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CHAPTER 7 Conclusion 

The current research explored some novel techniques for optical phase extraction 

algorithm with aim to velocity measurement in high strain rate experiments by 

interferometric technique. The developed technique alleviates the existing methods 

and provides more accurate results. Phases as well as frequency of the fringe signals 

were explored from single fringe as well as multi fringe signals.  

Chapter 3 introduced the concept of phase shifting method of various configuration 

i.e. two fringe, four fringe based techniques. Phase unwrapping technique was 

developed and demonstrated and ellipse fitting technique was introduced for 

correcting various measurement imperfections. 

Chapter 4 presented the concept of Continuous Wavelet Transform technique for 

phase extraction. Two different techniques namely phase estimation method and 

frequency estimation was explored. Importance of ridge extraction was highlighted 

and modification of mother wavelet (complex Morlet) in conjunction with 

reassignment technique was proposed to extract the phase using direct maxima search 

algorithm for ridge detection. 

Reassigned smoothed pseudo Wigner Ville distribution (RSPWVD) based technique 

was introduced in chapter 5 and provided an elegant approach of phase extraction 

from single fringe based cubic phase signal. Simulation and experimental 

investigation showed an improved accuracy of the extracted IF and phase of the 

signal. 

Chapter 6 presented an elaborate study of some of the proposed phase extraction 

algorithms with the application to free surface velocity measurement in high strain 

rate experiments. Novel ellipse fitting technique was introduced to correct the 
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measurement imperfections like phase angle and amplitude. Comparative studies of 

different ellipse fitting technique were carried out and Gauss Newton algorithm with 

initial condition from Bookstein method was proposed. Simulation and experimental 

results justified the proposed method. This chapter also discussed the possible 

application of IF extraction of fringe signals for measuring free surface velocity 

profile using heterodyne laser interferomerty. Simulated heterodyne type fringe 

signals were generated from measured VISAR velocity profiles and Reassigned CWT 

based technique was proposed for accurate extraction of velocity profile.  

For future work, ridge detection technique with less computational burden could be 

investigated for proper representation of instantaneous frequency of the signal which 

has enormous applications in practical. Generalization of CWT in time frequency 

analysis is also an interesting problem. Polynomial Wigner Ville Distribution could be 

studied for multi-component polynomial phase signal. Complex time distribution 

(CTD) could be explored for polynomial signal. Ellipse fitting based on extended 

Kalman filter (EKF) method may provide the better result for fractional fringe signal 

with poor SNR value. 

 



Abstract 

Optical interferometry-based non-contact type measurements play a key role in determination 

of free surface velocity of target material under high strain rate experiments. Michelson 

interferometer in velocity as well as displacement mode configuration is widely used. As the 

information of velocity is hidden in phase or instantaneous frequency (IF), it is important to 

extract the phase or IF of the fringe signal. In time domain approach, multiple fringes are 

required to extract phase and numerical differentiation which is noise sensitive required to get 

the IF. Although computationally less expensive, the accuracy of this method may get 

affected significantly by various measurement imperfections like, nonlinearity, amplitude and 

phase angle error. On the other hand, in frequency domain approach single fringe may be 

sufficient to extract IF and numerical differentiation could be avoided. In this thesis, phase 

extraction based on quadrature phase shifting method, reassigned Continuous Wavelet 

Transform (CWT) method and Smoothed Pseudo Wigner-Ville Distribution (SPWVD) 

method have been described and developed. In phase shifting method amplitude and phase 

angle error have been corrected by efficient ellipse fitting method by combing algebraic as 

well as geometric technique. In CWT, time-bandwidth product of Morlet wavelet is 

optimised and simultaneous reassignment technique is applied for accurate IF extraction. 

SPWVD method is proposed for extracting IF of highly non-stationary polynomial frequency 

modulated fringe signal. Cohen class signal representation is followed and time and 

frequency resolutions are independently optimized using Gaussian separable kernel. 

Reassignment technique is further applied for sharpening of the spectrogram with these 

optimized kernels that improves accuracy in IF significantly. Finally, some of these 

developed phase extraction algorithms are applied to free surface velocity measurement 

under high strain rate experiments and different dynamic mechanical properties of AL2024T4 

target material are derived from extracted velocity profile. 
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CHAPTER 1 Introduction 

 

1.1 Phase Extraction Fundamental 

The phase extraction of optical interferometric signals play important role in 

analyzing the opto-electrical signals generated while measuring the physical 

parameters such as displacement, strain, velocity, surface profile etc. employing non-

contact methods such as interferometery [1-3].  Necessity of such measurements 

arises during non-destructive testing, profilometry and dynamic failure under shock 

wave loading etc.  For example, free surface velocity history of target material under 

high strain rate experiment carries useful information on material behavior [4-8] for 

determination of  yield strength and fracture strength at high strain rates (commonly 

known as dynamic yield strength and spall strength, respectively), and phase 

transitions. The displacement interferometer and velocity interferometers are 

commonly used techniques for measurement of free surface velocity.  In these 

techniques the information of these physical quantities are stored in phase or 

instantaneous frequency (IF) of the recorded interference fringe signal [3]. Therefore, 

the extraction of phase or IF of the fringe signal using different signal processing 

algorithms becomes an important problem. 

Mathematical form of typical interferometric fringe signal can be expressed as- 

  ttbtatI cos)()()(   

  ttft )(2   

where I(t) is the measured intensity, a(t) is the background intensity, b(t) is the fringe 

amplitude, φ(t) and f(t) are phase and frequency of the signal respectively. The aim of 

(1.1) 

(1.2) 
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the analysis is to extract phase φ(t) and or frequency f(t)  of the signal based on the 

different interferometer configuration. 

Various methods of phase extraction algorithms are available in literature, which are 

broadly categorized as-(1) time domain approach by using phase shifting algorithm 

(2) frequency domain approach. In time domain approach multiple fringe signals are 

required to extract the phase. But in frequency domain approach single fringe is 

capable of producing phase of the signal. Moreover, in this technique phase and 

frequency can be simultaneously obtained which is often requirement. For example, 

displacement and velocity of a target material under impact experiment carry 

important information which can be obtained by measuring phase and frequency of 

the fringe signal simultaneously. In this approach we can avoid the numerical 

differentiation which is sensitive to error prone for getting the velocity (frequency) 

from measured only displacement (phase) of the signal. However, both the approach 

has merits and demerits. 

 

 

Fig. 1.1 Displacement mode Michelson interferometer 
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Fig. 1.2 Velocity mode Michelson interferometer 

 

1.2 Interferometers Based on Michelson Interferometery 

For use in high strain rate impact experiments, Michelson and Fabry-Perrot based 

interferometers are used [7]. However, Michelson interferometers in two categories 

according to their implementation are quite popular [4,7]. The two categories are 

displacement interferometers and velocity interferometers. Difference between these 

two types of interferometers and their working principles are discussed below.  

1.2.1 Displacement Interferometer 

A typical setup of displacement type Michelson-interferometer is depicted in Fig 1.1. 

In this configuration, surface of the target plate is polished to form one of the legs of 

the interferometer. Other leg of the interferometer is a stationary mirror M1. A laser 

beam is split in to two parts using a beam-splitter and these two beams incident on the 

polished target surface and the mirror M1. The laser beam reflected from the target 

surface and the mirror M1 are superimposed and a stationary interference fringe 
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pattern is generated. Interaction with the shock wave causes the free surface of the 

target to move. This movement of free surface of target results in time dependent 

changes in the path difference between the beams from the two legs thereby 

generating shift in fringes. This shift in fringes is then used to infer the velocity of free 

surface as a function of time by applying following expression:   

)(
2

)( tftv i


       

Where, v(t) is velocity of the free surface in time t, fi(t) is instantaneous frequency of 

fringe in time t, and 0 is wavelength of the original laser beam. The fringe shift of 

optical signal is converted to an electrical signal using photomultiplier tube and 

recorded in oscilloscopes. However if phase of the fringe signal is extracted then 

displacement history of the free surface of target can be directly plotted.  

The instrument is very sensitive and has excellent distance resolution. This 

interferometer can generate one complete fringe shift for a small free surface 

displacement of 0/2 only.  Though, the extreme sensitivity has advantage of very fine 

resolution, it imposes a limitation on the maximum velocity that can be measured 

using this instrument. This problem arises due to frequency response limitation of the 

electronic equipment such as photomultiplier tube, amplifier, oscilloscopes used in the 

system. Moreover, shock wave has tendency to destroy the mirror finish of the free 

surface of target that often fails to maintain specular characteristic of interference 

pattern. 

 

 

(1.3) 
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1.2.2 Velocity Interferometer 

In contrast to the measurement of velocity as a function of time in displacement 

interferometer, the velocity interferometer employ measurement of differential 

Doppler shift of the light reflected off the moving target surface.  In this 

configuration, interference pattern is generated by interaction of two laser beams 

reflected from the free surface at two different instants of time. The delay in between 

reflection of the two beams is created either by increasing the path length known as 

Specular Velocity Interferometer (SVI) or, by placing a solid etalon bar known as 

Velocity Interferometer System for Any Reflector (VISAR) in one of the legs of the 

interferometer [4,7]. This allows inferring velocity history of the free surface with 

very few numbers of fringes and also overcomes the fringe frequency limitations of 

displacement type interferometer.  The velocity history of the target free surface is 

encoded in the phase of the fringe signals. 

1.3 Research Objective 

The aim of the present research activities is to develop novel analysis technique of 

phase and frequency extraction using both time and frequency domain approaches by 

addressing the existing shortcomings of the different techniques with application to 

velocity measurement in high strain rate experiments. 

1.4 Contribution 

The outline of the present studies is as follows: 

Chapter 2 presents literature survey of existing phase extraction techniques of both 

temporal and frequency domain approaches. 
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Chapter 3 introduces phase shifting method of phase extraction algorithm and 

highlights the shortcomings of existing technique and presents possible solution. 

Chapter 4 presents frequency domain approach of phase extraction by using 

Continuous Wavelet Transform (CWT). 

Chapter 5 proposes Reassigned Smoothed Pseudo Wigner Ville Distribution method 

for cubic phase signal. 

Chapter 6 highlights the application of some of the proposed methods in free surface 

velocity measurement in high strain rate experiments. 

Chapter 7 summarizes the contribution of work and presents scope of possible future 

work. 
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CHAPTER 2 Literature Survey 

 

Phase extraction algorithms are available in literature in the context of fringe analysis 

with major applications to metrology by using digital holographic interferometry, 

fringe projection interferometry and digital speckle pattern interferometry etc. [1-3]. 

In all these applications, optical fringe signals are directly captured by CCD camera 

and image analysis based phase extraction is applied. In some interferometric 

configuration, optical fringe signals are converted to voltage signals by using PMT or 

other photo detector and stored in digital storage oscilloscopes and analysis is carried 

out with this voltage signal to extract the phase of the signal [4]. Various methods of 

phase extraction are developed- broadly categorized as time domain approach and 

frequency domain approach [3].  

In time domain approach multiple fringe signals are required to extract the phase 

known as phase shifting method. Different algorithms are proposed in this technique- 

N-bucket algorithm, least square approach, Carre’s algorithm etc. N-bucket algorithm 

with four frames based technique is quite popular [9,10]. Accuracy of phase 

measurement depends upon the correctness of the phase shifting technique, which is 

often affected by various nonlinearities, hysteresis and other imperfections. To 

address this issue, various error compensating techniques have been proposed in 

literature [11,12]. Stochastic search, state space model and maximum likelihood 

estimation based approach have also been explored [13,14]. Further, in many cases 

amplitude and phase angle error between two quadrature fringe signals is unavoidable. 

However, this can be corrected by ellipse fitting technique [15-17] as quadratre fringe 

signals represent family of ellipse in Lissajous pattern. In certain applications, 
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measured fringe signals do not complete the angular 2π rotation in Lissajous pattern 

and ellipse becomes incomplete or fractional. Despite so much of research activity 

already have been carried out in ellipse fitting,  search for proper fitting algorithm to 

analyze the fractional fringe signal is still an active research topic.  

In frequency domain approach, single fringe is capable of producing phase of the 

signal. Moreover in this technique, phase and frequency can be simultaneously 

obtained which are often required. For example, determination of material 

displacement and material velocity of a target subject to impact loading need 

information on both phase and frequency of the fringe signal simultaneously. In this 

approach noise sensitive numerical differentiation can be avoided for getting the 

velocity (frequency) from measured only displacement (phase) of the signal. Fourier 

transform based technique is most popular choice of frequency domain approach of 

phase extraction [18]. But when the fringe signals become non stationary, windowed 

Fourier transform [19] and wavelet transforms based techniques are applied [20-23]. 

Continuous Wavelet Transform (CWT) is more suitable as it makes use of adaptive 

time window that overcomes the fixed resolution problem in windowed Fourier 

transform. Morlet wavelet as mother wavelet is widely applied as it utilizes modulated 

sinusoidal signal in Gaussian window which is qualitatively similar to fringe signal 

[20]. Recently, generalised Morse wavelet as a superfamily of analytic wavelet is 

introduced with an added parameter that can change the shape of mother wavelet with 

the fixed time duration or bandwidth [24,25]. Comparative studies with other mother 

wavelet like Mexican hat, Paul, Morse, DOG etc. are also available in literature but 

Morlet is quite popular [21]. The product of central frequency and time variance of 

Gaussian window (f0t) of Morlet wavelet determines the capability of extracting low 
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and high frequency signal component simultaneously with a reasonable accuracy. 

Modification of Morlet wavelet parameters was explored by Abid et al [26] who 

suggested that time variance of 0.5 is optimum for fringe analysis. Later Rueda et al 

[27] investigated it in the context of power system low frequency electromechanical 

oscillation identification and proposed several criteria for selecting central frequency 

and time variance parameters. However, modifying only Morlet wavelet parameters 

do not always provide the best possible result, increasing time-frequency energy 

density may be required for preserving good localisation properties.  The modulus of 

maximum of wavelet coefficients form a path known as wavelet ridge [28-31]. Ideally 

ridge can be extracted from the time-frequency (T-F) energy density using the 

maximum modulus of complex array. However, due to various imperfections, maxima 

search algorithm fails to detect the exact ridge points. To address this problem, in 

1997 R. A. Carmona et al [28] proposed various algorithms of ridge detection like 

cost function minimization, snake penalisation, phase map algorithm, simulated 

annealing and later in 1999 proposed crazy climber algorithm [29]. All these 

algorithms use complex dynamic optimization techniques. Later, only cost function 

minimization and phase map algorithms have been applied for optical phase extraction 

application by many researchers [21,30,31]. Avoiding these complex ridge detection 

algorithms and effective use of direct maxima search algorithm with possible 

modification of time-frequency energy density is still an open area for research. 

Phase unwrapping is an important steps in phase extraction algorithm in both phase 

shifting method and frequency domain method. Many applications required to have 

robust phase unwrapping algorithms and literature in this direction is available in 

abandon [32,33]. 
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Wigner Ville Distribution (WVD) method is recently introduced for direct phase as 

well as frequency estimation of fringe signal [34,36]. In this method complex phase 

unwrapping can be avoided. Though WVD has many good properties and provides 

best p o s s i b l e  resolution among all of the time-frequency (TF) techniques, 

undesirable cross-term interference effect is its main drawbacks [37-39]. WVD is 

also highly non local and to make it local windowing operation is introduced 

popularly known as Pseudo Wigner-Ville Distribution (PWVD) [38].   One of the 

immediate consequences of windowing is suppression of cross-terms effect to some 

extent for multi-component signal.  However, these benefits are achieved at the cost 

of blurring of the auto-terms of the signal and a loss of many desirable theoretical 

properties. The unsatisfactory result leads to the development of general form of 

quadratic representations by introducing 2-D kernel function proposed by Cohen 

[37]. By examining this kernel function various properties of bilinear TF distribution 

can be ascertained.  Therefore, the smoothing in the ambiguity function domain 

combined with the kernel function allows both the suppression of the cross-terms and 

the preservation of the auto-ambiguity terms of the analyzed signal. When the kernel 

function is separable, an independent and progressive control can be applied to the 

WVD in both time and frequency directions known as Smoothed Pseudo Wigner-Ville 

Distribution (SPWVD) [37,38]. WVD has an optimum t-f representation for linear FM 

or quadratic phase signal. For nonlinear FM signal this optimality is lost and smeared 

spectral representation obtained. To address this problem to analyze the polynomial 

phase signal, polynomial Wigner-Ville distribution has been introduced [40,41]. 

However, when signal comes with polynomial phase along with nearly discontinuous 

IF, no investigation is yet carried out. 
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In the context of high strain rate application for the measurement of free surface 

velocity, Michelson interferometer in velocity and displacement mode is used [4,7]. 

VISAR [4] is popularly used as a velocity mode configuration. In this technique phase 

of the fringe signal carries the desired information.  Many interesting material 

properties such as Hugonoit Elastic Limit (HEL), dynamic yield strength and spall 

strength can be inferred from the measured free surface velocity history of target 

material [7]. These material properties find immense applications in defense, 

geophysics, aerospace, automobile etc. VISAR is basically a modified version of wide 

angle Michelson interferometer in which two Doppler shifted lights reflected from 

target free surface at two different instants of time interfere each other to form fringe 

pattern [4]. Therefore, it works in the velocity mode or differential displacement mode 

configuration. Phase shifting method is used to analyze the fringe signal and 

quadrature coded interference fringes are utilized for differentiating between the 

acceleration and deceleration of target free surface. In displacement configuration 

heterodyne technique popularly known as Photonic Doppler Velocimetry (PDV) has 

come into use to overcome the challenges involved in the VISAR measurements. 

Comparative study of VISAR and PDV in terms of accuracy and precession is an 

active topic of research at present [42]. However, VISAR is still widely used and 

preferred technique in dynamic compression experiments where many issues related 

to signal analysis yet remain to be investigated. Gourdin explained the analysis 

technique in presence of large intensity changes [43]. Hemsing also pointed out 

various measurement imperfections like input light intensity variations, 

uncompensated dc offset voltages, nonlinearities in the photo detectors, unequal 

amplitudes of the detector signal etc [6] and corresponding corrective measures before 



12 
 

carrying out experiments. Dolan [15] gave an elaborate study of VISAR signal 

analysis technique including velocity corrections, fringe ambiguity and uncertainty, 

amplitude and phase angle correction, dynamic contrast loss etc. Majority of these 

imperfections can be controlled by arranging good experimental set up. Though 

amplitude and phase angle error between two quadrature signals is unavoidable but it 

can be corrected by employing proper ellipse fitting technique. Dolan also discussed 

different ellipse fitting technique suitable for VSIAR signal. However comparative 

assessment of existing ellipse fitting techniques and their applicability to VISAR 

signal remains to be addressed properly.  

As mentioned earlier in displacement mode heterodyne technique is applied and 

instantaneous frequency of the fringe signal carries the information of the free surface 

velocity. Fringe signal is also highly non stationary and STFT, CWT are used for 

extracting the IF [44,45]. Limited literatures are available for improving the analysis 

of varied class of signals. 
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CHAPTER 3 Phase Extraction by Quadrature Phase 

Shifting Method 

 

3.1 Introduction 

Phase shifting method is widely used and quite popular in phase measurement [1-4]. It 

is computationally simple and can handle nearly discontinuous phase variation. In this 

technique multiple fringes are required to extract the phase of the signal. There are 

many variations of phase shifting algorithms available such as two, three and four 

fringes based technique. However, most common phase shifting method is four fringe 

based technique. As mentioned earlier mathematical form of typical interferometric 

fringe signal can be expressed as- 

  ttbtatI cos)()()(   

where I(t) is the measured intensity, a(t) is the background intensity, b(t) is the fringe 

amplitude, φ(t) is phase of the signal. In the above equation three unknown exists: 

a(t), b(t) and φ(t). φ(t) carries the information of interest and other two variables need 

to be eliminated. To address this issue four fringes are needed with mutual phase shift 

of π/2 radians between them. Four fringes are now can be expressed as- 

  ttbtatI cos)()()(1 
 

  









2
cos)()()(2


 ttbtatI

 

    ttbtatI cos)()()(3  

  









2

3
cos)()()(4


 ttbtatI

 

Now subtracting (3.4) from (3.2) gives; 

  ttbtItI cos)(2)()( 31   

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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Further subtracting (3.3) from (3.5) gives; 

  ttbtItI sin)(2)()( 24 
 

Thus required phase information can be determined by dividing (3.7) by (3.6) which 

gives; 

  


















31

24arctan
II

II
t

 

The resultant phase is wrapped between –π to π or 0 to 2π due to inherent property of 

the mathematical arctan function and phase unwrapping algorithm is required to 

remove this 2π phase jump. 

Although, this four fringe based technique ideally possess efficient usage of light, 

improves signal to noise ration, it also suffers from non ideal measurement effects 

(unequal amplitude and phase angle error) due to presence of polarizing beam splitter 

and other optical components. Thus equations (3.2) to (3.7) are re-written as- 

  ttbtatI cos)()()( 111 
 

  







 




2
cos)()()( 222 ttbtatI

 

    ttbtatI cos)()()( 333  

  







 




2

3
cos)()()( 444 ttbtatI

 

Now subtracting (3.11) from (3.9) gives; 

  ttbtbtatatItI cos))()(()()()()( 131331   

Equation (3.13) can expressed as- 

  ttbtatI xxx cos)()()(   

Similarly subtracting (3.10) from (3.12) gives; 

    ttbtbtatatItI cos))()(()()()()( 422424  

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 



15 
 

Equation (3.15) can be expressed as- 

    ttbtatI yyy cos)()()(  

Here ε is the phase angle error. In general background intensity of equation (3.14) and 

(3.16) are made zero by increasing or decreasing the gain of a particular detector or by 

adjusting numerically. Therefore equation (3.14) and (3.16) can be expressed as- 

  ttbtI xx cos)()(   

    ttbtI yy cos)()(  

By using above two equations phase can be expressed as- 














  tansec

)(

)(

)(

)(
arctan)(

tb

tb

tI

tI
t

y

x

x

y

 

Equation (3.17) and (3.18) form an ellipse equation whose centre is at origin and 

major axis, minor axis and angle of rotation are bx, by and ε respectively. Although 

phase expression seems to be very simple at first glance it also needs more work for 

non ideal measurement by proper ellipse fitting to get the required phase. 

Therefore, it is emphasised on development of two fringe shift based phase shifting 

algorithm as it needs less number of components and easy to handle. Mathematical 

expression is quite similar to four fringe shift algorithm. 

In case of two fringe shift based phase shifting algorithm, two non ideal equations can 

be written as 

  ttbtatI cos)()()( 111 
 

  







 




2
cos)()()( 222 ttbtatI

 

    ttbtatI sin)()()( 222  

By using equation (3.20) and (3.22) phase can be expressed as- 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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





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









  tansec

)()()(

)()()(
arctan)(

211

122

tbtatI

tbtatI
t

 

Equation (3.19) and (3.21) form an ellipse equation whose centre is at (a1,a2) and 

major axis, minor axis and angle of rotation are b1, b2 and ε respectively. These five 

unknown parameters are obtained proper ellipse fitting method.  

3.2 Ellipse Fitting 

Ellipse fitting or any general conic fitting is an important problem in many fields such 

as pattern recognition and computer vision, astronomy, structural geology and many 

more. In literature ellipse fitting is broadly categorized in two techniques: (1) 

Algebraic fitting and (2) Geometric or Iterative fitting [46-54]. Algebraic technique 

uses least square fitting that minimizes some measured distance between data points 

and ellipse. Thus it becomes linear, simple and efficient. On the other hand geometric 

method uses nonlinear optimization technique to fit the ellipse which is 

computationally less expensive. Algebraic method of fitting is implemented for 

analysis of fringe signals generated in displacement mode configuration. 

3.3 Phase Unwrapping 

As discussed earlier phase expressed in equation (3.19) and (3.23) are wrapped and 

proper phase unwrapping algorithm needs to be developed to get the continuous phase 

distribution. First this mod π is converted to mod 2π phase by using four quadrant 

arctan functions described in equation (3.24) and then 2π phase jump is removed by 

using phase unwrapping algorithm described in equation (3.25) and (3.26). 

(3.23) 
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where φu(t) is the unwrapped phase and w is the unwrapping operator, k is an 

integer. 

Various phase unwrapping algorithm are available which can be classified in two 

categories: time and frequency domain technique. In frequency domain approach 

 

Fig. 3.1 (a) Simulated Sinusoidal noisy signal (b) Undesired phase jump in 

unwrapped signal 

(3.26) 

(3.25) 

(3.24) 
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phase extraction depends upon the information of neighbouring points. Examples of 

this technique are Fourier fringe analysis, Wavelet fringe analysis and direct phase 

demodulation etc. In these techniques a single fringe is sufficient to extract the phase. 

In time domain approach phase extraction depends upon only the current amplitude of 

different fringes. It does not require the knowledge of surrounding point’s amplitude 

values. Example of this technique is phase stepping algorithm. However, this 

technique requires more than one fringe to extract the phase information.  

 

Fig. 3.2 (a) Experimentally recorded velocity interferometer fringe signal (b) Wrapped 

phase (c) Unwrapped Phase 
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Selection of particular technique depends on application i.e. dynamic, static, noise, 

computational complexity etc. Direct-recursive algorithm of phase stepping method is 

developed which is easy to implement, computationally simple, and relatively robust.  

The basic principle of direct-recursive algorithm is that the absolute value of the phase 

difference between two adjacent points is smaller than π. If the phase sequence is 

considered as {φi}n then the calculation steps are as follows: 

(i) Calculate the phase difference: ∆φ=φi+1-φi; 

(ii) Adjust the difference to [0,2π): 

















others





 2

2

 

 (iii) Calculate the unwrapped phase: φi+1=φi+∆φ; 

The algorithm is validated with simulated sinusoidal profiles with linear phase signal 

shown in Fig. 3.1 (a). Additive White Gaussian Noise (AWGN) is also added to 

simulated profiles and phase unwrapping is performed to test the robustness of the 

algorithm described in Fig 3.1(a). In Fig.3.1 (b) the undesired phase jump occurs for 

the value of SNR 5.9(dB). Above this value the algorithm is proved to be robust. 

Further to show the efficacy of the proposed phase unwrapping algorithm, 

experiments are conducted using Michelson interferometer in velocity mode 

configuration in Light Gas Gun facility for highly non linear phase signal. Prototype 

description of interferometer is shown in Fig. 1.2. Here, a flyer plate moving in very 

high velocity hits the target material and outer surface of target material starts moving. 

As the laser light focuses on the outer surface of the target material, the interference 
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fringes are generated between two Doppler shifted signals at two different instant of 

time and velocity of target material is proportional to phase of the fringe signals. The 

recorded quadrature fringe signals are shown in Fig. 3.2(a). Further, proposed phase 

unwrapping algorithm is applied on this fringe signals and resultant wrapped (-90 to 

+90 degree) and unwrapped phase (in the rage of 0 to 800 degree) signals are plotted 

in Fig. 3.2(b) and Fig. 3.2(c) respectively. 

3.4 Experimental Program 

Optical fringe signal is generated by using basic displacement Michelson 

interferometer by periodic movement of one of the mirrors while keeping other mirror 

stationary. The PZT transducer is used to generate periodic displacement. Two fringe 

shift based configuration is shown in Fig.3.3. Measured quadrature fringe signals 

along with applied PZT voltage are shown in Fig.3.4. This optical fringe signal is 

converted to electrical signal by using PMT and stored in digital storage oscilloscope 

(DSO). FFT analysis of one of the recorded fringe signals is also carried out for better 

understanding the non-stationary nature of frequency component and is shown in Fig. 

 

Fig. 3.3 Michelson interferometer in displacement mode configuration 
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 3.5. The required phase can be obtained using equation (3.23). However, equation 

(3.23) needs calculation of ellipse parameters. The extracted ellipse parameters in one 

of the complete fringes of Fig. 3.4 are a1=0.018, a2=0.015,b1=0,b2=0.002 and ε=0.48, 

and lissajeous plot of fringe signals and fitted ellipse are shown in Fig. 3.6. Using this 

ellipse parameters phase is calculated using equation (3.23). However, this phase is 

wrapped and phase unwrapping algorithm is applied to get the unwrapped phase. 

After calculating the unwrapped phase, number of fringe shifts is determined using 

equation (3.27) and finally displacement is calculated using equation (3.28) and 

shown in Fig.3.7. Measured peak displacement is 2.06µm. It is also observed that 

extracted displacement profile is closely equivalent to PZT supply voltage shown in 

Fig. 3.4, as displacement of PZT is proportional to supply voltage. 





2

)()(
)( itt

tF


  

)(
2

)( tFts


  

Here, s(t) is the displacement of the mirror, Laser wavelength λ=532nm, F(t) is 

total fringe shift, (ti) is the initial phase.  

 

 

Fig. 3.4 Measured fringe signal of two fringe shift method 

(3.27) 

(3.28) 



22 
 

 

Fig. 3.5 FFT analysis of fringe signal of Ch-1 

 

 

Fig. 3.6 Ellipse fitting of measured fringe signal 
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Fig. 3.7 Extracted displacement profile 

 

3.5 Conclusion 

Optical phase extraction algorithm based on two fringe shift technique is 

demonstrated. Measurement imperfections are modelled and corrective action is 

proposed by introducing ellipse fitting method. Phase unwrapping technique is 

developed based on direct recursive phase stepping algorithm. Robustness of the 

phase unwrapping algorithm is tested with additive Gaussian noise and found to be 

robust above SNR 6dB. Further, phase unwrapping is applied to experimentally 

recorded fringe signal in velocity mode configuration and found to be effective. 

Finally, experiment is conducted in displacement interferometer and fringes are 

generated by moving one of the mirrors with applied PZT voltage. Phase unwrapping 

algorithm works properly. Although amplitude and phase angle are corrected by 

ellipse fitting technique, relative non-linear error presents in displacement profile.  
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CHAPTER 4 Phase Extraction by Reassigned Continuous 

Wavelet Transform Method 

4.1 Introduction 

In the previous chapter phase extraction based on quadrature phase shifting method is 

introduced. It is found that relative non-linear error between fringes presents in the 

extracted displacement profile. Therefore single fringe based analysis is always 

demanding. To address this problem Continuous Wavelet Transform based technique 

is introduced in this chapter. 

4.2 Background 

4.2.1Ridge of Continuous Wavelet Transform 

A wavelet is an oscillatory function (t)L2(R) with limited number of oscillation, 

zero mean and centred at t=0.The function (t) is called “mother wavelet”. A wavelet 

a,b(t) at any time and scale obtained by dilating and translating the mother wavelet 

with a, b respectively can be expressed as: 

  ,
1

, 






 


a

bt

a
tba  a ε R

+
, b ε R) 

 

Fig. 4.1 Time frequency tiling (a) STFT (b) CWT 

(4.1) 
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Fig. 4.2 (a) Dilated and Translated Morlet wavelet (b) Fourier transform of Morlet 

wavelet 

The Continuous Wavelet Transform (CWT) of a function f(t)L
2
(R) is the inner 

product of f(t) and ψa,b(t) 

dt
a

bt
tffbaW baf 







 
 





*
, )(,);,(   

The function f(t) can be reconstructed from wavelet coefficient Wf(a,b;ψ) by using 

following relation   
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where constant Cψ is defined as 






 



 dC

2
)(ˆ

 

Equation (4.4) is called admissibility condition which ensures that inverse wavelet 

transform exists for a given problem. It may be noted that for Cψ to be finite, wavelet 

should have no zero-frequency component- 

0)0(ˆ 
 

This also implies that: 

(4.2) 

(4.4) 

(4.3) 

(4.5) 
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




 0)( dtt

 

These two conditions also ensure that wavelet is localised in both time and frequency 

domain and behaves like a band pass filter. 

As mentioned earlier the optical fringe signal is basically a frequency modulated 

signal expressed as: 

)(cos)()( ttAtf 

 

The analytic version of the above signal fa(t) may be obtained by using Hilbert 

Transform (Hf(t)) and is given as - 

)()()( tiHftftfa 

 

If the fringe signal  f(t) is asymptotic, which is a reasonable approximation of many 

optical fringe signal, then fa(t) is closely equal to exponential model- 

)()()( ti
a etAtf   

This representation is useful to properly define the instantaneous frequency of the 

fringe signal as derivative of phase [37].  

Consider Morlet as mother wavelet which is a plane wave modulated by a Gaussian 

function and is defined as- 

 













 tj

t
t 02

2

4 2 2
exp

1




  

where 2
 is the variance of the Gaussian envelope and 0 is central frequency of the 

mother wavelet. Dilated and translated version of Morlet wavelet in temporal and 

Fourier space are shown in Fig.4.2 (a) and (b) respectively. It is found that in Fourier 

space it is peaked near ω=ω0. 

(4.6) 

(4.8) 

(4.7) 

(4.10) 

(4.9) 
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By applying stationary phase principle, the Morlet wavelet transform for asymptotic 

and locally monochromatic analytic signal fa(t) can be described as [55]- 

  















2
'''''* /,/))((ˆexp)(

2

1
);,(  AAObabibAbaW f

 

where O(.) is an infinitesimal. If we ignore the infinitesimal part of the above 

expression it can be ascertained that reaches maximum when:  

0
' )(  ba  
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baa r '
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
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 ba
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0' 

   

Equation (4.14) justifies that phase derivative in analytic representation of signal is 

simply an instantaneous frequency. The set of points {b, ar(b)} form a curve known as 

ridge of the wavelet transforms and related to instantaneous frequency (ωi) of the 

signal at different scale. Thus,  forms a local time-scale energy 

density of the signal called scalogram. Further using equation (4.14) scalogram can be 

converted to time-frequency spectrogram. Ideally ridge can be extracted from the 

time-frequency (T-F) energy density using the maximum modulus of complex array. 

However, due to various imperfections maxima search algorithm fails to detect the 

exact ridge points. To address this problem, in 1997 R. A. Carmona et al [28] 

proposed various algorithms of ridge detection like cost function minimization, snake 

penalisation, phase map algorithm, simulated annealing and later in 1999 proposed 

crazy climber algorithm [29]. All these algorithms use complex dynamic optimization 

 ;,baW f

 ;,baW f

(4.12) 

(4.11) 

(4.13) 

(4.14) 
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techniques. Later cost function minimization and phase map algorithm have only been 

applied for optical phase extraction application [21,31].  

Once the instantaneous frequency ω is computed by using (4.14), the phase 

distribution can be extracted by integrating the instantaneous frequencies and no phase 

unwrapping algorithm is required. This method is known as frequency estimation 

technique. 

It is to be noted that phase can also be extracted from wavelet coefficients known as 

phase estimation technique. In this method, complex Morlet wavelet is applied to the 

fringe signal and two dimensional complex arrays are generated. Hence, the modulus 

and the phase arrays can be calculated by using (4.15) and (4.16) respectively. 
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To compute the phase of the signal, first ridge points are determined and then its 

corresponding phase values are found from the phase array using equation (4.16). A 

wrapped phase map from –π to +π is resulted and unwrapping algorithm is required to 

unwrap it.  In this technique simultaneous IF estimation is difficult as noise sensitive 

numerical differentiation of phase signal may be required. 

(4.15) 

(4.16) 



29 

 

4.2.2 Time-frequency resolution 

The time frequency resolution of CWT depends on spread of (a,b) in time-frequency 

domain. As (t) is centred at t=0 the a,b(t) is centred at t=b. The spread or variance 

in time domain is calculated from  

  222
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In frequency domain, the centre frequency 0 of  )(ˆ   is expressed as  
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4.2.3 Time-frequency reassignment 

Time-frequency reassignment technique is predominantly applied to bi-linear 

transformation like pseudo Wigner-Ville distribution [37,38] for sharpening the T-F 

energy density where smoothing kernel is used to reduce interference effect but at the 

same time it smears T-F energy density. Being a post processing method this 

technique can also be applied to T-F energy density of linear transform like CWT or  

(4.19) 

(4.18) 

(4.17) 

(4.20) 

(4.21) 
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Fig. 4.3 Flowchart of proposed algorithm 

Gabor. This technique was first developed by Kodera et al [56] for STFT signal in 

1978 and after 15 years it was generalized to use in any bi-linear time-frequency or 

time-scale representation by F. Auger and P. Flandrin [38]. Applicability of this 

technique in CWT is justified as CWT also suffers from resolution problem limited by 

uncertainty principle. But instead of fixed resolution in Gabor it has adaptive 

resolution related to scale at ridge points and resolution of mother wavelet. Though 

reassignment technique does not improve the resolution problem directly but it can 

able to improve the signal concentration particularly low energy components, which 

in turn lead to improvement in readability of spectrogram. Moreover, due to this 

improved readability, the direct maxima search algorithm performs better and overall 

measurement accuracy improved significantly. In reassignment technique of CWT, 
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time-scale gravity centre of resolution window is calculated and shifted by its 

neighboring geometrical center. It can be described as- 
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Here, RMSGf denotes reassigned and modified scalogram.  

 

Fig. 4.4 Simulated linear chirp signal 

(4.23) 

(4.22) 

(4.24) 

(4.25) 



32 

 

 

Fig. 4.5 Scalogram of linear chirp signal 

4.2.4 Phase Extraction of Linear Chirp signal 

The developed algorithms are first validated by generating known non-stationary 

linear chirp signal of quadratic phase and linearly increasing frequency. It is described 

as- 
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where, 

i=0,1,..n-1,A=Amplitude, f1=Starting frequency(samples/cycle), f2=Ending 

frequency(samples/cycle), n=Number of samples [23]. The quadratic phase and 

instantaneous frequency can be written as 

 ibaii  5.0  

(4.27) 
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(4.28) 

(4.29) 
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Fig. 4.6 Comparison of recovered and exact frequency of linear chirp signal 
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In this work we set i=1000, f1=1Hz, f2=100Hz and sampling frequency (fs)=1000Hz. 

The chirp signal is plotted in Fig 4.4.  Figure 4.5 shows the modulus of CWT of this 

signal using Morlet wavelet. The ridge points are determined by using maxima search 

algorithm and it is plotted and superimposed on the modulus of CWT signal by black 

dotted line. It is clearly seen that increase in frequency the optimal value of scaling 

factor decreases. Here scales (a) are discretized as 0.25,0.5,0.75,1....100. The 

instantaneous frequency is calculated from the values of scaling factor (a) on the ridge 

using equation (4.20) and actual frequencies are determined from equation (4.30). 

Both are plotted in the same graph shown in Fig.4.6. The recovered fringe frequency 

contains error at the left and right hand edges due to abrupt truncation of data. In left 

side edge close to 1 Hz the low frequency identification problem also exists. Finally,  

(4.30) 
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Fig. 4.7 Wrapped phase 

the recovered phase by both the techniques and actual phase are plotted in Fig.4.8. It 

is observed that root mean square errors (RMSE) calculated between actual phase and 

estimated phase using phase technique and frequency technique are 1.96 and 1.44 

respectively. Again same work is carried out with scale settings as 1,2,3...100 and  

 

Fig. 4.8 Comparison of recovered phase and actual phase 
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Fig. 4.9 Noise performance of phase extraction techniques 

RMSE in phase technique and frequency technique are found as 1.96 and 2.54 

respectively. Therefore results suggest that performing the phase technique more or 

less insensitive to scale discretization whereas that of the frequency technique yields 

better results for finer scale of discretization. However, due to finer scale 

discretization the computation time has also increased. Therefore in some applications 

where speed and computer resource are limited then phase estimation technique gives 

better result for using relatively less fine scale. To check the robustness of the 

proposed algorithm Additive White Gaussian Noise (AWGN) with zero mean and  
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Fig. 4.10 Linear chirp signal with decreasing and increasing IF 

 

Fig. 4.11 Scalogram of linear chirp signal with decreasing and increasing IF 

standard deviation  is added to the simulated profile and noisy signal is then 

analysed using both the techniques with scale discritization as 0.25,0.5,0.75,1....100.  

Finally RMSE of phase is found with respect to standard deviation of AWGN and it is 

shown in Fig.4.9. 

Simulation study is also carried out to cross linear chirp signals one decreasing and 

one increasing shown in Fig.4.10. Scalogram of this signal is described in Fig.4.11. It  
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Fig. 4.12 Frequency of linear chirp signal with decreasing and increasing IF 

is found that, significant error occurs at low frequency point demonstrated in Fig.4.12 

in extracted IF apart from distortion at edge points. 

4.3 Analysis of simulated interferometric signal 

4.3.1 Frequency modulated sinusoidal signal 

In the last section it is shown that RMSE of frequency estimation technique is more 

accurate than phase estimation technique. Moreover, frequency estimation technique 

does not require complex phase unwrapping and velocity and displacement both can 

be simultaneously extracted. Therefore, interferometric signal analysis is focused only 

with frequency estimation technique. 

To show the applicability of CWT technique, a simulated fringe with a predetermined 

sinusoidal frequency variation (0.05 Hz to 0.45 Hz) and initial phase is generated. 

Figure 4.13 depicts the simulated instantaneous frequency and modulated fringe 

signals. Considering only the conventional Morlet wavelet with f0t=1, the modulus of 
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CWT for this signal appears as shown in Fig. 4.13(a). The ridge points are determined 

using maxima search algorithm and plotted as black dotted line superimposed on the 

modulus of CWT signal. Recovered fringe frequency contains an error at low 

frequency zone due to spreading of mother wavelet to its adjacent points.  

Therefore, altering f0t in mother wavelet is considered and the mean square errors 

(MSEs), calculated from extracted frequency together with actual frequency, are 

obtained as shown in Table 4.1.  It is to be noted that for MSE calculation a few points 

at edges are discarded since numerical discontinuities occur due to abrupt truncation 

of data, commonly referred to as cone of influence (COI). As seen in Table 4.1, MSE 

is lowest at f0t=0.6 for which CWT is computed again as shown in Fig. 4.13(b). 

However, even with some signature of improvements, discontinuity and error in low 

frequency zone still exist. To further reduce these distortions, reassignment technique 

with f0t=1 is applied to scalogram and the result is shown in Fig. 4.13(c). 

Discontinuity has reduced but error in low frequency zone still persists. Finally, 

reassignment technique with f0t=0.6 is applied as shown in Fig. 4.13(d), increasing 

overall measurement accuracy. Optimal selection of mother wavelet and then applying 

reassignment technique [Fig. 4.13(d)] has improved MSE percentages for IF from 

0.0085 Hz to 0.0031 Hz. Finally, phase is calculated by performing numerical 

integration of extracted IF in Fig. 4.13(d). 

The improved performance of reassigned and modified CWT method in low 

frequency regime is due to reduction in energy of adjacent bins. This can be better 

understood by plotting modulus of CWT coefficients with respect to frequency at a  
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Fig. 4.13 A sinusoidal frequency variation and corresponding simulated fringe signal. 

 

Fig. 4.14 Morlet spectrogram with (a) f0t=1 and (b) f0t=0.6. Reassigned Morlet 

spectrogram with (c) f0t=1 and (d) f0t=0.6. 

given time instant. Fig.4.14 describes the absolute value of CWT coefficients of 

Morlet spectrogram with f0t=1, f0t=0.6, and reassigned spectrogram with f0t=0.6 at 

different instants of time. Each peak of these distributions represents the estimated 

frequencies at corresponding time instants.  In Fig. 4.14 (a) using Morlet spectrogram 

with f0t=1, at time instant 51 s the peak frequency occurs at 0.1928 Hz. However, a 

dominant second peak also present at 0.06 Hz. At next immediate data point of 52 s, 
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[Fig. 4.14(b)] the magnitude of CWT coefficient at low frequency is more than 

expected value of 0.1785 Hz and incorrectly identified as frequency of 0.0714 Hz due 

to numerical discontinuity in extracted frequency [Fig. 4.13(a)]. Extracted frequency 

nearby high frequency zone is more accurate whereas at low frequency zone at 62 s it 

is worse shown in Fig. 4.14(c). Dominance of this low frequency component is due to 

continuous spread of mother wavelets to their adjacent bins. Therefore, relatively low 

frequency mother wavelet is considered which has less oscillation in fixed Gaussian 

window. Using Morlet spectrogram with f0t=0.6 [Fig. 4.14(d), (e) and (f)], this low 

frequency effect is significantly reduced. Further, reassignment operation (by shifting 

geometrical centre to gravity centre) on these modified spectrograms sharpens the  

 

Fig. 4.15 Modulus of CWT coefficients at different instant of time- (a), (b), (c) Morlet 

spectrogram with f0t=1; (d), (e), (f) Morlet spectrogram with f0t=0.6 and (g), (h), (i) 

Reassigned Morlet spectrogram with f0t=0.6. Vertical dashed lines indicate the 

extracted frequencies. 
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signal concentration and improves the accuracy as shown in Fig. 4.14(g), (h) and (i) 

i.e. at time instant 52 s, error of extracted frequency is 57.03% for  Morlet 

spectrogram with f0t=1 whereas it is 3.12% and 1.20% respectively for Morlet 

spectrogram with f0t=0.6 and Reassigned Morlet spectrogram with f0t=0.6.  Absolute 

errors in IF are also plotted in Fig.4.16 where it can be seen that numerical 

discontinuity almost vanishes for reassigned CWT. 

The advantage of reassigned and modified CWT technique is also justified by 

comparing the percentage in mean square error (considered as merit criterion) for IF. 

Additive white Gaussian noises (AWGN) with different SNR (signal to noise ratio) 

are added to simulated fringe signal for which mean square error of estimated 

frequency are calculated using reassigned and modified CWT and CWT with f0t=0.6. 

The results are shown in Tab. 4.2.  

The phase stepping method as described in Chapter 3 is also used to extract phase 

from simulated fringe signal. Quadrature counterpart of the fringe signal (Fig. 4.13) is 

obtained using Hilbert transform shown in Fig. 4.17. Robustness of the proposed 

algorithm is also tested with simulated fringe signal by applying AWGN with 

different SNR. Table 4.3 displays the true and fitted values of ellipse parameters of 

quadrature fringe signals for one of the noise realizations (SNR 10 dB) along with 

RMS misfit. Phases are extracted with equation (3.23) and unwrapped phase is plotted  
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Fig. 4.16 Absolute error in IF 

Table 4.1 MSE percentage in Instantaneous frequency 

f0t CWT 

0.1 2.22 

0.2 0.3340 

0.3 0.1081 

0.4 0.0418 

0.5 0.0221 

0.6 0.0165 

0.7 0.0186 

0.8 0.0269 

0.9 0.0362 

1 0.0507 

1.1 0.0585 

1.2 0.081 
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in Fig. 4.18 along with phases extracted by CWT technique.  Error in phase stepping 

method occurs mainly due to noise-induced jump in phase unwrapping algorithm. 

Performance comparison in extracted phase of proposed technique using phase 

stepping method with different noise realization is also carried out and summarized in 

Tab. 4.4. It is observed that for low noise case both the algorithms perform equally 

well but at higher noise level reassigned and modified CWT is more robust.  

With simulated signal, the additional computational burden with current technique is 

also evaluated. It is found that MSE percentages in normalized IF have decreased 

significantly from 0.0507 Hz to 0.0032 Hz with marginal increase in computational 

time (0.932 s for reassigned and modified CWT against 0.909 s for CWT).  

  

 

Fig. 4.17 Simulated quadrature fringe Signal obtained using Hilbert Transform 
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Table 4.2. MSE percentage in instantaneous frequency using CWT (f0t=0.6) with 

AWGN added to fringe 

SNR(dB) CWT Reassigned 

CWT 

30 0.0218 0.0031 

25 0.0238 0.0036 

20 0.0240 0.0038 

15 0.0242 0.0060 

10 0.0265 0.0081 

5 0.0373 0.0281 

 

 

Table 4.3  Fitted ellipse parameters 

Ellipse 

parameters 

True value Simulation 

with 

SNR(10dB) 

Experimental 

a(t) 0.15 0.13 0.015 

a1(t) -0.05 -0.03 0.018 

b(t) 1 1.005 0.002 

b1(t) 0.75  0.78 0 

ε 0 0.001 0.48 

RMS  0.13 0.19 
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4.4 Analysis of Experimental Signals 

Sinusoidal frequency-modulated fringe signal is generated by moving mirror 

attached to one of the legs of the Michelson interferometer where reference light 

combines with a Doppler shifted light. The phase of this fringe signal is proportional 

to surface displacement whereas instantaneous frequency or beat frequency is 

proportional to surface velocity.  Here, we have applied sinusoidal type voltage signal 

to PZT (Piezo-electric translator) attached to one of the mirrors to produce a moving 

surface. Generated optical fringe signals are converted to electrical signal using PMT 

(Photomultiplier tube) and stored in digital storage oscilloscope (DSO). Schematic of 

the setup is shown in Fig. 3.3. 

 

 

Fig. 4.18 Phase of simulated fringe signal with AWGN 
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Table 4.4    MSE in phase with AWGN 

SNR(dB) Reassigned 

CWT 

Phase 

stepping 

30 0.0705 1.3792 

25 0.1797 1.3821 

20 0.2259 6.0316 

15 0.3995 29.36 

10 0.4623 50.47 

5 7.10 331.05 

 

The measured signal intensity by Michelson Interferometer can be expressed as [4]: 

  ttItItItItI dd cos)()(2)()()( 00 
 

where I0 (t) and Id (t) are the intensity of light of the two legs of the interferometer, one 

from reference mirror and other from PZT driven mirror, and φ(t) is the phase shift of 

fringe signal at a given time.  

The phase can be expressed as  

          0

0

0

0

0 22    dttfdttftft

t

i

t

d  

where f0(t) and fd(t) are the frequency of reference light and Doppler shifted light 

respectively.  

Equation (4.31) can be re-written as - 

(4.31) 

(4.33) 

(4.32) 
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    ttbtatI cos)()(   

where, 

)()()( 0 tItIta d  

)()(2)( 0 tItItb d
 

Equation (4.33) describes the recorded time averaged output intensity I(t), background 

intensity a(t), fringe amplitude b(t). Background intensity a(t) is removed by filtering 

method, manual technique or fitting method. The background corrected fringe signal 

and its analytic form may be expressed as-  

  ttbtI cos)()( 
 

)()()( tietbtI 

 
CWT is applied on this analytic representation of the fringe signal and IF is extracted 

by determining ridge points of the CWT coefficients. Phase is then deduced by 

integrating the extracted IF. Finally the velocity and displacement as a function of  

(4.34) 

(4.35) 

(4.36) 

(4.37) 
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Fig. 4.19 (a) Measured quadrature fringe signal with PZT supply voltage (b) 

Reassigned spectrogram (f0t=0.6) obtained from Ch-1 fringe signal. 

time are obtained using following equations:- 

)(
2

)( tftv i


  





2

)(

2
)( 0


t
ts  

Here, v(t) is the velocity, s(t) is the displacement of the mirror and λ(532nm) is laser 

wavelength. 

Experimentally recorded typical quadrature fringe signal as shown in Fig. 3.4 with 

applied PZT voltage again is shown in Fig. 4.19(a) for the sake of continuity. The 

recorded fringe signal Ch-1 is analyzed by reassigned and modified CWT with Morlet 

(4.38) 

(4.39) 
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wavelet parameter f0t=0.6. The modulus of coefficients or spectrogram so obtained is 

plotted in Fig. 4.19(b). Ridge points extracted by using maxima search algorithm are 

shown in the same plot (dotted line). Analysis is also carried out with conventional 

Morlet mother wavelet and modified one with f0t=0.6 resulting in discontinuity in 

neighbouring low frequency zone, similar to those seen for simulated signal, shown in 

Fig. 4.20. Phase is then deduced by integrating extracted IF from Fig. 4.19(b).  For 

direction control of phase variation, quadrature based fringe signal is used from which 

inflection point is identified (at 0.756 ms) and phase reversal algorithm
 
is applied to 

produce continuous phase, described in Fig 4.21.  

Finally, displacement profile is calculated using equation (3.28) for reassigned and  

 

Fig. 4.20 Morlet spectrogram (a) with with f0t=1 (b) with f0t=0.6 

 

Fig. 4.21 Phase variation 
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modified CWT. Results of phase stepping technique as described in Fig. 3.6 and CWT 

technique are both simultaneously plotted shown in Fig. 4.22.   It can be observed that 

apart from smaller peak value, the displacement profile derived from phase stepping 

suffers from artificial acceleration and deceleration as well. This may be due to 

relative nonlinear error in the fringe profile. The peak displacement using reassigned 

and modified CWT is estimated as 2.23 µm. This may be compared with 2.06 µm 

obtained by phase stepping technique and also 2.20 µm obtained by well established 

peak-picking technique. Velocity profile is deduced using equation (3.29) shown in 

Fig. 4.23 and maximum velocity of 4137 µm/s is observed.  

 

Fig. 4.22 Displacement profile 

 

Fig. 4.23 Velocity profile 
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4.5 Summary and Conclusion 

CWT with mother wavelet as Morlet is used to extract the phase of highly non-

stationary sinusoidal frequency-modulated optical fringe signal. To obtain the 

optimum time and frequency resolution, mother wavelet parameter combination f0t is 

modified. MSE percentage in instantaneous frequency in actual and extracted 

frequency is considered as merit criterion and f0t as 0.6 found to be optimal. However, 

this optimal value does not ensure desired measurement accuracy in extracted 

frequency. A new approach of using reassigned and modified CWT technique is 

proposed to simultaneously adopt mother wavelet and reassignment. A combination of 

these provides better concentration of low energy components of the spectrogram 

compared to conventional CWT technique that uses f0t as 1. This leads to an 

improvement in readability and increase in accuracy of mean square error percentage 

in normalized instantaneous frequency from 0.0507 Hz to 0.0032 Hz, with marginal 

increase in computational time from 0.909 s to 0.932 s. Optimal selection of mother 

wavelet helps to reduce wavelet energy to its adjacent bins and then reassignment 

technique sharpens the spectrogram effectively. Thus, simple ridge detection technique 

performs well and can be utilized for many practical applications. Proposed technique 

is also compared with existing two fringe-based phase stepping techniques and found 

to be more robust for sinusoidal fringe signals contaminated by additive Gaussian 

noise. At SNR 10 dB, the MSE in phase by the proposed technique is 0.4623, whereas, 

the same for phase stepping technique is 50.47. This large MSE in case of later is due 

to noise-induced phase jump in phase stepping technique.  
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Further, the performance of the proposed technique is validated using fringe signal 

generated by a Michelson interferometer. The peak displacements in the fringe signal 

determined by the current and the phase stepping techniques are 2.23 µm and 2.06 µm, 

respectively. The former is more close to the 2.20 µm determined using popular peak-

picking technique. Additionally, the displacement profile derived using proposed 

technique is free from ripples and distortions as compared to that obtained through 

phase stepping technique. Though, the experimental fringe signal so generated does 

not have much noise, still the inferior performance of phase stepping technique is due 

to relative non-linear error between quadrature fringe signals.   
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CHAPTER 5 Phase Extraction of Cubic Phase Signal by 

Pseudo Wigner Ville Distribution Method 

 

5.1 Introduction 

In the last chapter CWT based technique is explored for better extraction of IF in 

sinusoidal frequency modulated signal. In this chapter Wigner Ville Distribution 

method is described for the IF extraction in polynomial phase signal. In this method 

also complex phase unwrapping can be avoided. Many interesting mathematical 

properties like energy conservation, marginality etc. are preserved in WVD. 

5.2 Theory 

5.2.1 Background 

WVD of signal I (t) is defined as the Fourier transform of time-dependent 

instantaneous auto-correlation function and represented as 





 detItItWVD j




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()
2

(
2

1
),( *

 

where t, ω and τ represent the time, angular frequency and lag variable respectively and 

(∗) denotes the complex conjugate. The above expression is also called quadratic due 

to presence of product of two signal terms. Peak of WVD is the estimator of IF. This 

estimator is optimal when the signal phase is quadratic function or linear IF [41]. For 

polynomial phase signal of order greater than two, this optimality is lost and 

polynomial Wigner Ville Distribution is proposed to handle such class of signals [40]. 

It is defined by 

(5.1) 
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where q is an even integer, denoting the order of nonlinearity of WVD, dl is the real 

coefficients. Proper selection of coefficient dl for obtaining 4
th

 and 6
th

 order Poly-

WVD is explained in literature [57]. In fact WVD is a special case of Poly-WVD 

when q=2 and dl=d-l=0.5. 

Though WVD has many good properties like marginality, preserving total energy, real 

valued distribution and possibly best resolution among all of the time-frequency (TF) 

techniques, undesirable cross-term or interference effect due to presence of signal 

product terms, is its main drawback. For Poly-WVD this interference effect is more 

dominating than traditional WVD due to its multi-linear nature for hyperbolic type 

signal.  

WVD is also highly non local and to convert it into local, windowing operation is 

introduced popularly known as Pseudo Wigner-Ville Distribution (PWVD)[37]  

 

Fig. 5.1. (a) Cubic phase signal (b) Instantaneous Frequency of cubic phase signal (c) 

Simulated cubic phase based fringe signal (d) WVD of simulated fringe signal 

(5.2) 
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which mathematically can be described as 


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where window function h(τ), is an even function and peaked around τ = 0. 

Multiplication with h(τ) is an equivalent to frequency filtering, thus an immediate 

consequence is reduction of cross-terms to some extent for multi-component signal 

particularly in frequency direction.  However, these benefits lead to the smearing of 

the auto-terms of the signal and a loss of many desirable theoretical properties. Cohen 

[37] proposed general approach and introduced 2-D kernel function defined as 
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where g(τ,θ ) is the kernel function. Different kernel will lead to different time 

frequency representation (TFR) and by examining a particular kernel function various 

properties of bilinear TF distribution can be ascertained.  Therefore, kernel function 

allows both the suppression of the cross-terms and the preservation of the auto-

ambiguity terms of the analyzed signal.  

In Fourier space kernel function g(τ,θ ) can be represented as- 

 

Fig. 5.2. (a) SPWVD of fringe signal (b) Reassigned SPWVD with modified kernel of 

fringe signal 

(5.3) 

(5.4) 
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If a separable kernel function is considered, it can be defined as the product of 

window function in both time and frequency direction i.e. 

)()(),(   Htgt  

where H(ω) the Fourier transform of window function h(t) performs smoothing in 

parallel to frequency axis and g(t) performs smoothing in parallel to time axis. 

Therefore, Smoothed Pseudo Wigner-Ville Distribution (SPWVD) [37] can be 

expressed as -  
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Fig. 5.3.  (a) Poly-WVD of fringe signal (b) Poly-WVD of fringe signal with lag 

window length 35 (c) Reassigned CWT of fringe signal (d) Absolute error in IF of 

various methods 

(5.5) 

(5.7) 

(5.6) 
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In the present work, Gaussian kernel is used 

)/exp()/exp(),( 22
  g

 

where  and  decide the spread of the kernel. It is to be noted that more spread of 

kernel will lead to more reduction of interference but at the cost of blurring of signal 

concentration and loss of localisation property. In order to improve the signal 

concentration from blurred TFR, simultaneously reassignment technique is applied, 

explained in last chapter in the context of CWT. Same technique can be adopted in 

SPWVD that relocates any point (t,ω) of SPWVD(t, ω) to its centre of gravity (t̂, ω̂ ) 

and improves the signal readability significantly.  

5.2.2 Method of Phase Extraction 

As mentioned earlier the measured signal from Michelson Interferometer can be 

expressed as 

    ttbtatI cos)()( 
 

where I(t) is time averaged output intensity, a(t) is background intensity, b(t) is fringe 

amplitude, and φ(t) is the phase shift of fringe signal at a given time. The fringe signal 

represented by equation (5.9) can be expressed in analytic form as follows 

)()()( tietbtI 

 

 

Fig. 5.4.  Estimated (a) IF and  (b) Phase by reassigned SPWVD 

(5.8) 

(5.9) 

(5.10) 
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Representation of the signal in above analytic form is useful for properly defining IF 

and beneficial to reduce the interference effect presents in WVD [37,38]. If phase is 

considered to be a polynomial function of order p, then equation (2) can be expressed 

as 
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where ai are real coefficients of polynomial phase signal. The IF can be defined as: 
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The phase from derived IF can be expressed using following equation 
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Reassigned SPWVD expressed in equation (5.7) with Gaussian kernel is applied on 

analytic representation of the fringe signal given in equation (5.10) and IF is 

extracted by determining ridge points of the SPWVD coefficients. Phase is then 

deduced by integrating the extracted IF. Finally, the velocity and displacement as a 

function of time are obtained using equations:- 
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Here, v(t) is the velocity, s(t) is the displacement of the mirror and λ(532nm) is laser 

wavelength.  

 

 

 

(5.15) 

(5.14) 

(5.13) 

(5.11) 

(5.12) 
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Table 5.1.  Mean Square Error (MSE) in IF 

Type MSE 

percentage 

in IF 

WVD 0.1957 

SPWVD with spread factor 2.5 0.3340 

Reassigned SPWVD with spread factor 

20 

0.0020 

Windowed Poly-WVD with window 

length 35 

0.0293 

Reassigned CWT with central frequency 

0.6 

8.0899 

5.3 Numerical Simulation 

The proposed IF extraction algorithm based on Reassigned SPWVD has been 

validated by known IF and phase of a simulated fringe signal. For this purpose, a 

cubic phase signal is first generated using piece-wise polynomial functions of order 

three shown in Fig. 5.1(a) and IF of the signal deduced using equation (5.12) is shown 

in Fig. 5.1(b). Optical fringe corresponding to this IF signal [Fig.5.1(b)] is generated 

in such a way that integral of IF is approximated as cumulative summation function 

given by: 

)((*

))(**2*exp(

0tIconjII

and

IFcumsumpijI


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Generated fringe signal is shown in Fig. 5.1(c). Wigner Ville Distribution (WVD) is 

first applied and as expected many undesirable interference are seen to be present in 

the TFR, shown in Fig. 5.1(d). SPWVD is then applied with 2-D kernel where g(t) and 

h(t) are Gaussian window with odd(N/10) and odd(N/4) data points respectively with  

(5.16) 
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Table 5.2.  MSE in Phase with respect to Signal to Noise Ratio (SNR) 

SNR (dB) MSE 

percentage 

in IF 

MSE in 

phase 

50 0.0020 0.0259 

40 0.0021 0.0385 

30 0.0022 0.0537 

20 1.4273 347.57 

 

spread factor of 2.5, N being the number of frequency bins in FFT [38]. It is to be 

noted that spread factor denotes the reciprocal of standard deviation of Gaussian 

window and is a measure of width of its Fourier transform. Larger the value of spread 

factor, implies narrow in temporal space, suitable for analyzing strong nonlinear 

signal in time direction but poor resolution in frequency direction. Resultant SPWVD 

is shown in Fig.5.2(a) and as compared to Fig.5.1(d) interference is reduced 

significantly at the cost of smeared signal concentration. Then we further increase the 

spread factor of Gaussian kernel to 20 and apply reassigned SPWVD, as shown in Fig. 

5.2(b). Narrow Gaussian kernel in temporal space can be seen to improve 

measurement accuracy particularly at strong nonlinear region and further 

simultaneous application of reassignment technique increases signal concentration 

significantly in frequency direction. 

 Comparative study of IF extraction by Poly-WVD method as well as reassigned 

CWT [18] based technique are also carried out. In Poly-WVD method polynomial 

nonlinearity of order 4 is considered as it is sufficient to analyze cubic phase signal. In 

fact 6
th

 order Poly-WVD will produce more interference term than 4
th

 order one. 

Figure 5.3(a) and 5.3(b) represent Poly-WVD and windowed Poly-WVD with 
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Gaussian window length of 35 respectively. Effect of window length of Poly-WVD on 

IF extraction can be found in literature [41]. Even though, poly-WVD is theoretically 

appealing for such class of signal, interference effect severely distorts the TFR. In 

CWT method, Morlet as mother wavelet with central frequency (f) and time 

bandwidth (t) product is considered to be 0.6 and reassigned CWT is applied on 

simulated fringe signal, shown in Fig. 5.3(c). Consideration of Morlet mother wavelet 

parameters (central frequency and time bandwidth) is discussed in details in last 

chapter. Finally, absolute error in IF using reassigned SPWVD, Windowed Poly-

WVD and reassigned CWT are plotted in Fig.5.3(d). It may clearly be observed that 

reassigned SPWVD technique is more accurate than windowed Poly-WVD as well as 

reassigned CWT technique. Finally, IF is extracted by reassigned SPWVD method 

and phase is estimated using equation (5.13). Figure 5.4 (a) and (b) describe extracted 

IF and phase respectively along with actual value. To evaluate the performance and 

accuracy of proposed method, mean square error (MSE) in IF is considered as figure 

of merit. Table 5.1 depicts the MSE percentage of IF with respect to different 

approaches and it is observed that reassigned SPWVD with spread factor of 20, the 

MSE is least.   

Robustness of the proposed algorithm is also checked with additive white Gaussian 

noise (AWGN). Table 5.2 describes the MSE percentage in IF and MSE in phase with 

respect to different signal to noise ratio (SNR). It is seen that for SNR of 20 dB or less 

the algorithm is not robust. Since, narrow window is chosen as a Gaussian kernel that 

is quite effective for sharp change in IF but susceptible to noise due to fewer numbers 

of captured samples. 
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Fig. 5.5. (a) Experimentally observed fringe signal with PZT supply voltage (b) 

Reassigned SPWVD with modified kernel of experimental signal (c) Velocity profile 

of experimental signal (d) Displacement profile of experimental signal 

5.4 Experimental Program 

Simulated cubic phase signal shown in Fig. 5.1(a) is used to drive PZT attached to 

mirror (M-2) in one of the legs of the Michelson Interferometer given in Fig. 3.3. First 

this simulated signal is scaled to 0-10V range and then DAQ (Data Acquisition) 

system is developed using PXI based analog input/output card to drive the PZT. 

Analog output update rate is considered as 10kS/s so that it suits dynamic range of the 

PZT. Further amplifier is used to increase the voltage range that helps to get more 

number of fringes. A single mode continuous wave (CW) 532nm laser with variable 

power up to 2W is used along with PMT having 0.57ns rise time, 230-950nm spectral 

response and adjustable control voltage from 0.5 to 1.1V. Laser power, aperture 

opening, PMT control voltage and gain are adjusted in such a way that overall signal 

recording system operates in linear region [58]. The measured peak PZT supply 

voltage is 16.11V. Optical fringe signal corresponding to PZT supplied voltage, is 
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converted to voltage signal using PMT (Photomultiplier tube) and stored in DAQ 

using analog input channel. Analog input sampling frequency (100kS/s) is considered 

relatively high to properly record the fringe signal in strong nonlinear region. Both 

PZT supply voltage and background corrected fringe signals are simultaneously 

recorded, as shown in Fig. 5.5(a). Here background intensity a(t) is 0.068V, fringe 

amplitude b(t) is 0.024V, and hence fringe visibility (ratio of fringe amplitude to 

background intensity) is 0.35. Hilbert transform is used to convert the real signal to its 

analytic form. Figure 5.5(b) describes instantaneous frequency in spectrogram based 

on proposed reassigned SPWVD of analytic form for experimentally recorded fringe 

signal. The velocity is calculated using equation (5.14) and shown in Fig. 5.5(c). 

Finally, phase is calculated by integrating the extracted instantaneous frequency and 

then displacement is derived using equations (5.15). As expected displacement profile 

shown in Fig.5.5(d) is quite similar to that of simulated phase signal shown in Fig. 

5.1(a). In experimental signal relatively less strong nonlinearity is observed, possibly 

due to response problem in PZT. We have also performed stability check of the 

proposed algorithm of experimental signal by executing the program 10 times, but 

could not find any variation in mean square error. The measured peak velocity and 

displacement are 1.86±0.06 mm/s and 2.54±0.04 µm respectively. 

5.5 Conclusion 

Instantaneous frequency extraction based on reassigned smooth pseudo Wigner Ville 

Distribution (SPWVD) is proposed. Cubic phase signal along with strong nonlinear IF 

law based fringe signal is considered to show the efficacy of the proposed method. 

Spread in Gaussian separable kernels are independently optimised for smoothing both 
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time and frequency direction of SPWVD and reduction of interference as well as 

improvement in accuracy is achieved significantly with simultaneous application of 

reassignment technique. Proposed method is also compared with polynomial Wigner 

Ville Distribution as well as Continuous Wavelet Transform method and found to be 

more accurate. Though, poly-WVD is theoretically appealing for such class of signal, 

interference effect severely distorts the TFR. In case of CWT, in spite of using 

modified Morlet wavelet, IF extraction could not be improved significantly.  

Simulation and experimental results justify the use of this new technique in precision 

displacement and velocity measurement using optical interferometric method for 

highly non-stationary fringe signal.  
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CHAPTER 6 Applications to Free Surface Velocity 

Measurement in High Strain Rate Experiments 

 

6.1 Introduction 

Free surface velocity measurement of the target material subjected to transient 

compressions in shock wave experiments is an important problem. Many interesting 

material properties like Hugonoit Elastic Limit (HEL), dynamic yield strength, spall 

strength etc can be inferred from the free surface velocity history of target material 

[4,7,8]. These material properties find immense applications in the area of defense, 

geophysics, aerospace, automobile etc. Michelson interferometer in two different 

configuration-(1) Velocity mode and (2) Displacement mode are widely used for free 

surface velocity measurement of target material under shock compression. This 

chapter describes these two types interferometer configuration with emphasis on 

signal analysis.   

6.2 Velocity Interferometer 

In velocity mode VISAR (Velocity Interferometer System for Any Reflector) is 

widely used instrument in shock compression experiments. VISAR is basically a 

modified version of wide angle Michelson interferometer where two Doppler shifted 

lights (with one of them delayed by placing an etalon in one of the legs of the 

interferometer) from target free surface interfere each other to form fringe pattern. 

Therefore it works in the velocity mode or differential displacement mode 

configuration. Quadrature coded interference fringes are utilized for differentiating 

between the acceleration and deceleration of target free surface.  
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Fig.6.1Schematic of VISAR system 

6.2.1 Method of VISAR Signal Analysis 

Figure 6.1 depicts the schematic of VISAR system developed in our laboratory where 

three detector signals two from quadrature coded fringe patterns and one from beam 

intensity monitor are simultaneously recorded. The normalized quadrature signal 

measured by VISAR system can be expressed as  

  tttI  cos)()( 10 
 

    tttI sin)()( 10  

where I(t) and I(t) are the two Doppler shifted lights from the two legs of the 

interferometer, 0, 0 are the offset, 1(t),1(t) are time varying amplitude of sinusoid 

and ε is quadrature error angle, (t) is the phase of the signal which carries the 

information of interest.  As described in Chapter 3, equations (6.1) and (6.2) (t) can 

be expressed as- 
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Here, I(t) and I(t) are the known measured quantity and 0, 0, 1(t), 1(t), ε are 

unknown parameters those can be estimated by ellipse fitting. It may be noted that 

equations (6.1) and (6.2) form a family of ellipse where 0, 0 are the centre, 

1(t),1(t) are axes and ε is the rotational angle of ellipse. The phase shift (t) is then 

derived using equation (6.3) with fitted ellipse data. However, the phase described in 

equation (6.3), is wrapped between –π/2 to π/2 or 0 to 2π due to inherent property of 

mathematical arctangent function. The 2π phase jump is removed by using phase 

unwrapping algorithm. Details of phase unwrapping is explained in section 3.2. Phase 

stepping technique of phase unwrapping algorithm is implemented as it is simple, easy 

to implement and works satisfactorily for VISAR signals. Once the phase is 

unwrapped the fringe shift is calculated using equation (6.4) and finally free surface 

velocity is derived using equation (6.5)- 





2

)()(
)( itt

TF


  

)()( tkFtU fs   

Here, F(t) is the fringe shift, Ufs is the free surface velocity and k is the known fringe 

constant related to laser wavelength and etalon delay time. 

6.2.2 Ellipse Fitting 

As discussed in Chapter 3 that effect of amplitude and phase angle error in final 

velocity profile could be solved by proper ellipse fitting technique. A detail 

description of ellipse fitting technique with an emphasis on VISAR signal analysis is 

provided in this Chapter. As mentioned earlier ellipse fitting is broadly categorised as 

(1) Algebraic method and (2) Geometric method is explained bellow. 

(6.5) 

(6.4) 
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6.2.2.1  Algebraic Method 

In algebraic method ellipse is fitted using general conic equation given as  

0)X,( 22  feydxcybxyaxf   

with the condition  

042  acb  

where λ=[a b c d e f]
t
 and X=[x

2
 xy y

2
 x y 1]

t
. Now if we have k number of 

measurement points which are not lying exactly on equation (6.6), then right hand side 

of equation. (6.6) will be non zero. Therefore, we can rewrite the equation (6.6) in the 

following simultaneous equations form with residual ri. 
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Algebraic distance is then defined as distance of a point (x,y) to the conic f(X, λ). The 

fitting can be carried out by minimising the squared algebraic distances S(λ) 
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Fig.6.2 Simulated fringe signal (a) complete ellipse (b) 0.75 fractional ellipse 

Thus, the problem becomes to find out λ such that S(λ) is minimum. In general λ is 

normalised to avoid trivial solution of kind a = b = c = d = e = f = 0. In literature 

majority of the work is carried out in that direction by varying different normalisations 

[46,47].  Most popular choice is 1 , but Gander and Rosin suggested a + c = 1 

[46,47]. Later Rosin [47] studied comparison between a + c = 1 and f = 1 and 

suggested f=1 was more accurate as it was less sensitive to curvature bias effect. In 

1979 Bookstein [48] proposed ellipses fitting with Euclidian invariant constraint

1
2

1 222  cba  and later Sampson [49] modified it. All these fittings were based 

on generalised conic fitting and it was not guaranteed that solution will always 

provide an ellipse.  In 1999 Fitzgibbon [50] first time proposed an ellipse specific 

efficient fitting by making b
2
-4ac = -1.  Later R Halir et al [51] presented numerically 

robust version of Fitzgibbon algorithm.  Ray et al [52] also explored the possibility of 

genetic algorithm in ellipse fitting.  

In order to look for best suited method for analysis of VISAR signals, in this work, a 

comparative study of the most cited work on algebraic ellipse fitting techniques-(a) 

Bookstein fitting (b) Trace fitting by Gander et al and (c) Fitzgibbon fitting are carried 
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out. After completing fitting from each of these methods, the VISAR ellipse 

parameters are calculated with fitted conic parameters (a, b, c, d, e, f) using ellipse 

parametric conversion equations, described below [59]- 
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The main advantage of algebraic fitting is the computational efficiency by solving 

linear least square problem. However, in general results are not always satisfactory 

and it is unclear what is being minimised. In 1997 Zhang [48] pointed out the problem 

of high curvature bias effect for the same Euclidian misfit of algebraic fitting. It 

implies that this method performs better conic fitting at low curvature sections than to 

those at high curvature sections for the same noise level of the measurement data.  

(6.11) 

(6.12) 

(6.14) 

(6.13) 

(6.10) 
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Fig.6.3 Ellipse fitting with simulated fractional fringe (a) 0.75 fraction (b) 0.5 fraction 

Finally, Gander et al [46] also mentioned the problem of producing quite different 

ellipse for different normalisations of algebraic fitting. 

6.2.2.2  Geometric Method 

Geometric method is applied to overcome the problems mentioned in the algebraic 

method by replacing algebraic distances to orthogonal distances which are Euclidean 

invariant to space transformation. If di is the orthogonal distance from the measured k 

number of data points (x, y) to the estimated curve f(x,λ) then we can optimize the 

model parameters λ by minimizing the following function- 
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Fig.6.4 Error percentage of ellipse parameters for fractional fringe signal with 

different noise σ 

 

Fig 6.5 Ellipse Stability Check 

As the expression of di is complicated an iterative optimization technique is usually 

applied to obtain the parameters vector λ.  The equation (6.15) can be generalised as 

 



k

i

ii xfyS
1

2
),()(   

Here yi is the measured data points and f(xi, λ) is the model function.  For minimisation 

process some initial parameters of λ are guessed and value of S(λ) is evaluated.  In 

each iteration step vector λ is updated by a new estimate, λ+δ such that values of S(λ)  

(6.16) 



73 
 

 

Fig.6.6 Offset corrected recorded fringe signal of Al-2024T4 material for Exp-1 

become smaller than the earlier one. These steps are continued until some 

convergence criteria are satisfied.  In literature many optimization techniques are 

available for application to conic fitting like Steepest Gradient Descent method, 

Gauss-Newton Algorithm (GNA), Lavenberg-Marquardt Algorithm (LMA) etc 

[53,54]. 

In Steepest Gradient Descent method update parameter δGD moves the parameters in 

negative of the gradient direction and it is expressed as- 

 )( fyJ T

GD   

where α is a positive scalar parameter. The advantage of this method is that it 

converges fast when the solutions are away from the minima. However, it converges 

very slowly close to the local minima with a required accuracy. 

In Gauss-Newton Algorithm update parameter δGN is defined as-  

 

(6.17) 
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Fig. 6.7 Ellipse fitting on the VISAR signals recorded in experiment-1 (a) complete 

fringe (b) fractional fringe 

 )()(  fyJJJ T

GN

T   

where J is the Jacobian expressed as 
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GNA converges quickly when solutions are close to minima value. But if the initial 

guess is chosen far from the minimum, GNA may converge slowly or may not at all 

converge. Another problem is that if the ellipse is a circle the Jacobian becomes 

singular and GNA will not work. This problem can be solved by using LMA update 

parameter. 

Lavenberg-Marquardt Algorithm judicially utilises the advantages of both the 

algorithms by adaptively varying update parameters between Gradient Descent update 

and Gauss-Newton update. It is described as 

 )())((  fyJJJdiagJJ T
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(6.18) 

(6.19) 

(6.20) 
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Fig.6.8 Free surface velocity profile derived using fitted results for Exp-1 

where I is the identity matrix and µ is the algorithmic parameter.  

It should also be noted that LMA algorithm is no way optimal but it is heuristic. Its 

performance cannot be guaranteed but in many practical scenarios it works better.  

In present work, a comparative study of different ellipse fitting techniques is provided 

and GNA fitting technique of geometric method is proposed, especially when the 

ellipse is fractional. The convergence problem of GNA could be improved by utilising 

the Bookstein algebraic fitting data as its initial guess parameters.  

For geometric fitting technique the model function f(x,λ) is implemented in parametric 

representation of ellipse as it requires less number of parameters to estimate than 

general conic equations given as- 
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Fig. 6.9 Offset corrected recorded fringe signal of Al-2024T4 material for Exp-2 

where x0 and y0 are the centre of the ellipse, a, b are the semi axes, α is the angle of 

inclination of a from x axis and φ is the parameter runs anticlockwise from 0 to 2π. 

Thus model vector λ=(x0 y0  a b α)
t
 can completely characterize the ellipse. Therefore 

geometric fitting directly provides the parameters of our interest α0, β0, α1, β1, ε which 

are equivalent to x0, y0, a, b, α respectively. 

Table 6.1. Ellipse parameters with different fitting algorithm for complete fringe 

signal with added noise σ=0.1 

Ellipse 

parameters 

True 

Value BOOK TRACE FITZ GNA 

α0 -0.3 -0.2911 -0.2739 -0.2552 -0.3027 

β0 -0.2 -0.1945 -0.1916 -0.1944 -0.2061 

α1 1.0064 1.0462 1.0062 0.9603 1.0332 

β1 0.5382 0.5432 0.5549 0.5827 0.5424 

ε 0.1336 0.1240 0.1222 0.1263 0.1444 

RMS 0 0.2061 0.2135 0.2181 0.2001 
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Fig.6.10 Ellipse fitting on the VISAR signals recorded in Exp-2  

6.2.3 Numerical Simulation 

In order to compare the performance of different ellipse fitting techniques for VISAR 

like signals, two tests, one  with complete ellipse data and the other with fractional 

ellipse are conducted. The fringe signals are created using piece-wise sinusoid with 

variable frequency signal as VISAR signal is also non-stationary in nature. Additive 

White Gaussian Noise (AWGN) with different noise standard deviation (σ) is added to 

the simulated fringe signal to check the robustness of the algorithms. Figure 6.2(a) and 

6.2(b) represent the two different fringe signals representing complete ellipse and 

fractional ellipse (0.75 fraction), respectively with added noise σ=0.1. The 
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convergence criterion for geometric fitting is set as maximum number of iterations 

400 and tolerance 1e-5. Various ellipse fitting techniques compared are as follows:  

I. BOOK= Bookstein method; 

II. TRACE= Gander method; 

III. FITZ= Fitzgibbon method; 

IV. GNA= Gauss-Newton method; 

 

Table 6.2. Ellipse parameters with different fitting algorithm for fractional fringe 

signal with added noise σ=0.1 

Ellipse 

parameters 

True 

Value BOOK TRACE FITZ GNA 

α0 -0.3 -0.2613 -0.2599 -0.2542 -0.3073 

β0 -0.2 -0.1179 -0.1352 -0.1582 -0.1873 

α1 1.0064 1.0183 0.9857 0.9493 1.0059 

β1 0.5382 0.4878 0.5147 0.5337 0.5326 

ε 0.1336 0.0188 0.0037 0.0534 0.1289 

RMS 0 0.2254 0.2343 0.2233 0.1660 

 

Table 6.3. Experimental configuration. 

 

Table-6.1 depicts the different ellipse parameters (true and fitted) corresponding to 

complete fringe signal obtained from different fitting algorithms. RMS deviation from 

true value for each algorithm is also calculated. As clear from Table-6.1 all the 

algorithms perform reasonably well for complete fringe signal even in the presence of 

10% noise level. However, as listed in Table 6.2 and shown in Fig. 6.3(a), for 

Name Target Thickness 

(mm) 

Impactor 

Thickness( mm) 

Impact Velocity 

(m/s) 

Fringe Constant 

(m/s) 

Exp-1 15.03 4.97 306±4.1 175 

Exp-2 7.98 4.96 198.4±1.8 250 
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fractional fringe signal of 0.75 fraction of ellipse, the results from different ellipse 

fitting techniques differ significantly and GNA technique appears to perform better 

than the other techniques.  Furthermore, as displayed in Fig. 6.3(b), in case of 0.5 

fraction of the ellipse (i.e. 0.5 fraction of fringe data shown in Fig. 6.2(b) the only 

viable option remains GNA technique and all the other algorithms fail to provide 

reasonable fitting. We also found that in noise free cases all the algorithms perform 

equally good leading to perfect ellipse reconstruction. The stability testing of 

estimated ellipse parameters with increasing noise level for GNA method is also 

performed. The ellipse corrupted with noise (from 0 to 0.1) for 100 iterations and 

Mean Square Error (MSE) of all the ellipse parameters were recorded for both 

complete and fractional fringe signal depicted in Fig 6.4. In both the cases the ellipse 

parameters degrade gracefully with increase in noise level an indication of good 

fitting. As expected for fractional fringe signal MSE is more than that for complete 

fringe signal.  

 

Fig.6.11 Free surface velocity profile derived using fitted results for Exp-2 
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Table 6.4. Ellipse parameters with different fitting algorithm for Exp-1. 

Ellipse 

parameters BOOK TRACE FITZ GNA 

α0 -0.2429 -0.2425 -0.2419 -0.2430 

β0 -0.1366 -0.1365 -0.1364 -0.1367 

α1 0.0667 0.0653 0.0639 0.0646 

β1 0.0330 0.0337 0.0352 0.0338 

ε 0.0568 0.0526 0.0452 0.0560 

RMS 0.1265 0.1287 0.1322 0.1201 

 

Table 6.5. Ellipse parameters with different fitting algorithm Exp-2. 

Ellipse 

parameters BOOK TRACE FITZ GNA 

α0 -0.2561 -0.2479 -0.2435 -0.2342 

β0 -0.0794 -0.0790 -0.0788 -0.0807 

α1 0.2378 0.2156 0.2044 0.2186 

β1 0.1246 0.1363 0.1458 0.1422 

ε 0.3792 0.3192 0.0452 -0.0538 

RMS 0.2695 0.2761 0.3348 0.2222 

 

 

6.2.4 Experimental Program 

To validate the proposed algorithm two plate impact experiments on Al2024-T4 

target material are conducted in single stage gas gun. The VISAR instrument is used 

to record the time resolved fringe shift arising due to motion of free surface of the 

target. Table-6.3 displays the target and impactor details used in the experiments. 

Details of VISAR system is described elsewhere [8]. Impact velocities are measured 

by time of flight technique. Figure 6. 5 displays that more than one complete fringe 

shift occurred due to movement of free surface in first experiment. The lissajaeous 
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plot for one complete portion of fringe signal and corresponding fitted ellipse are 

shown in Fig. 6.6(a). As is clear from Table 6.4 and Fig. 6.6(a), just like that for the 

simulated signals, for experimental signals also, the performance of different fitting 

techniques is equally good. For sake of clarity the fitting from only two techniques 

namely BOOK and GNA are shown in the Fig. 6.6(a). However, if the remaining 

fractional part of the fringe signal is considered, the GNA accurately constructs the 

complete ellipse from the information available only on fractional fringe data, 

whereas the BOOK and other methods deviate significantly. Here also, in Fig. 6.6(b), 

for sake of clarity, results are shown for only two fitting algorithms BOOK and GNA. 

The peak free surface velocity (uf) of 298.3±3.4m/s obtained using the GNA fitted 

data is more close (within ~ 2%) to the impact velocity of 306±4.1m/s measured using 

time of flight method, as compared to 283.8±2.1m/s that obtained employing simple 

arc-tangent function without ellipse fitting algorithm. Further, unlike that for the 

simple arc-tangent method (without ellipse fitting data), the free velocity profile 

derived employing GNA method does not contain numerical artifacts (Fig.6.7) like 

artificial acceleration and deceleration etc. It may be noted that the target and 

impactor used for these plate impact experiments were made of same material. Hence 

the impact velocity is expected to be equal to the peak free surface velocity. Different 

dynamic mechanical properties such as spall strength (S=1.1±0.013GPa), Hugoniot 

elastic limit (HEL=0.73±0.008GPa) and dynamic yield strength (Y=0.37±0.005GPa) 

of Al2024-T4 target material derived from free surface velocity profiles are also 

calculated. The details of methodology employed for deriving these parameters are 

mentioned in Appendix 1.1. 
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Figure 6. 8 depicts the fringe shift occurred due to free surface motion of target in 

the second plate impact experiment. Analysis of this signal poses more challenge as 

only fractional part of the ellipse exists in this case and high level of noise is present. 

Table-6.5 provides various ellipse parameters obtained using different fitting 

algorithms. The Lissajeous plot along with the fitted ellipses using two algorithms i.e. 

BOOK and GNA are also displayed in Fig.6.9. As evident from the figure, the 

complete ellipse derived from the GNA technique fits better with experimental data as 

that obtained from BOOK algorithm. The measured peak free surface velocity 

obtained from free surface velocity profiles (Fig.6.10) determined employing GNA 

and BOOK algorithms are 200.8±6.07m/s and 211.1±7.43m/s, respectively. In this 

figure, it is not shown the free surface velocity profile derived without using ellipse 

fitting as its demerits are already displayed in Fig. 6.7. Again like in first experiment, 

the free surface velocity derived by using GNA method is more close to the measured 

impact velocity of 198.4±2.3 m/s as compared to that obtained from BOOK algorithm. 

 

6.3 Displacement Interferometer 

Basic configuration of displacement mode Michelson interferometer is described in 

Chapter 1. However, due to implementation difficulty of Fig. 1.1, heterodyne method 

is widely used in shock compression experiments. This technique is commonly used 

in telecommunication for generating new frequency by mixing two frequencies based 

on trigonometric identity that is multiplying two sine functions sin(2πf1t) and 

sin(2πf2t) at two different frequency f1 and f2 results summation of two sine function 

one at (f1-f2) and other at (f1+f2).  
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Similar technique is implemented in heterodyne laser interferometry by mixing (using 

a circulator) a reference laser frequency (f0) and its Doppler shifted frequency (fd) 

from a moving target, generating heterodyne beat signals. Fig.6.12 briefly describes 

the schematic of the system, where laser light enters to the circulator through port 1 

and comes out of port 2 and focuses to the target plate. When flyer with velocity v(t) 

hits the target plate, free surface of the target plate starts moving causing Doppler 

effect. Then Doppler shifted light with frequency (fd) enters to the circulator through 

port 2 and heterodyne beat signal comes out through port 3, converted to electrical 

signal by photodiode and stored to high speed oscilloscope. 

6.3.1 Analysis Technique 

Measured heterodyne beat signal can be expressed as 
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whereI0(t) and Id(t) are the reference laser light intensity and Doppler shifted light 

intensity respectively, fb(t) is the heterodyne beat frequency expressed as 
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 and 0 is the initial phase difference. According to the Doppler effects, the beat 

frequency can be written as 
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Therefore, free surface velocity {Ufs(t)} can be related to instantaneous frequency of 

recorded heterodyne beat signal as per following equation- 

(6.22) 

(6.24) 

(6.23) 



84 
 

)(
2

)( 0 tftU bfs



. 

6.3.2 Simulation 

VISAR velocity profile is used for generating simulated heterodyne type fringe 

signals. Free surface velocity profile (Fig.6.8) measured by VISAR (Velocity 

Interferometer System for Any Reflector) in AL-2024T4 material under shock 

compression is considered as an instantaneous frequency or beat frequency of 

heterodyne fringe signals. The velocity profile of 0-300 m/s is normalized to a 

corresponding instantaneous frequency range of 0 to 0.3 Hz as shown in Fig. 

Fig.6.13(a). Next integral of IF signal is approximated as cumulative summation 

function for producing simulated heterodyne fringe signal shown in Fig. 6.13(b). The 

frequency components in the spectrum induced by the amplitude modulation are much 

smaller than that of direct frequency modulation and majority of bandwidth 

contribution comes from frequency modulation only.  

For extracting instantaneous frequency from recorded highly non-stationary fringe 

signal reassigned CWT method is applied as explained in Chapter 4. Figure 6.13(c) 

and 6.13(d) display the Morlet spectrogram and reassigned and modified Morlet 

spectrogram of the simulated fringe signal respectively. IF is extracted by ridge 

detection method using reassigned and modified CWT as well as CWT and plotted in 

the same original signal [Fig.6.13(a)]. Extracted IF, using CWT, indicates an error 

(increased strain rate) at low frequency, particularly at slow rising part of free surface 

velocity corresponding to Hugoniot elastic limit whereas reassigned and modified 

CWT is in agreement with the original signal as shown in Fig.6.14. 

(6.25) 
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Fig.6.12 Schematic of Heterodyne laser interferometry system 

 

 

Fig.6.13 (a) Instantaneous frequencies obtained from VISAR velocity profile and two 

CWT techniques (b) Heterodyne type fringe signal deduced from the VISAR velocity 

profile. This signal is used by two CWT techniques to extract IF (c) Morlet 

spectrogram with f0t=1 (d) Reassigned and modified Morlet spectrogram with 

f0t=0.6. 
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Fig.6.14 Slow rising part of extracted instantaneous frequencies of Fig. 6.13(a). 

6.4 Conclusion 

Phase extraction based on quadrature phase shifting method is successfully applied for 

free surface velocity measurement using VISAR of the target material under shock 

compression. The effects of amplitude and phase angle error on VISAR measurements 

are described and ellipse fitting technique is applied to overcome the problem in free 

surface velocity calculation. Comparative studies of various ellipse fitting techniques 

are carried out and geometric fitting technique of GNA with initial conditions from 

Bookstein method is proposed for better result. Two high strain rate experiments on 

Al2024T4 material are conducted to validate the proposed method and different 

fundamental mechanical properties are derived from extracted free surface velocity 

profiles. This method can be extended to any other applications including line imaging 

VISAR analysis, where quadrature error corrections are required. In conventional line 

imaging VISAR only one fringe signal based measurement is carried out and Fourier 

transform method is applied to extract the phase. However, quadrature or push pull 

based configuration is always desirable even for line VISAR. In that condition current 

investigation may be helpful for quadrature error correction. 
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Heterodyne laser interferometric technique is also explored in free surface velocity 

measurement in shock compression. As described in Chapter 4, reassigned CWT with 

Morlet as mother wavelet is proposed for analysing the heterodyne type fringe signals. 

Free surface velocity profile measured by VISAR under shock compression is 

considered as an arbitrary IF law and a corresponding heterodyne velocimetry type 

fringe signal is generated through simulation. The frequency profile corresponding to 

this simulated fringe signal extracted employing reassigned CWT technique and 

conventional CWT are compared with actual frequency profile. In low frequency 

region, corresponding to Hugoniot Elastic limit, the frequency profile extracted using 

reassigned and modified CWT is more close to the actual profile as compared to that 

obtained by conventional CWT. In high frequency regime, however, both the methods 

display similar performance. Further, the velocity profile obtained from reassignment 

technique is comparatively less distorted. Thus, this method finds an application for 

analyzing fringe signals obtained in heterodyne velocimetry for free surface velocity 

profile measurement under impact experiments. 

In all the experiments have been carried out in light Gas Gun facility at BARC, 

Trombay, which has the maximum velocity range of 1000 m/s. However, in general it 

is possible to generate even higher velocities of several km/s with other kind of 

devices. The limitations in monitoring the higher velocities mainly arise due to 

bandwidth of signal recording system for heterodyne velocimetry technique and 

length of etalon or optical delay for VISAR system. In general, higher is the velocity 

of the object larger is the required bandwidth of the recording system. 
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Optical interferometry-based non-contact type measurements play a key role in determination of free 

surface velocity of target material under high strain rate experiments. Michelson interferometer in velocity 

as well as displacement mode configuration is widely used. As the information of velocity is hidden in phase 

or instantaneous frequency (IF), it is important to extract the phase or IF of the fringe signal. In time domain 

approach, multiple fringes are required to extract phase and noise sensitive numerical differentiation is 

necessary for getting the IF of the fringe signal. Although computationally less expensive, the accuracy of 

this method may get affected significantly by various measurement imperfections like, nonlinearity, 

amplitude and phase angle error. On the other hand, in frequency domain approach single fringe may be 

sufficient to extract IF and numerical differentiation could be avoided. 

Here, phase extraction based on quadrature phase shifting method, reassigned Continuous 

Wavelet Transform (CWT) method and Smoothed Pseudo Wigner-Ville Distribution (SPWVD) method have 

been described and 

developed. In phase shifting 

method amplitude and phase 

angle error have been 

corrected by efficient ellipse 

fitting method by combining 

algebraic as well as geometric 

technique. In CWT, time-

bandwidth product of Morlet 

wavelet is optimized as 0.6 

and simultaneous 

reassignment technique is 

applied for accurate IF 

extraction. SPWVD method is 

proposed for extracting IF of highly non-stationary polynomial frequency modulated fringe signal. Cohen 

class signal representation is followed and time and frequency resolutions are independently optimized 

using Gaussian separable kernel. Reassignment technique is further applied for sharpening of the 

spectrogram with these optimized kernels that improves accuracy in IF significantly. Finally, some of these 

developed phase extraction algorithms are applied to free surface velocity measurement under high strain 

rate experiments and different dynamic mechanical properties such as Spall Strength, Hugonoit Elastic limit 

(HEL), Strain Rate at HEL etc. of AL2024T4 target material are derived from extracted velocity profile. 

 

Figure 1. (a) Measured quadrature fringe signal with PZT supply voltage (b) 
Corresponding Reassigned CWT spectrogram (f0t=0.6) obtained from Ch-1 fringe 
signal. (c) VISAR Fringe signals obtained in plate impact experiment using Gas Gun 
facility and (d) Corresponding free surface velocity profile by phase shifting 
method 
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