
 
 

Development of a Framework Useful in Creating Virtual 

Panels for PFBR Operator Training Simulator 

 

Ganesh Patel 

ENGG01201601042 

 

Bhabha Atomic Research Centre, Mumbai 

 

A thesis submitted to the 

Board of Studies in Engineering Sciences 

In partial fulfilment of requirements 

for the Degree of 

 

MASTER OF TECHNOLOGY 

of 

HOMI BHABHA NATIONAL INSTITUTE 

 

 

 

 

 

January, 2019 

 

 



 
 

 



 
 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

To my family, friends, and all those  

who work for Fast Breeder Reactors 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

Acknowledgements 

 

 

 I was extremely grateful to have Dr. M. L. Jayalal as my guide and thesis advisor. His 

encouragements and continuous motivation kept me going. It would not have been possible to 

complete this work without his constant effort and guidance. I express my gratitude towards 

him for all the things I learnt under the environment provided by him. Along with him my 

Technology advisor Shri DNVR Subrahmanyam was a constant supporter who always 

listened to what I have to say and he was always ready with suggestions. We used to have 

endless discussions on approaches to address a problem and I thank him for the effort he took 

to explain me all the intricacies involved in developing the software. He has provided a great 

deal of knowledge about simulator in such short period of one year. He introduced me to the 

project and suggested to take up this work as project for my post-graduation. I would also 

like to thank Shri. R. Jehadeesan, who provided the environment to work and completing all 

the official formalities regarding the security and project. 

 I would like to thank my reporting officers Shri S. Narasimhan, ACE(IT & 

Instrumentation), BHAVINI and Smt. H. Nalini, BHAVINI who both always helped me to 

focus on my project work and job synchronously. Any kind of help I ask for, they will always 

be ready with the helping hand. Along with them I would like to thank Director, Resources 

and Documentation Division, Atomic Energy Regulatory Board (AERB) and Shri S. A. 

Bhardwaj, Chairman, Atomic Energy Regulatory Board (AERB) who encouraged me for the 

project work.  



 

 I would also like to thank my committee members for their support, valuable and 

constructive comments which shaped the thesis and project work in the appropriate way. In 

addition to them HBNI as an institution has played a very important role in shaping the 

guidelines for the coursework and project work. I would like thank all the HBNI apex 

committee and staff who are constantly working to provide this opportunity for the students. 

 My big thanks to my friends, Vaibhav Khulbey, Nishu, and Ritu Rani for making life 

happier and easier. Thanks to everyone who tolerated me during the tenure of the work, as at 

times circumstances demanded to be present at many places simultaneously. 

 Finally, I would like to thank my family for their love and encouragement. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Contents 

 

Synopsis ..................................................................................................................................... I 

List of Figures ........................................................................................................................ III 

List of Algorithms ................................................................................................................... V 

List of Pseudocodes ............................................................................................................... VI 

List of Tables ........................................................................................................................ VII 

 

1 Introduction ........................................................................................................................... 1 

1.2    Simulator for Nuclear Reactors ..................................................................................... 2 

1.2.1    Types of Simulator ................................................................................................. 4 

1.3    PFBR Simulator ............................................................................................................ 5 

1.3.1    Simulator Specifications ......................................................................................... 5 

1.3.1.1    Plant consoles................................................................................................... 5 

1.3.1.2    Computer System ............................................................................................. 5 

1.3.1.3    Instructor Station .............................................................................................. 6 

1.3.2    Limitations of PFBR Simulator .............................................................................. 6 

1.3.3    Solution Proposed for overcoming the limitation of PFBR simulator ................... 8 

1.4    Scope of the Project....................................................................................................... 8 

1.5    Thesis Outline ............................................................................................................... 9 

 

2 Hardware and Software Architecture of the Simulator .................................................. 10 

2.1    Hardware Architecture of PFBR Simulator ................................................................ 10 

2.1.1    Simulation Computer ............................................................................................ 11 

2.1.2    Control Room - Panels and Consoles ................................................................... 11 

2.1.3    I/O System ............................................................................................................ 11 

2.1.4    Local Control Centre (LCC) ................................................................................. 12 

2.1.5    Data Highway ....................................................................................................... 12 



 

2.1.6    Instructor Station .................................................................................................. 13 

2.1.7    Process Computers ............................................................................................... 13 

2.2    Software Architecture of PFBR Simulator.................................................................. 13 

2.2.1    Daemon Processes ................................................................................................ 15 

2.2.1.1    Database Server ............................................................................................. 16 

2.2.1.2    MDSM ........................................................................................................... 16 

2.2.1.2.1    Callback Function ....................................................................................... 17 

2.2.1.2.2    Registering a Process .............................................................................. 18 

2.2.1.2.3    Registering and De- Registering the Variables ....................................... 19 

2.2.1.2.3.1    Registering for Publishing ................................................................ 19 

2.2.1.2.3.2    Registering for Subscription ............................................................. 20 

2.2.1.2.3.3    De-Registering the Variables ............................................................ 22 

2.2.1.2.4    Publishing Data ....................................................................................... 23 

2.2.1.2.5    Fetching Data .......................................................................................... 24 

2.2.1.2.6    Sending a Message .................................................................................. 24 

2.2.1.2.7    Receiving a Message ............................................................................... 25 

2.2.1.2.8    De-Registering the Process ..................................................................... 26 

2.2.1.3    Logger ............................................................................................................ 26 

2.2.2    Process Models ..................................................................................................... 27 

 

3 Interaction between Models of the Simulator .................................................................. 29 

3.1    External Models .......................................................................................................... 29 

3.2    Basic Operation of Simulator Component .................................................................. 31 

3.2.1    Initialisation .......................................................................................................... 31 

3.2.2    Run Time .............................................................................................................. 32 

3.3    Interaction between Simulator Components ............................................................... 33 

 

4 Development of Framework to Create Virtual Panels .................................................... 35 

4.1    Virtual Panels .............................................................................................................. 35 

4.2    Tools used for Development ....................................................................................... 36 



 

4.2.1    Qt .......................................................................................................................... 36 

4.3.2    SQLite ................................................................................................................... 37 

4.3    Basis for selection of tools of development ................................................................ 38 

4.4    Types of Signals .......................................................................................................... 39 

4.5    Development Methodology ......................................................................................... 40 

4.6    Details of Data Structures Used .................................................................................. 41 

4.7    Development of Panels................................................................................................ 47 

4.8    Panel Components and their Implementation ............................................................. 49 

4.8.2    Pushbutton ............................................................................................................ 50 

4.8.2.1    Momentary Type Pushbutton ......................................................................... 50 

4.8.2.2    Latching Type Pushbutton ............................................................................. 51 

4.8.3    Display Component .............................................................................................. 52 

4.8.3.1    LED ................................................................................................................ 52 

4.8.3.2    Semaphore Indicator ...................................................................................... 53 

4.8.3.3    Digit Display .................................................................................................. 54 

4.8.3.4    Bar Graph Indicators ...................................................................................... 55 

4.8.4    Selector Switches .................................................................................................. 55 

4.8.4.1    Normal Selector Switches .............................................................................. 56 

4.8.4.2    Key Selector Switches ................................................................................... 56 

4.8.4.3    Gang Selector Switches ................................................................................. 58 

4.9    Parsing the User Interface (UI) and Storing Information ............................................ 58 

4.10    Pre-processing of the Information and Registering the Variables ............................ 63 

4.11    Interaction with User Interface (UI) .......................................................................... 68 

4.11.1    Pushbutton .......................................................................................................... 68 

4.11.2    Selector Switch ................................................................................................... 69 

4.11.3    Toggle Switch ..................................................................................................... 70 

4.12    Updating the User Interface (UI) .............................................................................. 71 

4.13    Results of the Development ...................................................................................... 74 

 



 

 

5 Integration of Virtual Panels with the Simulator ............................................................ 78 

5.1    IPC Implementation and Registering Process with Simulator .................................... 78 

5.2    Communication with the Executive ............................................................................ 81 

5.3    Sending User Interface (UI) Responses to Simulator ................................................. 82 

5.4    Saving the state of User Interface (UI) and De-Registering the Process and Variables

 .................................................................................................................................... 82 

5.5    Results of Integration .................................................................................................. 83 

 

6 The Methodology of reusing the Framework ................................................................... 86 

6.1    Creating a virtual panel ............................................................................................... 86 

6.2    Incorporating Components in the Virtual Panel .......................................................... 87 

 

7 Summary and Future Work .............................................................................................. 89 

7.1    Future Work ................................................................................................................ 90 

 

Annexure A ............................................................................................................................. 91 

A.1    Database Files used for DB3 setup ............................................................................ 91 

A.2    Types of Widget Component and Actions with Codes .............................................. 92 

 

Annexure B ............................................................................................................................. 93 

B.1    Pseudocode for the Algorithms .................................................................................. 93 

B.1.1    Pseudocode for Algorithm 4.1 ............................................................................. 93 

B.1.2    Pseudocode for Algorithm 4.2 ............................................................................. 95 

B.1.3    Pseudocode for Algorithm 4.3 ............................................................................. 95 

 

References ............................................................................................................................... 98 



I 
 

 

 

Synopsis 

 

 Nuclear power plants require highly skilled and trained manpower in order to reduce 

the possibility of any undesirable event. Training simulators are a positive step towards safety 

of nuclear power plants. Prototype Fast Breeder Reactor is a nuclear reactor situated at 

Kalpakkam, India. An Operator Training Simulator (OPTS) is designed and developed for 

training the operators of PFBR. PFBR simulator is a full scope replica type simulator. The 

simulation computer is heart of the simulator as it performs all the calculations and 

computations based on the mathematical models of the physical systems of the plant. PFBR 

simulation computer is based on ALPHA architecture which is obsolete now. The Tru64 

Unix operating system is fully hardware dependent and in case of failure of processor, 

operating system as well as simulation software would stop working. The approach followed 

to overcome this problem was to port the simulator to Intel platform with an open source 

operating system which is hardware independent. Simulator consists of three main models - 

process models, logic models, and virtual panels. Among these models, process models and 

logic models are already ported. This project focuses on development of framework to create 

virtual panels using an open source tool and integrating them with the other two models. 

Testing of the framework is done by creating virtual panels for some hardware panels and 

integrating them. 

 Virtual panels are the soft panels which emulate hardware control panels with 

animated equipment widgets to virtualize operator interface. Virtual panels are useful during 

commissioning phase and during failure of hardware panels. Widgets show real time 



II 

behaviour for changes in application data. These include alarms, pushbuttons (momentary 

and latching type), selector switches, gang-selector switches, LEDs, display segments like 

LCD, bar indicators, ammeters, voltmeters, synchroscope, etc. 

 Tools used for development are Qt and SQLite. Both of these tools are open source 

under General Public User's License (GPL). Development of a generic framework has been 

carried for creating virtual panels and addition of new components to the project. Framework 

enables addition of new virtual panels and components to the project thereby reducing 

development time and effort for expansion. 

 The framework is developed in such way that virtual panel is parsed and information 

related to components is extracted and stored into a database. Not saving the information in 

database will require parsing the virtual panels multiple times, which would degrade the 

response time of the panels. Data is accessed for the virtual panel currently open and not for 

all the panels. Databases used in the project are in-memory databases which are much faster 

than the disk storage databases. 

 

 

 

 

 

 



III 

 

List of Figures 

 

 

1.1    Flow of development of simulator....................................................................................4 

1.2    Simulation Computer........................................................................................................7 

2.1    I/O system and its interactions........................................................................................12 

2.2    Organisation of simulator software components............................................................14 

3.1    Initialisation of simulator components…........................................................................31 

3.2    Runtime operation of simulator component....................................................................32 

3.3    Simulator software system and its components..............................................................34 

4.1    Top Screen of virtual panels............................................................................................47 

4.2    Alarm tab of panel 1........................................................................................................48 

4.3    (a) State of no alarm for Log No. (b) State of alarm for PCSL LOGIC HEALTHY…..49 

4.4    (a) ALARM TEST pushbutton in released condition. (b) ALARM TEST  

         pushbutton in pressed condition......................................................................................51 

4.5    (a) EMERGENCY pushbutton in released condition. (b) EMERGENCY  

pushbutton in pressed condition...................................................................................51 

4.6    (a) RED color LED. (b) GREEN color LED. (c) YELLOW color LED........................52 

4.7    (a)Two LED set for each of the three DSRDM(ENERGISED/DEENERGISED) 

         (b)Two LED set for each of three DSRDM(LOCKED/UNLOCKED) 

         (c)Two LED set for each of nine CSRDM(ENERGISED/DE-ENERGISED) ..............53 



IV 

4.8    (a) Semaphore indicator with value 1 

         (b) Semaphore indicator with value 0.............................................................................54 

4.9    Digit display…………....................................................................................................54 

4.10   Bar graph indicator........................................................................................................55 

4.11   (a) Two position Selector Switch(SS). (b) Three Position SS. (c) Four Position 

         SS. (d) Five Position SS. (e) Eight Position SS. (f) Twelve Position SS…...................57 

4.12   (a) Two positions key selector switch...........................................................................57 

4.13   Key selector switch and two LED combination...........................................................58 

4.14 (a) Gang Selector for DSR selection 

        (b) Gang Selector for range selection..............................................................................58 

4.15   ALARM tab of panel 1.................................................................................................75 

4.16   DISPLAY tab of panel 1..............................................................................................76 

4.17   CONTROL tab of panel 1............................................................................................77 

5.1    Integrated ALARM tab of panel 1................................................................................83 

5.2    Integrated DISPLAY tab of panel 1.............................................................................84 

5.3    Integrated CONTROL tab of panel 1...........................................................................85 

 

 

 

 

 

 

 

 



V 

 

List of Algorithms 

 

 

4.1 Identification of component widgets and storage of information….................................59 

4.2 Insertion of data into databases.........................................................................................63 

4.3 Segregation and storage of component widgets................................................................65 

4.4 Updating virtual panel and component widgets................................................................72 

 

 

 

 

 

 

 

 

 

 



VI 

List of Pseudocodes 

 

4.1 Actions when pushbutton is pressed/released…...............................................................69 

4.2 Actions when selector switch pushbutton is Pressed/Released.........................................70 

4.3 Actions when toggle switch pushbutton is Pressed/Released...........................................71 

4.4 Identification of components widgets and storage of information...................................94 

4.5 Insertion of data into the databases...................................................................................95 

4.6: Segregation and Storage of component widgets..............................................................95 

 

 

 

 

 

 

 

 

 

 



VII 

 

List of Tables 

 

2.1 MDSM message types.................................................................................................18 

4.1 Comparison of Qt and GLG toolkit............................................................................39 

4.2 Table for storing widget information..........................................................................42 

 

 



1 
 

 

 

Chapter 1 

 

Introduction 

 

Computer systems form an integral part of our life. They are being used in various safety 

critical applications. They are used in simulating the safety critical systems. This chapter 

describes the need for a simulator for a nuclear power plants, specifically in training of 

manpower for efficient operation of the reactor. There are various types of simulators based 

on requirement and type of usage. This chapter also explains the need and objectives of the 

project and underlying limitations of the PFBR simulator. 

 

1.1    Prototype Fast Breeder Reactor (PFBR) 

 Prototype Fast Breeder Reactor (PFBR) [1,2] is a 500 MWe pool type, mixed oxide 

fuelled, sodium cooled fast reactor situated at Kalpakkam, India. The core thermal capacity is 

1250 MWt. Design and layout of the reactor has been made taking into consideration safety 

requirements, constructability, maintainability, security and economics. 

 No industry is immune from accidents, but all industries learn from them. Safety 

focuses on unintended conditions or events leading to radiological releases from the 

authorised activities. Most of the events which are known as design basis events can be 



2 
 

thought of beforehand and actions required during these events can be planned in advance. 

Training the nuclear reactor operator is one of the most effective ways to avoid the safety 

related incidents. An operator should not be exposed to any conditions during the operation 

of reactor which the operator has not encountered earlier. One of the most effective ways to 

reduce safety related incidents is to expose and train the operator before the event itself. This 

can be done by simulating the events in a much safer environment like simulator rather than 

in nuclear reactor itself. 

 

1.2    Simulator for Nuclear Reactors 

 Nuclear reactors are one of the most critical systems in the world. Need of simulator 

for a nuclear power plant was envisaged as soon as the reactors became common. Human 

error is evidently the major reason for accidents as seen in past. Simulators play a vital role in 

enhancing plant safety by the reducing human errors. However, simulators cannot simulate 

the mechanical issues such as fuel failure, beyond design basis accidents, etc. Operators of 

nuclear reactor are first trained on the simulator before starting work in nuclear reactor.  

 Training[1,3,4] is given to the new operators as well as the qualified operators as a 

refresher course to maintain their skills at peak levels. Computer based Operator Training 

Simulator (OPTS) is a vital tool for this purpose. Computer based OPTS plays a major role in 

imparting best possible training to operators, due to the flexibilities and functionalities it 

provides. It is possible to impart operation training and qualify the operator even before the 

reactor is commissioned. OPTS can be initialized to one of the operational states or it can be 

switched from one operating state to another without any delay. This is a very useful feature 

for operation training and contributes significantly towards reducing the training time. Most 

of the malfunctions and emergency drills for which training is required cannot be allowed to 



3 
 

occur in the reactor due to safety and economic reasons. This will cause hindrance to normal 

operation. OPTS offers this flexibility with ease and elegance. 

 If a trainee operator makes a mistake while training in real plant, the instructor has to 

step in and correct the mistake for reasons of safety. It would be more desirable to let the 

trainee see the consequences of error made, to make the most lasting impression of the proper 

operating procedures. Features like freezing and backtracking facilitate this in the simulator. 

For example, operator raises the control rod beyond the required limit, then instructor can 

step in, freeze the simulator and explain the conditions along with the actions to take. 

Instructor can backtrack to the case where simulated reactor was in safe condition. 

 Computer simulation [3,4,5,6,7,8] involves developing mathematical models of sub-

systems and components of the plant to derive its characteristics and behaviour without 

actually constructing the system concerned. A simulator is essentially made up of software 

programs that are designed to replicate a power plant or a critical system. A power station 

training simulator is a training tool designed to simulate the steady state and dynamic 

responses of a power station in real time to operator actions. To build an OPTS, the 

subsystems and components which contribute towards the plant dynamics and those 

associated with the operation and control functions of the reactor are identified to start with. 

Their individual behaviour and interlink among them are mathematically modelled. The 

mathematical model is then translated into computer code that will eventually run in the 

simulation computer. Flow of development of simulator is depicted in Figure 1.1. 

 The simulation software is developed in such a way to take input from operator 

activated control panels, process it in accordance with the plant model and give the computer 

generated output on the control panel by actuating appropriate devices or their equivalents. It 

also supports an instructor station from where a training instructor can interact with the 



4 
 

computer software to give appropriate training lessons to the operator, insert different plant 

scenarios, monitor the operator response and evaluate his performance. 

 

 

Figure 1.1: Flow of Development of Simulator 

 

1.2.1    Types of Simulator 

 Training Simulators are broadly classified based on two parameters namely [1,5,8], 

extent of the plant to be covered in simulation and fidelity in the replication of the plant 

control room. Based on the extent of the plant to be covered, the simulators are classified as 

full scope or subsystem simulators and based on fidelity in the replication of the plant control 

room, the simulators are classified as replica or non-replica simulator [9,10,11]. 

 In full scope [12] simulators all the systems are covered in the design of the simulator 

but subsystem simulator comprises of only few subsystems of the plant. The accuracy of the 

models in both the steady and dynamic situations will be high for the full scope simulators. In 

replica type, simulators will have a control room and its panels which are one to one replica 

of actual plant control room, down to desks, chairs and lights. A built-in advantage of the 

replica type simulator is its ability to do strict procedural training. As with inplant training, 

trainee can learn location and function of each instrument and control. In non-replica 

simulators, all the indicators and controls may not be same as the real plant control room. 

 

Mathematical Model Algorithm Simulation Software 



5 
 

1.3    PFBR Simulator 

 PFBR Operator Training Simulator is a full scope, replica type simulator with 

objective of providing comprehensive training to the operators in the nuclear power plant 

operations. Simulation software models subsystems and components of the plant like 

neutronics, reactor core, control rod drive mechanisms, core monitoring, reactor protection 

systems, primary sodium system, secondary sodium system, and steam water system. 

 

1.3.1    Simulator Specifications 

 The training simulator consists of plant consoles, computer systems and instructor 

station. 

1.3.1.1    Plant consoles 

 Plant console of the simulator is identical to the operator console and control room 

panels of the reactor. Operator‟s console handles overall monitoring and most frequently used 

controls of the plant. Control room panels are provided on the system basis in order of startup 

logic, shutdown systems, primary sodium system, secondary sodium circuits, steam 

generators, turbo generators, electrical power supply, decay heat removal, radiation 

monitoring, and RCB isolation. The display, indicators and switches in the simulator‟s plant 

console are identical to the actual plant console. 

1.3.1.2    Computer System 

 The computer system consists of simulation computer and front end Input/ Output 

(I/O) computer. The simulation computer computes the plant dynamics and the front end 

computer handles input and output signals from/to operator console and control room panels. 



6 
 

1.3.1.3    Instructor Station 

 The instructor station consists of a CRT display, keyboard and mouse. The 

instructor‟s console provides for the selection of the mode of operation of the simulator, 

malfunction selection and monitoring the plant variables. It also provides controls for the 

initialisation and monitoring of simulator runs. The instructor can pause at any stage of the 

simulation and continue or back track up to a number of time units. The instructor station also 

includes recording facility for audio and video to monitor the operator‟s response including 

trainee‟s reflexes. 

 

1.3.2    Limitations of PFBR Simulator 

 Simulation computer is heart of the simulator system. It executes numerous codes 

representing the mathematical models of the various sub systems of the plant in sequence and 

time frame representing the complete behaviour of plant. It accepts various commands from 

the operator like increase/decrease the flow, raise/lower a control rod, start/stop a pump, etc., 

processes it accordingly with the mathematical models, generates the responses, plant 

parameters and outputs them in the required form on the panels and consoles. It updates the 

database in the plant computer for providing the information in display stations. In order to 

generate these responses in the real time according to the plant dynamics, the simulation 

computer should be a powerful system to execute the various mathematical models in time. 

 Non availability of simulation computer leads to stalling of all the activities of whole 

simulator system. Simulation computer consists of:  

 Compaq Alpha server ES45 with quad alpha chip processors 

 Compaq Tru64 Unix operating system 



7 
 

 Cache memory, RAM, Hard disk and other utilities are in compliant with the 

requirement. 

The architecture of the simulation computer is shown in Figure 1.2. 

 

           

 

Figure 1.2:  Simulation computer 

 

 Alpha Server [13] was produced by Digital Equipment Corporation (DEC) which was 

acquired by Compaq in 1998, which subsequently merged with Hewlett-Packard (1998). 

Compaq, being an Intel customer sold all intellectual property rights to Intel. HP also 

discontinued producing more alpha server and discontinued its services in 2008. Compaq also 

developed operating systems, specifically for alpha servers which includes Tru64 Unix. 

Tru64 Unix runs only on alpha based processors. After discontinuation of services for alpha 

architecture, it is difficult to find spares for alpha server. In case of major problem, revival of 

the system will be very difficult. 

 

ALPHA PROCESSOR 

Tru64 UNIX OS 

SIMULATION SOFTWARE 

 

 



8 
 

1.3.3    Solution Proposed for overcoming the limitation of PFBR simulator 

 The approach followed is to use Intel based simulation computer. Intel, being a leader 

in market will stay longer, and operating system can be processor independent. Even Intel 

goes out of the market whole code can be again compiled and used for the new processor and 

operating system chosen, if the operating system exists for the new processor. Operating 

system chosen is CentOS [20], which is a Linux distribution that provides a free, community 

supported computing platform facility for desktops, mainframes, servers and workstations. 

 Porting the simulation software to the new platform has reached mature level. Most of 

the models of the simulator are ported to the Intel platform. For completeness, virtual panels 

need to be ported. This project deals with the development of framework for creating virtual 

panels and integrating them with the Intel platform. Development ideas have been taken from 

the earlier implementation with functional changes to suit the simulator environment. 

Development is done using open source [21,22] tools Qt and SQLite. Integration of the 

virtual panels with the other models is also done and tested by developing some of the panels. 

Development of a framework is done to ease the further development.  

 

1.4    Scope of the Project 

 Scope of the project covers development of a framework useful for creating virtual 

panels for PFBR operator training simulator. Virtual panels developed are integrated with the 

process model and logic model through the framework. Some of the panels are developed to 

test the framework and their integration with the simulator. Scope of the project does not 

cover creation of all the virtual panels for the simulator. 



9 
 

1.5    Thesis Outline 

 Chapter 2 covers hardware and software architecture of the simulator. In hardware 

architecture, major hardware components and their interactions with the other systems is 

covered. Software architecture explains the important processes involved in the simulation 

software. Important processes like daemon processes, process model and logic process are 

discussed. Major functions of these processes and their interaction mechanism with the other 

processes is also discussed in detail. 

 Chapter 3 covers the interaction between the modules of the simulator. It covers 

addition of new modules to the simulator which are known as external modules. Basic 

operation of simulator components during initialisation and run-time is also discussed in 

detail. 

 Chapter 4 covers development of framework for creating the virtual panels. It 

discusses the methodology used. Information and data stored in the database will be useful 

while integration of process and variables with the simulator daemon processes. After 

integrating and collecting the data from simulator, how it is updated into the screens is also 

discussed. At the end, development results are depicted. 

 Chapter 5 covers integration of the process with the simulator. It discusses registering 

and de-registering of the process. Saving the state of the simulator is discussed. An example 

of fully developed and integrated panel 1 is shown. 

 Chapter 6 covers the methodology of reusing the framework developed to create 

virtual panels.  

 Chapter 7 covers the summary of the project and future work that can be done with 

the project. 



10 
 

 

 

Chapter 2 

 

Hardware and Software Architecture of the Simulator 

 

Hardware and Software form a crucial part of computer based system. Understanding of 

system is incomplete until the hardware-software interlink is not analysed. This chapter 

provides an insight on the hardware and software architecture of the PFBR simulator. It 

includes the components and interactions among them. 

 

2.1    Hardware Architecture of PFBR Simulator 

 Hardware of PFBR simulator provides an environment of the control room to the 

operators for training and qualification. The hardware of the simulator can be broadly 

classified into following subsystems. Each of the subsystems is discussed in subsequent 

sections. 

1. Simulation Computer 

2. Control Room - Panels and Consoles 

3. I/O System 

4. Local Control Centres 

5. Data Highways 



11 
 

6. Instructor Station 

7. Process Computers 

2.1.1    Simulation Computer 

 Simulation computer is heart of the total simulator system. It executes numerous 

codes representing the mathematical models of the various subsystems of plant. It updates the 

database in the plant computer for providing the information in the display stations.  

2.1.2    Control Room - Panels and Consoles 

 Simulator panels and consoles are replica of the main plant control room. The layout 

and position of devices on panels and consoles is identical. Operator controls the reactor from 

the console. Panels are having all the information for the system. Console contains minimal 

information that is required to control the reactor and take immediate actions. Console and 

panel contain many components which are redundant. For the sake of simplicity and avoiding 

confusion term “panel” is used in context of virtual panels for both the consoles panels. 

2.1.3    I/O System 

 The I/O system corresponding to each simulator panel is housed in the electronic 

cabinet behind the panel itself. The number of Analog Input, Analog Output, Digital Input 

and Digital Output interface cards in each I/O system depends on the number of signals 

handled in the respective panels. I/O system consists of three building blocks, I/O controller, 

I/O bin and power supply units. 

 The I/O controller is an industrial grade computer which consists of suitable interface 

boards for communicating with various analog and digital I/O boards. I/O bin consists of four 

varieties of I/O boards, viz., Analog Input, Analog output, Digital Input and Digital output 

boards. These boards interface with the control panel devices data from analog to digital and 



12 
 

digital to analog wherever required and exchange data with the I/O controller. Each of the I/O 

systems has an instrumentation power. Figure 2.1 depicts the I/O system and its interactions 

with the other hardware. 

 

 

Figure 2.1: I/O System and its Interactions 

 

2.1.4    Local Control Centre (LCC) 

 Local control centres (LCC) are simulated by computers. LCC gets signal from field 

in the actual plant but in simulator, they get simulated field data depending on the reactor 

state from the simulation computer. 

2.1.5    Data Highway 

 All systems located in the LCCs transmit data and messages to control room through a 

dedicated data highway. Data highways are dual Local Area Networks (LANs). Ethernet 



13 
 

switches in LCCs receive data, once every scan cycle from the systems and forward to the 

data highway. Display station display data and messages received. 

2.1.6    Instructor Station 

 The instructor station is used by instructor to monitor the various operations being 

performed by the trainee, create various incidents/malfunctions for training. During the 

training session, the simulator operations are monitored and controlled through the instructor 

station. 

2.1.7    Process Computers 

 The process computers receive plant information from simulation computer, performs 

processing, updates plant parameters database, and store the data. Graphic display stations on 

operator console and panels receive data from process computers and displays in formats like 

mimic diagrams, bar graphs, soft graphs, and soft alarms. 

 

2.2    Software Architecture of PFBR Simulator 

 The simulation computer executes software codes representing mathematical models 

of various sub-systems of PFBR in real-time. The simulation software components are 

explained in following sections. Plant computers (PC) receive plant data from the simulation 

computer, process them and update in database. This plant information is fed to the display 

stations on the console and panels for viewing in different formats. The panels and operator 

consoles are replica of the PFBR control room with the same devices and layout. The 

hardwired systems are interfaced with simulator using I/O systems handling analog and 

digital signals. Local control centre (LCC) refers to the instrumentation and control systems 

simulated using actual hardware or alternative computer systems. 



14 
 

Simulator software system organisation

INSTRUCTOR EXECUTIVE LOGGER DB SERVER

LOGIC MODEL VIRTUAL PANEL 
MODEL

PLANT CONTROLS

I/O PANEL 
INTERFACE

FHS EXTERNAL 
MODEL

DDCS INTERFACE

MDSM

UDP 

FHS software 
modules

I/O computer 
software

UDP-TCP/IP 
Gateway 
modules

Electrical system 
Gateway module

Various HMI and 
process computer

BHEL 
interface

UDP UDP 

TCP/IP 

SIMULATOR SERVER 
(TRU64 UNIX)

UDP 

UDP 

BHEL 
SIMULATOR 

AND DCS
Electrical system 

HMI

TCP/IP 

Figure 2.2: Organisation of simulator software components 

  Organisation and interactions between the simulator software components is depicted 

in figure 2.2. MDSM forms a virtual intermediate layer using which all the simulator data is 

communicated among the processes. Components of simulator explained in this chapter are 

core components. Some of the components are added externally and are covered in chapter 3. 

 



15 
 

 All the processes registered with the MDSM use the MDSM functions or the IPC 

wrapper implemented on top of MDSM functions. IPC wrapper abstracts the direct use of 

MDSM functions and hides the complexity. Two components can interact with each other 

using only through MDSM. Database access is also done using the MDSM functions. Figure 

2.2 depicts the communication between the components of the simulator. 

 Simulation software provides simulation model libraries, tools to build and integrate 

components and run-time environment for running simulator in real-time. It includes the 

following application specific tools in addition to core component of simulator – Instructor, 

Executive, Database server, IC logger, Messaging and Data Sharing Mechanism. 

  Process Modeller – For simulating the plant process models 

  Logic Modeller  - For simulating process controls 

 Virtual Panels - For simulating the hardware panels 

Following sections explain in detail the software components of the simulation 

software. 

 

2.2.1    Daemon Processes 

 A daemon [31] is a long-running background process that answers requests for 

services. Daemon processes are often started when the system is bootstrapped and terminate 

only when the system is shut down. Because they don‟t have a controlling terminal, they run 

in the background. They are started by the user in PFBR simulator. 

 There are three daemon processes in simulator architecture namely Database Server, 

Logger and MDSM each of which is explained in subsequent sections. 

 



16 
 

2.2.1.1    Database Server 

 It provides a single database with uniform functionality for all the components of the 

simulator. It supports multi-user access to the database and the processes are independent of 

the database implementation. In the development environment multiple projects can be 

supported by a single database. 

 The user interface for the executive process is provided by instructor process. The 

instructor provides facilities to control and monitor the operation of the simulator and 

conduct training sessions. It displays menu, status information, alphanumeric data and 

graphical information related to simulator, operator actions and training. It provides access to 

the complete simulator database. It can display variety of information either transiently upon 

user demand or continuously as required. 

 

2.2.1.2    MDSM 

 MDSM stands for Messaging and Data Sharing Mechanism. MDSM consists of two 

loosely coupled components - messaging mechanism and data sharing mechanism. 

 Messaging allows UNIX processes to talk to each other by sending and receiving 

binary messages. It allows a group of processes tuned similarly to talk to each other both 

within machine boundaries and across them. Data sharing part allows the applications to 

publish binary data and read them. Each data item has a name and is recognized by this name 

only. 

 The main functions of MDSM are: 

 Managing blocks of shared memory. 



17 
 

 Initializing shared memory location to a value supplied by the subscribing 

process 

 Maintaining tables of published and subscribed variables along with their 

locations. 

 Managing message passing between all the processes that are registered with 

it. 

 It is essential for the simulator operation that various process modules of the 

simulator communicate with each other by exchanging messages and data. 

 Various API calls made to the MDSM daemon are described in the subsequent 

sections. 

 

2.2.1.2.1    Callback Function 

 The application must provide a callback function [25] which will be called every time 

an event occurs in the system. The event can be either arrival of a message or an error or an 

event within the MDSM (i.e. connection dropout). 

The prototype of callback function is as follows: 

 

void callback (int msgType, MDSM_ProcId *id, void *msg, int len); 

 

where: 

 MDSM_ProcId – an internal MDSM structure used to uniquely identify the process 

 msgType – indicates the message type 



18 
 

 msg – a pointer to a binary buffer containing the message received 

 len – the size of the buffer 

 MDSM invokes the callback function on a number of occasions, including errors, 

receipt of a message, new process attaching to the system or detaching from it. The reason for 

calling is indicated by the msgType parameter. The values it can take are listed in the table 

below: 

Table 2.1    MDSM Message Types 

MDSM_MSG_RX_TAG A message has been received from another 

process 

MDSM_CONN_OPENED_TAG A new process has attached to the system 

MDSM_CONN_CLOSED_TAG A process has disconnected from the system 

MDSM_ERROR_TAG An error has occurred within MDSM or has 

been detected by it 

 

2.2.1.2.2    Registering a Process 

 Before working with a process you need to register it with MDSM. To do so, 

following call is used: 

 MDSM_ProcId *MDSM_RegisterProc( 

  char *processName, 

void(*callback)(MDSM_ProcId *id, char *msg, int len); 

  ); 



19 
 

where: 

 processName – the logical name of the process i.e. “VPanels”  

 callback – pointer to the callback function  

 return value – the process identifier constructed by MDSM 

 

2.2.1.2.3    Registering and De- Registering the Variables 

 A data item (a variable, a signal) needs to be registered in order for it to become 

available for other processes. De-registration of a variable causes MDSM to „forget‟ about it, 

at least forget about the association of the variable to the current process. When a variable is 

not de-registered, MDSM keeps updating that variable in the shared memory of the process. 

It leads to waste of resource and effort performed by the MDSM. 

 

2.2.1.2.3.1    Registering for Publishing 

 If a data item is going to be published, it is registered using 

MDSM_RegisterVarByValue function: 

 

 int MDSM_RegisterVarByValue(char *varName, void *addr, int len, int switch, void 

*defValue ); 

 

where: 

 varName – a text string containing the name of the variable, under which it will be 

known 



20 
 

 addr – the address in the application memory containing the variable 

 len – the size of the variable 

 switch – indicates whether the variable will be published or subscribed to. For 

publishing it must be set to MDSM_PUBLISH 

 defValue – It is not used when publishing and should be NULL 

 return value – indicator of success, 0 indicates success 

An attempt to publish a variable that is already published by another process causes an error. 

 

2.2.1.2.3.2    Registering for Subscription 

 The variables that are subscribed can be passed by value or by reference. Those 

variables that are passed by value will be copied from the shared memory to the local 

memory by MDSM. The referenced variables will reside in the shared memory and will be 

read by the application code, when required. 

 To register a variable for subscription by reference use the 

MDSM_RegisterVarByReference function: 

 

int MDSM_RegisterVarByReference(char *varName, void **addr, int len); 

 

 To register a variable for the subscription by value, use the 

MDSM_RegisterVarByValue function with the MDSM_SUBSCRIBE switch. 

 

 



21 
 

int MDSM_RegisterVarByValue(“myfloat”, &myfloat, sizeof(float), MDSM_SUBSCRIBE, 

defFloat(25)); 

 

where: 

 varName - Name of the variable with which it is registered 

 addr - Address of the variable 

 len - size of the variable 

 

 The last parameter defFloat is used to specify the default value. There is a family of 

def functions which allows to specify defaults for various types: 

 

 defFloat – floating point values 

 defInt – 32-bit integers 

 defLong – 64-bit integers 

 defStrn – C-strings 

 These are defined in the MDSM code. For specification of defaults for the other types, 

the existing functions can be used as template for the new ones. 

 The default values are used when the variable is not published. The system writes 

them to shared memory while registering the variable and copies them into local memory 

every time MDSM_ReadAll gets called. 

 Functions MDSM_RegisterVarByValue and MDSM_RegisterVarByValue return a 

success/failure code 0 in for success and a non-zero error code for failure. 



22 
 

 No error is generated if a variable is subscribed to but not published. When a variable 

is subscribed to, MDSM allocates the shared memory for it and writes the default value into 

that area. If no default value is specified, the result is unpredictable. To indicate that the 

variable is not published, the registration functions set a global variable, MDSM_WarnCode 

to 1. This variable can be used by the simulator code to check the publishing status 

immediately after a call to MDSM_RegisterVarByValue or MDSM_RegisterVarByReference. 

Multiple subscriptions for the same variable are allowed, including multiple subscriptions by 

the same process. 

 

2.2.1.2.3.3    De-Registering the Variables 

 Variable is de-registered after its usage is over. It can be done in two ways: 

 Function MDSM_DeRegisterVar(char *varName) can be used to de-register 

individual variables. 

 Function MDSM_DeRegisterAll() de-registers all the variables registered before. 

 

 MDSM never really 'forgets' completely about variables that were once registered. 

While de-registering the variable, the association between the variables and the process is 

discarded. However, the memory remains allocated and the system remembers the variable 

length. This information is only destroyed when the last process in the simulator exits and the 

shared memory is returned to UNIX. If a process attempts to re-register the same variable as 

before with a different length, it will cause an error. 

 



23 
 

2.2.1.2.4    Publishing Data 

 Publishing data is done in response to the 'Publish' message from the executive. 

Publishing during the computation cycle is inherently dangerous and may result in 

unpredictable system behaviour. 

 The following functions may be used to publish data: 

  

int MDSM_PublishAll(); 

 

 This publishes all data registered by the current process for publishing. It will return 0 

in case of success and non-zero value in case of failure. 

 Alternatively, MDSM_PublishValue function can be used: 

 

int MDSM_PublishValue(char *varName, void **addr, int len); 

 

 This publishes a specified variable. Extreme caution is taken before using 

MDSM_PublishValue function. It can be invoked after all other processes have already 

published their data via MDSM_PublishAll(), but before the computation has commenced. 

Incorrect use of it may result in inconsistency in data. MDSM_PublishValue  is slow as 

compared to MDSM_PublishAll. 

 When MDSM_PublishValue is invoked for a variable, function allocates space in 

shared memory if it is not done before. However, it does not mark the variable being 

published by the current process, so that the calls to MDSM_GetItemInfo() or 

MDSM_GetFirstSymb(), MDSM_GetNextSymb() will not find any association between the 

variable and the process. 



24 
 

2.2.1.2.5    Fetching Data 

 Fetching data is done at any time during computation cycle, but not during publishing. 

One of the two functions is used for fetching data:  

 

int MDSM_ReadAll(); 

 

It reads all variables that have been subscribed to. 

 

int MDSM_ReadValue(char *varName, void *addr, int len); 

 

It reads only one variable into the specified address, MDSM_ReadValue returns the MDSM 

error code as shown in table (write number) or 0 in case of success or -1 if the variables is not 

published. When MDSM_ReadValue  is invoked for a variable, the function allocates space 

memory if it has not been done before. If a variable is not published by any process, the 

MDSM_WarnCode variable will be set immediately to 1 after the call to MDSM_ReadValue. 

2.2.1.2.6    Sending a Message 

 To send a message to all processes, function MDSM_Broadcast is used. 

  

int MDSM_Broadcast(void *msg, int msgLen, u_int8 priority); 

 

 This broadcasts the message to all the processes those are visible from the current 

one. 

 msg - pointer to a binary buffer containing the message 



25 
 

 msgLen - length of that buffer 

 priority - the message priority, (0,255). Higher the number, so the priority 

 To send a message to a specified process, use function: 

 

int MDSM_Send(MDSM_ProcId *id, void *msg, int msgLen, u_int8 priority); 

 

 The first parameter id must point to MDSM_ProcId structure identifying destination 

process. msg and msgLen are message and length of the message respectively. 

2.2.1.2.7    Receiving a Message 

 MDSM doesn't provide asynchronous inter process communication. To enable 

message processing, process has to poll for input using MDSM_PollInput; 

 

int MDSM_PollInput(int how); 

 

Parameters can be: 

 MDSM_FOREVER - don't return until a message has been received 

 MDSM_NOWAIT - check if there is any message and return immediately if no 

message. 

 a positive value - the maximum delay, in milliseconds, to wait for in the select call. 

This function checks if there are any pending messages and process them. The 

messaging mechanism is based on the select system call. If there is a file descriptor 

ready which is not associated with MDSM, the function will return it. Otherwise, a 

zero will be returned.  



26 
 

 For each message, MDSM_PollInput will invoke the registered callback function, 

passing the process id and message to it. 

2.2.1.2.8    De-Registering the Process 

 Before a process terminates it must de-initialise using MDSM_DeRegisterProc 

 

int MDSM_DeRegisterProc(); 

 

will de-register the process the MDSM. 

 It closes all the connections and removes entries in the MDSM variables table that are 

related to the process. 

 To deregister a single variable MDSM_DeRegisterVar 

 

int MDSM_DeRegisterVar(char *varName); 

 

where varName  is the name of variable with which it was registered with MDSM. 

 

2.2.1.3    Logger 

 Logger provides a uniform, centralized mechanism to save and restore information 

about the state of the simulator and user input. Simulator processes need to save and restore 

states upon demand at periodic intervals. The simulator processes will employ the logger via 

Logger API to save and load their information and will have no direct access to underlying 

files and other structures. The logger executes operation on behalf of the process and reports 



27 
 

back the completion status. The simulator processes act according to the commands from the 

executive. 

 The information saved or restored by the logger can belong to one of the four types: 

Initial Condition (IC), Snapshot, Backtrack and Replay. Parameters from the logic processes 

are managed by the logger. The information is organised into bins, with each bin having ID, 

which together with the bin type, uniquely identifies a bin. The logger provides the following 

basic functions to processes: 

  Saving data into a bin. 

  Reading data from a bin. 

  Listing available data bins of a given type and retrieving their heading information. 

  Deleting a data bin. 

  Converting data bin of one type to another. 

2.2.2    Process Models 

 The process models in simulator replicate the plant using mathematical techniques. 

All conventional sub-systems of the plant - hydraulic, steam, air/gas and electrical as well as 

non-process elements such as actuators and transducers are modelled using promodeller .This 

tool is used to simulate the plant process models organised as an integrated set of functional 

units: 

  Graphical User Interface (GUI) 

 Plant and Simulation Data Structures 

 Database Manager 

 Simulation Model Libraries 

 Simulation Configuration Builder 



28 
 

2.2.3    Plant Controls 

 Plant controls are software components which implement specifically designed 

control logics and emulate various control systems in the plant. Plant controls are simulated 

using a menu driven logic design graphic tool. The tool supports emulation of plant control 

systems, including: 

  Modulating loops 

  Mode changing and status supervisory logic 

  Interlocking logic 

  Sequence controls 

  Alarm formations 

 It provides programmer with the facility to realise any required control logic by 

drawing logic sheets using the standard gates library and also to create and use application 

specific function blocks. It has a graphical drawing editor for designing the schematics of 

process control and automatic code generator for generating code (in C language) for the 

logic sheets designed. The tool checks for error both during drawing phase as well as during 

the automatic code generation. The output of the code generator will compile and link 

directly into the simulator environment. 

 

 

 

 



29 
 

 

 

Chapter 3 

 

Interaction between Models of the Simulator 

 

This chapter discusses about external models and their inclusion mechanism in the simulator 

system. External models follow steps to be a part of the system. Steps for initialisation and 

run time phase are discussed in this chapter. Interaction between the simulator components is 

discussed with pictorial representations. 

 

3.1    External Models 

 External models are foreign process models which are developed from scratch to 

work in the simulator environment. For example, nuclear sub-systems of PFBR cannot be 

modelled using the process modeller as it supports only conventional components. Hence 

mathematical models of the non-conventional nuclear systems need to be developed and 

integrated with the other software components of the simulator. External models developed 

comply with the specifications of simulation software component in order to run in the 

simulator environment. The external models can be developed using C or FORTRAN 

language. 



30 
 

 A foreign module code is available to include the initialisation and run-time blocks 

and make use of the Inter Process Communication (IPC) [31,32,33] handler Application 

Programming Interface (API) to fulfil the requirement of simulator components. It provides 

functions for registering the variables for publishing, subscribing, running a process under 

simulator environment, etc. The IPC handler hides the complexity of communication and 

synchronisation with centralisation for debugging in the distributed architecture. At its helm, 

it uses the MDSM functions as described in the section 2.2.1.2. 

 Some of the examples of the external models developed are Neutronics System, 

Reactor Core, Primary Sodium System, Secondary Sodium System, Secondary Grade Decay 

Heat Removal System and other PFBR specific systems. 

 Virtual panels are developed as an external model. The virtual panels in the alpha 

based simulator are developed using proprietary tool which is available only for Tru64 Unix. 

It is not portable to Intel based simulator. Virtual panels for the Intel based simulator are 

developed using Qt and SQLite.  

 The proprietary graphics software package provides facility to model screen based 

panels with range of devices, similar in appearance and function to the range of industrial 

controls and instrumentation. Package includes graphical tool editors, runtime function 

libraries, the converters and other tools. The graphical editor allows the developer to create 

models with primitive graphics objects like lines, rectangle, circles, curves and pre-defined 

sub-models like lamps, button, meters, symbols that can change in real-time in response to 

the changes in the application data. 

 

 

 



31 
 

3.2    Basic Operation of Simulator Component 

 Each process or component of simulator system performs the following steps when 

the simulator runs. 

 

3.2.1    Initialisation 

 Initialisation of a simulator component involves following steps. Figure 3.1 describes 

the flow diagram of the initialisation of a component. 

 

 Register itself by name with MDSM and the Executive 

 Wait for Executive command : register variables to be published 

 Register all the variables to be published 

 Wait for Executive command : register variables to be subscribed 

 Register all the variables to be subscribed 

 Figure 3.1 shows the flow diagram for the initialisation of simulator component. 

 

Figure 3.1: Flow Diagram for Initialisation of simulator components 



32 
 

3.2.2    Run Time 

 Run time behaviour of the component should follow the sequence as described in 

following steps, and Figure 3.2 depicts the flow diagram for run time behaviour of the 

component. 

 Wait for the start of the cycle 

 Read all the subscribed variables 

 Perform calculations and update the outputs 

 Advise Executive when the calculations are complete 

 Wait for the publish command from the Executive 

 Publish all the outputs 

 Figure 3.2 shows the flow diagram for run time behaviour of simulator software 

component. 

 

Figure 3.2: Flow Diagram for Component Runtime Operation 



33 
 

3.3    Interaction between Simulator Components 

 The interaction between the components of simulator environment is achieved with 

the help of MDSM and a global simulator database maintained by database server of the 

simulator. The local data generated by a simulator component is integrated into the global 

database to allow other simulator components to access the data. MDSM uses shared memory 

to store the messages and data exchanged between components. The interaction among the 

components is depicted in the Figure 3.3: 

 

 MDSM coordinates between the processes through inter-process communication. It is 

accomplished by exchange of messages. Every component implements a certain set of 

callback functions in order to execute their tasks. Logic control has its own database in which 

the logic diagrams are stored. If any of the two components require exchanging messages or 

data, they need to communicate through MDSM. Mode of communication is inter-process 

communication using the messages. For virtual panels, shared memory inter process 

communication is also used when the variables are subscribed and published. Process models 

store their data in the local database, where all the computations as well as required 

information is stored. Executive communicates with the MDSM and other processes to 

instruct the actions to be taken in each cycle. Instructor provides a user interface to the 

executive process and handles the front end part of executive. It also interacts with the 

operator instructor for training purpose. Insertion of malfunctions and different plant 

scenarios can be simulated from the instructor process. 

 

 

 



34 
 

 

Models Developed     Core Components 

 

Figure 3.3: Simulator Software System and its Components 

 

 

 

 

 

 



35 
 

 

 

Chapter 4 

 

Development of Framework to Create Virtual Panels  

 

This chapter discusses details related to development of framework to create virtual panels. It 

discusses the methodology used for development. Also, it discusses the information and data 

stored in the database that will be useful while integrating the process and the variables with 

the daemon processes. After integrating and storing the data from simulator, the mechanism 

implemented to update the virtual panels is discussed. 

 

4.1    Virtual Panels 

 Virtual panels are soft panels which emulate control panels with animated panel 

equipment widgets to virtualize operator interface. Widgets show real time behaviour for 

changes in application data. These include alarms, pushbuttons (momentary and latching 

type), selector switches, gang-selector switches, LEDs, display segments like LCD, bar graph 

indicators, ammeters, voltmeters, synchroscope, etc. 

 Virtual panels provide a benefit that all panels and consoles can be accessed from a 

single place, rather than physically moving between the panels and consoles like that for 



36 
 

hardware panels. During the development phase of simulator, when each test is not possible 

on hardware panels, virtual panels are used for testing the data from the other models. Access 

to data is done in similar way as for the hardware panels. 

 

4.2    Tools used for Development 

 Tools chosen for development are open source. Open source software provides 

inherent advantages. It is available for free with a large community support. Open source 

software is easily available which reduces the development time. Tool chosen for virtual 

panel development is Qt with database support of SQLite. Further sections describe the 

feature of the tools used and their advantages. 

 

4.2.1    Qt 

 Qt is a cross-platform application development framework for desktop, embedded and 

mobile. Supported Platforms include Linux, OS X, Windows, VxWorks, QNX, Android, 

iOS, BlackBerry, Sailfish OS and others. 

 Qt is not a programming language on its own. It is a framework written in C++ 

[41,42]. A pre-processor, the MOC (Meta-Object Compiler)[45], is used to extend the C++ 

language with features like signals and slots. A signal is a function that is invoked an action 

takes place. It is used to detect the action. A slot is a function that defines tasks to be 

performed after the action has taken place. For example, click on a button is an action and 

displaying some content on click is a task. Therefore, click is a signal and display is a slot. 

Before the compilation step, the MOC parses the source files written in Qt-extended C++ and 

generates standard compliant C++ sources from them. Thus the framework itself and 



37 
 

applications/libraries using it can be compiled by any standard compliant C++ compiler like 

Clang, GCC, ICC, MinGW and MSVC. Qt is available as free software under several 

versions of the GPL [7] and the LGPL [8]. 

 Qt provides visual elements commonly known as widgets. Widgets are simple objects 

which can be framed as a real world entity. Real world entities can be created using a 

combination of the widgets. For example, pushbutton is a simple widget. It can be a 

momentary pushbutton or latching type pushbutton. It can be a display entity when its click 

option is disabled. Combination of pushbutton can be used to implement selector switches 

which are quite common in power plants. Implementation of the components will be 

described with the components in the subsequent sections. 

 Each widget has properties associated with it. All the information about the widget is 

stored into the properties. For example, name is a widget property. Text to display is a 

property. Dynamic properties can be given to the widgets as per the requirement. These 

properties can be modified from the GUI as well as from code. For implementation of several 

components dynamic properties has played an important role for identification of the 

components. 

 

4.3.2    SQLite 

 SQLite is an in-process library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. Self-contained database is the one which 

requires support and resources only from the host computer. Such databases do not require 

setting up of server for them. The entire database is integrated into whatever application 

needs to access the database. The only shared resource among the applications is the single 

database file as it sits on disk. By eliminating the server, a significant amount of complexity 



38 
 

is removed. Thus it requires no configuration with ready to use feature. Transactional 

databases are those which support handling of multiple statements to accomplish a task or a 

transaction. The code for SQLite is in the public domain and is thus free for use for any 

purpose, commercial or private. SQLite is the most widely deployed database in the world 

with more applications than we can count, including several high-profile projects. 

 SQLite is an embedded SQL database engine. Unlike most other SQL databases, 

SQLite does not have a separate server process. SQLite reads and writes directly to ordinary 

disk files thus reducing the access time and working as an in memory file for an application. 

A complete SQL database with multiple tables, indices, triggers, and views, is contained in a 

single disk file. 

 

4.3    Basis for selection of tools of development 

 The tools chosen for development are Qt and SQLite. Both are chosen mainly because 

they are open source. Apart from being open source, there are many other advantages that 

they provide. Comparison between Qt and a similar open source real time software GLG 

toolkit is listed in table 4.1. 

SQLite is one of the most popular in-memory databases. Most of the other in-memory 

databases are either proprietary or setting them is more effort seeking than SQLite. SQLite is 

easiest of them to setup. It consists of a file, which handles all the relational queries. Due to 

the in-memory feature, it is faster than the traditional relational databases. 

 

 



39 
 

Table 4.1    Comparison between Qt and GLG Toolkit 

S.No. Qt GLG Toolkit 

1. Open Source Open Source (only community version) 

2. Cross Platform Cross Platform 

3. Useful for graphics and logic 

building 

Useful for graphics and logic building 

4. Supports C, C++,JAVA, C# Supports C, C++,JAVA, C# 

5. Supports SQL database access, 

XML parsing and thread 

management 

No such support  

 

 Qt has an advantage over GLG [46] that it provides database access, XML parsing 

and management of threads. This can be used in future for improving the architecture of the 

virtual panels by proper distribution of tasks among the threads. One more advantage that Qt 

is having is that GLG is open source only for the community version and not for commercial 

purposes.  

4.4    Types of Signals 

 There are four kinds of signals commonly used in industrial plant environment - 

Digital Inputs (DO), Digital Outputs (DO), Analog Inputs (AI), and Analog Outputs (AO). 

Digital Inputs (DI) are the digital signals received by simulation computer from the panels or 

any other node in the network. Digital Outputs (DO) are digital signals sent by simulation 

computer to panels or other nodes in the simulator. Analog Inputs (AI) are the analog signals 

received by simulation computer from the panels or any other node in the network. Analog 



40 
 

Outputs (AO) are analog signals sent by simulation computer to panels or other nodes in the 

simulator. Panels mostly deal with DI, DO and AO. The components in the simulator 

emit/receive one of the signals as mentioned below. 

 

Digital Input (DI) - Pushbuttons (Momentary/Latching), Selector Switches (Normal, Key  

       -Selector and Gang Selector),  

Digital Output (DO) - Alarms, Light Emitting Diode (LED), Semaphore indicators 

Analog Output (AO) - Seven segment displays, Bar graph indicators, analog meters, 

synchroscope. 

 

4.5    Development Methodology 

 A console or panel consists of various components. Components include alarm 

annunciations, pushbuttons, selector switches, gang selector switches, and various meters for 

display. These components are developed to completely provide the functionality of a 

hardware panel. Changes made through virtual panels are same as that of hardware panels. In 

addition, virtual panels should keep track of the changes in the hardware panels. When loaded 

for the first time, virtual panels capture the state of the hardware panels and display same 

status as that of hardware panel. Also while exiting, the state of the virtual panels is saved so 

that the next time they are loaded again then status of the components should be displayed 

same unless, some change occurs in the hardware panels. This saving of state and loading 

again is provided by the simulator through instructor. The state of the virtual panels is saved 

through the data structures used for storing the variable values of variables. The data 

structures used in the virtual panels development are explained in next section. All the 

components developed are incorporated in a template panel from which, components can be 



41 
 

taken and copied or inserted into other virtual panel under creation. The variables of the 

component inserted in the panel needs to be modified to realize the behaviour according to 

the corresponding hardware panel component. 

 

4.6    Details of Data Structures Used 

 Data structures [47] are the most important entity of any software. Data structures 

provide organisation and storage format that enables efficient access and modification. More 

precisely, data structure is a collection of data values, the relationships among them and the 

functions that can be applied to the data. This section describes all the data structures used 

during different phases of virtual panels. 

 During the first time loading of virtual panels, data is stored in database DB3 and 

SQLite. DB3 is used to communicate data to simulator and SQLite to convey information 

about the GUI components. SQLite database contains a single table widgetdata with 

description as shown in Table 4.2. 

 DB3 is an in-memory database. It has six fields which are similar to the above 

database. 

 

varname - It is name of variable with which the widget is associated. 

varflagname - It is flag variable name for the widget. 

varstatus - It describes the type of variable (DI,DO,AI,AO). 

varnamesys - It is similar to sysname of SQLite database. 

offset - It is offset of the variable in database. 

offset size - It is size of the offset. 



42 
 

Table 4.2    Table for Storing Widget Information 

Column Name Type Description 

Tagname varchar(24) It is the primary key that identifies each and every 

widget uniquely. 

Sysname varchar(24) It is the system name of the variable associated 

with the widget. 

Flagname varchar(24) It is a variable that is used to identify different 

usages for the same type of widget. 

Status varchar(24) It describes the type of variable (DI,DO,AI,AO). 

Offset varchar(10) It is offset of the variable in database. 

Offsize varchar(5) It is size of offset 

Comment Integer It is the index of variable in the database through 

which access to value of variable is done. 

 

 Dynamic properties with similar names as that of database fields is assigned to each 

widget, accessed and used when required. Data is then segregated in form of different 

components of the panels and stored as the virtual panel data. For saving data following data 

structure is used. 

It stores all the information pertaining to the screens including the number of binary 

and analog components in the screens. MAX_VAR is number of maximum number of 

variables in the screen. It is a user defined parameter. All the variables with their name are 

stored in PD_INFO structure for further interacting with the simulator. 



43 
 

 

  typedef struct 

  { 

      int  numAnalogVars; 

      int  numBinVars; 

      int  numFlagVars; 

      int  numAnlFlagVars; 

 

      char analogVarName[MAX_VAR][32]; 

      int  analogVarInd[MAX_VAR]; 

      int  analogVarSendFlag[MAX_VAR]; 

      int  analogVarUpdateFlag[MAX_VAR]; 

 

      char binVarName[MAX_VAR][32]; 

      int  binVarInd[MAX_VAR]; 

      int  binVarSendFlag[MAX_VAR]; 

      int  binVarUpdateFlag[MAX_VAR]; 

 

      char flagVarName[MAX_VAR][32]; 

      int  flagVarInd[MAX_VAR]; 

      int  flagVarSendFlag[MAX_VAR]; 

      int  flagVarUpdateFlag[MAX_VAR]; 

 

      char anlFlagVarName[MAX_VAR][32]; 

      int  anlFlagVarInd[MAX_VAR]; 

      int  anlFlagVarSendFlag[MAX_VAR]; 

      int  anlFlagVarUpdateFlag[MAX_VAR]; 

 

      int  initFlag; 

  }PD_INFO; 

 Messaging and Data Sharing Mechanism (MDSM) requires a local memory address 

for the variables of the process when subscribed by value. A data structure 



44 
 

MOD_VARS_INFO is created in which simulator writes/read values of subscribed/published 

variables. The address of the variables of the structure is passed while registering of 

variables. 

 A variable can have a binary value or an analog value, thus a union is created in 

which only either of the type can be stored. WORD is defined as integer type. offset refers to 

the index of variable with name varNameSys. offs_size is the size of the offset (WORD/float) 

varStatus defines the type of variables, either it is for subscription or publishing. 

 

  typedef struct { 

      union VAL 

      { 

         WORD binValue; 

         float analogValue; 

      }Value; 

      unsigned int offset; 

      unsigned int offs_size; 

      char         varNameSys[25]; 

      char         varNameGms[25]; 

      char         varFlagNameGms[25]; 

      char         varStatus[4]; 

       } MOD_VARS_INFO; 

 

 Apart from storing the virtual panel components data, components are categorized 

into a number of different structures according to their behaviour. Three types of categories 

are used namely, Pushbutton, Selector Switch and Toggle Switch. Structure for pushbutton is 

described below.  

 



45 
 

  typedef struct 

  { 

    int  type; 

    char pbVarName[24]; 

    int  pbVarInd; 

    WORD pbVarVal; 

       } PBS; 

 The type stores type of component. The information for the type is mentioned in 

Annexure 1. pbVarName stores the name of the component with which it will be registered 

with MDSM. pbVarInd is the index of pushbutton in modvarsinfo structure and pbVarVal 

stores the value of the pushbutton.  

 Structure of selector switch is described below. 

 

  typedef  struct 

  { 

    int  type; 

    int  num_pb; 

    char ssVarName[MAX_POS][24]; 

    int  ssVarInd[MAX_POS]; 

    WORD ssVarVal[MAX_POS]; 

        } SSS; 

 

 The type stores type of component. The information for the type is mentioned in 

Annexure 1. num_pb stores number of positions of the selector switch. MAX_POS is the 

number of maximum positions that a selector switch can have. ssVarName stores the name of 

the component variables with which it will be registered with MDSM. ssVarInd is the array of 

indexes of switch selections in modvarsinfo structure and ssVarVal stores the value of all the 

positions of the selector switch. 



46 
 

 

 Structure of toggle switch is described below. 

 

  typedef struct 

  { 

    int  type; 

   

    char lVarName[24]; 

    int  lVarInd; 

    WORD lVarVal; 

 

    char mVarName[24]; 

    int  mVarInd; 

    WORD mVarVal; 

 

    char rVarName[24]; 

    int  rVarInd; 

    WORD rVarVal; 

     } TGS; 

 

 Toggle switch has three positions (left, middle, right) and it toggles its positions 

immediately it is released. The type stores type of component, the information for the type is 

mentioned in Annexure 1. lVarName, mVarName and rVarName stores name of variables for 

three positions. lVarInd, mVarInd and rVarInd store the index of the corresponding position. 

lVarVal, mVarVal and rVarVal store the value of the positions. 

 



47 
 

4.7    Development of Panels  

 Development of panels begins with the top level welcome view consisting of 

pushbuttons to open all the virtual panels. Top view provides access links to virtual panels. It 

is depicted in the Figure 4.1. 

 

 

Figure 4.1: Top level view of Virtual Panels 

 

 Each button corresponds to a virtual panel and clicking the button opens the 

respective panel. For example, clicking button "PANEL 1" prompts to open virtual panel 



48 
 

created for panel 1 as depicted in Figure 4.2. Panel 1 consists of three tabs namely, Alarms, 

Displays and Controls. Figure 4.2 shows the Alarm tab opened. Alarms tab has all the alarms 

in the panel 1. Control and Display tabs encapsulate the display items such as LED and 

control items such as selector switches, pushbuttons etc. After the “PANEL 1” is opened, tabs 

can be switched by clicking on the name of the appropriate tab. More than one virtual panel 

can be opened for the single panel showing the synchronous behaviour due to the centralised 

nature of database. 

 

 

 

Figure 4.2: Alarm Tab of Panel 1 



49 
 

4.8    Panel Components and their Implementation 

 The major components of panels are alarms, display components such as LED, 7-

segment etc., pushbuttons (momentary and latch type), selector switches (key selector, 

normal selector, gang selector). Each type of component has its own properties and actions. 

Components and their types with their pre-processing data are described in the further 

sections. One example for each type is described for the clarity. Results for each type are 

shown in the next sections and final consolidated results are shown in section 4.13. 

 

4.8.1    Alarm 

 The top portion of hardware panels is dedicated to alarms. Alarms are visual 

annunciations that indicate any deviation from the normal operation of the system. Alarms 

are the first indications that notify the operator to take action. Alarms are implemented 

through binary variables, 0 indicates no alarm and 1 indicates alarm. Figure 4.3(a) depicts the 

state of no-alarm and Figure 4.3 (b) depicts the state of alarm. 

 

        

          (a)             (b) 

 Figure 4.3: (a) State of no-alarm for Log No (b) State of alarm for PCSL LOGIC 

HEALTHY 

 

 An alarm is implemented through a disabled pushbutton and colour describes the state 

of the alarm. Yellow shows no-alarm and red shows alarm. Dynamic properties TagName 



50 
 

and FlagVar are used to identify an alarm in the screen. Both the properties have prefix "vb_" 

followed by the variable name of the alarm. For example, alarm Log No having variable 

name "vb_AN_01_1A" will be set to "vb_AN_01_1A" for both the properties. Identification 

of the alarms is discussed in section 4.8. 

 

4.8.2    Pushbutton 

 Pushbuttons are used to give commands for opening the valves, moving/stopping a 

machine, starting/stopping a pump, etc. Pushbutton is implemented through binary variable, 1 

indicates it is in pressed condition and 0 indicates it is in released condition. Pushbutton can 

be of momentary or latching type. Identification of the pushbuttons is discussed in section 

4.10. 

 

4.8.2.1    Momentary Type Pushbutton 

 Momentary pushbutton variable resets itself after it is released. It does not store the 

value and gets back to original position. Value of the variable is 1 until it is in pressed 

condition and 0 otherwise. "ALARM TEST" is one of the momentary pushbuttons. Figure 

4.4(a) shows ALARM TEST in released condition and Figure 4.4(b) shows ALARM TEST 

in pressed condition. 

 Red colour depicts that the pushbutton is in pressed condition. Dynamic properties 

TagName, VarName and FlagVar properties are used. For example, for ALARM TEST 

pushbutton with variable name "PB_01_51_3_ALM", VarName is set to 

"pb_MOM_ALM_PNL1", TagName is set to "c_ PB_01_51_3_ALM " and FlagVar is set to 

" vb_PB_01_51_3_ALM ". 



51 
 

 

      

(a) (b) 

 

 Figure 4.4: (a) ALARM TEST pushbutton in released condition. (b) ALARM TEST 

   pushbutton in pressed condition. 

 

4.8.2.2    Latching Type Pushbutton 

 Latching pushbutton variable latches (stores) the value until it is changed again. the 

conditions. Value of variable toggles with every time it is pressed and released. 

"EMERGENCY" pushbutton is one of the latching pushbuttons. Figure 4.5(a) shows the 

EMERGENCY pushbutton in non-latched or un-pressed condition and Figure 4.5 (b) shows 

the EMERGENCY pushbutton in latched condition.  

      

   (a)     (b) 

 Figure 4.5: (a) EMERGENCY pushbutton in released condition. (b) EMERGENCY 

   pushbutton in pressed/latched condition 

 

 Red colour depicts that the pushbutton is in pressed condition. Dynamic properties 

TagName, VarName and FlagVar properties are used. For example, for EMERGENCY 

pushbutton having variable name "PB_EWS_C1_21_1", VarName is set to 

"pb_LATCH_SCR_SET", TagName is set to "c_PB_EWS_C1_21_1" and FlagVar is set to " 

vb_PB_EWS_C1_21_1". 



52 
 

4.8.3    Display Component 

 Display components are used to indicate values for important positions and 

parameters. Binary display components include LED, semaphore indicators and analog 

display components include 7-segment display, bar graph indicators. Identification of the 

display components is discussed in section 4.10. 

 

4.8.3.1    LED 

 Light Emitting Diode (LED) is a display component that denotes a particular state of a 

device or specific position of the machine. These are used in different colours for different 

tasks. LED is represented by a binary variable in the simulator. Dynamic properties TagName 

and FlagVar are used to identify an LED in the screen. Both the properties take variable 

names with prefix "vb_" as LED variables are binary. An example of LED of various colours 

is shown in Figure 4.6. 

 LED for DSRDM -1 Locked with variable name "L_01_14_1_LCK" has TagName 

set to " vb_L_01_14_1_LCK" and FlagVar set to " vb_L_01_14_1_LCK". LEDs can be used 

in modules of one or more LED for a group of representations. Figure 4.7 (a-c) shows some 

of these modules. 

 

         

    (a)     (b)      (c) 

 

Figure 4.6: (a) Red color LED. (b) Green color LED. (c) Yellow color LED 

 

 



53 
 

 

     

  (a)       (b) 

 

 

 

 

(c) 

 Figure 4.7: (a) Two LED set for each of the three DSRDM 

 (ENERGISED/DEENERGISED). (b) Two LED set for each of the three DSRDM 

 (LOCKED/UNLOCKED). (c) Two LED set for each of nine 

 CSRDM(ENERGISED/DEENERGISED) 

 

4.8.3.2    Semaphore Indicator 

 Semaphore indicator is used in situations that require visual simulation of circuit or 

operating state of a device and indication of fault. It is implemented through binary variables, 

where one state represents value 1 and other state represents value 0. Figure 4.8(a) shows 

semaphore indicator with value 1 and Figure 4.8(b) shows semaphore indicator with value 0. 

 



54 
 

         

(a)                                                       (b) 

 

  Figure 4.8: (a) Semaphore indicator with value 1. (b) Semaphore indicator  

       with value 0 

 

For example, Semaphore indicator with variable name "SI_12_3_2", has TagName set 

to " vb_SI_12_3_2" and FlagVar set to "vb_SI_12_3_2". 

 

4.8.3.3    Digit Display 

 Digit display is a display element that display analog values. It is used for denoting 

positions and continuous values that are useful for the operator to analyse the conditions. It is 

represented by an analog variable in the simulator. Dynamic properties TagName and 

FlagVar are used to identify an analog display in the screen. Both properties have prefix 

"va_" as the seven segment take input an analog value. Figure 4.9 depicts a seven segment 

implementation in Qt.   

 

Figure 4.9: Digit Display 

 

For example, Seven Segment display with variable name "DYAPOWER", has TagName set 

to "va_DYAPOWER" and FlagVar set to "va_DYAPOWER". 



55 
 

4.8.3.4    Bar Graph Indicators 

 Bar graph indicators are used to show elevation in bar form. It is useful representation 

showing a pictorial way of displaying the elevation. These are used for displaying control 

rods elevation. It is represented by an analog variable in the simulator. Dynamic properties 

TagName and FlagVar are used to identify an analog display in the screen. Both properties 

have prefix "va_" as the seven segment take input an analog value. Figure 4.10 depicts a bar 

graph indicator implementation in Qt.   

For example, Seven Segment display with variable name "BGI_01_8_1", has TagName set to 

"va_BGI_01_8_1" and FlagVar set to "va_BGI_01_8_1". 

 

 

Figure 4.10: Bar Graph Indicator 

 

4.8.4    Selector Switches 

 A selector switch (SS) is a device that is typically used to make selections between 

different positions. Qt does not provide any widget directly to implement selector switch. 

Thus, it is implemented through combination of pushbuttons and a label. Pushbuttons 

represent the different positions and label indicates the selection currently made. There are 



56 
 

three types of selector switches in simulator that are implemented, Normal SS, Key SS, Gang 

SS. 

 

4.8.4.1    Normal Selector Switches 

 These are normal contact type selector switches in which selection is made by moving 

the selector by rotation without any authentication. Figure 4.11(a-f) shows the types of 

selector switches implemented. 

 For example, a two position selector switch consists of one label and two pushbuttons. 

Clicking on the pushbutton is similar to rotating the switch of SS in hardware panel.  

 

4.8.4.2    Key Selector Switches 

 Key selector switch is similar to normal selector switch except that it requires an 

authenticated key to select a position. Figure 4.12 (a) shows different types of key selector 

switches implemented. A key selector switch is often combined with a two LED module 

where the selection on the switch is represented by LED. Figure 4.13 shows a key selector 

and two LED combinations. 

 

 

 

 



57 
 

               

    (a)           (b) 

 

      

     (c)       (d) 

 

          

    (e)       (f) 

 

Figure 4.11: (a) Two Position SS. (b) Three Position SS. (c) Four Position SS 

(d) Five Position SS. (e) Eight Position SS. (c) Twelve Position SS 

 

(a) 

Figure 4.12: (a) Two Position Key Selector Switch 



58 
 

 

Figure 4.13: Key Selector SS and Two LED Combination 

4.8.4.3    Gang Selector Switches 

 Gang switch are a series of latching type pushbuttons which function same as that of 

selector switch where only one selection can be made out of available choices. Figure 4.14 

(a&b) shows the different type of gang selectors implemented. 

 

(a) 

 

 

(b) 

Figure 4.14: (a) Gang SS for DSR Selection. (b) Gang SS for Power Range Selection 

 

4.9    Parsing the User Interface (UI) and Storing Information 

 During loading phase of the virtual panels, component widgets in the panel are parsed 

and relevant information is stored. First, SQLite database is initialised and all the previous 



59 
 

stored information is erased from the database. DB3 database is also initialised as a 

requirement for simulator communication. Validity of the DB3 database is also checked 

against a template file. DB3 is an in-memory database. Due to its in-memory feature, it is 

faster than relational ex memory databases. Details of the files used for the DB3 database are 

mentioned in annexure 1. Then, all the widgets in the panels are parsed and a widget list is 

created. For each widget in the widget list, property VarName is read. If VarName is present, 

then property TagName is read otherwise that widget is skipped (means it is not a 

component). Each widget is individually identified and storage action is taken accordingly. 

The identification of widgets is described in Algorithm 4.1. 

 

Algorithm 4.1 Identification of component widgets and storage of information 

Input: List of component widgets for all the virtual panels (widgetlist) 

Output: Store information of component in databases and assign an index 

1: index=0 

2: VP_CONF_REC *currBufPtr 

3: for widget in widgetlist 

4:  varname ‹- widget.property("VarName") 

5:  if(varname!="") 

6:   if(varname.startsWith("pb_") 

7:    tagname ‹- widget.property("TagName") 

8:    len= tagname.length() 

9:    if(tagname.startsWith("c_")) 

10:     varStatus ‹- CB 

11:     FillConfRec(widget, varStatus, len-2) 

12:     varStatus ‹- SB 

13:     FillConfRec(widget, varStatus, len-2) 



60 
 

14:    if(tagname.startsWith("f_")) 

15:     varStatus ‹- CB 

16:     FillConfRec(widget, varStatus, len-2) 

17:   if(varname.startsWith("SS_") || varname.startsWith("KS_")) 

18:    tagname ‹- widget.property("TagName") 

19:    for widget2 in widgetlist 

20:     tagname2 ‹- widget2.property("TagName") 

21:     if(tagname2.contains(tagname) 

22:        len=tagname2.length 

23:           if(tagname2.startsWith("c")&&tagname2.at(2)=="_") 

24:      varStatus ‹- CB 

25:       FillConfRec(widget, varStatus, len-3) 

26:      varStatus ‹- SB 

27:       FillConfRec(widget, varStatus, len-3)  

28:              if(tagname2.startsWith("c")&&tagname2.at(3)=="_") 

29:      varStatus ‹- CB 

30:       FillConfRec(widget, varStatus, len-4) 

31:      varStatus ‹- SB 

32:       FillConfRec(widget, varStatus, len-4) 

33:   if(varname.startsWith("GSPB_")) 

34:    tagname ‹- widget.property("TagName") 

35:    for widget2 in widgetlist 

36:     tagname2 ‹- widget2.property("TagName") 

37:     if(tagname2.contains(tagname) 

38:        len=tagname2.length 

39:           if(tagname2.startsWith("c")&&tagname2.at(2)=="_") 



61 
 

40:      varStatus ‹- CB 

41:       FillConfRec(widget, varStatus, len-3) 

42:      varStatus ‹- SB 

43:       FillConfRec(widget, varStatus, len-3)  

44:              if(tagname2.startsWith("c")&&tagname2.at(3)=="_") 

45:      varStatus ‹- CB 

46:       FillConfRec(widget, varStatus, len-4) 

47:      varStatus ‹- SB 

48:       FillConfRec(widget, varStatus, len-4)  

49:   if(varname.startsWith("PB_C")) 

50:    tagname ‹- widget.property("TagName") 

51:    for widget2 in widgetlist 

52:     tagname2 ‹- widget2.property("TagName") 

53:     if(tagname2.contains(tagname) 

54:        len=tagname2.length 

55:           if(tagname2.startsWith("c")&&tagname2.at(2)=="_") 

56:      varStatus ‹- CB 

57:       FillConfRec(widget, varStatus, len-3) 

58:      varStatus ‹- SB 

59:       FillConfRec(widget, varStatus, len-3)  

60:              if(tagname2.startsWith("c")&&tagname2.at(3)=="_") 

61:      varStatus ‹- CB 

62:       FillConfRec(widget, varStatus, len-4) 

63:      varStatus ‹- SB 

64:       FillConfRec(widget, varStatus, len-4) 

65:   if(varname.startsWith("tg_")) 



62 
 

66:    tagname ‹- widget.property("TagName") 

67:    for widget2 in widgetlist 

68:     tagname2 ‹- widget2.property("TagName") 

69:     if(tagname2.contains(tagname) 

70:        len=tagname2.length 

71:          if(tagname2.startsWith("cl_") 

72:     && tagname2. startsWith("cm_")) 

73:     && tagname2. startsWith("cr_") 

74:      varStatus ‹- CB 

75:       FillConfRec(widget, varStatus, len-3) 

76:      varStatus ‹- SB 

77:       FillConfRec(widget, varStatus, len-3)  

78:  else 

79:    if (tagname.startsWith("vb_")) 

80:    varStatus=SB 

81:    len=tagname.length() 

82:    FillConfRec(widget, varStatus, len-3) 

83:   if (tagname.startsWith("va_")) 

84:    varStatus ‹- SA 

85:    len=tagname.length() 

86:    FillConfRec(widget, varStatus, len-3) 

87:   if (tagname.startsWith("ca_")) 

88:    varStatus=CB 

89:    len ‹- tagname.length() 

90:    FillConfRec(widget, varStatus, len-3) 

 



63 
 

 

 currBufPtr is an instance of VP_CONF_REC. It is a structure that has format as that 

of DB3 database. FillConfRec is the function that inserts data into both the databases. 

Algorithm 4.2 describes the insertion into the databases.  

 

Algorithm 4.2 Insertion of data into databases 

Input: widget, varstatus and offset 

Output: Information stored in databases 

1: VP_CONF_REC currBufPtr 

2: currBufPtr.varNameGms ‹- widget.property("TagName") 

3: currBufPtr.varFlagName ‹-widget.property("VarFlagName") 

4: currBufPtr.varStatus ‹-varStatus 

5: currBufPtr.varSysName ‹-widget.property("FlagVar").right(offset) 

6: Insert a row into widgetdata(tagname,sysname,flagname,status,offset,offsize,index) 

7: increment(index) 

 

 

4.10    Pre-processing of the Information and Registering the Variables 

 Parsing of the virtual panels is done when change in the virtual panel is made. 

Otherwise, database once created will persist into the memory until modified by the program 

again. After parsing the widgets, information about the widgets is pre-processed to make it 

suitable for registering with the simulator and post interaction purposes. It is characterised by 

segregating all the information into different types (Pushbuttons, Selector Switches, Display 

Components) of data structures as discussed in section 4.5. The main purpose of the pre-

processing is to arrange the components into the types so that whenever changes occurs, 



64 
 

minimal action is required to take the virtual panels to that state of simulator. Pre-processing 

reduces the post-work and arranges the components into sets of similar types. After pre-

processing variables are registered with the simulator according to their status type. For 

example, when status type is SB/SA, then it is registered for subscription as a binary/analog 

variable. When status type is CB/CA, then it is registered for publishing as a binary/analog 

variable. Algorithm 4.3 shows the steps involved in pre-processing and registering the 

variables. 

 For registering the variables, functions described in section 2.2.1.2.3 are used. 

External programs use the IPC wrapper which abstracts the use of MDSM functions. All the 

variables are registered based on their status. To register a variable for publishing (varStatus 

= CB/CA) IPC_RegVarByVal is used. 

 

 IPC_RegVarByVal(modVarsInfo[i].varNameSys,&modVarsInfo[i].Value.binValue, 

          sizeof(WORD)) 

 IPC_RegVarByVal(modVarsInfo[i].varNameSys, 

                                            &modVarsInfo[i].Value.analogValue, sizeof(float)) 

 

 It takes three arguments, name of the variable varNameSys, address of the local 

memory containing the value to be published and size of the address field. For a binary 

variable size of WORD is used and binvalue field of modVarsInfo structure is used. For an 

analog variable, size of float is used and analogValue field of modVarsInfo is used. Variable i 

refers to the index of that variable assigned during the parsing. 

        To register a variable for subscription (varStatus = SB/SA), IPC_SubVarByVal is used. 



65 
 

 

 IPC_SubVarByVal(modVarsInfo[i].varNameSys,  

          &modVarsInfo[i].Value.binValue, sizeof(WORD)); 

 IPC_SubVarByVal(modVarsInfo[i].varNameSys,      

         &modVarsInfo[i].Value.analogValue, sizeof(float)); 

 

 It takes three arguments name of the variable varNameSys, address of the local 

memory where simulator should write the value of the variable and size of the address field. 

For a binary variable, size of WORD is used and binvalue field of modVarsInfo structure is 

used. For an analog variable, size of float is used and analogValue field of modVarsInfo is 

used. Variable i refers to the particular index of that variable assigned during the parsing. 

 Identification of the components is done in similar way as performed during the 

parsing. The data from the previous stage when it was stored in DB3 is registered with the 

simulator using the status of the variable. Now the simulator uses indexed position of 

modVarsInfo and the virtual panels will use index from the SQLite database. This way 

synchronisation is done for accessing the variables. Algorithm 4.3 gives a high level 

description of segregation of component widgets. 

 

Algorithm 4.3 Segregation and Storage of Component widgets 

Input: widgetlist 

Output: Information of components segregated into types 

1: PBS pb 

2: SSS ss 

3: TGS tg 



66 
 

4: for widget in widgetlist 

5:  varname ‹- widget.property("VarName") 

6:  if(varname!="") 

7:   tagname ‹- widget.property("TagName") 

8:   if(varname.startsWith("pb_")   

9:    index ‹- Find the index of tagname in SQLite widgetdata ta ble 

10:    if(tagname.startsWith("c_")) 

11:     Store information in pb  

12:    if(varname.startsWith("pb_MOM")) 

13:     pb.type= MOM 

14:    else if(varname.startsWith("pb_LATCH")) 

15:     pb.type= LATCH 

16:   if(varname.startsWith("SS_") || varname.startsWith("KS_")) 

17:    index ‹- Find the index of tagname in SQLite widgetdata ta ble 

18:    tagname ‹- widget.property("TagName") 

19:    for widget2 in widgetlist 

20:     tagname2 ‹- widget2.property("TagName") 

21:     if(tagname2.contains(tagname) 

22:        len=tagname2.length 

23:           if(tagname2.startsWith("c")&&tagname2.at(2)=="_") 

24:      Store information in ss  

25:              if(tagname2.startsWith("c")&&tagname2.at(3)=="_") 

26:      Store information in ss 

27:   if(varname.startsWith("GSPB_")) 

28:    tagname ‹- widget.property("TagName") 

29:    index ‹- Find the index of tagname in SQLite widgetdata ta ble 



67 
 

30:    for widget2 in widgetlist 

31:     tagname2 ‹- widget2.property("TagName") 

32:     if(tagname2.contains(tagname)     

33:      if(tagname2.startsWith("c")&&tagname2.at(2)=="_") 

34:      Store information in ss 

35:              if(tagname2.startsWith("c")&&tagname2.at(3)=="_") 

36:      Store information in ss 

37:   if(varname.startsWith("PB_C")) 

38:    tagname ‹- widget.property("TagName") 

39:    index ‹- Find the index of tagname in SQLite widgetdata ta ble 

40:    for widget2 in widgetlist 

41:     tagname2 ‹- widget2.property("TagName") 

42:     if(tagname2.contains(tagname) 

43:        if(tagname2.startsWith("c")&&tagname2.at(2)=="_") 

44:      Store information in ss 

45:              if(tagname2.startsWith("c")&&tagname2.at(3)=="_") 

46:      Store information in ss 

47:   if(varname.startsWith("tg_SS")) 

48:    tagname ‹- widget.property("TagName") 

49:    for widget2 in widgetlist 

50:     tagname2 ‹- widget2.property("TagName") 

51:     if(tagname2.contains(tagname)      

52:        if(tagname2.startsWith("cl_") 

53:           && tagname2. startsWith("cm_")) 

54:           && tagname2. startsWith("cr_") 

55:      Store the information in ss 



68 
 

56:      

57:   else if (tagname.startsWith("vb_")) 

58:          index‹- Find the index of tagname in SQLite widgetdata table  

59:         Store the information in binaryvarpd    

60:   else if (tagname.startsWith("va_")) 

61:          index‹- Find the index of tagname in SQLite widgetdata table  

62:         Store the information in analogvarpd    

63:   else if (tagname.startsWith("ca_")) 

64:         index ‹- Find the index of tagname in SQLite widgetdata table  

65:         Store the information in Commanalogvarpd  

 

 

 

4.11    Interaction with User Interface (UI) 

 Components of the panel are interactive depending on the action performed. State of 

the component may or may not change depending on the type of the component. Components 

and their actions upon interaction is described in further sections. 

 

4.11.1    Pushbutton 

 A pushbutton has two actions, PRESS and RELEASE. When a pushbutton is 

pressed/released, Qt generates a signal (function) which can be implemented and actions that 

need to be done after the PRESS/RELEASE must be written in the SLOT function of the 

action. For a momentary pushbutton, both the actions are defined but for a latching type 

pushbutton, only PRESS action is defined. Latching type toggles between the values when 

pressed. If current value is 0 then, in next PRESS event it will change to 1 and vice-versa. 



69 
 

When a pushbutton is pressed, its index is searched into the SQLite database using the 

tagname read from the dynamic property of the pushbutton. Then the event 

(PRESS/RELEASE) is stored into a data structure of pushbutton and flags for publishing the 

data are set. When flags for publishing are checked, variables are published from the data 

stored in the buffer. Pseudocode 4.1 describes the actions taken when a pushbutton pressed 

action is initiated. 

 

 

Pseudocode 4.1 Actions when a Pushbutton is Pressed/Released 

Input: None 

Output: Pushbutton action triggered, event recorded and publish flag set 

1: Find the tagname of the pushbutton. 

2: Search for the index in SQLite table. 

3: Pass the information to the database along with the index found 

4: Store the Event. 

5: Set Publish Flag and return 

 

 

4.11.2    Selector Switch 

 Selector switch is implemented in the similar way logically for all three (normal, key 

selector, gang selector) types. SS data structure is used for all types. In selector switch, one of 

the options is selected at a time. If an option is marked selected then, variable corresponding 

to it represents 1 and other options have value 0. Selector switch is implemented through 

combination of pushbuttons and label. Pressing a pushbutton generates an action that the 

selection is being made. After a pushbutton on the selector switch is pressed (event= PRESS), 



70 
 

action is generated and TagName of the pushbutton is read. After reading the TagName, 

index corresponding to the TagName is searched in the SQLite table. Then data is saved into 

the buffer and flags are set for publishing. Pseudocode 4.2 describes actions taken when 

selector switch is interacted upon. 

 

 

Pseudocode 4.2 Actions when a Selector Switch Pushbutton is Pressed/Released 

Input: None 

Output: Selector Switch action triggered, event recorded and publish flag set 

1: Find the tagname of the pushbutton. 

2: Search for the comment in SQLite table. 

3: Pass the information to the database along with the index found 

4: Search which SS is Pressed and Store the Event. 

5: Set Publish Flag and return 

 

4.11.3    Toggle Switch 

 Toggle switch is similar to the selector switch. The difference is that it returns back to 

its original position when released. It means that variable is 1 until the selection is made by 

force. In the implementation, until the pushbutton is pressed value of the variable of that 

pushbutton variable is set 1 and resets after it is released. . After a pushbutton on the toggle 

switch is pressed (event= PRESS), action is generated and TagName of the pushbutton is 

read. After reading the TagName, index corresponding to the TagName is searched in the 

SQLite table. Then data is saved into the buffer and flags are set for publishing. Pseudocode 

4.3 describes actions taken when selector switch is interacted upon. 

 



71 
 

 

Pseudocode 4.3 Actions when a Toggle Switch is Pressed/Released 

Input: None 

Output: Selector Switch action triggered, event recorded and publish flag set 

1: Find the tagname of the pushbutton. 

2: Search for the comment in SQLite table. 

3: if(event = PRESS) 

6:  Pass the information(pressed) to the database along with the index found 

4:  Search which SS is Pressed and Store the Event  

5: else if(event = RELEASE) 

7:  Pass the information(pressed) to the database along with the index found 

6:  Read Prev Property of the widget 

7:  Search the index of with Prev  

8:  Pass the information(pressed) to the database along with the index found 

8: Set Publish Flag and return 

 

 

4.12    Updating the User Interface (UI) 

 User interface is updated each cycle after the variables are red from simulator. User 

gets all the information about the system from the user interface. Initially the user interface 

shows default values until the simulator is not running. When the simulator starts running, all 

the values are updated for the current screen only reducing the load on the process and 

simulator. For updating the screens, the variables are registered as described in algorithm 4.3 

and values are used accordingly. For example, LED glows when value of the variable is 1 and 

does not glow when value of the variable is 0. Algorithm 4.7 describes the values updation, 



72 
 

and how each component is differentiated in order to display correct values. startsWith() is 

the function that checks of the string starts with the string specified in the arguments. 

 

Algorithm 4.4 Updating the virtual panel and component widgets 

Input:  widgetlist 

Output: Updated virtual panel 

1: Open the database SQLite with widgetdata table 

2: for each widget in widgetlist 

3:  tag ‹- widget.property("TagName") 

4:  varname ‹- widget.property("VarName") 

5:  if(tag.startsWith("vb_")) 

6:   find index of tag in widgetdata 

7:   if(tag.startsWith("vb_AN_")) 

8:    Update Alarm Color using modvarsinfo[index] 

9:   if(tag.startsWith("vb_L_")) 

10:    Update LED colour using modvarsinfo[index] 

11:   if(tag.startsWith("vb_SI")) 

12:    Update Semaphore Indicator using modvarsinfo[index] 

13:  if(tag.startsWith("c_")) 

14:   find index of tag in widgetdata 

15:   if(widget is PushButton) 

16:    Update Pushbutton using modvarsinfo[index] 

17:  if(tag.startsWith("ss2")) 

18:   find index of tag in widgetdata for all pushbuttons in SS 

19:   Set Arrow using modvarsinfo[index]  

20:  if(tag.startsWith("ss3")) 



73 
 

21:   find index of tag in widgetdata for all pushbuttons in SS 

22:   Set Arrow using modvarsinfo[index] 

23:  if(tag.startsWith("ss4")) 

24:   find index of tag in widgetdata for all pushbuttons in SS 

25:   Set Arrow using modvarsinfo[index] 

26:  if(tag.startsWith("ss5")) 

27:   find index of tag in widgetdata for all pushbuttons in SS 

28:   Set Arrow using modvarsinfo[index] 

29:  if(tag.startsWith("ss8")) 

30:   find index of tag in widgetdata for all pushbuttons in SS 

31:   Set Arrow using modvarsinfo[index] 

32:  if(tag.startsWith("ss10")) 

33:   find index of tag in widgetdata for all pushbuttons in SS 

34:   Set Arrow using modvarsinfo[index] 

35:  if(tag.startsWith("ss12")) 

36:   find index of tag in widgetdata for all pushbuttons in SS 

37:   Set Arrow using modvarsinfo[index] 

38:  if(tag.startsWith("va_")) 

39:   if(widget is Pushbutton) 

40:    widget.settext() 

41:   if(widget is Label) 

42:    widget.settext() 

43:   if(widget is Dial) 

44:    widget.setdial() 

45:   if(widget is Scrollbar) 

46:    widget.setscrollbar() 



74 
 

47: if(varname.startsWith("GSPB")) 

48:  find all the index related to this widget 

49:  Update the pushbutton using modvarsinfo[index] 

 

 

4.13    Results of the Development 

 After implementation of all the components, components are consolidated in the 

screens according to the panel to which they belong. Initially when the simulator is not in 

RUN mode, all the components show the default value set for them during the registering. 

Figure 4.15, Figure 4.16 and Figure 4.17 show the initial behaviour of the alarm tab, display 

tab and controls tab of the panel 1 respectively. Figure 4.15 includes all the alarms in the 

panel 1. Yellow color represents that either alarm is having value 0. Red color represents the 

alarm state.  Figure 4.16 depicts the display tab which includes many display components and 

some control components also. It includes bar graph indicator, LEDs, selector switches, and 

many combinations of LEDs which are present in panel 1. Figure 4.17 depicts the controls 

tab which shows all the inhibition key selector switches in panel 1 and control components in 

the panel 1. Components and virtual panels depicted in the chapter are not integrated with the 

simulator to display the real time data. Integration is explained in the next chapter. Developed 

virtual panels are raw panels with some information with them which is worthless unless 

processed by the framework and given a meaningful form through the real time changes in 

the virtual panel components.  



75 
 

 

Figure 4.15: Alarm tab of Panel 1 



76 
 

 

Figure 4.16: Display tab of Panel 1 



77 
 

 

Figure 4.17: Controls tab of Panel 1 

 



78 
 

 

 

Chapter 5 

 

Integration of Virtual Panels with the Simulator 

 

Integration of the developed components forms the final and an important part of the project. 

Integration refers sharing of simulator data with virtual panels and interaction of the 

components. Simulator database is accessed and modified for all the interactions taking 

place with the virtual panels. This chapter discusses about the integration mechanism of the 

process with the daemon processes. Integration in its core refers to registering the process 

and interacting/sharing the messages with the simulator processes. De-Registering of the 

process after the lifetime of the process is also discussed. When lifetime of a process ends, it 

must perform activities so that next time when it joins, state of process is not changed. In 

terms of simulator it is termed as saving the state of the simulator. 

 

5.1    IPC Implementation and Registering Process with Simulator 

 Functions mentioned in section 2.2.1.2 are implemented through IPC wrapper which 

abstracts the implementation and internal details. These Functions are used through the 

wrapper and no function of MDSM is used directly. It simplifies the call for the programmer. 



79 
 

The details of the synchronous mechanism and messaging protocols can be abstracted from 

user. 

        Function IPC_GuiInit is used to register a GUI process with the simulator. 

  

 int IPC_GuiInit( char *proc_name, 

      char *directory, 

      int publishflag, 

      int timeout, 

     void ( *Reg_fn )( void ),   

     void ( *Subsc_fn )( void ), 

                   void ( *MsgRec_fn )( void *data, int MsgType, int size, MDSM_ProcId *sender)\, 

    int ( *SimStateSave_fn )( char *simStateId, int simStateType), 

    int (*SimStateLoad_fn )( char *simStateId, int simStateType), 

   void (*ReplayCBFn)(char *data,int len), 

  void (*CleanUpFn)(int signo), 

   void (*SimStateDelete_fn)( char *simStateId, int simStateType), 

                void (*PanelAlign_fn)( int operationFlag ), 

 void (*IoTest_fn)( int operationFlag, char *sender, void *data ) ) 

 

 This function performs the necessary initializations required for Inter Process 

Communication(IPC). It registers the process with the MDSM, and sets up table of callback 

functions for the various types of message events described below. This function is NON-

BLOCKING meaning it does not wait for the response for the return value and lets the 

program to continue until value is returned. 

The arguments of the function are explained below: 

proc_name : The name of the process registering with IPC routines. 

 

directory : The file with the MDSM configuration information. This file tells the IPC routines 

which socket number to use and upon which machine the messaging is located. 



80 
 

 

publishFlag : If set to one, then the executive expects this process to publish variables. If set 

to zero, the executive does not wait for this process to publish. 

 

timeout : This tells executive to send the run signal to this process every "timeout" time steps. 

In case of GUIs, it is not critical that the process receive signal every cycle time. It can be set 

to every 2nd or 3rd cycle of the models. This is a tuning parameter for the timing of the 

simulator. 

 

Reg_fn : A callback function in which initial registration of variables is done. This is to 

prevent subscription before publishing. 

 

Subsc_fn : A callback function in which all of the subscription are done. The executive waits 

for all the processes to finish the Reg_fn call before ordering the subscription of variables. 

 

MsgRec_fn : A callback function used when IPC_PollMsg() [Explained in section 5.2] 

function is called, and a message is received. 

 

SimStateSave_fn : This callback function will be called when it is time to save the simulator 

state. The parameter SimStateId identifies the file simulator is going to be saved in. 

simStateType identifies the type of the simulator save, IC, Backtrack, Snapshot.  

 

SimStateLoad_fn : This callback function will be called when it is time to load the simulator 

state. The parameters are similar to SimStateSave_fn. 

 



81 
 

CleanUpFn : This callback function is used when the process exits the simulator system. 

 

SimStateDelete_fn : This callback function notifies the process that an IC, Snapshot, or 

Backtrack has been deleted. 

Return : IPC_OK for success, IPC_ERR for failure, IPC_NODAEMON if messaging 

daemon is not detected. 

 

5.2    Communication with the Executive 

 Inter process communication between the executive and the process takes through 

messages. Whenever a message is received from the executive, it is checked against the 

options and action is taken accordingly. If the message is IPC_START, then all the values 

which are subscribed by the process are copied to the local memory of the process. If the 

message is IPC_PUBLISH, then all the variables registered are published. Alternatively, only 

modified variables can be published to reduce the redundant load on simulator. If no message 

is received then keep polling for new messages. Function used for polling the messages is 

IPC_MsgPoll. 

   

void IPC_MsgPoll( void ) 

 

 This function polls for messages from other processes. If the message is forthcoming, 

the user defined function MsgRec_fn() is called with the data packet and the data type. 

 



82 
 

5.3    Sending User Interface (UI) Responses to Simulator 

 In section 4.10, interaction with UI was discussed. After interacting with UI, a signal 

from UI is generated which prompts call to a function. Function finds out the index of the 

variable of component widget. Then using the data structure saved for the widget 

combinations, appropriate values are set for the widget components. Widgets are updated 

after the values are published and sent back the process through subscription mechanism. If a 

pushbutton is pressed then event PRESS is sent and appropriate function is called and values 

for the variables are set to one. In case of a selector switch, the pushbutton PRESSED is set to 

one and all other options in the selector switch are set to zero. Along with setting the values 

in the data structure of selector switch, flag are also set for publishing. When the executive 

sends IPC_PUBLISH, the process publishes all the registered variables using 

IPC_PublishAll(). 

 

5.4    Saving the state of User Interface (UI) and De-Registering the Process 

and Variables 

 When a process leaves the simulator system, it should save the current state of 

simulator so that if it returns back it should find the simulator in the same state as when it left. 

All the variables which are published by the process are saved in the same database as they 

were stored to interact with the simulator. While leaving the system, a process should de-

register itself and all the variables it has registered with the MDSM. Functions for de-

registering process and variables are explained in the sections 2.2.1.2.8 and 2.2.1.2.3.3 

respectively. 

 



83 
 

5.5    Results of Integration 

 Section 4.12 shows the development results for panel 1 and console 1. Results shown 

in section 4.12 are incomplete in the sense that they show default values rather than values 

from the simulator database. Default values are displayed when simulator has not started. 

After integration with simulator is complete and simulator is in RUN state, they show the 

correct simulator values. Figure 5.1, Figure 5.2 and Figure 5.3 show the status of the virtual 

panels after the integration for alarm, display and controls tab of panel 1. 

 

Figure 5.1: ALARM tab of Panel 1 after integrating with simulator 



84 
 

 

 

Figure 5.2: DISPLAY tab of Panel 1 after integrating with simulator 

 



85 
 

 

Figure 5.3: CONTROL tab of Panel 1 after integrating with simulator 

 



86 
 

 

 

Chapter 6  

 

The Methodology of reusing the Framework 

 

This chapter explains how template widgets developed can be reused to create more virtual 

panels. It is implemented using the properties defined for the each widget and the code for 

identifying and using the properties of components. Framework reduces efforts for creating 

virtual panels  through reusability. 

 

6.1    Creating a virtual panel 

 Creating a virtual panel and integrating it with the simulator is done using the 

graphical user interface of the development software (Qt Creator). Each virtual panel has two 

aspects to be taken care, one being the user interface model file (.ui file) and the other is the 

associated C/C++ code to drive the panel. As most of the panels have similar 

components/widgets contained in them, creating new panels is easily achieved. It involves 

replicating and renaming the user interface file and associated code to match the new panel. 

For example, the Alarms of all the virtual panels are similar except the names of 

alarms and their concerned simulator variables. Taking advantage of this any existing panel 

say, alarms_panel_1.ui can just be copied and made as alarms_panel_2.ui and the names of 



87 
 

the alarms alone can be changed as required. Similarly the code/class file associated with 

alarm_panel_1.cpp can be copied and renamed to match alarm_panel_2.cpp. Once the code 

and the user interface files are ready they can be compiled and integrated with the simulator. 

Any new component/widgets can be added or removed by copying and pasting form other 

virtual panels or deleting from this panel as needed. Next section describes how components 

are added to the virtual panel. 

 

6.2    Incorporating Components in the Virtual Panel 

 After creating a virtual panel, components are added to it. Each component already 

created and integrated with the simulator is copied and pasted to the required virtual panel 

from the source panel where it exists or from template virtual panel. As each component in 

each panel has a different variable, so variable of the created component is changed to suit 

the functionality. Names of the variable can be referred from the database available in the 

simulator room. Nomenclature of the components and their properties is explained in the 

chapter 4. 

 Framework is collection of the code that manages the component widgets on the 

virtual panel and performs the tasks for generic widgets developed. Framework code 

identifies the new widgets and stores them in the database which finally helps in interacting 

with the simulator daemon processes. Each of the virtual panel contain three tabs namely, 

annunciation, display and controls which are being shown and explained in section 4.12 and 

5.5. All the pre-processing, identification and interactions are taken care by the program itself 

if the nomenclature is followed accordingly. 

To add the component, open the virtual panel, where the component to be created 

exists. Select the component that is to be created. Copy the component by selecting it. Open 



88 
 

the panel where component needs to be copied and paste it. Place the component to a relevant 

location on the panel. Change the dynamic properties of the component referring the database 

and save it. Properties which are to changed can be found out from section 4.7. Recompile 

and run the program.  

 Above procedure is for all the components and user can decide the placement of the 

component. Any number of the components can be fitted in the virtual panel as long as the 

panel doesn't look cluttered. Name of the component should be changed and checked. 

Behaviour of component remains same as parent component unless variable is changed. 

 

 

 

 

 

 

 

 

 

 

 



89 
 

 

 

Chapter 7 

 

Summary and Future Work  

 

 Simulators play a very important role in training of operators. It gives a feeling to the 

operator as if working in a real control room. All functionalities, even the hardware and non-

nuclear aspects should be same so as to extract maximum output in behavioural and technical 

aspects. Simulator consists of many models integrated together. Virtual Panel is one of the 

models. Process and logic models are ported to Intel platform. This project dealt with the 

third important model to be developed for Intel platform. Development of framework for 

creating virtual panels is the objective of the project. Framework for creating virtual panels 

for the Intel simulator is developed using Qt and tested by developing three panels. More 

number of virtual panels can be added using the development Integrated Development 

Environment (IDE) QtCreator. Component widgets can be added to the virtual panel using 

the developed widgets. All the components were developed and tested for interaction with 

simulator. Behaviour of each of the component developed is observed and analysed. Example 

of each type of widget is depicted in relevant chapters. Algorithm for each of the tasks is 

described in the relevant chapters.  

 



90 
 

7.1    Future Work 

 Presently, virtual panels are developed for three hardware panels with components. 

There are more than 21 hardware panels in the simulator which can be developed using the 

framework developed for creating the virtual panels. Components in the created virtual 

panels can be taken from the developed virtual panels or the template virtual panel. More 

components can be added to the project for further expansion. Further, modification of the 

components through changing properties can be done. Colours and size of the components 

can be modified as required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



91 
 

 

Annexure A 

 

A.1    Database Files used for DB3 setup 

 dBase[48] is one of the first database management systems for microcomputers, and 

most successful in its days. dBase's underlying file format , the .dbf is used in applications 

where simple format is required to store structured data. It is a file based storage type 

database. It is copied to memory when required and saves lot of disk read and writes. Virtual 

panels use this database to store the information required to communicate with the simulator 

daemon processes. Format of the storage information is specified in section 4.5. Each cycle 

of scan of virtual panel screens leads to resetting the databases. As this is a file storage type 

database, everything is erased when the file is cleared. Thus a template file is required which 

would store the first record of columns. Although accessing mechanism for the database is 

sequential, file is read/write record by record to implement the relational essence. The first 

file is a template file which needs to be included so that when the database is cleared, again 

template file can be first written to the main database file and each record can be checked 

against the template to check its correctness. This is how the database correctness is checked. 

When the program starts, whole file is read into the memory record by record checking the 

record size and type against the template header. In case of a mismatch, error code is returned 

and program exits. 



92 
 

A.2    Types of Widget Component and Actions with Codes 

 Each type of the widget component is identified by the type of code its data structure 

contains. Code is assigned during the scanning of the screens and identification of the 

components. Code is assigned only to the interactive components as they only need to be 

identified during the interaction. Non interactive components can be directly identified using 

their prefixes assigned by the user and are identified as explained in the algorithms in chapter 

5. Codes for various components and actions are given below: 

 

TOGGLE SWITCH      TGS  1 

PUSHBUTTON      PB  2 

SELECTOR SWITCH WITH 2 PUSHBUTTONS  SS2  3 

SELECTOR SWITCH WITH 3 PUSHBUTTONS  SS3  4 

SELECTOR SWITCH WITH 4 PUSHBUTTONS  SS4  5 

SELECTOR SWITCH WITH 5 PUSHBUTTONS  SS5  6 

SELECTOR SWITCH WITH 8 PUSHBUTTONS  SS8  7 

SELECTOR SWITCH WITH 10 PUSHBUTTONS  SS10  8 

SELECTOR SWITCH WITH 12 PUSHBUTTONS  SS12  9 

LATCHING PUSHBUTTON     LATCH 30 

MOMENTARY PUSHBUTTON    MOM  31 

PRESS ACTION       PRESS    0 

RELEASE ACTION      RELEASE   1 

 



93 
 

 

Annexure B 

 

B.1    Pseudocode for the Algorithms  

Pseudocode [51] is an artificial and informal language that helps programmers to develop 

algorithms. Pseudocode is a "text-based" detail (algorithmic) design tool. The rules of 

Pseudocode are reasonably straightforward. All statements showing "dependency" are to be 

indented. These include while, do, for, if, switch. Pseudocode for algorithms in chapter 4 are 

discussed below. 

 

B.1.1    Pseudocode for Algorithm 4.1 

##4.4: Identification of components widgets and storage of information 

 

Set index to zero 

Initialise the current buffer pointer 

for all the widgets in the widget list 

 Read variable name property of the widget 

  If variable name is present for the widget then 

   If the variable name has prefix of pushbutton 

    Read the Tag Name property of the widget 

    Read the length of the tag name 

     If tag name has prefix for publishing then 

      Store the widget information for publishing 



94 
 

      Store the widget information for subscribing 

     If tag name has prefix for flag then 

      Store the widget information for publishing 

 

   If tag name has prefix for selector switch or key selector switch then 

    Read the tag name property of the widget 

    for all the widget in widget list 

     Read the tag name property of the widget 

     Read the length of the tag name  

If tag name has prefix for publishing and tag name has 

numbering 

      Store the widget information for publishing 

      Store the widget information for subscribing 

    If tag name has prefix for gang selector switch or toggle switch then 

    Read the tag name property of the widget 

    for all the widget in widget list 

     Read the tag name property of the widget 

     Read the length of the tag name  

If tag name has prefix for publishing and tag name has 

numbering 

      Store the widget information for publishing 

      Store the widget information for subscribing 

  Else 

   Read the tag name property of the widget 

   Read the length of the tag name  

If tag name has prefix for input binary widget then 

    Store the widget information for subscribing binary 

If tag name has prefix for input analog widget then 



95 
 

    Store the widget information for subscribing analog 

If tag name has prefix output analog publishing then 

    Store the widget information for publishing analog 

 

 

B.1.2    Pseudocode for Algorithm 4.2 

##4.5: Insertion of data into the databases 

 

Declare current buffer pointer for the panel 

Read the tagname, flagname, status and length of the flagname 

Insert a row into the initialised database with index number and tagname as the primary key 

Increment the index  

exit 

 

 

B.1.3    Pseudocode for Algorithm 4.3 

##4.6: Segregation and Storage of component widgets 

 

Declare instances of pushbutton, toggle switch and selector switch structures 

For all the widgets in the widget list 

 Read variable name property of the widget 

 If variable name is present for the widget 

  Read the tag name property of the widget 

  If variable name has prefix for pushbutton 

   Find the index in the table using key tagname 

   If tag name has prefix for publishing 

    Fill the information in pushbutton structure 



96 
 

   If variable name has prefix for momentary type 

    Set type of button to be momentary type 

If variable name has prefix for latching type 

    Set type of button to be latching type 

  If the variable name has prefix for selector switch or key selector switch 

   Find the index in the table using key tagname 

   Read the tagname of the widget 

   For all the widgets in the widget list 

    Read tag name of the widget 

If tag name contains tag name of the selector switch or key 

selector switch tag name 

Fill the information of widget in selector switch 

structure 

  If the variable name has prefix for gang selector switch 

   Find the index in the table using key tagname 

   Read the tagname of the widget 

   For all the widgets in the widget list 

    Read tag name of the widget 

If tag name contains tag name of the selector switch or key 

selector switch tag name 

Fill the information of widget in selector switch 

structure 

  If the variable name has prefix for toggle type selector switch 

   Find the index in the table using key tagname 

   Read the tagname of the widget 

   For all the widgets in the widget list 

    Read tag name of the widget 

If tag name contains tag name of the selector switch or key 

selector switch tag name 



97 
 

Fill the information of widget in selector switch 

structure 

  If tagname has prefix for digital input and outputs 

   Find the index in the table using key tagname 

   Fill the information of widget in corresponding binary, analog structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 
 

 

 

References 

 

[1] "Developing a Systematic Education and Training Approach Using Personal 

Computer Based Simulators for Nuclear Power Programmes", IAEA - TECDOC - 

1836, May 2017. 

[2] P Chellapandi et al., “Fast Reactor Programme in India”, Indian Academy of Sciences, 

Vol. 85, No. 3, September, 2015. 

[3] T. Jayanthi, S.A.V. Satyamurthy, P. Swaminathan,“Training simulators and their  role 

in Nuclear Power Plant”, IGCAR, Kalpakkam. 

[4] T. Jayanthi et al. “Simulation and Integrated Testing of Process Models of PFBR 

Operator Training Simulator”, ELSEVIER Energy Procedia, Volume 7, 2011. 

[5] Jaakko Meittinen, "Nuclear Power Plant Simulators: Goals and Evolution", 

 THICKET 2008, Session III, Paper 07, May 2008. 

[6] H.Seetha et al., “Visualization of Plant dynamics using soft screens for PFBR 

Operator Training Simulator”, SSN: 2277-128X (Volume-7, Issue-6), June, 2017. 

[7] N Jasmine et al., “Simulation of control logics for plant transition state for PFBR 

operator training simulator”, International Conference on recent trends in information 

technology, 2011. 

[8] "Role of Simulators in Operator Training". Nuclear Energy Agency, 

 NEA/CSNI/R(97)13, June, 1998 



99 
 

[9] W. J. Vaudrey, “Simulator training for nuclear reactor plant operators”, IEE 

Colloquium on operator training simulators, 1992. 

[10] M. Dixon, “Training Simulators”, IEE Colloquium on operator training simulators, 

1992. 

[11] J. van Loon, “The use of dynamic process models for operator training”, IEE 

Colloquium on operator training simulator, 1992. 

[12] John Jacob Adams,"A Nuclear Power Plant Simulator", University of Central 

 Florida, 1973. 

[13] Ann MaQuaid. "Dear Valued AlphaServer Customer", April 28, 2007.Hewlett-

 Packard Company. 

[14] T. Jayanthi et al., “Verification and Validation of simulated process models of 

KALBR-SIM” training simulator, International journet of humanities and social 

sciences, 2015. 

[15] T. Jayanthi et al., “Simulation and integrated testing of process models of PFBR 

operator training simulator”, Asian Nuclear Prospects 2010 by Elsevier Publications. 

[16] Pedro A. Corcuera, “A Full scope nuclear power plant training simulator:Design and 

Implementation experiences”, University of Cantabria, 2003. 

[17] L3 MAPPS, “Simulators for nuclear power plant engineering”, White Paper, May 

2013. 

[18] IAEA-TECDOC-1411, “Use of control room simulators for training of nuclear power 

plant personnel”, September 2004. 

[19] N. E. Bush, “Training simulators for nuclear power plant reactor operator”, American 

Institute of Electrical Engineers, December 1959.  



100 
 

[20] The CentOS Project, Redhat, “http://www.centos.org”. 

[21] Haavard Nord, Qt Project, "http://qt-project.org", The Qt Company. 

[22] D. Richard Hipp, SQLite, “https://www.sqlite.org”. 

[23]  [24] Himanshu Jain, “Verification using satisfiability checking, predicate 

abstraction and, craig interpolation”, Carnegie Mellon University, September 2008. 

[24] Lars Engefield, Callback Functions, “https://www.newty.de/fpt/callback.html”. 

[25] N. Skoric, A. Kavcic, B. Grobelnik, “Nuclear power plant simulator for general 

public”, Croation nuclear society, Croatia. 

[26] V.V. Korolev, I.I. Sidorova, “Electrical simulation of nuclear reactors”, In the soviet 

journal of atomic energy, Issue 1, pp 837-851, July 1958. 

[27] Jay Jay Billings et al., “A domain-specific analysis system for examining nuclear 

reactor simulation data for light water and sodium cooled fast reactor”, Elsevier 

Volume 85, pp 856-868, November 2015. 

[28] Ronald Boring, Vivek agarwal, “Digital full-scope simulation of a conventional 

nuclear power plant control room”, Idaho national laboratory, March 2013. 

[29] Daemon Definition, "http://www.linfo.org/daemon.html", August 16, 2005 

[30] T. Voggenberger, D. Beraha and F. Cester, “Nuclear power plant simulation and 

safety analysis”, 85748 Garching, Germany, 1993. 

[31] Silberschatz, et al., Operating system concepts, 9
th

 Edition, 2012. 

[32] Andew S. Tenenbaum, Modern operating systems, 4
th 

Edition, 2014. 

[33] Albert S. Woodhull and Andrew S. Tanenbaum, Operating systems: Design and 

Implementation, 3
rd

 Edition, 2016. 

[34] Alan Beaulieu, Learning SQL, Oreilly & Associates Incorporated, 2
nd 

edition,
 
2005. 



101 
 

[35] Jay A. Kreibich, using SQLite: Small.Fast.Reliable, Oreilly & Associates 

Incorporated,  1
st 

Edition, 2010. 

[36] Richard Stallman, "GNU General Public License", Version 3, 29 June, 2007 

[37] GNU Project, Free Software Foundation, "GNU Lesser General Public User 

 License", Version 3, 29 June,2007 

[38] Linux System Programming, Robert Love, O'Reilly Media, Chapter 1, 17-35 

[39] Thomas Cormen, Chrarles E Leiserson, Ronald Rivest and Clifford Stein 

 Introduction to Algorithms, 3rd Edition, MIT Press, Chapter 1-3 

[40] Brian Kernighan, Dennis Ritchie, "The C Programming Language" 

[41] Bjarne Stroustrup, "The C++ Programming Langauge", Addison-Wesley 

[42] Ronald Laurids Boring, “Using nuclear power plant training simulators for operator 

performance and human reliability research”, Sandia national laboratories, April 2009. 

[43] Standard review plan, U.S. nuclear regulatory commission, “Reactor Operator 

training”, NUREG-0800, July 1981. 

[44] Using the Meta Object Compiler (moc), "http://doc.qt.io/archives/qt-4.8/moc.html" 

 The Qt Company 

[45] Generic Logic, Inc., GLG Builder and Animation, 

“http://www.genlogic.com/doc_html/glgtut.pdf”, Version 3.7, November 2017. 

[46] Michael T. Goodrich, Roberto Tamassia, "Data Structures and Algorithms", John 

 Wiley and Sons, 2008 

[47] Avi Silberschatz, Peter Baer Galvin, Greg Gagne, Operating Systems, Inter Process 

 Communication, Yale University, John Wiley and Sons, 1992 



102 
 

[48] Cecil Wayne Ratliff, dBase, “http://www.dbase.com”. 

[49] John Jacob Adams, “A nuclear power plant simulator”, Master Thesis, University of 

Florida, 1973. 

[50] Nishu, “Development and enhancement of interface framework for the integration of 

Distributed Digital Control System (DDCS), with PFBR operator training simulator”, 

Homi Bhabha National Institute, July, 2018 

[51] Robert F. Rogio, University of North Florida, Pseudocode Examples, 

“www.unf.edu/~broggio/cop2221/2221pseu.htm”, Spring 2015. 


