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Abstract 

 

In modern C&I applications, reliable and deterministic data communication is an essential part 

of distributed control systems to improve the performance & for higher availability. In time 

triggered communication, a time-driven static scheduling provides fixed latency and improves 

determinism. It can be used to provide real-time communication with determinism and fault 

tolerance. It is a master-less protocol with broadcast transmission and conflict free TDMA bus 

access as per a static schedule-table. All nodes in the network are synchronized in temporal 

domain with distributed clock synchronization algorithm. A network of distributed intelligent 

sensor nodes with time-triggered synchronized communication provides overall sensor data in 

real-time to control and monitoring systems. It will provide robust and fault tolerant 

communication for distributed sensors in a nuclear plant environment and also result in 

substantial savings in cabling and penetrations. 

 

As a part of the project, study and comparison of architecture and protocols used in existing 

sensor level networks has been carried out. A custom deterministic and fault tolerant network 

architecture and protocol suitable for a sensor level network in nuclear plants and facilities has 

been evolved. Formulation and simulation of the two core algorithms namely clock 

synchronization and group membership algorithms required for protocol operation has been 

carried out. The main objective of the project is to design a robust sensor level network protocol 

based on study and simulation to verify performance and quality parameters.  
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1 CHAPTER 1: Introduction 

 

As computing and communications become irreplaceable tools, reliability, availability, fault 

tolerance and fail silence are important aspects.  In all safety critical systems including flight 

control system, railway signaling, automotive system, emergency response systems; airline 

flight controls; health care; and most of all, nuclear power plant safety systems, requirement of 

reliability and fault tolerance has increased with high-performance computing and 

communications. The concept of fault tolerance was formulated in 1967: “A system is fault-

tolerant if its programs can be properly executed despite the occurrence of logic faults”.   

 

1.1 Motivation 

In typical real-time (RT) applications, the computer system has to perform a multitude of 

different functions in parallel, e.g. the processing of inputs, the monitoring of system state to 

detect alarm conditions, display to operator etc. In distributed computer systems, these different 

functions are normally allocated to different nodes. In real-time systems using communication 

data, bounded data latency in presence of disturbing factors such as overload or faults is a 

fundamental requirement. A real-time system has to meet the strict timing deadlines dictated 

by its environment. If a real-time system misses a deadline, it has failed. But for safety critical 

systems, single fault tolerance is an important criterion. Fault tolerance guarantees that the 

systems will perform as per design specifications and also ensure trust of users. This was the 

motivation to work on aforementioned topic of “Study, Design and Simulation of Time 

Triggered Protocol for Distributed Sensor Network”. 
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1.2 Objectives 

In order to reduce cabling costs, the nodes of distributed control system are connected to each 

other via a network. Network systems offer the opportunity of modularity and scalability which 

allow a flexible design of variants. Further, (intelligent) sensors and actuators are used in a 

multiple way to realize high level functions and services.  

 

There is a huge number of possible network topologies, like for instance, the currently 

frequently used bus communication, topologies with gateways, active stars or cascaded star 

structures. If the application requires fault-tolerance, the classic redundant network or a mixed 

redundant network which efficiently maps the system safety structure into a system architecture 

is utilized. Bus topology has been discussed further. Unfortunately, communication networks 

introduce delays. Furthermore, these delays may be varying in a random fashion, making the 

control system time varying. 

 

If one is concerned to formulate the requirements of distributed control systems two different 

situations should be distinguished: 

1. Occurrence of a critical situation, for instance, any parameter value getting beyond process 

range 

2. The regular operation of the control system. 

 

The former situation requires as fast as possible reaction to the asynchronous event in order to 

start emergency mechanisms. For that purpose, event and time-triggered communication are 

compared later. 

 

During the regular (periodical) operation of distributed control systems, time-triggered 
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architectures seem to be ideally suited. They often lead to a higher latency compared with 

event-triggered architectures, but there is no jitter if all participating nodes at the network are 

synchronized to a global time. 

 

As a part of the project, study and comparison of architecture and protocols used in existing 

sensor level networks has been carried out. In which, time-triggered architectures offer very 

interesting properties from the control design point of view.  The main objective of the project 

is to design a deterministic sensor level network protocol based on study and simulation. 

 

1.3 Scope  

The work consists of design of custom time triggered protocol, formulation and simulation of 

algorithms for use in network of smart sensors. The scope of work is as under: 

1) Literature survey and comparative study of sensor network architecture and 

communication protocols existing in real-time for distributed sensor networks. 

2) Formulation of clock synchronization algorithm for custom time triggered protocol. 

3) Formulation of membership algorithm for custom time triggered protocol. 

4) Modelling and Simulation of synchronization algorithm and membership algorithm 

using simulation tool. 

5) Validation on suitable hardware and conceptual design of sensor node. 

 

1.4 Organization of report 

Chapter 2 describes the important findings from the literature survey. In distributed control 

systems (DCS) two conceptually distinct models have been identified, named event-triggered 

(ET) and time-triggered (TT) which are compared in the beginning of chapter 2. Later is the 
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list of various communication fieldbuses present in the market. Among those, the most 

prevalent in the industry are described in detail with comparison of their significant features. 

 

How TTP is a candidate protocol for our requirements of Fault-tolerant Deterministic network 

is described in detail in Chapter 3.  

 

One of the core aspects TTP, which is clock synchronization algorithm, has been studied during 

literature survey. Chapter 4 describes the two core algorithms of the protocol i.e. clock 

synchronization and group membership protocol. The former part of the chapter mentions the 

necessity of clock synchronization algorithm and its implementation details. Simulation results 

and conclusions are depicted in the same. The other important core aspect of TTP is Group 

membership. This has been described in detail along with illustrations of its simulation at 

various different fault scenarios in the latter part of the chapter. 

 

Chapter 5 consists of details regarding the hardware set-up used for validation of the 

algorithms. The observations, after the execution of the algorithms over the test set-up, are also 

illustrated in this chapter. 

 

Chapter 6 comprises of the conceptual design of the sensor node along with a performance 

specifications of designed system. The details of custom designed Time triggered protocol are 

also described in this chapter. 

 

Chapter 7 concludes the thesis and explains the future scope of this activity.  
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2 CHAPTER 2: Literature survey 

 

In distributed control systems (DCS) two conceptually distinct communication models have 

been identified, named event-triggered (ET) and time-triggered (TT). In event-triggered 

communication, message exchanges are initiated when a significant event occurs. They include 

arbitrary state changes in the computer system or the environment (e.g., interrupt from a 

sensor). In time-triggered systems, message exchange is derived from a clock tick according to 

a static schedule table. In distributed control systems (DCS) two conceptually distinct models 

have been identified [1], named event-triggered (ET) and time-triggered (TT) and compared 

below. 

 

2.1  Event-triggered (ET) communication 

In an event-triggered system all actions are triggered due to the occurrence of a significant 

event or state change. With respect to communication, only transmitter nodes have knowledge 

about the exact instant a message will be sent, that is, each node has only its own view of the 

physical time.  

 The major advantage of an event-triggered bus is the better responsiveness to asynchronous 

external events (e.g. an alarm condition) at low communication load. System reaction is 

fast since the transmission times of messages are not under the control of the platform 

architecture, that is, a node is able to try for media access whenever it needs. The problem 

is that, depending on the bus arbitration mechanism of the protocol, collisions will have 

direct impact on response times of communication services.  

 In addition, event-triggered distributed systems are more flexible. The total bandwidth of 

the channel is shared among the nodes which means that it can automatically readapt when 
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nodes are removed or included even if there is ongoing communication (hot-plug)[2]. 

 Nonetheless, in event-triggered systems the response times of data transmission 

deteriorates as communication load increases. 

 Even at low loads the communication behavior will experiment quite large latency 

variations, which has negative impact on the control performance.  

 

2.2  Time-Triggered (TT) communication 

At the other opposite, a time-triggered distributed system is characterized by its regular, 

deterministic time behavior. All transmission times of messages are defined in a global 

schedule at design time, prior to deployment and the communication controller is responsible 

for every communication activity (transmission and reception of messages) and operates 

independently from the host computer. 

 An important advantage is that time-triggered based protocols offer cyclical data 

communication services with fixed latencies. 

 The bandwidth is partitioned into dedicated time slots inside which only one node can 

transmit at a time hereby collisions never occur under normal operation.  

 If there are no collisions, the transmission of messages defined in the global schedule is 

never delayed. This is the Time-Division Multiple Access (TDMA) arbitration mechanism.  

 Moreover, time-triggered systems have a very attractive property from the point of view of 

embedded system design which is named composability, that is, the possibility to develop 

two subsystems independently with prior guarantees that the integration will not jeopardize 

timing and other functional characteristics that were individually defined. Time-triggered 

buses are composable because communication media access is multiplexed, that is, each 

node has its own portion of bandwidth that will never be snatched by another node under 

normal conditions. 
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 Error detection is performed inside the controllers by verifying if every message was 

received within its expected time window. This facility providing intrinsic means to verify 

a node crash. 

 A shortcoming of the time-triggered paradigm is its lack of flexibility. For every node 

inclusion that was not previously predicted, the whole system must be reprogrammed. 

 

When comparing design complexity, the implementation of time-triggered systems is indeed 

more complicated. Within each node it must be ensured that the application layer follows the 

communication scheme correctly. This means that the worst-case execution time (WCET) of 

all tasks in a node must be carefully estimated in order to avoid inconsistencies in the values 

that are used by actuators to interact with the system under control. During system design, not 

only the communication schedule but also the schedule of all control tasks must be defined [3]. 

 

A small change in one subsystem may in general imply an entire new system design. The 

system design itself is very complicated and there is still a lack of adequate tools for the design 

process. It depends on the actual application whether a time-triggered or an event-triggered 

behavior is more suitable. Very safety critical systems require fault-tolerance and redundancy. 

The implementation of such systems probably will fail without the framework of time-triggered 

architectures. For large-scale problems time-triggered architectures are a good choice and 

offers some interesting opportunities.  

 

Today, there are two emerging time-triggered solutions claiming being able to fulfil the 

rigorous demands of predictability, performance and reliability. The first one is the TTP/C 

protocol and its Time-Triggered Architecture [4]. The other one is the FlexRay 
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Communications System developed by the FlexRay Consortium formed by a group of strong 

companies in the automotive area [5]. 

 

It is noteworthy that the two paradigms (ET and TT) are not mutually exclusive in practice but 

one of them always prevails against the other. Both FlexRay and TTP/C architectures provide 

event-triggered services in addition to their strictly regular time-triggered communication. For 

instance, the communication cycle in FlexRay is divided into four different time windows: a 

static segment, an optional dynamic segment, a symbol window and the network idle time 

(NIT) [6]. All communication services are handled within the static and dynamic segments. 

Therefore, this protocol prioritizes time-triggered traffic as the static segment is mandatory and 

the dynamic is optional. The former segment is used for time-triggered traffic while the other 

is shared among the nodes for asynchronous transmissions. Reaction to external events can be 

quite slow depending on the length of the static segment. Consider for example that an 

asynchronous transmission request arrives at the end of the idle time. In this case, the 

transmission will be delayed at least by the entire duration of the static segment. In TTP/C, 

however, there is no time window reserved to handle asynchronous requests, event-triggered 

services are implemented over the time-triggered scheduled using empty slots (if any). Having 

all that in mind, it is clear that in an inherent time-triggered system, the cyclical traffic is always 

prioritized. 

 

Event-triggered and time-triggered concepts do not have a direct relationship with synchronous 

and asynchronous communication model present in traditional distributed system theory. An 

asynchronous model refers to the application processing in a distributed environment which 

has no notion of time at all whereas the event-triggered node in the DCS has its own notion of 

time. Research on embedded DCS has recognized the time-triggered communication model as 
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the most adequate design paradigm for safety-critical applications [7]. Bus architectures 

derived from the time-triggered model have some desirable properties like low communication 

jitter, predictable transmission delays, composability and efficient support for fault-tolerant 

techniques. 

 

2.3  Communication protocols in distributed systems 

An industrial distributed control system (such as manufacturing assembly line) consists of an 

organized hierarchy of controllers. In this hierarchy, there is usually a Human Machine 

Interface (HMI) at the top, where an operator can monitor or operate the system. This is 

typically linked to a middle layer of programmable logic controllers (PLC) via a non-time-

critical communications system (e.g. Ethernet). At the bottom of the control chain is the 

fieldbus. It links the PLCs to the components that actually do the work, such as sensors, 

actuators, electric motors, console lights, switches, valves and contactors. Fieldbus is the name 

of a family of industrial computer network protocols used for real-time distributed control of 

field devices, standardized as IEC 61158. 

 

2.3.1 Challenges in Fieldbus 

Users see the following as some of the challenges 

 Selecting the best combination of bus technologies for the application 

 Integration options and solutions  

 Technology training & development at all levels of the organization 

 Testing and interoperability issues 
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2.4  Prominent communication protocols for fieldbus 

The prominently used protocols (in an industrial environment) are described further briefly: 

 

2.4.1   TTP/C 

The Time-Triggered Protocol (TTP) is a communication protocol for distributed fault-tolerant 

real-time systems [8]. It is designed for applications with stringent requirements concerning 

safety and availability, such as avionic, automotive, industrial control and railway systems. 

TTP was initially named TTP/C and later renamed TTP. The initial name of the communication 

protocol originated from the classification of communication protocols of the Society of 

Automotive Engineers (SAE), which distinguishes four classes of in-vehicle (refer Table 2.1) 

networks based on the performance TTP/C satisfies the highest performance requirements in 

this classification of in-vehicle networks and is suitable for network classes C and above. 

 

TTP provides a consistent distributed computing base in order to ease the construction of 

reliable distributed applications. Given the assumptions of the fault hypothesis, TTP guarantees 

that all correct nodes perceive messages consistently in the value and time domains. In addition, 

TTP provides consistent information about the operational state of all nodes in the cluster. 
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Table 2.1: SAE Network classes 

Network 

Class 

Examples of Protocols Bandwidth Typical 

Latencies 

Automotive 

Applications 

Class A 

Local Interconnect 

Network (LIN) 

< 10 kbps 10-100ms 

sensor/actuator 

access 

Class B 

Controller Area Network 

(CAN) 

10kbps-125kbps 10-100ms comfort domain 

Class C 

Controller Area Network 

(CAN) 

125kbps-1Mbps 5ms powertrain domain 

Class D 

Time-Triggered Protocol 

(TTP), FlexRay 

> 1 Mbps 5ms 

multimedia, X-by-

wire 

 

 

2.4.2   TTP/A 

The TTP/A protocol is the low-cost field-bus protocol that is harmonized with the fault-tolerant 

system bus TTP/C of the time-triggered architecture (TTA). It is intended for the connection 

of smart sensors and actuators in embedded real-time systems in different application domains, 

e.g., industrial, automotive, etc. It is the objective of TTP/A to provide all services needed by 

a smart sensor, including timely communication, remote online diagnostics, and plug-and-play 

capability.  

 

TTP/A implements the Object Management Group (OMG) Smart Transducer Interface (STI) 

standard. The STI standard defines a smart transducer system as a system comprising several 

clusters with transducer nodes connected to a bus. Via a master node, each cluster is connected 
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to a gateway.  It is possible to monitor the smart transducer system via the interface without 

disturbing the real-time traffic.  

 

In TTP/A, the master nodes of each cluster share a synchronized time that supports coordinated 

actions (e. g., synchronized measurements) over transducer nodes in several clusters. Each 

cluster can address up to 250 smart transducers that communicate via a cluster-wide broadcast 

communication channel. There may be redundant shadow masters to support fault tolerance. 

One active master controls the communication within a cluster.  

 

2.4.3   FlexRay  

It is fault tolerant and deterministic, and is aimed at advanced applications such as x-by-wire. 

Data is transmitted on the FlexRay bus in both timed and event driven manner. Each message 

is divided into static segment and the dynamic segment. The static segment is defined during 

the configuration of the application and transmits the data on a TDMA basis. The dynamic 

segment of the message handles data on an event triggered basis. The protocol defines parts of 

the physical layer, data link layer, presentation layer and application layer of the OSI model in 

the context of a FlexRay communication controller [6]. 

 

FlexRay have different time slots for messages i.e., scheduled by static cyclic and fixed priority. 

Static cyclic scheduling got the advantages that it is easy to calculate response times and is very 

predictable. However, since it needs to be scheduled before runtime it got some limitations, 

like how to schedule very important messages that rarely needs to be sent. In worst case that 

kind of message may have to wait for a whole cycle if its slot has passed, or multiple slots have 

to be assigned to that message but then these slots will pass empty most of the time. Making a 

static schedule may not be that easy for complex systems. Using one static section and one 
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dynamic section like FlexRay may be an advantage since frequent real-time messages can be 

sent in the static segment, while uncommon high priority messages and lower prioritized 

messages can use the dynamic segment. Data rate is up to 10Mbps over dual redundant channel. 

 

2.4.4   Controller Area Network  

The CAN protocol is internationally standardized in ISO 11898-1 and comprises the data link 

layer and components of the physical layer of the 7-layer ISO-OSI reference model [9]. The 

main principles of CAN are: 

• Multi-master: Any node may send if the bus is idle. 

• Guarantee of latency times: It is possible to calculate the worst case time for a message to 

be sent and reached at the destination node. 

• Configuration flexibility: Nodes can be added to the network without change in hardware 

or software. 

• Prioritization of messages: Conflicts are avoided by prioritizing the messages.  

• Broadcast communication: Every transmitted message is received in all nodes  

 

CAN use Fixed Priority scheduling, which means that each message got a set priority, and 

higher prioritized messages will get access to the bus before lower prioritized messages. The 

advantage with this system is that high prioritized messages will have a quick response time, 

however low prioritized messages may have to wait a long time before they get bus access. 

Another disadvantage with fixed priority scheduling is that it is not very predictable. However, 

it is possible to calculate worst case response times for every message. Maximum baud rate is 

1 Mbps and overheads are more than 50 percent. 

 



Page 24 of 98 

2.4.5   TTCAN 

Time-Triggered CAN (TTCAN) [10] uses the concept of cyclic communication, divided into 

slots to implement time-triggered behavior. The standard requires that all activity assigned to 

one slot (including interrupt handling) is finished until the next slot starts, whereas one message 

can be assigned to several slots. 

 

It is important to note that TTCAN adds an additional layer before the existing standard CAN 

layers. The physical layer and data link layer of CAN are kept unchanged. Mapped to the ISO-

OSI model, TTCAN resides on layer 5, the session layer. Within this layer, TTCAN is divided 

into two different modes of operation. While level 1 and level 2 both support time-triggered 

behavior, the capabilities of these levels differ in key properties. 

The most outstanding difference is the notion of a global time, that only exists in level 2, and 

allows a much more fine grained synchronization of the nodes in a TTCAN network. 

 

2.4.6   TTEthernet 

Time-Triggered Ethernet (TTEthernet) [11] expands classical Ethernet use with powerful 

services (SAE AS6802) to meet the new requirements of reliable, real-time data delivery in 

advanced integrated systems. With TTEthernet, critical control systems, audio/video and 

standard LAN applications can share one network. TTEthernet facilitates design of mixed 

criticality systems and system-of systems integration. 

 

Time-Triggered Ethernet network devices are Ethernet devices which at least implement: 

SAE AS6802 synchronization services for advanced integrated architectures, fail-operational 

and safety-critical systems time-triggered traffic flow control with traffic scheduling per-flow 

policing of packet timing for time-triggered traffic robust internal architecture with traffic 
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partitioning TTEthernet (or TTE) network devices from TTTech are standard Ethernet devices 

with additional capability to configure and establish robust synchronization, synchronous 

packet switching, traffic scheduling and bandwidth partitioning, as described in SAE AS6802. 

If no time-triggered traffic capability is configured or used, rugged TTEthernet devices operate 

as full duplex switched Ethernet devices compliant with IEEE802.3 and IEEE802.1 standard. 

 

2.4.7   HART 

The HART Communication Protocol (Highway Addressable Remote Transducer) is a hybrid 

(analog+digital) communication standard. The purpose of the HART standard was to create a 

way for instruments to digitally communicate with one another over the same two wires used 

to convey a 4-20 mA analog instrument signal. So, HART is a hybrid communication standard, 

with one variable (channel) of information communicated by the analog value of a 4-20 mA 

DC signal, and another channel for digital communication whereby many other variables could 

be communicated using pulses of current to represent binary bit values of 0 and 1. Those digital 

current pulses are superimposed upon the analog DC current signal, such that the same two 

wires carry both analog and digital data simultaneously. 

 

HART communication over 4-20 mA signal wires is a legacy technology. HART protocol is 

the most popular form of wired digital field instrument communication in industrial use. In 

applications where speed is not a concern, HART communication is a very practical solution 

for acquiring multiple channels of data from one instrument over a single pair of wires. 

However, more modern digital standards such as Profibus and FOUNDATION Fieldbus 

deliver all the benefits of HART technology and more. It seems that wired-HART will remain 

in wide industrial use for many years to come, but it is really just the beginning of digital field 

instrument technology and does not represent the state of the art. 
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2.4.8   MODBUS 

Modbus is a protocol designed specifically for exchanging process data between industrial 

control devices. The Modbus standard does not specify any details of physical networking, and 

thus may be deployed on many different types of physical networks. In other words, Modbus 

primarily falls within layer 7 of the OSI Reference Model (the so-called “Application Layer”) 

and therefore is compatible with any lower-level communication protocols including EIA/TIA-

232, EIA/TIA-485, Ethernet (the latter via TCP/IP), and a special token-passing network also 

developed by Modicon called Modbus Plus.  

 

The Modbus standard primarily defines the meaning of various Modbus commands, the 

addressing scheme used to place data within devices, and the formatting of the data. Modbus 

consists of a set of standardized digital codes intended to read data from and write data to 

industrial devices. A Modbus-compliant industrial device has been programmed to understand 

these codes and respond to them appropriately when received. 

 

The channel arbitration mechanism is master/slave, where one PLC functions as the master 

Modbus device and all other devices function as Modbus slaves. Even when Modbus 

commands are communicated via networks with their own differing arbitration methods, same 

mechanism is followed. For example, Modbus commands communicated over Ethernet still 

reference “slave” addresses even though the Ethernet network those messages are sent over 

uses CSMA/CD arbitration. In other words, there is a hint of OSI layer 2 embedded within 

Modbus messages that still dictates which Modbus devices may issue commands and which 

must obey commands. 
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2.4.9   Foundation Fieldbus (FF) 

Foundation Fieldbus is an all-digital, serial, two-way communications system that serves as the 

base-level network in a plant or factory automation environment. It is an open architecture 

targeted for applications using basic and advanced regulatory control, and for much of the 

discrete control associated with those functions. Foundation Fieldbus technology is mostly 

used in process industries, but has recently been implemented in power plants. 

 

Two related implementations of Foundation Fieldbus have been introduced to meet different 

needs within the process automation environment. These two implementations use different 

physical media and communication speeds: 

 

 FF H1 - Operates at 31.25 kbit/s and is generally used to connect to field devices and host 

systems. It provides communication and power over standard stranded twisted-pair wiring in 

both conventional and intrinsic safety applications. H1 is currently the most common 

implementation. 

 

 FF HSE (High-speed Ethernet) - Operates at 100/1000 Mbit/s and generally connects 

input/output subsystems, host systems, linking devices and gateways.  

 

Fieldbus H1 network communication may be divided into two broad categories: scheduled 

(cyclic) and unscheduled (acyclic). Scheduled communication events are reserved for 

exchanging critical control data such as process variable measurements, cascaded setpoints, 

and valve position commands. These scheduled communications happen on a regular, timed 

schedule so that loop determinism is guaranteed. Unscheduled communications, by contrast, 

are the way in which all other data is communicated along an H1 segment. Manual setpoint 
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changes, configuration updates, alarms, and other data transfers of lesser importance are 

exchanged between devices in the times between scheduled communication events. The 

Fieldbus Foundation recommends new H1 segments be configured for no more than 30% 

scheduled communications during each macrocycle (70% unscheduled time). This should leave 

plenty of “free time” for all necessary acyclic communications to take place without having to 

routinely wait multiple macrocycles. 

 

Foundation Fieldbus was originally intended as a replacement for the 4-20 mA standard, and 

today it coexists alongside other technologies such as Modbus, Profibus, and Industrial 

Ethernet. Foundation Fieldbus today enjoys a growing installed base in many heavy process 

applications such as refining, petrochemicals, power generation, and even food and beverage, 

pharmaceuticals, and nuclear applications.  

 

The International Electrotechnical Commission (IEC) standard on field bus, including 

Foundation Fieldbus, is IEC 61158. Type 1 is Foundation Fieldbus H1, while Type 5 is 

Foundation Fieldbus HSE. 

 

2.4.10   Profibus 

PROFIBUS (Process Field Bus) is a standard for fieldbus communication in automation 

technology. PROFIBUS is openly published as part of IEC 61158. Profibus DP (Decentralised 

Peripherals) is a protocol made for (deterministic) communication between Profibus masters 

and their remote I/O slaves. There are two variations of PROFIBUS in use today; the most 

commonly used PROFIBUS DP, and the lesser used, application specific, PROFIBUS PA: 

 

PROFIBUS DP is used to operate sensors and actuators via a centralized controller in 
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production (factory) automation applications. The many standard diagnostic options, in 

particular, are focused in PROFIBUS DP.  

 

PROFIBUS PA (Process Automation) is used to monitor measuring equipment via a process 

control system in process automation applications. This variant is designed for use in 

explosion/hazardous areas (Ex-zone 0 and 1). The Physical Layer (i.e. the cable) conforms to 

IEC 61158-2, which allows power to be delivered over the bus to field instruments, while 

limiting current flows so that explosive conditions are not created, even if a malfunction occurs. 

The number of devices attached to a PA segment is limited by this feature. PA has a data 

transmission rate of 31.25 kbit/s. However, PA uses the same protocol as DP, and can be linked 

to a DP network using a coupler device. 

 

The much faster DP acts as a backbone network for transmitting process signals to the 

controller. This means that DP and PA can work tightly together, especially in hybrid 

applications where process and factory automation networks operate side by side. Moreover, 

the physical layer of Foundation Fieldbus happens to be identical to that of Profibus-PA, further 

simplifying installation by allowing the use of common network validation tools and 

connection hardware. 
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2.5  Comparison among the protocols 

The Open Systems Interconnection (OSI) model is a conceptual model that characterizes and 

standardizes the communication functions of a telecommunication system without regard to its 

underlying internal structure and technology. The physical layer of the OSI model is 

responsible for the transmission and reception of data between a device and a physical medium. 

The physical layer specifications of the protocols are compared in the Table 2.2 given below: 

Table 2.2: Physical layer comparison: 

Bus 

Technology 

 

Standards 
Comm. 

Type 

Comm. 

Speed 

Max 

Distance 

 

# devices 

FF H1 

IEC 

61158, 

ISA 

SP50 

All Digital 31.25 Kbs 
1.9km, 

9.5 km 
32 per seg 

Profibus PA IEC 61158 All Digital 31.25 Kbs 
1.9km, 

9.5 km 
32 per seg 

FF HSE 

IEC 

8802, 

IEEE 

802.3 

All Digital 
100 Mbs, 1 

Gbs 
100 m Unlimited 

ProfiNet 

IEC 

8802, 

IEEE 

802.3 

All Digital 
100 Mbs, 1 

Gbs 
100 m Unlimited 

MODBUS 

IEEE 

1451.2, 

TIA-485 

All Digital 
9.6 Kbs – 

12 Mbs 
1512 m 247 per seg 

Profibus DP 

IEEE 

1451.2, 

TIA-485 

All Digital 
9.6 Kbs – 

12 Mbs 
1512 m 127 per seg 

HART 
Bell 202, 

4-20mA 

Digital over 

analog 

1.2 Kps – 9.6 

Kps 
3.0 km 

64 in 

multidrop 

TTP/C SAE AS6003 All Digital 25 MB/s 

It will depend 

on the 

physical layer. 

64 
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The data link layer provides node-to-node data transfer—a link between two directly connected 

nodes. It detects and possibly corrects errors that may occur in the physical layer. It defines the 

protocol to establish and terminate a connection between two physically connected devices. It 

also defines the protocol for flow control between them.  

The Data link layer specifications of the protocols described before are compared in the Table 

2.3 given below. 

Table 2.3: Data link layer comparison: 

Bus 

Technology 
 Standards 

Data Link 

Type 

Error 

Detection 
Deterministic 

Comm 

Relationships 

FF H1 
IEC 61158, 

ISA SP50 

Token 

Passing 
16-bit CRC Yes 

Client/server, 

pub/sub, 

sink/source 

Profibus PA IEC 61158 
Token 

Passing 
16-bit CRC Yes Master/slave 

FF HSE IEC 8802 
Token 

Passing 
16-bit CRC No 

Client/server, 

pub/sub, 

sink/source 

ProfiNet IEC 8802 
Token 

Passing 
16-bit CRC No Master/slave 

MODBUS None 

master/slave 

address 

scheme 

1-bit No Master/slave 

Profibus DP IEC 61158 

master/slave 

address 

scheme 

1-bit No 
Master/slave, 

pub/sub 

HART None 
Flat 

addressing 
CRC No Master/slave 

TTP SAE AS6003 TDMA 24- bit CRC Yes Masterless 
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The application layer is the OSI layer closest to the end user, which means both the OSI 

application layer and the user interact directly with the software application. Application-layer 

functions typically include identifying communication partners, determining resource 

availability, and synchronizing communication.  

The Application layer specifications of the protocols described before are compared in the 

Table 2.4 given below. 

Table 2.4: Application layer Comparison: 

Bus 

Technology 
Standards Data Transfer 

Supports 

Control in 

the Field 

Peer to Peer 

Comm 

Alerts and 

Trends in 

Devices 

FF H1 

IEC 61158, 

ISA SP50, 

Function 

block 

application 

based on IEC 

61804 (Draft) 

AI, AO, DI, DO, 

PID, PD, CS, 

MIO, many more 

Yes Yes Yes 

Profibus PA IEC 61158 AI, AO, DI, DO No No Yes 

FF HSE IEC 61158 Same as H1 Yes Yes Yes 

ProfiNet IEC 61158 Same as DP No No Yes 

MODBUS IEC 61158 Registers No No No 

Profibus DP IEC 61158 AI, AO, DI, DO No No No 

HART IEC 61158 Commands Yes No No 
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For a reliable data communication in distributed systems, determinism and fault tolerance are 

important aspects. For this reason, Time Triggered Architecture (TTA) have been used and 

proposed to be used in various safety-critical applications. Conflict free time-triggered medium 

access provides deterministic behavior (constant latency with guaranteed transmission), since 

all nodes know which node is next to transmit at all times. 

 

Table 2.5 lists the differences between the features of Event-triggered and Time-triggered 

architectures briefly. 

Table 2.5: Comparison between the ET and TT paradigms 

 Event-triggered (ET) 

 

Time-triggered (TT) 

Control traffic latencies Variable  Fixed 

Channel bandwidth  Shared Dedicated 

Temporal behavior - Predictable 

Fault tolerance May fail under heavy load Good 

Latency - Constant 

Verification required Extensive system tests - 

Resource utilization Better - 

Reaction to external events Fast Slow 

Flexibility Average Low 

Design complexity Low Average 

 

Time-triggered architectures support features such as 1) Single failure criterion, 2)  Fail silence 

and 3) Determinism to provide a predictable service. Hence TTP has been explored further. 
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2.6  Clock synchronization algorithm in Time Triggered Architecture 

The control signals for the CPU originate from a physical oscillator, a quartz crystal. Because 

the mechanical dimensions of any two physical quartz crystals are slightly different, no two 

physical oscillators have the same drift. Since any clock drifts, the clock times of an ensemble 

of clocks will drift apart if they are not periodically re-synchronized with respect to each other. 

The clocks of a subsystem are called local clocks. Clock synchronization is concerned with 

bringing the time of local clocks in close relation with respect to each other. 

Approaches to clock synchronization are refined for the employment in large distributed 

systems [12]. Rushby and von Henke have formally verified clock synchronization algorithms 

[13]. Schedl simulated several clock synchronization algorithms [14].  

 

Most of the presented clock synchronization algorithms use replication as fault tolerance 

strategy. Dolev, Welch and Papatriantafilou present approaches that achieve fault tolerance 

using self-stabilization [15][16][17]. Analyses of self-stabilizing clock synchronization 

algorithms can be found in [18][19]. Measurement and control applications are increasingly 

using distributed system technologies such as network communication, local computing and 

distributed objects. As these measurement and control applications are based on distributed 

embedded systems, clock synchronization has become an important area for standardization.  

 

In 2001, the IEEE standard organization started a standardization process for clock 

synchronization in measurement and control applications. In 2002, the standardization 

committee published a draft standard for clock synchronization, called “Precision Time 

Protocol” (IEEE P1588). This standard was revised and extended in 2008 and is called “IEEE 

Standard for a Precision Clock Synchronization Protocol for Networked Measurement and 

Control Systems” [20]. This standard addresses the needs of measurement and control systems: 
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microsecond to submicrosecond accuracy; administration free; and most importantly, 

accessible for both high-end devices and low-cost, low-end devices. This standard decouples 

the application and communication task by introducing an application and a communication 

layer and an isolation layer that isolates application activities from communication activities 

and provides time provision services. The communication layer of the protocol requires all 

communicating nodes to follow a time-division multiple access (TDMA) strategy for the 

communication medium in order to achieve low latency jitter. 

 

2.6.1 Convergence Functions 

In the literature, clock synchronization approaches often differentiate themselves via the 

convergence function. The convergence function uses the different remote clock estimates and 

calculates a single new clock value which the local clock uses to correct itself to. Schneider 

and Anceaume and Puaut [21][22] list different convergence functions with the following being 

the most often referenced ones.  

 

A. Convergence Averaging Techniques 

In the following, some kind of averaging on clock estimates characterizes the convergence 

functions. Some functions tolerate potentially faulty clock estimates, while others don’t. For 

the overview, f (pi,x1, ...,xn) identifies a convergence function, where pi is the processor (or 

node) requesting the convergence function and x1, ...,xn are the estimated clock values. For the 

convergence function fmm and fim, xi is an interval otherwise an integer value. 

 

a. Interactive convergence function. Egocentric average function denoted by fe. fe(pi,x1, 

...,xn) returns the average of the arguments modified in the following: xj, 1 ≤ j ≤ n, stays 

x j if |xj −xi| < ω¯ (i.e., if xj is not further than ω¯ away from xi) otherwise xj is replaced 
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with xi. ω¯ has to be chosen appropriately, but be at least ω¯ > π, π being the precision. 

For fe no sorting algorithm needs to be applied to the remote clock estimates, which is 

an advantage. 

 

b. Fast convergence function. f f c returns the average of all arguments x1 to xn that are 

within ω¯ of at least n− f other arguments. f f c yields a high-quality precision, but is 

computationally quite complex. 

 

c. Fault-tolerant midpoint function. Denoted f f tm and used in [23] returns the midpoint 

of the range of values spanned by arguments x1 to xn after the f highest and f lowest 

values have been discarded. 

 

d. Differential fault-tolerant midpoint. Denoted fd ftm and used in [24][25] is optimal 

with respect to the best precision achievable and best drift rate achievable for logical 

clocks. fd ftm is defined as  (min(T−Θ,xl)+max(T+Θ,xu) ) / 2 ,  

 

Where xl = xhf+1 ,xu = xhn−f with xh1≤ xh2 ≤ xhn , hp /= hq; 1 ≤ hp hq ≤ n where  

T is p’s logical time and Θ is the maximum reading error of a remote clock. 

 

e. Sliding window function. This function selects a fixed size window w that contains 

the larger number of clock estimates. This function is proposed in [26] and proposed to 

convergence functions differing by the way a window is chosen when multiple 

windows contain the same number of clock estimates and differing by the way the 

correction term is computed once the window has been identified. The first function, f 

det mean, chooses the first window and returns the mean of the clock values contained 
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in the window instance. The second function, fmedian, chooses the window containing 

clock estimates having the smallest variance and returns the median of all clock 

estimates within the selected window. The main interest of sliding window convergence 

functions is that logical clocks closeness degrades gracefully when more failures are 

assumed to occur. 

 

f. Minimization of the maximum error interval-based function. Denoted fmm and 

takes for each xi an interval [Lpi (t)−epi (t),Lpi (t)+epi (t)], where epi (t) is the maximum 

error on pi’s clock estimate and returns an interval for the corrected clock value. fmm is 

used in [27]. 

 

g. Intersection of the maximum error interval-based function. Denoted fim and also 

used in [28] is similar to fmm in the sense that it also takes intervals representing clock 

estimates as arguments. fim, however, returns an intersection of the intervals of the clock 

estimates. 

 

B. Convergence Non-Averaging Techniques 

Convergence non-averaging techniques compute a new clock value based on the fact that a 

fixed number of estimates of remote clocks have been received to compute a new clock value. 

The number of expected clock estimates depends on the type and number of tolerated failures. 

When all required clock estimates are received, the local clock is corrected to the value that is 

computed using the respective algorithm. Reference [28] uses only one estimate as only 

performance failures are tolerated and the logical clock is corrected with kR, where k is the 

round number and R is the round duration.  
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2.6.2 Classifications of Clock Synchronization Algorithms 

Clock synchronization algorithms can be classified by the clocks used as reference clocks.  If 

the clocks used as reference are not part of the synchronizing ensemble, this is commonly called 

external clock synchronization. Examples of external clock synchronization algorithms are 

[27][29]. If the clocks used as reference are also synchronizing clocks, this is called internal 

clock synchronization. 

 

2.6.3 Hardware Versus Software Implementation 

Clock synchronization algorithms that are implemented in hardware use specialized hardware 

components and achieve tight synchronization. On the other side, implementations in software, 

do not achieve synchronization as tight as hardware algorithms, but use commercial-off-the-

shelf components. Lately, the trend towards support of some critical clock synchronization 

elements being supported by hardware enables tighter precision values for clock 

synchronization. An example of this trend is driven by the standardization activities around 

IEEE 1588 [20] effectively requiring some hardware support to be efficiently possible. 

 

2.6.4 Performance of Clock Synchronization Algorithms and its limitations 

As the remote clock readings are estimates of local clocks by other nodes and contain some 

unknown variances, clock synchronization can never be perfect. In other words, local clocks 

cannot be re-synchronized perfectly, so that at a given time the local clock readings are equal 

at all clocks. For a symmetric clock synchronization algorithm and a given uncertainty ε and n 

local clocks, the bound that a symmetric clock synchronization algorithm can achieve 

immediately after resynchronization cannot be smaller than ε(1−1/n). For asymmetrical clock 

synchronization and one master, the bound is ε, the uncertainty of the remote clock reading of 

the master reference clock. Krause et al. show in [30] that there is a relationship between 
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precision and drift of the global time. The more frequently an algorithm synchronizes, the 

tighter the precision, but frequent resynchronization may lead to a larger drift of the global 

time. This is easily explained by the fact that any error terms in remote clock readings are 

integrated and increase the drift. 

 

Also, the problem of reaching a common input data or time reference value in spite of faults is 

an interesting investigation subject [31][32]. It is called "interactive consistency" or "source 

congruency". It appears that it is theoretically impossible for three computers to agree on a 

common value, and that at least 4 are required for this. The proof for it is known as the 

"Byzantine Generals' problem". 

The situations which can occur are shown in Fig. 2.1. This way, one can see that to solve this 

problem you need at least 3t + 1 participants to cope with t traitors. 

 

Fig. 2.1 The Byzantine Generals problem 

There are however two ways to solve this situation with only 3t participants: 

1. Encryption. General A should encrypt his message such that B cannot falsify it, for instance, 

by writing the command on security paper with his seal and signature. Situation 3 can no longer 

occur, since B cannot falsify the command it received from A. The worst he can do is not 

deliver it. So, if situation 2 occurs, C knows that A is the traitor.  

2. Atomic broadcast. If the message system is such that the command is transmitted 
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simultaneously to all participants, then A cannot send a different message to C and B, and 

situation 2) cannot occur any more. In addition, since C and B broadcast their commands, the 

traitor will be immediately uncovered. This transmission requires that the message is either 

received identically or not at all by all participants. Atomic broadcast requires that the message 

be encoded with an error detecting code such as a CRC. Then, the probability is extremely 

small that any participant recognizes a false message as good.  

 

2.6.5 Interfacing to Time-Triggered Communication Systems 

A paper discusses different interfacing techniques between a computing component (CC) and 

a time-triggered communication network [33]. The results show that best predictability in time 

and value domain is achieved by synchronous interfacing, where the execution of activities at 

the CC is synchronous with the message communication over the time-triggered network. To 

achieve this, the local clock of the CC has to be synchronized to the global clock of the time-

triggered network. With asynchronous access, no clock synchronization is required, but it 

comes at the cost of unpredictability in the value domain, as it is not ensured which message 

instance is obtained by a read access. 

 

2.6.6 Global synchronization in the context of the sensor network paradigm 

Many emerging sensor network applications require that the sensors in the network agree on 

the time. A sensor system with global clock will be capable of coordinated operation and data 

synthesis for future predictions [32]. Consider, for example, a vehicle tracking application. 

Each sensor may know the time when a vehicle is approaching. By matching the sensor location 

and sensing time, the sensor system may predict the vehicle moving direction and speed. 

Without a global agreement on time, the data from different sensors cannot be matched up. 

Most applications that require the coordination of locally sensed data (e.g., environment 
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monitoring) or coordination of mobile nodes (e.g., localization in the presence of mobility) are 

facilitated by the ability of the system to achieve global clock synchronization. 

 

Clock synchronization has been a seminal topic in distributed systems but extending these 

results and designing clock synchronization algorithms in the context of a sensor network is 

challenging for several reasons. First, traditional distributed systems assume that all the nodes 

in a network can communicate directly with each other. A sensor network, however, is subject 

to spatial constraints. Communication between two remote nodes is accomplished by message 

relay using intermediate nodes. Second, nodes in a sensor network generally relies on less 

information about the system than more traditional distributed systems, where nodes have 

access to the clock values of all the other members of the system, including the faulty nodes.  

Third, a sensor node has only limited processing capability. The computation intensive 

signature algorithms, such as RSA, are not suitable for sensor networks. Instead, some light-

weight algorithms (such as using a one-way key chain or a key management scheme) are more 

suitable. The spatial constraints, the communication cost and delay, and the diminished 

computational capability are key reasons why localized algorithms that involve lightweight 

computations are preferred for sensor networks. 

 

Among the various methods discussed in [34], the ‘all-node based’ and ‘cluster based’ methods 

require a node to initiate the global synchronization, which is neither fault tolerant nor 

localized. In the ‘diffusion-based’ method, each node can perform its operation locally, but still 

achieve the global clock value over the whole network. There are two implementations of the 

clock diffusion: synchronous and asynchronous. The synchronous method assumes all the 

nodes perform their local operations in a set order, while the asynchronous method relaxes the 

constraint by allowing each node to perform its operation at random. The ‘fault-tolerant 
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diffusion-based’ protocol goes one step further in assuming the presence of malicious nodes 

that exhibit Byzantine faults. These algorithms can be extended to other sensor network 

applications, such as data aggregation. 

 

2.6.7 Interaction of clock synchronization and membership algorithm 

TTA is able to tolerate more than a single fault by reconfiguring to exclude nodes that are 

detected to be faulty. This is accomplished by the group membership algorithm of TTA, which 

is discussed in the following section. The four clocks considered for synchronization are chosen 

from the members of the current membership; it is therefore essential that group membership 

have the property that all non-faulty nodes have the same members at all times. A node whose 

clock loses synchronization will suffer send and/or receive faults and will therefore be detected 

and excluded by the group membership algorithm. The TTA algorithm is intended to operate 

in networks where there are at least four good clocks, and it is able to mask any single fault in 

this circumstance [35]. 

 

2.7  Group Membership algorithm 

The clock synchronization algorithm tolerates only a single (arbitrary) fault. Additional faults 

are tolerated by diagnosing the faulty node and reconfiguring to exclude it. This diagnosis and 

reconfiguration is performed by the group membership algorithm, which ensures that each node 

has a record of which nodes are currently considered non-faulty.  

 

In addition to supporting the internal fault tolerance, membership information is made available 

as a service to applications; this supports the construction of strategies for tolerating faults at 

the application level. For example, in an automobile brake-by-wire application, the node at 

each wheel can adjust its braking force to compensate for the failure (as indicated in the 
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membership information) of the node or brake at another wheel. For such strategies to work, it 

is obviously necessary that the membership information should be reliable, and that the 

application state of nonmembers should be predictable.  

Group membership is a distributed algorithm: each node maintains a private membership list, 

which records all the nodes that it believes to be non-faulty. The group membership algorithm 

has to fulfill three major correctness requirements [35]: 

 Validity: At all times, non-faulty processors should have all and only the non-faulty 

processors in their membership sets, while faulty processors should have removed 

themselves from their sets. This requirement is, however, impossible to satisfy as it may 

take some time to diagnose the faultiness of a processor. We therefore must allow a 

single faulty processor to be included in the membership sets of non-faulty processors, 

while faulty processors may have (a subset of) the non-faulty processors plus 

themselves in their sets. 

 Agreement: All non-faulty processors should have the same membership sets. 

 Self-diagnosis: A faulty processor should eventually diagnose its fault and remove 

itself from its own membership set. 

These properties are subject to two additional assumptions that constitute the fault hypothesis. 

First, as processors will be able to diagnose a fault only if no new fault occurs during that 

process, the specification of the Time-Triggered Protocol requires the membership algorithm 

to work properly only if two successive failures occur at least two TDMA rounds apart. More 

frequent fault arrivals are dealt with by other protocol mechanisms of TTP.  

 

The goal of group membership is to maintain a consistent record of those processors that 

communicate reliably and execute the protocol. A group membership protocol need not tolerate 

all the types of faults that may afflict the complete system. For example, redundant broadcast 
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buses, and strong CRCs (checksums), effectively eliminate message corruption and reduce 

message loss to a very low level. Clock synchronization ensures that all non-faulty processors 

share a common notion of time, and "bus guardians" with independent knowledge of the 

broadcast schedule prevent faulty processors from speaking out of turn.  

Send fault: a processor fails to broadcast when its slot is reached. 

Receive fault: a processor fails to receive a broadcast. 

Other types of faults can be ignored because they are separately detected by other elements of 

the total protocol suite and then manifest themselves as either send or receive faults. For 

example, a transient internal fault can lead to a processor shutting down and thus exhibiting a 

send fault when its slot is next reached. 

 

The requirements mentioned before can be satisfied only under restricted fault hypotheses. For 

example, validity cannot be satisfied if new faults arrive too rapidly, and it is provably 

impossible to diagnose an arbitrary-faulty node with certainty. When unable to maintain 

accurate membership, the best recourse is to maintain agreement, but sacrifice validity. This 

weakened requirement is called clique avoidance.  

 

2.7.1 Clique Avoidance mechanism 

Nodes that suffer receive faults have their local membership lists differ from those of non-

faulty nodes, so their next broadcast will be rejected by both their successors. However, TTP 

employs a slightly different mechanism that is also used to avoid the formation of disjoint 

cliques at the same time. A clique is a group of processors where agreement on the current state 

is reached only within the group. 

 

Each node maintains accept and reject counters that are initialized to 1 and 0, respectively, 
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following its own broadcast. Incoming messages that indicate a membership matching that of 

the receiver cause the receiver to increment it’s accept count; others (and missing messages) 

cause it to increment its reject count. Before broadcasting, each node compares it’s accept and 

reject counts and shuts down unless the former is greater than the latter.  

 

TTA operates as a broadcast bus (even though the recent versions are stars topologically); the 

global schedule executes as a repetitive series of rounds, and each node is allocated one or more 

broadcast slots in round. The fault hypothesis of the membership algorithm is a benign one: 

faults must arrive two or more rounds apart, and must be symmetric in their manifestations: 

either all or exactly one node may fail to receive a broadcast message (the former called a send 

fault, the latter a receive fault). The membership requirements would become relatively easy 

to satisfy if each node were to attach a copy of its membership list to each message that it 

broadcasts. Unfortunately, since messages are typically very short, this would use rather a lot 

of bandwidth (and bandwidth was a precious commodity in early implementations of TTA), so 

it operates with less explicit information and nodes must infer the state and membership of 

other nodes through indirect means. 

 

2.7.2 Implicit Acknowledgement mechanism in TTP/C 

Frames are broadcast over the bus to all stations but they are not explicitly acknowledged. TTP 

has implicit acknowledgment. Implicit acknowledgment in TTP/C contains an additional 

feature involving first and second successors. Transmission faults are detected as follows: each 

broadcaster listens for the message from its first successor (roughly speaking, this will be the 

next node to broadcast) to check whether it suffered a transmission fault: this will be indicated 

by its exclusion from the membership list of the message from its first successor. However, 

this indication is ambiguous: it could be the result of a transmission fault by the original 



Page 46 of 98 

broadcaster, or of a receive fault by the successor. Nodes use the local membership carried by 

the message from their second successor to resolve this ambiguity: a membership that excludes 

the original broadcaster but includes the first successor indicates a transmission fault by the 

original broadcaster, and one that includes the original broadcaster but excludes the first 

successor indicates a receive fault by the first successor. 

 

This operates as follows:  Each active TTA node maintains a membership list of those nodes 

(including itself) that it believes to be active and operating correctly. Each node listens for 

messages from other nodes and updates its membership list according to the information that 

it receives. The time-triggered nature of the protocol means that each node knows when to 

expect a message from another node, and it can therefore detect the absence of such a message. 

Each message carries a CRC checksum that encodes information about its sender’s C-State 

(State of distributed system consisting of membership vector, global time and the current slot 

position), which includes its local membership list. To infer the local membership of the sender 

of a message, receivers must append their estimate of that membership (and other C-state 

information) to the message and then check whether the calculated CRC matches that sent with 

the message. If it is not feasible to try all possible memberships, receivers perform the check 

against just their own local membership, and one or two variants.  

 

2.7.3 Low overhead membership algorithm  

In [36], a protocol for synchronous group membership that, driven by practical considerations, 

trades a very restrictive fault model in return for very low communications overhead--just one 

bit per message has been described and proved. Despite the paucity of information carried by 

each message, the protocol allows rapid and accurate identification and elimination of faulty 

processors. However, it has the following limitations: 
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 The fault arrival rate assumed in the fault model is at most one new faulty processor in any 

consecutive n + 1 slots. This is clearly tight, since if n were used in place of n + 1, the 

algorithm fails. Consider a scenario with a receive fault of the processor just before the 

broadcaster, followed n steps later by a send fault of that same broadcaster. Since the 

receive-faulty processor will self-diagnose and fall silent in its slot just before the 

subsequent send fault, all non-faulty processors will not receive two consecutive expected 

broadcasts. They will all then incorrectly remove themselves from their local membership 

sets. 

 The low overhead group membership protocol has no provision for readmitting previously-

faulty processors that now appear to be working correctly again. Simple extensions, such 

as allowing a repaired processor to just "speak up" when its slot comes by, are inadequate. 

(A processor that has a receive fault just as the new member speaks up will not be aware of 

the fact and its local membership set will diverge from that of the other processors; a second 

fault can then provoke catastrophic failure of the entire system.).  

 

So, if we consider that each sending node piggybacks ‘k’ flags to its message so as to confirm 

or refute having received the messages from its predecessors, increasing k makes the protocol 

resilient to a greater number of simultaneous or near-coincident failures but imposes a higher 

tax on the communication bandwidth. For this reason, the balance between protocol resilience 

and overhead can be adjusted, at design time, for each system.  

 

Since the bandwidth requirements of a sensor network are not very intensive (specially if there 

are less no. of nodes), overhead cannot be considered as an issue. Group membership algorithm 

based on majority voting logic, suitable for smart sensor network, has been formulated and 

explained in details in section 4.5 
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3 CHAPTER 3: Design of Time-Triggered Protocol  

3.1  Introduction  

The Time-Triggered Protocol (TTP) is intended for use in distributed real-time control 

applications that require a high dependability and guaranteed timeliness. It integrates all 

services that are required in the design of a fault-tolerant real-time system, such as predictable 

message transmission, message acknowledgment in group communication, clock 

synchronization, membership, rapid mode changes, redundancy management, and temporary 

blackout handling. It supports fault-tolerant configurations with replicated nodes and replicated 

communication channels. TTP provides these services with a small overhead so it can be wed 

efficiently on twisted pair channels as well as on fiber optic networks. 

 

The objective during the design of the Time-Triggered Protocol (TTP) was to develop an 

integrated protocol that provides all services needed in a fault-tolerant real-time application. In 

an automotive context, TTP is intended for real-time control systems requiring guaranteed 

timeliness and fault tolerance.  

 

3.2  Goals for design of protocol 

The following goals were considered in the design of the protocol: 

1. Predictable low latency: 

In a real-time system the temporal accuracy of information is affected by the duration of the 

protocol execution. A good real-time protocol must have a low maximum execution time and 

a small variability of the execution time under all specified load and fault conditions.  
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2. Fault tolerance:  

A real-time computer system for safety-critical applications must be fault tolerant. The protocol 

must tolerate all node and channel failures that are listed in the fault hypothesis without 

violating the functional or temporal specification. Standard communication protocols provide 

error detection at the sender’s site. In real-time applications communication errors that cannot 

be masked by redundancy must be detected at the receiving site as well as at the sending site 

with minimal error detection latency. 

3. Temporary blackout handling:  

A temporary blackout is the temporary interference of some powerful external disturbance with 

the operation of the control system. The protocol must detect and handle temporary blackouts 

promptly. 

4. Clock synchronization:  

The establishment of a global time base with known precision is one of the basic services that 

must be provided to distributed real-time applications. 

5. Implicit acknowledgement and Membership service:  

A membership service provides a consistent view about the health of all nodes. In TTP the 

membership service is the basis for the implementation of atomic multicast protocols and 

redundancy management protocols. It is also needed to detect incoming and outgoing link 

failures. Such a failure detection is required for the implementation of the fail-silent abstraction 

of nodes. 

6. Distributed redundancy management:  

The removal of failed nodes and the reintegration of spare nodes and repaired nodes has to be 

controlled by the redundancy management protocol. In a distributed system the redundancy 

management itself has to be distributed in order to avoid a single point of failure. 
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7. Support for rapid mode change:  

In many real-time applications a set of different operational modes can be distinguished, e.g., 

start-up, normal operation, emergency, etc.. The protocol should support the consistent and 

rapid change from one mode to another mode. 

8. Minimal overhead:  

The protocol should provide the specified service with minimal overhead, both in message 

length and in the number of messages. 

9. Flexibility, Scalability with determinism: 

Flexibility and predictability are competing goals. The protocol should provide utmost 

flexibility as long as determinism can be maintained. The protocol should be scalable to high 

data rates. It should operate efficiently on twisted wires as well as on optical fibers.  

 

Existing time triggered protocol specification require further formulation for implementation 

and poses dependability issues, since the algorithms are not available in open domain. Hence, 

it cannot be directly utilized in our custom protocol design for use in nuclear plans and 

facilities. To implement a custom time triggered sensor network protocol, algorithm 

formulation, simulation and conceptual design has to be carried out. A custom protocol targeted 

for proven physical layer devices will be provide robustness and determinism and can be 

qualified for use in distributed sensor level networks of future nuclear plants and facilities. 

 

TTP is an integrated protocol that provides the services listed previously without the strict 

separation of concerns proposed in the layered OS1 model. The OS1 model is considered an 

excellent conceptual model for reasoning about the different design issues. But the OS1 model 

is not a good implementation model for the development of time-critical protocols, since 

timeliness was not a goal in the development of the OS1 model. 
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Major sub-systems: 

A real-time application can be decomposed into a set of subsystems called clusters eg a 

controlled object i.e. the machine that is to be controlled and the controlling computer system. 

 

Computational Clusters:  The controlling computer system consists of at least one 

computational cluster.  Such a computational cluster comprises a set of self-contained 

computers nodes which communicate via a broadcast bus using the TTP Protocol. An 

approximate global time base is established throughout the cluster by synchronizing the clocks 

located within the nodes. Each node is considered to be fail silent i.e. only crash failures and 

omission failures can occur. On the cluster level node failures and communication failures can 

be masked by replicating the nodes and grouping them into fault-tolerant units (FTUs). 

Message transmission is replicated in both the space domain by using two buses and the time 

domain by sending the messages twice on each bus. 

 

Within a computational cluster the communication subsystem manages the global concern of 

providing reliable real time message transmission. The host subsystem comprises the host 

CPUs of each node computer which execute the local real time application. The interface 

between these two subsystems the communication network interface is called the Message 

Base Interface MBI providing host CPUs with a memory area for submitting and receiving 

messages and for obtaining status and control information about the real time network. 

 

 The system wide partitioning into host subsystem and communication subsystem is reflected 

by the design of the node computer hardware. The host subsystem executes the local part of a 

distributed real time application.  The Interface is implemented with a dual-ported memory and 

represents the interface to the communication Subsystem; which executes the real time 
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communication protocol TTP. The protocol code as well as static configuration data is stored 

in a ROM device. The TTP controller is supported by two bus guardians (BGs). Each channel 

is protected by one of these devices which protect the bus from being monopolized by a faulty 

node sending at arbitrary points in time (babbling idiot failure). 

 

3.3  TDMA Bus Access  

Each node on bus is assigned a time slot, in which exactly one node is allowed to transmit 

information on the bus. Thus, latency of all messages can be estimated, which ensures 

determinism of all real-time messages. TDMA schedule of packet transmission is statically 

designed and programmed in the schedule table of the controller. The network cycle is a 

recurring sequence of one or more TDMA cycles. The communication is organized into 

network cycle as shown in Figure 3.1. Each TDMA round is divided into slots and each slot 

can be of varying time duration. Each active node in the communication system has exactly 

one “sending slot” to send a frame in a TDMA round. Different messages can be transmitted 

in different TDMA rounds but the pattern will repeat in each network cycle.  

 

 

Fig. 3.1 TDMA bus access scheme 

3.4  Timing and Synchronization 

Synchronized clocks and a global schedule ensure that non-faulty nodes broadcast their 

TDMA-1 TDMA-1 TDMA-2 …… TDMA-n 

 

1 Network Cycle = n * TDMA Rounds 

Slot-1 Slot-2 Slot-3 … Slot-m 

 

1 TDMA Round = m * slots 
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messages in disjoint time slots: messages sent by non-faulty nodes are guaranteed not to collide 

on the bus. A faulty node, however, could broadcast at any time—it could even broadcast 

constantly (the babbling failure mode). This fault is countered by use of a separate fault 

containment unit called a guardian that has independent knowledge of the time and the 

schedule: a message sent by one node will reach others only if the guardian agrees that it is 

indeed scheduled for that time. 

Now, the sending node, the guardian, and each receiving node have synchronized clocks, but 

there must be some slack in the time window they assign to each slot so that good messages 

are not truncated or rejected due to clock skew within the bounds guaranteed by the 

synchronization algorithm. The design rules used are as follows, where Π is the maximum 

clock skew between synchronized components. 

 The receive window extends from the beginning of the slot to 4Π beyond its allotted 

duration. 

 Transmission begins 2Π units after the beginning of the slot and should last no longer than 

the allotted duration. 

 The bus guardian for a transmitter opens its window Π units after the beginning of the slot 

and closes it 3Π beyond its allotted duration. 

 

These rules are intended to ensure the following requirements.  

 Agreement: If any non-faulty node accepts a transmission, then all non-faulty nodes do. 

 Validity: If any non-faulty node transmits a message, then all non-faulty nodes will accept 

the transmission. 

 Separation: messages sent by non-faulty nodes or passed by non-faulty guardians do not 

arrive before other components have finished the previous slot, nor after they have started 

the following one.  
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4 CHAPTER 4: Formulation and Simulation of Clock synchronization 

algorithm and Group membership algorithm 

 

4.1 Introduction to Clock Synchronization 

The common notion of time is used to sequence events and to trigger actions. Hence, each node 

in a time-triggered system maintains a local clock. It is not possible to have oscillators with 

exactly same nominal frequency in all nodes. So, the local clocks within each node will diverge. 

A uniform time base among all nodes should be generated within sufficient precision. One of 

the strategy is to periodically execute a clock synchronization algorithm in each node to bring 

their local clock close to a common value and to establish a system-wide global time base. 

Precision is a quality parameter for this global time base which is the maximum deviation 

between any two clocks in the system. The achievable precision will depend on message 

transmission jitter caused by the communication system and by clock drifts. With low-quality 

oscillators, the algorithm should be executed more frequently to keep the clocks of all nodes 

within the defined precision.  

 

4.2 Details of Clock Synchronization algorithm 

Each node maintains a local clock, triggered by a crystal oscillator. This clock drift apart but 

the algorithm computes correction term and applied on the local clock periodically to keep the 

time in agreement with other nodes. The corrected clock is used by the nodes during operation.  

Every receiving node knows the deviation between the sender's clock and its own clock by 

comparing expected known frame reception time with actual frame reception time. This 

correction term is used by fault tolerant average (FTA) algorithm. Clock synchronization can 

be describe using following steps: 
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1) For each valid message received, determine the difference between expected and observed 

arrival time for the incoming message at every receiving slot. 

2) If a valid message has been received, store four such difference values in a stack.  

3) When the stack is full, calculate a new correction term by taking the average of the middle 

values after ignoring the highest & lowest values.  

4) Correction is not applied when the term is very small or beyond tolerance. Discarding the 

minimum & maximum values ensure that the algorithm works with one faulty node. 

5) The propagation delay is subtracted from the correction term to get the final offset value. 

In this way adjustment is applied. Propagation delay values (depend on the distance 

between the nodes) will be available as a configuration in static schedule table for every 

slot. 

6) In this way, adjustment is applied to the local time periodically in order to keep time in 

agreement with all other nodes.  

Thus, global time base and static TDMA schedule together provide collision-free 

communication on a broadcast channel. The above algorithm will work correctly under 

following conditions: 

1) The clocks of all non-faulty nodes must be within a linear envelope of real-time. That is, 

the drift of hardware clock of all nodes is bounded by some constant ρ  

1 – ρ   ≤    d(LC(t))/dt  ≤  1 + ρ 

Where LC(t) is the local clock value at any time t. 

2) The number of nodes (n) is known in the whole system and each node can send messages 

to all other nodes. (each message is broadcasted by every node) 
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3) To tolerate f number of faulty clocks there is a constraint on the number of operating 

nodes: n ≥ 3f +1. (To tolerate single fault, n ≥ 4 because f=1)  

4) All clocks are synchronized in the beginning:  

| LCi(t0) - LCj(t0) |   ≤    П /2 

Where, LCi(t0) and LCj(t0) are the local clock value of ith and jth node at initial time (t0) 

respectively. П is the precision value of global time base. The frame delivery delay is limited. 

A message is delivered with a finite jitter. In simulation it is assumed that the frame delivery 

delay is constant with no jitter. The algorithm runs in rounds, resynchronizing after certain time 

interval to correct the clocks drifting out of synchrony, and using a fault-tolerant averaging 

function. 

Most other clock synchronization algorithms that run in rounds eg. Welch-Lynch algorithm, 

they differ in the step-2, in which the calculation term is calculated from the difference-values 

stored in the stack. For a stack of size S, after sorting of stack-values, WLA takes the average 

of two values: (f+1)th stack entry and (n-f)th stack entry, FTA takes the average of all values 

between (f+1)th stack entry and (n-f)th stack entry. Based on simulation results, stack size has 

been taken as four and the average of 2nd and 3rd stack entry is calculated. 

 

4.3 Simulation of Clock Synchronization in Scilab 

Simulation is a reasonable and powerful means for gaining insight into the functionality of 

systems. It is important to simulate clock synchronization algorithm to verify correctness and 

to tune parameters used for implementation since complete information and implementation 

aspects are not available in literature like the effect of stack size, effect of large drift in faulty 

node, number of iterations required for initial convergence etc. Simulation also verified the 

fault tolerance capability of the algorithm and the effect of applying weighted correction value 
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has been analyzed.  

The algorithm was modeled and simulated to verify the correctness and convergence in Scilab. 

Scilab is an open source high-level, numerically oriented programming language. It provides 

an interpreted programming environment, with matrices as main data type. The core of Scilab 

is based on linear algebraic libraries. Scilab is a powerful and accessible tool for education all 

over the world. 

 

Following elements were defined in Scilab program: 

1) Number of nodes (N):  taken as input from user. 

2)  TimeOffsetMatrix: It stores time offset of each node with respect to real time. Each 

column corresponds to a particular node. The elements of each row is updated with every 

iteration of algorithm execution. 

3) Number of iterations: Iterations for which algorithm will execute. After some iterations of 

algorithm execution, Offset value converge (same value within precision). 

4) TimeDiffMatrix: A collection of stack maintained by each node. Each stack has a depth 4 

or a configurable stack size (S). 

 

Following are the steps used for simulation: 

1) Initial offset values for all nodes are generated and stored in first row of TimeOffsetMatrix. 

For each slot, the time difference as seen by a particular node is calculated and stored in 

TimeDiffMatrix. 

2) After the collection of S (stack size) values, algorithm computes correction term. It is 

applied by changing the offset value of the corresponding node (say ith node) and is stored 
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as a new time value in the next row of ith column (TimeOffsetMatrix). This is one-

iteration. 

3) Drift for each node is added. 

4) Steps from 2nd to 4th are repeated for 10 iterations. 

5) In step 4, instead of adding the drift term directly, the correction term is divided by a value 

which has been named as ‘weighing factor (WF)’ and now this drift term is added. 

 

4.4  Observations 

Graph were plotted to see how the time offset / local clock in each node change while applying 

the correction term as per the existing algorithm. Figure 4.1 to Figure 4.3 show graph for 

varying number of nodes. Time values of all nodes (N) converge to a single value when N ≥ 3. 

But, for N = 2, the time value does not converge.  

 

Fig. 4.1 Simulation for N = 8, S=4 
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Fig. 4.2 Simulation for N = 5, S = 4 

 

Fig. 4.3 Simulation for N = 2, S = 4 

 



Page 60 of 98 

i. Effect of weighing factor 

Calculated correction value is divided by a weighting factor (WF). Choosing a no weighing 

factor (equivalent to choosing weighing factor= 1) does not allow convergence of a N=2 node 

system as depicted in Figure 4.3. It was observed that using a weighing factor < 1 caused the 

divergence, refer Figure 4.4 (WF=0.5). Whereas using a weighing factor much greater than 1 

caused the weighing factor to converge sluggishly leading to more no. of iterations required 

for convergence, refer Figure 4.5 (WF=4). Figure 4.6 depicts the convergence for WF=1.5. 

Considering various observations, the optimized value of weighing factor of 2 has been chosen. 

ii. Results with modification to existing algorithm 

Figure 4.7 to Figure 4.9 are graphs generated using weighting factor as 2. Using this 

modification, convergence is smooth and possible with a set of two nodes. For the FTA 

algorithm to operate, N ≥ 4 is required to tolerate single Byzantine fault [31]. However, with 

this modification, N ≥ 3 is required to tolerate single Byzantine fault. 

iii. Verification of fault tolerance 

Fault was injected in Node-1 by forcing the time offset to Constant high (out of bound value), 

Constant low (out of bound value), monotonically decreasing and High-Low transitions. 

Graphs in Figure 4.10 to Figure 4.13 show that a fault introduced in a single node (Node-1) do 

not affect convergence and it also verify the single failure criteria of the algorithm. In this case 

bus guardian forces the faulty node to be fail-silent.  

iv. Effect of stack size 

Stack size (S) effects the final value at which all nodes will converge. Stack size was varied 

and results were generated. It was found that final converged value is close to nodes of initial 

slots when stack size is less and vice versa. Simulation has been done for S < N and results are 

shown in Figure 4.14 to Figure 4.17. 
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Fig. 4.4 Simulation with WF =0.5, N = 8, S = 4 

 

 

 
Fig. 4.5 Simulation with WF = 4, N = 8, S = 4 
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Fig. 4.6 Simulation with WF = 1.5, N = 8, S = 4 

 

 
Fig. 4.7  Simulation with WF =2, N = 8, S = 4 
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Fig. 4.8 Simulation with WF =2, N = 5, S = 4 

 

 

Fig. 4.9 Simulation with WF =2, N = 2, S = 4 
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Fig. 4.10 Simulation with fault in Node-1 (Clock offset stuck at constant high value), 

WF=2, N = 8, S = 4 

 

 
Fig. 4.11 Simulation with fault in Node-1 (Clock offset stuck at constant low value), 

WF=2, N = 8, S = 4 
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Fig. 4.12 Simulation with fault in Node-1 (Clock offset stuck at monotonically 

decreasing value), WF=2, N = 8, S = 4 

 
Fig. 4.13 Simulation with fault in Node-1 (Clock offset with varying transitions), WF=2, 

N = 8, S = 4 
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Fig. 4.14 Simulation with WF= 2, N = 16, S= 4 to analyze effect of stack size 

 

 
Fig. 4.15 Simulation with WF= 2, N = 16, S= 8 to analyze effect of stack size 



Page 67 of 98 

 

 
Fig. 4.16 Simulation with WF= 2, N = 16, S= 12 to analyze effect of stack size 

 

 
Fig. 4.17 Simulation with WF= 2, N = 16, S= 15 to analyze effect of stack size 
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4.5 Majority voting Group membership algorithm 

A majority voting based group membership algorithm for sensor network will provide implicit 

acknowledgement and a consistent view of status of all nodes in the network.  Each node in the 

network maintains a list of valid frame receipt status called as Local Membership Vector 

(LMV). In each slot the node updates its LMV based on the condition whether valid frame was 

received or not. If a valid frame is received from the expected node, then an entry is marked as 

valid (‘1’) else marked as invalid (‘0’).  

 

In sending slot, the node will piggyback and transmit the LMV as a header along with the data 

frame to all the nodes. Thus each node piggybacks the acknowledgments of the previous 

transactions from all other nodes with its own broadcast transmission. This kind of 

acknowledgment does not require any separate frame. 

 

Every node receives the LMV of all other nodes and a matrix called as “Acknowledgement 

State Matrix” is formed as shown in Figure 4.18. Thus, enough data is collected to perform a 

membership algorithm. To get a consistent view of status of nodes throughout the network, a 

strict majority voting is carried out and the final result (Global Membership) is calculated. It is 

possible that there can be an equal amount of ones and zeroes if the number of nodes in the 

system is even. The system will then vote zero since it is safer to assume that an application is 

down. A node which finds itself voted out goes into idle state (or shut down), so as to not 

disturb the timely transmission of other nodes. Acknowledgment is done at communication 

controller level and does not require any processing from host. It should be noted that all nodes 

together decide about the health of a node.  

 

To summarize, the controller autonomously checks the acknowledgment; provides the Global 
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membership using the algorithm and the host computer may or may not use it. Also, this 

algorithm will send a faulty node to idle-state if it is itself faulty or sending faulty frames, thus 

adding a feature of fail silent.  

 

 

 

 

 

 

 

 

 

4.6  Simulation results of Group membership algorithm 

Simulation has been performed on ‘spyder’. Spyder is a scientific Python Development 

Environment. Python is an interactive, object-oriented, high-level and general-purpose 

interpreted programming language. Its Language Constructs and Object-Oriented Approach 

aim to help programmers write clear, logical code for small and large-scale projects. The 

‘tkinter’ module has been used to develop the Graphical User Interface (GUI) for simulating 

the group membership algorithm. ‘tkinter’ is the standard GUI library for Python. Python when 

combined with tkinter provides a fast and easy way to create GUI applications. Tkinter provides 

a powerful object-oriented interface to the Tk GUI toolkit. 

 

For the group membership simulation, in the beginning the number of nodes in the system has 

to be given input by user. GUI will display the Local Membership Vector (LMV), 

Acknowledgement State Matrix (ASM) and Global Membership Vector (GMV) corresponding 
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Fig. 4.18 Bitwise strict majority voting membership algorithm 
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to every node. There is provision of injecting faults (Transmit fault, Receive fault or both) using 

button clicks.  

 

i. Normal operating condition with no faults 

When there are 5 nodes operating in normal working state, it was observed that for a system of 

5 nodes, 3 have successfully been inferred as ‘active’ by the algorithm (through GMV of all 

nodes). If this observation is generalized it can be stated that for a system with N nodes, N/2 

(for even N) or (N+1)/2 (for odd N) nodes will become ‘active’ in 1st TDMA cycle of 

initialization.  

 

It can be observed that for a system of 5 nodes, all 5 nodes have successfully been inferred as 

‘active’ by the GMV of all nodes by the end of 2 TDMA cycles, refer Figure 4.19. If this 

observation is generalized it can be stated that for a system with N nodes, all N nodes will 

become ‘active’ after 2nd TDMA cycle (initialization). 

 

 

Fig. 4.19 Initialization result with all nodes non-faulty 
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ii. One Node failure (Both Transmit / Receive fault) 

When a node is powered off or is completely disconnected from the system, the faulty node 

does not receive valid data and it doesn’t transmit valid data as well. The same has been 

incorporated accordingly in the LMVs and consequently in ASMs through the algorithm. It has 

been observed (refer Figure 4.20) that the algorithm detects the fault because all the other nodes 

(non-faulty ones) have the corresponding faulty node’s bit transformed from ‘1’ to ‘0’ in their 

respective GMV. 

 

 

Fig. 4.20 One node failure (Both transmit / receive failure)  

 

iii. One Node Transmit failure 

Similar to the Transmit / Receive fault detection, transmit fault in a network is detected and 

that node is removed from the active set of nodes, refer Figure 4.21.  

Observe that a send fault can only occur to a processor when it is in the broadcast slot, and a 

receive fault can only occur to a processor different from the broadcaster. Also, notice that 

messages cannot be corrupted, and that a send fault is consistent: no processor receives a 
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message from a send-faulty broadcaster. 

 

Fig. 4.21 One node transmit failure 

 

iv. One Node Receive failure 

If a node suffers a symmetric send fault, then after having completed the Implicit 

Acknowledgement algorithm, it will reconsider its clique assignment. However, when a single 

node suffers a symmetric receive fault it will form a clique with only a single member (refer 

Figure 4.22). Note that the GMV of the node with receive fault is different than the all the other 

non-faulty nodes.  

 

So, it is considered that this fault is an asymmetric send fault where a malicious sender node 

sent correct data to all nodes except a single one. In this way, receive fault in a network is 

detected and that node is removed from the active set of nodes. Note that since the node is out 

of working set of nodes its GMV has no bound to follow the property of ‘Agreement’ anymore. 

And since no data is received on the node, all the bits of its GMV are calculated to come out 

as zero. 
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Fig. 4.22 One node receive failure  
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5 CHAPTER 5: Experiments and Observations 

5.1 Custom protocol Hardware Architecture 

A custom protocol and architecture named as Deterministic Fault Tolerant Communication 

Protocol (DFTCP) is formulated. DFTCP is based on time triggered communication with 

conflict-free static TDMA bus access and dual redundant communication channels. It is master-

less and messages are transmitted as broadcast. All nodes are time synchronized using 

distributed clock synchronization algorithm. Each node consists of a host computer and a 

communication controller based on time triggered architecture as shown in Fig. 5.1.  

 

 

Fig. 5.1 Architecture of a DFTCP network 

Host is responsible for execution of user application, whereas the communication controller 

executes the communication protocol. The incoming and outgoing messages are stored in 

DPRAM and it acts as a temporal firewall between the host and controller. A temporal firewall 

provides control-free interface between two subsystems. An understandable abstraction of the 

subsystem behind the firewall, confines the impact of most changes to the encapsulated 

subsystem, and limits the potential of error propagation.  

 

The protocol is designed to isolate and/or tolerate single fault. Media access is through an 

independent bus guardian at for each communication link of the node. It is implemented using 

…. 

HOST 

DPRAM 

CONTROLLER 

NODE -1 

HOST 

DPRAM 

CONTROLLER 

NODE -2 

HOST 

DPRAM 

CONTROLLER 

NODE -n 
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a separate onboard clock. Bus guardian is a kind of hardware watchdog to ensure fail-silent 

behavior and it guards against “babbling idiots”. It guarantees that a faulty host can’t kill 

protocol operation.  

 

This protocol will be specifically designed for safety-critical fault-tolerant applications. The 

system will have fault tolerance implemented in both hardware and software. Whereas the 

hardware relies on duplicated communication channels, the software uses algorithms that 

control such basic services as membership agreement, clique avoidance, and clock 

synchronization. To tolerate the failure of a node, nodes can also be replicated, & may grouped 

into Fault Tolerant Units (FTUs). 

5.2 Considerations in hardware implementation  

To select transmission medium best suited for an application; this protocol does not specify the 

medium or signaling method. In fact, there are no restrictions on the signaling method because 

DFTCP is not an arbitration-based protocol. An encoding technique such as modified 

frequency modulation, which has fewer than one transition per bit, can be used to increase the 

channel capacity on twisted pairs. DFTCP also scales well to high transmission speeds for 

fiber- optic systems since it requires no bit-wise arbitration. 

 

The interface between a host computer and the DFTCP controller can be realized with a dual-

ported RAM that contains the control registers for the DFTCP controller, the descriptor fields 

of the modes, and the memory for the incoming and outgoing data objects.  

 

The present global time and the recent history of membership fields are available in special 

registers. Eventually, DFTCP must be implemented in a hardware communication controller. 

DFTCP’s conflict-free media-access protocol simplifies the interface at the signaling level and 
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makes the protocol scalable to very high transmission speeds. 

 

i. Start-up and Integration 

The change of an unsynchronized network to a synchronized one is performed by the startup 

and Integration Logic. 

When a node is started after power-on or reset, it is unsynchronized and does no transmission. 

If this unsynchronized node finds a running network, it adopts the time-base, and this procedure 

is called as integration. If the unsynchronized node does not find any valid frames on the 

network, it will send special-frame named as Network-Startup Frame, to start communication 

and to allow other nodes to acquire to its time-base. This procedure is termed as Startup. The 

controller goes through the following sequence of events: 

 

1. Initialization of the DFTCP controller. 

2. Listen on both the broadcast-channels for frames for the duration of the listen timeout.  

a. If a frame is received, the controller adopts the slot number obtained from the received 

frame and integrates. The listen timeout of each controller is same and is equal to twice 

the TDMA cycle.  

b. If a silent network is detected and if startup from this node is allowed (each node may 

or may not have startup rights as configured by the Communication Schedule) the node 

sends ‘network startup frame’ after a unique Startup-TimeOut.  This node, now expects 

that other nodes will integrate on this frame. If it receives a data frame from any other 

node, it goes to active state & starts its normal operation. 

3. When more than one node transmits startup frames simultaneously, a collision is sensed, 

by detecting CRC error, and then it restarts its unique startup timer and retries startup after 
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time out.  The collision can occur only at the startup. As all nodes with startup rights have 

unique timeout no more collisions are expected. 

4. If startup is not allowed from this node, it will continue to be in listen state till it receives 

any valid data frame or Network-Startup frame. There is no Listen-Timeout for these nodes.  

 

ii. Protocol states 

For the operation, seven protocol states are defined: 

i. Idle: The execution of the protocol is halted until the controller is given a reset. 

ii. Init: initialization. 

iii. Listen: Listen for any valid frame to integrate until the listen timer expires. If valid 

frame received, then it will integrate & go to Active state or Passive state, for 

monitoring node. If no valid frame received before listen timer expires then controller 

will go to startup wait state if this node has startup rights.  

iv. Passive: Monitoring node will enter this state. The controller is synchronized but frame 

transmission is prohibited. 

v. Startup wait: If no frames received for the unique startup-timeout, then it enters the 

Startup state. If valid frame received, then it will integrate & will go to Active state. 

vi. Startup: It facilitates the integration of other controllers by periodically sending 

Network startup frames until it receives a response from another controller, or if it runs 

out of startup retries; in this case, it goes back to the listen state. On receiving the 

response from other controllers, it will go into the active state. 

vii.Active: The controller is synchronized with the group. It transmits frames according to 

its schedule-table. 
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Table 5.16: Events causing state transition (Refer Figure 5.2) 

(0) Power Switched ON. 

(1) Reset from Host, start on the operation of the controller. 

(2) Schedule-Table CRC check failed or controller initialization error. 

(3) Initialization Completed successfully 

(4) Listen timeout expired, startup is allowed  

(5) Startup-Timer expires. 

(6) Collision detected. 

(7) 

Startup Frame or Data Frame from any other node was received. The node has 

integrated on it.  

Init 

Listen 

Active 

Startup 

Wait 

Idle 

Passive 

Startup  

(11) 

(5) 

(0) - Power On 

(2) 

 (11) 

(9) 

 (7) 

(9)  

 (11) 

(9) 

  (6) 

(4) 

(3) 

(8) 

(11) 

(1) 

(7) 

(11) 

(10) 

Fig. 5.2 State diagram for protocol 
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8) 

Response from other nodes were received i.e. other nodes have integrated by the 

Startup Frame sent. 

(9) 

Synchronization error, Membership error, Periodic Schedule-Table CRC check 

failed. 

(10) If the node is a monitoring node and any valid frame received. 

(11 ) Host has given a RESET command. 

 

 

5.3 Experimental Set-up 

The objective is to validate clock synchronization algorithm and group membership algorithm. 

Since the jitter to be achieved is in the order of few micro-seconds and parallel processing of 

many functions is required, an existing FPGA board with RS485 interface has been used. Refer 

Figure 5.3 for block diagram. 
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Fig. 5.3 Architecture of the custom TT network 
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 The experimental set-up was used to observe the behavior of a network with 3 active nodes as 

shown in Figure 5.4. 

 

Fig. 5.4 Experimental set-up 

 

The protocol operation and the communication are handled by the controller implemented in a 

FPGA. The software has been divided into a number of modules that execute in parallel inside 

the FPGA. The software is developed using VHDL. The protocol includes limited services 

necessary to validate clock synchronization and membership algorithm.  

 

Specifications assumed in VHDL code: 

Software consists of a constant static schedule of a 4 node system with 2 TDMA rounds as 

shown in Figure 5.5. Data rate has been considered as 921.6 kbps with 16 bit CRC. Slot time 

of 5 msec and data length of 250 bytes was configured. 

 

 

 

The frame format used is as shown in Figure 5.6. 

 

 

  

Control-Word 
Membership 

Vector (MV) 
Data CRC-16 

2-Bytes 2-Byte 250 Bytes 2-Bytes 

 

TDMA round-1 

Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3 

 TDMA round -2 

0 1 2 3 4 5 6 7 

 

Fig. 5.5 Network cycle 

Fig. 5.6 Frame format 
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The Control-Word contains slot number, size of the M, Channel-ID and reserved bits as shown 

in Figure 5.7. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 

Slot number                   Ch-ID/ MV size/ Reserved 

Fig. 5.7 Control word 

Hence, for Slot No. 0, 2 TDMA rounds and 16-bit MV (Membership vector), control word is 

0x20 0x00, for Slot No. 1 it is 0x 60 0x 00 and so on. MV indicated the healthy nodes (active 

nodes) in the network. In this configuration, TDMA round has 4 slots, 3 Active nodes (Node 

0, Node1 and Node 3) has been considered. Node-2 has been considered as inactive/faulty and 

is not connected. So the membership vector with all 3 non-faulty nodes will be 0x0B 0x 0x00 

(0000 1011 0000 0000).  

 

5.4 Observations 

Packets over RS485 network are captured in PC using “Free Device Monitoring Studio” 

software (screenshot in Figure 5.8) to view packets transmitted by each node on the network.  
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Fig. 5.8 Screenshot of software denoting data packets received from the nodes 

 

Figure 5.9 shows the snapshot of the exported html file. It can be observed that all nodes (Node 

0, Node 1 and Node 3) follow the schedule and has sent the data packets in its own scheduled 

slot accordingly. 
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Fig. 5.9 Data packets received from the 3 node system over the broadcast network 

 

i. Validation of clock synchronization algorithm 

A digital output of FPGA has been programed to toggle on every network cycle change (every 

5*4=20 ms) as per its global time, refer Figure 5.10. Objective is to see the global time is 

Frame transmitted in Slot 0 by 

Node 0 

Frame transmitted in Slot 1 by 

Node 1 

Frame transmitted in Slot 3 by 

Node 3 

Frame transmitted in Slot 4 by 

Node 0 

Membership vector Control word 
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synchronized in two nodes. The output from 2 nodes has been captured in oscilloscope and 

jitter was found to be in the order of µsecs: 

 

Fig. 5.10 Digital output from two 2 nodes, toggling after every network cycle 

 

         

Fig. 5.11 Digital outputs from 2 different nodes, at 3 different time instants 

 

It was observed that the global time was synchronized among the nodes. The clock 

synchronization algorithm managed to converge time of each node well within 10 µs which 

was the design tolerance for the algorithm. Refer Figure 5.11 which depicts synchronization 

at 3 different instants after resetting of nodes. 
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ii. Validation of membership algorithm 

For validation of the membership algorithm, each node was powered off one by one and the 

broadcast packet transmission was observed. Following Table 5.2 denotes the observations: 

 

Table 5.27: Membership vectors over different fault conditions 

Fault conditions 
Expected MV (hex) Observed MV (hex) 

Node 1 Node 2 Node 3 

Ok Ok Ok 0B 00 0B 00 

Faulty Ok Ok 0A 00 0A 00 

Ok Faulty Ok 09 00 09 00 

Ok Ok Faulty 03 00 03 00 

 

It was observed that powering off of a node (which is the same as incorporating a transmit 

fault as well as receive fault), was successfully acknowledged by other nodes in the system. 

The membership vector accurately represented all and only the active nodes in the network 

with only implicit acknowledgement from other nodes. 
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6 CHAPTER 6: Conceptual design of sensor network 

6.1 Sensor network system overview 

Sensor network will consist of sensor nodes which will transmit data on DFTCP network. Each 

independent network of sensor nodes is named as Local Cluster (LC). Each LC is a network of 

sensors over redundant RS485 channels.  

 

All sensor networks will send its measurement data one at a time over DFTCP.  A smart sensor 

network is designed to consist maximum 10 local clusters. The LC will provide redundant 

RS485 interface to connect with Senor Network’s Hub (SNH). Maximum RS485 segment 

length will be 24 meters. For distance more than 24 m, repeater will be used. Refer Figure 6.1. 
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i. Sensor Node (SN) 

A sensor node will have sensor input, signal conditioning circuitry and redundant 

communication controller. Each sensor node perform data acquisition and transmits field value 

and diagnostics over the network. 

 

Each controller will have independent bus guardian and RS485 channels. Signal from sensor 

input will be digitized and will be communicated on RS485 channel though DFTCP controller. 
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Fig. 6.1 Block Diagram of local cluster 
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DFTCP parameters will be available in a schedule table. Schedule Table will be encrypted 

inside a non-volatile memory of each node. When powered on, it will check the integrity of 

schedule table. Refer Figure 6.2. 

  

 

 

 

 

 

 

 

 

 

 

 

ii. Sensor Network’s Hub (SNH) 

This device will allow integration of multiple local clusters. Maximum of 10 LC can be 

connected to SN Hub. It will have a separate RS485 port for each LC.  Each LC will operate 

with an independent DFTCP schedule. SN Hub will act as a monitoring node for respective LC 

connected on that port. So, it will gather data in real time and will be synchronized with each 

LC separately. It will forward all acquired data on redundant 1Gbps Ethernet Network. SN hub 

will be rack mountable in a 19” width rack/panel which is widely used in nuclear plants and 

facilities. Refer Figure 6.3. 

 

NMS which for Network Management Software, will be a PC based software. It will have 

functionalities such as: planning, analyzing data for decoding of time-stamped data packets, 
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Page 89 of 98 

maintain statistics and performance monitoring. NMS shall run on a Windows or Linux PC and 

provide operator console for user interface. This shall provide the facility to design / configure 

local cluster parameters. 

From security perspective, following points shall be taken care of: 

a. Schedule table as generated will be encrypted.  

b. Downloading of encrypted file to each sensor node will be done after sensor node 

authentication.  

c. Read back of firmware of configurable devices will not be possible. 

 

 

 

 

 

 

 

 

 

 

 

 

6.2 Performance 

1) Each sensor node will communicate over DFTCP and will be time synchronized 

within 50 µsec (microseconds). Communication controller will be designed using 

FPGA/processor based on this requirement. 

2) Sensor Node RS485 baud rate: 8 Mbps. 
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Scalability: 

Considering the synchronization within 50 µsec and 6 byte data and 2 byte of CRC-16: 

Let N be the no. of nodes that are allowed in the network 

Packet size:    = 6 Bytes (Data) + 2 Bytes (CRC) + (N / 8) Bytes 

  = 8 + N / 8 Bytes 

  = 80 + 10N / 8 bits [considering 1 start bit, 1 stop bit and 8 data bits] 

Transmission time    = (80 + 10N / 8 ) bits * 1 / (8 µsec) 

     = 10 + 10N / 64 

N * [Transmission Time + 50 µsec] < Cycle time 

N * [ 10N / 64 + 50 + 10] µsec < CT 

N * [ 10N / 64 + 60] µsec < CT 

10N2 / 64 + 60N µsec < CT 

 

Solving this quadratic equation for various values of ‘Cycle Time’, we get the values of No. of 

nodes N as shown in the following Table 6.1: 

 

Table 86.1: No. of nodes as per cycle time 

Cycle time (in millisec) N Total no. of nodes the network  (10 Local Cluster ) 

1 16 160 

2 31 310 

3 70 700 

 

So, if the cycle time of 1 millisecond is considered, Maximum number of nodes per LC will 

be: 160. 
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6.3 Timing Analysis for Data Communication 

The data communication in DFTCP will be deterministic. This is because the worst case latency is 

very less, constant and computable. The worst case latency will be mathematically formulated in 

the timing analysis carried out further.  

 

For any data communication, the time delay of a message, Tdelay, is defined as the difference 

between the time when the source node wants to send a message, Tsrc, and the time when the 

destination node receives this message, Tdest, i.e., 

Tdelay = Tdest - Tsrc. 

The total time delay can be broken into three parts, representing the time delays:  

1. At the source node: 

The time delay at the source node includes the preprocessing time (Tpre), and the waiting 

time (Twait). Preprocessing time (Tpre) is the sum of the computation time (Tscomp), the 

encoding time (Tscode). The waiting time (Tw) is the is the time a message must wait once a 

node is ready to send it. Depending on the amount of data the source node must send and 

the traffic on the network, the waiting time may be significant.  

 

2. On the network channel: 

The network time delay includes the total transmission time of a message and the 

propagation delay of the network. This will depend on message size, data rate, and the 

length of the network cable.  

 

3. At the destination node. 

The time delay at the destination node only includes the post-processing time (Tpost), which 

is the sum of the decoding time (Tdcode), and the computation time (Tdcomp), at the destination 

node.  
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The time delay can be explicitly expressed by the following equations: 

Tdelay = Tdest - Tsrc. 

         = Tpre + Twait + Ttx + Tpost 

         = (Tscomp + Tscode) + Twait + ( Tframe + Tprop ) + ( Tdcode + Tdcomp ) 

 

For DFTCP, (Tscomp + Tscode ) is included in the Pre-Send Interval (TPSI) of the slot timing & (Tdcode 

+ Tdcomp ) is included in the Post Receive Interval(TPRI) of the slot timing. The worst case delay can 

be approximated as: 

Tdelay  = TPSI +  Twait +  Tframe + Tprop  + TPRI 

 

Waiting time: 

The waiting time (Twait), which is the time a message must wait once a node is ready to send it, 

depends on the network protocol and is a major factor in the determinism and the performance of 

a control network. In a real-time communication system, the data should be processed immediately 

for transmission or reception. It should not use FIFO for storing the data frames. Queuing will not 

be there in the DFTCP controller. Hence, there is no queuing time, only the blocking time. 

Irrespective of the slot time, each node will be allowed to transmit only at the start of its transmit 

interval. The host will provide the data for transmission at a fixed instant of time, before the slot 

for that controller begins, once in each TDMA round. This instant of time will be marked by the 

interrupt given by the controller. Hence the overall blocking time will be fixed and constant. 

Let the time for which the data waits before transmission be represented by Tb. The receiver will 

have a slightly different perception of the global time bounded by the precision π. So the receiver 

may get the frame delayed by π more. 

Twait (min.) = Tb - π 

Twait (max) = Tb + π 
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Frame Time 

The frame time, Tframe, will depend on the size of the data and the overhead. There will not be any 

padding or stuffing. Let Ndata be the size of data in terms of bytes & Novhd be the number of bytes 

used as overhead. The frame time can then be expressed as: 

Tframe = [ Ndata + Novhd ] * 8 * Tbit 

Tframe shall be used to estimate the slot time during the communication system design. 

 

Propagation time: 

Propagation time for the electrical signal for 100m is 0.5μs (Considering that the speed of 

propagation in a transmission line as 2/3rd that of speed of light). The proposed, DFTCP 

prototype system will have the maximum length of the communication channel as 24m. For a 

maximum distance of 24m from source to node, the propagation time will not exceed 0.12μs. 

 

Hence, the worst case delay was computed to be: 

Tdelay = TPSI +  Twait +  Tframe + Tprop  + TPRI 

Considering the above analysis, the delay is constant given by: 

Tdelay  = Tb + [Ndata + Novhd ] *8* Tbit + Tprop + TPSI + TPRI ± π 

 

The major factor determining the total delay will be the waiting time (which consists of the blocking 

time). The values of TPSI & TPRI cannot be calculated mathematically. It will depend on the 

controller processing speed & the amount of protocol services and the complexity of the algorithms 

to be executed.   
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7 CHAPTER 7: Conclusion and future work 

7.1 Concluding remarks 

A time triggered communication provides deterministic, fault tolerant and fail silent 

communication. This is best suitable for C&I system in which control data is communicated 

over shared medium. Clock synchronization and membership algorithm are necessary in time 

triggered communication for proper operation and to achieve determinism and fault tolerance. 

 

A conceptual design of sensor network was formulated and the specifications of the 

deterministic fault tolerant time triggered protocol was designed. It will provide robust and 

fault tolerant communication for distributed sensors in a nuclear plant environment and also 

result in substantial savings in cabling and penetrations 

 

The clock synchronization algorithm used in DFTCP was verified using simulation in Scilab 

and was validated by actual hardware. It was observed that the time values of distributed 

nodes communicating in a time triggered architecture converges to a single value. The 

correctness, convergence and fault tolerance property of the FTA algorithm was verified by 

the simulation results. Fault was injected and it was observed that time offset of all nodes 

converge and satisfy single failure criteria. It was also shown that the convergence was 

possible between two nodes by applying a fraction of the correction term instead of applying 

the complete correction term. 

 

A majority voting membership algorithm has been formulated to get an implicit 

acknowledgment and a consistent view of status of all nodes of the network. Simulation of 

membership algorithm was carried out in Python. Faults were injected and it was observed 

that the algorithm detect transmit fault, receive fault and is capable in clique avoidance.  
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These algorithms were implemented in FPGA and a test setup is used to validate the correctness 

of these two algorithms. Time synchronization of the nodes has been observed with the help of 

an oscilloscope in which jitter within 10 microseconds was observed. Information regarding 

the faulty nodes is depicted in the membership vector broadcasted by each node. It was 

observed that faulty nodes were successfully acknowledged by other nodes in the system. Thus 

both: clock synchronization algorithm and the group membership algorithm were validated on 

hardware.  

 

7.2 Future work 

 Simulation and testing of integration and startup algorithm for time triggered 

communication and implementation. 

 Development of prototype sensor node and network with time triggered 

communication. Integrated testing of the same. 

 Development of time triggered communication over Ethernet. 
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