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CHAPTER 7 Conclusion

The current research explored some novel techniques for optical phase extraction
algorithm with aim to velocity measurement in high strain rate experiments by
interferometric technique. The developed technique alleviates the existing methods
and provides more accurate results. Phases as well as frequency of the fringe signals
were explored from single fringe as well as multi fringe signals.

Chapter 3 introduced the concept of phase shifting method of various configuration
i.e. two fringe, four fringe based techniques. Phase unwrapping technique was
developed and demonstrated and ellipse fitting technique was introduced for
correcting various measurement imperfections.

Chapter 4 presented the concept of Continuous Wavelet Transform technique for
phase extraction. Two different techniques namely phase estimation method and
frequency estimation was explored. Importance of ridge extraction was highlighted
and modification of mother wavelet (complex Morlet) in conjunction with
reassignment technique was proposed to extract the phase using direct maxima search
algorithm for ridge detection.

Reassigned smoothed pseudo Wigner Ville distribution (RSPWVD) based technique
was introduced in chapter 5 and provided an elegant approach of phase extraction
from single fringe based cubic phase signal. Simulation and experimental
investigation showed an improved accuracy of the extracted IF and phase of the
signal.

Chapter 6 presented an elaborate study of some of the proposed phase extraction
algorithms with the application to free surface velocity measurement in high strain

rate experiments. Novel ellipse fitting technique was introduced to correct the

88



measurement imperfections like phase angle and amplitude. Comparative studies of
different ellipse fitting technique were carried out and Gauss Newton algorithm with
initial condition from Bookstein method was proposed. Simulation and experimental
results justified the proposed method. This chapter also discussed the possible
application of IF extraction of fringe signals for measuring free surface velocity
profile using heterodyne laser interferomerty. Simulated heterodyne type fringe
signals were generated from measured VISAR velocity profiles and Reassigned CWT

based technique was proposed for accurate extraction of velocity profile.

For future work, ridge detection technique with less computational burden could be
investigated for proper representation of instantaneous frequency of the signal which
has enormous applications in practical. Generalization of CWT in time frequency
analysis is also an interesting problem. Polynomial Wigner Ville Distribution could be
studied for multi-component polynomial phase signal. Complex time distribution
(CTD) could be explored for polynomial signal. Ellipse fitting based on extended
Kalman filter (EKF) method may provide the better result for fractional fringe signal

with poor SNR value.
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Abstract

Optical interferometry-based non-contact type measurements play a key role in determination
of free surface velocity of target material under high strain rate experiments. Michelson
interferometer in velocity as well as displacement mode configuration is widely used. As the
information of velocity is hidden in phase or instantaneous frequency (IF), it is important to
extract the phase or IF of the fringe signal. In time domain approach, multiple fringes are
required to extract phase and numerical differentiation which is noise sensitive required to get
the IF. Although computationally less expensive, the accuracy of this method may get
affected significantly by various measurement imperfections like, nonlinearity, amplitude and
phase angle error. On the other hand, in frequency domain approach single fringe may be
sufficient to extract IF and numerical differentiation could be avoided. In this thesis, phase
extraction based on quadrature phase shifting method, reassigned Continuous Wavelet
Transform (CWT) method and Smoothed Pseudo Wigner-Ville Distribution (SPWVD)
method have been described and developed. In phase shifting method amplitude and phase
angle error have been corrected by efficient ellipse fitting method by combing algebraic as
well as geometric technique. In CWT, time-bandwidth product of Morlet wavelet is
optimised and simultaneous reassignment technique is applied for accurate IF extraction.
SPWVD method is proposed for extracting IF of highly non-stationary polynomial frequency
modulated fringe signal. Cohen class signal representation is followed and time and
frequency resolutions are independently optimized using Gaussian separable kernel.
Reassignment technique is further applied for sharpening of the spectrogram with these
optimized kernels that improves accuracy in IF significantly. Finally, some of these
developed phase extraction algorithms are applied to free surface velocity measurement
under high strain rate experiments and different dynamic mechanical properties of AL2024T4

target material are derived from extracted velocity profile.



CHAPTER 1 Introduction

1.1 Phase Extraction Fundamental

The phase extraction of optical interferometric signals play important role in
analyzing the opto-electrical signals generated while measuring the physical
parameters such as displacement, strain, velocity, surface profile etc. employing non-
contact methods such as interferometery [1-3]. Necessity of such measurements
arises during non-destructive testing, profilometry and dynamic failure under shock
wave loading etc. For example, free surface velocity history of target material under
high strain rate experiment carries useful information on material behavior [4-8] for
determination of yield strength and fracture strength at high strain rates (commonly
known as dynamic yield strength and spall strength, respectively), and phase
transitions. The displacement interferometer and velocity interferometers are
commonly used techniques for measurement of free surface velocity. In these
techniques the information of these physical quantities are stored in phase or
instantaneous frequency (IF) of the recorded interference fringe signal [3]. Therefore,
the extraction of phase or IF of the fringe signal using different signal processing
algorithms becomes an important problem.

Mathematical form of typical interferometric fringe signal can be expressed as-
| (t) = a(t) + b(t) cos(¢(t)) (1.1)

o(t) = 24F (D)t (12)
where I(t) is the measured intensity, a(t) is the background intensity, b(t) is the fringe

amplitude, ¢(t) and f(t) are phase and frequency of the signal respectively. The aim of



the analysis is to extract phase ¢(t) and or frequency f(t) of the signal based on the
different interferometer configuration.

Various methods of phase extraction algorithms are available in literature, which are
broadly categorized as-(1) time domain approach by using phase shifting algorithm
(2) frequency domain approach. In time domain approach multiple fringe signals are
required to extract the phase. But in frequency domain approach single fringe is
capable of producing phase of the signal. Moreover, in this technique phase and
frequency can be simultaneously obtained which is often requirement. For example,
displacement and velocity of a target material under impact experiment carry
important information which can be obtained by measuring phase and frequency of
the fringe signal simultaneously. In this approach we can avoid the numerical
differentiation which is sensitive to error prone for getting the velocity (frequency)
from measured only displacement (phase) of the signal. However, both the approach

has merits and demerits.

Mirror 1
Flyer plate Target
Polished
Mirror 2 surface
/ /,
P
4
Converging lenses
Photomultiplier Tube Laser source

Fig. 1.1 Displacement mode Michelson interferometer
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Fig. 1.2 Velocity mode Michelson interferometer

1.2 Interferometers Based on Michelson Interferometery

For use in high strain rate impact experiments, Michelson and Fabry-Perrot based
interferometers are used [7]. However, Michelson interferometers in two categories
according to their implementation are quite popular [4,7]. The two categories are
displacement interferometers and velocity interferometers. Difference between these

two types of interferometers and their working principles are discussed below.

1.2.1 Displacement Interferometer

A typical setup of displacement type Michelson-interferometer is depicted in Fig 1.1.
In this configuration, surface of the target plate is polished to form one of the legs of
the interferometer. Other leg of the interferometer is a stationary mirror M1. A laser
beam is split in to two parts using a beam-splitter and these two beams incident on the
polished target surface and the mirror M1. The laser beam reflected from the target

surface and the mirror M1 are superimposed and a stationary interference fringe



pattern is generated. Interaction with the shock wave causes the free surface of the
target to move. This movement of free surface of target results in time dependent
changes in the path difference between the beams from the two legs thereby
generating shift in fringes. This shift in fringes is then used to infer the velocity of free

surface as a function of time by applying following expression:
A
v(t) = > fi (t) (1.3)

Where, v(t) is velocity of the free surface in time t, fi(t) is instantaneous frequency of
fringe in time t, and Ao is wavelength of the original laser beam. The fringe shift of
optical signal is converted to an electrical signal using photomultiplier tube and
recorded in oscilloscopes. However if phase of the fringe signal is extracted then

displacement history of the free surface of target can be directly plotted.

The instrument is very sensitive and has excellent distance resolution. This
interferometer can generate one complete fringe shift for a small free surface
displacement of A¢/2 only. Though, the extreme sensitivity has advantage of very fine
resolution, it imposes a limitation on the maximum velocity that can be measured
using this instrument. This problem arises due to frequency response limitation of the
electronic equipment such as photomultiplier tube, amplifier, oscilloscopes used in the
system. Moreover, shock wave has tendency to destroy the mirror finish of the free
surface of target that often fails to maintain specular characteristic of interference

pattern.



1.2.2 Velocity Interferometer

In contrast to the measurement of velocity as a function of time in displacement
interferometer, the velocity interferometer employ measurement of differential
Doppler shift of the light reflected off the moving target surface. In this
configuration, interference pattern is generated by interaction of two laser beams
reflected from the free surface at two different instants of time. The delay in between
reflection of the two beams is created either by increasing the path length known as
Specular Velocity Interferometer (SVI) or, by placing a solid etalon bar known as
Velocity Interferometer System for Any Reflector (VISAR) in one of the legs of the
interferometer [4,7]. This allows inferring velocity history of the free surface with
very few numbers of fringes and also overcomes the fringe frequency limitations of
displacement type interferometer. The velocity history of the target free surface is

encoded in the phase of the fringe signals.
1.3 Research Objective

The aim of the present research activities is to develop novel analysis technique of
phase and frequency extraction using both time and frequency domain approaches by
addressing the existing shortcomings of the different techniques with application to

velocity measurement in high strain rate experiments.

1.4 Contribution

The outline of the present studies is as follows:
Chapter 2 presents literature survey of existing phase extraction techniques of both

temporal and frequency domain approaches.



Chapter 3 introduces phase shifting method of phase extraction algorithm and
highlights the shortcomings of existing technique and presents possible solution.
Chapter 4 presents frequency domain approach of phase extraction by using
Continuous Wavelet Transform (CWT).

Chapter 5 proposes Reassigned Smoothed Pseudo Wigner Ville Distribution method
for cubic phase signal.

Chapter 6 highlights the application of some of the proposed methods in free surface
velocity measurement in high strain rate experiments.

Chapter 7 summarizes the contribution of work and presents scope of possible future
work.



CHAPTER 2 Literature Survey

Phase extraction algorithms are available in literature in the context of fringe analysis
with major applications to metrology by using digital holographic interferometry,
fringe projection interferometry and digital speckle pattern interferometry etc. [1-3].
In all these applications, optical fringe signals are directly captured by CCD camera
and image analysis based phase extraction is applied. In some interferometric
configuration, optical fringe signals are converted to voltage signals by using PMT or
other photo detector and stored in digital storage oscilloscopes and analysis is carried
out with this voltage signal to extract the phase of the signal [4]. Various methods of
phase extraction are developed- broadly categorized as time domain approach and
frequency domain approach [3].

In time domain approach multiple fringe signals are required to extract the phase
known as phase shifting method. Different algorithms are proposed in this technique-
N-bucket algorithm, least square approach, Carre’s algorithm etc. N-bucket algorithm
with four frames based technique is quite popular [9,10]. Accuracy of phase
measurement depends upon the correctness of the phase shifting technique, which is
often affected by various nonlinearities, hysteresis and other imperfections. To
address this issue, various error compensating techniques have been proposed in
literature [11,12]. Stochastic search, state space model and maximum likelihood
estimation based approach have also been explored [13,14]. Further, in many cases
amplitude and phase angle error between two quadrature fringe signals is unavoidable.
However, this can be corrected by ellipse fitting technique [15-17] as quadratre fringe

signals represent family of ellipse in Lissajous pattern. In certain applications,



measured fringe signals do not complete the angular 2z rotation in Lissajous pattern
and ellipse becomes incomplete or fractional. Despite so much of research activity
already have been carried out in ellipse fitting, search for proper fitting algorithm to
analyze the fractional fringe signal is still an active research topic.

In frequency domain approach, single fringe is capable of producing phase of the
signal. Moreover in this technique, phase and frequency can be simultaneously
obtained which are often required. For example, determination of material
displacement and material velocity of a target subject to impact loading need
information on both phase and frequency of the fringe signal simultaneously. In this
approach noise sensitive numerical differentiation can be avoided for getting the
velocity (frequency) from measured only displacement (phase) of the signal. Fourier
transform based technique is most popular choice of frequency domain approach of
phase extraction [18]. But when the fringe signals become non stationary, windowed
Fourier transform [19] and wavelet transforms based techniques are applied [20-23].
Continuous Wavelet Transform (CWT) is more suitable as it makes use of adaptive
time window that overcomes the fixed resolution problem in windowed Fourier
transform. Morlet wavelet as mother wavelet is widely applied as it utilizes modulated
sinusoidal signal in Gaussian window which is qualitatively similar to fringe signal
[20]. Recently, generalised Morse wavelet as a superfamily of analytic wavelet is
introduced with an added parameter that can change the shape of mother wavelet with
the fixed time duration or bandwidth [24,25]. Comparative studies with other mother
wavelet like Mexican hat, Paul, Morse, DOG etc. are also available in literature but
Morlet is quite popular [21]. The product of central frequency and time variance of

Gaussian window (fot) of Morlet wavelet determines the capability of extracting low



and high frequency signal component simultaneously with a reasonable accuracy.
Modification of Morlet wavelet parameters was explored by Abid et al [26] who
suggested that time variance of 0.5 is optimum for fringe analysis. Later Rueda et al
[27] investigated it in the context of power system low frequency electromechanical
oscillation identification and proposed several criteria for selecting central frequency
and time variance parameters. However, modifying only Morlet wavelet parameters
do not always provide the best possible result, increasing time-frequency energy
density may be required for preserving good localisation properties. The modulus of
maximum of wavelet coefficients form a path known as wavelet ridge [28-31]. Ideally
ridge can be extracted from the time-frequency (T-F) energy density using the
maximum modulus of complex array. However, due to various imperfections, maxima
search algorithm fails to detect the exact ridge points. To address this problem, in
1997 R. A. Carmona et al [28] proposed various algorithms of ridge detection like
cost function minimization, snake penalisation, phase map algorithm, simulated
annealing and later in 1999 proposed crazy climber algorithm [29]. All these
algorithms use complex dynamic optimization techniques. Later, only cost function
minimization and phase map algorithms have been applied for optical phase extraction
application by many researchers [21,30,31]. Avoiding these complex ridge detection
algorithms and effective use of direct maxima search algorithm with possible
modification of time-frequency energy density is still an open area for research.

Phase unwrapping is an important steps in phase extraction algorithm in both phase
shifting method and frequency domain method. Many applications required to have
robust phase unwrapping algorithms and literature in this direction is available in

abandon [32,33].



Wigner Ville Distribution (WVD) method is recently introduced for direct phase as
well as frequency estimation of fringe signal [34,36]. In this method complex phase
unwrapping can be avoided. Though WVD has many good properties and provides
best possible resolution among all of the time-frequency (TF) techniques,
undesirable cross-term interference effect is its main drawbacks [37-39]. WVD is
also highly non local and to make it local windowing operation is introduced
popularly known as Pseudo Wigner-Ville Distribution (PWVD) [38]. One of the
immediate consequences of windowing is suppression of cross-terms effect to some
extent for multi-component signal. However, these benefits are achieved at the cost
of blurring of the auto-terms of the signal and a loss of many desirable theoretical
properties. The unsatisfactory result leads to the development of general form of
quadratic representations by introducing 2-D kernel function proposed by Cohen
[37]. By examining this kernel function various properties of bilinear TF distribution
can be ascertained. Therefore, the smoothing in the ambiguity function domain
combined with the kernel function allows both the suppression of the cross-terms and
the preservation of the auto-ambiguity terms of the analyzed signal. When the kernel
function is separable, an independent and progressive control can be applied to the
WVD in both time and frequency directions known as Smoothed Pseudo Wigner-Ville
Distribution (SPWVD) [37,38]. WVD has an optimum t-f representation for linear FM
or quadratic phase signal. For nonlinear FM signal this optimality is lost and smeared
spectral representation obtained. To address this problem to analyze the polynomial
phase signal, polynomial Wigner-Ville distribution has been introduced [40,41].
However, when signal comes with polynomial phase along with nearly discontinuous

IF, no investigation is yet carried out.
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In the context of high strain rate application for the measurement of free surface
velocity, Michelson interferometer in velocity and displacement mode is used [4,7].
VISAR [4] is popularly used as a velocity mode configuration. In this technique phase
of the fringe signal carries the desired information. Many interesting material
properties such as Hugonoit Elastic Limit (HEL), dynamic yield strength and spall
strength can be inferred from the measured free surface velocity history of target
material [7]. These material properties find immense applications in defense,
geophysics, aerospace, automobile etc. VISAR is basically a modified version of wide
angle Michelson interferometer in which two Doppler shifted lights reflected from
target free surface at two different instants of time interfere each other to form fringe
pattern [4]. Therefore, it works in the velocity mode or differential displacement mode
configuration. Phase shifting method is used to analyze the fringe signal and
quadrature coded interference fringes are utilized for differentiating between the
acceleration and deceleration of target free surface. In displacement configuration
heterodyne technique popularly known as Photonic Doppler Velocimetry (PDV) has
come into use to overcome the challenges involved in the VISAR measurements.
Comparative study of VISAR and PDV in terms of accuracy and precession is an
active topic of research at present [42]. However, VISAR is still widely used and
preferred technique in dynamic compression experiments where many issues related
to signal analysis yet remain to be investigated. Gourdin explained the analysis
technique in presence of large intensity changes [43]. Hemsing also pointed out
various measurement imperfections like input light intensity variations,
uncompensated dc offset voltages, nonlinearities in the photo detectors, unequal

amplitudes of the detector signal etc [6] and corresponding corrective measures before

11



carrying out experiments. Dolan [15] gave an elaborate study of VISAR signal
analysis technique including velocity corrections, fringe ambiguity and uncertainty,
amplitude and phase angle correction, dynamic contrast loss etc. Majority of these
imperfections can be controlled by arranging good experimental set up. Though
amplitude and phase angle error between two quadrature signals is unavoidable but it
can be corrected by employing proper ellipse fitting technique. Dolan also discussed
different ellipse fitting technique suitable for VSIAR signal. However comparative
assessment of existing ellipse fitting techniques and their applicability to VISAR
signal remains to be addressed properly.

As mentioned earlier in displacement mode heterodyne technique is applied and
instantaneous frequency of the fringe signal carries the information of the free surface
velocity. Fringe signal is also highly non stationary and STFT, CWT are used for
extracting the IF [44,45]. Limited literatures are available for improving the analysis

of varied class of signals.
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CHAPTER 3 Phase Extraction by Quadrature Phase
Shifting Method

3.1 Introduction

Phase shifting method is widely used and quite popular in phase measurement [1-4]. It
Is computationally simple and can handle nearly discontinuous phase variation. In this
technique multiple fringes are required to extract the phase of the signal. There are
many variations of phase shifting algorithms available such as two, three and four
fringes based technique. However, most common phase shifting method is four fringe
based technique. As mentioned earlier mathematical form of typical interferometric
fringe signal can be expressed as-

1(t) = a(t) + b(t) cos(g(t)) (3.1)
where I(t) is the measured intensity, a(t) is the background intensity, b(t) is the fringe
amplitude, ¢(t) is phase of the signal. In the above equation three unknown exists:
a(t), b(t) and ¢(t). ¢(t) carries the information of interest and other two variables need
to be eliminated. To address this issue four fringes are needed with mutual phase shift

of m/2 radians between them. Four fringes are now can be expressed as-

I1(t) = a(t) + b(t) cos(g(t)) (3:2)

I, (t) = a(t) +b(t) cos(¢(t)+ %) (3.3)
13(t) = a(t) + b(t) cos(4(t)+ ) (3.4)
14(t) = a(t) +b(t) cos(¢(t)+ %”j (3.5

Now subtracting (3.4) from (3.2) gives;

11() - 13(t) = 2b(t) cos(g(t)) (3.6)
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Further subtracting (3.3) from (3.5) gives;
14(t)—12() = 2b()sin((t)) 3.7)
Thus required phase information can be determined by dividing (3.7) by (3.6) which

gives;

#(t)= arctan[ﬁ] (3.8)
The resultant phase is wrapped between —x to 7 or 0 to 2x due to inherent property of
the mathematical arctan function and phase unwrapping algorithm is required to
remove this 2r phase jump.

Although, this four fringe based technique ideally possess efficient usage of light,
improves signal to noise ration, it also suffers from non ideal measurement effects

(unequal amplitude and phase angle error) due to presence of polarizing beam splitter

and other optical components. Thus equations (3.2) to (3.7) are re-written as-

11.(t) = 2 (t) + by (t) cos(4t)) (3.9)

5 (t) =ay(t)+ by (1) cos[¢(t)+ % - gj (3.10)
13(t) = ag(t) +ba(t) cos(g(t) + 7) (3.11)
l4(t) = a4(t)+b4(t)cos[¢(t)+37”—sj (3.12)

Now subtracting (3.11) from (3.9) gives;
11(0) — 13(0) = ag (1) — ag (©) + (bg (1) + by (V) cos(p(t)) (3.13)
Equation (3.13) can expressed as-
(1) = ax (1) + by (©) cos((t)) (3.14)
Similarly subtracting (3.10) from (3.12) gives;

14(t) =15 (t) = ag (t) —an (t) + (by (t) + ba (t)) cos(g(t) - &) (3.15)
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Equation (3.15) can be expressed as-
Iy (©) = ay (©) + by () cos(g(t)— ) (3.16)
Here ¢ is the phase angle error. In general background intensity of equation (3.14) and
(3.16) are made zero by increasing or decreasing the gain of a particular detector or by
adjusting numerically. Therefore equation (3.14) and (3.16) can be expressed as-
1 (®) = by (©) cos(g(t)) (3.17)
y (® = by (V) cos((t) - #) (3.18)

By using above two equations phase can be expressed as-

H(t) = arctar{ : i’g E; 8 sece+tan g] (3.19)
Equation (3.17) and (3.18) form an ellipse equation whose centre is at origin and
major axis, minor axis and angle of rotation are by, by and ¢ respectively. Although
phase expression seems to be very simple at first glance it also needs more work for
non ideal measurement by proper ellipse fitting to get the required phase.

Therefore, it is emphasised on development of two fringe shift based phase shifting
algorithm as it needs less number of components and easy to handle. Mathematical
expression is quite similar to four fringe shift algorithm.

In case of two fringe shift based phase shifting algorithm, two non ideal equations can

be written as

11(t) = aq (t) + by (t) cos(4(t)) (3.20)
15 (t) = ay(t) + by (1) cos(¢(t)+%—e] (3.21)
I5(t) = ap (1) + by (t)sin(g(t) - £) (3.22)

By using equation (3.20) and (3.22) phase can be expressed as-
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_ I2(t) —ax )by (t)
H(t) = arctar( 120 —2 (05> () sec & + tan g] (3.23)

Equation (3.19) and (3.21) form an ellipse equation whose centre is at (ai,a;) and
major axis, minor axis and angle of rotation are bi, b, and ¢ respectively. These five

unknown parameters are obtained proper ellipse fitting method.

3.2 Ellipse Fitting

Ellipse fitting or any general conic fitting is an important problem in many fields such
as pattern recognition and computer vision, astronomy, structural geology and many
more. In literature ellipse fitting is broadly categorized in two techniques: (1)
Algebraic fitting and (2) Geometric or lterative fitting [46-54]. Algebraic technique
uses least square fitting that minimizes some measured distance between data points
and ellipse. Thus it becomes linear, simple and efficient. On the other hand geometric
method uses nonlinear optimization technique to fit the ellipse which is
computationally less expensive. Algebraic method of fitting is implemented for

analysis of fringe signals generated in displacement mode configuration.

3.3 Phase Unwrapping

As discussed earlier phase expressed in equation (3.19) and (3.23) are wrapped and
proper phase unwrapping algorithm needs to be developed to get the continuous phase
distribution. First this mod = is converted to mod 27 phase by using four quadrant
arctan functions described in equation (3.24) and then 2x phase jump is removed by

using phase unwrapping algorithm described in equation (3.25) and (3.26).
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% 1=0,1; >0
37” 1=0,11<0
¢(t): arctar{lTl 1>0,11 >0 (324)

27 + arctan{lle 1>0,11<0

T+ arctan(ll—l] 1<0
¢, (t)=wlo(t)] (3.25)
¢,(t) = 9(t)+2nk (3.26)

where @y(t) is the unwrapped phase and w is the unwrapping operator, k is an
integer.
Various phase unwrapping algorithm are available which can be classified in two

categories: time and frequency domain technique. In frequency domain approach

—Jfh I I|J 1
E i |' i T
ffl[] | k . _!]_Irl I.i rl

l. I| b
| ..|[|,=- '-,hhj i

-10-

Amplitude (V)

1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Time (sec)

1 1 1 1 1
0 5 100 150 200 250 300 350 400
Time (sec)

Fig. 3.1 (a) Simulated Sinusoidal noisy signal (b) Undesired phase jump in

unwrapped signal
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phase extraction depends upon the information of neighbouring points. Examples of
this technique are Fourier fringe analysis, Wavelet fringe analysis and direct phase
demodulation etc. In these techniques a single fringe is sufficient to extract the phase.
In time domain approach phase extraction depends upon only the current amplitude of
different fringes. It does not require the knowledge of surrounding point’s amplitude
values. Example of this technique is phase stepping algorithm. However, this

technique requires more than one fringe to extract the phase information.
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Fig. 3.2 (a) Experimentally recorded velocity interferometer fringe signal (b) Wrapped

phase (¢) Unwrapped Phase
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Selection of particular technique depends on application i.e. dynamic, static, noise,
computational complexity etc. Direct-recursive algorithm of phase stepping method is
developed which is easy to implement, computationally simple, and relatively robust.

The basic principle of direct-recursive algorithm is that the absolute value of the phase
difference between two adjacent points is smaller than n. If the phase sequence is

considered as {¢i}» then the calculation steps are as follows:
(i) Calculate the phase difference: Ap=pi+1-¢i.
(if) Adjust the difference to [0, 27):

Ap-2r Ap27m
Ap=3Ap+2n Ap<-7
Ag others

(ii1) Calculate the unwrapped phase: @is1=@i+Ag;

The algorithm is validated with simulated sinusoidal profiles with linear phase signal
shown in Fig. 3.1 (a). Additive White Gaussian Noise (AWGN) is also added to
simulated profiles and phase unwrapping is performed to test the robustness of the
algorithm described in Fig 3.1(a). In Fig.3.1 (b) the undesired phase jump occurs for
the value of SNR 5.9(dB). Above this value the algorithm is proved to be robust.
Further to show the efficacy of the proposed phase unwrapping algorithm,
experiments are conducted using Michelson interferometer in velocity mode
configuration in Light Gas Gun facility for highly non linear phase signal. Prototype
description of interferometer is shown in Fig. 1.2. Here, a flyer plate moving in very
high velocity hits the target material and outer surface of target material starts moving.

As the laser light focuses on the outer surface of the target material, the interference
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fringes are generated between two Doppler shifted signals at two different instant of
time and velocity of target material is proportional to phase of the fringe signals. The
recorded quadrature fringe signals are shown in Fig. 3.2(a). Further, proposed phase
unwrapping algorithm is applied on this fringe signals and resultant wrapped (-90 to
+90 degree) and unwrapped phase (in the rage of 0 to 800 degree) signals are plotted

in Fig. 3.2(b) and Fig. 3.2(c) respectively.

3.4 Experimental Program

Optical fringe signal is generated by using basic displacement Michelson
interferometer by periodic movement of one of the mirrors while keeping other mirror
stationary. The PZT transducer is used to generate periodic displacement. Two fringe
shift based configuration is shown in Fig.3.3. Measured quadrature fringe signals
along with applied PZT voltage are shown in Fig.3.4. This optical fringe signal is
converted to electrical signal by using PMT and stored in digital storage oscilloscope
(DSO). FFT analysis of one of the recorded fringe signals is also carried out for better

understanding the non-stationary nature of frequency component and is shown in Fig.

DSO
Power
Supply Ny Polarizing Splitter
Q)
” Laser
B Head
N2 Splitter

Piezo Translator M1

Fig. 3.3 Michelson interferometer in displacement mode configuration
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3.5. The required phase can be obtained using equation (3.23). However, equation
(3.23) needs calculation of ellipse parameters. The extracted ellipse parameters in one
of the complete fringes of Fig. 3.4 are a;=0.018, a,=0.015,b;=0,b,=0.002 and £=0.48,
and lissajeous plot of fringe signals and fitted ellipse are shown in Fig. 3.6. Using this
ellipse parameters phase is calculated using equation (3.23). However, this phase is
wrapped and phase unwrapping algorithm is applied to get the unwrapped phase.
After calculating the unwrapped phase, number of fringe shifts is determined using
equation (3.27) and finally displacement is calculated using equation (3.28) and
shown in Fig.3.7. Measured peak displacement is 2.06um. It is also observed that
extracted displacement profile is closely equivalent to PZT supply voltage shown in

Fig. 3.4, as displacement of PZT is proportional to supply voltage.
N OLy((9) (3.27)
27

() =% F(O) (3.28)
Here, s(t) is the displacement of the mirror, Laser wavelength 2=532nm, F(t) is

total fringe shift, ¢(t;) is the initial phase.

PZT voltage (V)

Fringe signal Ch-1 l/\/ |
Fringe signal Ch-2
PZT voltage I |

] 1 1
0.6 0.8 1
Time(ms)

Amplitude(mV)

Fig. 3.4 Measured fringe signal of two fringe shift method
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Fig. 3.7 Extracted displacement profile

3.5 Conclusion

Optical phase extraction algorithm based on two fringe shift technique is
demonstrated. Measurement imperfections are modelled and corrective action is
proposed by introducing ellipse fitting method. Phase unwrapping technique is
developed based on direct recursive phase stepping algorithm. Robustness of the
phase unwrapping algorithm is tested with additive Gaussian noise and found to be
robust above SNR 6dB. Further, phase unwrapping is applied to experimentally
recorded fringe signal in velocity mode configuration and found to be effective.
Finally, experiment is conducted in displacement interferometer and fringes are
generated by moving one of the mirrors with applied PZT voltage. Phase unwrapping
algorithm works properly. Although amplitude and phase angle are corrected by

ellipse fitting technique, relative non-linear error presents in displacement profile.
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CHAPTER 4 Phase Extraction by Reassigned Continuous

Wavelet Transform Method

4.1 Introduction

In the previous chapter phase extraction based on quadrature phase shifting method is
introduced. It is found that relative non-linear error between fringes presents in the
extracted displacement profile. Therefore single fringe based analysis is always

demanding. To address this problem Continuous Wavelet Transform based technique

is introduced in this chapter.

4.2 Background

4.2.1Ridge of Continuous Wavelet Transform

A wavelet is an oscillatory function yA(t)eL,(R) with limited number of oscillation,
zero mean and centred at t=0.The function yAt) is called “mother wavelet”. A wavelet
wap(t) at any time and scale obtained by dilating and translating the mother wavelet
with a, b respectively can be expressed as:

1 (%) agR", beR) (4.1)

'//a,b(t)=ﬁ'//

Frequency

Frequency

Time

Time

Fig. 4.1 Time frequency tiling (a) STFT (b) CWT
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Fig. 4.2 (a) Dilated and Translated Morlet wavelet (b) Fourier transform of Morlet
wavelet

The Continuous Wavelet Transform (CWT) of a function f(t)eL?(R) is the inner
product of f(t) and ya p(t)

o0

—00

(4.2)

The function f(t) can be reconstructed from wavelet coefficient Wi(a,b,y) by using
following relation

o0 00

1 1 t-b da

fo L j jwf (a b)—w[—jdb—

Cl// \/g a a2
—00 —00

(4.3)
where constant C,, is defined as

0 | . 2
CW:I@ dw <o
—o0

(4.4)

Equation (4.4) is called admissibility condition which ensures that inverse wavelet

transform exists for a given problem. It may be noted that for C,, to be finite, wavelet

should have no zero-frequency component-

y(0)=0 (4.5)
This also implies that:
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0

I y(t)dt=0 (4.6)

—00

These two conditions also ensure that wavelet is localised in both time and frequency

domain and behaves like a band pass filter.

As mentioned earlier the optical fringe signal is basically a frequency modulated

signal expressed as:

f (t) = A(t) cosg(t) (4.7)
The analytic version of the above signal fi(t) may be obtained by using Hilbert

Transform (Hf(t)) and is given as -

fa(t) = f (t) +iHF (1) (4.8)
If the fringe signal f(t) is asymptotic, which is a reasonable approximation of many
optical fringe signal, then f,(t) is closely equal to exponential model-

fa(t) ~ A@) PO (4.9)
This representation is useful to properly define the instantaneous frequency of the

fringe signal as derivative of phase [37].
Consider Morlet as mother wavelet which is a plane wave modulated by a Gaussian

function and is defined as-

y/(t): ! exp{ztngr jwotJ (410)

where o7 is the variance of the Gaussian envelope and ay is central frequency of the
mother wavelet. Dilated and translated version of Morlet wavelet in temporal and
Fourier space are shown in Fig.4.2 (a) and (b) respectively. It is found that in Fourier

space it is peaked near w=wy.
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By applying stationary phase principle, the Morlet wavelet transform for asymptotic
and locally monochromatic analytic signal f4(t) can be described as [55]-

Wy (a,biy) ~ % Ab)expliglb)ly " (ag (b)) + o[|A'|/|A|,|¢¢"|/|¢'|2J (4.11)

where O(.) is an infinitesimal. If we ignore the infinitesimal part of the above

expression it can be |Wr(abw)| ascertained that reaches maximum when:

ag' (b) = g (4.12)
a=a,(b)= ;)((;) (413)
@i(b)=¢'(0)=-2 (4.14)

Equation (4.14) justifies that phase derivative in analytic representation of signal is
simply an instantaneous frequency. The set of points {b, a,(b)} form a curve known as
ridge of the wavelet transforms and related to instantaneous frequency (w;) of the
signal at different scale. Thus, Wt (abiy ) forms a local time-scale energy
density of the signal called scalogram. Further using equation (4.14) scalogram can be
converted to time-frequency spectrogram. Ideally ridge can be extracted from the
time-frequency (T-F) energy density using the maximum modulus of complex array.
However, due to various imperfections maxima search algorithm fails to detect the
exact ridge points. To address this problem, in 1997 R. A. Carmona et al [28]
proposed various algorithms of ridge detection like cost function minimization, snake
penalisation, phase map algorithm, simulated annealing and later in 1999 proposed

crazy climber algorithm [29]. All these algorithms use complex dynamic optimization

27



techniques. Later cost function minimization and phase map algorithm have only been
applied for optical phase extraction application [21,31].
Once the instantaneous frequency w is computed by using (4.14), the phase
distribution can be extracted by integrating the instantaneous frequencies and no phase
unwrapping algorithm is required. This method is known as frequency estimation
technique.
It is to be noted that phase can also be extracted from wavelet coefficients known as
phase estimation technique. In this method, complex Morlet wavelet is applied to the
fringe signal and two dimensional complex arrays are generated. Hence, the modulus
and the phase arrays can be calculated by using (4.15) and (4.16) respectively.
abs(a,b)=|w¢ (a,biy ) (4.15)
olon) - S (4.16)
To compute the phase of the signal, first ridge points are determined and then its
corresponding phase values are found from the phase array using equation (4.16). A
wrapped phase map from —x to +n is resulted and unwrapping algorithm is required to
unwrap it. In this technique simultaneous IF estimation is difficult as noise sensitive

numerical differentiation of phase signal may be required.
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4.2.2 Time-frequency resolution
The time frequency resolution of CWT depends on spread of y(a,b) in time-frequency
domain. As yAt) is centred at t=0 the yap(t) is centred at t=b. The spread or variance

in time domain is calculated from

I (t-bPlyap @ dt=a’c? (4.17)

—o0

where

O'tz = It2|ly(t)|2 (418)

—00

In frequency domain, the centre frequency ax of ) is expressed as
0 =5 [ el s (4.19)
0
The centre frequency of ., , ) IS

=20 (4.20)

The spread in frequency domain around ax/a is

o8 = [ (@-a0)p () do (4.21)
0

4.2.3 Time-frequency reassignment

Time-frequency reassignment technique is predominantly applied to bi-linear
transformation like pseudo Wigner-Ville distribution [37,38] for sharpening the T-F
energy density where smoothing kernel is used to reduce interference effect but at the
same time it smears T-F energy density. Being a post processing method this

technique can also be applied to T-F energy density of linear transform like CWT or
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store the coefficient
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Instantaneous Frequency Find the phase value of
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Phase estimation by Phase Unwrapping
integration algorithm

Phase vs Time plot

Fig. 4.3 Flowchart of proposed algorithm

Gabor. This technique was first developed by Kodera et al [56] for STFT signal in
1978 and after 15 years it was generalized to use in any bi-linear time-frequency or
time-scale representation by F. Auger and P. Flandrin [38]. Applicability of this
technique in CWT is justified as CWT also suffers from resolution problem limited by
uncertainty principle. But instead of fixed resolution in Gabor it has adaptive
resolution related to scale at ridge points and resolution of mother wavelet. Though
reassignment technique does not improve the resolution problem directly but it can
able to improve the signal concentration particularly low energy components, which
in turn lead to improvement in readability of spectrogram. Moreover, due to this
improved readability, the direct maxima search algorithm performs better and overall

measurement accuracy improved significantly. In reassignment technique of CWT,
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time-scale gravity centre of resolution window is calculated and shifted by its

neighboring geometrical center. It can be described as-

RMSG ¢ EQ, G;W] = jj{é}zMSG ¢ (3, b: W}{G— b'(a, b)Hg— a'(a, b):ldadb (4.22)

where

b'(a,b)bR{awf(ayb;w)lv:(a'b;w@ (423)

el T

Wf[a,b:zf/}w?(a,b:w)
A= im (4.24)

afab) a 27Za|V\/f (a,b;gu]2

w'(t):ty/(t),z;(t) :Cij—"t’(t) (4.25)

Here, RMSG;: denotes reassigned and modified scalogram.
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Fig. 4.4 Simulated linear chirp signal
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Fig. 4.5 Scalogram of linear chirp signal

4.2.4 Phase Extraction of Linear Chirp signal
The developed algorithms are first validated by generating known non-stationary

linear chirp signal of quadratic phase and linearly increasing frequency. It is described

as-
Y, = Asin((0.5ai +b)i) (4.26)
2z(f, — f
4= % (4.27)
b= 241, (4.28)
where,

iI=0,1,..n-1,A=Amplitude, f,=Starting frequency(samples/cycle), f,=Ending
frequency(samples/cycle), n=Number of samples [23]. The quadratic phase and

instantaneous frequency can be written as

@, =(0.5ai +b)i (4.29)
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Fig. 4.6 Comparison of recovered and exact frequency of linear chirp signal

_1l(dy ) 1 .
- Z(Hj -~ (ai+b) (4.30)

In this work we set i=1000, f;=1Hz, f,=100Hz and sampling frequency (f;)=1000Hz.
The chirp signal is plotted in Fig 4.4. Figure 4.5 shows the modulus of CWT of this
signal using Morlet wavelet. The ridge points are determined by using maxima search
algorithm and it is plotted and superimposed on the modulus of CWT signal by black
dotted line. It is clearly seen that increase in frequency the optimal value of scaling
factor decreases. Here scales (a) are discretized as 0.25,0.5,0.75,1....100. The
instantaneous frequency is calculated from the values of scaling factor (a) on the ridge
using equation (4.20) and actual frequencies are determined from equation (4.30).
Both are plotted in the same graph shown in Fig.4.6. The recovered fringe frequency
contains error at the left and right hand edges due to abrupt truncation of data. In left

side edge close to 1 Hz the low frequency identification problem also exists. Finally,
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Fig. 4.7 Wrapped phase

the recovered phase by both the techniques and actual phase are plotted in Fig.4.8. It
Is observed that root mean square errors (RMSE) calculated between actual phase and
estimated phase using phase technique and frequency technique are 1.96 and 1.44

respectively. Again same work is carried out with scale settings as 1,2,3...100 and
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Fig. 4.8 Comparison of recovered phase and actual phase
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Fig. 4.9 Noise performance of phase extraction techniques

RMSE in phase technique and frequency technique are found as 1.96 and 2.54
respectively. Therefore results suggest that performing the phase technique more or
less insensitive to scale discretization whereas that of the frequency technique yields
better results for finer scale of discretization. However, due to finer scale
discretization the computation time has also increased. Therefore in some applications
where speed and computer resource are limited then phase estimation technique gives
better result for using relatively less fine scale. To check the robustness of the

proposed algorithm Additive White Gaussian Noise (AWGN) with zero mean and
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Fig. 4.11 Scalogram of linear chirp signal with decreasing and increasing IF
standard deviation o is added to the simulated profile and noisy signal is then
analysed using both the techniques with scale discritization as 0.25,0.5,0.75,1....100.
Finally RMSE of phase is found with respect to standard deviation of AWGN and it is
shown in Fig.4.9.

Simulation study is also carried out to cross linear chirp signals one decreasing and

one increasing shown in Fig.4.10. Scalogram of this signal is described in Fig.4.11. It
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Fig. 4.12 Frequency of linear chirp signal with decreasing and increasing IF

is found that, significant error occurs at low frequency point demonstrated in Fig.4.12

in extracted IF apart from distortion at edge points.

4.3 Analysis of simulated interferometric signal

4.3.1 Frequency modulated sinusoidal signal

In the last section it is shown that RMSE of frequency estimation technique is more
accurate than phase estimation technique. Moreover, frequency estimation technique
does not require complex phase unwrapping and velocity and displacement both can
be simultaneously extracted. Therefore, interferometric signal analysis is focused only
with frequency estimation technique.

To show the applicability of CWT technique, a simulated fringe with a predetermined
sinusoidal frequency variation (0.05 Hz to 0.45 Hz) and initial phase is generated.
Figure 4.13 depicts the simulated instantaneous frequency and modulated fringe

signals. Considering only the conventional Morlet wavelet with fyt=1, the modulus of
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CWT for this signal appears as shown in Fig. 4.13(a). The ridge points are determined
using maxima search algorithm and plotted as black dotted line superimposed on the
modulus of CWT signal. Recovered fringe frequency contains an error at low
frequency zone due to spreading of mother wavelet to its adjacent points.

Therefore, altering fot in mother wavelet is considered and the mean square errors
(MSEs), calculated from extracted frequency together with actual frequency, are
obtained as shown in Table 4.1. It is to be noted that for MSE calculation a few points
at edges are discarded since numerical discontinuities occur due to abrupt truncation
of data, commonly referred to as cone of influence (COI). As seen in Table 4.1, MSE
is lowest at fot=0.6 for which CWT is computed again as shown in Fig. 4.13(b).
However, even with some signature of improvements, discontinuity and error in low
frequency zone still exist. To further reduce these distortions, reassignment technique
with fot=1 is applied to scalogram and the result is shown in Fig. 4.13(c).
Discontinuity has reduced but error in low frequency zone still persists. Finally,
reassignment technique with f,t=0.6 is applied as shown in Fig. 4.13(d), increasing
overall measurement accuracy. Optimal selection of mother wavelet and then applying
reassignment technique [Fig. 4.13(d)] has improved MSE percentages for IF from
0.0085 Hz to 0.0031 Hz. Finally, phase is calculated by performing numerical
integration of extracted IF in Fig. 4.13(d).

The improved performance of reassigned and modified CWT method in low
frequency regime is due to reduction in energy of adjacent bins. This can be better

understood by plotting modulus of CWT coefficients with respect to frequency at a
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Fig. 4.13 A sinusoidal frequency variation and corresponding simulated fringe signal.
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Fig. 4.14 Morlet spectrogram with (a) fot=1 and (b) fst=0.6. Reassigned Morlet

spectrogram with (c) fot=1 and (d) fot=0.6.

given time instant. Fig.4.14 describes the absolute value of CWT coefficients of
Morlet spectrogram with fot=1, fot=0.6, and reassigned spectrogram with fot=0.6 at
different instants of time. Each peak of these distributions represents the estimated
frequencies at corresponding time instants. In Fig. 4.14 (a) using Morlet spectrogram
with fot=1, at time instant 51 s the peak frequency occurs at 0.1928 Hz. However, a

dominant second peak also present at 0.06 Hz. At next immediate data point of 52 s,
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[Fig. 4.14(b)] the magnitude of CWT coefficient at low frequency is more than
expected value of 0.1785 Hz and incorrectly identified as frequency of 0.0714 Hz due
to numerical discontinuity in extracted frequency [Fig. 4.13(a)]. Extracted frequency
nearby high frequency zone is more accurate whereas at low frequency zone at 62 s it
Is worse shown in Fig. 4.14(c). Dominance of this low frequency component is due to
continuous spread of mother wavelets to their adjacent bins. Therefore, relatively low
frequency mother wavelet is considered which has less oscillation in fixed Gaussian
window. Using Morlet spectrogram with f0t=0.6 [Fig. 4.14(d), (e) and (f)], this low
frequency effect is significantly reduced. Further, reassignment operation (by shifting

geometrical centre to gravity centre) on these modified spectrograms sharpens the

Timeinstant-51s Timeinstant-52 s Timeinstant-62 s
Actual Freq.- 0.1828 Hz Actual Freq.-0.1662 Hz Actual Freq.- 0.0557 Hz

(a) (b)| 0.0785 Hz (c)
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Fig. 4.15 Modulus of CWT coefficients at different instant of time- (a), (b), (c) Morlet
spectrogram with fot=1; (d), (e), (f) Morlet spectrogram with f,t=0.6 and (g), (h), (i)
Reassigned Morlet spectrogram with fot=0.6. Vertical dashed lines indicate the

extracted frequencies.
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signal concentration and improves the accuracy as shown in Fig. 4.14(g), (h) and (i)
l.e. at time instant 52 s, error of extracted frequency is 57.03% for Morlet
spectrogram with fot=1 whereas it is 3.12% and 1.20% respectively for Morlet
spectrogram with fpt=0.6 and Reassigned Morlet spectrogram with fot=0.6. Absolute
errors in IF are also plotted in Fig.4.16 where it can be seen that numerical

discontinuity almost vanishes for reassigned CWT.

The advantage of reassigned and modified CWT technique is also justified by
comparing the percentage in mean square error (considered as merit criterion) for IF.
Additive white Gaussian noises (AWGN) with different SNR (signal to noise ratio)
are added to simulated fringe signal for which mean square error of estimated
frequency are calculated using reassigned and modified CWT and CWT with ft=0.6.
The results are shown in Tab. 4.2.

The phase stepping method as described in Chapter 3 is also used to extract phase
from simulated fringe signal. Quadrature counterpart of the fringe signal (Fig. 4.13) is
obtained using Hilbert transform shown in Fig. 4.17. Robustness of the proposed
algorithm is also tested with simulated fringe signal by applying AWGN with
different SNR. Table 4.3 displays the true and fitted values of ellipse parameters of
quadrature fringe signals for one of the noise realizations (SNR 10 dB) along with

RMS misfit. Phases are extracted with equation (3.23) and unwrapped phase is plotted
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Fig. 4.16 Absolute error in IF

Table 4.1 MSE percentage in Instantaneous frequency

fot CWT
0.1 2.22
0.2 0.3340
0.3 0.1081
0.4 0.0418
0.5 0.0221
0.6 0.0165
0.7 0.0186
0.8 0.0269
0.9 0.0362
1 0.0507
1.1 0.0585
1.2 0.081
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in Fig. 4.18 along with phases extracted by CWT technique. Error in phase stepping
method occurs mainly due to noise-induced jump in phase unwrapping algorithm.
Performance comparison in extracted phase of proposed technique using phase
stepping method with different noise realization is also carried out and summarized in
Tab. 4.4. It is observed that for low noise case both the algorithms perform equally
well but at higher noise level reassigned and modified CWT is more robust.

With simulated signal, the additional computational burden with current technique is
also evaluated. It is found that MSE percentages in normalized IF have decreased
significantly from 0.0507 Hz to 0.0032 Hz with marginal increase in computational

time (0.932 s for reassigned and modified CWT against 0.909 s for CWT).

1_
0.75-

- F
0.25-

-0.25-

[
o
1

=
n
|

Ampltde (V)

-0.75-
-1-

_1'25_I ] ] [ ] I ] ] ] ] ] ] ] ]
0 10 20 30 40 SO0 &0 7O 80 90 100 110 120 130

Time(s)

Fig. 4.17 Simulated quadrature fringe Signal obtained using Hilbert Transform
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Table 4.2. MSE percentage in instantaneous frequency using CWT (f5t=0.6) with

AWGN added to fringe

SNR(dB) CWT Reassigned
CWT
30 0.0218 0.0031
25 0.0238 0.0036
20 0.0240 0.0038
15 0.0242 0.0060
10 0.0265 0.0081
5 0.0373 0.0281

Table 4.3 Fitted ellipse parameters

Ellipse True value Simulation Experimental
parameters with
SNR(10dB)
a(t) 0.15 0.13 0.015
a(t) -0.05 -0.03 0.018
b(t) 1 1.005 0.002
b (t) 0.75 0.78 0
€ 0 0.001 0.48
RMS 0.13 0.19
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4.4 Analysis of Experimental Signals

Sinusoidal frequency-modulated fringe signal is generated by moving mirror
attached to one of the legs of the Michelson interferometer where reference light
combines with a Doppler shifted light. The phase of this fringe signal is proportional
to surface displacement whereas instantaneous frequency or beat frequency is
proportional to surface velocity. Here, we have applied sinusoidal type voltage signal
to PZT (Piezo-electric translator) attached to one of the mirrors to produce a moving
surface. Generated optical fringe signals are converted to electrical signal using PMT
(Photomultiplier tube) and stored in digital storage oscilloscope (DSO). Schematic of

the setup is shown in Fig. 3.3.
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Fig. 4.18 Phase of simulated fringe signal with AWGN
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Table 4.4 MSE in phase with AWGN

SNR(dB)  Reassigned Phase

CWT stepping
30 0.0705 1.3792
25 0.1797 1.3821
20 0.2259 6.0316
15 0.3995 29.36
10 0.4623 50.47
5 7.10 331.05

The measured signal intensity by Michelson Interferometer can be expressed as [4]:
1) = 10 + 14 (1) + 2/ 1o ®) 14 (t) cos((t)) (4.31)

where Io (t) and I4 (t) are the intensity of light of the two legs of the interferometer, one
from reference mirror and other from PZT driven mirror, and ¢(t) is the phase shift of
fringe signal at a given time.

The phase can be expressed as

ol6) =27 [ (1a 0) o+ o = 2 [ (Fi (Ot + o (4.32)
0

0
where fo(t) and fy(t) are the frequency of reference light and Doppler shifted light
respectively.
Equation (4.31) can be re-written as -

(4.33)
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1(t) = alt) + b(t) cos(y(t))

where,

a)=lg®+1q(®) (4.34)
b(t) =2,/lo®)14 (V) (4.39)

Equation (4.33) describes the recorded time averaged output intensity I(t), background
intensity a(t), fringe amplitude b(t). Background intensity a(t) is removed by filtering
method, manual technique or fitting method. The background corrected fringe signal
and its analytic form may be expressed as-

1(t) = bt) cos(g () (4.36)

I(t) = b(t)e'?® (4.37)
CWT is applied on this analytic representation of the fringe signal and IF is extracted
by determining ridge points of the CWT coefficients. Phase is then deduced by

integrating the extracted IF. Finally the velocity and displacement as a function of
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Fig. 4.19 (a) Measured quadrature fringe signal with PZT supply voltage (b)

Reassigned spectrogram (fot=0.6) obtained from Ch-1 fringe signal.
time are obtained using following equations:-

YORERAC (4.38)

s =220-% 4.39
2 2r

Here, v(t) is the velocity, s(t) is the displacement of the mirror and A(532nm) is laser

wavelength.

Experimentally recorded typical quadrature fringe signal as shown in Fig. 3.4 with
applied PZT voltage again is shown in Fig. 4.19(a) for the sake of continuity. The

recorded fringe signal Ch-1 is analyzed by reassigned and modified CWT with Morlet

48



wavelet parameter fpt=0.6. The modulus of coefficients or spectrogram so obtained is
plotted in Fig. 4.19(b). Ridge points extracted by using maxima search algorithm are
shown in the same plot (dotted line). Analysis is also carried out with conventional
Morlet mother wavelet and modified one with f;t=0.6 resulting in discontinuity in
neighbouring low frequency zone, similar to those seen for simulated signal, shown in
Fig. 4.20. Phase is then deduced by integrating extracted IF from Fig. 4.19(b). For
direction control of phase variation, quadrature based fringe signal is used from which
inflection point is identified (at 0.756 ms) and phase reversal algorithm is applied to

produce continuous phase, described in Fig 4.21.

Finally, displacement profile is calculated using equation (3.28) for reassigned and
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Fig. 4.20 Morlet spectrogram (a) with with fot=1 (b) with f;t=0.6
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Fig. 4.21 Phase variation
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modified CWT. Results of phase stepping technique as described in Fig. 3.6 and CWT
technique are both simultaneously plotted shown in Fig. 4.22. It can be observed that
apart from smaller peak value, the displacement profile derived from phase stepping
suffers from artificial acceleration and deceleration as well. This may be due to
relative nonlinear error in the fringe profile. The peak displacement using reassigned
and modified CWT is estimated as 2.23 pum. This may be compared with 2.06 um
obtained by phase stepping technique and also 2.20 um obtained by well established
peak-picking technique. Velocity profile is deduced using equation (3.29) shown in

Fig. 4.23 and maximum velocity of 4137 pm/s is observed.
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4.5 Summary and Conclusion

CWT with mother wavelet as Morlet is used to extract the phase of highly non-
stationary sinusoidal frequency-modulated optical fringe signal. To obtain the
optimum time and frequency resolution, mother wavelet parameter combination fot is
modified. MSE percentage in instantaneous frequency in actual and extracted
frequency is considered as merit criterion and fot as 0.6 found to be optimal. However,
this optimal value does not ensure desired measurement accuracy in extracted
frequency. A new approach of using reassigned and modified CWT technique is
proposed to simultaneously adopt mother wavelet and reassignment. A combination of
these provides better concentration of low energy components of the spectrogram
compared to conventional CWT technique that uses fot as 1. This leads to an
improvement in readability and increase in accuracy of mean square error percentage
in normalized instantaneous frequency from 0.0507 Hz to 0.0032 Hz, with marginal
increase in computational time from 0.909 s to 0.932 s. Optimal selection of mother
wavelet helps to reduce wavelet energy to its adjacent bins and then reassignment
technique sharpens the spectrogram effectively. Thus, simple ridge detection technique
performs well and can be utilized for many practical applications. Proposed technique
is also compared with existing two fringe-based phase stepping techniques and found
to be more robust for sinusoidal fringe signals contaminated by additive Gaussian
noise. At SNR 10 dB, the MSE in phase by the proposed technique is 0.4623, whereas,
the same for phase stepping technique is 50.47. This large MSE in case of later is due

to noise-induced phase jump in phase stepping technique.
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Further, the performance of the proposed technique is validated using fringe signal
generated by a Michelson interferometer. The peak displacements in the fringe signal
determined by the current and the phase stepping techniques are 2.23 um and 2.06 pm,
respectively. The former is more close to the 2.20 um determined using popular peak-
picking technique. Additionally, the displacement profile derived using proposed
technique is free from ripples and distortions as compared to that obtained through
phase stepping technique. Though, the experimental fringe signal so generated does
not have much noise, still the inferior performance of phase stepping technique is due

to relative non-linear error between quadrature fringe signals.
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CHAPTER 5 Phase Extraction of Cubic Phase Signal by
Pseudo Wigner Ville Distribution Method

5.1 Introduction

In the last chapter CWT based technique is explored for better extraction of IF in
sinusoidal frequency modulated signal. In this chapter Wigner Ville Distribution
method is described for the IF extraction in polynomial phase signal. In this method
also complex phase unwrapping can be avoided. Many interesting mathematical

properties like energy conservation, marginality etc. are preserved in WVD.

5.2 Theory

5.2.1 Background

WVD of signal I(t) is defined as the Fourier transform of time-dependent

instantaneous auto-correlation function and represented as

WD (t, ) :%Ew(ng)l*(t—%)e—j“”dr (5.1)

where ¢, w and 7 represent the time, angular frequency and lag variable respectively and
() denotes the complex conjugate. The above expression is also called quadratic due
to presence of product of two signal terms. Peak of WVD is the estimator of IF. This
estimator is optimal when the signal phase is quadratic function or linear IF [41]. For
polynomial phase signal of order greater than two, this optimality is lost and
polynomial Wigner Ville Distribution is proposed to handle such class of signals [40].

It is defined by
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1o 912 .
WD (@ (t, ) = 2_1”]:00 {H I(t+dyo) "t + d_|r)}_“”df (5.2)
1=1

where g is an even integer, denoting the order of nonlinearity of WVD, d is the real
coefficients. Proper selection of coefficient d, for obtaining 4™ and 6™ order Poly-
WVD is explained in literature [57]. In fact WVD is a special case of Poly-WVD

when q=2 and di=d.;=0.5.

Though WVD has many good properties like marginality, preserving total energy, real
valued distribution and possibly best resolution among all of the time-frequency (TF)
techniques, undesirable cross-term or interference effect due to presence of signal
product terms, is its main drawback. For Poly-WVD this interference effect is more
dominating than traditional WVD due to its multi-linear nature for hyperbolic type

signal.

WVD is also highly non local and to convert it into local, windowing operation is

introduced popularly known as Pseudo Wigner-Ville Distribution (PWVD)[37]
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which mathematically can be described as

PWD (t, ) :i ﬁr)l(ug)l*(t—%)e—imdr (5.3)

where window function h(z), is an even function and peaked around z = 0.
Multiplication with h(z) is an equivalent to frequency filtering, thus an immediate
consequence is reduction of cross-terms to some extent for multi-component signal
particularly in frequency direction. However, these benefits lead to the smearing of
the auto-terms of the signal and a loss of many desirable theoretical properties. Cohen

[37] proposed general approach and introduced 2-D kernel function defined as

L[ N* v —-jle(t-u)+w7]
C(t,m)zmj_wj_wj_w I+ )1 (=)0 jot-u)+ody,qad - (5.4)

where g(z,0 ) is the kernel function. Different kernel will lead to different time
frequency representation (TFR) and by examining a particular kernel function various
properties of bilinear TF distribution can be ascertained. Therefore, kernel function
allows both the suppression of the cross-terms and the preservation of the auto-

ambiguity terms of the analyzed signal.

In Fourier space kernel function g(z,0 ) can be represented as-
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TI(t, ®) = fOOE;a(Jr,e)e*i(“’”a)dzda (5.5)

If a separable kernel function is considered, it can be defined as the product of

window function in both time and frequency direction i.e.
T(t, w) = g()H (-o) (5.6)

where H(w) the Fourier transform of window function h(t) performs smoothing in
parallel to frequency axis and g(t) performs smoothing in parallel to time axis.
Therefore, Smoothed Pseudo Wigner-Ville Distribution (SPWVD) [37] can be

expressed as -

—+00

—+00 oo r .
SPWD (t,; g,h) = | h(z) g(u—t)l(u+§)l (u—z)e_J“”dudr (5.7)
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In the present work, Gaussian kernel is used
9(7,0) =exp(° 7)o (-6° I 7g) (5.8)

where 77; and 77¢ decide the spread of the kernel. It is to be noted that more spread of

kernel will lead to more reduction of interference but at the cost of blurring of signal
concentration and loss of localisation property. In order to improve the signal
concentration from blurred TFR, simultaneously reassignment technique is applied,
explained in last chapter in the context of CWT. Same technique can be adopted in
SPWVD that relocates any point (o) of SPWVD(t, w) to its centre of gravity (t, )

and improves the signal readability significantly.
5.2.2 Method of Phase Extraction

As mentioned earlier the measured signal from Michelson Interferometer can be
expressed as

1(t) = a(t)+ b(t) cos(4(t)) (5.9)
where I(t) is time averaged output intensity, a(t) is background intensity, b(t) is fringe
amplitude, and ¢(t) is the phase shift of fringe signal at a given time. The fringe signal

represented by equation (5.9) can be expressed in analytic form as follows

(1) ~b(t)e'#® (5.10)

Actual Frequency Actual Phase
- (a) . (b)
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Fig. 5.4. Estimated (a) IF and (b) Phase by reassigned SPWVD
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Representation of the signal in above analytic form is useful for properly defining IF
and beneficial to reduce the interference effect presents in WVD [37,38]. If phase is
considered to be a polynomial function of order p, then equation (2) can be expressed

as

1(t) :b(t)exp{j Eaiti} (5.11)
i=0

where a; are real coefficients of polynomial phase signal. The IF can be defined as:

p
ey 1ode(t) 12:._‘,1
fl t)= ZT Z |a|t| (5.12)

The phase from derived IF can be expressed using following equation

o) =2 (r)o+ o (5.13)
0

Reassigned SPWVD expressed in equation (5.7) with Gaussian kernel is applied on
analytic representation of the fringe signal given in equation (5.10) and IF is
extracted by determining ridge points of the SPWVD coefficients. Phase is then
deduced by integrating the extracted IF. Finally, the velocity and displacement as a

function of time are obtained using equations:-
VORERNG (5.14)

O (5.15)

Here, v(t) is the velocity, s(t) is the displacement of the mirror and A(532nm) is laser

wavelength.
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Table 5.1. Mean Square Error (MSE) in IF

Type MSE
percentage
in IF

WVD 0.1957

SPWVD with spread factor 2.5 0.3340

Reassigned SPWVD with spread factor  0.0020
20

Windowed Poly-WVD with window 0.0293
length 35

Reassigned CWT with central frequency 8.0899
0.6

5.3 Numerical Simulation

The proposed IF extraction algorithm based on Reassigned SPWVD has been
validated by known IF and phase of a simulated fringe signal. For this purpose, a
cubic phase signal is first generated using piece-wise polynomial functions of order
three shown in Fig. 5.1(a) and IF of the signal deduced using equation (5.12) is shown
in Fig. 5.1(b). Optical fringe corresponding to this IF signal [Fig.5.1(b)] is generated
in such a way that integral of IF is approximated as cumulative summation function
given by:
I = exp(j*2* pi*cumsum(IF))

and (5.16)
I =1*conj(l(tg)

Generated fringe signal is shown in Fig. 5.1(c). Wigner Ville Distribution (WVD) is
first applied and as expected many undesirable interference are seen to be present in
the TFR, shown in Fig. 5.1(d). SPWVD is then applied with 2-D kernel where g(t) and

h(t) are Gaussian window with odd(N/10) and odd(N/4) data points respectively with
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Table 5.2. MSE in Phase with respect to Signal to Noise Ratio (SNR)

SNR (dB) MSE MSE in
percentage phase
in IF

50 0.0020 0.0259

40 0.0021 0.0385

30 0.0022 0.0537

20 1.4273 347.57

spread factor of 2.5, N being the number of frequency bins in FFT [38]. It is to be
noted that spread factor denotes the reciprocal of standard deviation of Gaussian
window and is a measure of width of its Fourier transform. Larger the value of spread
factor, implies narrow in temporal space, suitable for analyzing strong nonlinear
signal in time direction but poor resolution in frequency direction. Resultant SPWVD
is shown in Fig.5.2(a) and as compared to Fig.5.1(d) interference is reduced
significantly at the cost of smeared signal concentration. Then we further increase the
spread factor of Gaussian kernel to 20 and apply reassigned SPWVD, as shown in Fig.
5.2(b). Narrow Gaussian kernel in temporal space can be seen to improve
measurement accuracy particularly at strong nonlinear region and further
simultaneous application of reassignment technique increases signal concentration
significantly in frequency direction.

Comparative study of IF extraction by Poly-WVD method as well as reassigned
CWT [18] based technique are also carried out. In Poly-WVD method polynomial
nonlinearity of order 4 is considered as it is sufficient to analyze cubic phase signal. In
fact 6™ order Poly-WVD will produce more interference term than 4™ order one.

Figure 5.3(a) and 5.3(b) represent Poly-WVD and windowed Poly-WVD with
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Gaussian window length of 35 respectively. Effect of window length of Poly-WVD on
IF extraction can be found in literature [41]. Even though, poly-WVD is theoretically
appealing for such class of signal, interference effect severely distorts the TFR. In
CWT method, Morlet as mother wavelet with central frequency (f) and time
bandwidth (t) product is considered to be 0.6 and reassigned CWT is applied on
simulated fringe signal, shown in Fig. 5.3(c). Consideration of Morlet mother wavelet
parameters (central frequency and time bandwidth) is discussed in details in last
chapter. Finally, absolute error in IF using reassigned SPWVD, Windowed Poly-
WVD and reassigned CWT are plotted in Fig.5.3(d). It may clearly be observed that
reassigned SPWVD technique is more accurate than windowed Poly-WVD as well as
reassigned CWT technique. Finally, IF is extracted by reassigned SPWVD method
and phase is estimated using equation (5.13). Figure 5.4 (a) and (b) describe extracted
IF and phase respectively along with actual value. To evaluate the performance and
accuracy of proposed method, mean square error (MSE) in IF is considered as figure
of merit. Table 5.1 depicts the MSE percentage of IF with respect to different
approaches and it is observed that reassigned SPWVD with spread factor of 20, the
MSE is least.

Robustness of the proposed algorithm is also checked with additive white Gaussian
noise (AWGN). Table 5.2 describes the MSE percentage in IF and MSE in phase with
respect to different signal to noise ratio (SNR). It is seen that for SNR of 20 dB or less
the algorithm is not robust. Since, narrow window is chosen as a Gaussian kernel that
is quite effective for sharp change in IF but susceptible to noise due to fewer numbers

of captured samples.
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Fig. 5.5. (a) Experimentally observed fringe signal with PZT supply voltage (b)
Reassigned SPWVD with modified kernel of experimental signal (c) Velocity profile

of experimental signal (d) Displacement profile of experimental signal

5.4 Experimental Program

Simulated cubic phase signal shown in Fig. 5.1(a) is used to drive PZT attached to
mirror (M-2) in one of the legs of the Michelson Interferometer given in Fig. 3.3. First
this simulated signal is scaled to 0-10V range and then DAQ (Data Acquisition)
system is developed using PXI based analog input/output card to drive the PZT.
Analog output update rate is considered as 10kS/s so that it suits dynamic range of the
PZT. Further amplifier is used to increase the voltage range that helps to get more
number of fringes. A single mode continuous wave (CW) 532nm laser with variable
power up to 2W is used along with PMT having 0.57ns rise time, 230-950nm spectral
response and adjustable control voltage from 0.5 to 1.1V. Laser power, aperture
opening, PMT control voltage and gain are adjusted in such a way that overall signal
recording system operates in linear region [58]. The measured peak PZT supply

voltage is 16.11V. Optical fringe signal corresponding to PZT supplied voltage, is
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converted to voltage signal using PMT (Photomultiplier tube) and stored in DAQ
using analog input channel. Analog input sampling frequency (100kS/s) is considered
relatively high to properly record the fringe signal in strong nonlinear region. Both
PZT supply voltage and background corrected fringe signals are simultaneously
recorded, as shown in Fig. 5.5(a). Here background intensity a(t) is 0.068V, fringe
amplitude b(t) is 0.024V, and hence fringe visibility (ratio of fringe amplitude to
background intensity) is 0.35. Hilbert transform is used to convert the real signal to its
analytic form. Figure 5.5(b) describes instantaneous frequency in spectrogram based
on proposed reassigned SPWVD of analytic form for experimentally recorded fringe
signal. The velocity is calculated using equation (5.14) and shown in Fig. 5.5(c).
Finally, phase is calculated by integrating the extracted instantaneous frequency and
then displacement is derived using equations (5.15). As expected displacement profile
shown in Fig.5.5(d) is quite similar to that of simulated phase signal shown in Fig.
5.1(a). In experimental signal relatively less strong nonlinearity is observed, possibly
due to response problem in PZT. We have also performed stability check of the
proposed algorithm of experimental signal by executing the program 10 times, but
could not find any variation in mean square error. The measured peak velocity and

displacement are 1.86+0.06 mm/s and 2.54+0.04 um respectively.

5.5 Conclusion

Instantaneous frequency extraction based on reassigned smooth pseudo Wigner Ville
Distribution (SPWVD) is proposed. Cubic phase signal along with strong nonlinear IF
law based fringe signal is considered to show the efficacy of the proposed method.

Spread in Gaussian separable kernels are independently optimised for smoothing both
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time and frequency direction of SPWVD and reduction of interference as well as
improvement in accuracy is achieved significantly with simultaneous application of
reassignment technique. Proposed method is also compared with polynomial Wigner
Ville Distribution as well as Continuous Wavelet Transform method and found to be
more accurate. Though, poly-WVD is theoretically appealing for such class of signal,
interference effect severely distorts the TFR. In case of CWT, in spite of using
modified Morlet wavelet, IF extraction could not be improved significantly.
Simulation and experimental results justify the use of this new technique in precision
displacement and velocity measurement using optical interferometric method for

highly non-stationary fringe signal.
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CHAPTER 6 Applications to Free Surface Velocity

Measurement in High Strain Rate Experiments

6.1 Introduction

Free surface velocity measurement of the target material subjected to transient
compressions in shock wave experiments is an important problem. Many interesting
material properties like Hugonoit Elastic Limit (HEL), dynamic yield strength, spall
strength etc can be inferred from the free surface velocity history of target material
[4,7,8]. These material properties find immense applications in the area of defense,
geophysics, aerospace, automobile etc. Michelson interferometer in two different
configuration-(1) Velocity mode and (2) Displacement mode are widely used for free
surface velocity measurement of target material under shock compression. This
chapter describes these two types interferometer configuration with emphasis on

signal analysis.
6.2 Velocity Interferometer

In velocity mode VISAR (Velocity Interferometer System for Any Reflector) is
widely used instrument in shock compression experiments. VISAR is basically a
modified version of wide angle Michelson interferometer where two Doppler shifted
lights (with one of them delayed by placing an etalon in one of the legs of the
interferometer) from target free surface interfere each other to form fringe pattern.
Therefore it works in the velocity mode or differential displacement mode
configuration. Quadrature coded interference fringes are utilized for differentiating

between the acceleration and deceleration of target free surface.
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Fig.6.1Schematic of VISAR system

6.2.1 Method of VISAR Signal Analysis

Figure 6.1 depicts the schematic of VISAR system developed in our laboratory where
three detector signals two from quadrature coded fringe patterns and one from beam
intensity monitor are simultaneously recorded. The normalized quadrature signal

measured by VISAR system can be expressed as
I (t) = o, + e, (t) cos((t)) (6.1)
1, ()= B, + B (D)sin(g(t) - &) (62)
where 1,(t) and l4t) are the two Doppler shifted lights from the two legs of the
interferometer, ao, [ are the offset, ay(t),51(t) are time varying amplitude of sinusoid
and ¢ is quadrature error angle, ¢(t) is the phase of the signal which carries the

information of interest. As described in Chapter 3, equations (6.1) and (6.2) ¢(t) can

be expressed as-

I, t) - By

o(t) = arctan{ | 0 —a.p,

sece + tan 5} (6.3)
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Here, 1,(t) and 14(t) are the known measured quantity and oo, fo, ea(t), Au(t), € are
unknown parameters those can be estimated by ellipse fitting. It may be noted that
equations (6.1) and (6.2) form a family of ellipse where a, S are the centre,
oy (t),p1(t) are axes and ¢ is the rotational angle of ellipse. The phase shift ¢(t) is then
derived using equation (6.3) with fitted ellipse data. However, the phase described in
equation (6.3), is wrapped between —m/2 to 7/2 or 0 to 2m due to inherent property of
mathematical arctangent function. The 2n phase jump is removed by using phase
unwrapping algorithm. Details of phase unwrapping is explained in section 3.2. Phase
stepping technique of phase unwrapping algorithm is implemented as it is simple, easy
to implement and works satisfactorily for VISAR signals. Once the phase is
unwrapped the fringe shift is calculated using equation (6.4) and finally free surface

velocity is derived using equation (6.5)-

U, (0 =kF() (65)

Here, F(t) is the fringe shift, Uy is the free surface velocity and k is the known fringe

constant related to laser wavelength and etalon delay time.

6.2.2 Ellipse Fitting

As discussed in Chapter 3 that effect of amplitude and phase angle error in final
velocity profile could be solved by proper ellipse fitting technique. A detail
description of ellipse fitting technique with an emphasis on VISAR signal analysis is
provided in this Chapter. As mentioned earlier ellipse fitting is broadly categorised as

(1) Algebraic method and (2) Geometric method is explained bellow.
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6.2.2.1 Algebraic Method

In algebraic method ellipse is fitted using general conic equation given as

f (X, A) =ax® +bxy+cy’ +dx+ey+f =0

with the condition

b?—4ac<0

(6.6)

(6.7)

where 2=[a b ¢ d e f]' and X=[x* xy ¥* x y 1]'. Now if we have k number of

measurement points which are not lying exactly on equation (6.6), then right hand side

of equation. (6.6) will be non zero. Therefore, we can rewrite the equation (6.6) in the

following simultaneous equations form with residual r;.

2

X %Y,
22 :

Xi XY,
12 .

Xk Xk yk

2
Vi %
:2 :
yi Xi

2

yk Xk

y, 1
y, 1
y, 1

-~ D QO O T QO

I
I

I«

(6.8)

Algebraic distance is then defined as distance of a point (x,y) to the conic f(X, L). The

fitting can be carried out by minimising the squared algebraic distances S(1)

S(ﬂ)=zk:ri2
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Fig.6.2 Simulated fringe signal (a) complete ellipse (b) 0.75 fractional ellipse

Thus, the problem becomes to find out / such that S¢4) is minimum. In general 1 is
normalised to avoid trivial solution of kind a=b =c=d =e =f = 0. In literature

majority of the work is carried out in that direction by varying different normalisations
[46,47]. Most popular choice is || =1, but Gander and Rosin suggested a + ¢ = 1

[46,47]. Later Rosin [47] studied comparison between a + ¢ = 1 and f = 1 and
suggested f=1 was more accurate as it was less sensitive to curvature bias effect. In

1979 Bookstein [48] proposed ellipses fitting with Euclidian invariant constraint

a’ +%b2 +c¢? =-1 and later Sampson [49] modified it. All these fittings were based

on generalised conic fitting and it was not guaranteed that solution will always
provide an ellipse. In 1999 Fitzgibbon [50] first time proposed an ellipse specific
efficient fitting by making b?-4ac = -1. Later R Halir et al [51] presented numerically
robust version of Fitzgibbon algorithm. Ray et al [52] also explored the possibility of

genetic algorithm in ellipse fitting.

In order to look for best suited method for analysis of VISAR signals, in this work, a
comparative study of the most cited work on algebraic ellipse fitting techniques-(a)

Bookstein fitting (b) Trace fitting by Gander et al and (c) Fitzgibbon fitting are carried
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out. After completing fitting from each of these methods, the VISAR ellipse
parameters are calculated with fitted conic parameters (a, b, c, d, e, f) using ellipse

parametric conversion equations, described below [59]-

bc —2cd
- = 6.10
%= Jac b2 (6.10)
bd —2ac
4ac—-b
2 2 2
o, (1) = 2(ae” +cd” +fb* —bde — 4acf) (6.12)
(b® —4ac)(y/(a—c)’ +b? —(a+c))
2(ae? + cd? + fb? — bde — 4acf
B.(D) = |— ( — ) (6.13)
(b? —4ac)(—/(a—c)® +b® —(a+c))
[ 0 forb=0and a<c
g forb=0and a>_c
€= %Cot‘l[agcj forb=0anda<c (6.14)
Ejticotl(a_cJ forb=0anda>c
2 2 b

-

The main advantage of algebraic fitting is the computational efficiency by solving
linear least square problem. However, in general results are not always satisfactory
and it is unclear what is being minimised. In 1997 Zhang [48] pointed out the problem
of high curvature bias effect for the same Euclidian misfit of algebraic fitting. It
implies that this method performs better conic fitting at low curvature sections than to

those at high curvature sections for the same noise level of the measurement data.
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Fig.6.3 Ellipse fitting with simulated fractional fringe (a) 0.75 fraction (b) 0.5 fraction

Finally, Gander et al [46] also mentioned the problem of producing quite different

ellipse for different normalisations of algebraic fitting.

6.2.2.2 Geometric Method

Geometric method is applied to overcome the problems mentioned in the algebraic
method by replacing algebraic distances to orthogonal distances which are Euclidean
invariant to space transformation. If d; is the orthogonal distance from the measured k
number of data points (x, y) to the estimated curve f(x,A) then we can optimize the

model parameters A by minimizing the following function-

S()=Yd,’ (6.15)
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As the expression of d; is complicated an iterative optimization technique is usually

applied to obtain the parameters vector . The equation (6.15) can be generalised as

S(2) =2y - (. Af (6.16)

Here y; is the measured data points and f(x;, 1) is the model function. For minimisation
process some initial parameters of 1 are guessed and value of S(1) is evaluated. In

each iteration step vector 4 is updated by a new estimate, 1+4 such that values of S(1)
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Fig.6.6 Offset corrected recorded fringe signal of Al-2024T4 material for Exp-1

become smaller than the earlier one. These steps are continued until some
convergence criteria are satisfied. In literature many optimization techniques are
available for application to conic fitting like Steepest Gradient Descent method,
Gauss-Newton Algorithm (GNA), Lavenberg-Marquardt Algorithm (LMA) etc
[53,54].

In Steepest Gradient Descent method update parameter dgp moves the parameters in

negative of the gradient direction and it is expressed as-
Sep =" [y = F(2)] (6.17)

where o is a positive scalar parameter. The advantage of this method is that it
converges fast when the solutions are away from the minima. However, it converges

very slowly close to the local minima with a required accuracy.

In Gauss-Newton Algorithm update parameter dgy is defined as-
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(TN, =3[y (1] (6.18)
where J is the Jacobian expressed as

_of(x, )
oA

J (6.19)

GNA converges quickly when solutions are close to minima value. But if the initial
guess is chosen far from the minimum, GNA may converge slowly or may not at all
converge. Another problem is that if the ellipse is a circle the Jacobian becomes
singular and GNA will not work. This problem can be solved by using LMA update

parameter.

Lavenberg-Marquardt Algorithm judicially utilises the advantages of both the
algorithms by adaptively varying update parameters between Gradient Descent update

and Gauss-Newton update. It is described as

(373 + pdiag(I " 3)S e = I [y — F(A)] (6.20)
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where 1 is the identity matrix and [ is the algorithmic parameter.

It should also be noted that LMA algorithm is no way optimal but it is heuristic. Its

performance cannot be guaranteed but in many practical scenarios it works better.

In present work, a comparative study of different ellipse fitting techniques is provided
and GNA fitting technique of geometric method is proposed, especially when the
ellipse is fractional. The convergence problem of GNA could be improved by utilising

the Bookstein algebraic fitting data as its initial guess parameters.

For geometric fitting technique the model function f(x,A) is implemented in parametric
representation of ellipse as it requires less number of parameters to estimate than

general conic equations given as-

X X, cosa —sina \(acose
= +| . ) (6.21)
y Yo sina  cosa )\ bsing
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Fig. 6.9 Offset corrected recorded fringe signal of Al-2024T4 material for Exp-2

where xo and Yy, are the centre of the ellipse, a, b are the semi axes, « is the angle of
inclination of a from x axis and ¢ is the parameter runs anticlockwise from 0 to 2z.
Thus model vector A=(xo Yo a b a)' can completely characterize the ellipse. Therefore
geometric fitting directly provides the parameters of our interest ag, fo, a1, f1, € which

are equivalent to xo, Yo, a, b, o respectively.

Table 6.1. Ellipse parameters with different fitting algorithm for complete fringe
signal with added noise 6=0.1

Ellipse True
parameters Value BOOK TRACE FITZ GNA
0o -0.3 -0.2911 -0.2739 -0.2552 -0.3027
Bo -0.2 -0.1945 -0.1916 -0.1944 -0.2061
o 1.0064 1.0462 1.0062 0.9603 1.0332
B1 0.5382 0.5432 0.5549 0.5827 0.5424
€ 0.1336 0.1240 0.1222 0.1263 0.1444
RMS 0 0.2061 0.2135 0.2181 0.2001
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6.2.3 Numerical Simulation

In order to compare the performance of different ellipse fitting techniques for VISAR
like signals, two tests, one with complete ellipse data and the other with fractional
ellipse are conducted. The fringe signals are created using piece-wise sinusoid with
variable frequency signal as VISAR signal is also non-stationary in nature. Additive
White Gaussian Noise (AWGN) with different noise standard deviation (o) is added to
the simulated fringe signal to check the robustness of the algorithms. Figure 6.2(a) and
6.2(b) represent the two different fringe signals representing complete ellipse and

fractional ellipse (0.75 fraction), respectively with added noise o=0.1. The
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convergence criterion for geometric fitting is set as maximum number of iterations
400 and tolerance 1e-5. Various ellipse fitting techniques compared are as follows:

I. BOOK= Bookstein method,

Il. TRACE= Gander method;

I11. FITZ= Fitzgibbon method,;

IV. GNA= Gauss-Newton method;

Table 6.2. Ellipse parameters with different fitting algorithm for fractional fringe
signal with added noise 6=0.1

Ellipse True
parameters Value BOOK TRACE FITZ GNA
o -0.3 -0.2613 -0.2599 -0.2542 -0.3073
Bo -0.2 -0.1179 -0.1352 -0.1582 -0.1873
01 1.0064 1.0183 0.9857 0.9493 1.0059
B1 0.5382 0.4878 0.5147 0.5337 0.5326
€ 0.1336 0.0188 0.0037 0.0534 0.1289
RMS 0 0.2254 0.2343 0.2233 0.1660

Table 6.3. Experimental configuration.

Name  Target Thickness Impactor Impact Velocity  Fringe Constant
(mm) Thickness( mm) (m/s) (m/s)

Exp-1 15.03 4.97 306+4.1 175

Exp-2 7.98 4.96 198.4+1.8 250

Table-6.1 depicts the different ellipse parameters (true and fitted) corresponding to
complete fringe signal obtained from different fitting algorithms. RMS deviation from
true value for each algorithm is also calculated. As clear from Table-6.1 all the
algorithms perform reasonably well for complete fringe signal even in the presence of

10% noise level. However, as listed in Table 6.2 and shown in Fig. 6.3(a), for
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fractional fringe signal of 0.75 fraction of ellipse, the results from different ellipse
fitting techniques differ significantly and GNA technique appears to perform better
than the other techniques. Furthermore, as displayed in Fig. 6.3(b), in case of 0.5
fraction of the ellipse (i.e. 0.5 fraction of fringe data shown in Fig. 6.2(b) the only
viable option remains GNA technique and all the other algorithms fail to provide
reasonable fitting. We also found that in noise free cases all the algorithms perform
equally good leading to perfect ellipse reconstruction. The stability testing of
estimated ellipse parameters with increasing noise level for GNA method is also
performed. The ellipse corrupted with noise (from 0 to 0.1) for 100 iterations and
Mean Square Error (MSE) of all the ellipse parameters were recorded for both
complete and fractional fringe signal depicted in Fig 6.4. In both the cases the ellipse
parameters degrade gracefully with increase in noise level an indication of good
fitting. As expected for fractional fringe signal MSE is more than that for complete

fringe signal.
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Fig.6.11 Free surface velocity profile derived using fitted results for Exp-2
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Table 6.4. Ellipse parameters with different fitting algorithm for Exp-1.

Ellipse
parameters BOOK TRACE FITZ GNA
ao -0.2429 -0.2425 -0.2419 -0.2430
Bo -0.1366 -0.1365 -0.1364 -0.1367
o 0.0667 0.0653 0.0639 0.0646
B1 0.0330 0.0337 0.0352 0.0338
€ 0.0568 0.0526 0.0452 0.0560
RMS 0.1265 0.1287 0.1322 0.1201

Table 6.5. Ellipse parameters with different fitting algorithm Exp-2.

Ellipse
parameters BOOK TRACE FITZ GNA
0o -0.2561 -0.2479 -0.2435 -0.2342
Bo -0.0794 -0.0790 -0.0788 -0.0807
o1 0.2378 0.2156 0.2044 0.2186
B1 0.1246 0.1363 0.1458 0.1422
€ 0.3792 0.3192 0.0452 -0.0538
RMS 0.2695 0.2761 0.3348 0.2222

6.2.4 Experimental Program

To validate the proposed algorithm two plate impact experiments on Al2024-T4
target material are conducted in single stage gas gun. The VISAR instrument is used
to record the time resolved fringe shift arising due to motion of free surface of the
target. Table-6.3 displays the target and impactor details used in the experiments.
Details of VISAR system is described elsewhere [8]. Impact velocities are measured
by time of flight technique. Figure 6. 5 displays that more than one complete fringe

shift occurred due to movement of free surface in first experiment. The lissajaeous
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plot for one complete portion of fringe signal and corresponding fitted ellipse are
shown in Fig. 6.6(a). As is clear from Table 6.4 and Fig. 6.6(a), just like that for the
simulated signals, for experimental signals also, the performance of different fitting
techniques is equally good. For sake of clarity the fitting from only two techniques
namely BOOK and GNA are shown in the Fig. 6.6(a). However, if the remaining
fractional part of the fringe signal is considered, the GNA accurately constructs the
complete ellipse from the information available only on fractional fringe data,
whereas the BOOK and other methods deviate significantly. Here also, in Fig. 6.6(b),
for sake of clarity, results are shown for only two fitting algorithms BOOK and GNA.
The peak free surface velocity (uf) of 298.3+3.4m/s obtained using the GNA fitted
data is more close (within ~ 2%) to the impact velocity of 306+4.1m/s measured using
time of flight method, as compared to 283.8+2.1m/s that obtained employing simple
arc-tangent function without ellipse fitting algorithm. Further, unlike that for the
simple arc-tangent method (without ellipse fitting data), the free velocity profile
derived employing GNA method does not contain numerical artifacts (Fig.6.7) like
artificial acceleration and deceleration etc. It may be noted that the target and
impactor used for these plate impact experiments were made of same material. Hence
the impact velocity is expected to be equal to the peak free surface velocity. Different
dynamic mechanical properties such as spall strength (cs=1.1+0.013GPa), Hugoniot
elastic limit (oyg =0.73£0.008GPa) and dynamic yield strength (Y=0.37+£0.005GPa)
of Al2024-T4 target material derived from free surface velocity profiles are also
calculated. The details of methodology employed for deriving these parameters are

mentioned in Appendix 1.1.
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Figure 6. 8 depicts the fringe shift occurred due to free surface motion of target in
the second plate impact experiment. Analysis of this signal poses more challenge as
only fractional part of the ellipse exists in this case and high level of noise is present.
Table-6.5 provides various ellipse parameters obtained using different fitting
algorithms. The Lissajeous plot along with the fitted ellipses using two algorithms i.e.
BOOK and GNA are also displayed in Fig.6.9. As evident from the figure, the
complete ellipse derived from the GNA technique fits better with experimental data as
that obtained from BOOK algorithm. The measured peak free surface velocity
obtained from free surface velocity profiles (Fig.6.10) determined employing GNA
and BOOK algorithms are 200.8+6.07m/s and 211.1+7.43m/s, respectively. In this
figure, it is not shown the free surface velocity profile derived without using ellipse
fitting as its demerits are already displayed in Fig. 6.7. Again like in first experiment,
the free surface velocity derived by using GNA method is more close to the measured

impact velocity of 198.4+2.3 m/s as compared to that obtained from BOOK algorithm.

6.3 Displacement Interferometer

Basic configuration of displacement mode Michelson interferometer is described in
Chapter 1. However, due to implementation difficulty of Fig. 1.1, heterodyne method
is widely used in shock compression experiments. This technique is commonly used
in telecommunication for generating new frequency by mixing two frequencies based
on trigonometric identity that is multiplying two sine functions sin(2zfit) and
sin(2zf,t) at two different frequency f; and f, results summation of two sine function

one at (f;-f2) and other at (f;+f,).
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Similar technique is implemented in heterodyne laser interferometry by mixing (using
a circulator) a reference laser frequency (fp) and its Doppler shifted frequency (fq)
from a moving target, generating heterodyne beat signals. Fig.6.12 briefly describes
the schematic of the system, where laser light enters to the circulator through port 1
and comes out of port 2 and focuses to the target plate. When flyer with velocity v(t)
hits the target plate, free surface of the target plate starts moving causing Doppler
effect. Then Doppler shifted light with frequency (fy) enters to the circulator through
port 2 and heterodyne beat signal comes out through port 3, converted to electrical

signal by photodiode and stored to high speed oscilloscope.

6.3.1 Analysis Technique

Measured heterodyne beat signal can be expressed as

t

[(t)=1g(t)+1g (t)+2w“0(t)|d (t) cos 271'J. fp (t)dt+ ¢ (6.22)
0

wherelp(t) and l4(t) are the reference laser light intensity and Doppler shifted light

intensity respectively, fy(t) is the heterodyne beat frequency expressed as

fh(t) = fg () - fo (t) (6.23)
and ¢pis the initial phase difference. According to the Doppler effects, the beat

frequency can be written as

2U5(t)

fo(®) = fq (t) - fo(t) = (6.24)

Therefore, free surface velocity {Us(t)} can be related to instantaneous frequency of

recorded heterodyne beat signal as per following equation-
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U150 =22 ) (6.25)

6.3.2 Simulation

VISAR velocity profile is used for generating simulated heterodyne type fringe
signals. Free surface velocity profile (Fig.6.8) measured by VISAR (Velocity
Interferometer System for Any Reflector) in AL-2024T4 material under shock
compression is considered as an instantaneous frequency or beat frequency of
heterodyne fringe signals. The velocity profile of 0-300 m/s is normalized to a
corresponding instantaneous frequency range of 0 to 0.3 Hz as shown in Fig.
Fig.6.13(a). Next integral of IF signal is approximated as cumulative summation
function for producing simulated heterodyne fringe signal shown in Fig. 6.13(b). The
frequency components in the spectrum induced by the amplitude modulation are much
smaller than that of direct frequency modulation and majority of bandwidth

contribution comes from frequency modulation only.

For extracting instantaneous frequency from recorded highly non-stationary fringe
signal reassigned CWT method is applied as explained in Chapter 4. Figure 6.13(c)
and 6.13(d) display the Morlet spectrogram and reassigned and modified Morlet
spectrogram of the simulated fringe signal respectively. IF is extracted by ridge
detection method using reassigned and modified CWT as well as CWT and plotted in
the same original signal [Fig.6.13(a)]. Extracted IF, using CWT, indicates an error
(increased strain rate) at low frequency, particularly at slow rising part of free surface
velocity corresponding to Hugoniot elastic limit whereas reassigned and modified

CWT is in agreement with the original signal as shown in Fig.6.14.
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spectrogram with fOt=1 (d) Reassigned and modified Morlet spectrogram with
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6.4 Conclusion

Phase extraction based on quadrature phase shifting method is successfully applied for
free surface velocity measurement using VISAR of the target material under shock
compression. The effects of amplitude and phase angle error on VISAR measurements
are described and ellipse fitting technique is applied to overcome the problem in free
surface velocity calculation. Comparative studies of various ellipse fitting techniques
are carried out and geometric fitting technique of GNA with initial conditions from
Bookstein method is proposed for better result. Two high strain rate experiments on
Al2024T4 material are conducted to validate the proposed method and different
fundamental mechanical properties are derived from extracted free surface velocity
profiles. This method can be extended to any other applications including line imaging
VISAR analysis, where quadrature error corrections are required. In conventional line
imaging VISAR only one fringe signal based measurement is carried out and Fourier
transform method is applied to extract the phase. However, quadrature or push pull
based configuration is always desirable even for line VISAR. In that condition current

investigation may be helpful for quadrature error correction.
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Heterodyne laser interferometric technique is also explored in free surface velocity
measurement in shock compression. As described in Chapter 4, reassigned CWT with
Morlet as mother wavelet is proposed for analysing the heterodyne type fringe signals.
Free surface velocity profile measured by VISAR under shock compression is
considered as an arbitrary IF law and a corresponding heterodyne velocimetry type
fringe signal is generated through simulation. The frequency profile corresponding to
this simulated fringe signal extracted employing reassigned CWT technique and
conventional CWT are compared with actual frequency profile. In low frequency
region, corresponding to Hugoniot Elastic limit, the frequency profile extracted using
reassigned and modified CWT is more close to the actual profile as compared to that
obtained by conventional CWT. In high frequency regime, however, both the methods
display similar performance. Further, the velocity profile obtained from reassignment
technique is comparatively less distorted. Thus, this method finds an application for
analyzing fringe signals obtained in heterodyne velocimetry for free surface velocity
profile measurement under impact experiments.

In all the experiments have been carried out in light Gas Gun facility at BARC,
Trombay, which has the maximum velocity range of 1000 m/s. However, in general it
is possible to generate even higher velocities of several km/s with other kind of
devices. The limitations in monitoring the higher velocities mainly arise due to
bandwidth of signal recording system for heterodyne velocimetry technique and
length of etalon or optical delay for VISAR system. In general, higher is the velocity

of the object larger is the required bandwidth of the recording system.
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Appendix 1.1
Method of Extraction of Fundamental Mechanical

Properties from Free Surface Velocity Profile

In high strain rate plate impact experiment an impactor plate hits the stationary
target plate that causes planner shock wave propagation in forward direction in target
plate, and also in backward direction in impactor plate. The forward moving shock
wave reflects from free surface of target plate as a backward moving release wave. In
similar way, the backward moving shock wave reflects from the free surface of
impactor plate as a forward moving release wave. When these release waves interact
in the target plate, tensile stress is generated. If this tensile stress exceeds the strength
of material, then it results in spall fracture. The free surface velocity (Uys) history of
the target plate represents this effect of spall fracture. The material undergoing elastic
to plastic transformation followed by phase transition and spallation can be
determined from an ideal free surface velocity profile shown in Fig. Al.l1. The
velocity profile is extracted from recorded fringe shift using VISAR in plate impact

experiment.

The spall strength (o) and strain rate (¢,) corresponding to o,, the Huogoniot
elastic limit (o ggz ), strain rate (&.) corresponding to opg; are determined from this

profile as follows:

o, =5AUﬁpocb (Al.1)
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Fig. A1.1.1 Ideal free surface velocity profile of material showing features

corresponding to various phenomenons

1
OppL = EUHPOCI (A1.3)
g =Yul (Al.4)
©2A4 ¢

The dynamic yield Y from the O yg; is deduced using following expression:

Y=o, 1229 (AL.5)
(1-0)
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Here, vy is free surface velocity at o ygr, . The At; is the time taken for free surface to
reach a velocity ofv, . The AUy.c;p.c; and o correspond to pull back velocity of free

surface, bulk sound speed, longitudinal sound speed and Poisson ratio, respectively.

The pull back velocity is defined as v,-v,, where U, is the peak free surface

velocity and u,, is free surface velocity just ahead of spall pulse. The At, is the time

taken by the free surface to retard from the peak velocity U, tov,,.
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Appendix 1.2
REVEAL: A Data Analysis Software for VISAR Measurements

Graphical User Interface based program (REVEAL) has been developed for analysis
of VISAR signal by implementing the method proposed in chapter 6. Program has the
features such as, reading ‘.csv’ format data files, automatic error correction based on
ellipse fitting, signal denoising, velocity plot, advanced analysis of different
fundamental parameters, and finally report generation. Detailed program flowchart of

REVEAL program is described below:-

(" Start )
Measurement File Read

l

Fringe Data Selection

l

De-noising

!

Characterization: Ellipse Fitting

!

Velocity Calculation

l

Analysis

l

Report generation

o

( Exit

Fig. A1.2.1 Program Flowchart
REVEAL program offers a very easy and interactive graphical user interface for users.

Various features and capabilities of the program are shown below.
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Fig. A1.2.2 Image of GUI after acquiring VISAR signal data for two channels.

Fig. A1.2.3 Ellipse data selection

94



£ Acquire Data Selection

Report Save Image

" Ellipse Fitting

~0:105-
011
0115+
0124
0125
013

g 0135+
> 04
-0.145
015
0,155+
-0.16-]
0,165

017+

04757, \ . \
02 03 03

ElipseFit [/

B Exit

EATI )

Fig. A1.2.4 Ellipse fitting

L Acquire I Data Selection I De-noising Ia-arammauan

Velocity I Analysis I Report Save Image

0.32:

03+

Velocity (km/s)

A 22 24 26 28 B 22 :

#a 25 Bz B
Time (us)

Velocity W}

|

@»

B Exit
o

«f oK

22 24 2s Hs % u2 s s s B

el

Fig. A1.2.5 Velocity profile

95



v Spall Strength
Strain Rate corresponding to Spall Strength
Hugoniot Elastic Limit (HEL)
Strain Rate corresponding to HEL
Dynamic Yield Strength

N a2 2 26 2ie 2 22 24 26

Fig. A1.2.1 Analysis for extracting different mechanical properties
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Optical interferometry-based non-contact type measurements play a key role in determination of free
surface velocity of target material under high strain rate experiments. Michelson interferometer in velocity
as well as displacement mode configuration is widely used. As the information of velocity is hidden in phase
or instantaneous frequency (IF), it is important to extract the phase or IF of the fringe signal. In time domain
approach, multiple fringes are required to extract phase and noise sensitive numerical differentiation is
necessary for getting the IF of the fringe signal. Although computationally less expensive, the accuracy of
this method may get affected significantly by various measurement imperfections like, nonlinearity,
amplitude and phase angle error. On the other hand, in frequency domain approach single fringe may be
sufficient to extract IF and numerical differentiation could be avoided.

Here, phase extraction based on quadrature phase shifting method, reassigned Continuous
Wavelet Transform (CWT) method and Smoothed Pseudo Wigner-Ville Distribution (SPWVD) method have
been described and

developed. In phase shifting
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Figure 1. (a) Measured quadrature fringe signal with PZT supply voltage (b)
Corresponding Reassigned CWT spectrogram (f,t=0.6) obtained from Ch-1 fringe
signal. (c) VISAR Fringe signals obtained in plate impact experiment using Gas Gun
applied for accurate IF facility and (d) Corresponding free surface velocity profile by phase shifting

extraction. SPWVD method is Method

proposed for extracting IF of highly non-stationary polynomial frequency modulated fringe signal. Cohen

16412

and simultaneous
reassignment technique is

class signal representation is followed and time and frequency resolutions are independently optimized
using Gaussian separable kernel. Reassignment technique is further applied for sharpening of the
spectrogram with these optimized kernels that improves accuracy in IF significantly. Finally, some of these
developed phase extraction algorithms are applied to free surface velocity measurement under high strain
rate experiments and different dynamic mechanical properties such as Spall Strength, Hugonoit Elastic limit
(HEL), Strain Rate at HEL etc. of AL2024T4 target material are derived from extracted velocity profile.
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