby allowing

us to generalize our method for matrices whose dimensions are not a power of two,

without affecting the performance significantly. We are also working on extending

this method to ParLists[105](that is an extension of Powerlist notation to lists of

arbitrary positive lengths), which is able to naturally capture this generalization.

5.4.4 Experimental Results

The experimental results for the matrix multiplication computation over the cluster

show significant performance gains for large dimensional matrices. For matrix sizes

greater than 2048x2048, relatively better performance is achieved over the cluster as

compared to the computation on a single GPU, with upto 132% gain achieved for

matrices of size 16384x16384. From the experimental results, it appears that as we

further increase the matrix size, the gain would be even higher. First, we describe

the configuration of the GPU cluster.

Configuration of the cluster:

The cluster is comprised of 40 nodes, where each node consists of

1. 2 Xeon servers, each having 6 processors, total = 12 processors per node.

133

256 512 1024 2048 4096 8192 16384
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Matrix Size

ti
m

e
 o

b
s
e
rv

e
d
 (

in
 m

il
li
s
e
c
o
n
d
s
)

MPI transfer

K.E.T

CUDA transfer

T.E.T

Figure 5-8: Execution with 4 processes, combining all the MPI transfers together,
and CUDA transfers

2. 2 Tesla M2090 GPUs, each having 512 cores, Processor core clock: 1.3 GHz,

6GB GPU memory.

Thus in all, the cluster consists of 80 GPUs.

The computation of matrix multiplication involves n processes run on n CPUs, with

the 1st one called root process. The computation involves communication between

various nodes, which we accomplish using MPI. The steps for the entire computation

have been listed in the algorithm discussed in section 5.4.3.

We call the total time taken for computing the procedure as the ‘Total Execution

Time(TET)’ and time taken in step 12 as the ‘Kernel Execution Time(KET)’. We

call the time taken in steps 6-9 and 14 together as MPI Transfer time, and that for

steps 10, 11 and 13 as CUDA memcpy time. We observe the TET and KET for

matrices of sizes from 256x256 upto 32768x32768, and for each matrix size, we repeat

the experiment by varying n=1, 4, 16 and 64.

Observations:

The kernel execution time increases by a factor of 8 as the matrix size increases for

134

256 512 1024 2048 4096 8192 16384 32768
0

5

10

15

20

25

Matrix Size

ti
m

e
 o

b
s
e
rv

e
d
 (

in
 m

ill
is

e
c
o
n

d
s
)

MPI transfer

K.E.T

CUDA memcpy

T.E.T

Figure 5-9: Execution with 16 processes, combining all the MPI transfers together,
and CUDA transfers

the same number of processes, and it decreases by a factor of 4 as the number of

processes increases by 4 for the same matrix size, as expected.

From Figures 2-d and 2-e, we observe that the best performance is achieved on a

single GPU for smaller matrix sizes till 2048x2048. This can be explained form the

fact that the MPI transfer time dominates the kernel execution time for multiple

GPUs, as is evident from Figures 2-a, 2-b and 2-c, whereas for the single GPU,

the communication overhead of MPI transfers is absent. However for matrix sizes

above 2048x2048, better performance is achieved on computing it across 4 GPUs as

compared to computing it on a single GPU. Although the performance gain is just

13.07% for matrix of size 4096x4096, it increases significantly for larger matrix sizes,

with a 132% gain achieved for matrices of size 16384x16384. Another point to be

noted from Figures 2-d and 2-e, the graph for T.E.T for 4 processes approaches the

graph for 16 processes as matrix size increases, and is in fact approximately equal for

matrix size 16384x16384, indicating that the performance for 16 processes may be

135

256 512 1024 2048 4096 8192 16384 32768
0

5

10

15

20

25

30

35

40

Matrix Size

ti
m

e
 o

b
s
e
rv

e
d
 (

in
 m

ill
is

e
c
o
n

d
s
)

MPI transfer

K.E.T

CUDA memcpy

T.E.T

Figure 5-10: Execution with 64 processes, combining all the MPI transfers together,
and CUDA transfers

even better for higher matrix sizes. The summary of these details of the number of

GPUs for which the best performance is achieved, has been listed in Table 5.8.

Matrix Size Number of GPUs Level
upto 2048x2048 1 0
4096x4096 to
16384x16384

4 1

above 16384 16 2

Table 5.8: shows the number of GPUs for which the best performance is achieved for
different matrix sizes.

Analysis of the algorithm and arriving at the optimal recursion level

The experiments show the superiority of our approach in running large matrices

that would not have been possible otherwise. For example, the GPUs used in our

experiments are able to handle matrices of size only upto 16384x16384. Whereas our

136

256 512 1024 2048 4096 8192 16384
0

2

4

6

8

10

12

Matrix Size

ti
m

e
 o

b
s
e
rv

e
d
 (

in
 m

ill
is

e
c
o
n

d
s
)

1 Process

4 Processes

16 Processes

64 Processes

Figure 5-11: Comparison of Total Execution times for 1, 4, 16 and 64 processes

algorithm computes matrices of size more than 16384x16384 as well across multiple

GPUs.

With the above approach, the computation can be scheduled across a cluster of

GPUs. However, the user still needs to manually tune the application for optimum

performance by changing the level of recursion which in turn decides the number

of GPUs across which the computation spans. One way to automate tuning is to

use Empirical Search as discussed in [38],[39] and [40]. In this section, we show an

analytical approach to arrive at the level of recursion at which the best performance

can be achieved.

Let us consider the matrix multiplication of matrices A of size M ×N , and B of

size N ×P to matrix C of size M ×P . Then, let T (M,N,P) be the KET to compute

C on a single GPU, using cuBLAS. Since the computation is recursive in nature, we

can give the recurrence relation on T by,

137

256 512 1024 2048 4096 8192 16384
−10

−8

−6

−4

−2

0

2

4

Matrix Size

lo
g
 (

ti
m

e
 o

b
s
e
rv

e
d
 i
n
 m

ill
is

e
c
o
n

d
s
)

1 Process

4 Processes

16 Processes

64 Processes

Figure 5-12: Comparison of Total Execution times for 1, 4, 16, 64 processes(in log)

T (M,N,P) = 22i ∗ T (M/2i, N, P/2i) + C1 (17)

where, C1 is a constant which denotes the overhead incurred in partitioning and

merging. This shows that the KET for computing C would be smallest when 22i ∗

T (M/2i, N, P/2i) is smallest. However, since the computation using cuBLAS spans

the entire GPU, we need to partition the matrix into the largest possible submatrices

that can fit into the GPU’s memory, so as to get the best performance. This is also

true because further partitioning would incur additional overheads of merging the

resultant submatrices. Thus, matrices of size up to 16384x16384 would not entail any

further partitioning. Now, let us consider a matrix of size 32768x32768. At level 1, 4

subproblems are obtained where A is of size 16384× 32768, B of size 32768× 16384,

and C of size 16384× 16384. Since the matrices cannot be handled by a single GPU,

they need to be partitioned further. We could divide matrix A horizontally into A1

and A2 and matrix B vertically into submatrices B1 and B2, such that C matrix is

138

given by,

C = (A1 ∗B1|′A1 ∗B2)|(A2 ∗B1|′A2 ∗B2)

The computation would now involve computing submatrices A1∗B1, A1∗B2, A2∗B1

and A2∗B2 sequentially and then merging them to obtain C. In general, this involves

partitioning the matrices recursively until each of the partitioned submatrices are able

to fit in the GPU memory, computing the matrix multiplications of the corresponding

submatrices in serial, and then merging them. This also shows how our approach

could be scaled for computation of matrices of any arbitrary size that are limited by

the GPU’s memory but not by the host’s memory.

Now, let T(M, N, P) be the KET to compute C across multiple GPUs, say N

GPUs, using cuBLAS. The recurrence relation on T can now be given by,

T (M,N,P) = d22i/Ne ∗ T (M/2i, N, P/2i) (18)

From our experiments, we find that T (M/2i, N, P/2i) ' T (M,N,P)/22i, which is

also consistent with equation 17. Thus, we get

T (M,N,P) = d22i/Ne/22i (19)

Now, the optimal value of i can be found by considering this expression of time

as a function of i and minimizing this function for the values of i.

However, in order to get the optimal depth of recursion, we might also have to

consider the MPI data transfer time incurred in the computation. Figures 2-a, 2-b and

2-c show that the MPI transfer time increases rapidly with increase in matrix size and

with the number of processes, and hence plays a significant role in the performance.

We are working towards trying to capture the MPI transfer time as a function of i

that would allow us to analytically arrive at the optimal level of recursion. We are

also working towards reducing the time incurred in MPI transfer by using pipelining

to parallelize the computation and the data transfer.

139

Scaling the computation

A GPU may not be able to handle matrices beyond a certain size due to memory

limitations. Even though we partition the matrices across a cluster, the partitioned

matrices may still be too large for the GPU memory. In such a scenario, we could

further partition the matrices at the GPU level. For example consider the example

from section 2, wherein, at level 1 of recursion, the following partition is obtained

and is to be computed:

A1 :

 a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

 ∗B1 :


b1,1 b1,2

b2,1 b2,2

b3,1 b3,2

b4,1 b4,2

 = C1 :

 c1,1 c1,2

c2,1 c2,2



Now suppose the GPU memory is not large enough to hold both A1 and B1 ma-

trices simultaneously. We could further divide A1 matrix horizontally into A11 and

A12 and B1 matrix vertically into submatrices B11 and B12, such that C1 matrix is

given by,

C1 = (A11 ∗B11|′A11 ∗B12)|(A12 ∗B11|′A12 ∗B12)

A1 :

 a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

 ∗B1 :


b1,1 b1,2

b2,1 b2,2

b3,1 b3,2

b4,1 b4,2

 = C1 :

 c1,1 c1,2

c2,1 c2,2



The computation would now involve computing submatrices A11 ∗ B11, A11 ∗

B12, A12∗B11 and A12∗B12 sequentially and then merging them to obtain C1. This

would involve partitioning the submatrices recursively until each of the partitioned

submatrices are able to fit in the GPU memory, computing the matrix multiplications

of the corresponding submatrices in serial, and then merging them. This is similar to

the partitioning and merging at the cluster level, except that here the computation

is performed in serial.

140

Scaling FFT

The Discrete Fourier Transform is an important tool used in many scientific applica-

tions, especially in digital signal processing. It maps a sample from a cycle of data

points of a periodic signal onto a frequency spectrum representation containing the

same number of points. It is mainly used for time series analysis, convolutions and

to solve partial differential equations.

Given

x =


x0

x1
...

xn−1


its Discrete Fourier Transform is given by the vector

y =


y0

y1
...

yn−1


where, each yk =

∑n−1
j=0 e

−2πkji/nxj for k = 0, 1, ...,n-1.

The Fast Fourier Transform, or FFT, is a method to compute the Discrete Fourier

Transform popularized by Cooley & Tukey. It was developed as a ”quick” method

for computing the Discrete Fourier Transform. Various methods of FFTs were imple-

mented in a wide variety of applications. There are many types of FFT algorithms,

but they fall into one of the two general categories: decimation in time approach and

decimation in frequency approach. The decimation in time approach breaks apart

the time dependent input vector x in order to approximate the solution. The deci-

mation in frequency approach breaks apart the frequency dependent vector y in its

computation.

Misra derived FFT algorithm from the Cooley-Tukey algorithm [100, 101], and is

given as below:

141

fft. < a >=< a > (20)

fft.(pq) = fft.p+ u ∗ fft.q|fft.p− u ∗ fft.q (21)

where, u =< ω0, ω1,, ωN−1 >, N is the length of p, ω is the 2 ∗ Nth principal

root of 1.

Radix-R Stockham algorithm is a FFT algorithm that avoids the index-shuffling

stage using Stockham formulations of the FFT. We now discuss a GPU implementa-

tion of the radix-R Stockham algorithm.The algorithm is given in Figure 5-13. The

number of threads used for GPU FFT(), T, is N/R. In each iteration over the data,

R subarray of length Ns are combined into arrays of length RNs. The iterations stop

when the entire array of length N is obtained. The data is read from memory and

scaled by the twiddle factors, combined using an R-point FFT, and written back out

to the memory. The expand() function inserts a dimension of length N2 after the first

dimension of length N1 in a linearized index.

CUDA provides support for FFT computation in the form of cuFFT library. The

cuFFT library is a highly optimized and tested FFT library that provides a simple

interface to the user for computing FFTs on an NVIDIA GPU, allowing them to lever-

age the floating-point power and parallelism of the GPU. We utilize the subroutine

cufftExecC2C provided by cuFFT to compute FFT.

To show the efficiency of cuFFT, we compare the execution times of cufftExecC2C

with that of the radix-R Stockham implementation given in Figure 5-13, on same

inputs. Table 5.9 shows the performance of the radix-R Stockham implementation.

The experiment involved varying the level of recursion to vary the number of blocks

and the input size. The results demonstrate significant performance gain achieved by

dividing the computation into smaller subproblems which is upto 2x for larger input

sizes, however, the increase in execution time is not proportional to the increase in

input size.

Table 5.10 shows the performance of cuFFT.

142

Figure 5-13: GPU implementation of radix-R Stockham algorithm [104]

143

Table 5.9: Execution times of radix-R Stockham implementation

level Blocks
Input Size

8 32 128 512 2048 8192
0 1 158 529 2001 9468 45128 211680
1 2 113 356 1133 5129 24138 113009
2 4 101 251 704 2948 13610 63459
3 8 211 490 1872 8425 39181
4 16 210 323 1319 5798 27024
5 32 245 750 3030 13646
6 64 211 427 1659 7041
7 128 309 942 3741
8 256 284 554 2202
9 512 429 1408
10 1024 392 884
11 2048 657
12 4096 616

Table 5.10: Execution times of cuFFT

Input Size
8 32 128 512 2048 8192
48 58 70 73 75 87

It shows that cuFFT is upto 7 times faster than the radix-R Stockham implemen-

tation. Moreover, cuFFT internally identifies the best kernel execution parameters

for the inputs, and hence relieves the user from the task of identifying them. To lever-

age the performance of cuFFT, we utilize cuFFT to scale FFT computation across a

cluster of GPUs.

Our approach

We utilize Powerlists and the cuFFT library to scale FFT computation across a cluster

of GPUs. As before, we utilize powerlists to automatically partition the computation

into subproblems(at a certain level of recursion), in the form of the library imple-

mentation of powerlist operations zip and tie. We then compute the subproblems

independently at the various GPUs using the cuFFT library. This is followed by

merging the results at each level using the Powerlist library, till we obtain the final

result. The procedure to compute FFT could be listed as follows:

144

Procedure FFT

1. Partition the input to level m using Powerlist operations as deconstructor.

2. Transfer the input data to 2m GPUs using MPI Send.

3. Compute the FFT using cufftExecC2C subroutine of the cuFFT library for each

of the 2m subproblems.

4. Collect the partial results using MPI gather.

5. for level = m→ 1

Merge the corresponding subproblems using the Powerlist operations as con-

structor.

Thus, we have shown how our approach can be extended to scale FFT on cluster

of GPUs using powerlists to partition the problems, and merge the partial results,

cuFFT libbrary to compute the subproblems at the individual GPUs, and MPI to re-

alize communication between different nodes. This approach can be adapted similarly

for other applications as well, that are recursive in nature.

We now describe our observation about the relationship between powerlists and

oblivious algorithms in the next section.

5.5 Powerlists and Oblivious algorithms

Several applications can be easily formulated with the divide and conquer strat-

egy, which are solved using recursion. And since recursive algorithms exhibit good

temporal locality, they execute efficiently on computers with caches. Cache-aware

algorithms [120] make use of the cache parameters, and let the programmers tune

them for performance. Cache-oblivious algorithms are oblivious to the cache param-

eters, and consequently are simpler and more portable as compared to cache aware

algorithms. Multicore-Obivious (MO) [121] algorithms are oblivious of the multicore

parameters in addition to the cache parameters. Unlike cache oblivious algorithms

that are sequential algorithms, MO algorithms utilize the parallelism offered by the

145

multiple cores, and hence, are more performance efficient. In this work, we report

our observation that most of Cache Oblivious and Multicore Oblivious algorithms are

recursive in nature, and how they can be easily expressed using powerlists, a notation

for describing parallel programs.

5.5.1 Cache-Oblivious Algorithms

A cache-oblivious algorithm [120] makes no use of any cache parameters like the num-

ber of cache levels, cache sizes and block lengths. They are designed for efficient usage

of cache memories and the available memory bandwidth. A cache aware algorithm,

on the other hand, requires certain parameters to be tuned for optimal cache com-

plexity. The programmer then is responsible for manually tuning this parameter to

achieve optimal performance. For example, value of the particular parameter may

need to be chosen such that the subproblems simultaneously fit into the cache. Since,

the oblivious algorithms are devoid of such parameters, they offer advantages of sim-

plicity and portability. In the next section, we show how Powerlists can be used to

succinctly express Cache Oblivious algorithms.

Expressing Cache-Oblivious Algorithms using powerlists

We observed that all cache-oblivious algorithms are recursive in nature, and that they

can be easily specified using Powerlists. We now show the powerlist specifications for

the various cache-oblivious algorithms proposed in literature.

Matrix Multiplication

Given a mxn matrix A and a nxp matrix, B, we first show how the cache oblivious

algorithm for multiplying A and B, to give a mxp matrix C. The matrices are assumed

to be stored in row-major layout. The algorithm is based on divide-and-conquer. It

divides the largest partition into half, and recurs according to the following cases:

The base case for this recursion is given by m = n = p = 1, which is straight

forward. When m ≥max(n, p), Matrix A is split horizontally into A1 and A2, and

146

both are then multiplied by B, and likewise for p ≥maxm,n. However, when n ≥

max(m, p), A is partitioned horizontally and B vertically, and the result is given

by A1B1 + A2B2. The algorithm works by recurring as per the above cases until a

subproblem fits into the cache. Now, the smaller subproblems can be solved without

any more cache misses.

Powerlist Specification for Cache-Oblivious Matrix Multiplication

We now express the cache oblivious matrix multiplication by giving equivalent pow-

erlist specifications for the three cases discussed above.

Base Case: Matrix A and B are 1× 1 matrix, i.e., A = 〈〈x〉〉, and B = 〈〈y〉〉. Then,

M(〈〈x〉〉, 〈〈y〉〉) = 〈〈x× y〉〉 (22)

Here, 〈〈x〉〉 and 〈〈y〉〉 are singleton elements (or a 1 × 1) matrix and × denotes the

classical multiplication of numbers.

Case 1: When m ≥maxn, p, the equivalent powerlist specification is given below:

Let A = A1|A2; Then

M(A1 | A2, B) = (M(A1, B) |M(A2, B)) (23)

Case 2: The equivalent powerlist specification for the case when p ≥maxm,n is given

by Let B = B1|′B2; Then

M(A,B1 |′ B2) = (M(A,B1) |′ M(A,B2)) (24)

147

Case 3: When n ≥maxm, p, Let A = A1|A2, and B = B1|B2; Then

M(A1 | A2, B1 |′ B2) = (M(A1, B1) |′ M(A1, B2)) | (M(A2, B1) |′ M(A2, B2)) (25)

Thus, the 3 rules described here correspond to the the 3 rules defined in the earlier

section, thereby illustrating the capability of powerlists to specify cache oblivious

matrix multiplication. We now give brief overview of Multi-core Oblivious algorithms,

and show how the powerlists can be used to specify Multi-core Oblivious algorithms

through Matrix Transposition and Fast Fourier Transform (FFT).

5.5.2 Multi-core Oblivious Algorithms

Cache oblivious algorithms are sequential algorithms that do not make use of cache

parameters, thereby offering advantages of simplicity and portability. Multicore obliv-

ious algorithms (MO)[121], in addition, attempt to exploit the parallelism offered by

multicore architectures. MO algorithms are oblivious of multicore and cache param-

eters, but are allowed to provide hints to the runtime scheduler that is aware of the

multicore parameters. These hints facilitate scheduling of the algorithm on the multi-

core architectures with a multilevel cache hierarchy and multiple cores. A hierarchical

multi-level caching model has been presented in [121] that consists of h levels of cache

and p cores. The cores share an arbitrarily large shared memory through the cache

hierarchy.

Figure 5-14: The HM model [121] for 5 levels of cache

Figure 5-14 illustrates the HM model for h=5. The type of scheduling hints

employed by MO algorithms are:

148

1. coarse-grained contiguous (CGC): distributes parallel fine-grained subtasks in

contiguous chunks across a sequence of contiguous cores. This hint is used to

decompose a parallel pfor loop into segments executed in parallel by contiguous

cores.

2. space-bound (SB): an upper bound on the space used by each forked task. This

hint is applied for algorithms that recursively spawn parallel tasks.

3. CGC on SB (CGC ⇒ sb): combines both CGC and SB. This hint is useful for

algorithms that recursively spawn parallel tasks.

We now show how powerlists can be used to specify MO algorithms. In particular,

we show how the multicore-oblivious Fast Fourier Transform (MO-FFT), as presented

in [121], can be described using powerlists. However, since MO-FFT internally uses

matrix transposition, we first arrive at a multicore oblivious matrix transposition

algorithm (MO-MT), and specify it using powerlists. This powerlists specification of

MO-MT is then used to describe MO-FFT.

Matrix Transposition

A multicore-oblivious matrix transposition algorithm (MO-MT) has been presented

in [121] that uses CGC hints. The algorithm is shown in Figure 5-15.

Figure 5-15: multicore-oblivious matrix transposition algorithm

The algorithm scans the elements of matrix A according to the bit-interleaved

layout and maps them to their respective positions in the transformed matrix AT .

However, since this algorithm involves index mapping, we present a recursive defini-

tion of Matrix Transposition (MO-MT Rec) that is easier to specify using powerlists,

and uses SB hints. Since matrices have 2 dimensions, we use powerlists of powerlists

149

to express matrices. For eg. << a0 a1 > < a2 a3 >> represents a 2x2 matrix, where

the matrix < a0 a1 > represents the first row and < a2 a3 > represents the second

row. MO-MT Rec can then be defined as:

T << x >>=<< x >>

T ((p|′q)|(r|′s)) = (T (p)|′T (r))|((T (q))|′(T (s)))
(26)

We now give describe the multicore oblivious FFT algorithm MO-FFT in the next

section.

Multicore Oblivious Fast Fourier Transform

The Discrete Fourier Transform is an important tool used in many scientific applica-

tions, especially in digital signal processing. It maps a sample from a cycle of data

points of a periodic signal onto a frequency spectrum representation containing the

same number of points. It is mainly used for time series analysis, convolutions and

to solve partial differential equations.

Given x =


x0

x1
...

xn−1

 its Discrete Fourier Transform is given by the vector y =


y0

y1
...

yn−1


where, each yk =

∑n−1
j=0 e

−2πkji/nxj for k = 0, 1, ...,n-1.

The Fast Fourier Transform, or FFT, is a method to compute the Discrete Fourier

Transform popularized by Cooley & Tukey. It was developed as a “quick” method

for computing the Discrete Fourier Transform. Various methods of FFT’s were im-

plemented in a wide variety of applications. Misra derived FFT algorithm from the

Cooley-Tukey algorithm, and is given as below:

150

fft. < a >=< a >

fft.(p ./ q) = (fft(p) + u ∗ fft(q))|(fft(p)− u ∗ fft(q))
(27)

where, u =< ω0, ω1,, ωN−1 >, N is the length of p, ω is the 2 ∗ Nth principal

root of 1.

Since our main objective is to specify multicore oblivious algorithms using pow-

erlist, we first present the MO-FFT algorithm from [121], and then arrive at the

powerlist specification for this algorithm. The MO-FFT algorithm views the input

as a square matrix, which it transposes, then performs a sequence of two recursive

FFT computations on independent parallel subproblems, and finally performs Matrix

transpose on the result. The algorithm is given in Figure 5-16

Figure 5-16: The multicore oblivious FFT algorithm [121]

MO-FFT is essentially a 6-step algorithm, the first 3 steps and the last step of

MO-FFT are trivial. Thus MO-FFT boils down to the following 6 steps:

1. MO-MT(A, n1)

2. pfor 0 ≤ i < n2 do MO-FFT(A[i,o...(n1-1)], n1)

3. Multiply the n entries of A by appropriate twiddle factors

4. MO-MT(A, n1)

151

5. pfor 0 ≤ i < n1 do MO-FFT(A[i,o...(n1-1)], n2)

6. MO-MT(A, n1)

Steps 1, 4, and 6 compute matrix transposition, which has already been discussed

and can be specified as:

T << x >>=<< x >>

T ((p|′q)|(r|′s)) = (T (p)|′T (r))|((T (q))|′(T (s)))

Step 3 can be specified using the scalar operation * which multiplies each element

of A by the corresponding element in the matrix TF whose elements are the twiddle

factors. Each of the 6 steps can be represented in general as a function Si. We can

now describe MO-FFT in powerlists as

MO − FFT << x >>=<< x >>

MO − FFT (p) = s6(s5(s4(s3(s2(s1(p))))))
(28)

where,

S1(p) = T (p)

S2(A1|A2|...An2) = F (A1)|F (A2)|...|F (An2)

S3(p) = P ∗ TF

S4(p) = T (p)

S5(A1|A2|...An2) = F (A1)|F (A2)|...|F (An1)

S6(p) = T (p)

F (p) = MO − FFT (p)

(29)

From S2 and S5, it can be seen that it involves computing MO-FFT recursively on

each of the n2 rows of matrix A. Since these are independent of each other, all the n2

computations of MO-FFT can be computed in parallel using parallel-for. Again for

S4, it is just a scalar operation applied to each of the elements of the matrix i.e each

152

of the n elements are multiplied by the corresponding twiddle factor, which again,

can be computed in parallel. Although Matrix Transposition is recursive, it too offers

parallelism as is evident from Equation 26.

Thus, we have seen various cache-oblivious and multicore-oblivious algorithms and

how they can be easily specified using powerlist notations.

5.6 Discussion

We have shown how powerlist notation can be an efficient way to transform algorithms

on to the multi-core architectures including GPUs through an illustration of the ma-

trix multiplication problem. The important aspect of demonstration has been the use

of powerlists to specify both parallelism and recursion at the same time; this leads to

methods to identify optimal depth of recursion based on the multi-core parameters

which helps in determining the execution configuration parameters best suited for the

architecture. We have also shown how the abstraction provided by powerlist allows

us to automate the partitioning and of problems (and merging) of subproblems by

eliminating the need for the user to partition the matrices. This approach has also

been extended to realize FFT, and can be adapted to any application that is recursive

in nature. We have also highlighted the relationship between powerlists and oblivious

algorithms, having demonstrated how various oblivious algorithms can be succinctly

expressed using powerlists. Thus, powerlists can be used as a high level abstraction

to specify parallelism within an application, and giving its implementation the re-

sponsibility of exploiting the parallelism in the best possible way, thereby offloading

much of the burden from the programmer.

153

154

Chapter 6

Conclusions and Future Scope

In this work, we have arrived at paradigms to provide solutions to problems pertain-

ing to the challenges of multi-core programming. The first part of our work based on

STMs strives to address performance and productivity concerns for concurrent sys-

tems. From the experiments we see that the performance of CaPR+ for the kmeans,

genome, and ssca2 applications suggests that the partial rollback mechanism fares bet-

ter than the abort mechanism in cases, where the transaction lengths are relatively

longer. This led us to experiment by modifying these applications to have transactions

of varying transactional lengths. The comparative evaluation of Abort and partial

rollback in the presence of local transactional delays concludes that partial rollback

is better-off only for applications with large transactions and high contention among

threads, which suggests a partial rollback based STM may not be practical for most

applications. This result helped us to arrive at the integrated partial rollback-abort

framework, that exploits the benefits of both mechanisms.

Our work on powerlists addresses performance and productivity for parallel sys-

tems. It demonstrates how powerlists can be exploited as a high-level language by

using it to just specify recursion and parallelism, and letting the runtime exploit the

parallelism in the best possible way. In particular, we have demonstrated the use of

powerlists to specify computations succinctly, and how the parameters of multi-core

architectures, in particular GPUs, can be effectively utilized to predict the optimal

kernel execution parameters. We have also described a method to schedule matrix

155

multiplication across a cluster of GPUs, and experimentally shown the performance

gain achieved is nearly 132% over the computation on a single GPU using CUBLAS

library. The performance gain is more for larger matrices. We have also shown how

the computation could be scaled for larger matrices which could not have been com-

puted using CUBLAS on a single GPU. Although we have demonstrated our approach

for matrix multiplication, it can also be applied to a broad range of computations

beyond matrix multiplication. This would involve the whole class of applications

that are recursive in nature, and can be expressed in the powerlist notation like FFT,

Prefix-sum, Batcher-sort etc.

We have also provided implementations of two deadlock-free lock-based synchro-

nization mechanisms to address the reliability concerns. Par-Deadlockfree has the

potential to considerably expand the scope of GPGPU computing by providing effi-

cient support for fine-grained inter-block synchronization that is also deadlock-free.

Further, we have shown how Par-Deadlockfree can be used for implementing TMs,

that would considerably improve the programmers’ productivity, while also handling

the synchronization appropriately.

Future Works

It would be nice to explore the possibility of adapting machine learning for scheduling

purposes similar to that envisaged in the work of Narang [124] to realize a dynamic

implementation of the hybrid approach discussed in Section 3.3, wherein we can dy-

namically switch between mechanisms, based on the transaction length and other

parameters. We are also working towards realizing a Software Transactional Mem-

ory (STM) for GPUs that internally uses Par-Deadlockfree for synchronization. This

framework would simultaneously address all the three challenges: Performance, Pro-

ductivity and Software Reliability, and is expected to considerably widen the scope of

GPGPU computing. Further, we have illustrated in Section 5.5 how powerlists can be

used to succinctly specify cache-oblivious and multicore-oblivious algorithms. This

abstraction provided by powerlists can be leveraged to realize a high-level framework

156

to specify recursive algorithms, leaving the responsibility of exploiting the parallelism

in the best possible way to its implementation, thereby offloading much of the burden

from the programmer.

157

158

Bibliography

[1] S. Amarasinghe. The Looming Software Crisis due to the Multicore

Menace. lecture Nati’l Science Foundation, 2007, [online] Available:

http://groups.csail.mit.edu/commit/papers/06/MulticoreMenace.pdf.

[2] Amdahl, G M. Validity of the single processor approach to achieving large scale

computing capabilities. In Proc. Spring Joint Computer Conference, pp.483485,

ACM (1967).

[3] R. Dennard, et al.. Design of ion-implanted MOSFETs with very small physical

dimensions. IEEE Journal of Solid State Circuits, vol. SC-9, no. 5, pp. 256-268,

Oct. 1974.

[4] http://www.itrs2.net/itrs-reports.html. The International Technology Roadmap

for Semiconductors 2.0, 2015.

[5] R. K. Shyamasundar. Multicore and Extreme Scale Computing: Programming

and Software Challenges. Keynote lecture, International Conference on Advances

in ICT for Emerging Regions (ICTER), Colombo, 2012.

[6] Anshu S Anand, R. K. Shyamasundar, and Sathya Peri. Opacity Proof for CaPR+

Algorithm. International Conference on Distributed Computing and Networking,

ICDCN 2016, Singapore, DOI: 10.1145/2833312.2833445.

[7] Anand AS, Shyamasundar RK, and Peri S. STMs in practice: Partial rollback

vs pure abort mechanisms. Concurrency Computat Pract Exper. 2018 ;e4465.

https://doi.org/10.1002/cpe.4465.

159

[8] Rachid Guerraoui and Michael Kapalka. Principles of Transactional Memory. Mor-

gan & Claypool publishers, 2010.

[9] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory. 2nd edition,

Morgan & Claypool publishers, 2010.

[10] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for

lock-free data structures. In Proc. of the Twentieth Annual International Sympo-

sium on Computer Architecture, pp. 289-300, San Diego, California, 1993, ACM

Press.

[11] N. Shavit and D. Touitou. Software transactional memory. In Distributed Com-

puting, Special Issue (10):99-116, 1997.

[12] S. Kumar, M. Chu, et al. Hybrid transactional memory. In Proceedings of the

eleventh ACM SIGPLAN symposium on Principles and practice of parallel pro-

gramming, PPoPP 06, ACM Press, New York, NY, USA, March 2006.

[13] http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition-

20/

[14] Joo Cachopo and Antnio Rito-Silva. Versioned boxes as the basis for memory

transactions. SCOOL05: Proc. OOPSLA Workshop on Synchronization and Con-

currency in Object-Oriented Languages, October 2005.

[15] Aleksandar Dragojevic, Rachid Guerraoui, and Michael Kapalka. Stretching

transactional memory. In PLDI 09: Proc. 2009 ACM SIGPLAN Conference on

Programming Language Design and Implementation, pp. 155-165, June 2009.

[16] http://www.alphaworks.ibm.com/tech/xlcstm.

[17] Koskinen E and Herlihy M. Checkpoints and continuations instead of nested

transactions. In Proceedings of the Twentieth annual symposium on Parallelism

in algorithms and architectures (SPAA08) (New York, NY, USA, 2008), ACM,

pp. 160-168, 2008.

160

[18] McKenney, P.E. Is parallel programming hard, and,

if so, what can you do about it? (2013);

https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.

html.

[19] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with eager vali-

dation. In Proceedings of the 20th International Symposium on Distributed Com-

puting (DISC06), 2006.

[20] P. A. Bernstein and N. Goodman. Multiversion concurrency control theory and

algorithms. ACM Transactions on Database Systems, 8(4):465-483, 1983.

[21] Torvald Riegel, Christof Fetzer, and Pascal Felber. Snapshot isolation for soft-

ware trans- actional memory. In TRANSACT 06: 1st Workshop on Languages,

Compilers, and Hardware Support for Transactional Computing, June 2006.

[22] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In

Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice

of parallel program- ming, PPoPP 08, pp. 175-184. ACM, 2008.

[23] D. Dice, O. Shalev, et al. Transactional locking II. In DISC06: Pro- ceedings of

the 20th International Symposium on Distributed Computing, March 2006.

[24] V. J. Marathe, M. F. Spear, et al. Lowering the overhead of nonblocking soft-

ware transactional memory. In TRANSACT: First ACM SIGPLAN Workshop on

Languages, Compilers, and Hardware Support for Transactional Computing, 2006.

[25] A. Jaleel, M. Mattina, et al. Last level cache (llc) performance of data mining

workloads on a cmp - a case study of parallel bioinformatics workloads. In the

Twelfth International Symposium on High-Performance Computer Architecture,

2006, pp. 88-98, 11-15 Feb. 2006. ISSN 1530- 0897.

[26] R. Narayanan, B. Ozisikyilmaz, et al. Minebench: A benchmark suite for data

mining workloads. In IEEE International Symposium on Workload Characteriza-

tion, pp. 182-188, Oct. 2006.

161

[27] Pham, D., Asano, S., Bolliger, M., Day, M.N., Hofstee, H.P., Johns, C., Kahle,

J., Kameyama, A, Keaty, J., Masubuchi, Y., Riley, M., Shippy, D., Stasiak, D.,

Suzuoki, M., Wang, M., Warnock, J., Weitzel, S., Wendel, D., Yamazaki, T., and

Yazawa, K. The design and implementation of a first-generation CELL proces-

sor. In Solid-State Circuits Conference, 2005, Digest of Technical Papers. ISSCC

pp.184,592 Vol. 1, 10-10 Feb. 2005.

[28] Hofstee, H.P. Power efficient processor architecture and the cell processor. In 11th

International Symposium on High-Performance Computer Architecture, 2005.

HPCA-11, pp.258,262, 12-16 Feb. 2005

[29] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Al-

lan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an

object-oriented approach to non-uniform cluster computing. In SIGPLAN Not.

40, 519-538, October 2005.

[30] Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and Rudrapatna K. Shyama-

sundar. May-happen-in-parallel analysis of X10 programs. In Proceedings of the

12th ACM SIGPLAN symposium on Principles and practice of parallel program-

ming (PPoPP ’07), ACM, New York, NY, USA, 183-193, 2007.

[31] Vasily Volkov and James W. Demmel. Benchmarking GPUs to tune dense linear

algebra. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing

(SC ’08). IEEE Press, Piscataway, NJ, USA, Article 31 , 11 pages, 2008.

[32] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David

B. Kirk, and Wen-mei W. Hwu. Optimization principles and application perfor-

mance evaluation of a multithreaded GPU using CUDA. In Proceedings of the

13th ACM SIGPLAN Symposium on Principles and practice of parallel program-

ming (PPoPP ’08) ACM, New York, NY, USA, 73-82, 2008.

[33] Jacob Kornerup. Mapping Powerlists onto Hypercubes. Technical Report, Uni-

versity of Texas at Austin, Austin, TX, USA, 1994

162

[34] David S. Wise. Representing matrices as quadtrees for parallel processors: Ex-

tended abstract. SIGSAM Bull., 18(3):24-25, August 1984.

[35] NVIDIA Corporation: NVIDIA CUDA C best practices guide. 2013. URL http :

//docs.nvidia.com/cuda/pdf/CUDA C Best PracticesGuide.pdf. Version 5.5.

[36] NVIDIA Corporation: NVIDIA CUDA C programming guide. 2013. URL

http:// docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf. Version

5.5.

[37] NVIDIA Corporation: NVIDIA fermi compute architecture whitepaper. URL:

http://www.nvidia.com/content/PDF/fermi white papers/NVIDIA Fermi Comp

ute Architecture Whitepaper.pdf.

[38] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical

optimization of software and the atlas project. In PARALLEL COMPUTING,

27:2001, 2000.

[39] M. Frigo and S.G. Johnson. The design and implementation of fftw3. In Pro-

ceedings of the IEEE, 93(2):216-231, Feb 2005.

[40] Jianxin Xiong, Jeremy Johnson, Robert Johnson, and David Padua. Spl: A

language and compiler for dsp algorithms. In ACM, PLDI 01, pp. 298-308, 2001.

[41] Petr Kuznetsov and Sathya Peri. On non-interference of transactions. CoRR,

abs/1211.6315, 2012

[42] Koskinen E and Herlihy M. Checkpoints and continuations instead of nested

transactions. In Proceedings of the Twentieth annual symposium on Parallelism

in algorithms and architectures (SPAA08) (New York, NY, USA, 2008), ACM,

pp. 160-168, 2008.

[43] Lupei, D. A study of conflict detection in software transactional memory. Masters

thesis, University of Toronto, the Netherlands, 2009.

163

[44] Gupta, M., Shyamasundar, R.K., and Agarwal, S. Article: Clustered check-

pointing and partial rollbacks for reducing conflict costs in stms. In International

Journal of Computer Applications 1(22), 80-85, February 2010.

[45] Gupta, M., Shyamasundar, R.K., and Agarwal, S. Automatic checkpointing

and partial rollback in software transaction memory (January 2012) US Patent

20110029490.

[46] M. Herlihy and J. M. Wing. Linearizability: a correctness condition for con-

current objects. In ACM Transactions on Programming Languages and Systems,

12(3):463-492, June 1990.

[47] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with eager vali-

dation. In Proceedings of the 20th International Symposium on Distributed Com-

puting (DISC06), 2006.

[48] P. A. Bernstein and N. Goodman. Multiversion concurrency control theory and

algorithms. ACM Transactions on Database Systems, 8(4):465-483, 1983.

[49] Torvald Riegel, Christof Fetzer, and Pascal Felber. Snapshot isolation for soft-

ware transactional memory. In 1st Workshop on Languages, Compilers, and Hard-

ware Support for Transactional Computing, TRANSACT 06, June 2006.

[50] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In

Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice

of parallel programming, PPoPP 08, pp. 175-184, ACM, 2008.

[51] D. Dice, O. Shalev, et al. Transactional locking II. In Proceedings of the 20th

International Symposium on Distributed Computing, DISC06, March 2006.

[52] V. J. Marathe, M. F. Spear, et al. Lowering the overhead of nonblocking software

transactional memory. In First ACM SIGPLAN Workshop on Languages, Compil-

ers, and Hardware Support for Transactional Computing, TRANSACT’06, 2006.

164

[53] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. Stmbench7: a benchmark for

software transactional memory. SIGOPS Oper. Syst. Rev., 41(3):315-324, 2007.

[54] S. C. Woo, M. Ohara, et al. The SPLASH2 Programs: Characterization and

Methodological Considerations. In Proceedings of the 22nd International Sympo-

sium on Computer Architecture, pp. 24-36. June 1995.

[55] Standard Performance Evaluation Corporation, SPEC OpenMP Benchmark

Suite. http://www.spec.org/omp.

[56] A. Jaleel, M. Mattina, et al. Last level cache (llc) performance of data min-

ing workloads on a cmp - a case study of parallel bioinformatics workloads. The

Twelfth International Symposium on High-Performance Computer Architecture,

2006, pp. 88-98, 2006.

[57] R. Narayanan, B. Ozisikyilmaz, et al. Minebench: A benchmark suite for data

mining workloads. 2006 IEEE International Symposium on Workload Character-

ization, pp. 182-188, Oct. 2006.

[58] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun.

STAMP: Stanford transactional applications for multi-processing. In IISWC 08:

Proceedings of The IEEE International Symposium on Workload Characterization,

September 2008.

[59] M. M. Waliullah and P. Stenstrom. Intermediate checkpointing with conflicting

access prediction in transactional memory systems. In IPDPS’08, pp. 1-11, IEEE

Computer Society, 2008.

[60] Porfirio Alice et. al. Transparent Support for Partial Rollback in Software Trans-

actional Memories. In Euro-Par’13, 2013.

[61] Petr Kuznetsov and Srivatsan Ravi. On the cost of concurrency in transactional

memory. In OPODIS’11, pp. 112-127, 2011.

165

[62] Hagit Attiya and Eshcar Hillel. A single-version stm that is multi-versioned per-

missive. Theory Comput. Syst., 51(4):425-446, 2012.

[63] Rachid Guerraoui and Michal Kapalka. Principles of Transactional Memory. Syn-

thesis Lectures on Distributed Computing Theory, Morgan and Claypool, 2010.

[64] Tyler Crain, Damien Imbs, and Michel Raynal. Read invisibility, virtual world

consistency and probabilistic permissiveness are compatible. In ICA3PP (1), pp.

244-257, 2011.

[65] Damien Imbs and Michel Raynal. A lock-based stm protocol that satisfies opacity

and progressiveness. In Proceedings of the 12th International Conference on Prin-

ciples of Distributed Systems, OPODIS 08, pp. 226-245, Springer-Verlag, Berlin,

Heidelberg, 2008.

[66] Dice D., Shalev O. et al: Transactional locking II., In Proceedings of the 20th

International Symposium on Distributed Computing, DISC06, 2006.

[67] Cachopo, J. and Rito-Silva, A. Versioned Boxes as the Basis for Transactional

Memory. Science of Computer Programming, 63(2): 172-175, 2006.

[68] Riegel, T., Felber, P. and Fetzer, C. A Lazy Snapshot Algorithm with Eager

Validation. In DISC’06, LNCS, vol. 4167, Springer, Heidelberg, pp. 284-298, 2006.

[69] Scherer W. N. III and Scott M. L. Advanced contention management for dynamic

software transactional memory. In Procs of the 24th Annual ACM Symposium on

Principles of Distributed Computing (PODC ’05), ACM, New York, USA, pp.

240-248, 2005.

[70] Guerraoui R., Herlihy M., and Pochon B. Toward a theory of transactional con-

tention managers. In Procs of the 24th Annual ACM Symposium on Principles of

Distributed Computing (PODC ’05), ACM, New York, USA, pp. 258-264, 2005.

[71] Spear M. F. , Dalessandro L., Marathe V. J., and Scott M. L. A comprehensive

strategy for contention management in software transactional memory. In Procs

166

of the 14th ACM SIGPLAN Symposium on Principles and Practice Of Parallel

Programming (PPoPP ’09), ACM, New York, USA, pp. 141-150, 2009.

[72] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery. Mor-

gan Kaufmann, 2002.

[73] Threading Building Blocks, http://threadingbuildingblocks.org.

[74] James Reinders. Intel Threading Building Blocks. (First ed.). OŔeilly & Asso-

ciates, Inc., Sebastopol, CA, USA ,2007.

[75] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer

III, and M. L. Scott. Lowering the Overhead of Nonblocking Software Transac-

tional Memory. In workshop. on Languages, Compilers, and Hardware Support for

Transactional Computing (TRANSACT’06), Ottawa, ON, Canada, June 2006.

[76] Khronos OpenCL Working Group. The OpenCL Specification Version 1.1.

Khronos Group, 2009. http://www.khronos.org/opencl. Online.

[77] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming stan-

dard for heterogeneous computing systems. Computing in science and engineering,

2010.

[78] S. Wienke, P. Springer, C. Terboven, and D. an Mey. OpenACC: First Experi-

ences with Real-world Applications. In Procs of the 18th International Conference

on Parallel Processing, Euro-Par’12, pp. 859-870, Springer-Verlag, Berlin, Heidel-

berg, 2012.

[79] T. E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory

Multiprocessors. IEEE Trans. Parallel Distrib. Syst., vol. 1, no. 1, pp. 6-16, Jan.

1990.

[80] D. Cederman and P. Tsigas. Dynamic Load Balancing using Work-Stealing. In

GPU Computing Gems Jade Edition, ser. Applications of GPU Computing Series,

W. mei W. Hwu, Ed. Elsevier Science, pp. 485-499, 2011.

167

[81] A. Yilmazer and D. Kaeli. HQL: A Scalable Synchronization Mechanism for

GPUs. In Proc. of 27th IEEE International Symposium on Parallel Distributed

Processing (IPDPS’13), 2013.

[82] D. Tullsen, J. Lo, S. Eggers, and H. Levy. Supporting finegrained synchronization

on a simultaneous multithreading processor. In Proceedings of Fifth International

Symposium on High-Performance Computer Architecture, pp. 54-58, jan 1999.

[83] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt. Hardware

transactional memory for GPU architectures. In Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO-44 11, New

York, NY, USA: ACM, pp. 296-307, 2011.

[84] Xu, Yunlong, Lan Gao, Rui Wang, Zhongzhi Luan, Weiguo Wu, and Depei Qian.

Lock-based synchronization for GPU architectures. In Proceedings of the ACM

International Conference on Computing Frontiers, pp. 205-213, ACM, 2016.

[85] Y. Xu, R. Wang, N. Goswami, T. Li, L. Gao, and D. Qian. Software Transactional

Memory for GPU Architectures. In Proc. of Annual IEEE/ACM International

Symposium on Code Generation and Optimization (CGO), 2014.

[86] Anand AS, Srivastava A, Shyamasundar RK. A deadlock-free lock-based

synchronization for GPUs. Concurrency Computat Pract Exper., 2018;e4991.

https://doi.org/10.1002/cpe.4991.

[87] S. Xiao and W. Feng. Inter-block GPU communication via fast barrier synchro-

nization. In Proc. of the IEEE International Symposium on Parallel Distributed

Processing (IPDPS), 2010.

[88] Wilson Wai Lun Fung. GPU Computing Architecture for Irregular Parallelism.

PhD Thesis, The University of British Columbia, January 2015.

[89] D. Arnold, D. Ahn, B. de Supinski, G. Lee, B. Miller, and M. Schulz. Stack Trace

Analysis for Large Scale Debugging. In Proceedings of the IEEE International

Parallel and Distributed Processing Symposium, IPDPS’07, pp. 110, IEEE, 2007.

168

[90] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.

W. Hwu. Optimization Principles and Application Performance Evaluation of a

Multithreaded GPU Using CUDA. In Proc. of the 13th ACM SIGPLAN Symp.

on Principles and Practice of Parallel Programming, pp. 73-82, Feb. 2008.

[91] A. Ramamurthy. Towards Scalar Synchronization in SIMT Architectures. Mas-

ter’s thesis, University of British Columbia, 2011.

[92] A. Li, G. Braak, H. Corporaal, and A. Kumar. Fine-Grained Synchronizations

and Dataflow Programming on GPUs. In Proc. of the 29th ACM on International

Conference on Supercomputing, ICS’15, 2015.

[93] Sarnath. Spinlock on a GPU. http://forums.nvidia.com/index.php?showtopic=98

444&st=40/, June 2009.

[94] NVIDIA. PTX: Parallel Thread Execution ISA Version 4.3.

http://docs.nvidia.com/cuda/ parallel-thread-execution/index.html.

[95] Brett W Coon, Peter C Mills, John R Nickolls, and Lars Nyland. Lock mechanism

to enable atomic updates to shared memory, US Patent 8,055,856, Nov 8, 2011.

[96] Coffman, E.G., M.J. Elphick, and A. Shoshani. System Deadlocks. ACM Com-

puting Surveys, 3(2):67-78, 1971.

[97] Lee C. Y. An algorithm for path connections and its applications. In IRE Trans-

actions on Electronic Computers, EC-10(3): pp. 346-365, 1961.

[98] Anshu S Anand and R. K. Shyamasundar. Scaling Computation on GPUs Using

Powerlists. In Foundations of Big Data Computing, in conjunction with HiPC-

2015, Bangalore, DOI: 10.1109/HiPCW.2015.14.

[99] NVIDIA Corporation. CUBLAS LIBRARY User Guide, February 2014. Version

6.0.

[100] Cooley, James W. and Tukey, John W. An algorithm for the machine calculation

of complex Fourier series. Math. Comput. 19: pp. 297301, 1965.

169

[101] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms (2nd ed.). McGraw-Hill Higher Education, 2001.

[102] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on

large clusters. Commun. ACM, 51(1):107-113, January 2008.

[103] Jayadev Misra. Powerlist: A structure for parallel recursion. ACM Trans. Pro-

gram. Lang. Syst., 16(6):1737-1767, November 1994.

[104] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith and J. Manferdelli. High

performance discrete Fourier transforms on graphics processors. In Procs of the

ACM/IEEE Conference on Supercomputing, SC ’08, Austin, TX, pp. 1-12, 2008.

[105] Jacob Kornerup. Data Structures for Parallel Recursion. PhD thesis, University

of Texas at Austin, 1997.

[106] P. Collingbourne, A. F. Donaldson, J. Ketema, and S. Qadeer. Interleaving and

lock-step semantics for analysis and verification of GPU kernels. In ESOP, pp.

270-289, 2013.

[107] Coffman, E.G., Elphick, M. and Shoshani, A. System deadlocks. ACM Com-

puting Surveys (CSUR), 3(2), pp.67-78, 1971.

[108] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber

Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich,

Mario Mndez-Lojo, Dimitrios Prountzos, and Xin Sui. The tao of parallelism in

algorithms. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’11, pp. 12-25, 2011.

[109] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. Morph algorithms on

GPUs. In Proceedings of the 18th ACM SIGPLAN symposium on Principles and

practice of parallel programming (PPoPP ’13), ACM, New York, NY, USA, 147-

156, 2013.

170

[110] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A quantitative study of

irregular programs on GPUs. In Proceedings of the IEEE International Sympo-

sium on Workload Characterization, IISWC ’12, IEEE Computer Society, Wash-

ington, DC, USA, 141-151, 2012.

[111] J. Reinders. Transactional synchronization in haswell. Intel Developer Zone,

February 2012.

[112] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Le. Robust

architectural support for transactional memory in the power architecture. In Pro-

ceedings of the 40th Annual International Symposium on Computer Architecture,

ISCA 13, pp. 225-236, ACM, New York, NY, USA, 2013.

[113] H.Q. Le, G.L. Guthrie, D.E. Williams, M.M. Michael, B.G. Frey, W.J. Starke,

C. May, R. Odaira, and T. Nakaike. Transactional memory support in the ibm

power8 processor. IBM Journal of Research and Development, 59(1), 2015.

[114] C.C Jacobi, T. Slegel, and D. Greiner. Transactional memory architecture and

implementation for ibm system z. In MICRO-45, 2012.

[115] Mohsen Lesani, Victor Luchangco, and Mark Moir. Putting opacity in its place.

In WTTM12, 2012.

[116] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying

and verifying transactional memory. Formal Aspects of Computing, 2012.

[117] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis, II. System

level concurrency control for distributed database systems. ACM Trans. Database

Syst. 3, pp. 178-198, June 1978.

[118] Edsger Wybe Dijkstra. Cooperating Sequential Processes, Technical Report

Ewd-123, Technical Report, 1965.

[119] Damien Imbs and Michel Raynal. Virtual world consistency: A condition for

STM systems (with a versatile protocol with invisible read operations). Theoret-

171

ical Computer Science, Volume 444, pp. 113-127, June 1978. ISSN: 0304-3975,

https://doi.org/10.1016/j.tcs.2012.04.037.

[120] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious al-

gorithms. In Proc. of FOCS’99, pp. 285-297, 1999.

[121] Rezaul Alam Chowdhury, Vijaya Ramachandran, Francesco Silvestri and Bran-

don Blakeley. Oblivious algorithms for multicores and networks of processors, In

Journal of Parallel and Distributed Computing (JPDC), Volume 73, Issue 7, pp.

911-925, 2013. ISSN 0743-7315, https://doi.org/10.1016/j.jpdc.2013.04.008.

[122] Holt R. Some Deadlock Properties of Computer Systems. ACM Computing

Surveys, Vol. 4, No. 3, pp. 179-196, September 1972.

[123] V. Volkov and J.W. Demmel. Benchmarking GPUs to Tune Dense Linear Al-

gebra. In Proc. of Intl Conf. High Performance Computing, Networking, Storage

and Analysis, pp. 1-11, 2008.

[124] Narang A, Srivastava A, Shyamasundar RK. High performance adaptive dis-

tributed scheduling algorithm. In IEEE International Symposium on Parallel and

Distributed Processing, Workshops and PhD Forum, Cambridge, MA, 2013.

172

