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Chapter 8

Conclusion and Future Work

High Integrity heterogeneous embedded Systems (HIS) are often used in safety

critical application domain, which requires high level of correctness guarantee

with respect to some quality parameters or critical requirements. In this thesis, we

have proposed and experimented with a framework that provides the required cor-

rectness guarantee in HIS with respect to functional as well as the non-functional

requirements. The approach is based on formal methods and takes an integrated

view of the development of HIS. We have presented our work on development of

theories, tools and techniques in (a) logic based formalization of requirements, (b)

correct by construction design/synthesis from logical specifications with a focus

on optimizing the quality of the controller, and (b) system dependability analysis

from its architectural components.

We propose to use a highly expressive logic QDDC for requirement speci-

fication and automatic synthesis of implementation. As discussed in Chapter 3,

QDDC is a highly succinct logic and it allows compositional specification of re-

quirements, but it has non-elementary decidability.

219



As our first contribution, we have introduced an elementarily decidable frag-

ment of logic QDDC, called SeCeNL. In fact, our analysis implies that the existing

model checking tool DCVALID for QDDC works with elementary complexity on

the proposed subset. Many natural heterogeneous specification patterns such as

Timing diagrams, MSC, State machines etc., fit into this fragment. In this thesis,

we have used SeCeNL to formalize the timing diagram requirements making them

amenable to analysis (in Chapter 3). We have also introduced usage modalities to

make clear the requirement posed by such specifications. This work has improved

the state of the art by providing a logic and a method for modular and succinct

formalization of visual requirement notations.

Secondly, we have introduced the concept of soft requirement guided synthe-

sis to produce high quality controllers (in Chapter 4), which was not much looked

at in the literature till now. In this approach the functional requirements are cat-

egorized as the hard (mandatory) requirements and the soft (desirable) require-

ments, both of them are specified as regular properties in QDDC. A technique

and a tool (DCSynth) has been developed to synthesize a controller which invari-

antly satisfies the hard requirements and H-Optimally meets the soft requirements.

Intuitively, this gives a correct-by-construction controller for hard requirement

which improves the frequency of occurrence of soft requirements. Optimizing the

controller to meet the soft requirement is the idea behind producing high quality

controller, as the soft requirements in our framework are often used to specify

the quality parameters. This is in contrast to the traditional approach, where the

synthesis is performed from the LTL based specification (or its efficiently synthe-

sizable subsets like GR1) without any explicit soft requirements to ensure quality

of the synthesized controller.
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To the best of our knowledge DCSynth is one of the first tools which deals

with regular specification in QDDC and allows logical specification of soft re-

quirement to guide the synthesis for producing more desirable (high quality) con-

trollers. Expressively, QDDC is equivalent to regular languages and hence every

QDDC specification can be translated into a language equivalent DFA. By resort-

ing to the regular properties specified in QDDC, we could achieve more modular

specification as well as better scalability. This is because the regular properties

(DFA), allows aggressive minimization and determinization during each step of

synthesis. Another factor contributing to the scalability is the use of efficient

semi-symbolic DFA data structure, initially introduced by tool MONA, to repre-

sent the automaton, controller and supervisor. In our method and tool, we have

adapted all the synthesis algorithms such as the fixed point computation and the

iterative application of Bellman backup for optimal controller synthesis to work

symbolically on the semi symbolic DFA representation. See Section 4.4.

This thesis also addresses the problem of synthesizing robust controllers from

assume-guarantee specifications (Chapter 5). Assume-guarantee specification is

notoriously prone to exploiting the fact that they are vacuously true outside the

assumption. While previous work have mostly addressed special cases of robust

synthesis, we provide a systematic treatment of this issue by giving a logical spec-

ification of the nature of robustness by specifying a formula called robustness cri-

terion. The method is based on weakening the user specified assumption using

the robustness criterion scheme. We exploit the expressive power of QDDC to

systematically specify a wide class of such robustness criterion in terms of the

sequences of time instances when the assumptions are allowed to fail. Controller

synthesized under such weakened assumption tolerates (limited) assumption vi-
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olations and still continues to meet commitment. We further optimize the con-

troller to improve the frequency of occurrence of commitment irrespective of the

assumption by specifying the commitment as a soft requirement. Experimental

results demonstrate the improvement in robustness of the resulting controller.

Further exploring the theme of robust designs, the thesis provides a framework

for logical specification of wide variety of error-correcting run-time enforcement

shields along with a generic method to synthesize shields (in Chapter 6). The

run-time enforcement shield not only repairs the output produced by a humanly

provided controller to meet desired critical requirements, but it also minimizes the

deviation of shield output from that of humanly provided controller. This enables

humanly implemented optimizations in the controller to be retained as much as

possible. In our specification, the hard deviation constraint formulas specify the

worst-case deviation where as soft-requirement based optimal synthesis is used to

further minimize the deviation.

It is notable that in the synthesis of robust controllers as well as run-time en-

forcement shields, we have provided a uniform method of synthesis using the tool

DCSynth by leveraging the hard and soft-requirement guided synthesis method.

The use of logic QDDC with its interval modalities and counting constructs pro-

vides a very powerful vocabulary to formulate robustness criteria as well as shield

types (hard deviation constraints).

Since we synthesize controllers and shields from various logically specified

robustness and shield type criteria, the quality of the resulting controller must be

analyzed. We have proposed the methods for qualitative and quantitative compar-

ison between various controllers. The method is based on measuring the expected

value of meeting the commitments in long run (assuming the inputs are uniformly
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distributed) by the controller and the concept of must dominance. Theoretical and

experimental results profiling the quality of the synthesized controllers and shields

are given using some case studies.

Finally, we have also investigated model checking based techniques for analy-

sis of non-functional properties such as dependability of large HIS (in Chapter 7).

To overcome the state space explosion problem associated with the model check-

ing technique, we have proposed the architecture-centric compositional technique

for dependability analysis. This technique is applied to successfully analyze the

dependability of an industrial safety system.

We envisage the following research directions to extend the work presented in

this thesis.

– The logic SeCeNL proposed in this thesis can also be used to formalize

other widely used visual requirement specification notations such as Mes-

sage sequence charts and State charts. Extending our requirement formula-

tion and analysis framework to incorporate other such requirement specifi-

cation notions will allow integrated analysis of heterogenous requirements

specified as a mixture of such notations.

– In robust synthesis we have logically specified various robustness criteria

as well as shield types. Many of these use parameters (e.g. k, b) provided

by the user, to dictate the level of robustness. An interesting extension to

this work would be to automatically infer the optimal parameters for the

criterion which make the controller realizable.

– The application of run-time enforcement shield in the safety critical domain

is well known for monitoring and correcting the system output for some crit-
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ical properties. We plan to integrate the synthesized run-time enforcement

shields as part of system validation process in safety critical application do-

main. The main advantage of shield synthesis is that it is a scalable formal

verification technique and hence can be used in systems of practical interest.

– Another important open research area is to deal with the scalability issue

in automatic synthesis. In parametric synthesis one formulates a generic

controller as well as its specification with n symmetric processes, where n

is a parameter. Theoretical investigations [78, 63] have shown that if correct

by construction synthesis is carried out for a small cutoff instance of n, the

solution also holds for all larger values of n. This allows circumventing

the scalability problem. The cutoff parameter instance n depends on the

architecture and the specification formula. An investigation of parametric

synthesis for DCSynth specifications would enhance its applicability.

– In Architecture centric dependability analysis framework, currently we find

a feasible solution which meets required dependability goal. In case of mul-

tiple feasible solution the analysis has to be guided by the user. The frame-

work can be improved to automatically derive the optimal solution based

on some user specified optimality criteria. We also envisage the application

of architecture centric analysis to re-configurable or adaptive architectures

by exploiting more generic error models. The error models may include

component specific degraded modes of operation instead of uniform error

model (used in this thesis) for each component. We can also incorporate er-

ror propagation to indicate communication errors between the components.

This will allow us to model and analyze complex re-configurable systems.
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SYNOPSIS

The computer-based embedded systems which demand the highest level of de-

pendability and correctness guarantee are called High Integrity heterogeneous em-

bedded Systems (HIS). Typical examples of such systems are the systems required

in safety critical application domains such as nuclear power plant, aerospace etc.

The high level of dependability as well as the correctness guarantees required

by HIS can only be achieved by incorporating the rigorous analysis of specified

functional as well as the non-functional properties in the development process,

which takes an integrated view of the heterogeneous elements during the develop-

ment of the HIS. The major focus of this thesis is in the development of theories,

techniques and the tools which help in analysis and automatic synthesis of com-

plex HIS from high level requirement specifications as well as the architectural

components. Therefore, this thesis can be broadly divided in to two parts.

The first part investigates formal analysis and automatic synthesis of discrete

controllers from functional requirements. This includes the formalization of func-

tional requirements given as timing diagrams in an expressive logic QDDC. We

identify an elementarily decidable fragment of QDDC called SeCeNL, which re-

tains most of the advantages of QDDC, and is expressive enough for modeling

heterogeneous requirements. We formalize timing diagram properties by a com-

positional translation to SeCeNL, which makes these requirements amenable to

analysis like checking for consistency, realizability etc.

One of the major contributions of this thesis is in the automatic synthesis of

high quality controllers for logic based requirements in QDDC. We propose a

technique called soft requirement guided synthesis, where soft (desirable) require-

ments are mainly used to specify quality attributes. We synthesize a controller
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which invariantly meets the mandatory requirements and H-Optimally meets the

soft requirements. The technique is efficiently implemented in a tool DCSynth us-

ing the MTBDD data structure. We also carry-out the performance measurement

of the synthesized controllers to assess their quality.

We give a logical specification of various notions of Robust controllers and

Run-time enforcement shields along with a uniform synthesis method for each of

these notions. A robust controller continues to function correctly (i.e maintain its

requirements) even under the intermittent failure of environmental/plant assump-

tions. On the other hand, a run-time enforcement shield observes the input and

outputs of the system under consideration to check weather a given critical prop-

erty is satisfied. In case of property violation, the shield rectifies the output of

system such that the critical property is satisfied. Moreover, it also ensures that

the shield output minimally deviates from the system output. In this thesis, we

develop a theory for logical specification of various notions of robustness as well

as shields, which subsumes few already existing notions and also defines some

new notions. Finally, building upon our soft requirement guided synthesis frame-

work, we give a uniform synthesis method to synthesize various types of robust

controllers and run-time enforcement shields. The quality is enforced using the

soft requirements.

The second part of this thesis deals with probabilistic analysis of non-functional

properties (e.g. system dependability), where we propose a compositional method

for analysis of large HIS. The compositional analysis allows us to deal with sys-

tems of practical interest. We show the usefulness of this approach by applying it

to some industrial case studies.

It is perceived that the techniques developed in this thesis would allow realiz-
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ing high quality HIS from high level specifications through algorithmic synthesis

and analysis following the correctness-by-construction approach. Non-functional

properties such as dependability of the complex system architectures can also be

analyzed with the proposed compositional analysis technique.
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Chapter 1

Introduction

The computer-based systems performing safety critical functions in nuclear, trans-

portation and medical domains, demand the highest level of dependability and cor-

rectness guarantee. These systems need a high degree of rigour in their design to

assure their integrity during operation. Many of these systems involve an orches-

tration of service layers among intelligent sensors, control elements and digital

computation devices to provide a level of optimal control of the plant. The control

laws implemented in these computation devices themselves are based on complex

algorithms. These systems belong to the category of High Integrity heteroge-

neous embedded Systems (HIS). Heterogeneity comes from the fact that these

systems are composed of components with different characteristics, in terms of

the applicable models capturing their functional requirements or in terms of their

execution/interaction semantics.

During the development of a complex HIS, several heterogeneous elements at

each design phase come into play. Designers prominently use various visual re-

quirement specification notations to capture and specify functional requirements

13



addressing different aspects of the system. For example, temporal relationship

among different signals are specified using Timing diagrams [82] or Message se-

quence charts, and State Charts [54] efficiently specify the event-based dynamic

behavioral aspects of the system. Heterogeneity also comes at the architecture de-

sign level of HIS, as the system may consist of several components having diverse

execution/interaction semantics. The modeling of non-functional properties such

as reliability, availability, etc., which are mainly affected by the system architec-

ture, requires domain specific modelling techniques and analysis. It is impera-

tive to analyze them early during their architectural design to show conformity

to dependability attributes, as any change during the detailed design would entail

significant cost.

The high level of dependability required by HIS can be realized by rigor-

ous analysis of functional requirements, correct by construction synthesis of im-

plementation from functional requirements and an assessment of non-functional

properties. The focus of this research work is on the development of theories,

techniques and tools which will help in automatic synthesis of robust components

of HIS from specification and show compliance to dependability requirements of

HIS from high level architectural design.

Traditional approaches to show the correctness rely mainly upon simulation

and testing which cannot give any firm guarantee on the correctness with re-

spect to the specified requirements. In contrast to this, in the formal methods

based design approach, the requirements are first expressed in a suitable logic.

This allows rigorous formal analysis of requirements such as checking for con-

sistency, realizability, etc. Formal verification of a system against the specified

requirements is also well established in the literature. Furthermore, automatic
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synthesis of a system from logic based requirements is possible and currently an

active research area. Unfortunately, besides these advantages, many existing for-

mal methods also have few disadvantages; (a) often the logical notations used are

cumbersome, complex and far removed from practically used visual notations for

requirement specification, (b) the automatic synthesis methods and tools from log-

ical specifications do not really consider the quality of the synthesized controller.

In addition to analysis and synthesis from functional requirements, the analysis

of non-functional requirements such as reliability, availability has also been ex-

plored for assessing the system dependability. But component level architecture

centric analysis of non-functional requirements for HIS has not been much looked

at, which is essential to deal with systems of practical interest.

Considering these challenges in application of formal methods, Henzinger and

Sifakis [56] in their survey on “The Embedded System Design Challenge” have

emphasized the need for a coherent scientific foundation for design of HIS. This

requires encompassing manifestations of heterogeneous elements in the system

as well as constructivity during the system design. Constructivity allows build-

ing complex systems that meet the given requirement from the components with

known properties. In line with this objective, in this thesis we propose to bridge

the gap between visual/semi-formal notations for requirement specification (intu-

itive but often subject to interpretation) used by designers and the formal logic

based (unambiguous) approach. This is achieved by systematically translating the

heterogeneous visual requirement specification notations into an expressive logic

and investigating the techniques for analysis of these requirements. We investi-

gate the automatic synthesis from such logic based requirements. We also show

how to compute dependability attributes of low level components from a high
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level architecture, for the required Probability of Failure on Demand (PFD) using

a component based modeling paradigm.

This thesis mainly consists of two parts. The first part investigates the logic

based formalization, analysis as well as automatic controller synthesis from func-

tional requirements as shown the Figure 1.1. We present the formalization of

temporal requirements specified using timing diagrams using an expressive logic

in order to make them amenable to the formal analysis. The major focus of this

thesis is automatic synthesis of high quality controller from the logic based spec-

ification. This work is further extended to the synthesis of robust controllers and

run-time enforcement shields. The second part of this thesis deals with probabilis-

tic analysis of non-functional (dependability) requirements, where we propose the

compositional method for analysis of large HIS as shown in Figure 1.2. These two

analyses are complimentary and together they provide an integrated approach to

ensure the required correctness guarantees for HIS.

The major cornerstone of our method is the logic used to formalize the re-

quirements and associated techniques for analysis and synthesis. The logic used

for requirement formalization, analysis and synthesis is required to have following

important properties.

– It should be expressive enough to be able to handle the diverse notations

used in specifying HIS.

– It should be amenable to automated analysis,

– It must support efficient synthesis of controllers.

To achieve these objectives, we propose a framework based on a rich interval

temporal logic Quantified Discrete Duration Calculus(QDDC) [83]. It is a highly
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Figure 1.1: Formalization and automatic synthesis from heterogeneous require-

ments.

Figure 1.2: Architecture centric compositional dependability analysis.
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succinct logic for specifying patterns of behaviours. Formally it has the expressive

power equivalent to regular languages. Therefore, the properties specified using

QDDC are also termed as the regular properties. Its bounded counting features,

interval-based modalities, second order quantification and regular expression like

primitives allow succinct and modular specification of complex qualitative and

quantitative properties frequently occurring in HIS. Prior work [83] shows that

any QDDC formula D can be effectively translated into a language equivalent

Deterministic Finite State Automata (DFA) A (D) over finite words. This enables

the use of automata theoretic approach to analyze the requirements formalized in

this logic. Section 2.1 covers the syntax and semantics of this logic.

Major Contributions:

We propose to use the logic QDDC for formalizing the heterogeneous require-

ment notations by translating them into this logic. This makes the requirements

amenable to the analysis. Logic QDDC has been used previously to formalize

the requirements given in State Charts and Live Sequence Charts [33]. In this

thesis, we propose an efficient sub-set of logic QDDC to formalize the timing dia-

gram requirements. In general, QDDC has non-elementary worst case complexity

of satisfiability checking as well as formula automaton construction. However,

confining to the proposed efficient sub-set of logic QDDC, which is expressive

enough to formalize the timing diagrams, makes the satisfiability checking ele-

mentary.

As our first contribution, we identify an elementarily decidable fragment of

QDDC called SeCeNL. We claim that this fragment retains most of the advan-

tages of QDDC, and it is sufficient for modeling heterogeneous requirements. We

formalize timing diagram properties by a systematic translation to SeCeNL. The
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advantage is that, the well-developed automata-theoretic techniques can be used

for requirement analysis as well as model checking and controller synthesis from

timing diagram specifications. Chapter 3 gives the logic based formalization of

timing diagram requirements.

As our second major contribution in this thesis we propose a technique for au-

tomatic synthesis of high quality controllers from their QDDC logic based specifi-

cation. Although the automatic synthesis of discrete controllers from logic-based

requirements (specified in other widely used specification logic such as LTL, PSL

etc.) is well studied in literature, the quality of the synthesized controller is still

a major concern. This is mainly because of lack of features to specify quality

attributes in these logics [79].

We address this problem by introducing the concept of soft requirement guided

synthesis. These soft (desirable) requirements are mainly used to specify the de-

sirable quality parameters. We introduce a technique which allows synthesis of

discrete controllers from regular properties (QDDC formulas) given as a tuple

(I,O,Dh,Ds), where Dh and Ds are QDDC formulas over a set of input and out-

put propositions (I,O). Here, Dh and Ds are the hard and the soft requirement,

respectively. We synthesize a controller which, (a) invariantly satisfies Dh and (b)

it meets the Ds at ”as many points as possible”. Meeting Ds “at as many points as

possible” is achieved by synthesizing a controller which maximizes (optimizes)

the cumulative count of Ds holding in next H steps, averaged over all the inputs

of length H. Such a controller is called H-Optimal for Ds.

Guided synthesis allows us to obtain more desirable controller out of several

candidate controllers possible for a given requirement. It also allows us to deal

with under-specified or conflicting requirement specification. Chapter 4 gives the
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details of soft requirement guided synthesis approach.

This thesis presents the logical specification and application of the guided syn-

thesis to automatic synthesis of robust controllers. Typically, the controller spec-

ification consists of a pair of QDDC formulas (DA,DC). Formula DA gives the

assumption on environment/plant behaviour and the formula DC gives the commit-

ment i.e. the requirements to be satisfied by the synthesized controller. A standard

correctness criterion for synthesis is termed as Be-Correct [12], which mandates

that in all the behaviours of the synthesized controller, at any point the commit-

ment DC should hold provided the assumption DA has held invariantly in past (de-

noted by pre f (DA)). This specification can be denoted as G(pre f (DA) ⇒ DC).

On the other hand, robust synthesis deals with the synthesis of a controller which

meets the commitment even under intermittent assumption violations. Thus, ro-

bustness pertains to the ability of DC holding even when DA is violated intermit-

tently in the past [12], which can be specified as a weaker formula than pre f (DA).

We propose a framework for logically specifying the assumption weakening by

a formula called robustness criterion. We formulate a method for automatically

relaxing any user specified assumption under such robustness criterion. This is

termed as hard robustness. The logical formulation of robustness criterion in

QDDC allows us to specify various existing as well as new hard robustness notions

and devise a uniform synthesis method to obtain robust controllers under these

notions. We also optimize the controller to satisfy the commitment H-Optimally

irrespective of the assumption. This is called soft robustness. We apply our guided

controller synthesis to automatically obtain a robust controller from such logical

specification as detailed in Chapter 5. To show the effect of our soft require-

ment guided synthesis as well as robust synthesis approach, we use Markov-model
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based performance measurement methods to compare the quality of the synthe-

sized controllers. This is done by measuring the expected value of meeting the

formula DC on long runs by the synthesized controller.

As another major application of our guided synthesis method and the logic

QDDC, we also propose a framework for logical specification and synthesis of

various notions of run-time enforcement shield. A run-time enforcement shield

for a specified critical requirement REQ(I,O) is a controller which receives both,

the inputs and the outputs (I,O) generated by System/Controller with Sporadic Er-

ror(SSE) under consideration. The shield produces a modified output O� which is

guaranteed to invariantly meet the critical requirement REQ(I,O�). Moreover, in

each run, the shield must deviate from the SSE output “as little as possible”. This

allows the shield to benefit from system designer’s optimizations incorporated

in SSE without having to formally handle these in the synthesis. The specifica-

tion and synthesis of run-time enforcement shield from various existing as well

as new notions of the shield is covered in Chapter 6. We measure the quality of

the synthesized shields under these various notions in terms the expected value of

non-deviation (between system output O and shield output O�) in long run and in

terms of worst-case burst-deviation latency.

In the second part of this thesis, we deal with modeling and quantitative anal-

ysis of non-functional properties such as dependability of HIS. We propose an ar-

chitecture centric approach, where the model of a system architecture consisting

of its sub-components and interaction between them is represented in Architec-

tural Analysis & Design Language (AADL) [44] using OSATE tool [43]. Each

component is annexed with a probabilistic automaton which incorporates various

operational and fault states of the constituent component(s) along with probabilis-
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tic transitions among these states. Such a probabilistic automaton is called the

fault model of the component. Similarly, a fault model can also be associated with

a system. The fault model of a system can be obtained by taking product of fault

models of its sub-components. A scheme to translate the fault model of hierarchi-

cal model in to a Discrete Time Markov Chain (DTMC) model is developed. This

DTMC model can be analyzed for various dependability properties. In this work,

the probabilistic model checker PRISM [73] is used as a back-end analysis engine

for dependability analysis.

A major challenge in the application of the above model checking technique is

the infamous state space explosion problem [29], which makes it impractical to

analyze the systems of industrial interest. We overcome this problem by adapting

the existing techniques to perform the dependability analysis of large HIS with

hierarchical architecture. This is done by making the analysis compositional.

Furthermore, industrial case studies have been carried out to validate the proposed

technique. Chapter 7 of this thesis covers the architecture centric compositional

dependability analysis approach.

The major contributions of this thesis are summarized below:

1. Formalization and automatic translation of timing diagram requirements in

the elementarily decidable fragment of QDDC called SeCeNL. Formal anal-

ysis and synthesis of these requirements using associated automata theoretic

techniques.

2. Soft-requirement guided synthesis of discrete controllers from the require-

ments given in QDDC. A tool DCSynth to automate the proposed techniques

is developed. All synthesis algorithms are adapted to work symbolically on

MTBDD based efficient representation of automata and controllers.
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3. A method for logical specification of robust controller as well as run-time

enforcement shield is given. An application of guided synthesis method to

synthesize robust controllers and run-time enforcement shields.

4. A compositional method for architecture centric dependability analysis of

large HIS. Compositional analysis allows us to scale the existing analysis

methods to apply it for industrial systems of practical interest.

1.1 Relevant Literature

Specification Logics: In formal methods, mathematical logics play an impor-

tant role for specification and formal analysis of any system. On the other hand,

Finite state automata are used to effectively model the system implementation.

Several logics have been studied in the literature for unambiguous specification

of functional requirements. Temporal logic such as LTL [88] and CTL [30] are

amongst the most prominently used logic for requirement specification of reac-

tive systems. Such specification includes the specification of environmental con-

straints and the requirements to be met by the controller in a reactive system.

LTL and its variants such as PSL [40] which enhances LTL with regular ex-

pression like features and MTL [7] which allows specification of real time prop-

erties, have been successfully used for specification in some industrial examples

[1, 48]. The most desirable properties of LTL which enables its widespread ap-

plication in requirement specification includes its clean syntax and its intuitive

semantics. Over the years some of the major shortcomings of LTL have been

identified in the literature. Few of them are the lack of quantitative features which

restricts its use in specification of complex quantitative properties, as well as its
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inability to effectively express the robustness in the specification [79]. The use of

classical logic such as MSO [102] and Duration Calculus [24] to specify desir-

able requirements has also been studied. QDDC [83] is a discrete time version of

duration calculus(DC) originally proposed by Zhou et al., for modelling real-time

requirements. The use of DC in real time system design was explored by Zhou et

al. in [24, 23].

The Expressiveness of these logics are also well studied in literature, e.g. LTL

is expressively complete with respect to First Order Logic [10], and it is equivalent

to star free ω-regular languages [102]. It is possible to get a language equivalent

Büchi automata for any LTL formula (but not Vice-Versa as the ω-regular lan-

guages are strictly more expressive than LTL). The logic MSO (over finite words)

and QDDC are expressively equivalent to regular languages and there exists a lan-

guage equivalent DFA for each formula specified in these logics. Showing the

effective construction of language equivalent automata for these logics are the

some of the most ground breaking results in computer science [21, 53], as they

enable the automata theoretic algorithmic analysis of these specifications.

Formal Analysis and Verification: The Satisfiability checking of a logical for-

mula and Model checking (also know as formal verification) are some of the most

important problems for any mathematical logic. Satisfiability checking of a log-

ical formula, checks for the existence of the model for a given formula. Model

checking involves algorithmically answering, whether the set of behaviours ex-

hibited by the given system model (often given as a Finite state automaton), are

included in the set of behaviours which satisfy the logical formula. The model

checking problem for LTL [103] and MSO [21] against the system specification
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given as Finite state automaton is well studied in literature and several efficient

tools exist [67, 28, 34]. These tools have significantly contributed to show the im-

portance of formal methods in providing the correctness guarantees required by

high integrity systems.

Requirement Notations: The use of mathematical logic for the specification

of requirements provides several advantages in terms of unambiguity and formal

guarantees it provides, but formalizing requirements in logic is often complex and

cumbersome. Therefore, industries came up with several intuitive and visual nota-

tions for the requirement specification, capturing different behavioural aspects of

the system. The most notable among these are Timing Diagrams, Sequence Dia-

grams, State Diagrams etc., which are standardised by UML [82]. Although, these

notations provide a useful mechanism to effectively specify the requirements and

are used widely in the industry, but the analysis and formal verification from these

notations is not always possible, because these notions are not completely formal.

Therefore, several researchers have tried to formalize these visual notations into

logical framework to make them amenable to formal analysis.

For example, there have been several attempts at formalizing the requirements

given in timing diagram in the framework of temporal logics such as the graph-

ical interval logic [35], timing diagram logic [46], with LTL formulas [26], and

as synchronous regular timing diagrams [8]. Moreover, there are industry stan-

dard property specification languages such as PSL-Sugar and OVA for associating

temporal assertions to hardware designs [40].

However, the succinctness and compositionality remained the major issue in

effectively utilizing the formal analysis techniques on timing diagrams [26]. Also
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the specification of the timing/synchronization constraints across the timing di-

agrams is not very natural in these logics [26]. Moreover, these notation often

specify behaviour sequences but it is unclear whether such sequences must/may

occur in the behaviour. Rectifying these, Harel [32] has proposed Live Sequence

Charts LSC with liveness modalities.

Correct by Construction Program Synthesis: Program synthesis deals with

the problem of algorithmically obtaining an implementation for a given logical

specification, such that all the behaviours of the program meet the specification.

The problem was first defined by Church [27] over specification given in MSO

and the aim was to synthesize the implementation (controller) as a Mealy machine

which realize the given specification. One of the most useful problem in HIS is

synthesis from the specifications for reactive programs. Reactive programs are the

programs that continuously interact with the environment. Büchi et al. [20] and

Rabin [91] independently presented solutions to Church’s problem.

Specifying the behavior of reactive systems in MSO is cumbersome and hence

several alternatives were proposed in the literature. One of the most widely ac-

cepted alternatives is LTL, which is used in the formal verification and synthesis

community [89]. However, the synthesis from LTL properties was proved to be

doubly exponential in the size of the formula by Rosner [97]. To make the syn-

thesis more efficient people have looked at the useful subsets of LTL. Piterman et

al. [87, 68] have proposed an efficient polynomial time symbolic algorithm to au-

tomatically synthesize controllers for the subset of LTL called GR(1). Similarly,

Wolff et al. [106] have identified a useful subset of LTL for efficient controller

synthesis for non-deterministic transition systems and Markov decision processes.
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Reactive synthesis from Linear Temporal Logic (LTL) specification has been

widely studied and considerable theory and tools exists [12, 5]. While several

tools support safety synthesis over circuits (see [62], safety track), the leading

tools such as Acacia+[16] and BoSy[42] mainly focus on the future fragment of

LTL.

Apart from reactive synthesis, the related problem of supervisory control of a

Discrete Event System (DES) was introduced by Ramadge and Wonham [92, 93].

Typically the plant (i.e. the system to be controlled) is modelled using Finite state

automaton. The aim is to synthesize a controller for a given specification, which

restricts the behaviour of the plant such that the resulting plant behaviour always

meets the specification. They proved that the controller can be synthesized in

linear time for such specifications. The connection between the reactive synthesis

and supervisory control was formally studied by Ehlers et al. [38].

Quality aspects in Synthesis:

– Quantitative Synthesis: Specifying the quality of a behaviour has been

addressed by assigning a quantitative measure to each behaviour, result-

ing in Quantitative Languages [13]. This allows generalization of correct-

by-construction approach to optimal synthesis. Most of the work revolves

around the optimal quantitative synthesis, where a weighted arena is as-

sumed to be available, and algorithms for optimal controller synthesis for

diverse objectives such as Mean-payoff [13, 17] or energy [18] have been

investigated. Also, the techniques for optimal controller synthesis are dis-

cussed by Ding et al. [36], Wongpiromsarn et al. [107] and Raman et al.

[94], where they have explored the use of receding horizon model predic-
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tive control along with temporal logic properties. While considerable the-

ory exists in this area of quantitative synthesis, its practical impact has been

limited as it is unclear how to specify quantitative measures using logical

formulas in a meaningful way.

– Robust Synthesis: Robust controller synthesis deals with the problem to

synthesize a controller, which continues to function (i.e maintain its com-

mitment) under the failures of environmental/plant assumptions as much as

possible. When such failures are transient, the controller should be able

to recover from the failure by re-establishing the commitment in bounded

time [76, 14]. Several authors have investigated the notions of robustness

[76, 39]. Bloem et al. [14] provide a classification of different robustness

notions. They have addressed the problem of robust synthesis by proposing

the notion of recovery to normal operation if safety assumptions are vio-

lated and by optimizing the controller to meet the guarantee formula when

liveness assumptions are violated [12]. Ehlers et al. [39] propose synthesis

of resilient controllers. These provide an ability to tolerate k errors between

two periods of recovery of length at-least b. D’Souza et al. address the is-

sue in context of conflict-tolerant features [37]. For each of these robustness

criteria, a specific synthesis algorithm is developed.

– Synthesis of run-time enforcement shield: A run-time enforcement shield

observes the inputs and outputs of a system under consideration (developed

manually) and checks for the correctness with respect to a given critical

property in an appropriate logic. The shield rectifies the system generated

output when it does not satisfy the given critical property. Finite state au-

28



tomata as well as LTL are primarily used for specification of critical prop-

erties in existing work. The idea of error-correcting run-time enforcement

shield was proposed in the pioneering work of Bloem et al. [15], where the

notion of k-stabilizing shield (with a synthesis algorithm) was proposed.

This was further enhanced by Konighofer et al. [69]. Wu et al. [110, 109]

defined the burst shield which is capable of handling burst errors. Moreover,

they proposed optimizing the shield with the choice of output which locally

minimizes the deviation at each stage.

Analysis of non-functional properties: For the analysis of non-functional prop-

erties like dependability, there are many well studied quantitative analysis tech-

niques available in literature, such as reliability block diagrams, fault tree analysis,

Markov analysis etc. Rao et al. have proposed the use of dynamic fault tree [95] to

effectively capture and analyze the behaviour of the components with functional-

dependent failures, spares and dynamic redundancy management. Rouvroye et

al. [98] showed that Markov analysis covers most of the aspects of quantitative

safety evaluation (except uncertainty analysis) while taking into account the ef-

fect of redundancy, common cause failures, self-diagnostics and on-line/off-line

test & repair. Several model checking tools for the analysis of Markov model exist

[73] and have been effectively used in the past for analysis. But, in most of these

work, one of the major issues in analysis of large HIS is the problem of large state

space, which restricts the application of traditional analysis method only to small

systems.
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1.2 Thesis Organization

This thesis is organized in eight chapters as follows. Chapter two provides the

preliminaries including the logic QDDC and associated tools. The elementarily

decidable sub-logic SeCeNL of QDDC has been discussed in chapter three. The

chapter then provides the formalization of timing diagram requirements in the

logic SeCeNL. In chapter four, we present the soft requirement guided synthesis

of discrete controllers from hard and soft requirements given in the logic QDDC.

In the next two chapters, the thesis explores logical specification of robust con-

trollers as well as run-time enforcement shields. The applications of guided syn-

thesis framework to undertake the automatic synthesis of robust controller and

run-time enforcement shields is presented in these chapters. In chapter seven, we

apply the probabilistic model checking technique for architecture centric analysis

of dependability of large industrial system using a compositional analysis method-

ology. Each of these chapters concludes with a discussion section where a com-

parison with related work is provided. The final chapter presents the conclusion

and possible future work.
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Chapter 2

Preliminaries

2.1 Quantified Discrete Duration Calculus (QDDC)

Logic

Let PV be a finite non-empty set of propositional variables. A behaviour σ is a

non-empty finite word over the alphabet 2PV . It has the form σ = P0 · · ·Pn where

Pi ⊆ PV for each i ∈ {0, . . . ,n}. Let len(σ) = n+ 1, dom(σ) = {0, . . . ,n} and

σ , [i, j] = Pi · · ·Pj and σ [i] = Pi.

In our logic there are two types of entities; proposition denoted by φ and

QDDC formula denoted by D. A proposition φ is evaluated at a position in the

word, whereas a QDDC formula D is evaluated in the interval [b,e]. Let φ denote

a propositional formula over variables PV . The syntax of a propositional formula

over variables PV is given by:

ϕ := f alse | true | p ∈ PV | !ϕ | ϕ && ϕ | ϕ || ϕ
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with operators &&, ||, ! denoting conjunction, disjunction and negation, respec-

tively. Operators such as ⇒ and ⇔ are defined as usual. Let Ω(PV ) be the set of

all propositional formulas over variables PV . Let i ∈ dom(σ). Then the satisfac-

tion of propositional formula ϕ at point i, denoted σ , i |= ϕ is defined inductively

as follows:
σ , i |= true,

σ , i |= p iff p ∈ σ(i),

σ , i |=!p iff σ , i �|= p,

and the satisfaction relation for rest of the Boolean combinations is defined in a

natural way.

The syntax of a QDDC formula D over variables PV is given by:

D := �ϕ� | [ϕ] | [[ϕ]] | D ˆD | !D | D || D | D && D

ex p. D | all p. D | slen �� c | scount ϕ �� c

where ϕ ∈ Ω(PV ), p ∈ PV , c ∈ N and �� ∈ {<,<=,=,>=,>}.

An interval over a word σ is of the form [b,e] where b,e ∈ dom(σ) and b ≤ e.

Let Intv(σ) be the set of all intervals over σ . Let σ be a word over 2PV and let

[b,e] ∈ Intv(σ) be an interval. Then the satisfaction relation of a QDDC formula

D over PV and interval [b,e] written as σ , [b,e] |= D, is defined inductively as

follows:

σ , [b,e] |= �ϕ� iff b = e and σ ,b |= ϕ,

σ , [b,e] |= [ϕ ] iff b < e and ∀i.b ≤ i < e : σ , i |= ϕ,

σ , [b,e] |= [[ϕ]] iff ∀b ≤ i ≤ e : σ , i |= ϕ,

σ , [b,e] |= D1 ˆD2 iff ∃i.b ≤ i ≤ e : σ , [b, i] |= D1 and

σ , [i,e] |= D2
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with Boolean combinations !D, D1 || D2 and D1 && D2 defined in the expected

way.

We call word σ � a p-variant, p ∈ PV , of a word σ if ∀i ∈ dom(σ),∀q �= p : q ∈
σ �[i]⇔ q ∈ σ [i]. Then σ , [b,e] |= ex p. D ⇔ σ �, [b,e] |= D for some p-variant σ �

of σ and (all p. D)⇔ (!ex p. !D).

Entities slen and scount are called terms. The term slen gives the length of

the interval in which it is measured, scount ϕ where ϕ ∈ Ω(PV ), counts the

number of positions including the last point in the interval under consideration

where ϕ holds. Formally, for ϕ ∈ Ω(PV ) we have slen(σ , [b,e]) = e− b, and

scount(σ ,ϕ, [b,e]) = ∑i=e
i=b f (i), where f (i) =





1, if σ , i |= ϕ,

0, otherwise.
We also define the following derived constructs: {{φ}} = �φ�ˆ(slen = 1),

pt = �true�, ext =!pt, ��D= trueˆDˆtrue, []D=(!��!D) and pref(D)=!((!D)ˆtrue).

Thus, σ , [b,e] |= []D iff σ , [b�,e�] |= D for all sub-intervals b ≤ b� ≤ e� ≤ e and

σ , [b,e] |= pref (D) iff σ , [b,e�] |= D for all prefix intervals b ≤ e� ≤ e.

So far we have evaluated a formula D over an interval [b,e]. Now we define the

path satisfaction of a formula, where a formula D holds at a point i in a behaviour

provided the past of the point i satisfies D. (This definition only applies to QDDC

formulas and not to proposition φ .)

Definition 1 (Past satisfaction and language of a QDDC formula D). Let σ , i |= D

iff σ , [0, i] |= D, and σ |= D iff σ , len(σ)−1 |= D. We define L(D) = {σ | σ |= D},

the set of behaviours accepted by D. Formula D is called valid, denoted |= D, iff

L(D) = (2PV )+.
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Example 2. Consider the behaviour σ over propositional letter A below.

Pos 0 1 2 3 4 5 6 7 8 9

σ(A) 1 0 0 1 0 1 0 0 0 1

QDDC formula D(k)=[]([[!A]] => slen < k) holds for an interval [b,e] pro-

vided for all its sub-intervals [b�,e�] with b ≤ b� ≤ e� ≤ e if !A is true throughout

the interval then the length of the sub-interval [b�,e�], i.e. e� −b�, must be less than

k (i.e. the interval spans at most k cycles). Thus, formula D(2) holds in above be-

haviour for intervals [0,5] since all sub-intervals with A continuously false span

at most 2 cycles. Interval [5,8] does not satisfy D(2) since it has a sub-interval

[6,8] of length 2 (i.e. 3 cycles) where A is invariantly false.

A QDDC formula D holds at a position i if the interval [0, i] spanning its past

satisfies D (see Definition 1). Thus, D(2) holds at position 5. It also holds at

position 7. But it does not hold at positions 8 or 9. Formally, σ ,5 |= D(2) but

σ ,9 �|= D(2).

Theorem 3. [83] For every formula D over propositional variables PV , we can

construct a Deterministic Finite Automaton (DFA) A (D) over alphabet 2PV such

that L(A (D)) = L(D). We call A (D) a formula automaton for D or the monitor

automaton for D.

We define the size of a formula as the summation of number of literal and

operators present in the formula. Note that QDDC formula can include count-

ing constraints. Throughout this thesis, it is assumed that constants occurring

in formulas are represented in binary form so that a natural number constant c

contributes log(c) to the size of the formula. The minimal size of A (D) is non-

elementary in the size of D.
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A tool DCVALID implements this formula automaton construction in an ef-

ficient manner by internally using the tool MONA [66]. It gives minimal, deter-

ministic automaton (DFA) for the formula D. Detailed description of QDDC and

its model checking tool DCVALID can be found in [83, 84].

2.2 Tool DCVALID

The reduction from a QDDC formula to its formula automaton has been imple-

mented into the tool DCVALID [83, 84]. The formula automaton it generates

is total, deterministic and minimal automaton for the formula. DCVALID can

also translate the formula automaton into Lustre/SCADE, Esterel, SMV and Ver-

ilog observer modules. By connecting this observer module to run synchronously

with a system we can reduce model checking of QDDC property to reachability

checking in the observer augmented system. See [83, 84] for details.

Example 4. We now give an example of a QDDC specification of a shared re-

source arbiter with 2 request lines denoted by req1 and req2 and 2 acknowledge-

ment lines denoted by ack1 and ack2. The job of an arbiter is to grant an access

to the shared resource to exactly one of the requesting clients. The properties of

this arbiter are specified in QDDC as given in Figure 2.1.

The formula “Exclusion” states that only one of the client can be granted ac-

cess to the shared resource. The formula “Noloss” states that if any request is

high, then one of the request should be granted the access by raising the cor-

responding acknowledgment. The formula “NoSpuriousAck” states that access

should be granted only if there is a request and the formula “Response” says that

if any request is continuously high for atleast 2 cycles then it should be granted
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access atleast once by making the corresponding acknowledgement line high. Fi-

nally, the specification is conjunction of all these properties.

Figure 2.2(a) gives an explicit representation of DFA for the automaton of

specification given in Figure 2.1. Its alphabet Σ is 4-bit vectors giving value

of propositions (req1,req2,ack1,ack2) and set of states S = {1,2,3,4}. Being

a safety automaton it has a unique reject state 4 and all the missing transitions

are directed to it. (State 4 and transitions to it are omitted in Figure 2.2(a) for

brevity.)

2.3 Semi-Symbolic DFA Representation

An interesting representation for total and deterministic finite state automata was

introduced and implemented by Klarlund et al. in the tool MONA[66]. It was used

to efficiently compute formula automaton for MSO over finite words. We denote

this representation as Semi-Symbolic DFA (SSDFA). In this representation, the

transition function is encoded as multi-terminal BDD (MTBDD).

MTBDD is a generalization of BDD in a sense that BDD is a directed acyclic

graph used to encode some Boolean function f : Bl → B for given ’l’ possible

Boolean variables. MTBDD is a directed acyclic graph used to encode multi-

valued function f : Bl → D , where D is the range of this multi-valued function.

We now briefly describe the SSDFA representation of an automaton. Fig-

ure 2.2(b) gives the SSDFA for the explicit representation of automaton given in

2.2(a). In SSDFA the states are explicitly represented by terminals in MTBDD,

which are assigned an integer number. Note that states are explicitly listed in the

36



var req1, req2, ack1, ack2;

--Property 1: Mutual Exclusion

define Exclusion as

[[( ack1 => !ack2 ) && ( ack2 => !ack1 )]];

--Property 2: No lost cycle

define Noloss as

[[ (req1 || req2 ) => (ack1 || ack2 ) ]];

--Property 3: No spurious acknowledgement

define NoSpuriousAck[req, ack] as

[[ ack => req ]];

--Property 4: Bounded Response

define Response[req, ack] as

[]([[req]] && slen=1 => <> <ack>);

-- Specification is conjunction of all properties

infer

Exclusion && Response[req1,ack1] && Response[req2,ack2] &&

Noloss && NoSpuriousAck[req1, ack1] && NoSpuriousAck[req2, ack2]

Figure 2.1: The properties of 2 Client Arbiter in QDDC

array at top and final states are marked as 1 and non-final states marked as −1.

(For technical reasons there is an additional state 0 which may be ignored here

and state 1 may be treated as the initial state). Figure 2.2(b) represents the SS-

DFA that encodes 5 states (State no. 0 to 4) and the transition relation between

them. Each state s points to shared MTBDD node encoding the transition function

δ (s) : Σ→ S with each path encoding one transition.Thus, each path encodes an el-

ement of Σ and ends in the next state. Each circular node of MTBDD represents a
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Figure 2.2: Example automaton (a): Explicit representation of Automaton (b):

SSDFA format

decision node with indices 0,1,2,3 denoting variables req1,req2,ack1,ack2. Solid

edges lead to true cofactors and dotted edges to false cofactors.

MONA provides a DFA library implementing automata operations including

product, complementation, projection, determinization and minimization on SS-

DFA. Moreover, automata may also be constructed from scratch by giving the list

of states and adding transitions one at a time. The original papers [66, 67, 55] may

be referred for further details of SSDFA and the MONA DFA library.

Using this, the tool DCVALID computes a minimized, language-equivalent

SSDFA, denoted by A (D), for a QDDC formula D[83, 84]. The formula D is

first translated to MSO over finite words of tool MONA; with some optimizations

[70]. The tool MONA is invoked on the resulting formula to obtain SSDFA for

the formula automaton. MONA constructs the automaton in bottom up fashion

by first constructing automata for each sub-formula and then composing these to

obtain the automaton for the composite formula. Eager minimization is used at

each stage while converting the formula into SSDFA. Several optimizations are

used in MONA to efficiently compute this automaton [66].

Although the worst case complexity of automata construction in MONA as

well as in DCVALID is non-elementary in the size of formula. But, as pointed out
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in [55] the efficient implementation with several optimizations such as formula

reductions, DAGification, three-valued logic, eager minimization, SSDFA based

automata representations, and cache-conscious data structures, in practice allows

to handle several complicated cases using these tools without encountering non-

elementary blow up in the automaton. On the other hand worst case complexity

also indicates that formula in MONA or DCVALID may be non-elementarily more

succinct than a regular expression or an explicit transition table [55]. It may be

also noted that SSDFA gives very succinct representation of an automaton, as it

allows sharing of BDD nodes across the transition relation of individual states.
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Chapter 3

Formalizing Timing Diagram

Requirements in QDDC

A timing diagram is a collection of binary signals and a set of timing constraints

on them. It is a widely used visual formalism in the realm of digital hardware

design, communication protocol specification and embedded controller specifica-

tion. The advantages of timing diagrams in hardware design are twofold, one,

since designers can visualize waveforms of signals they are easy to comprehend

and two, they are very convenient for specifying ordering and timing constraints

between the events.

There have been numerous attempts at formalizing timing diagram constraints

in the framework of temporal logics such as the timing diagram logic [46], with

LTL formulas [26], and as synchronous regular timing diagrams [8]. Moreover,

there are industry standard property specification languages such as PSL-Sugar

and OVA for associating temporal assertions to hardware designs [40]. The main

motivation for these attempts was to exploit automatic verification techniques that
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these formalisms support for validation and automatic circuit synthesis. However,

commenting on their success, Fisler et al. state that

The less than satisfactory adoption of formal methods in timing dia-

gram domain can be partly attributed to the gulf that exists between

graphical timing diagrams and textual temporal logic – expressing

various timing dependencies that can exist among signals that can be

illustrated so naturally in timing diagrams is rather tedious in tempo-

ral logics [26].

As a result, hardware designers use timing diagrams informally without any

well defined semantics which make them unamenable to automatic design verifi-

cation techniques.

In this chapter, we define a logic SeCeNL which is elementarily decidable syn-

tactic subset of QDDC. SeCeNL includes quantifier and negation-free fragment

of QDDC together with nominals and usage modalities. We claim that SeCeNL

provides a natural, modular and succinct formalism for encoding timing diagram

requirements, because of following important features.

1. The use of a quantifier and negation-free subset SeCe (Semi extended Chop

expressions) of QDDC is sufficient for formalizing timing diagram patterns

(constraints) imposed by a single waveform.

2. We extend SeCe with nominals (i.e. SeCeN). These are auxiliary temporal

variables which are true at exactly one position. This allows us to mark

the occurrence of an event in a waveform. Nominals can be used to specify

ordering and synchronization constraints between distinct events[47], which

may occur within (see Figure 3.1) or across the waveforms (see Figure 3.2).

41



For example, the timing diagram in Figure 3.1 stating that P transits from

0 to 1 somewhere in interval u to u+ 3 cycles is captured by the SeCeN

formula [! P]^<u>^(slen=3 && [! P]^[[P]])^[[P]].

Figure 3.1: Timing diagram with a nominal u and a timing constraint.

3. We also enhance the timing diagram specifications (and the logic SeCeN)

with usage modalities, giving us SeCeNL. While timing diagrams visu-

ally specify patterns of occurrence of signals, they do not make precise the

modalities of occurrences of such patterns. We explicitly introduce usage

modalities such as a) initially in the behaviour, a specified pattern must oc-

cur, or that b) every occurrence of pattern1 is necessarily and immediately

followed by an occurrence of pattern2, or that c) occurrence of a specified

pattern is forbidden anywhere within a behaviour. In this, we are inspired by

Allen’s Interval Algebra relations [4] as well as the LSC operators of Harel

for message sequence charts [32]. We confine ourselves to usage modalities

where good things are achieved within specified bounds. For example, in

specifying a modulo 6 counter, we can say that the counter will stabilize

before completion of first 15 cycles. It may be noted that, technically, our

usage modalities only give rise to “safety” properties (in the sense of Alpern

and Schneider [6]).
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We give language preserving translation of timing diagrams into SeCeNL for-

mulas. This translation is succinct, in fact, linear time computable in the size of

the timing diagram. Moreover, the translation is compositional, i.e. it translates

each element of the timing diagram as a sub-formula and overall specification is

just the conjunction of such formulas (constraints). Hence, the translation pre-

serves the structure of the diagram.

Subsequently, we give linear time translation of SeCeNL formulas into QDDC,

which allows the use of tools such as DCVALID [83, 84] for checking consistency

as well as model-checking of timing diagram requirements. Later chapters in this

thesis explore how correct-by-construction controllers can be automatically syn-

thesized from such requirements. The translation scheme has been implemented

into a tool.

The succinctness and compositionality of logic SeCeNL for modelling of tim-

ing diagrams is shown by several examples encoded as SeCeNL formula and

comparing them with the formulas in logics such as PSL-Sugar and MTL. PSL-

Sugar extends LTL with SERE (regular expressions with intersection) and count-

ing which are similar to SeCe. In spite of this similarity, we show some examples

where SeCeNL formula is at least one exponent more succinct as compared to

PSL-Sugar. This is essentially due to the use of nominals.

In Section 3.1 we formally define the syntax and semantics of logic SeCeNL.

Formalization timing diagram using SeCeNL is presented in Section 3.2. We

illustrate the formalization of timing diagram requirements by a case study of a

Mine-pump controller in Section3.3.
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3.1 Logic SeCeNL: Syntax and Semantics

3.1.1 Chop expressions: Ce and SeCe

Definition 5 (Ce and SeCe). The logic Semi extended Chop expressions (SeCe)

is a syntactic subset of QDDC in which the quantification operators ex p. D,

all p. D and negation operator ! are not allowed. The logic Chop expressions

(Ce) is a sub-logic of SeCe in which conjunction && is not allowed.

We define the size of a formula as the summation of number of literal and op-

erators present in the formula. Note that Ce and SeCe can include counting con-

straints. Throughout this thesis, it is assumed that constants occurring in formulas

are represented in binary form so that a natural number constant c contributes

log(c) to the size of the formula.

Lemma 6. For any chop expression (Ce) D of size n we can effectively construct

a language equivalent DFA A of size O(22n
).

Proof. We observe that for any chop expression D we can construct a language

equivalent NFA which is at most exponential in size of D including the constants

appearing in it (for a detailed proof see [9] wherein a similar result has been

proved). But this implies there exists a DFA of size 22n
which accepts exactly

the set of words σ such that σ |= D.

Corollary 7. For any SeCe D of size n we can effectively construct a language

equivalent DFA A of size O(222n
).

Proof. The proof follows from the definition of SeCe, Lemma 6 and from the fact

that there can be O(n) conjuncts. Hence, the size of the product of DFAs can be
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at most exponential in the size of individual DFAs. A detailed proof can be found

in [9].

We now introduce our logic SeCeNL which builds upon SeCe (semi extended

chop expressions) by augmenting them with nominals and usage modalities. Nom-

inals are the auxiliary temporal variable which are true exactly at one position in

the behaviour.

Syntax : Let D, D1 and D2 range over SeCe formulas and let Θ, Θ1 and Θ2 range

over subset of propositional variables occurring in SeCe formula. The notation

D : Θ, called a nominated formula, denotes that the formula D declares set of

fresh nominals Θ. The syntax of SeCeNL formula is as follows.

initImplies(D1 : Θ1 � D2 : Θ2) | anti(D : Θ) |
pref(D : Θ) | implies(D1 : Θ1 � D2 : Θ2)

We require that the sets Θ1,Θ2 are mutually disjoint. Here, D is defined over

propositions Σ∪Θ, D1 over propositions Σ∪Θ1 and D2 over propositions Σ∪
Θ1 ∪Θ2.

A composite SeCeNL specification is a conjunction of SeCeNL formulas of the

form above. The operators initImplies, anti, pref and implies are called the usage

modalities. As a convention, D : {} is abbreviated as D when the set of nominals

Θ is empty.

Usage Modalities:

For simplicity, we first explain the usage modalities without any nominals. This

is subsequently extend to full SeCeNL. It may be recalled that for a given word
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σ and a position i ∈ dom(σ), we state that σ , i |= D iff σ , [0, i] |= D. Thus, the

interpretation is that the past of the position i in execution σ satisfies D. We say

σ � ≤pre f ix σ if σ � is a prefix of σ , and σ � <pre f ix σ if σ � is a proper prefix of σ . We

also define a derived operator over a QDDC formula D denoted as Ξ(D) such that

Ξ(D) = D && !(Dˆext), which says that if σ , [b,e] |= Ξ(D) then σ , [b,e] |= D and

there exists no proper prefix interval [b,e1], (i. e. [b,e1] ∈ Intv(σ) and b ≤ e1 < e)

such that σ , [b,e1] |= D.

We first explain the semantics of usage modalities assuming that no nominals

are used in the specification. Thus, we consider SeCeNL where Θ, Θ1 and Θ2 are

all empty.

– L(pref(D) ) = {σ | ∀σ � ≤pre f ix σ : σ � |= D}. Operator pref(D) denotes

that D holds invariantly throughout the execution.

– L(initImplies(D1 � D2)) = {σ | ∀ j : (σ , [0, j] |= D1 ⇒∃k ≤ j : σ , [0,k] |=
D2)}. Operator initImplies(D1 � D2) states that if j is the first position

which satisfies D1 in the execution then there exists an i ≤ j such that i

satisfies D2. Thus, initially in the behaviour, D2 holds before the first occur-

rence of D1. In case D1 never holds, then D2 is not required to hold.

– L(anti(D)) = {σ | ∀i, j : σ , [i, j] �|= D}. Operator anti(D) states that there

is no observation sub interval of the execution which satisfies D.

– L(implies(D1 � D2)) = {σ | ∀i, j : (σ , [i, j] |= D1 ⇒ σ , [i, j] |= D2)}. Op-

erator implies(D1 � D2) states all observation intervals which satisfy D1

will also satisfy D2.

Based on this semantics, we can translate an atomic SeCeNL formula ζ with-

out nominals into equivalent QDDC formula ℵ(ζ ) as follows. The translation is
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as follows.

1. ℵ(pref(D) )
def≡!((!D)ˆ true).

2. ℵ(initImplies(D1 � D2))
def≡ pref(D1 ⇒ D2 ˆtrue) .

3. ℵ(anti(D))
def≡!(true ˆDˆtrue ).

4. ℵ(implies(D1 � D2))
def≡ [](D1 ⇒ D2).

Lemma 8. For any ζ ∈ SeCeNL, if ζ does not use nominals then σ ∈ L(ζ ) iff

σ ∈ L(ℵ(ζ )).

Proof. The proof follows from examination of the semantics of ζ and the defini-

tion of ℵ(ζ ). We consider the case of ζ = implies(D1 � D2). The other cases

are similar and omitted.

From the transformation given above, ℵ(implies(D1 � D2)) = [](D1 ⇒ D2).

From the semantics of [] operator we get

L([](D1 ⇒ D2)) = {σ | ∀i, j : σ , [i, j] |= (D1 ⇒ D2)}, which is equivalent to

{σ | ∀i, j : (σ , [i, j] |= D1 ⇒ σ , [i, j] |= D2)} = L(implies(D1 � D2)).

A set S ⊆ Σ∗ is prefix closed if σ ∈ S then ∀σ � : σ � ≤pre f ix σ ⇒ σ � ∈ S.

Lemma 9. For any ζ ∈ SeCeNL without nominals. The language L(ζ ) is prefix

closed.

Proof. From the definition of L(ζ ), it is easy to see that L(ζ ) is always prefix

closed. For example, L(implies(D1 � D2)) = L([](D1 ⇒ D2)) (From Lemma 8).

By definition σ , [b,e] |= []D iff σ , [b�,e�] |=D for all sub-intervals b≤ b� ≤ e� ≤
e. Therefore, if σ , [b,e] |= []D then σ , [b,e�] |= []D will also be valid for all prefix

intervals b ≤ e� ≤ e. Thus, for any formula D, L([]D) is always prefix closed. This

proves the result.
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Nominals:

Consider a nominated formula D : Θ where D is a SeCe formula. As we shall see

later, the propositional variables in Θ are treated as fresh “place holder” variables

which are meant to be true exactly at one point. Following [49], we call them

nominals.

Given an interval [b,e] ∈ Intv(N) we define a nominal valuation over [b,e]

to be a map ν : Θ → {i | b ≤ i ≤ e}. It assigns a unique position within [b,e]

to each nominal variable belonging to Θ. We can then straightforwardly define

σ , [b,e] |=ν D by constructing a word σν over Σ∪Θ such that ∀p∈Σ : p∈σν(i)⇔
p ∈ σ(i) and ∀u ∈ Θ : u ∈ σν(i)⇔ ν(u) = i. Then σν , [b,e] |= D ⇔ σ , [b,e] |=ν D.

We state that ν1 over Θ1 and ν2 over Θ2 are consistent if ν1(u) = ν2(u) for all

u ∈ Θ1 ∩Θ2. We denote this by ν1#ν2.

Now we consider usage modalities where nominals are used and shared be-

tween different parts D1 and D2 of a usage modality such as implies(D1 : Θ1 �
D2 : Θ2), where ν1, ν2 are over Θ1 and Θ2 respectively. See Example 10 below.

Semantics of SeCeNL: In the following vi denotes nominal valuation over Θi.

– L(pref(D1 : Θ1) ) = {σ | ∀σ � ≤pre f ix σ ∃ν1 : σ � |=ν1 D1}.

– L(initImplies(D1 : Θ1 � D2 : Θ2)) = {σ | ∀ j∀ν1 : σ , [0, j] |=ν1 (D1 ⇒
∃k ≤ j.∃ν2 : σ , [0,k] |=ν2 D2)}. Note that D2 may refer to nominals Θ1 ∪
Θ2.

– L(anti(D1 : Θ1)) = {σ | ∀i, j∀ν1 : σ , [i, j] �|=ν1 D1}.

– L(implies(D1 : Θ1 � D2 : Θ2)) = {σ | ∀i, j∀ν1 : (σ , [i, j] |=ν1 D1 ⇒ ∃ν2 :

σ , [i, j] |=ν2 D2)}. Note that D2 may refer to nominals Θ1 ∪Θ2.
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Example 10 (lags). Let D1 : {u,v} be the formula (<u> ^ [[P]] && ((slen=n)

^ <v> ^ true) which holds for an interval where P is true throughout the inter-

val and v marks the n+1 position (here n is a natural number constant) from u de-

noting the start of the interval. Let D2 : { } be the formula true ^ <v> ^ [[Q]].

Here, D2 refers to nominal v defined in D1. Then, implies(D1 : {u,v} � D2 : { })
states that for all observation intervals [i, j] and all nominal valuations ν over

[i, j] if σ , [i, j] |=ν D1 then σ , [i, j] |=ν D2. A live timing diagram1 based specifi-

cation of this example is given in Figure 3.4.

Based on the above semantics, we now formulate a QDDC formula equivalent

to a SeCeNL formula. We will make essential use of quantification (ex p. D)

and (all p. D). We first define relativized quantifiers to restrict variables in Θ to

singletons. Given a set of nominals Θ = {u1, . . . ,un}, we define

singleton(Θ)
def≡ (scount u1 = 1 && · · · && scount un = 1)

It states that in current interval each nominal occurs exactly once. Then, we

define derived operators ∀1
Θ : D

def≡ all Θ. (singleton(Θ) ⇒ D) and ∃1
Θ : D

def≡
ex Θ. (singleton(Θ) && D).

SeCeNL to QDDC: We now define the translation ℵ from SeCeNL to QDDC.

1. ℵ(pref(D1 : Θ1) )
def≡ pref(∃1

Θ1
: D1) .

2. ℵ(initImplies(D1 : Θ1 � D2 : Θ2))
def≡ pref(∀1

Θ1
: (D1 ⇒ ((∃1

Θ2
: D2)ˆtrue))) .

3. ℵ(anti(D1 : Θ1))
def≡!(true ˆ(∃1

Θ1
: D1)ˆtrue ).

4. ℵ(implies(D1 : Θ1 � D2 : Θ2))
def≡ [](∀1

Θ1
: (D1 ⇒ (∃1

Θ2
: D2))).

1The illustration was made with WaveDrom and due to its limitation on naming nominals we

were forced to rename the nominals u and v in Q as a and b in the diagram, respectively.
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Some additional useful usage modalities can be defined as derived modalities

as follows:

– We define the usage modality follows(D1 : Θ1 � D2 : Θ2/D3 : Θ1) which

states that if any observation interval [i, j] satisfies D1 and there is a fol-

lowing interval [ j,k] which satisfies D3 for the first time, then there exists a

prefix interval of [ j,k] which satisfies D2. This can be defined using implies

as shown below.

implies(((D1 : Θ1)ˆ�u�ˆ(Ξ(D3) : Θ3)) � (trueˆ�u�ˆ(D2 : Θ2)))

Theorem 11. For any word σ over Σ and any ζ ∈ SeCeNL we have that σ ∈ L(ζ )

iff σ ∈ L(ℵ(ζ )). Moreover, the translation ℵ(ζ ) can be computed in time linear

in the size of ζ .

Proof. The proof follows from the semantics of ζ and the definition of ℵ(ζ ). We

consider the case of ζ = implies(D1 : Θ1 � D2 : Θ2). The other cases are similar

and omitted.

From the transformation ℵ given above, we have implies(D1 : Θ1 � D2 : Θ2)
def≡ [](∀1

Θ1
: (D1 ⇒ (∃1

Θ2
: D2))). Let the language L([](∀1

Θ1
: (D1 ⇒ (∃1

Θ2
: D2))))

be denoted by L1. Then, from the semantics of [] operator we get

L1 = {σ | ∀i, j : σ , [i, j] |= (∀1
Θ1

: (D1 ⇒ (∃1
Θ2

: D2)))},

Assuming that ν1 and ν2 provides valuation for Θ1 and Θ2 respectively then

L1 = {σ | ∀i, j∀ν1 : (σ , [i, j] |=ν1 D1 ⇒ ∃ν2 : σ , [i, j] |=ν2 D2)} = L(implies(D1 :

Θ1 � D2 : Θ2)).

It is straightforward to see from transformation ℵ that the size of transformed

formula will be linear in the size of SeCeNL formula.
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Theorem 12. For any ζ ∈ SeCeNL the size of the automaton A (ζ ) for ζ is

O(22222n

) (tower of height 5), where n is the size of ζ .

Proof. The theorem can be proved for each form of ζ . We consider the case

ζ = implies(D1 : Θ1 � D2 : Θ2), which gives the QDDC formula [](∀1
Θ1

: (D1 ⇒
(∃1

Θ2
: D2))). As D1 and D2 belong to SeCe, the size of automaton for each of them

is O(222n
) (See Corollary 7). The size of automaton for (∃1

Θ2
: D2) is O(2222n

)

because of the existential quantification. Therefore, automaton for (D1 ⇒ (∃1
Θ2

:

D2)) has the size O(222n
×2222n

), which simplifies to O(2222n

). Finally, the outer

∀ quantification and [] operator (both of which are ∀ type) together add one more

exponent, which proves the result. Similarly, The size for other form of ζ can also

be calculated.

3.2 Formalizing timing diagrams

In this section we give a formal semantics to timing diagrams and formula transla-

tion from timing diagrams to SeCeNL. We first give a textual syntax for timing di-

agrams which is derived from the timing diagram format of WaveDrom [25, 105].

The symbols in a waveform come from Λ = {0,1,2,x,0|,1|,2|,x|} and Θ, an

atomic set of nominals. Let Γ = Θ∪Λ. The syntax of a waveform over Γ is given

by the grammar:

π := λ | u : π | π1π2,

where u ∈ Θ and λ ∈ Λ. We call the elements in Θ the nominals. As we shall see

later, when we convert a waveform to a SeCeNL formula the nominals that appear

in the formula are exactly the nominals in the waveform and hence the name. Let

Wf be the set of all waveforms over Γ.
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An example of a waveform is 01a:2x011xb:x2|220c:00 with the set of nomi-

nals Θ = {a,b,c}. This can be shown graphically as waveform P in Figure 3.2.

Intuitively, in a waveform 0 denotes low, 1 high, 2 and x don’t cares (there is a

subtle difference between 2 and x when stuttering operator “|” is applied to them,

as explained in Section 3.2.1) and “|” the stuttering operator (it extends previ-

ous cycle till any further change in value). Based on these notations the example

waveform mentioned above states that the signal is initially low, then it becomes

high in next cycle, then signal goes to don’t care and the position of this transition

is annotated by a nominal a. In next cycle also signal remains don’t care followed

by low, high, high and so on.

Let Σ be a set of propositional variables. A timing diagram over Σ is a tuple

�W ,Σ,C,Θ� where W = {Wp ∈Wf | p ∈ Σ} and C ⊂ Θ×Θ× Intv(N) a set of

timing constraints.

Figure 3.2 shows an example timing diagram T = �{Wp,Wq},{p,q},{(a,b, [10 :

10]),(a, d, [1 : 8]),(c,d, [20 : 30])},{a,b,c,d,e, f}� along with its rendering in

WaveDrom. WaveDrom renders 0 and 1 as low and high signal respectively. The

don’t care terms x and 2 are represented by shaded block and unshaded block re-

spectively and the stuttering is shown by drawing a gap on the top. It may be noted

that for rendering purpose the shared nominals have to be renamed in WaveDrom,

e.g. a and c in Wq have been renamed g and h respectively. As in the case with

SeCeNL formulas, nominals act as place holders in timing diagrams which can be

shared among multiple waveforms. For example, Wp and Wq share the nominals a

and c. As a result a timing constraint in one timing diagram can implicitly induce

a timing constraint in the other. For instance, even though there is no direct timing

constraint between a and c in Wp the constraints between a and d, and d and c
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together impose one on them.

waveform Wp - 01a : 2x011xb : x2|220c : 00

waveform Wq - 00a : 0|d : 11|e : xxx|f : 01c : 11

timing constraints: d-a∈[1:8], c-d∈[20:30], b-a∈[10:10]

Figure 3.2: Timing diagram T and its WaveDrom rendering.

Let T = �W ,Σ,C,Θ�, W = {Wp ∈ Wf | p ∈ Σ}, be a timing diagram. Let

ν : Θ → [b,e] be a nominal valuation. Let σ : [0,n] → 2Σ be a word over Σ and

for all p ∈ Σ let σp : [0,n] → {0,1} given by σp(i) = 1 iff p ∈ σ(i). Then the

satisfaction relation σp over a waveform W under the valuation ν is defined as

follows.

σp, [b,e] |=ν 0 iff e = b+1 and σp(b) = 0,

σp, [b,e] |=ν 1 iff e = b+1 and σp(b) = 1,

σp, [b,e] |=ν λ iff e = b+1 and λ ∈ {2,x},
σp, [b,e] |=ν 0| iff ∀b ≤ i < e : σp(i) = 0,

σp, [b,e] |=ν 1| iff ∀b ≤ i < e : σp(i) = 1,

σp, [b,e] |=ν 2| iff ∀b ≤ i < e : σp(i) ∈ {0,1},
σp, [b,e] |=ν x| iff ∀b ≤ i < e : σp(i) = 1 or ∀b ≤ i < e : σp(i) = 0,

σp, [b,e] |=ν u : W iff ν(u) = b and σp, [b,e] |=ν W,

σp, [b,e] |=ν VW iff ∃b ≤ i < e : σp, [b, i] |=ν1 V and σp, [i,e] |=ν2 W,

and ν1#ν and ν2#ν .
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We say ν |= C iff ∀(a,b,�l,r�) ∈ C : ν(b)−ν(a) ∈ �l,r�. We define σ , [b,e] |=ν

�W ,Σ,C,Θ� iff ∀p ∈ Σ : σp, [b,e] |=ν Wp and ν |=C.

3.2.1 Waveform to SeCeNL translation

We translate a waveform Wp to SeCeNL as follows: every 0 occurring in P is

translated to {{! P}}, 1 to {{P}}, 2 and x to slen=1, 0| to pt || [! P], 1| to pt || [P],
2| to true, and x| to pt || [P] || [! P]. A nominal u that is appearing in Wp is

translated to <u>. For instance, the waveform Wp=01a:2x011xb:x2|220c:00 in T

of Figure 3.2 will be translated to SeCeNL formula as below.

({{! P}}ˆ{{P}}ˆ<a>ˆ(slen=1)ˆ(slen=1)ˆ{{! P}}ˆ{{P}}ˆ{{P}}ˆ(slen=1)ˆ<b>ˆ

(slen=1)ˆtrueˆ(slen=1)ˆ(slen=1) ˆ{{! P}}ˆ<c>ˆ{{! P}}ˆ{{! P}}).

We denote the translated SeCeNL formula by ξ (T,Wp). Similarly we can translate

Wq to get the formula ξ (T,Wq). The timing constraints in C is translated to the

SeCeNL formula ξ (T,C) as follows.

((trueˆ<a>ˆ((slen≥ 1) && (slen≤ 8))ˆ<d>ˆtrue) &&

(trueˆ<d>ˆ((slen≥ 20) && (slen≤ 30))ˆ<c>ˆtrue) &&

(trueˆ<a>ˆ(slen=10)ˆ<b>ˆtrue)).

We define ξ (T ) = ξ (T,Wp) && ξ (T,Wq) && ξ (T,C). For a timing diagram

T = �W ,Σ,C,Θ�, W = {Wp | p∈Σ} we define ξ (T )=
�

p∈Σ ξ (T,Wp)
�

&& ξ (T,C).

Theorem 13. Let T be a timing diagram. Then, for all σ ∈ Σ+, for all [b,e] ∈
Intv(σ) and for all nominal valuation ν over [b,e], we have σ , [b,e] |=ν T iff

σ , [b,e] |=ν ξ (T ) : Θ. Also, the translation ξ (T ) : Θ is linear in the size of T .

Proof. The proof follows straightforwardly by induction on the length of the

waveform.
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Figure 3.3: Example 1.

Due to the above theorem we can now use timing diagrams in place of nomi-

nated formulas D : Θ within the usage modalities. We call such timing diagrams

live timing diagrams. For an example of a live timing diagram see Figure 3.4.

3.2.2 Comparison with other temporal logics

In previous section, Lemma 13 showed that timing diagrams can be translated to

equivalent SeCeNL formulas with only linear blowup in size. In this section we

compare our logic SeCeNL with other relevant logics in the literature viz, LTL

[88], discrete time MTL [7], and PSL-Sugar [40]. Of these, PSL-Sugar is the

most expressive and discrete time MTL and LTL are its syntactic subset. We

show by examples that SeCeNL formulas are more succinct (smaller in size) than

PSL-Sugar and we believe that they capture the diagrams more directly.

Example (Ordered Stack) Let us now consider the timing diagram in Fig-

ure 3.3 adapted from [26]. Rise and fall of successive signals a,b and c follow

a stack discipline. The language described by it is given by the SeCeNL formula:

([!a] ˆ<ua> ˆ [a] ˆ <va> ˆ [!a]) && ([!b] ˆ<ub> ˆ [b] ˆ <vb> ˆ [!b]) &&

([!c] ˆ<uc> ˆ [c] ˆ <vc> ˆ [!c]) &&

(extˆ <ua> ˆ ext ˆ <ub> ˆ true) && (trueˆ <ub> ˆ ext ˆ <uc> ˆ true) &&

(trueˆ <vc> ˆ ext ˆ <vb> ˆ true) && (trueˆ <vb> ˆ ext ˆ <va> ˆ true).
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Note that first three conjuncts exactly correspond to the three waveforms. The

next four conjuncts correspond to the four arrows (ordering constraints) between

the waveforms. Here, ua,ub,uc denote the nominals a,b,c and vc,vb,va denote

the nominals d,e, f in the Figure 3.3. In general, if n signals are stacked, its

SeCeNL specification has size O(n) .

An equivalent MTL (or LTL) formula is given by:

([¬a ∧ ¬b ∧ ¬c] UU ([a ∧ ¬b ∧ ¬c] UU ([a ∧ b ∧ ¬c] UU ([a ∧ b ∧ c] UU

([a ∧ b ∧ ¬c] UU ([a ∧ ¬b ∧ ¬c] UU [¬a ∧ ¬b ∧ ¬c]))))))

where a UU b is the derived modality a ∧ X(aUb). For a stack of n signals, the

size of the MTL formula is O(n2) . Above formula is also a PSL-Sugar formula.

We attempt to specify the pattern as a PSL-Sugar regular expression as follows:

((¬a ∧ ¬b ∧ ¬c;)[+]; (a ∧ ¬b ∧ ¬c;)[+]; (a ∧ b ∧ ¬c;)[+];

(a ∧ b ∧ c;)[+];(a ∧ b ∧ ¬c;)[+]; (a ∧ ¬b ∧ ¬c;)[+];

(¬a ∧ ¬b ∧ ¬c;)[+].

For a stack of n signals, the size of the PSL-Sugar SERE expression is O(n2) . We

believe that there is no formula of size O(n) in PSL-Sugar which can express the

above property. Compare this with size O(n) formula of SeCeNL.

Example (Unordered Stack) In ordered stack signal a turns on first and turns

off last followed by signals b,c in that order. We consider a variation of the ordered

stack example above where signals turn on and off in first-on-last-off order but

there is no restriction on which signal becomes high first. This can be compactly
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specified in SeCeNL as follows.

([!a] ˆ<ua> ˆ [a] ˆ <va> ˆ [!a]) && ([!b] ˆ<ub> ˆ [b] ˆ <vb> ˆ [!b]) &&

([!c] ˆ<uc> ˆ [c] ˆ <vc> ˆ [!c]) &&

(ext ˆ <u1> ˆ ext ˆ <u2> ˆ ext ˆ <u3> ˆext

ˆ <v3> ˆ ext ˆ <v2> ˆ ext ˆ <v1> ˆ ext ) &&

Bi jection(ua,ub,uc,va,vb,vc,u1,u2,u3,v1,v2,v3)

where formula Bi jection below states that there is one to one correspondence be-

tween positions marked by ua,ub,uc,va,vb,vc and positions marked by u1,u2,u3,

v1,v2,v3. Moreover, if ua maps to say u3 than va must map to v3 and so on.

[[(u1 || u2 || u3)⇔ (ua || ub || uc)]] && [[
�

1≤i, j≤3,i�= j!(ui && u j)]]

[[(v1 || v2 || v3)⇔ (va || vb || vc)]] && [[
�

1≤i, j≤3,i�= j!(vi && v j)]]
�

1≤i≤3, j∈a,b,c (true ˆ <ui && u j> ˆ true ⇔ true ˆ <vi && v j> ˆ true).

Note that, in general, if n signals are stacked, then the above SeCeNL specification

has size O(n2) .

Now we discuss encoding of unordered stack in PSL-Sugar. In absence of

nominals, it is difficult to state the above behaviour succinctly in logics PSL-Sugar

even using its SERE regular expressions. Each order of occurrence of signals has

to be enumerated as a disjunction where each disjunct is as in the example ordered

stack (where the order was a,b,c). As there are n! orders possible between n

signals, the size of the PSL-Sugar formula is also O(n!) . We believe that there is

no polynomial size formula in PSL-Sugar encoding this property. This shows that

SeCeNL is exponentially more succinct as compared to PSL-Sugar.

In general, presence of nominals distinguishes SeCeNL from logics like PSL-

Sugar. In formalizing behaviour of hardware circuits, it has been proposed that

regular expressions are not enough and operators such as pipelining have been
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introduced [26]. These are a form of synchronization and they can be easily ex-

pressed using nominals. (See [86].)

3.3 Case study: Mine-pump Specification

We first specify some useful generic timing diagram properties.

– lags(P,Q,n): it is defined by Figure 3.4. It specifies that in any observation

interval if P holds continuously for n+ 1 cycles and persists then Q holds

from (n+1)th cycle onwards and persists till P persists.

– tracks(P,Q,n): defined by Figure 3.5. In any observation interval if P be-

comes true then Q sustains as long as P sustains or upto n cycles whichever

is shorter.

– sep(P,n): Figure 3.6 defines this property. If an interval which begins with

a falling edge of P and ends with next rising edge of P then the length of the

interval should be at least n cycles.

– ubound(P,n): Figure 3.7 defines this property. In any observation interval

P can be continuously true for at most n cycles.

Note that we have presented these formulas diagrammatically.

We now state the Mine-pump specification. Imagine a pump which keeps the

water level in a mine under control. The pump is driven by a controller which

can switch it on and off. Mines are prone to highly flammable methane leakage

trapped underground. So as a safety measure if a methane leakage is detected the

controller is not allowed to keep the pump on.
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Figure 3.4: lags(P,Q,n). Figure 3.5: tracks(P,Q,n).

Figure 3.6: sep(P,n). Figure 3.7: ubound(P,n).

The controller has two input sensors - HH2O which becomes true when water

level is high, and HCH4 which is true when there is a methane leakage. It can

generate two output signals - ALARM which is set to true to sound/persist the

alarm, and PUMPON which is set to true to keep the pump on. The objective

of the controller is to safely operate the pump and the alarm in such a way that

the water level is never dangerous, indicated by the propositional variable DH2O,

whenever certain assumptions hold. We have the following assumptions on the

mine and the pump.

- Sensor reliability assumption: pref([[DH2O ⇒ HH2O]]) . If HH2O is false

then so is DH2O.

- Water seepage assumptions: tracks(HH2O,DH2O,κ1). The minimum no. of

cycles for water level to become dangerous once it becomes high is κ1.

- Pump capacity assumption: lags(PUMPON, ! HH2O,κ2). If pump is kept

on for at least κ2+1 cycles then water level will not be high after κ2 cycles.
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- Methane release assumptions: sep(HCH4,κ3) and ubound(HCH4,κ4). The

minimum separation between the two leaks of methane is κ3 cycles and the

methane leak cannot persist for more than κ4 cycles.

- Initial condition assumption: init(<! HH2O> && <! HCH4>,slen = 0).

Initially neither the water level is high nor there is a methane leakage.

Let the conjunction of these SeCeNL formulas be denoted as MineAssume. The

commitments are:

- Alarm control: lags(HH2O,ALARM,κ5) and lags(HCH4,ALARM,κ6) and

lags(! HH2O && ! HCH4, ! ALARM,κ7). If the water level is high then

alarm will be high after κ5 cycles and if there is a methane leakage then

alarm will be high after κ6 cycles. If neither the water level is dangerous

nor there is a methane leakage, then alarm should be off after κ7 cycle.

- Safety condition: pref([[! DH2O && (HCH4 ⇒! PUMPON)]]) . The wa-

ter level should never become dangerous and whenever there is a methane

leakage pump should be off.

Let the conjunction of these commitments be denoted as MineCommit. Then, the

requirement over the mine-pump controller is given by the formula MineAssume⇒
MineCommit. Note that the requirement consists of a mixture of timing diagram

constraints (such as pump capacity assumption above) as well as SeCeNL formu-

las (such as safety condition above). Hence the specification is heterogenous.

Given such specifications we have analyzed the specification for checking con-

sistency of the requirements using tool DCVALID. We have also used the tool

DCSynth (see Chapter 4) to automatically synthesize a controller for the values,
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κ1 = 10, κ2 = 2, κ3 = 14, κ4 = 2, and κ5 = κ6 = κ7 = 1. For these values, in

under 1 second it outputs a SCADE/SMV controller with 140 states meeting the

specification.

3.4 Discussion

In this chapter, we defined a logic SeCeNL which includes quantifier and negation-

free fragment of QDDC together with usage modalities as well as nominals. Se-

CeNL provides a natural and convenient formalism for encoding timing diagram

requirements. In fact, our proposed encoding extends the Timing Diagram no-

tation with usage modalities which makes precise their use as a formal require-

ment. The translation of timing diagrams to SeCeNL is succinct and composi-

tional. Hence, the translation preserves the structure of the diagram.

We have also formulated a reduction from a SeCeNL formula to an equivalent

QDDC formula. This allows QDDC tools to be used for SeCeNL. It may be

noted that, though expressively no more powerful than QDDC, the logic SeCeNL

is considerably more efficient for satisfiability and model checking. We find that

these problems have elementary complexity as compared with full QDDC which

exhibits non-elementary complexity. Also, the presence of usage modalities and

nominals makes it more convenient as compared to QDDC for practical use.

By implementing the above reductions, we have constructed a tool which

converts a requirement, consisting of a conjunction of timing diagram specifi-

cations (augmented with usage modalities) and SeCeNL formulas, into an equiv-

alent QDDC formula. In this sense, we handle heterogeneous specification. We

could analyze the resulting formula using the QDDC tools DCVALID [83, 84]

and DCSynth for model checking and controller synthesis, respectively.
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Chapter 4

Guided Reactive Synthesis for High

Quality Controllers

Controller synthesis aims at constructing a controller (say a Mealy Machine) al-

gorithmically from a given temporal logic specification of its desired behaviour.

Considerable amount of research has gone into the area of reactive synthesis and

several tools are available for experimenting [62].

In this chapter, we propose a framework for guided controller synthesis from

regular properties specified using the interval temporal logic QDDC [83, 84] to

synthesize high quality controllers. The study of synthesis of controllers from

regular properties was pioneered by Ramadge and Wonham [93]. The guidance

is based on some qualitative properties, which are also specified in QDDC. Logic

QDDC is especially suited for guided synthesis due to its succinctness as well as

superiority in dealing with both qualitative and quantitative specifications.

In practice, user specification may contain certain requirements which cannot

be guaranteed, but are desirable. We term the desirable properties as soft require-
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ments. Soft requirements can be effectively used to guide the controller synthesis

engine by synthesizing a controller which tries to maximizes the satisfaction of

these soft requirements. For example, in a Mine pump controller which removes

seepage of water, the soft requirement can state that keep the pump off as much

as possible to save the electricity. The soft requirements may also be used when

a specification consist of a conjunction of conflicting requirements. In this case,

the user may resolve the conflict by making some of these requirements as soft.

Therefore, soft requirements give us a capability to synthesize meaningful and

practical controllers. However, most existing controller synthesis tools do not

have the capability to deal with desirable or conflicting requirements.

Based on the above discussion, it may be noted that in practice we have some

requirements which needs to be guaranteed, while others are desirable require-

ments. The desirable requirements may not be satisfied invariantly, but the fre-

quency of their satisfaction should be maximized. Similarly, the requirements to

be guaranteed also need suitable environmental assumptions under which commit-

ments could be guaranteed. These assumptions can also be violated or satisfied

intermittently. As a result, such environmental assumptions and the desirable re-

quirements are by nature intermittent. Invariant requirements are non-recoverable

i.e. once these requirements are violated at any position they never get satisfied

again in future. This limitation has been well recognized in the literature [14, 39]

and hence in this thesis we will try to formulate our requirements as intermittent

instead of invariant. In section 4.3.2 we formally discuss a generic way to specify

intermittent requirements in our notation.

We introduce a technique which allows synthesis of discrete controllers from

regular properties (QDDC formulas) given as a tuple (I,O,Dh,Ds), where Dh and
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Ds are QDDC formulas over a set of input and output propositions (I,O). Here,

Dh and Ds are the hard and the soft requirement, respectively. We synthesize

a controller which, (a) invariantly satisfies Dh and (b) it meets Ds at “as many

points as possible”. Meeting Ds “at as many points as possible” is achieved by

synthesizing a controller which maximizes (optimizes) the cumulative count of

Ds holding in next H moves, averaged over all the inputs of length H. Such a

controller is called H-Optimal for Ds.

Example 14 (Arbiter for Mutually Exclusive Shared Resource). The arbiter has

inputs ri (denoting request for access) and outputs ai (denoting acknowledgement

for access) for each client 1 ≤ i ≤ n. The specification consist of the following two

requirements given as QDDC formulas.

−Mutual Exclusion Requirement R1: [[ ∧i�= j ¬(ai ∧ a j) ]], states that at every

point in the execution, the access to the shared resource is mutually exclusive.

−k-cycle Response Requirement R2: [](∧i (([[ri]] && (slen >= (k − 1))) ⇒
(scount ai > 0)) , states that in any observation interval spanning k cycles if

request from ith client (ri) is continuously high during the interval, then that client

should get at least one access (ai) within that observation interval. The property

R2 is asserted for each client 1 ≤ i ≤ n.

As an example of conflicting requirements, consider the case where k < n. In

this scenario, no controller can satisfy both requirements (i.e. their conjunction is

unrealizable) e.g. when all clients request all the time. We may want to opt for an

implementation, which mandatorily satisfies R1 and it tries to meet R2 “as much

as possible”. This can be specified in our framework by making R1 as hard and

R2 as a soft requirement.

This chapter gives the algorithm for guided synthesis of a controller from the
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specification given as tuple (I,O,Dh,Ds). We first define the term called super-

visor, which is a non-blocking Mealy machine that may non-deterministically

produce one or more outputs for each input. A supervisor may be refined to a

sub-supervisor by resolving (pruning) the non-deterministic choice of outputs. A

controller is a deterministic supervisor.

The synthesis algorithm starts by first computing the language equivalent mon-

itor automaton for Dh. In the second step we compute Maximally Permissive Su-

pervisor (MPS) from the monitor automaton. The supervisor MPS contains all

the behaviours, which invariantly satisfy Dh and is non-blocking. Then Maxi-

mally Permissive H-Optimal Supervisor (MPHOS) is computed by pruning MPS.

This is done by keeping only those outputs of MPS, which H-Optimally satisfy

Ds. The computation of such H-Optimal supervisor draws upon the technique

of finite horizon controller for Markov decision processes, pioneered by Bellman

[11]. Finally, MPHOS is turned in to a controller by pruning the choice of outputs

based on a user given preference ordering.

We have implemented this guided synthesis algorithm in a tool DCSynth. For

representing automata, supervisors and controllers, the tool uses an efficient data

structure SSDFA (See Section 2.3) originally introduced by the tool MONA [67].

Section 4.4 gives the details of the symbolic algorithms. We compare the perfor-

mance of our tool with some state of the art tools. We illustrate our specification

method and synthesis tool with the help of two case studies1.

Major Contributions:

1. We developed a technique for the synthesis of controllers from QDDC re-

1DCSynth can be downloaded at [104] along with the specification files for the experiments.
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quirements. This extends the past work on model checking interval tempo-

ral logic QDDC [83, 84, 22, 100, 70] with synthesis abilities.

2. We proposed a method for guided synthesis of controllers based on soft

requirements which are met in a H-Optimal fashion. Conceptually, this

enhances the Ramadge-Wonham framework with optimal controller syn-

thesis.

3. We developed a tool DCSynth for guided synthesis. The tool represents and

manipulates automata/controllers using BDD-based Semi-Symbolic DFA

[67]. It uses eager minimization for efficient synthesis.

4. We experimentally analyzed the impact of soft requirements on the qual-

ity of the synthesized controllers using few case studies. The quality is

measured for both the guaranteed and the expected case behaviour of the

synthesized controller.

4.1 Supervisors and Controllers

Now we consider QDDC formulas and automata where the set of propositional

variables PV = I∪O is partitioned into disjoint sets of input variables I and output

variables O. We show how Mealy machines can be represented as special form

of Deterministic finite automata (DFA). Supervisors and controllers are Mealy

machines with special properties.

Definition 15 (Output-nondeterministic Mealy Machines). A total and Determin-

istic Finite Automaton (DFA) over input-output alphabet Σ= 2I×2O is a tuple A=

(Q,Σ,s,δ ,F), as usual, with δ : Q×2I ×2O → Q. An output-nondeterministic
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Mealy machine is a DFA with a unique reject (or non-final) state r which is a

sink state i.e. F = Q−{r} and δ (r, i,o) = r for all i ∈ 2I , o ∈ 2O.

Intuition is that the transitions from q ∈ F to r are forbidden (and kept only

for making the DFA total). Language of any such Mealy machine is prefix-

closed. Recall that for a Mealy machine, F = Q − {r}. A Mealy machine is

deterministic if ∀s ∈ F , ∀i ∈ 2I , ∃ at most one o ∈ 2O s.t. δ (s, i,o) �= r. An

output-nondeterministic Mealy machine is called non-blocking if ∀s ∈ F , ∀i ∈ 2I

∃o ∈ 2O s.t. δ (s, i,o) ∈ F . It follows that for all input sequences a non-blocking

Mealy machine can produce one or more output sequence without ever getting

into the reject state.

For a Mealy machine M over variables (I,O), its language L(M)⊆ (2I ×2O)∗.

A word σ ∈ L(M) can also be represented as pair (ii,oo) ∈ ((2I)∗,(2O)∗) such

that σ [k] = ii[k]∪ oo[k],∀k ∈ dom(σ). Here σ , ii,oo must have the same length.

We will not distinguish between σ and (ii,oo) in the rest of the thesis. Also, for

any input sequence ii ∈ (2I)∗, we will define M[ii] = {oo | (ii,oo) ∈ L(M)}.

We now define cascade product of two Mealy Machines, where the output of

first Mealy Machine can be fed as input to second Mealy Machine but not vice

versa (i.e. feedback is not possible).

Definition 16 (Cascade Product of Mealy Machines). Given two output- nonde-

terministic Mealy Machines M1 = (Q1,Σ1,s1,δ1,F1) and M2 = (Q2,Σ2,s2,δ2,F2),

over input-output alphabets Σ1 = 2I1 ×2O1 and Σ2 = 2I2 ×2O2 , and unique reject

states r1 and r2 respectively i.e. the set of input-output variables of M1 are (I1,O1)

and input-output variables of M2 are (I2,O2). Moreover, we have a restriction that

I1 ∩O2 = /0. This is because output of M2 cannot be fed back to M1. We define

the cascade product of M1 and M2, as a Melay Machine M = (Q,Σ,s,δ ,F) over
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input-output alphabets Σ = 2I1∪(I2−O1)×2O1∪O2 , denoted as M = M1 � M2.

Where, s = (s1,s2), Q = {(q1,q2) | q1 ∈ F1 and q2 ∈ F2}∪{(r1,r2)},

F = {( f1, f2) | f1 ∈ F1 and f2 ∈ F2}, r = (r1,r2).

The transition relation δ : Q×2I1∪(I2−O1)×2O1∪O2 → Q is defined as follows.

δ ((q1,q2),(i1, i2),(o1,o2)) = (q�1,q
�
2) iff q1,q�1 ∈ F1, q2,q�2 ∈ F2, i1 ∈ I1, i2 ∈

(I2−O1), o1 ∈O1, o2 ∈O2, δ1(q1, i1,o1) = q�1 and δ2(q2, i2,o2) = q�2. Otherwise,

δ ((q1,q2),(i1, i2),(o1,o2)) = (r1,r2).

It may be noted, that the cascade product of M1 and M2 can be obtained by

taking standard synchronous product of M1 and M2 followed by minimization of

resulting automaton.

Controlling a Mealy Machine Our aim is to control an output-nondeterministic

Mealy Machine by selecting some good outputs from the available non-deterministic

choices using a policy (See Definition 22), in order to ensure that given require-

ments on input-output behaviour are met. In general a policy can select at every

step t a set of outputs from the available output choices. At each step, a deter-

ministic policy (controller) chooses one output which it considers the best. A

nondeterministic policy (supervisor) chooses a subset of outputs, all of which it

considers equally good. In general, the policy may be history-dependant, needing

unbounded memory, but a finite memory policy can be represented as a supervi-

sor. In particular, a memoryless policy just chooses the set of outputs based on the

current state and the current input irrespective of the past history.

Definition 17 (Controllers and Supervisors). An output-nondeterministic Mealy

machine which is non-blocking is called a supervisor. A deterministic supervisor

is called a controller.
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It may be noted that a supervisor is in effect an input total non-deterministic Mealy

machine. In this thesis, the supervisor is defined as DFA recogniser to exploit the

available DFA tools.

The non-deterministic choice of outputs in a supervisor denotes unresolved de-

cision. The intuition is that, in the controlled system, any of the non-determinstic

set of outputs allowed by the policy can occur adverserially and must be tolerated.

The determinism ordering below allows supervisors to be refined into controllers.

Definition 18 (Determinism Order and Sub-supervisor). Given two supervisors

S1,S2 we say that S2 is more deterministic than S1, denoted S1 ≤det S2, iff L(S2)⊆
L(S1). We call S2 to be a sub-supervisor of S1.

Note that being supervisors, they are both non-blocking, and hence /0⊂ S2[ii]⊆
S1[ii] for any ii ∈ (2I)∗. The supervisor S2 may make use of additional memory

for resolving and pruning the non-determinism in S1.

For technical convenience, we define the notion of indicator variable for a

QDDC formula (regular property). The idea is that the indicator variable of a

QDDC formula D, witnesses the past satisfaction of D at any point in execution.

Thus, the indicator variable is set to true exactly on those points in the behaviour

where D is satisfied. The definition is given as follows.

Definition 19. A propositional variable w is called the indicator variable for a

QDDC formula D denoted by Ind(D,w) iff pre f (EP(w) ⇔ D) i.e. Ind(D,w) =

pre f (EP(w) ⇔ D). Here, EP(w) = (true^�w�), i.e. EP(w) holds at a point if

variable w is true at that point.
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4.2 DCSynth Specification and Controller Synthesis

This section defines the DCSynth specification and presents the algorithm used

in our tool DCSynth for soft requirement guided controller synthesis from a DC-

Synth specification. The process of synthesizing a controller as discussed in Sec-

tion 4.2.4 uses three main algorithms given in Sections 4.2.1-4.2.3.

4.2.1 Invariance Properties and Maximally Permissive Super-

visor

A QDDC formula D specifies a regular property which may hold intermittently

during a behaviour (see Definition 1). An important class of properties, denoted

by inv D, states that D must hold invariantly during the system behaviour.

Definition 20. Let S realizes inv D denote that a supervisor S realizes invari-

ance of QDDC formula D over variables (I,O). Define S realizes inv D provided

L(S)⊆ L(D). Recall that, by the definition of supervisors, S must be non-blocking.

A supervisor S for a formula D is called maximally permissive iff S ≤det S� holds

for any supervisor S� such that S� realizes inv D. This S (when it exists) is unique

up to language equivalence of automata, and the minimum state maximally per-

missive supervisor is denoted as MPS(D).

Now, we discuss how the supervisor MPS(D) for a given QDDC formula D is

computed.

1. Language equivalent DFA A (D) = �S,2I∪O,s,δ ,F� is constructed for for-

mula D (Theorem 3). The standard safety synthesis algorithm [52] over

A (D) gives us the desired MPS(D) as outlined in the following steps.
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2. We first compute the largest set of winning states G ⊆ F with the follow-

ing property: s ∈ G iff ∀i∃o : δ (s,(i,o)) ∈ G. Let Cpre(A (D),X) = {s ∈
X | ∀i∃o : δ (s,(i,o)) ∈ X}. It may be noted that by definition Cpre and

hence G retains only states which are non-blocking. Then we iteratively

compute G as follows:

G=F;

do

G1=G;

G=Cpre(A (D),G1);

while (G != G1);

3. If initial state s /∈ G, then the specification is unrealizable. Otherwise,

MPS(D) is obtained by declaring G as the set of final states and retaining all

the transitions in A (D) between states in G and redirecting the remaining

transitions of A (D) to a unique reject state r which is made a sink state.

Proposition 21. For a given QDDC formula D the above algorithm computes the

maximally permissive supervisor MPS(D) if it exists.

The proposition follows straightforwardly by combining Theorem 3 with the cor-

rectness of standard safety synthesis algorithm [52]. We omit a detailed proof.

4.2.2 Maximally Permissive H-Optimal Supervisor (MPHOS)

Given a supervisor S and a desired soft requirement QDDC formula D which

should hold “as much as possible” (both are over input-output propositions (I,O)),

we give a method for constructing an “H-Optimal” sub-supervisor of S, which
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maximizes the expected value of count of D holding in next H moves when aver-

aged over all the inputs.

Recall the definition of an indicator variable for a QDDC formula as given in

Definition 19. We first consider A (Ind(D,w)) which is a deterministic supervisor

over input-output propositions (I ∪O,{w}), such that w is true at any position p

iff the past behaviour of variables (I ∪O) up to position p (i.e. in interval [0, p])

satisfies D. Now we define an Arena automaton A Arena = S � A (Ind(D,w)),

which is a supervisor over input-output variables (I,O ∪ {w}) (See Definition

16 for cascade product � of two Mealy Machines). It augments S by produc-

ing an additional output w which witnesses the truth of D. It has the property:

L(A Arena) ↓ (I ∪O) = L(S). Also for σ ∈ L(A Arena) and i ∈ dom(σ) we have

w ∈ σ [i] iff σ , [0, i] |= D. Thus, every transition of A Arena is labelled with w iff D

holds on taking the transition. Let the weight of transitions labelled with w be 1

and 0 otherwise. Thus, for o ∈ 2(O∪{w}) let wt(o) = 1 if w ∈ o and 0 otherwise.

Technically, this makes A Arena a weighted automaton.

In the supervisor A Arena = (Q,Σ,s,δ ,Q− {r}), where r is the unique reject

state, we define for (q∈Q) �= r and i∈ 2I , set LegalOutputs(q, i)= {o | δ (q, i,o) �=
r}. A deterministic selection rule for A Arena is a function f such that f (q, i) ∈
LegalOutputs(q, i) and a non-deterministic selection rule F for A Arena is a func-

tion F such that F(q, i)⊆ LegalOutputs(q, i) with F(q, i) �= /0.

Definition 22 (Policy). A policy Π is an infinite sequence F1,F2,F3 . . . of non-

deterministic selection rules. A deterministic policy will use only deterministic

selection rules. A policy is stationary (memory-less) if Fm = Fn ∀ m,n. For a

stationary policy Π, we will denote the selection function for state s and input i by

Π(s, i) such that Π(s, i) = F1(s, i) .
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Given an arena A Arena, a state s, a policy Π = F1,F2, . . . and an input sequence

ii ∈ (2I)+, we define the language L(A Arena, ii,s) as all runs of A Arena over the

input ii starting from state s. Moreover, we define the language under policy Π,

denoted by LΠ(A Arena, ii,s), as all runs over input ii starting from s and following

the selection rule Fk at step k. Each run in L or LΠ has the form (ii,oo). Note that

if Π is deterministic then LΠ(A Arena, ii,s) is a singleton set admitting a unique

run (ii,oo). However, for non-deterministic policies there may be several runs on

the same input ii. Let

Value(ii,oo) = Σ1≤k≤#ii wt(oo[k])). (4.1)

where #ii gives the length of ii. Thus, Value(ii,oo) gives the count of D holding

during the behaviour fragment (ii,oo) of A Arena.

H-Optimal Deterministic Policy Given an arena A Arena, a deterministic policy

π and a natural number H (called Horizon), we define the following utility value

for each state s of A Arena.

ValAvgπ(s,H) = Eii∈(2I)H {Value(ii,oo) | (ii,oo) ∈ Lπ(A Arena, ii,s)}

Note that, given a probability distribution pr(ii) over the set of inputs (2I)H of

length H, the expected value of g(ii) is defined as usual as

Eii∈(2I)H g(ii) = Σii∈(2I)H (pr(ii)×g(ii))

Here, we have assumed that all input sequences ii have equal probability, i.e. the

inputs occur in i.i.d. (independent and identically distributed) fashion at every

state. Hence, Eii∈(2I)H g(ii) operator computes the average of values returned by

function g over all the inputs ii ∈ (2I)H of length H.
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Definition 23 (Value of the Deterministic Policy). Given a deterministic policy

π = f1, f2, f3 . . . and a horizon H, the value of the policy in a state s is given by

Valπ(s,H) below.

Valπ(s,0) = 0

Valπ(s,H) = Ei∈2I {wt( f1(s, i)) + Valπ
�
(s�,(H −1))}

where, s� = δ (s,(i, f1(s, i)))

and,π � = f2, f3 . . .

It is easy to see that ValAvgπ(s,H) = Valπ(s,H). This is a well known routine

proof and we omit it here (see [90]).

Definition 24 (H-Optimal Deterministic Policy). For a given natural number

(horizon) H, a deterministic policy π � is called H-Optimal if for any other de-

terministic policy π we have,

Valπ
�
(s,H)≥ Valπ(s,H) ∀s,π .

We now explore the construction of such an H-Optimal policy. This will turn

out to be a stationary policy. We define a recursive operator to compute optimal

utility value of a state s for a given horizon H, which is denoted by ValOpt(s,H).

Intuitively it gives the maximal achievable value under any policy π and given

horiozn H.

Definition 25 (H-Optimal Utility Value). Let

ValOpt(s,0) = 0

ValOpt(s,H) = Ei∈2I maxo∈2(O∪{w}) : δ (s,(i,o))�=r

{wt(o) + ValOpt(δ (s,(i,o)),(H −1))}
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Definition 26. For a given horizon H, We define a deterministic stationary policy

π∗ as follows:

π∗(s, i) ∈ argmaxo∈2(O∪{w}) : δ (s,(i,o))�=r

{wt(o) + ValOpt(δ (s,(i,o)),(H −1))}

It may be noted that argmax may return a set of outputs which are equally optimal.

In π∗(s, i) we choose any one of them arbitrarily.

Theorem 27. The policy π∗ is H-Optimal i.e.

Valπ
∗
(s,H)≥ Valπ(s,H) ∀s,π .

Proof. Let, π be any policy. Proof is done by induction on H.

Base Step (H=0):

Valπ
∗
(s,0) = 0 = Valπ(s,0) for any state s.

Induction Step:

Assume that Valπ
∗
(s,H −1)≥ Valπ(s,H −1) for any policy π and state s.

Then, by Definition 23, 26 and Induction hypothesis, we have

wt(π∗(s, i)) + Valπ
∗
(δ (s,(i,π∗(s, i))),(H −1))≥

wt( f1(s, i)) + Valπ
�
(δ (s,(i, f1(s, i))),(H −1)) for any policy π

where π = f1, f2 . . . and π � = f2, f3 . . ..

Hence, Valπ
∗
(s,H)

= Ei∈2I {wt(π∗(s, i)) + Valπ
∗
(δ (s,(i,π∗(s, i))),(H −1))}

≥ Ei∈2I {wt( f1(s, i)) + Valπ
�
(δ (s,(i, f1(s, i))),(H −1))}

= Valπ(s,H)

H-Optimal Non-Deterministic Policy Given an arena A Arena, a non-deterministic

policy Π and a natural number H (called Horizon), we define the following utility
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value for each state s of A Arena. Recall that for nondeterministic policies, for an

input ii the set of behaviours LΠ(A Arena, ii,s) may contain one or more elements

depending on nondeterminstic choice of output. The policy has no control over

which of these outputs occurs, and in worst case outputs can occur adversarially.

Hence, we compute the value of a nondeterministic policy by taking worst case

view as, min {Value(ii,oo) | (ii,oo) ∈ LΠ(A Arena, ii,s)}. Thus, we define

ValAvgMinΠ(s,H) = Eii∈(2I)H min {Value(ii,oo) | (ii,oo) ∈ LΠ(A Arena, ii,s)}

Definition 28 (Value of the Non-Deterministic Policy). Given a non-deterministic

policy Π = F1,F2,F3 . . . and a horizon H, the value of a policy in a state s is given

by ValΠ(s,H) below.

ValNonDetΠ(s,0) = 0

ValNonDetΠ(s,H) = Ei∈2I mino∈F1(s,i) {wt(o) + ValNonDetΠ
�
(s�,(H −1))}

where, s� = δ (s,(i,o))

and,Π� = F2,F3 . . .

It is easy to see that ValAvgMinΠ(s,H) = ValNonDetΠ(s,H). The proof is similar

to that of deterministic policies (see [90]).

Definition 29 (Non-Deterministic H-Optimal Policy). For a given natural number

(horizon) H, a non-deterministic policy Π� is called H-Optimal if for any other

non-deterministic policy Π we have,

ValNonDetΠ
�
(s,H)≥ ValNonDetΠ(s,H) ∀s,Π.

We now explore the construction of such non-deterministic H-Optimal policy.

This will turn out to be a stationary policy. We use the recursive operator ValOpt(s,H)
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given earlier in Definition 25 to compute the optimal utility value of a state s and

horizon value H. Intuitively it also gives the maximal achievable value under any

non-deterministic policy Π.

Definition 30. We define a non-deterministic stationary policy Π∗ as follows:

Π∗(s, i) = argmaxo∈2(O∪{w}) : δ (s,(i,o))�=r

{wt(o) + ValOpt(δ (s,(i,o)),(H −1))}

It may be noted that argmax returns a set of outputs which are equally optimal. In

Π∗(s, i) we keep all the optimal choices.

Theorem 31. The policy Π∗ is H-Optimal i.e.

ValNonDetΠ
∗
(s,H)≥ ValNonDetΠ(s,H) ∀s,Π.

Proof. Let, Π be any policy. Proof is done by induction on H.

Base Step (H=0):

ValNonDetΠ
∗
(s,0) = 0 = ValNonDetΠ(s,0) for any state s.

Induction Step:

Assume that ValNonDetΠ
∗
(s,H − 1) ≥ ValNonDetΠ(s,H − 1) for any policy Π

and state s.

Then, by Definition 28, 30 and Induction hypothesis, we have

mino∈Π∗(s,i) {wt(o) + ValNonDetΠ
∗
(δ (s,(i,o)),(H −1))}≥

mino∈F1(s,i) {wt(o) + ValNonDetΠ
�
(δ (s,(i,o)),(H−1))} for any policy Π.

where Π = F1,F2 . . . and Π� = F2,F3 . . ..

Hence, ValNonDetΠ
∗
(s,H)

= Ei∈2I { mino∈Π∗(s,i) {wt(o) + ValNonDetΠ
∗
(δ (s,(i,o)),(H −1))}}

≥ Ei∈2I { mino∈F1(s,i) {wt(o) + ValNonDetΠ
�
(δ (s,(i,o)),(H −1))}}

= ValNonDetΠ(s,H)
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Obtaining the H-Optimal supervisor We prune the supervisor A Arena to retain

only the transitions with the outputs in set Π∗(s, i) (as these are all equally opti-

mal). This gives us Maximally permissive H-Optimal sub-supervisor of A Arena

w.r.t. D. This supervisor is denoted by MPHOS(A Arena,H) or equivalently

MPHOS(S,D,H). The following proposition follows immediately from the con-

struction of MPHOS(S,D,H).

Proposition 32. For any supervisor S and a QDDC formula D the following re-

lations hold.

1. S ≤det MPHOS(S,D,H), for all H.

2. MPHOS(S,D,H) is maximally permissive H-Optimal sub-supervisor of S.

3. If MPHOS(S,D,H)≤det S� then S� is H-Optimal.

Proof. 1. The construction of MPHOS(S,D,H) starts by constructing A Arena.

It has a property that L(A Arena) ↓ (I ∪O) = L(S). Therefore L(A Arena) ac-

cepts those words, which are accepted by L(S). To obtain MPHOS(S,D,H)

we prune some of the non-deterministic choices in A Arena. Therefore,

L(MPHOS) ⊆ L(A Arena), hence S ≤det MPHOS(S,D,H).

2. By Theorem 31, MPHOS(S,D,H) is H-Optimal. Moreover, from Defi-

nition 30, after assigning H-Optimal utility values to each state, we ob-

tain MPHOS by pruning only those non-deterministic output choices which

does not go the optimal utility state. Thus, the MPHOS will contain all

H-Optimal transitions and will produce maximally permissive H-Optimal

supervisor.
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3. The proof for this follows from the construction of MPHOS. As MPHOS

retains all the transitions which are H-Optimal, so any pruning of non-

deterministic choices of outputs in MPHOS will preserve the H-Optimality.

4.2.3 From Supervisor to Controller

A controller Cnt can be obtained from a supervisor S by resolving output non-

determinism in S. We give a rather straightforward mechanism for this. We allow

the user to specify a total ordering Ord on the set of output variables 2O. A given

supervisor S is determinized by retaining only the highest ordered output among

those permitted by S. This is denoted DetOrd(S). The output ordering is specified

by giving a lexicographically ordered list of output variable literals. This facility

is used to determinize MPHOS and MPS supervisors as required.

Example 33. For a supervisor S over variables (I,{o1,o2}), an example output

order can be given as lexicographically ordered list (o1 > !o2). Then, for any

transition the determinization step will try to select the highest ordered output

(which is allowed by S) from the list {(o1 = true,o2 = f alse), (o1 = true,o2 =

true), (o1 = f alse,o2 = f alse), (o1 = f alse,o2 = true)}.

4.2.4 Controller Synthesis Algorithm

A DCSynth specification is a tuple (I,O,Dh,Ds), where I and O are the set of

input and output variables, respectively. Formula Dh called the hard requirement

and formula Ds called the soft requirement are QDDC formulas over the set of

propositions PV = I ∪O. Let H be a natural number called Horizon. The objec-
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1 ControllerSynthesis

2 Input: S = (I,O,Dh,Ds). Horizon H, Output ordering Ord

3 Output: Controller Cnt for S.

4 1. A mon = A (Dh) /*Monitor automaton for Dh*/

5 2. A MPS = MPS(A mon)

/* If A MPS does not exist then return UNREALIZABLE */

6 3. A MPHOS = MPHOS(A MPS,Ds,H)

7 4. Cnt = Detord(A
MPHOS).

8 5. Encode the automaton Cnt in an implementation language.

Figure 4.1: Controller Synthesis Algorithm

tive in DCSynth is to synthesize a deterministic controller which (a) invariantly

satisfies the hard requirement Dh, and (b) is H-Optimal w.r.t. Ds amongst all the

controllers satisfying (a).

Given a specification (I,O,Dh,Ds), a horizon value H (a natural number) and

a total ordering Ord on the set of outputs 2O, the controller synthesis in DCSynth

can be given as Algorithm in Figure 4.1.

Step 1 and 2 are described in MPS construction given in Section 4.2.1. Step

3 uses the MPHOS construction given in Section 4.2.2, whereas Step 4 uses the

determinization method of Section 4.2.3.

Theorem 34. The controller Cnt produced by Algorithm given in Figure 4.1 in-

variantly satisfies Dh, and it intermittently, but H-Optimally, satisfies Ds.

Proof. By Proposition 21, A MPS realizes inv Dh. Then, by Proposition 32, A MPHOS

and Cnt are sub-supervisors of A MPS and hence they also realize inv Dh. More-
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over, by Theorem 31, we get that A MPHOS is H-Optimal w.r.t. Ds. Hence, by

Proposition 32, we get that Cnt which is a sub-supervisor of A MPHOS is also

H-Optimal with respect to Ds.

At all stages of above synthesis, the automata/supervisors A (Dh), A (Ds),

A MPS and A MPHOS and Cnt are all represented as Semi-Symbolic DFA (SSDFA)

using the MONA [66] DFA data structure. In this representation, the transition

function is represented as a multi-terminal BDD. MONA DFA library provides

a rich set of automata operations including product, projection, determinization

and minimization over the SSDFA. The algorithms discussed in Sections 4.2.1,

4.2.2 and 4.2.3 are implemented over SSDFA. Section 4.4 gives the details of

this implementation. Moreover, these algorithms are adapted to work without

actually expanding the specification automata into game graph. At each stage

of computation, the automata and supervisors are aggressively minimized, which

leads to significant improvement in the scalability and computation time.

Generalized DCSynth specification: In general, the tool DCSynth supports

specification of soft requirements as an ordered list of formulas with user defined

weights. The Generalized DCSynth specification is a tuple S = (I,O,Dh,�Ds
1 :

θ1, · · · ,Ds
k : θk�) where I, O and Dh have the same meaning. However, the soft

requirement �Ds
1 : θ1, · · · ,Ds

k : θk� is now a list where each Ds
i is a QDDC for-

mula over I ∪O. θi ∈ N specifies the weight of the soft requirement Ds
i . Then,

the weight (reward) of a transition is defined as the sum of weights of each of the

formula Ds
i which holds on taking the transition. The tool DCSynth produces a

MPHOS, which maximizes the cumulative expected value of this reward over next

H-steps of execution. This cumulative reward is averaged over all input sequences

of length H.
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Section 4.4 gives the details of symbolic computation of supervisors and con-

trollers using SSDFA. The use of SSDFA leads to significant improvement in the

scalability and computation time of the tool.

4.3 Case Studies and Experiments

For a DCSynth specification (I,O,Dh,Ds), Dh and Ds can be any QDDC formulas.

While invariance of Dh is guaranteed by the synthesis algorithm, the quality of the

controller is controlled by optimizing the outputs for which the soft requirement

Ds holds. For example, Ds may specify outputs which save energy, giving an

energy efficient controller. The soft requirement can also be used to improve the

robustness [12] of the controller, which is discussed in Chapter 5 of this thesis.

Below, we consider specifications structured as assumptions and commitments,

and their optimized robustness using our soft requirement guided synthesis.

4.3.1 Types of Controller Specification

For many examples, the controller specification can be given as a pair (A,C) of

QDDC formulas over input-output variables (I,O). Here, commitment C is a for-

mula specifying the desired behaviour which must ideally hold invariantly. But

this may be unrealizable, and a suitable assumption A on the behaviour of en-

vironment may have to be made for C to hold. In case the assumption A does

not hold, it is still desirable that controller satisfies C intermittently but “as much

as possible”. In the next Section 4.3.2, we give a method to specify intermit-

tent requirements, which is useful in many situations. Given this assumption-

commitment pair (A,C), we specify four types of derived controller specifications
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(I,O,Dh,Ds) as follows.

Type Hard Requirement Dh Soft Requirement Ds

Type0 C true

Type1 (A ⇒C) true

Type2 true C

Type3 (A ⇒C) C

Type0 controller gives the best guarantee but it may be unrealizable. Type1 con-

troller provides a firm but conditional guarantee. Type2 controller tries to achieve

C in H-Optimal fashion irrespective of any assumption and Type3 Controller pro-

vides firm conditional guarantee and it also tries to satisfy C in H-Optimal fashion

even when the assumption does not hold.

4.3.2 Invariant v/s Intermittent requirement Specification

In our synthesis framework, QDDC is used to specify interval based as well as

point based past time temporal requirements of systems. These requirements are

intended to specify assumptions and commitment which may hold intermittently

during execution. The Assumption and Commitment based requirement specifi-

cation and Soft requirements, as discussed in previous section typically are inter-

mittent in nature. Intermittent specification is useful in specifying recoverable be-

haviours for controller synthesis. The concept of H-Optimality also makes sense

when the requirements are intermittent. In following sections, we illustrate the

concept of invariant and intermittent requirements, and methods to specify inter-

mittent requirements in our framework.
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Invariant and Prefix Closed Requirement

The satisfaction of an Invariant or Prefix Closed requirement at any position i

depends on full past behaviour. Following specifications describe such require-

ments.

– Given a QDDC formula D, we can specify []D as full past property which

states that all intervals in the past invariantly satisfy D.

– Another way of specifying invariant requirement is [[P]] where P is a propo-

sition. This requirement states that P should be satisfied invariantly at every

position in past including the current position.

– Similarly, we can also define pref (D) as full past requirement which states

that all prefix intervals in the past satisfy D.

It may be noted that these are prefix closed requirements and hence once these

become false at a position i they can never be recovered for any position j > i.

Typically, for specification of a controllers we would need requirements to be

recoverable, which is described in the following paragraph.

Intermittent and Bounded Past Requirements

In general the systems under consideration have bounded memory and the tem-

poral requirements are stated over bounded interval. Bounded past requirements

are those properties for which the satisfaction depends only on the last n cycle

interval, where n is an integer constant. Following requirements describe such

properties.
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– Given a QDDC formula D, we can specify true^D as suffix property which

is satisfied if a suffix intervals satisfy D. But full past behaviour is also a

suffix interval and hence this property may also become non-intermittent.

– Another way of defining intermittent property is true^ < P > where P is a

proposition, which states that P should be satisfied at current position in any

behaviour.

– We now give a generic way to derive an intermittent specification from

a given QDDC formula D and an integer bound K (which specifies how

many past cycles are required to evaluate the satisfaction of D). We define,

KBounded(D,K) = ((slen < K) => D) && (true ˆ (slen = K)

=> true ˆ ((slen = K) && D)).

For any QDDC formula D, σ , i |=KBounded(D,n) iff (a) i≤ n and σ , i |=D,

OR (b) i > n and σ , [(i−n), i] |= D.

As the satisfaction of these kind of specification depends only on the bounded

past (i.e. looks at only bounded suffix interval), they give rise to intermittent

(recoverable) requirements. In our case studies we would prefer to use these kind

of specifications.

4.3.3 Performance Metrics: Measuring quality of controllers

For the same assumption commitment pair (A,C), we can synthesize diverse con-

trollers using different specification types, horizon values and output orderings.

In order to compare the performance of these different controllers, we define two

metrics – i) Expected Case Performance measure to compare average case be-

haviour, and ii) Must Dominance to compare the guaranteed behaviour.
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i) Expected Case Performance: Given a controller Cnt over input-output al-

phabet (I,O) and a QDDC formula (regular property) C over variables I ∪O, we

can construct a Discrete Time Markov Chain (DTMC), denoted Muni f (Cnt,C),

whose analysis allows us to measure the probability of C holding in long runs

(steady state) of Cnt under random independent and identically distributed (iid)

inputs. This value is designated as Euni f (Cnt,C). The construction of the desired

DTMC is as follows. The product Cnt ×A (C) gives a finite state automaton with

the same behaviours as Cnt. Moreover, it is in accepting state exactly when C

holds for the past behaviour. (Here A (C) works as a total deterministic monitor

automaton for C without restricting Cnt). By assigning uniform discrete proba-

bilities to all the inputs from any state, we obtain the DTMC Muni f (Cnt,C) along

with a designated set of accepting states, such that the DTMC is in accepting

state precisely when C holds. Standard techniques from Markov chain analy-

sis allow us to compute the probability (Expected value) of being in the set of

accepting states on long runs (steady state) of the DTMC. This gives us the de-

sired value Euni f (Cnt,C). A leading probabilistic model checking tool MRMC

implements this computation [65]. In DCSynth, we provide a facility to compute

Muni f (Cnt,C) in a format accepted by the tool MRMC. Hence, using DCSynth

and MRMC, we are able to compute Euni f (Cnt,C).

ii) Guaranteed Performance as Must-Dominance: Consider two supervisors

S1, S2 and a regular property C. Define that Si guarantees C for an input sequence

ii, provided for every output sequence oo ∈ Si[ii] produced by Si on ii we have that

(ii,oo) satisfies C. We say that S2 must dominates S1 with respect to the property

C provided for every input sequence ii, if S1 guarantees C then S2 also guarantees

C. Thus, S2 provides a superior must guarantee of C than S1.
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Definition 35 (Must Dominance). Given two supervisors S1,S2 and a property

(formula) C over input-output alphabet (I,O), the must dominance of S2 over

S1 is defined as S1 ≤C
dom S2 iff MustInp(S1,C) ⊆ MustInp(S2,C), where

MustInp(Si,C) = {ii ∈ (2I)+ | ∀oo ∈ (2O)+.((ii,oo)∈ L(Si)⇒ (ii,oo) |=C}.

The following proposition states that any arbitrary resolution of non-determinism

in supervisors preserves the must-guarantees.

Proposition 36. S1 ≤det S2 implies that S1 ≤D
must S2 for any C ∈ QDDC.

We establish must dominance relations among MPHOS supervisors of various

types of specifications discussed in Section 4.3.1.

Lemma 37. For any QDDC formulas A and C, and any horizon H, the following

must dominance relations will hold (for any given H)

1. MPHOS1(A,C)) ≤C
dom MPHOS3(A,C))≤C

dom MPHOS0(A,C))

2. MPHOS2(A,C))≤C
dom MPHOS0(A,C))

where, MPHOSi(A,C) denote the maximally permissive H-Optimal supervisor

A MPHOS of Synthesis Algorithm given in Figure 4.1 for the specification Typei(A,C).

Proof. By definition, MPHOS0(A,C) invariantly satisfies C for all input se-

quences. Hence, MustInp(MPHOS0(A,C),C) = (2I)∗, which immediately gives

us that S ≤C
dom MPHOS0(A,C)) for any supervisor S.

Now we prove the remaining relation MPHOS1(A,C))≤C
dom MPHOS3(A,C)).

Let S = MPS(A ⇒C). Then, MPHOS1(A,C)) = MPHOS(S, true,H) = S. The

second equality holds as soft requirement true does not cause any pruning of out-

puts in H-Optimal computation. By definition MPHOS3(A,C)=MPHOS(S,C,H).
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By Proposition 32, S ≤det MPHOS(S,C,H) which gives us the required re-

sult.

Note that in general, MPHOS2(A,C) is theoretically not comparable with

MPHOS1(A,C) and MPHOS3(A,C), as MPHOS2(A,C) is a supervisor that does

not have to meet any hard requirement, but it optimally meets the soft require-

ments irrespective of the assumption. However, for specific (A,C) instances, some

additional must-dominance relations may hold between MPHOS2(A,C) and the

other supervisors.

4.3.4 Case Studies: Mine-pump and Arbiter Specifications

We have carried out experiments with i) the Mine-pump specification, and ii) an

Arbiter specification.

Mine-pump:

The Mine-pump controller (see [83]) has two input sensors: high water level sen-

sor HH2O and methane leakage sensor HCH4; and one output, PUMPON to keep

the pump on. The objective of the controller is to safely operate the pump in

such a way that the water level never remains high continuously for more that w

cycles. Thus, Mine-pump controller specification has input and output variables

({HH2O,HCH4},{PUMPON}).
We have following assumptions on the mine and the pump. Their conjunction

is denoted by MineAssume(ε,ζ ,κ) with integer parameters ε,ζ ,κ . Being of the

form []D each formula states that the property D (described in text) holds for all

observation intervals in past.
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- Pump capacity: ([]!(slen = ε && ([[PUMPON && HH2O]]^�HH2O�))).
If the pump is continuously on for ε cycles with water level also continu-

ously high, then water level will not be high at the ε +1 cycle.

- Methane release: [](([HCH4]^[!HCH4]^�HCH4�)⇒ (slen > ζ )) and

[]([[HCH4]]⇒ slen < κ). The minimum separation between the two leaks

of methane is ζ cycles and the methane leak cannot persist for more than κ

cycles.

The commitments are as follows. The conjunction of commitments is denoted by

MineCommit(w) and they hold intermittently in absence of assumption.

- Safety conditions: true^�((HCH4 || !HH2O)⇒ !PUMPON))� states that

if there is a methane leak or absence of high water in current cycle, then

pump should be off in the current cycle. Formula !(true^([[HH2O]] && slen=

w)) states that the water level does not remain continuously high in last

w+1 cycles.

The Mine-Pump specification denoted by MinePump(w,ε,ζ ,κ) is given by the

assumption-commitment pair (MineAssume(ε,ζ ,κ),MineCommit(w)). The four

types of DCSynth specifications of Section 4.3.1 can be derived from this.

Arbiter:

We now give the specification of a synchronous bus arbiter. This is an enhanced

version of the specification discussed as Example 14. An n-cell synchronous bus

arbiter has inputs {reqi} and outputs {acki} where 1 ≤ i ≤ n. In any cycle, a

subset of {reqi} is true and the controller must set one of the corresponding acki to

true. The arbiter commitment, ArbCommit(n,k), is conjunction of the following

properties.
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Mutex(n) = trueˆ� ∧i�= j ¬(acki ∧ack j) �
NoLoss(n) = trueˆ� (∨ireqi)⇒ (∨ jack j) �
NoSpurious(n) = trueˆ� ∧i (acki ⇒ reqi) �
Response(n,k) = (∧1≤i≤n (Resp(reqi,acki,k)) where

Resp(req,ack,k) = trueˆ(([[req]] && (slen = (k−1))) ⇒
trueˆ(scount ack > 0 && (slen = (k−1)))

The QDDC formula trueˆ�P� holds at a point i in execution if the proposition

P holds at that point. Thus, the formula Mutex(n) gives mutual exclusion of ac-

knowledgments; NoLoss(n) states that if there is at least one request then there

must be an acknowledgment; and NoSpurious(n) states that acknowledgment is

only given to a requesting cell. Formula trueˆ(([[req]] && (slen = (k − 1)))

states that in the last k cycles req is invariantly true. Similarly, the formula

trueˆ(scount ack > 0 && (slen = (k − 1))) states that in last k cycles the ack

has been true at least once. Then, the formula Resp(req,ack,k) states that if req

has been continuously true in last k cycles, there must be at least one ack within

last k cycles. So, Response(n,k) says that each cell requesting continuously for

last k cycles must get an acknowledgment within last k cycles.

A controller can invariantly satisfy ArbCommit(n,k) if n ≤ k. For example,

Tool DCSynth gives us a concrete controller for the commitment Dh =ArbCommit(6,6).

It is easy to see that there is no controller which can invariantly satisfy ArbCommit(n,k)

if k < n. To see this, consider the case when all reqi are continuously true. Then,

it is not possible to give response to every cell in less than n cycles due to mutual

exclusion of reqi.

To handle such desired but unrealizable requirement we make an assumption.

Let the proposition Atmost(n, i) be defined as ∀S ⊆ {1 . . .n}, |S|≤ i. ∧ j/∈S ¬req j.
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It states that at most i out of total n requests can be true simultaneously. Then, the

arbiter assumption is the formula ArbAssume(n, i) = true^�Atmost(n, i)�, which

states that Atmost(n, i) holds at the current cycle.

The specification of the synchronous arbiter is the assumption-commitment

pair (ArbAssume(n, i),ArbCommit(n,k)), which is denoted by Arbiter(n,k, i). Here,

n denotes the number of clients, k is the response time and i is the maximum num-

ber of request that can be true simultaneously.

4.3.5 Experimental Evaluation

Given an assumption-commitment pair (A,C) the four types of DCSynth speci-

fications can be derived as given in Section 4.3.1. Given any such specification,

a horizon value H, and an ordering of outputs, a controller can be synthesized

using our tool DCSynth as described in Section 4.2.4. For the Mine-pump in-

stance MinePump(8,2,6,2), we synthesized controllers for all the four derived

specification types with horizon value H = 50 and output ordering PUMPON.

These controllers choose to get rid of water aggressively by keeping the pump

on whenever possible. Similarly, controllers were also synthesized with the out-

put ordering !PUMPON. These controllers save energy by keeping the pump off

whenever possible. Note that, in our synthesis method, hard and soft requirements

are fulfilled before applying the output orderings.

For the Arbiter instance Arbiter(5,3,2) also, controllers were synthesized for

all the four derived specification types with horizon value H = 50 and output or-

dering ArbDe f = (a1 > a2 > a3 > a4 > a5). This ordering tries to give acknowl-

edgment such that client i has priority higher than client j for all i < j.

In Table 4.1 we give the performance of the of tool DCSynth in synthesizing
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Table 4.1: Synthesis from Mine-pump(8,2,6,2) and Arbiter(5,3,2) specifications

in DCSynth. The last column gives the expected value of commitment in long run

on random inputs.

DCSynth Specification Synthesis (States/Time)

Sr Controller Output MPS MPHOS Controller Expected

No type Ordering Stats Stats Stats Value

MinePump(8,2,6,2)

1 Type0 - Unrealizable

2 Type1 PUMPON 70/0.00045 70/0.00254 21/0.00220 0.0

3 Type2 PUMPON 1/0.00004 10/0.00545 10/0.00033 0.99805

4 Type3 PUMPON 70/0.00045 75/0.044216 73/0.00081 0.99805

5 Type1 !(PUMPON) 70/0.00045 70/0.00254 47/0.00230 0.0

6 Type2 !(PUMPON) 1/0.00004 10/0.00545 10/0.00019 0.99805

7 Type3 !(PUMPON) 70/0.00045 75/0.044216 73/0.00082 0.99805

Arbiter

1 Type0 - Unrealizable

2 Type1 ArbDe f 13/0.000226 13/0.004794 11/0.007048 0.0

3 Type2 ArbDe f 1/0.00001 207/1.864346 201/0.058423 0.9930985

4 Type3 ArbDe f 13/0.000213 207/1.897907 201/0.057062 0.9930985

these controllers. The table gives the time taken at each stage of the synthesis

algorithm, and the sizes of the computed supervisors/controllers. The experiments

were conducted on Linux (Ubuntu 16.04) system with Intel i5 64 bit, 2.5 GHz

processor and 4 GB memory.

Experimental Evaluation of Expected Case Performance: The last column

of Table 4.1 gives the expected value of commitment holding in long run for the

controllers of various types for both Mine-pump and Arbiter instances. This value

is computed as outlined in Section 4.3.3. The results are quite encouraging.

92



It is observed that in both the case studies Type0 controller is unrealizable. It

is also evident from Table 4.1 that in both the examples, the controllers for Type1

(i.e., when soft-requirements are not used) specifications have 0 expected value of

commitment C. This is because of the strong assumptions used in guaranteeing C,

which themselves have expected value 0. In such a case, whenever the assumption

fails, the synthesis algorithm has no incentive to try to meet C.

On the other hand, with soft requirement C in Type2 and Type3 specifications,

the H-Optimal controllers have the expected value of C above 99%. This remark-

able increase in the expected value of Commitment shows that H-Optimal synthe-

sis is very effective in figuring out controllers which meet the desirable property

C as much as possible, irrespective of the assumption.

Experimental Evaluation of Must-Dominance: Given supervisors S1,S2 for

an assumption-commitment pair (A,C), since both S1,S2 are finite state Mealy

machines and C is a regular property, an automata theoretic technique can auto-

matically check whether S1 ≤C
dom S2. This technique is implemented in our tool

DCSynth. In case S1 ≤C
dom S2 does not hold, the tool provides a counter example.

For our case studies, we experimentally compare must dominance of supervi-

sors MPHOSi(A,C) as defined in Lemma 37. Recall that MPHOSi(A,C) denotes

the maximally permissive H-Optimal supervisor for the specification Typei(A,C).

The results obtained (with H = 50) are as follows.

1. Mine-pump instance Minepump(8,2,6,2) denoted by MP(8,2,6,2)):

MPHOS1(MP(8,2,6,2)) <C
dom MPHOS3(MP(8,2,6,2)) =C

dom

MPHOS2(MP(8,2,6,2))
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2. Arbiter instance Arb(5,3,2):

MPHOS1(Arb(5,3,2)) <C
dom MPHOS2(Arb(5,3,2)) =C

dom

MPHOS3(Arb(5,3,2))

MPHOS3 must dominates MPHOS1 as expected, as MPHOS3 is a sub-supervisor

of MPHOS1. What is interesting and surprising is that in both the case studies

Arbiter and Mine-pump, the MPHOS2 and MPHOS3 supervisors are found to be

syntactically identical. This is not theoretically guaranteed, as Type2 and Type3

supervisors are must-incomparable in general. Thus, in these examples, the H-

Optimal MPHOS2 already provides all the must-guarantees of the MPHOS3 hard

requirements. The H-optimization of C seems to exhibit startling ability to guar-

antees C without human intervention of providing suitable assumption.

So far we have considered commitment as soft requirement. In general, the

soft requirement can be used to optimize MPS w.r.t. any regular property of inter-

est, whereas the hard requirements gives the necessary must guarantees. Such soft

requirements may embody performance and quality goals. Hence, it is advisable

to use the combination of hard and soft requirement based on the criticality of

each requirement.

4.4 Implementation with Semi-Symbolic DFA

Broadly, the computation of controller goes through the steps of (a) Computing

hard requirement monitor (b) Computing MPS (c) Computing MPHOS, and (d)

Determinization using output preference. This is outlined in Algorithm of Figure

4.1 in Section 4.2. We now consider efficient implementation of these steps using
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the semi-symbolic automaton (SSDFA) representation of tool MONA introduced

in Section 2.3. We now give the detailed description of this representation, where

the transition function is encoded as multi-terminal BDD (MTBDD).

MTBDD is a generalization of BDD in a sense that BDD is a directed acyclic

graph used to encode some Boolean function f : Bl → B for given ’l’ possible

Boolean variables. MTBDD is a directed acyclic graph used to encode multi-

valued function f : Bl → D , where D is the range of this multi-valued function.

Now, we briefly describe the SSDFA representation of an automaton. Its al-

phabet is Σ = 2IUO, where each path π in MTBDD represents an element of Σ.

The path π ends in a terminal node which is labelled by δ (s,π). For example, the

Figure 4.2(a) gives an explicit DFA. Its alphabet Σ is 4-bit vectors giving value

of propositions (req1,req2,ack1,ack2) and set of states S = {1,2,3,4}. Being a

safety automaton it has a unique reject state 4 and all the missing transitions are

directed to it. (State 4 and transitions to it are omitted in Figure 4.2(a) for brevity.)

Figure 4.2: Example automaton (a): External format (b): SSDFA format

Figure 4.2(b) gives the SSDFA representation for the above automaton. Note

that states numbered from 1 to 4, are explicitly listed in the array (called the

StateArray). The final states are marked as 1 and non-final states marked as −1.
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(For technical reasons there is an additional state 0 which may be ignored here and

state 1 may be treated as the initial state). Each state s points to shared MTBDD

node encoding the transition function δ (s) : Σ → S with each path ending in the

next state (represented by square node called the terminal nodes). We assume that

the MTBDD node pointed by state s can be accessed by s.bddNode, which returns

the pointer to the corresponding MTBDD node. The MTBDD node which are

pointed by states in the automaton are called the root nodes. Each circular node

of MTBDD represents a decision node, in our example the circular nodes with in-

dices 0,1,2,3 are the decision nodes representing variables req1,req2,ack1,ack2

respectively. Solid edges lead to true cofactors and dotted edges to false cofactors.

The tool MONA [55] provides a library implementing automata operations in-

cluding product, complementation, projection, determinization and minimization

on SSDFA format. Moreover, automata may be constructed from scratch by giv-

ing list of states and adding transitions one at a time. A default transition must be

given to make the automaton total.

Remark 1: DFA in Figure 4.2 also denotes a Output-nondeterministic Mealy ma-

chine with input alphabet (req1,req2) and output alphabet (ack1,ack2). Automa-

ton is nondeterministic in its output as δ (1,(1,1,1,0)) = 2 and δ (1,(1,1,0,1)) =

3. We require that input variables always occur before the output variables.

We use the MTBDD based DFA library in MONA for implementing our tool

DCSynth. The MTBDD node data structure has been extended for efficient im-

plementation of DCSynth. Most of the steps in computation of MPS and MPHOS

involve recursive top-down traversal of the MTBDD structure where result at a

root node is an aggregate of the nodes/paths encountered. The performance of

this can be significantly improved with memoization to avoid repeated compu-
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tation at sub-nodes in the DAG data-structure. Additional memory is needed at

BDD nodes for storing the intermediate values at interior nodes. Following are

the description of the additional fields of a BDD node say BN used in the tool

implementation.

– BN.variable : Gives the variable associated with the decision node.

– BN.state : This field in any terminal node stores the state number of the

next states in the transition.

– BN.left : This field stores the pointer to false cofactor (BDD node) of BN.

– BN.right : This field stores the pointer to right cofactor (BDD node) of BN.

– BN.visited : This is also a boolean value to check whether the BN is al-

ready explored. This will be used for memoization in MPS and MPHOS

computation.

– BN.status: This returns a boolean value. Used for obtaining MPS during

computation of winning region.

– BN.optValue : This field stores a floating point value used for optimal util-

ity value calculation during MPHOS construction.

– BN.optOutputList : This field stores the list of all optimal output paths and

next state pair from BDD node BN.

4.4.1 Computing Maximally Permissive Supervisor (MPS)

Let the hard requirement automaton be A (Dh) = �S,2I∪O,δ ,F�. We construct the

maximally permissive supervisor by applying Cstep(s,X) (for X ⊆ F) to compute
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set of winning states G. The function Cstep: X × 2X → {true, f alse} for a given

SSDFA representation of an automaton A (Dh) and X ⊆ F is defined as follows:

Cstep(s, X) = true if ∀ i ∈ I, ∃ o ∈ O : δ (s,(i,o)) ∈ X, otherwise f alse.

This requires efficient implementation of Cstep(s,X) over MTBDD represen-

tation of A (Dh). This allows us to compute Cpre(A (Dh),X) of Section 4.2.1, by

iterating Cstep over all the states s ∈ X . The process is repeated till the fixed point

is reached as given in algorithm of Figure 4.5.

The algorithm for efficient computation of Cstep is given in Figure 4.3. The

algorithm for Cstep marks, (a) each leaf node representing state s by truth value of

s ∈ X , (b) each decision node associated with an input variable with AND of its

children’s value, and (c) each decision node associated with output variable with

OR of its children’s value. The computation is carried out recursively with mem-

oization on MT BDD and takes time of the order of |MT BDD|, where |MT BDD|
is the number of BDD nodes in it. In contrast the enumerative method for imple-

mentation of Cstep would have taken time of the order of 2|I∪O|.

Algorithm Cstep(s,X), applied to each member of X over MTBDD represen-

tation A (Dh), gives us Cpre(A (Dh),X) (as given in line 7 to 11 of algorithm

of Figure 4.5). Finally Cpre(A (Dh),X) is used to compute the largest set of

winning states G ⊆ F as given in the Section 4.2.1. The pseudo code of this

is given in the Figure 4.5. The overall time complexity of ComputeWinning is

O(|F |× (|MT BDD|)), where |F | is the size of set of final states in A (Dh). This

worst case complexity comes from the fact that there can be maximum |F | iter-

ations to reach the fixed point. In practice the algorithm converges much faster.

The loop for clearing the visited field of each BDD node using memoization (See

algorithm ClearVisited in Figure 4.4) after each fix point iteration will take time
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O|MT BDD|, as every BDD node has to be traversed only once. Similarly, the

loop for computing new status field with memoization for each BDD node will

also take time O|MT BDD|.
Next, given a set G of winning state for A (Dh), we compute the automaton

1 ComputeCstep

2 Input: n = BDD node for s in A (Dh), X ⊆ F

3 Output: Boolean status (representing whether s is in Cpre(A (Dh),X)).

4 if n.visited then

5 return n.status /* Memoization */

6 else

7 if n is a terminal node then

8 n.status = (n.state ∈ X)

9 else

10 if n.variable is an input variable then

11 n.status = ComputeCstep(n.left,X) AND ComputeCstep(n.right,X)

12 else

13 n.status = ComputeCstep(n.left, X) OR ComputeCstep(n.right, X)

14 end

15 end

16 n.visited = true

17 return n.status

18 end

Figure 4.3: Algorithm for computing Cstep function
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A MPS = �SMPS,2I∪O,δ MPS,FMPS� = �G∪{r},2I∪O,G,δ �� by only retaining tran-

sitions between the winning states G. Call this step as MPSSubgraph(A (Dh),G)

Here r is the unique reject state introduced to make the automaton total. We con-

sider the following two methods for computing MPSSubgraph(A (Dh),G).

– Enumerative method: A MPS is constructed from A (Dh) by adding a tran-

sition at a time as follows: for any s ∈ G if δ (s,(i,o)) ∈ G then add the

1 ClearVisited

2 Input: n (a MTBDD node)

3 Output: NIL.

4 if n is a terminal node then

5 n.visited = false

6 return

7 end

8 if not n.visited then

9 return /* Memoization */

10 else

11 ClearVisited(n.left)

12 ClearVisited(n.right)

13 n.visited = false

14 return

15 end

Figure 4.4: Algorithm for clearing the visited field of MTBDD structure below a

given node
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transition (s,(i,o),δ (s,(i,o)) ∈ δ � to A MPS. Clearly, this algorithm has

lower bound on time complexity of the order of |S| × 2|I∪O|. Finally, we

make AMPS total by adding all the unaccounted transitions from any state to

the reject state r.

– Symbolic method: in this method, the MTBDD of A (Dh) is modified so

that each edge pointing to a state in S−G is changed to go to the reject

1 ComputeWinning

2 Input: A (Dh) = �S,2I∪O,δ ,F�
3 Output: G ⊆ F .

4 G = F

5 do

6 for every state s ∈ S

7 ClearVisited(s.bddNode)

8 end

9 G� = G

10 for each s ∈ G’

11 if ComputeCstep(s.bddNode, G’) = f alse then

12 remove s from G

13 end

14 end

15 while(G != G’)

16 return G

Figure 4.5: Algorithm for computing the winning region
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state r. Note that this makes states in S − (G ∪ {r}) inaccessible. Now

this modified SSDFA is minimized to get rid of inaccessible states and to

get smaller MPS. The worst case time complexity of this computation is

O(|MT BDD|) for modifying the links and (max(|MT BDD|, |F |)×|F |) for

minimization although in practice the minimization is much faster[55]. It

should be noted that typically |MT BDD| << 2|I∪O|. Hence the symbolic

algorithm has better worst case complexity.

We give experimental results of computation of MPSSubgraph(A (Dh),G) us-

ing the two algorithms, in Table 4.2. The specifications for Arbiter(n,k,b) and

MinePump(w,ε,ζ ,κ) in the table are Type3 specification given in section 4.3.4.

It can be seen that the symbolic algorithm can be faster by several orders of mag-

nitude. This is because we do not construct the MPS from scratch; instead we

only redirect some links in MTBDD of A(Dh) which is already computed.

4.4.2 Computing Maximally Permissive H-Optimal Supervi-

sor (MPHOS)

In this step we compute the A MPHOS = �SMPHOS,2I∪O,δ MPHOS,FMPHOS� from

A MPS= �SMPS,2I∪O,δ MPS,FMPS�. For a given maximally permissive supervi-

sor A MPS, a QDDC formula Ds and an integer parameter H. We get the H-

Optimal sub-supervisor called A MPHOS by iteratively computing Val(s, p + 1)

from Val(s, p) over an automaton A Arena = A MPS ×A (Ind(Ds,w)) for 0 ≤ p <

H as outlined in Section 4.2.2 2.
2Note that the tool DCSynth in general allows a weighted list of soft requirement (QDDC

formulas). The tool DCSynth implements a MPHOS computation based on this lexicographical
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Table 4.2: MPSSubgraph(A (Dh),G) computation: Enumeration vs symbolic

method (time in milli seconds and memory in MB). Under the column A (Dh)

we give the number of states in monitor automaton and the computation time for

QDDC specification of our examples. Under A MPS We give the number of states

and time to compute MPS using the above two methods.

Example
A (Dh) A MPS

States Time (Memory) States Time (Memory) Time (Memory)

(Enumerative) (Symbolic)

Arbiter(4,2,2) 18 0.03 (9.78) 7 0.65 (3.6) 0.09 (3.6)

Arbiter(4,3,2) 44 0.03 (9.90) 11 0.88 (3.6) 0.14 (3.6)

Arbiter(4,4,2) 82 0.03 (9.89) 15 1.27 (3.6) 0.26 (3.6)

Arbiter(5,3,2) 64 0.05 (9.89) 13 2.18 (4.1) 0.22 (4.1)

Arbiter(5,4,2) 124 0.06 (9.92) 18 3.18 (4.1) 0.48 (4.1)

Arbiter(5,5,2) 204 0.10 (14.4) 23 4.04 (5.4) 0.94 (5.4)

Minepump(8,2,6,2) 222 0.04 (9.8) 70 1.54 (3.6) 0.66 (3.6)

Minepump(9,3,7,3) 383 0.05 (9.8) 68 2.00 (3.6) 1.16 (3.6)

Minepump(10,4,8,3) 551 0.04 (9.8) 67 2.44 (3.6) 1.63 (3.6)

Minepump(11,4,8,3) 606 0.05 (9.8) 82 2.86 (3.6) 1.75 (3.6)

Remark 2: In A Arena a transition has the form δ (s,(i,o,v)) with i ∈ 2I,o ∈
2O,v∈ 2{w}. However, from the definition of Ind(Ds,w), the value of v is uniquely

determined by (s,(i,o)) in the corresponding automaton A (Ind(Ds,w)). Hence

we can abbreviate the transition as δ (s,(i,o)).

To compute A MPHOS we again have two methods: enumerative and symbolic.

Let |Q| denote the number of states in A Arena = �Q,2I∪O∪w,δ ,F�.
(or with explicit weight to each soft requirement) list by using the weight for each transition as the

sum of weights of all the soft requirement being satisfied on that transition. The tool also allows

the discounting factor γ which is used to give higher weight to the requirements being satisfied in

near future.
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– Enumerative Method: As given in Section 4.2.2 of synthesis method, for

each state s we need to enumerate all paths starting from s to get Val(s, p+

1) from Val(s, p), which will take time of the order of 2|I∪O|. Similar com-

plexity will be required to get the list of transitions with optimal values

denoted as optValue (Note that there can be multiple transitions with same

optValue, all such transitions will be included in A MPHOS). Hence, As the

algorithm terminates after H iterations the total time complexity of entire

algorithm for H iteration is |Q|×2|I∪O| ×H.

– Symbolic method: For this optimization to be applicable we require that in

MTBDD representation of A Arena, all the input variables occur before the

output variables O and the indicating variable w. Indicating variable w gives

represents the soft requirement Ds.

Frontier Nodes:

We define a node in MTBDD as frontier node if it is labelled with an output

or a indicating variable, and there exist at-least one path from a source state

such that all its ancestors are labelled with input variables only. Similarly,

all the nodes labelled with an input variable are called input nodes and the

nodes labelled with output or an indicating variable are called output nodes.

Thus, frontier nodes are a special kind of output nodes. For example, in

Figure 4.2(b), frontier nodes are the nodes labelled 2 (they happen to occur

at same level in this example).

We now give the algorithm for symbolic computation of MPHOS along

with its complexity calculation. We define few terminologies and iterator
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constructs, which will be used in algorithm description and calculation of

complexity results.

Terminologies:

Given an automaton AArena as semi symbolic automaton, let MTBDD rep-

resent its transition relation in MTBDD form.

– |MT BDD|: This represents the total number of BDD nodes in MT BDD.

– |MT BDDinputs|: This represents the number of input nodes MT BDD

i.e. these are the nodes above the frontier nodes.

– |MT BDDout puts|: This represents the number of output nodes in MT BDD

i.e. these are the nodes below and including the frontier nodes.

– |MT BDDtotalPaths|: This represents the total number of paths in the

MT BDD starting from root nodes till the terminal nodes. Recall that

root node is a MT BDD node which is pointed to by a state.

– |MT BDDinputPaths|: This represents the total number of paths (input

paths) in the MT BDD starting from root nodes till frontier nodes.

– |MT BDDout putPaths|: This represents the number of paths (output paths)

in the MT BDD starting from frontier nodes to the terminal nodes.

Iterators:

We now describe some iterators which will be used to traverse the MT BDD.

– Foreach f in Frontier(n){stmts(f)}: Starting from the source node n,

this control structure traverses the MT BDD by exploring the f alse
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and true cofactors till a frontier node f is reached. For each such fron-

tier node execute the statements stmts which can use the information

available at f. Memoization is used to ensure that the statements stmts

are executed only once for each frontier node, by marking each input

as well as frontier node as visited once it is explored. Thus, the time

complexity for this operation without considering the time to execute

stmts would be equivalent to the number of BDD node before the fron-

tier nodes i.e. O|MT BDDinputs|.

– Foreach πinput in InputPath(n){stmts(πinput)}: This control structure

iterates over all the input path πinput , starting from bdd node n. These

input paths are found by recursively traversing the MT BDD structure

in depth first order. It executes the statements stmts for each input

path πinput ending at some frontier node f . It can be noted that the

time complexity for this operation without considering the time to ex-

ecute stmts would be proportional number of input paths in MT BDD

structure i.e. O|MT BDDinputPaths|.

– Foreach πout put in OutputPath(f){stmts(πout put)}: Starting from a given

frontier node f , this control structure traverses all the output paths and

executes statements stmts for each output path represented by πout put .

Output paths are found by recursively traversing the MT BDD struc-

ture in depth first order. The time complexity for this control structure

without considering the time to execute would be proportional number

of output paths in MT BDD structure i.e. O|MT BDDout putPaths|.
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ComputeMPHOS

ComputeUtilitiesHoptimal

FindAndProcessFrontierNodes ComputeBackup

ConstructMPHOS

ProcessFrontierUtility ProcessFrontierUtilityWithOptimalOutputs

Figure 4.6: Call graph for sub-procedures of ComputeMPHOS function.

1 ComputeMPHOS

2 Input: A MPS, A (Ind(Ds,w)), Natural number H

3 Output: A MPHOS = �SMPHOS,2I∪O,δ MPHOS,FMPHOS�.

4 /* Compute A Arena as product of A MPS and A (Ind(Ds,w))

Using MONA library function DFAProduct */

5 AArena = DFAProduct(A MPS,A (Ind(Ds,w)))

6 /* Label the frontier nodes and compute Val array after H iterations */

7 AArena
labelled = ComputeUtilitiesHoptimal(AArena, Val, H)

8 /* Create MPHOS from labelled A Arena */

9 A MPHOS = ConstructMPHOS(AArena
labelled)

10 return A MPHOS

Figure 4.7: Algorithm for Computing A MPHOS from AArena
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Algorithm for MPHOS computation:

It may be noted that the frontier nodes in MT BDD divide it into two regions,

the input region containing all the input paths ending at frontier nodes and

the output region containing all the output paths starting at frontier nodes

and ending at the terminal nodes. Therefore, the computation can be nat-

urally divided in to multiple steps as shown in the algorithm ComputeM-

PHOS given in Figure 4.7. The call graph for sub-procedures of ComputeM-

PHOS is shown in Figure 4.6.

ComputeMPHOS Function:

– This function first computes the arena automaton A Arena by taking

product of two automata A MPS and A (Ind(Ds,w)) using the MONA

DFA library function DFAProduct.

– We then assign H-Optimal utility values to each state as outlined in

Section 4.2.2. This computation is implemented using the algorithm

ComputeUtilitiesHoptimal given in Figure 4.9, it returns the labelled

arena automaton A Arena
labelled . In this automaton each frontier node is

labelled with H-Optimal utility value and optimal output paths with

the corresponding next states. The next paragraph will describe this

function in detail.

– Finally, the automaton A MPHOS is constructed explicitly using the op-

timal outputs stored in labelled arena automaton A Arena
labelled , which is im-

plemented by algorithm ConstructMPHOS given in Figure 4.8. This

algorithm is pretty straight forward, where construction of A MPHOS
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is carried out explicitly using ConstructMPHOS. For a given labelled

arena automaton A Arena
labelled , it traverses all the input paths till frontier

node and inserts all the optimal outputs stored in frontier nodes corre-

sponding to the input path to A MPHOS. A MPHOS is then minimized

using MONA DFA library and returned. The time complexity for this

1 ConstructMPHOS

2 Input: AArena
labelled = �Q,2I∪O∪w,δ ,F�,

3 Output: A MPHOS = �SMPHOS,2I∪O,δ MPHOS,FMPHOS�.

4 Pre: All frontier nodes of A Arena labelled with optValue and optOutputList

5 Post: Minimized A MPHOS Automaton

6 /* Create MPHOS from labelled A Arena */

7 for each state s of AArena

8 n = s.bddNode

9 Foreach πinput in InputPath(n){
10 Let πinput ends at frontier node f

11 for each (πout put ,nextState) pair in f .optOutputList list

12 Add transition from s to nextState on (πinput ,πout put) in A MPHOS

13 end

14 }
15 end

16 Minimize A MPHOS

17 return A MPHOS

Figure 4.8: Algorithm for explicit construction of A MPHOS
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construction is O(|MT BDDinputPaths|×Tr+(max(|MT BDD|,N)×N),

where N is the number of states in A Arena, and Tr is the time required

to insert one transition in the automaton which is assumed to be con-

stant. Note that (max(|MT BDD|,N)×N) is the worst case time com-

plexity for minimization in MONA [55].

ComputeUtilitiesHoptimal Function: Now we describe the algorithm

for ComputeUtilitiesHoptimal, which returns the labelled automaton AArena
labelled

after H-Optimal utility computation over AArena. This computation is as fol-

lows:

– The algorithm given in ComputeUtilitiesHoptimal (See Figure 4.9)

for H-Optimal output computation has H iterations. We iteratively

compute Val(s, p+ 1) from Val(s, p) (for 0 ≤ p < H) over MT BDD

representation of A Arena using Bellman Backup operation outlined in

Section 4.2.2 for each iteration. The Val(s,0) is initialized with 0.0

for every state in AArena. Every iteration is further divided into two

steps, where the computation is done on the input region and the output

region of MT BDD respectively.

– In the first step, MT BDD of AArena is traversed to find all the frontier

node. We then explore all the output paths from each frontier node and

store the optimal utility value in that frontier node. In (p+ 1)th iter-

ation we use Val(s, p), which has the optimal utility value for each

state computed in previous (pth) iteration. The algorithm for this

step is given by procedure FindAndProcessFrontierNodes (See Fig-

ure 4.10).
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1 ComputeUtilitiesHoptimal

2 Input: A Arena = �Q,2I∪O∪w,δ ,F� and Val : Q → R, Natural number H

3 Output: AArena
labelled

4 /*Initialize the Val array */

5 for each state s of AArena

6 Val(s) = 0.0
7 end

8 for count = 0 to H /* Start H Iterations */

9 for every state s ∈ F

10 /* Clear the values from previous iteration*/

11 ClearValues(s.bddNode)
12 end

13 if count = H then /* i.e. It’s a last Iterations */

14 /*Store optimal value along with optimal outputs*/

15 FindAndProcessFrontierNodes(A Arena, Val, true)

16 else /*Otherwise, store only optimal value*/

17 FindAndProcessFrontierNodes(A Arena, Val, false)

18 end

19 for every state s ∈ F
20 ClearVisited(s.bddNode)
21 end

22 Val = ComputeBackup(A Arena)

23 end

24 return AArena
labelled /*Labelled Arena automaton */

Figure 4.9: Algorithm for Computing the H-Optimal Utility Values

111



FindAndProcessFrontierNodes calls procedure ProcessFrontierUtility

given in Figure 4.11 over each frontier node, to compute and store the

optimal utility values in that iteration. However, in the final (Hth)

iteration of ComputeUtilitiesHoptimal, apart from storing the opti-

mal values, we additionally store the list of optimal outputs and next

state in the processed frontier node. These optimal outputs are re-

quired to construct the automaton AMPHOS from the labelled automa-

ton. For this, ProcessFrontierUtilityWithOptimalOut puts (See Fig-

ure 4.12) is called in the last iteration, this algorithm is similar to

ProcessFrontierUtility except that it stores the required additional

information on frontier node. We use memoization to ensure that

every frontier node is processed only once during each iteration of

ComputeUtilitiesHoptimal.

The time complexity of FindAndProcessFrontierNodes with memo-

ization on frontier nodes is O(|MT BDDinputs|+ |MT BDDout putPaths|),
assuming that computation of optimal value on each output path takes

a constant time. To see this, notice that the time required to find all

the frontier nodes is O(|MT BDDinputs| and time required to process

all frontier nodes with memoization, using ProcessFrontierUtility is

O|MT BDDout putPaths| as it requires exploring all the output paths once.

– In the second step of each iteration, the function ComputeBackup (See

Figure 4.13) is called to update Val(s, p+ 1) from the optimal values

stored at frontier nodes (computed using Val(s, p)). Notice that to

update Val(s, p+ 1), we take average of all the optimal values stored

on frontier nodes, which can be reached from the input paths starting
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1 FindAndProcessFrontierNodes

2 Pre: Visited and optValue fields of BDD nodes cleared

3 Post: Mark each frontier node with optimal value

4 Input: A Arena = �Q,2I∪O∪w,δ ,F�, Val : Q → R, storeOptOutputs: boolean

5 Output: A Arena
labelled = �Q,2I∪O∪w,δ ,F� with all frontier nodes labelled

6 for each state s of AArena

7 n = s.bddNode

8 if n.visited then
9 return /* Memoization at root node */

10 end

11 Foreach f in Frontier(n){
12 if f.visited then
13 return /* Memoization at frontier node */

14 else
15 if storeOptOutputs then

16 ProcessFrontierUtilityWithOptimalOutputs(f, A Arena, Val)
17 else

18 ProcessFrontierUtility(f, A Arena, Val)

19 end

20 end
21 }
22 n.visited = true

23 return A Arena
labelled

24 end

Figure 4.10: Algorithm for Finding and labeling the frontier nodes
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1 ProcessFrontierUtility

2 Pre: Visited and optValue fields of BDD nodes cleared

3 Post: Mark the given frontier node with optimal value

4 Input: Frontier Node f, A Arena = �Q,2I∪O∪w,δ ,F� and Val : Q → R

5 Output: A Arena
labelled with frontier node f labelled with optimal value.

6 if f.visited then /*Memoization*/

7 return
8 else
9 Foreach πout put in OutputPath(f){

10 Let πout put ends at state nextState

11 value = wt(πout put) + Val(nextState)

12 if f.optValue < value then

13 f.optValue = value
14 end
15 }
16 f.visited = true
17 end

Figure 4.11: Algorithm for computing the utility value from a given frontier node
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1 ProcessFrontierUtilityWithOptimalOutputs

2 Pre: Visited and optValue fields of BDD nodes cleared

3 Post: Mark the given frontier node with optimal value

4 Input: Frontier Node f, A Arena = �Q,2I∪O∪w,δ ,F� and Val : Q → R

5 Output: A Arena
labelled with frontier node f labelled with optimal outputs.

6 if f.visited then /*Memoization*/

7 return
8 else

9 Foreach πout put in OutputPath(f){
10 Let the πout put ends at state nextState

11 value = wt(πout put) + Val(nextState)

12 if f.optValue < value then

13 f.optValue = value

14 f.optOutputList = Initialize with empty list

15 append (πout put , nextState) to f.optOutputList

16 end

17 if f.optValue = value then
18 append (πout put , nextState) to f.optOutputList
19 end

20 }
21 f.visited = true

22 end

Figure 4.12: Computing the utility and optimal paths from a given frontier node
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1 ComputeBackup

2 Pre: Visited fields of BDD nodes cleared and all frontier nodes labelled

with optValue

3 Post: Val array containing utility values computed for each state

4 Input: A Arena = �Q,2I∪O∪w,δ ,F� with all frontier nodes labelled

5 Output: Val : Q → R.

6 totalInpPaths = 2I /* Total no. of input paths */

7 for each state s of AArena

8 n = s.bddNode

9 tempVal = 0.0

10 if n.visited = false then /*Memoization*/

11 Foreach πinput in InputPath(n){
12 Let πinput ends at frontier node f

13 /*Count the number of paths represented by πinput */

14 currInpPaths = number of explicit paths represented by πinput

15 tempVal = tempVal + f.optValue * (currInpPaths / totalInpPaths)

16 }
17 n.optValue = tempVal

18 n.visited = true

19 end

20 Val(s) = n.optValue

21 end

Figure 4.13: Algorithm for computing the Bellman Backup
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in state s (See line 11 to 16 of the algorithm). The complexity of

ComputeBackup is O(|MT BDDinputPaths|) as memoization is used at

source node to ensure that every path till frontier node is traversed only

once.

– It may be noticed that before each iteration MT BDD nodes are cleared

by calling ClearValues (See Figure 4.14), to clear the optimal values

and visited field of each BDD node stored during previous iteration.

This takes time O|MT BDD| as every node has to be visited only once,

which is ensured by memoization.

– Thus, the overall time complexity of ComputeUtilitiesHoptimal is

O(H ∗ (|MT BDD| + |MT BDDinputs| + |MT BDDinputPaths|)) +

|MT BDDout putPaths| , which simplifies to O(H ∗ (|MT BDDinputPaths|
+ |MT BDDout putPaths|)).

4.4.3 Computing Controller: Determinizing MPHOS using Out-

put Preference Ordering

The controller can be computed from MPHOS for an output preference ordering

Ord given as lexicographically ordered list of output variable literals, as described

in Section 4.2.3. A MPHOS is determinized by retaining only the highest ordered

output among those permitted by it. For this we use similar algorithm as used for

MPHOS computation, by retaining only those transitions which locally maximize

the lexicographic weight of Ord list. In this case, the frontier nodes will store

the lexicographic weight as the optimal value on the frontier nodes, along with

the corresponding outputs and the computation is performed for only 1 iteration.
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1 ClearValues

2 Input: n (a MTBDD node)

3 Output: NIL.

4 if n is a terminal node then

5 n.visited = false

6 n.optValue = -1.0

7 return

8 end

9 if n.visited then

10 return /* Memoization */

11 else

12 ClearValues(n.left)

13 ClearValues(n.right)

14 n.visited = false

15 n.optValue = -1.0

16 return

17 end

Figure 4.14: Algorithm for Clearing the fields for MTBDD structure
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This gives us the labelled automaton similar to AArena
labelled , which has an optimal

transition stored at frontier node for each input. The controller is then constructed

from this labelled automaton by explicitly adding each transition to the required

controller automaton as given in ConstructMPHOS. It may be noted that, as the

Ord provides the literal (either positive or negative) for every output variable, so

there will always be a unique output path that will maximally satisfy the weighted

list of outputs (See Example 33). Hence, the we will always get a deterministic

Mealy machine (controller).

4.5 Discussion

Reactive synthesis from Linear Temporal Logic (LTL) specification is a widely

studied area[12] and a considerable number of tools [16, 42] supported by the-

oretical foundations are available. The leading tools such as Acacia+[16] and

BoSy[42] mainly focus on the future fragment of LTL. In contrast, we focus on

invariance of complex regular properties, denoted by inv Dh where Dh is a QDDC

formula. For such a property, a maximally permissive supervisor (MPS) can be

synthesized. There is an extensive work on requirement modelling using DC, as

well as model checking DC and QDDC properties in [84]. However, algorith-

mic synthesis of controllers from QDDC specification, as presented in this thesis,

is new. Fränzle et al.[50, 51] presented an early analysis of this problem from

duration calculus.

Formally, logics LTL and QDDC have incomparable expressive power. There

is increasing evidence that regular properties form an important class of require-

ments [36, 74]. The IEEE standard PSL extends LTL with regular properties [1].
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Wonham and Ramadge in their seminal work [92, 93] first studied the synthesis

of maximally permissive supervisors from regular properties. In their supervi-

sory control theory, MPS can in fact be synthesized for a richer property class

AGEF Dh [38]. Tool DCSynth can be easily extended to support such proper-

ties too. Riedweg et al. [96] give some sub-classes of Quantified Mu-Calculus

for which MPS can be computed. However, none of these works address soft

requirement guided synthesis.

Most of the reactive synthesis tools focus on correct-by-construction synthe-

sis from hard requirements. For example, none of the tools in recent competition

on reactive synthesis, SYNTCOMP17 [62], address the issue of guided synthesis

which is our main focus. In our approach, we refine the MPS (for hard require-

ments) to a sub-supervisor optimally satisfying the soft requirements too. Since

LTL does not admit MPS, it is unclear how our approach can extend to it.

In quantitative synthesis, a weighted arena is assumed to be available, and

algorithms for optimal controller synthesis for diverse objectives such as Mean-

payoff [13] or energy [18] have been investigated. In our case, we first synthesize

the weighted arena from given hard and soft requirements. Moreover, we use

H-Optimality as the synthesis criterion. This criterion has been widely used in

reinforcement learning as well as optimal control of Markov Decision Processes

(MDPs) [90, 11]. In this theory, the optimal control is computed considering a

discounting factor γ such that in computing utility, the reward of a transition after

i steps is discounted by a factor γ i. In this thesis, we have presented the theory

assuming γ = 1. It may be noted that the tool DCSynth allows us to compute

MPHOS for a user specified value of γ . The Proposition 32 can be adapted to

include such discounted sum. Also, in computing MPHOS, we have assumed that
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all inputs are independent and identically distributed (iid). However, the method

can easily be adapted to accommodated a finite state Markov model governing the

occurrence of inputs (See [90]).

In other related work, techniques for optimal controller synthesis are discussed

by Ding et al. [36], Wongpiromsarn et al. [107] and Raman et al. [94], where

they have explored the use of receding horizon model predictive control along

with temporal logic properties.

Since our focus is on the quality of the controllers, we have also defined met-

rics and measurement techniques for comparing the controllers for their guaran-

teed (based on must dominance) and expected case performance. For the expected

case measurement, we have assumed that inputs are iid. However, the method can

easily accommodate a finite state Markov model governing the occurrences of

inputs.

DCSynth uses an efficient BDD-based symbolic representation, inherited from

tool MONA [66] for storing automata, supervisors and controllers. The use of ea-

ger minimization (See Section 4.4 for implementation details) allows us to handle

much more complex properties.

We have presented a technique for guided synthesis of controllers from hard

and soft requirements specified in logic QDDC. This technique is also imple-

mented in our tool DCSynth. Case studies show that combination of hard and soft

requirements provides us with a capability to deal with unrealizable (but desir-

able), conflicting and default requirements. In context of assumption-commitment

based specification, we have shown with case studies that soft requirements im-

prove the expected case performance, where as hard requirements provide certain

(but typically conditional) guarantees on the synthesized controller. Hence, the
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combination of hard and soft requirements as formulated in Type3 specifications

offers a superior choice of controller specification. This is confirmed by theoret-

ical analysis as well as experimental results. We have also explored the exper-

imental ability to compare the controller performance using expected value and

must dominance metrics. This helps us in designing better performing controllers.
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Chapter 5

Logical Specification and Uniform

Synthesis of Robust Controllers

In this chapter, we investigate the synthesis of robust controllers from a logical

specification of regular properties given in the interval temporal logic QDDC. Our

specification encompasses both hard robustness and soft robustness. Here, hard

robustness guarantees the invariance of commitment under relaxed (weakened)

assumptions. A systematic framework for logically specifying the assumption

weakening by means of a QDDC formula Rb(A), called Robustness criterion, is

presented. This can be used with any user specified assumption DA to obtain a

relaxed (weakened) assumption Rb(DA). A variety of robustness criteria encom-

passing some existing notions such as k,b resilience as well as some new notions

like tolerating non-burst errors and recovery from transient errors are formulated

logically. The soft robustness pertains to the ability of the controller to maintain

the commitment for as many inputs as possible, irrespective of any assumption.

We present a uniform method for the synthesis of a robust controller which guar-
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antees the invariance of specified hard robustness and it optimizes the expected

value of occurrence of commitment (given as soft robustness) across the input se-

quences. This uses the framework of soft requirement guided synthesis presented

in the previous chapter. Through the case study of a synchronous bus arbiter, we

experimentally show the impact of variety of hard robustness criteria as well as

the soft robustness on the ability of the synthesized controllers to meet the com-

mitment “as much as possible”.

We consider the specification of robust controller using logic QDDC. A con-

troller specification consists of a pair of QDDC formulas (DA,DC) giving the

assumption and the commitment, respectively. A standard correctness criterion,

termed BeCorrect [12], mandates that in all the behaviours of the synthesized con-

troller, the commitment DC should hold invariantly provided the assumption DA

holds invariantly. This can be denoted by (inv(DA)) ⇒ (inv(DC))). Criticizing

this, a different “strong implication” semantics for BeCorrect has been proposed

[68, 87] and this is used by several controller synthesis tools. This can be de-

noted as G(pref (DA)⇒ DC). It may be recalled that pref (D) holds at a point in

behaviour if the regular property D has been invariantly true in the past.

Robustness pertains to the ability of DC holding even when DA does not hold

invariantly in the past [12]. A relaxed assumption Rb(DA) specifies a weaker

condition than pref (DA) and the robust specification can be given by the for-

mula G(Rb(DA)⇒ DC). Thus, DC should hold whenever the relaxed assumption

Rb(DA) holds. We term this as hard robustness. For example, given integer

parameters k and b, the relaxed assumption LenCntInt(DA,k,b) holds at a point

i if the assumption DA is violated at most k times in the interval [i− (b+ 1), i]

spanning b previous cycles from the current point i. (This formula is defined for-
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mally in Section 5.1.) The controller synthesized under the relaxed assumption

LenCntInt(DA,k,b) would be more robust than BeCorrect controller as it will tol-

erate up to k assumption violations in recent past. Notice that this criterion also

allows the controller to recover from long but transient violations of the assump-

tion DA by specifying that the commitment DC should be re-established once the

assumption holds sufficiently in recent past.

We structure the formulation of relaxed assumption Rb(DA) (used to provide

hard robustness) as a pair (Rb(A),DA) where DA is the concrete assumption for-

mulated by the user. Rb(A) is a QDDC formula called the Robustness criterion

which specifies a generic method of relaxing any user specified assumption. A no-

tion of cascade composition Rb(A)� Ind(DA,A) (formalized using logic QDDC),

gives the desired relaxed assumption formula Rb(DA).

We show that logic QDDC can be used to conveniently and systematically

formulate a wide variety of robustness criteria Rb(A), such as k,b-resilience of

Ehlers and Topku [39] as well as several new notions. These include (a) tolerating

“bounded errors in bounded time interval”, (b) tolerating non-burst errors, as well

as (c) notions of recovery of the commitment within bounded time after recovery

of the assumption. For example, the LenCntInt(DA,k,b) criterion of the previ-

ous paragraph has features (a) and (c). It should be noted that the interval logic

modalities, bounded counting constraints and second order quantification features

of logic QDDC are particularly helpful in the formulation of these robustness cri-

teria. As our experiments will show, robustness criteria have a significant impact

on the empirically measured robustness of the resulting controller.

Given a hard robustness specification as a tuple (DA,DC,Rb(A)), we give a

uniform synthesis method for synthesis of corresponding controller using our tool
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DCSynth, for various notions of robustness, formulated as QDDC formula Rb(A).

This is in contrast to the previous work where specific synthesis algorithms were

developed for each proposed robustness criterion [12, 39].

Complementary to hard robustness, the soft robustness pertains to the ability

of a controller to meet the commitment DC even when the relaxed assumption

Rb(DA) does not hold. The controller synthesis technique should try to satisfy DC

“as much as possible” irrespective of the assumption. Bloem et al. have called

this notion “never give up” [14].

To exploit the concept of soft robustness, we synthesize a controller by spec-

ifying DC as the soft requirement in our tool DCSynth. As given in the previous

chapter, it will maximize the expected value of count of DC over next H-steps.

This count is averaged over all inputs of length H. In this formulation we are

guided by the H-Optimal receding horizon controller synthesis of Markov Deci-

sion processes [90, 11].

We evaluate our method using our two case studies of a Synchronous bus ar-

biter and a Mine pump controller specification. We synthesize controllers under

various robustness criteria and also with soft requirement optimization. To evalu-

ate the performance of these synthesized controllers, we empirically measure the

probability of commitment holding in long run under random (independent and

uniformly distributed) inputs. Our experiments show that soft robustness has a

marked impact on the performance of the controller although it cannot give the

firm (conditional) guarantees provided by hard robustness. Thus, our synthesis

technique, combining both the hard and the soft robustness, seems useful.
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5.1 Specification and Synthesis of robust controllers

This section formally introduces the notion of Robust specification and a method

for synthesis of controller from such a specification. We define the Robust specifi-

cation as a triple (DA,DC,Rb(A)), where the QDDC formulas DA and DC specify

regular properties over input-output alphabet (I,O) representing the assumption

and the commitment. Moreover, Rb(A) is a formula over an indicator proposi-

tional variable A (See definition 19). These indicator variables can be used as

auxiliary propositions in another formula using the notion of cascade composition

� defined below. Formula Rb(A) is called a Robustness criterion. It specifies

a generic method for relaxing any arbitrary assumption formula DA, using the

notion of cascade composition.

Definition 38 (Cascade Composition). Let D1, . . . ,Dk be QDDC formulas over

input-output variables (I,O) and let W = {w1, . . . ,wk} be the corresponding set

of fresh indicator variables i.e. (I∪O)∩W = /0. Let D be a formula over variables

(I∪O∪W ). Then, the cascade composition � and its equivalent QDDC formula

are as follows:

D � �Ind(D1,w1), . . . , Ind(Dk,wk)� =

D∧�
1≤i≤k pre f (EP(wi)⇔ Di)

This composition gives a formula over input-output variables (I,O∪W ).

Cascade composition provides a useful ability to modularize a formula using

auxiliary propositions W which witness regular properties given as QDDC formu-

las.

Example 39. Let Rb(A) = (scount !A <= 3) which holds at a point provided

the proposition A is false at most 3 times in entire past.
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Consider formula D’ = (true^<!req>^(slen=1)) || (true^<ack>) which

holds at a point provided either the current point satisfies ack or the previous

point does not satisfy req.

Then, the formula φ = (Rb(A) � Ind(D’,A)) is equivalent to the formula

(scount !A <=3) && pref(EP(A) <=> D’). This states that the count of !A

in past is at most 3, and D’ holds exactly at those points where A holds. Thus, the

whole formula φ holds provided D’ is false at most 3 times in the entire past.

Given a robustness criterion Rb(A) and concrete assumption formula DA, we

make use of the cascade composition (see Definition 38) to get the relaxed as-

sumption under which the commitment must hold. The desired relaxed assump-

tion is given by

Rb(A)� Ind(DA,A)

which results in a QDDC formula over the input-output variables (I,O∪ {A}).
See Example 39.

The Robust specification (DA,DC,Rb(A)) gives us the DCSynth specification

below, which is denoted by RbSpec(DA,DC,Rb(A)).

(I,(O∪{A}), ((Rb(A)� Ind(DA,A)) ⇒ DC), DC) (5.1)

The hard requirement states that the commitment DC must hold whenever the

relaxed assumption Rb(A)� Ind(DA,A) holds. Moreover, it specifies DC as the

soft-requirement. The controller must be optimized so that the soft requirement

DC holds for as many inputs as possible, irrespective of the assumption.

5.1.1 Synthesis from Robust Specification

The robust controller synthesis method supported by tool DCSynth is as follows.
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– The user provides the Robust specification (DA,DC,Rb(A)). The user also

provides a horizon value H.

– The corresponding DCSynth specification is automatically obtained as out-

lined in Equation 5.1. The tool DCSynth is used to obtain MPS and MPHOS

supervisors as described in Section 4.2. These supervisors are denoted as

MPS(DA,DC,Rb(A)) and MPHOS(DA,DC,Rb(A),H) respectively. Both

these supervisors may be output non-deterministic. The reader should recall

that the MPS supervisor only guarantees the hard-robustness, whereas the

MPHOS supervisor further improves MPS by optimizing the soft-robustness

(while retaining hard-robustness guarantee).

– The user specifies an output order ord as a prioritized list of output literals.

This is used to get the deterministic controllers Detord(MPS(DA,DC,Rb(A)))

and Detord(MPHOS(DA,DC,Rb(A),H)), respectively.

5.1.2 Designing Robustness Criteria (hard robustness)

A key element of our robust specification (DA,DC,Rb(A)) is the robustness crite-

rion Rb(A), where the truth value of proposition A at any point indicates whether

the assumption is satisfied at that point or not. Rb(A) provides a generic method

of relaxing any assumption DA. We propose a systematic methodology for de-

signing robustness criteria Rb(A) based on formulas Error-Type and Error-Scope.

Here Error-Type is a QDDC formula that specifies which intervals in a behaviour

are to be treated as erroneous. For example scount !A > 3 specifies all intervals

with more than 3 violations of the assumption. An Error-Scope formula, parame-

terized by error-type formula Err specifies intervals in the behaviour where error
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Pos 0 1 2 3 4 5 6 7 8 9

σ(A) 1 0 0 1 0 1 0 0 0 1

Figure 5.1: Example behaviour for Error-Types

intervals of type Err are forbidden. For example, no sub-interval within last k

cycles must satisfy Err. Together, an Error-Scope formula instantiated with an

Error-Type formula gives us a robustness criterion Rb(A)

Error-Types: Defining Intervals with Assumption Errors The indicator propo-

sition A designates points in the behaviour, where the assumption is satisfied. In

terms of this, we define several Error-type formulas, below. Each formula spec-

ifies which intervals are to be called erroneous. Each Error-Type formula is ex-

plained using the example behaviour given in Figure 5.1, where Pos gives the

position in the behaviour and assumption violation at a position is indicated by 0

at that position.

1. Intervals where A is violated at the end-point of the interval.

LocalErr(A) = (true^<!A>)

For example, σ , [1,4], σ , [0,8] satisfies the LocalErr(A), whereas σ , [0,3],

σ , [2,5] does not satisfy it.

2. Intervals having more than k assumption violations (!A).

CountErr(A,k) = (scount !A > k).

For example, σ , [1,6] satisfies CountErr(A,2) as the number of assump-

tion violations in this interval are 4, but CountErr(A,4) is not satisfied in

this interval.
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3. Burst error interval is an interval where the assumption proposition A re-

mains false invariantly. So, the intervals where there is burst error of length

more than k is given by the formula

BurstErr(A,k) = ([[!A]] && slen >= k).

And the intervals containing a sub-interval with BurstError(A,k) are given

by

HasBurstErr(A,k) = (<>(BurstErr(A,k))).

For example, σ , [6,8] satisfies BurstErr(A,2) and all the intervals con-

taining σ , [6,8] e.g σ , [2,9] satisfies HasBurstErr(A,k).

Each formula in the above list is called an Error-Type formula. Proposition 40

gives the relation between various Error-Type formulas.

Proposition 40. For all Error-type formulas Err,Err1 and Err2 we have

(a) |= BurstErr(A,k)⇒ HasBurstErr(A,k)

(b) |= HasBurstErr(A,k)⇒ CountErr(A,k)

(c) If j < k then |= CountErr(A,k)⇒ CountErr(A, j)

and |= HasBurstErr(A,k)⇒ HasBurstErr(A, j)

Proof. These implications hold straightforwardly using the QDDC semantics. For

example, HasBurstErr(A,k) = <> ([[!A]] && slen >= k) (by definition). This

formula is satisfied by all the interval having burst assumption violations of length

at-least k+1, these intervals will essentially satisfy total violation count of more

than k+ 1 also. Thus it logically implies CountErr(A,k) giving us (b). We omit

the remaining proofs.
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Pos 0 1 2 3 4 5 6 7 8 9 10 11 12 13

σ(A) 1 1 0 1 1 1 0 0 0 1 1 1 1 1

Figure 5.2: Example behaviour for position and length based Criteria

Error-Scope and Robustness Criteria Let Err be any of the Error-Type formu-

las giving the erroneous intervals. We now specify the restrictions on occurrence

of these erroneous intervals by suitable QDDC formulas. These are called Error-

Scope formulas. They are parameterized by the specification of an erroneous in-

terval Err. Error-scope formulas are evaluated at a position i in a behaviour σ

(see Definition 1). For any position i in the behaviour, the formula indicates for

which sub-intervals of [0, i] the given Err should not occur. An Error-Scope for-

mula instantiated with a specific Error-Type gives rise to a Robustness Criterion.

We categorize the various Error-Scope and corresponding Robustness Criteria as

position based, length based or the resilience based.

1. Position based Error-Scope: We use the following two Error-Scope for-

mulas for this.

NeverInPast(Err) = !<>Err.

and NeverInSuffix(Err) = !(true^Err)

The first formula states that the error never occurs in past for any interval.

Thus, when evaluated at position i, no sub-interval of [0, i] should satisfy

Err. Once the Err has occurred at position i, this formula can never be

satisfied at any future position j ≥ i even if in the successive behaviour Err

does not occurred.

The second formula states that the error does not occur in any suffix interval.
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This is an recoverable version of the above Error-Scope formula, where

the formula starts holding again, if the Err does not occur in successive

behaviour.

Position based Robustness Criteria: Instantiating the above scope formu-

las with the LocalErr(A) gives rise to the criteria BeCorrect(A) and

BeCurrentlyCorrect(A) respectively (Row 2 and 3 in Table 5.1).

Criterion BeCorrect(A) holds at a point if !A never occurs in its past e.g.

at position 0 and 1 in Figure 5.2 formula BeCorrect(A) is satisfied, but

not at the any position beyond 1, as the assumption is violated at 2. Thus,

the synthesized controller under this criterion meets the commitments in-

variantly if the assumptions are met invariantly [14] and if assumption is

violated even once then the commitment may never be met again. By con-

trast BeCurrentlyCorrect(A) holds at a point i (irrespective of the past),

if A holds at position i. Thus, in Figure 5.2, apart from positions 0 and 1, the

positions 3, 9 also satisfy BeCurrentlyCorrect(A). This criterion gives

rise to the controllers which are recoverable i.e. if relaxed assumptions start

meeting again then the commitments should also be met immediately. Thus,

the later is implied by the former and is more robust against the intermittent

assumption violations, (but less realizable).

2. Length based Error-Scope: We use the following two Error-Scope formu-

las for this.

NeverInPastLen(b,Err) =

!<>(slen <= b-1 && Err)

NeverInSuffixLen(b,Err) =
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!(true^((slen <= b-1) && Err))

The first formula says that the Err never occur in any past interval of length

b or less cycles. This formula is not recoverable because once an Err oc-

curs at any interval in past this formula can never be satisfied again in any

successive interval. The second formula says that Err does not occur in an

interval spanning last b or less cycles. This formula is recoverable as the

satisfiability of this formula does not depend on the behaviour beyond past

b cycles.

Length based Robustness Criteria: Instantiating the above scope formu-

las with the CountErr(A,k) as well as HasBurstErr(A,k), gives rise to

the criteria LenCnt(A,k,b), LenCntInt(A,k,b), LenBurst(A,k,b) and

LenBurstInt(A,k,b) respectively (Row 4-7 in Table 5.1). We give intu-

itive description of these criteria.

Criterion LenCntInt(A,k,b) with integer parameters k,b holds at a point

i provided in last b cycles from i, assumption violation !A occurs at most

k times. The past beyond last b cycles does not affect its truth. E.g. po-

sition 11 in Figure 5.2 satisfies LenCntInt(A,2,5) as there is number of

assumption violations is only 2 in last 5 positions, however at position 10

the criterion LenCntInt(A,2,5) is not satisfied as there are 3 assuption

violations in σ , [6,10]. Thus, the controllers synthesized under this Ro-

bustness Criterion will recover and start meeting the commitments again as

soon as the number of assumption violations are at-most k in last b cycles.

In contrast, the controller synthesized under the criterion LenCnt(A,k,b)

will never meet the commitments in future of a position i once their are

more than k assumption violations in last b cycles from position i.
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Pos 0 1 2 3 4 5 6 7 8 9 10 11 12 13

σ(A) 1 1 0 0 0 0 1 1 1 1 0 0 0 1

Figure 5.3: Example behaviour for resilience based Criteria

Criterion LenBurstInt(A,k,b) is a new Robustness Criterion based on

burst assumption violations. A burst error of length k is said to occurs if

!A occurs continuously for k points. LenBurstInt(A,k,b) holds at point

i provided in last b cycles before i, there is no burst error of length k. E.g.

in Figure 5.2, position 9 does not satisfies LenCntInt(A,3,8) as there are

4 violations between position 1 to 9, but it satisfy LenBurstInt(A,3,8)

as the maximum length of burst error is not more than 3. This criterion is

recoverable.

3. Resilience based Error-Scope: An interval is said to be a recovery interval,

if A is invariantly true in that interval. The length of this interval is called

the recovery period. Intervals where all recovery periods are of length less

than b is denoted by

HasNoRecovery(A,b) = ([]([[A]] => slen < b-1))

We use the following two Error-Scope formulas.

NeverInPastRes(b,Err) =

NeverInPast(Err && HasNoRecovery(A,b))

NeverInSuffixRes(b,Err) =

NeverInSuffix(Err && HasNoRecovery(A,b))

The first scope formula holds at position i provided there is no sub-interval

[b,e] of [0, i] such that Err holds for [b,e] but there is no sub-interval [b�,e�]
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of [b,e] which is a recovery interval of b cycles (length b−1). This formula

is satisfied by a behaviour, if there has never been an Err without a recovery

period of length b inside it.

The second formula says that Err without a recovery period does not occur

in any suffix interval. This formula is recoverable as its satisfiability only

depends upon the behaviour since the last recovery interval.

Resilience based Robustness Criteria: Instantiating the above scope for-

mulas with CountErr(A,k) and HasBurstErr(A,k), gives rise to four

different robustness criteria namely ResCnt(A,k,b), ResCntInt(A,k,b),

ResBurst(A,k,b) and ResBurstInt(A,k,b) respectively (Row 8-11 in

Table 5.1). We now compare these criteria with the resilience based criteria

proposed in the literature.

Ehlers et al. [39] introduced the notion of a resilient controller. A con-

troller is said to be resilient if it meets the commitments invariantly provided

there are only bounded assumption violation (given by integer parameter

k) between any two successive recovery intervals with period b. The k,b-

resiliance of [39] can be specified as the robustness criterion ResCnt(A,k,b).

This holds at a point i in a behaviour provided that between any two succes-

sive recovery intervals of length b in the past of i, the count of violation of

A is at most k. This criterion is not recoverable.

We have also encoded the recoverable version of this criterion, which is

denoted by ResCntInt(A,k,b). This criterion holds at a point provided

after the last recovery interval of length b, or the start of the behaviour if

there is no such recovery period, the count of violation of A is at-most k.
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The past beyond the last recovery interval of length b does not affect its

truth. E.g. in Figure 5.3, the criterion ResCntInt(A,2,4) is satisfied up to

position 3 from start as the total count of assumption violations is only 2 up

to that position. It is not satisfied at any position between 4 and 8 as there

are more than 2 errors and is no recovery. A recovery occurs at position

9. Hence position 11 satisfies the criterion as there are only 2 errors since

the last recovery which ended at position 9. The formula is not satisfied at

position 13 as there are 3 violations since the last recovery. The controller

synthesized under this criteria shall start meeting the commitments again as

soon as there is a recovery period, and it will maintain commitment till the

number of assumption violations are at-most k after the last recovery period

of length b.

Following proposition gives the relation between various Error-Scope formu-

las.

Proposition 41. For any Error-type formula Err,Err1 and Err2 we have

(a) |= NeverInPast(Err) ⇒ NeverInSuffix(Err)

(b) |= NeverInPastLen(b,Err)⇒ NeverInSuffixLen(b,Err)

(c) |= NeverInPast(Err) ⇒ NeverInPastLen(b,Err)

(d) |= NeverInSuffix(Err) ⇒ NeverInSuffixLen(b,Err)

(e) For any scope formula SCP(Err) defined above, we have, if |= Err1 ⇒ Err2,

then |= SCP(Err2)⇒ SCP(Err1)

Proof. The proofs of these implications are immediate from definitions using

QDDC semantics. For example, (true^Err) implies (true^Err^true) which equals

��Err. Hence, NeverInPast(Err) which equals !��Err implies !(true^Err) which

equals NeverInSuffix(Err). This gives us (a).
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Table 5.1: Robustness criteria Rb(A) defined using Error-types and Error-Scope

formulas. There may use additional integer parameters k,b.

Sr. Robustness Criteria Definition of Rb(A)

1. AssumeFalse(A) (false)

2. BeCorrect(A) NeverInPast(LocalErr(A))

3. BeCurrentlyCorrect(A) NeverInSuffix(LocalErr(A))

4. LenCnt(A,k,b) NeverInPastLen(b,CountErr(A,k))

5. LenCntInt(A,k,b) NeverInSuffixLen(b,CountErr(A,k))

6. LenBurst(A,k,b) NeverInPastLen(b,HasBurstErr(A,k))

7. LenBurstInt(A,k,b) NeverInSuffixLen(b,HasBurstErr(A,k))

8. ResCnt(A,k,b) NeverInPastRes(b,CountErr(A,k))

9. ResCntInt(A,k,b) NeverInSuffixRes(b, CountErr(A,k))

10. ResBurst(A,k,b) NeverInPastRes(b, HasBurstErr(A,k))

11. ResBurstInt(A,k,b) NeverInSuffixRes(b, HasBurstErr(A,k))s

12. AssumeTrue(A) (true)

As a second example, NeverInPast(Err) = (!��(Err)) (by definition), which

implies !��((slen ≤ (b−1)) && Err). This, by definition, equals the formula,

NeverInPastLen(b,Err). Hence we get (c). We omit the remaining proofs.

5.1.3 Robustness Order and Comparison

Recall the definition of Maximally Permissive Supervisor (MPS) from Section

4.2.1. By the monotonicity of greatest fixed point computation used for construc-

tion of MPS, we get the following result.
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Proposition 42 (MPS Monotonicity). Given QDDC formulas D1 and D2 over

variables (I,O) such that |= (D1 ⇒ D2), we have:

– MPS(D2)≤det MPS(D1), and

– If MPS(D1) is realizable then MPS(D2) is also realizable.

Proof. – As D1 ⇒ D2, we have L(D1) ⊆ L(D2). Therefore, MPS(D1) will

also be a supervisor (but may not be maximal) for the formula D2 and

MPS(D2) may have some additional behaviour which makes it maximal.

Thus, L(MPS(D1)) ⊆ L(MPS(D2)) which is equivalent to MPS(D2) ≤det

MPS(D1) (by Definition 18).

– From the above argument that MPS(D1) will also be a supervisor for D2 and

from the fact that if there exist a supervisor for any formula D then MPS(D)

also exist. We get the second result.

Given robustness criteria Rb1(A) and Rb2(A), we say that Rb1(A) implies

Rb2(A) provided |= Rb1(A) ⇒ Rb2(A). This gives us the implication ordering

on robustness criteria. The following theorem shows that implication ordering

improves the worst case guarantee of DC holding but it makes supervisors less

realizable.

Theorem 43. Let |= Rb1(A)⇒ Rb2(A). Then for all QDDC formulas DA,DC, we

have

(a) MPS(DA,DC,Rb1(A)) ≤DC
must MPS(DA,DC,Rb2(A)).

(b) If the specification (DA,DC,Rb2(A)) is realizable then (DA,DC,Rb1(A)) is

also realizable.
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Proof. For 1 ≤ i ≤ 2, we have MPS(DA,DC,Rbi(A)) = MPS(φi), where φi =

((Rbi(A)∧ pre f (EP(A)⇔ DA))⇒ DC) (by Definition 38 and Equation 5.1).

Now, as |= Rb1(A)⇒ Rb2(A), we have |= (Rb2(A)⇒ DC) ⇒ (Rb1(A)⇒
DC) and hence for any formula D, we have |= ((Rb2(A)∧D)⇒DC) ⇒ ((Rb1(A)∧
D)⇒ DC). Thus |= φ2 ⇒ φ1.

Then, by Proposition 42, we have MPS(φ1) ≤det MPS(φ2). From this and by

applying Proposition 36, we get the desired result MPS(φ1) ≤DC
must MPS(φ2). We

also get (b).

The various robustness criteria specified above can be ordered by implication

ordering which also improves the hard robustness of the synthesized controller

(See Theorem 43). Figure 5.4 gives the implication ordering between the robust-

ness criteria of Table 5.1. Hence, in specification (DA,DC,Rb(A)), the user must

use the weakest criterion (under the implication ordering) from the Figure 5.4

which makes the specification realizable.

Theorem 44. All the implications given in Figure 5.4 are valid.

Proof. The proofs of these implications follow easily from the definitions of the

robustness criteria by using Proposition 40 and 41. As an example, we prove that

|= BeCorrect(A)⇒ BeCurrentlyCorrect(A).

Formula BeCorrect(A) equals NeverInPast(LocalErr(A)) (by definition), which

by Proposition 41(a) implies NeverInSuffix(LocalErr(A)) which by definition equals

BeCurrentlyCorrect(A), thus proving the claim.

Now, we give proof for |= ResCntInt(A,k,b)⇒ ResBurstInt(A,k,b). We have

|= HasBurstErr(A,k)⇒ CountErr(A,k) by Proposition 40(b).

Therefore, by Proposition 40(e), we have |= RecoveryErr(b,HasBurstErr(A,k))
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Figure 5.4: Implication order on the robustness criteria of Table 5.1. Here X → Y

denotes the validity |= X ⇒Y . The implication holds for same value of parameters

k and b.

⇒ RecoveryErr(b,CountErr(A,k)). Then, using Proposition 41(e) and instantiat-

ing SCP by NeverInSuffix, we get |= NeverInSuffix(RecoveryErr(b,CountErr(A,k)))

⇒ NeverInSuffix(RecoveryErr(b,HasBurstError(A,k))). This proves the result.

Finally, we give proof for |= ResCntInt(A,k,b) ⇒ LenCntInt(A,k,b). From

Proposition 41(d) we have, |= NeverInSuffix(Err) ⇒ NeverInSuffixLen(b,Err).

Also for any formula D, we have |= NeverInSuffix(Err)⇒ NeverInSuffix(Err && D).

Now, by instantiating D with HasNoRecovery(A,b) and Err with CountErr(A,k),

we get the result NeverInSuffix(CountErr(A,k) && HasNoRecovery(A,b)) ⇒
NeverInSuffixLen(b,CountErr(A,k)). This proves the claim by definition.

We omit the remaining proofs.
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5.2 Case Study: A Synchronous Bus Arbiter and

Experiments

Please refer to the specification of Synchronous Bus Arbiter given in Section 4.3.4.

The specification of the synchronous arbiter is the assumption-commitment pair

(ArbAssume(n, i),ArbCommit(n,k)), which is denoted by Arbiter(n,k, i). Robust

controllers can be synthesized from this with various robustness criteria. For com-

parison of synthesized controllers, we used the expected value of meeting the

commitments in long run by technique presented in Section 4.3.5.

5.2.1 Experimental Results

The synchronous bus arbiter case study specifies the assumption-commitment pair

(DA,DC) for an Arbiter(n,k, i) consisting of n-cells with response time require-

ment of k cycles, under the assumption that at most i requests occur in each cy-

cle. Let detMPS(Arb) and detMPHOS(Arb) denote the MPS and the MPHOS

controllers for Arbiter(4,3,2) determinized under the output preference order-

ing a1 > a2 > a3 > a4. We have used horizon H = 50 in DCSynth for syn-

thesizing the MPHOS. The controllers were synthesized for various robustness

criteria, and their performance was measured as the corresponding expected val-

ues EDC(detMPS(Arb)) and EDC(detMPHOS(Arb)). See Section 4.3.3(i), for the

definition of expected value ED(Cnt) of property D holding for controller Cnt in

long run. Table 5.2 provides these values under the columns titled E(Arb-MPS)

and E(Arb-MPHOS), respectively.

Following paragraph gives the simulations to illustrating differences in be-

haviours of some of these controllers.
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Simulation of Robust Controllers for Arbiter: The robust controllers synthe-

sized for BeCorrect, BeCurrentlyCorrect, LenCntInt and ResBurstInt

criteria are encoded as Lustre models. We give the simulation traces (on same

inputs) for Arbiter(4,3,2) example using Lustre simulator. It can be seen how

each one of them generator different output trace for the same inputs. For ex-

ample, BeCorrect controller does not meet the commitment from cycle 15 and

keeps all the acknowledgement lines high, once the assumption is violated in cy-

cle 15. Whereas, the BeCurrentlyCorrect controller recovers and start meeting

the commitment from cycle 22. Hence it is a more robust controller.

Figure 5.5: Simulation of MPS BeCorrect for Arbiter(4,3,2)

Figure 5.6: Simulation of MPS BeCurrentlyCorrect for Arbiter(4,3,2)

Similarly, for a case study of a Mine-pump Controller specification, we syn-

thesized the determinized MPS and MPHOS controllers under the preferred out-

put PumpOn and various robustness criteria. We measured the performance of

143



Figure 5.7: Simulation of MPS LenCntInt for Arbiter(4,3,2)

Figure 5.8: Simulation of MPS ResBurstInt for Arbiter(4,3,2)

these controllers as the expected values EDC(detMPS(MP)) and EDC(detMPHOS(MP)).

Table 5.2 provides these values under the columns titled E(MP-MPS) and E(MP-

MPHOS), respectively. Multiple cells are merged in the table if the obtained su-

pervisors are syntactically identical.

In all the above cases, the tool DCSynth performed efficiently by giving the

required controllers for Arbiter within 1 seconds and for the Minepump within

3 seconds. All these experiments were done on Ubuntu 18.04 system with Intel

i5 64 bit, 2.5 GHz processor and 4 GB memory. It is observed that scalability is

mainly limited by the monitor synthesis step.

An examination of Table 5.2 is quite enlightening. We state our main findings.

– In both the case studies, the robustness criterion AssumeTrue leads to un-

realizable specification whereas all other criteria give realizable specifi-
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Table 5.2: Expected value of Commitment DC holding in Long Runs over random

inputs for Controllers synthesized under various Robustness Criteria and integer

parameters (k,b).
Arbiter(4,3,2) Minepump(8,2,6,2)

Robustness E(ARB- E(ARB- E(MP- E(MP-

Criteria MPS) MPHOS) MPS) MPHOS)

k=1, b=3 k=2, b=8

AssumeFalse 0.000000

0.998175

0.000000
0.997070

BeCorrect 0.000000 0.000000

ResCnt(K,B) 0.000000

0.000000 0.997070
LenCnt(K,B) 0.000000

ResBurst(K,B)
0.000000

LenBurst(K,B)

ResCntInt(K,B) 0.544309
0.000966 0.997070

ResBurstInt(K,B) 0.669069

LenCntInt(K,B) 0.768066 0.0027342

0.997070LenBurstInt(K,B) 0.835205 0.004514

BeCurrentlyCorrect 0.687500 0.992647 0.997070

cations. Thus, it is advisable to use the weakest criteria LenBurstInt or

BeCurrentlyCorrect for the best hard-robustness.

– In both the case studies, for the MPS controllers, the Expected value of

commitment DC increases with the implication ordering given in Figure 5.4.

The value ranges from 0 to 83% for the Arbiter and 0 to 99% for the Mine

pump. Thus, the robustness criterion has a major effect on the performance

of the synthesized MPS controller. Also, for many robustness criteria, the

Expected DC value is 0. This happens as these criteria (defined using the

Error-Scope formulas NeverInPast) are non-recoverable – once the crite-

rion becomes false it remains false in future. Hence, it is desirable to use

recoverable criteria defined using the Error-scope formulas NeverInSuffix.
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– The MPHOS controller, which improves the MPS controller by optimizing

the Expected value of the soft requirement DC, has an overwhelming impact

on the measured expected value of DC under random inputs. In both case

studies, the value is above 99% irrespective of the robustness criterion used.

Thus, soft-robustness vastly improves the expected case performance of the

controller and should be preferred over MPS.

– We often get MPHOS controllers with the same/similar expected value of

DC for several robustness criteria. It should be noted that these can be

different controllers providing distinct hard-robustness guarantees. For

Minepump(8,2,6,2), all the MPHOS controllers have same expected value

but they are not identical. Hence, the circumstances (relaxed assumptions)

under which they guarantee DC are quite different.

In summary, the hard robustness provides the conditional guarantee of meet-

ing the commitment DC under the relaxed assumptions and the soft robust-

ness improves the performance of the controller by optimizing it for meeting

commitment DC even when the relaxed assumptions are not met. Therefore,

the combination of hard and soft robustness as supported by our tool DC-

Synth is useful.

5.3 Discussion

A robust controller should continue to function (i.e maintain its commitment) un-

der failure of environmental/plant assumptions as much as possible. When such

failures are transient, the controller should be able to recover from the failure by

reestablishing the commitment in bounded time [76, 14].
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Our main contribution is a logical framework for specifying hard and soft ro-

bustness and a uniform method for the synthesis of specified controllers. The

framework allows a logical specification of Robustness criterion. This provides a

generic formula for weakening any user specified assumption. A robust controller

which invariantly guarantees the commitment under such weakened assumption

(and hence is more robust) is synthesized. Several robustness criteria including

the k,b resilience of Ehlers and Topku [39], as well as new notions such tolerat-

ing bounded errors in bounded time intervals, tolerating burst errors and recov-

ery from transient errors can be logically specified. Augmenting the above hard

robustness, we also optimize the synthesized controller to enhance the expected

value of commitment holding irrespective of any assumption. We used the tool

DCSynth introduced Chapter 4 for the synthesis of the robust controller. With

case studies, we have shown the impact of hard and soft robustness on the ex-

pected behaviour of the controller. The experiments show that the combination of

hard and soft robustness, as proposed here, is beneficial. Logic QDDC, based on

Duration Calculus of Zhou et al. [23], provides a very powerful vocabulary for

stating robustness properties.

Several authors have investigated the notions of robustness [14, 76, 39]. Bloem

et al. [14] provide a classification of different robustness notions. The concept

of soft robustness is termed as “Never Give Up” and hard robustness is intro-

duced as “Don’t Be Lazy” notion although no logical specification framework

or uniform synthesis method is formulated. Ehlers et al. [39] propose synthe-

sis of resilient controllers. These provides an ability to tolerate k errors between

two periods of recovery of length at-least b. This can be specified as our logi-

cal criterion ResCnt(k,b). However, the specified controller cannot recover from
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a long transient burst of error. We have generalized this to a recoverable crite-

rion ResCntInt(k,b) by specifying a controller which can tolerate up to k errors

after the last recovery period of length b (irrespective of previous history). We

also specify new notions of tolerating non-burst errors (criteria ResBurstInt and

ResBurst) as well as length based notions of tolerating k errors in last b cycles (cri-

terion LenCntInt). This last criterion is related to the k-robustness of Bloem et al.

[12], where the ratio between the count of assumption and the count of commit-

ment is stabilized around k. A limitation of our synthesis technique is noteworthy.

In our synthesis, concrete values of the parameters k,b have to be specified for

synthesis. As compared to this, both Ehlers and Topku [39] as well as Bloem et

al. [12] give synthesis algorithms which automatically find the (Pareto) optimal

values of these parameters and they also synthesize controllers for this optimal

value. Inspired by this, our future work will address parametric synthesis of our

logical specification.

None of the above cited work analyse the performance of the synthesized con-

trollers. One indicator for this performance is the expected value of commitment

holding in average. Another measure is the must-dominance order amongst the

synthesized controllers which compares their worst-case behaviour. Such mea-

surement is important as robustness criterion has significant impact on the perfor-

mance. Moreover, we optimize the controller with soft robustness which also has

a very large impact on the expected value of commitment holding in average. In

our case studies, we have demonstrated the impact of hard and soft robustness on

the expected case and the worst-case performance.
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Chapter 6

Specification and Optimal Synthesis

of Run-time Enforcement Shields

A system/controller with sporadic errors (SSE) is a controller which produces

high quality desirable output for any given input but it may sporadically violate a

critical system requirement specified here by a QDDC formula REQ(I,O), where

I and O are the set of input and output propositions. Many manually designed con-

trollers have this character, as they embody designer’s unspecified optimizations,

however they may have obscure design errors.

A run-time enforcement shield for a specified critical requirement REQ(I,O)

is a controller (Mealy machine) which receives both input and output (I,O) gen-

erated by SSE. The shield produces a modified output O� which is guaranteed

to invariantly meet the critical requirement REQ(I,O�) (correct-by-construction).

Moreover, in each run, the shield output O� must deviate from the SSE output O

“as little as possible”, to maintain the quality. This allows the shield to benefit

from system designer’s optimizations without having to formally specify these or
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to handle these in the synthesis. See Figure 6.1 on page 153.

In this chapter, we give a method for logical specification of shields using

QDDC formulas. We show how our tool DCSynth introduced in Chapter 4, im-

plementing soft requirement guided synthesis can be used for automatic synthesis

of shields from a given specification. We then logically formulate several notions

of shields on our proposed framework. We give experimental results showing the

performance of our shield synthesis tool with a comparison to previous work.

A central issue in designing run-time enforcement shields is the underlying

notion of “deviating as little as possible” from the SSE output. There are several

different notions of deviation explored in the literature [15, 69, 110, 109]. In their

pioneering work, Bloem et al. [15] proposed the notion of k-stabilizing shield

which may deviate for at most k cycles continuously under suitable assumptions.

If assumptions are not met the shield may deviate arbitrarily. This was proposed

as a hard requirement which must be mandatorily satisfied by the shield in any

behaviour. We call such constraints as hard deviation constraints. Konighofer

et al. [69] have proposed some variants of the k-stabilizing shield with and without

fail safe state, which are also hard deviation constraints. Specific shield synthesis

algorithms have been developed for each of these constraints.

As our first main contribution, we propose a logical specification notation for

hard deviation constraints HDC using the formulas of an interval temporal logic

QDDC. With its counting constructs and interval based modalities, the logic can

be used to conveniently specify both the correctness requirement REQ(I,O) as

well as the hard deviation constraint HDC.

Criticizing the inability of k-stabilizing shields in handling burst errors, Wu

et al. [110, 109] proposed a burst-error shield which enforces the invariance of
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the correctness requirement, and it locally minimizes the measure of deviation

between SSE output O and the shield output O�, at each step. An algorithm for

the synthesis of such shields was given. We call such a shield as locally deviation

minimizing.

As our second main contribution, we generalize Wu’s technique to minimize

the cumulative deviation more globally. An H-Optimal shield which minimizes

at each point the expected value of cumulative deviation in next H-steps of shield

execution is computed. The cumulative deviation is averaged over all possible

H length inputs to arrive at the optimal estimate. We call such a shield as H-

Optimally deviation minimizing. This is a powerful optimization and we experi-

mentally show its significant impact on performance of the shield. It may be noted

that Wu’s burst-error shield is obtained by selecting H = 0.

Finally, we propose a uniform method for synthesizing a run-time enforcement

shield from given logical specification (REQ,HDC) and a horizon value (natural

number) H. The resulting shield invariantly meets the correctness requirement

REQ as well as the hard deviation constraint HDC. Moreover, the shield is H-

Optimally deviation minimizing. The shield synthesis is carried out using our tool

DCSynth introduced in Chapter 4. We give an experimental evaluation of the per-

formance of our DCSynth tool for synthesizing shields and compare it with some

previously reported studies in the literature. We also compare the performance of

various shields by measuring the extent of deviation of the shield output from the

SSE output. Towards this, we use two measures of the shield performance.

– We compute the probability of deviation in long run using method discussed

in Section 4.3.5. While simplistic, this does provide some indication of the

shield’s effectiveness in average.

151



– We measure the worst case burst-deviation latency. This gives the maxi-

mum number of consecutive deviations possible in the worst case. A model

checking technique implemented in a previously available tool CTLDC [85]

allows us to compute this worst case latency.

6.1 Framework for Specification and Synthesis of

Run-time Enforcement Shields

For a system with sporadic errors (SSE) over input-output alphabet Σ = 2I × 2O

(with I and O denoting the set of input propositions and output propositions

respectively), let the correctness requirement be given as a QDDC formula

REQ(I,O), which is also over input-output propositions (I,O). SSE may fail

to meet the requirement at some of the points in a behaviour (ii,oo). (The reader

may recall Definition 15 in Section 4.1 and its following two paragraphs for

the notation.) A run-time enforcement shield for the a given SSE and the cor-

rectness requirement REQ(I,O) is a Mealy machine with input-output alphabet

Σ� = 2I∪O × 2O�
, where O� is the output propositions for the shield and I ∪O are

the inputs to the shield. Thus, O� denotes the updated outputs computed by the

shield for the corresponding system output O. See Figure 6.1 for the diagram-

etic representation. For any input (ii,oo) the shield produces a modified output

oo� such that (ii,oo�) invariantly satisfies the correctness requirement REQ(I,O�).

Moreover, the output oo� must deviate from the SSE output oo as little as possible

to maintain quality. There are several distinct notions of “deviating as little as

possible” leading to different shields.

In this section, we give a logical framework for specifying various shields
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I SSE

O

Shield
O�

Figure 6.1: Run-time Enforcement Shield.

by using the logic QDDC. We then provide an automatic synthesis of a run-time

enforcement shield from its logical specification using the tool DCSynth of the

previous section. Thus, we achieve a logical specification and a uniform synthesis

method for shields.

Deviation constraints specify the extent of allowed deviation in a shield’s be-

haviour. Our specification has hard deviation constraint HDC which must be

mandatorily and invariantly satisfied by the shield. (This is similar to the hard

requirement in DCSynth.) We also define a canonical soft deviation constraint

Hamming(O,O�) which will be useful in minimizing cumulative deviation during

synthesis. Overall, a shield specification consists of a pair (REQ,HDC).

6.1.1 Hard Deviation Constraints

Two indicator propositions, SSEOK and Deviation play an important role in for-

mulating hard deviation constraints. Proposition SSEOK indicates whether the

SSE is meeting the requirement REQ(I,O) at the current position. Proposition

Deviation indicates whether at the current position, the shield output is differ-

ent from the SSE output. Recall that in DCSynth specifications, the formula
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Ind(D,w) defines a fresh output proposition w which is true at a position pro-

vided the past of the position satisfies formula D (see Definition 38). We use the

following list of indicator definitions in formulating hard deviation constraints.

Let, O = {o1, . . . ,or} and O� = {o�1, . . . ,o
�
r}.

INDDEF =

�
Ind( REQ(I,O), SSEOK),

Ind( true^�∨i(oi �= o�i)�, Deviation)

�

A hard deviation constraint HDC is a QDDC formula over propositions SSEOK

and Deviation. It specifies a constraint on Deviation conditional upon the be-

haviour of SSEOK. In Subsection 6.1.4, we will give a list of several different

hard deviation constraints.

For shield synthesis using DCSynth, we define the QDDC formula HShield

given in Equation 6.1 as the hard requirement over the input-output propositions

(I ∪O,O�). Notice that in its formulation, we use the cascade composition from

Definition 38. This allows us to modularize the specification into components

REQ and HDC.

HShield = REQ(I,O�)∧HDC(SSEOK,Deviation)� INDDEF (6.1)

The constraint (QDDC formula) HShield must be invariantly satisfied by the

shield. Tool DCSynth gives us a maximally permissive supervisor MPS(HShield)

with this property (See definition 20). This supervisor can be termed as shield-

supervisor without deviation minimization, denoted by MPS(REQ,HDC).

6.1.2 Soft Deviation Constraint

While HDC already places some constraints on the permitted deviation, we can

further optimize the deviation in supervisor MPS(REQ,HDC) of the previous sec-
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tion. Quantitative optimization techniques from Markov Decision Processes can

be used. (Stochasticity comes from the distribution of inputs to the shield.) The

tool DCSynth allows us to specify such optimization using a list of soft require-

ment formulas with weights (See Generalized DCSynth specification in Section

4.2.4). The tool optimizes a supervisor to a sub-supervisor which maximizes the

expected value of cumulative weight of soft requirements over next H-steps. This

cumulative weight is averaged over all input sequences of length H.

We make use of this H-Optimal sub-supervisor computation to get a sub-

supervisor which minimizes the expected cumulative deviation over next H-steps.

Given the set of output propositions O= {o1, . . . ,or} having r output propositions,

consider the DCSynth soft-requirement

Hamming(O,O�) = �(true^�o1 = o�1�) : 1, . . . ,(true^�or = o�r�) : 1� (6.2)

Thus, non-deviation of any output variable oi = o�i at current position contributes

a reward 1. This is summed over all output variables to give weight (reward) of

the soft requirement. Thus, the weight of the soft requirement Hamming(O,O�) at

any position k in a word ((ii,oo),oo�) is the value (r−h) where r is the number of

output propositions and h is the hamming distance between oo[k] and oo�[k], where

oo[k] and oo�[k] are vectors of r bits. If oo and oo� perfectly match at position k

then the weight at position k is r, whereas if oo and oo� differ in values of say p

variables at position k then the weight at the position k is r− p.

By using Hamming(O,O�) as soft requirement and by selecting a horizon

value H, we can apply the tool DCSynth to obtain a sub-supervisor

MPHOS( MPS(REQ,HDC), Hamming(O,O�), H )

of the supervisor MPS(REQ,HDC). This sub-supervisor retains only the outputs

155



which maximize the expected accumulated weight of Hamming(O,O�) over next

H steps in future. This supervisor is called the shield-supervisor with deviation

minimization and denoted by MPHOS(REQ,HDC,H).

6.1.3 Determinization

It may be noted that both the shield-supervisors MPS(REQ,HDC) as well as

MPHOS(REQ,HDC,H) are output non-deterministic. Multiple choice of out-

puts may satisfy the hard deviation constraints while being H-Optimal for the soft

deviation constraint. Any arbitrary resolution of the output non-determinism will

preserve the invariance guarantees and H-Optimality (See Theorem 34).

As given in section 4.2.3, the user specifies a preference ordering ord on the

shield outputs 2O�
. A deterministic controller is obtained by retaining only the

highest ordered output from the non-deterministic choice of outputs offered by

the supervisor. We denote the obtained shields (deterministic controllers) as

Detord(MPS(REQ,HDC)) and Detord(MPHOS(REQ,HDC,H)).

In summary, given a correctness requirement REQ(I,O) to be enforced by the

shield, a hard deviation constraint HDC(SSEOK,Deviation), a horizon value H

(for globally minimizing the deviation over next H steps) and a preference order-

ing ord on shield outputs 2O�
, we can synthesize shields Detord(MPS(REQ,HDC))

and Detord(MPHOS(REQ,HDC,H)). When ord,REQ,HDC,H are clear from

context, these shields are referred to as Shield NoDM (shield with no deviation

minimization) and Shield DM (shield with deviation minimization), respectively.
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6.1.4 Variety of Hard Deviation Constraints and Shield-Types

In Table 6.1 below, we give a useful list of several different hard deviation con-

straints (HDC) as QDDC formulas. These include the specifications of the burst-

error shield of Wu et al. and the k-stabilizing shield of Bloem et al. as well as a

new notion of e,d-shield. Labels V0 to V3 are used to identify these specifications

in the experiments. Each of these HDC can be used to synthesize shields with or

without deviation minimization as explained in the previous subsection.

Table 6.1: Variety of Hard Deviation Constraints

ShieldType HDC

V0 Burst-shield true

V1 k-shield []([[Deviation]]=>slen<k)

V2 k-stabilizing []([[SSEOK && Deviation]]=>slen<k) &&

shield ( []( (<!Deviation>^[[SSEOK]]) => [[!Deviation]] ) )

V3 e,d-shield []((scount !SSEOK <= e) => (scount Deviation <=d) &&

( []( (<!Deviation>^[[SSEOK]]) => [[!Deviation]] ) )

We provide some explanation and comments on these specifications.

– The proposition SSEOK denotes that the SSE is not making correctness er-

ror, whereas proposition Deviation denotes that the shield is deviating from

the SSE output. The QDDC formula

( []( (<!Deviation>^[[SSEOK]]) => [[!Deviation]] ) ) states that

in any observation interval, if the interval begins with no deviation, and

there is no error by SSE during the interval, then there is no deviation
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throughout the interval. This property can be called NoSpuriousDeviation.

It is included as a conjunct in k-Shield V2 as well as e,d-Shield V3.

– Burst-shield (V0) does not enforce any hard deviation constraint. Thus, only

hard requirement on the synthesized shield is to meet REQ(I∪O,O�) invari-

antly. However, we can use this together with deviation minimization using

the soft deviation constraint Hamming(O,O�). By taking horizon H = 0, we

obtain the burst shield of Wu et al. [110] which locally optimizes deviation

at each step without any look-ahead into the future. Larger horizon values

give superior shields which improve the probability of non-deviation in long

run, as shown by our experiments which are reported later in experiments.

– A k-shield (V1) specifies (as its hard deviation constraint) that for any ob-

servation interval the deviation can invariantly happen for at most k cycles.

Thus, a burst of deviation has length of at most k cycles. The k-shield (V1)

specifies that this property must hold unconditionally. Such a specifica-

tion is often unrealizable. For example, if SSE makes consecutive errors

for more than k cycles, the shield may be forced to deviate for all of these

cycles. Hence, several variants of the V1 shield have been considered.

– The k-stabilizing shield (V2) specifies that the shield may deviate as long

as SSE makes errors (even burst errors). Once SSE recovers from deviation

(indicated by SSEOK becoming and remaining true), the shield may deviate

for at most k cycles. Thus, the shield must recover from deviation within

k cycles once SSEOK is established and maintained. Also, there must be

no spurious deviation due to conjunct NoSpuriousDeviation. This specifica-

tion precisely gives the k-stabilizing shield without fail-safe state, originally
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defined by Konighofer et al. [69]. By a variation of this, the k-stabilizing

shield with fail-safe state [69] can also be specified.

– We define a new notion of shield called e,d-shield (V3). This states that in

any observation interval if the count of errors by SSE (given by the term

(scount !SSEOK)) is at most e then the count of number of cycles with

deviations (given by the term (scount Deviation)) is at most d. Thus e

errors lead to at most d deviations. Also, there is no spurious deviation due

to the conjunct NoSpuriousDeviation.

It may be noted that irrespective of the shield type the synthesized shield

have to meet the requirement REQ(I,O�) invariantly as specified by the formula

HShield (See Equation 6.1).

6.2 Performance Measurement Metrics and Exper-

iments

In this section we give the experimental results for shield synthesis carried out in

our framework. We first benchmark the performance of our tool and compare it

with some other tools for shield synthesis in Section 6.2.1. In Section 6.2.2 we

define some performance measurement metrics for shields and we use these to

compare various shield types.

6.2.1 Performance of Tool DCSynth in Shield Synthesis

We have synthesized Burst-shield V0 with deviation minimization using DCSynth

for all the benchmark examples given in [110]. The results are given in Table 6.2.
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Table 6.2: Synthesis of Burst shield-V0 with Deviation Minimization optimization

using DCSynth. For each specification, the number of states of the resulting shield

and time (in seconds) for synthesizing it are reported. For comparison, results

for k-stabilizing shield synthesis and Burst-error shield synthesis are reproduced

directly from Wu et al. [110].

Specification

k-Stabilizing shield Burst-error shield Burst shield V0 with DM

For H=0 For H=10

states time states time states time states time

Toyota Powertrain 38 0.2 38 0.3 9 0.07 9 0.35

Traffic light 7 0.1 7 0.2 4 0.008 4 0.059

F64 p 67 0.7 67 0.5 67 0.009 67 0.029

F256 p 259 46.9 259 10.5 259 0.08 259 0.09

F512 p 515 509.1 515 54.4 515 0.24 515 0.26

G(¬ q) ∨ F64(q ∧ F64 p) 67 0.8 67 0.6 67 0.015 67 0.06

G(¬ q) ∨ F256(q ∧ F256 p) 259 46.2 259 10.7 259 0.16 259 0.27

G(¬ q) ∨ F512(q ∧ F512 p) 515 571.7 515 54.5 515 0.77 515 0.91

G(q ∧ ¬ r → (¬ r ∪4 (p ∧ ¬ r))) 15 0.1 145 0.1 6 0.002 6 0.013

G(q ∧ ¬ r → (¬ r ∪8 (p ∧ ¬ r))) 109 0.2 5519 4.5 10 0.003 10 0.023

G(q ∧ ¬ r → (¬ r ∪12 (p ∧ ¬ r))) 753 6.3 27338 1414.5 14 0.009 14 0.03

AMBA G1+2+3 22 0.1 22 0.1 7 0.002 7 0.01

AMBA G1+2+4 61 6.3 78 2.2 8 0.2 8 1.69

AMBA G1+3+4 231 55.6 640 97.6 14 0.25 14 2.01

AMBA G1+2+3+5 370 191.8 1405 61.8 12 0.017 13 0.105

AMBA G1+2+4+5 101 3992.9 253 472.9 12 1.27 12 8.86

AMBA G4+5+6 252 117.9 205 26.4 18 0.86 18 7.99

AMBA G5+6+10 329 9.8 396 31.4 27 3.7 27 36.14

AMBA G5+6+9e4+10 455 17.6 804 42.1 46 5.58 46 52.96

AMBA G5+6+9e8+10 739 34.9 1349 86.8 64 7.44 64 70.73

AMBA G5+6+9e16+10 1293 74.7 2420 189.7 100 11.3 100 105.2

AMBA G5+6+9e64+10 4648 1080.8 9174 2182.5 316 37.17 316 202.52

AMBA G8+9e4+10 204 7.0 254 6.1 48 0.29 16 2.13

AMBA G8+9e8+10 422 22.5 685 33.7 84 0.55 20 3.49

AMBA G8+9e16+10 830 83.7 1736 103.1 156 1.02 28 6.32

AMBA G8+9e64+10 3278 2274.2 7859 2271.5 588 5.96 76 24.89
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All our experiments were conducted on Linux (Ubuntu 18.04) system with Intel

i5 64 bit, 2.5 GHz processor and 4 GB memory. The formula automata files of Wu

et al.[108] were used in place of QDDC formulas for uniformity. For a comparison

with other tools, the results for the k-stabilizing shield synthesis and the Burst-

error shield synthesis for the same examples are reproduced directly from Wu et

al. [110]. As these are for unknown hardware setup, a direct comparison of the

synthesis times with the DCSynth synthesis times is only indicative.

As the table suggests, in most of the cases, the shield synthesized by DCSynth

compares favourably with the results reported in literature [110], both in terms of

the size of the shield and the time taken for the synthesis. Recall that DCSynth

uses aggressive minimization to obtain smaller shields. As an example, for the

specification AMBA G5+6+9e64+10, our tool synthesizes a shield significantly

faster and with smaller number of states than the existing tools[15, 110].

6.2.2 Comparison between various shield notions

For comparing the performance of shields synthesized with different shield types,

we use the following performance metrics.

Expected Value of Non-deviation of a Shield in Long run: A shield is said

to be in a non-deviating state if the shield output O� matches the SSE output O.

A proposition !Deviation holds for such states. We measure the probability of

shield being in such states over its long runs, as described in Section 4.3.3.

The expected value of a shield S being in a non-deviating state over long runs

can be denoted as Euni f (S,true^<!Deviation>).
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Worst Case Burst-Deviation Latency: The worst case burst-deviation latency

gives the maximum number of consecutive cycles for which the shield deviates

even when the SSE is satisfying the requirement. Thus, it denotes the maxi-

mum length of an interval in the behaviour of the shield for which the formula

“SSEOK && Deviation” holds invariantly.

Given a Shield S and a QDDC formula D, the latency goal MAXLEN(D,S)

computes

sup{e−b | ρ, [b,e] |= D, ρ ∈ Exec(S)}

i. e. it computes the length of the longest interval satisfying D across all the ex-

ecutions of S. Thus, it computes the worst case span of behaviour fragments

matching D in S. Tool CTLDC [85] implements a model checking technique

for computing MAXLEN(D,S). The worst case burst deviation latency of shield

measures the maximum number of consecutive cycles having deviation in worst

case. The worst case burst-deviation latency of a shield S can be computed as

MAXLEN([[SSEOK && Deviation]],S).

Experiments and Findings:

We can use the expected value of deviation and the worst case burst-deviation

latency, for comparing the shields obtained using various shield-types defined

in Section 6.1.4. We synthesized various shields for the correctness require-

ment ϕuntil(n) given in Example 45 with n = 5 and the input-output propositions

({r},{p,q}). The output propositions of synthesized shield are {p�,q�}.

Example 45. We give an example QDDC formula over propositions {p,q,r}
which specifies a typical recurrent reach-avoid behaviour required in many con-

trol systems. Intuitively, the formula ϕuntil(n) holds at a position i in the behaviour
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Table 6.3: Shield Synthesis for the formula ϕuntil(5) of Example 45 for shield

types defined in Table 6.1 and their Performance comparison. The expected value

of non-deviation in long run and worst case burst-deviation latency are reported.

Sr. Shield Type States Time Expected Value Latency

No.

Shield Synthesis of Requirement ϕuntil(5) Without Deviation Minimization

1. V0 NoDM 18 0.004 0.25 ∞

2. V1 NoDM(k=1) Unrealizable

3. V2 NoDM(k=1) 14 0.004 0.7142793 1

4. V1 NoDM(k=3) Unrealizable

5. V2 NoDM(k=3) 18 0.009 0.5982051 3

6. V3 NoDM(e=1,d=1) 13 0.001 0.7499943 0

7. V3 NoDM(e=1,d=2) 26 0.005 0.7182475 1

8. V3 NoDM(e=1,d=3) 40 0.008 0.6614611 2

Shield Synthesis of Requirement ϕuntil(5) With Deviation Minimization

9. V1 DM(k=1) Unrealizable

10. V0 DM(H=0)

13

0.003

0.833252 0

11. V2 DM(k=1)(H=0) 0.005

12. V2 DM(k=3)(H=0) 0.006

13. V3 DM(e=1,d=1)(H=0) 0.004

14. V3 DM(e=1,d=2)(H=0) 0.005

15. V3 DM(e=1,d=3)(H=0) 0.004

16. V0 DM(H=10)

8

0.016

0.8571396 0

17. V2 DM(k=1)(H=10) 0.01

18. V2 DM(k=3)(H=10) 0.009

19. V3 DM(e=1,d=1)(H=10) 0.008

20. V3 DM(e=1,d=2)(H=10) 0.012

21. V3 DM(e=1,d=3)(H=10) 0.013
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if, since the previous occurrence of r, the proposition p persists till an occurrence

of q. Moreover, q must occur within n time units from the last occurrence of r. For

example, here r may denote entering of enemy air-space, p may denote that the

UAV is invisible and q may denote that the target is reached. Let ϕ3 abbreviate

ϕuntil(3). Figure 6.2 gives a possible behaviour σ where the last row gives the

value of σ , i |= ϕ3 for each position i.

– Until(p,q,n): ((slen<(n)) && [[p]]) ||
(((([p] || pt)^<q>) && slen<=n)^true).

The second disjunct holds for an interval [b,e] provided q occurs at a posi-

tion b ≤ j ≤ e with j ≤ b+n and p persists from b to j−1. E.g. in Figure

6.2, σ , [5,9] |= until(p,q,3) with j = 8. The first disjunct holds for an in-

terval [b,e] provided e− b < n and p holds throughout the interval. E.g.

σ , [11,12] |= until(p,q,3). Note that σ , [2,4] �|= until(p,q,3).

– SinceLast(p,D): !(true^(<p>^((slen=1^[[!p]]) || pt) && !(D)))

This formula fails to hold at position i provided there is a previous (last)

occurrence of p in the past of i, at say position j ≤ i, and D does not hold

for the interval [ j, i].

– Let ϕuntil(n) be the QDDC formula SinceLast(r,(Until(p,q,n))).

Then, σ ,1 |= ϕ3 since there is no r at any position j ≤ 1. Also, σ ,9 |= ϕ3 as,

since the previous occurrence of r at position 5, the proposition p persists

till 7 and q holds at 8 (with 8 ≤ 5+ 3). Note also that σ ,12 |= ϕ3 since

the previous r occurs at 12 (with 12 < 12+ 3) and σ , [12,12] |= [[ p ]].

Finally, σ ,4 �|= ϕ3 as, since the previous r at position 4, neither does q occur

in-between nor do we have σ , [2,4] |= [[ p ]].
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Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0

p 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1

q 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

φuntil(3) 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

Figure 6.2: Example behaviour for φuntil(3)

For each shield type Vi given in Table 6.1, the shields Vi NoDM and Vi DM

were synthesized. Vi NoDM denotes shield synthesized without deviation mini-

mization where as Vi DM denotes the shield obtained with deviation minimiza-

tion optimization. The shield-supervisors were determinized with the preference

ordering (!q� >!p�) on outputs as outlined in the last paragraph of Section 4.2.3.

Table 6.3 gives the results obtained. We report the number of states of the

shield along with the time taken (in seconds) by the tool DCSynth to compute

the shield. Moreover, for comparing the performance of the resulting shields,

their Expected Value of non-deviation as well as the worst case burst-deviation

latency are reported in the table under the columns titled Expected Value and

Latency, respectively.

It is observed that with deviation minimization optimization, several different

shield types resulted in identical shields, although the time to synthesize them dif-

fered. For example, shields in rows numbered 10 to 15 are identical. We indicate

such a situation by merging the corresponding rows to a single cell. We give our

findings below.

– The k-shield V1 is unrealizable as expected. See its description in Section

165



6.1.4 for an explanation. All the other shield types are found to be realizable.

– For shield synthesis without deviation minimization, we obtain distinct shields

with distinct performance for each shield type. The Burst shield V0 has the

poorest performance (expected non-deviation 0.25 and latency ∞) as it en-

forces trivial hard deviation requirement true. The best performance is ob-

tained for the newly defined e,d-shield type V3 by choosing e = d. This

gives 0.74 as the expected value of non-deviation and worst case latency of

0 cycles. With increased difference d − e the performance degrades. Simi-

larly, in k-shield V2 the performance degrades with increase in the value of

k, as expected.

– The performance of the shield considerably improves with the deviation

minimization (DM) optimization. Expected value of 0.85 compares well

against the best value of 0.74 without deviation minimization. Also burst-

deviation latency drops to 0 with DM. We also notice that the performance

improves with increase in the horizon value when using DM. This is intu-

itively clear as the tool performs global optimization across larger number

of steps of look-ahead with increased horizon.

– For shield synthesis with deviation minimization optimization, all the dif-

ferent shield types V0,V2,V3 resulted in identical shield for a given value

of horizon H. Thus shields in rows 10-15 (synthesized with H = 0) and

rows 16-21 (synthesized with H = 10) are found to be identical. This shows

that deviation minimization effectively supersedes the different hard devia-

tion guarantees provided by the HDC. While this is not theoretically guar-

anteed, our experience with robust controller synthesis also indicates the
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overwhelming effectiveness of the DM-like optimization as seen in Section

5.2.1.

6.3 Discussion

We have presented a logical framework for specifying error-correcting run-time

enforcement shields using formulas of logic QDDC. The specification contains a

correctness requirement REQ, specifying the desired input-output relation to be

maintained, as well as a hard deviation constraint HDC which specifies a con-

straint on deviation between the system output and the shield output. Our shield

synthesis gives a shield which invariantly satisfies both REQ and HDC. Moreover,

a powerful optimization globally minimizes the cumulative deviation between the

system and the shield output.

The idea of error-correcting run-time enforcement shield was proposed in the

pioneering work of Bloem et al. [15], where the notion of k-stabilizing shield

(with a synthesis algorithm) was proposed. This was further enhanced by Konighofer

et al. [69]. Extension of shield synthesis to liveness properties was also been ex-

plored by them. Wu et al. [110, 109] defined the burst shield which is capable

of handling burst errors. Moreover, they proposed optimizing the shield with the

choice of output which locally minimizes the deviation at each stage. We have en-

hanced this with global optimization of cumulative deviation across next H steps.

In our method, the shield is logically specified using QDDC formulas and a

uniform method for the synthesis of the shield is proposed using our tool DC-

Synth. Using the proposed technique, we have specified the k-stabilizing shield

of Konighofer et al. [69], the burst shield of Wu et al. [110, 109], as well as
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a new e,d-shield. Moreover, we have measured the performance of the shields

resulting from these different criteria in terms of the expected value of deviation

in long runs, as well as the worst case burst deviation latency. Our experiments

show an overwhelming impact of global deviation minimization on the quality of

the shield. At the same time, hard deviation constraints provide a conditional hard

guarantee on the worst case deviation. Hence, the combination of hard deviation

constraint together with global minimization of deviation is useful.

Konighofer et al. [69] as well as Ehlers and Topku [39] propose controller/shield

synthesis technique for optimal achievable value of parameter k in a regular spec-

ification. By contrast, our current method requires k to be specified. In our future

work, we will address similar optimal parametric synthesis from parameterized

QDDC specifications.
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Chapter 7

Architecture Centric Analysis of

Non-Functional Requirements

The success of a HIS not only depends on its functional correctness, but also

equally depends on the guarantees it provides w.r.t. the non-functional require-

ments. One of the most important non-functional properties is dependability,

which must be assessed for any HIS. An accepted approach to ensure high level of

dependability requirements associated with HIS is to follow design methodology

guided by the relevant national standards like AERB/SG/D-10 [2], AERB/SG/D-

25 [3]1 and international standards such as IEC-61508 [59], IEEE 603 [60], IEEE

7-4.3.2 [61], IAEA [58] etc. These standards [59] recommend the use of formal

model based development and rigorous validation. Moreover, the assessment of

such requirements should be precise, and needs to be carried-out early in the de-

sign life cycle to minimize the adverse consequences of design errors (if any and

manifested later).
1Applicable to Nuclear Power Plants in India

169



The application of probabilistic automata based techniques for the analysis

of non-functional properties has been recommended [59] and studied in the past.

There are tools based on formal methods to assist in such analysis (e.g. prob-

abilistic model checkers [73]) and these are shown to be useful for analysis of

properties such as dependability [60]. But these tools have major limitation when

the state space associated with the system model is very large. This constrains the

applicability of these tools to small systems only.

A large/complex HIS is organized as an assembly of components. The depend-

ability of a large HIS is determined by its architecture. This is because, the overall

system dependability is a function of the dependability parameters (viz., safety,

availability and reliability) of its sub-components. Hence, architecture plays an

important role in achieving the required level of system dependability.

Traditionally, conformance to dependability requirement is mostly substanti-

ated by manual arguments, mainly due to the lack of formal semantics for artefacts

produced during architectural design. Any deficiency in the architectural design,

if found later in the development life cycle, is likely to be expensive in terms of

both cost and time.

We propose an architecture centric approach, where the model of a system ar-

chitecture consisting of its sub-components is represented in Architectural Anal-

ysis & Design Language (AADL) [44] using OSATE tool [43]. Each component

is annexed with a probabilistic automaton which incorporates various operational

and fault states of the constituent component(s) along with probabilistic transi-

tions among these states. Such a probabilistic automaton is called the fault model

of the component. Similarly, a fault model can also be associated with a sys-

tem. A tool has been developed to translate the fault model into Discrete Time
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Markov Chain (DTMC) model. This DTMC model can be analyzed for various

dependability properties like Probability of Failure on Demand (PFD), Spurious

Operation Probability (SOP) etc. In this work, the probabilistic model checker

PRISM [73] is used as back-end analysis engine for dependability analysis.

The fault model of a system/composite component can be obtained by taking

product of fault models of its sub-component. However, a major challenge in the

application of model checking technique is infamous state space explosion prob-

lem [57, 31, 29], which makes it impractical to analyze the systems of industrial

interest.

Overcoming the state space explosion problem in real-world applications is

one of the main contributions of this part of the work, where existing techniques

are adapted to perform the dependability analysis of large HIS with hierarchical

architecture, by making the analysis compositional. Thus, given a hierarchical

architecture model of a system and the Target Dependability Attributes (TDA),

the objective is to estimate the Component Level Specifications (CLS) of all the

atomic components in the architecture that achieves the required TDA. Here, TDA

specifies the targeted values of PFD and SOP, and the CLS are the values of failure

rates, repair rate and diagnostics coverage for each component.

Compositional top down analysis consists of decomposing the monolithic anal-

ysis into steps involving simpler analysis. We categorize the architectural compo-

nents either as an atomic or a composite one. Atomic components are the basic

building blocks of a system architecture and are not divided further, whereas com-

posite components are constituted using the existing atomic or composite compo-

nents. We start with the system under consideration as a composite component and

determine the CLS(s) of its sub-component(s) that achieve the required TDA of
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the system/composite component. The sub-components are assumed to be atomic

by abstracting the hierarchy of components/sub-components below it. If any of

the sub-component was a composite component, then the obtained CLS for that

component is converted into its TDA using a lookup table. Using this TDA, the

sub-component is further analyzed to get the CLS(s) of its sub-component(s). The

process is repeated for each of the sub-components, till we obtain the CLS of all

the atomic components in the hierarchical architecture.

The compositional analysis methodology proposed in this work is demon-

strated with the help of a case study for assessing the dependability of a few I&C

safety systems of a Large Pressurized Water Reactor (PWR), which fall under the

category of HIS. Following are the main contributions of this part of the work:

1. We present a compositional top down analysis methodology to analyze large

(hierarchical) HIS (Section 7.2.1). Compositional analysis also allows to re-

use the analysis results, when the same component is being used in multiple

system architectures.

We also extend the OSATE framework for automatic translation of hierar-

chical architecture model into corresponding PRISM DTMC model (Sec-

tion 7.2.2).

2. Case study of two large HIS has been carried out for assessing the depend-

ability using the proposed method (Section 7.3).

3. Rationalization of proposed architecture for achieving target dependability

attributes by comparing it with alternative architectures (Section 7.3.4).
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device Sensor // Declaration o f a device

features // Declaration o f Ports

output: out data port;

...

end Sensor;

device implementation Sensor.impl

annex EMV2 {** //Fault behaviour description

use types ErrorLibrary;

use behavior ThreeStateModel;

properties

OccurrenceDistribution =>[ProbabilityValue =>Pr ...] applies to Failure;

**};
end Sensor.impl;

Figure 7.1: Example architecture description of an atomic component and associ-

ated Error Model in OSATE using AADL

7.1 Preliminaries

7.1.1 System Architecture Modeling in AADL

The Architecture Analysis & Design Language (AADL) [44] is a modelling lan-

guage defined by the Society of Automotive Engineers (SAE), for specifying the

architecture of a system. AADL can be used to model component based architec-

ture along with interaction between the components and their execution behaviour.

This language facilitates architectural description of large HIS in a hierarchical

manner. In this thesis, we will describe the important features of AADL with the

help of examples.

173



system SensingModule

...

end SensingModule;

system implementation SensingModule.impl

subcomponents //Instances o f constituent components

SN : device Sensor.impl;

CU : ComparisionUnit.impl

annex EMV2 {** //Fault behaviour description

use types ErrorLibrary;

use behavior ThreeStateModel;

composite error behavior

states //State o f composite component de f ined using its constituents

[CU.Failed USUD or (CU.Operational and SN.Failed USUD)]->Failed USUD;

[CU.Failed Safe or (CU.Operational and SN.Failed Safe)] ->Failed Safe;

**};
end SensingModule.impl;

Figure 7.2: Example architecture description of a compositional component and

associated Error Model in OSATE(AADL)

Architectural components in AADL can be categorized as either atomic or

composite. Atomic components are the basic building blocks of a system architec-

ture and are not divided further, whereas composite components are constituted

using the existing atomic or composite components, which describe the system

hierarchy. An example of AADL architectural specification of an atomic com-

ponent Sensor having a single output port is shown in Figure 7.1. The keyword

device specifies that Sensor is a hardware device and the interface of this com-

174



ponent for data and control flow is given in the features section. A composite

component SensingModule built using a Sensor(SN) and a comparison unit(CU)

is shown in Figure 7.2. This component is designated as a system to indicate that

it is a distinct and self-sufficient unit within the architecture, built by integration

of other hardware, software and system components. The subcomponents section

in the model specifies the instances of other constituent components used. We will

use these architectural components in our case study presented in section 7.3.

AADL is an extensible language for modelling the architecture of a system,

which provides the flexibility to extend the basic language by introducing sub-

languages. The Error Model [99] is one such sub-language, which is used to

formally specify the error model of a system/component in terms of its states and

the events under which the components undergo transition among these states. For

dependability analysis, we specify the error model of a component to describe its

anticipated fault model. Therefore, the terms error model and fault model may be

used interchangeably in rest of this chapter.

AADL Error Model

The error model of a AADL component is described by a state machine consisting

of all possible states of the component and transitions among the states. The

transitions are triggered on the occurrences of error events. An error event denotes

the occurrence of a fault in a component. We associate an error model to each

component of the system architectural model.

The syntax of error model is described with the help of an example. Note

that any error model should be specified within the construct annex EMV2 {**

· · · **}. The atomic component Sensor, shown in Figure 7.1, is associated with
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error behaviour ThreeStateModel

events

λ2 : error event ; //Rate in hr−1

λ1 : error event ; //Rate in hr−1

µ : error event (Repair); //Rate in hr−1

1
Tproof

: error event (Surveillance); //Rate in hr−1

states

Operational : initial state;

Failed Safe : state;

Failed USUD : state;

transitions

t1 : Operational − [λ1]−> Failed Safe;

t2 : Operational − [λ2]−> Failed USUD;

t3 : Failed Safe − [µ]−> Operational;

t4 : Failed USUD − [ 1
Tproof

]−> Failed Safe;
� �� �
Name

� �� �
Source State

� �� �
Event Rate

� �� �
Destination State

end behavior ;

Figure 7.3: Example Error Model (ThreeStateModel)

an error model denoted as ThreeStateModel (specified using the keyword use be-

havior), which is presented in Figure 7.3. This error model has three states viz.,

Operational, Failed Safe and Failed USUD, where the initial state is Operational.

While the component remains in the Operational state if it is working as expected,

a transition to Failed Safe (or Failed USUD) state will take place in the event of

any safe failure (or unsafe-undetectable failure) [59]. A transition between two

states represents the rate of the corresponding event – failure or repair. The nota-

176



tions used in this error model are described in the Table 7.1.

The error model of a composite component is described in terms of its con-

stituent components. Example of an error model of a composite component Sens-

ingModule, in terms of its sub-components Sensor and ComparisonUnit, is shown

in Figure 7.2. This example shows that the current state of SensingModule is de-

rived by the current states of its sub-components.

During our analysis, the steady state probabilities of component being in the

Failed Safe or Failed USUD state are used to derive the dependability attributes

of the system. We assume that all the architectural components presented have an

associated error model described in Figure 7.3.

7.1.2 Dependability Analysis using AADL error model

For estimating the system dependability, many quantitative analysis techniques,

such as reliability block diagram, fault tree analysis, Markov analysis etc., are re-

ported in literature. Rouvroye and Brombacher [98] showed that Markov analy-

sis covers most of the aspects of quantitative safety evaluation (except uncertainty

analysis) while taking into account the effect of redundancy, common cause fail-

ures, self-diagnostics and on-line/off-line test & repair. We adapted the Markov

analysis technique and propose a DTMC based methodology, which makes appli-

cation of quantitative dependability analysis feasible for large HIS.

Here, we explain the notations used in our error model, which are also sum-

marized in Table 7.1. Cumulative failure rate of a system/component λ can be

categorized into λS and λUS representing safe and unsafe failure rates, respec-

tively. However, a fraction of unsafe failures is detectable using self-diagnostics,

which is denoted by Diagnostic coverage (DC). Based on the self-diagnostics,
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Table 7.1: Notations Used

Symbol Description

λ Cumulative Failure rate of system/component (hr−1)

λS Failure rate due to safe failures (hr−1)

λUS Failure rate due to unsafe failures (hr−1)

λUSD Failure rate due to unsafe detectable failures (hr−1)

λUSUD Failure rate due to unsafe undetectable failures (hr−1)

λ1 Failure rate due to safe or unsafe detectable failures (hr−1)

λ2 Failure rate due to unsafe undetectable failures (hr−1)

DC Fraction of detectable failures using self-diagnostic feature

MT T R Mean Time to Repair (hrs)

µ Repair Rate (hr−1), which is inverse of MTTR

Tproo f Interval between two successive surveillance tests (hrs)

unsafe failures are further categorized as unsafe detectable (USD) failures and

unsafe undetectable (USUD) failures. These failure rates are defined as follows.

λUSD = (DC)×λUS (7.1)

λUSUD = (1−DC)×λUS (7.2)

We consider the USD failure also as safe failure because, operator can drive

the system into a safe state on the basis of diagnostic information. Hence λ1, the

total rate for safe failure in the system, is derived by equation 7.3 and λ2, the rate

for unsafe undetectable failure in the system, is represented by equation 7.4.

λ1 = λS +λUSD (7.3)

λ2 = λUSUD (7.4)
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Figure 7.4: Generic Error model (Markov) of the Architectural Components

It can be observed that our error model example (Figure 7.3) has a one-to-one

mapping with the generic error model of a component shown in Figure 7.4. A

component can undergo a transition from Operational to Failed Safe state on the

occurrence of an event Failure Safe with a failure rate represented by λ1, and

to Failed USUD on the event of Failure USUD with a failure rate represented

by λ2. Since the component is repairable, it can also undergo a transition from

Failed Safe to Operational state on the event Repair with a rate represented by

µ . Further, USUD failure can be detected during surveillance test. Therefore,

a component can undergo a transition from Failed USUD to Failed Safe on the

event surveillance. The rate of this transition is 1/Tproo f for a given surveillance

test period (Tproo f ) [71].

For the purpose of dependability analysis, the error model of a component is

specified using the parameters λ , DC, µ and Tproo f . We refer to these parameters

collectively as Component Level Specification (CLS).
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7.1.3 PRISM Model Checker

PRISM [73, 72] is a probabilistic model checking tool for formal modeling and

analysis of systems that exhibit random or probabilistic behavior. PRISM supports

the analysis of DTMC and CTMC models. We use DTMC to formally represent

the error model of a system, which is subsequently used to perform quantitative

analysis for dependability, as discussed in section 7.2. The DTMC model is ana-

lyzed with respect to the specification of a formal property given in Probabilistic

Computational Tree Logic (PCTL). PCTL allows the specification of temporal

probabilistic properties.

An example of PCTL properties, used in this work, is presented here.

– S =? [F SystemFailed] : This specification demands that the model checker

shall compute the steady state probability (S) of a system eventually (F)

going into the failed state.

Refer to [73] for syntax and semantics of Prism language and PCTL.

7.2 Model Based Dependability Analysis of Safety

Systems

In system engineering, the primary attributes considered for quantitative depend-

ability analysis are safety, availability and reliability. Additional attributes viz.,

maintainability and testability are also considered during system architecture de-

sign [58, 80].

As Computer based I&C safety systems are examples of HIS, we consider

analysis of these systems to demonstrate our compositional analysis framework.
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Safety systems generally have two modes of operation, viz., standby and active

mode. The safety systems mostly operate in standby mode waiting for the demand

for its actuation that may arise in the event of any identifiable and detectable un-

safe state of the plant. During standby mode, the safety system is periodically

tested and maintained. Once a demand occurs, the safety system operates in ac-

tive mode for a predefined duration termed as the required period. Therefore,

the dependability analysis on such systems, can be carried out in two phases, as

proposed by Meshkat et al. [77].

– In the first phase, system availability analysis is carried out for standby

mode, and

– In the second phase, system reliability analysis is carried out for active mode

of operation, where the system availability obtained in the first phase is used

as initial state probability.

In this work the dependability analysis of Computer Based I&C safety systems

is carried out. These systems are designed mainly for actuation/initiation of safety

functions, e.g. reactor trip, actuation of emergency core cooling etc. Dependabil-

ity of these systems is mainly indicated by their availability during standby mode

of operation. This is because, the duration of active mode of operation is negligi-

ble involving only actuation/initiation of the demanded safety function. Therefore,

we restrict our presentation only to availability (and safety) analysis as required

in the first phase of the dependability analysis2.

The dependability attributes from the point of view of the plant safety and

2It is acknowledged that conventional reliability analysis is necessary for safety systems, which

require long term operation following its actuation.
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Figure 7.5: Safety and Availability Mapping on Generic Error model

availability are i) (safety) system availability and ii) plant availability. The corre-

lation among these dependability attributes and the states of generic error model

(shown in Figure 7.4) is presented with the help of the Figure 7.5. Here, the

probability of system being in Operational state indicates the system availability.

From the perspective of plant safety, the probability of system being in Opera-

tional or Failed Safe states indicates the safety of the plant. However, from the

perspective of plant availability, the probability of system being in Operational or

Failed USUD states indicates the availability of the plant. It may be noted here

that system in Failed USUD indicates unsafe state of the plant, though the plant

is available till there is no demand for actuation of the safety system.

In order to quantify the system dependability attributes during standby mode,

we use the following parameters.

– Probability of Failure on Demand (PFD): It is the probability of a system

being in a state, where it fails to execute safety function when there is a

demand. For error model shown in Figure 7.4, the steady state probability

of the system/component being in Failed USUD state represents the PFD
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of that system/component.

– Spurious Operation Probability (SOP): It is the probability of a system being

in a state, where system performs safety actions spuriously (without any

demand) and makes plant unavailable. For error model shown in Figure 7.4,

the steady state probability of the system/component being in Failed Safe

state represents the SOP of that system/component.

It may be observed from Figure 7.5 that both PFD and SOP should be mini-

mized in order to increase the system availability, which in turn increases the plant

safety and plant availability. Therefore, the target dependability requirements are

specified in terms of these two attributes and referred to as Target Dependability

Attributes (TDA).

It may be noted that as shown in our generic error model (Figure 7.4), the TDA

of an atomic component is a function of its CLS, which is defined in Section 7.1.2.

The aim of dependability analysis is to estimate the CLS of all atomic components

of the system that achieves the required TDA of the system.

In this work, we adapted DTMC based technique to analyze the dependabil-

ity of a system from its architectural model. We create a formal model of the

system architecture annexed with error model in AADL [44]. The model is built

hierarchically using bottom-up approach, by integrating the atomic or compos-

ite components in each step, as applicable. An open source tool OSATE [43] is

used for graphical modelling of system/component architecture along with its er-

ror model. The extension of OSATE tool is used for translating the hierarchical

architectural model to corresponding DTMC model (discussed in Section 7.2.2).

The DTMC model is then analyzed using probabilistic model checker (PRISM)

[73] for quantitative assessment of system dependability.
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PRISM is a state-of-the-art tool which uses symbolic model checking tech-

nique. However, analyzing large systems of practical interest using this technique

has its own limitations. If the analysis is performed monolithically for the com-

plete system, it faces the challenge of state space explosion. The state space of

the DTMC model grows prohibitively large in this case and it becomes infeasi-

ble to analyze the system architecture due to the requirement of huge computing

resources. For example, state space of our case study of Reactor Trip System (Sec-

tion 7.3) is 324 (≈ 1012) states for one safety train, and the complete system consist

of four such trains. System with such a large state space could not be analyzed

using symbolic model checking technique supported by PRISM and we observed

that it quickly ran out of memory on a server having 250 GB of RAM. One of

the main contributions of this work is to present a methodology for compositional

analysis of such large HIS using limited computing resources.

7.2.1 Compositional Analysis Methodology

In order to overcome the state space explosion problem, we propose a composi-

tional dependability analysis methodology. For a given hierarchical architecture

model of a system and the required TDA the objective is to estimate the CLS of all

the atomic components in the architecture, that achieves the required TDA.

We follow the compositional top down analysis, which consists of decompos-

ing the monolithic analysis into steps involving simpler analysis that require lesser

computing resource. We start with the system under consideration as a compos-

ite component and determine the CLS(s) of its sub-component(s) that achieve the

required TDA of the system/composite component. The sub-components are as-

sumed to be atomic by abstracting the hierarchy of components/sub-components
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below it. If the sub-component is a composite component, then the obtained CLS

is converted into its TDA based on a lookup table mapping CLS to the correspond-

ing TDA values (See Table 7.2 and 7.3). Using this TDA, the sub-component is

further analyzed to get the CLS(s) of its sub-component(s). The process is re-

peated for each of the sub-components, till we obtain the CLS of all the atomic

components present in the hierarchical architecture of the system.

There can be multiple options of CLS to achieve the required TDA of a com-

posite component. This happens because, the individual parameters of CLS can

be experimented with different values, during the analysis. For example, the over-

all PFD of a component can remain unchanged, if increase (decrease) in failure

rate (λ2) is compensated by increasing (decreasing) the DC accordingly. Also,

dependability of overall system will remain unchanged if an increase (decrease)

in dependability of one component is compensated by decrease (increase) in de-

pendability by other component(s) in the system. In such cases, the selection of a

particular option is guided by the development cost and time of the component(s)

involved.

Algorithm 1 gives the steps for compositional dependability analysis. It takes

the system hierarchy H and a list denoted by cls list to store the computed CLS(s)

of the atomic component(s) as global inputs. Hierarchy H is used in step 4 of the

algorithm to get the list of sub-components of a composite component. When the

algorithm terminates, the cls list will contain the CLS(s) of the atomic compo-

nent(s), which will meet the required TDA.

The mapping of CLS to TDA for an atomic component is pre-computed and

stored in a lookup table (Used in step 12 of Algorithm 1). The following assump-

tions are made for this mapping.
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Table 7.2: PFD Mapping of a component with the error model in Figure 7.4

λS = λUS−−−−−→ 10−3 10−4 10−5 10−6

DC ↓
0 2.60×10−1 3.47×10−2 3.59×10−3 3.60×10−4

0.1 2.40×10−1 3.13×10−2 3.23×10−3 3.24×10−4

0.2 2.20×10−1 2.79×10−2 2.87×10−3 2.88×10−4

0.3 1.97×10−1 2.45×10−2 2.51×10−3 2.52×10−4

0.4 1.74×10−1 2.11×10−2 2.15×10−3 2.16×10−4

0.5 1.50×10−1 1.76×10−2 1.80×10−3 1.80×10−4

0.6 1.23×10−1 1.42×10−2 1.44×10−3 1.44×10−4

0.7 9.54×10−2 1.07×10−2 1.08×10−3 1.08×10−4

0.8 6.57×10−2 7.13×10−3 7.19×10−4 7.20×10−5

0.9 3.40×10−2 3.58×10−3 3.60×10−4 3.60×10−5

– λs = λUS

– MT T R = 24hrs(where µ = 1
MT T R )

– Tproo f = 720hrs

Table 7.2 and 7.3 give the mapping of PFD and SOP, respectively for a given CLS.

The lookup table is applicable for the components having Markov model depicted

graphically in Figure 7.4. It may be recalled that the PFD and SOP of a component

under consideration is obtained by computing the steady state probabilities of

DTMC model of the component being in Failed USUD and Failed Safe states,

respectively (using PRISM model checker).
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Table 7.3: SOP Mapping of a component with the error model in Figure 7.4

λS = λUS−−−−−→ 10−3 10−4 10−5 10−6

DC ↓
0 1.73×10−2 2.31×10−3 2.39×10−4 2.40×10−5

0.1 1.78×10−2 2.32×10−3 2.39×10−4 2.40×10−5

0.2 1.83×10−2 2.33×10−3 2.39×10−4 2.40×10−5

0.3 1.88×10−2 2.34×10−3 2.39×10−4 2.40×10−5

0.4 1.94×10−2 2.34×10−3 2.39×10−4 2.40×10−5

0.5 1.99×10−2 2.35×10−3 2.40×10−4 2.40×10−5

0.6 2.05×10−2 2.36×10−3 2.40×10−4 2.40×10−5

0.7 2.12×10−2 2.37×10−3 2.40×10−4 2.40×10−5

0.8 2.19×10−2 2.38×10−3 2.40×10−4 2.40×10−5

0.9 2.26×10−2 2.39×10−3 2.40×10−4 2.40×10−5

We illustrate the compositional analysis methodology using an example shown

in Figure 7.6. Figure 7.6 (a) shows the hierarchy of a system with two composite

components, viz., C1 and C2. The remaining components, viz., C3, C4, C5 and

C6 are atomic.

The dependability analysis of this system evaluates the CLS of all the atomic

components that achieve the required TDA of the system C1. The monolithic

analysis can be carried out by translating the error model of complete system into

DTMC model, which will have 36 states (assuming each of the six components

have the error model with 3 states as given in Figure 7.4).

In the proposed top-down compositional analysis methodology, we first carry-

out the analysis of system C1, by assuming C2 as abstracted atomic component
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Algorithm 1: DEPENDABILITY ANALYSIS

1 Global: H: system architecture hierarchy

2 Global: cls list: List to contain CLS for all atomic components

Input: s: component in system architecture hierarchy, initialized with the

system under consideration

Input: stda: Required TDA for s

Output: updated cls list, containing the CLS of each component to

achieve the required TDA

3 if s is a composite component then

4 Explore all possible values of constituent components that achieve required TDA;

5 Select the suitable CLS values for each sub component from feasible choices;

6 foreach sub-component c ∈ s do

7 ccls := assign the CLS of c from the selected CLSs;

8 if c is atomic component then

9 Append (c, ccls) to cls list;

10 end

11 else

12 ctda := get the TDA corresponding to ccls;

13 call DEPENDABILITY ANALYSIS (c, ctda);

14 end

15 end

16 end

as shown in Figure 7.6 (b). This step involves a state space of only 33 states and

computes the CLSs of C2 and C3, required to achieve system TDA. Note that there
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(a) System architecture (b) Abstraction of composite component

(c) Architecture of component C2

Figure 7.6: Example of Compositional Analysis

may be multiple possible finite set of user specified values for CLS of each compo-

nent, given as a table (See Table 7.4 for example). All these possible combinations

are explored and the list of feasible CLS values which achieves the required TDA

is maintained. Further analysis is then carried out by choosing one the feasible

combination from the list. As C3 is an atomic component so no further analysis

is required for this component. However, C2 being a composite component, we

have to compute the CLSs of its sub-components. In order to do so, we first get

the TDA of C2 from its CLS (selected from the list of feasible CLS values) using

the lookup tables (Table 7.2 and 7.3). We then carry-out the analysis of composite

component C2 to determine the CLS of all its sub-components shown in Figure

7.6 (c). This step involves a state space of 34 states only and gives the required

CLSs of C4, C5 and C6, which achieve the required TDA for C2. As all the sub-
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components of C2 are atomic, the analysis is terminated here. Thus we get the

CLSs of all the atomic components. If the selected CLS of composite component

in the hierarchy (e.g. component C2 here) does not give any feasible CLS val-

ues for its sub-components then another CLS from the list of feasible choices is

selected and analysis is carried out again for the hierarchy below that composite

component (e.g. below C2 here).

It may be noted that maximum state space size involved in compositional anal-

ysis of this example is 34 as compared to 36 states involved in monolithic analysis.

This example shows that compositional methodology can be used effectively for

systems having large number of components with deep hierarchical architecture.

Analysis of the Algorithm

Algorithm 1 works on the DTMC model (in PRISM syntax) of the system un-

der consideration. DTMC model is automatically obtained from the AADL error

model using modular approach described in Section 7.2.2. The obtained DTMC

model of system is also hierarchical and has one to one correspondence with the

AADL error model i.e. each component (atomic or compositional) in AADL er-

ror model is translated into corresponding module in DTMC model. Given such a

hierarchical DTMC model and required TDA, the algorithm provides a method to

compute the values of CLS of all the atomic components that achieves the required

TDA for the system. Following assessment provides insight in to our algorithm.

1. The finite set of CLS values for each sub-component in the hierarchy is

specified by the user as a table. For example, CLS values for safe and unsafe

failure rate are provides as order of magnitude (e.g failure rates are specified

as 10−3 to 10−6 etc), and test interval, repair rate and diagnostic coverage
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is decided based on failure rate, online testability and redundancy available

in the system (See Table 7.4). At every level in the hierarchy all possible

combinations are explored and the list of feasible CLS values which achieve

the required TDA is constructed. The TDA of a composite component for

specific values of CLSs of its constituent components is computed using the

PRISM model checker and the CLS values which achieve the required TDA

is pushed into the list of feasible CLS values.

Further analysis down the hierarchy is then carried out by choosing one of

the feasible combination of CLS values from the list as indicated in step 5 of

the algorithm. The selected CLS for composite component is then converted

to the corresponding TDA and analysis is carried out to obtain the feasible

CLS values of its sub-components. If the TDA of composite component in

the hierarchy can not be satisfied by any CLS values for its sub-components

then another CLS from for the composite component from the list of fea-

sible choices is selected and analysis is carried out again for the hierarchy

below that composite component. To find the list of all feasible CLS values

at any level in hierarchy we use PRISM tool (Step 4 in algorithm). PRISM

allows to provide the user specified CLS values as lower and upper range.

Tool also allows to specify the step length to be considered for varying the

CLS values of each constituent component while exploring the given range

(See Table 7.4).

2. There is a possibility that more than one combination of CLS exists that

achieve required TDA. In such a case, a particular option is selected man-

ually by considering the cost, maintainability and development time of the

components. The algorithm does not prescribe any specific approach to
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be followed. However, if there does not exist any desirable combination

of CLSs of constituent component, then required TDA is declared as not

achievable with the architecture model under consideration. In such a case,

system architecture model has to be re-engineered.

3. Termination of algorithm: The input to the algorithm is a hierarchical DTMC

model corresponding to the AADL model H, which can be represented as

a Tree. Each internal node in this tree represents a composite component

and each terminal node represent an atomic component in the system. The

children of an internal node represent the sub-components of a composite

component identified by that node.

It can be seen from the Algorithm 1 that it traverses the tree corresponding

to hierarchical model H in depth first manner, therefore the recursion at step

13 will terminate. It is assumed that any system of practical interest consist

of finite number of components and user can assign finite set of possible

values for CLS of each component. Therefore, it is possible to explore all

combinations of CLS of each sub-component and hence foreach loop at step

6 will also terminate, which indicates that the algorithm will always termi-

nate. Also, when the algorithm terminates the list of CLS values of atomic

component will surely achieve the required TDA for system i.e. this algo-

rithm is sound. As discussed in point 1, we will keep on exercising alternate

CLS values from the list of feasible CLS for composite component at ev-

ery level in the hierarchy till we get CLS value assignment for each atomic

component that achieves required TDA. Hence, algorithm will always find

such assignment if it exist.
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7.2.2 Automatic Translation of AADL Error model to DTMC

model in PRISM

An open source software tool OSATE (an eclipse based framework) provides an

editor for AADL models along with the several APIs for parsing and annotation of

these models. Being an eclipse based framework, OSATE facilitates extension for

any specific analysis requirements through eclipse plug-in mechanism. We used

this mechanism to extend the OSATE framework for translation of hierarchical

architecture model into a PRISM DTMC model.

Our translation scheme systematically translates each component in the archi-

tectural hierarchy, which can either be an atomic component or a composite com-

ponent. For simplicity of exposition, we present an informal translation scheme

using examples involving one atomic component and one composite component,

as follows.

Translation of Atomic Component

The error model of atomic component, represented by a state machine having tran-

sitions annotated with its rate, is translated into PRISM language syntax. Consider

the example of the translation of error model of an atomic component Sensor(SN),

which uses the ThreeStateModel shown in figure 7.3. This error model has three

states, viz., Operational (initial state), Failed Safe and Failed USUD with four

transitions. The translated DTMC model is shown in Figure 7.7.

PRISM models facilitates formula definition (similar to macro definition),

which comprises a name and an associated PRISM expression. The example of

a formula definition can be observed in Figure 7.7, where the Sensor component

193



formula SN is Operational = SN state=0;

formula SN is Failed USUD = SN state=1;

formula SN is Failed Safe = SN state=2;

module SN

SN state: [0 .. 2] init 0;

[ ] SN state=0 → λ1 : (SN state’=2) + (1−λ1):(SN state’=0);

[ ] SN state=2 → µ : (SN state’=0) + (1−µ) : (SN state’=2);

[ ] SN state=0 → λ2 : (SN state’=1) + (1−λ2) : (SN state’=0);

[ ] SN state=1 → 1
Tproo f

: ( SN state’=2) + (1− 1
Tproo f

) : ( SN state’=1);

endmodule

Figure 7.7: Translation of error model of atomic components to PRISM model

is defined to be in operational state (SN is Operational) if the value of the enu-

merated variable SN state is equal to 0. Similarly, SN state = 1 and SN state = 2

correspond to the Sensor component states Failed USUD and Failed Safe, respec-

tively. The initial value of SN state variable is 0, which indicates that the initial

state of Sensor component is assumed to be Operational.

The state transition of the AADL error model is translated into PRISM mod-

ule, which contains two parts: its state variables (say SV ) and the commands. The

variables represent the possible states and the commands correspond to the tran-

sitions i.e. the way in which the state changes over time. The current state of the

system is represented by the state variable SV and the next state is represented by
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SV �. Every command in the PRISM module has the following syntax.

[ ]SV = S1 → R2 : SV � = S2+R3 : SV � = S3+

· · ·+Rn : SV � = Sn
(7.5)

The command in Expression 7.5 above indicates that state of a component changes

from S1 to S2 with a transition rate R2, from S1 to S3 with transition rate R3 and

so on. The translated PRISM specification of the ThreeStateModel error model is

presented in Figure 7.7. It can be observed from Figure 7.7 that the command

[ ]SN state = 0 → λ1 : (SN state� = 2)+

(1−λ1) : (SN state� = 0)

shows that the component SN takes transition from Operational to Failed Safe

with a rate of λ1 and remains in Operational state with a rate of 1− λ1, where

SN state is its state variable. The PRISM commands for the rest of the transitions

in ThreeStateModel are also shown in Figure 7.7.

The symbols used for transition probability (e.g λ1, λ2, µ , Tproo f ) are trans-

lated as symbolic constants in the PRISM model. During the experiments we can

assign the range of values to these symbolic constants and plot the results to find

out the CLS (i.e. the values of λ1, λ2, µ , Tproo f ), which will meet the required

TDA.

Translation of Composite Component

The error model for a composite component defines current states of a composite

component in terms of the current states of its sub-components. The translated

PRISM model of a composite component is derived by the logical combination of

formula defined in the translation of its sub-components. An example of the error
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formula SM is Failed USUD = CU is Failed USUD |
(CU is Operational & SN is Failed USUD);

formula SM is Failed Safe = CU is Failed Safe |
(CU is Operational & SN is Failed Safe);

Figure 7.8: Translation of error model of composite components to PRISM model

model of a composite component SensingModule (SM) is shown in Figure 7.2. It

shows that SM is comprised of the sub-components Sensor (SN) and Comparisio-

nUnit (CU).

The translated DTMC model corresponding to the error model specified in

Figure 7.2 is shown in Figure 7.8. It can be observed from the translated model

that the state of SensingModule is Failed USUD, if the ComparisionUnit is in

Failed USUD state or the Sensor is in Failed USUD state with ComparisionUnit

in Operational state. Similarly, the state of SensingModule is Failed Safe if the

ComparisionUnit is in Failed Safe state or the Sensor is in Failed Safe state with

ComparisionUnit in Operational state.

7.3 Case Studies

This section demonstrates the system dependability analysis in our framework for

proposed architectures of I&C safety systems for a Pressurized Water Reactor

(PWR) as case studies. The quantitative analysis of two systems, viz., Reactor

Trip System (RTS) and Engineered Safety Feature Actuation System (ESFAS),

was carried out using compositional analysis methodology. The analysis of al-
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ternative architectures was also carried out in order to arrive at the most suitable

architecture providing desirable dependability.

Based on the design basis requirements of these safety systems [59], the re-

quired TDAs for both systems are as follows:

– Probability of Failure on Demand (PFD) ≈ 10−5

– Spurious Operation Probability (SOP) ≈ 10−5

7.3.1 Reactor Trip System of a PWR

Proposed Architecture

Reactor Trip System (RTS) is a safety system that monitors the safety parameters

and initiates reactor trips. The RTS consists of four redundant and independent

safety trains. Each safety train consist of safety sensors, two diverse RPS con-

trollers and two reactor trip breakers (RTBs). The RPS controllers are considered

as diverse, because they receive signals, which are functionally diverse. Each RPS

controller interfaces with its safety sensors and the RTBs. Architecture of RTS is

shown in Figure 7.9.

A RPS controller acquires and processes the input signals and generates pa-

rameter trip signals by comparing the individual trip parameter values with their

respective set-points, in the comparison unit (CU). We define parameter trip as

the trip signal corresponding to a single parameter in any safety train of RTS. A

RPS controller communicates the parameter trip information to the correspond-

ing controllers of the three other redundant RTS safety trains using point to point

(P2P) data communication link in a 2-out-of-4 (2/4) configuration.
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Figure 7.9: Architecture of Reactor Trip System

A controller level reactor trip signal on a particular parameter is generated by

a diverse controller. This is done based on the 2-out-of-4 (2/4) voting logic on

the parameter trip signals generated by the corresponding controllers of the four

trains. A train level reactor trip signal is generated by applying 1-out-of-2 (1/2)

voting logic between the controller level reactor trips generated by the diverse

controllers.

198



A train level reactor trip actuates (opens) two RTBs associated with the par-

ticular train. The RTBs of all the four RTS trains are configured to implement

a 2/4 voting logic as shown in Figure 7.9. According to this logic, opening of

RTBs of at least two RTS trains will generate the final reactor trip signal. This

case study assesses the dependability of RTS described above, with respect to its

reactor trip function.

For simplicity of exposition, the following assumptions were made for de-

pendability analysis of the RTS:

– All redundant trains are identical and independent of each other.

– CLS of both the diverse controllers of a RTS trains are same.

– All failure rates are constant with respect to time.

– Surveillance test is perfect, i.e. it detects all USUD failures.

– The system is maintainable during standby mode and the repair rate µ is

identical for all trains and constant with respect to time.

– Voting logics are failure free: The voting logic (1/2 and 2/4) components

used in the model are implemented either using software or using passive

hardware components. Hence their failure rates are assumed to be 0.

– Effect of common cause failure is not considered in this analysis.

– When the system is in standby mode, demand for safety action can occur at

any time with equal likelihood.

– The standby mode can last for a long time, therefore we have considered

steady-state probabilities for computation of SOP and PFD in our analysis.
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Figure 7.10: Abstract hierarchical model of Reactor Trip System by considering

RPS controller as atomic component

Figure 7.11: Hierarchical model of RPS Controller

Architectural Model

The RTS is modeled using AADL language in OSATE framework. System ar-

chitecture is developed hierarchically using bottom-up approach i.e. the atomic

components of the system are defined first and then these atomic components are

gradually integrated to build the large hierarchical system/sub-system.

The total number of states in this model is of the order of 396 (≈ 1048), which

makes a probabilistic analyse of this model infeasible even using reasonably high-

end resources (Intel Xeon E5 Processor with 250 GB of RAM).

To overcome this difficulty, we apply compositional analysis methodology, by
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decomposing the RTS model into multiple hierarchical models as follows.

1. First model, termed as abstract RTS model, is the abstract RTS architec-

tural model, where RPS controller is abstracted as an atomic component.

Abstract RTS model has four RTS safety train and 2/4 voting logic. Each

RTS safety train consists of two RPS controllers, 1/2 voting logic module

(for the controller outputs) and two RTBs. This model is shown in Figure

7.10.

2. Second model, termed as refined RPS controller model, is the refinement of

the RPS controller, which consist of four sensing modules, three P2P link

and 2/4 voting logic. This model is shown in Figure 7.11.

The above two models have state spaces of 316 and 311 respectively, which is

much lesser than the overall state space (396) and thus it could be analyzed using

compositional analysis methodology with the available computing resources.

It may be recalled from section 7.1.1 that for dependability analysis, we anno-

tate each component with the error model (Figure 7.4). The transition rates for

all the atomic components (sensor, CU, P2P link and RTB) are given as an input

to the back-end probabilistic analysis engine PRISM. For each composite compo-

nent, the current state is defined by the state of its sub-components. Therefore,

there is no transition rate associated explicitly with a composite component.

Now, we define the error model of each composite components present in the

architectural hierarchy with the help of the following functions.

– isOperational(Component C): Returns true if component C is operational.

– isFailedSafe(Component C): Returns true if component C is Failed Safe.
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Figure 7.12: Markov model for 2/4 Voting Logic

– isFailedUSUD(Component C): Returns true if component C is Failed USUD.

– nOperational(Component C): Returns the number of C components, which

are in operational state.

– nFailedSafe(Component C): Returns the number of C components, which

are in Failed Safe state.

– nFailedUSUD(Component C): Returns the number of C components, which

are in Failed USUD state.
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Error Model of the RTS system

RTS generates the final reactor trip based on the 2/4 voting logic. 2/4 voting logic

gets inputs from four redundant trains and initiates safety action if at least two out

of the four redundant trains demand for it. [64] gives the formal description of 2/4

voting logic and associated Markov model, which is reproduced here for ready

reference.

7.3.2 Error Model of 2/4 Voting Logic

2/4 voting logic gets inputs from four redundant trains and initiates safety action

if at least two out of four redundant trains demand for it.

The Markov model depicting 2/4 voting logic, used for analysis of RTS and

ESFAS is shown in Figure 7.12. Each state in this model is represented by a 3-

tuple (x, y, z), where x represents number of healthy trains, y represents number

of trains having safe failures, and z represents number of trains having unsafe

undetectable failure (USUD). Each state is also assigned a unique state number.

Description of transitions is given as follows.

Transitions for safe failures: A healthy train may have safe failure with failure

rate of λ1 (Refer Equation 7.3). For example, the transition rate from state 0 to

state 1 is 4λ1 representing safe failure in any one of the four healthy trains. In case

of safe failure of a channel, it is bypassed and considered for maintenance with

repair rate µ .

Transitions for unsafe undetectable failure: A healthy channel can also fail

with unsafe undetectable failure with failure rate of λ2 (Refer Equation 7.4). For

example, the transition rate from state 0 to state 5 is 4λ2. All dangerous undetected
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failures shall be detected in surveillance test, which is conducted periodically with

Tproo f interval.

Transition for repair of channel: If any state has at least one channel with

safe failure, that channel is considered for maintenance with repair rate µ . For

example, the transition rate from state 1 to state 0 is µ .

Transition for surveillance test: If any state has at least one channel with

unsafe-undetected failure, that channel will remain in that state until next surveil-

lance test, which happens after every Tproo f time period. As surveillance test is

assumed to be perfect, all USUD failures will be detected.

In 2/4 state space (Figure 7.12), states 10,11,12,13 and 14 represent that the

system is in unsafe undetectable failure state, where system shall not be able to

initiate safety action on demand. Steady sate probability of system being in these

states has been calculated to estimate the PFD. Similarly, states 3,4 and 8 repre-

sents that the system is in safe failure states. Steady sate probability of system

being in these states has been calculated to estimate the SOP.

As per the Markov model of 2/4 voting logic, probability of RTS system fail-

ing to provide safety action on demand (PFD), is represented by RTS being in

Failed USUD state. The RTS shall be in Failed USUD state (represented by

RT S Is Failed USUD in PRISM DTMC model) if following condition holds.

(nFailedUSUD(RT S Train)>= 3) OR

((nFailedUSUD(RT S Train) = 2 AND

(nFailedSa f e(RT S Train)>= 1))

The above condition states that RTS will be in Failed USUD state if either at-

least 3 RTS trains are in Failed USUD state or at-least 1 RTS train is in Failed Safe

state in conjunction with exactly 2 RTS trains in Failed USUD state.
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The probability of spurious actuation i.e., SOP of RTS is represented by the

probability of RTS being in Failed Safe state. RTS shall be in Failed Safe state

(represented by RT S Is Failed Sa f e in PRISM DTMC model), if following con-

dition holds.

nFailedSa f e(RT S Train)>= 3

The above condition states that the RTS system will be in Failed Safe state,

if at-least 3 RTS trains are in Failed Safe state. It may be noted that this model

is applicable for 2/4 voting logic based system, if one of the trains having safe

failure(s) is allowed to be bypassed [64] for maintenance.

Error Model of the RTS Safety Train

RTS train generates train level reactor trip signal based on 1/2 voting of the out-

puts of the two RPS controllers. Thus, a RTS safety train shall be in Failed USUD

state (represented by RT S Train Is Failed USUD in PRISM DTMC model), if

(nFailedUSUD(RT B)>= 1) OR

((nOperational(RT B)>= 1) AND

(nFailedUSUD(RPS Controller) = 2))

A RTS safety train shall be in Failed Safe state (represented by RT S Train Is Failed Sa f e

in PRISM DTMC model) if

(nFailedSa f e(RT B) = 2) OR

((nFailedUSUD(RT B) = 0) AND

(nFailedSa f e(RPS Controller)>= 1))
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Error Model of the RPS Controller

RPS Controller generates the controller level reactor trip signal based on the 2/4

voting logic. In accordance with the 2/4 voting logic, a RPS controller shall be in

Failed USUD state (represented by RPS Controller Is Failed USUD in PRISM

DTMC model), if

(nFailedUSUD(Sensing ModuleOrP2P)>= 3) OR

((nFailedUSUD(Sensing ModuleOrP2P) = 2) AND

(nFailedSa f e(Sensing ModuleOrP2P)>= 1))

A RPS controller shall be in Failed Safe state (represented by RPS Controller Is Failed Sa f e

in PRISM DTMC model), if

nFailedSa f e(Sensing ModuleOrP2P)>= 3

Here, nFailedUSUD(Sensing ModuleOrP2P) represents the number of Sens-

ing Modules or their corresponding P2P links in Failed USUD state.

Error Model of the Sensing Module

Sensing Module shall be in Failed USUD state (represented by Sensing Module Is Failed USUD

in PRISM DTMC model), if

isFailedUSUD(Comparison Unit) OR

(isOperational(Comparison Unit) AND

isFailedUSUD(Sensor))

Sensing Module shall be in Failed Safe state (represented by Sensing Module Is Failed Sa f e
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in PRISM DTMC model) if

isFailedSa f e(Comparison Unit) OR

(isOperational(Comparison Unit) AND

isFailedSa f e(Sensor))

Compositional Dependability Analysis of the Reactor Trip System

We perform the analysis of each of the two models viz., abstract RTS and refined

RPS controller models described in Section 7.3.1 separately and integrate the re-

sults (refer Algorithm 1) to obtain the CLSs of all the atomic components that

achieve the required TDA of the RTS.

Analysis of the Abstract RTS Model

In this step, we generated DTMC model from the abstract model of RTS (shown

in Figure 7.10) and used PRISM model checker to determine the CLSs of RPS

controller and RTB, such that it achieve the required PFD and SOP of RTS.

PFD is the probability of RTS being in Failed USUD state. The PCTL specifi-

cation to compute the steady state probability of RTS being in Failed USUD state

is

S =? [RT S Is Failed USUD]

Similarly, SOP is the probability of RTS being in Failed Safe state. The PCTL

specification to compute the steady state probability of RTS being in Failed Safe

state is

S =? [RT S Is Failed Sa f e]

We carried out the experiments and obtained the plots for PFD and SOP with

respect to various values of DC, where 0≤DC ≤ 0.9. While doing so, parameters,

207



viz., failure rates for RPS controller and RTB, were varied with a step size of 10−1

as given in Table 7.4. The Error model of RTS does not depend on the failure

rate of voting logic as it has been assumed to be 0. Based on the plant operating

experience, the most likely configuration for MTTR (1/µ) and Tproo f are 24 hours

and 720 hours respectively, and hence fixed values of these parameters were used

in our experiments. The PFD and SOP values between the two consecutive DC

values are estimated by linear interpolation.

The plots obtained were analyzed and only the relevant plots that achieve de-

sired TDA (PFD < 10−5 and SOP < 10−5) are shown in Figure 7.13 and 7.14. The

results are summarized in Table 7.5 and results relevant in achieving the TDA are

highlighted. Following are the important observations based on the experimental

results (Table 7.5).

– To achieve target dependability for RTS, the RTB should be designed with

failure rate of the order of 10−5/hour with DC of at least 0.5. It was also

observed that further decreasing the failure rate of RTB (making it more

reliable) does not give any significant gain in PFD and SOP.

– RPS controller should be designed with failure rate in the range of 10−5/hour

to 10−4/hour, if appropriate DC (0.1 ≤ DC ≤ 0.5) is provided.

Since RTB is an atomic component (refer Figure 7.10), no further analysis

is required for this. Whereas, RPS controller being a composite component, its

dependability analysis is to be further carried out to obtain the CLS of its sub-

components. From the calculated CLS requirement (i.e. λS = λUS = 10−4 with

DC = 0.5), we use Table 7.2 and 7.3 to obtain the TDA (PFD = 1.76×10−2 and

SOP = 2.35×10−3) for RPS Controller. The calculated TDA is used in the next

step for analyzing RPS controller.
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Table 7.4: CLS values considered for analysis of Reactor Trip System

Parameter Name Start End Step

Value Value

λS for RTB 10−4 10−6 multiplied by 10−1

λUS for RTB 10−4 10−6 multiplied by 10−1

λS for RPS Controller 10−3 10−6 multiplied by 10−1

λUS for RPS Controller 10−3 10−6 multiplied by 10−1

λS for Sensor 10−3 10−5 multiplied by 10−1

λUS for Sensor 10−3 10−5 multiplied by 10−1

λS for Comparison Unit 10−3 10−6 multiplied by 10−1

λUS for Comparison Unit 10−3 10−6 multiplied by 10−1

λS for P2P link 10−3 10−5 multiplied by 10−1

λUS for P2P link 10−3 10−5 multiplied by 10−1

DC 0 0.9 increased by 0.1

Tproo f 720

MTTR 24
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Figure 7.13: PFD of RTS with λS = λUS = 10−5 for RTB, MTTR=24 hrs and

Tproo f =720 hrs

Analysis of Refined RPS Controller model

In this step, we generated DTMC model from the refined RPS Controller model

(shown in Figure 7.11) and used PRISM model checker to determine the CLSs

of its sub-components, viz., Sensor, P2P link and CU, which achieve the required

TDA (PFD = 1.76×10−2 and SOP = 2.35×10−3) for RPS controller.

The PCTL specification to determine the PFD and SOP for RPS controller is

as follows.

S =? [RPS Controller Is Failed USUD]
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Figure 7.14: SOP of RTS with λS = λUS = 10−5 for RTB, MTTR=24 hrs and

Tproo f =720 hrs

S =? [RPS Controller Is Failed Sa f e]

Following the same process as used in the dependability analysis of RTS, we

carried out the experiments and obtained the plots for PFD and SOP of RPS con-

troller with respect to various values of DC, where 0 ≤ DC ≤ 0.9. While doing so,

parameters, viz., failure rates for Sensor, P2P data link and CU, were varied with

a step size of 10−1 as given in Table 7.4. The values of MTTR (1/µ) and Tproo f

are kept constant at 24 hours and 720 hours, respectively.

The plots obtained were analyzed and the relevant results are highlighted in
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Table 7.5: Experimental results for RTS architecture analysis

Sr. RTS component failure rate DC MTTR Tproo f PFD of RTS SOP of RTS

No. (hr−1) (hrs) (hrs)

RPS Controller RTB

1 10−6 10−4 0.9 24 720 1.05×10−5 1.61×10−7

2 10−4 10−5 0.5 24 720 8.84×10−6 2.76×10−6

3 10−5 10−5 0.1 24 720 6.73×10−6 3.02×10−9

4 10−4 10−6 0 24 720 3.87×10−6 2.54×10−6

5 10−5 10−6 0 24 720 2.05×10−8 3.12×10−9

Table 7.6. Following important observation based on the experimental results can

be made from Table 7.6.

– In order to achieve the desired TDA for RPS controller, the sensors, P2P

data links and CU modules are required to be designed with failure rate of

the order of 10−4/hour with DC = 0.2.

– It was also observed that decreasing the failure rate of P2P data link further

does not give any significant gain in dependability.

Result

Analysis results of the proposed RTS architecture (Figure 7.9) shows that in order

to achieve the target dependability (PFD ≤ 10−5 and SOP ≤ 10−5), the following

design requirements are to be met.
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Table 7.6: Experimental results for RPS controller architecture analysis

Sr. RPS component failure rate DC MTTR Tproo f PFD

of RPS

Con-

troller

SOP

of RPS

Con-

troller

No. (hr−1) (hrs) (hrs)

Sensor P2P

Data

Link

CU

1 10−5 10−5 10−3 ≈0.80 24 720 1.0 ×
10−2

2.36 ×
10−4

2 10−4 10−4 10−4 ≈0.20 24 720 1.0 ×
10−2

5.5 ×
10−6

3 10−4 10−5 10−4 0 24 720 1.0 ×
10−2

2.45 ×
10−6

4 10−5 10−4 10−4 0 24 720 1.0 ×
10−2

1.67 ×
10−6

5 10−4 10−4 10−4 ≈0.70 24 720 1.0 ×
10−3

6.6 ×
10−6

6 10−4 10−5 10−4 ≈0.60 24 720 1.0 ×
10−3

2.93 ×
10−6

7 10−5 10−5 10−4 ≈0.20 24 720 1.0 ×
10−3

5.16 ×
10−7
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i Failure rates of RTBs should be of ≤ 10−5/hour with at least 50% DC.

ii Failure rates of sensors, CUs and P2P Data Links are required to be ≤
10−4/hour with at least 20% diagnostic coverage.

iii MTTR and Tproo f are to be kept at most 24 hours and 720 hours respectively

for all the components of RTS.

In this section we showed the application of proposed compositional analysis

methodology for dependability analysis of large systems. We mainly focused on

the safety and availability attributes as these are the most relevant attributes for

dependability of computer based I&C systems as discussed in section 7.2.

The other dependability attributes such as maintainability and testability are

mainly addressed by the qualitative analysis of system architecture. In the four-

train architecture of RTS, any one of it can be taken out of service for maintenance

and testing without violating single failure criteria. This is because, the system

will be able to perform its safety functions using 2-out-of-3 (2/3) voting logic

with the remaining three trains. It may be noted that, the error model used for

dependability analysis of RTS, incorporates this provision. In this context, it may

also be noted that it is a common practice in I&C safety systems of NPP to make

provisions for on-line periodic surveillance testing.

7.3.3 Engineered Safety Feature Actuation System of IPWR

ESFAS is a computer based I&C safety system, which senses the accident condi-

tions and actuates emergency safety systems to mitigate the effect of Postulated

Initiating Event (PIE), such as Loss of Coolant Accident (LOCA), a steam line

break etc.
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Figure 7.15: Hierarchical model of Engineered Safety Feature Actuation System

In the proposed architecture (Figure 7.15), ESFAS uses the sensors (for com-

mon parameters) and RPS controllers of RTS for acquisition of all its field inputs

and their processing. It gives the advantage of i) lesser penetrations in reactor

coolant system (RCS) due to shared sensors and ii) reduced hardware offering re-

duced cost & time towards installation, commissioning and maintenance. Using

compositional analysis methodology, we could validate that the required TDA for

both RPS and ESFAS can be achieved even with shared sensors and controllers.

In the hierarchical architecture of ESFAS, the RPS controllers, P2P Data Link

(from RPS to ESFAS), Component Level Control (CLC) modules and ESF Actu-

ators are considered as atomic component for dependability analysis of ESFAS.

Experimental Results

Based on the experimental results, following important observations were made.

– To achieve the target dependability of ESFAS, ESF actuators, CLCs, P2P

Data Links and RPS controllers are required to be designed with the failure

rates of ≤ 10−5/hour, ≤ 10−5/hour, ≤ 10−4/hour and ≤ 10−4/hour respec-

tively, with DC value of at least 0.2.
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– The MTTR and Tproo f are to be kept at most 24 hours and 720 hours respec-

tively for all the components of ESFAS.

– Based on the CLS values of sensors and controller obtained, we concluded

that the required TDA of both RTS and ESFAS could be achieved with

shared controllers and sensors.

7.3.4 Comparison with Alternate Architectures

We also used architecture analysis framework to assess the alternative architec-

tures and their effect on the system dependability. For brevity, we will refer the

architectures of RTS and ESFAS, as RTSArch and ESFASArch respectively.

– RPS controller without local 2/4 voting logic for RTS: An alternative archi-

tecture without local 2/4 voting logic ( Say RTSArch NoLocalCoincidence),

was compared with the proposed architecture RPSArch.

It is observed that, SOP of RTSArch NoLocalCoincidence is degraded con-

siderably. For example, the SOP of RTSArch was found to be 2.76×10−6 as

against 9.0×10−2 in case of RPSArch NoLocalCoincidence. Note that we

considered same sensors and controllers (failure rate of 10−4/hour) for this

comparison. This justifies the train level local 2/4 voting logic in RPSArch.

– ESFAS train with one controller: An alternate architecture with only one

controller in ESFAS train, referred to as ESFASArch SingleController, was

compared with ESFASArch.

It is observed that ESFASArch SingleController provides better SOP 4.61×
10−7 compared to ESFASArch (2.94× 10−6), but at the cost of increased
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PFD 1.0× 10−3, which is not desirable. Further, in order to achieve the

target PFD with ESFASArch SingleController, the failure rate of ESFAS

controller is required to be ≤ 10−5/hour, which is difficult to achieve.

Therefore, ESFASArch (two controllers in each train with 1/2 voting logic)

is a better and feasible option to meet the required TDA.

7.4 Discussion

In this chapter we have proposed a compositional analysis methodology for archi-

tecture centric dependability analysis of large HIS. AADL is an architecture mod-

eling language, which along with its error model annexure provides a powerful

notation to model inter-component connection, fault in the component and their

propagation and recovery. The framework has been successfully used in various

kind of analysis such as safety, dependability and performance analysis [45, 19].

These analysis are typically based on automatic generation of fault trees from the

architecture and using fault tree analysis methods [41, 19]. However, we translate

the AADL error model (fault model) into DTMC model and use PRISM for de-

pendability analysis, which allows us to incorporate and analyze the architecture

having temporal error and recovery mechanism. Our main focus is to apply ex-

isting formal modeling and analysis technique to systems of practical interest by

making analysis compositional, which has not been addressed in earlier work to

the best of our knowledge.

AADL has also been used for automatic code generation from distributed

models [75]. To apply formal analysis techniques to AADL models like model

checking, several transformations to formal notations such as rewriting logic [81]

or Timed abstract state machine [111] has been proposed. AADL also has annexes
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to deal with other system level aspects such as timing, latency and schedulability

analysis [101], which is not in the scope of our work. However, as a future work

we are planning to use advanced features of error model annexure such as error

propagation and component specific fault modeling to expand the applicability of

architecture centric analysis to re-configurable or adaptive systems.

We have shown that, because of the associated state space explosion prob-

lem, monolithic approach does not scale for large systems occurring in real-world

applications. In order to demonstrate the applicability and effectiveness of the

proposed compositional dependability analysis methodology we carried out case

studies involving quantitative dependability analysis of the proposed architectures

of RTS and ESFAS of a PWR. The results of the case studies clearly demonstrate

the following advantages of our compositional analysis methodology.

– It facilitates use of model checking techniques for dependability analysis of

large systems to improve the rigor of the analysis, and

– Enables the re-use of analysis results, when architectural components are

shared across multiple systems.

This analysis framework enabled us to

– validate the suitability of proposed architecture for achieving desired safety

and availability attributes, which strengthens preliminary safety analysis.

– establish the required CLS (failure rate, diagnostic coverage, surveillance

test interval etc.) for its subsequent use in system design.

– assess the alternative architectural considerations and its effect on the sys-

tem dependability.
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[52] E. Grädel, W. Thomas, and T. Wilke, Eds., Automata Logics, and Infinite

Games: A Guide to Current Research, ser. LNCS. Springer, 2002, vol.

2500. [Online]. Available: https://doi.org/10.1007/3-540-36387-4

[53] Y. Gurevich and L. Harrington, “Trees, automata, and games,”

in STOC. ACM, 1982, pp. 60–65. [Online]. Available: http:

//doi.acm.org/10.1145/800070.802177

232



[54] D. Harel, “Statecharts: a visual formalism for complex systems,” Science

of Computer Programming, vol. 8, no. 3, pp. 231 – 274, 1987. [Online].

Available: https://doi.org/10.1016/0167-6423(87)90035-9

[55] J. G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, R. Paige, T. Rauhe,

and A. Sandholm, “Mona: Monadic second-order logic in practice,” in

TACAS, ser. LNCS, vol. 1019. Springer, 1995, pp. 89–110. [Online].

Available: https://doi.org/10.1007/3-540-60630-0 5

[56] T. A. Henzinger and J. Sifakis, “The embedded systems design challenge,”

in FM, ser. LNCS, vol. 4085. Springer, 2006, pp. 1–15. [Online].

Available: https://doi.org/10.1007/11813040 1

[57] M. Huth and M. Ryan, Logic in Computer Science: Modelling and reason-

ing about systems. Cambridge university press, 2004.

[58] IAEA, Dependability Assessment of Software for Safety Instrumentation

and Control Systems at Nuclear Power Plants, ser. IAEA Nuclear Energy

Series. Vienna: International Atomic Energy Agency, 2018, no. NP-

T-3.27. [Online]. Available: http://www-pub.iaea.org/books/IAEABooks/

12232/

[59] IEC, “IEC Std-61508: Functional safety of electrical/electronic/ pro-

grammable electronic safety related systems,” 2010.

[60] IEEE, “Std-603: IEEE standard criteria for safety systems for nuclear

power generating stations,” Nov 2009.

233



[61] IEEE, “IEEE standard criteria for programmable digital devices in safety

systems of nuclear power generating stations,” IEEE Std 7-4.3.2-2016 (Re-

vision of IEEE Std 7-4.3.2-2010), pp. 1–86, Aug 2016.

[62] S. Jacobs and et. al, “The 4th reactive synthesis competition (SYNTCOMP

2017): Benchmarks, participants & results,” CoRR, vol. abs/1711.11439,

2017. [Online]. Available: http://arxiv.org/abs/1711.11439

[63] S. Jacobs and R. Bloem, “Parameterized synthesis,” in TACAS.

Springer, 2012, pp. 362–376. [Online]. Available: https://doi.org/10.1007/

978-3-642-28756-5 25

[64] A. Kabra, G. Karmakar, M. Kumar, and P. P. Marathe, “Sensitivity analysis

of safety system architectures,” in ICIC. IEEE, May 2015, pp. 846–851.

[Online]. Available: https://doi.org/10.1109/IIC.2015.7150860

[65] J. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N.

Jansen, “The ins and outs of the probabilistic model checker MRMC,”

Performance Evaluation, vol. 68, pp. 89–220, 2011. [Online]. Available:

https://doi.org/10.1016/j.peva.2010.04.001

[66] N. Klarlund and A. Møller, MONA Version 1.4 User Manual, 2001.

[Online]. Available: http://www.brics.dk/mona/mona14.pdf

[67] N. Klarlund, A. Møller, and M. I. Schwartzbach, “MONA implementation

secrets,” in CIAA, ser. LNCS, vol. 2088. Springer, 2001, pp. 182–194.

[Online]. Available: https://doi.org/10.1007/3-540-44674-5 15

234



[68] U. Klein and A. Pnueli, “Revisiting synthesis of GR(1) specifications,”

in HVC, ser. LNCS, vol. 6504. Springer, 2010, pp. 161–181. [Online].

Available: https://doi.org/10.1007/978-3-642-19583-9 16

[69] B. Könighofer, M. Alshiekh, R. Bloem, L. Humphrey, R. Könighofer,

U. Topcu, and C. Wang, “Shield synthesis,” FMSD, vol. 51, no. 2,

pp. 332–361, Nov 2017. [Online]. Available: https://doi.org/10.1007/

s10703-017-0276-9

[70] S. N. Krishna and P. K. Pandya, “Modal strength reduction in

quantified discrete duration calculus,” in FSTTCS, ser. LNCS, vol.

3821. Springer, 2005, pp. 444–456. [Online]. Available: https:

//doi.org/10.1007/11590156 36

[71] M. Kumar, A. K. Verma, and A. Srividya, “Analyzing effect of demand

rate on safety of systems with periodic proof-tests,” International Journal

of Automation and Computing, vol. 4, no. 4, pp. 335–341, 2007. [Online].

Available: http://dx.doi.org/10.1007/s11633-007-0335-6

[72] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification

of probabilistic real-time systems,” in CAV, ser. LNCS, vol. 6806.

Springer, 2011, pp. 585–591. [Online]. Available: https://doi.org/10.1007/

978-3-642-22110-1 47

[73] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: Prob-

abilistic symbolic model checker,” in TOOLS, ser. LNCS,

vol. 2324. Springer, 2002, pp. 200–204. [Online]. Available:

https://doi.org/10.1007/3-540-46029-2 13

235



[74] S. Lafortune, K. Rudie, and S. Tripakis, “Thirty years of the

ramadge-wonham theory of supervisory control: A retrospective

and future perspectives [conference reports],” IEEE Control Systems

Magazine, vol. 38, no. 4, pp. 111–112, 2018. [Online]. Available:

https://doi.org/10.1109/MCS.2018.2830083

[75] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “Ocarina : An

environment for aadl models analysis and automatic code generation

for high integrity applications,” in Reliable Software Technologies, ser.

LNCS, vol. 5570. Springer, 2009, pp. 237–250. [Online]. Available:

https://doi.org/10.1007/978-3-642-01924-1 17

[76] R. Majumdar, E. Render, and P. Tabuada, “Robust discrete synthesis

against unspecified disturbances,” in HSCC. ACM, 2011, pp. 211–220.

[Online]. Available: http://doi.acm.org/10.1145/1967701.1967732

[77] L. Meshkat, J. B. Dugan, and J. D. Andrews, “Dependability analysis of

systems with on-demand and active failure modes, using dynamic fault

trees,” IEEE Transactions on Reliability, vol. 51, no. 2, pp. 240–251, 2002.

[Online]. Available: https://doi.org/10.1109/TR.2002.1011531

[78] K. S. Namjoshi, “Symmetry and completeness in the analysis of

parameterized systems,” in VMCAI. Springer, 2007, pp. 299–313.

[Online]. Available: https://doi.org/10.1007/978-3-540-69738-1 22

[79] D. Neider, A. Weinert, and M. Zimmermann, “Robust, expressive,

and quantitative linear temporal logics: Pick any two for free,” in

236



GANDALF. Open Publishing Association, 2019, pp. 1–16. [Online].

Available: http://dx.doi.org/10.4204/EPTCS.305.1

[80] V. P. Nelson, “Fault-tolerant computing: Fundamental concepts,”

Computer, vol. 23, no. 7, pp. 19–25, 1990. [Online]. Available:

https://dx.doi.org/10.1109/2.56849
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The correctness guarantees entailed by the High Integrity Heterogeneous Embedded Systems, necessitate to 

incorporate formal methods in all phases of the design, spanning over functional as well as non-functional 

requirements. This thesis bridges the gap between visual (semi-formal) notation for requirement specification 

traditionally used by designers and the formal logic-based approach, by formalizing the requirements in an 

expressive logic (QDDC). The automatic synthesis of discrete controllers from such logic-based requirements 

is well studied in literature, but the quality of such controllers is still a major concern.  

The thesis provides a novel formalization 

of timing diagram requirements using logic 

QDDC. An elementarily decidable subset 

of QDDC is used for this. As one of the 

main contributions, the notion of quality in 

automatic synthesis of controllers is 

explored, using the soft requirement guided 

synthesis approach proposed in this thesis. 

Soft requirements are the QDDC formulas 

(typically used to designate qualitative 

requirements) which must be satisfied H-

optimally. A tool called DCSynth to 

efficiently construct such a high quality 

controller has been developed. This synthesis technique is then utilized to give formal specification and 

automatic synthesis of Robust Controller as well as Runtime Enforcement Shield. Various existing and the 

newly proposed notions are encoded using our logic-based framework. A generic method to synthesize various 

Robust Controllers and Shields is given using our tool DCSynth.  Because of the possibility to encode and 

synthesize various Robust Controllers and Shields, it became possible to compare these various notions. A 

method based on computing the steady state probability of meeting the Soft requirements in the synthesized 

controller has been used for the comparison. The thesis has also explored the Architecture centric analysis of 

non-functional requirements such as dependability (guided by parameters like availability, reliability etc.). A 

compositional Markov Model (DTMC) based approach is proposed to overcome the state-space explosion 

problem and effectively used for analysis of Industrial Case Studies. 
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