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Chapter 7

Conclusion and future scopre

7.1 Conclusion

In this thesis, two different multi-scale EKF techniques for estimation of some im-

portant state variables of the nuclear reactor is presented. In the first technique,

a nuclear reactor system is projected on the wavelet projection space by using

the wavelet and scaling functions of the discrete wavelet transform as the basis.

In the second technique, input and output signals of the nuclear reactor are re-

solved with the stationary wavelet transform functions. The proposed algorithms

not only preserve the merits of the EKF technique but the use of wavelets pro-

vides an additional smoothing effect for the estimation. The multi-scale analysis

allows online identification of the frequency components of the signals that help

in modeling widely varying dynamic modes of a multi-scale reactor system. The

proposed algorithm handles the system uncertainties and measurement noise using

system covariance matrices which are tuned to have the optimal performance. Al-

though the proposed algorithm is computationally expensive, it does not impose

severe limitation with the use of modern high-speed digital computers. Perfor-

mance of the proposed algorithm is assessed by carrying out estimation from the

completely known dataset as well as plant dataset of one of the Indian research

reactor. It is found that the proposed algorithm outperforms the standard EKF

algorithm. However, it is also observed that the performance of multi-scale EKF

algorithm is more susceptible with the sub-optimal tuning parameters than that
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Chapter 7: Conclusion and future scope 112

of the standard EKF. The proliferation of the proposed wavelet-based state esti-

mation techniques can be done for sensor fault detection. Moreover, a constrained

state estimation technique based on the Kalman filter framework, i.e., RNDDR

technique is also proposed. The RNDDR has a simple form, which can induce

an easy engineering implementation due to its recursive form. It also handles al-

gebraic constraints and bounds on states and parameters. Constraints can arise

due to feasibility considerations i.e., non-negativity of reactor power or delayed

neutron precursors’ concentration for nuclear reactor system. The results demon-

strate that the RNDDR provides reliable and accurate reactivity estimations while

there exist constraints on states, parameter uncertainties and noisy measurements.

Thus, RNDDR will increase control flexibility and safety of nuclear reactors.

Moreover, in order to estimate the special variation of the reactor variables in

a large nuclear reactor, the proper flux mapping technique may be integrated

with the proposed state estimation algorithms. An important aspect of estima-

tion techniques when considered for online application is its computational time,

which should be carefully addressed, i.e., a platform for implementation should be

selected so as to meet the computational time requirements.

In this thesis, a multi-scale PCA based MSPM technique is formulated. A new

reconstruction based fault isolation technique in multi-scale PCA framework is

presented. Although reconstruction based isolation technique eliminates the fault

smearing effect, the reliability of the reconstruction procedure depends on the

VRE. Results of statistical test for autocorrelation obtained with wavelet trans-

formed coefficients indicate a significant reduction in auto-correlated features in

wavelet projection space as compared with the same for the raw measurement

space. Therefore, control limits for the PCA model derived over wavelet projec-

tion space could be more reliable than the same for the single scale PCA model.

Moreover, VRE for the multi-scale PCA models is significantly reduced indicating

reliable fault isolation. For the benchmark TE process, the detection and the iso-

lation indices obtained with the multi-scale PCA models effectively monitor some

of the faulty variables which are missed out by the single-scale PCA based indices.

To find the root cause of the fault, the domain knowledge of the operator is re-

quired to do investigation based on the isolated faulty variables. The PCA models
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derived in the projection space can give extra information about the frequency

range of the fault which is potentially useful for the operator to investigate the

cause of the fault.

7.2 Future scope

KFs are well known to have wide applications in sensor fault detection and diag-

nosis [118] besides for state estimation. As wavelet based multi-scale techniques

provide a multi-scale hierarchical representation of the state variables, such a

multi-scale representation could be more effective in detection and diagnosis of

frequency dependent sensor faults. Therefore, the work reported in this thesis

could be proliferated for such applications.

An important aspect of the proposed state estimation techniques when considered

for an online applications is the computational time requirement, which should be

carefully addressed. In this regards, a choice of the platform for implementation

could also be important to meet the computational time requirements.

For state estimation of a nuclear reactors, a class of robust state estimation tech-

niques such as sliding mode observers and H-∞ observers can be explored. Exten-

sion of these techniques in a multi-scale framework could perhaps be an interesting

and relevant extension.

An important aspect for the multivariate process monitoring applications is the

delay associated with the detection of fault. A popular statistical measure in

this regard is the average run length [119] defined as average number of samples

between the occurrence and the detection of a fault. The value of average run

length depends on the selection of detection indices and the corresponding control

limits. Different approaches for prior estimation of average run length have also

been reported [120]. Reckon that the process monitoring technique reported in this

thesis is based on the multiple PCA models derived at the certain wavelet scales.

PCA model derived at a selected scale is more sensitive to the cross-correlated

features over a certain frequency band and time duration matched to its scale

than an approximated model at a single scale. Therefore, an average run length
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for multi-scale PCA could be investigated for its potential for shorter duration as

compared to a single-scale counterpart.

Finally, the proposed multivariate process monitoring technique belongs to the

class of unsupervised fault diagnosis techniques. Although these techniques are

useful for finding a root cause of the fault, it may take a considerable amount of

time and expertise on part of plant engineers and operators. Provided that reli-

able reference datasets corresponding to the potential system faults are available,

supervised fault diagnosis techniques may be investigated. In this context, theory

of pattern classification has found some significant applications for assigning a

fault-class for the onsite fault from the reference fault datasets.









Chapter 1

Introduction

For chemical processes, nuclear reactors, and any other large scale industrial pro-

cesses, a consistent and safe operation is of utmost importance. This is due to in-

creasingly stringent environmental regulation, production specifications, economic

and operational constraints. Consequently, the process operations that were ac-

ceptable at one time are no longer adequate. Therefore, there is an upward interest

in research and development of more reliable plant monitoring systems. In order

to meet the higher standards, the modern process monitoring and control systems

heavily rely on quality data. In the context of the data acquisition, optimum

quality and quantity of the data are important to ensure the desired performance.

Employing a large number of sensors to directly measure system variables may

not be desirable as it may adversely affect the system reliability. In some cases,

direct measurement of some system variables are not even possible due to several

1
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reasons including unavailability of the sensors, feasibility constraints, and plant

economics. Considering all these factors, an optimum selection for the number

of sensors is important in minimizing the failure rates and improving system re-

liability. Therefore, for the estimation of the state variables from the measured

variables, the state estimation theory has found a prominent space. As many

standard controller design techniques are based on the state feedback, the state

estimation is inevitably critical in facilitating the controllers. However, the appli-

cation of the state estimation is not just limited to this, it may play an important

role in many applications like data fusion, calibration of the sensors, trajectory

estimation and some maintenance routines.

While dedicated controllers can compensate for the effect of various disturbances,

there are some disturbances which cannot be handled by the controllers adequately.

Such disturbances are defined as ‘faults’. Faults may appear due to various causes,

i.e., external, internal or combination of both. The external causes may include

environmental effects and violation of the input ratings. The internal causes may

include wear and tear, miscalibration, leakages, ageing and poor maintenance, etc.

The occurrence of the faults may lead to the reduction in the safety margins, off-

specification production, reduction of the component life. Usually, the presence

of the fault can be detected by its reflections on the signals associated with the

system. If faults are not timely detected or remain undiagnosed even after detec-

tion, they actuate the safety system and a plant shutdown leading to the loss of

availability. Moreover, poor plant monitoring and control may on one hand affect

the plant economy, while on the other hand weigh on the risk of safety system fail-

ures. For the safety-critical systems such as nuclear reactors and some chemical
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Figure 1.1: Schematic for process monitoring loop

processes, safety breaches can be disastrous. The Chernobyl nuclear accident[2],

Three Mile Island accident[3], and Bhopal gas tragedy [4] are few examples of

such systems. Therefore, faults must be detected and diagnosed before they lead

to serious consequences.

In the past few decades, there is a huge push in developing plant automation

systems to ensure consistent and safe operation. A simplified schematic of the

monitoring and control loop of a large scale industrial process can be devised as

shown in Fig 1.1. As depicted, the plants are generally operated into two loops,

i.e., an automatic control loop, and an operator loop. In the data acquisition step,

important system variables are measured and scaled into a usable digital form.

The next step is to estimate the key process variables. This procedure includes the

estimation of the state variables of the various sub-systems which may be required

for the state feedback controller design and other important variables which may

be required for the fault detection and diagnosis procedure. The FDD routine

consists of three procedures namely, fault detection, fault diagnosis, and process

recovery. The fault detection procedure determines the occurrence of the fault.
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Early detection may give invaluable alarm signal on the emerging anomalies, with

appropriate actions taken to avoid serious process upsets. If fault goes undetected,

it results in the abnormal process behaviour and consequently triggers the safety

system which may lead to a plant shutdown. Upon detection of a fault, the fault

diagnosis is a procedure to determine a cause of the out-of-control status. More

precisely, it is a procedure to find out fault-relevant information such as type,

location, magnitude, and time of the fault. This step is essential in determining

counteraction for the elimination of the fault. The final step of the loop is process

recovery, in which required actions are taken to eliminate the fault and establish

normalcy in the process.

The goal of the state estimation is to render accurate estimate the state variables

during all the operating conditions. In this context, various performance measures

such as robustness, stability, transient and steady-state performance, etc are as-

sessed to determine the efficacy of the state estimation technique. As there is no

standard technique that can meet all the performance requirements adequately,

the selection of the particular technique could be highly subjective to the prob-

lem under investigation. Whereas the goal of process monitoring is to develop

measure that are optimally sensitive and robust to all out-of-control errors and

disturbances. The process monitoring measures are mainly based on three ap-

proaches; namely, measures based on the physical model or first principle model

of the process; [5]; data-driven measures based on the empirical models or second

principle models developed by using the historical process data[6]; and measures

based on hybrid models or semi-empirical models with the prior process knowledge

[7]. The selection of the suitable process monitoring technique is highly subjective
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to the target problem. If a reliable physical model is feasible to develop, the first

principle model based approaches could be preferred for their extrapolation ability.

For complex industrial processes, development and calibration of a process model

based on the first principle is a difficult task and the model development exercise

may result in a too complicated model to be useful. Therefore, data-driven MSPM

techniques based on PCA and Partial Least Squares (PLS) are extensively studied

and successfully employed for monitoring industrial processes.

In this work, state estimation and multivariate process monitoring problem for a

specific class of complex nonlinear systems, i.e., multi-scale systems are investi-

gated. A brief overview of the multi-scale systems followed by the objectives and

contribution of this thesis is described subsequently.

1.1 Multi-scale systems

Multi-scale systems are the class of systems in which variables evolve with the

widely varying rates in the time as well as in the frequency. The variables of

such systems can possess multi-scale phenomenon due to several reasons. First

due to the difference in the sampling intervals of the different sensors, i.e., due

to the multi-rate sampling scheme [8]. Secondly, in the process industry, sampled

variables possess the contributions from the several process events with different

localization in time and frequency [9].

Process monitoring and control of multi-scale system could be more complicated

than that of the single scale systems [10]. It is well known that the application

of the standard control techniques to multi-scale systems may lead to numerical
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ill-conditioning, closed-loop instability, etc [11]. To overcome these drawbacks, the

multi-scale systems can be represented as a combination of slow and fast modes.

By performing such a decomposition, the controller can be designed based on the

separate design criteria for each mode. In this context of multi-scale systems, the

singular perturbation theory has found a prominent place [11]. Moreover, with

the development of techniques based on time-frequency analysis, some powerful

tools that can effectively capture the multi-scale nature of systems by exploiting

time-frequency features of the system have found strong applications [12][13]. In

this work, however, analysis of the multi-scale systems with the technique with

wavelets is investigated because of the amenability of wavelets to model time-

frequency phenomena.

In the context of the measured data with the contributions localized in time and

frequency simultaneously, it is not efficient to represent the data in term of the

basis functions defined only at a single scale. Typically, low frequency features

of the measured data contain the deterministic variation due to process dynamics

and high frequency features of the data contain stochastic variation due to dis-

turbances, noise or faults. In order to separate deterministic process variations

from the data, an obvious technique is to employ a low-pass filter. However, any

filtering scheme is inherent trade-off between the extent of noise removal and the

quality of the retained features. In terms of analyzing the time and frequency

dependant features of the data, raw measurements give a good picture in the

time domain but completely miss out the information about frequency contents.

Similarly, the Fourier transform gives an excellent picture about frequency con-

tents at the cost of losing information about variations in time. Moreover, Fourier
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transform works with the assumption of stationarity, i.e, it assumes that the fre-

quency content does not vary with time. However, for most of the real-time

processes, measured data are non-stationary. For example, consider the data of

a biomedical system, typically the data containing ECG signals are analyzed by

considering different signal-segments containing fast and slow variations. Another

good example of the multi-scale systems could be the traffic on a multi-lane high-

way where the movement of the pedestrians, bikes and cars have different scales.

Therefore for the multi-scale signals, various techniques like Short Time Fourier

Transform, Wigner-Ville Distribution, Hilbert-Huang Transform, Wavelet Trans-

form have been explored to account for the time and frequency-dependent features

simultaneously. Among all these techniques, the theory of wavelets has emerged

as one of the most powerful tools for analysis of non-stationary signals. It analyzes

signals over various frequency ranges or scales providing multi-scale hierarchical

representation of the signals.

1.2 Nuclear reactor: a multi-scale system

A nuclear reactor is based on the concepts of a sustained chain of nuclear fission.

In nuclear fission, a heavy nucleus like Uranium-235 (235U) is annihilated by the

neutron and as a result, the heavy nucleus is fragmented into two or more smaller

nuclei. This process also renders two important phenomena namely, (1) a signif-

icant amount of kinetic energy of the fission fragments is converted into the heat

and, (2) a few neutrons, typically 2 to 3 are generated. These neutrons further

cause fission of the heavy nucleus which induces the chain of fission reactions. Soon

after the discovery of this phenomenon in 1939, it was perceived as a promising
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new source of the energy. The first nuclear reactor was realized by Enrico Fermi

in 1942. However, the serious developments of the modern nuclear reactors began

in the 50s and many complex nuclear reactors have been built subsequently. The

detailed discussion on the nuclear reactors and related concepts can be found in

[14].
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A schematic of a Pressurized Heavy Water Reactor (PHWR), a type of nuclear

reactor is depicted in Fig. 1.2. The pallets generally containing natural Uranium

are filled in the tubes to form a reactor fuel. The key to ensure a sustained nuclear

chain reaction in the rector is to maintain an adequate density of neutrons in the

reactor core. Considering a fission multiplication factor k denoting an average

number of neutrons from one nuclear fission causing another fission, criticality of

the reactor is determined. An important parameter to characterize criticality is

reactivity which is defined as ρ = k−1
k

. The reactivity is maintained to zero-level

unless it is required to increase or decrease the power level. The reactors geometry

and control systems are designed to influence the reactivity in order to ensure a

safe and consistent operation. For the nuclear reactors using low enriched uranium

or natural uranium, neutron moderators are used by which released neutrons are

slowed down to facilitate the fission process. The control rods made with the

neutron-absorbing materials such as cadmium are inserted or withdrawn from the

core to control the reactivity or to halt the operation. The high-pressure heavy

water in the circulating loop serves as primary coolant and removes the heat

from the reactor. The heat is transferred to the secondary loop and steam thus

generated is sent to the turbine unit.

Neutron density in a nuclear reactor is usually characterized by the point kinetics

model which assumes that neutron distribution in space is constant. Such a model

provides an adequate degree of accuracy and it has been used for observers or con-

troller design for small reactors. For large nuclear reactors, space-time kinetic

models have also been developed to improve the degree of accuracy. Moreover,
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the nuclear reactors possess a multi-scale phenomenon as the variation of the sys-

tem variables occurs at significantly different rates. For example, delayed neutron

precursors emit neutrons with different decay rate i.e., the pace of neutron getting

liberated is uniquely different for each group. Among all 6 groups usually consid-

ered, the first group has the decay constant with the order of 10−2s−1 (1.2× 10−2

for 235U), while the sixth group has the same of the order of s−1 (3.01s−1 for

235U). As a consequence of such phenomena, it is well known that identifica-

tion, monitoring and control using single-scale approaches are inefficient, and such

attempts may lead to numerical ill-conditioning[11]. Therefore, over the time,

different methods exploiting two-time scale and three-time scale properties of the

system have been investigated [15][16]. Moreover, wavelet-based techniques have

also found some strong applications in nuclear engineering for noise removal[17],

transient detection[18], system identification and control[19].

1.3 Motivation and objectives of thesis

Traditional approaches for the state estimation in the nuclear reactors work on the

assumption that state variables associated with the system are deterministic[20].

However, in reality, due to the presence of inevitable measurement noise and fun-

damental stochastic nature of the fission process, this assumption is unrealistic.

Therefore, state estimation techniques which can work in the stochastic frame-

work, e.g., Kalman filtering have been developed. However, as these techniques

work at a single scale, they could not account for the multi-scale nature of the

system. In the past few decades, wavelets and filter bank theory have emerged as

an effective way for multi-scale analysis of the signals and systems. Therefore, for
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a class of multi-scale systems, a state estimation technique that performs simul-

taneous decomposition and estimation of the state variables could be expected to

outperform the standard techniques [21].

One of the primary objectives of the process monitoring systems is to detect and

manage abnormal events in the process. In this context, statistical techniques

based on PCA have found some strong applications. For the multi-scale systems,

multi-scale PCS based techniques through wavelet-based multi-scale framework

have been reported to be superior to their single-scale counterparts [22]. However,

such techniques possess few limitations. First, the focus of these techniques is

limited to fault-detection only. Consequently, they do not assist plant operators

and maintenance engineer to identify the root cause of the fault. Although the

problem of effective isolation of the faulty variables within a single scale PCA

framework has gained significant attention, extrapolation of the same in the multi-

scale PCA framework has not gained enough attention. Another limitation is that

the monitoring indices implicitly assume that the measured variables are time-

independent (uncorrelated). However, due to the process dynamics and structured

variations, this assumption is unrealistic in most of the cases [23]. Although it is

well known that the discrete wavelet transform (DWT) possess the capability to

de-correlate various signals, the effect of this property on the reliability of the FDI

techniques has not been reported yet.

Following this, the main objectives of this thesis are listed in the following:

• Formulate a multi-scale model structure by projecting the states of nonlinear

autonomous system on the family of wavelets and scaling and functions as
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a basis. Implement Extended Kalman Filtering (EKF) algorithm on the

system model in the wavelet projection space.

• Evaluate the performance of the proposed multi-scale EKF algorithm by

comparing the same with the standard EKF algorithm using the simulation

results obtained with various datasets.

• Formulate the stationary wavelet transform (SWT) based model structure

that permits working with the forced nonlinear systems.

• Formulate a constrained state estimator based on the recursive non-linear

dynamic data reconciliation (RNDDR) technique for estimation of the reac-

tivity and delayed neutron precursors’ concentration.

• Assess the effectiveness of the proposed RNDDR technique by the simulation

results obtained for different transients.

• Propose a new multi-scale PCA based MSPM technique for effective fault-

detection and isolation of variables associated with the onsite fault.

• Validate proposed multi-scale PCA method with the simulation results ob-

tained for a numerical problem as well as for the benchmark Tennessee East-

man process data.
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1.4 Contribution of thesis

Contributions of the thesis are as follows:

• A multi-scale model structure is formulated by projecting system states on

Haar scaling and wavelet functions as the basis. EKF algorithm is formulated

on the system model in the projection space and the same is applied to the

point kinetics model of the nuclear reactor. The computational complexity of

the proposed algorithm is compared with that of the single-scale counterpart.

The estimation has been carried out using reactor power as the only input. In

order to justify the effectiveness of the proposed method, simulation results

are shown for completely known power variation dataset and experimental

power variation data-sets collected from one of the Indian research reactors.

• The thermal-hydraulic analysis is one of the critical design aspects of the

nuclear reactor. While nuclear aspects of the design allow the reactor to

be operated at any power level, the core temperature distribution and heat

transfer rates impose a limitation on the achievable thermal power. A sta-

tionary wavelet transform (SWT) based multi-scale EKF algorithm is for-

mulated for the state estimation of a forced nonlinear system and applied

on the thermal hydraulic model of a nuclear reactor. The input and output

sequence of the system is analyzed to derive the state-space model in the

wavelet projection space. The efficacy of the proposed technique is assessed

by the simulation results obtained by the simulated data by the thermal-

hydraulic model of the PHWR.
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• The standard EKF technique is prone to yield unreliable estimates due to

violation of physical constraints during a certain process operation such as

shutdown. A Recursive nonlinear dynamic data reconciliation (RNDDR)

based state estimation technique is proposed. The proposed technique ac-

counts for the physical constraints on the reactor power and delayed neutron

precursors’ concentrations and retains benefits of the recursive implementa-

tion. The feasibility of the RNDDR method has been verified, through step

test signal in the presence of measurement noise and experimental power

variation data sets collected from a research reactor.

• A fault isolation technique based on the variable reconstruction approach is

proposed in the multi-scale PCA framework. The process data containing

the measured variables are transformed into wavelet projection space using

the discrete wavelet transform (DWT), and multi-scale PCA models are

derived using the transformed data. The reliability of the proposed multi-

scale PCA technique is assessed by the autocorrelation test and variance of

the reconstruction error. The efficacy of the proposed technique is assessed

with the simulation results obtained with the numerical dataset as well as

with the dataset of the benchmark Tennessee Eastman process.

1.5 Outline of thesis

The rest of the thesis is organized as follows. In Chapter 2, a literature review

relevant to the topics of time-frequency analysis, state estimation of the nuclear

reactor, and data-driven process monitoring techniques is presented. In Chapter

3, a formulation of a multiscale EKF followed by its application for estimation of
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reactivity and delayed neutron precursors’ concentration for various scenarios is

presented. In Chapter 4, the formulation of an RNDDR based constrained state

estimation technique on the application of reactivity and delayed neutron precur-

sors’ concentration is presented. Chapter 5 describes the formulation of stationary

wavelet transform based EKF technique. Also, its application for estimation of

fuel and coolant temperatures of the nuclear reactor is presented. In Chapter 6, a

formulation of fault detection and isolation technique for MSPM in a multi-scale

PCA framework is presented. A new reconstruction based fault isolation proce-

dure is presented and the reliability of the proposed MSPM technique is assessed

by suitable statistical tests. Concluding remarks and the scope for the future work

is described in Chapter 7. Appendices discuss a brief overview of the wavelets,

EKF algorithm, and PCA based MSPM.



Chapter 2

Literature Survey

In this chapter, a literature survey on topics relevant to the state estimation and

process monitoring considered in this thesis is presented. Literature survey in-

cludes a brief overview of the developments of time-frequency analysis techniques,

the theory of state estimation: applications to the nuclear reactors, and statis-

tical process monitoring techniques. However, the survey is not intended to be

exhaustive.

2.1 Developments of time-frequency analysis tech-

niques

The problem of analyzing non-stationary multi-scale signals by exploiting features

over different time and frequency has gained significant attention from researchers.

The efforts made in this context lead to the development of several time-frequency

analysis techniques [12]. However, the basic idea of all the time-frequency analysis

techniques is to use the basis functions which analyze the signals over a certain

time and frequency range. Therefore, a choice of basis functions or transforms is

made to meet the requirement of the time-frequency localization characteristics

of the target problem. However, a fundamental result in this context is that the

ability of any basis function for simultaneous localization in time and frequency is

limited by ‘duration-bandwidth principle’.

16
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Short-Time Fourier Transform (STFT)[24] is one of the key historical develop-

ments. Although STFT offered a significant improvement over the traditional

approaches, its applicability has been limited due to concerns over its practical us-

ability. Therefore, efforts on devising the alternate techniques lead to the develop-

ments on the theory of wavelets. A detailed review on the historical developments

can be found in [12].

The theory of wavelets has been extensively studied by several research communi-

ties in the field of mathematics, physics and engineering. One of the earliest and

popular contributions was offered by Haar in 1910 [25]. A method was proposed

to represent a smooth function as a linear combination of discontinuous functions,

an idea dual of the Fourier analysis. However, at that time, a term wavelet was

unknown. The concepts of the wavelets in the existing theoretical form were pio-

neered by Grossman and Morlet [26]. The wavelet transform in its original form

yields a redundant or overlapping representation in a time-frequency plane. It was

Meyer’s contribution which opened a direction towards orthogonal wavelet trans-

form having some attractive properties such as minimal representation, compact

support, etc. A significant momentum in the application of wavelets was gained

with the discovery of connections between the wavelets and multi-rate filter banks

formalized by Mallat [27] and conditions on the perfect reconstruction by Vetterli

[28].

The literature on the time-frequency analysis techniques based on wavelets is

very rich. Various variants of the wavelet transform alongwith their implemen-

tations, each customized to meet application-specific requirements have been re-

ported [29][30]. However, all such variants are essentially modifications of the

basic wavelet transform, i.e., Continuous Wavelet Transform (CWT)[27]. More-

over, some excellent textbooks with in-depth descriptions on the foundations and

applications of the wavelets are also available [31–34].

The wavelets are well known to render some key properties like compact support,

wavelet shrinkage, multi-resolution approximations, decorrelation in the wavelet

projection space etc. Due to these properties wavelets have found a prominent
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space in some of the engineering applications such as modelling, control, system

identification, filtering, and process monitoring.

2.2 Theory of state estimation: applications to

nuclear reactors

The state of a dynamic system is defined as a set of memory storing elements or

variables, which completely characterize the system at any given instant of time.

The evolution of a system can be predicted by knowing the system state and

excitations. Assuming that the system is observable, traditional state estimation

techniques were developed to estimate the state variables using system model and

input-output sequences [35]. However, these techniques assume system variables

to be deterministic. But in reality, measurement signals are inevitably corrupted

with noise arising from detectors, communication channels and over and above due

to fundamental stochastic nature of the process dynamics. The classical techniques

do not address the stochastic nature of the system and measurements.

The foundation of the modern state estimation techniques was established in early

1800 by the theory of least squares estimation proposed by Gauss. The mathe-

matical framework for the modern state estimation theory was originated with the

work of Wiener in the late 1940s. However, it was the contribution offered by R.E.

Kalman in 1960 [36], after which research and application of the modern state

estimation theory gained significant momentum. This contribution is considered

as one of the greatest discoveries of the 20th century. The milestone contribution

is popularly known as the Kalman filter. The Kalman filter in its original form

was devised for the linear systems, however, different variants of the Kalman filter

each customized to meet application requirements have been devised.

The Kalman filter is a recursive data processing algorithm for the linear dynamical

systems, optimal under the assumption that the system uncertainties and mea-

surement noise are white and Gaussian [37]. More precisely, the Kalman filter

optimally estimates the current states by using the knowledge about the system

and measurement device dynamics alongwith the statistical description of errors
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associated with them. It has been widely used for the various industrial applica-

tions such as inertial navigation[38], spacecraft tracking [39], economic time series

estimation [40] and so on. For the real-time complex systems, recursive nature of

the algorithm has vital importance for the practical implementation. Moreover,

for the class of non-linear systems, the Kalman filter is employed with linearization

procedure at the filtering steps. The Kalman filter so derived is popularly known

as extended Kalman filter (EKF).

There are various derivations of the Kalman filter through different perspectives.

Few derivations along with the required mathematical preliminaries can be found

in [41–44]. Instead of reiterating these derivations, the basic algorithm is described

in the Appendix section.

Nuclear reactors are complex non-linear systems with coexisting multi-time scale

phenomena. System variables like reactivity, delayed neutron precursors’ concen-

tration, temperatures of the fuel and the coolant inside the reactor core cannot be

measured directly. Reactivity in the nuclear reactor is a very important variable

which indicates the status of the reactor core. Online measurement of reactivity

is very important for calibration of control devices, monitoring shutdown mar-

gins, quantification of the worth of fuel bundles, etc. [45], [46]. Other important

variables are concentrations of the delayed neutron precursors which emit delayed

neutrons that in turn, play an important role in reactor control [47].

Due to lack of suitable sensors, variables like reactivity and delayed neutron pre-

cursors’ concentrations cannot be measured directly [48]. Consequently, these

variables need to be estimated from neutron flux/power measurements using an

appropriate estimation algorithm [49]. Traditionally, Inverse Point Kinetics (IPK)

like algorithms were used to serve the purpose [50]. However, these techniques

assume system variables to be deterministic. But in reality, measurement signals

are inevitably corrupted with noise arising from detectors, communication chan-

nels and over and above due to fundamental stochastic nature of the fission process

itself. The classical techniques do not address the stochastic behaviour of reactor

kinetics and measurement process. Commonly used method to eliminate noise is
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to employ a low pass filter but it may as well remove some of the information-rich

frequency components generated by the reactor system.

Kalman filter (KF) is one of the promising modern optimal state estimation al-

gorithms that permits working in a stochastic framework under the assumption

that process uncertainties and measurement noise have Gaussian distribution [51].

Many attempts have been made for the observer design problem of the nuclear

reactor using the Kalman filter. Racz [52] proposed Kalman filtering method for

reactivity estimation for small changes in the reactivity. Zhe [53] reported the

application of robust Kalman filter to estimate various state variables of a reac-

tor such as neutronic flux, concentrations of delayed neuron precursors, average

fuel temperature, coolant temperature inside the reactor and coolant temperature

entering the reactor core. T.U. Bhatt et. al. [20] reported Extended Kalman Fil-

tering (EKF) technique for online reactivity estimation of the nuclear reactor and

justified merits of the EKF technique over conventional IPK like technique. Silva

et. al. [54] demonstrated simulation results for reactivity estimation during reac-

tivity initiated accidents using EKF technique. Shimazu and Rooijen [55] reported

qualitative performance comparison between IPK and EKF techniques. Peng et.

al. [56] demonstrated comparative study of two EKF techniques using different

Jacobian structures. In [57], authors reported EKF technique to estimate the

poisons’ concentrations in the PWR nuclear reactors based on the reactor power

measurement. They have carried out a comparative study of the results obtained

from the continuous-time EKF with that from KF and Luenberger observer. The

KF based state estimation techniques are perceived as a very promising candi-

date for state estimation of the nuclear reactors as they offer easy engineering

implementation due to their recursive nature. However, ignorance of the process

features such as multi-scale nature of the system and physical constraints on the

estimated state variables may raise concern over their performance potential.

An important feature of the Kalman filter algorithm is that almost all the available

information about the system can be used to improve estimator’s performance. In

this thesis, the motivation is to formulate a reliable Kalman filter based state

estimation technique for the nuclear reactor. It stems from the fact that a nuclear

reactor is a nonlinear multi-scale and there exists a physical limitation on the
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state variables like reactor power and delayed neutron precursors’ concentration.

In order to exploit multi-scale nature into the Kalman filtering algorithm, one

of the interesting formulations was proposed by Hong et al.[21]. They reported

an interesting way for simultaneous decomposition and estimation for a class of

autonomous systems. Inspired by this work, a multi-scale EKF algorithm for a

multivariate nonlinear system is formulated and its feasibility to estimate variables

of a nuclear reactor is investigated by the authors in [58] which is described in

Chapter 3. However, the applicability of multi-scale EKF algorithms reported

in [58] and [21] is limited to a class of autonomous system. Nounou et al. [59]

reported stationary wavelet-based multi-scale Kalman filter for the class of the

nonlinear systems modelled in a fuzzy framework. The input and output signals

are decomposed upto a certain number of scales before deriving the state-space

model of the system in the projection space using only approximation coefficients.

However, the detail coefficients which may contain significant information were

completely discarded. Motivated from this, a stationary wavelet transform based

multi-scale EKF algorithm has been formulated for the state estimation from the

forced nonlinear system and applied on the nuclear reactor system.

Another limitation of KF based algorithms is that they cannot handle physical

constraints on the estimated state variables, consequently, the estimator may ren-

der infeasible estimates which may results in instability of the filter [60]. One of

the most popular constrained state estimation techniques is the moving horizon

estimation (MHE) [61], which is computationally demanding and raises real-time

implementation concerns due to its non-recursive form. Various methods for the

constrained state estimation using KF are surveyed by Simon [62]. In order to per-

form the state estimation with the inequality constraints, the estimated states may

be projected to the constraint surface by formulating a quadratic programming

problem [63]. One of the promising candidates to solve the problem is Recursive

nonlinear dynamic data reconciliation (RNDDR) technique [64]. It is essentially

MHE with horizon size one. The RNDDR technique can account for the con-

straints on the state variables and retains the computational advantages due to

its recursive form for implementation. In this technique, for each time instant,

the prediction step is followed by an update step similar to EKF. In RNDDR,
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the predicted state variables and error covariance matrix are obtained as in EKF,

while the updated state variables are obtained as the solution of a constrained

optimization problem. RNDDR is identical to EKF if there are no bounds on

variables or algebraic constraints. Hence, RNDDR can be viewed as one form of

a constrained EKF, which is easy for practical implementation.

2.3 Statistical process monitoring

Data-driven statistical process monitoring techniques have been very popular in

analyzing and managing abnormal process scenarios. Numerous methods have

been developed with different objectives and choice of statistical parameters to

characterize the process anomalies. The suitability of the monitoring technique

can be subjective to the problem under investigation and characteristics of the

associated data. Detailed review on various data-driven process monitoring tech-

niques can be found in [1][65].

Traditionally, monitoring methods based on ‘limit sensing’ were very popular

[66][67]. These univariate techniques raise an alarm signal when process vari-

ables violate predefined threshold limits. These methods, however, do not account

for the relationship among the variables. In most of the industrial processes,

often the measured variables tend to have a correlation between them. This is be-

cause a large number of sensors are generally employed and measured variables are

likely to reflect the process equilibrium, environmental effects, controller actions

for reference tracking, conservation laws such as energy and material balances,

etc. Therefore, a univariate statistical process monitoring technique that ignores

the correlation structures, may raise alarm signals for so many variables. Con-

sequently, they may misguide the process operators and maintenance engineers

[68].

The necessity of accounting the spatial correlation structure among the measured

variables lead to the development of the PCA based monitoring techniques. The

concepts of PCA as a linear dimensionality reduction technique were first intro-

duced by Karl Pearson [69]. The theoretical framework for the use of PCA for the
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process monitoring applications was offered by Wise [70] and Wold [71]. Compre-

hensive reviews regarding the data-driven process monitoring techniques can be

found in [6] and [72].

The historic process data containing measured variables under the normal op-

erating condition are used to develop the PCA model[73][74]. The model thus

obtained transforms the measurement space into two subspaces, i.e., the principal

component space (PCS) and the residual space (RS). When a new measurement is

obtained, the PCA model projects it on PCS and RS. Subsequently, to detect the

fault, abnormal projections on PCS and RS are analyzed by computing Hotelling

T-squared index and square prediction error (SPE), also called or Q index [75]

[76]. Yue and Qin [77] proposed a single detection index (ϕ index) that effectively

combines the T-squared and Q indices to observe the abnormal projections on

PCS and RS simultaneously. The fault in the process is suspected if any of the

detection indices violates the predefined control limits derived by the PCA model.

In the past few decades modified PCA based FDI techniques such as dynamic

PCA[78], distributed PCA [79], kernel PCA[80], sparse PCA[81], etc. have also

been developed. The dynamic PCA is suitable for highly correlated data where

the data matrix is formed by stalking lagged measurements to reduce the auto-

correlation in the data. The kernel PCA is suitable when the measured variables

possess highly non-linear relationship between them. The space PCA is used while

accounting all the measured variables is not desirable, here, the PCA vectors are

derived by solving an optimization problem by imposing the scarcity constraints in

PCA vectors. However, in all these variants the basic idea is to remain the same,

i.e., to exploit the cross-correlation of the data for more meaningful interpretation.

In all these techniques, the measured variables are interpreted at a single scale.

However, the variables for most of the industrial processes may have contribution

due to various scenarios like abrupt parameter variations, measurement noise,

sensor failures, operator-induced events etc. Every event may have its contribution

over time and frequency. Consequently, PCA based MSPM techniques employed at

a single scale cannot account for the multi-scale variations of the system variables.

The wavelet transform is one of the most powerful tools to analyzes multi-scale
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signals. It analyzes signals over various frequency ranges or scales providing multi-

scale hierarchical representation of the signals. Various fault detection techniques

with wavelet-based multi-scale PCA framework are devised to account for multi-

scale features of the measured variables. Bakshi et al. [22] first devised a wavelet-

based multi-scale PCA technique for fault detection. Discrete wavelet transform

(DWT) was employed to assess correlation within the variables and PCA was

employed to assess correlation across the variables. Misra et al. [82] reported

a multi-scale PCA technique for various sensor fault scenarios for the industrial

processes and demonstrated the efficacy of multi-scale PCA over single-scale PCA.

Zhang et al. [83] reported that the PCA model developed over wavelet transformed

data comply with the statistical assumptions of the PCA based fault detection

techniques. Nounou et al. [84] reported a fault detection technique based on the

Generalized Likelihood Ratio Test (GLRT) in multi-scale PCA framework applied

on the benchmark Tennessee Eastman (TE) process.

Although these techniques claim significant improvement over the single-scale

PCA, they possess the following limitations.

• Monitoring indices implicitly assume that the measured variables are not

interdependent (uncorrelated). However, due to the process dynamics and

structured variations, this assumption is unrealistic in most of the cases. Al-

though it is well known that the discrete wavelet transform (DWT) possesses

the capability to decorrelate various signals, the effects of this property on

the efficacy of the fault detection and isolation procedures have not been

studied.

• In order to identify the root cause of the on-site event, isolation of the faulty

variables is critically important. Although the problem of effective isola-

tion of the faulty variables within a single scale PCA framework has gained

significant attention and some promising isolation techniques that isolate

the faulty variables without fault-smearing effect have also been reported,

extrapolation of same in the multi-scale PCA framework has gained very

limited attention.
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The effect of autocorrelation on monitoring indices of PCA based MSPM technique

was discussed by many authors [23, 85–87]. In order to deal with the autocorrelated

data, one of the most popular ways is to modify the raw data before employing

PCA. In this regards, dynamic PCA based techniques have found a prominent

place in which, PCA model is built with the data containing lagged measurements.

However, such approaches also demand careful selection of the number of lags and

significantly increases the model complexity. Moreover, monitoring indices based

on dynamic PCA may still yield autocorrelated PCS [88].

In the past few years, various fault isolation techniques have been studied exten-

sively [89–92]. Among these techniques, contribution analysis based techniques

which evaluate the contribution of each variable to the fault detection index are

most popular. A comprehensive review of the fault isolation techniques based on

the contribution analysis can be found in [93][94]. However, these techniques are

well known to possess some common drawbacks, such as misdiagnosis due to fault

smearing, i.e., the contribution statistics calculated for the non-faulty variables

may become higher than the same for the faulty variables [94], and control limits

derived from the normal operating condition are not useful to isolate the faults. In

order to overcome these drawbacks, various alternative approaches have been ex-

plored. Zhou [95] proposed a k-Nearest Neighbor (kNN) based technique to isolate

multiple faulty variables without smearing effect. Alcala and Qin [96] proposed

reconstruction-based contributions method which guarantees correct diagnosis for

the single faulty variable even though fault smearing still exists. Liu [97] proposed

an improved fault isolation technique using the reconstruction based contribution

analysis ensuring correct isolation of multiple faulty variables without smearing

effect. It was assumed that the faulty variables can be accurately reconstructed

by the other measured variables. However, the reliability of the reconstruction

procedure was not discussed.

Following this, a fault smearing free isolation in multi-scale PCA framework is

identified as an open problem. Wavelet-based multi-scale PCA techniques are

generally formulated in two different ways, namely, 1) the techniques in which

wavelets are employed as a pre-processing tool, i.e., data are decomposed, thresh-

olded at selected scales, and reconstructed back to the original measurement space,
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then, a single PCA model is build using the processed data, 2) the techniques in

which wavelets are used to decompose the data and multiple PCA models are build

by using wavelet transformed coefficients. For the correlated data, the second tech-

niques make more sense. This is because the use of wavelets can decorrelate the

data, as PCA based techniques implicitly assume that data are uncorrelated, PCA

models are built on the transformed data may comply with this assumption. It

is widely known that single scale PCA process monitoring may not yield reliable

results for the correlated data. However, the effect on the reliability of the pro-

cess monitoring procedures in the light of the powerful decorrelation property of

the wavelets has not been investigated. Moreover, the effective isolation of the

faulty variables without fault smearing effect has been emphasised in past the few

years[98][99]. In this regards, a reconstruction based fault isolation techniques

have emerged as a promising candidate [100][101]. However, as these techniques

work on the assumption that each of the measured variables can be reconstructed

with the other measured variables, in order to assess the likelihood of the success-

ful reconstruction, it important to evaluate the reliability of the reconstruction

procedure.
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Estimation of Reactivity and

Delayed Neutron Precursors’

Concentrations Using multi-scale

EKF

In this chapter, a discrete wavelet transform based multi-scale EKF technique for

estimation of Reactivity and delayed neutron precursors’ concentrations is pre-

sented. The proposed technique is based on and preserves the merits of EKF, at

the same time use of wavelet transform effectively captures the multi-scale process

variations. The description of the mathematical model of the nuclear reactor fol-

lowed by the proposed estimation techniques and simulation results are presented

in the subsequent sections.

3.1 Mathematical Model of Nuclear Reactor

Neutron density in a nuclear reactor is a function of time as well as space. But,

the point kinetics model which assumes that the neutron distribution in space is

constant in time provides adequate degree of accuracy. The model [102] assuming

27
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small change in the reactivity is used for the purpose of estimation. It can be

expressed as:

ṅ =

(
ρ− β
l

)
n+

6∑
i=1

λiCi (3.1)

Ċi =
βi
l
n− λiCi , i = 1, 2, · · · , 6 (3.2)

where the variables ρ, n and Ci indicate reactivity, neutronic power and delayed

neutron precursors’ concentration of the ith group respectively. βi and λi are

fraction and decay rate of the delayed neutron precursors of the ith group with

β =
∑6

i=1 βi. l denotes prompt neutron lifetime.

Reactivity in (3.1) Reactivity is an input to the system which is also influenced

by the internal reactivity feedbacks arising from the nuclear reactor. In this work,

however, internal feedbacks are ignored and the net effect is considered as an

unknown quantity, and it is modelled by the simple random walk model [103], i.e.,

ρ̇ = 0. (3.3)

3.2 Estimation with EKF

In order to employ EKF algorithm described in Appendix B, the reference model

given by (3.1) needs to be transformed into the state space form as:

ẋ = f(x) = Fnx (3.4)



Chapter 3: Estimation using multi-scale EKF 29

where the matrix Fn and the state vector x are defined as:

Fn =



−β
l

λ1 λ2 · · · λ6
n
l

β1
l
−λ1 0 · · · 0 0

β2
l

0 −λ2 · · · 0 0
...

...
...

. . .
...

...

β6
l

0 0 · · · −λ6 0

0 0 0 · · · 0 0


(3.5)

x =
[
n C1 C2 C3 C4 C5 C6 ρ

]>
(3.6)

The superscript > denotes transpose of a vector. System represented by (3.4) is

nonlinear due to the presence of the state variable n in Fn as well as in state vector

x. Jacobian of this nonlinear system can be defined as:

F =
∂f(x)

∂x
(3.7)

All the elements of the matrix F will be same as the corresponding elements of

the matrix Fn except the element F(1, 7) which is given as F(1, 7) = n
l
.

In order to apply EKF in the discrete-time domain, (3.4) must be transformed

into a set of difference equations. If sampling is carried out at a uniform interval

of Ts seconds, a set of difference equations are

x[k] = Φn[k − 1]x[k − 1] + w[k − 1] (3.8)

Φn[k] = eFn[k]Ts

where k denotes the sampling instant. w is the system uncertainty which is as-

sumed to have zero mean and covariance Q. Fn[k] denotes the system matrix Fn

defined by (3.5) at the kth sampling instant. Similarly, discretization of Jacobian

matrix is represented by Φk = eF[k]Ts where F[k] denotes the Jacobian matrix F

defined by (3.7) at the kth sampling instant. The measurement process is governed
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by the following equation:

z[k] = Hx[k] + v[k] (3.9)

where v is measurement noise with zero mean and covariance R and

H =
[

1 0 0 0 0 0 0 0
]
. (3.10)

Now we have the system and measurement dynamics represented by (3.8) and

(3.9) respectively. Appendix B indicates how the EKF algorithm can be applied

to the dynamic systems represented in the form of (3.8) and (3.9).

3.2.1 Representation in multiscale framework

A multi-scale analysis is often used to effectively analyze fine and coarse variations

of the signals or systems. The Appendix A gives the basic concepts.

Consider a sequence of a signal s[n], n ∈ Z at scale depth m = 0 [21]. s[n]

can be decomposed into approximation and detail coefficients at scale level m =

1 using half band low pass filter (LPF) and high pass filter(HPF). Considering

that the impulse responses of the LPF and HPF are ha[n] and ga[n] respectively,

the approximation and detail coefficients of the DWT can be obtained by down-

sampling the filter output by a factor of 2. The same can be written as

s1
L[n] =

∑
k

ha[2n− k]s[k], (3.11)

and

s1
H [n] =

∑
k

ga[2n− k]s[k] (3.12)

where s1
L[n] and s1

H [n] denote approximation and detail components at scale depth

m = 1. The underlying consideration is that the coefficients of the filter banks

meet the design criteria for the perfect reconstruction [104]. With synthesis filter

bank having impulse response functions hs[n] and gs[n], the reconstructed signal

can be written as
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s[n] =
∑
k

hs[2k − n]s1
L[k] +

∑
k

gs[2k − n]s1
H [k].

For a sequence of the signal, it is convenient to describe a wavelet transform as an

operator. Consider the portion of the signal s with length M at scale 0 denoted

as

ς0[k] =
[
s[k −M ] s[k −M + 1] · · · s[k − 1]

]>
(3.13)

It can be mapped to its approximation and detail components, ς1
L[k] and ς1

H [k],

at next scale 1, using following transformation

ς1
L[k] = H1

aς
0[k] (3.14)

ς1
H [k] = G1

aς
0[k]

where the operators H1
a and G1

a map block of the signal at a scale 0 to that at

1. Rows of these operators are composed of appropriate translations of half band

filters in (3.13). Conversely, signal at scale 1 can be mapped to that at 0 using

operators H1
s and G1

s as

ς0[k] = H1
sς

1
L[k] + G1

sς
1
H [k]. (3.15)

Multi-scale signal analysis and synthesis can also be carried out with the filter

bank as shown in Figure 3.1. The signals associated with the analysis side of

block diagram are shown in Fig. 3.2. Whereas the signals associated with the

synthesis side of the block diagram are shown in Fig. 3.3. These signals are

obtained for one plant data-set selected for the simulation results discussed in

section 3.3. Furthermore, EKF block shown in Figure 3.1 will also explained later.

For instance, a m scale decomposition of ς0[k] can be carried out by the following

analysis operator [21].

ςm[k] = Tm
a ς

0[k] (3.16)
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Figure 3.1: Block diagram representation for MEKF-2

where

Tm
a =

[
m∏
p=1

Hp
a, Gm−1

a

m−1∏
p=1

Hp
a, ... ,G

1
a

]>
. (3.17)

Selection of the wavelet basis function depends on time-frequency localization

property needed for the particular application. In this application, Haar basis is

used for the sake of simplicity in designing the operator Ta. The bank of high

pass and low pass filters for the Haar transform are given respectively as

Ha =

[
1√
2

1√
2

]
and Ga =

[
− 1√

2

1√
2

]
. (3.18)

Corresponding to the decomposition up to scale depth 2, the analysis operator in

Eq. (3.16) can be given by the following orthogonal matrix.

T2
a =


1
2

1
2

1
2

1
2

−1
2
−1

2
1
2

1
2

− 1√
2

1√
2

0 0

0 0 − 1√
2

1√
2

 . (3.19)
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Figure 3.2: Signals at analysis side of Fig. 3.1(a)Measured Signal (b) Approx-
imated coefficient at level-1(c) Detailed coefficient at level-1 (d) Approximated

coefficient at level-1 (e) Detailed coefficient at level-2
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Figure 3.3: Signals at synthesis side of Fig. 3.1 (a)Estimated Signal (b) Ap-
proximated coefficient at level-1(c) Detailed coefficient at level-1 (d) Approxi-

mated coefficient at level-1 (e) Detailed coefficient at level-2
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3.2.2 Estimation using multiscale EKF (MEKF)

Estimation algorithm for multi-scale EKF is presented in this subsection. For this

purpose decomposition of the sequence of the state vector x defined by (3.6) is

performed. Assuming that we have a sequence of the state vectors at resolution

0, we can have decomposition of the sequence at scale m by considering a block

of M = 2m data points.

X0[k] =
[

x[k −M ]> . . . x[k − 2]> x[k − 1]>
]>
. (3.20)

In order to transform the system into the wavelet projection space, the equivalent

system needs to be derived in data-block form as discussed in [21]. Generalization

of this concept for the multivariable case can be obtained as explained in the

following by assuming Φn[k− 1] = Φn[k− 2] = . . . = Φn[k−M ] = Φ̂n. The state

equation given by (3.8) is rewritten as

x[k] = Φ̂nx[k − 1] + w[k − 1] (3.21)

or

x[k] = Φ̂
2

nx[k − 2] + Φ̂w[k − 2] + w[k − 1] (3.22)

or

x[k] = Φ̂
M−1

n x[k −M + 1] + Φ̂
M−2

n w[k −M + 2] + (3.23)

. . .+ Φ̂nw[k − 2] + w[k − 1]

or

x[k] = Φ̂
M

n x[k −M ] + Φ̂
M−1

n w[k −M + 1] + (3.24)

. . .+ Φ̂nw[k − 2] + w[k − 1]
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Adding (3.21)-(3.24)

x[k] =
1

M
(Φ̂

M

n x[k −M ] + Φ̂
M−1

n x[k −M + 1] +

. . .+ Φ̂
2

nx[k − 2] + Φ̂nx[k − 1]) + Ω1. (3.25)

where

Ω1 =
1

M

(
Φ̂
M−1

n w[k −M ] + 2Φ̂
M−2

n w[k −M + 1] + . . .+Mw[k − 1]
)
. (3.26)

Similar representations for x[k + i], i = 1, 2, . . . ,M − 1 can be obtained to have

dynamic system in a data-block form, i.e.,

X0[k + 1] = Υn[k]X0[k] + W[k] (3.27)

where

Υn[k] =


1
M

Φ̂
M

n
1
M

Φ̂
M−1

n . . . 1
M

Φ̂n

O 1
M−1

Φ̂
M

n . . . 1
M−1

Φ̂
2

n

...
...

. . .
...

O O . . . Φ̂
M

n

 , (3.28)

X0[k + 1] = [ x[k]> x[k + 1]> . . . x[k +M − 1]> ]>, (3.29)

and

W[k] = [ Ω1 Ω2 . . . ΩM ]>, (3.30)

where O is a zero matrix of order Ns×Ns, Ns is the total number of state variables.

E(W[k]) = 0 and E(W[k]W[k]>) = Q̄.

Similarly we can define discretized Jacobian matrix Υ[k] by replacing Φ̂n of (3.28)

by Φ̂ where Φ̂ = Φ[k− 1] = Φ[k− 2] = . . . = Φ[k−M ]. The measurement model

associated with (3.9) can be written in data block form as

Z[k] = HX0[k] + V[k] (3.31)

where Z[k] = [z[k −M ] z[k −M + 1] . . . z[k − 1]]> and H = diag.[H H . . . H].
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Further, E(V[k]) = 0 and E(V[k]V[k]>) = R̄. In order to have a two level

decomposition, sequence of each state variable corresponding to state vectors x

needs to be filtered through analysis filter bank. Assuming that measurements are

taken at scale 0, let us define an operator Tma , a square matrix of the order Ns×M

which maps X0
k to scale m as

Xm[k] = Tma X0
k. (3.32)

Key elements of the operator can be written as

Tma (Ns(i− 1) + k,Ns(j − 1) + k) = Tm
a (i, j) (3.33)

where i, j = 1, 2, ...,M and k = 1, 2, ..., Ns − 1. The rest of the elements of the

matrix Tma are zero. Using (3.32) into (3.27) we can obtain:

Xm[k + 1] = Ῡn[k]Xm[k] + W̄[k] (3.34)

where E(W̄[k]) = 0, E(W̄[k]W̄[k]>) = Q̂ and Ῡn[k] = Tma Υn[k] (Tma )>, W̄[k] =

Tma W[k], Q̂ = Tma Q̄ (Tma )>. The model described by (3.34) is a multi-resolution

model corresponding to dynamical system described by (3.27). Measurement

model associated with this system can be obtained by substituting (3.32) into

(3.31), which yields:

Z[k] = H̄Xm[k] + V[k] (3.35)

where H̄ = H (Tma )>. Now, we have a system represented by (3.34) and measure-

ment model represented by (3.35). Now, EKF algorithm as described in Appendix

B can be employed to optimally estimate decomposed states. States of the origi-

nal system can be synthesised from optimally estimated states at multiple scales

by application of the inverse operator Tms = (Tma )>. This algorithm is denoted

by MEKF-m if the estimation runs upto the scale depth m. The block diagram

representation for the MEKF-2 algorithm is shown in Figure 3.1.

Remark: It is to be noted that while deriving an equivalent system in a datablock

form, linearity in a system is assumed for a time duration equivalent to the number

of samples in a block of data. This means that the equivalent system derived at
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the wavelet scale m, is regarded to be linear for 2m samples. Consequently, the

prediction step of the multi-scale EKF would work on such a linearity assumption.

Computational complexity

It may be noted that the dimensions of matrices and state vectors associated with

the MEKF algorithm are higher than those of the EKF. Therefore, computational

complexity of MEKF relative to EKF is expected to be higher. The most complex

step in the EKF iterations is Eq. (B.4). It requires multiplication of an n × n

matrix with another n×n matrix. With one of the best known techniques, i.e, the

Coppersmith-Winograd algorithm it runs to O(n2.376) [105]. Therefore, the total

time complexity of the EKF algorithm is also O(n2.376). In case of MEKF-m, the

dimension of the state vector is higher by a factor of 2m. Therefore, time required

to perform single iteration is increased by a factor 22.376m. However, as MEKF-m

is derived with a block of 2m datapoints, the number of iterations required to

perform total computation is reduced by a factor 2m. Hence, relative to EKF, the

overall computation time required to perform MEKF-m is increased by a factor

F = 22.376m−m = 21.376m, i.e, with the increment in the scale depth by one level,

the computation time increases by a factor 21.376 than that at the previous scale.

3.3 Simulation Results and Discussions

In this section simulation results from EKF and Wavelet based Multiscale EKF

techniques are presented. Simulations were carried out for two cases: (1) using

reference data set and (2) using experimental data set collected from a research

reactor. In the first case, data set is generated by exciting the point kinetics

model of the reactor by a known reactivity variation and the power variation

thus obtained is used as an input to estimation algorithms. While, in the second

case, two datasets, collected from one of the Indian research reactors are used for

estimation purpose. Details of the datasets followed by corresponding simulation

results are presented in the following subsections.
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3.3.1 Simulations using reference data set

As mentioned earlier, this data set is generated by using point kinetics model of

the nuclear reactor given by (3.1) and (3.2) by subjecting it to reactivity variation

shown in Figure 3.4. Delayed neutron parameters used in the simulation are shown

in Table 3.1. Initially, the reactor is assumed to be in a steady-state at 1 unit power

and delayed neutron precursors’ concentrations are in equilibrium corresponding

to this power level. Measurement noise of zero mean and variance equal to 10%

of the nominal value of reactor power is added to the output generated from the

simulation. Figure 3.5 shows the output power variation with noise.

For the EKF, the values of R and Q which denote covariances of measurement

noise and system uncertanity are selected as 1×10−2 and diag. [0, 0, 0, 0, 0, 0, 5× 10−8]

respectively. Wavelet-based estimation algorithm is expected to give better esti-

mation results besides providing multi-scale analysis of the signals. The sequences

of the state variables are analysed upto 5 different scales.

Figures 3.6 through 3.13 show outputs obtained form EKF and MEKF algorithms

described in the previous section. In each plot, zoomed variation over a small inter-

val is also shown in an inset box. It is assumed that input signal to the estimation

algorithm i.e. simulated power variation is at scale 0. To assess the filtering effect,

results obtained only from MEKF-2 through MEKF-5 are plotted in the Figure

3.6 through Figure 3.13. As defined earlier, MEKF-m,m = 2, 3, · · · , 5 are the

state estimation algorithms which estimate the system states by synthesizing op-

timally estimated analyzed states upto scale depth m. Although the computations

Table 3.1: Delayed neutron data for the reference dataset.

Group Index βi (×10−3) λi (s
−1)

1 0.2112 0.0124
2 1.4016 0.0305
3 1.2544 0.111
4 2.5280 0.310
5 0.7360 1.140
6 0.2688 3.010

Prompt neutron generation time, l = 10−3 s



Chapter 3: Estimation using multi-scale EKF 40

could be successfully carried out upto scale depth 5, numerical ill-conditioning was

encountered for scale 6 and beyond.

The quantitative performance of the proposed algorithm can be assessed by ob-

serving the mean squared error (MSE) defined as

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2

(3.36)

where n is the total number of samples, and Yi and Ŷi denote estimated and ref-

erence quantities respectively. MSE for estimation of the variables with EKF and

MEKF-m, m = 2 to 5 are given in Table 3.2. For this purpose 50 runs of the

Monte Carlo simulations have been considered. It can be observed that the values

of MSE in the estimation of fast varying states, i.e., reactivity and neutronic power

are comparatively smaller for MEKF-5 than those for EKF. Moreover, there is a

marginal improvement for the estimates of delayed neutron precursors’ concentra-

tions of group 2 to 5 at a particular intermediate scale. It is evident that groups

of delayed neutron precursors suffer from the over smoothing after a certain scale.

Table 3.2: Mean Squared Error (50 Monte Carlo runs)

Quantity Mean Squared Error
EKF MEKF-2 MEKF-3 MEKF-4 MEKF-5

ρ(×10−7) 7.2571 6.9342 6.5412 5.87613 5.2458
p(×10−4) 1.3917 1.3478 1.2985 1.2105 1.0878
C1(×10−6) 7.6360 7.6244 7.6349 7.9246 11.3082
C2(×10−5) 1.2872 1.2851 1.2861 1.3372 1.84024
C3(×10−5) 2.5379 2.5306 2.5271 2.6152 3.3703
C4(×10−5) 4.2033 4.1804 4.1658 4.2614 4.9821
C5(×10−5) 7.7699 7.6822 7.6226 7.5894 7.6794
C6(×10−4) 1.0750 1.0568 1.0400 0.9982 0.9563

3.3.2 Simulations using plant data

As already stated earlier, the proposed estimation algorithm has also been tested

on the plant data of a research reactor known as ‘Apsara’ [106]. It was operational

till the year 2010. The reactor designed for 1 MW thermal power capacity, used

an enriched uranium fuel and water as a coolant. Reactivity in it was regulated by

four cadmium control rods, three of them having higher worth are called shim rods.



Chapter 3: Estimation using multi-scale EKF 41

These were used for regulation of power as well as protection. The fourth control

rod, namely a fine control rod was used for a fine control of the power. To regulate

the reactor power shim rods were manually moved upward or downward as a single

bank. The fine control rod position was regulated based on the difference between

demand power and measured power. In the operating range, reactor power was

measured by seven range linear dc channel (MRDC channel) and a six-decade log

channel.

For comparison, both EKF and MEKF algortithms are employed to estimate the

state variables using experimental datasets collected from the Apsara reactor. As

mentioned earlier, two different cases have been considered. In the first case, power

variation data are collected during one of the experiments where reactor power is

increased by a factor of 2.5 from its initial power level of 9.7 kW , held constant at

the new level for a short time and subsequently decreased to the initial level of 9.7

kW . In the second case, the power variation data are collected while reactor un-

dergoes a shutdown from its initial power of 201 kW followed by a restart to reach

the same power level. In both cases, neutronic power variations are normalized to

full power, i.e, 1 MW . Further, assumption is that the reactor is at steady state

and delayed neutron precursors’ concentrations are in equilibrium corresponding

to the initial power level. The delayed neutron parameters corresponding to the

Apsara reactor are given in Table 3.5.

Measured neutronic power with time variation depicted in Figure 3.14 serves as an

input to the estimation algorithms in the first case. The performance of the EKF

algorithm depends on the values of the tuning parameters Q and R, and these

Table 3.3: Delayed neutron parameters for a research reactor

Group Index βi (×10−3) λi (s
−1)

1 0.2487 0.0120
2 1.3800 0.0317
3 1.1990 0.1183
4 2.6270 0.3101
5 1.3790 0.9617
6 0.6799 2.8930

Prompt neutron generation time, l = 9.2939× 10−4 s
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need to be chosen carefully. Generally, ratio between Q and R matters [107],

rather than their absolute values. Therefore, The value of R is chosen as 1. But

selection of parameter Q is very important as it is associated with the modeling

uncertainty of the system. As per the procedure given in [20], for the fixed value

of R, value of Q is tuned in such a way that the covariance of innovation process

at steady state achieves minimum value. Pattern of the Q matrix is selected

as diag. [0 0 0 0 0 0 0 q]. Figure 3.15 shows values of variance of the innovation

process against q. Further, it has been noticed that with the increment in the

value of q, noise level in the estimated quantities increases. On the contrary, with

the decrement in q, variation of estimated quantities becomes sluggish. Thus, the

value of q is selected as 1× 10−3 which corresponds to the minimum covariance of

innovation process as 1.7× 10−8 as shown in Figure 3.15.

Similar to the case of the synthetic dataset, computation beyond the scale depth

5 encounters numerical ill-conditioning. Figure 3.16 through Figure 3.23 show the

output of the estimation algorithm for the first case. It can be seen that MEKF-5

technique gives smoother variations of the state variables i.e., noise is removed

more effectively.

In the second case, where the reactor undergoes a shutdown followed by a restart,

the measured neutronic power varies as shown in Figure 3.24. It can be observed

that the noise in the measurement decreases in the shutdown phase and subse-

quently increases after the restart. In this case, MEKF computations upto the

scale depth 4 have been performed. For scale depth 5 and beyond, estimation

results from MEKF diverge due to numerical ill-conditioning. Figure 3.25 through

Figure 3.32 show the estimation results. Again, the estimation results are better

with MEKF than those from EKF in the operating condition where the level of

measurement noise is significant. This is expected because denoising is known to

work better in the wavelet domain.
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3.3.3 Validation of the results

In order to justify the performance of the estimation algorithm, two performance

measures have been considered: (1) reactivity obtained from the physical exper-

iments and (2) the error sequence between measured variable, i.e., power and its

estimate. As regards the reactivity obtained from the physical experiments, it can

be used as a reference. Estimated reactivity variations obtained from EKF and

MEKF are compared with this reference reactivity as shown in Figure 3.33. While

error sequence between reference reactivity and estimated reactivity are shown in

Figure 3.34. It can be seen that estimation results from both the techniques are

in agreement with the reference reactivity. However, the reactivity estimated by

MEKF technique not only gives smoother response but also gives lesser error.

Performance of the estimation algorithm can also be justified by statistical prop-

erties of the error sequence obtained from the difference between the measured

variable and estimate of the variable. In this case, neutronic power is being mea-

sured. So, the error sequence between measurement and estimation of neutronic

power gives considerable information. Figures 3.39 and Figure 3.40 show difference

between normalized measured power and estimated power by EKF and MEKF for

the first and second case respectively.

The estimation results can be validated by analysing ‘Whiteness’ of the error

between the measured signal and the estimated signal [42]. Whiteness can be

analysed by evaluating the ACF (auto-correlation function). For the transients

under consideration, i.e, a power rise followed by a fall, and a shutdown followed

by a restart, the ACF considering 20 lags are plotted in Fig. 3.37 and Fig. 3.38

respectively. For the first transient, from Fig. 3.37, it can be observed that error

sequence obtained for MEKF-5 is significantly less autocorrelated than that of

the other estimation algorithms. Furthermore, for the second transient, Fig. 3.37

indicates overall rise in ACF coefficients for all the state estimation techniques.

However, it can be also be noted that the error sequence obtained for EKF seems

relatively less autocorrelated than its multi-scale counterparts. For sake of better

understanding of these observations, it would be useful to have quantitative anal-

ysis for whiteness. Numerous statistical tests for quantification of whiteness have
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been reported in the literature. Considering a criteria reported in [108], Ljung-Box

Q test statistic is defined as follows

LBQ = N(N + 2)
L∑
l=1

ρ2
l

N − l
(3.37)

where N is the number of samples, ρl is the autocorrelation coefficients at lag

l, and L is the number of lags being tested. As discussed in [108], for the time-

independent samples LBQ statistic approximately follows the χ2 distribution with

L degrees of freedom. For both the transients, i.e., a power rise followerd by a fall,

and a shutdown followed by a restart, values of test statistic LBQ are tabulated

in Table 3.4 and Table 3.5 respectively. From Table 3.4, it can be noted that,

for a first transient values for LBQ statistic are significantly lower for MEKF-5

than that for other estimation algorithms. This establish that MEKF-5 performs

better than with the the other estimation algorithm under investigation. Further-

more, Table 3.4 suggests overall rise in the autocorrelation for a second transient.

This can be explained by the fact that for a severe transient such a reactor shut-

down, noise in the measured power of the reactor does not have constant variance.

Therefore, the values of the tuning parameters Q and R, selected at a steady

state, before occurrence of shutdown are not optimal for estimation throughout

the observation. Consequently, the estimated values derived from the EKF and

MKEF are not optimal for entire observation which is resulted as rise in LBQ

test statistic. Furthermore, this observation also indicates that estimation results

obtained with multi-scale EKFs are relatively more susceptible to the sub-optimal

tuning parameters.

Table 3.4: LBQ test statistic for a power rise followed by a fall

Estimator EKF MEKF-2 MEKF-3 MEKF-4 MEKF-5
LBQ(×102) 9.2598 3.2849 2.9893 3.1286 2.6353

Table 3.5: LBQ test statistic for a shutdown followed by a restart

Estimator EKF MEKF-2 MEKF-3 MEKF-4
LBQ(×103) 2.4907 4.2201 3.7599 3.6640
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As the estimation algorithms are expected to remove the noise from the measured

signal, the quality of the estimation can also be judged by the variance of the error

between the measured signal and the estimated signal. If the variance of the error

is high, then one can conclude that more noise-power has been removed. Further,

one can expect this error to be of zero mean with the assumption that the noise

in the measured signal is bias-free. Therefore, an error sequence is expected to be

of zero mean and variance is expected to be high, i.e., better estimation algorithm

rejects the Gaussian noise more effectively. In the steady state operation of the

first case, the values for mean and variance of the error sequence for standard

EKF technique are 7.4657 × 10−8 and 1.1766 × 10−8 respectively, while those

for MEKF-5 technique are 2.8070 × 10−7 and 1.5859 × 10−8 respectively. Larger

variance obtained using MEKF establishes that multiscale EKF technique gives

better performance.

3.4 Summary

In this chapter, a multiscale EKF technique for estimation of reactivity and de-

layed neutron precursors’ concentration is investigated. The proposed algorithm

preserves the merits of EKF technique and at the same time, the use of wavelets

provides an additional smoothing effect for the estimation. The multiscale analysis

allows online identification of the frequency components of the signals. This helps

in modeling widely varying dynamic modes of a multi-scale reactor system. The

proposed algorithm handles the system uncertainties and measurement noise using

system covariance matrices Q and R which are tuned to have the optimal per-

formance. Although the proposed algorithm is computationally expensive, it does

not impose severe limitation with the use of modern high-speed digital computers.

Performance of the proposed algorithm is assessed by carrying out estimation from

the completely known dataset as well as plant dataset of one of the Indian research

reactors. It is found that the proposed algorithm outperforms the standard EKF

algorithm. However, it is also noted that the performance of the proposed algo-

rithm is more susceptible with the sub-optimal tuning parameters than that of the

standard EKF.
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Figure 3.4: Reference reactivity variation
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Figure 3.5: Simulated neutronic power
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Figure 3.6: Reactivity
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Figure 3.7: Neutrnoic Power
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Figure 3.8: Concentration of a delayed neutron Precursor Group 1
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Figure 3.9: Concentration of a delayed neutron Precursor Group 2
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Figure 3.10: Concentration of a delayed neutron Precursor Group 3
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Figure 3.11: Concentration of a delayed neutron Precursor Group 4
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Figure 3.12: Concentration of a delayed neutron Precursor Group 5
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Figure 3.13: Concentration of a delayed neutron Precursor Group 6
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Figure 3.14: Measured neutronic Power of the research reactor
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Figure 3.15: Variance of innovation process with tuning parameter q
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Figure 3.16: Reactivity variation for power rise followed by fall
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Figure 3.17: Estimated neutrnoic power variation for power rise followed by
fall
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Figure 3.18: Concentration of a delayed neutron Precursor Group 1 for power
rise followed by fall
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Figure 3.19: Concentration of a delayed neutron Precursor Group 2 for power
rise followed by fall
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Figure 3.20: Concentration of a delayed neutron Precursor Group 3 for power
rise followed by fall
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Figure 3.21: Concentration of a delayed neutron Precursor Group 4 for power
rise followed by fall
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Figure 3.22: Concentration of a delayed neutron Precursor Group 5 for power
rise followed by fall
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Figure 3.23: Concentration of a delayed neutron Precursor Group 6 for power
rise followed by fall
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Figure 3.24: Measured neutronic power for shutdown followed by restart
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Figure 3.25: Reactivity variation for shutdown followed by restart
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Figure 3.26: Neutronic power variation for shutdown followed by restart
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Figure 3.27: Delayed neutron precursors’ concentration of group 1 for shut-
down followed by restart
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Figure 3.28: Delayed neutron precursors’ concentration of group 2 for shut-
down followed by restart
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Figure 3.29: Delayed neutron precursors’ concentration of group 3 for shut-
down followed by restart
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Figure 3.30: Delayed neutron precursors’ concentration of group 4 for shut-
down followed by restart
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Figure 3.31: Delayed neutron precursors’ concentration of group 5 for shut-
down followed by restart
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Figure 3.32: Delayed neutron precursors’ concentration of group 6 for shut-
down followed by restart
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Figure 3.33: comparison with reference reactivity for power rise followed by
fall
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Figure 3.34: Error between reference and estimated reactivity for power rise
followed by fall
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Figure 3.35: Comparison with reference reactivity for shutdown followed by
restart
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Figure 3.36: Error between reference and estimated reactivity for shutdown
followed by restart
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Figure 3.37: Auto-correlation function for power rise followed by fall
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Figure 3.38: Auto-correlation function for shutdown followed by restart
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Figure 3.39: Error between normalized measured and estimated neutronic
power
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Chapter 4

Reactivity and Delayed Neutron

Precursors’ Concentration

Estimation based on Recursive

Nonlinear Dynamic Data

Reconciliation Technique

The KF and its variants such as EKF, Unscented Kalman Filter (UKF), particle fil-

ter, and MEKF reported in the previous Chapter are two step predictive-corrective

algorithms. The strength of these algorithms lies in their recursive form, which

is extremely important for online deployment. Also, it allows rapid estimation in

real-time. The key assumption for employing these techniques is that the covari-

ances of modelling uncertainties and measurement noise are known. Unfortunately,

this is generally not satisfied for most of the physical systems.

In the case of the reactivity estimation problem, the covariance of the measurement

noise can be taken as a variance of the measurement signal at the steady-state. The

covariance of the modeling uncertainties is a critical quantity for the performance

of the estimator. It may be estimated with reasonable accuracy by tuning the

variance of the innovation sequence at the steady-state condition as per the pro-

cedure given in [20]. However, if the reactor power changes significantly from the

59
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steady-state value, such as in the typical shutdown transient, the selected values

of the measurement noise variance and covariance of the modeling uncertainties

no longer represent the actual quantities. Consequently, estimation results with

the EKF may lead to some infeasible values. This problem was observed with the

estimation algorithms reported in Chapter 3, i.e., while dealing with the shutdown

transients of the Apsara reactor, with suboptimal tuning parameters, Q and R,

EKF, and MEFK rendered infeasible values, i.e., negative values of reactor power

and delayed neutron precursors’ concentrations. This problem may arise as KF

and all its variants cannot take into account constraints on state variables sys-

tematically. The adhoc measures like clipping may produce sub-optimal estimates

at the best. As these techniques may lead to the infeasible estimates, which is

often a cause for the filter’s instability [60], a state estimation algorithm which

can account for the physical constraints may be expected to perform better than

the standard techniques.

This chapter proposes the RNDDR technique to estimate reactivity and delayed

neutron precursors’ concentrations in the nuclear reactor. The feasibility of the

RNDDR method has been validated through step test signal in the presence of

measurement noise and experimental power variation data sets collected from a

research reactor. In this technique, for each time instant, the prediction step is

followed by an update step similar to the EKF. In RNDDR, the predicted state

variables and error covariance matrix are obtained as in EKF, while the updated

state variables are obtained as the solution of a constrained optimization problem.

The RNDDR is identical to EKF if there are no bounds on variables or algebraic

constraints. Hence, RNDDR can be viewed as one form of a constrained extended

Kalman filter, which is easy for practical implementation.

4.1 Model Description

4.1.1 Neutronic Model

The point kinetics model was introduced in Chapter 3. The same model with an

additional source term has been used in this chapter. The point kinetics equations
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with source term are given as:

ṅ =
ρ− β
`

n+
m∑
i=1

λiCi + S (4.1)

Ċi =
βi
`
n− λiCi , i = 1, 2, . . . ,m (4.2)

where the notations are same as those introduced in the previous chapters. The

source term S, the effective strength of neutron source has been assumed as con-

stant and expressed in term of the initial stable sub-criticality as [45]

S =
−ρ0n0

`
(4.3)

where n0 denotes the neutronic power at any subcritical steady-state and ρ0 de-

notes the corresponding subcriticality obtained from physics computations. In

addition, in order to estimate the reactivity, a reactivity model must be formed

which can be embedded into the reactor system as one of its state variables [109].

In order to capture the step and ramp reactivity transients more effectively, instead

of using first order random walk model as in Chapter 3, a second order reactivity

dynamics are considered as follows:

dρ

dt
= α (4.4)

dα

dt
= 0 (4.5)

where α is a zero mean noise signal.

4.1.2 State Space Representation of Nonlinear Model

In order to employ EKF for the state estimation, it is necessary to transform the

reference model given by the set of equations (4.1), (4.2), (4.4) and (4.5) to a

standard state space form as

ẋ = f(x)

= Fnx + Gn (4.6)
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in which the state vector x, matrix Fn, and Gn are defined respectively as

x =
[
n C1 C2 · · · C6 ρ α

]>
, (4.7)

Fn =



−β
`

λ1 λ2 · · · λ6 0 0

β1
`
−λ1 0 · · · 0 0 0

β2
`

0 −λ2 · · · 0 0 0
...

...
...

. . .
...

...
...

β6
`

0 0 · · · −λ6 0 0

0 0 0 · · · 0 0 1

0 0 0 · · · 0 0 0


. (4.8)

Gn =
[

ρn
`

+ S 0 · · · 0
]>
, (4.9)

The system model given by (4.6) is nonlinear because of presence of nonlinear

term ρn
`

+ S in Gn.

The Jacobian matrix is given as

F =
∂f

∂x
(x) . (4.10)

Except two elements, rest all the elements of matrix F are same as those of matrix

Fn. Those two elements of matrix F are

F(1, 1) =
ρ− β
`

, F(1, 8) =
n

`
. (4.11)

By discretizing (4.6) for sampling time interval Ts, we obtain

x[k + 1] = φn[k]x[k] + Γn[k] + w[k] (4.12)

where w is the system noise, which is due to the random nature of fission process.

It is assumed to be a zero mean white Gaussian noise which is independent of x[k],

with covariance Q. The matrices φn and Γn are given by

φn = eFnTs (4.13)

Γn =

∫ Ts

0

eFntGndt. (4.14)
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Similarly,

φ = eFTs . (4.15)

Taking into account an additive noise in the measurement channel, the measure-

ment equation becomes:

z[k] = H x[k] + v[k] (4.16)

where z is measurement variable, i.e. neutronic power, and v is a zero mean white

Gaussian noise which is independent of x and w. Its covariance is assumed to be

R. H is the output matrix corresponding to reactor power n. it is given by

H =
[

1 0 0 0 0 0 0 0 0
]>
.

4.2 RNDDR algorithm for the state estimation

In this section, the RNDDR [64] algorithm is derived for the estimation of reactiv-

ity and delayed neutron precursors’ concentration. To be able to apply RNDDR,

following assumptions must be satisfied.

• The process is described by a continuous time state space model with discrete

sampled measurements.

• The uncertainties in inputs, random fluctuations in unmeasured disturbances,

and measurement errors are assumed to be white Gaussian noise processes

with known covariance matrices.

• The unmeasured disturbances or parameters may undergo deterministic step

changes or drifts. To track these deterministic changes and estimate them,

it is assumed that the parameters and unmeasured variables that change are

known or specified a priori.

All the above mentioned assumptions are valid for a nuclear reactor.
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Similar to the standard EKF, the RNDDR is a two step recursive algorithm. The

first step of the algorithm is the prediction step in which estimated states along

with error covariance matrix are propagated from the previous time instant using

process dynamical equations. This step is same as the prediction step of the

standard EKF algorithm. The difference, however lies in the measurement-update

step. In which the predicted estimates are corrected by solving a constrained

optimization problem as follows.

x̂[k] =
min

x̂[k]

[
(x̂[k]− x̂[k/k − 1])> (P[k/k − 1])−1 (x̂[k]− x̂[k/k − 1])

+ (z[k]−Hx̂[k])> (R[k])−1 (z[k]−Hx̂[k])
]

(4.17)

subject to the constraint x̂[k] > xL

x̂[k] is the updated state vector at instant k which is the solution of the constrained

optimization problem (4.17). P[k] is obtained in the same manner as in the stan-

dard EKF. The estimates of state variables, namely, the reactor power and delayed

neutron precursors’ concentrations should be non-negative. Hence the lower bound

values imposed on the state variables are xL =
[

0 0 0 0 0 0 0 −∞ −∞
]>

.

The constrained optimization problem (4.17) can be reformulated as minimization

of a quadratic objective function as follows:

x̂[k] =
min

x̂[k]

(
1

2
x̂[k]>Ξ[k]x̂[k] + g>k x̂[k]

)
(4.18)

subject to the constraint x̂[k] > xL.

where

Ξ[k] = 2
[
(P[k])−1 + H>(Rk)

−1H
]

and

g[k] = −2
[
x̂[k/k − 1](P[k])−1 + z[k](R[k])−1H

]
.>

This quadratic objective function can be solved using interior-point method. More-

over, the computational efforts required for solving an optimization problem via
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interior point method depends on the number of iterations required for conver-

gence. This depends on two key factors, namely, the solver parameters, and a

initial condition[110]. Considering the most expensive step of each iteration, the

computation complexity would be of O(n3). However, it is noteworthy that the al-

gorithm is prone to divergence in following cases, namely, (1) a badly conditioned

matrix Ξ[k] leading to the numerical ill-conditioning, and (2) a non-restrictive

constraint for 4.18. As both of these cases were not applicable in this application,

divergence was not observed. The detailed derivation for an optimization prob-

lem along with discussion on computational complexity as a function of solver

parameters of the algorithm can be found in [111].

As in the standard EKF, for RNDDR algorithm, values of R and Q should be

ideally selected as values of the variance of measurement noise and system uncer-

tainties respectively. Choosing the right value of the R and Q is very important

for successful application of RNDDR, however, the optimal selection is quite dif-

ficult. If the process-noise covariance matrix, Q is guessed low, the RNDDR will

believe the model excessively and will not use the on-line measurements properly

to correct the states. This can lead to poor performance. On the other hand, if

the matrix Q is guessed higher than the actual value, the state estimates will be

noisy and uncertain, as this would lead to increased values of the state covariance

matrix. Usually, a good initial estimate for R can be obtained from the calibration

of the measuring instrument and generally it is assumed to be constant over the

data length. Here optimum value for R may be selected as a variance of the steady

state measurement at operating power level. For this fixed value of R, value of Q

can be selected as per procedure given in [20].

4.3 Validation of proposed RNDDR technique

The RNDDR-based estimation approach proposed in Section 4.2 is validated in

this section with the simulation results using the numerically simulated dataset and

experimental data set collected from one of the Indian research reactors. In the first

case, data-set is generated by exciting the point kinetics model of the reactor by a

known reactivity variation and the power variation thus obtained is contaminated
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Figure 4.1: Assumed reactivity variation

with the noise. This is then used as a measurement signal for the estimation

algorithms. In the second case, datasets collected during experiments with one

of the Indian research reactors are used for estimation purpose. Details of the

datasets followed by corresponding simulation results are presented in the following

subsections. In order to assess the performance of the proposed algorithm, the

simulation results are compared with the standard EKF technique for both the

cases.

4.3.1 Numerical simulation

As mentioned earlier, this data set is generated by using the point kinetics model of

the nuclear reactor given by (4.1) and (4.2) by subjecting it to reactivity variation

shown in Fig. 4.1. The reactor is assumed to be operating at a full power level

and the system is at steady state such that the reactivity is initially zero. Now at

t = 80s, the reactivity is assumed to drop to −20mk (shown in Fig. 4.1), as in an

idealized shutdown transient. The delayed neutron parameters listed in Table 4.1

are used in the simulation.

For the most of the practical dataset, measurement signal is expected to be un-

biased and variance of the measurement noise normalized to its nominal value is

expected to increase as power level drops down. Therefore, to make the synthetic

dataset more realistic, variance of the measurement noise denoted by Ωk at kth
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Figure 4.2: Neutronic power variation corresponding to reactivity variation
shown in 4.1

sampling instant is assumed as a function of power as follows

Ωk = (a2 − a1)(1− zk/nmax) + a1 (4.19)

where a1 = 0.05, a2 = 0.15, zk is the measured reactor power at kth sampling

instant and nmax is the maximum reactor power. Reactor power contaminated by

such measurement noise is plotted in Fig. 4.2. As discussed already, this power

variation is used as a measurement signal for the estimation algorithms. Estimated

variations for neutronic power and reactivity by EKF and RNDDR algorithms with

parameters Q = [10−1 0 0 0 0 0 0 10−2 0] and R = 10−2 are plotted in Fig. 4.3 and

Fig. 4.4 respectively. Values selected for parameters Q and R are optimum for the

operating point and no physical constraints are violated. Results obtained from

both the techniques are overlapping.

For different operating points of the reactor system, the variance of system uncer-

tainty, as well as the measurement noise variance may vary significantly. Hence

time varying matrices Q and R are required which raise practical implementation

concerns. The constant Q and R matrices approach are generally preferred for the

implementation though not necessarily optimal. However, the selection of subop-

timal values might result in the violation of the physical constraints of the system.

Considering the suboptimum values of parameters Q = [10−3 0 0 0 0 0 0 10−6 0]

and R = 10−1, simulation results are obtained to access the efficacy of the pro-

posed techniques. Estimates of the state variables obtained by both the techniques
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Figure 4.3: Estimated power during shutdown transient with optimum Q and
R
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Figure 4.4: Estimated reactivity during shutdown transient with optimum Q
and R

0 100 200 300 400
−0.5

0

0.5

1

1.5

Time (s)

Ne
utr

on
ic 

Po
we

r

 

 
RNDDR
EKF
Reference

Figure 4.5: Estimated neutronic power during shutdown transient with sub-
optimum Q and R
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Figure 4.6: Estimated reactivity during shutdown transient with suboptimum
Q and R
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Figure 4.7: Estimated delayed neutron precursors’ concentration of group 1
during shutdown transient with suboptimum Q and R
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Figure 4.8: Estimated delayed neutron precursors’ concentration of group 2
during shutdown transient with suboptimum Q and R
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Figure 4.9: Estimated delayed neutron precursors’ concentration of group 3
during shutdown transient with suboptimum Q and R
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Figure 4.10: Estimated delayed neutron precursors’ concentration of group 4
during shutdown transient with suboptimum Q and R
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Figure 4.11: Estimated delayed neutron precursors’ concentration of group 5
during shutdown transient with suboptimum Q and R
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Figure 4.12: Estimated delayed neutron precursors’ concentration of group 6
during shutdown transient with suboptimum Q and R

are plotted in Fig. 4.5 through 4.12. In Fig. 4.11 and 4.12, zoomed variation over

a small interval is also shown in an inset box. From Fig. 4.5, it is evident that

the estimated reactor power from the unconstrained EKF violates the constraints,

i.e., the estimated reactor power undergoes a few oscillation around zero and at-

tains negative values for few times. Consequently, the reactivity estimated by

EKF as plotted in Fig. 4.6 is inaccurate and it does not converge to the steady

state value. While in case of estimated power from the proposed RNDDR tech-

nique, constraint violation does not occur and estimated reactivity converges to

the steady state value. From the simulation results, it is evident that estimated

values for delayed neutron precursors’ concentrations, reactor power, and reactiv-

ity obtained from EKF seem to fluctuate around the true value, as constraints

on the estimated power are violated. In contrast to this, the estimated quantities

obtained form RNDDR vary smoothly. Violation of physical constraints and bias

in the steady state estimation of reactivity seems to happen with EKF essentially

due to suboptimal values for parameters Q and R as they do not handle Signal

to Noise Ratio (SNR) variations for the operating point.

4.3.2 Using experimental data set of FBTR

The efficacy of RNDDR technique for reactivity estimation is evaluated from

the experimental data sets collected from a fast breeder test reactor (FBTR)
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located at Indira Gandhi Centre for Atomic Research, Kalpakkam, India. The

loop type breeder reactor is rated for 40 MW thermal power. Six control rods

(RA, RB, · · · , RF ) are employed for power control and shutdown. A detailed spec-

ification of the FBTR can be found in [112].

Dataset collected during one of the experiments at FBTR has been considered for

the estimation. The delayed neutron data are given in Table 4.2. The reactor is

assumed to be in the steady state power level of 240 W and delayed neutron pre-

cursors’ concentrations are in equilibrium with this power level. At time t = 100s,

regulating rod RE is dropped and consequently, reactor undergoes shutdown from

its initial power level. The reactor power (normalized to its initial value) under-

goes variation as depicted in Fig. 4.13. RNDDR technique derived in the previous

section is employed for the state estimation and estimated quantities are compared

Table 4.1: Delayed neutron data and source for the reference dataset.

Group Index βi (×10−3) λi (s
−1)

1 0.248 0.012
2 1.380 0.031
3 1.990 0.118
4 2.627 0.3101
5 1.379 0.9617
6 0.679 2.8930

Prompt neutron generation time, ` = 9.2939× 10−4 s
Source term, S = 6.6 kW–s

Table 4.2: Delayed Neutron Data and Source for the FBTR

Group No. βi (×10−4) λi (s
−1)

1 0.919 0.0129
2 6.831 0.0311
3 5.469 0.1134
4 8.904 0.3311
5 3.197 1.2600
6 1.077 3.2100

Prompt neutron generation time, ` = 7.9× 10−4 s
Source term, S = 1.5190 kW–s
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with those obtained from the unconstrained EKF technique. Estimated state vari-

ables are plotted in Fig. 4.14 through Fig. 4.21. From these plots, it is evident

that the estimated reactor power from the unconstrained EKF violates the con-

straints, i.e., the estimated reactor power undergoes few oscillations around zero

and attains negative values for few times. Consequently, the reactivity estimated

by EKF as plotted in Fig. 4.14 is inaccurate and it does not converge to the steady

state value. While in case of estimated power from the proposed RNDDR tech-

nique, no constraint violation is seen to occur and estimated reactivity converges

to the steady state value. The estimated delayed neutron precursors’ concentra-

tion does not violate the constraints with either of the state estimation algorithms

but from Fig. 4.20 and Fig. 4.21, it is evident that estimated quantities with

the EKF algorithm fluctuate as the constraints on the estimated power are vio-

lated. In contrast to this, the RNDDR algorithm renders a smooth variation of

the quantities.

4.4 Summary

Reactivity is affected by many properties of a reactor core such as the composition,

geometry, temperature, pressure and ability of producing fission neutrons, which

is too difficult to be modelled and can be seen as an uncertainty. Therefore, the

reactivity estimators must be robust in the presence of disturbances, modeling and

parameter uncertainties. Moreover, simple and flexible design characteristics are

the other significant properties that an estimator must have from a practical point

of view. Reactivity estimation algorithm based on RNDDR technique has been

investigated in this chapter. The RNDDR has a simple form, which can induce an

easy engineering implementation due to its recursive form. It also handles alge-

braic constraints and bounds on states and parameters. Constraints can arise due

to feasibility considerations i.e., non-negativity of reactor power or delayed neutron

precursors’ concentration for nuclear reactor system. The results demonstrate that

the RNDDR provides reliable and accurate reactivity estimations while there ex-

ist constraints on states, parameter uncertainties and noisy measurements. Thus,
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RNDDR will increase control flexibility and safety of nuclear reactors. An impor-

tant aspect of RNDDR when considered for online application is its computational

time, which should be carefully addressed, i.e., the platform for implementation

should be selected so as to meet the computational time requirement.
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Figure 4.13: Power variation from the FBTR during a rod drop experiment
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Figure 4.14: Estimated reactivity during a rod drop experiment
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Figure 4.15: Estimated neutronic Power during a rod drop experiment
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Figure 4.16: Estimated delayed neutron precursors’ concentration of group 1
during a rod drop experiment

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

Pr
ec

ur
so

r g
ro

up
 2

 

 
RNDDR
EKF

265 270 275 280 285

4.5

5

5.5

6

x 10
−3

 

 

Figure 4.17: Estimated delayed neutron precursors’ concentration of group 2
during a rod drop experiment
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Figure 4.18: Estimated delayed neutron precursors’ concentration of group 3
during a rod drop experiment
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Figure 4.19: Estimated delayed neutron precursors’ concentration of group 3
during a rod drop experiment
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Figure 4.20: Estimated delayed neutron precursors’ concentration of group 3
during a rod drop experiment
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Figure 4.21: Estimated delayed neutron precursors’ concentration of group 6
during a rod drop experiment



Chapter 5

Estimation of fuel and the coolant

temperatures of the nuclear

reactor using stationary wavelet

transform based multi-scale EKF

In Chapter 3, a multi-scale EKF technique for a class of nonlinear autonomous

systems was presented. There, a multi-scale model structure was formulated by

projecting the system states on wavelet projection space by discrete wavelet trans-

form (DWT). Although the proposed technique outperforms the standard EKF

technique, there were two constraints in the formulation, as given below:

1. Estimation is feasible only for the class of autonomous systems.

2. The estimation is non-causal and has to be performed in a semi-online man-

ner.

The above mentioned constraints do not pose any serious difficulty for the reac-

tivity estimation problem as the reactivity, an input to the system is modeled as

an unknown state. However, if the forced nonlinear model of the nuclear reactor

is considered, the state estimation with the proposed technique will not be feasi-

ble. Hence, in this chapter a multi-scale EKF algorithm based on the stationary

78
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wavelet transform is formulated that can handle both of these constraints. The

technique proposed in this chapter is also based on and preserves the merits of the

EKF and at the same time application of the stationary wavelet transform cap-

tures the multi-scale nature of the system. The description of the reactor model

followed by the proposed techniques and simulation results are presented in the

subsequent sections.

5.1 Simplified mathematical model of PHWR

In this section, reduced order dynamic model with internal reactivity feedback due

to core temperature variations for 540 MWe Indian PHWR is presented [113]

5.1.1 Reactor core and thermal hydraulic model

As discussed in the previous chapters, the dynamic model for the nuclear reactor is

usually represented by the point kinetics equations. It represents variations of neu-

tronic power along with six groups of delayed neutron precursors’ concentrations

with respect to time.

In this chapter, however, reactivity feedbacks due to variation in fuel and coolant

temperatures are also considered. Moreover, as dealing with higher order model in-

volving the dynamics of the six group of delayed neutron precursors’ concentrations

along with the dynamics internal reactivity feedback could be very complicated,

one equivalent group of the delayed neutron precursors’ concentration has been

considered. Such simplification is very commonly adopted in the reactor control

literature [14]. The dynamics of the system under consideration are represented

as follows:

ṅ =

(
ρT − β

l

)
n+

β

l
C, (5.1)

Ċ = λP − λC, (5.2)

ρT = ρU + ρF + ρC , (5.3)
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where n and C respectively denote the reactor power and the one effective group

delayed neutron precursors’ concentration normalized to the steady state values.

β and λ denote fraction of delayed neutrons and decay constant of the delayed

neutron precursors. l is prompt neutron lifetime. ρU is the external reactivity

variation contributed by the control devices maneuvered by the reactor regulating

system. ρF and ρC are internal reactivity feedbacks due to variation in fuel and

coolant temperatures respectively. Net reactivity variation is denoted by ρT as a

combined effect of ρU , ρF and ρC . The internal reactivity feedbacks i.e., ρF and

ρC can be represented as follows [114]

ρF = αF0 + αF1 θF + αF2 θ
2
F (5.4)

ρC = αC0 + αC1 θC . (5.5)

where θF and θC denote average fuel temperature and average coolant tempera-

tures respectively. αFi , i = 0, 1, 2 and αCj , j = 0, 1 denotes proportionality con-

stants for reactivity feedback due to average fuel temperature and average coolant

temperatures respectively.

5.1.2 Core Thermal Hydraulics

The fission heat produced in the reactor core is transferred to coolant by the

means of conduction and convection. Heat transfer rates are usually modelled

by Fourier’s law of conduction and Newton’s law of cooling. A lumped model

describing the core-thermal hydraulic behaviour of the system can be described as

follows.

θ̇F = K1n−
θF − θC
τF

(5.6)

θ̇C = K2(θF − θC)− 2K3(θC − θ1) (5.7)
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where θ1 is coolant inlet temperature, and τF is the time constant describing ther-

mal lag in the fuel. K1 is the proportionality constant with respect to reactor

power. K2 is the proportionality constant for the temperature difference between

fuel and coolant. K3 is the proportionality constant which characterizes the de-

crease in coolant temperature with respect to difference between average coolant

temperature and coolant inlet temperature. The dynamics for variation of Xenon

and Iodine concentrations are not considered as those are insignificant for the short

duration transients involving total power variation.

5.1.3 State Space Representation of the System

The system model described by (5.1) - (5.7) can be written in the state space form

as follows:

ẋ = f(x,u)

= Fnx + Gnu (5.8)

where x = [n C θF θC ]> is the state vector. The control input u = [ρU θ1]

comprises of the external reactivity variation obtained from the reactivity devices

and coolant inlet temperature. Elements of the matrices Fn and Gn can be given

as follows

Fn =


ρF +ρC−β

l
β
l

0 0

λ −λ 0 0

K1 0 −1
τF

1
τF

0 0 K2 −(K2 + 2K3)

 (5.9)

Gn =

 P/l 0 0 0

0 0 0 2K3

> . (5.10)

The system described by (5.8) is a nonlinear system due to presence of the state

variable P in a state vector as well as in the input distribution matrix Gn. The
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Jacobian of the system can be given as follows

F =
δf(x,u)

δx
(5.11)

where the elements of F matrix would be same as those of Fn except the element

F(1, 1) which is given as F(1, 1) = ρU+ρF +ρC−β
l

.

If sampling is carried out at uniform time-interval of Ts seconds, a set of difference

equations corresponding to the system (5.8) will be obtained as given by

x[k + 1] = Φn[k]x[k] + Γnu[k] + w[k] (5.12)

where w is the modeling uncertainty of the stochastic nuclear reactor system. It

is assumed to be white and Gaussian distributed with zero mean and covariance

Q. Matrices Φn, Γn, and Φ in the discrete domain can be written as follows

Φn[k] = eFn(kTs) (5.13)

Γn =

∫ Ts

0

eFnTsGndt (5.14)

Φ[k] = eF(kTs) (5.15)

The measurement process is governed by the following equation

z[k] = Hx[k] + v[k] (5.16)

where v is an additive measurement noise. It is assumed to be white and uncor-

related to system uncertainty w. Further, it is assumed to be white and Gaussian

distributed with zero mean and covariance R. The output matrix corresponding

to measured reactor power is given by

H =
[

1 0 0 0
]
. (5.17)
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5.2 Brief introduction to Stationary wavelet trans-

form

Stationary wavelet transform is a shift invariant wavelet transform. The shift

invariance property of SWT makes it suitable for various applications like fault

detection, denoising, and pattern recognition. In the following section, it is demon-

strated that SWT can be employed to derive the standard EKF algorithm by using

the same state space model at each scale. Like DWT, SWT algorithm can also

be implemented by wavelet filter bank with two key differences, (1) The out-

puts of the high pass and low pass filter are not decimated, and (2) Filters are

dialated at scale depth n by inserting 2n − 1 zeros between coefficients. Imple-

mentation of SWT with the filter bank is fairly simple as shown in Fig. 5.1. To

illustrate SWT based multiscale analysis, consider the discrete time-series signal

Sj = [sj(1) sj(2) · · · sj(n)] at any arbitrary scale j. The signal is applied to

the high pass filter (HPF) and low pass filter (LPF) branch of the analysis side.

Assume that HPF and LPF of analysis side standard DWT has length r with re-

spective coefficients given by ha = [h1
a h

2
a · · · hra] and ga = [g1

a g
2
a · · · gra]. If the

signal is required to be projected on scale j+ 1, the corresponding filters for SWT

can be obtained by upsampling the standard filters by a factor of 2. Therefore,

length of the filters would be p = 2r. The same can be written as follows

h̄a = [0 h1
a 0 · · · hra] (5.18)

= [h̄1
a h̄

2
a · · · h̄pa]

ḡa = [0 g1
a 0 · · · gra] (5.19)

= [ḡ1
a ḡ

2
a · · · ḡpa]

where h̄a and ḡa respectively denote analysis HPF and LPF of SWT. The approx-

imation and detail sequences at scale j + 1 can be written as follows

sj+1(k) = h̄1
asj(k − p+ 1) + h̄2

asj(k − p+ 2) + · · ·+ h̄pasj(k)
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dj+1(k) = ḡ1
asj(k − p+ 1) + ḡ2

asj(k − p+ 2) + · · ·+ ḡpasj(k)

It can be noted that the approximation and detail sequences obtained by SWT

turn out to be of the same length as that of the input sequence. The analyzed

signals at scale j+1 can be synthesized back at scale j as follows. Implementation

of the synthesis filter can be done by the h̄s and ḡs of synthesis filter bank as

shown in Fig. 5.1.

sj(k) = h̄1
ssj+1(k − p+ 1) + · · ·+ h̄pssj+1(k) + (5.20)

ḡ1
sdj+1(k − p+ 1) + · · ·+ ḡpsdj+1(k). (5.21)

Choice for the wavelet filters usually depends on the time frequency localization

property required for the particular application. In this application, the Haar

wavelet is used for simplicity.

5.3 State space modeling and estimation in mul-

tiscale framework

In this section, state space model of the system relating the scaled approximation

and details of the signals has been derived. The model so derived is then used for

estimation purpose. Assume that the system and measurement process are at scale

j = 0. The approximation of the state vector at scale j = 1 can be obtained by

projecting the sequence of the state vector on to the SWT decomposition. Assume

that the system model (5.12) is at scale j = 0 and it is rewritten as follows

xj[k + 1] = Φn[k]xj[k] + Γnuj[k] + wj[k]. (5.22)

Using (5.20), approximation coefficient at the next scale can be written as follows

xj+1[k + 1] = h̄1
axj[k − p+ 2] + h̄2

axj[k − p+ 3] + · · ·+ h̄paxj[k + 1] (5.23)
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Considering that Φn and Γn remain constant for the interval-length of the wavelet

moving window, using (5.12) the above equation can be rewritten as

xj+1[k + 1] = h̄1
a(Φnxj[k − p+ 1] + Γnuj[k − p+ 1] + wj[k − p+ 1]) +

h̄2
a(Φnxj[k − p+ 2] + Γnuj[k − p+ 2] + wj[k − p+ 2])

+ · · ·+ h̄pa(Φnxj[k] + Γnuj[k] + wj[k])

= Φn(h̄1
axj[k − p+ 1] + h̄2

axj[k − p+ 2] + · · ·+ h̄paxj[k])

+Γ(h̄1
auj[k − p+ 1] + h̄2

auj[k − p+ 2] + · · ·+ h̄pauj[k])

+(h̄1
awj[k − p+ 1] + h̄2

awj[k − p+ 2] + · · ·+ h̄pawj[k])

= Φnxj+1[k] + Γnuj+1[k] + wj+1[k] (5.24)

Similarly, the measurement model at scale j + 1 can be obtained as

zj+1[k] = Hxj+1[k] + vj+1[k]. (5.25)

It can be noted that the state space model and measurement model given by

(5.24) and (5.25) are derived by approximation coefficients at arbitrary scale j.

However, a similar model structure can also be formed by using detail coefficients

at any arbitrary scale. Further, it can be noted that the system derived at scale

j + 1 has the same form as that of the system in time domain i.e., at scale j = 0.

Therefore, models derived at any scales can be subjected to the standard EKF

algorithm [20]. Therefore, the EKF algorithm described in Appendix B, can be

applied to the models derived at any scale. The method of application of EKF

does not change with scale. The EKF estimates are simultaneously calculated

with the detail coefficients upto the scale j. In this way, the approximation and

detail coefficients for the sequence of state variables are estimated upto arbitrary

scale.
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5.3.1 Multiscale Extended Kalman Filtering

In this subsection, the EKF algorithm is derived for the system model derived

upto the arbitrary scale depth m and the algorithm is denoted as MEKF-m for

the subsequent sections. It consists of the two recursive steps, i.e., state prediction

and state correction. In the prediction step, the current estimate of the state vector

is used alongwith the system model to estimate the next state vector. While in

the correction step, the measurement data are fused with the predicted estimate

of the state vector such that the covariance of the error becomes minimum. At

any scale j, the wavelet transformed coefficients are used as the state vectors of

the standard EKF algorithm and estimates of the coefficients at each scale are

derived by using the EKF algorithm described in Appendix B. Subsequently, the

estimated detail coefficients are soft thresholded. For this purpose, the universal

threshold is considered as follows [115]

T = σ
√

2 log n (5.26)

where σ is the absolute median deviation of the detail coefficients and n is the

size of the data length. Sequence of state variables thus obtained are subjected

to corresponding wavelet synthesis filters. Further, thresholded detail coefficients

along with the approximation coefficients are synthesized with the synthesis filter

bank. In this way, the estimated sequence of the state variable is reconstructed

back into the original space. The block diagram representation for state estimation

with MEKF-2 is shown in Fig. 5.1.

5.4 Simulation Results

The efficacy of proposed MEKF algorithm is now evaluated using simulations. The

proposed technique is applied to the nuclear reactor system given by (5.1)-(5.7).

The delayed neutrons parameters for PHWR are mentioned in Table 5.1. The

system has been subjected to the external reactivity variation as shown in Fig. 5.2.

It has been chosen such that the net reactivity, i.e. the reactivity after considering
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Figure 5.1: Block diagram representation for MEKF-2
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Figure 5.2: Reactivity variation by regulating devices

thermal feedbacks varies as shown in Fig. 5.3. The coolant inlet temperature

is considered to be at 2600C and is assumed to remain constant throughout the

observation. The corresponding power variation is plotted in Fig. 5.4. Random

noise with zero mean and variance equivalent to 5% of nominal value has been

added to reactor power. The power variation thus obtained has been considered

as a measurement signal and it plotted in a Fig. 5.5. The sampling interval

of 5ms has been considered throughout the simulations. Initially, the reactor is

assumed to be in a steady-state at 1 unit power and delayed neutron precursors’

concentrations are in equilibrium corresponding to this power level.

Estimation of the state variables using EKF and MEFK is performed considering

the external reactivity variation and measured power signal as the only inputs. As
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Figure 5.3: Net reactivity variation
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Figure 5.4: Simulated power

regards the application of the estimation algorithms, the values of matrices related

to the covariance of uncertainty in the system and measurement noise are taken

as Q = 1 × 10−6I4 and R = 1 × 10−4, where I4 is a unity matrix of the order 4.

The time variation of the estimated state variables are shown in Fig. 5.6 through

Fig. 5.9.

Table 5.1: Delayed neutron parameters

Group 1 2 3 4 5 6
βi (×10−3) 0.2112 1.4016 1.2544 2.5280 0.7360 0.2688
λi (s−1) 0.0124 0.0305 0.111 0.301 1.140 3.010

prompt neutron generation time, l = 10−3s
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Figure 5.5: Simulated power with Noise
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Figure 5.6: Estimated reactor Power

Table 5.2: Mean Squared Error

Quantity MSE
P(×10−4) C(×10−5) θF (×10−3) θC(×10−4)

EKF 2.5559 3.5796 3.9217 2.5039
MEKF-1 2.3689 3.4707 3.8165 2.4367
MEKF-2 2.1757 3.0784 2.2867 1.3578
MEKF-3 2.1411 2.7974 5.0878 3.3204
MEKF-4 2.9202 4.0440 15.0331 9.9755
MEKF-5 5.1567 8.9027 35.6921 23.7221
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Figure 5.7: Estimated delayed neutron precursors’ concentration
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Figure 5.8: Estimated average coolant temperature variation

From the simulation results, it is evident that the estimated values from MEKF

and EKF techniques are in good agreement with the true values. However, the

results obtained from the MEKF technique effectively reduces the noise than that

from the EKF technique. In order to compare the performance of the algorithms

quantitatively, the Mean Squared Errors (MSE) of the estimated quantities are

shown in Table 5.2. From the results, it is evident that the MSE of the results

obtained from the MEKF algorithm is significantly smaller than that from the

standard EKF technique. Moreover, it is evident that MSE for the estimated

quantities reduces with the increment in the scale, achieves minimum value at a

certain scale then increases due to the over-smoothing and delay in the estimation.
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Figure 5.9: Estimated average fuel temperature variation

With the increment in the wavelet scale, the length of the wavelet window increases

which allows more data points to pass through the filter. Therefore, over-filtering,

in turn, results in over-smoothing and delay in the estimation.

5.5 Summary

In this chapter, the stationary wavelet transform based multi-scale EKF technique

has been investigated for online estimation of state variables of the nuclear reactor

system. The proposed algorithm preserves merits of the EKF technique and effec-

tively estimates the state variable of the stochastic nuclear reactor system. Sta-

tionary wavelet transform effectively captures the multi-scale state variables and

provides additional smoothing effect in the estimation. Simulation results show

that the proposed algorithm outperforms the standard EKF algorithm. Moreover,

in order to estimate the temperate variation in each fuel bundle of a large nuclear

reactor, proper flux mapping technique may be integrated with the proposed state

estimation algorithm.



Chapter 6

Multi-scale PCA for Fault

Detection and Isolation

The subject matter of the previous Chapters was state estimation using EKF,

MEKF or RNDDR. Another important aspect of process monitoring procedures

is fault detection and Isolation (FDI). The estimation techniques reported in the

previous Chapters have some strong applications in the context of first princi-

ple model based FDI techniques. However, for a complex large-scale industrial

processes, first principle model based FDI techniques are generally undesirable.

This because development and calibration of a process model based on the first

principle is a difficult task and the model development exercise may result in a

too complicated model to be useful. Consequently, the data driven FDI meth-

ods are extensively investigated to serve the purpose. Moreover, in this context,

PCA based FDI techniques have found a prominent place. For the multi-scale sys-

tems, multi-scale variants of such techniques have also been reported. However,

enough attention has not been paid to analyse the reliability of such techniques

and effective isolation of the faulty variables remains underexplored.

In this chapter, a fault detection and isolation technique based on multi-scale

PCA framework is presented. It is shown here that the multi-scale PCA based

MSMP technique overcomes some of the shortcomings of conventional PCA by

retaining the statistical basis for the monitoring charts. Moreover, since each event

occurs over a certain frequency band, MSPCA possesses greater sensitivity in fault

92
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detection and process changes. The basic concepts relevant to the conventional

PCA based fault detection and isolation technique is described in Appendix A. A

new reconstruction based fault isolation procedure, the multiscale PCA algorithm,

reliability analysis of the proposed technique followed by the simulation results are

described as follows.

6.1 Fault isolation based on reconstruction

Dunia et al. [92] proposed a fault isolation procedure based on variable recon-

struction approach. Assuming that the faults are additive, the isolation procedure

suspects each of the measured variables for the fault and the magnitude of the

fault is estimated to reconstruct the sampled vector. Considering that the vari-

able xj of the sampled vector x is suspected for the fault, the reconstructed fault

free vector denoted as x̂j is calculated as

x̂j = x− f̂jζj j = 1, 2, · · · ,m (6.1)

where f̂j is the estimated fault magnitude, and ζj is a column vector representing

the faulty variable. It is of length equal to the number of sensors and its jth

element is one and the rest of its elements are zero. The detection index for the

reconstructed vector xj is calculated as

Index(x̂j) = x̂>j Mx̂j. (6.2)

Substituting the value of x̂j from (6.1) into (6.2) yields

Index(x̂j) = Index(x)− 2f̂jζ
>
j Mx + f̂ 2

j ζ
>
j Mζj (6.3)

Equating the derivative of Index(x̂j) to zero and solving it for f̂j yields

f̂j =
ζ>j Mx

ζ>j Mζj
. (6.4)
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Substituting f̂j from (6.4) into (6.3) yields

Index(x̂j) = Index(x)− κj (6.5)

κj =
(ζ>j Mx)2

ζ>i Mζj

making, Index(x) − Index(x̂j) = κj, which is the amount of reduction obtained

from Index(x) by reconstructed variable. As M is positive definite matrix, κj ≥ 0.

If the suspected variable is the same as the faulty variable, the largest reduction in

Index(x) is expected which can be assessed with the sensor validation index (SVI)

[92] defined as

SVIj =
Index(x̂j)

Index(x)
. (6.6)

Consider that, after suspecting each of the variables, in the first iteration of the

isolation procedure, the variable xp1 yields minimum SVI hence identified as faulty.

The fault detection index for the reconstructed vector is

Index(x̂p1) = Index(x)− κp1 (6.7)

In the case of multiple faulty variables, the detection index for the first recon-

structed variable could be expected to exceed the control limits. Therefore, if

Index(x̂p1) > γα, in order to isolate other faulty variables, the isolation process

is repeated by replacing the sampled vector x with the reconstructed vector x̂p1 .

The fault isolation process is iteratively repeated until the detection index for

the reconstructed vector is within the control limits. Assume that t variables are

found faulty i.e., total t iterations were required to bring the detection index of

the reconstructed vector within the control limits. The fault detection index after

tth iteration, Index(x̂pt) could be calculated using relation (6.7) as

Index(x̂pt) = Index(x̂pt−1)− κpt

= Index(x̂pt−2)− κpt−1 − κpt
...

= Index(x)−
t∑

k=1

κpk (6.8)
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where
∑t

k=1 κpk is the amount of reduction from Index(x) contributed by the set

of faulty variable such that Index(x̂pt) ≤ γα. In order to assess contribution of

each faulty variable, the contribution index is defined as

CIi =
κi∑t
k=1 κk

i = 1, 2, · · · , t (6.9)

where CIi is the contribution of ith faulty variable in the total fault.

6.2 Reliability analysis

Before application of the fault detection and isolation scheme, it is advantageous to

assess the likelihood for the successful fault detection and isolation. In this section,

a statistical test to measure autocorrelation in the time-series data followed by the

derivation for estimating the variance of the reconstruction error is presented.

6.2.1 Autocorrelation-test:Ljung-Box Q statistic

In order to assess the time-dependence of the measured variables, it is intuitive

to calculate the autocorrelation coefficients at different lags. Although coefficients

plotted over different lags provide a reliable measure for randomness, it is difficult

to compare the amount of randomness between two datasets containing a large

number of variables. This happens because a large number of plots has to be

compared which may raise concern over characterizing a better plot. Therefore,

instead of analyzing autocorrelation coefficients plotted at each lag, the overall

randomness is assessed by calculating the Ljung-Box Q statistic. It measures the

cumulative effect of the coefficients at first L lags which is defined as follows

Q = N(N + 2)
L∑
l=1

ρ2
l

N − l
(6.10)
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where N is the number of samples, ρl is the autocorrelation coefficients at lag l,

and L is the number of lags being tested. As discussed in [108], for the time-

independent samples Q statistic approximately follows the χ2 distribution with L

degrees of freedom.

6.2.2 Variance of Reconstruction Error

The reliability of the reconstruction procedure for the fault isolation derived in

section 6.1 can be assessed by estimating the variance of reconstruction error

(VRE) [92]. In the process to reconstruct the fault-free variation of the suspected

variable using all the measured variables, there is always a fraction of the variation

that cannot be reconstructed by the other variables leading to the reconstruction

error. In this subsection, the procedure to estimate the variance of reconstruction

error is presented.

Considering that the variable xi is faulty, the sampled vector x is denoted as

x = x∗ + fiζi (6.11)

where x∗ is the vector free from the fault in variable xi, ζi is the column vector

representing the index of the faulty variable and, scalar fi is the magnitude of

actual fault which would be zero if xi is fault-free. In the fault isolation procedure,

if the suspected variable is the same as the faulty variable (e.g. j = i), substituting

(6.11) into (6.1), the reconstruction error can be obtained as

x̂i − x∗ =
(
fi − f̂i

)
ζi. (6.12)

Using (6.11) in (6.4) yields

f̂i =
ζ>i M(x∗ + fiζi)

ζ>i Mζi
(6.13)

making,

fi − f̂i =
ζ>i Mx∗

ζ>i Mζi
. (6.14)
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Therefore, the reconstruction error is

x̂i − x∗ =
ζ>i Mx∗

ζ>i Mζi
ζi, (6.15)

and

‖x̂i − x∗‖2 = (fi − f̂i)2 =

(
ζ>i Mx∗

ζ>i Mζi

)2

. (6.16)

It can be observed that the reconstruction error is independent of the fault mag-

nitude and depends only on the individual variable. The VRE for variable xi,

denoted as ui is defined as the variance of the ith element of error vector x̂i − x∗.

ui = var
[
ζ>i (x̂i − x∗)

]
= ε

(
‖x̂i − x∗‖2

)
(6.17)

=
ζ>i ε

(
x̃∗x̃∗

>
)
ζi

(ζ>i Mζi)
2

(6.18)

=
ζ>i Rζi

(ζ>i Mζi)
2

(6.19)

where x̃∗ = Mx∗, and R = ε[x̃∗x̃∗
>

] is the covariance matrix which can be esti-

mated from the data collected during normal operation. Alternatively, VRE can

also be expressed in terms of variance of estimated fault magnitude,

ui = ε‖x̂i − x∗‖2 = ε(f̂i − fi)2 (6.20)

In the case of fault-free condition, ui = ε(f̂ 2
i ) which means VRE represents the

variance of estimated fault magnitude calculated from data for normal operating

condition. Moreover, in order to assess the overall effect of VRE, the weighted

average value of VRE can be calculated as

u =
1

m

m∑
i=1

qiui (6.21)

where qi denotes the weight assigned to the sensor i.
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6.3 Multiscale Principal Component Analysis

Measured variables of the industrial processes may have contributions of several

events like measurement noise, instrument failure, parameter drifts, process dy-

namics, and operator induced events. Each of these events may have features

with significant contribution over a certain time and frequency. Therefore, it is

important to analyze the variable in time as well as in the frequency domain si-

multaneously. Moreover, ignorance of the autocorrelated features of the measured

variables may influence the descriptive ability of PCA model which may lead to

incorrect control limits and higher PCs for given CVP [116]. As wavelets pos-

sess the ability to de-correlate the certain signals along with the ability to extract

multi-scale feature of the signals, the PCA models built over wavelet transformed

data could be expected to have some advantages i.e., each PCA model employed

at certain scale would be more sensitive to the abnormal events whose spectrum

is most significant at selected scale and, control limits calculated over such models

could be expected to be more reliable as wavelet transformed data are less autocor-

related. Steps of the proposed multi-scale PCA algorithm for the fault detection

and isolation are summarized in the flowchart shown in Fig. 6.1.

6.4 Simulation Results

In this section, the performance of the proposed multi-scale technique is com-

pared with that of the single scale counterpart. Process description followed by

simulation results are explained in the following.

6.4.1 TE Process

The TE process is well known industrial chemical process. It consists of five

operational units; namely reactor, condenser, liquid − vapor separator, stripper,

and compressor. The process produces two liquid products from the four gaseous

reactants by irreversible and exothermic reactions. The flow diagram of the process

is shown in Fig. 6.2. Table 6.1 lists the process variables. The manipulated
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Figure 6.1: flowchart for multi-scale PCA
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variables associated with process are x1 to x22, and x42 to x52. These variables are

sampled at every 3 minutes. Variables associated with composition measurements

are x23 to x41. Among them, variables associated with stream 6 and 9, i.e., x23

to x36 are sampled every 6 minutes, and variables associated with stream 11, i.e.,

x37 to x41 are sampled every 15 minutes. The detail description about the process

can be found in [1] and [117].

Russell et al. [1] generated the simulation data-set for the process which is widely

used as a benchmark for testing fault detection and isolation techniques. The data-

set can be downloaded from http://web.mit.edu/braatzgroup/links.html. The

training data contain 480 samples of 52 variables under normal operating con-

dition which is used to build the PCA model. Same data are transformed into

wavelet coefficients upto scale depth 3 to derive multi-scale PCA models. For all

the PCA models, the number of PCs are selected to retain 90% of cumulative

variance.

For each of the process variables, reliability parameters i.e., LBQ statistic and

VRE are calculated for the PCA model as well as for multi-scale PCA models.

Values of these statistics for the PCA model and multi-scale PCA at the finest

and the coarsest scale of decomposition denoted as MSPCA-1d and MSPCA-3a

respectively are plotted in plotted in Fig. 6.3 and 6.4. It can be observed that

the values for the variables in the multi-scale PCA models are significantly lower

than those for the single scale PCA model. Moreover, for the different PCA

models, the number of PCs along with equally weighted LBQ statistic and VRE

are shown in Table 6.2. It can be observed that the values of all these parameters

for the multi-scale PCA models are significantly smaller than the single scale PCA

model suggesting the superior quality of multi-scale PCA models. This is obvious

because in the wavelet projection space, the deterministic and stochastic part of

the measured variables are well separated and coefficients are decorrelated.

The testing dataset contains 960 samples of 21 faulty operations. In this work,

benchmark fault 5 and fault 17 are analyzed. A scenario of the benchmark fault 5

was that the condenser cooling water inlet temperature undergoes step disturbance

after 160th sample. As analyzed in [1], the significant effect of the disturbance is
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Table 6.1: Monitored process variables [1]

ID Variable Description ID Variable Description

x1 A feed (stream 1) x27 Component E (stream 6)
x2 D feed (stream 2) x28 Component F (stream 6)
x3 E feed (stream 3) x29 Component A (stream 9)
x4 A and C feed (stream 4) x30 Component B (stream 9)
x5 Recycle flow (stream 8) x31 Component C (stream 9)
x6 Reactor feed rate (stream 6) x32 Component D (stream 9)
x7 Reactor pressure x33 Component E (stream 9)
x8 Reactor level x34 Component F (stream 9)
x9 Reactor temperature x35 Component G (stream 9)
x10 Purge rate (stream 9) x36 Component H (stream 9)
x11 Product separator temperature x37 Component D (stream 11)
x12 Product separator level x38 Component E (stream 11)
x13 Product separator pressure x39 Component F (stream 11)
x14 Product separator underflow (stream 10) x40 Component G (stream 11)
x15 Stripper level x41 Component H (stream 11)
x16 Stripper pressure x42 MV to D feed flow (stream 2)
x17 Stripper underflow (stream 11) x43 MV to E feed flow (stream 3)
x18 Stripper temperature x44 MV to A feed flow (stream 1)
x19 Stripper steam flow x45 MV to total feed flow (stream 4)
x20 Compressor work x46 Compressor recycle valve
x21 Reactor cooling water outlet temperature x47 Purge valve (stream 9)
x22 Separator cooling water outlet temperature x48 Separator pot liquid flow
x23 Component A (stream 6) x49 Stripper liquid product flow
x24 Component B (stream 6) x50 Stripper steam valve
x25 Component C (stream 6) x51 Reactor cooling water flow
x26 Component D (stream 6) x52 Condenser cooling water flow

Table 6.2: Number of principal components, VRE and LBQ values of PCA
and MSPCA

Method Number of VRE LBQ-test
principal components value

PCA 32 0.5967 723.57
MSPCA-1d 30 0.5756 66.51
MSPCA-2d 28 0.4794 22.81
MSPCA-3d 25 0.3455 12.33
MSPCA-3a 20 0.2981 80.63
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Figure 6.3: LBQ statistic

0 5 10 15 20 25 30 35 40 45 50
0

0.4

0.8

1.2

Variable No.

V
ar

ia
nc

e 
of

re
co

ns
tr

uc
tio

n 
er

ro
r

 

 
PCA MSPCA 1d MSPCA 3a

Figure 6.4: Variance of reconstruction error

to induce step change in variable x52 (condenser cooling water flow-rate) which is

plotted in Fig. 6.5. The spectral range of the fault in a variable x52 has predomi-

nantly low frequency features, i.e., in a range matching with wavelet approximation

level at scale 3, which is 0 to 0.125fs. Moreover, due to the actions of various con-

trollers employed in the process, 32 process variables undergo transient variations

that settle in about 200 samples.

The combined fault detection index based on PCA with the corresponding control
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Figure 6.5: faulty variable for fault 5: x52

limits is plotted in Fig. 6.6(a). It can be observed that the fault detection proce-

dure fails to detect the fault after 200 samples of its occurrence. This also confirms

the observation of the PCA based fault detection indices in [1]. Consequently, the

fault isolation statistic cannot isolate the faulty variables continuously as shown

in Fig. 6.7(a). From these observations, the operator may conclude that the fault

has ‘disappeared’within 200 samples of its occurrence. However, the detection

index with MSPCA-3a model statistics continuously informs the operator about

the presence of the fault as shown in Fig. 6.6(b). Moreover, from the fault isola-

tion indices with MSPCA-3a model are plotted in 6.7(b), it can be observed that

variable x52 is continuously separated and other variables have settled to normal

operating condition within 200 samples of fault occurrence. The detection index

with MSPCA-3a model, i.e, with the coarsest PCA model continuously detect the

fault due to the fact the deterministic and stochastic portion of the variable is

effectively separated and the model effectively captures the coarse variation of the

variable x52.

A scenario of the benchmark fault 17 is classified as unknown [117]. However, the

variables with abnormal trends are x9, x21 and x51 which are plotted in Fig. 6.8.

The spectral range of the faulty variables, i.e., x9, x21 and x51 has a combination of

features dominant in the spectral range matching with the wavelet approximation

at scale-3 and with the detail at level-1. This means a range of frequencies is in the
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Figure 6.6: Fault detection index for fault 5 with (a) PCA (b) MSPCA-3a

a band of 0 to 0.125fs, and in a band of 0.5fs fs where fs = 2.8mHz is the Nyquist

frequency of samples. The fault detection index with PCA based model detects the

fault after the 160th sample as plotted in Fig. 6.9(a). The combined fault detection

index with coarsest model i.e, MSPCA-3a and finest model i.e, MSPCA-1d also

detects as plotted in Fig. 6.9(b) and 6.9(c) respectively. The coarsest model

captures the abnormal coarse variation of disturbance and finest model captures

abnormal high frequency variations of the disturbance. The information from

these two models suggests the operator for the possibility of different disturbances.
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Figure 6.7: Fault isolation index for fault 5 with (a) PCA (b) MSPCA-3a

Moreover, the isolation index with PCA model for the faulty variables are plotted

in Fig. 6.10(a). It can be observed that variable x51 is not isolated by the PCA

model which might be attributed to the high value of VRE for the selected model.

Furthermore, the isolation indices with MSPCA-3a and MSPCA-1d models are

plotted in Fig. 6.10(b) and 6.9(c) respectively. It can be observed that variables

with abnormal coarse and fine variations are effectively isolated by MSPCA-3a

and MSPCA-1d models respectively.
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Figure 6.8: Faulty variables for fault 17 (a) x9 (b) x21 (c) x51
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Figure 6.9: Combined detection index for fault 17 with (a) PCA (b) MSPCA-
3a (c) MSPCA-1d
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Figure 6.10: Fault isolation index for fault 17 with (a) PCA (b) MSPCA-3a
(c) MSPCA-1d
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6.5 Summary

A new reconstruction based fault isolation technique in multiscale PCA frame-

work is presented. Although reconstruction based isolation technique eliminates

the fault smearing effect, the reliability of the reconstruction procedure depends

on the VRE. Results of statistical test for autocorrelation obtained with wavelet

transformed coefficients indicate a significant reduction in auto-correlated features

in wavelet projection space as compared with the same for the raw measurement

space. Therefore, control limits for the PCA model derived over wavelet projec-

tion space could be more reliable than the same for the single scale PCA model.

Moreover, for the benchmark TE process, the detection and the isolation indices

obtained with the multi-scale PCA models effectively monitor some of the faulty

variables which are missed out by the single-scale PCA based indices. To find the

root cause of the fault, the domain knowledge of the operator is required to do

investigation based on the isolated faulty variables. The PCA models derived in

the projection space can give extra information about the frequency range of the

fault which is potentially useful for the operator to investigate the cause of the

fault.



Appendix A

Wavelets

Although there could be many ways to introduce wavelets, an intuitive way is

to start with the frequency domain representation of the signals by virtue of the

Fourier transform. The fundamental idea of the Fourier transform is to represent

the signal as a weighted combination of sinusoidal waves. These sinusoidal waves

are perfectly localized in frequency domain and possess some nice properties [121].

The major drawback, however, is that they are required to last forever, i.e., they

range from time t = −∞ to t =∞ in time domain. Due the representation of the

signal as a combination of everlasting waves, the Fourier transform fails to give

information about the localized time-dependent features of the signal.

In order to overcome this drawback, Gabor introduced the Gabor transform which

is also known as the short time fourier transform (STFT). The procedure of STFT

begins with a selection of an appropriate window function preferably having finite

time and frequency variances. For the signal x(t) ∈ L2(R), using window function

v(t) ∈ L2(R), the STFT is defined as an inner product of the input signal with

the window function located in the neighbourhood of time τ0 and modulated with

frequency Ω0

STFT(τ0,Ω0) =

∫ ∞
−∞

x(t)v(t− τ0)ejΩ0tdt (A.1)

The bar represents complex conjugate. Using Parseval’s theorem, STFT can also

be defined in terms of Fourier transform of the signal and window function as

115
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STFT(τ0,Ω0) =
1

2π

∫ ∞
−∞

X(Ω)V (Ω− Ω0)ej(Ω0−Ω)τ0dΩ (A.2)

where X(·) and V (·) are Fourier transforms of x(·) and v()̇ respectively. The ar-

guments τ0 and Ω0 indicate the movement of the STFT along with the time and

frequency respectively. The resolution of STFT in time and frequency is deter-

mined by the time and frequency variances of a window function. With this rep-

resentation, STFT can also be thought as slicing operator which picks the portion

of the signal in the neighbourhood of the time τ0 and frequency Ω0. By offer-

ing some time resolution, STFT provides a major improvement over the Fourier

transform. However, the time resolution is achieved only at the cost of loosing

some frequency resolution. A window function having a larger time variance can

offer better frequency resolution but poorer time resolution than the same with a

smaller time variance. However, arbitrarily small resolution in the time as well as

in the frequency is restricted by Heisenbergs uncertainty principle that states that

the product of the time variance and the frequency variance of the signal is lower

bounded.

Although STFT offers significant improvement over the Fourier transform, its ap-

plicability is severely limited due to two shortcomings. First, for most of the

real-time signals, higher resolution in time is desirable for the long lived low fre-

quency features and higher frequency resolution is desirable for the short lived

high-frequency features. However with STFT, once a window function is selected,

entire signal has to be analyzed with the same time and frequency resolution.

Moreover, as the selection for the optimal window function length is not possible,

it could involve a fair amount of compromise between the localization in time and

frequency.

In order to overcome these shortcomings, a transform that can provide flexibility

for the time and frequency resolution could be desirable. More precisely, a trans-

form that can resolve low frequency features of the signal with a longer window

function and high frequency feature with shorter window function could be pre-

ferred over STFT. In order to obtain a such flexible time-frequency resolutions, a
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wavelet transforms are developed based on the idea of using a scaling parameter

which depends on the frequency of the signal.

The wavelets meaning a ‘little waves’are derived by translation and dilation of

a finite energy mother wavelet function Ψ(t). In order to qualify as a wavelet,

function Ψ(t) has to satisfy some restrictive conditions [32]. A family of wavelet

functions can then be defined as

Ψτ0,s0 =
1√
s

Ψ

(
t− τ0

s

)
, s 6= 0 (A.3)

where τ0 is the translation parameter used to traverse along the length of the

signal, and s0 are scale parameter which determines compression or dilation of

the mother wavelet. The continuous wavelet transform (CWT) is computed as an

inner product of x(t) with Ψτ0,s0 , i.e.,

CWT(τ, s) =

∫ ∞
−∞

x(t)√
s

Ψτ,s (A.4)

The wavelet coefficient in the above equation reflects the amount of correlation

of the signal with the wavelet function with scale s in the neighbourhood of time

τ . The time-frequency tiling with the wavelet transform as compared with the

same of STFT in the time-frequency plane is shown in Fig. A.1. Using the CWT

coefficients, the original signal x(t) can be reconstructed back as

x(t) =
1

CΨ

∫ ∞
0

∫ ∞
−∞

CWT(τ0, s0)Ψτ0,s0

1

s2
ds0dτ0 (A.5)

where the constant

CΨ =

∫ ∞
0

|Ψ̂(Ω)|2

Ω
dΩ. (A.6)

This integral must be finite for perfect reconstruction. This condition is known

as ‘admissibility condition’of a wavelet function. This condition also implies that

Ψ̂(0) = 0 meaning
∫∞
−∞Ψ(t)dt = 0. Another way to interpretation is that the

wavelet function must be a band pass filter.

Although CWT can provide improvement over STFT, it possess following prop-

erties which could raise implementation concerns for many practical applications.
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Figure A.1: Time Frequency tiling with STFT and CWT

First, the CWT coefficients are obtained as a continuum of the inner product be-

tween the signal and the wavelet functions with continuous shifting and scaling

parameters. As these functions do not form an orthogonal basis, CWT coefficients

are highly redundant. For most of the practical applications, this redundancy is un-

necessary. Second, even without redundancy, infinite number of wavelet functions

are required to decompose the signal and recover it without loss of information.

In order to overcome the first difficulty, the discrete wavelet transform (DWT)

has been proposed which evaluates the CWT coefficients at selected scales and

translations. A family of discrete wavelets with dyadic translations and dilations is

derived by choosing a scale parameter as s = 2m,m ∈ Z and translation parameter

as τ0 = n2m, n ∈ Z. The family of DWT can then be obtained as

Ψm,n =
1

2m
Ψ

(
t− n2m

2m

)
, s 6= 0 (A.7)

By imposing the dyadic scaling and translations proportional to the length of the

wavelet, DWT ensures of the orthogonal wavelet functions. Moreover, stretching

in time domain by a factor of 2 will compress and shift the frequency spectrum

downward by the same factor. Assuming that the wavelet function corresponding

to scale parameter m = 0(s = 1) is an ideal band pass filter with pass band of

π to 2π. The spectrums for the wavelet functions for different scaling parameter

s = 2m, would be non-overlapping as shown in Fig. A.2. It is evident that the

ratio between the center frequency of the pass band of the wavelet function and
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Figure A.2: Non-overlapping bands of ideal wavelet filter

the width of this pass band is constant. This ratio is referred to as Q factor of a

filter which is constant for each wavelet function.

Every incremental time-stretch of the wavelet function, it can cover only half

the uncovered portion of the spectrum. Therefore, in order to cover entire spec-

trum, infinite number of wavelet functions would be needed. To eliminate this

requirement, a scaling function is conceptualized to replace infinite set of wavelet

functions by a single function with low pass filter characteristics. Consider that

the frequency axis is divided into two parts i.e., low frequency part Ω < Ω0 and

high frequency part Ω > Ω0 where Ω0 is centre frequency of the mother wavelet.

The wavelet decomposition of the signal is performed only for the spectrum with

Ω > Ω0. In order to recover the signal, the information corresponding to the

spectrum range Ω < Ω0 must be complemented. Therefore, a scaling function or

a father wavelet function Φ(t) that aggregates wavelet functions corresponding to

the spectrum range 0 < Ω0 equivalently with the scales larger than 1 with modulus

of its Fourier transform defined as [32]

|Φ̂(Ω)|2 =

∫ ∞
1

|Φ̂(sΩ)|2ds
s

=

∫ ∞
Ω

|Φ̂(λ)|2dλ
λ
. (A.8)

From the above equation and admissibility condition of the wavelet function in

(A.6), it is can be derived that

lim
Ω→0
|Φ̂(Ω)|2 = CΨ.

This ensures that the scaling function possess the characteristics of a low pass filter.

Moreover, just like the wavelet functions, a scaling function can also be scaled and

translated to generate family of functions. Therefore, with the introduction of the

scaling function, the signal x(t) can be expressed as combination of finite number

of wavelet and scaling functions.
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Multi-resolution analysis and filtering

The discretization of the scaling parameters also renders important attributes of

multiresolution analysis. Consider a signal x(t) approximated by a scaling function

with a scale depth m i.e.,Φm,n, n ∈ Z, and vector space spanned by this scaling

function is Vm. The coarseness of the estimation depends on the width of the

scaling function, i.e, scaling function at scale depth m + 1 would yield coarser

estimation than that with the function at scale depth m. The multiresolution

analysis (MRA) of the signal is a family of the approximations of the signal that

follow following axioms.

Axioms of MRA

There exists a ladder of subspaces, i.e., · · · ⊂ V−2 ⊂ V−1 ⊂ V−0 ⊂ V1 ⊂ V2 ⊂ · · ·

such that

1. {∪Vm}m∈Z = L2(R)

2. {∩Vm}m∈Z = {0}

3. There exists Φ(t) such that, V0 = spanΦ(tn), n ∈ Z

4. {Φ(t− n)}n∈Z is an orthogonal set

5. If f(t) ∈ Vm, then f(2mt) ∈ V0,∀m ∈ Z

6. If f(t) ∈ V0, then f(t− n) ∈ V0, ∀n ∈ Z

Theorem of MRA: Given the axioms, there exists a function Ψ(·) ∈ L2(R) such

that Ψ(2mt− n)m,n∈Z spans L2(R).

The proof of this theorem can be found in [122]. The space spanned by Ψ(2mt−n)

is denoted by Wm ⊂ Vm−1. which contains incremental detail while moving from

scale depth m to m− 1. Specifically,

Vm−1 = Vm ⊕Wm (A.9)
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Fulfilling above requirements, the familiar dilation relations between the wavelet

and scaling functions is given as follows [31]

1√
2

Φ(2−mt) =
∞∑

n=−∞

ha[n]Φ(2(−m−1)t− n) (A.10)

1√
2

Ψ(2−mt) =
∞∑

n=−∞

ga[n]Φ(2(−m−1)t− n) (A.11)

(A.12)

where ha[n] and ga[n], n ∈ Z can be thought of as the impulse response coefficients

of the analysis the filters that produce the coarser approximation and correspond-

ing details for the given approximation. Some important design requirements,

namely, vanishing moments, compact support, and regularity can be translated to

the conditions on the filters ha[n] and ga[n][27]. In order to reconstruct the given

approximation from the coarser approximation and corresponding details, a pair of

synthesis filters can be designed provided that requirements on alias cancellation

and distortion elimination are satisfied [28].
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EKF Algorithm

Consider a general discrete time nonlinear stochastic system represented as,

x[k] = f(x[k − 1],u[k − 1]) + w[k] (B.1)

z[k] = h(x[k]) + w[k] (B.2)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, f : Rn×m → Rn,

h : Rn → Rp, z is measured vector. k is the sampling instant. w[k] and v[k]

are random vectors characterizing the uncertainties associated with the process

model and measurement noise respectively. They are assumed to be mutually

independent, white and normally distributed with zero mean and known variance,

i.e., w v N (0,Q), v v N (0,R) where Q and R are process covariance matrices

for process uncertainties and measurement noise respectively. Moreover, the initial

state vector x0 is assumed to be gaussian distributed random vector with x0 =

N (x̂0,P0). P is covariance of error in the state estimate. The two step discrete

time EKF algorithm proceeds as follows.

Step 1: Prediction

x̂[k/k − 1] = f(x̂[k − 1],u[k − 1]) (B.3)

P[k/k − 1] = Φ[k]P[k − 1]Φ>[k] + Q[k] (B.4)
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where x̂[k + 1/k] is the a priori estimate of the state vector at instant k given

the knowledge of the system up to instant k − 1. x̂[k − 1] is a posteriori estimate

of the state vector x at the instant k − 1. Φ[k] = ∂f
∂x
|x̂[k−1],u[k−1] is the jacobian

matrix of system function calculated at instant k − 1.

Step 2: Correction

ν[k] = z[k]− h(x[k]) (B.5)

ζ[k] =
(
HP[k/k − 1]H> + R[k]

)
(B.6)

K[k] = P[k/k − 1]H>ζ[k]−1 (B.7)

x̂[k] = x̂[k/k − 1] + K[k]ν[k] (B.8)

P[k] = (I −K[k + 1]H)P[k/k − 1] (B.9)

where ν[k] denotes the discrepancy between estimated and measured variable. The

time series of this term is usually referred to as ‘innovation process’ as it provides

the additional information to the filter. Whiteness property of the term indicates

optimality of the filter. The iterative update of the Kalman gain K[k] ensures

optimality of the estimated state vector x̂[k] by minimizing the error covariance

matrix P[k]. For an observable system, the term ζ[k] is always positive definite

thus invertible [44].



Appendix C

PCA based fault detection and

isolation

PCA is a linear dimensionality reduction technique. It determines a set of ortho-

normal vectors called principal components (PC), decreasingly ordered by the

amount of variance explained in the direction of vectors. Consider the m number

of observations of n number of variables stalked in the matrix X ∈ Rn×m as follows

X =


x11 x12 · · · x1m

x21 x22 · · · x2m

...
...

. . .
...

xn1 xn2 · · · xnm

 (C.1)

If the variables are correlated, it is possible to summarize the variability of the

data in a lower p dimensional subspace (p� n) of the measurement space. Here,

p is the number of principal components. In order to obtain the PCA model,

eigen-decomposition of the covariance matrix S is computed as

S =
1

m− 1
XX> =

[
P P̄

]  Λ 0

0 Λ̄

 [P P̄
]>

(C.2)

where the diagonal matrix Λ ∈ Rp×p and the columns of the matrix P ∈ Rn×p

contain the first p largest eigenvalues in the descending order of magnitude and the
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corresponding p eigenvectors of the covariance matrix S respectively. Similarly,

the diagonal matrix Λ̄ ∈ R(n−p)×(n−p) and the columns of the matrix P̄ ∈ Rn×(n−p)

contain the remaining n − p eigenvalues in the descending order of magnitude

and the corresponding n− p eigenvectors of the covariance matrix S respectively.

Columns of matrix P and P̄ span PCS and RS respectively.

It is widely accepted and theoretically justified that the principal components

corresponding to largest eigenvalues of S characterize most of the dynamic process

variations, and principal components corresponding to smaller eigenvalues of S

characterize the random noise [123][124]. Therefore, it is important to select the

optimum number of principal components to ensure the quality of the PCA model.

If the number of PCs is underestimated, the model might miss-out important

features of the data. On the contrary, if the number of PCs is overestimated,

the model allows more noise which might mask the important features of the

data. Various techniques like cumulative percent variance (CPV), the scree test,

cross validation, parallel analysis, etc are used for this purpose. Among all these

techniques CVP is commonly used its simplicity and ease of computation. It is

defined as follows

CPV(l) =

∑l
i=1 λi
tr(S)

, (C.3)

where l is the smallest number of PCs retaining desired % of total variance.

Fault Detection

Once PCA model is developed using the data collected under normal operating

conditions, the multivariate sampled vector x ∈ R1×n scaled to zero mean and unit

variance is tested with the fault detection indices. Assuming that Λ is invertible,

the Hotteling T-squarred index can be calculated as follows

T 2 = x>PΛ−1P>x (C.4)
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T 2 index is sensitive to the variations into PCS as it directly assess the variations

along each principal component vectors. In order to measure variations along the

RS, SPE index (Q statistic) can be calculated as follows

Q = x>P̄ P̄>x (C.5)

Q statistic measures the random variations of the process. For three dimensional

measurement space and two dimensional PCS, a graphical illustration of the T 2

and Q indices are illustrated in Fig. C.1(a). The samples marked with ‘×’ are

indicate normal process operation, the ‘o’ samples indicate the violation of T 2

index, and the samples marked with ‘+’indicate violation of Q index. It can be

noted that the samples violating one index might not violate the other index.

Therefore, both the indices need to monitored simultaneously. Alternately, a com-

bined detection statistic, an optimal combination of both the statistics proposed

by is defined as follows

ϕ = T 2/T 2
α +Q/Qα = x>(

PΛ−1P>

T 2
α

+
P̄ P̄>

Qα

)x (C.6)

where T 2
α and Qα are control limits for T 2 and Q indices respectively. A graphical

illustation of the fault detection with the combined detection index is shown in Fig.

C.1(b). In this case also, the samples marked with ‘×’ indicate normal process

variation and the samples marked with ‘-’ indicate violation of detection index ϕ.

The unified fault detection index proposed by Alcala et al. [93] is calculated as

Index(x) = x>Mx. (C.7)

The standard detection indices i.e., Hotelling T 2, SPE, and combined detection

index ϕ can be calculated from this index if M = PΛ−1P>, M = P̄ P̄> and

M = PΛ−1P>/T 2
α + P̄ P̄>/Qα respectively. Assuming that the measured variables

are normally distributed with known mean and variance, the control limit with

(1− α)× 100% confidence level for the detection Index(x), as proposed by Alcala
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(a) T 2 and Q indices (b) Combined detection index

Figure C.1: A graphical illustration of the fault detection schemes

et al. [93] using the results of Box [125] are calculated as

γα = gχ2
α(h) (C.8)

where g = tr([SM]2)
tr(SM)

and h = [tr(SM)]2

tr(SM)
. Depending upon the expression of M , γα

will represent the control limit of SPE, Hotteling T 2 or combined detection index.

The fault in the sampled vector x is detected if Index(x) > γα. Once the fault

is detected, to identify the root cause of the event, it is necessary to isolate the

faulty variables.

Fault isolation

Fault diagnosis task could be very complex for the plant operators and engineers

because usually large amount of data are being monitored and as an effect of fault,

many of variables could experience out-of-control transients. An objective of the

fault isolation procedure is to determine a set of variables most relevant for fault

diagnosis. A good assistance regarding the faulty variables can be very useful to

the plant operators and engineers to significantly reduce the time to recover the

out of control process operation.

Traditionally, univariate statistical methods were employed to isolate faulty vari-

ables. In which each variable of the multivariate observation vector was analyzed

for its absolute deviations. As this technique do not consider the spacial correlation
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among the variables, fault isolation process may fail to identify faulty variables,

or it may give too many alarm signals for the variables which may mislead the

diagnosis procedure[68].

Contribution analysis is the most popular technique for the fault isolation in PCA

framework. It evaluates the contribution of the each variable of the sampled vector

into the fault detection index. Consider an alternative expression of Index(x) of

(C.7)

Index(x) = x>Mx = ‖M
1
2 x‖2

=
m∑
i=1

(
ζ>i M

1
2 x
)2

=
m∑
i=1

Ci (C.9)

where

Ci =
(
ζ>i M

1
2 x
)2

(C.10)

denotes the contribution of the variable xi into Index(x). ζi is a column vector

representing the suspected variable. It is of length equal to the number of sen-

sors and its jth element is one and the rest of its elements are zero. Moreover,

the different forms of the contribution analysis based isolation indices like partial

decomposition, angular decomposition, reconstruction based decomposition have

also been reported. However, these techniques involve a linear transformation on

the sampled vector, consequently a contribution index for the non-faulty variable

might get influenced by the faulty variable. This effect is commonly known as

‘fault smearing’which might lead to the misdiagnosis.
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fault-detection and isolation of variables associated with the onsite fault has been proposed. The 

proposed multi-scale PCA method is validated with the simulation results obtained for a 

numerical problem as well as for the benchmark Tennessee Eastman process data. The proposed 

multi-scale PCA method comply with the implicit assumptions of the PCA based multivariate 

statistical process monitoring. The simulation results suggest that the proposed technique 

outperform the standard PCA based technique. 
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