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Synopsis

Synopsis

Because of potential for accidents or sabotage at nuclear power plants, the operation

and control of these plants represents a complex problem. Several safety and control

features are engineered at the design stage and operational policies are incorporated to

avoid accidental release of radioactivity to the general population. The problems are

further complicated in case of large nuclear reactors [113].

The current generation modern power reactors are increasing in size to get the benefit

from the economies of generation of electricity. An useful parameter for assessing the

effective size of a reactor is neutron migration length M , a measure of the average

distance travelled by a neutron from its appearance as a fission neutron to its absorption

as a thermal neutron. For a given reactor design, M is determined by the material

composition of the reactor core, primarily the fuel-to-moderator ratio and is essentially

independent of core size R. As the core size increases, the ratio R2/M2 increases,

the migration length becomes a smaller fraction of the reactor core dimension. Thus,

each neutron’s zone of influence becomes a smaller fraction of the core volume, and

the various regions of the core become loosely coupled. Any deliberate attempt to

operate the reactor with flattened radial and axial flux distributions coupled with xenon

poisoning effect leads to complex operational and control problems. The mechanism of

135Xe production and its removal by neutron absorption and radioactive decay are such

that oscillations of thermal flux are induced in large thermal reactors. Such oscillations

induced by 135Xe can broadly be classified into two categories - fundamental mode or

global power oscillations and higher mode or spatial oscillations. Generally speaking,

global power oscillations can be readily noticed and suppressed by control system while

spatial oscillations are not. Here, the global reactor power can remain constant so that

no change in the coolant outlet temperature is effected, the oscillations being in spatial

distribution of power inside the core.

If these oscillations are left uncontrolled, the power density and time rate of change

of power at some locations in the reactor core may exceed the respective design limits.
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These xenon induced spatial oscillations and subsequent local overpowers pose a poten-

tial threat to the fuel integrity of the reactor. Therefore, the detailed knowledge of axial

and radial flux distribution in the core during the course of their operation is crucial.

Modern reactors have provisions for online spatial control and monitoring of flux or

power distribution during the course of their operation. The time varying neutron flux

distribution is computed by an online Flux Mapping System (FMS), with the help of

flux mapping algorithms. The measurement signals of several in-core flux detectors are

processed to generate the detailed three dimensional flux map, which helps for spatial

control purpose. In CANDU-6 reactors and in Indian 540 MWe Pressurized Heavy

Water Reactors (PHWRs), 102 Vanadium detectors are used for flux mapping, while in

PWRs it is carried out by Rhodium detectors installed in about 45 fuel assemblies. Over

the years, research has been carried out to evolve an efficient flux mapping algorithm

for the improvement of accuracy in flux mapping with less computational effort. Most

of the algorithms existing in the literature are based on three principles, namely the

Flux Synthesis, Internal boundary condition and simultaneous least squares solution of

neutron diffusion and detector response equations.

The most popular and traditional method for flux mapping is known as Flux Synthe-

sis Method (FSM) [46]. It uses the available detector measurements and performs least

squares fit with pre-computed flux modes, determined based on reactivity devices config-

uration. Determination of flux modes requires the knowledge of core configuration and

considerable insight into the reactor operation. There are other synthesis methods such

as Harmonic Synthesis Method (HSM) [95] and Harmonic Expansion Method (HEM)

[133] to improve the accuracy of flux mapping, however the accuracy of reconstruction

depends on selection of the reference case. Selection of a suitable reference case which

reflects the actual core condition results in improvement of the reconstruction accuracy.

During the core configuration changes, the reference case has to be renewed, which can

be a time consuming process.

A Method based on direct online solution of neutron diffusion equations with detector
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readings as the internal boundary condition is reported in [52]. A method which obtains

a least squares solution of the core neutronics design equations alongwith the in-core

detector response equations is reported in [47]. Applicability of this least squares method

requires to solve the overdetermined system of equations resulting in the framework of

mapping algorithm. Another approach with the combination of FSM and least squares

method, known as modified flux synthesis method has been proposed for Indian 700

MWe PHWR in [80]. This method takes longer computation time than FSM does [47]

and detector signal uncertainty can also deteriorate the performance of flux mapping

calculations. A common drawback of the aforesaid methods is that they fail to account

for time variation of neutron flux distribution during the reactor operation and the

accuracy might be degraded considerably in presence of uncertainty in the detector

readings.

In contrast to this, model based estimation methods such as the Kalman filter [53],

which infer the system dynamic state on the basis of a sequence of noisy measurements,

offer interesting potential for successful online application. The Kalman filter has re-

ceived a huge interest from the industrial community and has played a key role in many

engineering fields since 70’s, ranging, without being exhaustive, trajectory estimation,

state and parameter estimation for control and diagnosis, data merging, signal pro-

cessing, etc. It is a recursive computational algorithm that processes measurements to

deduce a minimum error estimate of the state of a system by utilizing: knowledge of sys-

tem and measurement dynamics, assumed statistics of system noises and measurement

errors, and initial condition information.

Advanced Heavy Water Reactor (AHWR) [119] is a 920 MW (thermal), vertical,

pressure tube type, heavy water moderated, boiling light water cooled natural circula-

tion reactor being designed in India. The radial dimensions of the core are very large.

Therefore, from neutronic view-point, the behavior tends to be loosely coupled, due to

which a serious situation called ‘flux tilt’ may arise in AHWR followed by an opera-

tional perturbation. These operational perturbations might lead to slow xenon induced

iii



Rajasekhar. A: Computation of Neutron Flux Distribution in Large Nuclear Reactors
via Reduced Order Modeling

oscillations, which might cause changes in axial and radial flux distribution from the

nominal distribution. Knowledge of any such changes during the reactor operation is

crucial. Therefore, it is necessary to provide online monitoring and control schemes

during the reactor operation. To monitor the core flux distribution, 200 Self Powered

Neutron Detectors (SPNDs) are proposed to be provided at different elevations of the

assembly covering entire AHWR core from top to bottom [1]. An efficient flux mapping

algorithm in AHWR can ensure better reactor regulation and core monitoring, as more

accurate estimates of channel and zonal powers will be available to Reactor Regulating

System (RRS) and Core Monitoring System.

This thesis presents a Discrete-time Kalman filter (DKF) formulation for flux map-

ping in AHWR which is quite different from the existing methods as it can take care

of both time varying phenomena and random errors in the detector readings. For this,

a reasonably accurate mathematical model which represents the time-dependent core

neutronics behaviour of AHWR core is required. A space-time kinetics model with 17

nodes in the core and which exhibits all the essential control related properties and yields

accurate transient response characteristics is utilized for the studies as it is more suitable

for flux distribution studies owing to its simplicity and the structure, thus facilitating

selection of state variables for the system in a straightforward manner. An important

characteristic of the model based on nodal methods is that the order of mathematical

model depends on the number of nodes into which the reactor spatial domain is divided.

A rigorous model with more number of nodes will give good accuracy in designing of

DKF algorithm for flux mapping. However, at the same time, nuclear reactor models

often exhibit simultaneous presence of dynamics of different speeds. Such behavior leads

the mathematical model exhibiting multiple time-scales, which may be susceptible to

numerical ill-conditioning.

The work in this thesis begins with derivation of estimation model for flux mapping

studies in the AHWR. The nonlinear mathematical model (core neutronics and control

rod dynamics equations) is linearized around the steady-state full power operation by
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considering a small perturbation in the system and then the equations are cast into

standard state-space form. It is characterized by 80 states, 4 inputs and 200 outputs.

A keen observation of the eigenvalues of the estimation model reveals that they fall into

two distinct clusters. First cluster has 21 eigenvalues consisting of 5 eigenvalues at the

origin and the other 16 eigenvalues ranging from −6.2977× 10−2 to −5.1852× 10−2 and

the second one is of 59 eigenvalues ranging from −4.751×102 to −8.4578. This indicates

the presence of two-time-scales in the estimation model. The modern control design and

analysis studies with this model are accompanied by serious numerical ill-conditioning

problems. In this context approximation of high dimensional system by simplified mod-

els or model order reduction is a common procedure in engineering practice. Model

order reduction is defined as the problem of finding a simpler mathematical model for a

complex large-scale system.

The main intent of model order reduction is to preserve the important dynamic

characteristics of the model while certain less important characteristics are ignored. In

the past few decades, several analytical model reduction techniques have been proposed

for the state-space models. Davison [14] proposed one of the first model reduction

technique. The principle of this method is to neglect eigenvalues of the original system

which are farthest from the origin and retain only dominant eigenvalues and hence

the time constants of the original system in the reduced order model. This implies

that the overall behaviour of the reduced-order model will be very similar to that of the

original model, since the contribution of unretained eigenvalues are important only at the

beginning of the response, whereas the eigenvalues retained are important throughout

the whole response. Simultaneously, Marshall [77] developed a technique which preserves

the steady-state of the original system by exciting the modes in the reduced model

differently from those in the original system.

For the mathematical models involving the interaction of slow and fast dynamics,

a method based on decomposition of higher order model into slow and fast systems by

two-time-scale methods and singular perturbation analysis [65] has been proposed for
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model order reduction. The approach makes use of the standard singularly perturbed

form representation of dynamic systems in which the derivatives of some state variables

are multiplied with a small positive scalar, ε. The model reduction is achieved by setting

ε = 0 and substituting the solution of states whose derivatives were multiplied with ε,

in terms of the other state variables. Essentially the singular perturbation approach to

order reduction can be related to the “dominant mode” techniques which neglect the

high frequency parts and retain low frequency parts of models.

Model order reduction based on the assessment of degree of controllability and ob-

servability has been suggested in [81, 94] which is popularly known as balanced trun-

cation. In order to obtain the original system in balanced form, its basis should be

transformed into another basis where the states which are difficult to reach are simul-

taneously difficult to observe. It can be achieved by simultaneously diagonalizing the

reachability and the observability gramians [70], which are the solutions respectively to

reachability and observability Lyapunov equations. The positive diagonal entries in the

order of decreasing values in the diagonal reachability and observability gramians in the

new basis are called Hankel singular values of the system. The reduced order model

is obtained simply by truncation of the states corresponding to the smallest singular

values. The number of states that can be truncated depends on how accurate the ap-

proximate model is needed. There are some other techniques to obtain the balanced

truncation viz., Schur method [98], balance square root method [132] similar to [81],

however, they differ in the algorithms for obtaining the balancing transformation. The

aforesaid methods can be efficiently applied when the system is asymptotically stable

and minimal, however, for the systems where the stabilization is the major concern their

straightforward application is not possible. Balanced truncation for unstable systems

has also been attempted in [131]. Usually unstable poles cannot be neglected, therefore

model reduction in this situation can be treated by first separating the stable and un-

stable parts of the model and then reducing the order of the stable part using balanced

truncation methods.
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For the estimation model of AHWR various model order reduction techniques, viz.,

Davison’s and Marshall’s dominant mode retention techniques; balanced truncation tech-

nique and model decomposition into slow and fast subsystems based on singular per-

turbation analysis, have been applied to obtain a reduced order model from the original

high order model, and results reported in this thesis.

Application of methods based on retention of dominant modes requires diagonaliza-

tion. For the estimation model, it is quite difficult task to get the model into diagonal

form as there are multiple eigenvalues at the origin of the complex s-plane. This is due

to the fact that the model contains slow control rod dynamics. In this thesis, a system-

atic method has been suggested to handle the numerical ill-conditioning occurring in the

computations due to the presence of the slow control rod dynamics by decoupling the

higher order model into very slow and fast models. Model order reduction techniques

based on Davison’s and Marshall’s dominant mode retention are then applied to retain

the slow dynamics. Finally the reduced order model has been formulated by augmenting

the control rod dynamics to the model corresponding to the slow dynamics. Also, it is

essential for model order reduction based on Davison’s and Marshall’s techniques, to

identify the modes to retain and those to truncate/reduce.

The distance between two eigenvalue clusters of the estimation model, computed by

dividing the largest absolute value of the slow (first) group by the smallest absolute

value of the fast (second) group, is ε = 0.0074. This value is small enough to motivate

the use of singular perturbation analysis and two-time-scale based techniques [61, 63].

Therefore it would be possible to decompose the model into a slow subsystem of order

21 and a fast subsystem of order 59, by the application of singular perturbation. For

carrying out this, a regrouping of states variable has been suggested in the thesis.

Finally, comparative study has also been presented in this thesis from the view point

of transient performance between different reduced order models of AHWR, namely,

Davison’s technique, Marshall’s technique, singular perturbation analysis and balanced

truncation by comparing their performances relative to each other and with the original
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model. All of these methods are found to be effective, however the overall accuracy in

the approximation using the balanced truncation approach is found to be far superior.

Among these, Davison’s and Marshall’s techniques require diagonalization and bal-

anced truncation technique requires a modal decomposition into unstable and stable

subsystems. Also, it is essential for model order reduction based on Davison’s and Mar-

shall’s techniques, to identify the modes to retain and those to truncate/reduce. In

contrast, singular perturbation techniques require a decomposition of the state-space

systems into fast/slow subsystems using block diagonalization methods. Davison’s and

Marshall’s techniques result into a simplified model that retains the slowly varying dy-

namics while the application of singular perturbation analysis and two-time-scale meth-

ods decompose the model into two subsystems viz., slow and fast, thus providing better

approximation of dynamics of the system. Quite similar to this, application of balanced

truncation yields a reduced model in which both the slow and fast dynamic characteris-

tics are simultaneously retained yielding good accuracy in approximation of high order

model by reduced order model.

The task of flux-mapping in AHWR has been formulated as linear stochastic esti-

mation problem and the solution is obtained by Kalman filtering technique. It utilizes

estimation model and available detector measurements corrupted with white Gaussian

noise. However, direct implementation of the DKF algorithm to this high-order stiff

estimation model is not feasible as the designing procedure is accompanied by serious

numerical ill-condition caused by the simultaneous presence of slow and fast phenom-

ena typically present in a nuclear reactor. In particular, the set of recursive equations

for computation of DKF gains, as a solution to weighted least squares problem, is ill-

conditioned. Consequently, serious numerical difficulties are expected if the DKF gain

matrix is to be computed on the basis of the full order Riccati equation. Fortunately,

this situation can easily be handled by singular perturbation analysis and two-time-scale

methods. This thesis presents a novel technique to address the numerical ill-conditioning

problems in full order design by decoupling the DKF equations according to the order
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of the slow and fast subsystems. Finally this technique has been applied for estimation

of detailed mesh, channel and zonal fluxes in the AHWR.

The effectiveness of the Kalman filtering technique for flux mapping has been ex-

amined in three cases. In the first case, decay of non-zero initial condition is observed.

The states of the estimation model are non-zero while the reactor is assumed to be at

steady–state. In the second, the movement of one or multiple Regulating Rods (RRs)

is simulated. Finally in the third case, xenon-induced spatial oscillation is considered.

SPND signals (measurements) were generated under the same transient situations from

a separate set of off-line computations using a 128 node scheme, for the first two cases,

and the 17 node scheme for the third case. Measurement noise of the order of 2 %

has been assumed for each SPND. This noise is equivalent to 2 % random fluctuations

around the full power steady–state value in each detector. DKF based flux mapping

algorithm was processed for the estimation of detailed flux distribution in AHWR for

the respective cases. To characterize the performance of DKF, error analysis has been

carried out to determine the the Root Mean Square (RMS) error and relative error. The

efficacy of the algorithm has been validated from simulations.

The contributions of this thesis are as follows:

1. The monitoring and control of time-varying axial and radial flux distribution in

operational large reactors is a challenging problem. Although several researchers

addressed the flux mapping problem of the other reactors with various advanced

algorithms and methodologies, they have a common disadvantage of failing to take

into account the time variation and loss of accuracy in presence of random errors.

The algorithm suggested in this report is based on Kalman filtering technique

which can take care of both the stated factors.

2. For validation of different techniques of flux mapping, computation results gener-

ated using a high fidelity model is a necessity. Hence, a model based on 128-nodes

in the core of the AHWR resulting into 1168th order is developed.
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3. Different approaches of obtaining reduced order models from the original higher

order estimation model of AHWR viz., Davison’s, Marshall’s, singular perturbation

and balanced truncation techniques have been explored to solve the numerical ill-

conditioning in control design and analysis.

4. The concept of application of Kalman filtering theory has been extended to the

near optimal estimation of core flux distribution in AHWR.

5. A novel technique has been suggested based on two-time-scale formulation of

Kalman filtering problem for the time-dependent neutron diffusion equation to

near-optimum estimation of the core flux profile in AHWR.

The conclusions from the work are:

• The proposed DKF algorithm can accurately estimate the time dependent neutron

flux distribution during the typical reactor operating conditions. The degradation

of DKF algorithm accuracy is also very less against the detector random errors.

Therefore, the proposed method can serve an effective alternate to the existing

flux mapping techniques.

• Before deployment in the AHWR, the efficacy of the technique needs to be es-

tablished further and it should be demonstrated using plant data, such as from

PHWRs that it yields improvement in accuracy compared to that resulting from

existing techniques.

• The algorithm should also be assessed from the viewpoint of implementation that

the computations could be performed in real-time using hardware and other re-

sources, suitable for control and instrumentation systems in nuclear reactors.

Possible future extension of the work would be:

• A reduced order Kalman filter can be designed based on the simplified model

obtained from balanced truncation approach for the estimation of core flux distri-

bution in AHWR.
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• Optimality and availability of DKF based flux mapping algorithm can be verified

under the faults in some of the SPND signals.
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Chapter 1

Introduction

Electricity is closely related to the economic development of a country. With the growth

in the number of industries utilizing fossil fuels as raw materials for production of elec-

tricity, the reserves of fossil fuels i.e., coal, oil and gas are also fast depleting. Diversified

energy resource base is essential to meet electricity requirements and to ensure long term

energy security with the limited resources of coal and oil available in any country. In

the current scenario alternative sources of energy like nuclear power, wind power and

solar power can meet the future energy demands of the nation. When compared to

other sources of energy, nuclear power has the unique capacity to release huge amount

of energy from a very small quantity of active material. The energy liberated during

this process is greater than that liberated from the combustion of the same quantity of

coal. Moreover, the possible energy reserves in the form of uranium and thorium are

many times greater than those of fossil fuels [19].

The concept of nuclear reactors has its origin in the discovery of nuclear fission in

1939. In a nuclear fission, a neutron is bombarded on a heavy nucleus such as 235U and

two or more fragments are produced. This reaction has two interesting features. One is

the significant amount of kinetic energy (about 200 MeV) of fission fragments which is

then converted into heat, and another is: a few (on the average 2 to 3) neutrons are also

produced. These facts immediately suggested the possibility of utilizing the emergent
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neutrons to cause further fissions in other heavy nuclei and thus to have a self sustained

steady fission chain reaction. Such a system, called nuclear reactor, could then act as a

steady source of energy. Since the first reactor built by Enrico Fermi in 1942, the field

has continuously evolved leading to many complex nuclear reactors of today.

Now the world wide trend is to construct nuclear reactors of large capacity which

can be operated with relatively uniform flux distribution. The Indian Nuclear power

program today comprises of existing reactors, reactors under construction, and design

of future reactors which will provide long term energy security of the country. In 2005,

a 540 Mwe Pressurized Heavy Water Reactor (PHWR) is commissioned for large-scale

electricity generation. Even a large capacity of 700 MWe PHWR and Advanced Heavy

Water Reactor (AHWR) are also under design [119]. They share several similarities

in the concept of the pressure tubes and calandria tubes, but the tubes orientation in

the AHWR is vertical and horizontal in PHWR [116]. The PHWR utilizes natural ura-

nium as fuel, whereas the AHWR utilizes enriched uranium-thorium, plutonium-thorium

mixed oxide fuels. Also, PHWR is non-boiling heavy water moderated reactor, whereas

the AHWR is boiling light water cooled, heavy water moderated natural circulation

reactor.

From the economic point of view large nuclear reactors reduce the per unit electricity

generating cost. Hence, large sized nuclear reactors are preferred to achieve economy

in power production. However, large sized reactors show neutronic decoupling [19], i.e.,

these reactors show deviation in power distribution from the nominal. Commonly used

methodology to understand the neutronic decoupling phenomena in nuclear reactors

is based on comparison of characteristic size. The characteristic size of the reactor

core is expressed in units of neutron migration length M . It is a measure of the average

distance travelled by a neutron from its appearance as a fission neutron to its absorption

as a thermal neutron. For a given reactor design, M is determined by the material

composition of the reactor core, primarily the fuel-to-moderator ratio and is essentially

independent of core size R. As the core size increases, the ratio R2/M2 increases, the
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migration length becomes a smaller fraction of the reactor core dimension. Thus, each

neutron’s zone of influence becomes a smaller fraction of the core volume, and the various

regions of the core turn out to be loosely coupled. Any deliberate attempt to operate the

reactor with flattened radial and axial flux distributions coupled with xenon poisoning

effect leads to complex operational and control problems [114, 128]. The mechanism of

135Xe production and its removal by neutron absorption and radioactive decay are such

that oscillations of thermal flux are induced in large thermal reactors. Such oscillations

induced by 135Xe can broadly be classified into two categories - fundamental mode or

global power oscillations and higher mode or spatial oscillations. Generally speaking,

global power oscillations can be readily noticed and suppressed by control system while

spatial oscillations are not. Here, the global reactor power can remain constant so that

no change in the coolant outlet temperature is effected, the oscillations being in spatial

distribution of power inside the core.

If these oscillations are left uncontrolled, the power density and time rate of change

of power at some locations in the reactor core may exceed the respective design limits,

resulting into increased chance of fuel failure. Therefore, to maintain the total power and

power distribution within the design limits, large reactors are provided with mechanisms

for total power control and spatial power control. If due to some hypothetical reason,

the spatial control scheme is ineffective, xenon-induced oscillations might occur. These

xenon induced spatial oscillations and subsequent local overpower pose a potential threat

to the fuel integrity of the reactor. Therefore, monitoring of the axial and the radial

flux distribution in the core during the operational condition is crucial. Modern reactors

have provisions for online spatial control and monitoring of flux or power distribution

during the course of their operation. The three-dimensional (3-D) power distribution

is one of the basic operation parameters which can determine many other important

parameters such as power peaking factor, and quadrant tilt ratio etc., used to evaluate

the operating condition of the reactor and the margin of safety.

In general, the time varying neutron flux distribution in large nuclear reactors is
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computed by an online Flux Mapping System (FMS). In-core Self Powered Neutron

Detectors (SPNDs) are being increasingly used for continuous monitoring of neutron flux

in power reactors. SPNDs, which are placed at strategic locations within the core, can

help in successful implementation of both the online FMS and flux tilt control. The in-

core SPNDs used for the monitoring purpose can sense the neutron flux only over a small

volume. FMS processes the measurement signals of several in-core SPNDs with the help

of software routine called flux mapping algorithm and generates detailed 3-D core flux

profile. Apart from this, functions such as flow changes in coolant channels, reactivity

device movements and ensuring that peaking factors are within analyzed safety limits,

are also required in large reactors. These functions are performed from the information

about axial, azimuthal and radial flux distributions obtained through in-core SPNDs

based FMS. However, these functionalities of online FMS vary from reactor to reactor.

With India’s five to six times larger reserves of thorium than that of natural uranium,

thorium utilization for large scale energy production has been an important goal of the

nuclear power program. The AHWR [119] can provide efficient commercial utilization

of thorium and thereby it forms an important milestone in the nuclear power program.

The physical dimensions of the core are several times large compared to the neutron

migration length. Any operational reactivity disturbance such as online refueling, control

rod movements etc., might lead to slow xenon induced oscillations, which might cause

changes in axial and radial flux distribution from the nominal distribution. Knowledge

of any such changes during the reactor operation is crucial. To monitor the core flux

distribution, 200 SPNDs are proposed [1] to be provided in AHWR. An efficient flux

mapping algorithm in AHWR can ensure better reactor regulation and core monitoring,

as more accurate estimates of channel and zonal powers will be available to Reactor

Regulating System (RRS) and Core Monitoring System.

In nuclear reactor two basic sources of information are available for determination

of spatial flux distribution. These sources are nominal core specifications alongwith

mathematical model and measurements from in-core SPNDs, which combine through

4



Chapter 1. Introduction

flux mapping algorithms, ultimately to provide power/flux map. However, both these

sources are subjected to statistical fluctuations and the mapping accuracy may be de-

graded. Flux mapping algorithm plays a major role in mapping the 3-D flux distributions

from in-core SPNDs. And this knowledge ensures the safe operation of reactor. There-

fore, considerable effort has been expanded over the years to evolve an efficient flux

mapping algorithm.

Most of the algorithms available today employ the Flux Synthesis Method (FSM), In-

ternal Boundary Condition method and the method based on simultaneous least squares

solutions of neutron diffusion and detector response equations [80]. These methods as-

sume that the neutron flux profile in the reactor is independent of time. They fail

to account for time variation of neutron flux distribution during the reactor operation.

Also, the accuracy of mapping might be degraded considerably in presence of uncertainty

in the detector readings. Therefore, some algorithms which can take care of both time

varying phenomena and detector random errors become necessary to improve the online

computation of core power/flux distribution. In this context state estimation methods

like Kalman filter are more promising approach with the availability of the space-time

kinetics model which represents the time dependent behavior of the AHWR.

In this thesis, Discrete-time Kalman filter (DKF) formulation for flux mapping in

AHWR has been presented. It utilizes the time dependent core neutronics equations

and available detector measurements corrupted with white Gaussian noise. However,

direct implementation of the DKF algorithm to the high-order stiff estimation model of

AHWR is not feasible as the design procedure is accompanied by serious numerical ill-

conditioning caused by the simultaneous presence of slow and fast phenomena typically

present in a nuclear reactor. In particular, the set of recursive equations for computa-

tion of DKF gains, as a solution to weighted least squares problem, is ill-conditioned.

Consequently, serious numerical difficulties are expected if the DKF gain matrix is to

be computed on the basis of the full order Riccati equation. Therefore, for the AHWR

system application of model order reduction techniques, viz., Davison’s and Marshall’s
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dominant mode retention techniques; balanced truncation technique and model decom-

position into slow and fast subsystems based on singular perturbation analysis has been

explored.

Finally, to address the numerical ill-conditioning, the task of flux mapping problem

in AHWR has been formulated as a problem of optimally estimating the time dependent

neutron flux at a large number of mesh points in the core. The solution is obtained using

the well known Kalman filtering technique which works alongwith a space–time kinetics

model of the reactor. However, as stated the attempt to solve the Kalman filtering

problem in a straight forward manner is not successful due to severe numerical ill-

conditioning caused by the simultaneous presence of slow and fast phenomena, typically

present in a nuclear reactor. Hence, a grouping of state variables has been suggested

whereby the original high order model of the AHWR is decoupled into a slow subsystem

and a fast subsystem. Now according to the order of the slow and fast subsystems, the

original time update and Kalman gain equations have also been decoupled into separate

sets of equations for the slow and fast subsystems. The decoupled sets of equations

could be solved easily. The proposed method has been validated in a number of typical

transient situations. Overall accuracy in the estimation using the proposed methodology

has been found very good for mesh fluxes, channel fluxes, quadrant fluxes and the core

average flux.

Objectives of the Thesis

In large nuclear reactors such as the AHWR, the physical dimensions of the core are very

large compared to the neutron migration length. Therefore, operational perturbations

might lead to slow xenon induced oscillations, which might cause changes in axial and

radial flux distributions from the nominal distribution. Knowledge of any such changes

during the reactor operation is crucial and needs to be continuously monitored and

displayed to the operator.
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This task is accomplished by an online Flux Mapping System, which employs a suit-

able algorithm to estimate the core flux distribution from the readings of a large number

of in-core detectors. Most of the algorithms available today employ the Flux Synthesis

method, Internal Boundary Condition method, and the method based on simultaneous

least squares solutions of neutron diffusion and detector response equations. A common

feature of these methods is the assumption that the neutron flux profile in the reactor is

independent of time. An efficient flux-mapping algorithm in AHWR can ensure better

reactor regulation and core monitoring, as more accurate estimates of channel and zonal

powers will be available to the Reactor Regulating System (RRS) and Core Monitoring

System. This thesis proposes a new method of flux mapping. Its main objectives are:

• Development of suitable mathematical model which describes the time-dependent

core neutronics behavior of the AHWR core.

• Development of a stringent nonlinear mathematical model for validation of pro-

posed flux mapping algorithm.

• To design an efficient flux mapping algorithm which accounts the time variation

of neutron flux distribution as well as random noise in detector readings.

• To investigate the applicability of different types of state observers like Kalman

filter for the estimation of 3-D neutron flux distribution.

• Evaluation and application of various model order reduction methods to handle the

numerical ill-conditioning that could arise out of existence of multiple time–scales.

• To examine the effectiveness of the proposed algorithm under different operating

transients of the reactor.

• To evaluate the efficacy of the proposed technique through simulation data.
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Contributions of the Thesis

The contributions of the thesis are as follows:

• The monitoring and control of time-varying axial and radial flux distribution in

operational large reactors is a challenging problem. Although, several researchers

addressed the flux mapping problem of the other reactors with various advanced

algorithms and methodologies, they have a common disadvantage of failing to

account the time variation and loss of accuracy in presence of random errors. The

algorithm suggested in this report is based on Kalman filtering technique which

can take care of both the stated factors.

• For validation of different techniques of flux mapping, computation results gener-

ated using a high fidelity model is a necessity. Hence, a model based on 128-nodes

in the core of the AHWR resulting into 1168th order is developed.

• Different approaches of obtaining reduced order model from the original higher

order estimation model of AHWR viz., Davison’s, Marshall’s, singular perturbation

and balanced truncation techniques have been explored to solve the numerical ill-

conditioning in control analysis and design.

• The concept of application of Kalman filtering theory has been extended to the

near optimal estimation of core flux distribution in AHWR.

• A novel technique has been suggested based on two-time-scale formulation of

Kalman filtering problem for the time-dependent neutron diffusion equation to

near-optimum estimation of the core flux profile in the AHWR.

Organization of the Thesis

The objective of this thesis is to design a flux mapping algorithm for computation of

neutron flux distribution in large nuclear reactors. For this the proposed DKF based

8



Chapter 1. Introduction

algorithm has been applied to the AHWR for different test cases and validated. The

rest of the thesis is organized as follows. Chapter 2 presents the literature survey on

existing flux mapping algorithms, model order reduction, singular perturbation methods

in control analysis and design, modeling of nuclear reactors and Kalman filtering theory.

In chapter 3, brief review of AHWR core configuration; detailed mathematical model-

ing; methods for generating steady–state neutron flux distribution and reconstruction

techniques are given. In chapter 4, theory of model order reduction and algorithmic

approach for some of the model order reduction techniques are presented. In chapter 5,

comparative study of different reduced order models of the AHWR has been presented.

In chapter 6, a two-time-scale approach for discrete-time Kalman filter has been pre-

sented to solve the numerical ill-conditioning occurred in design for computation of 3-D

flux neutron distribution. Its validation has also been illustrated with numerical and

graphical results for the AHWR. Chapter-7 draws the important conclusions from the

work and presents the future scope.
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Literature Survey

This chapter presents the literature survey of various techniques on flux mapping al-

gorithms, model order reduction techniques, singular perturbations and two-time-scale

methods for design and analysis, modeling of nuclear reactors and theory of Kalman

filter. However, this survey is not intended to be exhaustive.

2.1 Flux Mapping Algorithms

Flux mapping algorithms play fundamental role in generating the 3-D neutron flux

distribution from readings of in-core SPNDs. The knowledge of 3-D flux distribution

ensures the safe operation of reactor. In CANDU-6 reactors and in Indian 540 MWe

Pressurized Heavy Water Reactors (PHWR), 102 Vanadium detectors are used for flux

mapping, while in PWRs it is carried out by Rhodium detectors installed in about 45

fuel assemblies. Over the years, research has been carried out to evolve an efficient

flux mapping algorithm for the improvement of accuracy in flux mapping with less

computational effort. Most of the algorithms existing in the literature are based on three

principles, namely the Flux Synthesis, Internal boundary condition and simultaneous

least squares solution of neutron diffusion and detector response equations.

The most popular and traditional method for flux mapping is known as FSM [46].
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It uses the available detector measurements and performs least squares fit with pre-

computed flux modes, determined based on reactivity devices configuration. Deter-

mination of flux modes requires the knowledge of core configuration and considerable

insight into the reactor operation. There are other synthesis methods such as Harmonic

Synthesis Method (HSM) [27, 95] and Harmonic Expansion Method (HEM) [133] to

improve the accuracy of flux mapping, however the accuracy of reconstruction depends

on selection of the reference case. Selection of a suitable reference case which reflects

the actual core condition results in improvement of the reconstruction accuracy. During

the core configuration changes, the reference case has to be renewed, which can be a

time consuming process.

A method based on direct online solution of neutron diffusion equations with detector

readings as the internal boundary condition is reported in [52, 59]. A method which

obtains a least squares solution of the core neutronics design equations alongwith the

in-core detector response equations is reported in [23, 47, 71]. Applicability of this least

squares method requires to solve the overdetermined system of equations resulting in

the framework of mapping algorithm. Another approach with the combination of FSM

and least squares method, known as modified flux synthesis method has been proposed

for Indian 700 MWe PHWR in [80]. This method takes longer computation time than

FSM does [47] and detector signal uncertainty can also deteriorate the performance of

flux mapping calculations. Several other approaches for flux mapping have also been

proposed. Among them a few are: Rational mapping [7], Statistical framework based

on Kalman filter and maximum likelihood estimation techniques [8], combination of

harmonic synthesis and least squares approach [136], ordinary krigging method [92], etc.

As already stated, the traditional FSM method and other synthesis methods such

as HEM, HSM, etc., have some inherent deficiencies such as pre-computation of flux

modes requiring detailed knowledge about the core configuration, considerable insight

into the reactor operation, and selection of the reference case, which needs to be renewed.

Therefore, they may not be feasible for on-line monitoring. They cannot calculate the
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time dependent neutron flux distribution during the reactor operation and the accuracy

might be degraded considerably in presence of uncertainty in the detector readings.

Hence, a new algorithm which does not require pre-computation of flux modes, and

which accounts for the time variation as well as random noise in detector measurements

would be an attractive alternative.

With this motivation we have attempted Discrete-time Kalman filter (DKF) formu-

lation for flux mapping which is quite different from the existing methods as it can take

care of both time varying phenomena and random errors in the detector readings.

2.2 Model Order Reduction

Description of large-scale systems by mathematical models involves a set of differential

or difference equations. These models can be used to simulate the system response and

predict the behavior. Sometimes, these mathematical models are also used to modify or

control the system behavior to conform with certain desired performance. In practical

control engineering applications with the increase in need for improved accuracy these

mathematical models lead to high order and complexity [2]. In many situations, high-

order, complex mathematical models accurately represent the problem at hand, but

are unsuitable for the desired application; for instance, for analysis, optimization or

for control design. Ideally, control engineer would like to develop a model with low

number of states but it should capture the system dynamics accurately over a range of

frequencies and forcing inputs.

On the other hand, well established modern control concepts which are valid for

any system order may not give fruitful control algorithms in control design. Moreover,

working with very high order, high-fidelity model involves computational complexity

and need for high storage capability. Sometimes, the presence of small time constants,

masses, etc. may give rise to an interaction among slow and fast dynamic phenomena

with attendant ill-conditioning or stiff numerical problems [65]. When analyzing and
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controlling these large–scale dynamic systems, it is extremely important to look for and

to rely upon efficient simplified reduced order models which capture the main features

of the full order complex model.

In control engineering, model order reduction techniques are fundamental both to

facilitate the design of controller/observer where particular numerically heavy proce-

dures are involved (optimal control, adaptive control, H-infinity based methodologies,

filtering techniques), and to obtain low-order controllers with which to reduce hardware

requirements. In fact, from a high-order model, a low-order model must be obtained so

as to be able to design a low-order controller/observer.

An overview of model order reduction methods across the broad spectrum of ap-

proaches indicates the following scenarios. There are different approaches for model or-

der reduction of large-scale systems, the major difference being the representation/domain

of the model: either frequency or time. All the model order reduction techniques provide

high fidelity, low-order models, which are used for the modern control design applica-

tions. The model reduction techniques differ from one another by the type of model used

for approximation, whether it belongs to frequency domain or time domain. However,

this may not be crucial since it is easy to change the model representation domain.

The main reasons for obtaining low-order models are as follows [25]:

1. To have low-order models so as to simplify the understanding of a system.

2. To reduce computational efforts in simulation problems.

3. To decrease computational efforts and so make the design of the controller/observer

numerically more efficient.

4. To obtain simpler control laws and simple control structure.

The model order reduction philosophy is a common procedure in engineering prac-

tice. The concept originated way back in 1892 with the introduction of Padé approxi-
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mation but the interest of researchers was spurred only after the work of Rosenbrock on

distillation columns [97].

In the last five decades considerable attention was devoted to the problem of de-

riving reduced-order models for complex large-scale systems, without any reference to

particular system structure (MIMO-SISO). Davison [14] proposed one of the first model

reduction techniques. The principle of this method is to neglect eigenvalues of the orig-

inal system which are farthest from the origin and retains only dominant eigenvalues.

Hence, the time constants of the original system will be in the reduced order model. This

implies that the overall behavior of the reduced-order model will be very much similar to

the original model. Because, the contribution of unretained eigenvalues are important

only at the beginning of the response, whereas the eigenvalues retained are important

throughout the whole response. As pointed out subsequently by Chidambara [17], the

method does not provide for steady-state agreement between the dominant state vari-

ables of the original and reduced models. Further arguments of Chidambara and Davi-

son [15, 16] led to several variations of Davison’s original approach: Chidambara’s first

method, Chidambara’s second method and Davison’s ‘first-modified’ method. Later,

Davison [18] proposed ‘second-modified’ method. Simultaneously, Marshall [77] devel-

oped a technique which preserves the steady-state of the original system by exciting the

modes in the reduced model differently from those in the original system.

Aoki [3] proposed another systematic method to approximate the large-scale dynamic

systems by generalizing the concept of aggregation. Further, Siret et al. [120] proposed

an algorithm for obtaining the best possible approximate model by minimizing the error

criterion which results in optimal aggregation matrix as the solution of linear matrix

equation. Later, Fossard [26] proposed a modification to Davison’s original method

which ensures both initial and final (steady-state) agreement between the original and

reduced models. Several additional techniques have been developed later and the review

paper of Genesio and Milanese [35] indicates all the techniques. However, they represent
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minor extensions to one or another of the procedures mentioned above.

It is of central concern to determine the number and choice of modes to be retained in

the reduced order model. However, aforesaid methods did not provide any information

on selection of eigenvalues to be retained. Therefore, attempts in this direction have been

made to select the size of the reduced order model using reduction techniques: Davison,

Marshall, and Chidambara where satisfactory dynamic and steady-state responses are

desired. Mahapatra [74, 75], Iwai and Kubo [51], Elrazaz and Sinha [20], Enright and

Kamel [22], Litz [73], Gopal et al. [39] proposed various modal techniques. These

methods are optimal in the sense that the integral of the square of the errors between

the dominant state variables in the original and approximate models is minimized.

For the state-space models, another model reduction scheme based on the assess-

ment of degree of reachability and observability, which is well grounded in theory and

most commonly used is the so-called balanced truncation first introduced by Mullis and

Roberts [82] and later extended to systems and control literature by Moore [81]. In or-

der to obtain the original system in balanced form [94], its basis should be transformed

into another basis where the states which are difficult to reach are difficult to observe.

It can be achieved by simultaneously diagonalizing the reachability and the observabil-

ity Gramians [70], which are the solution to reachability and observability Lyapunov

equations. The positive decreasing diagonal entries in the diagonal reachability and ob-

servability Gramians in the new basis are called Hankel singular values of the system.

The reduced order model is obtained simply by truncation of the states corresponding

to the smallest singular values. The number of states that can be truncated depends

on how accurate the approximate model is needed. There are some other techniques

to obtain the balanced truncation viz., optimal Hankel norm approximation [38], Schur

method [98], balanced square root method [132] similar to [81], however, they differ in

the algorithms to obtain the balancing transformation.
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The aforesaid methods can be efficiently applied when the system is asymptotically

stable and minimal, however, for the systems where the stabilization is the major concern

their straightforward application is not possible. Balanced truncation for stable nonmin-

imal systems has been attempted in [131]. Balanced truncation for unstable systems has

also been attempted in [5, 57, 99]. Usually unstable poles cannot be neglected, therefore

model reduction in this situation can be treated by first separating the stable and un-

stable parts of the model and then reducing the order of the stable part using balanced

truncation methods. Pertinent literature survey on balanced truncation methods and

obtaining balanced transformation procedure can be found in [2, 5, 42, 93]. Balanced

truncation is probably the most popular projection and Singular Value Decomposition

(SVD) based method. Moment Matching (MM), known as Krylov Methods, such as

Lanczos method, Arnoldi method, etc., combination of SVD and MM, known as SVD-

Krylov Methods are also available for model order reduction. A good review of these

methods has been presented in [2]. Enns [21] has extended the balanced truncation

scheme to the frequency weighted case by modifying the controllability/observability

Gramians to reflect the presence of the input/output weights. A review of frequency

weighted balanced model reduction techniques has been presented in [36].

In frequency domain approach also, several methods have been reported for model

order reduction. Among them, the important methods are Padé approximations [106],

Routh approximations [49], moment matching techniques, Padé and modal analysis

[107], continued fraction [10], and combination of Routh stability criterion and Padé

approximation [108]. Other contributions for model order reduction of discrete time

models can be found such as continued fraction/Padé approach [45, 105], LMI based

approaches [40], multi-point continued fraction and Padé approximations [72], stability

preserving methods [11, 109], optimal approaches [45]. A good review on the available

techniques can also be found in [2, 25, 89, 121, 128].
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2.3 Singular Perturbation Theory and Time–Scale

Methods

Singular perturbation theory/techniques have been a traditional tool of fluid dynamics

the modeling, analysis and design of control systems [60]. Their use has spread to

other areas of mathematical physics and engineering, where the same terminology of

“boundary layers” and “inner” and “outer” matched asymptotic expansions continued

to be used. In control systems, boundary layers are a characteristic of system’s two-

time scale behavior. They appear as initial and terminal “fast transients” of state

trajectories and represent the “high-frequency” parts of the system response. High-

frequency and low-frequency models of dynamical systems such as electrical circuits

etc., which have had a long history of their own, are naturally incorporated in the time-

scale methodology. Singular perturbation theory also includes diverse problem-specific

applications. For robotic manipulators, the slow manifold approach has been employed

to separately design the slow (rigid system) dynamics and the fast (flexible) transients.

Electric machines, power systems and nuclear reactor systems have been the areas of

major applications of multi-time scale methods for aggregate (reduced order) modeling

and transient stability studies. Singular perturbations are continue to be among the

frequently used tools in nuclear reactor kinetics and also in flight dynamics etc.

The versatility of singular perturbation methods is due to their use of time–scale

properties, common to both linear and nonlinear systems. However, this survey reviews

the most special class of linear dynamical systems which are known as singularly per-

turbed systems. These are characterized by the presence of slow and fast variables, in

the dynamics of many real–time systems such as power systems, nuclear reactor etc.

Mathematically, the slow and fast phenomena are characterized by small and large time

constants, or by system eigenvalues that are clustered into two disjoint sets. The slow

system variables corresponds to the set of eigenvalues closer to the imaginary axis, and

the fast system variables are represented by the set of eigenvalues that are far from the
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imaginary axis.

Singular perturbations and time–scale techniques were introduced to control engi-

neering in the late 1960s and have since become common tools for modeling, analysis

and design of control systems for a variety of applications including state feedback, out-

put feedback, Kalman filter and observer design. These techniques were first applied

to optimal control and regulator design by Kokotovic et.al. [66]. Modeling of singu-

larly perturbed continuous and discrete–time systems is presented in [125]. Singularly

perturbed systems and time-scale methods have been studied extensively in last five

decades [60, 62, 64]. Survey of singular perturbations and time scale methods in control

theory and applications prior to 2001 has been presented in [65, 87, 102]. A more recent

review of singular perturbations and time-scale methods in control theory and applica-

tions such as optimal control, robust control, fuzzy control, network control, H2/H∞

control, stability analysis, numerical algorithms and other control problems during the

period 2002-2014 has been presented in [135].

Singular perturbation methods are also useful for model order reduction. The or-

der reduction procedure and its validation for both linear and nonlinear systems can

be found in [65]. The approach makes use of the standard singularly perturbed form

representation of dynamic systems in which the derivatives of some state variables are

multiplied with a small positive scalar, ε. The model reduction is achieved by setting

ε = 0 and substituting the solution of states whose derivatives were multiplied with ε,

in terms of the other state variables. Essentially the singular perturbation approach to

order reduction can be related to the “dominant mode” technique [14, 15, 16, 17, 18, 77]

which neglect the “high frequency” parts and retain “low frequency” parts of models.

In application, models of physical systems are put in the standard singularly perturbed

form by expressing small time constants, small masses, large gains, etc., in terms of ε.

In power system models, ε can represent machine reactances or transients in voltage

regulators; in industrial control systems it may represent time constants of drives and

actuators; and in nuclear reactor models it is due to prompt neutrons [128]. Singular
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perturbations are extensively used in aircraft and rocket flight models and in chemi-

cal reaction diffusion theory. Many order reduction techniques can be interpreted as

singular perturbations [48, 104]. An alternate approach for the study of singularly per-

turbed linear systems with multi parameters and multi–time scales is given by Ladde

et.al. [68, 69]. Detailed exposition of applications of singular perturbation analysis and

time–scale methods in various fields has been given in [87].

Explicit decoupling transformations play very important role in the singularly per-

turbed systems containing small parameters. Under certain, usually very mild condi-

tions, these transformations allow the linear system decomposition into independent

two reduced-order subsystems viz. slow and fast. The decoupling transformation for

linear singularly perturbed continuous–time varying systems is introduced in [9]. Re-

cursive methods for linear singularly perturbed continuous–time invariant systems are

presented in [12, 32, 63] and for discrete–time systems in [76] , in the spirit of parallel

and distributed computations and parallel processing of information in terms of reduced

order, independent, approximate slow and fast filters. These recursive techniques are

also applicable to almost all areas of optimal control theory, in context of continuous

and discrete–time, deterministic and stochastic singularly perturbed systems.

The procedure used for the time–scale decomposition of the algebraic Riccati equa-

tion into pure-slow and pure-fast algebraic Riccati equations facilitates a new insight

into optimal filtering and control problems of linear systems [29]. The filtering problem

for linear singularly perturbed continuous-time systems has been well documented in

control theory literature [28, 32, 43, 44, 58, 62]. In [43, 44], a sub optimal slow and fast

Kalman filters were constructed for the estimates of the state trajectories. In [32, 58],

both the slow and fast Kalman filters are obtained using Taylor series [58] or fixed-point

iterations [28] to calculate the corresponding filter parameters. The singularly perturbed

discrete–time Kalman filter has been studied in [31, 55, 96]. The approaches presented

in [55, 96] are based on the power series expansion. The recursive approach presented in

[31], based on fixed-point iterations to the discrete-time filtering of singularly perturbed

19



Rajasekhar. A: Computation of Neutron Flux Distribution in Large Nuclear Reactors
via Reduced Order Modeling

systems achieves high accuracy for estimation. However, slow and fast filters are driven

by the innovation process so that the additional communication channels have to be used

in order to construct the innovation process. The results presented in [31] have been

improved in [30] by deriving the pure-slow and pure-fast, reduced order, independent

Kalman filter driven by system measurements. The method presented in [30] is based on

exact decomposition of the global singularly perturbed algebraic filter Riccati equation

into the pure-slow and pure-fast local algebraic filter Riccati equations.

It is well known that physical systems like nuclear reactor exhibit simultaneous dy-

namics of different speeds. Model decomposition based on singular perturbation and

time–scale methods for controller design for reactors have also been applied for PHWR

in [129, 130] and for AHWR in [83, 84, 85, 111, 112]. Singular perturbation methods in

Kalman filter design are reported in [55, 67, 90, 96, 110].

2.4 Modeling of Nuclear Reactors

Large sized nuclear reactors are preferred to achieve economic power production. How-

ever, large sized reactors may show spatial instability [114, 128], i.e., these reactors

experience deviation in power distribution under certain transients. Their characteris-

tics also change with fuel burn-up and operating power level. Therefore, analysis and

control of neutron flux variation with respect to time within the reactor core is required.

Usually, the variations are associated with long or short term changes induced by nat-

ural perturbations or imposed transients. For the analysis and control of the reactor

under these transients and for ensuring safety and economy of operation, mathematical

models need to be developed.

Nuclear reactors of small and medium size are generally described by the point-

kinetics model, which characterizes every point in the reactor by an amplitude factor

and a time dependent spatial shape function [37]. A major limitation of this model is that

it cannot provide any information about the spatial flux/power distribution inside the
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reactor core, and it is not valid in case of large reactors because the flux shape undergoes

appreciable variation with time. Therefore, explicit consideration of the variation of the

flux shape becomes necessary.

The central problem in analysis of large nuclear reactors is the determination of the

spatial flux and power distribution in the reactor core under steady-state as well as

transient operating conditions. There is, however, a considerable variation in the degree

of accuracy and spatial details of the power distribution required in different facets of

reactor analysis and design. Basically, the behavior of neutrons in a nuclear reactor is

adequately described by the time-dependent Boltzmann transport equation [19]. How-

ever, numerical solutions of the coupled time-dependent transport and delayed neutron

precursor’s equations for reactor kinetics problems of practical interest are prohibitively

difficult. So, approximate methods using the time-dependent group diffusion equations

are employed. These methods can broadly be classified as space-time factorization meth-

ods, modal methods and direct methods [124].

Space–time factorization methods involve a factorization of the space and time de-

pendent flux into a product of two parts. One part, called amplitude function, depends

only on the time variable whereas the second part, called shape function, includes all of

the space and energy dependence and is only weakly dependent on time [50, 91].

Modal methods, on the other hand, utilize an expansion of the flux in terms of

precomputed time-independent spatial distributions through a set of time-dependent

group expansion coefficients [123]. Another class of spatial methods called synthesis

methods, which are almost equivalent to modal methods, are also prevalent. These

methods use expansion functions that are static solutions of the diffusion equation for

some specified set of initial conditions. Synthesis methods can often yield acceptable

accuracy with a smaller number of expansion functions. However, selection of expansion

functions for synthesis methods requires considerable experience.

Direct space–time methods solve the time-dependent group diffusion equations by

partitioning the reactor spatial domain into a finite number of elemental volumes,
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thereby obtaining spatially discretized forms of the coupled diffusion and delayed neutron

precursors equations. Direct methods are further classified as finite difference methods,

coarse-mesh methods and nodal methods [124]. In each of these methods, the reactor

spatial domain is discretized by superimposing a computational mesh and the material

properties are treated as uniform within each mesh box. Another method is the Finite

Element Method (FEM) in which the group flux is approximated as the sum of multi-

dimensional polynomials that are identically zero everywhere outside some elemental

volume, or as higher order polynomials thereof [41].

Application of FEM and finite difference methods requires a relatively fine mesh

to ensure accuracy, which makes them computationally intensive. On the contrary,

coarse-mesh methods assume that the reactor may be adequately described by a model

consisting of homogeneous regions that are relatively large. Determination of the multi-

dimensional flux distribution within a mesh box is an integral part of the solution process.

Like coarse-mesh methods, nodal methods also consider the division of the reactor

core into relatively large, non-overlapping nodes. However, direct results of the solution

process are often the node averaged fluxes. These methods generally demand additional

relationships between the face averaged currents and the node averaged fluxes, often

denoted as coupling parameters. The coupling parameters can be obtained from accurate

reference calculations to relate the node interface averaged currents to the node averaged

fluxes [56]. A nodal model with finite difference approximation of multi-group diffusion

equation has been developed for PHWR [128].

AHWR is a large nuclear reactor which requires a space–time kinetics model for

accurate representation of the time dependent neutron flux behavior. In [116], a nodal

model for AHWR, which exhibits all the essential control related properties and yields

accurate response characteristics is developed. The same model is reformulated in terms

of neutron flux equations in [101]. This model is more suitable for flux distribution

studies in AHWR owing to its simplicity and structure, thus facilitating selection of

state variables for the system in a straightforward manner. Nodal methods have been
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used extensively for the analysis and simulation of Light Water Reactors and control

system design of PHWR [126, 128]. Nodal methods have also been used for designing

advanced controllers for AHWR [85, 111, 112, 115].

2.5 State Estimation and Theory of Kalman Filter-

ing

Many real–time processes require to measure a large number of system state variables

so as to own a sufficient quantity and quality of information on the system state and

to ensure the required level of performance. However, the measurement of such a large

number of physical states may not desirable as it indirectly decreases the reliability

of the system and measurement of some physical states may not be possible directly.

Sometimes, number of measurements are also limited to keep the failure rate minimum

and to increase the reliability of the system. In this context, state estimation theory has

played a major role in many applications, including without being exhaustive, trajectory

estimation, state prediction for control or diagnosis, data merging and so on.

The state of a dynamical system is a set of variables that provide a complete rep-

resentation of the internal condition or status of the system at a given instant of time

[117]. When the state is known, the evolution of the system can be predicted if the

excitations are known. Another way to say the same is that the state consists of system

variables that prescribe the initial condition. When a model of the physical system is

available, its dynamic behavior can be estimated for a given input by solving the dynam-

ical equations. However, if the physical system is subjected to unknown disturbances

and is partially instrumented, the response at the unmeasured degrees of freedom is

obtained using state estimation. It is applicable to virtually all areas of engineering and

science. Any discipline that is concerned with the mathematical modeling of its systems

is a likely (perhaps inevitable) candidate for state estimation. This includes electri-
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cal engineering, mechanical engineering, chemical engineering, aerospace engineering,

robotics, economics, ecology, biology, and many others. The possible applications of

state estimation theory are limited only by the engineer’s imagination, which is why

state estimation has become such a widely researched and applied discipline in the past

few decades.

Estimation is the process of extracting information from all the data: data which

can be used to infer the desired information and may contain errors. Modern estimation

methods use known relationships to compute desired information from the measure-

ments, taking account of measurement errors, the effects of disturbances and control

actions on the system, and prior knowledge of the information. Diverse measurements

can be blended to form “best” estimates, and information which is unavailable for mea-

surement can be approximated in an optimal fashion [34].

The theory of state estimation originated with least squares method essentially es-

tablished by the early 1800s with the work of Gauss [33]. The mathematical framework

of modern theory of state estimation originated with the work of Wiener in the late

1940s, [134]. The field began to mature in the 1960’s and 1970’s after a milestone con-

tribution was offered by R. E. Kalman in 1960 [53], which is very well-known as the

Kalman filter. The Kalman filter is a recursive data processing algorithm, which gives

the optimal state estimates of the systems that are subjected to stationary stochastic

disturbances with known covariances.

Kalman filtering is an optimal state estimation process applied to a dynamical system

that involves random perturbations. More precisely, the Kalman filter gives a linear,

unbiased, and minimum error variance recursive algorithm to optimally estimate the

unknown state of a dynamic system from noisy data taken at discrete-time intervals. It

has been widely used in many industrial applications such as tracking systems, satellite

navigation, and ballistic missile trajectory estimation etc. With the recent advances in

high speed computing technology, DKF has become more useful for real-time complex

applications. Some applications of Kalman filter to nuclear reactor systems can be found
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in [6, 79].

The derivations for the Kalman filter and required mathematical background have

been presented many times in the literature [34, 78, 117, 122]. Instead of reiterating

these derivations, the basic algorithm has been presented in a later chapter.

2.5.1 Numerical ill-conditioning in Kalman Filters

Kalman filter design for high dimensional systems having interaction phenomena of slow

and fast dynamics tends to suffer from numerical ill-conditioning [127]. Least squares

problem generally gives rise to particularly ill-conditioned matrix inversion problems.

Considering that Kalman filter is simply a recursive solution to a certain weighted least

squares problem, it is not surprising that Kalman filter tends to be ill-conditioned. An

awareness of ill-conditioning of Kalman filter was achieved after the nontrivial applica-

tions of [24] and [103]. Fine exposition of this computational difficulty has been given

in [54] and detailed discussion has been given in [13].
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Mathematical modeling of

Advanced Heavy Water Reactor

3.1 Brief description of the AHWR

In India, the AHWR is being designed to utilize the large amounts of thorium reserves

with the objective of commercial power generation to provide the long term energy

security of the nation [119]. Thorium in its natural state does not contain any fissile

isotope as uranium does, therefore the AHWR utilizes enriched mixed oxide fuels such

as uranium-thorium and plutonium-thorium. The current design of the AHWR is of 920

MW (thermal), vertical, pressure tube type, heavy water moderated and boiling light

water cooled thermal reactor. Its core is surrounded by a low pressure reactor–vessel

called calandria containing heavy water which acts as moderator and reflector. It relies

on removal of the heat generated in the fuel by natural circulation of the coolant.

The AHWR is much like the PHWR, in that they share similarities in the concept

of the pressure tubes and calandria tubes, but the tube’s orientation in the AHWR is

vertical, unlike that of the PHWR. The reactor design incorporates advanced technolo-

gies, together with several proven positive features of Indian PHWRs. These features

include pressure tube type design, low pressure moderator, on-power refueling, diverse
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Figure 3.1: AHWR Core with reactivity devices and ICDH Locations

fast acting shut-down systems, and availability of a large low temperature heat sink

around the reactor core. The AHWR incorporates several passive safety features. These

include: Core heat removal through natural circulation; direct injection of emergency

core coolant system (ECCS) water in fuel; and the availability of a large inventory of

borated water in overhead gravity-driven water pool (GDWP) to facilitate sustenance

of core decay heat removal.

The active core region of the AHWR is radially divided into three regions, with
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Table 3.1: Dimensional details of the AHWR core

S.No Aspect Dimension (mm)
1 Lattice pitch in the core region 225
2 Active core height 3500
3 Reflector thickness (D2O)–axial 750
4 Reflector thickness (D2O)–radial 600
5 Inner diameter of the main shell of Calandria 6900
6 Inner diameter of the sub-shell of Calandria 6300
7 Inner diameter of Pressure tube 120
8 Outer diameter of Calandria tube 168

burn–up decreasing towards the periphery of the core and has 513 lattice locations. Out

of these, 452 are occupied by fuel assemblies and the remaining 61 by control rods.

These control rods include: 8 Regulating Rods (RRs), 8 Absorber Rods (ARs) and 8

Shim rods (SRs); and 37 shut-off rods. RRs are used to regulate the rate of nuclear

fission, ARs and SRs, fully inside and outside the core respectively are used to meet the

reactivity demands beyond the worth of RRs. Dimensional details of AHWR core are

given in the Table 3.1. Fig. 3.1 shows the lattice layout of AHWR in which various

control rods, burn-up regions, fuel elements and neutron detector locations are shown.

The large radial dimensions turn the neutronic behavior of the AHWR core to be

loosely coupled due to which a serious situation called ‘flux-tilt’ may arise followed by

operational perturbations. These operational perturbations might lead to slow xenon-

induced oscillations, which might cause changes in axial and radial flux distribution

from the nominal distribution. An online FMS is provided in AHWR for the purpose of

monitoring spatial transients due to on-power refueling operations and reactivity device

movements. To monitor the time varying flux distribution in the reactor core 200 SPNDs

are proposed to be provided [1]. In–Core Detector housings (ICDHs) located at 32 inter–

lattice locations, accommodate these SPNDs which are used for thermal neutron flux

measurements. These locations are selected so as to obtain the maximum sensitivity of

the flux mapping, i.e., peaks of significant harmonics. Each ICDH oriented vertically

and surrounded by four fuel channels inside the calandria houses the 200 SPNDs. These
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(a) AHWR Core layout with ICDH Locations
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 ----- Reflector Region
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bottom
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 ----- SPND

 ----- Core Region

Core

top

end

(b) Placement of SPNDs in
ICDH

Figure 3.2: AHWR core layout (schematic).

SPNDs are placed at different elevations of the assembly covering entire AHWR core

from top to bottom. Fig. 3.2 (a) shows the layout of AHWR core. Fig. 3.2 (b) shows

the housing of 7 detectors in one of those intra-lattice locations, in which Z1,Z2, . . . ,Z7

indicate the locations where SPNDs have been proposed to be placed. Placement of 200

SPNDs is given in Table 3.2.

The measurement signals of these SPNDs are processed by online FMS with the

help of flux mapping algorithm to generate the detailed 3-D flux map, which helps for

spatial control purpose. An efficient flux mapping algorithm in the AHWR can ensure

better reactor regulation and core monitoring, as more accurate estimates of channel

and zonal powers will be available to RRS and Core Monitoring System. In this thesis,

model based estimation method has been proposed using Kalman filtering algorithm

for the design of flux mapping algorithm. For this, suitable mathematical model which

represents the time-dependent core neutronics behavior of AHWR core is derived in the

following section.
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Table 3.2: Placement of 200 SPNDs in 32 ICDHs [100]

ICDH Layer No. No. of
No. Z1 Z2 Z3 Z4 Z5 Z6 Z7 SPNDs

1 D1 - D41 D73 D105 D137 D169 6
2 D2 - D42 D74 D106 D138 D170 6
3 D3 - D43 D75 D107 D139 D171 6
4 D4 - D44 D76 D108 D140 D172 6
5 D5 D33 D45 D77 D109 D141 D173 7
6 D6 - D46 D78 D110 D142 D174 6
7 D7 - D47 D79 D111 D143 D175 6
8 D8 D34 D48 D80 D112 D144 D176 7
9 D9 - D49 D81 D113 D145 D177 6
10 D10 - D50 D82 D114 D146 D178 6
11 D11 - D51 D83 D115 D147 D179 6
12 D12 - D52 D84 D116 D148 D180 6
13 D13 D35 D53 D85 D117 D149 D181 7
14 D14 D36 D54 D86 D118 D150 D182 7
15 D15 - D55 D87 D119 D151 D183 6
16 D16 - D56 D88 D120 D152 D184 6
17 D17 - D57 D89 D121 D153 D185 6
18 D18 - D58 D90 D122 D154 D186 6
19 D19 D37 D59 D91 D123 D155 D187 7
20 D20 D38 D60 D92 D124 D156 D188 7
21 D21 - D61 D93 D125 D157 D189 6
22 D22 - D62 D94 D126 D158 D190 6
23 D23 - D63 D95 D127 D159 D191 6
24 D24 - D64 D96 D128 D160 D192 6
25 D25 D39 D64 D97 D129 D161 D193 7
26 D26 - D66 D98 D130 D162 D194 6
27 D27 - D67 D99 D131 D163 D195 6
28 D28 D40 D68 D100 D132 D164 D196 7
29 D29 - D69 D101 D133 D165 D197 6
30 D30 - D70 D102 D134 D166 D198 6
31 D31 - D71 D103 D135 D167 D199 6
32 D32 - D72 D104 D136 D168 D200 6
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3.2 Space–time kinetics modeling of AHWR

The central problem in the reactor analysis is the determination of the spatial flux and

power distribution in the reactor core under steady–state as well as transient operating

conditions as these minute details have significant importance in reactor control. The

first and foremost difficulty in operation and control of large thermal nuclear reactors

such as the AHWR is the development of suitable mathematical model for analysis. As

already stated, reactors with small core size are adequately represented by the well-

known point kinetics model. In large reactor core, the flux shape undergoes nonuniform

variations which the point kinetics model fails to capture.

The behavior of neutrons in the reactor is adequately described by the time–dependent

Boltzman transport equation. However, the numerical solution of the coupled time–

dependent transport and delayed neutron precursor’s equations for reactor kinetics stud-

ies may not be feasible. In recent times, multi-point kinetics or nodal models have been

extensively used for the analysis and simulation of Light Water Reactors and control

design of large thermal reactors such as the PHWR and AHWR. In the following sub-

sections, a reasonably accurate space–time kinetics model which describes the time–

dependent neutronics behavior of the AHWR core has been derived. It can be used

for the purpose of estimation of neutron flux using DKF based flux mapping algorithm.

This mathematical model is more suitable for flux distribution studies owing to its sim-

plicity and the structure, thus facilitating selection of state variables for the system in

a straightforward manner. It assumes that the reactor spatial domain is divided into

relatively large number of rectangular parallelopiped shaped regions called nodes which

are coupled through neutron diffusion. Neutron flux and other parameters in each node

are represented by homogenized values integrated over its volume and the degree of

coupling among these nodes is given by coupling coefficients.
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Figure 3.3: 17 Node scheme of AHWR for (a) the active core region (17 nodes in core
and 8 nodes in side reflector) (b) top reflector region and (c) bottom reflector region.
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3.2.1 Time–dependent core neutronics equations

The neutrons released in fission process have energies spanning the range from 10 MeV

down to less than 0.01 eV . High energy neutrons are slowed down by various interactions

viz., absorption, scattering and fission with the atomic nuclei until they are thermalized.

These interactions are characterized by the probability of occurrence of a particular

neutron-nuclear reaction called cross section and depends significantly on neutron energy.

It is impractical in reactor analysis to treat the neutron energy as a continuous variable,

therefore the energy range of interest is divided into a finite number of discrete groups.

In actual practice, one usually works with 2 to 20 groups in reactor calculations [19, 123].

However, for thermal reactor analysis it is adequate to work with two group neutron

fluxes.

In order to derive the time–dependent core neutronics equations, the AHWR core is

considered to be divided into 17 nodes as shown in Fig. 3.3(a). The top and bottom

reflector regions are divided into 17 nodes each, in identical manner as the core as shown

in Fig. 3.3(b) and Fig. 3.3(c) respectively, whereas the side reflector is divided into 8

nodes, giving 59 nodes in all.

AHWR operates with a slightly harder spectrum in the epithermal region and the

contribution of up-scattering, though small, needs to be accounted. It is assumed that

all the fission neutrons are generated as the fast neutrons. The nodal model of AHWR

can be derived from the multigroup neutron diffusion equations with the help of two

group equation and the associated equations for delayed neutron precursors’ equations.

It is illustrated in the following:

1

υ1

∂φ1

∂t
= ∇D1∇φ1−Σa1φ1−Σ12φ1+Σ21φ2+(1−β)(νΣf1φ1+νΣf2φ2)+

md∑
i=1

λiCi, (3.1)

1

υ2

∂φ2

∂t
= ∇D2∇φ1 − Σa2φ2 + Σ12φ1 − Σ21φ2, (3.2)

∂Ci
∂t

= βi(νΣf1φ1 + νΣf2φ2)− λiCi, i = 1, 2, ...,md, (3.3)
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where the subscripts 1 and 2 represents the parameters of fast and slow (thermal) group

neutron fluxes. υg, φg, Dg, Σag and Σfg respectively denote mean velocity of neutrons,

neutron flux, diffusion coefficient, absorption cross section, fission cross section for energy

group-g, g =1,2. Σ12 and Σ21 are the scattering cross sections from group-1 to group-2

and from group-2 to group-1 respectively. ν is the average number of fission neutrons

and md = 6 is the total number of delayed neutron precursor groups. Ci, βi and λi

are the concentration, fraction and decay constant of delayed neutrons of ith group

precursors. β is the effective fraction of delayed neutrons, β =
∑md

i=1 βi.

The neutron fluxes φ1 and φ2 are functions of both space co–ordinates and time and

parameters D1, D2, Σa1, Σa2, Σf1 and Σf2 are different for different locations and are

given in Table 3.3. Now consider dividing the reactor into a number of small coarse

mesh boxes (nodes). Within each mesh box, the neutron fluxes and other parameters

are represented by the respective average values integrated over its volume. Then the

neutron leakage from terms in (3.1) and (3.2) can be approximately given as

∇D1∇φ1 ' D1∇2φ1|h, (3.4)

∇D2∇φ2 ' D2∇2φ2|h, (3.5)

where h indicates a representative mesh box.

The net rate of fast neutron flow from a node h to its neighbour node k can be

written as

D1
d2φ1

du2
Vh = JuAhk, (3.6)

where Vh denotes the volume of box h and Ahk is the area of interface between the boxes

h and k, perpendicular to the flow of neutron current. Ju denotes the neutron current

density in the direction u. Using Fick’s law, the above equation can be manipulated to

obtain

D1
d2φ1

du2
=
Ahk
Vh

D1
dφ1

du
=
D1Ahk
Vh4hk

[−φ1h + φ2k ], (3.7)
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where 4hk denotes the centre to the centre distance between the two nodes. Based on

the above, an approximation for the leakage terms in (3.4) and (3.5) could be

D1∇2φ1|h = −ω1hhφ1h +

Nh∑
k=1

ω1hkφ1k, (3.8)

D2∇2φ2|h = −ω2hhφ2h +

Nh∑
k=1

ω2hkφ2k, (3.9)

where

ωghk =
DgAhk
Vh4hk

and ωghh =

Nh∑
k=1

ωghk, g = 1, 2, (3.10)

and Nh is the total number of neighboring nodes to Node h. Substituting (3.7) to (3.9)

in (3.1) and (3.2), we have

1

υ1h

∂φ1h

∂t
= −ω1hhφ1h +

Nh∑
k=1

ω1hkφ1k − (Σa1hφ1h + Σ12hφ1h)

+Σ21φ2 + (1− β)(νΣf1hφ1h + νΣf2hφ2h) +

md∑
i=1

λiCi, (3.11)

1

υ2h

∂φ2h

∂t
= −ω2hhφ2h +

Nh∑
k=1

ω2hkφ2k − Σa2hφ2h + Σ12hφ1h − Σ21φ2. (3.12)

Adding (3.11) and (3.12), and defining one group flux φh = φ1h + φ2h,

ωhh =
ω1hh + ω2hhRh

(1 +Rh)
; ωhk =

ω1hk + ω2hkRh

(1 +Rh)
; Σah =

Σa1h + Σa2hRh

(1 +Rh)
; (3.13)

Σfh =
Σf1h + Σf2hRh

(1 +Rh)
; vh =

(1 +Rh)
1
v1

+ Rh

v2

; Rh =
φ2h

φ1h

(3.14)

we get

1

υh

∂φh
∂t

= −ωhhφh +

Nh∑
k=1

ωhkφk − Σahφh + (1− β)νφhΣfh +

md∑
i=1

λiCi, (3.15)
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Equation for variation in delayed neutron precursor density with time can be written as

dCih
dt

= βiνφhΣfh − λiCih. (3.16)

Further by defining prompt neutron life time `h, multiplication factor Kh and reactivity

ρh as

`h =
1

Σahvh
; Kh =

νΣfh

Σah

and ρh =
Kh − 1

Kh

, (3.17)

we get

dφh
dt

= −ωhhυhφh +

Nh∑
k=1

ωhkυhφk + (ρh − β)
φh
`

+

md∑
i=1

υhλiCih, h = 1, 2, ...Zp, (3.18)

dCih
dt

=
βiφh
υh`h

− λiCih, i = 1, 2, ...md, (3.19)

where ωhk and ωhh respectively denote the coupling co-efficients between kth and hth

nodes and self coupling coefficient of hth node. The set of nonlinear equations (3.18) and

(3.19) represents the core neutronics model of the AHWR without internal feedbacks,

where Zp=17 is the number of nodes in the core region. Fission reactions do not take

place in reflector region, however the neutron leakage to reflector needs to be taken into

account. Thus, for the nodes in the reflector region, the flux variation taking place can

be described as

dφh
dt

= −ωhhυhφh +

Nh∑
k=1

ωhkυhφk, h = Zp + 1, .., Zp + Zr. (3.20)

where Zr=42 is the number of nodes in reflector region. It may be noticed that the total

number of model equations would be Zp(md + 1) + Zr.

In order to account for the reactivity variations due to internal feedbacks and control

devices, the reactivity term ρh in (3.18) is expressed as the sum of reactivity feedback

37



Rajasekhar. A: Computation of Neutron Flux Distribution in Large Nuclear Reactors
via Reduced Order Modeling

due to xenon and reactivity due to control rods, i.e., ρh = ρhx + ρhu. Other factors for

reactivity contribution such as fuel, coolant and moderator temperature are ignored due

to their less significance.

Benchmark problems and their reference solutions are available for Light Water Reac-

tors and PHWRs. These are useful for validation of simplified models. For the AHWR,

however, such benchmarks are not available. Therefore, for validation of simplified

space–time kinetics model and for validation of flux mapping algorithm a high fidelity

model is required. It is generally expected that a scheme with a very large number of

nodes will reproduce the flux distribution of the reactor core with good accuracy, and

at the same time it will also capture all the essential properties of the reactor, but the

model order will be correspondingly very large. Using (3.18)–(3.22) alongwith the 128-

node scheme as shown in Fig 3.4, a nonlinear stringent model has been developed for

validation purpose. In the 128-node scheme, the core region, top reflector region, and

bottom reflector region each are divided into 128 nodes. The side reflector region is di-

vided into eight nodes, giving 392 nodes in all. It may be noticed that the total mumber

of model equations would be 1168 resulting into 1168th order model, since Zp = 128 and

Zr = 264.

The physical parameters such as volume of the nodes, area of interface, distance

between the nodes, and the homogenized neutron cross-sections for the nodes under

consideration are essential for computation of coupling coefficients and determination of

the estimation model. The average coolant densities in the bottom half (for a length of

1.75 m from the core bottom) and top half (remaining 1.75 m length of the lattices) of

the reactor core under full power operating conditions are calculated as 0.74 g/cc and

0.45 g/cc respectively, and corresponding cross sections given in Table 3.3 are used in

the analysis. The delayed neutron data of the AHWR are given in Table 3.4.
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Figure 3.4: 128 Node scheme.

Table 3.4: Neutronic data of AHWR

Parameter Value
β1 0.000136
β2 0.000745
β3 0.000575
β4 0.000855
β5 0.000234
β6 0.000098
λ1 0.0127 s−1

λ2 0.0323 s−1

λ3 0.133 s−1

λ4 0.328 s−1

λ5 1.21 s−1

λ6 2.68 s−1

λI 2.83 ×10−5 s−1

λX 2.09 ×10−5 s−1

γI 0.061
γX 0.003
σaX 2.65×10−18 cm2

υ1 1×107 cm/s
υ2 3×105 cm/s
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Table 3.5: RR banks

BANK RR
I RR1, RR3, RR5, RR7

II RR2, RR4, RR6, RR8

Table 3.6: RRs and their locations

RR RR1 RR2 RR3 RR4 RR5 RR6 RR7 RR8

Lattice Location E17 J21 R21 V 17 V 9 R5 J5 E9
17-node scheme 2 3 4 5 6 7 8 9
128-node scheme 44 49 54 59 66 71 76 81

3.2.2 Formulation of regulating rod reactivity change

In small-scale transients involving normal operational and control situations in which

flux mapping task is of significance, reactivity control requirements are fulfilled only

by RRs, i.e., ρh is essentially on account of RR movements. The AHWR has 8 RRs,

each is situated in a distinct physical location of the reactor core as shown in Fig. 3.1.

Reactivity contributed by the movement of a RR is a nonlinear function of its position.

However, around the equilibrium position, the nonlinearity is very insignificant. Thus,

the reactivity in node h due to the movement of RR-l in it is given by,

ρh = (−10.234Hl + 676.203)× 10−6, (3.21)

where Hl is the %- in position of the lth control rod.

The 8 RRs are grouped into two banks as shown in Table 3.5, with one bank con-

taining 4 RRs in the lattice locations E17, R21, V9 and J5, while the other containing

the remaining 4 RRs in the lattice locations J21, V17, R5 and E9. The physical loca-

tion of 8 RRs in 17-node scheme and 128-node scheme is given in Table 3.6. Bank-I of

RRs is used for the automatic control of the AHWR. Each RR is attached through a

rope–pulley mechanism to the respective reversible variable speed type RR drive having

individual three phase induction motors and static frequency converters. Neglecting the

friction, damping and rotational to linear motion transmission dynamics, the speed of
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the regulating rod is directly proportional to the applied voltage ϑl to the drive motor,

i.e.,

dHl

dt
= KRRϑl, l = 1, ..., 8, (3.22)

where ϑl is the control signal. It is in the range of ±1V and KRR = 0.56, a constant.

3.2.3 Formulation of Xenon reactivity feedback

Iodine and xenon dynamics in each node h in the core region can be described as

dIh
dt

= γIΣfhφh − λIIh, (3.23)

dXh

dt
= γXΣfhφh + λIIh − (λX + σaXφh)Xh, (3.24)

where Ih and Xh denote iodine and xenon concentrations respectively in node h, γI and

γX are their respective fractional yields, and λI and λX are respective decay constants.

The xenon reactivity feedback in a node h is given by

ρhX =
σaXXh

Σah

. (3.25)

3.3 Steady–state Neutron Flux Distribution

For the study presented in this thesis, steady–state reference flux distributions are gen-

erated using finite-difference method (FDM) as described in [88]. Active core region of

the AHWR alongwith reflector region is considered to be divided in fine meshes. Each

channel in the core region is vertically divided into 24 mesh boxes making the reactor

core into 12, 312 meshes, with 24 meshes along the reactor axis. The side, top and

bottom reflector regions are assumed to be divided into 6048, 2295 and 2295 non-power

generating meshes respectively. Therefore, core including reflector is assumed to be di-

vided into 765 vertical sections and 30 horizontal planes, such that 30 meshes are along
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Table 3.7: Dimensional details of mesh boxes

S.No
Dimension of the mesh box (mm)

Region Total number Length Breadth Height
of meshes

1 Core 12312 225 225 145.83

2 Side Reflector 6048 200 225 145.83

3 Top Reflector 2295 200 225 250

4 Bottom Reflector 2295 200 225 250

the reactor axis. Among the 30 horizontal planes, first three and last three horizontal

planes corresponds to top reflector and bottom reflector regions respectively, the rest

24 horizontal planes corresponds to the core region surrounded by reflector. With the

division of core and reflector in this way, the total number of mesh boxes into which

the core and reflector are divided, is 22950 meshes. The dimensional details of the finite

difference mesh boxes are given in Table 3.7. Reactor exhibits quadrant core symmetry

in flux and power distribution under full power operation.

3.3.1 Homogenization of Interaction Cross-sections

For the application of nodal core method all the neutron interaction cross–sections, dif-

fusion coefficients and flux values should be represented by a single group homogenized

constants which are constant throughout the volume of each node. By using fast, ther-

mal group flux data generated from FDM method, two group cross-sections for each

vertical section j are approximated using the volume-flux weighted homogenization [19]

as described in the hereafter:

For vertical section j present in active core region:

Σζgj =

∑27
k∈j,k=4 ΣζgkφgkVk∑27

k∈j,k=4 φgkVk
, g = 1, 2. (3.26)

For vertical section j present in side reflector region:

Σζgj =

∑30
k∈j,k=1 ΣζgkφgkVk∑30

k∈j,k=1 φgkVk
, g = 1, 2. (3.27)
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For vertical section j present in top reflector region:

Σζgj =

∑3
k∈j,k=1 ΣζgkφgkVk∑3

k∈j,k=1 φgkVk
, g = 1, 2. (3.28)

For vertical section j present in bottom reflector region:

Σζgj =

∑30
k∈j,k=28 ΣζgkφgkVk∑30

k∈j,k=28 φgkVk
, g = 1, 2. (3.29)

The group-wise homogenized constants of each node h were computed using

Σζgh =

∑
∀j∈h ΣζgjφgjVj∑
∀j∈h φgjVj

, g = 1, 2; h = 1, 2, ..., Zr. (3.30)

where Σ denotes the cross section, ζ denotes a neutron interaction and j denotes the

vertical section indices in the reactor core. k denotes the index of the mesh box and

it runs from 1 to 3, 4 to 27, 28 to 30 and 1 to 30 for vertical sections of top reflector,

active core, bottom reflector and side reflector regions respectively. The steady-state

equivalent mesh box fluxes were calculated by adding the two group flux data generated

from FDM computations and is given by

φm0 = φ0
1m + φ0

2m, (3.31)

where φ0
1m and φ0

2m are the volume weighted homogenized fluxes in mesh box m, for the

fast and thermal groups respectively. The steady–state equivalent flux in the vertical

section j obtained from the fast and thermal energy groups is given by

φj0 = φ0
1j + φ0

2j, (3.32)

where φ0
1j and φ0

2j are the volume weighted homogenized fluxes in vertical section j, for

the fast and thermal groups respectively. The steady–state equivalent flux in node h
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obtained from both the fast and thermal energy groups is given by

φh0 = φ0
1h + φ0

2h, (3.33)

where φ0
1h and φ0

2h are the volume weighted homogenized fluxes in node h, for the fast

and thermal groups respectively.

3.4 Reconstruction of 3-D Neutron Flux Distribu-

tion

Nodal methods have a fundamental limitation as they fail to predict the detailed flux

shapes throughout the reactor core. Of course, such detailed information can be of vital

importance in the course of designing and operation of the reactor. The methods for de-

veloping homogenized parameters for large nodes from detailed heterogeneous solutions

and the problem of deriving local pin powers from the nodal solutions are generally ap-

plied to time–independent problems. The pin-by-pin flux distribution within each node

is calculated using a de-homogenization method or Flux Reconstruction Method (FRM)

[101] from nodal solutions. This method is superior than FDM in view of computational

time and it is based on the assumption that the fine-mesh point flux can be expressed

as the product of flux of the assembly to which it belongs, which is obtained through

a vertical grid level weighting factor applied on the global flux, and a mesh box level

weighting factor corresponding to it.

From (3.32) and (3.33), the weighting factor for each vertical section j in a node h

is given by κj = φj0/φh0. The weighting factor for each mesh box m in any vertical grid

j can be found from the axial flux distribution obtained from the steady–state FDM

computation. The weighting factor for each mesh box m in a vertical grid j is defined

as κjm = φjm0/φj0. During the transient, the fluxes in vertical grids and mesh boxes

vary according to the transient value of the nodal flux and weighting factors κj and κjm
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corresponding to vertical grid j and mesh box m. Transient value of flux in any vertical

grid j is given by φj = κjφh, where φh is the transient value of flux of node h, in which

vertical grid j is a member. On the other hand, transient value of flux in any mesh box

m in vertical grid j is given by φjm = κjmφj. From the expression of φj,

φjm = κjmκjφh. (3.34)

Substituting the values of κjm and κj, (3.34) can be written as

φjm =

(
φh
φh0

)
φjm0 (3.35)

Hence, the transient value of flux in any mesh box m is expressed as the ratio of transient

to steady state–flux value of the node h it belongs to, multiplied by its own steady–state

value. This way the neutron flux distribution can be reconstructed in all 22950 mesh

boxes.

3.4.1 Reconstruction of SPND flux

Each ICDH is surrounded by 4 fuel channels and accommodates an assembly containing

SPND detectors for thermal neutron flux measurement. In ICDH, each SPND is sur-

rounded by 8 mesh boxes as shown in Fig. 3.5 (a). 2-D view and its cross-sectional view

are shown in Fig. 3.5 (b). Flux reaching a SPND D, is computed by weighted average

of fluxes in the surrounding 8 meshes [23] as follows:

φD =

∑8
m=1 φ

D
mD

D
m∑8

m=1D
D
m

, (3.36)

where φD
m and DD

m are the one–group flux and the diffusion coefficients of the surrounding

mesh box m. In Section 3.4, a reconstruction method was presented to obtain the

detailed flux distribution from the solution of (3.18)–(3.20). According to this method
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(a) 3-D view

(b) 2-D view form XY plane and cross-sectional view

Figure 3.5: SPND in an ICDH surrounded by 8 mesh boxes.

the values of neutron fluxes in 22950 small volume elements can be determined as

φV = κVφC (3.37)

where φV denotes a vector of 22950 flux values, φC denotes the vector of flux values

obtained form (3.18)–(3.20) and κV is a weighting matrix determined based on the

detailed 3-D flux distribution computations. Subsequently the fluxes at SPND locations

can be obtained from

φD = κDφV (3.38)
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Figure 3.6: Four quadrants in the AHWR core.

where φD denotes the vector of fluxes at SPND locations and κD is a detector weighting

matrix. Combining (3.37) and (3.38),

φD = κDκVφC = κDVφC (3.39)

Thus, the fluxes at SPND locations are obtained from nodal fluxes. The SPNDs are

assumed to give output signals proportional to local fluxes, i.e., dynamic effects are

ignored.

3.5 Model validation

To illustrate the dynamic behavior of the space–time kinetics model (3.18)–(3.22) derived

in Section 3.2, open loop response under a few control relevant transients is presented

in this section. During the simulation, core average flux and 4 quadrant fluxes were

reconstructed under the same transient and compared with the reference solutions ob-
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tained from a separate set of computations using a 128 node scheme as shown in Fig.

3.4. The four quadrant scheme of AHWR is shown in Fig 3.6. The quadrant and core

average fluxes, from the nodal solutions, were computed using reconstruction technique

as described in Section 3.4. It is as follows: quadrant fluxes are obtained as an average

of all the mesh box fluxes in each quadrant; and the core average flux is computed as

the average of all the quadrant fluxes. To characterize the accuracy of the model, the

error in core-average and quadrant fluxes is computed using,

eφi = (φiref − φi)× 100, i = I, II, III, IV, (3.40)

where φiref denotes the reference value of neutron flux in quadrant i and φi denotes the

neutron flux in quadrant i.

Initially, the reactor was assumed to be operating on full power. It was also assumed

that initially each RR is equally at 66.7% in position, ARs are fully in and SRs and

shut-off rods are fully out, which is the critical configuration of the equilibrium core of

AHWR. For a control voltage with positive magnitude, the corresponding RR moves into

the core and for a negative control voltage, it moves out of the core. The regulating rod

is stationary when the control voltage applied to it is zero. The transients are described

in the following subsections. In each case, the reactor is at steady–state for the initial

50 seconds.

3.5.1 Case I: Movement of RR in Quadrant–I

This simulation involves movement of RR located in Quadrant-I. At time t = 50 s,

control signal of 1 V is applied to RR drive and maintained for 8 s. Corresponding

RR moves linearly into the reactor core, as governed by (3.22) and reaches 71.14% in

position. Then, control signal is made 0 V to hold the RR at the new position. After

3 s, the RR is driven out linearly to nominal position by applying a control signal of

−1 V. Again after 3 s, an outward movement followed by inward movement back to its
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Figure 3.7: Position of RR corresponding to applied control signal.

nominal position is simulated.

Fig. 3.7 shows the applied control voltage to RR drive and corresponding position

of the RR in the core during the applied transient. Fig. 3.8 shows the core average flux

alongwith error in core average flux computed using nodal method, taking computations

from 128 node scheme as reference. Fig. 3.9 and Fig. 3.10 show the average values of

flux in Quadrants-I, II, III and IV of the reactor alongwith error.

3.5.2 Case II: Differential Movement of 2 RRs

Scenarios in which the flux/power distribution in the reactor core undergoes variations,

despite of the total power remaining constant are of great significance in spatial reactor

control applications. In order to assess the validity of the space–time kinetics model

under such conditions, a transient involving simultaneous counter-movement of two di-

agonally opposite RRs was simulated. At time t=50 s, the RR in Quadrant-III was

driven linearly into the reactor core from its nominal position under a signal of 1 V,

while the RR at the diagonally opposite lattice location in Quadrant-I was driven out

simultaneously at the same speed under a signal of −1 V. Fig. 3.11 shows the position

of RRs in the core during the applied transient.

Fig. 3.12 shows the core average flux alongwith error in core average flux computed

using nodal method, taking computations from 128 node scheme as reference. Fig. 3.13
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Figure 3.8: Core average flux alongwith error (%) during the transient involving the
movement of RR in Quadrant-I.

Table 3.8: L2- norm of error in fluxes

S.No
L2- norm of error in

Test case Core Quadrant -I Quadrant -II Quadrant -III Quadrant -IV
average flux flux flux flux flux

1 Case-I 0.1072 0.1014 0.1490 0.1557 0.0907
2 Case-II 2.5997 3.6277 1.9373 1.7581 3.1031

and Fig. 3.14 shows the average values of flux in Quadrants-I, II, III and IV of the

reactor alongwith error. To quantify the accuracy of the AHWR model developed, L2

norm of the error vector eφi was computed for both the test cases and this is shown in

Table 3.8. The L2 norm is defined as

|eφi |L2 =

√
e2φi

(1)
+ e2φi

(2)
+ · · ·+ e2φi

(k)
, i = I, II, III, IV, (3.41)

where k is the number of observations made.
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Figure 3.9: Average flux in Quadrants I and II during the movement of RR in quadrant
I.
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Figure 3.10: Average flux in Quadrants III and IV during the movement of RR in
quadrant I.
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Figure 3.11: Position of RRs in Quadrant-I and Quadrant-III during the transient in-
volving differential movement of RRs.
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Figure 3.12: Core average flux alongwith error (%) during the transient involving dif-
ferential movement of RRs.
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Figure 3.13: Average flux in Quadrants I and II during the transient involving differential
movement of RRs.
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Figure 3.14: Average flux in Quadrants III and IV during the transient involving differ-
ential movement of RRs.
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3.6 Discussion

In this chapter, a nonlinear dynamic model which represents time–dependent behavior

of AHWR has been presented. The dynamic behavior of the model has also been val-

idated for core average flux and Quadrant fluxes using a high fidelity model based on

128-node scheme of AHWR. From the simulations, it can be concluded that for a consid-

erable perturbation around the steady–state operating point, the core average flux and

reconstructed fluxes in all the quadrants from the AHWR model are found to be in good

agreement with the reference values. As a result of this, AHWR model with 128-node

scheme is suitable for generation of accurate detector fluxes which can be used as real

time plant data and reference model with 17-node scheme is suitable for estimation of

detailed flux distribution in the reactor core using Kalman filtering technique.
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Chapter 4

Theory of Model Reduction

Techniques

Complex large–scale systems usually require high dimensional models to represent

them accurately. Analysis, simulation and design methods based on such high order

models may eventually lead to complicated control strategies requiring very complex

logic or large amounts of computation. The development of state–space methods has

made it feasible to design a control system for high order linear systems. When the order

of the system becomes very high, however, special algebraic techniques for performing

the design calculations are required to permit the calculations to be performed at a

reasonable cost in a typical digital computer. Moreover, a control system designed

for a very high order linear system is likely to be more complicated than it would

be reasonable to build. Because of their importance on systems analysis and in the

design of controllers or observers, model reduction methods have received considerable

attention over the past few decades. Among the various classes of model reduction

methods, modal techniques have gained significant interest since they permit explicit

formulation. i.e., the reduced order model is derived directly from the linear large–scale

Parts of this chapter were published in 2015 IEEE international Conference on Industrial Instru-
mentation and Control Applications (ICIC), Pune, India and in Annals of Nuclear Energy, Vol. 102.
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system through algebraic relationships. This chapter presents the theory of some of

the model order reduction techniques viz. Davison’s, Marshall’s, singular perturbation

analysis and balanced truncation.

4.1 Formulation of Model Order Reduction Prob-

lem

Classic and modern control theories are usually concerned with analyzing and synthe-

sizing systems described by ordinary differential equations (ODE) that often represent

physical laws governing the dynamics of the given system. The linearization of higher

nonlinear ODEs about an equilibrium, leads to the well-known representation of a linear-

time invariant (LTI) system. Consider a large–scale dynamical system described by the

LTI model

ẋ(t) = Ax(t) + Bu(t),

y(t) = Ψx(t),

(4.1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp are the state, input and output vectors

respectively; A ∈ Rn×n, B ∈ Rn×m and Ψ ∈ Rp×n are system, input and output

matrices respectively. For the rest of this thesis, assume the notion of large–scale system

represented by (4.1) in state–space form as G :=

 A B

Ψ 0

 . The same G is also used

to denote the Transfer Function (TF) corresponding to (4.1). From the context there

would be no ambiguity. The transfer function from u to y is G(s) := Ψ (sI −A)−1B.

The order n of the LTI system ranges from a few tens to several hundred for large–scale

systems. The increase in dimension and the desire to control the multi-input/multi-

output systems triggered the need of application of model order reduction. The intent

of model order reduction is to obtain a simplified lower order, model which preserves

the input and output behavior of the system.

The reduced order model of order r < n, has the same response characteristics as
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that of the original model with far less storage requirements and much lower evaluation

time. The resulting model given by,

ẋr(t) = Arxr(t) + Bru(t), (4.2)

yr(t) = Ψ rxr(t) (4.3)

might be used to replace the original description in simulation studies or it might be used

to design a reduced order controller or observer. The application of Davison’s technique,

Marshall’s technique, singular perturbation analysis and balanced truncation has been

explored in this thesis and these techniques are described briefly in the following sections.

4.2 Davison’s Technique

Davison [14] proposed one of the first structured approach to model order reduction.

It approximates the original order n of the system to r by neglecting the eigenvalues

of the original system that are farthest from the origin and retains only the dominant

eigenvalues and hence the dominant time constants of the original system are present

in the reduced order model. Initially the system states are rearranged in such a manner

that the eigenvectors corresponding to the states to be retained from (4.1) are placed

first.

The essence of this modal approach to model reduction consists of neglecting the

dynamics associated with fast modes, i.e., those which die out quickly when perturbed.

Hence, it is useful to partition the above relationships in terms of dominant and non-

dominant modes, as well as important and less important state variables. Let the

state vector x be partitioned into dominant and non-dominant parts as x1, which are

considered to be retained and x2, which are to be ignored. Therefore the partitioned
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form of (4.1) is

ẋ1

ẋ2

 =

A11 A12

A21 A22


x1

x2

+

B1

B2

u, (4.4)

y =

[
Ψ 1 Ψ 2

]x1

x2

 , (4.5)

where x1 ∈ Rr, x2 ∈ Rn−r. Further consider the representation of the system (4.4),

(4.5) by the equivalent diagonal form (the eigenvalues of the system are assumed to be

distinct).

ż1

ż2

 =

Ã1 0

0 Ã2


z1

z2

+

B̃1

B̃2

u, (4.6)

y =

[
Ψ̃ 1 Ψ̃ 2

]z1

z2

 , (4.7)

where z1 ∈ Rr, z2 ∈ Rn−r are the states in diagonal system representation,

Ã1 = diag.

[
µ1 µ2 · · · µr

]
, (4.8)

Ã2 = diag.

[
µr µr+2 · · · µn

]
(4.9)

and the eigenvalues µi, i = 1, 2, . . . , r are to be retained in approximate model. Let

x = V z =

V 11 V 12

V 21 V 22


z1

z2

 (4.10)

be the required linear transformation for obtaining the diagonal form representation

such that Re(µ1) ≤ Re(µ2) ≤ . . . Re(µn). The matrix V is called modal matrix whose

columns are the corresponding right eigenvectors of A.
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According to Davison’s method [14], the modes in z2 are non-dominant and therefore

can be ignored. Thus setting z2 = 0 in (4.10) gives reduced order model (4.2), (4.3)

where

Ar = V 11Ã1V
−1
11 , (4.11)

Br = V 11B̃1, (4.12)

Ψ r = Ψ̃ 1V
−1
11 , (4.13)

and x2 = V 21V
−1
11 x1. (4.14)

Thus, the original nth order model is approximated by rth order model. The first r state

variables of the original model are approximated by the state variables of the reduced

order model and the (n − r) state variables are expressed in terms of the first r state

variables by (4.14).

4.3 Marshall’s Technique

Marshall [77] proposed an alternate method for the computation of reduced order model.

This method assumes that ż2 = 0 in (4.6), which then yields

ż1 = Ã1z1 + B̃1u (4.15)

and 0 = Ã2z2 + B̃2u. (4.16)

From (4.10), we have z = V −1x =

U 11 U 12

U 21 U 22


x1

x2

. Then from (4.16), we obtain

x2 = −U−122U 21x1 −U−122 Ã
−1
2 B̃2u. (4.17)

61



Rajasekhar. A: Computation of Neutron Flux Distribution in Large Nuclear Reactors
via Reduced Order Modeling

Substituting the solution of x2 from (4.17) into (4.4), the reduced order model is obtained

as (4.2) and (4.3), where

Ar = A11 −A12U
−1
22U 21, (4.18)

Br = B1 −A12U
−1
22 Ã

−1
2 B̃2, (4.19)

and x2 = −U−122 (U 21x1 + Ã
−1
2 B̃1u). (4.20)

Again the original nth order model is approximated by rth order model. The first r state

variables of the original model are approximated by the state variables of the reduced

order model and the (n − r) state variables are expressed in terms of the first r state

variables by (4.20).

Remark 1: Methods based on retaining of dominant modes such as Davison’s and

Marshall’s technique require diagonalization of the model. However, they differ in the

procedure for obtaining reduced order models. Davison’s method neglects the modes

which are farther from the origin of s-plane. Whereas, Marshall’s technique assumes

that the fast modes decay rapidly. Davison’s method does not provide the steady–state

response of the original system and this drawback can be overcome in Marshall’s method

by exciting the modes in the reduced order model differently from those of original

system. Both the methods can be applicable to only special case which provide non-

degenerate eigenvectors. When the system matrix A under consideration has repeated

eigenvalues and degenerate eigenvectors, it cannot be transformed into a pure diagonal

form. An advantage of modal truncation methods (Davison’s and Marshall’s) is that

the poles of the reduced-order system are also poles of the original system; however,

selection of dominant eigenvalues is a difficult task for the systems having narrow spaced

eigenvalues. One major disadvantage of the modal methods (Davison’s and Marshall’s)

is that they require involved with the computation of eigenvalues and eigenvectors of

the original high order model. This procedure is computationally cumbersome and may

fail when the eigenvalues of the system are widely separated.
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4.4 Singular Perturbation Analysis

In Linear time invariant models of large–scale systems, the interaction of slow and fast

modes is common a feature and it leads the mathematical models to be ill-conditioned

in control design. Singular perturbation analysis [60] provides a simple means to obtain

approximate solutions to the original system as well as it alleviates the high dimen-

sionality problem. This method is based on the assumption that the system can be

separated into two subsystems: fast and slow. Singular perturbation method provides

reduced order model, first by ignoring the fast modes of the system, then improves its

quality of the approximation by reintroducing their effect as ‘boundary layer’ corrections

calculated in separate time–scales.

In this method both the slow and fast modes are retained, but analysis and design

problems are solved in two stages. By a suitable regrouping of the state variables, the

original higher order system can be expressed into standard singularly perturbed form

in which the derivatives of some of the states are multiplied by a small positive scalar

ε, i.e.,

ẋ1 = A11x1 + A12x2 + B1u, x1(0) = x10, (4.21)

εẋ2 = A21x1 + A22x2 + B2u, x2(0) = x20 (4.22)

and y = Ψ́ 1x1 + Ψ́ 2x2. (4.23)

where the n1 dimensional state vector x1 is predominantly slow and the n2 dimensional

state vector x2 contains fast transients superimposed on a slowly varying “quasi–steady–

state”, i.e., ‖ẋ2‖ >> ‖ẋ1‖. The order of the system represented by (4.21) and (4.22)

is n1 + n2. u is the m dimensional input vector and y is the p dimensional output

vector. The scaling parameter ε > 0 represents the speed ratio of the slow versus fast

phenomena. Let µ(A) = {µ1, µ2, . . . , µn} be the set of eigenvalues of system (4.21)–

(4.23). An important characteristic of the system described by (4.21)–(4.23) is that
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the eigenvalues are found in two widely separated clusters: n2 eigenvalues are of large

magnitude while n1 are of small magnitude. By setting the parasitic parameter ε = 0

in (4.22), the order of the system in (4.21), (4.22) reduces from n1 + n2 to n1 because

the differential equation (4.22) degenerates into algebraic equation as

0 = A21x̄1 + A22x̄2 + B2u

where x̄1, x̄2 are the variables of the system (4.21), (4.22) when ε = 0. If A−122 exists,

then the solution of x̄2 into (4.21) results in reduced order model of order n1 as

ẋS = ASxS + BSuS, (4.24)

yS = ΨSxS + NSuS, (4.25)

where

xS = x̄1, (4.26)

uS = ū, (4.27)

AS = A11 −A12A
−1
22 A21, (4.28)

BS = B1 −A12A
−1
22 B2, (4.29)

ΨS = Ψ́ 1 − Ψ́ 2A
−1
22 A21, (4.30)

NS = −Ψ́ 2A
−1
22 B2, (4.31)

and a fast subsystem of order n2 given by

εẋF = A22xF + B2uF , (4.32)

yF = Ψ́ 2xF , (4.33)
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where

xF = x2 − x̄2, (4.34)

uF = u− ū. (4.35)

Therefore, eigenvalues of original system are µ(A) = µ(AS) ∪ µ(A22

ε
).

Remark 2: In control theory singular perturbation approach also provides model order

reduction first by neglecting the fast phenomena. It is then improves the approximation

by reintroducing their effect as ‘boundary layer’ correction calculated in separate time–

scales. The approach makes use of the standard singularly perturbed form representation

as (4.21–4.22). Then, the model reduction is achieved by setting ε = 0 and substituting

the solution of states whose derivatives were multiplied with ε, in terms of other state

variables. This approach to model order reduction is similar to the “dominant mode”

technique which neglect “high frequency ” parts and retains low frequency parts of the

dynamical system.

4.4.1 Two-Time-Scale Decomposition of Singularly Perturbed

Systems

The main purpose of the singular perturbation approach to analysis and design is to

handle the ill-conditioning resulting from the interaction of slow and fast dynamic modes.

The system described by (4.21)–(4.23), can be converted into block diagonal form as,

ẋS

ẋF

 =

AS 0

0 AF


xS

xF

+

BS

BF

u (4.36)

and corresponding observations as
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y =

[
ΨS ΨF

]xS

xF

 , (4.37)

such that µ(A) = µ(AS)∪µ(AF ), where µ(A) denotes the set of eigenvalues of A. The

similarity transformation that is applied to the system given by (4.21)–(4.23) to obtain

the system given by (4.36)–(4.37), is

xS

xF

 =

In1 − εML −εM

L In2


x1

x2

 , (4.38)

in which In1 and In2 respectively denote n1 and n2 dimensional identity matrices, and

L and M respectively satisfy,

εL̇ = A22L−A21 − εL(A11 −A12L) (4.39)

and εṀ = −M(A22 + εLA12) + A12 + ε(A11 −A12L)M. (4.40)

L in (4.39) and M in (4.40) can be determined respectively by iterative solution of [63]

Lk+1 = A−122 A21 + εA−122 Lk(A11 −A12Lk), (4.41)

Mk+1 = ε[(A11 −A12Lk)Mk −MkLkA12]A
−1
22

+ A12A
−1
22 ,

(4.42)

L0 = A−122 A21, M0 = A12A
−1
22 , k = 0, 1, 2, ... (4.43)
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The matrices in (4.36) and (4.37) are related to those in (4.21)–(4.23) as

AS = A11 −A12L, AF =
A22

ε
+ LA12,

BS = (In1 − εML)B1 −MB2,

BF = LB1 +
B2

ε
, ΨS = Ψ 1 − Ψ 2L,

and ΨF = εΨ 1M + Ψ 2(In2 − εLM).


(4.44)

The system represented by (4.36) and (4.37) can be discretized to obtain

xS,k

xF,k

 =

ΦS 0

0 ΦF


xS,k−1

xF,k−1

+

ΓS

ΓF

uk−1, (4.45)

yk =

[
ΨS ΨF

]xS,k

xF,k

 . (4.46)

where ΦS = eASτ , ΦF = eAF τ , ΓS =
∫ τ
0
eASµBSdµ, ΓF =

∫ τ
0
eAFµBFdµ, and τ =

tk − tk−1 is the sampling duration. For τ > ε, the system represented by (4.45) also

exhibits two-time-scale behavior, i.e., the eigenvalues of ΦF will be located close to the

origin of the z-plane while those of ΦS will be located close to the periphery of the unit

circle.

Remark 3: The block diagonalization technique of singular perturbation approach

described in subsection 4.4.1 alleviates both dimensionality and stiffness difficulties.

The decomposition of two-time-scale systems into separate slow and fast subsystems

suggests that separate controller/observer law can be designed for each subsystem and

then combined into a composite controller/observer law for the original system.

4.5 Balanced Truncation Method

For the state–space models represented by (4.1), a methodology for deriving reduced-

order model is proposed in terms of realization in balanced co-ordinates by Moore [81].
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Most of the balanced truncation methods available in literature can only be applied if the

system is stable. But realistic models, which are used for system analysis and design may

not be stable. Hence, the straightforward application of balanced truncation methods

is not possible. Therefore, model reduction of unstable system can be treated by first

separating the stable and unstable parts of the system, and then reducing the stable

part using balanced truncation methods.

4.5.1 Model decomposition into stable and unstable subsys-

tems

For the purpose of this thesis, stable means the open left half of the complex s-plane i.e.,

µ ∈ C− :⇒ Re(µ) < 0; unstable means right half of the complex s-plane including the

imaginary axis i.e., µ ∈ C̄+ :⇒ Re(µ) ≥ 0. Different approaches for decomposition into

stable and unstable subsystems were reported in [5, 57, 86, 99, 137]. Here, we consider

the application of decomposition algorithm given in [86]. It is briefly introduced in the

following.

The system represented by (4.1) can be converted into block triangular form as

Gt :=

 ETAE ETB

ΨU 0

 =

 At Bt

Ψ t 0

 , (4.47)

where

At =

k

n−k

 k

At11

n−k
At12

0 At22

 ; Bt =

k

n−k

 Bt1

Bt2

 ;

Ψ t =

[
k

Ψ t11

n−k
Ψ t12

]
,

where At11 , At12 , At22 , Bt1 , Bt2 , Ψ t11 and Ψ t12 are respectively k × k, k × (n − k),

(n− k)× (n− k), k ×m, (n− k)×m, p× k and p× (n− k) submatrices, obtained by

partitioning At, Bt and Ψ t as indicated.
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A similarity transformation that is applied to the system given by (4.1) to obtain

the system (4.47) is

x = Ext, (4.48)

where E is an orthogonal similarity transformation that brings A to the real Schur form

such that the diagonal elements of At are are the real parts of the eigenvalues of A

arranged in order of increasing values of the real part. Further, k is the number of

stable poles present in G. By another transformation, the system represented by (4.47)

can be converted into block diagonal form as

Gd :=

 F−1AtF F−1Bt

Ψ tF 0

 =

 Ǎ B̌

Ψ̌ 0

 , (4.49)

where

Ǎ =

k

n−k

 k

As

n−k
0

0 Aus

 ; B̌ =

k

n−k

 Bs

Bus

 ;

Ψ̌ =

[
k

Ψ s

n−k
Ψus

]
,

with µ(As) := µ(A) ⊂ C−, As ∈ Rk×k, µ(Aus) := µ(A) ⊂ C̄+, and Aus ∈ R(n−k)×(n−k).

Note that As, Aus, Bs, Bus, Ψ s and Ψus are respectively k×k, (n−k)× (n−k), k×m,

(n− k)×m, p× k and p× (n− k) submatrices, obtained by partitioning Ǎ, B̌ and Ψ̌

as indicated,

The second stage transform that is applied to the system given by (4.47) to obtain

the system (4.49) is

xt =

Ik S

0 In−k


 xs

xus

 = F

 xs

xus

 , (4.50)

where S is the solution of the Sylvester equation

At11S− SAt22 + At12 = 0. (4.51)
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Therefore, the system (4.1) can be written in decoupled form as

G := G− + G+, (4.52)

where G− := (As,Bs,Ψ s,0) is stable and G+ := (Aus,Bus,Ψus,0) is unstable.

4.5.2 State-Space Balancing Algorithm

Two quantities, reachability and observability Gramians play a major role in obtaining

system balancing transformation. For a linear system represented by (4.1), they are

defined respectively as follows:

WR :=

∫ ∞
0

eAτBBT eA
T τdτ (4.53)

WO :=

∫ ∞
0

eA
T τΨTΨeAτdτ (4.54)

Assuming that the pair (As,Bs) is reachable and (Ψ s,As) is observable, the reachability

Gramian WR and observability Gramian WO of G− can be obtained by the solution of

the following algebraic Lyapunov equations [70]:

AsWR + WRAT
s + BsB

T
s = 0, (4.55)

AT
s WO + WOAs + ΨT

s Ψ s = 0. (4.56)

The goal of balancing is to find a co-ordinate transformation such that in the new co-

ordinate system the reachability and the observability Gramians both are diagonal and

equal. In balanced co-ordinate system G− can be represented as

Gbal
− :=

 T−1AsT T−1Bs

Ψ sT 0

 =

 Abal Bbal

Ψ bal 0

 , (4.57)
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where

Abal =

r

k−r


r

A
(11)
bal

k−r

A
(12)
bal

A
(21)
bal A

(22)
bal

 ; Bbal =

r

k−r

 B
(1)
bal

B
(2)
bal

 ;

Ψ bal =

[
r

Ψ
(1)
bal

k−r

Ψ
(2)
bal

]
,

where A
(11)
bal , A

(12)
bal , A

(21)
bal , A

(22)
bal , B

(1)
bal, B

(2)
bal, Ψ

(1)
bal and Ψ

(2)
bal are respectively r×r, r×(k−r),

(k − r) × r, (k − r) × (k − r), r ×m, (r − k) ×m, p × r and p × (k − r) submatrices,

obtained by partitioning Abal, Bbal and Ψ bal as indicated. Further, r is the number of

states which are to be retained in Gbal
− . The procedure for obtaining Gbal

− and selection

of r are discussed in the following.

A similarity transformation to obtain Gbal
− from G− is

xs = Txsb , (4.58)

where T ∈ Rk×k is nonsingular. Following [70], an algorithm for computation of balanc-

ing transformation is as follows:

(1) Compute the Gramians WR and WO for G−.

(2) Compute the Cholesky factors of WR and WO i.e., WR = LRL
T
R, WO = LOL

T
O,

where LR and LO denote lower triangular Cholesky factors.

(3) Compute SVD of product of Cholesky factors, i.e., LTOLR = UΣVT

(4) Finally, a co-ordinate transformation that results in balanced realization can be

obtained as

T = LRVΣ−1/2. (4.59)

Gbal
− is asymptotically stable and is in balanced realization form with

WR = WO = diag.

[
Σ1 Σ2

]
, (4.60)
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where

Σ1 = diag. [σ1 σ2 . . . σr], Σ2 = diag. [σr+1 σr+2 . . . σk],

σr > σr+1 and σi > 0, i = 1, 2, . . . , k, σi are the Hankel singular values of Gbal
− . One

usually tries to choose r so that we have σr � σr+1, in addition to other criteria like

desired accuracy and sought order of the reduced order model. Therefore, the system

(4.1) can be represented in additive TF form as

G(s) := G+(s) + Gbal
− (s), (4.61)

where Gbal
− := (Abal,Bbal,Ψ bal,0) is balanced and stable. Let


x1

x2

x3

 =


η11 η12 η13

η21 η22 η23

η31 η32 η33




xus

xsb1

xsb2

 (4.62)

where xus ∈ Rn−k, xsb1 ∈ Rr, and xsb2 ∈ Rk−r be a similarity transformation to obtain

(4.61) from (4.1). Hankel singular values for the system are defined as the square roots

of the eigenvalues of the product WRWO. The balanced basis has the property that

the states which are difficult to reach are simultaneously difficult to observe. The states

in Gbal
− corresponding to the largest singular values are most important in the input-

output behavior. Truncation of the states corresponding to the smaller Hankel singular

values i.e., Σ2 will result in a reduced order model Ĝr whose input-output behavior

closely approximates the behavior of the original model. More precisely, the H∞ norm

of the difference between full-order system G and the reduced order system Ĝr is upper

bounded by twice the sum of the neglected Hankel singular values [2] and given as

‖G− Ĝr‖H∞ 6 2(σr+1 + · · ·+ σk). (4.63)
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Therefore, a reduced order model for the system (4.1) can be obtained as

Ḡr :=

 Ar Br

Ψ r 0

 , (4.64)

where

Ar =

n−k

r

 n−k
Aus

r

0

0 A
(11)
bal

 ; Br =

n−k

r

 Bus

B
(1)
bal

 ;

Ψ r =

[
n−k
Ψus

r

Ψ
(1)
bal

]
.

Reduced order model of (4.1) in terms of original co-ordinate system can be obtained

by setting xsb2 = 0 in (4.62) as

˙̃x = ΛArΛ
−1x̃ +ΛBru, (4.65)

y = Ψ rΛ
−1x̃, (4.66)

where x̃ =

x1

x2

, Λ =

η11 η12

η21 η22

 . Moreover, from (4.62) we have

x3 = ξ

x1

x2

 , where ξ =

[
η31 η32

]
Λ−1. (4.67)

Thus, the original n th order model represented by (4.1) is reduced to (n − k + r) th

order model. The state variables of the reduced order model are defined as the first

(n− k+ r) state variables of the original model. Though we do not need the remaining

(k− r) state variables of original model, if they are required in an application, they can

be expressed in terms of the first (n− k + r) state variables by using (4.67).

Remark 4: : Model reduction by balanced truncation requires balancing the whole

system G− followed by truncation. The Lyapunov equations (4.55) and (4.56) play a
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prominent role in obtaining system balancing transformation T and are required to be

solved to obtain WR and WO. The Bartels-Stewart and Hammarling methods are di-

rect standard methods for the solution of Lyapunov equations of small to moderate size.

These methods rely on initial Schur decomposition of As followed by additional factor-

ization schemes. In general and especially for large-scale systems, it is unwise to solve for

WR and WO directly since these require arithmetic operations of order N3 represent-

ing computational complexity and storage of order N2, where N is the original system

order. This approach may turn out to be numerically inefficient and ill-conditioned as

the Gramians WR and WO often have numerically low rank i.e., the eigenvalues of WR

and WO decay rapidly. However, results on low rank approximations to the solutions

of Lyapunov equations based on iterative methods (SVD-Krylov methods) make the

balanced truncation model reduction approach feasible for large-scale systems [2, 4, 93].
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Chapter 5

Application of Model Order

Reduction Techniques to

Space–Time Kinetics Model of

AHWR

In chapter-3, the dynamical model describing the time–dependent core neutronics

behavior of the AHWR has been derived. This complex nonlinear mathematical model

(core neutronics and control rod dynamic equations) can be linearized around steady–

state operating point to obtain a linear model for the purpose of estimation. An im-

portant characteristic of this nodal method based model, is that the order depends

on the number of nodes into which the reactor spatial domain is divided. A rigorous

model with more number of nodes will give good accuracy in online monitoring and

control, but its order is also very high. At the same time, nuclear reactor models often

exhibit simultaneous presence of dynamics of different speeds. Such behavior leads to

Parts of this chapter were published in 2015 IEEE international Conference on Industrial Instru-
mentation and Control Applications (ICIC), Pune, India and in Annals of Nuclear Energy, Vol. 102.
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a mathematical model with multiple time-scales, which may be susceptible to numer-

ical ill-conditioning in flux mapping studies. Hence, there is a strong motivation for

obtaining a suitable reduced order model which alleviates the high dimensionality and

numerical ill-conditioning problems in computations.

This chapter presents the derivation of an estimation model for flux distribution

studies in the AHWR and also the comparative study between different reduced order

models of AHWR, namely, Davison’s technique, Marshall’s technique, singular pertur-

bation analysis and balanced truncation, by comparing their performances relative to

each other and with the original model.

5.1 Derivation of Estimation Model

The system of nonlinear equations (3.18)–(3.22) is linearized around the steady–state

operating point (φh0, Ch0, Hj0), by considering a small perturbation in neutron flux

level, delayed neutron precursor concentration (for simplicity, only one group of delayed

neutron precursors is considered instead of six groups), RR position and the input volt-

ages to RR drives, denoted respectively by δφh, δCh, δHh and δϑl around the operating

point. Now from (3.18)–(3.20) and (3.22), we have

d

dt

(δφh
φh0

)
=
[
− ωhhυh +

ρh0
`h
− β

`h

]δφh
φh0

+

Nh∑
k=1

ωhkυh

(φk0
φh0

)δφk
φk0

(5.1)

+
β

`h

δCh
Ch0
− 10.234× 10−6 × φh0

`h
δHh,

h = 1, 2, 3, ..., Zp,

d

dt

(δCh
Ch0

)
= λ

δφh
φh0
− λδCh

Ch0
, h = 1, 2, 3, . . . , Zp (5.2)

d

dt

(δφh
φh0

)
=− ωhhυh

δφh
φh0

+

Nh∑
k=1

ωhkυh

(φk0
φh0

)δφk
φk0

, (5.3)

h = Zp + 1, . . . , Zp + Zr,
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dδHl

dt
= KRRδϑl, l = 2, 4, 6, 8. (5.4)

where δ denotes the deviation from respective steady–state values. In (5.1), the term

δHl denoting the deviation in position of the lth RR from that corresponding to the

critical configuration, will be present only if the node h contains the RR-l. Now, let us

define the state vector as

x :=

[
xTφC xTC xTφR xTH

]T
(5.5)

where

xφC :=

[
δφ1/φ10 ... δφ17/φ170

]T
, (5.6)

xC :=

[
δC1/C10 ... δC17/φ170

]T
, (5.7)

xφR :=

[
δφ18/φ180 ... δφ59/φ590

]T
, (5.8)

xH :=

[
δH2 δH4 δH6 δH8

]T
. (5.9)

In (5.5), xφC and xC denote the state vectors corresponding to the deviation in nor-

malized neutron flux and associated deviation in precursors’ concentration in the core

nodes respectively. xφR denotes state vector corresponding to the deviation in normal-

ized neutron flux in reflector nodes, xH denotes the state vector corresponding to the

deviation in the position of RRs.

Also, define the input vector as

u =

[
δϑ2 δϑ4 δϑ6 δϑ8

]T
. (5.10)

As already introduced, δϑl denotes deviation of applied to lth RR. Then, the system

of equations (5.1)–(5.4) which constitute the estimation model can be represented in

standard linear state–space form of (4.1). The system matrix A of size 80 × 80, is
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expressed as,

A =



AφCφC AφCC AφCφR AφCH

ACφC ACC 0 0

AφRφC 0 AφRφR 0

0 0 0 0


, (5.11)

the input matrix is given as

B =

[
0 0 0 BT

H

]T
, (5.12)

and the output matrix is given as

Ψ =

[
κDV 0 0 0

]
(5.13)

where

AφCφC (i, j) :=

 −ωijvi + ρi0
`i
− β

`i
if (i = j)

ωijvi
φj0
φi0

if (i 6= j)

AφCC := −β × diag.

[
1
`1

1
`2

... 1
`Zp

]

AφCφR(i, j) :=

 −ωijvi if (i = j)

ωijvi
φj0
φi0

if (i 6= j)

AφCH(i, j) :=


−10.234× 10−6 × φi0

`h
for (i = 2, 4, 6, 8),

j = i/2

0 otherwise.

ACφC := diag.

[
λ1 λ2 · · · λZp

]
ACC := −diag.

[
λ1 λ2 · · · λZp

]

78



Chapter 5. Application of Model Order Reduction Techniques to
Space–Time Kinetics Model of AHWR

xxxxxxxxxxx x xx

�

Figure 5.1: Eigenvalue spectrum of the linear model.

AφRφR(i, j) :=

 −ωijvi if (i = j)

ωijvi
φj0
φi0

if (i 6= j)

AφRφC := ATφCφR

BH := diag.

[
KRR KRR KRR KRR

]
.

The neutronic parameters and necessary data under full power operation are given

in Chapter-3. The eigenvalues of the system matrix A of AHWR are shown in Table 5.1

and the spectrum of eigenvalue is shown in Fig. 5.1. It has 5 eigenvalues at the origin

of complex s-plane and the remaining 75 eigenvalues in the left half of s-plane out of

which 16 are of the order 10−1, and the rest very large in magnitude.
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Table 5.1: Eigenvalues of A

S.No Eigenvalue S.No Eigenvalue
1 0 41 −1.6369e+ 02
2 0 42 −1.6501e+ 02
3 0 43 −1.6833e+ 02
4 0 44 −1.7116e+ 02
5 −7.1761e− 14 45 −1.7161e+ 02
6 −5.1852e− 02 46 −1.7600e+ 02
7 −5.2002e− 02 47 −1.8084e+ 02
8 −5.8369e− 02 48 −1.8486e+ 02
9 −5.8821e− 02 49 −1.9477e+ 02
10 −5.9777e− 02 50 −2.0282e+ 02
11 −6.0480e− 02 51 −2.0345e+ 02
12 −6.0863e− 02 52 −2.0394e+ 02
13 −6.1191e− 02 53 −2.0886e+ 02
14 −6.1958e− 02 54 −2.0934e+ 02
15 −6.2035e− 02 55 −2.1248e+ 02
16 −6.2324e− 02 56 −2.3111e+ 02
17 −6.2514e− 02 57 −2.3124e+ 02
18 −6.2553e− 02 58 −2.3218e+ 02
19 −6.2712e− 02 59 −2.3271e+ 02
20 −6.2951e− 02 60 −2.4075e+ 02
21 −6.2977e− 02 61 −2.4168e+ 02
22 −8.4578e+ 00 62 −2.5542e+ 02
23 −3.8195e+ 01 63 −2.5569e+ 02
24 −3.8778e+ 01 64 −2.6274e+ 02
25 −6.8742e+ 01 65 −2.6306e+ 02
26 −7.6403e+ 01 66 −2.6394e+ 02
27 −9.2359e+ 01 67 −2.6511e+ 02
28 −9.5878e+ 01 68 −2.7631e+ 02
29 −1.0271e+ 02 69 −2.7746e+ 02
30 −1.0577e+ 02 70 −2.7786e+ 02
31 −1.0861e+ 02 71 −3.0219e+ 02
32 −1.1391e+ 02 72 −3.0289e+ 02
33 −1.2358e+ 02 73 −3.2666e+ 02
34 −1.2424e+ 02 74 −3.2689e+ 02
35 −1.3989e+ 02 75 −3.7870e+ 02
36 −1.4226e+ 02 76 −3.9074e+ 02
37 −1.4783e+ 02 77 −3.9924e+ 02
38 −1.4838e+ 02 78 −4.1423e+ 02
39 −1.4978e+ 02 79 −4.7040e+ 02
40 −1.6005e+ 02 80 −4.7515e+ 02
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Table 5.2: Eigenvalues of AM

S.No Eigenvalue S.No Eigenvalue
1 −3.3497e− 14 39 −1.6833e+ 02
2 −5.1852e− 02 40 −1.7116e+ 02
3 −5.2002e− 02 41 −1.7161e+ 02
4 −5.8369e− 02 42 −1.7600e+ 02
5 −5.8821e− 02 43 −1.8084e+ 02
6 −5.9777e− 02 44 −1.8486e+ 02
7 −6.0480e− 02 45 −1.9477e+ 02
8 −6.0863e− 02 46 −2.0282e+ 02
9 −6.1191e− 02 47 −2.0345e+ 02
10 −6.1958e− 02 48 −2.0394e+ 02
11 −6.2035e− 02 49 −2.0886e+ 02
12 −6.2324e− 02 50 −2.0934e+ 02
13 −6.2514e− 02 51 −2.1248e+ 02
14 −6.2553e− 02 52 −2.3111e+ 02
15 −6.2712e− 02 53 −2.3124e+ 02
16 −6.2951e− 02 54 −2.3218e+ 02
17 −6.2977e− 02 55 −2.3271e+ 02
18 −8.4578e+ 00 56 −2.4075e+ 02
19 −3.8195e+ 01 57 −2.4168e+ 02
20 −3.8778e+ 01 58 −2.5542e+ 02
21 −6.8742e+ 01 59 −2.5569e+ 02
22 −7.6403e+ 01 60 −2.6274e+ 02
23 −9.2359e+ 01 61 −2.6306e+ 02
24 −9.5878e+ 01 62 −2.6394e+ 02
25 −1.0271e+ 02 63 −2.6511e+ 02
26 −1.0577e+ 02 64 −2.7631e+ 02
27 −1.0861e+ 02 65 −2.7746e+ 02
28 −1.1391e+ 02 66 −2.7786e+ 02
29 −1.2358e+ 02 67 −3.0219e+ 02
30 −1.2424e+ 02 68 −3.0289e+ 02
31 −1.3989e+ 02 69 −3.2666e+ 02
32 −1.4226e+ 02 70 −3.2689e+ 02
33 −1.4783e+ 02 71 −3.7870e+ 02
34 −1.4838e+ 02 72 −3.9074e+ 02
35 −1.4978e+ 02 73 −3.9924e+ 02
36 −1.6005e+ 02 74 −4.1423e+ 02
37 −1.6369e+ 02 75 −4.7040e+ 02
38 −1.6005e+ 02 76 −4.7515e+ 02
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5.2 Model Order Reduction of AHWR Space–Time

Kinetics Model

In this Section, for the estimation model of AHWR derived in the previous Section, var-

ious model order reduction techniques, viz., Davison’s and Marshall’s dominant mode

retention techniques, model decomposition into slow and fast subsystems based on sin-

gular perturbation analysis and balanced truncation technique have been applied to

obtain a reduced order model from the original high order model.

For the study in this section, we define the output vector as y =

[
y1 · · · y17

]T
,

where yi = δφi/φi0 denotes the corresponding deviation in nodal flux. Therefore, output

matrix is given as

Ψ =

[
ΨφC 0 0 0

]
, (5.14)

and ΨφC := IZp , where IZp denotes an Identity matrix.

From Table 5.1, it is evident that, there are multiple eigenvalues at the origin of

the complex s-plane. Hence, diagonalization of the estimation model is not possible.

However, this difficulty is overcome by rewriting the dynamics of the original system.

State vector (5.5) is regrouped and the dynamics of original system are rewritten such

that the control rod dynamics are decoupled. The decoupled set of equations are:

ẋM = AMxM + BMxH , (5.15)

y = ΨMxM , (5.16)

and ẋH = BHu (5.17)

where xM =

[
xTC xTφR xTφC

]T
is of order 76 and BM =

[
0 0 AT

φCH

]T
,

AM =


ACC 0 ACφC

0 AφRφR AφRφC

AφCC AφCφR AφCφC

 , (5.18)
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and

ΨM =

[
0 0 ΨφC

]
. (5.19)

Eigenvalues of AM are shown in Table 5.2. It can be verified that all the eigenvalues of

AM are distinct. In fact, eigenvalues of AM are approximately equal to the 76 eigenvalues

of A, listed at S.No 5 to 80 in Table 5.1. Now the model reduction techniques discussed

in Section 4.2 and Section 4.3 can be directly applied to the 76th order model, given

by (5.15) and (5.16), for obtaining the simplified models. Finally, by augmenting the

control rod dynamics the simplified model for AHWR can be represented as,

ẋR =

 ẋr

ẋH

 =

Ar Br

0 0


xr

xH

+

 0

BH

u, (5.20)

y =

[
Ψ r 0

]xr

xH

 . (5.21)

5.2.1 Reduced Model Based on Davison’s Technique

First consider the application of Davison’s technique discussed in Section 4.2 to the

estimation model given by (5.15) and (5.16) so as to retain the 17 eigenvalues of AM ,

listed at S.No 1 to 17 in Table 5.2. However, the reduced order model thus obtained

does not yield satisfactory approximation as deviation between responses of the original

system and simplified model are seem to be large. Therefore, another state δφ1/φ10 has

been included in the reduced order model to achieve the satisfactory transient perfor-

mance with respect to original model. Thus, eigenvalue −8.4578 (S.No. 18) has also

been retained in the simplified model. By substituting the matrices Ar,Br and Ψ r in

(5.20) and (5.21) thus obtained, the following simplified model of order 22 is obtained

for AHWR.

ẋR = AdxR + Bdu. (5.22)

yd = ΨdxR, (5.23)
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where xR =

[
xTC δφ1/φ10 xTH

]T
is the reduced state vector of order 22 × 1. Ad, Bd

and Ψd are corresponding system, input and output matrices of the AHWR simplified

model obtained by the application of Davison’s technique. The eigenvalues retained in

simplified model are the first 22 eigenvalues of the original system shown in Table 5.1.

5.2.2 Reduced Model Based on Marshall’s Technique

The Marshall’s technique discussed in Section 4.3 can be applied to the estimation model

given by (5.15) and (5.16) so as to retain the 17 eigenvalues of A, listed at S.No 5 to

21 in Table 5.1. By substituting the matrices Ar,Br and Ψr in (5.20) and (5.21) thus

obtained, the following simplified model of order 21 is obtained for AHWR.

ẋR = AmxR + Bmu, (5.24)

ym = ΨmxR, (5.25)

where xR =

[
xTC xTH

]T
is the reduced state vector of order 21 × 1. Am, Bm and Ψm

are corresponding system input and output matrices of the AHWR simplified model ob-

tained by the application of Marshall’s technique. The eigenvalues retained in simplified

model are the first 21 eigenvalues of the original system shown in Table 5.1.

5.2.3 Reduced Model Based on Singular Perturbation Analysis

An observation of the eigenvalues of the system matrix A reveals that the eigenvalues

fall into two distinct clusters. First cluster has 21 eigenvalues consisting of 5 eigenvalues

at the origin and the other 16 eigenvalues ranging from −6.2977 × 10−2 to −5.1852 ×

10−2 and the second one is of 59 eigenvalues ranging from −4.751 × 102 to −8.4578.

The distance between these two eigenvalue clusters, computed by dividing the largest

absolute value of the slow (first) group by the smallest absolute value of the fast (second)

group, is ε = 0.0074. This indicates the presence of two-time-scales in the estimation
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model. It would therefore, be possible to decompose the model into a slow subsystem of

order 21 and a fast subsystem of order 59, by the application of the method presented

in Section 4.4. For carrying out this, the following regrouping of states is suggested:

x1 =

[
xTH xTC

]T
(5.26)

x2 =

[
xTφR xTφC

]T
(5.27)

The sub matrices A11, A12, A21, A22, B1, B2, Ψ́ 1 and Ψ́ 2 in (4.21), (4.22) and (4.23)

are obtained by appropriate rearrangement and partitioning of matrices A, B and Ψ

which are given respectively by (5.11), (5.12) and (5.14). Using these, a slow subsystem

of order 21 with AS, BS, ΨS and NS represented by (4.24) and (4.25) is obtained and

it can be considered as the simplified model of the AHWR.

5.2.4 Reduced Model Based on Balanced Truncation

The balanced truncation technique discussed in Section 4.5 can also be applied to the

AHWR model for obtaining the reduced order model with lesser dimension than the

original. The model has 80 states, 4 inputs and 17 outputs. The presence of the

five eigenvalues at the origin restricts the straightforward application of the state-space

balancing method described in Section 4.5.1. Therefore, we carry out stable and unstable

decomposition of the AHWR model described by (5.11) and (5.12) to obtain an unstable

subsystem of order 5 and a stable subsystem of order 75. Thereafter, we calculate the

similarity transformation T in (4.58) was calculated such that the reachability and

observability Gramians in the transformed co-ordinate system are diagonal and equal.

Corresponding Hankel singular values of G are shown in Table 5.3. Fig. 5.2 shows the

Hankel singular values, which represent the “energy” of each state in the balanced system

of AHWR. Before applying the truncation of the system Gbal
− , it is necessary to determine

the partitioning of the Hankel singular values. We consider the first five Hankel singular
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Figure 5.2: Hankel Singular Values.

values as listed in Table 5.3 because the ratio σ1/σ6 is considerably larger than σ1/σ5,

σ1/σ4, . . . , etc. Hence, the order of Ĝr is 5 and considering unstable dynamics also

an approximate model of order 10 is obtained. The eigenvalues of the reduced order

system matrix Ar of AHWR are shown in Table 5.4. As regards, 5 unstable eigenvalues,

the remaining 4 eigenvalues from those of order 10−2 have been retained while the one

from the larger ones has also been retained. In the overall, balanced truncation results

into retaining unstable dynamics, slow stable dynamics and fast dynamics. It is also

evident that the eigenvalues of Ar also fall into two distinct clusters. First cluster

has 9 eigenvalues consisting of 5 eigenvalues at the origin and other four, ranging from

−0.0601 to −0.0529 and the second cluster has only one eigenvalue, i.e., −8.5034. Thus,

the reduced order model also possesses two-time-scale property. The distance between

these clusters, εr, of the reduced order model is 0.0071, which is almost equal to ε of the

original model.
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Table 5.3: Hankel Singular Values

S. No. HSV
1 5.3482e− 04
2 4.7748e− 04
3 1.1243e− 04
4 6.3352e− 05
5 2.6254e− 05
6 2.8352e− 06
7 2.5019e− 06
8 2.3118e− 06
9 2.2158e− 06
10 6.2689e− 07
11 5.6801e− 07
12 2.0409e− 07
13 1.8819e− 07
14 1.3690e− 07
15 1.2165e− 07
16 6.7644e− 08

17-75 < 1.0000e− 09

Table 5.4: Eigenvalues of reduced system matrix Ar based on Balanced Truncation

S. No. Eigenvalue
1. 0
2 0
3 0
4 0
5 −1.2223e− 16
6 −5.2867e− 02
7 −5.3016e− 02
8 −5.9551e− 02
9 −6.0083e− 02
10 −8.5034e+ 00
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5.3 Comparison of Different Reduced Order Mod-

els with the Application of Space-Time Kinetics

Model of AHWR

As already stated, due to the interaction of slow and fast dynamics present in AHWR,

the mathematical model describing its dynamics exhibits the multiple time-scales bring-

ing in susceptibility to numerical ill-conditioning in control design and analysis. In

previous Section, a systematic method has been suggested to handle the numerical ill-

conditioning occurring in the computations due to the presence of the slow control rod

dynamics by decoupling the higher order model into very slow and fast models. Model

order reduction techniques based on Davison’s and Marshall’s dominant mode retention

are then applied to retain the slow dynamics. Finally the reduced order model was

formulated by augmenting the control rod dynamics. Model decomposition into slow

and fast subsystems based on singular perturbation analysis has also been explored by

suggesting regrouping of state variables.

In this section, comparison of the performance characteristics of different reduced

order models of AHWR obtained from Davison’s, Marshall’s, singular perturbation anal-

ysis and balanced truncation methods, relative to each other and with the performance

characteristics of the original higher order model has been presented. To illustrate the

dynamic behavior of different reduced order linear models, the open loop response for

a short–time control relevant transient is presented here. Response obtained by the

simulation of original 80th order model is considered as reference. In simulation, the

reactor was assumed to be initially operating at full power and each RR is at 66.7% in

position. At time t = 0 s, control signal of 1 V is applied to RR drive in node 2 and

maintained for 5 s, under which the RR moved linearly into the reactor core. After a

short interval of 5 s, the control signal is made −1 V and is maintained at this level for

10 s. Then the control voltage is made 1 V for 5 s to bring back the RR to its nominal
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Figure 5.3: Position of RR and reactivity introduced during the movement of RR.

position. Fig. 5.3 shows the position of RR and, the reactivity introduced by it during

the transient. From the deviations in the nodal fluxes, the deviation in the core average

flux is calculated as

δφavg =

17∑
i=1

δφiVi

17∑
i=1

Vi

, (5.28)

where Vi denotes the volume of ith node. To characterize the accuracy of approximation

of the reduced order models, we compute the error using

eyi = (yiref − yi)× 100, i = 1, 2, . . . , 17, (5.29)

where yiref denotes the reference value of deviation in flux in node i and yi denotes

the approximate value of deviation in flux in node i. Accuracy analysis as described

earlier has also been carried out to determine the error in the approximation. We also

quantified the error in approximation for different simplified models by computing the

L2-norm (3.41) of the error defined by (5.29) and this is shown in Table 5.5. Fig.

5.4 compares the L2-norm of error vector for all the 17-nodes of the AHWR. Plot for
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Figure 5.4: Comparison of L2-norm of the error (%) in deviation in neutron fluxes in all
the 17 nodes of the AHWR.

Table 5.5: Error (%) in deviation in fluxes

Method
L2-norm of error in

Order of Core Node-2 Node-10 Node-14
Simplified model average flux flux flux flux

Davison’s technique 22 0.0954 3.7349 1.9481 1.0641
Marshall’s technique 21 0.1518 0.1646 0.1582 0.1324
Singular perturbation analysis 21 0.1559 0.1682 0.1616 0.1347
Balanced truncation technique 10 0.1680×10−3 0.0132 0.0157 0.0099

Davison’s approach has not been shown, as it yields large error compared to other

methods.

The response of different reduced order models shown in Fig. 5.5 reveals that the

core average flux obtained from the approximate models is nearly same as that of the

original model. Fig. 5.6 shows the variation of flux in node 2, from the respective

equilibrium value. Fig. 5.7 shows the variation of neutron flux in node 10, which is

neighboring to node 2. Fig. 5.8 shows the variation of neutron flux in node 14 which

is far away from node 2. The comparison of responses makes it clear that Davison’s

technique fails to reproduce the accurate response characteristics as that of original

model in node 2, 10 and 14 with the reduced order model obtained by retaining first 22

eigenvalues of A. Marshall’s, singular perturbation and balanced truncation methods
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Table 5.6: Comparison of computation time, computational cost and memory require-
ment for simplified models

(a) Computation time for simplified models

Method
Order of the Computation time in (s)

Simplified model Algorithm Simulation Total

Davison’s technique 22 0.0203 0.1569 0.1772

Marshall’s technique 21 0.0174 0.1493 0.1667

Singular perturbation analysis 21 0.0025 0.1849 0.1874

Balanced truncation technique 10 0.3169 0.0823 0.3992

Original model 80 NA 0.3328 0.3328

(b) Computational cost and memory requirement for simplified models

Number of FLOPs Memory requirement
Method (Mega FLOPs) (MB)

Davison’s technique 3.8 441.90

Marshall’s technique 5.5 489.64

Singular perturbation analysis 2.2 140.58

Balanced truncation technique 17.2 1192.77

yield better approximation for deviation in core average flux as well as nodal fluxes

with the order of 21, 21 and 10 respectively, compared to the Davison’s technique.

However, the application of Davison’s and Marshall’s method increases computational

burden in obtaining approximate model in reactor applications due to the presence of

multiple eigenvalues at origin of the complex s-plane, whereby the diagonalization of

AHWR space–time kinetics model is difficult. Balanced truncation method requires the

decomposition of stable and unstable dynamics while singular perturbation technique

requires reordering of state variables and block diagonalization. Singular perturbation

and balanced truncation methods preserve the two-time-scale property of the model,

however, transient response of balanced truncation method is marginally superior to the

singular perturbation method. It may be noted from the Table 5.5 that the error in

approximation using the balanced truncation approach is far lower in comparison with

other methods.

We compare the computation time and memory for the different model order reduc-

tion techniques. The computation was performed on Matlab R2015b and Windows-7,
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64 bit computer with intel(R) Core(TM) i3-4130 CPU @ 3.40 GHz processor and 4 GB

RAM memory. The computation time for processing the model reduction algorithm is

just a one-time requirement and can be performed off-line, while simulation is to be

carried for different situations and multiple cases may be studied. Hence, comparison of

simulation time would be appropriate. Nevertheless, the Table 5.5(a) gives a compari-

son of algorithm processing time as well as simulation time, for balanced truncation and

other methods. Although the total computation time for balanced truncation approach

is slightly higher compared to the original model, simulation time is very less compared

to the original method as well as the other methods.

Also, the number of floating point operations (FLOPs) and memory requirement are

given in Table 5.5(b) for the different methods. Balanced truncation approach requires

the solution of two Lyapunov equations followed by a SVD. Both these steps involve

arithmetic operations of order N3 representing computational complexity and storage of

order N2. Hence, it results into large computational cost and memory requirement. Sin-

gular perturbation analysis is the most efficient requiring the minimum memory as well

as FLOPs while the balanced truncation method is the least efficient with requirement

of about 17.2 Mega FLOPs and 1192.7 MB memory. However, the most important thing

is its feasibility of working in reduced order modeling of AHWR space–time kinetics.

5.4 Discussion

For the AHWR system, various model order reduction techniques, viz., Davison’s and

Marshall’s dominant mode retention techniques; balanced truncation technique and

model decomposition into slow and fast subsystems based on singular perturbation

analysis, have been applied. Among these, Davison’s and Marshall’s techniques require

diagonalization and balanced truncation technique requires a modal decomposition into

unstable and stable subsystems. Also, it is essential for model order reduction based

on Davison’s and Marshall’s techniques, to identify the modes to retain and those to
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Figure 5.5: Comparison of core average flux during the movement of RR.
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Figure 5.6: Comparison of neutron flux in node-2 during the movement of RR.
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Figure 5.7: Comparison of neutron flux in node-10 during the movement of RR.
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Figure 5.8: Comparison of neutron flux in node-14 during the movement of RR.
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truncate/reduce. In contrast, singular perturbation techniques require a decomposi-

tion of the state-space systems into fast/slow subsystems using block diagonalization

methods. Davison’s and Marshall’s techniques result into a simplified model that re-

tains the slowly varying dynamics while the application of singular perturbation analysis

and two-time-scale methods decompose the model into two subsystems viz., slow and

fast, thus providing better approximation of dynamics of the system. Quite similar to

this, application of balanced truncation yields a reduced model in which both the slow

and fast dynamic characteristics are simultaneously retained yielding good accuracy in

approximation of high order model by reduced order model.

The order of reduced order model obtained by the application of Davison’s technique

is 22, while that obtained using Marshall’s and singular perturbation techniques both is

21 each, but the balanced truncation technique is the most effective in model reduction

yielding the reduced model of order 10 only. The transient response of simplified models

based on Marshall’s, singular perturbation and balanced truncation techniques were in

good agreement with the transient response of the original high order model.

In summary, we have proposed a novel approach for the application of balanced

truncation technique to nuclear reactor systems which have a nontrivial unstable part

based on stable and unstable decomposition. This is accomplished easily while the

direct application of balanced truncation for model order reduction is not feasible. The

computation involved in obtaining a balanced basis is typically considered too high

and this method has not been adequately used in model order reduction applications.

However, our work shows that the computation is required to be done off-line and only

once. The computation time is only marginally higher, but the advantages outweigh the

marginally higher computation time. It is evidenced that the final reduced order model

based on the balanced truncation method is of much lower order in spite of negligible

error between the response of the original system and that obtained from the reduced

order model. This provides significant advantage from a practical perspective because

a lower-order controller or estimator needs to be designed for the purpose of controlling
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the AHWR. In general, the singular perturbation and balanced truncation methods are

expected to perform better in cases where time-scales are widely separated.
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Chapter 6

A Two-time-scale approach for

Discrete-Time Kalman Filter Design

and application to AHWR Flux

Mapping

In this chapter, the task of flux-mapping in THE AHWR has been formulated as linear

stochastic estimation problem and a solution is obtained by Kalman filtering technique.

It utilizes estimation model derived in Section 5.1 and available detector measurements

corrupted with white Gaussian noise. However, direct implementation of the DKF algo-

rithm to this high-order stiff estimation model is not feasible as the designing procedure

is accompanied by serious numerical ill-conditioning caused by the simultaneous pres-

ence of slow and fast phenomena typically present in a nuclear reactor. In particular,

the set of recursive equations for computation of DKF gains, as a solution to weighted

least squares problem, is ill-conditioned. Consequently, serious numerical difficulties are

expected if the DKF gain matrix is to be computed on the basis of the full order Riccati

equation. By using the reduced models based on Davison’s technique, Marshall’s tech-

A part of this chapter was published in IEEE Transactions on Nuclear Science, Vol. 63(1) .
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nique, singular perturbation analysis and balanced truncation, the estimation model of

lower order can be obtained. Trying all these would be of enormous effort. However, an

attempt has been made to apply the singular perturbation technique which fortunately

is found to work well for the AHWR flux mapping. This chapter presents the proposed

novel technique to address the numerical ill-conditioning problems in full order design

by decoupling the DKF equations according to the order of the slow and fast subsys-

tems. Finally this technique has been applied for estimation of detailed mesh, channel

quadrant and core average fluxes in the AHWR.

6.1 Discrete-Time Kalman Filter Algorithm

The DKF is an optimal recursive data processing algorithm [34, 78], also known as Linear

Quadratic Estimator which uses a series of measurements observed over time, contain-

ing noise (random variations) and other model inaccuracies, and produces estimates of

unknown states that tend to be more precise than those based on a single measurement

alone. From Bayesian point of view, DKF propagates the conditional probability density

of the desired quantities (mean and covariance), conditioned on the knowledge of the

past measurements and updates it when new measurements are available [118]. Consider

a general linear discrete time-invariant stochastic system represented by,

xk = Φxk−1 + Γuk−1 +wk−1, (6.1)

and yk = Ψxk + vk, (6.2)

where k is the discrete-time instant, x ∈ Rn is the state vector, u ∈ Rm is the input vector

and y ∈ Rp is the output vector. Φ ∈ Rn×n, Γ ∈ Rn×m and Ψ ∈ Rp denote the state

transition, input and output matrices respectively. Also, wk and vk are random vectors

representing respectively the process and measurement noise sequences, assumed to be

independent, zero mean, with Gaussian probability distribution and known covariances
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Q and R respectively, i.e.,

wk ∼ N(0,Q), E[w(tk)] = 0, E[w(tk)w
T (tj)] = Qδkj,

vk ∼ N(0,R), E[v(tk)] = 0, E[v(tk)v
T (tj)] = Rδkj,

E[v(tk)w
T (tj)] = 0,

where Q is positive-semidefinite matrix and R is positive-definite matrix. E[·] is expecta-

tion operator and δkj is the Kronecker delta function; i.e., δkj = 1 if k = j, and δkj = 0

if k 6=j. The initial state x0 is also a Gaussian random variable, independent of the

noise processes, with x0 ∼ N(x̂0,P0). Therefore E[x0] = x̂0, E[(x− x̂0)(x− x̂0)
T ] = P0,

where x̂ is the state estimate, P is the covariance of the error in the state estimate. The

DKF equations for the above system fall into two groups, namely time update equations

and the measurement update equations, discussed in following subsections.

6.1.1 Time Update Equations

These equations, also known as state and covariance prediction equations, project for-

ward (in time) the current state and error covariance estimates to obtain a priori esti-

mates for the next step, i.e.,

x̂−k = Φx̂k−1 + Γuk−1, (6.3)

and P−k = ΦPk−1Φ
T + Q. (6.4)

6.1.2 Measurement Update Equations

These equations incorporate a new measurement yk into a priori estimate to obtain an

improved a posteriori estimate, i.e.,

Kk = P−k Ψ
T [ΨP−k Ψ

T + R]
−1
, (6.5)
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x̂k = x̂−k + Kk[yk − Ψ x̂−k ], (6.6)

and Pk = [I −KkΨ ]P−k , (6.7)

where Kk is the Kalman gain, which incorporates the the discrepancy between the actual

measurement (yk) and predicted measurement (Ψ x̂−k ) as shown in (6.6).

6.2 Two-time-scale approach for Discrete-Time Kalman

Filter design

Direct implementation of the DKF algorithm to a high order stiff system, such as the

nuclear reactor is not feasible due to numerical ill-conditioning. However, utilizing the

block diagonalized model, the time and measurement update equations discussed in

Section 6.1, can be decoupled according to the order n1 of the slow and order n2 of the

fast subsystems. A high order stochastic system such as the one represented by (6.1)

and (6.2); possessing two-time-scale behavior can be represented into linear singularly

perturbed form and block-diagonalized as described in Sec. 4.4.1, to obtain

xS,k

xF,k

 =

ΦS 0

0 ΦF


xS,k−1

xF,k−1

+

ΓS

ΓF

uk−1 +

w′

S,k−1

w
′

F,k−1

 , (6.8)

yk =

[
ΨS ΨF

]xS

xF

+

vS,k−1
vF,k−1

 (6.9)

where the additional terms w′S, vS and vF follow from (6.1) and (6.2). The matrices

P and Q appearing in (6.4) can also be partitioned according to the orders of the slow
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and fast subsystems and from (6.4), we have

P−k =

P−11,k P−12,k

P−
T

12,k P−22,k


=

ΦS 0

0 ΦF


P11,k−1 P12,k−1

PT
12,k−1 P22,k−1


ΦT

S 0

0 ΦT
F


+

Q11 Q12

QT
12 Q22

 . (6.10)

Thus, we have

P−11,k = ΦSP11,kΦ
T
S + Q11, (6.11)

P−22,k = ΦFP22,kΦ
T
F + Q22, (6.12)

and P−12,k = ΦSP12,kΦ
T
F + Q12. (6.13)

Similarly, the Kalman gain Kk in (6.6) can also be partitioned into slow subsystem

Kalman gain KS,k and fast subsystem Kalman gains KF,k and (6.5) can be written as

Kk =

KS,k

KF,k

 =

P−11,k P−12,k

P−
T

12,k P−22,k


ΨT

S

ΨT
F

×

ΨT

S

ΨT
F


T P−11,k P−12,k

P−
T

12,k P−22,k


ΨT

S

ΨT
F

+ R


−1

.

(6.14)

Hence,

KS,k = (P−11,kΨ
T
S + P−12,kΨ

T
F )Y−1 (6.15)

and KF,k = (P−
T

12,kΨ
T
S + P−22,kΨ

T
F )Y−1. (6.16)
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where

Y = ΨSP−11,kΨ
T
S + 2ΨSP−12,kΨ

T
F + ΨFP−22,kΨ

T
F + R (6.17)

and

Pk =

P11,k P12,k

PT
12,k P22,k

 =


In1 0

0 In2

−
KS,k

KF,k


ΨT

S

ΨT
F


T
×P−11,k P−12,k

P−
T

12,k P−22,k

 , (6.18)

which yields:

P11,k = (In1 −KS,kΨS)P−11,k −KS,kΨFP−
T

12,k, (6.19)

P22,k = (In2 −KF,kΨF )P−22,k −KF,kΨSP−12,k, (6.20)

and P12,k = (In1,n2 −KS,kΨS)P−12,k −KS,kΨFP−22,k. (6.21)

Note that covariance equation of time update step is decoupled into three equations

given by (6.11)–(6.13); measurement update step is decoupled into three equations given

by (6.19)–(6.21), and Kalman gain equation is decoupled into two equations given by

(6.15)–(6.16). Hence the proposed DKF algorithm for singularly perturbed system has

total ten equations.

6.3 Application to AHWR Flux Mapping

In chapter 5, the estimation model of the AHWR was obtained and a state regrouping

was suggested whereby the model is readily put into standard singularly perturbed form.

Now, the system, input and output matrices given by (5.11)–(5.13) are partitioned into

block matrices according to the new state vectors defined. Thus in (4.21)–(4.23) we have:
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A11 =

0 0

0 ACC

 ;

A21 =

 0 0

AφCH AφCC

 ;

B1 =

[
BT
H 0

]T
;

Ψ 1 =

[
0 0

]
;

A12 =

0 0

0 ACφC

 ;

A22 =

AφRφR AφRφC

AφCφR AφCφC

 ;

B2 =

[
0 0

]T
;

Ψ 2 =

[
0 κDV

]
.

Now, the full order system is block diagonalized using the similarity transformation

(4.38), in which the L and M matrices for the transformation are obtained by the

iterative solution of (4.41) and (4.42) respectively. Thereafter AS, AF , BS, BF , ΨS

and ΨF of the decoupled system represented by (4.36)–(4.37) are obtained by (4.44).

It is observed that 59 magnitude wise largest eigenvalues of A are equal to eigenvalues

of AF , and the remaining 21 eigenvalues are equal to eigenvalues of AS. This confirms

that the estimation model is decoupled into slow and fast subsystems of order 21 and

59 respectively.

Now the method presented in Section 6.2 has been applied for flux mapping in

the core of AHWR. Estimation model represented by (4.36)–(4.37) is discretized for

sampling time τ = 0.2 s for which the discrete-time system is observed to possess two-

time-scale property. The eigenvalues of discretized system are given in Table 6.1. From

the Table 6.1 , it is evident that discretized model has 21 (S.No.60-S.No.80) eigenvalues

on/around the periphery of the unit circle, and the rest 59 (S.No.1-S.No.59) are inside

the unit circle, which indicates the two-time-scale property in the discrete model.

The effectiveness of the Kalman filtering technique for flux mapping has been ex-

amined in three cases. In the first case, decay of non-zero initial condition is observed.

The states of the estimation model are non-zero while the reactor is assumed to be at

steady–state. In the second, the movement of one or multiple RRs is simulated. Fi-

nally in the third case, xenon-induced spatial oscillation is considered. These cases are
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elaborated in the following subsections.

SPND signals (measurements) were generated under the same transient situations

from a separate set of off-line computations using a 128-node scheme as shown in Fig.

3.4, for the first two cases, and the 17-node scheme as shown in Fig. 3.3 for the third

case. From the operational 540 MWe PHWR units 3 and 4 of Tarapur Atomic Power

Station (TAPS), India, it was revealed that noise in the signals of detectors takes normal

probability distribution with a standard deviation of nearly 2 % [79]. Hence, measure-

ment noise of the order of 2 % has been assumed for each SPND. This noise is equivalent

to 2 % random fluctuations around the full power steady state–value in each detector.

Using the methodology described in Section 3.4, reference flux values have been

generated for 22950 volume elements, 452 fuel channels, 4 quadrants and the core average

flux denoted respectively as φV , φZ , φQ and φG. The state estimation is carried out

using the DKF algorithm with

Q = 0.1× I80 and R = I200

where I80 and I200 denote identity matrices of size 80 and 200 respectively. Estimates

for fluxes in 22950 volume elements are obtained as

φ̂V = κV x̂φC
, (6.22)

where κV denotes the weighting matrix for flux reconstruction. Now, from the estimates

of flux in 22950 volume elements, the average values of channel fluxes are obtained as

φ̂Z =
∑
i∈Z

φ̂ViVi

/∑
i∈Z

Vi, (6.23)

where Vi denotes the volume of the ith mesh box, Z denotes fuel channels in core, as
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Table 6.1: Eigenvalues of discrete-time model for τ = 0.2

S.No Eigenvalue S.No Eigenvalue
1 8.9824e− 21 41 1.2527e− 14
2 1.1967e− 20 42 9.7747e− 14
3 2.2928e− 20 43 1.2944e− 13
4 3.1010e− 20 44 1.4448e− 13
5 5.3019e− 20 45 4.3960e− 13
6 7.6267e− 19 46 7.0621e− 13
7 8.2310e− 19 47 1.6174e− 11
8 8.7412e− 19 48 1.8456e− 11
9 9.2210e− 19 49 1.2773e− 10
10 9.4823e− 19 50 3.6852e− 10
11 1.2429e− 19 51 6.4999e− 10
12 2.2956e− 19 52 1.1980e− 09
13 3.3126e− 19 53 4.7009e− 09
14 3.3126e− 19 54 9.5022e− 09
15 3.2213e− 19 55 2.3107e− 07
16 6.9401e− 19 56 1.0695e− 06
17 6.9401e− 19 57 4.2831e− 04
18 8.3220e− 19 58 4.8134e− 04
19 1.5295e− 18 59 1.8423e− 01
20 1.5295e− 18 60 9.8748e− 01
21 1.6051e− 18 61 9.8749e− 01
22 1.6051e− 18 62 9.8754e− 01
23 2.1275e− 18 63 9.8757e− 01
24 2.1275e− 18 64 9.8758e− 01
25 2.2904e− 18 65 9.8761e− 01
26 2.2904e− 18 66 9.8767e− 01
27 3.0038e− 18 67 9.8768e− 01
28 4.7078e− 18 68 9.8784e− 01
29 4.7078e− 18 69 9.8790e− 01
30 4.9702e− 18 70 9.8798e− 01
31 6.3127e− 18 71 9.8812e− 01
32 1.0917e− 17 72 9.8830e− 01
33 8.7525e− 17 73 9.8839e− 01
34 1.9767e− 16 74 9.8965e− 01
35 5.1624e− 15 75 9.8968e− 01
36 1.2425e− 15 76 1.0000e+ 00
37 1.3603e− 15 77 1.0000e+ 00
38 2.3955e− 15 78 1.0000e+ 00
39 4.6504e− 15 79 1.0000e+ 00
40 6.0565e− 15 80 1.0000e+ 00
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Table 6.2: Test cases and description

S. No. Test case Description
1 1 RR Movement of RR in Q-I, other 3 RRs are stationary
2 2 RR Simultaneous movement of RRs in Q-I and Q-III,

other 2 RRs are stationary
3 4 RR Simultaneous movement of RRs in Q-I, Q-II, Q-III and Q-IV
4 2 RR-D Simultaneous movement of RRs in Q-I and Q-III

in opposite directions, other 2 RRs are stationary

shown in Fig. 3.3. Similarly, the estimated values of quadrant fluxes are computed from

φ̂Q =
∑
i∈Q

φ̂ViVi

/∑
i∈Q

Vi, (6.24)

where Q = I, II, III and IV. Estimated value of core average flux is computed as

φ̂G =
10848∑
i=1

φ̂ViVi

/
10848∑
i=1

Vi. (6.25)

The values of these quantities, as determined using DKF algorithm are compared with

their respective reference values for assessment of reconstruction accuracy.

6.4 Computation of Error

To characterize the performance of the DKF, we compute relative errors in estimation

of flux in 22950 volume elements, 452 coolant channels and 4 quadrants, and also the

error in the estimation of the core average flux, respectively using

eVirel =
φ̂Vi − φVi
φVi

× 100, i = 1, 2, ..., 22950; (6.26)

eZirel
=
φ̂Zi
− φZi

φZi

× 100, i = 1, 2, ..., 452; (6.27)
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eQirel
=
φ̂Qi
− φQi

φQi

× 100, i = I, II, III, IV ; (6.28)

and eGrel
=
φ̂G − φG
φG

× 100. (6.29)

Root Mean Square (RMS) percentage error in flux is also calculated for volume elements

and coolant channels using

eVRMS
=

√√√√ 1

22950

22950∑
i=1

(φ̂Vi − φVi)2 × 100; (6.30)

and eZRMS
=

√√√√ 1

452

452∑
i=1

(φ̂Zi
− φZi

)2 × 100. (6.31)

6.4.1 Response of DKF to Non-Zero Initial Condition of Esti-

mation Model

The reactor is assumed to be under steady–state full power operation such that the

delayed neutron precursor concentrations in different nodes are in equilibrium with the

respective nodal flux levels and RRs are at 66.7% in position, which corresponds to

critical core configuration. As already stated, SPND signals were generated from off-

line computations using the 128 node scheme. At steady–state, their signals are constant

but measurement noise of 2% has been introduced for each detector.

The initial estimate for neutron flux in node 1 of AHWR core is assumed to be

deviating from the actual value by 10% while the state estimates for neutron flux in the

remaining nodes, xC , xφR , and xH are assumed to be identical to their actual values.

Now, the DKF algorithm is processed using the values of Q and R as mentioned earlier.

The values of estimated neutron flux and delayed neutron precursor concentrations in

node 1, 2 and 15 of AHWR are shown in Fig. 6.1, 6.2 and 6.3 respectively. The estimated

states gradually approach zero in short duration of time. Such a response is considered

to be satisfactory.
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Figure 6.1: Variation in the estimated values of neutron flux and delayed neutron pre-
cursor concentration in Node 1.
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Figure 6.2: Variation in the estimated values of neutron flux and delayed neutron pre-
cursor concentration in Node 2.
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Figure 6.3: Variation in the estimated values of neutron flux and delayed neutron pre-
cursor concentration in Node 15.

Table 6.3: Maximum RMS error in estimation of flux in the transient involving movement
RR

S.No. Parameter Error ( %)
1 RMS error in estimation of fluxes in 22950 mesh boxes, ezrms 0.3040
2 RMS error in estimation of fluxes in 452 fuel channels, evrms 0.3381
3 RMS error in estimation of fluxes in 4 quadrants 0.1592

6.4.2 Movement of Regulating Rods

This simulation involves movement of one or multiple RRs as listed in Table 6.2. At

steady–state full power operation, RRs are at 66.7% in position. In each case, the reactor

is at steady–state for the initial 50 seconds. At time t = 50 s, control signal of 1 V is

applied to RR drive and maintained for 8 s. Corresponding RRs move linearly into the

reactor core, as governed by (3.22) and reach 71.14% in position. Then, control signal is

made 0 V to hold the RRs at the new position. After 3 s, the RR is driven out linearly

to nominal position by applying a control signal of −1 V. Again after 3 s, an outward

movement followed by inward movement back to its nominal position is simulated.

First, movement of RR located in Quadrant-I is considered. Fig. 6.4 shows the
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Figure 6.4: Position of RR corresponding to applied control signal.
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Figure 6.5: Core average flux alongwith relative error (%) during the transient involving
the movement of RR in Quadrant-I.

Table 6.4: Maximum RMS error (%) in fluxes

Test Case Quadrants All Mesh boxes
(4)

Channels
(22950)Fuel locations All locations

(452 ) (513)
1 RR∗ 0.1939 0.3381 0.3457 0.3040
2 RR∗ 0.2431 0.4320 0.4404 0.3946
4 RR∗ 0.3406 0.5647 0.5766 0.5112

2 RR-D# 0.2861 0.5014 0.5139 0.4410

∗ Max. RMS error occurred at t = 80 s.
# Max. RMS error occurred at t = 58 s.
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Figure 6.6: Average flux in Quadrants I, II, III and IV during the transient involving
the movement of RR in quadrant-I.
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Figure 6.7: Axial flux distribution in the channel E16 (in the vicinity of RR), where
maximum errors occur.
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Figure 6.8: Axial flux distribution in the channel N20 (away from RR), where minimum
errors occur.
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Figure 6.9: 3-D flux distribution in horizontal planes z=1, z=12 and z=24 at t = 0 s.
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Figure 6.10: 3-D flux distribution in horizontal planes z=1, z=12 and z=24 at t = 80 s.
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Table 6.5: Absolute relative average error ( %) in fluxes

Test case Quadrants
(4)

Channels Mesh boxes
Fuel locations All locations Core Reflector Total

(452) (513) (10848) (12102) (22950)
1 RR 0.1196 0.1899 0.1895 0.1895 0.2396 0.2127
2 RR 0.1813 0.2557 0.2551 0.2551 0.3995 0.3220
4 RR 0.3171 0.3589 0.3617 0.3617 0.6883 0.5108

2 RR-D 0.2316 0.3705 0.3695 0.3695 0.4515 0.4075

Table 6.6: Maximum and minimum relative error (%) in channels

Test case
Negative Positive

Maximum Location Minimum Location Maximum Location Minimum Location
1 RR 1.7987 E16 0.0036 S24 0.4700 J14 0.0002 N20
2 RR 1.7324 B17 0.0025 S12 0.2885 J14 0.0025 J12
4 RR 2.4033 H5 0.0034 N11 0.2021 R14 0.0010 U16

2 RR-D 1.9025 V10 0.0050 A14 1.8715 E16 0.0043 R8

Table 6.7: Absolute relative error in quadrant and core average flux

Test case Q-I Q-II Q-III Q-IV Core average
1 RR 0.3621 0.0194 0.0325 0.0194 0.0911
2 RR 0.3243 0.0383 0.3247 0.0378 0.1804
4 RR 0.3269 0.3076 0.3273 0.3065 0.3161

2 RR-D 0.3779 0.0794 0.3925 0.0470 0.0058

applied control voltage to RR drive and corresponding position of the RR in the core

during the test case. Fig. 6.5 shows the core average flux and the relative error in

the estimation of the core average flux. Fig. 6.6 shows the average values of flux in

quadrant-I, II, III and IV of the reactor. Axial flux distribution for 24 volume elements

in the channel E16, which is near to RR, is shown in Fig. 6.7. Flux distribution in

channel N20, where minimum error occurs is shown in Fig. 6.8. During the transient, the

maximum error between estimated and reference values alongwith the time of occurrence

is computed for 22950 mesh boxes, 452 fuel channels and 4 quadrants. It occurs at t=80

s and corresponding values are shown in Table 6.3. As described in Section 3.3, the

core region of AHWR is divided into 24 horizontal planes. The 3-D flux distribution in

horizontal planes z=1, z=12 and z=24 of reactor core at steady–state (t=0 s) and at

t=80 s are shown in Fig. 6.9 and Fig. 6.10 respectively.

To asses the performance of DKF algorithm further, similar analysis is carried out
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for the remaining test cases listed in Table 6.2. RMS error between estimated and

reference distribution were computed and are shown in Table 6.4. At the instant when

the maximum RMS error occurred, absolute relative average errors (%) in fluxes are

computed and shown in Table 6.5. Channelwise maximum and minimum relative errors

(%) are shown in Table 6.6. Absolute relative error in quadrant fluxes and core average

fluxes are also computed and shown in Table 6.7.

It is worthy to note from the numerical values presented in Table 6.4–6.7, that the

average relative error and maximum RMS error in quadrant fluxes are 0.31% and 0.34%

respectively; in case of channel fluxes they are 0.37% and 0.57% respectively; and in the

case of mesh fluxes they are 0.37% and 0.51% respectively. These are of the same order

as reported in [52, 71]. From the Table 6.6 it can be claimed that the maximum relative

error in the estimation of channel flux from the DKF method is 2.4%. This is of the

same order as reported in elsewhere, e.g., in [47], but the DKF has been evaluated for

transient situations.

6.4.3 Xenon-Induced Oscillations

As already stated, due to large physical dimensions, operational perturbations might lead

to slow xenon induced-oscillations in AHWR. If these oscillations are left uncontrolled,

the power density and time rate of change of power at some locations in the reactor core

may exceed the respective design limits, resulting into increased chance of fuel failure.

Therefore, to maintain the total power and power distribution within the design limits,

AHWR is provided with total power control and spatial power control schemes. If due

to some hypothetical reason, the spatial control scheme is ineffective, xenon-induced

oscillations might occur. These xenon-induced spatial oscillations and subsequent local

overpowers pose a potential threat to the fuel integrity of the reactor. Therefore, the

detailed knowledge of axial and radial flux distribution in the core during the operational

condition is crucial.
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Figure 6.11: Average flux in Quadrants I, II, III and IV during the transient involving
Xenon Oscillations.
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Table 6.8: Error Statistics in case of Xenon-Induced Spatial Oscillations

(A) RMS Error and Relative Error in fluxes
Quadrants Fuel locations All locations All Mesh boxes

(4) (452) (513) (22950)
Max. RMS Error ( %) 0.1327 0.2278 0.2271 0.1746

Absolute Relative Error ( %) 0.1155 0.1763 0.1741 0.1502

(B) Maximum and Minimum Relative Error in Channels
Value of Error ( %) Location

Max. Negative Error 0.5385 K19
Min. Negative Error 0.0225 C15
Max. Positive Error 0.4061 U12
Min. Positive Error 0.0050 K2

(C) Absolute Relative Error in Quadrants
Quadrant Value of Error ( %)

I 0.0554
II 0.1838
III 0.1777
IV 0.0451

To ascertain this, simulation of transient involving spatial power variation was car-

ried out using nonlinear model of AHWR described by (3.18)–(3.22), xenon and iodine

dynamic equations described by (3.23) and (3.25) were also incorporated in the model.

The reactor was initially assumed to be under steady–state operation at full power. A

small disturbance was enforced for a short duration by the simultaneous counter move-

ment of two diagonally opposite RRs. The RR in quadrant-I was driven 4% in, while the

RR in quadrant-III was driven 4% out simultaneously in order to maintain the net reac-

tivity nearly zero. The response of model subsequent to this disturbance, was simulated

for about 50 hours. Reference values of mesh box fluxes were determined using (3.35)

and SPND signals were generated using (3.36). Again, in these signals 2% noise was

added. Now the DKF based flux mapping algorithm was processed for the estimation

of flux distribution in AHWR. Fig. 6.11 shows the average values of flux in quadrant-I,

II, III and IV of the reactor during the xenon-induced oscillations. Error analysis as

described in Sec. 6.4 has been carried out to determine the RMS percentage error and

relative error (%) in flux for volume elements, channels and quadrants. The various
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types of errors in estimation are given in Table 6.8. In general, the errors are observed

to be insignificant.

From the simulations, it can be concluded that, the proposed DKF algorithm can

accurately estimate the time dependent neutron flux distribution during the typical

reactor operating conditions. The degradation of DKF algorithm accuracy is also very

less against the detector random errors.

6.5 Discussion

In this chapter, the task of flux mapping problem in the AHWR has been formulated as

a problem of optimally estimating the time dependent neutron flux at a large number of

mesh points in the core. The solution is obtained using the well known Kalman filtering

technique which works alongwith a space–time kinetics model of the reactor. However,

the attempt to solve the Kalman filtering problem in a straight forward manner is not

successful due to severe numerical ill-conditioning caused by the simultaneous presence

of slow and fast phenomena, typically present in a nuclear reactor. Hence, a grouping of

state variables has been suggested whereby the original high order model of the reactor

is decoupled into a slow subsystem and a fast subsystem. Now according to order of

the slow and fast subsystems, the original time update and Kalman gain equations have

also been decoupled into separate sets of equations for the slow and fast subsystems.

The decoupled sets of equations could be solved easily. The proposed method has been

validated in a number of typical transient situations. Overall accuracy in the estimation

using the proposed methodology has been very good for mesh fluxes, channel fluxes,

quadrant fluxes and the core average flux. Therefore, the proposed method can serve

an effective alternate to the existing flux mapping techniques.
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The neutron flux distribution in a large nuclear reactor undergoes continuous varia-

tion due to routine perturbations, non-uniform burn up at different locations, etc. The

operating procedure and core control philosophy generally ensure that the time depen-

dent flux variations are maintained within prescribed limits. However, the flux profile

is continuously monitored and displayed to operator. The knowledge of flux distribu-

tion in the reactor core during its operation is helpful to the operator in planning of

refueling scheme as well as in zonal power correction. Therefore, for safe, reliable and

economic operation these large nuclear reactor cores should be provided with online

spatial flux/power distribution monitoring schemes during the course of operation. This

has been the motivating factor for pursuing the type of research work presented in this

thesis. More specifically, the flux mapping problem of the 920 MW (thermal) AHWR

as a particular case of study has been accomplished in this thesis.

The time varying neutron flux distribution in nuclear reactor is computed by an

online FMS, with the help of flux mapping algorithms. The measurement signals of

several in-core SPND detectors are processed to generate the detailed three dimensional

flux map, which helps for spatial control purpose. These measurement signals are cor-

rupted by random noise, which is inevitable. Existing flux mapping algorithms for online

computation of flux/power distribution suffer from a drawback that they might fail to
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account for the time variation of neutron flux and the accuracy of mapping might be

degraded in presence of uncertainty in the detector readings. Recent trends and devel-

opments in state estimation theory, modern control system theory (state-space analy-

sis) provide us with systematic method for designing an efficient optimal flux mapping

algorithm based on Kalman filtering technique for the AHWR, which has significant

importance in practical online application. This has been the other important factor for

the research work reported in this thesis.

For the AHWR, an estimation model has been derived for flux mapping computa-

tions. The nonlinear mathematical model (core neutronics and control rod dynamics

equations) is linearized around the steady–state full power operation by considering a

small perturbation in the system and then the equations are cast into standard state-

space form. It is characterized by 80 states, 4 inputs and 200 outputs. From the

spectrum of eigenvalues of the estimation model, it has been observed that model is as-

sociated with two-time scale property. The direct implementation of the DKF algorithm

to this high-order stiff estimation model is not feasible as the designing procedure is ac-

companied by serious numerical ill-conditioning caused by the simultaneous presence of

slow and fast phenomena typically present in a nuclear reactor. In particular, the set

of recursive equations for computation of DKF gains, as a solution to weighted least

squares problem, is ill-conditioned. Application of the model order reduction techniques

alleviates the numerical ill-conditioning.

Simplified models alleviating the high dimensionality as well as numerical ill-conditioning

can be obtained with the application of model order reduction techniques. Application of

model order reduction techniques preserve the important dynamic characteristics of the

estimation model, while certain less important characteristics are ignored. In particular,

for the AHWR estimation model the application of Davison’s and Marshall’s dominant

mode retention techniques; balanced truncation technique and model decomposition into

slow and fast subsystems based on singular perturbation analysis have been explored.

All of these four methods are found to be effective in obtaining simplified models of
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AHWR. However, reduced order model based on the balanced truncation method is of

much lower order in spite of negligible error between the response of the original system

and that obtained from the reduced order model.

Application of methods based on retention of dominant modes requires diagonaliza-

tion. For the estimation model, it is quite difficult task to get the model into diagonal

form as there are multiple eigenvalues at the origin of the complex s-plane. This is due

to the fact that the model contains slow control rod dynamics. In this thesis, a system-

atic method has been suggested to handle the numerical ill-conditioning occurring in the

computations due to the presence of the slow control rod dynamics by decoupling the

higher order model into slow and fast models. Model order reduction techniques based

on Davison’s and Marshall’s dominant mode retention are then applied to retain the

slow dynamics. Finally the reduced order model has been formulated by augmenting

the control rod dynamics to the model corresponding to the slow dynamics. In this the-

sis, a novel approach for the application of balanced truncation technique to estimation

model having nontrivial unstable part based on stable and unstable decomposition has

also been suggested. This is accomplished easily while the direct application of balanced

truncation for model order reduction is not feasible.

Due to the two-time-scale behavior, revealed by AHWR, direct implementation of

DKF algorithm is not feasible as the design procedure is accompanied by serious nu-

merical ill-conditioning issues. Therefore, the estimation model of AHWR has been de-

composed into slow and fast subsystems based on singular perturbation analysis (block

diagonalization) by suggesting a regrouping of state variables. Then, according to the

order of the slow and fast subsystems, the original time update and Kalman gain equa-

tions have also been decoupled into separate sets of equations for the slow and fast

subsystems. The decoupled sets of equations could be solved easily and efficiently.

The important aspect of the proposed DKF technique is that it attempts solving for

smaller order state prediction equations, process covariance matrices and Kalman gain.

Moreover, it yields excellent accuracy in flux estimation as evident from simulation
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exercises. For validation of different techniques of flux mapping, computation results

generated using a high fidelity model is a necessity. Hence, a model based on 128-nodes

in the core resulting into 1168 th order has also been developed.

Feasibility of Kalman filtering technique to the estimation of time varying neutron

flux distribution in AHWR has been successfully explored in this thesis. It also leads to

some future directions for research. Advanced state of the art approaches of estimation

such as EKF, UKF etc., also can be applied to the same problem. Optimality and the

availability of the DKF based flux mapping algorithm can also be verified under the

faults in some detectors. In addition to this, a reduced order DKF can be designed

based on the simplified model obtained from the balanced truncation approach for the

estimation of core flux distribution in AHWR in future.

Before deployment in the AHWR, the efficacy of the technique needs to be established

further, and it should be demonstrated using plant data, such as from PHWRs that it

yields improvement in accuracy compared to that resulting from existing techniques. It

should also be assessed from the viewpoint of implementation that the computations

could be performed in real-time using hardware and other resources, suitable for control

and instrumentation systems in nuclear reactors.
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