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Abstract 

Fracture in concrete, results from the coalescence of micro-cracks and formation of a Fracture 

Process Zone (FPZ) and further development of macro-cracks leading to fracture propagation. 

The size of the FPZ in front of an existing crack or notch determines the extent of energy 

dissipated during fracture. Studies on the concrete fracture energy, FPZ, the behavior of concrete 

during fracture process and size effect are at the forefront of research on concrete fracture. The 

main objective of this study is to present various approaches for the investigation of the size 

independent fracture energy (GF) of concrete and characteristics of FPZ to address the important 

features of crack formation and its propagation in quasi-brittle material like concrete. This study 

leads to establish a size independent fracture energy that can be used as a material parameter in 

the numerical analysis of concrete structures.  

The fracture energy and FPZ are the most useful parameters for characterizing the fracture 

behavior and analysis of concrete structures. The numerical modelling of Three Point Bend 

(TPB) concrete beams that are geometrically similar having constant length to depth ratio with 

varying range of notch to depth (a/D) ratios is performed. The unique non-linear behavior of 

concrete material is incorporated through fracture energy based softening model in the finite 

element numerical simulation. In the numerical study of concrete components, mesh sensitivity 

is an extremely important issue, which has been addressed in this work. In the present finite 

element analysis of TPB fracture test, the performance of triangular elements is investigated and 

observed to be superior over the quadrilateral elements for fracture analysis. The RILEM fracture 

energy (Gf) values evaluated by load-load line displacement responses obtained experimentally 

and through the numerical simulation of several set of experiments are beset with size effects. Gf 

values are utilized to determine GF by Hu and Wittmann method based on bilinear model. In 
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addition, the fact as reported in literature that ratio of fracture energy to the uncracked ligament 

length almost becomes constant at larger uncracked ligament lengths is proved in this study. 

Further, relationship based on fracture energy release rate is developed to assess the GF. Another 

methodology based on averaging of Gf values associated with geometrically similar beams, is 

developed for the evaluation of size independent fracture energy of concrete.  

The fracture parameters through Bazant‟s size effect studies and Jenq-Shah size effect law are 

investigated. FPZ is visualized for notched concrete beams under bending using a testing scheme 

called Digital Image Correlation (DIC). A new approach known as Optical Crack Profile (OCP), 

based on DIC experiments, is proposed to quantify the fracture parameters such as crack opening 

displacement, width of FPZ, length of FPZ and fracture energy. A comprehensive analysis of 

fracture energy estimated from various methodologies such as bilinear model, fracture energy 

release rate, Gf averaging for geometrically similar beams, Bazant size effect laws, Jenq-Shah 

model and OCP technique have been carried out to obtain a unique value of the size independent 

fracture energy of concrete. 
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Chapter 1 

INTRODUCTION 

1.1 Fracture mechanics approach 

As is well known that concrete is the most commonly used building material in the world for 

most of the civil engineering structures because of their beneficial fire rating, long service life 

under normal and accidental conditions and ease in construction with relatively lower cost; in 

addition they are suitable for nuclear industry due to excellent shielding capability. In-spite of 

such salient features, the concrete structures generally consist of pores, air voids and shrinkage 

cracks that create the inherent flaws/micro-cracks and affect the performance of concrete 

structures.  The numerous micro-cracks might result in fracture of the concrete structures under 

service loads, accidental load and/or exposure to regular environmental conditions and at times 

harsh environmental conditions. Thus a micro-crack in concrete may become a potential source 

of crack propagation leading to a probable catastrophic failure. In order to prevent such 

accidents, it is necessary to predict the failure mechanisms of structures, so that the safety of 

concrete structures throughout the service life can be assured. The failure mechanism can be 

studied by quantifying the energy dissipated in crack propagation and formation of new crack 

surfaces. Fracture mechanics based on energy criterion provides a fundamental basis for 

understanding the phenomenon of concrete fracture. In a concrete structure, the crack growth 

requires a certain amount of energy that can only be studied through an energy based 

propagation criterion, which provides a fundamental basis for understanding the phenomenon of 

concrete fracture mechanism. The fracture results in complex cracking zone characterized by the 

failure mechanisms like micro-crack shielding, aggregate bridging, crack deflection, crack tip 
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blunting, crack closure induced by surface roughness and crack branching as shown in Fig. 1.1. 

These mechanisms are also known as toughening mechanism.  

 

 

Fig. 1.1 Toughening mechanism showing: Crack shielding, crack deflection, aggregate bridging, 

crack surface roughness induced closure, crack tip blunted by void and  crack branching [Shah 

et. al. (1995)] 

The toughening mechanisms can be reasonably quantified by the dissipated energy during the 

fracture process of concrete. Due to anisotropic and heterogeneous nature of concrete, the 

cracking should be described through the energy criteria. Even though cracks play an important 

role, concrete structures have been successfully designed and built without any use of fracture 

mechanics. The risk in the current design practice for concrete structures is that inherent flaws in 

the material might grow under loading to unacceptable lengths. It is therefore, imperative that 

necessary steps should be taken to enhance the current understanding and improve the design 

practices associated with concrete in order to reliably account for the possible failure 

mechanisms, which could be achieved by introducing the fracture mechanics concepts. The 

major reasons for the application of fracture mechanics to concrete are as follows [Shah et. al. 

(1995), Bazant and Planas (1998), and Shailendra and Barai (2011)]: 

 (i)  In a concrete structure, the crack growth requires a certain amount of energy that can only be 

studied through an energy based propagation criterion. The fracture process in quasi-brittle 
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material involves the material separation that is better described by fracture mechanics based 

energy principles than by stress or strain criterion.  

(ii) The finite element formulation based on limiting stress or strain criteria showed the 

dependency on mesh size. However, by incorporating the fracture criteria based concrete model 

in finite element analysis, the observed response is found to be free from mesh sensitivity. 

(iii) In a quasi brittle material that exhibits softening, the failure process does not result in the 

formation of plastic hinges at isolated locations, but the fracture zone propagates throughout the 

structure leaving behind a wake zone of reduced stress due to lack of yield plateau. Due to 

absence of yield plateau in concrete, the limit analysis solution grossly overestimates the failure 

load because it does not consider the reduced stress in its wake zone that can be accounted for by 

describing the concrete softening. The softening governed by the complex cracking can be 

utilized by introducing the concept of concrete fracture mechanics. 

(iv) The structural size effect is the most important issue in the fracture mechanics of quasi-

brittle material. The prediction of the structural size effect on the failure load, from the fracture 

mechanics approach is quite different from the strength criteria as is clear from Fig. 1.2, in which 

the x axis represents the log of characteristic dimension of the structure and y axis characterizes 

the nominal stress at failure load. The size effect [Shah et. al. (1995), Bazant and Planas 

(1998), and Shailendra and Barai (2011)] appears on the mechanical response of the concrete 

structures. The elastic analysis with allowable stress, plastic limit analysis, or any theory based 

on strength limit, predicts the load capacity of structure in which the material failure criterion is 

expressed in terms of stress/strain. The load capacity of structure predicted using these theories is 

independent of the structure size, which came to be known as the case of no size effect. This is 

what is still assumed in most of the design codes and standards for concrete. The size effect 

represents the deviation of actual load capacity of structure from the load capacity predicted by 
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limiting strength based theories. It is characterized in term of nominal strength representing the 

value of nominal stress at ultimate load. The size effect on structural strength in terms of the 

nominal strength ζNu of structure, which is a parameter of maximum load Pc having the 

dimension of stress, is described as: 

tD

Pc cn
Nu 

  
Eq. (1.1) 

Where D = characteristic size of the specimen or structure, t = specimen thickness and
 
cn = 

dimensionless coefficient. The plot of log ζNu vs. log D always gives a horizontal line according 

to the strength criterion; exhibit no size effect as shown in Fig. 1.2. The failure governed by 

Linear Elastic Fracture Mechanics (LEFM) exhibit a rather strong size effect which is described 

by inclined line of slope (-1/2) in Fig. 1.2. The reality for concrete structures in the intermediate 

size range is a transitional behavior illustrated by the solid curve. 

 

Fig. 1.2 Size effects in quasi-brittle material [Bazant and Planas (1998)] 
 

1.2 Objectives and Research significance  

Concrete shows a stable non-linear fracture response in tension loading, when tested under 

displacement control mode. The reason for the non-linearity is the development of a fracture 

process zone (FPZ) due to the micro-crack initiation, crack formation and its propagation in 

concrete structures. In a quasi brittle material like concrete the energy dissipated for the 

formation of FPZ ahead of the crack tip, is termed as fracture energy. The fracture energy and 



5 
 

FPZ characteristics are the most useful parameters for characterizing the fracture behavior and 

analysis of concrete structures. Studies on the concrete fracture energy, FPZ, the behavior of 

concrete during fracture process and size effect are at the forefront of research on concrete 

fracture. The main objective of this study is to present various approaches for the investigation of 

the size independent fracture energy and characteristics of FPZ that can be used as a material 

parameter in the numerical analysis of concrete structures.  

The present study deals with the numerical simulation of the geometrically similar Three Point 

Bend (TPB) beams having constant length to depth ratio. The mesh sensitivity is an extremely 

important issue in concrete due to its post peak softening, that has been addressed in the present 

work by performing a number of computational studies. The fracture energy based concrete 

softening model yields the consistent finite element results independent of the mesh size. By 

incorporating the fracture energy based softening model for concrete in the analysis, the results 

are observed to be mesh insensitive as reported by Singh et. al. (2009) and Trivedi et. al. 

(2013). The observed kinks, due to directional bias or induced anisotropy in finite element 

modeling using the quadrilateral elements, have been investigated. Further, based on the 

completeness of interpolation function and discretization technique, the superiority of triangular 

elements over quadrilateral elements is explained and illustrated by considering the benchmark 

problems of TPB concrete fracture tests.  

The fracture test on geometrically similar (same length to depth ratio) TPB plain concrete beam 

specimens, made of aggregates, sand, cement and water, were performed by Raghu Prasad 

(2009) and Muralidhara (2010) as per RILEM (English acronym of original French 

abbreviation RILEM: The International Union of Laboratories and Experts in Construction 

Materials, Systems and Structures) recommendation. The displacement controlled test on the 

universal TPB specimens was conducted for varying notch to depth (a/D) ratio = 0.05, 0.25 and 
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0.33. The present work involves the numerical modelling of fracture tests of geometrically 

similar TPB beams having constant length to depth ratio for various a/D ratios. The simulation of 

TPB specimen performed by the finite element analysis incorporating the concrete softening 

behavior, predicts the load-load line displacement curves. RILEM fracture energy (Gf) values 

evaluated through the numerically predicted and experimentally observed load-load line 

displacement curves are beset with size effects. Therefore, the present study investigates the easy 

and robust techniques for the determination of the size independent fracture energy (GF) of 

concrete.   

Gf values are utilized to determine GF by popular Hu and Wittmann method based on bilinear 

model. In addition, the fact as reported in literature that ratio of fracture energy to the un-cracked 

ligament length almost becomes constant at larger un-cracked ligament lengths is proved in this 

study. Further, the relationship based on fracture energy release rate is developed to evaluate GF. 

In another approach, Gf values have been averaged out at various a/D for geometrically similar 

beams to develop a methodology for assessment of GF of concrete.   

A quantitative evaluation of fracture parameters is required to improve the understanding on 

phenomenon of fracture propagation and FPZ. The notched concrete beams subjected to quasi-

static three-point bending are considered to measure displacement and strain fields using the 

Digital Image Correlation (DIC) experimental technique. Attention is paid to develop a new 

methodology known as Optical Crack Profile (OCP) scheme, based on DIC experiments, which 

can assess the characteristics of FPZ appearing above the notched concrete beams. DIC allows 

the analysis of continuous real time data acquisition, and thus the various fracture parameters 

such as crack opening displacement, width of FPZ, length of FPZ and fracture energy can be 

evaluated through OCP. FPZ is an already formed crack whose adjacent surfaces can still 

transmit stresses due to the crack bridging effect of material heterogeneities [Luigi and Gianluca 
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(2008)]. The softening curve as shown in Fig. 1.3 shows the relationship between bridging 

stresses (ζ) versus crack opening displacements (w). The area under the initial tangent of the 

softening curve represents the fracture energy which is governed by the failure load of test 

specimens. As the crack grows, the ζ-w relation changes along the projected ligament. At critical 

load the bridging stress is close to tensile strength of concrete, ft. Using the concept shown in 

Fig. 1.3, the ζ-w relation at various stages of crack growth along the projected ligament is 

established through OCP technique. Thus the variation of fracture energy along the projected 

ligament using the concept of area under the initial tangent of the softening curve can be 

estimated, from which the average fracture energy can be assessed.  

 
Fig.1.3 Softening curve: bridging stress () vs. crack opening displacement (w) curve 

 

Further, fracture parameters using three regression approaches based on Bazant size effect laws 

[Shah et. al. (1995), Bazant and Planas (1998), and Shailendra and Barai (2011)] and Jenq-

Shah law [Shah et. al. (1995)] are evaluated.  

1.3 Organization of thesis 

This thesis deals mainly with the investigation of size independent fracture energy of concrete 

and characteristics of FPZ. Chapter 1 consists of three sections. The first section describes the 

toughening mechanism of concrete and major reasons for application of fraction mechanics in 
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concrete structures. The next section in Chapter 1 explains the objectives and research 

significance. The last section contains the organization of the thesis.  

The detailed literature reviews on fracture mechanics and finite element studies are presented in 

Chapter 2. The limitations of existing literature and scope of present work are also mentioned in 

Chapter 2. 

The finite element simulation of the benchmark problems of Sancho et. al. (2007), Shailendra 

and Barai (2011) are presented in Chapter 3. The comparison of experimental responses with 

those of numerical predictions, based on RILEM recommendation is also described in Chapter 3. 

The assessment of size independent fracture energy values with various methodologies based on 

Hu and Wittmann  bilinear model, energy release rate and averaging of RILEM fracture energy 

have been addressed in Chapter 4. 

Chapter 5 describes the size effect through the three regression approaches based on Bazant‟s 

size effect law and Jenq-Shah model for assessment of the fracture parameters.  

Chapter 6 deals with development of scheme for quantification of characteristics of Fracture 

Process Zone (FPZ) using the Optical Crack Profile (OCP) technique. The evaluation of fracture 

propagation, FPZ characteristics, fracture energy and crack opening displacement have been 

addressed. 

Comments on the Size Independence of Fracture Energy and Innovativeness in the Present 

Research are described in Chapter 7. 

The summary and conclusions drawn from the study are explained in Chapter 8. Scope for 

further research is also presented in this chapter.  
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Chapter 2 

LITERATURE  REVIEW  

The application of fracture mechanics to assess the integrity of a structure is based on the 

postulation of a pre-existing crack from which failure starts. Cracks lead to high stresses near the 

crack tip and it should receive particular attention because from here the further crack growth 

takes place. The original concept of fracture was initiated by Griffith through the investigation of 

fracture of glass sheets [Griffith (1920)]. Griffith (1920) proposed that the weakening of glass 

material due to presence of crack could be treated as an equilibrium problem in which the 

reduction in strain energy due to crack propagation could be equated to the increase in surface 

energy because of increase in surface area. Griffith‟s theory originated from the hypothesis that 

for glass like brittle materials containing elliptical micro-cracks introduce the high stress 

concentrations near crack tip. He developed a relationship between the crack length, surface 

energy connected with traction free crack surfaces and applied stress. Griffith theory could not 

account for the zone of yielding developed at the blunted fracture front in case of metals. 

Therefore, the first major contribution of Irwin (1948) was to modify the Griffith‟s approach to 

metals by including the energy dissipated in the local plastic flow. On loading, the inelastic 

deformation and the nonlinear effects are produced near the crack tip. However, for brittle 

materials, the amount of inelastic deformation is very small and localized as compared to the 

crack size and characteristic length of the body. In such cases, the linear theory is adequate to 

address the problem of stress distribution in the cracked body. Linear Elastic Fracture Mechanics 

(LEFM) allows the stress to approach infinity at a crack tip due to stress field singularity. Since 

infinite stress cannot develop in real materials, a certain range of inelastic zone must exist at the 

crack tip [Perez (2004) and Gdoutos (2005)]. The nonlinear region consists of two zones, 
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namely, Fracture Process Zone (FPZ) and yielding zone. The fracture process zone is 

characterized by the progressive softening for which the stress decreases at increasing 

deformation. This zone is surrounded by yielding zone characterized by hardening plasticity or 

perfect plasticity, for which the stress increases at increasing deformation or at least remains 

constant. For metallic materials, this inelastic zone is mainly dominated by plasticity, which is 

often termed as yielding zone. In case of concrete, which is a heterogeneous material, the 

inelastic zone around a crack tip is primarily governed by softening behavior, which is termed as 

FPZ, and is further surrounded by a very small plasticity zone. Depending on the relative sizes of 

these two zones and structures, one may distinguish three types of fracture behavior. In the first 

type of behavior of brittle material, the whole nonlinear zone is small compared to structure size 

as shown in Fig. 2.1a. Then the entire nonlinear zone is almost confined to the crack tip in case 

of brittle material. The whole body is elastic and LEFM can be used. In the second and third 

types of behavior, the ratio of nonlinear zone size to the structure size is not sufficiently small, 

and LEFM is inapplicable. In the second type of behavior shown in Fig. 2.1b where most of the 

nonlinear zone consists of elastic-plastic hardening or perfect yielding and the size of the actual 

fracture process zone is still small. Many ductile metals fall into this category and its general 

type is defined as ductile. This kind of behavior is best treated by specialized branch of fracture 

mechanics –elastic-plastic fracture mechanics. The third type of behavior shown in Fig. 2.1c 

which is of main interest here in the context of concrete fracture includes situations in which a 

major part of the non linear zone undergoes progressive damage with material softening due to 

micro-cracking, void formation, friction and  aggregate bridging. The zone of plastic hardening 

or perfect yielding in this type of behavior is often negligible. There is rather abrupt transition 

from elastic response to damage. This happens for concrete, rock, cemented sand and ceramics 

etc. These materials are called quasi-brittle because even if no appreciable plastic deformation 
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takes place the size of fracture process zone is large enough to be taken into account in 

calculations.     

 

                            (a)                                           (b)     (c) 

Fig. 2.1 Stress variation along ligament for three types of fracture behavior (a) brittle (b) ductile 

(c) quasi-brittle [Bazant and Planas (1998)] 

Concrete is a quasi-brittle material that shows a post peak softening behavior, which may be 

characterized between a brittle, and a ductile material behavior. The micro-crack initiation, crack 

formation and crack propagation in concrete consumes the energy, which results in the formation 

of FPZ. FPZ consists of scattered micro-cracks formed in front of a pre-crack or a notch tip. The 

size of the FPZ in front of an existing crack or notch determines the type of failure and extent of 

energy dissipated during fracture as reported by Bazant and Oh (1988), Karihaloo (1995), Koji 

and Date (2000). Studies on the concrete fracture energy, FPZ, the behavior of concrete during 

fracture process, size effect are still under extensive research as elaborated in the subsequent 

sections.  

2.1 Existing literature on concrete fracture 

The studies performed to characterize the concrete fracture behavior are described below. 

A review study by Elices and Planas (1996) was carried out on the cohesive model. It was 

observed that the theoretical and experimental aspect of cohesive model was able to explain and 
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predict most of the experimental results with concrete samples. The equivalent elastic crack 

model was also discussed in this study. 

The fictitious crack method was applied to determine the response of notched plain concrete 

beams under three-point bending by Sundara et. al. (1996). The load-deflection diagrams of 

concrete beams using the various forms of strain softening relations were determined. The results 

show that there is a need to determine a realistic softening relationship.  

The concept of non-constant distribution of the fracture energy along the crack growth path and 

boundary effect was introduced by Duan et. al. (2003) to explain the size-dependence of the 

fracture energy. The characteristics of FPZ in the middle and close to the back boundary of a 

specimen are observed to be different. A first approximation assuming a bilinear fracture energy 

distribution was considered to account for the boundary effect on the propagation of a fictitious 

crack in concrete.  

The size effect, two parameter, and fictitious crack models were employed to determine the 

fracture toughness values of concrete by Hanson and Ingraffea (2003). The results indicated 

that the fracture toughness values for the size effect and two parameter models tend to be less 

than those predicted by the fictitious crack model. 

The experimental investigation to study the size effect was performed by Karihaloo et. al. 

(2003) on three point bend specimens. The hardened cement paste with nominal compressive 

strength of 40 MPa and high strength concrete of nominal compressive strength 110 MPa were 

used to cast the beams. Failure loads were analyzed according to the size effect laws for the un-

notched and notched beams.  

The study by Karihaloo et. al. (2003) stated that size independent fracture energy of concrete 

could be obtained by testing three point bend or wedge splitting specimens. Twenty-six test data 
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sets existing in literature were re-evaluated on fracture energy of concrete to assess the validity 

of this observation. The re-evaluation is found to support this observation.  

The two fracture properties of concrete i.e. true fracture energy and corresponding softening 

relation are required for the analysis of cracked concrete structures. A simple method for 

determination of true fracture energy and corresponding softening relation was proposed by 

Abdalla and Karihaloo (2004) through the fracture tests conducted on three point bend and 

wedge split concrete specimens. 

The study by Karihaloo et. al. (2006) mainly focuses on identifying and quantifying the 

deterministic size effect in the cracked concrete structures. The strength of geometrically similar 

pre-cracked specimens of varying sizes prepared from three concrete mixes were measured in 

three point bend and wedge splitting geometries to study the size effect. Also, the size-

independent fracture energy and the corresponding tension softening diagram of each of the three 

mixes are independently established in order to exclude their influence on the strength size 

effect.  

The experimental study using a non-destructive method called Digital Image Correlation (DIC) 

technique was performed by Kozicki and Tejchman (2007) on notched concrete specimens 

under three point bending. Three different beam sizes and two different concrete mixes were 

used. The strong size effect and the evolution of fracture process zone were observed.    

The study by Luigi and Gianluca (2008) deals with the identification of concrete fracture 

parameter through the size effect experiments. The tensile strength and initial fracture energy 

was determined from size effect curve i.e. structural strength vs. structural size methods utilize 

the size effect curve. The peak and the initial post peak slope of the cohesive crack law is 

characterized by tensile strength and initial fracture energy.  
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The fracture test on geometrically similar (constant length to depth ratio) three point bend (TPB) 

plain concrete beam specimens, made of aggregates, sand, cement and water, were performed by 

Raghu Prasad (2009) and Muralidhara (2010).  

The study by Skarzynski and Tejchman (2010) describes the investigations on fracture process 

zones at meso scale in notched concrete beams subjected to quasi static three point bending using 

the finite element analysis (FEA) and DIC method. The isotropic damage constitutive model was 

incorporated in FEA. The evolution of strain localization was captured using the numerical 

simulation results and were observed to be in reasonable agreement to the DIC method.  

Acoustic emission technique on three point bend specimen was used to capture the FPZ as 

reported in study by Muralidhara (2010) and Muralidhara et. al. (2010). Considering the 

variation of relative size of FPZ with the characteristic dimension of three point bend beam, an 

expression is derived by Muralidhara et. al. (2013) to compute the size-independent fracture 

energy of concrete.   

The study by Karihaloo et. al. (2013) proposed a tri-linear model for the determination of the 

fracture energy for three different concrete mixes ranging in compressive strength from 57 MPa 

to 122 MPa.  

In this study of Cifuentes et. al. (2013), an experimental comparative analysis of the size-

independent fracture energy has been carried out by two methods based on the local fracture 

energy model and the curtailment of the tail of load-deflection curve. 

An experimental investigation on notched and un-notched beams cast from one batch of concrete 

was performed to obtain nearly complete post peak softening load–displacement curves by 

Hoover et. al. (2013). The size effect studies were performed and the fracture energy was 

evaluated.  
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The mode I crack propagation was investigated by Fayyad and Lees (2014) using DIC. The tests 

were performed on small scale reinforced concrete specimens in three point bending. By means 

of the DIC technique the visualization and quantification of the crack opening displacements in 

reinforced concrete. 

In this paper, fracture process in geometrically scaled concrete beams under bending test is 

analyzed through two techniques in coupled position i.e. Acoustic emission (AE) and DIC by 

Alam et. al. (2014). The AE technique is useful to identify the location of fracture growth due to 

microcracks and macrocrack, however, DIC is useful to measure the fracture length.  

Gencturk et. al. (2014) explained the advantages and limitations of the DIC through the full 

scale testing of pre-stressed I-shaped concrete beam.  Two ultimate load tests were conducted 

and the measurements collected from both conventional instruments (displacement transducers) 

and a pair of high definition cameras was compared. It was observed that the DIC technique 

could provide very accurate and detailed information, which is not possible to obtain using 

conventional techniques. The limitations of the DIC technique when used in testing of concrete 

structures such as the sensitivity to external light sources, preparation of the measurement 

surface and loss of data points after spalling of cover concrete were also mentioned. 

2.2 Superiority of triangular elements over the quadrilateral elements in finite 

element analyses of concrete fracture problems 

Finite Element (FE) is a numerical technique to find the approximate solutions of the differential 

equations that describe the physical phenomenon encountered in engineering mechanics. FE 

method calculates nodal displacements, and then uses the displacement information to calculate 

the strains and finally the resulting stresses with a constitutive law. Fig. 2.2 shows a finite 

element mesh of a continuum using triangular and quadrilateral elements. 
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                                                 (a)                                            (b) 

Fig.2.2 FE discretization (a) Triangular mesh (b) Quadrilateral mesh [Cook et. al. (2007)] 

A constant strain triangle (CST) is a plane triangle whose field quantity varies linearly with 

Cartesian co-ordinate x and y. The stress analysis of a linear displacement field produces a 

constant strain field, so the element is known as constant strain triangle. In CST element, strain 

inside the element has no variation and hence element size should be small enough to obtain 

accurate results. The CST element shown in Fig. 2.3 is perhaps the earliest and simplest finite 

element. In terms of generalized coordinates βi its displacement field is expressed as:
  

yxu 321       Eq. (2.1) 

yxv 654       Eq. (2.2) 

 

Fig. 2.3 Constant strain triangular element [Cook et. al. (2007)] 

And from the two-dimensional strain-displacement relation, the resulting strain field is: 
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Here, as clear from Eqs. 2.3-2.5, the strain does not vary within the element hence named as 

"constant strain triangle". A quadratic rectangle (Q8) shown in Fig. 2.4 is obtained by adding the 

side nodes to the linear rectangle. The Q8 notation is used for the eight node quadrilateral 

element. In terms of generalized coordinates ai the displacement field is expressed as: 
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Fig. 2.4 Quadratic element [Cook et. al. (2007)] 

For a three noded triangular element, the linear displacement field is chosen as is clear from Eqs. 

2.1-2.2. The linear field is able to display the rigid body motion, constant strain state and mesh 

refinement produces the convergence towards the correct results. Thus, the lowest order term 

must not be omitted. For a three noded triangular element, the necessary constant strain and rigid 

body motion capabilities can‟t be provided by the higher order terms of the polynomial ~

 2

32

2

1 yaxyaxa 
. 
 

Another important attribute of satisfactory polynomial displacement fields is balance, that is, the 

displacement function should not represent direction bias with chosen frame of reference (x-y 

coordinates for a two dimensional problem). In addition, the element formulation should ensure 

geometric isotropy or frame invariance, so that the behavior of an FE structure is independent of 

the orientation of the local coordinates of its element are oriented with respect to a global 
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coordinate system. FE model that does not have a balanced field is sensitive to coordinate system 

orientation, and as a result, it displays the artificial directional bias or induced anisotropy. An 

element, whose displacement expression is a complete polynomial, has automatically a balanced 

field. The CST element uses a linear polynomial as per Fig. 2.5. A salient feature of CST 

element is that their interpolations are based on complete polynomial expansions as is clear from 

Eqs. 2.1-2.2. A Q8 element has an incomplete cubic terms expansion as is clear from Eqs. 2.6-

2.7 (x
3
 and y

3
 missing as per Fig. 2.5). Since the completeness of polynomials avoids kinks 

formation and intrinsic directional bias, the performance of triangular elements with respect to 

smeared crack propagation have been found to be superior over the quadrilateral elements which 

is illustrated in the next chapter.  

 

Fig. 2.5 Pascal triangle: complete polynomial in two independent variables x and y [Zienkiewicz 

(2006)] 

2.3 Limitations in existing literature  

It can be concluded from the extensive literature review that the investigation undertaken so far 

involved limited concrete fracture tests on laboratory size concrete specimens. Based on the 

existing literatures on proposed analytical models and fracture tests on concrete specimens, the 

basic understanding developed so far is still contradictory due to the complex fracture behavior 

of concrete. The exact quantification of size independent fracture energy remains elusive. FPZ is 

very complex since it consists of main cracks with various branches, secondary cracks and 
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micro-cracks. Therefore, qualitative description of the FPZ based on Digital Image Correlation 

(DIC) experimental technique, which is available in literature does not provide any detailed 

information on characteristics of FPZ. The structural size effect is the most important issue in the 

fracture mechanics of quasi-brittle material, which has been addressed in the existing literature. 

But so far the link between the fracture parameters based on size effect studies with the other 

approaches of Hu and Wittmann model, fracture energy release rate, Gf averaging for 

geometrically similar beams and Optical Crack Profile (OCP) technique (which is based on DIC 

experiments) have not been addressed.  

2.4 Scope of the present work 

The limitations mentioned above have been addressed in the present work as follows:  

 The numerical simulation of displacement controlled fracture tests of the geometrically 

similar TPB beams having constant length to depth ratio is performed. The issue of mesh 

sensitivity and the superiority of triangular finite elements over quadrilateral finite 

element have been addressed.  

 RILEM fracture energy (Gf) values evaluated through load-load line displacement curves 

are beset with the size effect. Hence, the size-independent fracture energy (GF) of 

concrete is estimated through Hu and Wittmann method based on bilinear model. GF is 

also estimated from developed relationship on fracture energy release rate. Gf values 

associated with geometrically similar beams have been utilized to develop another 

methodology for assessment of GF.  

 A quantitative study on characteristics of FPZ, fracture energy and crack opening 

displacement is performed using OCP technique. Further, the characteristics of FPZ 

identified by OCP is compared with conventional technique of strain gauge and ACI 

guideline.  



20 
 

 The size effect studies are performed and fracture parameters are evaluated. A 

comparative analysis of fracture parameters based on Hu and Wittmann model, fracture 

energy release rate, Gf averaging for geometrically similar beams, Bazant size effect 

laws, Jenq-Shah model and OCP technique have been carried out.  
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Chapter 3  

FRACTURE  TEST  AND  NUMERICAL  SIMULATION  

3.1 General Introduction 

Three-point bend (TPB) test, compact tension test, and wedge splitting test specimens are the 

commonly used shapes of geometry for conducting fracture tests [Shah et. al. (1995), Bazant 

and Planas (1998), and Shailendra and Barai (2011)]. The most common specimen is three-

point bending geometry, as recommended by RILEM, for determination of the fracture 

parameters as is shown in Fig. 3.1. „P‟, „D‟, „S‟ and „a‟ are applied load, beam depth, beam span, 

and notch depth respectively. TPB geometry has great advantage over compact tension and 

wedge splitting test since its testing can be performed with the standard testing machines. TPB 

testing involves the bending test on notched beams. However, the large-size structures require 

the special care during fracture experiments due to handling problems of test specimens. 

 

Fig.3.1 TPB geometry 

3.2 RILEM test for concrete fracture energy 

RILEM technical committee recommended the guidelines for determination of fracture energy of 

cementitious materials by conducting TPB test on notched beam as shown in Fig.3.1. In order to 

obtain a complete load and load point displacement curve, a closed loop servo controlled testing 

machine is recommended. Based on the obtained load and load point displacement curve, the 

fracture energy Gf can be calculated. The influence of the self weight is represented by an 

additional equivalent force Pw. Therefore, the total load P on the beam is represented by P = Pw 

+ Pa , where Pa is the load applied by the testing machine, provided that load and displacement 



22 
 

are both along the direction of gravity. The energy absorbed by the beam is represented by the 

area under P-δ curve, as shown in Fig 3.2. where δ is the load point displacement. The total area 

under the P- δ curve is referred to as Wt, which may be divided into three parts, W0, W1, and W2, 

as shown in Fig. 3.2. Here W0 is the area under the Pa- δ curve and W1 = Pw δ0 where δ0 

corresponds to displacement at Pa = 0. Thus, both values of W0 and W1 can be determined from 

the measured Pa- δ curve. It has been demonstrated [Shailendra and Barai (2011)] that the value 

of W2 is approximately equal to the value of W1. Therefore, the total fracture energy of the beam, 

Wt is  

Wt = W0 + 2Pw δ0 

By assuming that energy absorption takes place only in the fracture zone, the fracture energy per 

unit projected area is given as
1-2

: 
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Fig.3.2 Load-displacement curve [Shailendra and Barai (2011)] 

3.3 Material property, specimen preparation and experimental setup  

The fracture test on geometrically similar (same length to depth ratio) TPB plain concrete beam 

specimens, made of aggregates, sand, cement and water, were performed by Raghu Prasad 

(2009) and Muralidhara (2010). The mix proportion of M45 concrete grade prepared at BARC, 

Tarapur site is given in Table 3.1. The cement used was 43 grades Portland cement conforming 
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to Indian Standard IS: 8112-1689. The dimensions of geometrically similar beams designated as 

D1, D2 and D3 are as shown Table 3.2. The geometrical sketch for one of the beam D3 is shown 

in Fig. 3.3. The casting of D1 and D2 beam was carried out at Tarapur site where as the large 

size D3 beams casting was done at IISc, Banglore. Two different concrete mixes were prepared 

for both D1 and D2 using the maximum aggregate size of 12.5 mm and 20 mm. Further, three 

identical beams for each a/D value (Table 3.2) were cast for each D1 and D2 specimen. For D3, 

three identical specimens were prepared for each a/D, namely, 0.25 and 0.33 using the concrete 

mix prepared with maximum aggregate size of 20 mm only. The technical details
 
of specimens 

are shown in Table 3.3 along with the nomenclature of the beams tested. The maximum size of 

the aggregates (mm) is used in the specimen nomenclature indicated by numbers 12.5 and 20 

mentioned in Table 3.3. The nomenclature employed for various types of beam is as follows: for 

example, in D1P12.5A, the first two letters (e.g. D1 here) represent the beam name (i.e. D1 or 

D2 etc.), P and T indicate pour mix and trial mix respectively, the number 12.5 indicate the 

maximum size of the aggregate (mm), beams with a/D = 0.05, 0.25 and 0.33 are designated by 

A, B and C respectively.  

Table 3.1: Quantity of materials per cubic meter of concrete [Raghu Prasad (2009)] 

Property Mix-with 20 mm and 

down size coarse 

aggregates 

Mix-with 12.5 mm and 

down size coarse 

aggregates 

Cement (kg) (c) 400 435 

Coarse aggregate (kg) (CA) 20 mm 492 - 

Coarse aggregate (kg) (CA) 12.5 mm 492 946 

Fine aggregate (kg) (FA) 902 870 

Water (kg) 152 165 

Superplasticizer (% weight of cement 

content) 

1.4 1.4 

Water/cement ratio 0.38 0.38 

Mix proportion (c:FA:CA) 1:2.26:2.46 1:2:2.18 
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Fig.3.3 Dimensions of D3 beam in mm for a/D = 0.33 

Table 3.2: Geometrical dimensions of beam 

Type Length 

(mm) 

Depth (mm) Width 

(mm) 

Span 

(mm) 

a/D 

D1 375 94 47.5 282 0.05,0.25,0.33 

D2 750 188 95 564 0.05,0.25,0.33 

D3 3000 750 375 2250 0.25,0.33 

Table 3.3: Technical details of beam types [Raghu Prasad (2009)] 

Sl.No ID. No. 
No. of 

specimens 

Compressive Strength 

MPa 
E value 

(MPa) 
7 days 28 days 

1 D1T20 9 36.0 50.4 24638 

2 D1T12.5 9 38.3 50.3 24248 

3 D1P20 9 40.3 50.6 25689 

6 D2T20 9 36.0 50.4 24638 

7 D212.5 9 38.3 50.3 24248 

8 D2P20 9 40.3 50.6 25689 

 

D1 is the smallest size specimen among all beam types whose notches were made using 2mm 

thick tile cutting circular blade. The 5mm thick circular blade was used to cut the notches in D2 

beams. The notches for the D3 specimens were made with the help of motorized mobile cutter, 

fitted with diamond edged steel disc of 750mm diameter. Each beam tested under crack mouth 

opening displacement control mode were fixed with 5 mm thick 50mm x 60mm mild steel plates 

on either side of notch using metal paste to support clip gauge. To measure the central deflection, 

Linear Variable Differential Transducer (LVDT) was used. D1 and D2 beams were tested in 

servo controlled Dartec machine of 500kN capacity under three point bend condition. The servo 

controlled MTS machine of 1200 kN capacity was employed for D3 beam testing and each beam 

was carefully placed on the roller supports. After the preparation of the test setup, load, crack 
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opening displacement and time data were acquired at certain interval of time. The acquisition of 

load and displacement parameters was simultaneous. The complete load vs. load point 

displacement and load vs. Crack opening displacement (COD) response were obtained through a 

closed loop servo controlled testing machine. D3 specimen being largest among all, only limited 

numbers of specimens were tested due to its heavy weight and handling issues. Hence, the focus 

of present study has been put mainly on D1 and D2 beams having plenty data sets to characterize 

the parameters required for concrete fracture mechanics. 

3.4 Concrete fracture model 

The nonlinear fracture mechanics models for quasi-brittle materials are classified as fictitious 

crack approach and an equivalent elastic crack approach based on different energy dissipation 

mechanisms. Fracture mechanics models using Dugdale- Barenblatt energy dissipation 

mechanism are usually referred as the fictitious crack approach, whereas fracture mechanics 

models using Griffith-Irwin energy dissipation mechanism are usually referred as the effective 

elastic crack approach [Hillerborg et. al. (1976) and Shah et. al. (1995)]. Fictitious Crack 

Model (FCM) and Crack Band Model (CBM) belong to fictitious crack approach. The two-

parameter fracture model, size-effect model and effective crack model belong to effective elastic 

crack approach. FCM for fracture of concrete characterizes the material behavior in the fracture 

process zone through strain-softening constitutive relation only. CBM model characterizes the 

material behavior in the fracture process zone not only through strain-softening constitutive 

relation, but also imposes a fixed width (h) of the front of the strain-softening zone (crack band). 

The constant width of crack band avoids spurious mesh sensitivity, assuring that the energy 

dissipation due to fracture per unit length is constant, equal to the fracture energy of the material 

(Gf ). Once the shape of the strain-softening is fixed, the CBM is fully characterized by three 

material parameters: Gf , material tensile strength (ft) and h (although the influence of h is weak 
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for situations with isolated cracks). FCM has only two basic parameters: Gf and ft. The extra 

parameter in CBM is important only in situations when there are parallel cracks. FCM because of 

its lack of the extra parameter h, gives results that are mesh sensitive in situations with parallel 

closely spaced cracks. CBM and FCM give essentially the same results, except when closely 

spaced parallel cracks occur [Bazant and Planas (1998), and ACI (1999)]. However, in 

practical consideration, the structures consist of multidirectional cracking in which CBM and 

microplane model are preferred. The material behavior in the microplane model is characterized 

independently on planes of various orientations [Bazant and Ozbolt (1989)] and it further 

overcomes the limitations of conventional fracture models for complex problems with a large 

number of multiple cracks with different orientations. 

RILEM approach was originated from the Fictitious Crack Model (FCM). Therefore, nonlinear 

fracture model based on the fictitious crack approach is used in present finite element simulation 

to determine the response of the notched plain concrete beams. The cracking and compressive 

behaviour of concrete are incorporated by the uni-axial test response. The post-failure behaviour 

associated with the strain-softening behaviour is incorporated by applying a fracture energy 

cracking criterion in the analysis [Bangash and Telford (2001)]. FCM based on linear strain 

softening stress-crack opening displacement (ζ-w) relationship is used in the present numerical 

simulation. In the fictitious crack model, the tensile strength, fracture energy and stress-crack 

opening displacement relationship are incorporated to study the fracture behaviour of plain 

concrete. ζ-w relation is one of the fundamental properties required to introduce the non-linearity 

in FCM. The fracture behavior of concrete is greatly influenced by the Fracture Process Zone 

(FPZ) characterized by the toughening mechanism. The toughening mechanisms in the FPZ are 

modeled by the cohesive pressure acting on the crack surfaces. The constitutive law that relates 

the cohesive stress (ζ) across the crack faces and the corresponding crack opening displacement 
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w, i.e., ζ = f(w) is also known as softening function. The cohesive pressure ζ(w) is a 

monotonically decreasing function of crack opening displacement (w) and it tends to close the 

crack. The value of ζ(w) is equal to material tensile strength ft for w = 0 at the crack tip. A typical 

sketch of ζ–w curve is shown in Fig. 3.4a where the terminal point wc is the maximum widening 

of the crack opening displacement. FCM assumes that energy (fracture energy ~Gf) produced by 

the applied load is completely balanced by the cohesive pressure as: 


w

f dwwG
0

)(  

The cohesive crack model requires a unique ζ(w) curve to quantify the value of energy 

dissipation. The linear softening law by Hillerborg et. al. (1976) as shown in Fig. 3.4b is used in 

the present analyses considering ft and Gf as the material properties. In Fig. 3.4b, ft is the mean 

tensile strength and wc is the maximum crack opening before the crack ceases to transfer stresses. 

The linear softening curve  utilized in the present study is:
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Fig. 3.4 (a) Typical sketch of concrete softening  (b) Linear ζ-w relationship 

3.5 Numerical investigation  

In the present study, the parameters required to characterize the fracture behavior of concrete are 
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evaluated by Finite Element Analysis (FEA) and compared with the reported literatures of 

Sancho et. al. (2007), Muralidhara (2010), and Shailendra and Barai (2011). FEA of TPB 

concrete beam is performed by incorporating the fracture energy based softening model that 

yields the mesh insensitive result. The typical sketch of TPB beam is shown in Fig. 3.5, where 

“a”, “D”, “S”, “P” and “a/D” are notch depth, beam depth, beam span, applied load and notch to 

depth ratio respectively. 

 

Fig. 3.5 Typical sketch of three point bend (TPB) beam specimen 

3.5.1 Kinks in TPB specimens 

The superiority of triangular elements as discussed in the previous chapter is demonstrated here 

for TPB specimens. The two dimensional modeling of concrete could be simulated using the 

four-node quadrilaterals, three-node constant strain triangles, six-node linear strain triangles and 

the eight-node quadrilateral elements. However, for the similar computational costs, the lower 

order elements produce the most narrow failure band. The constant strain triangles elements 

based on single point integration scheme are adequate in this respect because they permit the 

fracture to jump to adjacent rows of elements without spreading the corresponding deformation 

to a substantial neighboring element. The interpolating functions of triangular elements contain 

complete polynomial expressions, and hence automatically have a balanced field. However, the 

shape functions of a quadrilateral elements possess an incomplete polynomial terms. The 



29 
 

complete polynomial expansion of interpolation function for triangular elements avoids the kinks 

formation and intrinsic directional bias [Cook et. al. (2007)]. 

The two dimensional finite element method with Constant Strain Triangle (CST) elements is 

adopted for analyses of the concrete beams. FEA of the TPB, D2 type notch beam (Table 3.2) 

having size of 188 mm (depth) x 94 mm (thickness) x 752 mm (length) with span of 564 mm is 

carried out. The material property of concrete as is shown in Table 3.4 is incorporated. 

Numerous numerical simulations of the four node bilinear and eight node bi-quadratic schemes 

with varying a/D have been performed and in each formulation, the result shows the kinks. Figs. 

3.6a-b respectively represent the two results of: (i) 391 number of elements and (ii) 2945 number 

of elements. It is clear that these results are due to kinks resulting from intrinsic directional bias 

in particular it becomes prevalent when smeared cracks propagate. D2 type beam having the 

same material property as that of Table 3.4 is analyzed numerically using the CST element with 

a/D = 0.25 for the various mesh size as shown in Fig. 3.7. Nowhere the kinks are observed in 

deformed meshes shown in Fig. 3.7. As a result, the performance of triangular elements has been 

found to be superior over the quadrilateral elements.  

Table 3.4: Material parameters for numerical simulation 

Material Parameters Value 

fck (MPa) 45 

E(N/m
2
) 2.5e10 

Poisson ratio (ν) 0.2 

ft (MPa) 3.5 

Fracture energy(N/m)  100 

 
 

                              (a)                                                               (b) 

Fig. 3.6 Deformed D2 beam for (a) four node bilinear scheme with a/D = 0.33 and (b) eight node 

bi-quadratic scheme with a/D = 0.25 
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                             (a)                                                         (b) 

   

                             (c)                                                         (d) 

Fig. 3.7 Deformed shapes obtained through CST elements using coarse to fine meshes for D2 

type beam with a/D = 0.25: (a) 3152 (b) 4563 (c) 6203 and (d) 7538 elements 

3.6 Numerical examples  

To demonstrate the effectiveness of the present formulation based on triangular element, the 

numerical analyses of the three benchmark problems are performed. In the first example, the 

numerical analysis has been carried out to predict the deflected profile of one set of TPB 

specimens free from the kinks, further the mesh sensitivity studies and the comparison of 

numerical result with that of reported literature [Sancho et. al. (2007)] is presented. In the 

second case, the numerical results predicted are compared with the literature results [Shailendra 

and Barai (2011)] for another set of TPB specimens. The third problem consists of the detailed 

numerical simulation of beams D1, D2, D3 (Table 3.2) including the mesh sensitivity study and 

the comparison of predicted result with the experimental response.  

3.6.1 Case 1: TPB beam specimen analysis [Sancho et. al. (2007)] 

The numerical simulation of TPB specimen is performed by incorporating the concrete material 

properties as mentioned in Table 3.5. The span (S), depth (W), width, and notch depth ratio 

(a/D) are 2000 mm, 500 mm, 100 mm and 0.4 respectively. Fig. 3.8a-c illustrates the FE model 

with 1196 to 6206 number of elements where all the deflected FEA models are free from kinks. 

Fig. 3.8d shows the mesh sensitivity study, in which the predicted load-load line displacement 
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response for different number of elements is found to be mesh insensitive. Fig. 3.9 compares the 

load-load line displacement response predicted by FEA using 3152 number of elements with the 

reported result by Sancho et. al. (2007). The numerically predicted response is in reasonably 

good agreement with the reported literature.  

Table 3.5: Material properties of TPB concrete beam 

Uni-axial compressive strength of concrete (MPa) 23 

Uni-axial tensile strength of concrete (MPa) 2.5 

Young‟s modulus of concrete (MPa) 20000 

Poison ratio  0.17 

Uni-axial ultimate compressive strain in concrete  0.0035 

Fracture energy (N/m) 100 

 

 

(a)       (b)  

 

(c)       (d) 

Fig.3.8 FEA mesh sensitivity study:  mesh with (a) 1196 (b) 3506 (c) 6206 number of elements 

(d) Comparison of load-load line displacement response for various mesh size 

 

Fig. 3.9 Comparison of numerical prediction of load-displacement with the study of Sancho et. 

al. (2007) 
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3.6.2 Case 2: TPB beam specimen analysis [Shailendra and Barai (2011)]  

Finite element simulation of the TPB beam specimen is performed by incorporating the material 

properties as given in Table 3.6. The span (S), depth (W), width and notch depth ratio (a/D) are 

1000 mm, 250 mm, 83 mm and 1/3 respectively. Fig. 3.10 compares the numerically predicted 

load-COD response with the reported literature [Shailendra and Barai (2011)]. A reasonably 

good agreement may be observed.      

Table 3.6: Material properties of TPB concrete beam 
Uni-axial compressive strength of concrete (MPa) 45 

Uni-axial tensile strength of concrete (MPa) 4.5 

Young‟s modulus of concrete (MPa) 32000 

Poison ratio  0.2 

Uni-axial ultimate compressive strain in concrete  0.0035 

Fracture energy (N/m) 167 

 

 
Fig.3.10 Numerical response comparison with the reported study 

 

3.6.3 Case 3: Finite Element modeling of various types of beam for a range of a/D  

The detailed finite element modeling of the geometrically similar TPB specimens D1, D2 and D3 

(Table 3.2) with the varying a/D have been carried out. The parameters such as load-load line 

displacement responses, load-COD responses, maximum loads, and displacements at maximum 

load are predicted in the numerical simulations. The numerically predicted responses are 

compared with the experimental results [Raghu Prasad (2009)]. Brief descriptions follow: 
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3.6.3.1 Mesh Sensitivity 

The previous section shows the performance of triangular elements to be better than the 

quadrilateral elements for inelastic analysis of fracture test on heterogeneous quasi-brittle 

materials like concrete. Hence, in this section mesh sensitivity study is limited to the CST 

elements. The concrete numerical modelling incorporating the strain based softening model 

yields the mesh sensitive results. Mesh insensitive solutions could be easily achieved by 

incorporating the fracture energy based softening model of concrete as proved in literature by 

Singh et. al. (2009) and Trivedi et. al. (2013). To study the mesh sensitivity, the numerical 

modelling of TPB beam (D1 type, Table 3.2) having size of 94 mm (depth) x 47.5 mm 

(thickness) x 375 mm (length) with span of 282 mm for a/D = 0.25 is performed by 

incorporating the fracture energy based softening model. The material property of plain concrete 

beam samples as shown in Table 3.4 is incorporated. In Fig. 3.11 the response of coarse mesh 

(nominal element size ~20 mm), intermediate mesh (nominal element size ~15 mm) and fine 

mesh (nominal element size ~8 mm) is found to be almost mesh insensitive within the reasonable 

numerical error band. Similar to D1 type beam, the numerical simulation using the nonlinear 

FEA is performed to establish the mesh sensitivity for D2 and D3 type beams by incorporating 

the unique concrete material behavior through fracture based softening model. Figs. 3.12–3.13 

present the detailed mesh insensitive results through the load-load point displacement of D2 

beams for a/D = 0.05 and 0.33. In Figs. 3.11–3.13, the numerically predicted responses for 

different mesh sizes such as 8 mm, 12 mm and 20 mm are shown. Excellent mesh insensitive 

results are observed in almost all the cases.  
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Fig. 3.11 Mesh sensitivity for D1 beam with a/D =0.25 through Load-displacement comparison 

   

  (a)                                                                        (b) 

Fig. 3.12 D2 beam load-displacement numerical response for a/D = 0.05, with aggregate size of 

(a) 12.5 mm (b) 20 mm 

   
(a)                                                                         (b) 

Fig. 3.13 D2 beam load-displacement numerical response for a/D = 0.33, with aggregate size of 

(a) 12.5 mm (b) 20 mm 
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3.6.3.2 Maximum load and corresponding displacement  

In Tables 3.7-3.9 the nomenclature employed for various types of beam is as explained in 

section 3.3 with additional numbers (e.g. 1,2,3) at the end indicating the the serial number of 

identical samples. The maximum loads predicted in the numerical analysis and recorded through 

load cell for D1, D2 and D3 type of beams are found to be in reasonably good agreement as 

shown in Tables 3.7-3.9. Also the central deflection of beams at maximum load for D1, D2 and 

D3 type beams, measured in the experiment is found to be in good agreement with the numerical 

prediction in most of the cases as clear from Tables 3.7-3.9, where the legends “Exp” and 

“FEM” designate the results of experiment and finite element method respectively. “Max” and 

“Disp” stand for the maximum and displacement respectively. 

Table 3.7 Experimental and Numerical results for D1 type beam 

 Exp. Max 

Load-kN 

FEM. Max 

Load-kN 

Exp. Disp at 

Max load-mm 

FEM. Disp at 

Max load-mm 

D1P12.5A1 6.89 

6.85 

 

0.15 

0.12 

 

D1P12.5A2 6.31 0.12 

D1P12.5A3 6.7 0.14 

D1P12.5B2 3.89 

3.1 

 

0.115 

0.092 

 

D1P12.5B3 3.6 0.09 

D1T12.5B2 3.77 - 

D1T12.5B3 3.58 0.13 

D1P12.5C1 2.4 

2.53 

 

0.10 

0.082 

 

D1P12.5C2 2.5 0.05 

D1P12.5C3 2.6 - 

D1T12.5C1 3.08 0.08 

D1T12.5C2 3.48 0.113 

D1T12.5C3 3.15 0.108 

D1P20A2 7.5 

7.24 

0.061 

0.1 D1T20A2 6.49 - 

D1P20B1 3.2 

3.4 

 

0.05 

0.09 

 

D1P20B3 3.24 0.043 

D1T20B1 3.2 - 

D1T20B2 3.48 - 

D1T20B3 3.24 0.09 

D1P20C1 2.7 

2.8 

 

0.11 

0.083 

 

D1P20C2 2.69 0.053 

D1P20C3 2.73 - 

D1T20C2 2.63 0.05 

D1T20C3 3.1 0.12 
 

 



36 
 

Table 3.8 Experimental and Numerical results for D2 type beam 

 

Exp. Max 

Load-kN 

FEM. Max 

Load-kN 

Exp. Disp at Max 

load-mm 

FEM. Disp at 

Max load-mm 

D2P12.5A1 21  

25 

 

0.2  

0.14 D2T12.5A2 25.2 - 

D2T12.5A3 26 - 

D2P12.5B1 10.33  

 

10.4 

 

0.13  

 

0.105 
D2P12.5B2 10.48 0.12 

D2P12.5B3 10.57 0.108 

D2T12.5B1 9.3 0.11 

D2T12.5B2 9.8 - 

D2T12.5B3 10.65 - 

D2P12.5C1 9.35  

 

8.3 

 

0.16  

 

0.11 

 

 

D2P12.5C2 8.7 0.18 

D2P12.5C3 9.7 0.13 

D2T12.5C1 7.5 0.158 

D2T12.5C3 7 - 

D2P20A1 23.7 27 - 0.17 

D2P20B2 7.4  

11.28 

 

0.19  

0.13 

 
D2T20B2 9.5 0.11 

D2T20B3 9.8 - 

D2P20C2 8  

9.16 

 

0.2  

0.14 

 
D2P20C3 8 0.17 

D2T20C1 5.54 0.2 

 

Table 3.9   Experimental and Numerical results for D3 type beam 

 Exp. Max 

Load-kN 

FEM. Max 

Load-kN 

Exp. Disp at 

Max load-mm 

FEM. Disp at 

Max load-mm 

D3T20B1 110.58 

114 

 

0.36 

0.3 

 

D3T20B2 101 0.4 

D3T20B3 103.4 0.32 

D3T20C1 98.4 

93 

 

0.28 

0.25 

 

D3T20C2 80.38 0.3 

D3T20C3 84.56 0.33 

3.6.3.3 Load-Load Point Displacement and Load-Crack Opening Displacement (COD) 

response 

Figs. 3.14-3.15 show the response of the D1 beam cast with maximum aggregate size of 12.5 

mm and 20 mm for  a/D = 0.25. Similarly Figs. 3.16-3.17 illustrate the response of the D1 beam 

cast with maximum aggregate size of 12.5 mm and 20 mm for a/D = 0.33. Fig. 3.18a and Fig. 

3.18b show the load vs. load point displacement response of D2 beam cast with maximum 

aggregate size of 12.5 mm for a/D = 0.05 and 0.25 respectively. Fig. 3.19a and Fig. 3.19b  show 

the load vs. COD response of D3 beam cast with maximum aggregate size of 20 mm for a/D = 
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0.25 and 0.33 respectively. D3 specimen being largest among all behaves in the brittle manner as 

clear from Fig. 3.19a-b. The details of nomenclatures used in Figs. 3.14-3.19 are mentioned in 

Table 3.10.  

In Figs. 3.14-3.19, the pre peak numerical responses of load vs. load line displacement curves 

and load-COD curves are found to be in excellent agreement with that of experimental 

prediction. Also in Figs. 3.14-3.19, the initial post peak response of numerically predicted and 

experimentally observed plots of load vs. load point vertical displacement and load vs. COD 

responses are in reasonably good agreement. RILEM approach was originated from the fictitious 

crack model. Therefore, fictitious crack model with an assumed softening as described in 

Section 3.4 is used in the present study. RILEM approach estimates the fracture energy, for a 

projected ligament through load vs. load line displacement curve, in an average sense. The 

fracture energy is governed by failure load of the test specimen. Therefore, initial tangent on post 

peak response of load vs. load line displacement is plotted in a consistent manner to assess the 

ultimate displacement. The technique of initial tangent on post peak response (load-deflection) 

and the curtailment of load-deflection curve are quite common for assessment of ultimate 

displacement. The ultimate displacement observed from the initial tangent on post peak response 

of load vs. load line displacement is utilized for the evaluation of RILEM fracture energy.  
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Table: 3.10 Description of terms used in Figs. 3.14-3.19 

D1-12.5num Numerical result with FE mesh size ~ 8 mm of D1 cast with maximum aggregate size of 12.5 

mm  

D1-12.5exp1 Experimental result of I identical D1 beam cast with maximum aggregate size of 12.5 mm 

D1-12.5exp2 Experimental result of II identical D1 beam cast with maximum aggregate size of 12.5 mm 

D1-12.5exp3 Experimental result of III identical D1 beam cast with maximum aggregate size of 12.5 mm 

D1-20num Numerical result with FE mesh size ~ 10 mm of D1 cast with maximum aggregate size of 20 

mm  

D1-20exp1 Experimental result of Ist identical D1 beam cast with maximum aggregate size of 20 mm 

D1-20exp2 Experimental result of Ist identical D1 beam cast with maximum aggregate size of 20 mm 

D1-20exp3 Experimental result of Ist identical D1 beam cast with maximum aggregate size of 20 mm 

D2-12.5num1 Numerical result with FE mesh size ~ 10 mm of D2 cast with maximum aggregate size of 12.5 

mm 

D2-12.5num2 Numerical result with FE mesh size ~ 12 mm of D2 cast with maximum aggregate size of 12.5 

mm 

D2-12.5exp Experimental result of D2 beam cast with maximum aggregate size of 12.5 mm 

D2-12.5num Numerical result with FE mesh size ~ 12 mm of D2 cast with maximum aggregate size of 12.5 

mm 

D2-12.5exp1 Experimental result of I identical D2 beam cast with maximum aggregate size of 12.5 mm 

D2-12.5exp2 Experimental result of II identical D2 beam cast with maximum aggregate size of 12.5 mm 

D3-20num Numerical result with FE mesh size ~ 20 mm of D3 cast with maximum aggregate size of 20 

mm 

D3-20exp1 Experimental result of I identical D3 beam cast with maximum aggregate size of 20 mm 

D3-20exp2 Experimental result of II identical D3 beam cast with maximum aggregate size of 20 mm 

D3-20exp3 Experimental result of III identical D3 beam cast with maximum aggregate size of 20 mm 

 

   
 

                             (a)                                                                       (b) 

Fig. 3.14 (a) load-displacement and (b) load-COD response of D1 beam for a/D = 0.25(cast with 

maximum aggregate size of 12.5 mm) 
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                                   (a)                                                                       (b) 

Fig. 3.15 (a) load-displacement and (b) load-COD response of D1 beam for a/D = 0.25(cast with 

maximum aggregate size of 20 mm) 

   
                                    (a)                                                                       (b) 

Fig. 3.16 (a) load-displacement and (b) load-COD response of D1 beam for a/D = 0.33 (cast with 

maximum aggregate size of 12.5 mm) 

   
(a) (b) 

Fig. 3.17 (a) load-displacement and (b) load-COD response of D1 beam for a/D = 0.33 (cast with 

maximum aggregate size of 20 mm) 
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                                  (a)                                                                       (b) 

Fig. 3.18. Load-displacement response of D2 beam (cast with maximum aggregate size of 20 

mm) for (a) a/D = 0.05 and (b) a/D = 0.25 

   

                              (a)                                                                              (b) 

Fig. 3.19 Load-COD response of D3 beam for (a) a/D = 0.25 and (b) a/D = 0.33 

 

 

3.7 Chapter closure  

A number of two dimensional numerical simulations of TPB specimens have been performed by 

non linear FEA to characterize the concrete fracture phenomenon. The performance of triangular 

elements has been investigated, and observed to be superior to the quadrilateral elements for the 

simulations of concrete fracture behavior in TPB specimens. Mesh sensitivity, which is an 

extremely important issue in concrete due to its post peak softening, has been addressed. RILEM 

fracture energy values evaluated from load vs. load line displacement curve of TPB specimens 
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shows size effects as presented in next chapter. Therefore, next chapter mainly deals with the 

investigation of size independent fracture energy of concrete.   
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Chapter 4 

ASSESSMENT  OF  SIZE  INDEPENDENT  FRACTURE  ENERGY  

4.1 Theoretical background  

The fracture energy of concrete is the most important parameter in the fracture behaviour of 

concrete that describes the mechanism of cracking. The commonly used method for measuring 

the fracture energy is the work of fracture method recommended by RILEM [Shah et. al. (1995), 

Bazant and Planas (1998)] which suffers from size effect. Hence it is important to investigate 

the fracture energy which is free from size effect. The local fracture energy model [Duan et. al. 

(2003) and Wittmann (2002)] is the popular method for measuring the size independent fracture 

energy of concrete. The other two methods based on energy release rate and averaging RILEM 

fracture energy values are developed for the evaluation of the size independent fracture energy of 

concrete. Brief descriptions of three methods follow: 

4.1.1 Proposed methodology using RILEM fracture test  

RILEM technical committee recommended the guidelines for determination of fracture energy of 

cementitious materials by conducting TPB test on notched beam [Shah et. al. (1995), and 

Shailendra and Barai (2011)] as shown in Fig.3.1. The fracture behaviour of concrete 

characterized by the RILEM measures the averaged fracture energy over the entire projected 

ligament area. According to RILEM recommendation, the fracture energy (Gf) is evaluated by 

dividing the total applied energy with the projected ligament area. Therefore, for a specimen with 

a depth D and an initial crack length a as shown in Fig. 3.1, the Gf is given as: 


  Pd

taD
DG f

)(

1
),(                           Eq. (4.1)  
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where, t is the specimen thickness, α = a/D, P is the applied load and δ is the displacement at the 

loading point. Let us consider geometrically similar TPB specimens with depth D1, D2.....Dn. 

Each specimen having different notch to depth ratios as: α = α1, α2.....αm. The α values are to be 

chosen in such a way that the crack tip is sufficiently away from the boundary. In other words, α 

value should not be too small or high [Duan et. al. (2003)]. RILEM fracture energy values 

suffers from size effect. The size independent average fracture energy GF  is approximated as: 

      









),(
1

)(
11

jif

n

j

m

i
F DG

mn
averageG 

             

Eq. (4.2)

   

 

   

 

Using the proposed Eq. 4.2 the size independent fracture energy for around 40 TPB specimens 

with α = 0.25 and 0.33 is estimated and % Coefficient of Variance (COV) is shown in results.  

4.1.2 Bi-linear approximation 

 In bi-linear approximation, the fracture energy at crack tip known as local fracture energy (gf) is 

assumed to vary with ligament in a bilinear manner. Local fracture energy method addressed the 

effect of the free boundary of the specimen on the fracture process zone ahead of a real crack in a 

concrete structure [Duan et. al. (2003), Karihaloo (2003) and Cifuentes et. al. (2013)]. The 

energy required to create a fresh crack decreases as the crack approaches the free boundary. 

Initially, when the crack grows from a pre-existing notch, the rate of decrease is moderate, 

almost a constant, but it accelerates as the crack approaches the end of the un-cracked ligament 

as reported by Karihaloo (2003) and Cifuentes et. al. (2013). The local fracture energy and the 

FPZ size were found to decrease rapidly as the crack approaches the back surface of the 

specimen. The maximum FPZ size is attained when the crack is far away from the boundary. In a 

large specimen, a region ahead of crack tip exists where the FPZ size is relatively constant 

resulting in a constant gf (or GF). A bilinear approximation is represented in Fig.4.1 to simplify 

the boundary-induced reduction in the fracture energy. This bilinear function consists of a 
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horizontal line with the value of the size independent fracture energy and a descending branch 

that reduces to zero at the back surface of the specimen. GF shows a transition from a constant 

value to the rapid decrease at the transition ligament length al
*
, which is given by the intersection 

of these two lines. On the basis of the boundary effect method of Wittmann (2002), the 

measured RILEM fracture energy (Gf) represents the average of the local fracture energy 

function over the ligament area (dotted line in Fig.4.1). The relationship between all the involved 

variables is given by: 






















)/1(2

/
1

)(

)/( 0
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aD

dxxg

DaG l
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1 – a/D > 


la /D  Eq. (4.3)

   

 

Da

Da
G

aD

dxxg

DaG
l

F

aD

f

f
/2

/1
)(

)/( 0






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

  1 – a/D ≤ 


la /D   Eq. (4.4)

   

 

 

 
 

Fig.4.1 Local fracture energy model of Wittmann (2002) 

where, D is the total depth of the specimens and a is the initial notch depth. To obtain the values 

of GF of a concrete, Gf of the specimens of different sizes for a range of the notch to depth (a/D) 

ratios is first determined using Eqs.4.3-4.4. The number of the measured Gf(a/D) values is, 

therefore, much larger than the two unknowns, GF  and a
*

l in Eqs.4.3-4.4. This gives an over-

determined system of equations which are solved by a least square method to obtain the best 

estimates of GF and is shown later in this chapter.  
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4.1.3 Energy release rate  

Although the size independent fracture energy can be estimated by extrapolating the results of 

research investigations on laboratory size specimens but the range of specimen sizes is still being 

debated among various researchers. The concrete material ahead of crack tip develops relatively 

large FPZ which undergoes progressive softening due to micro-cracking. The assumption made 

in this approach is that the fracture energy is dissipated in the fracture process zone which exists 

in the uncracked ligament of TPB specimens as reported by Muralidhara (2010). Based on the 

RILEM fracture energy values for various a/D ratios, a relationship between fracture energy 

release rate and the uncracked ligament length is developed to estimate GF. From the developed 

relationship, the fracture energy is found to reach almost a constant value implying that the 

fracture energy remains almost constant at larger ligament lengths. In other words, when 

ligament length becomes sufficiently large to accommodate the fully developed FPZ, fracture 

energy becomes constant being independent of specimen size and a/D. The fracture energy is 

proportional to the length of the FPZ size (lFPZ) for a given strength of concrete assuming 

constant width of FPZ. The relationship is given as: 

                                                                   fG  α FPZl      Eq. (4.5)

   

 

 

Similarly uncracked ligament length:  (D- a) α D      Eq. (4.6)

   

 

 

From Eqs.4.5-4.6; 

 

D

l
k

aD

G
FPZf




 

where k is a constant, and 
aD

G f


 is proportional to

D

lFPZ . A curve of 
aD

G f


versus (D- a) is 

plotted (Fig.4.2) from the RILEM fracture energy values and plot is observed to follow a power 

law and almost asymptotic with the axis representing (D- a) for larger values of (D- a). The 

equation of the curve is: 
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bf
aDC

aD

G



)(        Eq. (4.7)

   

 

In which C and b are constants. As the un-cracked ligament length increases Gf /(D- a) almost 

attains a constant value as is clear from Fig.4.2. The size independent fracture energy is 

estimated by the expression [Muralidhara et. al. (2013)]:  

eL

elaD

f

F aD
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G
G arg

)arg(

)( 

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



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      Eq. (4.8)

   

 

 
 

Fig.4.2 Typical curve following the power law 

4.2 RILEM fracture energy values  

The RILEM fracture test on geometrically similar (constant length to depth ratio) TPB plain 

concrete beams were conducted by Raghu Prasad (2009) and Muralidhara (2010). The present 

work involves the numerical modelling of those tested TPB beams for investigation of size 

independent fracture energy. Finite element method with CST elements is adopted for analyses 

of the concrete beams. The material behaviour is incorporated by smeared crack approach based 

on fracture energy cracking criterion in the analysis as explained in previous chapter using Table 

3.4. The finite element modelling of the TPB geometrical specimens (Table 3.2) with the a/D = 

0.05, 0.25 and 0.33 have been carried out. The nomenclature employed for various types of beam 
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in Table 4.1-4.3 is same as that explained in Chapter 3. Based on the numerically predicted and 

experimentally observed load vs. load point displacement response of TPB specimens shown in 

previous chapter, the RILEM fracture energy (Gf) values are evaluated. The fracture energy is 

governed by failure load of the test specimen. Therefore, initial tangent on post peak response of 

load vs. load line displacement is plotted in a consistent manner to assess the ultimate 

displacement, which is utilized for the evaluation of RILEM fracture energy. The fracture energy 

estimated through the load vs. load line displacement response obtained from the finite element 

simulation and set of experiments for D1, D2 and D3 type beam is presented in Tables 4.1-4.3 

where, the “Exp” and “FEM” designate the results of experiment and finite element method 

respectively.  RILEM fracture energy values are observed to be size dependent as is clear from 

Tables 4.1-4.3. 

Table 4.1 Experimental and Numerical results for D1 type beam 

 

Exp 

Gf(N/m) 

FEM  

Gf(N/m) 

D1P12.5A1 212 

213 

 

D1P12.5A2 - 

D1P12.5A3 - 

D1P12.5B2 122 

136 

 

D1P12.5B3 116 

D1T12.5B2  

D1T12.5B3 162 

D1P12.5C1 107 

130 

 

D1P12.5C2 121 

D1P12.5C3 - 

D1T12.5C1 142 

D1T12.5C2 150 

D1T12.5C3 144 

D1P20A2 - 

240 D1T20A2 - 

D1P20B1 212 

154 

 

D1P20B3 185 

D1T20B1 - 

D1T20B2 - 

D1T20B3 146 

D1P20C1 153 

152 

 

D1P20C2 159 

D1P20C3 - 

D1T20C2 - 

D1T20C3 137 
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Table 4.2 Experimental and Numerical results for D2 type beam 

 Exp 

Gf(N/m) 

FEM 

Gf(N/m) 

D2P12.5A1 -  

200 

 
D2T12.5A2 - 

D2T12.5A3 - 

D2P12.5B1 130  

 

121 

 

 

 

D2P12.5B2 114 

D2P12.5B3 141 

D2T12.5B1 122 

D2T12.5B2 - 

D2T12.5B3 - 

D2P12.5C1 132  

 

113 

 

D2P12.5C2 125 

D2P12.5C3 135 

D2T12.5C1 140 

D2T12.5C3 - 

D2P20A1 - 226 

D2P20B2 144  

123 

 
D2T20B2 151 

D2T20B3 - 

D2P20C2 140  

118 

 
D2P20C3 158 

D2T20C1 85 

 

Table 4.3 Experimental and Numerical results for D3 type beam 

 Exp 

Gf(N/m) 

FEM 

Gf(N/m) 

D3T20B1 168 

83 

 

D3T20B2 109 

D3T20B3 124 

D3T20C1 145 

64 

 

D3T20C2 95 

D3T20C3 141 

 

4.3 Size independent fracture energy: Averaging of Gf  

The limited number of D3 specimens were tested due to its heavy weight and handling issues. 

Hence, focus has been put mainly on D1 and D2 beams having plenty of data sets to estimate the 

size independent fracture energy. Too small a/D and too large a/D are not preferable for concrete 

fracture test, which is reported in literature by Duan et. al. (2003). Since the a/D = 0.25 and 0.33 

ensures crack tip away from the boundary; it is, therefore best suited to estimate the size 
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independent fracture energy. RILEM fracture energy predicted numerically and experimentally 

is presented in Fig.4.3.  Averaging the numerical values of RILEM fracture energy of all the 

specimens with a/D = 0.25 and 0.33, GF is found to be 134 N/m and 128 N/m respectively shown 

in Table 4.4. Similarly the various band of the size independent fracture energy along with COV 

are estimated by averaging the RILEM fracture energy presented in Table 4.4.  

 

Fig. 4.3 Experimentally and numerically observed RILEM fracture energy considering all data 

sets 

Table 4.4: Assessment of size independent fracture energy (GF) 

Combinations 

Mean fracture energy(N/m) =GF and 

Coefficient of variation = COV 

a/D = 0.25 a/D = 0.33 

GF % COV GF % COV 

All Numerical results 134 11.5 128 13.7 

Numerical results excluding D3 123 21 115 28 

All experimental results 145 8.6 139 10 

Experimental results excluding outliers 138 5.5 137 6.7 

Experimental results excluding outliers and D3 139 5.8 140 5.8 

Experimental and Numerical results 131 15 126 20 

Experimental and Numerical results excluding outliers and D3 136 11 134 10 

4.4 Size Independent fracture energy: Bilinear approximation 

The RILEM fracture energy for around 49 beam specimens having three different depths and 

three different a/D ratios are determined as illustrated in section 4.1 using Eq. 4.1 . In Eqs. 4.3-
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4.4 the number of unknowns are two, namely, GF and a
*

l , whereas the measured Gf(a/D) values 

are more. For this reason, the over determined system of equations is solved by a least square 

method to obtain the best estimates of GF. Tables 4.5-4.7 show the GF values with COV for 

various combinations of a/D values. Too small a/D is not preferable for concrete fracture test as 

reported in literature [Duan et. al. (2003)] which is clear from Table 4.7 where the GF value for 

a/D =0.05 is observed to be 215 N/m with high COV.  

Table 4.5: Estimated GF from experimental Gf including all outlier 

D-mm 

Gf (N/m) values for 

a/D=0.25 

Gf (N/m) values for 

a/D= 0.33 

Gf (N/m) values for a/D= 0.25 and 0.33 

94 122,116,162, 

212,185,188,89 
 

107,121,170,142,150, 

144,153,159,164,137 
 

122,116,162, 212,185,188,89, 107, 

121,170,142,150,144,153,159,164,137 

188 112,114,141,122, 

174,198,144,151,190 
 

132,125,135,140, 

159,140,158,85 
 

112,114,141,122,174,198,144,151,190, 

132,125,135,140,159,140,158,85 

750 168,109,124 145,95,141 168,109,124, 145,95,141 

GF (N/m) 137 124 132  

% COV 18 11.4 10.7 

Table 4.6: Estimated GF from experimental Gf excluding outlier 

D-mm 

Gf (N/m) values 

for 

a/D= 0.25 

Gf (N/m) values 

for 

a/D= 0.33 

Gf (N/m) values for 

a/D= 0.05, 0.25 and 

0.33 

Gf (N/m) range for 

a/D= 0.25 and 0.33 

94 122,116,162, 

212,185 
 

107,121,142,150, 

144,153,159,137 
 

212,179,122,116,162, 

212,185,107,121,142, 

150,144,153,159,137 

122,116,162, 

212,185,107,121,142, 

150,144,153,159,137 

188 114,141,122,144, 

151 

 
 

132,125,135,140, 

158,85 
 

114,141,122,144,151, 

132,125,135,140,158, 

85 

114,141,122,144,151, 

132,125,135,140,158,8

5 

750 168,109,124 145,95,141 168,109,124, 

145,95,141 

168,109,124, 

145,95,141 

GF (N/m) 124 124 127 126 

% COV 18 11.4 11 11.2 
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Table 4.7: Estimated GF from experimental Gf and FEA Gf excluding outlier 

D-mm 

Gf (N/m) 

values for 

a/D= 0.05 

Gf (N/m) 

values for 

a/D= 0.25 

Gf (N/m) values 

for 

a/D= 0.33 

Gf (N/m) values for 

a/D= 0.05, 0.25 and 

0.33 

Gf (N/m) values for 

a/D= 0.25 and 0.33 

94 213,240, 

212,179 

136,154, 

122,116, 

162,212, 

185 
 

130,152,107, 

121,142,150, 

144,153,159, 

137 
 

213,240,212,179, 

136,154,122,116, 

162,212,185,130,152, 

107,121,142,150,144, 

153,159,137 

136,154,122,116, 

162,212,185,130, 

152,107,121,142, 

150,144,153,159, 

137 

188 200,226 121,123,114, 

141,122, 

144,151 
 

113,118,132, 

125,135,140, 

158,85 
 

200,226,121,123,114, 

141,122,144,151,113, 

118,132,125,135,140, 

158,85 

121,123,114,141, 

122,144,151,113, 

118,132,125,135, 

140,158,85 

750 - 83,168, 

109,124 
 

64,145,95, 

141 
 

83,168,109,124, 

64,145,95,141 

83,168,109,124, 

64,145,95,141 

GF (N/m) 215 113 110 125 113 

% COV 23 15 12.8 12.4 10 

4.5 Size Independent fracture energy: Energy release rate  

The estimated RILEM fracture energy (Gf ) and 
aD

G f


values of about 49 beams, having three 

different depths and three different a/D ratios (Table 3.2), are shown in Table 4.8. The size 

independent fracture energy GF is evaluated based on the relationship between 
aD

G f


versus (D - 

a).
aD

G f


Versus (D - a) data points are plotted and relationship between them is derived. 

Fig.4.4a depicts the relationship between Gf /(D- a) and (D- a) from experimental and FEA data 

sets of Gf whereas Fig. 4.4b illustrates the same for experimental data sets of Gf  only.  Two 

power law equations generated by best fit of these data in Figs. 4.4a-b are as follows: 

13.1)(7.260 


aD
aD

G f
    Eq. (4.9) 

06.1)(9.192 


aD
aD

G f
    Eq. (4.10) 
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From the 
aD

G f


versus (D- a) data, slope 

)(

))/((

aDd

aDGd f





 

is calculated by differentiating 

Eqs.4.9-4.10, which are extrapolated beyond test range till (D - a) = 1800. Tables 4.9-4.10 show 

the values of slope and fracture energy for different ligament lengths (D - a) for the datasets in 

Figs.4.4a-b respectively. Data of Tables 4.9-4.10 are plotted in the form of variation of  

)(

))/((

aDd

aDGd f




 versus (D - a) and shown in Fig. 4.5a-b. From Fig. 4.5a-b, the rate of decrease 

of slope of the curve approaches to almost zero and hence the Gf / (D - a) (i.e. fracture energy 

release rate) is considered almost constant at large values of (D - a). This implies that the fracture 

energy variation over larger values of (D - a) is negligibly small. In other words, the fracture 

energy reaches almost a constant value. This is due to the fact that when ligament length 

becomes sufficiently large to accommodate the fully developed FPZ, fracture energy becomes 

constant being independent of specimen size and a/D. From Fig. 4.5a-b it is clear that the slope 

almost tends to zero for ligament (D - a) size of around 1000 mm.   
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Table 4.8: Numerically and experimentally observed values of Gf and Gf/D-a 

 Beam type a/D D-a 

(mm) 

Gf 

(N/m) 

Gf/D-

a(N/m
2
) 

 

 

 

 

 

 

 

FEA 

D1P12.5A 0.05 89.3 213 2.385218 

D1P12.5B 0.25 70.5 136 1.929078 

D1P12.5C 0.33 62.98 130 2.064147 

D1P20A 0.05 89.3 240 2.68757 

D1T20B 0.25 70.5 154 2.184397 

D1P20C 0.33 62.98 152 2.413465 

D2T12.5A 0.05 178.6 200 1.119821 

D2T12.5B 0.25 141 121 0.858156 

D2P12.5C 0.33 125.96 113 0.89711 

D2P20A 0.05 178.6 226 1.265398 

D2P20B 0.25 141 123 0.87234 

D2T20C 0.33 125.96 118 0.936805 

D3T20B 0.25 562.5 83 0.147556 

D3T20C 0.33 502.5 64 0.127363 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental 

D1P12.5A1 0.05 89.3 212 2.37402 

D1P12.5A2 0.05 89.3 179 2.004479 

D1P12.5B2 0.25 70.5 122 1.730496 

D1P12.5B3 0.25 70.5 116 1.64539 

D1T12.5B3 0.25 70.5 162 2.297872 

D1P20B1 0.25 70.5 212 3.007092 

D1P20B3 0.25 70.5 185 2.624113 

D1T20B3 0.25 70.5 146 2.070922 

D1P12.5C1 0.33 62.98 107 1.698952 

D1P12.5C2 0.33 62.98 121 1.921245 

D1T12.5C1 0.33 62.98 142 2.254684 

D1T12.5C2 0.33 62.98 150 2.381708 

D1T12.5C3 0.33 62.98 144 2.28644 

D1P20C1 0.33 62.98 153 2.429343 

D1P20C2 0.33 62.98 159 2.524611 

D1T20C3 0.33 62.98 137 2.175294 

D2P12.5B2 0.25 141 114 0.808511 

D2P12.5B3 0.25 141 141 1 

D2T12.5B1 0.25 141 122 0.865248 

D2P12.5B1 0.25 141 130 0.921986 

D2P20B2 0.25 141 144 1.021277 

D2T20B2 0.25 141 151 1.070922 

D2P12.5C1 0.33 125.96 132 1.047952 

D2P12.5C2 0.33 125.96 125 0.992379 

D2P12.5C3 0.33 125.96 135 1.071769 

D2T12.5C1 0.33 125.96 140 1.111464 

D2P20C2 0.33 125.96 140 1.111464 

D2P20C3 0.33 125.96 158 1.254366 

D2T20C1 0.33 125.96 85 0.674817 

D3T20B1 0.25 562.5 168 0.298667 

D3T20B2 0.25 562.5 109 0.193778 

D3T20B3 0.25 562.5 124 0.220444 

D3T20C1 0.33 502.5 145 0.288557 

D3T20C2 0.33 502.5 95 0.189055 

D3T20C3 0.33 502.5 141 0.280597 
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(a)      (b) 

Fig.4.4 Plot of Gf /(D-a) versus (D-a) consisting (a) Experimental and FEA Gf  data (b) Purely 

experimental Gf  data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = 260.72x-1.13

0
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y = 192.9x-1.06

0

1

2

3
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G
f/

D
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Uncracked Ligament(D-a)

D-a 

(mm) 

Gf  

(N/m) 

Gf/D-a  

(N/m
2
) 

d{Gf/D-

a}/d(D-a) 

(N/m
3
) 

40 161.3887 4.034719 -0.08992 

50 156.7743 3.135486 -0.04959 

70 150.0646 2.14378 -0.0265 

90 145.2411 1.61379 -0.0143 

125 139.1691 1.113353 -0.00892 

140 137.1338 0.979527 -0.00542 

200 130.9203 0.654602 -0.00241 

300 124.1982 0.413994 -0.00115 

400 119.6391 0.299098 -0.00067 

500 116.2184 0.232437 -0.00043 

600 113.4962 0.18916 -0.0003 

700 111.2444 0.158921 -0.00022 

800 109.33 0.136662 -0.00017 

900 107.6687 0.119632 -0.00013 

1000 106.204 0.106204 -9.1E-05 

1300 102.6428 0.078956 -5.9E-05 

1500 100.751 0.067167 -4.2E-05 

D-a 

(mm) 

Gf 

(N/m) 

Gf/D-a 

(N/m
2
) 

d{Gf/D-

a}/d(D-a) 

(N/m
3
) 

40 154.5997 3.864992 -0.08141 

50 152.5436 3.050872 -0.04576 

70 149.4949 2.135641 -0.02497 

90 147.2576 1.636195 -0.01375 

125 144.3835 1.155068 -0.00872 

140 143.4051 1.024322 -0.00537 

200 140.3687 0.701844 -0.00245 

300 136.9951 0.45665 -0.0012 

400 134.6507 0.336627 -0.00071 

500 132.8599 0.26572 -0.00047 

600 131.4145 0.219024 -0.00033 

700 130.2046 0.186007 -0.00025 

800 129.1656 0.161457 -0.00019 

900 128.256 0.142507 -0.00015 

1000 127.4478 0.127448 -0.0001 

1300 125.4572 0.096506 -6.8E-05 

1500 124.3846 0.082923 -4.9E-05 

1800 123.0314 0.068351 -3.6E-05 

Table 4.9: Values of slope and fracture 

energy for different values of ligament 

length using the curve in Fig. 4.4a. 

Table 4.10: Values of slope and fracture 

energy for different values of ligament 

length using the curve in Fig. 4.4b. 
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(a)     (b) 

Fig.4.5 A plot of d{Gf/(D-a)}/d(D-a) versus (D-a) from the results of (a) Table 4.9 (b) Table 4.10 

4.6 Chapter observations and closure  

The range of size independent fracture energy (GF) from the bi-linear approximation is observed 

to be in range 113-126 N/m. Through the concept of energy release rate, GF is estimated to be in 

a range of 106-125 N/m which is valid beyond the test range (up-to 2000 mm). Another 

approach, based on averaging of RILEM fracture energy, evaluates GF in a range of 126-136 

N/m. It is seen that fracture energy values evaluated by these three different methods are 

reasonably close to each other. The prediction of fracture parameters based on various size effect 

laws are shown in next chapter. 
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Chapter 5 

PREDICTION  OF  FRACTURE  PARAMETERS  THROUGH  SIZE  

EFFECT  

5.1 Introduction to size effect law 

The structural size effect is the most important issue in the fracture mechanics of quasi-brittle 

material. Therefore, it is important to relate the size effect behavior to the fracture properties of 

material. The size effect law for geometrically similar specimens containing a pre-existing stress 

free crack represents a smooth transition from a horizontal line for small sizes (corresponding to 

plasticity or strength theory) to an inclined asymptote of slope (-1/2) for large-sizes 

(corresponding to LEFM). It is expressed by the Bazant size effect law [Bazant (1985), Shah et. 

al. (1995) and Bazant and Planas (1998)]: 

0

1
D

D

Bf t
Nu



   Eq.(5.1) 

Here, Nu  is the nominal stress at failure of a structure. Bft and the transitional structure size D0 

are empirical parameters to be identified by optimum fitting of measured ζNu values over a broad 

size range. The coefficients of Eq.5.1 have been shown to be approximately related to the LEFM 

fracture characteristics as follows [Bazant (1985), Shah et. al. (1995) and Bazant and Planas 

(1998) ]: 

 

Dgcg

EG

f

f

Nu

00 
    Eq. (5.2) 

 

in which g0 = g(α0) = k0
2 

=
 
dimensionless energy release rate function of linear elastic fracture 

mechanics (LEFM) and g0  = g(α0) = 2k0k0, k0 = k(α0). The function k(α) introduces the effect of 
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geometry. The nominal strength is measured from the size effect tests. Further, the fracture 

parameters can be estimated using the above equations and are expressed in terms of size effect 

parameters Bft , D0 and LEFM function g(α0) as:  

E

kDBf

E

K
G tIc

f

2

00

22 )(


  

0

0

0

2
D

k

k
c f




  

 

00kDBfK tIc 
  Eq. (5.3) 

 

where Gf , cf and KIc are fracture energy, effective length of fracture process zone and critical 

stress intensity factor. The size effect involves the testing of a number of geometrically similar 

notched specimens for the estimation of peak load. RILEM recommended that the size effect can 

be analyzed by Bazant size effect laws and Jenq-Shah model. Based on this, the fracture 

parameters can be estimated using the Eq. 5.3. The assessment of fracture parameters from 

Bazant size effect laws based on the analysis of linear regression I, linear regression II, and 

weighted linear regression and Jenq-Shah model are as discussed below.   

5.1.1 Linear regression I and II based on Bazant size effect law 

The linear regression I and linear regression II are the best approach to identify the empirical 

parameters D0 and Bft . The dependency of nominal strength ζNu on characteristic dimension of 

specimen D for geometrically similar structure is estimated from the size effect experiments. 

From measurement, a series of nominal strength values ζNuk corresponding to the sizes Dk (for k 

= 1,2,…n, where n is number of test conducted) can be estimated. The size effect can be 

algebraically rearranged to linear regressions I as follow [Bazant (1985), Bazant and Planas 

(1998)]:  

 

CAXY 
 

Eq. (5.4) 



58 
 

 

 

In which X = D; Y = (1/ ζNu
2
) ; Bft = 1/√C ; D0 = C/A. From Eq. 5.3 the fracture parameters are 

expressed as: 
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Eq. (5.5) 

 

Another algebraic rearrangement of size effect from linear regression II is as follow : 

CXAY    Eq. (5.1.3) 

In which X' = (1/D'); Y = (1/( ζNu
2
D')) ; Bft = 1/√A' ; D0 = A'/C'. From Eq. 5.3 the fracture 

parameters are expressed as: 
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Eq. (5.6) 

 

5.1.2 Weighted linear regression based on Bazant size effect law 

The maximum load P1, P2….Pn for the specimens of various sizes of D1,D2….Dn are required to 

estimate the fracture parameters. The P1
0
, P2

0
……….. Pn

0
 are the corrected maximum load by 

taking in account the weight of the specimen. Here n is the number of test conducted. For j = 

1,2…..n, a linear regression Y = ABX + CB [Shah et. al. (1995)] can be plotted by introducing the 

Xj , Yj , the slope AB and the intercept CB given as : 
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XAYC BB    Eq. (5.9) 
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Where the Eq. 5.10 represents the centroid of all data points. The geometric factor g(α0) is 

calculated as:  

2

010

2

0 )](5.1[)(  g
D
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g 




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


  Eq. (5.11) 

 

Where α0 = a/D and S is span of beam. The value of g1(α0) is determined based on ratios of S/D 

and is available [Shah et. al. (1995) and Bazant and Planas (1998)]. The values of material 

fracture energy Gf is determined as: 

B

f
EA

g
G

)( 0                           Eq. (5.12) 

The length of FPZ for an infinitely large specimen cf is further obtained as:  
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  Eq. (5.13) 

where g(α0) is the value of the first derivative of g(α0) with respect to  at a = a0. The statistical 

calculations are required to estimate the coefficient of variation of the slope of the regression 

line, ωA, and the relative width of the scatter band „m‟ which are estimated and shown in results. 

 5.1.3 Size effect from Jenq and Shah model  

Jenq and Shah proposed an equivalent crack model [Shah et. al. (1995)] which predicts the peak 

load of pre-cracked specimen of any geometry and size. However, it cannot predict the complete 

post peak response of the structure. Jenq and Shah two parameter model replaces an actual crack 

by an equivalent crack whose length is determined from the condition that its crack opening 

displacement (w) is equal to certain critical value wc. This wc displacement is defined as opening 

of the crack at initial crack tip of the traction free crack, that is at the beginning of inelastic zone. 

The criterion for crack propagation is expressed by two parameters (1) the critical value of the 
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stress intensity factor of the equivalent LEFM crack tip, KIc and (2) wc. The value of KIc from this 

model has been shown to be essentially independent of geometry of the specimen. RILEM 

technical Committee has proposed a recommendation to measure the fracture parameters KIc and 

wc using a three point bend beam based on two parameter fracture model by Jenq and Shah 

[Shah et. al. (1995) and Bazant and Planas (1998)]. The critical stress intensity factor KIc is 

calculated as [Shah et. al. (1995)]: 
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Eq. (5.14) 

 

 

Where Pc is the peak load, Wh is the self-weight of the beam and g1(ac/D) is geometric function 

[Shah et. al. (1995)]. The critical crack tip opening displacement wc is then calculated as [Shah 

et. al. (1995)]:  
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Where β = a/ac and g2(ac/D) is another geometric function . Size effect has been explained by 

showing the dependency of structural strength on the structure size in the result‟s section. Further 

based on various regressions and Jenq-Shah model the fracture parameters are evaluated and 

discussed. 

5.2 Results based on size effect studies 

Another important objective of the present work involves the assessment of fracture parameters 

from Bazant size effect laws based on the analysis of linear regression I, linear regression II, 

weighted linear regression and Jenq-Shah model. There are two extremes of size-effect law: (i) 

strength criteria and (ii) LEFM size effect. The former yields no size effect and is only applicable 



61 
 

for relatively small size structures. On the other hand, the latter shows the strong size effect and 

may only be used for relatively large size structures. A quasi-brittle material like concrete 

exhibits a transitional size effect between the two extremes of size effects. The experimental 

program [Raghu Prasad (2009), Muralidhara (2010), and Muralidhara et. al. (2010)] on 

displacement control test of geometrically similar concrete beams is utilized to perform the size 

effect studies. The parameters fracture energy (Gf), effective length of fracture process zone (cf) 

and critical stress intensity factor (KIc) are estimated. 

Fig. 5.1 illustrates the size effect of all beams cast with 12.5 mm and 20 mm maximum 

aggregate size for  a/D = 0.25 and 0.33 using linear regression I. Fig. 5.2 shows the size effect of 

beams cast with 20 mm maximum aggregate size only for  a/D = 0.25 and 0.33 using linear 

regression II. The size effect using the linear regression II for all beams cast with 12.5 mm and 

20 mm maximum aggregate size for a/D = 0.25 is shown in Fig. 5.3. The relationship between 

the failure stress and size of the structures for geometrically similar TPB beams using the linear 

regression I and II are shown in Figs. 5.1-5.3. Figs. 5.1-5.3 predicts a transitional size effect 

showing the decrease of the fracture stress with increasing structure size.  

Similarly the size effect based on weighted linear regression for a/D = 0.25 and 0.33 respectively 

is shown in Figs. 5.4a and 5.5a. Fig. 5.4b and Fig. 5.5b consist of horizontal line based on 

strength criterion showing no size effect and is only applicable for relatively small size 

structures. Fig. 5.4b and Fig. 5.5b consist of  inclined line having slope -1/2, which is governed 

by the LEFM criterion, showing the strong size effect, and this criterion is only used for 

relatively large size structures. Fig. 5.4b and Fig. 5.5b shows the transition behavior of concrete 

beams for geometrically similar TPB beams having ligament size ranging from 94 mm to 750 

mm in the present analysis.  
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The fracture parameters using the linear regression I and II of all the beams cast with 12.5 mm 

and 20 mm maximum aggregate size for a/D = 0.05, 0.25 and 0.33 are evaluated and shown in 

Table 5.1. Further the fracture parameters using the linear regression I and II of the beams for 

a/D = 0.05, 0.25 and 0.33 are evaluated separately for the concrete mix having 12.5 mm and 20 

mm maximum aggregate size as shown in Table 5.2. The fracture parameters using the weighted 

linear regression are estimated and shown in Table 5.3. Table 5.4 represents the estimated 

fracture parameters from RILEM recommendation based on Jenq-Shah model. Fig. 5.6 depicts 

the fracture toughness (KIc) vs. a/D for Jenq-Shah model and linear regression I and II.  

 
 

                                             (a)                                                           (b) 

Fig. 5.1 Size effect linear regression I: concrete beams cast with 12.5 and 20 mm aggregate size 

for (a) a/D =0.25 and (b) a/D = 0.33 
 

 
 

                                                                       (a)                                                           (b) 

Fig. 5.2 Size effect linear regression II plot: concrete beams cast with 20 mm aggregate size for 

(a) a/D =0.25 and (b) a/D = 0.33 
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Fig. 5.3 Size effect linear regression II: concrete beams cast with 12.5 and 20 mm aggregate size 

for a/D =0.25 

Table 5.1: Estimate of length of fracture process zone and fracture energy: Together concrete 

beams cast with 12.5 and 20 mm aggregate size 

 Linear Regression-I Linear Regression-II 

a/D A C KIc (Mpa-

m
0.5

) 

Gf(N/m) cf(mm) A C KIc (Mpa-

m
0.5

) 

Gf(N/m) cf(mm) 

0.05 0.0001 0.002 1.903 145 3 0.001032 0.107 1.840 135 1.4 

0.25 0.00025 0.016 1.729 119 12 0.012669 0.23 1.802 130 10.6 

0.33 0.0004 0.029 1.676 112 14 0.023185 0.37 1.743 121 12 

 

Table 5.2: Estimate of length of fracture process zone and fracture energy: Separate concrete 

beams cast with 12.5 and 20 mm aggregate size 

 

 Linear Regression-I Linear Regression-II 

a/D Aggregate 

size -mm 

A C KIc (Mpa-

m
0.5

) 

Gf(N/m) cf(mm) A C KIc 

(Mpa-

m
0.5

) 

Gf(N/m) cf(mm) 

0.05  

 

20 

0.0001 0.0007 1.903 145 1 0.0012 0.102 1.885 142 1.7 

0.25 0.00027 0.0091 1.663 111 6.5 0.0127 0.25 1.729 120 9.7 

0.33 0.0004418 0.018 1.594 102 7.8 0.0232 0.42 1.636 107 10.6 

0.05  

 

12.5 

0.0000991 0.0008 1.912 146 1.2 0.0016 0.1 1.904 145 2.3 

0.25 0.00025 0.008 1.729 120 6.2 0.0121 0.27 1.664 111 8.6 

0.33 0.00043 0.017 1.616 105 7.6 0.021 0.39 1.697 115 10.3 
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                                             (a)                                                           (b) 

Fig. 5.4 (a) Weighted linear regression and (b) Size effet from maximum load for a/D = 0.25 

 
 

                                             (a)                                                           (b) 

Fig. 5.5 (a) Weighted linear regression and (b) Size effet from maximum load for a/D = 0.33 

Table 5.3: Size effect parameters from weighted mean 

 

AB CB Gf(N/m) cf(mm) ωA 

 

m 

0.05 0.001 0.305 156 5 - - 

0.25 0.0057 1.174 105 13 0.18 0.16 

0.33 0.009 2.033 110 14 0.16 0.14 
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Table 5.4: Fracture parameters from RILEM recommendation on Jenq-Shah model 

Dimensions (mm) a/D ac /D KIc (Mpa m
1/2

) wc (mm) Gf (N/m) 

S D t      

282 94 47 0.05 0.1595 1.5055 0.0147 68 

282 94 47 0.05 0.1276 1.2430 0.0112 52 

282 94 47 0.05 0.1340 1.3492 0.0120 58 

282 94 47 0.25 0.4955 2.1339 0.0150 51 

282 94 47 0.25 0.4860 1.9177 0.0143 46 

282 94 47 0.33 0.6240 2.0851 0.0162 43 

282 94 47 0.33 0.5497 1.6437 0.0137 38 

282 94 47 0.33 0.5155 1.5234 0.0160 47 

282 94 47 0.05 0.0744 1.1649 0.0089 72 

282 94 47 0.25 0.4042 1.3420 0.0154 47 

282 94 47 0.25 0.4860 1.7267 0.0180 52 

282 94 47 0.33 0.5929 2.0748 0.0162 48 

282 94 47 0.33 0.5513 1.7776 0.0150 44 

282 94 47 0.33 0.5152 1.5975 0.0134 41 

282 94 47 0.25 0.3923 1.5287 0.0138 51 

282 94 47 0.25 0.4574 1.7484 0.0177 57 

282 94 47 0.33 0.6096 2.5233 0.0149 51 

282 94 47 0.33 0.5319 2.1494 0.0144 55 

282 94 47 0.33 0.5050 1.7823 0.0125 44 

282 94 47 0.05 0.1595 1.4183 0.0147 64 

282 94 47 0.25 0.4042 1.3420 0.0157 48 

282 94 47 0.25 0.4893 1.8733 0.0141 43 

282 94 47 0.25 0.4310 1.4656 0.0130 38 

282 94 47 0.33 0.6155 2.2074 0.0133 39 

282 94 47 0.33 0.5785 2.2557 0.0120 41 

564 188 94 0.05 0.0911 1.2639 0.0128 60 

564 188 94 0.25 0.3450 1.3143 0.0131 38 

564 188 94 0.25 0.4333 1.6981 0.0145 35 

564 188 94 0.25 0.4548 1.8239 0.0169 40 

564 188 94 0.33 0.4938 1.8198 0.0123 33 

564 188 94 0.33 0.4784 1.6157 0.0127 32 

564 188 94 0.33 0.4784 1.7990 0.0104 29 

564 188 94 0.05 0.1755 2.0455 0.0169 70 

564 188 94 0.05 0.1436 1.9154 0.0151 69 

564 188 94 0.25 0.4127 1.4235 0.0177 39 

564 188 94 0.25 0.5277 2.1269 0.0213 46 

564 188 94 0.25 0.4548 1.8375 0.0179 43 

564 188 94 0.33 0.6163 2.2547 0.0174 36 

564 188 94 0.33 0.6027 1.9965 0.0169 33 

564 188 94 0.05 0.1276 1.6549 0.0141 62 

564 188 94 0.25 0.3327 0.9157 0.0148 32 

564 188 94 0.33 0.4148 1.2341 0.0127 36 

564 188 94 0.33 0.4487 1.3603 0.0111 28 

564 188 94 0.25 0.4620 1.6768 0.0168 36 

564 188 94 0.25 0.3686 1.3283 0.0116 29 

564 188 94 0.33 0.5246 1.2009 0.0153 24 

2250 750 375 0.25 0.5643 3.6027 0.0124 21 

2250 750 375 0.25 0.4352 2.1931 0.0130 20 

2250 750 375 0.25 0.4571 2.3897 0.0134 21 

2250 750 375 0.33 0.4272 1.7354 0.0102 18 

2250 750 375 0.33 0.6242 3.5279 0.0106 17 
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                                                        (a)                                                           (b) 

Fig. 5.6 Fracture toughness (a) Jenq-Shah (b) Linear regression I and II 

5.3 Chapter observations and closure 

The fracture energy values (Gf) are observed to be in the range of 156 ~ 135 N/m, 105 ~ 130 

N/m and 102 ~ 121 N/m for a/D =0.05, 0.25 and 0.33 respectively from Bazant size effect laws. 

The process zone lengths are found to be 1 ~ 3 mm, 6.5 ~ 12 mm and 7.6 ~ 14 mm for a/D 

=0.05, 0.25 and 0.33 respectively from Bazant size effect laws. The range of fracture energy 

value (Gf)  is 102 ~ 130 N/m from a/D = 0.25 and 0.33. Also from the Jenq-Shah model, fracture 

energy value is found to be in range from 69 ~ 52 N/m, 20 ~ 51 N/m and 17 ~ 51 N/m for a/D 

=0.05, 0.25 and 0.33 respectively.  

Size effect laws are derived based on assumption that the fracture energy dissipated at the failure 

is a smooth function of structural dimensions and size of FPZ. Therefore, size effect studies 

evaluates the size independent fracture energy in an approximate manner. This law describes the 

transition from the strength criterion for which there is no size effect to LEFM criterion for 

which the size effect is strong. An important advantage of the size effect method is that it yields 

not only the fracture energy of the material but also the effective length of the fracture process 

zone. The reason of size effect in concrete structures is due to the existence of large and variable 

length of FPZ ahead of the crack tip. FPZ depends on the specimen size and is strongly 
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influenced by the proximity of the specimen boundary. Therefore, next chapter mainly deals with 

the investigation of characteristics of FPZ. 
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Chapter 6 

FRACTURE  PROCESS  ZONE:  OPTICAL  CHARACTERIZATION 

6.1 Digital Image Correlation (DIC) for optical characterization of Fracture Process Zone 

(FPZ)   

In engineering structures, the strain measurements are extremely important because they help in 

investigating the full-fledged development of concrete fracture process zone. In-depth 

investigations are required to improve the study of the behavior of materials and structural 

components under mechanical loads. There exist various experimental methods such as 

holographic interferometry, the dye penetration, the scanning electron microscopy, the acoustic 

emission, etc to detect the fracture process [Elices and Planas (1996), Shah et. al. (1995), 

Shailendra and Barai (2011)]. These methods provide the qualitative analysis on micro-features 

on concrete from which it is very difficult to detect the crack profile. Digital Image Correlation 

(DIC) experimental technique overcomes several limitations of the above-mentioned methods by 

providing detailed information on complex deformation states that lead to the initiation and 

propagation of fracture until complete failure. DIC technique is insensitive to massive rigid body 

motions, and can capture large deformations in a single measurement as long as the object 

remains in the field of view of the cameras [Skarzynski and Tejchman (2010), Fayyad and 

Lees (2014), and Alam et. al. (2014)]. DIC works on the principles similar to human depth 

perception by viewing the same object from different angles so that the precise shape of the 

object in three-dimensional space can be resolved. Digital images of the specimen are collected 

at pre-determined time intervals throughout the test out of which, the first image represents the 

un-deformed (reference) configuration. DIC considers the two digital images, first image taken 

before deformation (reference image) and the second image taken after the deformation, which 

represents the positions of an object at these moments. A small subset in the reference image, 
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taken before deformation, is matched to a similar subset in the target image, taken after 

deformation. The idea behind the method is to infer the displacement and strain of the structure 

under the test by tracking the deformation of a random speckle pattern applied to the 

component's surface in digital images acquired during the loading. 

DIC is an important non-intrusive experimental technique to measure the displacement and strain 

field. DIC has been successfully used for metals and composites. However, its utilization in 

concrete structures is very limited. In this work, DIC has been used to map the full field of 

displacement and strain for visualizing the fracture growth, fracture propagation and formation 

of Fracture Process Zone (FPZ) in notched concrete beams under bending. However, for the 

quantification of the concrete fracture properties, a new scheme called Optical Crack Profile 

(OCP) is developed as described in this chapter. The fracture parameters such as crack opening 

displacement, width of FPZ, length of FPZ and fracture energy of concrete structures are 

obtained by the OCP approach originated through DIC experiments. 

6.1.1 Experimental details  

The three sizes of geometrically similar (constant length to depth ratio) beams were cast, from 

the two different concrete mixes prepared using the maximum aggregate size of 12.5 mm and 20 

mm for M45 concrete grade, at BARC-Tarapur site. The dimensions of geometrically similar 

beams designated as D1, D2 and D3 are as shown in Table 3.2. The cross section of the 

specimens was rectangular and beams were notched at mid-span. Initially the fracture tests were 

conducted on beams using the servo-hydraulic machine under closed-loop by Raghu Prasad 

(2009) and Muralidhara (2010). DIC experiments on the concrete beams under displacement 

control mode in three point bend condition were performed. Images were captured using the 

camera with a resolution of 3840 X 2160 pixels. Further, the scheme of OCP technique was 

developed on plain concrete beam, which is one of the main objectives of the present study. 
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Stored images were processed using Vic-2D software, which has the option of pixel thresholding 

so that the computation of strain field over discontinuity or traction free zone can be prevented. 

The parameters such as critical crack opening displacement (wc), the length of FPZ, width of 

FPZ, and fracture energy variation along the projected ligament are investigated using the OCP 

technique, which is not commonly available in the open literature. 

 6.1.2 Surface preparation and typical test setup on beam using DIC technique 

The area of measurement was first sprayed with a white acrylic paint as shown in Fig. 6.1a. 

Once the paint was dried, speckles were marked using a marker pen. The special care was taken 

to ensure that the size of the speckles was maintained uniformly and the speckles were random as 

clear from Fig. 6.1b. A series of initial experiments were conducted on concrete beams to perfect 

the technique of DIC as is clear from Fig. 6.2. The DIC technique based test setup of D2 beam 

using 500 kN capacity servo-hydraulic machine under crack mouth opening displacement control 

mode test is shown in Fig. 6.3a. The notch to depth ratio, a/D is equal to 0.25 for this test. To 

quantify the fracture process zone of concrete, the visibility of clear speckles close to notch is 

important as shown in Fig. 6.3b.    

     

                                                   (a)                                             (b) 

Fig.6.1 Concrete surface with (a) acrylic paint (b) random speckles over the acrylic paint 

  

Fig.6.2 Trial test to perfect the DIC technique. 
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                                                          (a)                                            (b) 

Fig.6.3 D-2 beam with a/D =0.25: (a) Full beam test set up (b) Clear random speckles pattern 

6.1.3 OCP methodology to investigate the width and length of Fracture Process Zone (FPZ) 

of concrete 

The mode I crack propagation is investigated in the present study using OCP technique. FPZ in 

concrete is quite complex due to the development of both micro cracks and major cracks. FPZ 

consists of two regions - an inner strain-softening zone and an outer micro-fracture zone as 

reported by Hu and Wittmann (2002). The size of FPZ is mostly governed by the strain 

softening of concrete in the inner strain-softening zone. The outer micro-cracks in fracture zone 

that are not interconnected and do not contribute to the concrete softening. The length of FPZ 

due to inner softening zone and outer micro-fracture zone is quantified at peak load and at 

various post peak loads using OCP technique.  

Fig. 6.4 represents the lateral X and vertical Y axes close to the notch of concrete beam under 

displacement control test. The region selected for OCP is only shown in Fig. 6.4. The crack 

growth starts at the tip of the notch toward the boundary of the beam. As is clear from Fig. 6.4 

that the length and width of FPZ will be along vertical Y axis and lateral X axis respectively. 

Fig. 6.5 illustrates the sketch of lateral X direction strain vs. lateral X axis i.e. perpendicular to 

the projected ligament, at critical/fracture load. The strain in the region ABG and CDE in Fig. 

6.5 is less than ft/E which indicates the elastic regime or the presence of micro-cracks that are not 
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inter-connected i.e. absence of concrete softening. The region BCEFG of Fig. 6.5 show the strain 

is more than ft/E indicating the softening zone of concrete governed by the complicated 

toughening mechanism which is responsible for FPZ. This scheme to identify FPZ is 

conceptualized for an idealized case wherein the main crack formation takes place above the 

notch, which normally could propagates along the vertical path of Y axis during post peak 

softening. However, the crack propagation, along the vertical path where micro-cracks have been 

formed, is at, times restricted due to presence of concrete aggregate resulting into aggregate 

interlock or aggregate shielding resulting in crack propagation on a deflected path as reported in 

the DIC experiment by Alam et. al. (2014). In view of this, a wider band above the notch was 

selected for strain mapping with DIC in the present experiment. 

Fig. 6.6 illustrates the schematic sketches of lateral X direction strain vs. vertical Y axis, i.e. 

along the projected ligament, at critical load. The sketches TYZ and XYZ in Fig. 6.6 are as per 

the idealized principle of fracture mechanics of homogeneous material, where the crack is free to 

propagate without any influence of aggregate and experimental observations with crack 

tunneling effect due to presence of aggregate due to concrete heterogeneity respectively. There 

exists an uncertain zone (i.e. OPYT) for FPZ identification close to the notch due to the 

aggregate interlock. The region X1X2 of Fig. 6.6 indicating the softening zone of concrete, 

significantly contributes to the length of FPZ. 

 

Fig. 6.4 Sketch showing lateral (X) and vertical (Y) axes 
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Fig. 6.5 New scheme to investigate the width of FPZ from the lateral X direction strain vs. lateral 

X axis 
 

 

Fig. 6.6 New scheme to investigate the length of FPZ from the lateral X direction strain vs. 

vertical Y axis  

6.1.4 OCP methodology for estimation of fracture energy  

The correlation algorithm in VIC-2D [Cintron and Saouma (2008)] determines the location of 

each sub pixel in the surface of concrete beam marked with the random speckle pattern. It 

provides the displacement and strain fields on the surface of the specimen at different loading 
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stages. Displacement fields enable to locate crack easily due to displacement discontinuity. 

Crack openings can be obtained from the displacement jump across the two sides of the crack 

[Alam et. al. (2014)].  The indirect way of strain integration over the width of FPZ also provides 

the crack opening displacement. The crack opening displacement w: 

 w dl 

where ε is the strain perpendicular to the crack growth direction.  

 FPZ transmit stresses due to the crack bridging effect of material heterogeneities [Luigi and 

Gianluca (2008)]. These bridging stresses (ζ) are assumed to be a monotonically decreasing 

function of the crack opening displacements (w) in the FPZ as shown previously in Fig. 1.3. The 

bulk material outside the FPZ is assumed to behave elastically. The softening curve shows the 

relationship between bridging stresses versus crack opening displacement. The area under the 

initial tangent of the softening curve represents the fracture energy which is governed by the 

failure/fracture load of concrete beam. As the crack grows the ζ-w relation changes along the 

projected ligament. The crack growth along the projected ligament i.e. vertical Y axis is analyzed 

to estimate the crack opening displacement. At critical load the bridging stress is close to ft. 

Using this, the ζ-w relation at various stages of crack growth along the projected ligament is 

established from OCP technique. Thus, the approximate variation of fracture energy along the 

projected ligament using the concept of area under the initial tangent of the softening curve is 

estimated for D-2 beam and is discussed in the results.  

6.2 Softening models   

The constitutive laws that relates the cohesive/bridging stresses across the crack faces and the 

corresponding crack opening displacements, i.e., ζ = f(w) are known as softening functions. The 

assessment of the fracture behavior of a concrete structure is influenced by using different 

softening functions (ζ-w). The cohesive stress (ζ) and critical crack opening displacement (wc) 
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are the fundamental properties required for FPZ of concrete. The cohesive stress is a 

monotonically decreasing function of crack opening displacement and it tends to close the crack. 

The value of ζ is equal to material tensile strength ft at the crack tip. The softening functions are 

based on the assumption that the energy (fracture energy ~ Gf) produced by the applied load is 

completely balanced by the material softening. The various softening functions (ζ-w) such as 

linear, bilinear, exponential, nonlinear are available in the literature [Shah et. al. (1995), Bazant 

and Planas (1998), and Shailendra and Barai (2011)]. The critical crack opening displacements 

(wc)  for linear, exponential, non linear, bilinear based on Petersson, Wittmann and CEB-FIP 

Model are expressed in Table 6.1. 

Table 6.1: Softening functions 

Type of Softening function Critical crack opening 

displacement, wc 

Linear 

t

f

c
f

G
w

2
  

Exponential 

t

f

c
f

G
w

6517.4
  

Non linear 

t

f

c
f

G
w

136.5
  

Bilinear-I by Petersson 

t

f

c
f

G
w

6.3
  

Bilinear-II by Wittmann 

t

f

c
f

G
w

5
  

Bilinear-III by CEB-FIP Model Code 

 

t

f

c
f

G
w

475.6
  

 

 

6.3 Discussion of results  

OCP analyzes a series of images of the D-2 beam having a random speckles pattern. These 

patterns monitored during the load application by a digital camera and stored in a computer in a 

digital format. These stored images are processed using the correlation algorithm in VIC-2D. 
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The parameters such as crack opening displacement, width and length of FPZ, strain profile and 

fracture energy value are evaluated. Further, the crack path is traced in the projected ligament at 

various post peak loads. The results are discussed subsequently as below: 

6.3.1 Peak and post peak response: The main objective is to analyze the progression of 

cracking in the D-2 beam at different loading conditions. The overall response of the beam at 

different stages of fracture behavior is described in Figs. 6.7a-b. Figs. 6.7a-b represent the 

growth of strain in X direction (i.e. perpendicular to crack growth direction). The significant 

formation of FPZ occurs at locations where the strain value exceeds ft/E. The strain, in the post 

peak region corresponding to softening, is orders of magnitude higher than ft/E strain value. The 

beam portion, having non-violet colour and white colour corresponding to the strain levels higher 

than ft/E, shows the spread of FPZ in Fig. 6.7a and Fig. 6.7b respectively very close to the notch. 

At peak load of 11.46 kN the strain close to the notch, where FPZ becomes prominent, is 

observed to be 810 µε, which is well above ft/E. At 78% of the post peak response with load of ~ 

9 kN the strain level increases approximately by a factor of 2 with respect to the strain level 

observed at peak load. Further, at 52 % of the post peak response with load of ~ 6 kN, the strain 

level increases by a factor of 3 with respect to the strain level observed at peak load. However, 

there is not significant change in the size of FPZ. At 26% of the post peak response with load of 

~ 3 kN and 9% of the post peak load the size of FPZ increases significantly. In addition, the 

strain levels at these loads are observed to be 7000 and 8000 µε. Another important observation 

in Figs 6.7a-b is that though crack initiation and formation takes place above the notch in FPZ, 

but the crack propagation is observed along the inclined path showing the tunneling effect that 

indicates presence of aggregate. This is further described in the next paragraph.  
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Fig.6.7 (a) Growth of peak strain in X direction 

 

 

 

Fig.6.7 (b) Growth of strain in X direction conforming the formation of FPZ 
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6.3.2 Analysis of FPZ size and its comparison with the literature study: The growth of FPZ 

width and FPZ length in the different loading phase of peak and post peak response are 

evaluated. Fig. 6.8a-b illustrates the growth of length of FPZ at peak load and various post peak 

loads. The curves T'Y'Z' and TYZ in Fig. 6.8a-b are as per the idealized principle of fracture 

mechanics, wherein the crack should propagate along the vertical path just above the notch in the 

FPZ for a homogeneous material. The curves X'Y'Z' and XYZ in Fig. 6.8a-b are as per the 

present experimental observation of heterogeneous concrete material. There exist uncertain 

zones (i.e. OPYT and OQY'T') close to the notch due to the aggregate interlock or aggregate 

shielding resulting into crack tunnelling and the crack path is not aligned vertically along the 

notch. It may be noted from this graph that this uncertain zone size is around 25-30 mm, which is 

of the same order as the aggregate size of 20 mm used for casting this beam. From Fig. 6.8a-b, 

the length of FPZ is estimated using the proposed methodology as described in Fig. 6.6. Table 

6.2 presents the maximum local strain and length of FPZ length at peak load and various post 

peak loads. The fracture process zone becomes prominent at ft/E strain and starts growing in size. 

The minimum local strain is 1124 με and 10000 με at peak load and 9% of post peak load 

respectively. The length of FPZ is observed to be in the range from 80-160 mm starting from 

peak load to 9% of the post peak load. In terms of aggregate size, the FPZ length falls in range 

from 4-8 times da where da is the maximum size of aggregate. Crack growth begins at the notch 

of D2 beam. Close to the notch, methodology as discussed above is implemented to estimate the 

width of FPZ. Fig. 6.9 represents the X direction strain with the X axis. The FPZ width is found 

to be in range 25~33 mm. OCP results assess the width and length of FPZ to be 1.25-1.65da and 

4-8da respectively. The lengths of FPZ are roughly 12da  and FPZ width range is from da to 6da 

as reported [ACI (1999)]. The order of length and width of FPZ predicted using OCP is found to 

be in reasonable agreement with approximate value.  
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                              (a)                                                                          (b) 

Fig. 6.8 FPZ lengths: strain vs. vertical Y axis at (a) peak load and 70% of post peak load (b) 

26% and 3% of the post peak load 
 

 

Fig. 6.9 FPZ width: Strain vs. lateral X axis at various post peak load 
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Table 6.2: Length of FPZ in the present study  

Load(kN) 

Maximum 

strain -με 

FPZ full length-

mm 

11.46-peak 1101 80 

9-post peak 2323 100 

8-post peak 2616 110 

6-post peak 3750 118 

5-post peak 5116 138 

4-post peak 6760 145 

3-post peak 8523 151 

2-post peak 9260 155 

1-post peak 10249 160 
 

 

The concrete properties and D2 beam size used in the present study are very similar to the 

reported study of Alam et. al. (2014). Therefore, study by Alam et. al. (2014) is best suited for 

comparing the characteristics of FPZ with the present study. The comparison of lengths of FPZ, 

at peak load and various post peak loads (80%, 70%, 52%, 43%, 17% and 9%),  predicted in the 

present study with the study of Alam et. al. (2014) are shown in Table 6.3. From Table 6.3, FPZ 

lengths at post peak loads predicted in the present study are found to be in reasonably good 

agreement with the study of Alam et. al. (2014). However, at peak load there is some 

discrepancy, which may be perhaps due the aggregate interlock observed in the study of Alam 

et. al. (2014). The width of FPZ at peak load is observed to be ~ 40 mm in the study of Alam et. 

al. (2014), which is in reasonable agreement with the value of ~30 mm in the present study. In 

the similar way, the widths of FPZ at various post peak loads predicted in the present study (~ 

40-50 mm) are observed to be in reasonably good agreement with the study (~50-60 mm) of 

Alam et. al. (2014). 

 

 

 

 

 



81 
 

Table 6.3: Comparison of FPZ with the study of Alam et. al. (2014) 

Load FPZ length (mm) in study of Alam et. al. 

(2014) 

FPZ length (mm) in 

present study 

peak 37 80 

80% post peak 88 100 

70% post peak 100 110 

52% post peak 120 118 

43% post peak 126 138 

17% post peak 130 155 

9% post peak 145 160 

 

6.3.3 Crack opening displacement and fracture energy and its comparison with the 

literature study: Fig. 6.7a represents the location of investigating lines a, b, and c for assessment 

of crack opening displacement (w).The load data was also recorded during the experiments. 

Through OCP, the w during pre-peak and post-peak loads are estimated, at various investigating 

lines along Y-axis. Thus at every investigating lines, the plot of load (P) vs. crack opening 

displacement (w) is obtained showing pre-peak and post-peak response. For D2 beam, P vs. w 

plots for a, b, and c investigating lines are shown in Fig. 6.10a. The maximum load (Pc) 

corresponds to the bridging stress equal to the tensile strength of concrete [Bazant and Planas 

(1998), Luigi and Gianluca (2008)]. In other words, at this load, the cohesion/traction (ζ) is 

maximum. After this, fracture propagation occurs and load starts reducing resulting in loss of 

traction. Here, load (P) vs. w plot for a, b, and c investigating lines is transformed  to maximum 

traction/ bridging stress (ζ) vs. w plot, in which ζ is made equal to the tensile strength (ft) of 

concrete at maximum load (Pc). At other loads, the bridging stress is made equal to:  = P  

(ft/Pc). This is how cohesive law is developed as shown in Fig. 6.10b. Further, in the post-peak 

part of softening curve, shown in Fig. 6.10b, an initial tangent is plotted in a consistent manner to 

evaluate the fracture energy of concrete at one particular investigating line using the concept 

shown in Fig. 1.3. Similarly, at various investigating lines, fracture energy of concrete is 

evaluated.  The fracture energy variation along the projected ligament is shown in Fig. 6.10c from 
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which the average fracture energy value (Gf) is evaluated. Fracture energy value estimated based 

on optical crack profile scheme has been observed to be ~102 N/m. The average fracture energy 

obtained from OCP is found to be lower than the value of 136 N/m of Table 4.4. This is expected 

as explained in next section. In addition, the load vs. crack opening displacement (w) plot close to 

notch of the beam estimated through OCP, is compared with the experimental data of 

Muralidhara et. al. (2010) and reported study of Alam et. al. (2014) as shown in Fig. 6.11. 

Using the linear, bilinear, exponential and non linear softening functions, critical crack opening 

displacements (wc) are evaluated using two extreme values of fracture energy obtained through 

OCP and RILEM averaging approach as shown in Table 6.4. The experimentally observed values 

of wc are in range from 0.03 ~ 0.04 mm as is clear from Fig. 6.11. It is also clear from the Table 

6.4 that wc estimated from liner softening are in reasonable agreement with value of 0.03 ~ 0.04 

mm predicted from Fig. 6.11. However, the prediction of wc from the other softening model does 

not compare well with the prediction of Fig. 6.11. This is perhaps due to the fact the initial 

tangent of softening curve represents the fracture energy which is governed by the failure load 

and is exactly similar to the linear softening model. 
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                                             (a)                                         (b) 

 

(c) 

Fig. 6.10 (a) Load vs. w in reference lines a, b, c (please see Fig. 6.7e) (b) ζ-w relation in 

reference lines a, b, c and (c) fracture energy variation along the projected ligament of D2 beam 

for a/D = 0.25 
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Fig. 6.11 Load-crack opening displacement (w) 

Table 6.4: Critical crack opening displacements 

Softening Law 

wc (mm) for Gf = 102 N/m wc(mm) for Gf = 136 

N/m 

Linear 0.058 0.077 

Biliear-1 0.104 0.138 

Biliear-1 0.145 0.192 

Biliear-1 0.188 0.249 

Exponential 0.135 0.179 

Non linear 0.149 0.198 

 

6.3.4 FPZ confirmation by strain gauge: The two strain gauges were mounted on the back 

surface of beam as shown in Fig. 6.12. As the load reaches 50% of the peak load, the isolated 

and randomly distributed micro-cracks starts localizing. The localized zone, formed above the 

notch of beam at the peak load, is termed as FPZ. At peak load, high tensile strain of 1000 με is 

observed through strain gauge mounted at Location „1‟ as shown in Fig. 6.13. FPZ begins to 

form above the notch at Location „1‟ and propagates toward the boundary. FPZ formed at peak 

load results in the fracture propagation, and further leading to the formation of large cracking 

zone at decreasing post peak load values. At peak load the fracture has not propagated to 
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Location „2‟. Therefore, the tensile strain at peak load is found to insignificant at Location „2‟ as 

is clear from Fig. 6.13. As the load reduces during post peak softening, the fracture propagates 

toward Location „2‟, which is close to the boundary. The significant tensile strains of 500, 3500 

and 4200 με are observed at decreasing loads of 5, 3 and 2 kN at Location „2‟ as shown in Fig. 

6.13. This further confirms that tensile failure occurred almost up to the top of the beam.      

 

Fig. 6.12 Showing strain gauge location 

 
 

 

Fig. 6.13 Depicts the FPZ growth through the strain variation at location 1 and 2 with the load 
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6.4 Chapter closure 

The Optical Crack Profile (OCP) technique is a very effective method to determine the strain 

field on the surface of concrete with a large accuracy and without any physical contact. The 

fracture propagation at peak and various post peak loads along the projected ligament of notched 

bam is captured using OCP. The propagation of FPZ captured using OCP is verified with 

conventional instrumentation approach using electrical resistance strain gauge and observed to 

be in reasonable agreement. The methodology to assess the length and width of Fracture Process 

Zone (FPZ), fracture energy, and crack opening displacement is investigated using OCP. The 

characteristics of FPZ is observed to be in agreement with guidelines of ACI (1999) report. 
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Chapter 7  

THE  SIZE  INDEPENDENCE  OF  FRACTURE  ENERGY  AND  

INNOVATIVENESS  IN  THE  PRESENT  RESEARCH 

The fracture energy values predicted through load deflection response of TPB concrete beams as 

per RILEM recommendation are beset with size effects. Therefore, the present research attempts 

to determine fracture energy that is independent of size. The fracture energy values obtained 

through the various methodologies are shown in Table 7. 

Table 7: Fracture energy values from various methodologies 

 

Approaches  Fracture energy (N/m) 

Size effect law (Jenq-Shah) 20-51 

Size effect laws (Bazant) 102-130 

Bi-linear model 113-126  

Presently developed relation of energy release rate  106-125 

Presently developed methodology on averaging RILEM 

fracture energy 

126-136 

Optical characterization 102 

 

In Jenq-Shah size effect law, the fracture energy values (20-51 N/m) are found to be very low 

because the post peak response of the structures is not accounted for. Bazant‟s size effect laws 

evaluate the fracture energy in range of 102-120 N/m, through the extrapolation of nominal 

strength of limited number of specimens by regression analysis. In an approximate way with 

various assumptions, Bazant‟s size effect laws evaluate the fracture energy that is independent of 

size in an overall average sense, which may further be improved for the exact assessment of size 

independent fracture energy by addressing the boundary effect with considerations of concrete 

cohesive laws, presence of FPZ in large characteristic dimensions/projected ligament, and load-

deflection response of RILEM test for various notch to depth ratios. 
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The popular bi-linear model has been referred by various investigators, but the implementation 

of existing model equation for assessment of size independent fracture energy is not very 

commonly available in the open literature. On the basis of the boundary effect method using bi-

linear model, the size independent fracture energy is found to be in the range of 113-126 N/m 

from the present set of specimens of M45 grade concrete.  

Further, the three new schemes to assess size independent fracture energy and an advanced 

methodology for quantification of characteristics of FPZ are proposed in this work. Through the 

concept of energy release rate, the estimated size independent fracture energy is observed to be 

in a range of 106-125 N/m. The energy release rate method is valid beyond the test range (up-to 

2000 mm of ligament size) and thus having an added advantage. Another approach based on 

averaging of RILEM fracture energy evaluates the size independent fracture energy in a range of 

126-136 N/m and is simple to apply. 

Fracture energy value estimated based on optical crack profile scheme has been observed to be 

~102 N/m. This is relatively lower than values evaluated by other methods because the 

measurement area cannot be selected exactly near to the notch tip due to the experimental 

limitation. The uniqueness of optical approach is that the cohesive relation (traction separation 

law) is established to estimate the fracture energy. The quantification of FPZ characteristics and 

fracture energy assessment through optical scheme has not been carried out before in the open 

literature. 

The bi-linear, energy release rate and fracture energy averaging methods and optical scheme are 

more sophisticated than the Bazant‟s size effect laws although the fracture energy values are not 

much different. It is, therefore, concluded that either method (except Jenq-Shah) can be used to 

obtain a unique value of the size-independent fracture energy of concrete due to consistent trend 

of fracture energy values evaluated by all the methods.  
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Chapter 8 

SUMMARY,  CONCLUSIONS  AND  FUTURE  WORK 

8.1 Summary and Conclusions 

The fracture energy of concrete is an important material parameter in the numerical analysis of 

concrete structures which is investigated in the present work. The study presents robust 

techniques for the determination of characteristics of Fracture Process Zone (FPZ) and the size 

independent fracture energy (GF) of concrete. The summary from the above study are as follows: 

a) A number of numerical simulations of Three Point Bend (TPB) specimens have been 

performed through non-linear FEA by incorporating the concrete properties based on 

fracture energy softening model. The numerically observed necessary parameters for 

characterizing the concrete fracture such as maximum load, vertical displacement at 

maximum load, load-load line displacement and load-crack opening displacement responses 

are found to be in reasonably good agreement in most of the cases with the reported 

literature. Consequently, the computational approach is adopted for evaluating the 

parameters required to characterize the concrete fracture phenomenon since experimental 

approach is not always a practicable solution. 

b) FEA of various TPB specimens for different a/D ratios is performed incorporating the 

fracture energy based softening model and the predicted response is observed to be mesh 

insensitive. Thus mesh sensitivity, which is an extremely important issue in concrete due to 

its post peak softening, has been addressed in this work. 

c) Based on the completeness of interpolation function and discretization technique, the 

effectiveness of triangular elements is explained by considering the finite element 

simulations of TPB concrete specimens. The performance of triangular elements has been 
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found to be superior to the quadrilateral elements for prediction of fracture response in 

notched TPB specimens. 

d) RILEM fracture energy (Gf) values of concrete predicted through load-load line 

displacement curves are found to be size dependent. The size independent fracture energy 

(GF) of concrete is investigated by the popular Hu and Wittmann bi-linear model. A new 

methodology is developed to assess GF by averaging size dependent RILEM fracture energy 

values, over various a/D values for geometrically similar beams. The  relationship between 

fracture energy release rate and uncracked ligament is developed. Using the developed 

relationship, the size independent fracture energy of concrete is also evaluated. Thus GF is 

investigated from two presently proposed methods in this study and one existing method. 

e) The Optical Crack Profile (OCP) technique evolved in this study is very effective to 

determine the strain field on the surface of concrete with a large accuracy and without any 

physical contact. The fracture propagation and progression of cracking at peak and various 

post peak load along the projected ligament of notched bam is captured using OCP. The 

propagation of FPZ captured using OCP is verified with conventional approach of strain 

gauge and observed to be in reasonable agreement. The methodology to assess the length and 

width of FPZ, fracture energy, and crack opening displacement is investigated using OCP. 

The characteristics of FPZ obtained through OCP are observed to be in agreement with the 

ACI guideline. 

f) The fracture energy value obtained from OCP is found to be lower than those obtained by 

other methods (see Table 4.4) as measurement area cannot be very near to the notch tip due 

to the experimental limitation. Two extreme values of fracture energy obtained through OCP 

and RILEM averaging approach are utilized in various softening functions to estimate the 

values of wc. In addition, the load-crack opening displacement response predicted using OCP 
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is observed to be in agreement with reported experiment [Muralidhara et. al. (2010)]. It is 

observed that the OCP technique provides detailed information on the initiation and 

propagation of fracture until complete failure.  

g) The size effect studies based on Bazant size effect laws (linear regression I, linear regression 

II, weighted linear regression) and Jenq-Shah model are performed. The parameters such as 

fracture energy, effective length of fracture process zone and critical stress intensity factor 

are estimated from these size effect laws. A comparative analysis of fracture energy values 

based on various model is done. It is concluded that any method (except Jenq-Shah) can be 

used to obtain a unique value of the size independent fracture energy of concrete. 

8.2 Scope for further research 

1. Develop the improved experimental methods for evaluating the size independent fracture 

energy of concrete. 

2. Application of concrete fracture parameters in analysis and design of concrete structures. 

3. Assessment of fracture process zone for reinforced concrete structures. 

4. Quantification of material damage parameter using optical crack profile and acoustic emission 

technique. 
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