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Summary 

Uranium molybdenum fuel is a candidate material for both fast and thermal reactors. Pure 

uranium has three stable allotropic phases, orthorhombic α-U (-231 oC to 667.3 oC, 4 atoms/

cell), tetragonal β-U (667.3 oC to 774.8 oC, 30 atoms/cell)  and body-centered cubic γ-U 

(774.8 oC to 1135 oC, 2 atoms/cell). Other than BCC γ-U, all allotropes of uranium, 

orthorhombic (α-U) and tetragonal (β-U), show anisotropic coefficients of thermal expansion. 

The phase diagram of U-Mo shows that the cubic phase is isotropic, it provides the advantage 

of isotropic expansion and uniform thermo-physical property along different crystallographic 

directions. The cubic BCC phase also has the advantage of higher solubility of alloying 

elements, which minimizes fuel constituents’ migration. Higher melting point of the fuel 

ensures higher safety margin for fuel melting during the off-normal condition. Molybdenum 

has a BCC crystal structure up to its melting point, at 2623 oC. It has high thermal 

conductivity and can be added to stabilize the γ-U phase over a wider temperature range 

while maintaining a high uranium density. ‘Mo' has reasonable solubility in γ-U and forms γ-

(U,Mo), which shows isotropic expansion with increase in temperature. With increasing Mo 

content, the melting point, gamma stability and swelling resistance of the U-Mo alloy fuel, 

are found to increase. High melting point and thermal conductivity along with low stored 

heat of the fuel ensure higher safety margin for fuel during the off-normal condition.  

1. Microstructure Characterization of U-Mo Alloys: U-Mo fast reactor fuel is fabricated

through injection-casting route. The microstructure of as-fabricated fuel is similar to that of

as-cast alloy formed by arc-melting. This as-fabricated fuel tends to undergo transition to

equilibrium phases soon after irradiation. In the present work, equilibrium phases of the

alloys were generated by homogenization annealing. Thorough understanding and

characterization of as-cast and annealed microstructures were the main objectives of this

thesis. To fulfill that objective, different U-Mo alloys (2, 5, 10 and 33 at.% Mo) in as-cast and

annealed conditions, were characterized by X-ray diffraction and Rietveld analysis, optical

microscope, scanning electron microscope and energy dispersive spectrometry (EDS).

Electron back scattered diffraction (EBSD) analysis of as-cast U-33 at.% Mo-alloy was done

for studying preferred orientations and segregation patterns in the microstructure.

2. Phase-Field Modeling of U-33 at.% Mo: During microstructural investigations of cast U-

Mo alloys, two types of dendrites were found in as-cast alloys containing 33 at.% Mo. To
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understand the phenomenon involved in this process, Phase-Field model for solidification 

was developed. This model could predict the microstructure and segregation pattern during 

solidification of the alloy. These computational results were compared with experimental 

results and this helped in understanding importance of different phenomena taking place 

during solidification, at different under-cooling. 

3. Fuel-Clad Chemical Compatibility of U-33 at.% Mo with T91: One of the detrimental 

factors of metallic fuels in fast breeder reactor is fuel-clad chemical interaction (FCCI), due 

to interaction of U and Fe. This fuel-clad chemical interaction should be avoided or 

minimized to increase fuel burn-up. The main reason behind FCCI is the formation of low 

melting eutectic between U and Fe at temperature 725 oC, (liquid =  UFe2 + UFe6 ). This 

reaction degrades the mechanical property of the clad and causes clad failure. To address this 

issue in U-Mo fuel, fuel-clad chemical compatibility tests were carried out with high Mo 

content (33 at.% Mo) alloy and T-91 cladding material. The U-33Mo/T91 formed an auto-

generated Mo-rich layer in fuel clad interface and significantly reduce U and Fe diffusion 

compared to other diffusion couples like U-23Zr/T91.  

Due to its excellent thermo-physical property, negative temperature coefficient of reactivity, 

low stored heat and excellent fuel clad interaction behaviour and absence of Zr water 

reaction,  U-Mo fuel cladded with T91 can act as an accident tolerant fuel in advanced fast 

and thermal reactors.  
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Chapter 1: Introduction 

 ‘The people who will develop Liquid Metal based Fast Reactor technology will lead the 

world in the future’ -Enrico Fermi [1.1]. 

1.1 Background 

 Efficient and sustainable nuclear technology needs to be developed to counter 

two biggest threats to mankind, which are global warming and poverty. The Generation 

IV nuclear reactors are being designed to achieve this goal. The generation IV reactors 

consist of thermal reactors and fast reactors. The thermal reactors considered are: (1) 

Very-high-temperature reactor (VHTR), (2) Molten-salt reactor (MSR), (3) 

Supercritical-water-cooled reactor (SCWR). The fast reactors are (1) Gas-cooled fast 

reactor (GFR), (2) Sodium-cooled fast reactor (SFR) and (3) Lead-cooled fast reactor 

(LFR). The efficient and high burn-up fast reactors are one of the important cog to 

achieve this mission.  

    

Fig.1.1 Sodium cooled pool type fast reactor [1.2]. 

 The SFR is one of the most advanced and developed reactor technology. The SFR 

operates on fast neutron (E:>1 MeV) . The fuel for SFR can be mixed oxide or metallic. 
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There are two types of SFR designs depending on the heat transfer system,  (i) loop type SFR 

and (ii) pool type SFR (Fig. 1.1). After being heated in the core, within the reactor vessel, the 

sodium flows to an intermediate heat exchanger before returning to the reactor vessel. In a 

pool type design the intermediate heat exchanger is internal to the reactor vessel [1.2]. The 

main feature of the pool type design is that all primary systems are submerged in a pool [1.2]. 

In loop type design the heat exchanger and pumps of the primary circuit is placed outside the 

reactor vessel. 

 In SFR technology the oxide or metallic fuel is cooled by liquid metals like sodium, 

lead which has high heat transfer property than water. The oxide pellet or metallic slug is 

encapsulated in ferritic/austenitic stainless steel. The oxide fuel is not compatible with liquid 

sodium, however, the metallic fuel is compatible with liquid sodium and can be operated 

safely even in case of small breaches. The nuclear fuel cycle in fast rector is closed fuel cycle 

and oxide fuel goes for aqueous reprocessing, whereas, metallic fuel is recycled via pyro-

metallurgical reprocessing. For both types of fuels, the outlet liquid sodium coolant 

temperature is approximately 500-550 ᵒC. The heat transfer characteristics of metallic fuel is 

more efficient, because of better heat transfer property of metals over ceramic oxide. This 

makes all metallic fuelled fast reactors more efficient than oxide fuel as metal alloys have 

higher thermal conductivity and higher metal atom density. The reliability of the fuel 

improves when the life-limiting factors like fuel clad interaction, swelling etc. are controlled. 

The U-Mo alloy had been used as fuel for early metallic fuel fast reactors viz. Enrico Fermi 

Reactor (Fermi-I) in the USA. A significant number of metallic fuel rods of U-Zr, U-fissium 

and U-Zr-X have been burnt in EBR and FFTF [1.3]. The world over people has opted for 

more technologically mature, oxide fuel option. The rationales for extensive usage of oxide 

fuels are ease of fabrication, handling and reprocessing. However, with the advancement of 

technology, it is now feasible to conveniently fabricate, handle and reprocess metallic fuels. 
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The main advantages of metallic fuels over conventional ceramic fuels are a high breeding 

ratio, high thermal conductivity and better in-reactor behaviour during transient conditions. 

The economic competence of metallic fuel driven fast breeder reactor depends on high burn-

up of metallic fuels. Though currently India is in a process of commissioning Prototype Fast 

Breeder Reactor (PFBR), fuelled by conventional (U,Pu)O2 - MOX fuel, but upcoming FBRs 

are planned to be fuelled by uranium based metallic alloys.  

 Pure uranium has three stable allotropic phases, orthorhombic α-U, tetragonal β-U and 

body-centre cubic γ-U. Other than BCC γ-U, all allotropes of uranium, orthorhombic (α-U) 

and tetragonal (β-U), show anisotropic expansion coefficients. Alloying of ‘U’ fuel with some 

transition group elements e.g., Zr, Mo, Nb, Ti and fissium is desirable as these elements can 

raise the fuel solidus temperature and stabilize BCC γ-U phase to lower temperature, thus 

enhancing its dimensional stability. Fissium is a group of transition elements which are 

formed during fission of metallic fuel and it is retained in the fuel during reprocessing as it 

enhances stability of the γ-U phase and solidus temperature of the fuel. The composition of 

the fissium is reactor based and is generally 2.4 wt.% Mo, 1.9 wt.% Ru, 0.3 wt.% Rh, 0.2 wt.% 

Pd, 0.1 wt.% Zr, 0.01 wt.% Nb in 5 wt.% fissium [1.4]. These alloying elements also facilitate 

in improving the structural integrity of the fuel under irradiation and lower the fuel-clad 

chemical interaction. Mo is the main component of fissium and it has a BCC crystal structure 

up to its melting point, at 2450 oC. It has high thermal conductivity (138 W/m/K compared 

with Zr 22.6 W/m/K) and can be added to stabilize the BCC γ-U phase over a wider 

temperature range while maintaining a high uranium density. ‘Mo’ has reasonable solubility 

in BCC uranium to form an alloy of γ-(U,Mo), that shows an isotropic expansion with 

increase in temperature. The orthorhombic α-U and tetragonal β-U show negligible solubility 

of molybdenum, thus they do not get stabilized by addition of ‘Mo’. 
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 The composition of U-Mo alloy for reactor fuel should be chosen such that it 

preferably has an isotropic γ-BCC phase in the temperature range relevant to reactor 

operation. The BCC crystal structure ensures isotropic physical and mechanical properties 

like swelling and thermal conductivity etc. One of the life-limiting phenomena of metallic 

fuel is fuel-clad chemical interaction. Till now, this reduction in FCCI is partially achieved 

through alloying U with zirconium which forms a ZrN barrier layer during fabrication stage 

and Zr layer during operation. However, some reports indicate that this layer/rind may 

generate cracks or defects during operation and cause a higher rate of interaction near the 

defects. U-Zr alloys are extensively studied both in-pile and out-of-pile. However, 

investigations reported on U-Mo fuel are very limited. Therefore, in the present dissertation 

extensive studies of U-Mo system were carried out. 

1.2 Motivation 

 U-Zr and  U-Mo based systems are identified by scientific community as possible 

metallic fuel materials for fast reactors. Presently, a lot of study have been conducted in U-Zr 

systems. However, studies of U-Mo systems for fast reactor applications are still in the 

nascent stage. Therefore, the present work is focused on microstructure and clad-

compatibility behaviour of U-Mo binary fuel system. 

 With increasing Mo content, the melting point, gamma stability and swelling 

resistance of U-Mo alloy fuel, are found to increase. This increase in melting point makes the 

fuel safer during reactor operation. Microstructural analysis of U-Mo fuel containing more 

than 9-10 wt.% (≈22 at.% Mo) is not available in literature. Interaction of U-Mo fuel with Fe 

based clad is also not available in the required temperature range.  

 As the metallic fuel is made through melting and casting route, detailed 

characterization of as-cast microstructures using optical microscope, Scanning Electron 
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Microscope, X-ray diffraction analysis and micro hardness measurement is utmost important. 

Electron back scattered diffraction analysis is also required to know the presence of texture as 

textured material is supposed to give dimensional instability during reactor operation. 

 For the last three decades, dendritic solidification through phase field technique has 

been proven to be one of the advanced techniques to study dendritic crystal growth in meso-

scale. The growth of dendritic crystal is an interface dominated phenomena. Thermal super-

cooling and compositional super saturation in solid-liquid interface have pronounced effect 

on the crystal growth process. The solid-liquid interface at low undercooling is considered to 

be in local equilibrium. In phase field modeling, interface is considered as diffuse in nature, 

therefore explicit tracking of interface is not required. However, for quantitative phase field 

modeling at real space and time scales, thermodynamic and mobility databases are required 

as model input parameters. The development of quantitative phase field model for 

solidification of U-Mo alloys is required to predict the microstructural evolution during 

solidification and associated micro-segregation of Mo in dendritic microstructures during 

casting of U-Mo metallic fuel. This study will enhance the mechanistic understanding of the 

process during fabrication of the fuel.  

1.3 Objectives Of The Work 

 The objective of the present dissertation is to understand of U-Mo alloy for its use as 

fast reactor fuel. In order to achieve this, microstructural analysis of different compositions of 

U-Mo alloys was carried out. All these alloys were stable as BCC- phase at high 

temperature. To further understand the effect of molybdenum addition on the fuel behaviour, 

extensive studies were carried out on 33 at.% Mo alloy. According to the equilibrium 

diagram, this composition corresponds to the only intermetallic compound of this binary 

system. This is also the highest Mo content in uranium that does not give precipitates of 

molybdenum at lower temperature, in an equilibrium condition.  
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 One of the life-limiting factors of fast breeder reactor clad is the fuel clad chemical 

interaction (FCCI) due to formation of low melting eutectics between U and Fe. This 

chemical interaction should be avoided or minimized to increase the fuel burn-up. Presently, 

U-Pu-Zr is considered as a standard option for metallic fuelled fast reactor fuel cycle. One of 

the main advantages of U-Pu-Zr metallic fuel is the formation of Zr rind outside fuel surface 

during fabrication which minimizes FCCI through raising the eutectic temperature. It is 

important to investigate whether addition of Mo in the metallic fuel can also help in 

improving FCCI. Mo has high melting point and good thermal conductivity and its addition 

help in increasing solidus temperature. It was important to establish whether its addition can 

also improve FCCI , an important criterion for consideration of Mo addition in metallic fuel, 

for fast reactor fuel programme. To achieve the set objectives, the following tasks were 

identified. 

(a) U-Mo alloys may have various types of microstructures depending upon the composition 

of the alloy and heat treatment given to them. Micro-structural characterization and Rietveld 

Analysis of four different U-Mo alloy fuels (2, 5, 10 and 33 at.% Mo) in as-cast and annealed 

conditions, was one of the main objectives of the thesis. This analysis is required for better 

mechanistic understanding of microstructure evolution of the fuel with increasing Mo 

content.  

(b) To establish a correlation of hardness of the alloy with Mo content in U-Mo fuel.  

(c) EBSD analysis of as-cast U-33 at.% Mo alloy for studying preferred orientation and 

segregation pattern in the microstructure. 

(d) Development of Phase Field model for U-33 at.% Mo alloy to predict the microstructure 

and segregation pattern during solidification is another important objective of the thesis, as 

most of the metallic fast reactor fuels are fabricated through melting and casting route. 
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(e) Investigation of chemical interaction of U-33 at.% Mo with T91 cladding material at 

different temperatures. This is one of the most important criteria for accepting the proposed 

alloy as a reactor fuel. 

 

1.4 Organization Of Thesis 

Keeping the above objectives in mind, the present thesis is organized in the following 

chapters:  

 The literature review related to metallic fuels which are the candidate material for the 

fast reactor applications are discussed in the second chapter. This chapter also 

discusses the phase diagrams of the possible binary and ternary fuel materials. The 

general in-pile behaviour of metallic fuels are also discussed in this chapter. 

 The experimental details of the alloy preparation methods, heat treatments and 

different techniques used for characterization of alloy are discussed in third chapter.  

 The results of microstructural and micro-chemical characterization of different U-Mo 

fuels in as-cast condition, as well as, after annealing treatment are described in fourth 

chapter.  

 In next chapter, a  detailed description of phase field model (PFM) developed to 

predict the microstructure evolution during solidification of U-Mo alloys are given. 

The main objective of this work was to understand the important parameters that 

affect the microstructural evolution of U-33at.% Mo during solidification and 

associated micro-segregation of Mo in dendritic microstructures during casting of U-

Mo metallic fuel.  

 In sixth chapter, a detailed study of fuel clad chemical interaction between U-33at.% 

Mo with T91 (9Cr-1Mo-Bal.Fe) alloys are described.  

 Major findings and future roadmap are given in seventh chapter. 
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Chapter 2: Literature Review 

 The economic incentive of nuclear power can be harnessed more with increase in fuel 

burn-up of reactors which in turn reduce fuel cycle cost and produce cheap nuclear power. 

India is developing metallic fuel fast breeder reactors for deployment in near future. The 

main advantages of metallic fuels over conventional ceramic fuels are high breeding ratio, 

higher thermal conductivity and better in-reactor behaviour during transient conditions. 

Worldwide, number of fast reactors [Table 2.1] have irradiated MOX and/or metallic fuel. A 

significant number of metallic fuel rods of U-Zr, U-Pu-Zr, U-Mo and U-fissium have been 

burnt in those reactors. This chapter gives a review of different metallic fuel and its 

irradiation performance.  

Table 2.1: History of fast reactor [2.1-2.3] 

Reactor Country Ther. 
power 
MW 

El.output 
MWe 

Dates of 
Operation 

Clementine USA 0.025 NA 1946–1952 
EBR-I US 1.0 NA  1951-1963 
BR-2 USSR 0.1 NA  1956–1958 

BR-5/BR-10 Russia 8 NA  1958-2002 
DFR UK 72 15 1959-1977 

EBR-II US 62.5 20 1964-1994 
Fermi-1 US 200 NA  1963-1972 
Rapsodie France 40 NA  1967-1983 
BOR-60 Russia 60 NA  1968- 
BM-40A USSR 155 NA  1969–1990 
BN-350 Kazakhstan 1000 90 1972–1999 
KNK-II Germany 58 NA 1972-1991 
Phenix France 590 264 1973–2009 
PFR UK 600 NA  1974-1994 
FFTF US 400 NA  1980-1992 

BN-600 Russia 1470 600 1980–pres 
JOYO Japan  140 1982 

Superphenix France 3000 1242 1985–1998 
Monju Japan 714 280 1980–1992 
FBTR India 42.5 NA 1985-Present 
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2.1 Pure Elements: Uranium, Plutonium, Molybdenum, Zirconium  

 Nuclear grade uranium is produced through solvent extraction process [2.4]. Majority 

of Uranium is found in earth as Uraninite (pitchblende) which is combination of UO2 and 

U3O8. Uranium has three stable allotropic phases, orthorhombic α-U (-231 oC to 667.3 oC, 4 

atoms/cell: a≠b≠c,  a = 285.4 pm, b = 587 pm, c = 495.5 pm), tetragonal β-U (667.3 oC to 

774.8 oC, 30 atoms/cell: a ≠ b=c, α=β=γ=90°, a = 565.6 pm, b = c = 1075.9 pm) [2.5] and 

body-centered cubic γ-U (774.8 oC to 1135 oC, 2 atoms/cell; a =b=c= 352.4 pm, α=β=γ=90° ). 

The most common isotopes in natural uranium are 238U (99.27%) and 235U (0.72%).235U is a 

fissile material.  

 In nuclear reactor, Plutonium (Pu) is produced due to capture of neutron. The spent 

fuel discharged from reactors contains significant amount of Pu of various isotopes (Pu238 to 

Pu242). The Pu is extracted from nuclear fuel through PUREX process. It is a solvent 

extraction process , in which Tri-n-butylphosphate (TBP) diluted in dodecane is used as 

solvent for extraction of uranium and plutonium.  

 Plutonium has six solid state allotropes. These are primitive monoclinic plutonium (α), 

body-centred monoclinic plutonium(β), face-centred orthorhombic plutonium (γ), face-centred 

cubic plutonium (δ), face-centred tetragonal plutonium (δ’), body-centred cubic plutonium (ε). 

The melting point of pure Pu is 640 °C.  

 Zirconium is produced from zirconium chloride through Kroll's process. Crystal structure 

of pure Zr at room temperature is hexagonal closed packed (hcp α) with c/a 1.593. HCP 

structure has significant anisotropy. At 865°C, pure Zr undergoes an allotropic transformation 

from the low temperature hcp phase to body centered cubic (bcc β) phase. The melting of 

pure Zr occurs at 1860°C, and thus Zr can be considered as a slightly refractory metal.  

 Mo is extracted from molybdenite (MoS2) ore. The crystal structure of Mo is bcc. It is 

also a refractory metal with a melting point of 2623°C. Mo has higher thermal conductivity 
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than Zr [2.5, 2.6]. In comparison to Mo, Zr has lower neutronic absorption cross-section (Zr 

= 0.18 b, Mo = 2.48 b) [2.7] in thermal spectrum (0.025 eV) region. However, in fast 

spectrum region (1 MeV, Zr =2.4110-2 b and Mo = 3.4810-2 b) [2.8], there is no significant 

difference between these two elements. 

2.2 Alloying Elements Of U Based Alloys  

 In metallic alloy fuel uranium fuel is alloyed with transition group elements (4d and 

5d elements in Group IV through VIII). These alloying elements e.g., Zr, Mo, Nb, Ti and 

fissium (Fs stands for fissium, which is a mixture of Mo, Ru, Rh, Pd, Zr and Nb) form solid 

solutions with γ-U and provide viable alternatives as the fast reactor driver fuel. The addition 

of Pu to U lowers the allotropic transformation temperature and melting point of U-Pu alloy. 

A  minimum in the liquidus-solidus curves occurs at 12 at.% U and 610 °C. Pu and U binary 

forms two intermediate phases: η and ξ. ξ is stable at room temperature. The maximum 

solubilities of U in Pu allotropes are (α-Pu),<0.2 at.% U; (β-Pu), 2 at.% U; (γ-Pu), 0.7 at.% U; 

and (δ-Pu), 0.3 at.% U [2.9].  

The prominent metallic fuel systems which are irradiated in fast reactors are: 

(1) U-Zr and U-Pu-Zr  

(2) U-Mo and U-Pu-Mo.  

These systems and their irradiation experience are described here: 

2.2.1 U-Zr and U-Pu-Zr Alloying of U with Zr increases the melting point of the fuel as 

shown in U-Zr phase diagram [Fig. 2.1]. Alloying of U with Zr increases the melting point of 

the fuel as shown in U-Zr phase diagram. The Pu-Zr diagram is given in Fig.2.2. The most 

important feature of this diagram is the continuous solid solubility of ε-Pu with β-Zr with 

increasing solidus from Pu to Zr. The diagram is characterized by the presence of two 

intermediate phases (Pu6Zr (orthorhombic), PuZr2 (hexagonal)) and extended δ-Pu solid 
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solubility (≈45 wt.% Zr). This gives rise to two eutectoid reactions and a large α-Zr solubility 

(20 wt.% Pu). 

 

Fig. 2.1 U–Zr binary phase diagram [2.10]. 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Pu-Zr binary phase diagram [2.10]. 
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 Alloying of U with Zr increases the melting point of the fuel as shown in U-Zr phase 

diagram (Fig.2.1). The γ phase exhibits full mutual solid solubility of U with β-Zr at high 

temperature. Whereas, α -U and β-U allotropes of uranium have limited solid solubility of Zr 

(maximum solubility of Zr in β-U and α-U are 1at.% Zr at 692 °C and ~ 0.6 at.% Zr max. at 

662 °C, respectively). α-Zr has very little solubility of U upto 865°C. There are two invariant 

reactions in Uranium side (693°, 662°C) of the U-Zr binary phase diagram and hexagonal δ 

(UZr2) phase formation occurs in between 66-78 at.% Zr. The reaction kinetics for the γ→δ 

phase formation is so sluggish that cubic bcc-phase remains at room temperature during non 

equilibrium cooling. Addition of 10% Zr in U/ Pu fuel, increases ternary alloy solidus 

temperature while maintaining liquidus low enough for injection casting in quartz. U-Zr/U-

Pu-Zr fuel has good compatibility with cladding and also increases fuel cladding eutectic 

temperatures. 

 The irradiation experience of metallic U-Zr and U-Pu-Zr [2.11] pins, which are 

irradiated in EBR II [2.12, 2.13] and FFTF, are well documented.. In FFTF a series of 

metallic fuel of U-10 wt.% Zr which is sodium bonded in HT9 clad were irradiated. The 

important irradiation phenomena of the metallic fuel are [2.14].  

1) Swelling - fission gas and solid fission product 

2) Fuel clad mechanical interaction 

3) Fuel clad chemical interaction 

 Dimensional instability is one of the important concern in metallic fast reactor 

fuels. Dimensional instability can occur due to irradiation growth, grain boundary mechanical 

cavitation, fission gas (Xe/Kr) swelling and solid fission product swelling. The U-Zr is a 

multi-phase fuel. In the periphery of the fuel, temperature may be low enough to be stable as 

α phase of the fuel, which is anisotropic. Anisotropic characteristic of the fuel is responsible 

for dimensional instability of the fuel slug like irradiation growth. Irradiation growth happen 
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in α-U, which has orthorhombic crystal structure, due to [010] elongation and [100] 

shrinkage. The elongation happen due to anisotropic condensation of interstitial and vacancy 

loops in the lattice. In random polycrystalline due to anisotropy there is mismatch of growth, 

which generate cavitation type defect at the grain boundary. This phenomena is further 

enhanced by presence of macroscopic texture in the fuel slug. Through alloying or heat 

treatment, randomization of the grains are achieved which prevents anisotropic growth of the 

fuels. 

The irradiation of metallic fuel causes fission of radio-isotopes, resulting in generation 

of solid and gaseous fission product. The fission gases (Xe+Kr) which are ~25% of all fission 

product contribute immensely to swelling. The gaseous fission product generate bubble after 

coalescing and cause swelling. Under neutron irradiation, gas bubbles evolve and enhance the 

formation of cavities and cracks. Similarly, solid fission products (Mo, Ru, Zr, Pd and 

lanthanides) accumulate with burn-up and cause swelling. 

 The cracking of fuel causes ingress of bonded sodium in the fuel and changes 

effective conductivity of the fuel. Swelling of the fuel, at 1-2 at.% of burn-up, result in close 

contact between  fuel slug and clad. As a result, sodium is squeezed out to the plenum region. 

This causes fuel clad mechanical (FCMI) and chemical interaction (FCCI). Fuel power at a 

particular radial ring depends on the actinide concentration in the ring, and change of fuel 

conductivity due to the evolution of porosity. The swelling causes reduction of thermal 

conductivity in fuel. Initially, fuel conductivity decreases to ~50% of the beginning of life 

(BOL) value, until 0.75 at.% burn up. Then thermal conductivity increases linearly up to 70% 

at 1.5 at.% burn up. This increase is due to infiltration of sodium into the pores and cracks 

which are generated through swelling. After 1.5 at.% burn up, the fuel conductivity does not 

change significantly ( ~70% of the BOL value) [2.15]. 
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 The migration of fuel constituents under thermal gradient turns the as-fabricated U-

Zr/ U-Pu-Zr metallic alloy into a radially multiphase fuel. The migration of elements occurs 

due to temperature gradient and also due to stability of different phases in different 

temperature zones. In central high temperature zone the cubic solid-solution is stable, 

whereas, at the peripheral region (U,Pu)Zr2 is stable. This migration of fuel constituents 

changes the properties locally and affects almost all other fuel behaviours. In ternary fuel U-

Pu-Zr plutonium content higher than ~7 at. % ( 8 wt.% Pu), causes higher level of constituent 

redistribution in the early stage of irradiation and lead to formation of 3 radial fuel zones 

[2.15, 2.16]. In the Irradiated U-Pu-Zr fuels, three distinct concentric zones were (Fig. 2.3), 

viz., a Zr-enriched central zone, a Zr depleted and U-enriched intermediate zone, and a 

slightly Zr-enriched zone on the outer periphery [2.15]. The annular zone structure is also 

characterized by distinct differences in porosity. 

 Generally, U concentration profile is opposite to that of Zr and Pu concentration 

profile remains virtually unchanged. The higher concentration of Zr atoms at the centre 

location, raises the fuel solidus temperature at the peak temperature region and at the 

periphery region, it enhances the fuel-cladding compatibility. However, it decreases fuel 

solidus temperature in the intermediate region of the fuel. Additionally, it causes high rate of 

fuel swelling which lead to peripheral crack formation in the fuel [ 2.16]. 
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Fig. 2.3 Cross-sectional photomicrograph of the post-irradiated fuel along with EPMA scan 
of U, Zr and Pu [2.15]. 

 
 

2.2.2 U-Mo and U-Pu-Mo 

 To increase the burn-up potential of fast reactor further, U-Mo and U-Pu-Mo ternary 

metallic fuels can be developed as a fast reactor fuel. Modification in neutronics and reactivity 

due to addition of higher amount of Mo (2.6 barn neutron cross section) can be compensated 

with improved reactor and fuel design [2.17].  

 Mo has limited solubility in α-(U) and β-(U), whereas γ phase has significant solid 

solubility. The U-Mo binary phase diagram is given in Fig. 2.4 which is characterized by the 

following invariant reactions. Peritectic reaction at 1302°C, L+bcc(Mo)→γ-U, and eutectoid 

reaction at 569°C, γ→αU+U2Mo. The kinetics of the ordered U2Mo phase formation is very 

sluggish. 
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Fig. 2.4 U-Mo binary phase diagram [2.10]. 

 

 

Fig. 2.5 Pu-Mo binary phase diagram [2.10]. 

 

 Increasing of Mo content in U-Mo fuel results in increase of melting point as well as γ-

phase stability. Lowest temperature of γ-phase stability, eutectoid temperature, is observed at 



Page | 18  
 

21.6 at.% (10 wt.%) Mo. An alloy with 33 at.% Mo also shows wide temperature range of γ-

phase stability and an increase in solidus temperature by ~ 60 oC. The advantage of U-Mo over 

U-Zr is that, Mo is better γ stabilizer than Zr, because it can stabilize γ-phase to much lower 

temperatures ሺ ௘ܶ௨௧௘௖௧௢௜ௗ
୙ି୑୭ ൌ  and ܥ 555° ௘ܶ௨௧௘௖௧௢௜ௗ

୙ି୞୰ ൌ  ሻ. The U-Mo fuel shows higherܥ690°

melting point (solidus temperature) with increasing Mo content, in the range of 8-40 at.% 

Mo, however, U-Zr shows increase of solidus temperature from the beginning i.e. 0-100 % of 

Zr. According to equilibrium phase diagram, the alloy with ~ 33 at.% Mo forms a tetragonal 

U2Mo phase below ~600 °C, however, during reactor operation the cubic γ-(U) phase will 

remain in metastable state even below 600 °C. This is due to irradiation induced phase 

reversion γ-phase [2.18, 2.19] and sluggish transformation kinetics of γ to α-U(orthorhombic)+ 

U2Mo(tetragonal) transformation . This results in retention of γ-phase even near slug surface 

temperatures. As the cubic phase is isotropic, it provides advantage of isotropic expansion and 

uniform thermo-physical property, like thermal conductivity. The cubic (open structure) BCC 

phase also has advantage of higher solubility of alloying elements, which minimizes fuel 

constituent migration [2. 20].  

 Higher melting point of the fuel ensures higher safety margin for fuel melting during 

off-normal condition. Therefore, higher melting point greater safety margin for reactor 

operation. U-33 at% Mo has the highest melting point (~1236 °C) among (U-22. at.% Mo 

(~1183 °C)) U-rich alloys in U-Mo system. Even a rise of ~50 °C in melting point (solidus 

point) is significant for metallic fuels as these alloy compositions have reasonably high 

thermal conductivity ~30 W/mK. The high thermal conductivity ensures less heat retention in 

the central slug zone, thus preventing  rapid temperature rise of fuel during off normal reactor 

operation. The higher melting point also restricts severity of fuel clad chemical interaction 

[2.16].  



Page | 19  
 

 The BCC phase of Mo-Pu has high positive heat of formation, which results into 

phase separation of Pu and Mo [Fig. 2.5]. In Mo-Pu binary system an eutectic invariant line 

located at 625°C. No intermediate phases are found in the binary phase diagram. U-Pu-Mo 

metallic fuel has higher thermal conductivity and lower thermal expansion than U-Pu-Zr 

[2.21]. U-Pu-Mo also shows lower constituent redistribution in reactors than U-Pu-Zr [2.22, 

2.23].  

  

 

 

Fig. 2.6 U–19Pu–10Zr pseudo-binary phase diagram . The vertical broken line indicates the 

phase field of U–19Pu–10Mo in typical reactor operations [2.24]. 

 

The comparison of U-17Pu-23Zr (U-19Pu-10Zr in wt.%) (Fig.2.5) with U-16.5Pu-21.5Mo ( 

U-19Pu 10Mo in wt.%) (Fig.2.6) shows U-Pu-Zr has mixture of phases whereas U-Pu-Mo 

composed of single phase in reactor operating temperature i.e. 550-750 °C. 
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Fig. 2.7. Isopleth of U/Pu = 3. The vertical broken line indicates the phase of U-19Pu-10Mo 

in typical reactor operations [2.24]. 

 As different phase may have different solubility of the constituent elements as well as 

fission products, so these may present appreciable driving force for migration (chemical 

potential gradient as well as thermal gradient) in case of U-Pu-Zr fuel. Whereas in single 

phase fuel, constituent migration can occur only due to thermal gradient which is 

significantly less in metallic fuel compared to ceramic fuel. Moreover, U-17Pu-23Zr shows α 

phase at lower temperature which is detrimental to swelling property of the fuel. However, U-

Pu-Mo shows  phase even at lower temperature. 

2.3 Fuel clad mechanical and chemical interaction (FCCI) in metallic fuel 

  

During in pile irradiation fission gases, like Xe, Kr, are generated which result in fuel slug 

swelling and the swollen fuel slug comes in contact with the cladding. Simultaneously, the 

progression of coalescence among the pores causes formation of open pores that are 
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connected to the outside of the slug. Through these open pores, fission gases come outside 

and the bond-sodium goes into the slug. The released fission gases accumulate in the gas 

plenum and can increase internal pressure of the pin. The swollen fuel slug is restrained and 

compressed by the cladding, while it pushes out the cladding.In earlier metallic fuel designs, 

the smear density was kept at 85%. This caused fuel failure due to this action–reaction which 

is called fuel clad mechanical interaction (FCMI).In the advanced design, the fuel smeared 

density is brought down below 75% [2.16]. The ingression of bond-sodium recovers the 

effective thermal conductivity of the slug. The compressive stress applied to the swollen slug 

causes decrease in the open pore volume, which relaxes FCMI. The reduction of smear 

density to < 75% has shown favourable results in terms of FCMI, however, FCCI is still a 

major cause of concern. Due to contact of fuel slug with the clad, the chemical interaction 

reduces the effective thickness of the cladding and increases the local cladding stress. FCCI is 

characterized by the inter-diffusion of fuel constituents, rare earths and lanthanides and 

cladding constituents, like Fe. The equilibrium phases of U-Zr-Fe system can be determined 

from its ternary phase diagram, therefore, a phase diagram of this system is given at near 

cladding temperature of 650 oC (Fig. 2.29). The results of diffusion couple experiments are 

show in Fig. 2.8 to compare the kinetic observations with equilibrium phase-diagram.  

The U-Zr-Fe diffusion couple reaction shows the formation of a number of phase layers 

(Fig.2.9) [2.24].These phase layers are single phase or a mixture of phases. Concentration 

profile analysis of each element in these phase layers can generate diffusion path of the layer 

structure. This diffusion path corresponds to the sequence of compositions developed in the 

layer structure. The diffusion path is shown in ternary isothermal diagram in Fig. 2.8. The 

diffusion path imposed on ternary diagram shows that Fe penetrated inside the fuel and 

generated equilibrium phases; like. UFe2, U6Fe, ZrFe2 etc. Similarly, U penetrated in the 

cladding to generate UFe2 in clad which decreased effective thickness of the Fe clad. 
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Fig.2.8: U-Zr-Fe ternary phase diagram [2.24] and diffusion path(dotted gray lines) at 650 ᵒC. 

Open circles indicate approximate average compositions of the layers. 

 

 
 

Fig. 2.9: Backscattered electron micrographs from U-10 wt%Zr vs Fe diffusion couple 

annealed at 650 ᵒC for 400 h [2.24]. 
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Chapter 3: Materials and Methodology 

 This chapter describes details of materials used for preparation of alloys, subsequent 

heat treatments and characterization techniques used during this study. It also gives details of 

fuel-clad compatibility testing capsules. 

 

3.1 Material  

 Four different compositions of U-Mo alloys (2, 5, 10 and 33 at.% Mo) were initially 

prepared by arc-melting with required amounts of starting metallic uranium slug (99.86 

wt.%) and 99.9 % pure Mo. The starting materials were thoroughly degreased with 5% 

phosphoric acid solution, before melting. Alloys were arc-melted repeatedly in high purity 

argon atmosphere (99.999% purity) and after each melting, the alloy button was turned 

upside down for complete homogenization of Mo in U and these steps were repeated 4-5 

times to ensure homogeneity of the alloy. These alloys which were cooled by water-cooled 

copper hearth at the bottom were treated as as-cast alloys. Adequate precautions like repeated 

purging of the arc melting chamber, purity of argon gas etc. were taken to minimize impurity 

pick-up during melting operation. The alloys were cut into pieces having thickness 3-5 mm 

and prepared metallographically.  

 T91, is a ferritic steel (9Cr-1Mo-0.35Si-0.45Mn-0.22V) (in wt.%) and shows better 

irradiation behaviour than austenitic steel. Hence, this alloy is considered as advanced clad 

material for fast reactor fuel. T91 alloy having 1 mm thickness was cut and polished 

metallographically . 

3.2 Arc melting Furnace:  

 Arc melting furnace (Fig.3.1) consists of a standard Tungsten Inert Gas (TIG) welding 

unit, chiller and vacuum unit. In arc melting furnace tungsten Inert Gas (TIG) welding unit 
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acts as a power source and chiller unit is used to cool the copper hearth. Copper hearth is the 

container of the alloy metals and also acts as one of the electrodes. Continuous cooling of the 

hearth with chilled water ensures that copper impurities don't contaminate the samples during 

arc-melting. The mobile electrode is made up of tungsten. The chamber is evacuated with 

rotary and diffusion pump before flushing it with high purity Ar-gas (99.999 % purity). Arc 

generated by power source, is struck between the tungsten electrode and the metals in the 

crucible, is used to melt the metals to form an alloy. The arc melting chamber is evacuated 

and then back filled repeatedly with argon gas to prevent air contamination. The metal can be 

heated to a temperature more than 3000 ᵒC. 

Fig. 3.1 The vacuum Arc melting unit along with schematic of arc melting system [3.1]. 

3.3 Thermal Treatment  

 To prepare equilibrium structure alloys of different compositions from as-cast alloys, 

these alloys were annealed in quartz capsules. Annealing of these U-Mo alloys was carried 

out by wrapping the alloy buttons in a tantalum foil and encapsulating them in quartz tubes 

with helium cover gas, filled at 100 mmHg. 'He' was filled after evacuation for 1-2 mins. The 

annealing was done for long duration, at different temperatures, to achieve equilibrium 

microstructure at ambient temperature. Initially, all the alloys were held at 900°C, for 140 
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hrs. then slow-cooled (~0.1 °C/s) to 500°C. The quartz capsules were held at 500°C for 

another 140 hrs., after which slow cooled to ambient temperature (Table 3.1). These samples 

were referred as annealed samples. 

Table 3.1 Heat treatment of U-Mo alloys 

Temperature  

o
 C  

U- 2 at. %Mo  

(h)  

U- 5 at. %Mo  

(h)  

U- 10 at. %Mo  

(h)  

U- 33 at. %Mo  

(h)  

900 140 140 140 140 

500 140 140 140 140 

 

 

Fig. 3.2 U-Mo TTT Diagram [3.2]. 

 

 

3.4 Fabrication Of Diffusion Couples And Thermal Treatment  

 For diffusion couple experiments, all the mating surfaces of annealed U-33at.% 

Mo/T91 diffusion couple were polished using silicon carbide papers (240, 600, 800 and 1200 
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grit), using ethanol as a lubricant to minimize oxidation. Then a ~3 mm thick polished disk of 

U-33 at.% Mo were sandwiched in two 1 mm thick T91 alloy disks. The T91 material was 

received from Quality Assurance Division, Bhabha Atomic research Centre. This ferritic 

martensitic steel was used in the standard normalized and tempered condition. The heat 

treatment of as-received T91 consisted of normalising heat-treatment at 1050 °C for 1 min  

per mm  thickness and tempered at  770 °C for 3 minutes per mm followed by air cooling. 

These disks were encapsulated in Tantalum foils and clamped in inconel jig. Encapsulation 

with Tantalum foils was done to prevent interaction between the diffusion couples with 

Inconel 600 jig. The lid of the fixture had an screw which applied uniform pressure on 

diffusion couple. To minimize oxidation of the material during heating assembled diffusion 

couples were sealed in quartz tubes (Fig.3.3-3.4), filled with helium cover gas, at 100 mmHg 

pressure.  

 

 

 

 

Fig. 3.3 Glass sealing of diffusion couple. 
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Fig. 3.4 Engineering drawing of the diffusion couple. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 Cross sectional view of the diffusion couple indicates presence of Ta foil surrounding 

the T91 to prevent interaction between diffusion couple and jig. 
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 These sealed coupons were heated in a tubular furnace at 650°C for 14, 30, 85 days, 

675 °C for 7, 14, 40 days and 700°C for 3, 7, 15 days. After heat treatment, diffusion couples 

were mounted in epoxy and cross-sectioned. The epoxy mounting of the sample prevented 

oxidation during metallography and also kept the components intact during sample 

preparation. Diffusion couples were prepared up to 1 μm surface finish for observation under 

SEM. Low magnification SEM image (Fig. 3.5) of the diffusion couple indicates the presence 

of Ta foil surrounding the T91. 

 

3.5  Optical Microscopy        

 For optical microscopy (Model No: Axio Observer.A1m  Make: Carl Zeiss , 

Germany), as-cast and annealed samples were polished mechanically (up to 600-grit SiC 

paper and diamond cloth) and then electro-etched in 5% H3PO4 aqueous solution with SS304 

cathode, at a constant 2V DC.  

 

3.6 Scanning Electron Microscopy with EDS analysis  

 Scanning electron microscope (SEM) is a type of electron microscope with high depth 

of field. Hence, three dimensional fracture surface imaging is possible with SEM. The high 

energy electron beam generated from SEM electron gun is focused with magnetic condensing 

lens and a scanning coil. Resolution achieved in standard FEG -SEM can be 1-5 nm.  

 Schematic diagram of scanning electron microscope is given in Fig. 3.5. When the 

accelerated primary electrons strikes the sample, it produces very low energy secondary 

electrons (SE) from the surface (5-50 nm), high energy back scattered electrons (BSE) (450 

nm), and characteristic X-rays (2-5 μm).  
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Fig. 3.7 Typical pear shaped interaction volume evolves when accelerated electron strikes the 

sample in SEM [3.4]. 

 Specimens for scanning electron microscopy (Camscan CS3200L) were prepared by 

mechanical grinding and electro-etching. For U-33 at.% Mo/T91 diffusion couple, the surface 

of each cross-sectioned couple was polished up to 1μm surface finish, using diamond paste 

for microstructural and compositional analysis. The elemental analysis of different phases 

was carried out using an energy dispersive spectroscope (EDS) ( Make: Oxford Instruments) 

attached to scanning electron microscope (SEM). 

 

3.7  Electron Backscattered Diffraction (EBSD)    

 Crystallographic information can be obtained from EBSD attached in scanning 

electron microscope. When electron beam scans through the poly crystalline sample, they are 

in-elastically scattered, to form a divergent source of electrons close to the surface of the 

sample. Some of these back scattered electrons are incident on atomic planes at an angle 

satisfying the Bragg equation, 2d sinθ=nλ, 
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where n is an integer, λ is the wavelength of the electrons (Accelerating voltage), d is the 

spacing of the diffracting plane, and θ the angle of incidence of the electrons on the 

diffracting plane.  

Hence, the diffracted electrons form a set of paired large angle cones, corresponding to each 

diffracting plane. Kikuchi bands form on the phosphor screen when the region of cone of 

enhanced electron intensity intersect the screen. The pattern is a gnomonic projection of the 

diffracted cone, making the band edges appear hyperbolic. 

The width of Kikuchi band is given as(w) ≈ nlλ/d, where l is the distance from the sample 

to the screen. Planes with wide d-spacing generate thinner Kikuchi bands than those with 

narrower planes. Hence the positions of the Kikuchi bands are used to calculate the 

orientation of the diffracting crystal. As the symmetry and appearance of the pattern is related 

to a particular crystal structure and alloy composition at the incidence point of electron, the 

diffraction pattern is used to measure crystal orientations and to identify materials.  

In a crystal orientation map,  similar crystal orientations are depicted in similar colors with 

some angle tolerance. Each grain is represented by single colour. The orientation map are 

processed to identify the position of all the grains, sub-grains and grain boundaries (low 

angle, high angle, twin boundaries). Hence the technique is unique, as it provides link 

between microstructure and crystal structure. The Fig. 3.7 below shows the phosphor screen 

generating typical pattern from a tilted sample. This technique is extensively used in texture 

analysis, along with detailed microstructure characterization. 
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Fig. 3.8  EBSD configuration inside the SEM chamber [3.5]. 

 

 For EBSD works, after getting 1 μm surface finish in mechanical polishing, 

electro polishing was carried out using an agitated solution of 45% ethanol, 27% ethylene 

glycol, and 27% H3PO4 at 15 V DC, for approximately 7 sec. The EBSD scans were carried 

out in LaB6 CS3200L SEM fitted with a Nordlys MAX detector (HKL Technology A/S, 

Denmark) at 20 KV with a step size of 1 μm. The HKL Channel 5 software (HKL 

Technology A/S) was used for data analysis.  

 

3.8  Micro-hardness Measurement       

 Vickers hardness (Model No. FM-700, Future Tech Corporation, Tokyo, Japan) 

measurements were carried out using 300 gm load with 10 s dwelling time with an Vickers 

hardness instrument. Nine measurements on each samples were done to get the average 

hardness of the alloys. 
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3.9  X-Ray powder diffraction and Rietveld analysis 

The samples were prepared metallographically. After getting 1μm surface finish, 

electro-polishing was carried out. As the depth of penetration of X ray is very less in U 

alloys, and presence of deformed layer on the surface affect the X ray profile, proper care was 

taken to remove the effect of cold work on the surface. After repetitive electro-polishing, X 

ray scan was taken to note the intensity and position of three characteristic peaks till there is 

no change in intensity of the peaks. The normal XRD scans were recorded on each samples 

in the 2 angle range 30o-140o, on Rigaku Ultima IV Diffractometer using CuK radiation in 

scan steps of 0.05o 2 / step and 0.4 o 2/min. 

Rietveld refinement technique is a standard tool to analyze powder diffraction data for 

crystal structure analysis. Rietveld refinement can be carried out on X-ray or neutron 

diffraction data acquired by fixed wavelength (angle dispersive) or fixed angle (energy 

dispersive) method. In the present work, fixed wavelength X-ray diffraction data of U-Mo 

fuels were used. The samples were studied by analyzing X-Ray powder diffraction  pattern 

(XRD) to identify, characterize and quantify the crystalline phases. The XRD pattern was 

acquired by Bragg-Brentano reflection geometry (θ/θ) type diffractometer, using CuKα 

radiation. The X-ray diffraction patterns were fitted with different adjustable parameters of 

background reflection, profile shape function (PSF) and crystal structure parameters with a 

least square algorithm. The main objective of PSF was to appropriately model angle 

dependent shape features of the X-ray peaks over the whole range of diffraction angles in 

which the data were collected. The PSF function proposed by Caglioti, Pauletti & Ricci, 

given by Young and Wiles [3.6] (FWHM2 = Utan2 + Vtan2 +W2) describes profile shape 

more accurately. Where, FWHM is full width at half maxima of the highest intensity peak 

and U, V and W are the refinable instrumental parameters. The reflection from pure annealed 

uranium was used for correcting instrumental broadening. The space group data of each 
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phase has been tabulated in Table 3.2. The XRD pattern was refined using ‘MAUD’ program 

[3.7].  

Table 3.2 Space group, Wyckoff notation, atomic position and lattice parameter of 

different phases used during Rietveld analysis [3.8]. 
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Phase  Space 

group(Space 

Group no) 

Atom   Wyckoff 

notation 

Atomic  Positions    Lattice parameter(nm) 

x  y  z  a  b  c 

α-U Cmcm(63) U 4c 0 0.1034 0.25  0.285 0.587 0.495 

α"-U P21/m Axis b U 2e 0.855 0.25 0.069 0.3278 0.4977 0.3185 

γ-U Im 3 m(229) U 2a 0 0 0  0.353 0.353 0.353 

γ'-
U2Mo 

I4/mmm(139) U 4e 0 0 0.328 0.343 0.343 0.983 

Mo 2a 0 0 0

UO2 Fm 3 m(225) U 4a 0 0 0 0.547 0.547 0.547 

O 8c 0.25 0.25 0.25
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Chapter 4: Micro‐structural Study and 
Rietveld Analysis  

In the present study, different U-rich U-Mo alloys were characterized to 

understand the microstructural evolution of U-Mo alloys with increasing Mo 

concentration. The objective of this work was to compare microstructure, phase-fields 

and hardness of as-cast and annealed U-Mo alloys and to understand composition 

dependence of this behaviour. Scanning electron microscope with energy dispersive 

spectrometer and optical microscope have been used to characterize the morphology of 

as-cast and annealed alloys. The phases were also characterized with X-ray diffraction. 

The X-ray diffraction pattern were further analysed with Rietveld analysis. 

Simultaneous EDS- EBSD analysis of U-33 at.% Mo as-cast alloys was carried out to 

reveal the extent of segregation and dendritic pattern (through EDS) in randomly 

oriented poly-crystalline (through EBSD) alloy. This study was carried out for in-depth 

understanding of microstructural and phase evolution of U-Mo alloys as fast reactor 

fuel.  

As seen from Table 4.1, many researchers [4.1-4.21] have carried out 

metallographic investigations of U-Mo system. Tangri and Williams [4.7] investigated 

U-Mo alloys, with 0.67 to 11.39 at.% Mo, under three different heat treatment

conditions: water quenched (~1000 oC/sec), argon quenched (~220 oC/sec) and air 

cooled (~10 oC/sec), from below solidus temperature. In U-Mo alloys with less than 

2.95 at.% Mo, they observed α', β, β+α and β+α', depending on ‘Mo’ concentration. In 

case of alloys with 2.95-6.2 at.% Mo, all water quenched samples were reported as α'-U 

(distorted orthorhombic). As expected, they observed that water-quenched alloys 
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showed ‘b’ parameter contractions, while lattice parameter ‘a’ and ‘c’ remained almost 

constant, with increase in ‘Mo’ content. 

Table 4.1. Literature data on metallurgical investigations of U-Mo alloy along with 

their compositions and type of heat treatments. 

at.% Mo Heat treatment /Processing Analysis 
 

Hardness Ref. 

12.40-25.27 Water quenched from 1000 oC and 
isothermally transformed into 570 oC to 200 oC 

LM1 and XRD 

 

Yes  [4.1] 

5-10 Hg quench from 900 oC LM , XRD NA [4.2] 

1.96-
36.78 

Annealed at different temperatures and water 
quenched 

LM,XRD, Chemical 
analysis 

NA [4.3] 

0-30 Annealed at 950  C and 1000 oC and ‘Hg’, or 
oil quenched 

LM,XRD NA [4.4,4.5] 

2.5-15 Hg quenched from 1000  C LM and XRD Yes [4.6] 

0.67-11.39 Annealing at 950 oC with water& Ar 
quenching and air cooling 

LM , XRD NA [4.7] 

0.49-4.82 Annealing at 950 oC or 800 oC then slow 
cooling step, water quenching or furnace 

cooling to room temperature. 

LM, SEM, XRD NA [4.8] 

6-12.5 Annealing at 950  C and water quenched Dilatometry, LM 
and XRD 

NA [4.9,4.10] 

3.88 Annealed at 940  C and isothermal between 
500 and 640  C 

LM, SEM and XRD NA [4.11] 

7.12-25.28 Annealed above 800  C and quenched to 
transformation temperature 

LM ,XRD Yes [4.12] 

5.9-10 Annealed at 940  C and water quenched XRD NA [4.13] 

0 As-cast; 
625  C for 8h & vacuum cooling 

LM , XRD 

 

Yes [4.14]  

3.64 As-cast, Annealed; 
As-rolled at 625  C and 800  C; 

Rolled at 600  C & 800  C and γ-quenched 
from 800 -850  C 

Yes 

9.36-21.60 As-cast alloy annealed in 900  C and air-cooled 
and irradiation 

LM and XRD NA [4.15,4.16] 

6-12 Annealing at 900  C  and slow cooling, 
Annealing at 850  C and quenched in water, oil 

or sand and cooled in flowing He 

XRD NA [4.17] 

15.73-25.28 Hot rolling at 650  C LM, XRD NA [4.18] 
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0-15 Splat cooling SEM, EBSD2 and 
XRD 

NA [4.19] 

11-17 Splat cooling XRD  NA [4.20] 

11.55, 
15.73, 21.61 

As-cast 
Annealed 300  C for 72 hrs. & 240 hrs. 

Annealed at 500  C for 72 &240 hrs. 

LM, FE-SEM3, 
AFM4, EFM5 and 

XRD 

Yes [4.21]  

1.LM: Light microscope 
2.EBSD : Electron backscatter diffraction 
3.FE-SEM: Field emission scanning electron microscope 
4.AFM: Atomic force microscope 
5.EFM: Electrostatic force microscope 

 

  Alloys with low ‘Mo’ content ( 6.2 at.%) undergo transition from -U to α'-U 

(distorted orthorhombic) on water-quenching, whereas, alloy with 7.2 to ~ 11.18 at.% 

‘Mo’ forms α''-U (monoclinic) on water-quenching. Stewart and Williams [4.13] have 

reported α''-U monoclinic in water quenched alloy with 5.9-11.2 at.% Mo. However, 

they have made an observation that the water-quenched alloys in the composition range 

5-7 at.% Mo tend to reach the lattice parameter and angle limit from monoclinic (α''-U) 

to distorted orthorhombic (α'-U). This small difference in composition limit for 

BCCmonoclinic vs BCCdistorted orthorhombic between the two reported works, 

6.2 at.% Mo [4.7] and 5.9 at.% Mo [4.13] may be associated with slight difference in 

quenching process. With decrease in ‘Mo’ content, γ-angle approached 90o, thus 

distorted orthorhombic (α') is the lower limit of monoclinic (α'') deformation. Hence, 

the switch from monoclinic (α'') to  orthorhombic (α') may be taking place in the 

composition region between 5-7 at.% Mo. Lehmann [4.4] and Lehman and Hills [4.5] 

also reported appearance of monoclinic (α'') phase in alloys with 4.6-9.4 at.% Mo, after 

oil-quenching from 950 oC. Using dilatometric method, Howlett [4.10] investigated 

phase transitions in U-Mo alloys with 6.0 to 12.5 at.% Mo. He carried out ice-brine 

quenching (~50 oC/sec) and air-quenching from 700 oC (~2.3 oC/sec). He could not 

establish whether U-Mo alloys with 6-8 % Mo had α' or α'' structure, because the angle 
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was very close to 90o. However, for alloys with > 8% Mo, he found α''-phase for both 

air and ice-brine quenching. Stewart and Williams [4.13] reported formation of α″ from 

γd′ for alloys with 9.2-10.8 at.% Mo. γd′ is an intermediate tetragonal structure formed 

before bcc- phase while heating room-temperature alloy with metastable α″ structure. 

According to them the transition from high temperature, γd′-tetragonal to low 

temperature α″-monoclinic is a reversible transition. Ostberg et al. [4.11] have 

investigated isothermal phase transitions of U-3.88 at.% Mo. They annealed the alloy at 

950 oC under vacuum and then held them at 640 oC, 600 oC, 550 oC, 525 oC and 500 

oC, then quenched it in Pb-Sn quenching bath. Pedrosa et al. [4.21]. has reported 

microstructural investigation of U-23 at% Mo alloy, prepared by induction-melting the 

alloy in zirconia crucible (resulting in a cooling rate of ~ 0.5 oC/s.) and annealed the 

sample at 300oC and 500oC. In the present work, alloys were prepared by arc-melting in 

water-cooled Cu hearth, leading to cooling rate of ~100 oC/s. Subsequently, heat 

treatment of alloys involved annealing at 900 oC, mainly to re-dissolve micro-

segregated ‘Mo’. Then the samples were furnace-cooled to 500 oC (below eutectoid 

temperature at 556 oC) and held there for long time, finally furnace-cooled to ambient 

temperature. 

 Most of the researchers were interested in investigating the properties of U-Mo 

plate-fuel. Plate fuels operate at low temperature (peak fuel centre-line temperature 250 

oC) [4.16] and are fabricated by hot-rolling and hot iso-static pressing of as-cast alloys 

at different temperatures. In the present study the main aim is to study U-Mo alloy for 

metallic rod-type fuel, meant for fast breeder reactors. These fuels are normally 

prepared by injection casting.  

 The operating temperature of  metallic fuels in the reactor is 450 - 800 oC, thus 

U-Mo fuels having orthorhombic α-U in the microstructure can cause ‘cavitation 
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swelling’ [4.22] and high proportion of fission gas release [4.23]. The presence of 

isotropic γ-(U,Mo) phase improves in-pile behaviour of the alloy, e.g., swelling 

behaviour and dimensional stability. U-Mo alloy forms a stable uranium rich 

intermetallic compound U2Mo, at T < 600 oC (Fig. 4.1). Therefore, according to phase 

diagram, below 600 oC, single phase γ-(U,Mo) dissociates into α-U and U2Mo (Fig.4.1) 

and these two phases show different structural and thermal properties compared to γ-

(U,Mo). During reactor operation, the U-Mo alloy gets annealed due to longer 

residence time at high temperature. The fuel pin faces a temperature gradient due to 

dynamics of heat production and removal. Therefore, depending upon the temperature 

profile, fuel may attain different microstructures across the radial cross-section.  

 

Fig. 4.1 U-Mo phase Diagram [4.24].  

4.1 Microstructure And Phase Analysis Of As-Cast Alloys 

U-Mo alloy system can have different metastable phases depending upon thermo-

mechanical treatment given during fabrication. The high temperature stable phases are: 
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tetragonal-beta (β) and bcc-gamma (γ). The system also has a stable ordered tetragonal U2Mo 

(γ') intermetallic compound with limited non-stoichiometry [4.3, 4.25]. However, this phase 

is optimized as a line compound by Berche et al. [4.26] and Zhang et al. [4.27]. The γ phase 

has two metastable phases γd and γ˚ [4.4, 4.21]. Room temperature equilibrium phase for 

uranium rich U-Mo alloys is orthorhombic alpha (α). However, it can exist as metastable 

distorted orthorhombic alpha (α') or monoclinic alpha (α''). The distorted orthorhombic alpha 

has acicular (αa') and banded (αb') morphology. The distorted orthorhombic alpha (α') is 

formed when high temperature γ-(U,Mo) is quenched. With addition of ‘Mo’, ‘U’ atom is 

replaced by smaller ‘Mo’ atom and ‘b’ parameter of orthorhombic lattice shrink, although ‘a’ 

and ‘c’ lattice parameters remain almost constant, resulting in progressive shift in 2 values 

of respective (021) plane. The decrease in ‘b’ parameter also depends upon cooling rate 

during quenching. With the addition of significant amount of ‘Mo’, formation of metastable 

monoclinic-uranium (α'') has been observed. The structure of monoclinic alpha (α'') can be 

described by angular distortion between ‘a’ and ‘b’ axis of orthorhombic α-U after significant 

substitution of ‘U’ by ‘Mo’ in the lattice, resulting in splitting of refractions from (111), (112) 

and (131) planes of XRD pattern. Significant difference between the atomic sizes of U (0.142 

nm) and Mo (0.130 nm) results in increased stiffening of the alloy with increase in ‘Mo’ 

content, thus alloys with high ‘Mo’ content provide more resistance to shear. The high 

cooling rate generates high hydrostatic pressure and favor shear process, leading to the 

formation of distorted orthorhombic, α'-(U,Mo). However, a combination of lower cooling 

rate and high ‘Mo’ content result in reduced shearing, leading to formation of monoclinic 

structure. This monoclinic structure can be defined either by artificial space group C21/m or 

by natural space group P21/m [4.17]. In case of monoclinic structure, using C21/m symmetry, 

the γ-angle is around 92.1°, whereas, using P21/m symmetry, β-angle is around 126.9°. Main 

differences between orthorhombic and monoclinic lattice is that β-angle (γ-angle for C21/m), 
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which is greater than 90o, whereas, all the angles in orthorhombic lattice are equal to 90°. The 

splitting of (111), (112) or (131) reflections is an indication of increase in the β-angle (γ-

angle for C21/m) between ‘a’ and ‘b’ axes. This γ-angle of the monoclinic structure increases 

(> 90o) with decrease in cooling rate and increase in ‘Mo’ concentration. This will be 

understood from the structural analysis of as-cast alloys of U-Mo with different Mo contents 

discussed in the following sections. 

4.1.1 U-2 at.% Mo & U-5 at.% Mo alloy: 

 The present investigation of as-cast U - 2 at.% and U - 5 at.% Mo, by XRD analysis 

showed presence of only -U phase. It did not show splitting of diffraction lines, indicating 

absence of monoclinic (α″) structure. It also did not show shrinkage of ‘b’ lattice parameter, 

as (021) lines and other line peaks were not shifted to higher ‘’ values in XRD pattern. This 

further confirmed that structure was indeed orthorhombic alpha, the stable phase of uranium.  

 

Fig. 4.2. Rietveld plot for U-2 at.% Mo in as-cast condition. Dots are experimental scan, solid 

line is calculated pattern and bottom line is the residual curve. 
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From experiment it is evident that these low 'Mo' alloys were needed higher cooling 

rate to generate metastable orthorhombic phases which was not achieved during arc-melting 

process (~100oC/sec). This also indicates that cooling by water circulated hearth in arc-

melting is not equivalent to water quenching of the samples. Water quenched samples of 

Tangri & Williams [4.7] gave α' structure for these compositions. The Rietveld analysis of 

the present XRD data for as-cast U-2 at.% Mo (Fig. 4.2) and as-cast U-5 at.% Mo (Fig. 4.3) 

alloys gave good fitting. The lattice parameters of both the compositions were almost same 

and the microstructure also showed single phase structure. 

 

 

Fig.4.3. Rietveld plot for U-5at.%Mo as-cast. Dots are experimental scan, solid line is 

calculated pattern and bottom line is the residual curve. 
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investigations, XRD analysis of 10 at.% alloy showed presence of monoclinic structure (α″), 

as given in Fig. 4.5. The XRD pattern showed that (131) line was split into (-131) and (131), 

of unequal intensities. This indicates that the γ-angle between ‘a’ and ‘b’ planes of the lattice 

is more than 90o [4.7], as discussed earlier. Stewart and Williams [4.13] have also reported 

lattice parameters of U-10 at.% Mo, water-quenched from 940o C, having γ-angle = 92.28°, a 

= 2.866 Å, b = 5.752 Å, c = 4.940 Å, taking C21/m space group. We have analyzed the 

monoclinic structure with Rietveld analysis taking P21/m space group setting [4.17] and 

lattice parameter obtained were as follows: β-angle = 126.68°, a = 3.27 Å, b = 4.95 Å, c = 

3.15 Å. Though XRD pattern showed clear splitting of only one peak, (131), Rietveld 

analysis showed 3 pairs of split lines viz. (111), (112) or (131) (Fig. 4.6), as expected for 

monoclinic structure (α″). The equation for monoclinic structure is  

1
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The last term in the equation shows that d spacing in monoclinic structures will be 

different for conjugate peaks. 

 

 

 

  

 

 

 

 

Fig. 4.4 As-cast microstructure of U-10 at.% Mo shows single phase grains with oxide 
inclusions. 
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Fig. 4.5 XRD pattern of U-10 at.% Mo as-cast alloy clearly indicates the splitting of (-131) 
and (131) lines. 

 

Fig. 4.6. Rietveld plot for U-10 at.% Mo as-cast alloy. Dots are experimental scan, solid line 
is calculated pattern and bottom line is the residual curve. 
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4.1.3 U-33 at.% Mo alloy 

The investigations of as-cast alloys with 33 at.% Mo were not reported in the literature. This 

is the composition of the alloy where only intermetallic compound is present in the system 

under equilibrium conditions. The present microstructural analysis of as-cast 33 at.% Mo 

alloys distinctly revealed dendritic microstructures with two types of dendritic morphology 

(Fig.4.7-4.8).  

 

 

 

 

 

 

Fig. 4.7 As-cast microstructure U-33 at.% Mo at low mag. showing dendritic morphology. 

 

 

 

 

 

 

Fig. 4.8 Dendritic microstructure observed in U-33 at.% Mo alloy in as-cast condition 

at 500 X. The Mo-dendrite is the darkest (indicated by no. 1), other dendrites are γ-(U) 

dendrites (indicated by no. 2) and matrix phase is indicated by no. 3. 



Page | 50  
 

 

 

 

 

 

 

 

 

Fig. 4.9 Higher magnification microstructure of as-cast alloy with 33 at.% Mo, to view ‘Mo’ 
rich dendrites as indicated by no. 1 in Fig.4.8. 

 

Major fraction of dendrites was that of ‘U’ enriched dendrites, which were formed due 

to freezing of (γ - U) structure, seen as bright dendrites in Fig. 4.8. A small fraction of ‘Mo’ 

enriched equiaxed dendrites of grey colour were also observed, as seen in Fig. 4.8-4.9. The 

presence of these structures with different ‘Mo’ concentrations can be understood by 

assuming (i) equilibrium on the interface of different phases, (ii) complete diffusion in the 

liquid phase and (iii) almost negligible diffusion of atoms in solid phases. These assumptions 

are close to that of Scheil-Gulliver, and are reasonable for arc-melted samples, which are 

cooled by water-cooled copper hearth (~100oC/sec). The equiaxed dendrites precipitated out 

from the liquid alloy during non-equilibrium cooling, through L+ BCC (Mo) phase field. The 

grey colour dendrites (Fig. 4.8- 4.9) had almost equal short arms in three or four directions 

with ‘Mo’ content varying in the range of 83-95 at.%  (Fig. 4.10).  
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Fig. 4.12 EDS spectrum of ‘U’ enriched dendrites (indicated with number 2 in Fig.4.8) in 
as-cast U-33 at.% Mo alloy indicates 34-40 at.% ‘Mo’. 

 

 

 

 

 

 

 

 

 

Fig. 4.13 EDS spectrum of matrix (number 3 in Fig.4.8) in as-cast U-33 at.% Mo alloy shows 
24-27 at.% ‘Mo’. 
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The surrounding region (number 4 in Fig.4.8) of these Mo dendrites has Mo content around 

42.5 at.% (Fig.4.11) and as one move further, the Mo concentration reduces to 37 at.%. This 

envelope region is formed due to peritectic reaction between liquid phase and ‘Mo’ on the 

surface of Mo-dendrites (Liquid ሺ29 at.% Moሻ ൅  BCC Mo  →  γU ሺ42 at.%Moሻሻ. Sluggish 

diffusion rate in solid peritectic γ-U phase (42 at.% Mo) on the surface of ‘Mo’ dendrites 

thwarts completion of peritectic reaction. Hence, significant amount of Mo dendrites are 

retained in the microstructure. This is the typical feature of peritectic reaction where the 

reaction product itself forms as an envelope and acts as a barrier for reaction to complete. As 

per the lever rule, even at the peritectic temperature (1284°C), the phase fraction of (Mo)-

dendrite does not exceed 7 % (at. %) for U-33 at.% alloy. In the as-cast microstructures of U 

-33 at.% Mo, area fraction of (Mo) dendrites was measured using IMAGE-J software and it 

was found to be ~5 % (vol %). Further cooling of the alloy below peritectic temperature 

resulted in precipitation of γ-U dendrites (No.2 in Fig.4.8) having composition 34-40 at.% 

Mo (Fig.4.12). After evolution of ‘Mo’ and γ-U phase containing higher ‘Mo’ than 33 at.% 

Mo, the remaining liquid phase was depleted of ‘Mo’ content. Hence, further cooling of the 

depleted liquid resulted in formation of residual γ-U (no.3 in Fig.4.8) containing 24-27 at.% 

Mo (Fig.4.13). 

The most striking feature of these γ- U phase dendrites was the elongated morphology 

(bright colour) with secondary branching. The length of primary dendrites was in the range of 

50-80 µm and width varied from 10 to 15 µm. The average size of the secondary arm length 

and width were 5-20 µm and ~ 5 µm respectively. The XRD pattern shown in Fig. 4.14, 

indicated presence of only γ - U phase in as-cast 33 at.% Mo alloy because the fraction of 

bcc-(Mo) dendrites was too low to be detected through XRD. The calculated lattice parameter 

of γ - U was found to be 3.3809 Å. 
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Fig. 4.14. Rietveld plot for U-33at.%Mo as-cast. Dots are experimental scan, solid line is 
calculated pattern and bottom line is the residual curve. 

 

4.2.4 EBSD Analysis Of U-33 at.% Mo Cast Alloy  

 Detailed EBSD analysis of as-cast microstructure, with 33 at.% Mo was carried out to 

know the orientation relation between different grains, as well as microsegregation in as-cast 

microstructure. EBSD inverse pole figure normal to the sample surface (IPF-Z) in cubic 

stereographic projection of as-cast U-33at.%Mo sample shows crystallographic orientations 

of different grains (Fig.4.15). Presence of different orientations (Fig.4.15) indicates absence 

of any preferred orientation. The band contrast image shows the dendritic morphology (Fig. 

4.16). When the IPF-Z map of the microstructure is superimposed with band contrast, the 

superimposed map shows the dendritic micro-segregation pattern inside the grains along with 

orientations. Both types of dendrites (-(U) and (Mo)) are clearly revealed in bright contrast, 

when EDS count of Mo (Lα line) is superimposed on IPF-Z with band contrast (Fig. 4.17). 

Mo-dendrite is brightest (Fig. 4.17, no.1), and remaining dendrites are -(U) dendrite (Fig. 

4.17, no. 2). As the phase fraction of -(U) is high for 33 at.% U alloys, therefore, -(U) 

dendrites are observed in most of the grains. -(U) dendrite shows brighter contrast at the 
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Fig. 4.17  IPF- Z map  superimposed with Band contrast and EDS count of as-cast U-

33at.%Mo showing dendritic pattern along with micro-segregation. The Mo-dendrite is 

brightest (indicated by no.1), other dendrites are -(U) dendrite (indicated by no. 2). 

 

4.2 Microstructure and phase analysis of annealed alloys 

Microstructural features of annealed alloys were studied using optical microscope 

(OM) and scanning electron microscope (SEM).  

4.2.1 U-2 at.% Mo alloy & U-5 at.% Mo alloy 

 After annealing, alloys with 2 and 5 at.%, Mo showed two phase lamellar 

microstructure (Fig. 4.18-4.19). In these alloys ‘Mo’ enrichment or phase-ordering were not 
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sufficient to designate the second phase as U2Mo. As per the equilibrium phase diagram, 

alloys with 2 at.% Mo should have formed single phase -(U), whereas, alloys with 5 at.% 

Mo should have undergone eutectoid reaction at 556 ᵒC. That should have resulted in 

formation of -(U) with ~4 at.% Mo and remaining small fraction of Mo should have formed 

U2Mo. On further cooling, due to decrease in Mo in -(U) some more fraction of Mo should 

tend to precipitate out from -(U) and results in higher fraction of U2Mo.  

Fig. 4.18. Lamellar microstructure with dendrite of oxide was observed under SEM 

with dendrites in annealed U-2 at.% Mo alloy.  

 

 

 

 

 

 

Fig. 4.19. Lamellar microstructure was observed along with oxide inclusions in annealed U-5 

at.% Mo alloy. 
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However, reduced diffusion rate, at such low temperatures prevented formation of 

equilibrium U2Mo phase even after annealing. Instead, it retained a non-equilibrium Mo rich 

phase along with -(U) with significant amount of ‘Mo’ in matrix. Unless annealed for 

longer period just below the eutectoid temperatures, the small fraction of U2Mo that might 

have formed after longer duration annealing in these low ‘Mo’ samples was not sufficient to 

be detected by XRD. Therefore, the XRD spectrum showed no characteristic U2Mo peaks in 

2 at.% and 5 at.% Mo samples (Fig. 4.20). XRD spectrum of only 5 at.% Mo sample, because 

XRD spectrum of 2 at.% and 5 at.% Mo alloys were indistinguishable. EDS analysis 

indicated presence of uranium oxide inclusions in these alloys. 

  

Fig. 4.20. Rietveld plot for U-5at.%Mo annealed alloys showing only presence of 

orthorhombic α-(U). Dots are experimental scan, solid line is calculated pattern and bottom 

line is the residual plot. 

4.2.2 U-10 at.% Mo alloy        

The microstructure (Fig. 4.21) of annealed U-10 at.% Mo showed two different regions: 

lameller and non-lamellar.  
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Fig. 4.21. Lamellar microstructure, containing α-U+U2Mo was observed in annealed U-10 

at.% Mo alloys with increasing second phases. 

 

According to TTT diagram given by Pedrosa et al., [4.21] U-10 at.% Mo alloys showed 

eutectoid transformation of γ phase into α and γ' (U2Mo) phase after annealing. Similar 

results were reported by Pedrosa et al. [4.21] for U-Mo alloys and Hackenberg et al. [4.28] 

for U-Nb alloys. In the present study, XRD analysis of alloys containing 10 at.% Mo 

indicated the presence of (103), (112) peaks of U2Mo intermetallic phase (Fig. 4.22) along 

with characteristic peaks of orthorhombic α-U. The volume fraction of U2Mo in this alloy, 

calculated using Rietveld analysis of XRD spectrum, was around 22.2%. Hence the lamellar 

microstructure of annealed U-10 at.% Mo (Fig. 4.21) alloy has eutectoid decomposition 

product, α-U+U2Mo. Pedrosa et al. [4.21] also reported similar phase composition for 

annealed alloys with 11.5 at.% Mo, however, they did not report the fraction of U2Mo (γ') 

phase in their samples. Two small peak observed at 42.8˚ and 62.3˚, may be formed due to 

oxide phase of UO2+x. 

 



Page | 60  
 

 

Fig. 4.22. Rietveld plot for U-10at.%Mo annealed alloys showed presence of orthorhombic α 
and U2Mo. Dots are experimental scan, solid line is calculated pattern and bottom line is the 

residual curve. 

 

4.2.3 U-33 at.% Mo alloy        

U-33 at.% Mo annealed alloy showed a single phase microstructure with an average 

grain size of ~50 μm (Fig. 4.23). XRD analysis of this alloy showed only U2Mo phase (Fig. 

4.24). Annealing treatment transformed γ-U phase of as-cast 33 at.% Mo alloy into an 

ordered compound (γ'- U2Mo). Ordered γ' - U2Mo phase has tetragonal structure with lattice 

parameters of 0.34 nm and 0.9991 nm. In U-33 at.% Mo the oxide phase is around 2.8%. 
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4.3. Micro-hardness of U-Mo alloys 

As-cast unalloyed uranium has hardness of HV 220, whereas, after homogenization at 

625° C for 8 hrs. and vacuum cooling, the hardness reduced to HV 190. Hardness of as-cast 

3.64 at.% Mo (1.54 wt.% Mo) alloy was HV 285 and after sufficient annealing no 

appreciable change in hardness took place [4.17].  In the present work, it was found that the 

annealed uranium-molybdenum alloys with 2 and 5 at.% Mo showed hardness in the range of  

HV 290-315. The hardness of these alloys increased with addition of ‘Mo’. The U-10 at.% 

annealed alloy had hardness in the range of HV 401-424. However, annealed 33 at.% Mo 

alloy showed lower hardness of HV 385 compared to that of 10 at.% Mo. The variation of 

hardness profile with ‘Mo’ content in annealed U-Mo alloys is plotted in Fig. 4.25. The 

annealed alloys with 2 at.% and 5 at.% Mo were almost single phase, thus having low 

hardness. The slight increase in hardness with addition of ‘Mo’ from 2 at.% to 5 at.% was 

assigned to increase in rigidity of lattice structure by substitution of ‘U’ by small ‘Mo’ atoms 

in the lattice site of ‘U’. However, considerable increase in hardness of alloy with 10 at.% 

Mo was assigned to the presence of higher amount of second phase as well as high Mo 

content. The alloy with 10 at.% Mo is a biphasic alloy as per XRD and microstructure 

analysis, with reasonable fraction of U2Mo phase. The reduction in hardness for single phase 

U2Mo compound with 33 at.% Mo, from the peak value may be due to reduced rigidity in 

microstructure in absence of second phase. Similar results were obtained by Pedrosa et al. 

[4.21] for the alloy with 21.61 at.% Mo, annealed at 500oC for 240 h. In microstructural 

analysis of this alloy, they observed a region ‘C’ that grew in size and phase fraction with 

increase in annealing time. This region was identified as acicular ’ and its hardness was 

found to be ~ 390 HV. In the same alloy, the regions with lamellar morphology, the hardness 

was ~ 450 HV. They have reported similar hardness for similar morphological regions for 

alloys with 11.55 and 15.73 at.% Mo, when annealed at 500oC for 240 hrs..  
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Fig. 4.25 Variation of hardness with Mo content (in at.%) in annealed U-Mo alloys, in 

Vicker’s Scale using 300 gm load. 

 

Pedrosa et al. carried out hardness measurements on individual grain within the alloy, 

therefore, they could measure the hardness for U2Mo and (+’) in the same alloy. Therefore, 

hardness values given by Pedrosa et al. are in reasonably good agreement with the present 

results. Their results also indicate that intermetallic compound (U2Mo) has much higher 

hardness than -(U) phase. 
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Table 4.2: Lattice parameters obtained from Rietveld Analysis using MAUD program. 

Sl. 
No. 

Alloy Crystal Lattice(Phases) From RV Analysis  (nm) 

1 2 at.% as-cast Orthorhombic (-U) a  0. 285, b   0.586 ,   

c   0.496    

2 5 at.% as-cast Orthorhombic (-U) a   0.285,b   0.586    

c   0.495  

3 10 at.% as-cast Monoclinic (”-U) a   0.326 ,b   0.496   

c   0.316 

β:126.69˚ 

4 33 at.% as-cast Cubic (-U) a  0.338 

5 5 at.% after 
annealing 

Orthorhombic (-U) a   0.285    

b   0.587   

 c   0.496   

6 10 at.% after 
annealing  

 

 

Orthorhombic (-U) + 
Tetragonal (U2Mo) 

Parameters for -U phase 

a   0.286    

b   0.587   

 c   0.497 

Parameters for U2Mo phase 

a   0.343    

c   0.996 

7 33 at.% after 
annealing 

Tetragonal (U2Mo) a   0.340 

c   0.999  

 

4.4 Summary 

The U-Mo alloy is the candidate fuel for metallic fuelled fast rector. Fabrication of 

metallic fuel is carried out through injection casting and its microstructure evolve during 



Page | 65  
 

reactor operation due to thermal as well as irradiation effect. This emphasizes the importance 

of studying the as-cast alloy and annealed alloys.  

 The microstructure and phase analysis of four different U-Mo alloys have been 

investigated using OM, SEM-EDS and XRD in as-cast and as well as annealed conditions. 

The lattice parameters of the phases were determined through Rietveld analysis. The 

important findings are listed below: 

(a) U-2 at.% Mo and U-5 at.% Mo have similar microstructure in as-cast condition. 

Although the water quenched alloy has distorted orthorhombic alpha structure, but 

orthorhombic α-phase is present in as-cast alloy. The Rietveld analysis showed good 

fit and not much variation was observed in lattice parameter with change in Mo 

content in as-cast condition. 

(b) The monoclinic α'' phase was detected in as-cast U-10 at.% Mo alloy. The XRD 

pattern shows splitting of (131) line into (1ത31) and (131) of unequal intensities 

confirming presence of monoclinic phase. The Rietveld analysis reveals three split 

lines viz. (111), (112) or (131). 

(c) The as-cast 33 at.% alloy showed presence of cubic γ-(U) phase with dendritic 

microstructure having secondary branching. The EDS analysis indicated micro 

segregation of ‘Mo’. The microstructure also had a small fraction of bcc-(Mo) 

dendrites. The Rietveld plot shows good fit with cubic γ-U structure, with slight 

shrinkage in lattice parameter: 0.353 nm for pure γ-U and 0.338 nm for γ-(U) formed 

from as-cast alloy with 33 at.% Mo. EBSD analysis indicated absence of preferred 

orientation in as-cast structure as well as indicated dendritic pattern with 

microsegregation. 
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(d) The annealed U-2 at.% Mo and U-5 at.% Mo alloys had orthorhombic α-U phase. 

Whereas, annealed U-10 at.% Mo had orthorhombic α-(U) phase and tetragonal U2Mo 

phase. The Rietveld method quantified the volume percent of α-U and U2Mo as 77.8 

% and 22.2 %, respectively. The annealed U - 33 at.% Mo has ordered U2Mo 

intermetallic phase.  

(e) The Vickers Micro-hardness of annealed alloys increased with ‘Mo’ content due to 

the presence of two phase microstructure. Annealed single phase U-33 at.% Mo alloy 

shows reduced hardness than biphasic α-U+U2Mo.  
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Chapter 5: Study of Solidification 
Microstructure Evolution in U‐Mo 
Alloy Through PFM  

Injection casting of metallic fuel involve fast cooling of the melt, thus generating non-

equilibrium conditions in liquid and solid phases. Fast cooling conditions are expected during 

casting of arc-melt alloys (~100 °C/s) [5.1]. Many authors [5.2] has simulated these cooling 

processes through Scheil-Gulliver model. However, phase field model is much advanced model 

than Scheil-Guilliver model for two reasons. Firstly, Scheil-Guilliver model assumes complete 

mixing in liquid phase (i.e. infinite diffusivity in liquid) and zero diffusivity in solid. However, 

in reality atoms in liquid and solid phase has finite diffusion coefficient and significant 

difference in diffusion rates exists in liquid and solid phase. Due to this, phase field model 

(PFM)  assumes finite diffusivity in solid and liquid phase which is an huge improvement over 

Scheil-Gulliver model. Secondly, PFM  takes into consideration the effect of interface which 

Scheil-Gulliver model fails to take into account.  

  Dendritic solidification is a multi-length scale pattern formation problem. For the last 

three decades it has been proven that the phase field technique is one of the advanced 

techniques to study dendritic crystal growth in meso-scale [5.3-5.10]. The growth of dendritic 

crystal is an interface dominated phenomena. In diffuse interface model, the interface is 

modelled as a mixture of parent and product phases. Thermal super-cooling and compositional 

super saturation in solid-liquid interface have pronounced effects on the growth process. 

Dendritic microstructure under non-equilibrium cooling can be formed under both low 

undercooling (1 °C) and high undercooling (100 °C) [5.3]. At high undercooling, dendritic 

tip velocity is in the range of 1-100 m/s. This velocity range comes in the domain of rapid 

solidification growth [5.4]. At low undercooling, the interface is considered to be in local 
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equilibrium condition. The local equilibrium condition ensures that the Gibbs-Thomson 

condition has been met and flux remains conserved across solid-liquid boundaries.  

  The main objective of this study is to understand the microstructural evolution of U-

33at.% Mo during solidification and associated micro-segregation of Mo in dendritic 

microstructures during casting of U-Mo metallic fuel. Phase field modelling helps us to 

understand the effect of liquidus temperature, diffusivity, thermal conductivity, enthalpy of 

fusion, molar volume and other basic parameters of the system on micro-segregation and 

crystal growth processes.  The present work is focused on interpretation of scanning electron 

microscopy (SEM) results along with energy dispersive spectroscopy (EDS) results of crystal 

growth during solidification of alloy (U- 33 at.% Mo ) with the help of PFM. The evolution of 

-(U) and BCC-(Mo) dendrites has been studied with PFM and characterized using SEM along 

with EDS. The computational results calculated using Phase field model were compared with 

experimental results. The physical parameters used in the model for U-Mo system were taken 

from literature and are listed in Table 5.1 [5.11-5.18].  

 

5.1  Phase Field model for Solidification 

 PFM applies a continuum field, i.e. a phase field characterized by a set of conserved 

(concentration (c) and temperature (T)) and non-conserved ( crystal order-parameter (φ)) 

phase field variables. In the liquid-solid phase transformation, the continuously varying 

phase-field variable (φ) was taken as 0 in solid phase, 1 in liquid phase and changed from 0 to 

1 at solid-liquid interface.  

 

 5.1.1 Entropy Functional  

 In the model [5.19], it has been considered that entropy of the system will be 

maximized during dendritic crystal growth. The entropy function (ܵሻ of an isotropic system 
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over volume ‘V’ ,which is a function of ‘߮’, ‘c’ (concentration of Mo in U-Mo alloy) and ‘e’ 

(internal energy density which manifests as the temperature of the system), can be written as : 

ܵ ൌ ׬ ሺݏ௕ሺ߮, ܿ, ݁ሻ െ
ఌക
మ

ଶ
ଶ|߮׏|

௏
െ

ఌ೎
మ

ଶ
ଶ|ܿ׏| െ

ఌ೐
మ

ଶ
 ଶሻ dܸ|݁׏|     (1a) 

 In the above equation (1), first integral expression (sb(φ, c, e)) represents bulk-

entropy-density for bulk phases. The next three expressions represent gradient energy 

changes for phase-field-variables ‘߮’, ‘c’ and ‘e’, respectively. The gradient coefficients, , 

c and e are constant. To simplify these calculations some acceptable assumptions were 

made: (i) due to reasonable thermal conductivity of the metallic system, thermal gradient 

across the interface is negligible, so e was ignored and (ii) in the narrow diffuse-interface 

region, concentration gradient was considered to be negligible, so c  was ignored. Hence the 

equation was reduced to the following form: 

ܵ ൌ ׬ ሺݏ௕ሺ߮, ܿ, ݁ሻ െ
ఌക
మ
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 ଶ|߮׏|

௏
ሻ dV    ( 1b) 
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       (1d) 
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ஔୱౘ
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       (1e) 

5.1.2 Evolution Equations  

 The evolution equation for the phase field  non conservative phase field variable (φ) 

the evolution equation [5.19] is :    ሶ߮ ൌ ఝܯ  
δS

δφ
ൌ ఝሺܯ

డ௦್

డఝ
൅ ఝߝ

ଶ߮׏ሻ  (2) 

The interface mobility (ܯఝሻ is a function of interface diffusivity. It is assumed that the 

interface mobility of individual atom depends on alloy composition, interface attachment 

coefficient and melting temperature of the elements. The model calculates interface mobility 

in the following way: 
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ఝܯ ൌ ሺ1 െ ܿሻܯ௎ ൅  ெ௢   (3)ܯܿ

௎/ெ௢ܯ ൌ
ሺ ೘்

ೆ/ಾ೚
ሻమ∗ఉೆ/ಾ೚

଺√ଶ௅ೆ/ಾ೚ఋ
,        (4) 

Here, ܯ௎/ெ௢  is the mobility of individual element,  ܮ௎/ெ௢ is the latent heats of fusion, ߜ is 

the phase field interface thickness, ߚ௎/ெ௢ is the kinetic attachment coefficients and  ௠ܶ
௎/ெ௢ is 

the melting points of U and Mo respectively. The latent heat of fusion of U/Mo (ܮ௎/ெ௢
் ሻ is a 

function of temperature (eqn 5), whereas, other components are assumed to be independent of 

temperature.  

௎/ெ௢ܮ
் ൌ ௎/ெ௢ܮ 

೘் ൅ ׬ ሺ݈௉௎/ெ௢
௅்

೘்
െ ݈௉௎/ெ௢

௦ ሻ݀ܶ  (5)  

The heat capacity of liquid phase is higher than that of solid phase (݈௉,௎/ெ௢
௅ ൒ ݈௉,௎/ெ௢

௦ ). 

Therefore, the second term in eqn. (5) will be negative when T < Tm and positive when T>Tm. 

Due to high melting point of molybdenum, computational temperatures in the present work 

are lower than ௠ܶ
ெ௢, therefore, ܮெ௢

் ൏ ெ௢ܮ 
೘் . Moreover, on further cooling, the latent heat of 

Mo will continue to decrease. But, in case of uranium, both liquidus and peritectic 

temperatures are higher than ௠ܶ
௎, therefore, ܮ௎

் ൐ ௎ܮ 
೘், but the latent heat difference of U and 

Mo decreases on cooling.   

Evolution equations for conserved variables, concentration and internal energy are governed 

by normal conservation laws and  are: 

ሶܿ ൅ .׏  ௖ܬ ൌ 0  (6)       

ሶ݁ ൅ .׏  ௘ܬ ൌ 0   (7) 

Where, ܬ௖ and ܬ௘ are concentration and energy flux. 
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ఋ௦
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ఋ௘
ቁ                                     (6a) 

௘ܬ ൌ ׏௘௘ܯ ቀ
ఋ௦

ఋ௘
ቁ ൅ ܯ௘௖׏ ቀ

ఋ௦

ఋ௖
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 ௘௖ representܯ ௖௘andܯ .௘௘ are the mobility term for diffusion and heat conductionܯ ௖௖ andܯ

the cross effect between heat flow and diffusion and hence neglected. The gradient terms, 

׏ ቀ
ఋ௦

ఋ௘
ቁ and ׏ ቀ

ఋ௦

ఋ௖
ቁ should be evaluated isothermally under fixed composition. Using eqn. 1d 

and eqn.1e, equn. 6 and equn.7 become 

ሶܿ ൌ െ ׏. ௖ܬ ൌ െ׏ܿܿܯ.׏ ቀ
ܾݏߜ

ܿߜ
ቁ                         (6b) 

ሶ݁ ൌ െ ׏. ௘ܬ ൌ െ ׏݁݁ܯ.׏ ቀ
ܾݏߜ

݁ߜ
ቁ                           (7b) 

݃(φ) is a double well interpolation function of ߮ and can be represented by:  

݃ሺ߮ሻ ൌ ሺ߮ଶ െ 2߮ଷ ൅ ߮ସሻ     (8) 

Hence ݃(φ) is maximum when φ is 0.5, i.e. at the interface location. It is zero at both φ=1 or 

0. 

 

 

 

߮ 

Fig. 5.1 Double well interpolation function ݃(φ). 

The interpolation function ݌ሺ߮ሻ can be represented by ݌ሺ߮ሻ ൌ ߮ଷሺ10 െ 15߮ ൅ 6߮ଶ)  (9) 
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Fig. 5.2 Nature of interpolation function ݌ሺ߮ሻ, it is zero at  ߮=0 and 1 at φ-=1. 

 

Accordingly, the model for energy density for pure materials are: 

 ݁௎/ெ௢ሺܶ, ߮ሻ ൌ ݁௎/ெ௢,௦ሺܶሻሺ1 െ ሺ߮ሻሻ݌ ൅ ݁௎/ெ௢,௅ሺܶሻ݌ሺ߮ሻ  (10) 

Where, ݁௎/ெ௢,௦ is energy densities for the U and Mo solid phases; and ݁௎/ெ௢,௅ is energy 

densities for the U and Mo liquid phases. 

௎/ெ௢ݏ݀ ൌ
ௗ௘ೆ/ಾ೚

்
    (11) 

Integrating the above equation over temperature at constant φ,  
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Where ݈௎/ெ௢
௦  and ݈௎/ெ௢

௅  are the specific heat of solid and liquid phase respectively and 

 ௎/ெ௢ሺ1ሻ        according to the third law ofܭ = ௎/ெ௢ሺ0ሻܭ  ௎/ெ௢ሺ߶ሻis an integration constant. Andܭ

thermodynamics. 

 For the case of a regular solution, the energy density can be written as 
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݁ሺܶ, ܿ, ߮ሻ ൌ ܷ݁ሺܶ, ߮ሻሺ1 െ ܿሻ ൅ ,ሺܶ݋ܯ݁ ߮ሻܿ ൅ ሺ߶ሻܿሺ1ߗ െ ܿሻ                          (14) 

where ߗሺ߶ሻ is the regular solution parameter. Using eqn.10 in eqn.11, energy density and 

entropy of the solution will be 

݁ሺܶ, ܿ, ߮ሻ ൌ ሾሺ݁௎,௦ሺܶሻ൫1 െ ሺ߮ሻ൯݌ ൅ ݁௎,௅ሺܶሻ݌ሺ߮ሻሿ ∗ ሺ1 െ ܿሻ ൅ ሾሺ݁ெ௢,௦ሺܶሻ൫1 െ ሺ߮ሻሻ݌ ൅

݁ெ௢,௅ሺܶሻ൯݌ሺ߮ሻሿ ∗ ܿ ൅ ሺ߶ሻܿሺ1ߗ െ ܿሻ                      (15) 

,ௗ൫݁ሺܶݏ ܿ, ߮ሻ൯ ൌ ,௎ሺܶݏ ߮ሻሺ1 െ ܿሻ ൅ ,ெ௢ሺܶݏ ߮ሻܿ െ
ோ

௏௠
ሾܿ lnሺܿሻ ൅ ሺ1 െ ܿሻ lnሺ1 െ ܿሻሿ     (16) 

 

Helmholz free energy density f(T,c,φ) can be constructed,  

fሺT, c, ߶ሻ ൌ ݁ሺܶ, ܿ, ߮ሻ െ ,ௗሺ݁ሺܶݏܶ ܿ, ߮ሻ, ܿ, ߶ሻ 

= ௎݂ ሺܶ, ߶ሻሺ1 െ ܿሻ ൅ ெ݂௢ሺܶ, ߶ሻሺ1 െ ܿሻ ൅ ሺ߶ሻܿሺ1ߗ െ ܿሻ ൅
ோ்

௏௠
ሾܿ lnሺܿሻ ൅ ሺ1 െ ܿሻ lnሺ1 െ ܿሻሿ               

(17) 

where  

f୙/୑୭ሺT, ߶ሻ ൌ ݁௎/ெ௢ሺܶ, ߮ሻ െ ,ௗ,௎/ெ௢ሺܶݏܶ ߶ሻ        (18) 

putting 10, 12 and 13 in eqn.18 
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௦

்

଴

ሺܿሻ
݀ܶ

ܶ

൅ ሺ߶ሻන݌ ݈௎/ெ௢
௅

்

଴

ሺܿሻ
݀ܶ

ܶ
൅  ௎/ெ௢ሺ߶ሻሻܭ

ൌ ௎݂/ெ௢
௦ ሺܶ, ߮ሻ ∗ ൫1 െ ሺ߮ሻ൯݌ ൅  ௎݂/ெ௢

௅ ሺܶ, ߮ሻ ∗ ൫݌ሺ߮ሻ൯ െ ܶ ∗  ሺ߶ሻ    (19)݋ܯ/ܷܭ

݀݁ ൌ ݏ݀ܶ െ ܸܲ݀ 

For a closed system (i.e. V=const.) 
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Using eqns.20 and 23 the final evolution equations will be as follows. 
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Tሶܥ ൌ T׏ܭ׏ െ 30gሺφሻሺሺ1 െ cሻܮ௎ ൅ ெ௢ሻφሶܮܿ      (26) 

Whereas, WU/Mo are constants which represent energy humps at solid-liquid interface of pure 

U and Mo, and are given 
ଷఙೆ/ಾ೚

√ଶ ೘்
ೆ/ಾ೚

ఋ
 . C. is additive heat capacity and K is weight average 

thermal conductivity of alloy and ϵଶ ൌ
଺√ଶ௅ೆ/ಾ೚ఋ

೘்
ೆ/ಾ೚  .  

Diffusivities (ܦ௦, ܦ௅ ሻ and regular solution parameters(Ωୱ, Ω୐) of the solid and liquid phases 

are combined with the interpolating function ݌ሺ߮ሻ to form Deff and Ωሺφሻ respectively, 

   Deff = ܦ௦ሺ1 െ ሺ߮ሻሻ݌ ൅   ሺ߮ሻ       (27)݌ ௅ܦ

   Ωሺφሻ ൌ Ωୱሺ1 െ ሺ߮ሻሻ݌ ൅ Ω௅ ݌ሺ߮ሻ     (28) 
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The interface thickness (δ) for ‐(U) dendrite was assumed to be 1.110-8 m and for BCC-

(Mo) dendrite it was 1.010-9 m. 
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 ෩is non-dimensionalised  weight averageܭ ሚ is the non-dimensionalised  heat capacity andܥ

thermal conductivity of alloy, L෨୅ and L෨୆ non-dimensionalised   latent heat of fusion for U 

and Mo respectively. 

5.1.3 Anisotropy in Interfacial Energy & attachment coefficient  

Microscopic solvability theory has established that the magnitude of crystalline anisotropy 

affects dendritic crystal growth morphology, tip radius and tip velocity [5.20,5.21]. In this 

model anisotropic linear kinetic coefficient for interface attachment (), surface energy and 

interface thickness (δ) have been considered.   takes care of attachment process at the solid-
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liquid interface. It generates anisotropic mobility and relates moving front (planer or dendritic 

tip) velocity (Vn) with the under-cooling (T) through the following relations:  

Vn = ሺߠሻT          (29)      

ሻߠሺߚ  ൌ ሻሺ1ߠ଴ሺߚ െ ߳௞ܿߠ4ݏ݋ሻ   (30) 

where, ߚ଴ሺߠሻ is the modulus of attachment coefficient, ߳௞ is the amplitude of kinetic 

attachment coefficient anisotropy and   is ܽ݊ܽݐܿݎ ሺ
ങക

ങ೤

ങക

ങೣ

ሻ. The anisotropic surface energy (ߪ) 

is calculated from surface energy of the pure metals (ߪ଴) using 

ߪ   ൌ ௢ሺ1ߪ  ൅ cosߛ  ሻ    (31)ߠ4

where, ߛ is the strength of anisotropy. The ߛ has been taken equal to 0.05 in both the 

simulation. Coriell and Turnbull [5.22] have proposed the reduced crystal-melt interfacial 

tension through the equation, ߙ௎/ெ௢ ൌ ቀ
ே೚

௏೘
ቁ
ଵ/ଷ

 where Vm is the molar volumes of ,ܮ/௢ߪ

pure U and Mo, No is the Avogadro's number, ߪ଴ is the surface free energy of pure elements 

and L is the latent heat of fusion. We have taken α = 0.427 [5.23] for molybdenum. The value 

for U, which has bcc (A2) structure, is assumed to be equal. 

This value of α has been used for calculating the surface energy (o) of U and Mo. It has been 

shown by Hoyt et al. [5.20, 5.21] that the kinetic parameter of anisotropy is almost one order 

of magnitude larger than the surface energy anisotropy and interface thickness anisotropy 

factor. 

5.1.4 Finite element method & Initial microstructure  

The evolution equations (eqn. 24-26) are solved by finite element method (FEM) using 

implicit time stepping and adaptive unstructured grid [5.19]. The use of the adaptive meshing 
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(Fig.5.3) significantly reduces computational load. A small nucleus of solid phase has been 

taken as equilibrated nucleus. The marginal stability analysis postulates that selective 

instabilities, created from stochastic noise at under-cooled solid liquid interface, grow into 

dendrite structure. However, recent theories postulate that the periodic oscillations at the 

interface are the results of interaction between shape and interfacial energy anisotropy [5.24]. 

Recent study [5.25, 5.26] indicates  that even in the absence of any type of noise (mesh 

induce or additional thermal noise), side branching appears at high undercooling, supporting 

the deterministic model proposed by Glicksman.  

 

Fig. 5.3 Adaptive meshing at the solid-liquid interface. 

In the present simulation, for generation of secondary branch the stochastic noise dendrite has 

been introduced implicitly using random number generator. The size of the domain was 350 

 150 (in non-dimensional space) which ensures free dendritic growth. Tip temperature of the 

dendrites and tip position have been calculated considering, ߮ ൌ 0.5. For both the cases non 

equilibrium cooling condition was created by assuming fixed temperature at the boundary. 

The input parameters for U and Mo are listed in Table 5.1.  
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Table 5.1 : Material parameters for the U-Mo system for simulation of γ and Mo rich 

dendrite. 

Material property Uranium Molybdenum 

Molar heat capacity, 

J.mol-1K-1 

38.28 

[5.11] at 

1284 ᵒC 

38.28 [5.11] at  

1467 ᵒC 

34.28 at  

1284 ᵒC 

[5.11] 

35.54 at 1467 ᵒC[5.11] 

Latent heat of fusion, 

kJ/mol 

10.68 at 

1284 °C 

[5.11] 

12.59[5.11] at 

1467 °C 

41.83at 1284 

ᵒC [5.11] 

35.94[5.11] at1467 ᵒC 

Thermal conductivity, 

W/m.K 

75 at 1135 ᵒC[5.12] 95 at 1284 ᵒC [5.13] 

Surface tension, J.m-2 0.085 0.422 

Melting point, K 1408 2896 

Molar volume, m3/mol 9.418 X10-6 13.27 X10-6 

Linear kinetic 

coefficient for 

interface attachment, 

m/K/s 

.0039 

 

.0033 

 

Diffusivity (m2/sec) in 

liquid state 

10-9 at 

1284 ᵒC 

[5.14] 

10-8 at 1467 ᵒC 10-9 at 1284 

ᵒC 

10-8 at 1467 ᵒC 

Diffusivity (m2/sec) in 

solid state 

 2*10-11  at 

1284 ᵒC 

[5.15] in 

U lattice 

3.7*10-13 at 1467 

ᵒC [5.16] in Mo 

lattice  

 4*10-13 at 

1284 ᵒC 

[5.17] in U 

lattice 

2.3*10-17 at 1467 ᵒC 

[5.18] in Mo lattice  
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5.2 (Mo)-dendrite Microstructure characterization and PFM simulation 

 Uranium has three allotropic forms viz. α (base centred orthorhombic), β (tetragonal) 

and γ (BCC) with a melting point of 1135 °C. Mo remains in BCC crystal structure up to its 

melting point at 2623 °C. Due to significant solubility of molybdenum in BCC- γ-(U) phase, 

the later gets stabilized to a wider temperature range. As seen from Fig.2.4, U-Mo melt with 

> 29 at.% Mo goes through a peritectic equilibrium at 1284 °C during cooling, liq. (29 at.% 

Mo) + (Mo) (99 at.% Mo) = γ-(U) (42 at.% Mo). The liquid alloys containing less than 28.7 

at.% Mo, freeze to form γ-(U) phase. When liquid alloys containing 29-42 at.% Mo, are 

cooled, first BCC (Mo) phase precipitates out, which has ~0.9 at.% U. Further cooling results 

in peritectic reaction at 1284 °C, under equilibrium condition. Below this temperature the 

system has stable γ-(U) and liquid phases. The temperature of complete disappearance of 

liquid varies with original composition of the melt. The melt with 42 at.% Mo gets frozen 

into γ -(U) just below the peritectic temperature, 1284 °C. However, this is true only for very 

slow cooling of the melt, maintaining conditions of complete equilibrium. The high 

magnification SEM back scattered image of the equiaxed (Mo)-dendrites is given in Fig. 5.4 

a. As per the phase diagram of U-Mo, these dendrites are the first solid phase formed during 

cooling from liquid melt. The (Mo) solid phase will remain in non-equilibrium state due to 

lower diffusion rates of elements in this phase at temperatures much below its melting point. 

Further cooling of the system resulted in precipitation of peritectic γ-(U) at 1284°C on the 

surface of (Mo) dendrite. Hence, the peritectic reaction did not complete during cooling. 

Alloys containing 29-42 at.% Mo are expected to be single phase γ-(U) below ~ 1200°C,  as 

per equilibrium phase diagram. Due to non equilibrium cooling, resultant microstructure 

contained both γ-(U) and (Mo) phase. These (Mo)-dendrites have fourfold-symmetry and size 

of each dendritic arm was ~5-10 μm, with no secondary branches. Elemental X-ray map 

superimposed on back scattered electron (BSE) image showed presence of Mo and U (Fig. 
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5.4 b, c, d), which indicates higher concentration of molybdenum in (Mo)-dendrites 

compared to melt (33 at. % Mo). EDS analysis (Fig.5.4e) showed Mo concentration in the 

(Mo)-dendrites is 83 - 95 at.% (Table 5.2).  

5.2.1 Evolution Of (Mo)-Dendrite & Validation Through EDS Analysis  

 To understand this evolution of Mo micro-segregation pattern in the (Mo)-dendrite, 

PFM simulation were done in a simulation box of 350×150. The growth of dendritic structure 

has been simulated from an equilibrated Mo-rich nucleus drawn at the left side of the 

simulation box in axis-symmetric model. The rest of the simulation box was filled with U-33 

at.% Mo melt. The equilibrated (Mo)-nucleus grows under the driving force of concentration 

and thermal gradient. The simulation were carried out with two different assumptions on 

diffusivity of uranium and molybdenum in liquid and solid phases: (i) case 1: diffusivities of 

Mo and U in solid phase (10-9 m2/sec) and in liquid phase (10-8 m2/sec) were assumed to be 

comparable and (ii) case 2: diffusivities of Mo and U in solid phase were 2.310-17 m2/sec 

and 3.710-13 m2/sec, respectively and in liquid phase both were 10-8 m2/sec. The 

experimental elemental image of the (Mo)-dendrite obtained in SEM is showing Fig. 5.5a. 

Detailed  EDS analysis of (Mo)-dendrite shows that the Mo concentration at the midrib of 

dendrite is in the range of 90-94 at.% and in the periphery it is in the range of 83-87 at.%. 
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Table 5.2: EDS analysis of (Mo)- dendrite (at.%). 

Location no. at.% Mo from experimental EDS data at.% Mo from PFM simulation 

1 93 97 

2 92 93 

3 92 90 

4 91 90 

5 90 94 

6 91 96 

7 91 94 

8 92 93 

9 92 90 

10 94 93 

11 93 98 

12 92 94 

13 92 93 

14 91 89 

15 92 89 

16 94 97 

17 94 93 

18 94 94 

19 83 88 

20 85 86 

21 93 89 

22 91 87 

23 93 88 

24 91 89 
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Fig. 5.5 (a) Elemental X-ray map superimposed on SEM BSE image of (Mo)-dendrite with 

at.% Mo concentrations measured by EDS (Mo concentrations at different locations are given 

in Table 5.2), (b) Concentration map (mole fraction of Mo) of simulated Mo dendrite 

assuming DU/Mo=10-9 and DL=10-8 m2/sec (100 non-dimensional time step) at undercooling 20 

K. 
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Simulated microstructure of (Mo)-dendrite with comparable diffusivity of U/Mo in solid 

௎/ெ௢ܦ)
௦ ൌ 10ିଽ) and liquid (ܦ௎/ெ௢

௅ ൌ 10ି଼) is shown in Fig. 5.5b (case 1). The 

concentration at the midrib is in the range of 90-98 at.% and at the periphery it is in the range 

of 81-85 at.%. For case-2, the mid-rib of the  simulated microstructure of (Mo)-dendrite with 

significant difference in solid and liquid diffusivity (ܦ௎
௦ ൌ 3.7 ൈ 10ିଵଷ, ܦெ௢

௦ ൌ 2.3 ൈ 10ିଵ଻, 

௎/ெ௢ܦ
௅ ൌ 10ି଼), has the concentration of ~ 94 at.% Mo and the Mo concentration at some of 

the peripheral regions was as low as ~ 70 at.% Mo. It was found that calculated concentration 

of Mo in midrib region, based on assumptions of case-1 and case-2, match experimental 

observation. However, concentration at the periphery is in close agreement with the 

calculations carried out with assumptions of case-1. The calculated concentration of Mo in 

the peripheral region is much lower for case-2 than experimental value. The reason may be, 

that in case-2 much lower diffusivity of U and Mo was assumed in solid phase than in liquid 

phase, which lead to higher micro-segregation of Mo. This wider composition variation may 

be more relevant for cases where the diffusivity values of uranium (ܦெ௢
௎ ൌ 3.710-13 m2/sec) 

and  molybdenum (ܦெ௢
ெ௢ ൌ2.310-17 m2/sec) are low. These experimental diffusivity values 

were determined by diffusion annealing method, in isothermal conditions, at high 

temperatures [Table 5.1]. In those experiments diffusivity only in single homogeneous phase 

measured. However, in the present experiments presence of the mushy zone which has two 

phase microstructure, gives more diffusion paths to the components than in single phase. 

5.2.2 Tip-velocity of (Mo)-dendrite 

In case of (Mo)-dendrites, variation of tip velocity with dimensionless time has been plotted 

in Fig. 5.6. The plot shows that for initial period, tip velocity is higher. Then it starts 

decreasing quickly and afterwards it drop offs very slowly. The calculated tip velocity is ~ 

0.37-0.5 m/sec, which is slow enough to maintain local equilibrium at the interface.  
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Fig. 5.9(a) SEM image of -dendrite, (b) Elemental X ray image super imposed with BSE 

image of -dendrite, (c) Elemental X ray map of U shows high U enrichment in surrounding 

matrix, (d) Elemental X ray map of Mo shows high Mo enrichment at the centre of dendritic 

arm in  -dendrite and (e) Representative EDS profile taken on -dendrite. 

5.3.1 Evolution of (γ)-dendrite & Validation through EDS analysis  

The simulation was also carried out to study the evolution of γ-(U)-dendrites at different 

undercooling, in the range of  5°C- 60°C. As the melt and the solid metal are especially good 
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conductor of heat, the variation of temperature will be very small with time and space. The 

simulation of -(U)-dendrite were carried out with 410-13 m2/sec and 210-11 m2/sec 

diffusivity of Mo and U in solid phase, respectively, and 10-9 m2/sec diffusivity of U and Mo 

in liquid phase.  

The parametric study were also carried out by assuming equal diffusivity of U/Mo in solid 

and liquid phases, similar to the assumption made for (Mo) dendrites discussed in previous 

section. However, the computed concentration profile in the dendrite was found to be very 

different from the experimental observation. The reason for validity of lesser diffusion rates 

in case of simulation of γ-(U)-dendrites may be that this phase precipitates at lower 

temperature than (Mo). With decrease in temperature of the melt, the rate of cooling 

decreases, hence system moves towards equilibrium. Further, growth of secondary branches 

reduces tip velocity of γ-(U)-dendrites considerably compared to that of (Mo)-dendrite. 

The concentration profile in simulated -(U) dendrite with unequal diffusivities in solid and 

liquid phases, given in Fig. 5.10 a, b, c and e at different time interval and  were found to 

agree with experimental values (Fig. 5.10d).  
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showed that the -(U) dendrite started growing from the equilibrated nucleus in spherical 

shape, then under the influence of kinetic and interfacial anisotropy (interfacial energy and 

thickness), the spherical shape splits into different branches, maintaining four-fold symmetric 

condition. The concentration profile showed that the first solid had higher Mo concentration, 

thus melt got depleted of Mo. This is expected, because according to the phase diagram of U-

Mo system, solid phase is richer in Mo than liquid phase, thus partition coefficient, 
஼ೄ
ಾ೚

஼ಽ
ಾ೚ ൐ 1. 

During simulation, it was found that after sufficient growth of primary branches, the surface 

of the dendrite started showing undulation, which later time grew into secondary branches. In 

Fig. 5.10e, the simulated image is compared with elemental X-ray mapped with overlapped 

BSE image (Fig.5.10d). The -(U) dendrite observed in SEM image had both primary and 

secondary branches. The EDS analysis showed micro-segregation in both primary and 

secondary branches. A comparison of SEM micrograph - EDS analysis with simulated 

dendrite shows that the structure and concentration profile of experimental results are 

matching closely with simulated dendrite. The Fig. 5.10d shows Mo concentration at the 

midrib of the primary branches are 40 at.% and at the periphery 27 at.%, in SEM-EDS image. 

The Fig. 5.10e shows that the simulated dendrite has Mo concentration at midrib 36-38 at.% 

and at periphery ~24 at.%. Another important feature of dendritic structure was the presence 

of entrapped liquid metal, depleted in Mo, between advancing dendritic arms, which 

solidified later. These entrapped liquid regions were also observed in simulated dendritic 

structure. 

5.3.2 Tip-velocity of (γ)-dendrite  

According to the theory of morphological stability [5.27], below the critical velocity of 

marginal stability, the perturbation may grow into dendrite. This theory assumes local 

equilibrium at the interface, which is very similar to our assumption. In Fig. 5.11, the tip 
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velocity of the growing dendritic crystal has been plotted with non-dimensional time. Higher 

tip velocity has been found for initial period. Then it drops off rapidly and then plateau out. 

This trend is similar to the observation made in case of (Mo)-dendrites, the calculated tip 

velocity of -(U) -dendrites is ~ 0.01-0.04 m/sec, which is much lower than the tip velocity 

calculated for (Mo)-dendrites, 0.37-0.39 m/sec.  
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Fig. 5.11 Tip-velocity of (γ-U)-dendrite at different non-dimensional time (under-cooling 38 

K). 

 

5.3.3 Variation of tip velocity with undercooling  

In Fig. 5.12 tip velocity has been plotted with undercooling, which shows that the tip velocity 

increases with increase in undercooling. 
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Fig. 5.12 Plot of tip velocity vs. under-cooling for (γ-U)-dendrite showing higher tip velocity 

at higher undercooling. 

5.3.4 Temperature Profile Of γ Dendrite During Crystal Growth  

The temperature distribution across the midrib of the dendrite has been plotted in Fig. 5.13. 

The temperature variation at the tip throughout the dendritic crystal growth simulation is very 

small (~0.25 °C). In a particular time instance the tip temperature is higher than the molten 

metal due to release of latent heat and negative temperature gradient is formed in the liquid. 

Two types of temperature distributions have been seen during simulation. Initially, during 

growth of primary branching tip temperature increased monotonically (up to ~300 

dimensionless time step). However, subsequently secondary branch grew and heat release 

changed the temperature field in and around the tip region. This causes non-monotonic tip 

temperature distribution with time.  
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Fig. 5.13 Plot of temperature profile through cut line of a ‐(U)  dendrite at different non-

dimensional times of crystal growth (tip of the curves represent solid-liquid interface). 

 

After comparing experimental and simulated of Mo and γ-(U) dendrite, it is evident that the 

main morphological difference between the two types of dendrite is secondary branching. 

The cast structure forms during arc-melting has typically average cooling rate of the order of 

~100 °C/s at high temperatures. The undercooling is a major parameter for dendritic growth. 

The solidification undercooling consists of four different types of undercooling. These are 1) 

kinetic undercooling, 2) curvature undercooling, 3) thermal undercooling and 4) 

constitutional undercooling. In our model, both types of dendrite were simulated in the 

similar range of undercooling. In the U-33at.% Mo alloy system, transformation temperature 

of Mo-dendrite is higher than γ-(U) dendrite. At higher transformation temperature (in case of 

Mo dendrite), due to high solute diffusivity in liquid phase, solute atoms get redistributed 

(causing more uniform distribution of Mo) faster than γ-(U) dendrite. This leads to higher 
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local constitutional undercooling for γ-(U) dendrite than Mo dendrite. So only primary stalk 

with no secondary branch develops in Mo dendrite. Whereas, γ-(U) dendrite, transforms at 

lower transformation temperature, develops into dendritic structure with secondary branches. 

 

5.4 Summary  

The microstructure of as-cast U-33 at. %Mo consists of two types of dendrites: equiaxed Mo-

rich B.C.C dendrite and ‐(U) dendrite with secondary branch. EBSD analysis indicates that 

these dendrites have no preferential orientations. SEM-EDS analysis shows considerable 

degree of microsegregation in both types of dendrites. The evolution of morphology and 

microsegregation of ‐(U) and (Mo) dendrite grown from the melt of U-33 at. % Mo have 

been simulated with WBM model based on phase field concept. Adaptive unstructured mesh 

has been used for the simulation. The important findings of the phase field modeling are 

listed below: 

a. The detailed SEM-EDS analysis of equiaxed (Mo) dendrite shows midrib concentration 

90-94 at.% and at periphery it is 83-87 at.%. The PFM simulation of (Mo)-dendrite shows 

similar concentration distribution assuming nearly equal U and Mo diffusivity in solid and 

liquid phase. The diffusivity in liquid phase is one order higher than solid diffusivity. The tip 

velocity of (Mo) dendrite has been calculated for range of undercooling. The tip velocity is 

found to be in the range of 0.3-0.4 m/sec and it increases with increasing undercooling. The 

tip temperature of dendrite rises during evolution process. 

b. The microsegregation of ‐(U) dendrite has also been simulated at different undercooling. 

The simulated concentration profile matched very closely with experimental value when 

diffusivity of U and Mo in solid phase was assumed to be 4 ൈ 10ିଵଷ and 2 ൈ 10ିଵଵ m2/sec 

and in liquid was 10ିଽ  m2/sec for U and Mo. The simulation shows increasing tip velocity 
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with increasing undercooling. The tip temperature increases monotonically during growth of 

primary dendrites. After generation of secondary branch the tip temperature vary non-

monotonically with time.  
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Chapter 6 Fuel Clad Chemical 
Interaction of U‐Mo Fast Reactor Fuel 

 Fuel clad chemical interaction is one of the major life-limiting phenomena for fast reactor 

metallic fuel. Presently, U-Pu-Zr is considered as a standard option for metallic fuel in fast 

reactor. Significant amount of post irradiation study has been carried out on U-10 wt.% Zr 

[6.1,6.2] and in U-Pu-Zr [6.3] to understand FCCI behaviour with Fe-based cladding. Initially, 

good FCCI performance of U-5 wt.% Fs (2.4 wt.% Mo, 1.9 wt.% Ru, 0.3 wt.% Rh, 0.2 wt.% Pd, 

0.1 wt.% Zr, 0.01 wt.% Nb) driver fuel was observed in EBR-II [6.4]. This was attributed to the 

presence of Pd which combined with the lanthanide fission product during reactor operation and 

prevent the migration of fission products towards the clad. Based on this observation, Harp et al. 

[6.4] suggested addition of Pd (1-4 % as additive) in advanced U-10 Zr and U-Pu-Zr alloys to 

further mitigate FCCI. One of the main advantages of U-Pu-Zr metallic fuel reported in the 

literature is the presence of Zr rind outside fuel surface which prevents FCCI through raising the 

eutectic temperature [6.5]. A ZrN layer is also reported to be formed on the surface of fuel slug 

due to the presence of nitrogen at the surface. This ZrN layer prevents inter-diffusion of fuel and 

cladding constituents. However, ZrN layer losses its strength above 600 ºC and totally re-

dissolves in the fuel matrix at ~700 °C [6.6], thus it cannot protect the clad from FCCI at high 

temperatures and high power [6.3, 6.6-6.7].  

 There are many diffusion couple studies in U-Zr and U-Pu-Zr with stainless steel, ferritic 

steel and ferritic-martensitic clad materials. Ke Huang et al. [6.8] have investigated diffusion 

couple of U with Fe-15.95 at.% (15 wt.%) Cr alloy, in 600-700° C temperature range. Keisar 

et al. [6.9] and Lee et al. [6.10] observed formation of Zr rich layer at 700 ºC in U-23Zr/HT9 

diffusion couple, which was associated with the formation of Zr depleted α-U [6.10] upon 

cooling.  
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 There is no data available in open literature on chemical interaction between U-33 at.% 

Mo and T91. Recently, some research work has been carried out on interaction of U-Mo alloys 

with pure Fe and Fe-Cr alloy [6.11, 6.12]. Nikitin et al.[6.12] have carried out diffusion couple 

experiments on U-22 at.% Mo (10 wt.% Mo) with pure Fe and Fe-12.79 at.% (12 wt.%) Cr, at 

750 °C, for 5 hrs. Similarly, Aitkaliyeva et al. [6.11] have studied interaction between U-Pu-Mo 

and Fe-12.8 Cr alloy, at 700°C, for 75 hrs. In this chapter, results of diffusion couple (U-33 at.% 

Mo/T91) experiments at different isothermal temperatures (650 °C, 675°C and 700°C) will be 

discussed in details. The interaction zone microstructure between U-33Mo and T91 has been 

analysed with SEM-EDS and XRD.  

6.1 Diffusion Couple Experiments   

 The layered structure evolved due to isothermal heating of diffusion couple is shown 

in Fig. 6.1. In general, after isothermal heating of U-33 at.% Mo/T91 diffusion couple, micro-

structures showed four distinct layers. These are marked as L1 to L4, starting from clad side. 

L1 layer has mainly U(Fe,Cr,Mo)2 coexisting with smaller amount of uranium rich bright (θ) 

phase. The θ-phase is a phase with 50-60 at.% uranium and balance are T91 elements, Fe, Cr, 

Mo, almost in their constitutional compositions. Henceforth, U(Fe,Cr,Mo)2 will be mentioned 

as UFe2 and the layer will be called as UFe2 layer (L1 ). In the diffusion couples experiments 

carried out at 700oC, for 15 days, L1-layer also had few dark precipitates (τ) containing ~55 

at.% Fe , ~12 at.% Mo, balance uranium. L2 layer, is a thin U6Fe layer located at the interface 

of clad and fuel-slug. Due to faster diffusion of uranium, Mo-autogenous layer (L3, >95 at.% 

Mo) was formed on the surface of slug region. L4 is another interaction layer in the slug that 

had lamellar structure. Phase analysis of this layer showed the presence of U6Fe and Mo-rich 

phases (~96 at.% Mo) in lamellar morphology and very few patches of UFe2 precipitates 

present close to Mo layer. After this lamellar L4 layer, un-reacted fuel slug having 33 at.% 

Mo was observed. The XRD scan also confirmed formation of U6Fe and UFe2 compounds in 
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Fig. 6.2. XRD scan after 85 days of heating at 650°C. 

 

Table 6.1 Thickness of different layers after annealing at different duration and phases 

present in the reaction layers 

*ND= Continuous layer not detected 

 

 

Zone Phases 
(Layers )  

Thk. 
(μm) 
650 °C 
/14 d   

Thk. 
(μm) 
650° C 
/30 d 

Thk. 
(μm) 
650° C 
/85 d 

Thk. 
(μm) 
675 °C 
/7 d   

Thk. 
(μm) 
675 °C 
/14 d   

Thk. 
(μm) 
675 °C 
/40 d   

Thk. 
(μm) 
700 °C 
/3d     

Thk. 
(μm) 
700 
°C 
/7d   

Thk. 
(μm) 
700 °C 
/15 d   

Clad-
wastage 
zone 

UFe2 
(L1) 

12 21  33 19 24 35 20 
 

41 55 

U6Fe 
(L2) 

0.98-
1.0 

.78-1.2 1-1.1 ND 0.84-1 0.9-1 ND ND 0.8-1.2 

Slug 
penetrati
on zone 

Mo-
autogeno
us layer 
(L3) 

2 5 
 

8 5 5 7 7  8 9 

Lamellar 
region 
(L4) 

48 75 112 37 55 95 10 35 50 
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6.1.1  At 650°C for14 days, 30 days and 85 days   

 The microstructure and elemental map of different elements of the diffusion couple along 

with line profile across the interaction layer, after 14 days annealing at 650°C, are given in Fig. 

6.3a to 6.3i. L1 layer was formed due to initial diffusion of U from slug and its reaction with 

Fe, Cr and Mo from T91 clad and its average thickness was found to be 12 μm. EDS analysis 

of L1 layer indicated the presence of θ (bright colour in back scattered SEM image) phase with 

high uranium content (~ 50-60 at. % U) towards slug side of the layer and relatively dull 

coloured phase (in Back scattered SEM image) of UFe2 (33 at.% U) on the side of un-reacted 

clad. Apparently, Mo diffusion from the slug region into the clad was so low at temperatures < 

700 oC, that molybdenum content of L1 layer remained almost same as that of T91. Thickness 

of U6Fe layer (L2) in this diffusion couple was around 0.92 -1.08 μm and that of Mo-

autogenous layer (L3) was 2 μm. The average thickness of lamellar-layer (L4) was 48 μm  and 

beyond that region, mostly un-reacted fuel slug containing 33 at.% Mo was found.  
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Table 6.2: EDS analysis of U-33Mo/T91 diffusion couples (at.%). 

650 oC for 85 Days 
  Cr Fe Mo U Phase (in Layer) 

L1 6.3 58.7 0.8 34.2 UFe2 

6.0 47.2 0.2 46.6 θ 

L2 1.5 5.3 1.9 91.3 U6Fe in clad side 

L3 2.3 0.3 96.5 0.9 Mo-autogenous 

L4 0.0 14.5 1.1 84.4 Lamellar U6Fe 

0.9 1.2 91.4 6.5 Lamellar Mo 

675 oC for 40 days 

L1 
 

5.3 53.0 0.6 39.1 UFe2 

5.5 54.8 0.6 39.1 
θ 

L2 1.2 12.1 0.8 85.9 U6Fe in clad side 
L3 3.6 0.2 95.4 0.8 Mo 
L4 

 
0 13.1 0 86.9 U6Fe  

0.0 0 92.5 7.5 Lamellar Mo 
700 oC for 15 days 

L1 
 

5.5 59.7 1.2 33.6 UFe2 
3.8 37.6 0.2 58.4 θ 
3.8 46.5 12.2 37.5 τ 

L2 0.9 8.4 1.8 88.9 U6Fe in clad side 
L3 2.3 0.3 96.8 0.6 Mo 
L4 0 14.1 1.6 84.3 U6Fe 

1.8 0.1 96.8 1.3 Lamellar Mo 
 

 

 

 

 

 

 

 

Fig. 6.3a. The microstructure in a U-33Mo/T91diffusion couple annealed at 650° C for 14 days. 
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Fig. 6.8b  Elemental maps of elements after 700°C 15 days annealing of the diffusion couple. 
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33Mo/T91 couple have been listed in Table 6.3. The effects of temperature and time on 

these zones are discussed in detail in the following sections. 

Table 6.3 . The comparison between U-23Zr/Fe-12Cr and U-33Mo/T91 interaction layer 
formation at 700 ºC 

 

 U-33Mo/T91 [This work] at 700 ºC U-23Zr/Fe-12Cr [6.13] at 700 ºC 
Unreacted 
Clad 

Solid solution of T91 Solid solution of Fe-Cr 

Clad-
Wastage 
Zone 
 

1. UFe2 + θ (~ 50-60 at. % U;50-40 
at.% Fe+Cr )+ τ (Fe 46.6 at.%; 
Mo 12 at.%; Cr 4 at.%; U 37.4 
at.%) 

2. U6Fe 
 

1. Cr-rich layer 
2. UFe2 (<3 at% Zr+~10% Cr) 
3. U6Fe (<2 at% Zr+1% Cr) 
4. U6Fe+ZrFe2(~10%Cr+~10-20 

%Cr) 
 

Slug 
Penetration 
Zone 

3.  Mo autogenous layer 
4. Lamellar U6Fe+ Mo rich phase 

5. U6Fe+χ(~3% Cr) (U-32Zr-50Fe) 
[6.14] 

6. U6Fe+ε (U-(33-50)Zr-33Fe) 
[6.14] 

7. β-U+ ε 
8. γ1+ λ(U-(21-25)Zr-6Fe) [6.14] 

Unreacted 
Fuel 

U-Mo solid solution γ1+ γ2 

 

6.2.1 Clad wastage zone (L1 and L2)       

 The L1 and L2 layers were present in the clad-wastage zone of U-33 at. %Mo/T91 

diffusion couple. UFe2 layer formation has been reported by Ke Huang et al. [6.8] in 

diffusion couple experiment of U with Fe-16 at.% Cr alloy, at 600-700 °C temperature range. 

The clad-wastage zone of U-23 at.% Zr /Fe-12 at.% Cr diffusion couple reported by 

Nakamura et. al [6.13] consisted of four layers (Table 6.3), (i) Cr-rich layer, (ii) UFe2 (<3 

at.% Zr+~10 at.% Cr), (iii) U6Fe (<2 at.% Zr+1 at.% Cr) and (iv) U6Fe+ZrFe2. The striking 

differences between the present U-33Mo/T91 and reported U-23Zr/Fe-12Cr diffusion couples 

are: (a) absence of Cr-rich layer near un-reacted clad zone, (b) absence of U6Fe +ZrFe2 layer 

and (c) much thinner U6Fe layer (L2) in clad-wastage zone observed in the present studies 

(Table 6.3). The Cr-rich layer was also seen by other authors in U/ Fe-16 at.% Cr [6.8] 
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diffusion couples. The poor solubility of Cr in U6Fe phase [6.8] leads to accumulation of Cr 

at the clad side in high Cr alloys. The slightly reduced Cr content in T91 and lesser diffusion 

of Fe from clad (due to the presence of Mo-autogenous layer) in the present diffusion couple 

study may be responsible for the absence of Cr rich layer at the clad side.  

Fe and U form very stable intermetallic compounds, UFe2 (ΔfG
o = -22565.2 J/atom at 700°C) 

and U6Fe (ΔfG
o = -8805 J/atom at 700°C), which provide strong driving force for their 

diffusion from one region to another in U-33 at.% Mo/T91(9 Cr-1Mo) diffusion couple 

experiments. Cr does not react with uranium to form any intermetallic compound. Whereas, 

Mo can form weak compounds with Fe (-Fe7Mo6 and -Fe2Mo). The solubility of Mo in 

bcc- Fe ≈ 2.5 at.% at 700°C [6.15],  but < 1 at.% Fe [6.15] and < 1 at.% uranium can dissolve 

in bcc-Mo lattice at the same temperature. Very low solubility of U and Fe in Mo results in 

constrained diffusion of these elements through autogenous Mo-layer. On immediate contact 

of U-33 at.% Mo with T91 clad, uranium reacts with Fe of T91 and forms U6Fe and UFe2. 

Once U6Fe and  UFe2  layers form, subsequently reaction is possible only when the reacting 

element diffuse through these product interaction layers, U6Fe (L2) and UFe2 (L1) for further 

reactions. Mo has poor solubility in U6Fe (L2) and UFe2 (L1), hence diffusion of Mo towards 

the clad through these phases is restricted. Moreover there is no chemical driving force for 

Mo to move either from fuel to clad or from clad to fuel, as it is an alloying element in both 

and doesn't form very strong compound with either of them. Hence accumulation of Mo at 

the fuel side takes place, resulting in the formation of Mo-layer (L3). As sufficient Mo could 

not reach in the clad side, (Fe7Mo6) and (Fe2Mo) phase formation did not take place. After 

formation of autogenous  Mo-layer, U from slug had to diffuse through (i) autogenous Mo-

layer (L3) (ii) U6Fe-layer (L2) and (iii) UFe2-layer (L1) to reach clad, thus retarding further 

interaction of fuel and clad. Elemental Mo has higher melting point and higher  thermal 
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conductivity (~4-5 times than U and Zr), hence formation of this autogenous-Mo layer 

surrounding the slug may not hinder the heat transfer during reactor operation.  

 For the growth of U6Fe (L2) in clad side, sufficient uranium atoms must diffuse 

through Mo-autogenous layer to reach T91. From the experimental observation it was found 

that a very thin (1 μm) U6Fe layer (L2) was formed in clad-wastage zone, which did not grow 

even during long period of annealing at 650°C and 700°C (Table 6.1). In contrast to this, in 

U-23Zr/Fe-12Cr diffusion couples, appreciable ZrFe2 and U6Fe layers formed along with 

UFe2 in the clad-wastage zone (6.13, Table 6.3) indicating that a good amount of uranium 

could diffuse through these  intermediate layers.  Hence the  rate determining step of fuel-clad 

interaction of U-33 at.% Mo-T91 diffusion couple is diffusion of uranium through Mo-

autogenous layer.  

As the rate determining step in the reaction of uranium with iron is diffusion of uranium 

through autogenous Mo layer, the amount that diffuses through this Mo-layer quickly 

diffuses through U6Fe layer and forms UFe2. Therefore in the clad side there is always 

limited supply of "U" resulting in very thin U6Fe layer (L2). But it may be enough for the 

formation of UFe2 and 50-60 at.% uranium rich θ phase at the clad side. As the diffusion of U 

through U6Fe is faster than that in Mo-autogenous layer (Table 6.4), therefore, most of the 

diffused uranium is consumed in forming UFe2 compound and 50-60 at.% uranium rich θ 

phase clad-wastage region. This explains lack of growth of thin U6Fe-layer (L2), whereas, 

reasonable growth of UFe2-layer (L1) with time. Pavlinov et al. have shown higher 

diffusivity of U through pure Zr compared to that in pure Mo lattice [6.16], similarly self 

diffusivity of uranium in γ-uranium and γ-(U, Mo) are substantially higher than that in Mo 

lattice (Table 6.4). These diffusivity data indicate that the presence of autogenous-Mo layer at 

the slug surface can retard free diffusion of U atoms significantly into the clad and reduce 

clad-wastage. 
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Table 6.4 . Diffusivity Parameters obtained from literature 

 

Diffusing 
element 

Matrix Do 
(m2/sec) 

Activation 
Energy 
(KJ/mol) 

D  
(m2/sec)(Temperature 
Range, ºC) 

Reference 

U γ-U 1.1210-7 110.9 NA [6.17] 
U γ-U, Mo 2.510-7 135.9 NA [6.18] 
Fe U 3.0610-17  50.2 9.5010-11-2.2610-10 

(786.9-989.6) 
[6.19] 

Fe Mo 0.1510-4 346.0 1.0610-19-1.1510-16 
(1000-1350) 

[6.20] 

U Mo 7.610-7 318.0 2.010-16-3.010-14 
(1500-2000) 

[6.16]  

U U6Fe NA 375 0.016210-16-1.2810-16 
(575-650) 

[6.21] 

 

 6.3.2  Slug Penetration Zone (L3, L4)       

 For growth of lamellar layer in the slug, Fe atoms diffused through UFe2 (L1), U6Fe 

(L2) and Mo-autogenous layer (L3) layers and penetrated into the slug. In the slug area, 

reaction of U with Fe gave rise to the formation of lamellar morphology of U6Fe and Mo (L4) 

through cellular precipitation type reaction and beyond that un-reacted fuel was present. In 

cellular precipitation one of the products has similar crystal structure (bcc) as parent phase 

with different composition (≈ 96 at.% Mo) than parent phase (33 at.% Mo).  

 U-Mo(bcc)+Fe                          U6Fe(tetragonal)+Mo (bcc) 

Here, the diffusion of Mo occurred across the cellular boundary, and hence there may be a 

compositional gradient along the precipitate in thickness direction. The growth of this 

lamellar layer is preceded by diffusion of Fe in this region. 

 Due to strong Fe- vacancy binding energy, along with a high degree of correlation 

between the directions of successive vacancy jumps, Fe diffuses very fast through γ-U, 

whereas, diffusivity of Fe in bcc-Mo is significantly less (Table 6.4). Hence formation of the 
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autogenous Mo layer (L3) in present diffusion couple experiments significantly retards 

diffusion of Fe towards slug side, hence, retarding growth of this lamellar layer (L4) in slug 

side.  

 U/Fe-Cr diffusion couple had only U6Fe phase in slug penetration side [6.8], whereas, 

U-23Zr/Fe-Cr couple had multiple layers in slug penetration area [6.13, 6.14]. Nikitin et al. 

[6.12] have also studied diffusion couple of U-22 at.% Mo with Fe and Fe-Cr at 750 oC. They 

observed formation of UFe2 in clad zone and U6Fe in fuel zone; however, they did not report 

formation of a separate Mo-rich layer. The higher Mo content in our slug material (U-33 at.% 

Mo) might have lead to the formation of the Mo rich layer surrounding the slug material  in 

the temperature region 650-700°C.  

 After formation of autogenous  Mo-layer, U from slug had to diffuse through (i) 

autogenous Mo-layer (L3) (ii) U6Fe-layer (L2) and (iii) UFe2-layer (L1) to reach clad, thus 

retarding further interaction of fuel and clad. The U has very low solubility (~1 at%) in Mo 

and diffusivity of U in Mo is also very low (2.010-16-3.010-14 m2/sec (1500-2000 oC)), 

therefore, Mo-layer act as diffusion barrier for uranium. 

 6.2.3 Diffusion Path In Ternary U-Mo-Fe    

 To understand diffusion paths of elements in U-33 Mo/T91, we simplified the system 

as U-33Mo/Fe-1Mo. The U-Mo-Fe ternary phase diagram was calculated using optimized 

binary interaction parameters reported in literature U-Mo [6.22], Mo-Fe [6.23] and U-Fe 

[6.24]. The phases observed in the interaction zones were compared with U-Mo-Fe 

isothermal at 700 °C (Fig.6.7). The diffusion paths of the elements were drawn on this 

isothermal section by a blue dotted line (Fig.6.7). In the (U-33 Mo)-T91 diffusion couple, the 

fuel is γ-(U, 33 at.% Mo) (Fig. 6.7, Point E) coupled with clad of composition, Fe-0.6% Mo 

(Fig. 6.7, Point A). The system cannot achieve equilibrium at such low temperature in limited 
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time span, therefore, thermodynamic driving forces constraint by diffusion of elements 

results in appearances of different phases. In Fig. 6.9, the clad composition is represented as 

Point-A and slug composition is represented as Point-E. The average compositions of the 

intermediate layers were as follows: Point-B (L1+L2): U39-(Fe,Cr)59-Mo1, Point-C (L3): U2-

(Fe,Cr)2-Mo96, Point-D:  U84-(Fe)15-Mo1. The U6Fe+Mo layer (L4) is a non-equilibrium 

region between two extreme phases, Point-C and Point-D. In this diagram, Point-B and Point-

C correspond to the average compositions of L1+L2 and L3 layers, respectively.  
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Fig. 6.9: Calculated phase diagram of U-Mo-Fe and calculated diffusion path. A: Fe Clad, B: 
U39-(Fe,Cr)59-Mo1, C: U2-(Fe,Cr)2-Mo96, D: U6Fe, E: Slug (U-33 at.%Mo). 

 

 6.2.4  Calculation Of Growth Rate   

 The growth constant (ܭ௣) for clad-wastage zone (L1+L2) (major phase UFe2), 

lamellar-layer (L4) and slug-penetration zone (L3+L4) were calculated (Fig.6.10 and Table 

6.5) assuming parabolic diffusion mechanism. The activation energies of layers were 

calculated (Table 6.5) using Arrhenius equation (ܭ௣ ൌ ଴݁ܭ
ି

ೂ

ሺೃ∗೅ሻ ሻ, where Q is the activation 

energy in J/mol, T is the temperature in Kelvin and R is the universal gas constant (J/mol/K). 
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The parabolic growth rate of slug-penetration zone (L3+L4) and clad-wastage zone (L1+L2) 

in U-33 at.% Mo/T91 diffusion couple experiments are compared with U/Fe-16 at.% Cr 

diffusion couple in Table 6.5. At 700 oC, the growth rate of U6Fe (L4) layer in U-33 at.% 

Mo/T91 was found to be 10.4810-16 m2/sec, whereas, for U/Fe-16 at.% Cr alloy, Huang [6.8] 

reported it to be 21.0210-15 m2/sec . The growth rate of UFe2 (L1) layer in U-33 at.% Mo/T91 

(12.75 10-16 m2/sec) was found to be comparable with that in U/Fe-16 at.% Cr alloy (7.1110-16 

m2/sec). Significantly lower growth rate of lamellar-layer in U-33 at.% Mo/T91 than in U/Fe-

16 at.% Cr may be attributed to lower diffusion of Fe through Mo-autogenous layer (Table 

6.5). 

 

 

 

 

 

Fig.6.10:Thickness2 vs time plot at three different temperatures for 
growth study of clad wastage layer (CWL) (L1+L2), slug penetration layer (SPL) (L3+L4) 

and Mo (L3) layer . 
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Similar observation was made at 650°C, where, growth rate of clad wastage zone in U-33 

at.% Mo/T91 couple (7.9010-17 m2/sec) is comparable with its growth rate in U/Fe-16 at.% 

Cr couple (5.30 10-17 m2/sec) [6.8] and in U/(single crystal)-Fe (3.0610-17 m2/sec) [6.25]. 

However, growth rate of clad-wastage zone (UFe2+U6Fe+ZrFe2) of U-23Zr/Fe diffusion 

couple was 8.010-16 m2/sec [6.21], which is one order higher than in U-33 at.% Mo/T91 

(L1+L2). Growth rate of slug-penetration zone (L3+L4) of U-33 at.% Mo/T91 is also one 

order less compared to that of U-23Zr/Fe couple (Table 6.5).  At 650°C, the growth rate of 

U6Fe in lamellar layer (L4) in U-33 at.% Mo/T91 couple is ~ 5 times lower than that in U/Fe-

16 at.% Cr. At 700 oC, the growth rate of this layer in U-33 at.% Mo/T91 was ~ 20 times 

lower than in U/Fe-16 at.% Cr. Hence, clad wastage and slug penetration region are much 

lesser in U-33 at.% Mo/T91 diffusion couple compared to U-23Zr/Fe, U-23Zr/Fe- 12at.% Cr 

and U/Fe-16 at.% Cr diffusion couples.  

 The total interaction zone (L1+L2+L3+L4) thickness and growth rate at different 

temperatures are also listed in Table 6.6. It was observed that the growth rate of interaction 

zone in U-33Mo/T91 increased with increase in temperature. In Fig. 6.11, the interaction 

zone growth rate of U-33Mo/T91 are compared with those in U-23Zr/Fe-Cr, U-23Zr/Fe and 

U/Fe-Cr. Total diffusion layer thickness growth rate in U-33Mo/T91was one order lower than 

that in U-23Zr/Fe, at 650 °C [6.14]. Even at 700 oC, the total diffusion layer thickness in U-

33Mo/T91 (115 μm in U-33Mo/T91 (Table 6.1) and 580 μm in U-23Zr/Fe-12Cr) was 

significantly (~5 times) lower than that in U-23Zr/Fe-12Cr [6.13]. Similarly, at 700 °C, the 

total interaction-layer growth rate in U-33Mo/T91 (5.4×10-15 m2/sec) was significantly (~2 

order) lower than that in U-23Zr/Fe-12Cr (1.41×10-13 m2/sec). These results further confirm 

that auto-generated Mo layer had reduced inter-diffusion between slug and clad and thus 

resulting in reduced fuel-clad chemical interaction.  
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Table 6.5 . The growth constant (m2/sec) calculated at three different temperatures for UFe2 
and U6Fe layers for calculation of activation energy 

Diffusion 
couple 

Layers  Growth rate 
at 650°C 
(m2/sec) 

Growth rate 
at 675°C 
(m2/sec) 

Growth rate at 
700°C 
(m2/sec) 

Pre-
exponential 
factor (ko) 
m2/sec 

Activation 
energy 
(kJ/mol)  

U-33Mo/T91 Clad –Wastage,  
UFe2 (major 
phase)+U6Fe 
(L1+L2) 
 

0.7910-16  1.6710-16 12.7510-16  1.60107 406 

U6Fe (L4) 8.4410-16  12.1810-16 10.4810-16  1.4710-13 32 
Slug –
penetration, Mo-
autogenous+ 
U6Fe (L3+L4) 
 

9.3710-16 15.1510-16 15.3110-16 1.5510-11 74 

Total Thickness 1.5310-15 1.5410-15 5.4010-15 2.2010-4 184 
U/Fe-16 
at.%Cr [6.8] 

UFe2  
Clad-Wastage 

0.5310-16 NA 7.1110-16  NA 322.3 

U6Fe 
Slug-penetration 
 

38.6610-16 NA 21.0210-15  NA 219.7 

Total Thickness 48.2810-16 NA 2.9410-14 NA 230.8 
U-23Zr/Fe 
[6.14] 

Clad-wastage 
UFe2 + 
U6Fe+ZrFe2  

0.8010-15 

 
1.1010-15 NA 1.10108 426.4 

Slug- penetration 9.1710-15 2.8510-14 
(at 680 °C) 

NA NA  NA 

Total Thickness 1.3010-14 

 
3.3010-14 

(at 680 °C) 
NA 6.50102 296.6 

U-23Zr/Fe-
12at.%Cr 
[6.13] 

Total Thickness NA NA 2.2810-10 NA NA 

-U-
Fe(single 
crystal)[6.25] 

UFe2 0.3110-16 NA NA NA 414  

U6Fe  3.1110-16 NA NA NA 309  
 

/-U-Fe 
(poly crystal) 
[6.8] 

UFe2 7.6310-16 NA 15.2110-16 NA 234 
(average) 

U6Fe  59.4410-16 NA 117.9710-16 NA 127 
(average) 
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Table 6.6: The total interaction layer growth of different diffusion couples 

 

Diffusion couple 
Fuel(at%) /Clad 

Temperature(°C) 
/time (day) 

Total 
thickness 

(μm) 

Rate 
constant of 
total layer 

growth 
(m2/sec 

U-33Mo/T91 
 

650/14,30,85 63,102,154 1.53*10-15 
675/7,14,40 62,85,138 1.535*10-15 
700/3,7,15 38,85,115 5.4*10-15 

U-23Mo/ 
Fe-13Cr [6.12] 

750/0.21 100 5.4*10-12 

U-23Zr/Fe-12 Cr 
[6.13] 

 

650/14 200 Not enough data 

700/4,14 280,580 1.41*10-13 
715/1.67 250 Not enough data 

U-22.5Zr/Fe 
[6.14] 

 

630/4 52.95 4.1*10-15 

650/4 94.17 1.3*10-14 

680/4 151.68 3.3*10-14 

U-23Zr/Fe 
[6.13] 

650/10.67,16.95, 
34.66 

100,160,225 9*10-15 

700/1.67,4,14 115,140,310 4.12*10-14 
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Fig. 6.11 The comparison of total growth rate between U-33Mo/T91 and other authors. It 

clearly showing U-33Mo/T91 has much lower growth rate than other diffusion couples. 

 

 6.3 Summary  

         

 The inter-diffusion microstructure of U-33 at.% Mo - T91 diffusion couples consists 

of four layers, L1 (U(Fe,Cr)2+θ+τ),  L2 (U6Fe), L3 (Mo-autogenous layer) and L4 

(U6Fe+(Mo) lamellar layer). The L1 and L2 layers were present in clad-wastage zone. The 

slug-penetration zone consists of L3, L4 layers. 

  The growth of multi-layer follows parabolic law and the parabolic growth constants 

were evaluated at three different temperatures.  



Page | 134  
 

 In U-33Mo/T91 diffusion couple, autogenous-Mo layer acts as a diffusion barrier 

which reduces clad-wastage. The slower diffusion of Fe through this layer also ensures 

thinner slug-penetration zone compare to U/Fe-16 at.%Cr, /-U-Fe, U-23Zr/Fe and U-

23Zr/Fe-12at.%Cr diffusion couple.  

 The diffusion couple results were superimposed on equilibrium U-Mo-Fe ternary 

phase diagram at 700°C to understand the diffusion path of the elements.  

 The parabolic growth constant ሺܭ௣) for clad-wastage (L1+L2), U6Fe (L4) and slug 

penetration zone (L3+L4) were calculated. The growth rate of slug penetration zone is 

significantly less in U-33 at.% Mo/T91 diffusion couple compared to diffusion couple of pure 

U/Fe-16 at.% Cr. However, the growth rate of clad-wastage zone is almost comparable with 

that of U/Fe (single crystal), U/Fe-16at.%Cr and /-U-Fe but lower than that in U-23Zr/Fe 

couple. 

 The total interaction layer growth rate in U-33Mo/T91 is significantly lower than in 

U-23Zr/Fe-12 at.%Cr, U-23Zr/Fe and U/Fe-Cr. This indicates that the formation of Mo-rich 

layer due to extra Mo content in U-33 at.% Mo alloy acts as a diffusion barrier for U as well 

as Fe, thus generating thinner interaction zone.  

 These experiments show that during interaction of U-Mo fuel with Fe-based clad, a 

protective layer is generated in-situ. A similar protective rind in the form of  ZrN layer is 

possibly formed during fabrication of U-Zr fuel . 
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Chapter 7: Conclusions & Scope For 
Further Research  

7.1. Conclusions 

 U-Mo fuel is presently used as monolithic fuel for research reactor application with Al base 

alloys as a clad material. Wheras,  U-Zr/U-Pu-Zr alloy is selected as fast reactor metallic fuel. 

Present study aims investigation of U-Mo alloy for fast reactor applications, as it has 

following advantages. 

 ‘Mo’ addition in ‘U’ stabilizes isotropic γ-(U) phase (bcc) 

 γ Phase stability of U-Mo fuel is over a wider temperature range, therefore it is more 

suitable for reactor operations than U-Zr fuel. As the cubic γ-(U) phase is isotropic, it 

provides advantage of isotropic expansion and uniform thermo-physical property, like 

thermal conductivity. The cubic γ phase also has advantage of higher solubility of 

alloying elements and fission product elements, which minimizes fuel constituent 

migration and fission product redistribution during reactor operation 

 With Mo, hardness increases and it is also has higher thermal conductivity. 

The metallic fuels are normally prepared by injection casting. However, in the reactor these 

fuel microstructure tends to attain equilibrium structures due to higher temperature and longer 

in-reactor stay. Therefore, it is important to understand the microstructure of U-Mo alloys 

formed in as-cast and possible microstructural changes during reactor operation. Hence, four 

different U-Mo alloys (2, 5, 10 and 33 at.% Mo) were made. Microstructure, XRD and micro-

hardness of as-cast and annealed alloys were compared. Microstructure were characterized 

using optical microscope, SEM along with EDS and EBSD analysis, XRD and micro-

hardness measurement. Reitveld analysis was also performed for in-depth analysis of XRD 

pattern and determination of lattice parameter of the U-Mo alloys. Additionally,  phase field 
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model was developed for mechanistic understanding of  solidification/cast microstructure for 

U-33 at.% Mo system using entropy functional and experimentally determined diffusivity 

data reported in the literature. This model provides basic understanding of the effect of 

different kinetics and thermodynamic parameters on solidification and micro- segregation 

behaviour of the alloy during casting of U-Mo alloys.  

Fuel clad chemical interaction  between U-33 at.% Mo fuel vs T91 clad was investigated 

to understand the inter-diffusion of different elements of U-Mo slug and T91 clad. The 

diffusion path of the system was analysed with ternary equilibrium phase diagram. The 

interaction zone microstructure between U-33Mo and T91 was analysed with SEM-EDS. 

Following are the important outcome of the study: 

(a) Microstructural analysis of as-cast and annealed u-Mo alloys. 

(i) U-2 at.% Mo and U-5 at.% Mo have orthorhombic α-phase in as-cast condition. The 

Rietveld analysis of as-cast alloys indicated insignificants variation of lattice parameter with 

the change in Mo content. 

(ii) As-cast U-10 at.% Mo alloy had monoclinic α'' phase and XRD pattern showed splitting 

of (131) line into (1ത31) and (131) of unequal intensities confirming the presence of 

monoclinic phase. This was confirmed by Rietveld analysis revealed three split lines viz. 

(111), (112) or (131). 

(iii) The annealed U-2 at.% Mo and U-5 at.% Mo alloys had orthorhombic α-U phase. 

Whereas, annealed U-10 at.% Mo had orthorhombic α-(U) phase and tetragonal U2Mo phase. 

The Rietveld method quantifies the volume percent of α-U and U2Mo as 77.8 % and 22.2 %, 

respectively. Whereas, annealed U - 33 at.% Mo has ordered U2Mo intermetallic phase. 
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(iv) As-cast 33 at.% Mo alloy had cubic γ-(U) phase with dendritic microstructure having 

secondary branching. The microstructure also showed the presence of  a small fraction of 

equiaxed bcc-(Mo) dendrites. The Rietveld plot showed good fit with cubic γ-U structure, 

with slight shrinkage in lattice parameter: 0.353 nm for pure γ-U and 0.338 nm for γ-(U) for 

as-cast alloy with 33 at.% Mo. EBSD analysis indicated no preferred orientation of as-cast 

dendrites in U-33 at.%Mo alloy. 

 (b) More detailed investigations were carried out with U-33 at.% Mo as this 

represents  an alloy with maximum Mo content that has γ -(U) phase in ambient temperature 

to ~ 1284°C. This alloy has maximum Mo that doesn't have Mo phase at low temperatures, in 

equilibrium condition. SEM-EDS analysis showed considerable degree of micro-segregation 

in both types of dendrites. The evolution of morphology and micro-segregation of -(U) and 

(Mo) dendrite from the melt of U-33 at. % Mo have been simulated with WBM model based 

on phase field concept. Adaptive unstructured mesh was used for the simulation. The 

important findings of the phase field modelling are listed below: 

 (i) The detailed SEM-EDS analysis of equiaxed (Mo) dendrite showed midrib 

concentration 90-94 at.% and peripheral concentration is 83-87 at.%. The PFM simulation of 

(Mo)-dendrite shows similar concentration distribution assuming nearly equal U and Mo 

diffusivity in solid and liquid phase. The diffusivity in liquid phase was assumed to be one 

order higher than solid diffusivity. The tip velocity was found to be in the range of 0.3-0.4 

m/sec and it increased with increasing undercooling. The tip temperature of dendrite were 

found to rise during evolution process. 

 (ii) The microsegregation in -(U) dendrite was also simulated at different 

undercoolings. The simulated concentration profile matched very closely with experimental 

values. The simulation showed increasing tip velocity with increasing undercooling. It was 
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found that the tip temperature increased monotonically during growth of primary dendrites. 

After generation of secondary branch the tip temperature vary non-monotonically with time.  

 (c) Hardness of annealed alloys was found to increase with increase in ‘Mo’ content due to 

presence of two phase microstructure. Annealed single phase U-33 at.% Mo alloy shows 

slight reduction in hardness than biphasic α-U+U2Mo. 

(d) The inter-diffusion microstructure of U-33 at.% Mo vs. T91 diffusion couples consists of 

four layers, L1 (U(Fe,Cr)2+θ+τ),  L2 (U6Fe), L3 (Mo-autogenous layer) and L4 (U6Fe+(Mo) 

lamellar layer). The growth of multi-layer follows parabolic law and the parabolic growth 

constants were evaluated at three different temperatures. The following are some of the 

important conclusion arrived from those analysis 

(i) The inter-diffusion zone microstructure can be divided into two zones, (i) clad-wastage 

zone and (ii) slug-penetration zone. The L1 and L2 layers were observed in clad-wastage 

zone. The slug-penetration zone consists of L3, L4 layers. 

(ii) In U-33Mo/T91 diffusion couple, autogenous-Mo layer acts as a diffusion barrier 

which reduces clad-wastage. The slower diffusion of Fe through this layer also ensures 

thinner slug-penetration zone compare to U/Fe-16 at.%Cr, /-U-Fe, U-23Zr/Fe and U-

23Zr/Fe-12at.%Cr diffusion couple.  

(iii) The calculated U-Mo-Fe ternary diagram shows equilibrium phase regions. However, 

due to formation of Mo layer, inter-diffusion zone of U-33Mo/T91 diffusion couple did 

not reach equilibrium. Hence, two phase lamellar region comprising of U6Fe and Mo-bcc 

phase formed in the slug. 

(iv) The parabolic growth constant (ܭ௣) for clad-wastage (L1+L2), U6Fe (L4) and slug 

penetration zone (L3+L4) have been calculated. The growth rate of U6Fe lamellar layer is 

significantly less in U-33 at.% Mo/T91 diffusion couple compared to diffusion couple of 
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pure U/Fe-16 at.% Cr. Similarly, the growth rate of both, clad-wastage and slug 

penetration zone is significantly less in U-33 at.% Mo/T91 compared with U-23Zr/Fe and 

/-U-Fe.The total interaction layer growth rate in U-33Mo/T91 is significantly lower than 

in U-23Zr/Fe-12 at.%Cr, U-23Zr/Fe and U/Fe-Cr. This indicates that the formation of Mo-

rich layer ( higher Mo content in the fuel) acts as a diffusion barrier for U as well as Fe, 

thus generating thinner interaction zone.  

7.2.  Scope For Further Research 

The present study opens up many important directions for further research in the field of 

development of U-Mo alloys for nuclear applications. Some of the important issues are as 

listed below: 

1. Calculation of breeding ratio of U-Mo fuels with different Mo composition in fast 

reactor spectrum. 

2. Fuel clad interaction study with oxide dispersed steel will provide important insight 

on the feasibility using ODS as clad in U-Mo fuel. 

3. Parametric study involving anisotropy, temperature gradient and their effect on 

secondary arm spacing or primary phase morphology will provide more insight into dendritic 

crystal growth. Development of phase field model to predict peritectic phase transformation 

in U-Mo alloy.  

4. The creep and fatigue data will be generated for these alloys and as well as irradiation 

performance of the alloy will be carried out. 

5. Further studies need to be carried out to optimize molybdenum content of the fuel, to 

get the Mo-autogenous barrier layer and desired solidus temperature while achieving required 

fissile atom density. 
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6. Further in-pile studies are required to assess the effectiveness of Mo-autogenous layer 

in the reactor operating conditions to understand the effect of fission-products and 

temperature gradient.  
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