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Chapter 1

Introduction

A system is described as an object consisting of different interacting components or

variables to generate consequential observable signals [1]. Figure 1.1 shows the block

diagram representation of such a typical system where the observable signal is called

as output and external signal that can be manipulated by observer is called as input.

External stimulus that can not be manipulated is known as disturbance and it can be

divided into two categories, one that can be directly measured and one that can only be

observed by their impact on the output. Interaction among variables is formalized by

the model of the system which characterizes the supposed relationship among variables.

There are various types of models depending on intended use such as graphical mod-

els, software models, mathematical or analytical models, etc. Out of various mentioned

models, mathematical models are of particular interest in this work. Mathematical mod-

els illustrate the dynamic behavior of a system as a function of time. They describe the

relationship among variables in term of difference or differential equations. They are

widely found in all scientific disciplines for various purposes like process monitoring,

prediction, forecasting, simulation, optimization, design of control system, fault detec-

tion and identification, etc.

Traditionally, Nuclear Power Plants (NPPs) are mathematically modeled using first

principles approach. It necessitates detailed knowledge about underlying mechanisms

1



Chapter 1. Introduction

FIGURE 1.1: Block diagram representation of a system.

of the reactor system. Usually, the system is divided into subsystems whose properties

are well comprehended. The mathematical models of such subsystems are derived using

physics laws. The complete model of the reactor system is obtained by integrating sub-

systems models together. However, underlying assumptions, complexity, and high order

associated with model derived from first principles often make them difficult to handle

and unsuitable for control applications. Moreover, NPPs belong to the class of highly

constrained complex systems with time-varying characteristics [2]. They exhibit multi-

scale behavior when operated through different power regimes. The variation in system

parameters due to fuel burnup, internal reactivity feedbacks, and modeling uncertain-

ties of reactor dynamics can significantly influence system response. For instance, dur-

ing load-following mode of operation, daily load cycles can considerably affect plant

performance due to wide range of power variations. In addition, gradually changing

operating conditions, ever stringent performance regulations, and safety concerns often

necessitate re-tuning or re-designing of different systems in an NPP. Sometimes model-

ing of certain new subsystems are also required for retrofitting and optimal functioning

of a plant. Therefore, mathematical modeling and control of an NPP represents enor-

mous challenge.

With the recent advancement in technology for harnessing nuclear power for electricity

generation, there is a tremendous increase in the percentage of nuclear generated elec-

tricity. This development is further accelerated by the need to reduce carbon emissions

2 Subspace-based Identification and Control using Wavelets
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and to generate clean energy. Currently, there are around 440 commercial NPPs operat-

ing in 31 countries with over 380 GW of total capacity and about 65 more reactors are

under construction. They form approximately 11.5% of the world’s electricity. Other

than commercial NPPs, around 240 research reactors are operating in about 56 coun-

tries. Furthermore, 180 reactors power some 140 ships and submarines [3]. In India,

nuclear power is the fifth-largest source of electricity after coal, gas, hydroelectricity,

and wind power. As of 2016, India has 22 nuclear reactors in operation in 7 NPPs, hav-

ing a total installed capacity of 6,780 MW while 3 other reactors are under construction

and are expected to generate an additional 3,800 MW. This tremendous growth led to

an increased interest in modeling and control strategies that would enhance plant oper-

ation. Advanced controllers that can replace conventional controllers with significantly

improved performance are of particular interest in nuclear community.

In recent times, the availability of content-rich data from NPPs post strong motivation

behind wide applications of empirical modeling or system identification. System identi-

fication is a systematic way of constructing simple mathematical model of a dynamical

system from recorded input-output data [1]. It is preferred over first principles approach

of modeling while refurbishing a control design technique in an existing NPP which has

aged over time. System identification, by perturbing a plant to excite its dynamic modes

is carried out for various other reasons such as modeling, designing of controllers, sim-

ulation, optimization, etc. Measurements being a potent source of information carry

almost all useful details about plant dynamics. These informations can be utilized for

the diagnostic and monitoring of a plant. In most of the model-based approaches, the

achievement of design objective is largely depend on the accuracy of employed model.

Thus, it is important to arrive at a plant model which is reasonably accurate and at the

same time, simple enough to be relevant to the design objective.

Dynamic response of a nuclear reactor contains simultaneously interacting variables

with multi-timescale characteristics. For such multivariable processes, state-space rep-

resentation offers better tractability in controller synthesis and implementation [4]. It is

Subspace-based Identification and Control using Wavelets 3



Chapter 1. Introduction

preferred over transfer function or impulse response descriptions. Subspace identifica-

tion is an important class of modeling approaches in time-domain for the identification

of state-space models [5]. It estimates Kalman filter states directly from input-output

data and then system matrices are determined. This notion of first state calculation and

then parameter estimation can be seen as input–state–output modeling and it makes sub-

space identification different from classical system identification based on input–output

model e.g., Prediction Error Method (PEM) where first system matrices are estimated

and states are derived thereafter. Theoretically, PEM can be adapted to work with state-

space models. However, in practice this may lead to very large number of unknowns

during optimization and is quite cumbersome in case of modeling multivariable sys-

tems. It may also cause numerical ill-conditioning due to sensitivity to small perturba-

tions for large system orders. On the other side, subspace methods avoid explicit model

parameterization and thus can be easily extended to Multi-Input Multi-Output (MIMO)

systems. Subspace techniques are numerically robust and computationally efficient as

they are based on stable QR decomposition and Singular Value Decomposition (SVD)

algorithms. Subspace methods being non-iterative are free from non-convergence, local

minima, and initial condition problems. Their implementation is fast as compared to

PEM methods, despite the fact that they are implemented using QR and SVD. They

possess better numerical properties of parametrization over classical PEM methods.

Subspace methods work to estimate reduced order model inherently without computing

first the high order model followed by a model order reduction step. Further, they do

not require any selection of model structures a priori.

In practice, measurement datasets are obtained during operation of an NPP in which

various complex time varying processes exist possibly with inherent nonlinear char-

acteristics. It is well known that modeling of multiscale systems using conventional

(single scale) approaches may sometimes lead to ill-conditioning [6]. Thus, over the

years, different modeling approaches exploiting the two-timescale or three-timescale

properties of the system have been proposed [7, 8, 9]. However, various multiscale fea-

tures may not be clearly visible in measurement domain. Therefore, it is imperative to
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have the transformation of data and visualization in a multiresolution framework around

a proper set of scales. This consideration has led to system identification using general-

ized basis function. Modeling of complex systems, e.g., a nuclear reactor system with

complex sine or sinc basis may pose some restrictions because of simultaneous pres-

ence of multiple dynamic modes and interaction exhibiting multiscale behavior. Fur-

thermore, these modes may be located in widely separated clusters governing slow as

well as fast timescale behavior. It demands very high frequency resolution to discrimi-

nate closely spaced poles as well as very high time resolution for modeling multiscale

pole clusters. However, both resolutions can not be made arbitrarily high and thus, the

solution to this identification could use any other basis functions.

Wavelet basis functions have attracted a great deal of attention in the last two decades

[10, 11]. They are the new families of generalized basis functions for the better repre-

sentation of signals simultaneously in time and frequency domain. The classical Fourier

basis functions are perfectly localized in frequency but not in time. Small frequency

changes in the Fourier domain will tend to produce changes everywhere in the time do-

main. On the other hand, wavelets are localized in time-frequency and provide a com-

pact representation of broad classes of functions. Wavelet bases are generally preferred

over other bases due to their excellent approximation ability. The idea central to this

class of modeling methodology is the invocation of Multi Resolution Analysis (MRA)

in data-driven modeling. It builds a relation among set of approximations and details

at various resolutions level. It is equivalent to breaking down a complex process into a

number of relatively simpler subprocesses each seen at an appropriate resolution. Thus,

the estimated model usually turns out to be of low order in projection space. In addition,

wavelet bases are especially suitable for modeling and analysis of non-stationery time

varying systems. They have the capability to approximate any linear or nonlinear time

varying process. In fact, the convergence rate of wavelet approximation is nearly equal

to that of the other general nonlinear approximation approaches. This is because the

correlation structure of wavelet coefficients decay faster than those in case of original

signal in time. In terms of computational complexity, the wavelet transform is better
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having the O(n) complexity as compared to the Fast Fourier Transform (FFT) which

has O(nlog2(n)) [12].

Traditionally, a large class of nonlinear systems are modeled as linear systems with time

varying coefficients. However, if nonlinearities are accompanied with high order and

integrating type effects such as a reactor system then modeling in the classical input-

output description requires significantly large number of parameters. On the other hand,

modeling of such effects in wavelet domain is likely to greatly reduce number of model

parameters [13]. Thus, the objective translates to building a linear description in mul-

tiresolution of a nonlinear system using wavelets basis functions. The model defined

in wavelet basis can capture complexities such as nonlinearity, integrating and multiple

time scale behavior very effectively in fewer parameters. This provides a strong moti-

vation for modeling a nuclear reactor with a derived wavelet based sub band model. In

addition, wavelet basis functions naturally accommodate preprocessing of data resulting

in increased Signal to Noise Ratio (SNR).

In last few decades, various research works have been attempted for system identifica-

tion from measurement data projected on wavelet basis functions [14, 15, 16, 17, 18].

Some of the existing works have proposed identification of Linear Time Varying (LTV)

models that attempt to linearly approximate the system output although wavelets are

known to provide near-optimal nonlinear estimates of signals. Usually, a LTI model is

estimated in least squares sense as there are more samples available than the number of

parameters. However, a strict LTV model becomes under determined because dynamic

solution requires derivation of more than one system parameters at each time instant

[19]. Several approaches have been adopted to solve the LTV parameter estimation

problem. Most of the aforementioned techniques have relied more on the linear func-

tion approximation approach with wavelet basis, relegating the techniques to off-line

identification of the process models.

Recent studies have employed the filter bank aspects of wavelets [20, 21, 22, 23, 24, 25].

The underlying idea in all of these works is to develop separate models on relevant
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scales after multiscale data representation while selecting a single model using a spec-

ified criterion. These methods demonstrate their superiority over single-scale methods

but do not fully exploit the advantages of multiscale decomposition. In addition, the

approaches demonstrate their suitability in terms of one-step-ahead prediction while,

validation through simulation (infinite-step-ahead prediction) model is missing in most

of the works.

A different approach has been taken in this thesis, whereby it does not necessitate the

assumption of local time invariance. The method of parameter estimation proposed

here naturally accommodates nonlinear behavior by recursively updating parameters

in an efficient manner. In the proposed scheme, the system is modeled in approxi-

mation space as well as in detail space in which both input and output are projected.

An important contribution of the proposed work is to develop a framework for state-

space modeling at significant scales leading to parsimonious model description with

less computational burden. It integrates the proficiency of wavelets for multiscale data

representation with the robust parameter estimation ability of subspace methods. It es-

timates subspace based models at significant scales in both prediction and simulation

framework. The efficacy of the proposed multiscale subspace identification technique

is illustrated by modeling a nuclear reactor. The model parameters are updated effi-

ciently as and when a new dataset is available thereby yielding an on-line state space

model identification strategy in multiresolution framework. Case studies with different

datasets prove superiority of the proposed multiscale subspace identification over the

classical approach of measurement space modeling. Further, to draw statistically valid

argument, Monte Carlo simulations are performed at different noise levels as well as at

various decomposition depths. It has been found that in most of the modeling exercises,

the proposed approach reduces dimensionality with improved output prediction capa-

bility. Moreover, the application of subspace methods for modeling of nuclear reactor

is not common and the approach undertaken in this thesis can be considered as the first

such attempt.

This thesis work further proposes a technique to efficiently isolate multiple timescales
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in a LTI system, a problem that has been of interest and challenge in identification and

control of nuclear reactors [9]. The notion adopted here is similar to the Multiscale

Principal Component Analysis (MSPCA) approach for modeling multivariable statis-

tical processes [26]. It extracts cross-correlation between the variables by diagonaliz-

ing the covariance matrix while wavelets approximately decorrelate the autocorrelation

among the measurements. Wavelet operator has been formulated from the eigen values

of the given system thus utilizing the inherent structure of the system. Application of

the proposed technique for modeling a nuclear reactor from measurements is demon-

strated. It diagonalizes the system matrix to decouple system modes completely for

applying independent control actions along the eigen functions [27]. It proves that one

can work with a diagonalized state space model in wavelet sub-spaces as well. The

technique can be used for designing on-line estimation and control strategy because

wavelet based modeling approaches identify a system with a set of multiscale minimum

memory models that are amenable for real time applications. For on-line applications

of multi-timescale processes it is useful to work with models operating at appropriate

scales.

Another aspect of this thesis is the design of a data-driven predictive control utilizing the

subspace matrix structure. Model Predictive Control (MPC) is an advanced predictive

control design strategy. It is widely popular in industries due to its ability to incorporate

design constraints, on-line optimization, and easy adaptability to new operating condi-

tions. A broad class of the MPC design strategies solve a cost function optimization

problem at each time step to determine a set of future control moves, over a finite time

horizon. Conventionally, the MPC methodology requires, an explicit process model for

the prediction of future behavior of the system and the design of an optimal control

law by solving the cost function optimization. Some existing works have integrated

subspace identification with the MPC, leading to a class of approaches called Subspace

Predictive Control (SPC) [28, 29, 30, 31, 32]. The basic idea of integrating subspace

algorithms with predictive control is conceived with the purpose of creating a reliable

control architecture that can be rapidly deployed in plants. This fusion of two steps
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into a single step offers robustness and efficiency of subspace methods with the flexibil-

ity and comprehensive nature of the MPC, making SPC an attractive candidate for the

solution of data-driven control design problem. However, in practical applications of

data-driven control, care has to be exercised as these methods are sensitive to noise and

may sometimes lead to ill-conditioning of the predictor matrices. Recent developments

of wavelet-based denoising techniques offer better solutions to these problems. Wavelet

transform represents the noisy dynamics as the sum of scaled and shifted wavelets and

extracts features that are associated only with process dynamics. Wavelet preprocessing

of measurements improves parameter estimation task with minimum distortion of pro-

cess dynamics. It also minimizes the distortion of signal bandwidth and thus improves

the SNR of processed signal.

Data-driven predictive control technique utilizing the subspace matrix structure pro-

posed in the thesis integrates wavelet pre-processing and subspace predictive control

approaches. It removes the need of any physical model of the system thus reducing

the error arising due to model-plant mismatch. The controller is directly obtained from

wavelet preprocessed input-output data such that the overall system is less sensitive to

noise. The work also discusses systematic incorporation of feed-forward control, in-

tegrating action, and constraints in the control design. The efficacy of the proposed

algorithm is demonstrated in typical situations involving demand variations and load

rejection transients. In order to analyze the control performances, detailed parameter

sensitivity analysis has also been carried out.

Contribution of the thesis

Primary objective of this thesis is to develop a systematic approach for the identification

and control of multiscale systems using wavelets. In this work, MRA with wavelet basis

is utilized for subspace based modeling of a nuclear reactor. In a reactor, different dy-

namic modes evolve at various scales of time and use of same model at different scales

would be rather limiting. The current proposition is to develop a class of models defined
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in different frequency bands of the process. It estimates state space models at signif-

icant scales in both prediction and simulation framework. Systems with nonlinearity

can be approximated by a set of LTI models in multiresolution environment. Thus, the

estimated model shows significantly better output prediction over classical single scale

modeling techniques. Moreover, for on-line applications of multi-timescale processes

it is often more meaningful to work with models at appropriate scales. The proposed

approach inherits the features of robust subspace identification with added advantages

of wavelet based modeling enabling multiresolution state-space model development.

The thesis presents the design of wavelet operators for multiscale modeling in order to

impose a specific structure in the space spanned by wavelet projections. In this regard,

this work proposes designing of wavelet operator from the measurements. It advocates

to employ different wavelet filter banks for the analysis of modes/states evolving at

different scale of time so as to minimize modeling error. It establishes that there exists

a definite relationship between the model in measurement space and that in projection

space. Methodology for deriving multirate perfect reconstruction filter bank associated

with wavelet operator is presented. The efficacy of the proposed technique is validated

on a nuclear reactor system using reference as well as plant datasets.

The thesis further aims to investigate the application of wavelet MRA in data-driven

control design approach for a nuclear reactor. It integrates wavelet pre-processing with

the SPC design technique. Specifically, here we focused onto the filtering prospective of

the wavelets in order to negate the effects of disturbances in the measurement. The cen-

tral idea is to implement predictive control law directly from the wavelet-preprocessed

input-output data without using any explicit process model. The controller is designed

to include design constraints, feed-forward control, and integral control action effec-

tively. Furthermore, time variations in the process are taken into account by recursively

updating control parameters with the arrival of new data set. A parameter sensitivity

analysis has been proposed to find the desired control performance. The performance

of proposed controller is compared with different controllers using Monte Carlo simu-

lations at different SNRs for the statistical validation of the technique.
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Organization of thesis

In this section, we present the thesis’s outline and summarize the contribution of each

chapter.

Chapter 2 provides an in depth literature review of wavelet basis functions, system

identification, subspace methods, model predictive control, subspace predictive control,

and other data-driven control techniques. It also account their applicability in nuclear

science and engineering. It further presents the fundamentals concepts required for

proposed work.

Chapter 3 discusses design of wavelet operators for multiscale modeling to impose a

certain structure on the system in wavelet space. The methodology employs different

wavelet filters for analyzing different states of the system. The efficacy of the proposed

approach is demonstrated on point kinetics nuclear reactor. The outcome of the multi-

scale modeling approach is compared with that in single scale to bring out the merits of

the proposed method using simulated reference and plant datasets.

Chapter 4 is dedicated to the multiscale system identification technique using wavelets.

To be specific, it proposes multiscale subspace identification using data collected in

open-loop as well as in closed-loop settings. It demonstrates an efficient on-line im-

plementation scheme for the proposed technique. The chapter further discusses vari-

ous subtle issues while working with wavelets like selection of wavelet, decomposition

depth, and significant scales. The efficacy of proposed approach is demonstrated by

modeling point kinetics nuclear reactor in prediction as well as in simulation frame-

work. The proposed technique is further compared comprehensively with other single

scale and multiscale approaches proposed in literature at different SNRs.

Chapter 5 integrates wavelet filtering with the SPC to formulate the wavelet prepro-

cessed SPC approach. It discusses open-loop and closed-loop design approaches. The

chapter discusses incorporation of feed-forward control, integrating control, and con-

straints in the controller design. The efficacy of the proposed technique is demonstrated

Subspace-based Identification and Control using Wavelets 11



Chapter 1. Introduction

for tracking various load rejection as well as load-following transients for a nuclear re-

actor. A detailed parameter sensitivity analysis is carried out to analyze the controller

performance. It is further compared with other controllers at different SNRs.

Chapter 6 presents the outcome of the work. It also discusses future research directions

in which the results presented in the thesis can be further extended.

Appendix A discusses general family of model structures. Appendix B presents the Van-

dermonde structure of the wavelet operator and also demonstrates an analytical example

for filter designing. Appendix C describes the nuclear reactor dynamics. It presents the

point kinetics reactor model of nuclear reactor, model of core thermal-hydraulics, inter-

nal reactivity feedbacks due to the effects of temperature and fission product poisons,

and model of reactivity.
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Literature Survey

This chapter describe fundamentals of system identification, subspace identification,

and wavelet basis functions. It discusses different applications of wavelets as found in

the field of modeling and control. It further reviews model predictive control, subspace

predictive control, and other data-driven control techniques. Their relevance and appli-

cability in nuclear science and engineering are clearly pointed out. Significance of the

proposed work is also discussed.

2.1 System Identification

Data-driven modeling or system identification has played an increasingly dominant role

in a wide range of engineering applications starting from process simulation and control

to identification of vibrational modes in flexible structures. The maturity in the field of

system identification results from culmination of various domains such as signal pro-

cessing, econometrics, and statistics. In the domain of systems and control engineering,

there exists an extensive literature on system identification and its applications. Some

useful texts on system identification with detailed discussions on various techniques and

13
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algorithms are by Ljung [1], Soderstrom and Stoica [33], and Tangirala [34]. An inter-

esting historical perspective of the developments from the purview of a control engineer

is presented by Gevers [35].

The basic procedure of system identification involves four basic entities:

• Data collection– The objective of this step is to design experiments to record

input-output data. Here, careful considerations need to be exercised so that the

measurements contain maximum information about underlying process. The de-

sign of manipulated input is of prime significance as it should be able to excite

the system effectively. Other important parameters such as sampling period and

operating region need to be chosen carefully.

• Selection of model structure– This is one of the crucial and time taking step in the

system identification procedure. A set of model structures are selected such that

they are able to represent the process suitably. Model structures are selected by

analyzing the data combined with formal properties of models. Generally, non-

parametric models like impulse or frequency response can be estimated to find in-

sights into the properties of the system. For more specific model descriptions, one

can choose from a wide array of black box model structures. Parametric model

structures such as ARX (Auto Regressive with eXogenous input), ARMAX (Auto

Regressive Moving Average with eXogenous input), BJ (Box-Jenkins), OE (Out-

put Error), etc. models can be employed to acquire specific process description.

• Model estimation– This step determines the ‘best model’ that describes data among

different model sets according to the chosen criterion. There are various classes

of system identification such as Prediction Error Method (PEM) [1], Instrumen-

tal Variable (IV) [36], and subspace methods [5]. PEM contain various com-

putational approaches in finding model parameters like linear regression, least-

squares, and maximum-likelihood methods. The IV approach belongs to the cor-

relation family of algorithms. Subspace methods are another class of algorithms

which can be used to estimate state space models from experimental data.
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• Model Validation– It is carried out by residual analysis and by cross-validation.

Residual analysis examines innovation sequence/residuals obtained after model

estimation from training dataset. Residual analysis consists of whiteness test and

independence test. The whiteness test checks autocorrelation of the residuals at

the output. If correlation coefficients lie within the confidence interval, then it

is concluded that the residuals do not contain any significant information. On

the other hand, test of linear independence calculates dependency of residuals

on past input signal through cross-correlation. Insignificant value of coefficients

guarantees that there is nothing lying in the residual to be governed by input to

the system. Cross-validation is another rigorous approach where the estimated

model is validated by various test datasets which are different from the training

dataset.

The flow diagram of the system identification loop is shown in Figure 2.1, which starts

from collecting data followed by choosing the model set and then selecting the best

model from this set. Finally, it is to be remember that a model can never be a true

description of the system. Rather, it can be taken as a good enough description of

certain aspects that are of particular interest to its end use.

2.2 Modeling of Nuclear Reactors

Operational transients in a nuclear reactor usually evolve at different scale of time rang-

ing from seconds to minutes. The prompt neutrons have influence till some milliseconds

whereas delayed neutrons, xenon build-up, and core composition changes are responsi-

ble for longer transients. Theoretically, dynamics of nuclear reactors can be described

by the time-dependent Boltzmann transport equation [37]. However, its use coupled

with delayed neutron precursors’ equations is difficult for neutron kinetics problems of

practical interest. Nevertheless, these problems can be solved with approximate meth-

ods such as time-dependent group diffusion equation. The simplest form derived from
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FIGURE 2.1: Flow diagram of the system identification loop.

the original Boltzmann equation is known as the point reactor kinetics model. It as-

sumes that production, diffusion, absorption, and leakage of neutrons take place at sin-

gle energy independent of space variables. The point kinetics model have been widely

used for developing control strategies. In a recent work, Subudhi et al. [38] used the

point kinetics equations for total power control studies of Pressurized Heavy Water Re-

actor (PHWR).

In large nuclear reactors where physical size is quite a lot of times the neutron migra-

tion length, point reactor kinetics model will not suffice since the flux shape undergoes

variations and due to probability of occurrence of spatial oscillations. Moreover, large

reactors have functionally distinct materials, e.g. fuel, coolant, moderator, reflector, and

control mechanisms etc., distributed in the core. In addition, they have various regions

with different burn-ups and coolant densities. Within the core periphery, neutrons con-

tinuously either loose or gain energy, diffuse from one location to another, and undergo

several interactions with matter. Thus, time dependent group diffusion equation should

be supported by the methods for treating the spatial variables. Such advanced methods
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can be classified as space-time methods, modal and synthesis methods, and direct meth-

ods. Core neutronics model of large PHWR based on the nodal approximation of the

neutron diffusion equation has been reported in [39, 40]. Gaikwad et al. [41] presented

a simplified core thermal hydraulics model for large PHWR for evaluating the transient

performance of the pressure control loop.

Applications of system identification have been found in modeling, designing controller,

and in analyzing dynamic properties of NPP. For instance, Pomerantz et al. [42] val-

idated a theoretical model with experimental data for flux mapping. Lathouwers et

al. [43] presented a linear dynamic model of a fluidized bed nuclear reactor. Linear

system identification techniques have been applied to obtain mathematical models of a

simulation of the pebble bed modular reactor [44]. Gabor et al. [4] discussed system

identification of a LTI state-space model of a Vodo Vodyanoi Energetichesky Reak-

tor (VVER). System identification techniques have been used to model plant dynamics

around various operating points during step-back transients [45]. Validation of model

of primary loop of VVER-type nuclear power plants for controller design purposes has

been reported in [46]. Sohn et al. [47] utilized system identification approach to build

simplified Steam Generator (SG) model for designing the feed-water control system.

Polifke [48] combined computational fluid dynamics simulation with system identifica-

tion to characterize dynamic response of a sub-system to incoming flow perturbations.

In some recent works, system identification has been combined with Artificial Neural

(ANN) and fuzzy logic. Kim et al. [49] estimated parameters of Pressurized Water-type

Reactor (PWR) cores using ANN models. Recurrent neural network based algorithms

have been proposed to identify reactor core models [50, 51]. Boroushaki et al. [52]

combined a nonlinear ARX model structure with ANN for the core identification of

VVER-type nuclear reactor and the identified model is used in predicting the behavior

of reactor dynamics. Khalafi et al. [53] developed a research reactor simulator using

identified ANN model. A neuro-fuzzy model based identification techniques has been

applied to predict the water level in the SG of a PWR [54].
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In most of the reported works, reactor is considered as a LTI process evolving at single-

scale. Although, nuclear reactors are multiscale processes in which multiple modes

exist at different scales of time and frequency. It manifests multi-timescale behavior

when operated under different power regimes. These multiscale features may not be

modeled correctly by the above discussed approaches. Thus, it is essential to conduct a

process visualization and modeling exercise in a multiresolution framework.

2.3 Subspace Identification

Subspace identification is a standard technique for time-domain state-space model es-

timation from measured input-output data [5]. Precisely, subspace identification esti-

mates the model by employing prediction first and then using geometrical projection

for parameter estimation making it different from usual identification approaches. A

comparison between classical identification and subspace identification is depicted in

Figure 2.2.

The initial introduction to subspace methods is found in the works of Ho and Kalman

[55], Zeiger and McEwen [56], and others. These works are based on realization theory

and attempt to estimate state-space models through the Hankel matrix formulation of

the impulse response or Markov parameters of the system. Since then, there are several

variants of subspace methods proposed in the literature and out of them three are very

popular and widely used. They are Canonical Variate Analysis (CVA) introduced by

Larimore [57], Multi-variable Output Error State Space (MOESP) presented by Verhae-

gen and Dewilde [58, 59], and Numerical algorithms for Subspace State-Space System

IDentification (N4SID) proposed by Van Overschee and De Moor [60]. The CVA algo-

rithm is based on canonical correlation analysis. The MOESP estimate the extended ob-

servability matrix to compute the state-space matrices using the joint input-output data

matrices representation. The N4SID projects the future data onto past data to estimate

the state sequences. The state sequences are then combined with original input-output

data to find system matrices as least squares solution. Viberg [61] discussed about the
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FIGURE 2.2: Comparison of system identification with subspace identification.

relationship among different algorithms. Further, a unifying framework of different al-

gorithms is presented in [62] where it is concluded that all of the algorithms differ in the

choice of weighing matrix. Detailed surveys on subspace methods providing insightful

discussion are given in the works of Haverkamp [63] and Trnka [64]. Wahlberg et al.

[65] discusses subspace methods from the perspective of process industry users.

Subspace methods have been designed to suit recursive application by Kameyama and

Ohsumi [66], Lovera et al. [67], Mercre et al. [68] and Oku and Kimura [69]. Further-

more, subspace methods have been extended to the application on frequency domain

data by Van Overschee and De Moor [70] and Pintelon [71].

In spite of their wide applicability, subspace-based methods have found very few ap-

plications in nuclear science [72, 73, 74, 75]. Bittani et al. [72, 73] applied subspace

methods for the identification of the poles and zeros position of an analog amplifier for

nuclear spectroscopy. Shiguo et al. [74] combined subspace approaches with data pre-

filtering techniques to enhance the prediction accuracy in pole identification. In [75],

the methodology is used for the identification of light charged particles.
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2.3.1 Notation

Let us consider a discrete time Linear Time Invariant (LTI) system, expressed by state-

space model in innovation form, i.e.,

x[k + 1] = Ax[k] +Bu[k] +Ke[k],

y[k] = Cx[k] +Du[k] + e[k],
(2.1)

where the state x[k] ∈ Rn, the input u[k] ∈ Rm, the output y[k] ∈ Rl, innovation

sequence e[k] ∈ Rl withE(e[k]eT [k]) = S, and k is the current time instant. A ∈ Rn×n,

B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m, and K ∈ Rn×l are system dynamics matrix, input

matrix, output matrix, feed through matrix, and Kalman gain respectively. The problem

of subspace identification deals with estimation of system matrices A,B,C,D, and K

directly from the input-output data. Let us set up the input data block Hankel matrix as

Uf =



u[k] u[k + 1] · · · u[k +N − 1]

u[k + 1] u[k + 2] · · · u[k +N ]

...
... . . . ...

u[k + f − 1] u[k + f ] · · · u[k + f +N − 2]


(2.2)

(2.3)

Uf=



Uf1

Uf2

...

Uff


; and Ui =



Uf1

Uf2

...

Ufi


; i = 1, 2, . . . , f (2.4)

where Ufi =

[
u[k + i− 1] u[k + i] · · · u[k +N + i− 2]

]
and f is the order of

predictor matrix and represents the future horizon. Similarly, we can define Yf , Yfi

and Yi using output data and Ef , Efi, and Ei using innovations. The state sequence is

defined as,

Xk =

[
x[k] x[k + 1] · · · x[k +N − 1]

]
. (2.5)
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Thus, we can write

Yf = ΓfXk +Hd
fUf +Hs

fEf (2.6)

where Γf ∈ Rfl×n is the extended observability matrix given by

Γf =

[
CT (CA)T · · · (CAf−1)

T

]T
; (2.7)

Hd
f ∈ Rfl×fm and Hs

i ∈ Rfl×fl are deterministic and stochastic lower block-triangular

Toeplitz matrices consisting of impulse response coefficients to respective inputs, given

by

Hd
f =



D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0

...
...

... . . . ...

CAf−2B CAf−3B CAf−4B · · · D


; (2.8)

and Hs
f =



I 0 0 · · · 0

CK I 0 · · · 0

CAK CK I · · · 0

...
...

... . . . ...

CAf−2K CAf−3K CAf−4K · · · I


; (2.9)

2.3.2 Open-loop Subspace Identification

The system given by (2.1) can be represented in predictor form as

x[k + 1] = AKx[k] + B̄Kz[k], (2.10)

y[k] = Cx[k] +Du[k] + e[k], (2.11)
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where AK = A − KC, BK = B − KD, BK =

[
B −KD K

]
, and z[k] =[

uT [k] yT [k]

]T
. Using recursion, we can write (2.11) as

x [k] = Lpzp[k] + ApKx[k − p] (2.12)

where p denotes the past horizon, zp[k] =

[
zT [k − 1] zT [k − 2] · · · zT [k − p]

]T
and Lp =

[
BK AKBK · · · Ap−1

K BK

]
.

From (2.5) and (2.12), we can write

Xk = LpZp + ApKXk−p, (2.13)

where Xk−p =

[
x[k − p] x[k − p+ 1] · · · x[k − p+N − 1]

]
and

Zp =

[
zp[k] zp[k + 1] · · · zp[k +N − 1]

]
.

Now, using (2.13) in (2.6), we get

Yf = ΓfLpZp + ΓfA
p
KXk−p +Hd

fUf +Hs
fEf ,

= LxZp + ΓfA
p
KXk−p +Hd

fUf +Hs
fEf , (2.14)

where Lx = ΓfLp is the product of the process observability matrix and predictor con-

trollability matrix. The output equation is expressed as the product of observability

and controllability matrix and Toeplitz matrix using the dataset. There are two primary

routes for solving this open-loop subspace identification problem. The first approach

estimates the state sequence and observability matrix and determines full system matri-

ces in a single step through the least squares. The second technique estimates only the

observability matrix. It is observed that most of open-loop subspace identification ap-

proaches involve primarily three basic steps: projection or regression, model reduction,

and parameter estimation. We will discuss each steps in detail in Chapter 4.2.

22 Subspace-based Identification and Control using Wavelets



Chapter 2. Literature Survey

2.3.3 Closed-loop Subspace Identification

The earlier approaches on subspace identification deal with open-loop identification

problem. They suffers from biases in model estimation if the data is collected under

closed-loop settings due to correlation of the input signal with the process and noise

sources. Recent studies have established closed loop subspace identification to han-

dle the bias issue effectively. Verhaegen [76] proposed combine identification of the

closed-loop system with the knowledge about controller. Chou et al. proposed an IV-

based identification technique for a restricted class of closed-loop systems [77]. Van

Overschee et al. [78] proposed closed-loop identification method using a priori knowl-

edge about controller. Ljung [79] proposed a high-order ARX modeling approach to

deal with correlation issues. Qin et al. [80] proposed an algorithm based on the es-

timation of innovations. Jansson [81] developed a predictor based closed-loop state

estimation. Most of these methods require explicit knowledge of the controller or are

based on assumptions that limit their applicability. Recently, Chiuso et al. [82] devel-

oped a method that does not require explicit knowledge of the controller. In the survey

paper by Qin [83], different variations of open-loop and closed-loop subspace identifi-

cation algorithms are presented. A recent paper by Van der Veen et al. [84] presents an

overview of closed-loop subspace identification methods.

In case of closed-loop operations, the future input is correlated with past output mea-

surement or past noise i.e. the last two terms of (2.14) are correlated for closed-loop

systems. This leads to biasing in open-loop identification methods. Most of the closed-

loop approaches proposed in the literature try to decouple these two terms. Using the
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predictor form (2.11), we can write using recursion



y[k]

y[k + 1]

...

y[k + f − 1]


=



C

CAK
...

CAf−1
K


x[k] +



0 0 · · · 0

CBK 0 · · · 0

...
... . . . ...

CAf−2
K BK CAf−2

K BK · · · CBK




z[k]

z[k + 1]

...

z[k + f − 2]


+



D

D

...

D





u[k]

u[k + 1]

...

u[k + f − 1]


+



e[k]

e[k + 1]

...

e[k + f − 1]


(2.15)

or simply,

yf [k] = Γfx[k] +Gf [k]zf−1[k] +Dfuf [k] + ef [k] (2.16)

Using (2.12), we can further write

yf [k] = ΓfLpzp[k] + ΓfA
p
Kx[k − p] +Gf [k]zf−1[k] +Dfuf [k] + ef [k]. (2.17)

Typically, D = 0 is considered. In case that D 6= 0, there must be a delay in the

feedback loop, making uf [k] uncorrelated with ef [k]. For large of p, ApK ' 0 and (2.17)

can be approximated as

yf [k] = ΓfLpzp[k] +Gfzf−1[k] + ef [k] (2.18)

Note that due to feedback ef (k) is correlated with zf−1[k]. Equation (2.18) is composed

of f block rows in each term. Partitioning it row-wise and defining

Γfi = CAi−1
K (2.19)

Gf =

[
CAi−2

K BK CAi−3
K BK · · · CBK

]
(2.20)

and zi−1[k] =

[
zT [k] zT [k + 1] · · · zT [k + i− 2]

]T
. (2.21)
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Thus, the ith row is given by

y[k + i− 1] = ΓfiLpzp[k] +Gfizi−1[k] + e[k + i− 1], i = 1, 2, . . . f. (2.22)

Using least squares ΓfiLp can be estimated, which then form Γ̂fLp. One can then

perform weighted SVD to estimate Γ̂f which further gives model parameters.

2.4 Wavelet Basis Functions

Wavelet was first introduced by Hungarian mathematician Haar [85] back in 1909 for

functional analysis and now is known as Haar wavelet. In 1946, Gabor introduced a

transform to separate a wave into time-frequency packets and called it Gabor transform.

In 1970s and 1980s, signal processing community have developed techniques such as

sub-band coding, quadrature mirror filters, and pyramidal algorithm which have similar

features to wavelets. However, the term wavelet was first used by Morlet and Grossman

in 1984. Meyer realized the connection between Morlet’s wavelets and earlier math-

ematical wavelets and formulated orthogonal wavelets. Mallat and Meyer created a

framework for wavelet expansions called Multi Resolution Analysis (MRA) and estab-

lished link among orthonormal wavelet bases [86], subband coding [87], and pyramid

coding. The current impact of wavelet is due to integration of parallel works in the

field of mathematics, signal & image processing, and computer vision. The literature

of wavelets is overwhelmed with different variants of wavelet transforms and their im-

plementations. Wavelets have inspired several researchers to develop new transforms

such as ridgelet, curvelet, and contourlet transforms to name a few. Some profound

development in the field of wavelets is due to the works by Mallat [86], Vetterli [87],

Meyer [88], Daubechies [89], Donoho [90, 91] and others.
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2.4.1 Fundamentals

The function space L2(R) is a Hilbert space of square integrable functions i.e. all real

functions which have finite energy and whose L2-norms are finite. The L2-norm of a

function A is given by

‖A‖ =

 +∞∫
−∞

|A (t) |2dt

1/2

=
√
〈A,A〉 (2.23)

where 〈, 〉 represents the inner product. Assume that the input-output signals belong to

L2 space. Vu and Vy are the corresponding subspaces of L2 containing approximation of

input and output signals respectively. These subspaces are called as projection spaces

and are spanned by the shift invariant basis function χ and ξ respectively. Cardinal

series expansions of input and output on to generalized basis functions are given by

u (x) =
∑
k∈Z

Cu[k]χ(x− kT ) (2.24)

y (x) =
∑
k∈Z

Cy[k] ξ(x− kT ) (2.25)

where Cu[k] and Cy[k] are coefficients of basis function belonging to l2 (l2 is vector

space of square summable discrete sequences). An orthogonal projection of input/out-

put on subspace Vu /Vy with minimum error is given by

ũ (x) =
∑
k∈Z

〈u (x) , χ (x− kT )〉χ (x− kT ) (2.26)

ỹ (x) =
∑
k∈Z

〈y (x) , ξ (x− kT )〉 ξ (x− kT ) (2.27)
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Cu[k] = 〈u (x) , χ (x− kT )〉 and Cy (k) = 〈y (x) , ξ (x− kT )〉 give the signal contri-

bution along the direction of specified basis function. The inner product can be imple-

mented in terms of filtering and sampling [92]

(u ∗ χ) (x)|x=kT =
∑
k∈Z

u(x)χ(kT − x) = 〈u(x), χ(x− kT )〉 (2.28)

(y ∗ ξ) (x)|x=kT =
∑
k∈Z

y(x)ξ(kT − x) =
〈
y(x), ξ(x− kT )

〉
(2.29)

where χ(x) = χ(−x) and ξ(x) = ξ(−x). The inner product of measurement func-

tion with the integer shift of time reversed impulse response is equivalent to first low

pass filtering and sampling thereafter. In Shannon′s sampling theory orthonormal sinc

basis function are chosen for function expansion. In general, basis functions are not

necessarily need to be orthogonal. They can be biorthogonal or spline in nature.

2.4.2 Continuous Wavelet Transform

Continuous Wavelet Transform (CWT) of a finite energy signal f(t) is given as the

correlation between f(t) and the dilated version of wavelet function. It is calculated

using the inner product as

〈
f(t),

1√
s
ψ

(
t− τ
s

)〉
=

1√
s

∞∫
−∞

f(t)ψ∗
(
t− τ
s

)
dt, (2.30)

where s ∈ R+ and τ ∈ R are dilation and translation parameters respectively. The

change in scale governs dilation parameter, it either stretches or contracts to keep the

energy contained as constant. Translation parameter shifts the wavelet on to the given

signal in a continuous fashion. Wavelet transformation is achieved by continued scaling

and translation of the wavelet function along the length of a signal. Equation (2.30) can

also be written in convolution form as

〈
f(t),

1√
s
ψ

(
t− τ
s

)〉
= f ∗ 1√

s
ψ∗
(−τ
s

)
(2.31)
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which shows that the computation of CWT is equivalent to filtering f(t) by a filter with

impulse response 1√
s
ψ∗
(−t
s

)
. The basic property for qualifying ψ(t) as a wavelet is

known as admissibility condition. It is given as

Cψ =

∞∫
0

|ψ (ω)|
ω

dω <∞ (2.32)

where ψ (ω) represents the Fourier transform. The admissibility condition ensures that

ψ (ω) goes to zero as ω < 0. It is equivalent to

∞∫
−∞

ψ (t) = 0. (2.33)

One more thing to note is the relation between dilation parameter or scale to frequency.

Scale s is inversely proportional to frequency f and is related by the following relation

s =
fc · Ts
f

(2.34)

where Ts is sampling period and fc is center frequency.

2.4.3 Discrete Wavelet Transform

Discrete Wavelet Transform (DWT) is a computationally efficient wavelet transform

calculated by making s = 2j and τ = 2j ∗ k, where j and k are scale and position

indices with j, k ∈ Z. The DWT of a signal f(t) is calculated as an inner product with

dilates of wavelet 1√
2j
ψ
(
t−2jk

2j

)
.

〈
f(t),

1√
2j
ψ

(
t− 2jk

2j

)〉
=

1√
2j

∞∫
−∞

f(t)ψ

(
t− 2jk

2j

)∗
dt, (2.35)
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The function f(t) can be represented using wavelet as

f(t) =
∞∑

x=−∞

cJ+1,xφJ+1,x(t) +
J∑

j=j0

∞∑
x=−∞

dj,xψj,x(t), (2.36)

where φ and ψ respectively denote the scaling function and wavelet function. The

coefficients cJ+1,x and dj,x are called as approximation and detail coefficients respec-

tively and together referred as wavelet coefficients. Scale j0 and J represent the initial

and final level of decomposition while J + 1 represents approximation at J th scale.

These coefficients are calculated through the inner product of (2.36) with respective ba-

sis function. Moreover, they can be efficiently obtained using matrix multiplication via

fast wavelet transform [86].

The computation of DWT requires both wavelet and scaling functions, whereas the

CWT makes use of a single wavelet basis; the DWT also requires that both functions

are orthonormal. DWT provides a compact representation, whereas CWT gives a highly

redundant representation. This is further explained using the time-frequency tiling di-

agram in Figure 2.3. CWT is defined at all points in the plane and corresponds to a

redundant representation while DWT is computed only for the dyadic values of s. Fig-

ure 2.3 also compares the time-frequency tiling of DWT with Fourier Transform and

short-time Fourier Transform. In Fourier Transform, frequency axis is divided uni-

formly while, time info is completely lost. Whereas, in sort time Fourier Transform, a

windowed Fourier Transform is computed which takes time and frequency resolutions

into consideration. Here, the tiles are of uniform shape all across the plane. In case of

DWT, the area under a tile remains fixed while the shape varies providing variability in

time-frequency resolution. The dyadic discretization of scales and translations render

a MRA attribute to DWT. The approximation and detail spaces are spanned by scal-

ing and wavelet function respectively. In most of the cases, every wavelet function is

characterized by a scaling function. The scaling function is called as father wavelet and

wavelet function as mother wavelet. These functions are related through a two-scale

relation. For a detailed discussion readers are advised to refer [12, 86, 87].
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FIGURE 2.3: Time-frequency tilings

The filter bank implementation of DWT is depicted in Figures 2.4 and 2.5. The wavelet

filter bank structure consists of an analysis side and a synthesis side. The analysis filter

bank contains two branches one with low-pass filter (LPF) and other with high-pass

filter (HPF) and are followed by downsampler. The incoming input signal is applied to

the LPF and the HPF branches. The output of LPF and HPF are called as approximation

and detail coefficients respectively and together referred as wavelet coefficients. The

approximation coefficients lie in the approximation space while, detail coefficients lie

in detail space. Approximation is a low-frequency signal carrying trend of the signal

while detail is a high-frequency information signal. These coefficients can be processed

before reconstruction. The synthesis or reconstruction filter bank upsample the wavelet

coefficients before feeding it to LPF and HPF branches. The output is then combined

to give preprocessed reconstructed signal. The filter banks are designed to give perfect

reconstruction after synthesis.

2.5 Application of Wavelets

Wavelets have been used in different forms depending on the requirement. They have

been used in empirical modeling, process monitoring, control design, gross-error de-

tection, filtering, and in deriving solutions to partial differential equations. Wavelets

offered benefits such as signal compression, signal estimation, data reconciliation, and

feature extraction. In engineering applications, wavelets have been used mainly in two
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FIGURE 2.4: Block diagram of analysis filter bank
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FIGURE 2.5: Block diagram of synthesis filter bank

different ways, as a preprocessing tool and in integration with other single-scale meth-

ods.

Wavelet preprocessing or thresholding followed by signal synthesis is a well established

signal denoising technique that enables nonlinear approximation of a function. It pre-

serves the relevant signal components while efficiently removing the contribution due

to noise. It is proved to be near optimum in the minimax sense and gives better con-

vergence rate as compared to other linear methods of approximation over a wide class
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of function spaces. The signal to be denoised is either hard thresholded whereby the

wavelet coefficients below a certain threshold are made equal to zero or soft thresholded

wherein the wavelet coefficients are reduced by the given threshold. There are differ-

ent wavelet-based thresholding approaches for denoising a signal corrupted with noise

viz. MiniMax, VisuShrink (universal threshold) [90], and SureShrink (level-dependent

threshold) [91]. The process of denoising starts with projecting the signal on suitable

wavelet basis. The projection operation decorrelates wavelet coefficients of signal from

that of the noise. The threshold is usually applied to the detail coefficients. The de-

noised signal in measurement domain is reconstructed by employing inverse wavelet

transform to get denoised or wavelet filtered signal. The amplitude thresholding of the

wavelet coefficients is justified as there is no significant loss of useful information in

the denoised signal.

Wavelet transform have been integrated with some of the well known single-scale tech-

niques such as state estimation, statistical process monitoring and control, neural net-

works, and system identification to design their multiscale variants. Multiscale ap-

proaches are designed to handle and take advantage of the information contained at

different scales. Chou et al. [93] constructed Kalman filter on dyadic trees. Hong et al.

[94] proposed Kalman filtering in a multiresolution framework implemented over data

blocks and demonstrates that it outperform the classical Kalman filtering technique.

Stephanopoulos et al. [95, 96] converted physical models in time to multiscale models

on a dyadic tree and developed algorithms state estimation and model predictive control

in multiresolution framework. Multiscale MPC application to a batch reactor appears

in a work by Krishnan and Hoo [97]. Zhang et al. [98, 99] tried to improve the Hong’s

algorithms by developing state-space model in multiresolution to which the classical

Kalman filtering technique can be directly employed. Nounou et al. [100] developed

a multiscale Kalman filtering using stationary wavelet transform where it is shown that

the model structure remains unaltered across all scales. A wavelet-based robust tran-

scale state estimation algorithm is proposed by Zhao and Jia [101] for discrete-time

systems.
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Different works have been reported on multiscale statistical process monitoring. MSPCA

[26] is one of the model-free multiscale statistical process monitoring approach. It was

developed in the similar spirit of multiscale Kalman filtering by combining the variable

decorrelation ability of PCA with the deterministic feature extraction quality of wavelet

transform. An application of this approach to fault detection in industrial boilers can be

found in Misra et al. [102]. Multiscale Bayesian PCA [103] and multiscale Bayesian

latent variable regression [104] are proposed as model-based multiscale process moni-

toring approaches. A comprehensive review of multiscale statistical monitoring of both

univariate and multivariate processes is given in [105].

Wavelet have been integrated with neural networks to design wavelet network structure

which uses wavelets as activation functions. Bakshi and Stephanopoulos [106] intro-

duced wavelet as noniterative and hierarchical algorithm in which dilation and trans-

lation are on dyadic scales. On the contrary, Zhang and Benveniste [107] proposed a

wavelet decomposition network where the wavelet networks learn iteratively through

a backpropagation algorithm. Some variations of the wavelet networks have also been

proposed. For instance, Thuillard [108] proposed a fuzzy wavelet network to employ

wavelet scaling function as membership functions in the Takagi-Sugeno (T-S) model

for fuzzy rules. Aadaleesan et al. [109] combined wavelet networks with orthonormal

basis functions. Lu et al. [110] proposed an optimal wavelet network using wavelets as

kernel functions in a SVR framework.

2.6 Identification using Wavelets

In the literature of system theory, multiple perspectives exist for introducing wavelets

in modeling and identification [10, 11, 111, 112], e.g. function approximation, filter

banks, etc. The earliest work by Basseville et al. [113], framed the notion of stochas-

tic modeling on dyadic trees for auto-regressive processes. The system is represented

by different nodes of homogeneous trees. Chou et al. [14] constructed a class of multi-

scale dynamic state-space models on dyadic trees for handling multiscale data structure.
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However, these algorithms seem to model process dynamics across scales rather than

along them and tend to ignore evolution of modes with time. Tsatsanis and Giannakis

[114] adopted the function approximation route of modeling where the Linear Time

Varying (LTV) parametric impulse response function is approximated by wavelet basis

functions. Doroslovacki and Fan [115] proposed identification and adaptive filtering

of LTV systems using wavelet basis. LTV impulse response is expressed as a linear

combination of wavelet basis with time-varying coefficients. Nikolaou and Vuthandam

[116] developed reduced-order modeling for the class of Finite Impulse Response (FIR)

models. The proposition behind these approach is that the LTV coefficients can be ap-

proximated by LTI coefficients in the wavelet domain. Zhao et al. [117] formalizes the

theory of aforementioned works using biorthogonal wavelet functions. These works as-

sume local time invariance in the formulation which may not be valid for fast changing

systems. Besides, the selection of basis function is rather difficult for such a system

and one needs to know certain aspects of a process, a priori, which defeats the notion

of true black-box system identification. The LTV parameter estimation of a dynami-

cal system described by differential equation is studied in [118]. Dorfan et al. [119]

shows that a wavelet model is suitable for adaptive identification of linear periodically

time-varying systems. A related work by Satoa et al. [120] developed vector autore-

gressive models for LTV systems wavelet expansion coefficients. A general multiscale

nonlinear polynomial model structure is designed by Billings et al. [121]. In [122],

authors developed nonlinear system modeling using B-spline wavelet basis function. In

a similar approach, He et al. [18] incorporated multiwavelets in the identification and

frequency domain analysis. Nevertheless, these approaches completely ignored the ef-

fective way of inverse wavelet transform for mapping output in projection space to that

in measurement space.

The filter bank aspects of wavelets are employed utilizing the computationally effi-

cient implementation of wavelets. The basic idea in most of the cases is of multiscale

input/output data representation using suitable wavelet and then selecting only the rele-

vant sub-bands in reconstruction. The reconstructed input/output data are then used for
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building models. Carrier et al. [13] advocated frequency domain approach where the

estimation of reduced order models over a specific range of frequencies is proposed for

control relevant identification. They employed the knowledge of crossover frequency to

determine the relevant scales. This viewpoint is further emphasized by Vana and Preisig

[123] and they discussed several theoretical aspects while working with wavelets. They

proposed estimation of reduced order model in frequency domain using wavelets with

a weighing matrix. Palavajjhala et al. [124] used the criteria of maximizing SNR to

select the relevant scales for identification. A wavelet-packet based approach for LTI

system identification is developed by Paiva [22]. Chang and Qu [16] formulated the

problem of identification of partially linear model as a l1-norm penalized least squares.

A CWT-based time-frequency representation of input/output has been proposed for the

LTV system identifying by Shan and Burl [25]. The work also proposed different scale

selection measure to reduce the dimensionality of parameter vector. Mukhopadhyay and

Tiwari [24] employs the notion of consistency in output estimate and developed models

at all scales for the liquid zone control system. Nounou et al. [20, 21, 23] used the mul-

tiscale representation ability of wavelets to improve the prediction accuracy of empirical

models, namely, the multiscale ARX, multiscale FIR, and multiscale T-S fuzzy models

by estimating parameters only at an appropriate scale. Reis [125] proposed an algorithm

to handle multiscale data structure in prediction framework. In some recent works, au-

thors developed wavelet-based state-space model estimation technique for mechanical

systems with known functional forms [126, 127]. The aforementioned methods demon-

strate their superiority over single-scale methods but do not fully exploit the advantages

of a multiscale decomposition. Most of the reported works identify input-output polyno-

mial models from the data. Only a few studies focuses on state-space model estimation.

However, for the purpose of control, state-space representations are usually preferred

such that controllers for MIMO can be designed smoothly.
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2.7 Wavelets in Nuclear Engineering

In the last two decades, wavelet-based techniques have been widely applied in NPP for

noise removal [128, 129, 130, 131, 132, 133, 134], transient detection [135, 136], and

for modeling and control [24, 137, 138, 139]. Estimation and monitoring of reactivity

coefficients like moderator temperature coefficient using wavelet denoising technique

is proposed in [128]. Heo et al. [129] designed a wavelet-PCA based multi-step de-

noising technique for the estimation of reactor power under degraded flow-meter. Park

et al. [130] demonstrated application of wavelet denoising in water-level control of

SG. DWT-based denoising technique is applied for power feedback in regulating sys-

tem [131]. Hadad et al. [132] used wavelet transform based ANN for fault recognition

and classification in a NPP. Montalvo et al. [133] improved the response times of in

situ measurement of detectors signals using DWT. An adaptive Morlet wavelet trans-

form based method for extracting weak impact signal and to remove interfering noise

in NPP is proposed by Cao et al. [134]. Espinosa-Paredes et al. [135] studied tran-

sient instability phenomenon of neutronic power oscillation in a Boiling Water Reactor

(BWR) using wavelets. Prieto-Guerrero et al. [136] applied wavelet ridges of the sys-

tem impulse response for the estimation of decay ratio and to further evaluate stability

parameters using neutronic measurements. In [137], a power spectral density based

modeling strategy is formed during a transient via wavelet MRA. Integration of wavelet

MRA with correlation function has been proposed for the estimation of system param-

eters and to determine stability of a BWR [138]. Minimum-memory ARX model with

wavelet projections has been proposed for liquid zone control system [24]. Patra et al.

[139], demonstrated the application of Haar wavelet in solving the point-kinetics model

and to further study the behaviour of neutron density. It is found that most of the works

are based on the prefiltering of measurements in which, the data is projected back in

time followed by the usual estimation/identification exercise. In contrast, the technique

developed in this thesis works with the wavelet projections of data thereby taking a

different stance from that of the several existing methods.
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2.8 Model Predictive Control

Predictive control is one of the industry pioneered control design technique. Dynamic

Matrix Control (DMC) was its first variant reported by Cutler and Ramaker [140] in the

1970s. It employs finite impulse response and step response models in the formulation

of the controller. It has been applied successfully in industrial process control field by

Richalet [141]. This model structure gives a transparent description of process time de-

lay, response time, and gain. However, they are limited to stable plants and often require

large model orders. Clarke et al. [142, 143] introduced GPC to overcome the limita-

tions of DMC. It uses transfer function models to design controller and is based on the

receding-horizon architecture. They give a more parsimonious description of process

dynamics and are applicable to both stable and unstable plants. It has the advantage of

overcoming time-varying, time-delay, and nonlinearity in the processes. However, they

are difficult to implement for multi variable systems. The development of model pre-

dictive control using state-space models is by Muske and Rawlings [144]. State-space

formulation of a predictive controller is popular because of the simplicity of design

framework and the direct link to the classical linear quadratic regulators. MPC design

using state-space models have gained wide attention due to its inherent advantages and

flexibility over other models representation, for e.g., ease in handling constraints and

natural extension to MIMO systems.

The block diagram representation of the MPC design approach applied to a plant is

shown in Figure 2.6. The given set-points and constraints are applied to the MPC block

which consists of a plant model, cost function, and optimization scheme. The aim of

predictive controller is to compute a trajectory of future manipulated variables to opti-

mize future behavior of the plant output. The manipulated variables are then applied to

the plant to be controlled. The controlled output signal is then feed back to the MPC

block to design control strategy for next instant. In the presence of measured distur-

bance, the scheme can be added with a feed-forward control action. The MPC strategy

is shown in Figure 2.7. The measured output and past control input are assumed to

Subspace-based Identification and Control using Wavelets 37



Chapter 2. Literature Survey

MPC Plant

Measured Disturbance

Unmeasured 
Disturbance

Set-point

Noise

+
+

Controlled variable

Manipulated variable

Constraints

FIGURE 2.6: Block diagram representation of the MPC approach.

be available up to k instant. Now the cost function is optimized to find future control

input over control horizon while output is predicted over the prediction horizon. Based

on the calculation of manipulated variable, the MPC approach can be divided into two

strategies. They are called as infinite horizon and receding horizon approaches. In infi-

nite horizon control philosophy, output is predicted over prediction horizon and control

strategy is calculated and implemented over the control horizon. Whereas, in the case

of receding horizon control philosophy only the first control action is implemented. The

receding horizon control philosophy is shown in Figure 2.8. At the next sampling in-

stant, moving window is moved by one step and control strategy is calculated again

over the control horizon while only the first control action is implemented. The same

strategy is repeated for next data samples.

The application of MPC to nuclear engineering has attracted a great deal of attention in

recent years. In the field of SG level control, Kothare et al. [145] implemented MPC

by using a Linear Parameter Varying (LPV) model of the U-tube SG. Na et al. [146]

applied the MPC technique to control the water level of nuclear SG. In [147], authors

adopted multi-mode based robust MPC technique to address the nonlinearity in the wa-

ter level control of SG. Eliasi et al. [148] used adaptive fuzzy models for predictive
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FIGURE 2.7: Representation of model predictive control strategy.

control of SG. A SVR based MPC of water level of U-tube SG is proposed by Kavak-

lioglu [149]. Another important application of MPC is in designing control strategy

for load-following mode of operation. The load-following operation is becoming an in-

creasingly important feature of NPPs in response to load requirements. The core power

control for load-following mode of PWR is studied by various researchers. Na et al.

[150, 151] assumed that the process is governed by ARIMA model structure similar

to that of the GPC. The approach requires solution of complex Diophantine equation

to obtain predictor coefficients. Na et al. applied MPC for the control of power level

and axial power distribution. A multiple-model-based MPC technique is discussed for

the load-following problem of movable plants by Yun et al. [152]. Robust nonlinear

MPC strategies have been developed by Eliasi et al. for the load-following operation

of PWR [153, 154]. Etchepareborda et al. [155] used a nonlinear receding horizon

control method to regulate the power of a research reactor over a wide range in the pres-

ence of known disturbances. A recent study by Wang et al. [156] focused on the load

tracking problem of PWR at low-load working condition using quadratic programming

optimizer. A major issue with above discussed model-based control approaches is that

it requires precise mathematical model of the underlying process a priori. This makes
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FIGURE 2.8: Representation of receding horizon control strategy.

the implementation of MPC time-consuming as the control performance is mainly de-

pendent on the employed process model. Further, variation in reactor parameters with

operating power limit model-based techniques to guarantee the desired performance.

2.9 Subspace Predictive Control

SPC has been investigated by many researchers, and different variants have been re-

ported in the literature with applications ranging from fuel cells to networked control

systems. Kadali et al. [29] proposed the inclusion of integral action and feed-forward

action with the tradition SPC. Wang et al. [30] formulate SPC under incomplete out-

put measurements. Xia et al. [157] applied SPC to design the networked predictive

control system which consists of the control prediction generator and network delay

compensator. Wu et al. [158] developed a multimodel based SPC for the nonlinear

boiler-turbine unit. In [32], authors combined SPC with fuzzy clustering to control the

nonlinear boiler-turbine unit. Favoreel et al. [159] have employed subspace methods
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in the Linear Quadratic Gaussian (LQG) framework. Woodley et al. [160] combined

subspace methods with H∞ control. A number of methods have been developed in

literature to deal with closed-loop data. Using the idea from closed-loop subspace

identification method, Favoreel et al. [161] also proposed the design of closed-loop

subspace-based LQG controller. Dong and Verhaegen [162] has established an equiva-

lence between closed-loop SPC and classical LQG. An efficient closed-loop SPC based

on the Vector Auto Regressive with eXogenous inputs (VARX) algorithm [82] was pro-

posed by Dong et al. [163]. Hallouzi and Verhaegen [164] proposed the fault tolerant

SPC based on the VARX structure. Persistency of excitation in the SPC is studied in

[165]. Closed-loop SPC for LPV systems is developed in [166, 167]. A closed-loop

SPC algorithm is developed for LTI systems with static nonlinearity at the plant input

by Kulscar et al. [168]. Navalkar et al. [169] combined an on-line system identification

with the subspace predictive repetitive control. In the presence of practical applications

care has to be exercised as the data-driven control becomes sensitive to noise and may

sometimes lead to ill-conditioning of the predictor matrices. A data prefiltering mea-

sure has been proposed in [31] under the assumption that the noise model is available.

However, the assumption about knowledge of noise model is rather strict. Moreover,

the method is less preferable for reactor where noise arises from different sources. The

proposed wavelet based preprocessing shows better solution to this problem. Here, the

noise is handled in the proposed approach by means of thresholding strategy, which is

equivalent to a nonlinear estimation of the signal. The efficient thresholding associated

with wavelets can render an identified controller insensitive to noise. Consequently, the

focus is on achieving the best predictions of the deterministic component of the output

in the wavelet space.

2.10 Data-driven Control Techniques

In the last two decades, different soft-computing techniques, such as ANN, Fuzzy

Logic, Genetic Algorithms, and SVR have been applied to the control of U-tube SG,
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reactor power, and temperature. For instance, a diagonal recurrent neural network based

controller to enhance the temperature response of PWR is proposed by Ku et al. [170].

An ANN-based controller using the response of a self-tuning regulator has been applied

for wide range power regulation in the load-following operation [171]. Arab-Alibeik et

al. [172] developed an adaptive feed-forward neural network-based controller for power

level control of PWR. Khajavi et al. [173] proposed a fuzzy logic-based robust optimal

power level controller to improve the load-following characteristics. Khorramabadi et

al. [174] integrated the learning ability of ANN with the decision-making capability

of fuzzy logic to develop a neuro-fuzzy power controller. Na et al. [175] proposed a

genetic algorithm optimized fuzzy model-based MPC to improve the performance of

thermal power control. In the similar line of work, Lee et al. [176] employed a support-

vector regression model in place of fuzzy model to obtain better output prediction. Na

and Upadhyaya [177] applied SVR based MPC to control thermoelectric power in the

SP-100 space reactor. In some recent works, nonlinear fuzzy models are employed to

enhance the potential of conventional MPC techniques [178, 179].

It has been found that, most of these approaches have employed these techniques for

the design of model structures. Thus their performance is dependent up on the accuracy

of estimated model. Furthermore, they require more computation time for model esti-

mation. In case of ANN based techniques, their implementation would require building

up of optimal network structure. It also suffers from local minima problems. Fuzzy

logic-based techniques usually require expert knowledge of the underlying system to

design rule base. In contrast to fuzzy models, subspace-based approaches do not need

explicit knowledge about the system. Moreover, algorithms based on subspace matrix

that can directly design controller are time saving and particularly suitable for prompt

installation.
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Wavelet Operators for Multiscale

Modeling

In this chapter, methodology of wavelet operators for multiscale modeling is presented.

It proposes to design wavelet operator from the given measurements such that the sys-

tem matrices has a diagonal structure in the projection space. The proposed algorithm

is validated on the nuclear reactor system using reference as well as plant datasets.

Wavelet operators are designed to impose certain specific structure on the system matrix

in projection space. In particular, the notion is to diagonalize the system matrix to

decouple system modes completely for applying independent control actions along the

Eigen functions [27]. This work formulates a state-space model with wavelet states. It

proves that one can work with a diagonalized state space model in wavelet sub-spaces

as well. In other words, the methodology works by embedding in wavelet operator, the

ability of extracting cross-correlation across variables. Wavelet operators are designed

to systematically orchestrate the evolution of a system model across scales. Although,

the present formulation is derived in a deterministic set-up, it can be readily adopted in

a stochastic framework. Further, it suggests the use of different wavelet basis functions

for different modes/states suitably selected to minimize modeling error.
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3.1 Wavelet operator

3.1.1 Notations

System input u(t) and output y(t) are defined in Hilbert space L2 of real-valued square

integrable functions. Discrete measurements u[k] and y[k] respectively of input and

output belong to l2, the vector space of square summable sequences. Measurements

uwj [k]/uvj [k] and ywj [k]/yvj [k] are considered to be projections of u[k] and y[k] on wavelet

basis/scaling functions at any resolution 2−j . Wavelet basis functions and scaling func-

tions span the vector space L2. Sequence {Vj}j∈Z of closed sub-spaces of L2 is denoted

as a multiresolution approximation with difference space Wj satisfying Vj+1⊕Wj+1 =

Vj , for all j, ⊕ denoting direct sum of the subspaces.

Let us consider a discrete-time LTI SISO multivariate system of order N , given by

one-step-ahead state-space model

x [k + 1] = Ax [k] +Bu [k] ,∀k, (3.1)

where A ∈ RN×N , B ∈ RN×1, and x ∈ RN respectively denote system dynamics

matrix, input matrix, and state vector. A sequence xvj (x
w
j ) belongs to Vj(Wj) at any

resolution 2−j while x[k] are considered measurable in V0. Operators projecting onto

the respective sub-spaces Wj(Vj) are also denoted by the same notation Wj(Vj). Let

xvj [k] be the kth sample of state vector and xvij[k] the ith state variable in xvj [k].

Let us denote the state-space model in Vj by (Avj , B
v
j ). The state equation in Vj at

resolution 2−j is written as

xvj [k + 1] = Avjx
v
j [k] +Bv

j u
v
j [k] , ∀k, (3.2)
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or in expanded form



xv1j[k + 1]

xv2j[k + 1]

...

xvNj[k + 1]


= Avj



xv1j[k]

xv2j[k]

...

xvNj[k]


+Bv

j u
v
j [k], ∀k. (3.3)

In this work, we actually deal with operators with truncated support of length equal to

number of states and hence, let us define the N×N regression matrix at resolution 2−j

as

Xj[k] =



xv1j[k] xv1j[k − 1] · · · xv1j[k −N + 1]

xv2j[k] xv2j[k − 1] · · · xv2j[k −N + 1]

...
... . . . ...

xvNj[k] xvNj[k − 1] · · · xvNj[k −N + 1]


, (3.4)

and 1×N input matrix at resolution 2−j as

Uj[k] =

[
uvj [k]

...uvj [k − 1]
... · · · ...uvj [k −N + 1]

]
, (3.5)

such that the state-space description of a system in terms of regression matrix Xj[k] can

be written as,

Xj [k + 1] = AvjXj [k] +Bv
jUj [k] ,∀k, (3.6)

where Avj is N×N matrix and Bv
j is N×1 column vector. The elements in a row of

Xj are considered to have temporal correlation, it is assumed that the elements in a

column are correlated spatially. One of the objectives of the transformation is to make

this spatial correlation evident by resolving the states of the system on a new set of

basis. For this work, it is considered that the change of basis diagonalizes Avj i.e., it

completely decorrelates spatially. Primary advantage of such a transformation is that

the application of control input along the direction of one basis would only affect the

state projected on the same basis. Returning to the formulation of the output equation,
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we can simply write

Yj [k] = Cv
jXj [k] , (3.7)

where, Yj[k] =

[
yvj [k]

...yvj [k − 1]
... · · · ...yvj [k −N + 1]

]
and Cv

j is a 1×N row vector.

3.1.2 Local Diagonalizing Transform

A local operator matrix is defined as a matrix that locally transforms system states from

one resolution to another operating on the finite length regressor. To be more specific,

it operates on the regression matrix at any resolution 2−j to give states in the difference

space Wj+1. Let us now define the separable local diagonalizing transform as given

below

xwj+1 [k] = E(WX
j X

T
j [k]), (3.8)

where local operator WX
j is also defined as an N×N matrix

WX
j =



w11 w12 · · · w1N

w21 w22 · · · w2N

...
... . . . ...

wN1 wN2 · · · wNN


. (3.9)

Operator E(.) extracts the diagonal elements of the operand matrix and arranges them in

a column. Note that xwj+1 [k] is a column vector having diagonal elements ofWX
j X

T
j [k],

i.e.

xwj+1 [k] =



w11x
v
1j[k] + w12x

v
1j[k − 1] + · · ·w1Nx

v
1j[k −N + 1]

w21x
v
2j[k] + w22x

v
2j[k − 1] + · · ·w2Nx

v
2j[k −N + 1]

...

wN1x
v
Nj[k] + wN2x

v
Nj[k − 1] + · · ·wNNxvNj[k −N + 1]


. (3.10)
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The local operator transforms input and output vector as

Uw
j+1 [k] = WX

j U
T
j [k] ; Y w

j+1[k] =
(
WX
j Y

T
j [k]

)T
, (3.11)

where Uw
j+1 isN×1 column vector and Y w

j+1 is 1×N row vector. Rows of local operator

WX
j , defined as an N×N matrix play the role of wavelet filters. Let us also define the

local inverse operator matrix (WX
j )−1 such that (WX

j )−1WX
j = I . Computation of each

state variable by application of local diagonalizing transform requiresN multiplications

where N is the order of the system.

It should be clearly understood at the outset that WX
j is a local operator that operates

on the approximation (indicated by superscript v) at resolution 2−j to produce details

(indicated by superscript w) at resolution 2−(j+1) . So, (Avj , B
v
j ) models the system in Vj

while (Awj+1, B
w
j+1) in Wj+1. The following Section 3.2 establishes a relation between

(Avj , B
v
j ) and (Awj+1, B

w
j+1).

3.2 State space model in transform domain

Consider the state-space description given by (3.6),

XT
j [k + 1] = XT

j [k](Avj )
T + UT

j [k](Bv
j )T . (3.12)

Projection onto wavelet space is achieved by first pre-multiplying by WX
j and then

applying operator E(·) on both sides of (3.12) i.e.,

E(WX
j Xj

T [k + 1]) = E(WX
j Xj

T [k](Avj )
T ) + E(WX

j Uj
T [k](Bv

j )T ). (3.13)

The equivalent state equation in Wj+1 space is given by

xwj+1[k + 1] = Awj+1x
w
j+1[k] +Bw

j+1U
w
j+1[k], (3.14)
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with

Awj+1 = ((WX
j )T )−1X−1

j [k]AvjXj[k](WX
j )T , (3.15)

and Bw
j+1 is defined as,

Bw
j+1W

X
j U

T
j [k] = E(WX

j U
T
j [k] (Bv

j )T ). (3.16)

Note that Awj+1 and Bw
j+1 are defined to be diagonal matrices so that,

Awj+1E(WX
j X

T
j [k]) = E(Awj+1W

X
j X

T
j [k]), (3.17)

Bw
j+1 = D(Bv

j ). (3.18)

Operator D(·) arranges the elements of a vector operand along the diagonal of a diag-

onal matrix. Observe that D(·) would accomplish the reverse operation of E(·) i.e. it

would give back the original matrix only if it is diagonal to start with. By observation

one can state that the sufficient condition that would satisfy (3.13) is,

Xj [k + 1] = Xj [k] (WX
j )TAwj+1((WX

j )T )−1

+(D(Bw
j+1W

X
j U

T
j [k]))T ((WX

j )T )−1,
(3.19)

subject to the condition that WX
j is invertible. System parameters in Vj and those in

Wj+1 are then related as

Awj+1 = ((WX
j )T )−1Avj (W

X
j )T , (3.20)

where Avj = X−1
j [k]AvjXj[k] and Bv

j = Bv
j . An important implication of (3.14)–(3.20)

is that one can work with a state-space model having a specific structure in projection

space, spanned by local diagonalizing basis, as well. Also, given a local diagonalizing

operator, there exists a definite relationship between the model in measurement space

and that in projection space. This formulation is fundamental to the design of wavelet

operator for multiscale modeling. Since Awj+1 is diagonal, to ensure controllability of
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the transformed system column vector Bw
j+1 should not have any zero row.

In practice, E(WX
j Xj

T [k]) is implemented by appropriately designing analysis multi-

rate filter bank associated with a wavelet operator. The derived relationship between

Avj and Awj+1 signifies the data dependent or adaptive nature of the local diagonalizing

transform. This is expected because the transform is designed to meet the objectives

locally and hence the operator is data dependent. However, the basic structure of the

operator matrix remains invariant. On the contrary, wavelet transform, in its basic form

is non-adaptive in nature. Later in this chapter, the factorization of local diagonalizing

operator matrix into a non-adaptive and an adaptive matrix is investigated. Further, the

design of a non-adaptive operator matrix that qualifies as a wavelet transform operator

is also derived.

The output relation in projection space is derived as follows. Taking the transpose of

the output equation (3.7) gives,

Y T
j [k] = XT

j [k]
(
Cv
j

)T
. (3.21)

Pre-multiplying both sides of (3.21) by WX
j gives,

WX
j Y

T
j [k] = WX

j X
T
j [k]

(
Cv
j

)T
. (3.22)

Using (3.8) and (3.11), above equation can be written as,

(
Y w
j+1[k]

)T
= D

(
xwj+1[k]

)
R−1

(
Cv
j

)T
, (3.23)

or simply,

Y w
j+1[k] = Cv

j

(
R−1

)TD (xwj+1[k]
)
, (3.24)

where R =
(
WX
j X

T
j

)−1D
(
E
(
WX
j X

T
j

))
and Cw

j+1 = Cv
j (R−1)

T .

Let us define ywj+1[k] = Y w
j+1[k]Z, where Z =

[
1 1 · · · 1

]T
. Now (3.24) can be
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written as,

ywj+1[k] = Cw
j+1x

w
j+1[k]. (3.25)

3.2.1 Design of a Non-Adaptive Wavelet Operator Matrix

A careful look at (3.20) reveals that the rows of the matrix ((WX
j )T )−1 are left eigen-

vectors of A
v

j and diagonal elements of Awj+1 are the corresponding eigenvalues. Let,

Awj+1 = diag[ α1 α2 · · · αN ], (3.26)

where α1, α2, · · · , αN are non-zero distinct eigenvalues. Any linear transformation

((WX
j )T )−1, satisfying

Awj+1 = ((WX
j )T )−1Avj (W

X
j )T , (3.27)

can in general be given by [180],

((WX
j )T )−1 =WjVj ⇒ (WX

j )T = V−1
j W−1

j . (3.28)

One possible choice is V−1
j = Qj =

[
B
v

j , A
v
jB

v

j , · · · , Avj
N−1

B
v

j

]
with QjÃj = AvjQj

where,

Ãj =



0 0 · · · − aN
1 0 · · · − aN−1

0 1 · · · − aN−2

...
... . . . ...

0 0 · · · − a1


. (3.29)

Here (a1, · · · , aN) are the coefficients of the characteristic polynomial Aj . Matrix Qj

depends on Avj (= X−1
j [k]AvjXj[k]) and needs to be recomputed adaptively at each k. If

system is controllable, then Qj is of rank N . Moreover, this article does not deal with

uncontrollable systems.
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With the choice of Qj given above it is elementary to show that the linear transforma-

tion Wj satisfying Awj+1Wj = WjÃ is the product of a diagonal matrix (M) and the

Vandermonde matrix (refer Appendix B)

Wj =M



1 α1 · · · αN−1
1

1 α2 · · · αN−1
2

...
... . . . ...

1 αN · · · αN−1
N


, (3.30)

whereM = diag[ m1 m2 · · · mN ], in which m1,m2, · · · ,mN ∈ R. In specific,

matrixM can be taken as an identity matrix. MatrixWj is translation invariant because

Avj is similar to Avj and have the same eigenvalues as that of Avj . Wj is of rank N if all

the eigenvalues of Avj are distinct. Since both Vj andWj are of rank N , WX
j is also of

rank N and is invertible.

Any system
(
Avj , B

v
j

)
if state-controllable in measurement space can be transformed

into the controllable form
(
Ãj, B̃j

)
. Hence, without any loss of generality, one can

work with the system described by
(
Ãj, B̃j

)
. In such a case, local diagonalizing oper-

ator WX
j is independent of data (translation invariant) and is denoted by W̃X

j ,

((W̃X
j )T )−1 =Wj ⇒ W̃X

j = (W−1
j )T . (3.31)

It may be observed that although translation invariant, W̃X
j is not scale invariant as it

depends on the eigenvalues at that resolution.

3.2.2 Design of Analysis High Pass Filter

In this subsection an approach to design analysis HPF is presented for a general third or-

der discrete time system. A third order system is non trivial and would bring out salient

features of the design methodology. This is a crucial step as the design of analysis HPF

further leads to full filter bank implementation. LetM = I , then the operatorWj for
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FIGURE 3.1: Block diagram of analysis and synthesis filter bank

the system is given by

Wj =M


1 α1 α2

1

1 α2 α2
2

1 α3 α2
3

 . (3.32)

From (3.31) and (3.32)

W̃X
j =

1

∆


α2α3(α3 − α2) (α2

2 − α3
2) (α3 − α2)

α1α3(α1 − α3) (α3
2 − α1

2) (α1 − α3)

α1α2(α2 − α1) (α1
2 − α2

2) (α2 − α1)

 , (3.33)

and ∆ is determinant ofWj . Note that all columns of W̃X
j add up to zero except for the

first column. Hence, all but the first column qualify to be the high pass analysis filter

in a wavelet filter bank. This automatically satisfies the admissibility condition that the

Fourier transform of the filter is zero at zero frequency [86]. Values of filter coefficients

originating out of the first column are suitably augmented to satisfy the admissibility

condition.

Every row of (W̃X
j )T plays the role of half band high-pass analysis filter g[−k] in two-

channel perfect reconstruction multirate filter bank i.e.

gi[−k] = (W̃X
j )Tik. (3.34)
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Other half band filters in the filter bank i.e. analysis low pass h, synthesis high-pass g̃

and synthesis low pass h̃ filters can be designed by satisfying biorthogonality condition

thereby giving the full filter bank structure as shown in Figure 3.1. This is explained in

Section 3.2.3 and further derived in Appendix B.2.

3.2.3 Design of Two Channel Biorthogonal Filter bank

The approximation spaces, {Vj}j∈Z and difference spaces, {Wj}j∈Z are spanned by

integer translates of scaling and wavelet basis functions, respectively. The basic dilation

equation defines synthesis scaling function φ̃ and synthesis wavelet function ψ̃ through

two-scale difference equation

1√
2
φ̃(
t

2
) =

+∞∑
k=−∞

h̃[k]φ̃(t− k), (3.35)

1√
2
ψ̃(
t

2
) =

+∞∑
k=−∞

g̃[k]φ̃(t− k). (3.36)

Analysis scaling function φ(·) and analysis wavelet function ψ(·) are related to h[k] and

g[k] respectively through similar relations. Projections onto {Vj}j∈Z and {Wj}j∈Z are

implemented using the analysis filter bank. Analysis and synthesis filters need to satisfy

biorthogonality and perfect reconstruction conditions. The synthesis filter design takes

care of alias cancellation thereby resulting in perfect reconstruction. These conditions

are summarized in the following.

1. Biorthogonality condition, i.e.,

〈
h̃[k], h[k − 2l]

〉
= δ[l],

〈g̃[k], g[k − 2l]〉 = δ[l],〈
h̃[k], g[k − 2l]

〉
= 〈g̃[k], h[k − 2l]〉 = 0.
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2. Perfect reconstruction condition

g[k] = (−1)(1−k)h̃[1− k],

g̃[k] = (−1)(1−k)h[1− k].

It may be noted here that perfect reconstruction condition essentially leads to biorthog-

onality condition. For a decimated wavelet transform, wavelet coefficients or wavelet

states in next lower resolution are obtained by downsampling of analysis and synthesis

filters’ outputs by two. Further, filter banks can be designed to have desired number

of vanishing moments with compact support. A wavelet function ψ(t) is said to have

K vanishing moment if the associated scaling function can generate polynomials up to

degree K − 1. This condition is given as

+∞∫
−∞

tmψ(t)dt = 0, m = 0, 1, · · · , K − 1. (3.37)

When designing the filter bank, the vanishing moment constraint is used in addition

to the biorthogonality and perfect reconstruction conditions. An analytical example of

perfect reconstruction biorthogonal wavelet filter bank (PRBWFB) design is given in

Appendix B.2.

3.2.4 Proposed Algorithm

The proposed methodology of multiscale system modeling employs translation invari-

ant but scale adaptive basis functions that completely decorrelate system states in trans-

form domain. Design of this class of wavelet filter bank is based on the nominal model

of the system identified in approximation space. Figure 3.2 provides a block diagram of

the proposed technique. Steps to obtain a multiscale model are listed below:
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Data/System Projection
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 (Detail)

PRBWFB 
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Input/
Output 
Dataset

Output 
Prediction

FIGURE 3.2: Block diagram of the proposed projection space modeling technique.

1. Identify a low order LTI model (Âvj , B̂
v
j , Ĉ

v
j ) in approximation space Vj . One can

use numerically stable subspace methods to estimate dynamic linear state space

model in deterministic/stochastic setup [1, 74, 75].

2. Compute transformation Avj = X−1
j [k]AvjXj[k].

3. Compute eigenvalues and coefficients of PRBWFB at resolution 2−j .

4. Operate on states of the transformed system (Avj , B
v
j ) in Vj to obtain states of

(Avj+1, B
v
j+1) in Vj+1 and that of (Awj+1, B

w
j+1) in Wj+1.

5. Estimate (Âwj+1, B̂
w
j+1, Ĉ

w
j+1). The nominal model may be obtained by (3.15) and

(3.18).

6. Repeat steps 1 to 5 till j + 1 = J , where 2−J is minimum resolution.

At the end the multiscale model would consist of a set of LTI models in approximation

space VJ and in wavelet spaces Wj, j = 1, 2, · · · , J .
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3.3 Application to Nuclear Reactor

Simulations have been performed for two different cases: 1) using reference dataset

and 2) using plant dataset. In Section 3.3.2, an estimation/validation dataset is gener-

ated by exciting the point kinetics model with reactivity variation as an input and the

corresponding power variation thus obtained as the output of the system. On the other

hand, in Section 3.3.2, plant datasets obtained from a 540 MWe Indian PHWR are used

for estimation/validation exercise.

3.3.1 Case study using reference dataset

In order to develop wavelet operator for analysis and synthesis and to further model the

reactor in projection space, the system given by (C.9)–(C.10) needs to be represented in

standard state space form as

ẋ(t) = Fx(t) +Gu(t), (3.38)

where the state vector x, matrix F , and vector G are defined as

x =

[
P C1 C2 C3 C4 C5 C6

]T
, (3.39)

F =



−
6∑
i=1

βi/Λ λ1 λ2 λ3 λ4 λ5 λ6

β1/Λ −λ1 0 0 0 0 0

β2/Λ 0 −λ2 0 0 0 0

β3/Λ 0 0 −λ3 0 0 0

β4/Λ 0 0 0 −λ4 0 0

β5/Λ 0 0 0 0 −λ5 0

β6/Λ 0 0 0 0 0 −λ6



; G =



P0

Λ

0

0

0

0

0

0



. (3.40)

The delayed neutron parameters for Uranium-235 are given in Appendix C, Table C.1.

The steady state value of power i.e. P0 is set to unity. Substituting the values of various
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parameters, the open loop poles of the reactor system described by (3.38) are observed

to be located at

s = [0,−0.0143,−0.0678,−0.1929,−0.9970,−2.8318,−6.9953]. (3.41)

Equations (3.38)-(3.40) however is the continuous time model. The discrete time system

representation is given by (3.1) with

A = eFTs , B =

Ts∫
0

eFtGdt, (3.42)

where Ts is the sampling period for discretization. The z-domain counterpart of the

s-domain poles, for a sampling period of 80 msec, are given by

z = [0.5714, 0.7973, 0.9233, 0.9847, 0.9946, 0.9989, 1]. (3.43)

To find a relation between input, output, and state variables, the system is excited with

a known input signal. One of the ways to change input reactivity to the reactor sys-

tem is by movement of control rod (CR). It may be noted that insertion of CR from its

nominal position introduces negative reactivity which decrements reactor power, while

withdrawal of CR from its nominal position introduces positive reactivity which in-

crements reactor power. The input reactivity transient is supplied to the point kinetics

model of the nuclear reactor to generate variation in the reactor power output. Figure

3.3 shows the change in reactivity test input introduced by CR rod movement and the

corresponding reactor power is shown in Figure 3.4.

Wavelet operators W̃X
j are designed using (3.31) as described in Subsections 3.2.2 and

3.2.3. Observe that columns of W̃X
j play the role of analysis HPF with zero DC gain.

These HPFs are used to design synthesis low pass filters (LPF) by employing perfect

reconstruction condition. The biorthogonality condition is used to obtain analysis LPF
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and synthesis HPF. In general, the HPF coefficients obtained by (3.34) are not symmet-

ric and make cause system of simultaneous equations to be under-determined. To com-

plete the design of PRBWFB, it is required to have one more design equation. While

selecting wavelets for function approximation and to have a sparse representation, the

choice is made based on the regularity of the basis function that decides number of van-

ishing moments and support size. The vanishing moment condition is included as an

additional design constraint. The PRBWFBs are designed to have length of eight taps

and two vanishing moment as given in Table 3.1. Measurement space system states are

transformed by these operators to those in the projection space and model parameters

are estimated. System dynamics matrix of estimated projection space model is given by

Awj+1,

Awj+1 = diag

[
0.6031, 0.7840, 0.9257, 0.9843, 0.9947, 0.9989, 1

]
. (3.44)

Input matrix Bw
j+1 is given by

Bw
j+1 = diag

[
60.6203, 0.5653, 3.7426, 3.3408, 6.6988, 1.9073, 0.6616

]
.

(3.45)

Different conventional empirical modeling approaches e.g. SID, ARX, and OE have

also been implemented. The model parameters are estimated from training dataset (Fig-

ures 3.3 and 3.4) by minimizing Akaike’s Information Criterion. The estimated model

parameters are given as follows:

The parameters of estimated OE model from reference dataset are given by

B(q−1) = 186.9q−1 − 370.9q−2 + 184q−3,

A(q−1) = 1− 1.994q−1 + 0.994q−2.
(3.46)

The parameters of estimated ARX model from reference dataset are given by

B(q−1) = 61.47q−1 − 121q−2 + 59.58q−3,

A(q−1) = 1− 2.582q−1 + 2.168q−2 − 0.586q−3,
(3.47)
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FIGURE 3.3: Variation of reference reactivity estimation input.
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FIGURE 3.4: Outputs of estimated models with observed data for reference input.
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TABLE 3.1: Estimated wavelet filter coefficients for different states.
State Estimated Filters

h[k]=[0, −0.35327, 0.49097, 0.75035, −1.24226, −1.00652, 0.14061, −0.00122]
First g[k]=[0, 0.56456, −0.78461, 0.25390, −0.03415, 0.00029, 0, 0]

h̃[k]=[0, 0, −0.00029, −0.03415, −0.25390, −0.78461, −0.56456, 0]
g̃[k]=[−0.00122, −0.14061, −1.00652, 1.24226, 0.75035, −0.49097, −0.35327, 0]

Second h[k]=[0, 0.35326, −0.49089, −0.75038, 1.24207, 1.0066, −0.14046, 0.00121]
g[k]=[0, −0.56462, 0.78461, −0.25380, 0.03410, −0.00029, 0, 0]
h̃[k]=[0, 0, 0.00029, 0.034106, 0.25380, 0.78461, 0.56462, 0]

g̃[k]=[0.00121, 0.14046, 1.00662, −1.24207, −0.75038, 0.49089, 0.35326, 0]
Third h[k]=[0, −0.35324, 0.49081, 0.75041, −1.24187, −1.00671, 0.14030, −0.00120]

g[k]=[0, 0.56468, −0.78460, 0.25369, −0.03405, 0.00029, 0, 0 ]
h̃[k]=[0, 0, −0.00029, −0.03405, −0.25369, −0.78460, −0.56468, 0]

g̃[k]=[−0.00120, −0.14030, −1.00671, 1.24187, 0.75041, −0.49081, −0.35324, 0]
Fourth h[k]=[0, 0.35322, −0.49073, −0.75044, 1.24167, 1.00681, −0.14014, 0.00119]

g[k]=[0, −0.56474, 0.78460, −0.25357, 0.03400, −0.00029, 0, 0]
h̃[k]=[0, 0, 0.00029, 0.03400, 0.25357, 0.78460, 0.56474, 0]

g̃[k]=[0.00119, 0.14014, 1.00681, −1.24167, −0.75044, 0.49073, 0.35322, 0]
Fifth h[k]=[0, −0.35320, 0.49065, 0.75047, −1.24146, −1.00691, 0.13998, −0.00118]

g[k]=[0, 0.56480, −0.78459, 0.25345, −0.03395, 0.00028, 0, 0]
h̃[k]=[0, 0, −0.00028, −0.03395, −0.25345, −0.78459, −0.56480, 0]

g̃[k]=[−0.00118, −0.13998, −1.00691, 1.24146, 0.75047, −0.49065, −0.35320, 0]
Sixth h[k]=[0, 0.35318, −0.49056, −0.75051, 1.24124, 1.00702, −0.13980, 0.00117]

g[k]=[0, −0.56487, 0.78459, −0.25333, 0.03390, −0.00028, 0, 0]
h̃[k]=[0, 0, 0.00028, 0.03390, 0.25333, 0.78459, 0.56487, 0]

g̃[k]=[0.00117, 0.13980, 1.00702, −1.24124, −0.75051, 0.49056, 0.35318, 0]
Seventh h[k]=[0, −0.35316, 0.49047, 0.75054, −1.24103, −1.00713, 0.13963, −0.00116]

g[k]=[0, 0.56494, −0.78458, 0.25321, −0.03384, 0.00028, 0, 0]
h̃[k]=[0, 0, −0.00028, −0.03384, −0.25321, −0.78458, −0.56494, 0]

g̃[k]=[−0.00116, −0.13963, −1.00713, 1.24103, 0.75054, −0.49047, −0.35316, 0]

and the estimated SID model from reference data is given by

x[k + 1] =


1 0 0

−0.001 0.891 −0.120

−0.004 −0.238 0.693

x[k] +


1.5

28082

68668

u[k] +


0.022

−997

2860

 e[k],

y[k] =

[
53.69 −0.0007 0

]
x[k] + e[k]. (3.48)

Figure 3.4 compares the estimates of the reactor power output obtained by various mod-

els with the observed data. It can be observed that all of the models are able to estimate

reactor power well enough. However, multiscale features might not have been suitably

modeled by any of the single scale models. A projection space model is expected to suf-

ficiently capture the multiscale process dynamics due to modeling at appropriate scale.
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Moreover, the fact that the underlying process is nonlinear in nature while all of the

estimated models are linear adds to the error in the output.

For the purpose of model validation, two validation datasets have been selected whose

dynamics are different from that of the estimation dataset. Further, to demonstrate the

efficacy of the proposed techniques a quantitative comparison with existing technique

has been presented. Validation test inputs shown in Figures 3.5 and 3.6 respectively

represent ramp and trapezoidal variations in the reactivity introduced by the movement

of CR inside the reactor. They are applied to different estimated models. Outputs of all

models are compared with the reference output in Figures 3.7 and 3.8. It is evident that

the projection space model shows a better response than that of the other models.

The modeling performance is quantitatively assessed by computing the root mean squared

error (RMSE). RMSE between simulation and output observation is calculated by,

RMSE =

√√√√ 1

N

N−1∑
k=0

(
P [k]− P̂ [k]

)2

(3.49)

where P denotes simulated power and P̂ denotes observed power. Table 3.2 shows

the value of RMSE in output simulation for different estimated models. The projection

space model gives less RMSE in output, for estimation as well as with different valida-

tion datasets, than those of the other single scale techniques. The small value of RMSE

indicates good modeling performance and enhanced prediction ability of the proposed

approach. The estimated model in projection space is able to capture all the system dy-

namics better due to the fact that it efficiently estimates the multiscale modes evolving

at different time-scale. On the other hand, single scale techniques are able to estimate

only an approximate model of the multiscale process thereby giving larger RMSE.

3.3.2 Case study using plant dataset

This subsection presents model estimation/validation exercise on transient dataset ob-

tained from 540 MWe Indian PHWR. The plant dataset includes reactor power as output
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FIGURE 3.5: Variation of reference reactivity validation input (Case A).
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FIGURE 3.6: Variation of reference reactivity validation input (Case B).
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FIGURE 3.7: Outputs of estimated models with observed data for Case A input.
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FIGURE 3.8: Outputs of estimated models with observed data for Case B input.
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TABLE 3.2: RMSE for simulated reference dataset.

XXXXXXXXXXXXDataset
Model

Projection space SID ARX OE

Estimation 4.88× 10−2 2.246× 10−1 2.818× 10−1 1.918× 10−1

Validation (Case A) 6.557× 10−1 1.0954 1.1358 1.1180
Validation (Case B) 5.292× 10−1 1.0247 1.1269 1.0000

and water level in zonal control compartment (ZCC) as input. The inflow variations in

ZCC water level cause variation in water level and consequently reactivity variations

which result into changes in reactor power. Figures 3.9 and 3.10 respectively show

variation in reactivity due to change in water level in ZCC and the corresponding varia-

tion in power.

Wavelet operators are designed as described in Subsections 3.2.2 and 3.2.3; this leads

to the design of full PRBWFBs. The PRBWFBs are designed to have length of six taps

and two vanishing moments as given in Table 3.3. The original measurement space

system states are transformed by these operators to those in the projection space and

model parameters are estimated. System dynamics matrix of estimated projection space

model is given by Awj+1,

Awj+1 = diag

[
0.0566, 0.1107, 0.9993

]
. (3.50)

Input matrix Bw
j+1 is given by

Bw
j+1 = diag

[
19.035, 2364.8, 94.335,

]
. (3.51)

The estimation of reactor power by projection space model is shown in Figure 3.10,

which also compares estimates of power obtained by other empirical models. It may be

seen that the projection space model suitably predicts the multiscale behavior and gives

a better estimate of reactor power than do the other models. In case of ARX approach,

the model structure estimates a noise model, however the parameter of noise model is

related to process model and thus gives a poor estimate. Besides this, the OE model
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TABLE 3.3: Estimated filter coefficients for different states for simulated plant dataset.

State Estimated Filters
First h[k]=[−0.00497, 0.78317, 1.31746 , 0.26550, −0.26381, 0]

g[k]=[0, 0, 0.00303, −0.47679, 0.47376, 0]
h̃[k]=[0, 0.47376, 0.47679, 0.00303, 0, 0]

g̃[k]=[0, 0.26381, 0.26550, −1.31746, 0.78317, 0.00497]
Second h[k]=[0.00477, −0.52473, −0.88623, −0.17917, 0.17754, 0]

g[k]=[0, 0, −0.00645, 0.71031, −0.70385, 0]
h̃[k]=[0, −0.70385, −0.71031, −0.00645, 0, 0]

g̃[k]=[0, −0.17754, −0.17917, 0.88623, −0.52473, −0.00477 ]
Third h[k]=[−0.02846, 0.49605, 0.89684, 0.19166, −0.18066, 0]

g[k]=[0, 0, 0.04172, −0.72704, 0.68532, 0]
h̃[k]=[0, 0.68532, 0.72704, 0.04172, 0, 0]

g̃[k]=[0, 0.18066, 0.19166, −0.89684, 0.49605, 0.02846]

structure does not evaluate a noise model and approximates the noisy plant output as

the output of model. In SID, system parameters estimate Kalman states which leads to

a good response. Different estimated models are given as follows. The OE model is

given by

B(q−1) = −3.83q−1 + 31.55q−2 − 28.27q−3,

A(q−1) = 1− 1.042q−1 − 0.841q−2 + 0.883q−3.
(3.52)

The ARX model is given by

B(q−1) = −15.63q−1 + 42.93q−2 − 25.92q−3 − 41.9q−4+66.34q−5 − 25.92q−6,

A(q−1) = 1− 2.867q−1 + 2.789q−2 − 0.975q−3 + 0.0541q−4,

(3.53)

and the SID model is given by

x[k + 1] =


0.999 −0.003 0.004

0.083 0.454 0.272

0.122 −0.828 −0.509

x[k] +


19.035

2364.8

94.335

u[k] +


0.125

2.266

0.152

 e[k],

y[k] =

[
7.703 −0.001 0.003

]
x[k] + e[k]. (3.54)

For the purpose of validation of different estimated models, plant datasets are shown in
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FIGURE 3.9: Variation of plant reactivity estimation input.

TABLE 3.4: RMSE for simulated plant dataset.

XXXXXXXXXXXXDataset
Model

Projection space SID ARX OE

Estimation 0.3521 0.3709 0.5985 0.3751
Validation 1.0490 1.1309 1.1805 1.1332

Figures 3.11 and 3.12. These plant datasets are comprised of data on changes in reactiv-

ity and corresponding variation in power. Outputs of all estimated models are compared

with observed plant output in Figure 3.12. It can be seen that single scale techniques are

only able to approximate the multiscale process while the estimated model in projection

space efficiently captures system modes evolving at different scale of time, thus giving

better prediction result as compared to others. Table 3.4 shows the value of RMSE for

different models for the estimation and validation datasets. It may be noted that the pro-

jection space approach yields less RMSE than do other single scale techniques thereby

outperforming other techniques in estimation as well as in validation in terms of mean

squared error in the output.
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FIGURE 3.10: Outputs of estimated models with observed data for plant input.
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FIGURE 3.11: Variation of plant reactivity validation input.
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FIGURE 3.12: Outputs of estimated models with observed data for plant input.

3.3.3 Controllability

Controllability of an N th order LTI system can in general be inspected using the fol-

lowing controllability check matrix.

Q =
[
B AB · · · AN−1B

]
(3.55)

A system is said to be controllable if the matrix Q is nonsingular. Controllability of a

nuclear reactor system given by (3.40) has already been proved by Liu et al. [178]. It

can be proved by establishing the controllability check matrix. For the reactor system,

the controllability check matrix suggest that if the following conditions are satisfied

then it is controllable [178].

1. P0 > 0

2. λ1 6= λ2 6= λ3 6= λ4 6= λ5 6= λ6 6= Λ
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The above mentioned conditions ensure that the determinant of the controllability check

matrix Q is non zero and thus Q is invertible. Condition 1 is met as the reactor is as-

sumed to be operating at a steady state power level. Whereas, Table C.1 shows that

condition 2 is satisfied for the reactor system. These two conditions ensure controlla-

bility of the point kinetics reactor system considered in this study.

3.4 Summary

This chapter formalizes the design of wavelet operator to transform states of a multivari-

able system from space of temporal measurements to that of projections in multiresolu-

tion. The imposed structure in projection space is justified as wavelets are approximate

Eigen functions of convolution operators. It is also shown that given an operator, there

exists a definite relationship between the model in the measurement space and that in

the projection space. The design methodology is demonstrated by designing multirate

filter bank associated with wavelet operators for modeling a multi-timescale nuclear re-

actor system. It has been validated using reference as well as plant datasets. It is shown

that projection space modeling of the reactor system leads to significant improvement

in output prediction over single-scale modeling techniques.
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Multiscale System Identification

In this chapter, methodology of multiscale system identification is presented. Specifi-

cally, it formulates open-loop and close-loop subspace identification techniques in mul-

tiresolution framework. It also discusses on-line implementation of proposed technique

for real-time applications. It further discusses various subtle issues such as selection

of wavelets and decomposition depth. The efficacy of proposed approach is demon-

strated on to the nuclear reactor. Detailed simulation studies are performed to compare

proposed technique with other single scale and multiscale approaches.

4.1 Multiscale System Identification

The proposition of multiscale system identification is to estimate a class of empirical

models working in multiresolution. Generally, transformation of input-output dataset in

multiresolution gives an advantage to look at different modes embedded in the dataset

at different time-frequency resolution. Wavelet transform tends to decouple system

modes because wavelets are approximate eigenfunction of the convolution operator and

the correlation structure of wavelet coefficients decays sharply. As compared to the

Fourier-based representation, a suitably selected wavelet basis has compact representa-

tion in the time-frequency plane. Moreover, the sparsity in wavelet subspace minimizes
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FIGURE 4.1: Block diagram representation of multiscale system identification using
dyadic discretization for two levels of decomposition.

size of the parameter vector to estimate and gives reduced order system implicitly. Mul-

tiscale system identification using wavelets can be implemented by employing either a

dyadic discretization scheme or an integer discretization scheme. Dyadic discretization

performs sub-sampling of data. Thus, it gives a compact representation, while integer

discretization does not use sub-sampling operation and gives a redundant representation.

This makes dyadic discretization suitable for off-line identification. The procedure of

multiscale system identification is a two-step process, 1) multiscale data projection or

representation, and 2) model identification at different scales. The block diagram rep-

resentation of the proposed technique is shown in Figure 4.1. The analysis side projects

data at different resolutions using suitably selected wavelet. The projection operation

is implemented with wavelet filter bank where different filters are operating in different

frequency sub-bands. The filtered signal is sub-sampled by two (shown by downward

arrow followed by 2) to keep the dimensionality same as that in measurement domain.

This operation gives non-redundant wavelet coefficients which are used in estimating

models. A number of significant scales are found out for model estimation. The simula-

tion or prediction output of estimated models is combined by projecting the transformed

coefficients into measurement space with the help of synthesis low pass filter (LPF) and

high pass filter (HPF).
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4.1.1 Multiscale Data Representation

Consider a given input (U ) and output (Y ) time-series where the later is assumed to be

contaminated with white Gaussian noise. The DWT operation to transform input and

output is given by

Y w = FY ; Uw = FU ; (4.1)

where F is the wavelet transform operator which consists of wavelet filters to transform

the given signal into projection space. It is defined as

F =

[
J

Π
j=1

HT
j GT

J

J−1

Π
j=1

HT
j GT

J−1

J−2

Π
j=1

HT
j · · · GT

1

]T
, (4.2)

where Hj and Gj

(
2J−j × 2J

)
matrices are defined by wavelet filter coefficients at jth

scale. Scale j = 1 and j = J respectively represent initial and final level of decompo-

sition. For the case of Haar wavelet and J = 2, F is given by

F =


H2H1

G2H1

G1

 =
1

2



1 1 1 1

1 1 −1 −1
√

2 −
√

2 0 0

0 0
√

2 −
√

2


. (4.3)

The output and input time-series are synthesized using inverse wavelet transform as

Ŷ = F̃ Y w; Û = F̃Uw; (4.4)

where F̃ is the inverse wavelet transform operator. The wavelet and inverse wavelet

operator can be orthogonal, or bi-orthogonal, or semi-orthogonal. Ŷ and Û contain pro-

cessed time-series of output and input respectively. The wavelet transform operation

distributes the contribution of noise among all small wavelet coefficients while the con-

tribution from deterministic part will be in small number of high amplitude coefficients.

Therefore, no loss of useful information in the processed signal is likely to be caused

by an amplitude thresholding of the wavelet coefficients. The nonlinear approximation
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of signal via thresholding of the coefficients enables faster convergence [181]. Be-

sides these advantages offered by projection-based formulation, its effectiveness often

requires careful selection of wavelet basis, decomposition depth, and significant scales.

4.1.1.1 Selection of Wavelet Basis

Generally, wavelet basis should be selected such that, a) it has good correlation with

data thereby ensuring sparse representation in the transformed domain, b) it contains

maximum information or minimum entropy at each scale [182], c) it has the desired

time-frequency resolution as a short support basis will sacrifice frequency resolution at

high levels while a broad support basis will degrade time resolution at lower levels, and

d) it has compact representation. For instance, piecewise constant functions (e.g. Haar)

are suitable for representing a highly localized event like singularity or sudden change

while piecewise polynomial functions (e.g. splines) are preferable for a smoothly vary-

ing signal. Further, complex wavelets are preferred for capturing oscillatory behaviour

while real ones can be used for the detection of peaks or discontinuities [183].

4.1.1.2 Computation of Decomposition Depth

Decomposition depth or scale (J) is decided to ensure that a minimum number of obser-

vations hit the support of each basis function. The maximum theoretical depth however

is limited to the integer value of log2(cfs), where fs is the maximum natural frequency

of the sampled signal and c is a number between 10 and 20 [121]. The maximum de-

composition depth can also be computed using the Fourier transform. It is selected such

that the magnitude of the Fourier transform is above the noise floor-level, i.e.

∣∣Y (π/2J)∣∣ ≥ |Y (π/f)| ;
∣∣U (π/2J)∣∣ ≥ |U (π/f)| . (4.5)
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4.1.1.3 Selection of Significant Scales

Usually, only some of the scales contribute significantly in determining process behav-

ior and for a parsimonious model representation, the selection of significant scales is a

crucial step. There are various ways of finding significant scales, a) it can be decided by

computing the energy of wavelet coefficients at each scale, b) level dependent PCA can

be calculated to find relevant scales [26], c) prediction capability of estimated models

can be analyzed at different scales [125], d) scale-based SVD can be computed to find

relevant scales, and e) trace of the estimation error covariance matrix can also be used

for proper scale selection [25].

4.1.2 Model Estimation at Different Scales

The notion of system identification can be used to build different multiscale model

structures in multiresolution. This section presents multiscale ARX model identification

for its representation simplicity. Consider the time invariant ARX model given by

y[k] =

p∑
m=1

amy[k −m] +

q∑
n=1

bnu[k − n] + e[k], (4.6)

which can be represented in regression form as

y[k] = ζT [k]θ + e[k], (4.7)

where ζ[k] = [ y[k − 1] · · · y[k − p] u[k − 1] · · · u[k − q] ]T is the regression

vector and θ =

[
a1 · · · ap b1 · · · bq

]T
is the coefficient vector.

Considering all the N measurements of input and output, we have from (4.7)

Y = Φθ + Ξ, (4.8)
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where Y =



y[1]

y[2]

...

y[N ]


, Φ =



ζT [1]

ζT [2]

...

ζT [N ]


, and Ξ =



e[1]

e[2]

...

e[N ]


.

Representation of (4.8) in multiresolution wavelet space is given by

yj[kj] =

pj∑
m=1

a(j)
m yj[kj −m] +

qj∑
n=1

b(j)
n uj[kj − n] + ej[kj], j = 1, 2, . . . , J+1, (4.9)

where uj , yj , and ej are wavelet coefficients of input, output, and white noise sequence

respectively; a(j)
m and b(j)

n are system parameters, kj = 2−jk, where j = 1, 2, . . . , J

represents detail at jth scale and j = J + 1 represents approximation at scale J . In

matrix form, (4.9) can be represented as

Y w
j = ζwj θj + Ξw

j , j = 1, 2, . . . , J + 1, (4.10)

where Y w
j , ζwj , and Ξw

j represent the wavelet coefficients of output time-series, regres-

sion vector, and noise vector respectively at jth scale. They are calculated respectively

as

FY =

[ (
Y w
J+1

)T
(Y w

J )T · · · (Y w
1 )T

]T
,

FΦ =

[ (
ζwJ+1

)T
(ζwJ )T · · · (ζw1 )T

]T
,

FΞ =

[ (
Ξw
J+1

)T
(Ξw

J )T · · · (Ξw
1 )T

]T
.

(4.11)

Note that, Ξw
j will be a white noise sequence at each scale. Similarly, the coefficient

vector is given by θj =

[
a

(j)
1 · · · a

(j)
pj b

(j)
1 · · · b

(j)
qj

]T
.

Therefore, the least-squares solution of (4.10) can be obtained as

θ̂j =
((
ζwj
)T
ζwj

)−1(
ζwj
)T
Y w
j , j = 1, 2, . . . , J + 1. (4.12)
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4.1.3 Model Validation

The task of system identification is incomplete without model validation. The estimated

model needs to be validated so that it works not only for the training dataset but also for

several sets of test data. Model validation can be carried out by residual analysis which

consist of the whiteness test and the independence test [1]; and by Cross-validation. The

first method analyses the innovation sequence/residuals obtained after estimating model

from the training dataset. The whiteness test is used to check autocorrelation of the

residuals at the output. If the correlation coefficients lie within the confidence interval,

then it is concluded that the residuals do not contain any significant information. The

test of linear independence calculates the dependency of residuals on past input signal

through cross-correlation. The insignificant value of coefficients guarantees that there is

nothing lying in the residual to be governed by input to the system. Cross-validation is

a rigorous approach where the estimated model is validated using various test data dif-

ferent from the training data. It is rather practical to verify the competence of the model

in handling unseen dynamics before employing the model for prediction/forecasting,

simulation or control design.

4.2 Multiscale Subspace Identification

Multiscale Subspace Identification (ms-SID) is a time-scale domain based technique

for linear state-space model estimation wherein system states are estimated directly

from the projection of measurements at different resolution. The approach is concerned

about establishing a relationship in projection space with the development of low order

state-space models in different frequency bands of the process. A nonlinear system is

approximated by a set of linear state-space models estimated at different resolutions.

The technique inherits features of robust subspace identification with the added advan-

tage of wavelet basis function enabling multiresolution state-space model development.

Moreover, identification of reduced order multiscale state-space models is beneficial
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FIGURE 4.2: Block diagram representation of multiscale subspace identification for
two levels of decomposition.

for the implementation of control laws in projection space. The proposed technique is

shown in Figure 4.2 which depicts a scale-wise implementation for a decomposition

depth of two. Hj and Gj respectively denote LPF and HPF at analysis side, whereas Hj

and Gj are LPF and HPF at synthesis side respectively.

4.2.1 Open-Loop Multiscale Subspace Identification

The discrete time state-space model in the projection is given by,

xj[kj + 1] = Ajxj[kj] +Bjuj[kj] +Kjej[kj], (4.13)

yj[kj] = Cjxj[kj] +Djuj[kj] + ej[kj], (4.14)

where the state xj[kj] ∈ Rnj , the input uj[kj] ∈ Rmj , the output yj[kj] ∈ Rlj , and

innovation sequence ej[kj] ∈ Rlj , with the error covariance matrix E(ej[kj]e
T
j [kj]) =

Sj . Aj ∈ Rnj×nj , Bj ∈ Rnj×mj , Kj ∈ Rnj×lj , and Cj ∈ Rlj×nj are system dynamics

matrix, input matrix, Kalman gain, and output matrix at jth scale respectively. The

innovation sequence at each scale is considered to be uncorrelated white.
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The output equation at the jth scale can be written as,

Yf,j = Γf,jXk,j +Hd
f,jUf,j +Hs

f,jEf,j, (4.15)

or simply,

Yf,j = Lx,jZp,j +Hd
f,jUf,j +Hs

f,jEf,j, (4.16)

where Lx,j is related to the states and formed as the product of observability matrix and

predictor controllability matrix at jth scale.

In terms of output predictor, (4.16) can also be rewritten as


yj[kj + 1]
yj[kj + 2]

...
yj[kj + v]

 =


a

(j)
v−1 · · · a

(j)
0 b

(j)
v−1 · · · b

(j)
0

a
(j)
v · · · a

(j)
1 b

(j)
v · · · b

(j)
1

... . . . ...
... . . . ...

0 · · · 0 0 · · · 0


︸ ︷︷ ︸

Lx,j



yj[kj − v + 1]
...

yj[kj]
uj[kj − v]

...
uj[kj − 1]



+


d

(j)
0 0 · · · 0

d
(j)
1 d

(j)
0 · · · 0

...
... . . . ...

d
(j)
v−1 d

(j)
v−2 · · · d

(j)
0


︸ ︷︷ ︸

Hd
f,j


uj[kj]

uj[kj + 1]
...

uj[kj + v − 1]



+


1 0 · · · 0

s
(j)
1 1 · · · 0
...

... . . . ...
s

(j)
v−1 s

(j)
v−2 · · · 1


︸ ︷︷ ︸

Hs
f,j


ej[kj + 1]
ej[kj + 2]

...
ej[kj + v]

 .

(4.17)

Observe that the first row of subspace matrix Lx,j gives the parameter vector of mul-

tiscale high-order ARX model [1], and the last row of Hd
f,j and Hs

f,j give the impulse

response to deterministic and stochastic inputs respectively.

The output equation is expressed as the product of observability and controllability ma-

trix and Toeplitz matrix using the transformed dataset. There are two primary routes

for solving this subspace identification problem. The first approach estimates the state
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sequence and observability matrix and determines full system matrices in a single step

through the least squares. The second technique estimates only the observability ma-

trix. The unifying approach of Overschee et al. [62] employing the second method is

explained in the following:

• Step 1: Estimation of Lx,j - The output equation (4.30) is projected onto the

orthogonal basis of Uj,f such that the contribution from input terms is eliminated

leaving the equation with output state and noise terms only, i.e.,

Yf,jΠ
⊥
Uf,j

= Lx,jZp,jΠ
⊥
Uf,j

+Hs
f,jEf,jΠ

⊥
Uf,j

, (4.18)

where Π⊥Uf,j
= I − UT

f,j

(
Uf,jU

T
f,j

)−1
Uf,j represents the orthogonal projection of

Uf,j and I is an identity matrix. The least squares solution of (4.18) gives

L̂x,j = Yf,jΠ
⊥
Uf,j

(
Π⊥Uf,j

ZT
p,j

)(
Zp,jΠ

⊥
Uf,j

Π⊥Uf,j
ZT
p,j

)−1

= Yf,jΠ
⊥
Uf,j

ZT
p,j

(
Zp,jΠ

⊥
Uf,j

ZT
p,j

)−1

.
(4.19)

• Step 2: Performing the SVD - The SVD of weighted estimated matrix gives,

w1,jL̂x,jw2,j = Un,j
∑

n,jV
T
n,j , where

∑
n,j contains n largest singular values at

the jth scale. The pre and post multiplied weighing matrices are such that, for

CVA algorithm [57], w1,j =
(
Yf,jΠ

⊥
Uf,j

Y T
f,j

)−1/2

, w2,j =
(
Zp,jΠ

⊥
Uf,j

ZT
p,j

)1/2

; for

MOESP algorithm [184], w1,j = I , w2,j =
(
Zp,jΠ

⊥
Uf,j

ZT
p,j

)1/2

; and for N4SID

[62], w1,j = I and w2,j =
(
Zp,jZ

T
p,j

)1/2. This gives estimated observability ma-

trix, Γ̂f,j = w−1
1,jUn,j

∑1/2
n,j .

• Step 3: Estimation of Aj and Cj - First estimate of Cj is extracted from the first l

rows and all corresponding columns of observability matrix. Then the system dy-

namics matrix is estimated by pre-multiplying Γ̂−1
f−1,j to the observability matrix

formed by extracting l+1 rows to lf rows and all corresponding columns of Γ̂f,j .
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• Step 4: Estimation of Kj , Bj , Dj and x0,j - For the estimation of Kj , both sides

of (4.30) are projected on to the orthogonal basis formed by Wj =

 Zp,j

Uf,j

.

Further, as N/2j becomes large, 1
N/2j

Ef,jU
T
f,j → 0 and 1

N/2j
Ef,jZ

T
p,j → 0. There-

fore,

Yf,jΠ
⊥
Wj

= Hs
f,jEf,jΠ

⊥
Wj

= Hs
f,jEf,j. (4.20)

The QR decomposition of (4.20) gives the parameters of Kj . Now, to estimate

the remaining matrices, the predictor is defined as

yj[kj] =

(
Ĉj

(
qI − ÂK,j

)−1

BK,j +Dj

)
uj [kj] + Ĉj

(
qI − ÂK,j

)−1

K̂jyj[kj]

+Ĉj

(
qI − ÂK,j

)−1

x0,j + ej[kj],

(4.21)

where ÂK,j =
(
Âj − K̂jCj

)
, BK,j =

(
Bj − K̂jDj

)
, xj,0 is initial state, and q

is a forward shift operator such that qu[k] = u[k + 1]. Using ej[kj] = Rjej[kj],

where ej[kj] has an identity covariance matrix, and defining

yj[kj] = R−1
j

(
I − Ĉj

(
qI − ÂK,j

)−1

K̂j

)
yj[kj],

Gj = R−1
j Ĉj

(
qI − ÂK,j

)−1

, (4.22)

Dj = R−1
j Dj,

we get,

yj[kj] = GjBK,juj [kj] +Djuj [kj] +Gjx0,j + ej[kj]. (4.23)

Then, BK,j , Dj , and x0,j matrices are estimated through least squares solution of (4.23),

where the parameters are related as, D̂j = RjD̂j and B̂j = B̂K,j + K̂jD̂j [83]. The

identified subspace models are of low order due to reduced order state sequence esti-

mation from data and do not require an explicit model order reduction scheme. For

consistent identification, the formulation requires that the pair {Âj, Ĉj} be observable,

the projected input must be persistently excited of order 2f , and f must be higher than

the number of states of the model to be identified. Typically, the number of columns
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in the Hankel matrix of measurements must be hundred times more than the number of

block rows.

4.2.2 Closed-Loop Multiscale Subspace Identification

Considering the LTI system in predictor form and writing the output equation (2.16) at

jth scale as,

yfi,j[kj+i−1] = Γfi,jLp,jzp,j[kj]+Gfi,jzi−1,j[kj]+ej[kj+i−1], i = 1, 2, . . . f (4.24)

The extended observability matrix can be estimated as the least squares solution of the

following problem

̂Γfi,jLp,j = min
Γfi,jLp,j

∥∥yfi,j − Γfi,jLp,jzp,j
∥∥2
, i = 1, 2, . . . , f. (4.25)

An efficient way to compute the least squares solution is using the RQ decomposition.

It is given as  zp,j

yf1,j

 =

 R11 0

R21 R22


︸ ︷︷ ︸

R

 QT
1

QT
2


︸ ︷︷ ︸

Q

. (4.26)

Hence,

̂Γfi,jLp,j =

[
R21 R22

] QT
1

QT
2


[ R11 0

] QT
1

QT
2



†

, (4.27)

or, simply

̂Γfi,jLp,j = R21R
†
11, (4.28)

where R†11 denotes the Moore-Penrose pseudo-inverse of R11.
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Now, combining the estimate of Γfi,jLp,j to give

Γ̂fLp =



Γ̂f1Lp

Γ̂f2Lp
...

Γ̂ffLp


(4.29)

The remaining steps to obtain system matrices are similar to Step 2 to Step 4 of the

open-loop identification problem.

4.3 On-line Multiscale Subspace Identification

This section extends the notion of ms-SID to design an on-line subspace identifica-

tion strategy in multiresolution framework. The block diagram representation of the

on-line ms-SID is shown in Figure 4.3. The on-line ms-SID is implemented using an

integer discretization scheme due to the fact that the integer discretization does not in-

troduces any time delay in the analysis as the case with dyadic discretization scheme.

The proposed technique with integer discretization scheme is shown in Figure 4.4 for a

decomposition depth of two. The input-output data are measured at finest scale j = 0

and assumed to be available up to the current time instant k. A window of 2J past

observation is formed and decomposed into detail spaces at j = 1, 2, . . . , J and an

approximation space at j = J + 1. The window is translated by one time step with

the availability of new data at time instant k + 1, and the wavelet decomposition is

performed. The similar procedure is repeated again for new data samples. It may be

noted that due to redundancy in representation, only the last (or rightmost) coefficients

indexed as k, k + 1, . . . at each scale are stored. The proposed scheme is based on Haar

wavelet because of the ability of Haar wavelet to precisely locate features in the time

domain. Being compactly supported, Haar wavelet does not introduce delay in the anal-

ysis and computes the transformation entirely using data from the past and present only.

Further, it avoids undesirable border distortions due to signal extensions. This makes
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FIGURE 4.3: Block diagram representation of on-line ms-SID for two scale decompo-
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FIGURE 4.4: Implementation of wavelet transform in on-line ms-SID for two scale
decomposition.

the on-line ms-SID technique suitable for real time applications like state estimation

or control design as wavelet-based modeling approach identifies a system with a set of

multi-time-scale minimum memory models.

Now, from (4.16) we know

Yf,j = Lx,jZp,j +Hd
f,jUf,j +Hs

f,jEf,j, (4.30)
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The estimation of parameters can be written as least squares solution as

[
Lx,j Hd

f,j

]
= Yf,j

 Zp,j

Uf,j


†

. (4.31)

Assume that a new set of input-output data is available at time instant k + f + N − 2.

Then, the updated Hankel matrix, i.e. the one appended with new data is defined as

U∗f,j =

[
Uf,j ϕuf

]
, Y ∗f,j =

[
Yf,j ϕyf

]
, Z∗p,j =

[
Zp,j ϕzp

]
, (4.32)

where

ϕuf =

[
uT [k +N ] uT [k +N + 1] · · · uT [k + f +N − 1]

]T
,

ϕyf =

[
yT [k +N ] yT [k +N + 1] · · · yT [k + f +N − 1]

]T
,

and ϕzp =

[
zT [k +N − 1] zT [k +N − 2] · · · zT [k +N − p]

]
are the rightmost columns of updated Hankel matrices. The updated predictor matrices

can be estimated using the QR decomposition of newly formed data matrices. However,

a full QR decomposition will be a computationally intensive task. Instead of this, we

can simply write


Z∗p,j

U∗f,j

Y ∗f,j

 =


Zp,j ϕzp

Uf,j ϕuf

Yf,j ϕyf

 =


R11 0 0 ϕzp

R21 R22 0 ϕuf

R31 R32 R33 ϕyf


︸ ︷︷ ︸

R∗



QT
1 0

QT
2 0

QT
3 0

0 In


︸ ︷︷ ︸

Q∗

. (4.33)

Then, using a series of Givens rotation transformation [67], R∗ can be represented in

the lower triangular form as

R∗Q∗ = (R∗Gv1Gv2Gv3)
(
GvT3 Gv

T
2 Gv

T
1 Q
∗) = (R)(Q), (4.34)

where Gvi, i = 1, 2, 3 is Givens rotation matrix. R is the updated lower triangular

matrix whose rightmost column contains all zeros and it can be removed. Thus, the

Subspace-based Identification and Control using Wavelets 85



Chapter 4. Multiscale System Identification

procedure reduces computation complexity and saves in the computation cost for on-

line parameter estimation.

4.4 Application to Nuclear Reactor

For the purpose of black-box identification of a nuclear reactor, reactivity can be seen

as an input to the system while reactor power is taken as an output. In the case of

PHWR, the reactivity input can be varied by different means like Liquid Zone Control

System (LZCS), adjuster rods, control rods, and moderator liquid poison actuation sys-

tem. However, for this case study, it is considered that reactivity variation is controlled

by LZCS only. This is the case for small transients in power. It is assumed that the

primary loop is defined by a nonlinear lumped model with pressure and mass flow rate

being constant. The heat transfer is by single-phase coolant only, and feedback effects

of xenon and fuel depletion are not considered.

4.4.1 Model Estimation

The set of equations (C.9)–(C.14) have been simulated for the reactivity transient shown

in Figure 4.5. The input transient is selected such that the resulting power variation does

not occur at a rate larger than 0.2% per second. The corresponding neutronic power

transient with an additive 60 dB white Gaussian noise simulating measurement error

is shown in Figure 4.6. This forms the estimation data from which models are to be

identified. The values of various parameters appearing in above set of equations are

given in Appendix C, Table C.1.

The Training dataset is projected onto appropriately selected wavelet basis functions to

have the multiscale data representation. Note that the input signal is formed of ramps

with short periods of discontinuities. On the contrary, the output signal has compara-

tively smoother variations. This implies that the input would be better modeled by em-

ploying a low vanishing moment wavelet basis function while a regular basis is more
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FIGURE 4.5: Assumed reactivity variation (Training input dataset).

appropriate to represent the output. Although, different basis functions can be used for

input and output, for simplicity a common basis function, namely Bior3.3 [12], has been

chosen for this simulation. Bior3.3 has three vanishing moments and is considered to be

suitable to efficiently represent the input-output dataset. A frequency domain technique

is used to check the estimation of maximum decomposition depth [185]. Figure 4.18

shows the Fourier transform of power signal. The magnitude of the Fourier Transform

is seen to be approaching the noise floor level approximately after π/62 rad/sample.

Hence, the decomposition depth is decided such that π/2J ≥ π/62. Thus, the maxi-

mum scale for decomposition is J = 5 .

The notion of significant scale is demonstrated here with the help of scatter plot which

is a useful exploratory data analysis technique [125]. It evaluates the output predic-

tion capability of various scales through correlation analysis. The plots are drawn be-

tween one-step-ahead-prediction and observed value at each scale and are shown in

Figure 4.19. A closer look at Figure 4.19 reveals that scale j = 1 does not carry signif-

icant predictive capability as compared to scales j = 2 to 5 and hence the scale j = 1
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FIGURE 4.6: Reactor power variation for Figure 4.5 (Training output dataset).

need not be considered for the modeling task. At scale J + 1 = 6 approximation coeffi-

cients carry the trend in the data. Now, modeling exercise reduces to identifying models

in detail space indexed by j = 2 to 5 and in approximation space indexed by J + 1 = 6.

Although the total number of models is more compared to single-scale approach, each

of these models is of lower order. Reduction of model order is expected since a complex

process is broken down into sub-processes evolving at their respective time-scales.

4.4.2 Model Validation

For the purpose of model validation, two different measures have been adopted. First,

it is confirmed through correlation analysis that the residuals of output are white and

uncorrelated with the past input, indicating that the estimated models are sufficiently

able to capture the process behaviour. The residual analysis plots for significant scales

(j = 2 to 5 and J + 1 = 6) indicating 99% confidence interval are shown in Figures 4.9

and 4.10 respectively. The cross-correlation of the residuals with the input shows that

residuals are independent from past input.
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Figure 4.6.
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different scales.
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The second measure of validation is cross-validation with different datasets. Two val-

idation datasets, different from the estimation dataset have been selected. Further, to

demonstrate the efficacy of the proposed techniques a comprehensive comparison with

conventional empirical modeling approaches such as ARX, SID, BJ, and ms-ARX have

been made. While applying ARX, SID, BJ, and ms-ARX techniques, the model pa-

rameters are estimated from the same dataset used for training (Figure 4.5 and 4.6) by

minimizing Akaike’s Information Criterion [1]. Validation test inputs shown in Fig-

ures 4.11 and 4.12 are applied to different models. Outputs of all estimated models are

compared with reference output generated by directly solving (C.9)–(C.14) and shown

in Figure 4.13 and 4.14. It is evident that the response of ms-SID model shows best

match with the reference. The estimated traditional subspace model and ARX model

fail to follow process behaviour adequately in the noisy environment. The BJ model

captures noise dynamics better than that done by ARX possibly because of better noise

modeling of BJ. However, multiscale features are not suitably modeled by any of the

single scale models. Both ms-SID and ms-ARX are able to sufficiently capture the

multiscale process dynamics due to modeling at appropriate scales.

Figure 4.15 shows the logarithm (log) of singular values of the covariance matrix con-

structed from the estimation dataset. For single-scale approach, the singular values

reduced by an order of two for six states. It indicates that a sixth order state-space

model is suitable in measurement space. On the other hand, in case of multiscale ap-

proach, the sharp reduction in the log of singular values indicates that a second order

model in approximation space is sufficient. Further, a first order model in detail space

i.e. at scales j = 2 to 5 would be sufficient. Therefore, the overall model order of the

multiscale method would be approximately equal or less than that of the single-scale

approach.

To statistically validate the implementation of various models, Monte Carlo simulation

(100 runs) has been performed at different noise power levels in the estimation dataset.

For each run at a particular noise level, all the models, discussed in the preceding section

have been estimated from the training data. Then the estimated models are used for

92 Subspace-based Identification and Control using Wavelets



Chapter 4. Multiscale System Identification

0 20 40 60 80 100 120

−4

−3

−2

−1

0

1

2

3

4

x 10
−5

Time (s)

R
ea

ct
iv

ity

FIGURE 4.11: Triangular variation in reactivity (Validation dataset input).
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FIGURE 4.12: Step variation in reactivity (Validation dataset input).
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FIGURE 4.13: Outputs of estimated ms-SID, ms-ARX, classical subspace (SID),
ARX, and BJ models with observed data for input shown in Figure4.11 (simulation).
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FIGURE 4.14: Outputs of estimated ms-SID, ms-ARX, classical subspace (SID),
ARX, and BJ models with observed data for input shown in Figure 4.12 (simulation).
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output prediction from validation inputs (Figures 4.11 and 4.12). Several Monte Carlo

runs are equivalent to performing multiple experiments to model stochastic nature of

noise. Root mean squared error (RMSE) between output observation (noise-free output)

and simulation/prediction is defined as

RMSE =

√√√√ 1

N

N−1∑
k=0

(
P [k]− P̂ [k]

)2

(4.35)

has been evaluated and the values so obtained are given in Table 4.4, in one-step-ahead-

prediction/simulation cases for different models at distinct values of the signal to noise

ratios (SNR). The small value of RMSE indicates better prediction/simulation capabil-

ity of a particular model. In practice, simulation denotes infinite-step ahead prediction

and it is a critical measure for verifying model performances. It is observed that the

multiscale approaches have better prediction capabilities as compared to their single-

scale counterparts. The ms-SID performs better even compared to the ms-ARX model.

Moreover, it is found that even a lower order ms-SID model gives better output predic-

tion than a higher order ms-ARX model.

The performance of multiscale approaches are dependent on the decomposition depth.

Therefore an appropriate scale selection is necessary. Tables 4.2 and 4.3 compare the

RMSE of ms-SID model simulations, for various decomposition depths, obtained from

different validation datasets. Monte Carlo simulation of 100 runs is performed at dif-

ferent SNR. It is worth noting that the optimum decomposition depth increases with

the decrease in SNR as the extraction of signal features requires additional filtering.

Besides, at a particular noise power level, the prediction accuracy enhances at coarser

scales. However, after a certain level, the RMSE increases due to over smoothening of

low-level features. Therefore, the selection of optimum depth and significant scale is

crucial.
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TABLE 4.1: RMSE in output prediction by various approaches for different validation
datasets (Monte Carlo simulation)

SNR Model Triangular Input Sum of Step Input
(dB) Prediction Simulation Prediction Simulation

ARX 3.5× 10−3 4.0× 10−3 1.02× 10−2 1.07× 10−2

SID 3.6× 10−3 4.4× 10−3 1.12× 10−2 1.19× 10−2

10 BJ 3.8× 10−3 4.3× 10−3 1.21× 10−2 1.26× 10−2

ms-ARX 3.1× 10−3 3.4× 10−3 4.50× 10−3 1.04× 10−2

ms-SID 2.9× 10−3 3.3× 10−3 3.60× 10−3 9.50× 10−3

ARX 3.2× 10−3 3.6× 10−3 9.7× 10−3 1.03× 10−2

SID 3.0× 10−3 3.6× 10−3 1.01× 10−2 1.07× 10−2

20 BJ 2.3× 10−3 3.2× 10−3 9.3× 10−3 1.05× 10−2

ms-ARX 1.8× 10−3 2.9× 10−3 3.8× 10−3 1.01× 10−2

ms-SID 1.6× 10−3 2.8× 10−3 2.7× 10−3 8.40× 10−3

ARX 1.9× 10−3 3.5× 10−3 5.8× 10−3 1.02× 10−2

SID 4.1× 10−4 2.8× 10−3 1.3× 10−3 9.8× 10−3

40 BJ 5.8× 10−4 2.6× 10−3 1.7× 10−3 6.5× 10−3

ms-ARX 5.2× 10−4 2.5× 10−3 1.4× 10−3 6.1× 10−3

ms-SID 2.6× 10−4 2.2× 10−3 7.3× 10−4 4.3× 10−3

ARX 7.1× 10−5 3.3× 10−3 2.4× 10−4 9.3× 10−3

SID 5.2× 10−5 2.4× 10−3 1.9× 10−4 5.5× 10−3

60 BJ 1.4× 10−4 1.9× 10−3 4.2× 10−4 4.0× 10−3

ms-ARX 4.9× 10−5 2.0× 10−3 1.7× 10−4 4.0× 10−3

ms-SID 4.6× 10−5 1.8× 10−3 1.3× 10−4 3.7× 10−3

ARX 2.5× 10−5 2.3× 10−3 9.4× 10−5 5.6× 10−3

SID 2.4× 10−5 2.1× 10−3 1.0× 10−4 5.0× 10−3

80 BJ 3.1× 10−5 2.2× 10−3 1.2× 10−4 5.4× 10−3

ms-ARX 1.4× 10−5 1.8× 10−3 7.1× 10−5 3.9× 10−3

ms-SID 1.4× 10−5 1.7× 10−3 6.2× 10−5 3.5× 10−3

ARX 6.1× 10−6 2.0× 10−3 8.7× 10−6 5.0× 10−3

SID 6.5× 10−6 1.9× 10−3 9.2× 10−6 5.2× 10−3

100 BJ 1.3× 10−5 2.2× 10−3 2.1× 10−5 5.5× 10−3

ms-ARX 5.0× 10−6 1.6× 10−3 8.0× 10−6 3.7× 10−3

ms-SID 5.0× 10−6 1.6× 10−3 8.0× 10−6 3.4× 10−3
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FIGURE 4.15: Singular values of the covariance martix constructed from estimation
data.

TABLE 4.2: RMSE of ms-SID model simulations at various decomposition depths for
triangular input validation dataset (Monte Carlo simulation)

HH
HHHHJ

SNR
10 20 40 60 80 100

1 8.7× 10−3 7.5× 10−3 3.0× 10−3 1.9× 10−3 1.9× 10−3 1.7× 10−3

2 5.9× 10−3 4.1× 10−3 2.8× 10−3 1.9× 10−3 1.8× 10−3 1.7× 10−3

3 5.4× 10−3 3.4× 10−3 2.5× 10−3 1.9× 10−3 1.7× 10−3 1.5× 10−3

4 5.1× 10−3 3.5× 10−3 2.3× 10−3 1.8× 10−3 1.8× 10−3 1.5× 10−3

5 4.8× 10−3 3.3× 10−3 2.1× 10−3 1.7× 10−3 1.7× 10−3 1.6× 10−3

6 4.1× 10−3 3.8× 10−3 2.4× 10−3 1.8× 10−3 1.9× 10−3 1.7× 10−3

7 6.4× 10−3 3.9× 10−3 2.6× 10−3 1.9× 10−3 1.9× 10−3 1.6× 10−3

8 7.9× 10−3 5.7× 10−3 3.1× 10−3 2.1× 10−3 2.0× 10−3 1.7× 10−3

4.5 On-line Identification of Nuclear Reactor

This section presents simulation studies on a point kinetics nuclear reactor system for

on-line identification. Figs. 4.16 and 4.17 show the reactivity variation and the corre-

sponding reactor power output added with 30 dB white Gaussian noise. This forms

the estimation dataset for parameter identification. The Fourier transform of estimation

dataset is used to find the decomposition depth. Fig. 4.18 shows the Fourier transform
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TABLE 4.3: RMSE of ms-SID model simulations at various decomposition depths for
sum of step input validation dataset (Monte Carlo simulation)

HH
HHHHJ

SNR
10 20 40 60 80 100

1 2.01× 10−2 1.65× 10−2 1.0× 10−2 4.2× 10−3 4.0× 10−3 3.9× 10−3

2 1.81× 10−2 1.40× 10−2 9.6× 10−3 4.2× 10−3 3.9× 10−3 3.7× 10−3

3 1.55× 10−2 1.36× 10−2 7.8× 10−3 4.1× 10−3 3.7× 10−3 3.6× 10−3

4 1.42× 10−2 1.24× 10−2 6.1× 10−3 4.0× 10−3 3.7× 10−3 3.6× 10−3

5 1.31× 10−2 1.11× 10−2 4.5× 10−3 3.9× 10−3 3.9× 10−3 3.8× 10−3

6 1.26× 10−2 1.13× 10−2 4.7× 10−3 3.9× 10−3 4.0× 10−3 4.0× 10−3

7 1.39× 10−2 1.25× 10−2 4.7× 10−3 4.1× 10−3 4.2× 10−3 4.0× 10−3

8 1.48× 10−2 1.29× 10−2 5.1× 10−3 4.4× 10−3 4.2× 10−3 4.3× 10−3

of input and output signal. It can be seen that the magnitude of the Fourier transform

approaches the noise floor level approximately after π/124 rad/sample. Therefore, the

maximum scale for decomposition is selected such that π/2J ≥π/124, i.e. J = 6. The

estimation data is then represented in multiresolution using Haar wavelet up to J = 6.

A scatter plot between one-step-ahead prediction and observed value is plotted to find

significant scales. It is evident from Fig. 4.19 that scales j = 1 to 3 do not contain any

significant information as compared to that of scales j = 4 to 6 and thus the former

can be ignored for model estimation. Thus, models are estimated at scale j = 4, 5, 6

and J + 1 = 7 by minimizing Akaike’s Information Criterion. The estimated models

are first validated by residual analysis. It is found that the residuals do not contain any

significant information.

Subsequently the estimated model is validated using cross-validation with different

dataset. The results of the proposed on-line Multiscale Subspace Identification (MSID)

are compared with conventional single-scale SID approach and the Multi Scale ARX

(MSARX) approach proposed by [23]. Two distinct validation inputs, used for case

studies I and II are shown in Figs. 4.20 and 4.22 respectively. Output estimation of

different models mentioned above for the respective inputs are shown in Figs. 4.21 and

4.23. The prediction accuracy is validated by computing the RMSE between the ob-

served value and simulation/one-step-ahead prediction. Table 4.4 compares the RMSE

of various estimated models for different validation datasets. Small value of RMSE

suggests better prediction capability of a particular model. It is evident that multiscale
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FIGURE 4.16: Variation of reactivity.
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FIGURE 4.17: Reactor power added with white Gaussian noise.

model captures better dynamic response as compared to that of the single-scale model.

MSID gives better output prediction than MSARX approach of [23].

4.6 Summary

In this chapter, a novel approach of multiscale subspace identification for modeling of a

point kinetic nuclear reactor coupled with thermal hydraulics has been presented. The

identified ms-SID model estimates system modes more precisely than the traditional
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FIGURE 4.19: Scatter plots between one-step-ahead prediction and observed output.

approaches do, and a good neutronic power prediction has been achieved even from

training dataset with low SNR. An important contribution of the proposed work is to

develop a framework for state-space modeling at significant scales leading to a parsi-

monious model description with less computational burden. In most of the modeling

exercises, it reduces dimensionality with improved output prediction capability. The

identified reactor model is validated in prediction as well as in simulation environment.

The root mean squared error is compared with various single scale (ARX, SID, BJ)
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FIGURE 4.21: Comparison of simulation outputs of SID, MSARX, and MSID ap-
proaches (Case I).

Subspace-based Identification and Control using Wavelets 101



Chapter 4. Multiscale System Identification

0 300 600 900
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Time (s)

R
e

a
c
ti
v
it
y

FIGURE 4.22: Variation of reactivity (Case II).

0 300 600 900
0.94

0.97

1

1.03

1.06

Time (s)

P
ow

er
 (p

er
 u

ni
t)

 

 
Observed SID MSRX MSID

FIGURE 4.23: Comparison of simulation outputs of SID, MSARX, and MSID ap-
proaches (Case II).
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TABLE 4.4: Comparison of the root mean squared error (10 Monte Carlo runs)

Model
Case I Case II

Prediction Simulation Prediction Simulation
SID 5.83× 10−4 0.0271 1.701× 10−4 0.0137

MSARX 4.98× 10−4 0.0213 1.213× 10−4 0.0119
MSID 3.23× 10−4 0.0127 1.197× 10−4 0.0085

and multiscale (ms-ARX) approaches, for multiple validation datasets, suggesting bet-

ter modeling performance with enhanced prediction capability by the proposed method

of ms-SID at different noise levels.
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Wavelet Pre-processed Subspace

Predictive Control

This chapter presents methodology of data-driven predictive control technique based on

subspace methods. It formulates an open-loop and a close-loop subspace predictive con-

trol integrated with wavelet-preprocessing. It also discusses incorporation of different

design features. The control performance is analyzed through a parameter sensitivity

approach. The developed technique is then applied to the nuclear reactor, discussed in

Appendix C.

The goal of this work is to integrate wavelet pre-processing and data-driven control

design approaches. The proposed approach does not require the system model for pre-

dictive control design. Moreover, the controller is directly estimated from pre-processed

input-output data and implemented. In addition, no assumptions have been made about

a priori knowledge of model order or structure. To take care of time-variations in the

process, the predictor parameters are estimated recursively with the availability of new

data. Further, the chapter discusses incorporation of feed-forward control, integrating

action, and constraints in the control design. The efficacy of the proposed algorithm is

validated for demand load set-point variations as well as for load rejection transients.

The controller is effectively able to cope up with ramp and step variations in the demand
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power. In order to analyze the control performances, detailed parameter sensitivity anal-

ysis has been performed.

5.1 Wavelet Pre-processing

Wavelets are the time-frequency atoms with excellent multiresolution approximation

and signal localization property. These characteristics make them particularly suitable

for analyzing short-lived high-frequency features and long-lived low-frequency features

occurring simultaneously in a signal very effectively. Thresholding in wavelet domain

followed by signal synthesis is a well established signal denoising technique that en-

ables nonlinear approximation of a function. It preserves the relevant signal compo-

nents while efficiently removing the contribution due to noise. It is proved to be near

optimum in the minimax sense and gives better convergence rate as compared to other

linear methods of approximation over a wide class of function spaces [90]. The signal to

be denoised is either hard thresholded whereby the wavelet coefficients below a certain

threshold are made equal to zero or soft thresholded wherein the wavelet coefficients

are reduced by the given threshold. There are different wavelet-based thresholding ap-

proaches for denoising a signal corrupted with noise viz. minimax, VisuShrink (univer-

sal threshold) [90], and SureShrink (level-dependent threshold) [91]. The process of

denoising starts with projecting the signal on suitable wavelet basis. The projection op-

eration decorrelates wavelet coefficients of signal from that of the noise. The threshold

is usually applied to the detail coefficients. The denoised signal in measurement domain

is reconstructed by employing inverse wavelet transform to get denoised or wavelet fil-

tered signal. The amplitude thresholding of the wavelet coefficients is justified as there

is no significant loss of useful information in the denoised signal. However, the ef-

fectiveness of algorithm requires careful selection of wavelet basis and decomposition

depth.
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5.2 Open-Loop Subspace Predictive Control

5.2.1 Design of Linear Predictor

A linear predictor estimates future outputs from past input-output data and future in-

put data. Assume that the input and output time-series data are collected from k ∈

{1, 2, . . . , N} and are pre-processed using wavelet filtering. Further, let us set up the

block Hankel matrices using pre-processed data as

YP =



y[1] y[2] · · · y[N − 2f + 1]

y[2] y[3] · · · y[N − 2f + 2]

...
... . . . ...

y[f ] y[f + 1] · · · y[N − f ]


;YF =



y[f + 1] u[f + 2] · · · y[N − f + 1]

y[f + 2] u[f + 3] · · · y[N − f + 2]

...
... . . . ...

y[2f ] u[2f + 1] · · · f [N ]


,

(5.1)

where f is the order of predictor matrix. UP ∈ Rfm×(N−2f+1) and UF ∈ Rfm×(N−2f+1)

respectively are past and future pre-processed input data Hankel matrices. The order

of the past Hankel matrix must be equal to or greater than the order of the system.

The number of columns in the above defined Hankel matrices should be sufficiently

large compared to the number of rows, to reduce noise sensitivity. For simplicity, here

the number of block rows in past and future data matrices are taken to be equal. Define

UP ∈ Rfl×(N−2f+1) andEP ∈ Rfl×(N−2f+1) as past input and past innovations matrices

respectively. Similarly, define UF ∈ Rfl×(N−2f+1) and EF ∈ Rfl×(N−2f+1) as the future

input and future innovations matrices respectively. Further, let

XP =

[
x[1] x[2] · · · x[N − 2f + 1]

]
, (5.2)

and XF =

[
x[f + 1] x[f + 2] · · · x[N − f + 1]

]
.
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Then

YP = ΓfXP +Hd
fUP +Hs

fEP ,

YF = ΓfXF +Hd
fUF +Hs

fEF , (5.3)

and XF = AfXP + ∆d
fUP + ∆s

fEP ,

where ∆d
f ∈ Rn×fm and ∆s

f ∈ Rn×fl respectively are deterministic and stochastic

reverse extended controllability matrices given as

∆d
f =

[
Af−1B Af−2B · · · B

]
; ∆s

f =

[
Af−1K Af−2K · · · K

]
.

(5.4)

Note that, (5.4) is similar to (2.6). Now, for a sufficiently large dataset, the output

predictor can be written as

ŶF = LwWP + LuUF , (5.5)

where WP =

[
Y T
P UT

P

]T
∈ Rf(m+l)×(N−2f+1). Lw ∈ Rfl×f(m+l) and Lu ∈ Rfl×fm

are predictor matrices and are estimated through least-squares. The future output pre-

diction are found out by orthogonally projecting the row space of future output onto the

row space spanned by past input-output and future input [28]. It is given by

ŶF = YF

/ WP

UF

 = YF

 WP

UF


†  WP

UF

 . (5.6)

Note that, [
Lw Lu

]
= YF

 WP

UF


†

, (5.7)

where X/Y represents the projection of row space of X on the row space of Y . Pre-

dictor coefficients are estimated by efficiently solving (5.7) through numerically stable

SVD and QR decomposition techniques.
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It is to note that the system parameters {A,B,C,D,K} can be determined by estimat-

ing state sequence or observability matrix. However, the methodology of SPC does not

require their explicit estimation as further explained in the next section.

5.2.2 Unconstrained OLSPC

The predictive control problem is formulated as follows. Given a future set-point signal

rf =

[
rT [t+ 1] rT [t+ 2] · · · rT [t+Np]

]T
and a prediction of outputs

ŷf =

[
ŷT [t+ 1] ŷT [t+ 2] · · · ŷT [t+Np]

]T
, find an input sequence

uf =

[
uT [t+ 1] uT [t+ 2] · · · uT [t+Nc]

]T
such that the following cost func-

tion is minimized:

(ŷf − rf )
TQf (ŷf − rf ) + ∆uf

TRf∆uf , (5.8)

where Np and Nc (≤ Np) are prediction and control horizons respectively. Qf =

INp ⊗ Q denotes the weighing diagonal matrix penalizing the error between set-point

and output, where ⊗ represents the Kronecker product, INp is an Np ×Np identity ma-

trix, andQ is a positive semi-definite matrix of dimension l×l. Similarly,Rf = INc⊗R

denotes the weighing diagonal matrix penalizing the rate of change of input, where R

is a positive definite matrix of dimension m×m.

∆uf =

[
∆uT [t+ 1] ∆uT [t+ 2] · · · ∆uT [t+Nc]

]T
denotes the incremental in-

put sequence where the difference operator is ∆ = 1− z−1, z−1 is backward shift op-

erator. In the receding horizon control philosophy, the control strategy is calculated by

solving an optimization problem and only the first of the Nc control inputs is imple-

mented as the current control input [151]. The same strategy is repeated for next data

samples.

To include the subspace-based predictor into MPC formulation, the order of the future

Hankel data matrix is taken equal to the prediction horizon, input is assumed to be
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constant outside the control horizon, and only the leftmost column of Ŷf is considered

to predict the output [28]. Therefore, the predictor equation (5.5) is rewritten as

ŷf = Lwwp + Luuf , (5.9)

where wp =

[
yT [t−M + 1] · · · yT [t] uT [t−M + 1] · · · uT [t]

]T
. In terms

of rate of change of input, ŷf given by (5.9), can also be expressed as

ŷf = Īly[t] +OlLw∆wp +OlLu∆uf , (5.10)

where ∆wp =

[
∆yT [t−M + 1] · · · ∆yT [t] ∆uT [t−M + 1] · · · ∆uT [t]

]T
,

Il =



Il

Il
...

Il


∈ RNpl×l, Ol =



Il 0 · · · 0

Il Il · · · 0

...
... . . . ...

Il Il · · · Il


∈ RNpl×Npl, and Il is an l × l identity

matrix. Define, ȳ[t] = Īly [t], L̄w = OlLw, and L̄u = OlLu. Then, (5.10) can be simply

written as

ŷf = ȳ[t] + L̄w∆wp + L̄u∆uf . (5.11)

Thus, the change in input that minimizes the cost function is obtained as

∆uf = −
((
L̄u
)T
Qf L̄u +Rf

)−1(
L̄u
)T
Qf

(
ȳ[t]− rf + L̄w∆wp

)
, (5.12)

or simply,

∆uf = −Ku (ȳ[t]− rf )−Kw∆wp (5.13)

where gain matrices are defined as

Ku =
((
L̄u
)T
Qf L̄u +Rf

)−1(
L̄u
)T
Qf ,

Kw =
((
L̄u
)T
Qf L̄u +Rf

)−1(
L̄u
)T
Qf L̄w.

(5.14)
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Now, the control signal is updated using only the first of the Nc control moves as the

current control input

u (t+ 1) = ∆uf (1) + u (t) . (5.15)

5.2.3 Constrained OLSPC

SPC formulation is able to deal with hard or soft constraints such as

Umin ≤ uf ≤ Umax; ∆Umin ≤ ∆uf ≤ ∆Umax;

Ymin ≤ yf ≤ Ymax; ∆Ymin ≤ ∆yf ≤ ∆Ymax.
(5.16)

where

Umin =

[
uTmin · · · uTmin

]T
; ∆Umin =

[
∆uTmin · · · ∆uTmin

]T
Ymin =

[
yTmin · · · yTmin

]T
; ∆Ymin =

[
∆yTmin · · · ∆yTmin

]T , (5.17)

and the same notation also holds for parameters with subscript max. For the inclusion

of constraints in the optimization problem, the cost function is modified as

min
∆uf

(
(ŷf − rf )

TQf (ŷf − rf ) + ∆uf
TRf∆uf

)
(5.18)

such that Acons∆uf ≤ bcons,

where matrices Acons and bcons are given as

Acons =

[
ITNcm

−ITNcm
OT
m −OT

m LTu −LTu L̄Tu −L̄Tu
]T
,

bcons =

[
∆UT

max −∆UT
min (Umax − ū[t])T (−Umin + ū[t])T

(∆Ymax − Lw∆wp)T (−∆Ymin + Lw∆wp)T(
Ymax − ȳ[t]− L̄w∆wp

)T (
−Ymin + ȳ[t] + L̄w∆wp

)T ]T .
(5.19)

This quadratic constrained optimization problem is solved through Quadratic Program-

ming approach [156].
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5.2.4 Inclusion of New Data

Suppose a new set of input-output data is available at time instant N + 1. It is assumed

that the new input is persistently exciting to avoid any ill-conditioning of the predictor

matrices. Therefore, the updated Hankel matrix, i.e. the one appended with new data is

given by

UN+1
P =

[
UP ϕuP

]
; UN+1

F =

[
UF ϕuF

]
;

Y N+1
P =

[
YP ϕyP

]
; Y N+1

F =

[
YF ϕyF

]
,

(5.20)

where ϕuP =



u[N − 2f + 2]

u[N − 2f + 3]

...

u[N − f + 1]


and ϕuF =



u[N − f + 2]

u[N − f + 3]

...

u[N + 1]


respectively repre-

sent the rightmost columns of updated past and future Hankel matrices in (5.1). Simi-

larly, we can write for ϕyP and ϕyF . Therefore, the updated predictor parameters are

given by [
L∗w L∗u

]
= Y N+1

F

 WN+1
P

UN+1
F


†

, (5.21)

where WN+1
P =

[
WP ϕwP

]
and ϕwP =

 ϕyP

ϕuP

. This procedure recursively

estimates the predictor parameters with the arrival of new data. However, it will be

computationally intensive as it requires to solve the QR decomposition at each instant.

Moreover, as the data length increases, there should be proper weighting to the new

data. In [31, 67], authors presented efficient recursive updating procedure to minimize

the computational cost and the same has been deployed by us too.
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5.2.5 Incorporating Feed-forward Control

This section presents the inclusion of feed-forward with feedback law as discussed in

Kadali et al. [29]. Under the consideration that some process disturbances which can

not be manipulated but measured, the state-space representation of the system becomes

x[k + 1] = Ax[k] + B̄ū[k] +Ke[k]

y[k] = Cx[k] + D̄ū[k] + e[k]
(5.22)

where B̄ =

[
B Bv

]
, D̄ =

[
D Dv

]
, ū[k] =

[
uT [k] vT [k]

]T
, and v[k] is the

measured disturbance. Therefore, the predictor is given by

ŶF = LvwW
v
P + LvuUF + LvVF , (5.23)

where W v
P =

[
Y T
P UT

P V T
P

]T
, Vp and Vf are past and future Hankel matrices

formed from measured disturbances. Lvw, Lvu, and Lv are predictor parameters. Note

that, the value of measured disturbances in (5.23) are available up to current time instant.

Thus, the predictor is given by

ŷf = Ily[t] +OlL
v
w∆wv

p +OlL
v
u∆uf (5.24)

or

ŷf = ȳ[t] + L̄vw∆wv
p + L̄vu∆uf , (5.25)

where ∆wv
p =

[
∆wT

p ∆vT [t−M + 1] · · · ∆vT [t]

]T
, ȳ[t] = Īly [t], L̄vw =

OlL
v
w, and L̄vu = OlL

v
u. Solving the cost function with the above defined predictor

gives control law

∆uf = −
((
L̄vu
)T
Qf L̄

v
u +Rf

)−1(
L̄vu
)T
Qf

(
ȳ[t]− rf + L̄vw∆wv

p

)
. (5.26)
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5.2.6 Incorporating Integrating Control

To handle integrating type of non-stationary disturbances in the measurement data and

to have a guaranteed integral action, a set of measures has been proposed in [29],[31].

The basic idea is similar to that of the GPC design that the measurement noise enter-

ing to the system is represented by an integrated white Gaussian noise sequence [1].

Therefore, the system can be represented as

x[k + 1] = Ax[k] +Bu[k] +Kẽ[k],

y[k] = Cx[k] +Du[k] + ẽ[k],
(5.27)

or
∆x[k + 1] = A∆x[k] +B∆u[k] +Ke[k],

∆y[k] = C∆x[k] +D∆u[k] + e[k],
(5.28)

where ẽ[k] = e[k]
∆

is the integrated white noise and e[k] is white noise. The predictor

will be similar to (5.11) except that the predictor parameters are estimated from dif-

ferenced dataset. However, by differencing the estimation dataset, the noise could get

amplified drastically especially in case of low signal to noise ratio (SNR). Therefore, it

is necessary to pre-process the data before employing in control design.

5.3 Closed-Loop Subspace Predictive Control

5.3.1 Design of Linear Predictor

The system representation in predictor form is given as

x[k + 1] = AKx[k] +BKz[k], (5.29)

y[k] = Cx[k] +Du[k] + e[k]. (5.30)
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Now, we know that,

Yf = ΓfLpZp + ΓfA
p
KXk−p +Hd

fUf +Hs
fEf , (5.31)

Equation (5.31) is composed of f block rows in each term and thus after simplifying

we can write for first row

Yf1 = CApKXk−p + Ψ0Wp +DU1 + Ef1, (5.32)

where Ψ0 =

[
CAp−1

K BK CAp−2
K BK · · · CBK

]
and

Wp =



z[k − p] z[k − p+ 1] · · · z[k − p+N − 1]

z[k − p+ 1] z[k − p+ 2] · · · z[k − p+N ]

...
... . . . ...

z[k − 1] z[k] · · · z[k +N − 2]


.

For large of p, ApK ' 0. Taking D = 0 and B =

[
B K

]
thus, (5.32) can be

approximated as

Yf1 = Ψ0Wp + Ef1 (5.33)

Let t and f denote current time instant and future time horizon, then using (5.31), sub-

space predictor can be written as,



ŷ [t+ 1]

ŷ [t+ 2]

...

ŷ [t+ f − 1]


=



0 CAp−1
K B CAp−2

K B · · · · · · CAKB

0 0 CAp−1
K B · · · · · · ...

...
... . . . . . . . . . ...

0 0 · · · CAp−1
K B · · · CAf−1

K B


︸ ︷︷ ︸

Ψ



w [t− p]

w [t− p+ 1]

...

w [t− 1]


︸ ︷︷ ︸

W

+



CB 0 · · · 0

CAKB CB · · · 0

...
... . . . ...

CAf−2
K B CAf−3

K B · · · CB





w [t]

w [t+ 1]

...

w [t+ f − 2]


+



CApKx [t− p+ 1]

CApKx [t− p+ 2]

...

CApKx [t− p+ f − 1]


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or, approximately by ignoring the higher order terms of CAp+τK B, ∀0 ≤ τ < f .



ŷ [t+ 1]

ŷ [t+ 2]

...

ŷ [t+ f − 1]


≈



Ψ1

Ψ2

...

Ψf−1


W +



CB 0 · · · 0

CAKB CB · · · 0

...
... . . . ...

CAf−2
K B CAf−3

K B · · · CB




w [t]

w [t+ 1]

...

w [t+ f − 2]


+



CAp+1
K

CAp+2
K

...

CAp+f−1
K


x [t− p]

(5.34)

For sufficiently large value of p such that ‖ApK‖ � 1, output predictor is given by



ŷ [t+ 1]

ŷ [t+ 2]

...

ŷ [t+ f − 1]


=



Γ1

Γ2

...

Γf−1


︸ ︷︷ ︸

Γ

W +



Λ1 0 · · · 0

Λ2 Λ1 · · · 0

... . . . . . . ...

Λf−1 Λf−2 · · · Λ1


︸ ︷︷ ︸

Λ



u [t]

u [t+ 1]

...

u [t+ f − 2]


(5.35)

where Γ and Λ are predictor matrices and their elements are related as

Γi = Ψi +
i−1∑
τ=0

CAi−τ−1
K KΓτ

Λi = CAi−1
K B +

i−1∑
τ=0

CAi−τ−1
K KΛτ

(5.36)

with Γ0 = Ψ0 and Λ1 = CB.

In the derivation of (5.36), the persistency of excitation in the input data guarantees

consistency in the estimates. To accurately predict the system outputs using subspace

predictor it is required that the available input-output data contains sufficient informa-

tion on the system. To assure persistency of excitation in the data a measure has been

suggested in [165]. In addition, the recursive formulation of CLSPC is able to deal with

unanticipated situations and ill-conditioning if the input data is persistently excited.
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5.3.2 Unconstrained CLSPC

The predictive control problem is formulated as follows. Given a future set-point signal

rf =

[
rT [t+ 1] rT [t+ 2] · · · rT [t+Np]

]T
and a prediction of outputs

ŷf =

[
ŷT [t+ 1] ŷT [t+ 2] · · · ŷT [t+Np]

]T
, find an input sequence

uf =

[
uT [t+ 1] uT [t+ 2] · · · uT [t+Nc]

]T
such that the following cost func-

tion is minimized:

(ŷf − rf )
TQf (ŷf − rf ) + ∆uf

TRf∆uf , (5.37)

Therefore, the predictor equation (5.35) can be rewritten as

ŷf = ΓW + ΛĪuf (5.38)

where Ī =



Im 0 · · · 0 0 · · · 0

0 Im
. . . ...

... . . . ...
... . . . . . . 0 0 · · · 0

0 · · · 0 Im Im · · · Im



T

.

In terms of rate of change of input, ŷf given by (5.38), can also be expressed as

ŷf = Ĩy[t] +OlΓ∆W +OlΛĪ∆uf , (5.39)

where Ĩ =



Il

Il
...

Il


, Ol =



Il 0 · · · 0

Il Il · · · 0

...
... . . . ...

Il Il · · · Il


,∆W =



∆w[t− p]

∆w[t− p+ 1]

...

∆w[t− 1]


, ∆w[k] =

 ∆u[k]

∆y[k]

, and Il is an l × l identity matrix.
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Define, ȳ[t] = Ĩly [t], Γ̃ = OlΓ, and Λ̃ = OlΛI. Then, (5.39) can be simply written as

ŷf = ȳ[t] + Γ̃∆W + Λ̃∆uf (5.40)

Thus, the change in input that minimizes cost function is obtained as

∆uf = −
(

Λ̃TQf Λ̃ +Rf

)−1

Λ̃TQf

(
ȳ[t]− rf + Γ̃∆W

)
, (5.41)

or simply,

∆uf = −Ku (ȳ[t]− rf )−Kw∆wp (5.42)

where gain matrices are defined as

Ku =
(

Λ̃TQf Λ̃ +Rf

)−1

Λ̃TQf ,

Kw =
(

Λ̃TQf Λ̃ +Rf

)−1

Λ̃TQf Γ̃.
(5.43)

Now, the control signal is updated using only the first control input

u (t+ 1) = ∆uf (1) + u (t) . (5.44)

The formulation of CLSPC is easily able to deal with hard or soft constraints. In addi-

tion, other design features can also be included in the design. The formulation of these

features in the CLSPC is similar to that in the OLSPC approach.

5.4 Parameter Sensitivity Analysis

In the formulation of SPC, various design parameters like NP , NC , Q, and R decide the

necessary control action as well as the stability. Their selection is also crucial for desired

control performance. The proof of closed-loop stability of this type of control algorithm

is not available [30]. Usually, long prediction and control horizons ensure stability of

the SPC as the algorithm converges to classical MPC when NP goes to infinity [28].
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However, a large value of control horizon increases the computational cost as well as

control efforts. Therefore, a good tuning of different controller parameters is necessary

for stable closed-loop response. Usually, the control performance or effort is evaluated

on the basis of three factors namely, mean squared error (MSE) between output and

desired set-point, total variation (TV) of input, and the l2-norm (‖U‖2) of input. These

measures analyze the effect of control action on output as well as on input and are given

by

MSE =
1

N

N∑
k=1

(y[k]− r[k])2, (5.45)

TV =
N∑
k=1

|(u [k + 1]− u [k])|, (5.46)

‖U‖2 =

(
N∑
k=1

(u[k])2

)1/2

. (5.47)

A detailed analysis on the performance of control efforts with respect to changes in

parameters is given in Section 5.4.

5.5 Application to Nuclear Reactor

The techniques presented in the preceding sections have been applied to nuclear reactor

described by the point kinetics model with six groups of delayed neutrons and lumped

thermal hydraulics model as discussed in Chapter C. For the purpose of control design

directly from measurement data, reactivity and power can be regarded as input to and

output from the reactor system respectively. In the study, it is assumed that the pri-

mary loop is defined by a nonlinear lumped model with pressure and mass flow rate

held constant. The heat produced in the core is conveyed by single-phase coolant only,

and xenon and fuel depletion effects are not considered. Further, the total reactivity is

contributed by regulating rod movement (ρRR) and due to temperature feedback. Only

αF = αF1 and αC = αC1 be the non-zero temperature coefficient of reactivity are con-

sidered; The parameters have been taken from [150] and are listed in Table 5.1.
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The complete dynamic model is rewritten below for immediate reference:

dP

dt
=

ρT −
6∑
i=1

βi

Λ
P +

6∑
i=1

βiCi

Λ
, (5.48)

dCi
dt

= λi (P − Ci) , i = 1, 2, . . . , 6, (5.49)

dTF
dt

= HFP − γf (TF − TC) , (5.50)

dTC
dt

= −HC (Tout − Tin) + γc (TF − TC) , (5.51)

dTin
dt

=
1

τcold
(Tcold − Tin) , (5.52)

dThot
dt

=
1

τhot
(Tout − Thot) , (5.53)

dTsg
dt

= − 1

τsg
(Tsg − Thot)−D1LT , (5.54)

Tcold = D2Tsg −D3Thot, (5.55)

ρT = ρRR + αFTF + αCTC . (5.56)

5.5.1 Implementation of Proposed Methodology

The block diagram of the proposed technique for application to nuclear reactor is shown

in Figure 5.1. The nuclear reactor described by the set of equations (5.48)–(5.56),

is excited by supplying reactivity variation caused by regulating rod (RR) movement.

Estimation dataset is constructed where reactivity and neutronic power (with additive

random noise) act as input and output respectively. This dataset is fed to the wavelet

pre-processing block for multiscale data analysis. The data are projected up to J levels

of decomposition using appropriately selected wavelet. The threshold is then computed

and applied to the wavelet coefficients. The denoised estimation dataset is reconstructed

from thresholded coefficients using inverse wavelet transform. The pre-processed es-

timation data are now used for estimating predictor coefficients and subsequently for

solving the optimization problem. The control input trajectory is designed using only

the first of the Nc optimal inputs and subsequently given to the process for tracking

set-point. The same steps are repeated for subsequent data samples.
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FIGURE 5.1: Block diagram representation of the proposed scheme with application
to nuclear reactor.

TABLE 5.1: Neutronic and thermal-hydraulic parameters

Group, i 1 2 3 4 5 6
λi(s

−1) 0.0125 0.0308 0.1152 0.3109 1.240 3.3287
βi 0.000216 0.001416 0.001349 0.00218 0.00095 0.000322

HF (◦Cs−1) HC(s−1) γF (s−1) γC(s−1) αF (◦C−1) αC (◦C−1) Λ(s)
102.7 0.2401 0.1792 0.0124 −2× 10−5 −5× 10−5 5× 10−4

τcold(s) τhot(s) τsg(s) D1(◦Cs−1) D2 D3

7.0 5.0 11.3 3.746 0.7005 −0.2995

In this study, initially the reactor is assumed to be operating at 90% of full power (FP).

The single-input and single-output estimation dataset comprises of input reactivity as

shown in Figure 5.2 and the corresponding output power mixed with an additive 50 dB

white Gaussian noise as shown in Figure 5.3. The maximum depth of decomposition

(J) is computed using Fourier Transform [185]. Figure 5.4 shows the discrete-time

Fourier Transform of the reactor power signal. The magnitude of the Fourier Trans-

form is seen to be approaching the noise floor level for π/250 rad/sample and higher

values of normalized frequencies. The depth of decomposition is decided such that

π/2J ≥ π/250, i.e. J = 7. Now, the reactor power signal is projected to seven levels

of decomposition using different wavelets with varying vanishing moments and sup-

port. The signal is then reconstructed after performing thresholding operation on to the

wavelet coefficients.
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The performance of denoising technique is evaluated by computing signal to noise ra-

tio and mean squared error of the denoised signal. The denoised signal to noise ratio

(DNSNR) is defined as

DNSNR = 10log10

(
N∑
k=1

(ȳ [k])2

/
N∑
k=1

(y [k]− ȳ [k])2

)
, (5.57)

and the denoised mean squared errror (DNMSE) is defined as

DNMSE =
1

N

N∑
k=1

(y [k]− ȳ [k])2. (5.58)

where ȳ and y denote original noiseless power signal and denoised power signal respec-

tively. The value of SNR and MSE before denosing are 49.2887 dB and 3.6152× 10−5

respectively. Table 5.2 compares the performances of different hard and soft denois-

ing techniques, for some of the popular families of wavelets, viz. Haar, Daubechies,

Coiflet and Symlet [86]. It is observed from Table 5.2 that Daubechies-4, Symlet-7,

and Coiflet-2 from their respective wavelet families give highest DNSNR and low-

est DNMSE. However, overall performance evaluation and denoised response indicate

that Daubechies-4 wavelet is better suited to represent the estimation dataset over other

wavelets. It is further found that VisuShrink offers the best denoising performance com-

pared to MiniMax and SureShrink thresholding techniques for reactor power signal. It

may also be noted that the soft thresholding-based algorithms have better DNSNR and

DNMSE over the hard thresholding-based schemes. Further, to demonstrate the depen-

dence on decomposition depth, the performances of Daubechies-4 wavelet at different

depth of decompositions is tabulated in Table 5.3. The performance has enhanced with

the increase in decomposition depth up to level seven and after that it starts decreas-

ing mainly due to over smoothening of reactor dynamics at higher level. Thus, for the

case studied here, it is observed that the best results in terms of DNSNR and DNMSE

correspond to the level seven of the Daubechies-4 wavelet decomposition and to a Vis-

uShrink-based soft threshold technique.

Now, to validate the efficacy of wavelet pre-processing, the 40 largest singular values of
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FIGURE 5.2: Assumed reactivity variation (estimation input data).
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FIGURE 5.3: Reactor power variation corresponding to reactivity variation shown in
Figure 5.2 (estimation output data).

the covariance matrix constructed from the unprocessed measured noisy data and that

from pre-processed measurement data are shown in Figure 5.5. In the case of unpro-

cessed data, only the first singular value of signal is identifiable. Remaining singular

values of signal are not well-separable from that of the noise. On the other hand, it

is apparent that wavelet pre-processing efficiently separates out the singular values of

signal from that of the noise and enables very effective noise filtering in multiresolution

as shown in Figure 5.5.
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FIGURE 5.4: The discrete-time Fourier transform of the reactor power signal shown in
Figure 5.3.
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FIGURE 5.5: First 40 singular values of extended Hankel matrices for measured and
pre-processed data.

5.5.2 Case Studies

Now, some case studies in which the values of control parameters for simulations are set

to, NP = 5, NC = 5, and M = 100 are presented. Also, as there is only one input and

one output, Q and R are scalars. These are assumed as Q = 1×10−2, and R = 4×103.

A detailed discussion on the selection of control parameters is given in Section 5.4.
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FIGURE 5.6: Reactor power variation for 50% load rejection transient.

5.5.2.1 Load Rejection to 50% FP

Initially, the reactor is assumed to be in steady state operation at 100% full power (FP).

At t = 200 s, a 50% step decrease in load is applied. The purpose of such a large

step transient is mainly to verify the wide-range tracking performance of the estimated

controller. It is observed that the controller is able to track the sharp decrease in the load

smoothly as shown in Figure 5.6 with undershoot of 1.92% only.

5.5.2.2 Load Rejection to 25% FP

In this case, the reference power value is brought down from 100% to 25% FP, to sim-

ulate an emergency operation of 75% step decrease in load. The reactor is assumed

to be in steady state operation at 100% FP. At t = 200 s, a sudden reduction of load

is assumed to take place. The performance of proposed controller in such a situation

is shown in Figure 5.7. The controller is able to track the large step variation in the

demand power with undershoot of 2.45% only.
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FIGURE 5.7: Reactor power variation for 75% load rejection transient.

5.5.2.3 Load-Following Transient

Here, a load-following transient similar to that given in [150] is considered to study

typical power variations at 5%/min ramp and 10% step. Initially for 200 s, the desired

power is maintained at 50% FP; then it is changed from 50% to 90% FP in 480 s; held at

90% FP for 300 s; then it is reduced from 90% to 75% FP in 180 s; held at 75% FP for

300 s; then a 10% step increase is applied at 1460ths; held at 85% FP for 500 s; then a

10% step decrease is applied at 1960ths and held at 75% FP for 540 s. The performance

of the proposed controller for tracking the set-point is shown in Figure 5.8(a) by solid

line. It is observed that the controller output is able to track the variation smoothly as

envisaged. The control signal and rate of change of controlled signal variations are also

shown in Figures 5.8(b) and 5.8(c) respectively.

In case of a nuclear reactor, variation in turbine load acts as measured disturbance. The

knowledge of measured disturbance can be taken into account to design a feed-forward

control along with the feedback control. The inclusion of feed-forward control law

compensates for measured disturbances thereby improving the performance as depicted
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by dash-dot lines in Figure 5.8. The controller with feed-forward action converges

rapidly to the demand set-point without much increase in the control efforts.

5.5.2.4 Effects of Integrating Control Action

The output power in estimation dataset (Figure 5.3) is added with an integrating white

Gaussian noise. To handle integrating type of non-stationarity in the controller design,

the predictor parameters are obtained by first differencing the estimation noisy dataset.

The differentiation of data ensures integrating control action. Figures 5.9(a), 5.9(b), and

5.9(c) compare the performance with and without differencing the estimation dataset for

the load-following transient shown in Figure 5.8(a). The presence of integrator removes

the nonzero offset error in tracking the set-point and improves the control performance

significantly.

5.5.2.5 Handling Time variations and Constraints

To handle any possible time variation in reactor parameters, the predictor is recursively

estimated. In this case, it is considered that at t = 800 s the process parameters changed

to new respective values as, αf = −2.25 × 10−5 oC−1, αc = −4.75 × 10−5 oC−1,

Hf = 103.7 ◦Cs−1, Hc = 0.2347 s−1, γf = 0.1825 s−1, and γc = 0.0126 s−1. In

addition, constraints on input and output are also considered. The constraints on input

determine the insertion/withdrawal limit and the rate of movement of RR. The con-

straint on output decides the maximum power output. For this case study, the follow-

ing constraints are applied, 0.495 ≤ P ≤ 0.905, −4× 10−3 ≤ ρRR ≤ 4× 10−3, and

−1 × 10−4 ≤ ∆ρRR

ts
≤ 1 × 10−4 where ts is the sampling period. Figures 5.10(a),

5.10(b), and 5.10(c) compare the performance for recursive and non-recursive SPC.

Both the techniques result in control actions that preserve the constraints. However,

the recursively updated controller shows better set-point tracking with less overshoot.

In addition, the recursive SPC spends less control efforts as compared to that of the

non-recursive algorithm.
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(a) Variation of reactor power with set-point.
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FIGURE 5.8: Comparison of the performance between SPC with feed-forward control
and SPC without feed-forward control, (a) reactor power, (b) control input, and (c) rate

of change of control input.
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FIGURE 5.9: Comparison of the performance between SPC with integrator and SPC
without integrator, (a) reactor power, (b) control input, and (c) rate of change of control

input.
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FIGURE 5.10: Comparison of the performance between recursive and non-recursive
SPC, (a) reactor power, (b) control input, and (c) rate of change of control input.

132 Subspace-based Identification and Control using Wavelets



Chapter 5. Subspace Predictive Control

TABLE 5.4: Comparison of performances of classical SPC with wavelet pre-processed
SPC.

Transient Technique MSE TV ‖U‖2

Load rejection to 50% FP
Classical SPC 1.9826× 10−3 1.9521× 10−2 1.2346
Wavelet SPC 1.7571× 10−3 6.3414× 10−3 0.8077

Load rejection to 25% FP
Classical SPC 4.3918× 10−3 1.4768× 10−2 1.2312
Wavelet SPC 2.1461× 10−3 9.5512× 10−3 1.2122

Load-following Transient
Classical SPC 9.1579× 10−4 5.7720× 10−3 0.2762
Wavelet SPC 4.4928× 10−4 5.3618× 10−3 0.2720

The wavelet-based data pre-processing efficiently removes noise contribution from re-

actor dynamics by amplitude thresholding of wavelet coefficients and thus improves the

control performance. Table 5.4 compares the performance of classical SPC with that

of the wavelet pre-processed SPC for different transients. SPC dervied after data pre-

processing takes lower control efforts. The improvement in performance becomes more

significant when the SNR is low while the classical method is unable to perform satis-

factorily. For large values of SNR both the techniques perform equally well, though.

5.6 Parameter Sensitivity Analysis

This section analyzes the performance of SPC with respect to variation in NP , NC , Q,

and R for the set-point shown in Figure 5.8(a). To present statistically valid argument

Monte Carlo simulations of 25 runs are performed.

5.6.1 Variation in Horizons

Figures 5.11(a), 5.11(b), and 5.11(c) respectively show variation of MSE, TV, and ‖U‖2

for variation of NP in the range 3 ≤ NP ≤ 40 and NC ≤ NP . The values of other pa-

rameters are set to M = 100, Q = 2 × 10−2, and R = 5 × 103. As the value of

prediction horizon is increased for a fixed value of control horizon, the controller gives

better set-point tracking. Due to linear predictor, large value of NP may induce large
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prediction error. It can be noted that increasing the prediction horizon beyond 20 did

not yield any significant improvement on the performance. However, increasing the

control horizon for a fixed value of prediction horizon, the controller acts to take ag-

gressive control action. The value of NC greater than one makes controller more robust

against unmeasured disturbances and can be taken around one fourth of prediction hori-

zon [186]. Therefore, NP and NC can be taken as 20 and 5 respectively. However, to

avoid aggressive control action we have taken the values of NP = 5 in Section 5.5.

5.6.2 Variation in Weights on Output

Figure 5.12 shows variation of MSE, TV, and ‖U‖2 for different values of Q ranging

from 1 × 10−3 to 10. The values of other parameters are as follows, NP = 5, NC = 5,

M = 100, and R = 5× 103. Increasing the value of Q penalizes more output variation

and thus decreasing the MSE. The value of MSE decreases at a faster rate up to Q =

2×10−1 and after that it decreases very slowly. The control efforts are increased thereby

increasing TV and ‖U‖2. Moreover, if the weight is increased beyond 4 × 10−2 then

due to aggressive control action high frequency variation comes at the step change in

set-point. Therefore, the value of Q is selected as 1× 10−2.

5.6.3 Variation in Weights on Rate of Change of Input

Figure 5.13 shows variation of MSE, TV, and ‖U‖2 for values ofR varying from 1×102

to 1× 105. The values of other parameters are as follows, NP = 5, NC = 5, M = 100,

and Q = 1 × 10−2. As we increase the value of R, it penalizes the rate of change of

input variation more, thus controller takes cautious action and thereby decreasing TV

and ‖U‖2. The value of TV decreases very sharply up to R = 2 × 103 and after that it

decreases at a slower rate. Moreover, MSE keeps on increasing due to less weight on

minimization of error. Therefore, to avoid large overshoot during set-point tracking as

well as large error from set-point, the value of R is selected as 4× 103.
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FIGURE 5.11: Variation of (a) MSE in output, (b) TV of input, and (c) l-2 norm of
input for different prediction and control horizons.
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5.7 Controller performance for different SNR

Monte Carlo (MC) simulations are carried out to demonstrate the advantage of wavelet

preprocessed SPC (W-SPC) over classical SPC. MC simulation is a standard numerical

experimentation technique. Here, the purpose of MC simulation is to validate the en-

hancement in controller performance empirically. For several MC simulation runs, at

a fixed noise power level, the estimation dataset varies for each run due to change in

noise sequence as the latter is a stochastic phenomenon. This mechanism is equivalent

to performing several experiments. Furthermore, simulations are performed at various

noise levels to show the robustness of the proposed scheme in estimating the predic-

tor coefficients in noisy environment. Here, the effect of noise is considered only on

the output power. The noisy dataset is used for estimating the predictor matrices. The

load-following operation shown in Figure 5.8(a) is taken as the desired set point.

5.7.1 Simulation with White Gaussian Noise

A white Gaussian noise sequence is superimposed on reactor power output in the es-

timation dataset. MC simulations of 50 runs are carried out at each noise level. In

addition to this, simulations are performed for SNR varying from 15 dB to 80 dB. The

value of parameters are taken as: NP = 5, NC = 5. Figures 5.14, 5.15 and 5.16 show

output and input performance of classical SPC [28, 187] and W-SPC. It is to be noted

that the data filtering method proposed in [187] becomes equivalent to SPC for white

Gaussian noise sequence. For large values of SNR both the algorithms perform equally

well but for low SNR, the W-SPC can reduce SSE significantly with both lower control

effort as well as lesser TV. On further increase in the SNR, the W-SPC is observed to

reduce the SSE but at the cost of increasing control effort and TV. This result is mainly

due to smoothing of the dataset by wavelet filter. However, the performance of SPC

remains invariable.
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FIGURE 5.14: Sum of squared error between output and desired set point at different
SNR for white Gaussian noise sequence.
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FIGURE 5.15: TV of input at different SNR for white Gaussian noise sequence.
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138 Subspace-based Identification and Control using Wavelets



Chapter 5. Subspace Predictive Control

5.7.2 Simulation with Integrating White Gaussian Noise

An integrating white Gaussian noise sequence is added with the reactor power to gen-

erate an estimation dataset. MC simulations of 50 runs are carried out for SNR varying

from 20 dB to 80 dB. The values of NP and NC are taken as in the case of simulation

with white Gaussian noise. An integrating action is brought into the controller by the

differencing the estimation dataset before calculating the predictor coefficients. It will

be helpful in removing offset for non-zero set points. It is to be noted that the data

filtering measure proposed in [187] is equivalent to differenced data based SPC for in-

tegrated white Gaussian noise. However, by differencing the estimation dataset during

low SNR, the noise got amplified, and it is advisable to process it before using in pa-

rameter estimation. For a non-white noise, thresholds are rescaled by a level-dependent

estimation of the level noise. Figures 5.17, 5.18, and 5.19 compare the performance of

SPC, W-SPC, differenced data based SPC and differenced data based W-SPC. It can be

seen clearly that the error in output is much less in the case of differenced data but with

more control effort. Moreover, wavelet filtering is able to reject noise significantly with

comparatively better control performance.

5.8 Summary

In this chapter, methodology of subspace based predictive control with wavelet-preprocessing

is presented The strategy that can incorporate constraints and optimize control perfor-

mance has been investigated for the core power control in load-following mode of nu-

clear reactor. It is directly designed from the pre-processed dataset and does not require

reactor model explicitly. The inclusion of wavelet filtering in the formulation improves

the SNR and enhances prediction accuracy of the estimated controller. The data-driven

scheme is easily adapted to the time variation in the process. Detailed simulation studies

verify the performance of proposed control algorithm with necessary tuning of control
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FIGURE 5.17: Sum of squared error between output and desired set point at different
SNR for integrating white Gaussian noise sequence.
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FIGURE 5.18: TV of input at different SNR for integrating white Gaussian noise se-
quence.
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parameters. The controller suitably accommodates measured disturbances and gives

wide range offset-free tracking for ramp as well as step variations in the load.
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Conclusions and Future Work

In this chapter, conclusions are drawn and the major contribution of the thesis are

pointed out. It also suggests directions for the future work.

6.1 Conclusions

A nuclear reactor is a complex nonlinear multiscale system in which different dynamic

modes interact simultaneously at different timescales. These modes are located in sep-

arate clusters governing slow as well as fast timescale behavior. It has been found that

modeling of such systems using single scale approaches would approximate its predic-

tion capabilities. The single scale approach may sometimes leads to ill-conditioning.

Moreover, various multiscale features residing in a process may not be clearly visible

in measurement domain. Therefore, it is imperative to have transformation of data and

visualization in a multiresolution framework around a proper set of scales. Wavelet

basis functions adopted for data visualization, have been preferred over other bases

due to their excellent multiresolution approximation ability, as evident from several ap-

plications brought out in this work. The notion of multiscale subspace identification

proposed in thesis to estimate low order state-space model directly from the wavelet

projections helps to develop a framework for state-space modeling at significant scales
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leading to a parsimonious model description with less computational burden. It is evi-

dent from the application of the proposed approach to point kinetics model of nuclear

reactor that the identified multiscale subspace model estimates system modes more pre-

cisely than the traditional approaches do, and a good neutronic power prediction has

been achieved even from training dataset with low SNR. The identified reactor model

is validated in prediction as well as in simulation environment. The proposed algorithm

suggests better modeling performance with enhanced prediction capability over other

single scale and multiscale approaches in terms of root mean square error at different

noise levels. It has also been found that in most of the modeling exercises the proposed

approach reduces dimensionality.

The design of wavelet operators proposed in the thesis is suitable for multiscale mod-

eling. It imposes a diagonal structure on the system in wavelet subspace. In fact, the

imposed structure in projection space is justified as wavelets are approximate Eigen

functions of convolution operators. The methodology suggests application of different

wavelet filters for analyzing different states of the system. The proposed novel approach

has been applied successfully to a point kinetics nuclear reactor. It designs perfect re-

construction biorthogonal wavelet filter banks associated with wavelet operators from

the given estimation dataset instead of selecting them a priori. From the application to

nuclear reactor, it has been found that the projection space modeling leads to a signifi-

cant improvement in output prediction over single-scale modeling techniques.

The thesis further advocates integration of wavelet preprocessing and data-driven con-

trol techniques. To be specific, it proposes wavelet preprocessed subspace predictive

control technique. The proposed approach does not require the complex reactor model

for predictive control design. The controller is directly estimated from the preprocessed

input-output data and implemented for the control of core power. The predictor param-

eters are estimated recursively to handle time-variation occurring in the system. The

controller also incorporates feed-forward control, integrating action, and constraints in

the control design. Moreover, the controller parameters are tuned after a detailed param-

eter sensitivity analysis to obtain desired control performance. The proposed controller
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is applied to control demand load set-point variations as well as for load rejection tran-

sients. The controller is effectively able to cope up with the ramp and step variations in

the demand power. From the detailed simulation analysis it has been validated that the

proposed approach gives better control performance as compared to other approaches

at different SNRs.

6.2 Future Work

The work carried out in this thesis provides some directions for future scope in identifi-

cation and data-driven control. In particular, the following topics can be considered:

• Wavelet operators can be used to implement decoupled control law in multireso-

lution.

• The idea of designing wavelet operators from measurements can be extended to

designing of semi-orthogonal wavelet operators.

• The notion of multiscale subspace identification can be employed in designing

model-based controller or in state estimation in the multiresolution framework.

• Subspace identification using multiwavelet basis function can be further studied.

• Subspace predictive control approach can be formulated to design predictive con-

trol in multi resolution.

• Subspace predictive control technique can be extended to design nonlinear pre-

dictive control law.
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A.1 General Family of Model Structures

The general model structure is given by

A(q)y[k] =
B(q)

F (q)
u[k] +

C(q)

D(q)
e[k] (A.1)

y[k] =
B(q)

A(q)F (q)
u[k] +

C(q)

A(q)D(q)
e[k] (A.2)

or simply, we can write

y[k] = G(q)u[k] +H(q)e[k] (A.3)

where G (q) = B(q)
A(q)F (q)

and H (q) = C(q)
A(q)D(q)

. The one step ahead prediction is given

by

ŷ[k |θ ] = H−1(q)G(q)u[k] +
(
1−H−1(q)

)
e[k] (A.4)

or,

ŷ[k |θ ] =
B(q)D(q)

C(q)F (q)
u[k] +

(
1− A(q)D(q)

C(q)

)
e[k] (A.5)

In the form of recursion, we can write

C(q)F (q)ŷ[k |θ ] = B(q)D(q)u[k] + (C(q)F (q)− F (q)A(q)D(q))e[k]. (A.6)
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Define, the prediction error as

ε[k, θ] = y[k]− ŷ[k |θ ] (A.7)

ε[k, θ] =
D(q)

C(q)

(
A(q)y[k]− B(q)

F (q)
u[k]

)
(A.8)

and

w[k, θ] =
B(q)

F (q)
u[k] (A.9)

and v[k, θ] = A(q)y[k]− w[k, θ]. (A.10)

Then

ε[k, θ] =
D(q)

C(q)
v[k, θ]. (A.11)

Now, define the polynomials

B(q−1) = b1q
−1 + b2q

−2 + · · ·+ bnb
q−nb , (A.12)

A(q−1) = 1 + a1q
−1 + a2q

−2 + · · ·+ anaq
−na , (A.13)

C(q−1) = 1 + c1q
−1 + c2q

−2 + · · ·+ cncq
−nc , (A.14)

D(q−1) = 1 + d1q
−1 + d2q

−2 + · · ·+ dnd
q−nd . (A.15)

and F (q−1) = 1 + f1q
−1 + f2q

−2 + · · ·+ fnf
q−nf . (A.16)

Thus, (A.9), (A.10), and (A.11) can be written as

w[k, θ] = b1u[k − 1] + · · ·+ bnb
u[k − nb]− f1w[k − 1, θ]− · · · − fnf

w[k − nf , θ]

v [k, θ] = y[k] + a1y[k − 1] + · · ·+ anay [k − na]− w [k, θ] (A.17)

ε [k, θ] = v [k, θ] + d1v [k − 1, θ] + · · ·+ dnd
v [k − nd, θ]− c1ε [k − 1, θ]− · · · − ε [k − nc, θ]

Now, defining the parameter vector as

θ =

[
a1 · · · ana b1 · · · bnb

f1 · · · fnf

c1 · · · cnc d1 · · · dnd

] (A.18)
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and regression vector as

ϕ[k, θ] =

[
−y[k − 1] · · · −y[k − na] −u[k − 1] · · · −u[k − nb]

− w[k − 1, θ] · · · −w[k − nf , θ] −ε[k − 1, θ] · · · −ε[k − nc, θ]

− v[k − 1, θ] · · · −v[k − nd, θ]
]T

(A.19)

Hence, the predictor is given by

ŷ [k |θ ] = ϕT [k, θ] θ (A.20)

Thus, the parameters can be find out using least squares method.

It can be noted that different common structures can be obtained by selecting polyno-

mials from (A.1) as follows: If A and B are selected then the structure is called as ARX

model. If A, B, and C are selected then it is known as ARMAX model. If B and F are

selected then it is known as OE model. If B, F , C and D are selected then it is called

as BJ model structure.
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B.1 Vandermonde structure ofWj

General structure of the linear transformation Wj satisfying Awj+1Wj = WjÃ is com-

puted as follows. Let

Wj =



v11 v12 · · · v1N

v21 v22 · · · v2N

...
... . . . ...

vN1 vN2 · · · vNN


. (B.1)

Then,



α1 0 · · · 0

0 α2 · · · 0

...
... . . . ...

0 0 · · · αN





v11 v12 · · · v1N

v21 v22 · · · v2N

...
... . . . ...

vN1 vN2 · · · vNN


=



v11 v12 · · · v1N

v21 v22 · · · v2N

...
... . . . ...

vN1 vN2 · · · vNN





0 0 · · · −aN
1 0 · · · −aN−1

0 1 · · · −aN−2

...
... . . . ...

0 0 · · · −a1


(B.2)

implies

αivi1 = vi2,

αivi2 = vi3,

...

αivi(N−1) = viN ,

αiviN = −aNvi1 − aN−1vi2 · · · −a1viN ,∀i=1, 2, ..., N.

(B.3)
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Since αi, i=1, 2, ..., N are the eigenvalues of A
v

j , one can write

viN = αiv1(N−1) = α2
i vi(N−2) = · · · = α

(N−1)
i vi1,

vi(N−1) = αiv1(N−2) = α2
i vi(N−3) = · · · = α

(N−2)
i vi1,

...

vi2 = αivi1,

∀i=1, 2, ..., N.

(B.4)

One can assume vi1 = mi, ∀ i=1, 2, ..., N to get the Vandermonde structure of Wj as

given in (3.30).

B.2 An analytical example of PRBWFB design

Consider that the analysis HPF coefficients g are known to us as

g =

[
g1 g2 g3 g4

]
. (B.5)

Using perfect reconstruction condition, synthesis LPF h̃ are given by

h̃ =

[
−g4 g3 −g2 g1

]
. (B.6)

Let the analysis LPF h, to be computed, is given by

h =

[
h1 h2 h3 h4

]
. (B.7)

Applying the biorthogonality condition between h and g

−h1g4 + h2g3 − h3g2 + h4g1 = 1,

−h1g2 + h2g1 = 0,

−h3g4 + h4g4 = 0.

(B.8)
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To design the filter bank with one vanishing moment constrain, the vanishing moment

condition is given by

− h1 + h2 − h3 + h4 = 0. (B.9)

The system of equations (B.8) and (B.9) give coefficients of analysis LPF h, and further

synthesis HPF g̃ is designed.

g̃ =

[
h4 −h3 h2 −h1

]
. (B.10)

Similarly, the design can be extended for desired number of vanishing moments after

increasing length of filter by appending zeros to it.
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C.1 Nuclear Reactor Dynamics

In a nuclear reactor neutrons are used to induce fission reactions in heavy nuclei. These

reactions split the heavier nuclei into lighter nuclei and produce fission products accom-

panied by the release of energy plus several additional neutrons. The fission neutrons

can then be utilized to induce further fission reactions which thereby give rise to a

chain of fission events. Thus, the main role of a nuclear fission reactor is to carry out

controlled nuclear fission chain reactions and maintains it [37]. If the rate of neutron

production in a fission reaction is balanced by neutron loss via absorption and leakage

then the reactor operates at a fixed power level. Any change from this balance condition

will result in variation of the neutron population in time. This may occur due to change

in core multiplication. This variation in time behavior of the neutron population due

to change in core multiplication is determined by nuclear reactor kinetics. The core

multiplication depends on various other factors which are directly or indirectly depen-

dent on the neutron concentration. The analysis of time-dependence of all such related

processes involved in deducing the multiplication as a function of the power level of the

reactor is known as nuclear reactor dynamics.

Modeling of reactor cores is a primary work for the design of power control or for

load-following control of cores in a NPP. A nuclear reactor is described as a complex

nonlinear multiscale system in which different dynamic modes interact simultaneously
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at different time scales [24]. These modes are located in separate clusters governing

slow as well as fast time-scale behavior. A cluster of modes lying near the origin on

the s-plane governs slow dynamics of the process while the second cluster lying away

from the origin is responsible for fast dynamics. A control oriented nuclear reactor

model should be suitably able to describe short term transients i.e. with time scale of

milliseconds and long term transients i.e. having time scale of minutes. For instance,

the effects of control rod movement are categorized as short term transient while, the

transient length during a load change operation belongs to long time transients. The

transient behavior of a reactor can be suitably explained by the point kinetics model

which assumes that the spatial flux shape does not change with time. It describes the

behavior of neutron density with the influence of delayed neutrons. It is derived from

the one-speed diffusion model under the assumption that the spatial dependence of the

flux can be described by only the fundamental mode.

The study of reactor dynamical behavior should also consider the thermal analysis in

addition to the neutronic analysis. The variation of temperature in a core affects core

multiplication and thereby influences the reactivity. This variation is usually character-

ized by variation in temperature coefficient of reactivity due to fuel, coolant, moderator,

etc.

During the course of operation of a nuclear reactor various fission fragments and their

decay products gather. These fission products may have a significant influence on the

reactivity and is governed by the condition of operation of the reactor as well as on

the nature of fission product. Xenon-135 and Samarium-149 are two important fission

products and they affect the multiplication factor mainly by decreasing the thermal uti-

lization as their thermal neutron absorption cross-sections are very large. These fission

products also affect the reactor core control. Provision must be made to provide for the

reactivity deficit caused due to accumulation of fission products and to compensate for

time varying xenon load characterized by xenon-iodine dynamics. Besides, in case of

large reactors where xenon variation might influence the flux distribution as well as it

might cause xenon-induced spatial oscillations. In case of PHWR, the reactor regulating
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system controls the total reactor power and zonal powers. The total reactor power con-

trol is essential during short term operational transients whereas the zonal power control

is for regulating the relatively slower xenon-induced oscillations. The accuracy of con-

troller synthesis or dynamic analysis or simulation study is largely dependent on the

correctness of employed model. Hence, it is important to study the behavior of neutron

density to various situations, especially change in the effective multiplication factor, in

the temperature, and as a result of the accumulation of fission-product poisons.

In this study, the reactor is modeled using point kinetics model with six groups of de-

layed neutron precursors. Internal reactivity feedbacks due to variation in temperatures

of fuel and coolant are considered as they decide the dynamical behavior of the system.

Further, feedbacks from xenon and iodine dynamics are also considered.

C.2 Point Kinetics Reactor Core Model

The point kinetics model is given by,

dP

dt
=

(
ρT − β

Λ

)
P +

6∑
i=1

λiCi, (C.1)

dCi
dt

=
βi
Λ
P − λiCi, i = 1, 2, . . . , 6 (C.2)

where Λ is prompt neutron life time, P denotes the neutron density and reactor power is

proportional to it, ρT is total reactivity. λi, βi, and Ci are decay constant, fraction of de-

layed neutrons, and delayed neutron precursors’ concentration of ith group respectively

and β =
6∑
i=1

βi. At the steady state of reactor operation, the value of delayed neutron

precursors’ concentration Ci0 and power P0 are related as Ci0 = βi
Λλi
P0. Equation (C.1)

describes the rate of change of reactor power and (C.2) describes the rate of change of

concentration of the delayed neutron precursors. The term
6∑
i=1

λiCi gives the total rate of

formation of delayed neutrons while, the rate of prompt neutron production is governed

by the rest of the terms in it.
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If the rate of neutron production is equal to neutron lost then the reactor is said to

be critical. Any fractional departure of a system from criticality is represented using

reactivity and it is given by

ρ =
k − 1

k
(C.3)

where k denotes the effective multiplication factor and is given as the ratio of rate of

neutron production to the rate of neutron removal through absorption and leakage. The

value of k is used to define the criticality states of a reactor. In the absence of an

extraneous source, k = 1 means the reactor is critical, k < 1 means it is subcritical,

and k > 1 means it is supercritical. For the point kinetics model, it is related to the

one-group nonleakage probability (Pn1) and infinite multiplication factor (k∞) by k =

k∞Pn1. The infinite multiplication factor can be evaluated from the neutronic properties

of material and it assumes that there is no loss of neutrons through leakage. The one-

group nonleakage probability is a measure of probability that neutrons will not leak out

of the finite system but will remain until absorbed. It is dependent on the reactor material

as well as on the geometry. The prompt neutron lifetime is defined using mean lifetime

(Λ∞) and nonleakage probability of thermal neutrons and is given by Λ = Λ∞Pn1.

The aforementioned system of equations can be normalized by their respective full

power values. Normalizing (C.1) with respect to its steady state full power value P0

d

dt

(
P

P0

)
=

(
ρT − β

Λ

)(
P

P0

)
+

(
1

P0

) 6∑
i=1

λiCi (C.4)

The steady state value of delayed neutron precursor concentration can be computed by

equating (C.2) to zero, is given by

Ci0 =
β

Λλi
P0 (C.5)

Thus, we can write

d

dt

(
P

P0

)
=

(
ρT − β

Λ

)(
P

P0

)
+

6∑
i=1

(
βi
Λ

)(
Ci
Ci0

)
(C.6)
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Similarly, normalizing (C.2) with respect to its steady state value Ci0

d

dt

(
Ci
Ci0

)
=

(
βi
Λ

)(
P

Ci0

)
− λi

(
Ci
Ci0

)
(C.7)

Substituting the value of Ci0, we get

d

dt

(
Ci
Ci0

)
= λi

(
P

P0

)
− λi

(
Ci
Ci0

)
(C.8)

Therefore, the normalized core neutronics model is written as,

dPr
dt

=

(
ρT − β

Λ

)
Pr +


6∑
i=1

βiCir

Λ

 , (C.9)

dCir
dt

= λi (Pr − Cir) , i = 1, 2, . . . , 6, (C.10)

where the subscript r denotes normalized parameter and Cir0 = Pr0.

A simple case of the point kinetics reactor model can be obtained by considering one

group of delayed neutrons. The delayed neutron fraction and decay constant of the one

effective delayed neutron are given by

β =
6∑
i=1

βi, (C.11)

and

λ =
β

6∑
i=1

βi
λi

. (C.12)

C.3 Core Thermal-Hydraulics Model

In order to compute the effects of temperature over reactivity, a lumped model for core

thermal hydraulics can be derived from Newton’s law of cooling on fuel and coolant.
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The temperature of the fuel and coolant satisfy the energy balance equations and de-

scribe the variations in reactor thermal power. It is stated as follows [2],[150]

dTF
dt

= HFP − γF (TF − TC) , (C.13)

dTC
dt

= HC (TF − TC)− γC (Tout − Tin) , (C.14)

where TF is fuel temperature; TC is coolant temperature; Tout is core outlet temperature;

Tin is core inlet temperature; TC , Tin, and Tout are assumed to be related as TC =

(Tout + Tin) /2. HF andHC respectively characterize the rate of rise of fuel and coolant

temperatures. γF is inverse mean time for heat transfer from fuel to coolant; γC is

inverse mean time for heat transfer from core outlet to inlet. These parameters are given

by

HF =
Fφ

MFCF
; γF =

UFCAF
MFCF

; (C.15)

HC =
UFCAF
MCCC

; γC =
mp

MC

; (C.16)

where MFCF and MCCC are heat capacity of the fuel and coolant respectively; Fφ is

reactor heat power per 1% of neutron flux; UFC is heat transfer coefficient between the

fuel and the coolant; mp is mass flow rate of coolant; and AF is area of a fuel rod. The

values of various neutronic and thermal hydraulic parameters appearing in the above

equations (C.1)–(C.16) are given in Table C.1 [38].

The inlet and outlet temperatures are further related as follows:

dTin
dt

=
1

τcold
(Tcold − Tin) , (C.17)

dThot
dt

=
1

τhot
(Tout − Thot) , (C.18)

dTsg
dt

= − 1

τsg
(Tsg − Thot)−D1LT , (C.19)

Tcold = D2Tsg −D3Thot, (C.20)
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TABLE C.1: Neutronic and Thermal-Hydraulic Parameters

Group, i 1 2 3 4 5 6
λi(s

−1) 0.012 0.031 0.115 0.301 0.905 2.760
βi
(
×10−3

)
0.1611 1.0020 0.8458 1.8330 0.9682 0.2088

HF (◦Cs−1) HC(s−1) γF (s−1) γC(s−1) Λ(s) TF0 (◦C) TC0 (◦C)
39.90 0.1596 0.1250 1.158 8.696× 10−4 601.2 282

αF0 (◦C−1) αF1 (◦C−1) αF2 (◦C−1) αC0 (◦C−1) αC1 (◦C−1)
3.3559× 10−3 −1.473× 10−5 1.0× 10−8 −1.180× 10−3 −0.0147× 10−3

where Thot and Tcold are hot and cold leg temperatures respectively; Tsg is steam gener-

ator temperature; τhot, τcold, and τsg are time constants for hot leg, cold leg, and steam

generator respectively; D1, D2, and D3 are constants; and LT is turbine load which acts

as a measured disturbance.

C.4 Xenon-Iodine Model

During the course of operation of a nuclear reactor various fission products accumulate.

These products affect the multiplication factor and act as reactor poisons. Among these,

xenon-135 is of particular interest due to its large thermal neutron absorption cross

section. Formation of xenon and removal by its own radioactive decay occurs over

several tens of hours, which is of the order of the local variation cycle in power reactors.

The xenon is formed directly as fission product however, a major portion results from

the subsequent radioactive decay of iodine whose half life period is 6.2 h. The thermal

neutron absorption cross section of xenon is extremely large and it undergoes radioac-

tive decay at a relatively slower rate than iodine does. This plays a significant role in

the overall neutron balance and it directly affects system reactivity both in steady state

and as well as during transients. It also introduces xenon-induced oscillation in loosely

coupled reactors having physical dimensions several times larger than the neutron mi-

gration length.
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The rate of change of iodine-135 is given by

dI

dt
= −λII − σIφI + γIΣfφ (C.21)

where I denotes the concentration of iodine; λI is decay constant of iodine; γI is fission

yield of iodine; σI is thermal neutron absorption cross section and is quite small; Σf and

Σa represent macroscopic thermal neutron absorption and fission cross sections respec-

tively; and φ is thermal neutron flux; The first two term on the right of equation give

the rate of removal of iodine-135 by radioactive decay and neutron capture respectively

whereas, the third term represents its rate of formation by fission.

The equilibrium concentration of iodine is given by

I0 =
γI
∑

fφ

λI + σIφ
≈
γI
∑

fφ

λI
(C.22)

The rate of change of xenon-135 is given by

dX

dt
= −λXX − σXφX + λII + γXΣfφ (C.23)

where X denotes the concentration of xenon; λX is decay constant of xenon; γX is

fission yield of xenon; and σX denotes microscopic thermal neutron absorption cross

section of xenon. The first two terms on the right of equation (C.23) give the rate of

removal of xenon-135 by radioactive decay and neutron capture respectively. The third

and fourth terms represent its rate of formation by decay of iodine-135 and by fission

respectively.

The equilibrium concentration of xenon is given by

X0 =
λII0 + γX

∑
fφ

λX + σXφ
≈

(γI + γX)
∑

fφ

λX + σXφ
. (C.24)
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C.5 Reactivity Model

In nuclear reactors, the reactivity can be varied by different means like movement of

control rods or burnable poison. Generally, the fine adjustment of reactivity for power

regulation and control of reactor is done by the control rods. The reactivity is also af-

fected by different internal feedbacks. The variation in the temperature of the system

affects the effective multiplication factor in an operating reactor. The reactivity varia-

tion is characterized by variation in temperature coefficient of reactivity due to fuel and

coolant. Such variation may be due to nonuniformity of structure affecting the flow of

coolant or due to change in power demand. Transient changes in the effective multipli-

cation factor in an operating reactor also occur due to xenon. These reactivity effects

can be represented as follows:

ρT = ρU + ρF + ρC + ρX , (C.25)

ρF = αF0 + αF1 (TF − TF0) + αF2 (TF − TF0)2, (C.26)

ρC = αC0 + αC1 (TC − TC0) , (C.27)

where ρT is total reactivity; ρU is reactivity contributed by all reactivity devices; ρF and

ρC are reactivity feedbacks due to variation in fuel and coolant temperatures respec-

tively; ρX is reactivity feedback due to xenon and is given by

ρX = −σXX
Σa

(C.28)

The reactivity equivalent ρX0 of the equilibrium xenon poisoning effect is consequently

ρX0 ≈
σXX0∑

a

= −
σX (γI + γX)

∑
fφ∑

a (λI + σXφ)
. (C.29)

In (C.26)–(C.27), TF0 and TC0 are steady state fuel and coolant temperatures at full

power operating condition. αFi , i = 0, 1, 2 and αCi , i = 0, 1 respectively denote fuel

and coolant temperature coefficients of reactivity. The effective multiplication factor
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will change with temperature depending on the temperature coefficient of reactivity. If

the temperature coefficient of reactivity is positive, then an any increase in operating

power level, it would increase the reactivity thereby increasing the neutron density and

rate of heat generation. This would cause a positive reactivity feedback. On the other

hand, if the temperature coefficient of reactivity is negative, then an any increase in the

power level of operation, it would decrease the reactivity thereby decreasing the rate of

heat generation and thus introduce a negative reactivity feedback. Generally, the fuel

and coolant temperature coefficients of reactivity are different in magnitude and the

time scales in which they occur, due to their dependency on different characteristics.

The time constant for fuel is short and often referred as prompt coefficient whereas the

time constant for coolant is long and described as delayed coefficient.

In the case of PHWR, the reactivity input ρU can be varied by different means like liquid

zone control system (LZCS), adjuster rods, control rods, and moderator liquid poison

actuation system. Under normal operating conditions, the reactivity variation ρU is only

due to LZCS i.e., ρU = ρZ , as movement of other reactivity devices is not required. The

variation of reactivity ρZ due to inflow variations in zonal control compartments can be

represented using a second order polynomial as given by

ρZ = a0 + a1h+ a2h
2 (C.30)

where h denotes the average water level (% full height) in ZCC and ai, i = 0, 1, 2 is

constant.
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