
Page 1 of 98

Study, Design and Simulation of Time Triggered Protocol

for Distributed Sensor Network

By

Sampada Bhujbal

Enrolment No. ENGG01201801008

Bhabha Atomic Research Centre, Mumbai

A thesis submitted to the

Board of Studies in Engineering Sciences

In partial fulfilment of requirements

for the Degree of

MASTER OF TECHNOLOGY

of

HOMI BHABHA NATIONAL INSTITUTE

January 2021

Page 4 of 98

ACKNOWLEDGEMENTS

Immeasurable appreciation and deepest gratitude for the help and support are extended

to the following people who in one way or another have contributed in making this project

possible.

First and foremost, I am extremely grateful to my guide, Shri D. A. Roy, OS and Head-

RRPSS, RCnD, BARC for his guidance throughout the life cycle of project. His experience,

expertise in subject and support in course of project execution were of great help.

I take this opportunity to thank my Technical Advisor, Shri Abhishek Borana, RRPSS,

RCnD, BARC for his constant supervision, support and advice without which it would have

been difficult to complete this work.

I owe my special thanks to Shri S. T. Sonnis, SO/G and Head-Software Reliability

section, RCnD, BARC for his invaluable suggestions and able guidance that helped in shaping

the project.

I would also like to express my appreciation towards seniors from my division, Shri K.

K. Singh, Head-INRPC, NRB and Shri L. M. Antony, INRPC for their valuable support and

co-operation towards completion of the project.

I would also like express my sincere gratitude towards Shri U. W. Vaidya Head-RCnD

and Shri P. P. Marathe, AD, E&I, BARC for allowing me to do the project and providing with

the necessary setup required in the project execution.

I am also thankful to all the people working in Reactor Control Division and Integrated

Nuclear Recycle Plant of Nuclear Recycle Board for their direct and indirect support.

Sampada Bhujbal

Page 5 of 98

Contents

Abstract .. 10

1 CHAPTER 1: Introduction.. 11

1.1 Motivation ... 11

1.2 Objectives .. 12

1.3 Scope ... 13

1.4 Organization of report ... 13

2 CHAPTER 2: Literature survey ... 15

2.1 Event-triggered (ET) communication ... 15

2.2 Time-Triggered (TT) communication ... 16

2.3 Communication protocols in distributed systems ... 19

2.4 Prominent communication protocols for fieldbus ... 20

2.5 Comparison among the protocols .. 30

2.6 Clock synchronization algorithm in Time Triggered Architecture 34

2.7 Group membership algorithm ... 42

3 CHAPTER 3: Design of Time-Triggered Protocol .. 48

3.1 Introduction ... 48

3.2 Goals for design of protocol .. 48

3.3 TDMA Bus Access.. 52

3.4 Timing and Synchronization ... 52

4 CHAPTER 4: Formulation and Simulation of Clock synchronization algorithm and

Group membership algorithm .. 54

4.1 Introduction to Clock Synchronization ... 54

4.2 Details of Clock Synchronization algorithm ... 54

Page 6 of 98

4.3 Simulation of Clock Synchronization in Scilab .. 56

4.4 Observations .. 58

4.5 Majority voting Group membership algorithm ... 68

4.6 Simulation results of Group membership algorithm ... 69

5 CHAPTER 5: Experiments and Observations .. 74

5.1 Custom protocol Hardware Architecture .. 74

5.2 Considerations in hardware implementation ... 75

5.3 Experimental Set-up .. 79

5.4 Observations .. 81

6 CHAPTER 6: Conceptual design of sensor network .. 86

6.1 Sensor network system overview .. 86

6.2 Performance .. 89

6.3 Timing Analysis for Data Communication ... 91

7 CHAPTER 7: Conclusion and future work ... 94

7.1 Concluding remarks .. 94

7.2 Future work ... 95

References ... 96

Page 7 of 98

List of figures

Fig. 2.1 The Byzantine Generals problem ... 39

Fig. 3.1 TDMA bus access scheme .. 52

Fig. 4.1 Simulation for N = 8, S=4 .. 58

Fig. 4.2 Simulation for N = 5, S = 4 .. 59

Fig. 4.3 Simulation for N = 2, S = 4 .. 59

Fig. 4.4 Simulation with WF =0.5, N = 8, S = 4 .. 61

Fig. 4.5 Simulation with WF = 4, N = 8, S = 4 .. 61

Fig. 4.6 Simulation with WF = 1.5, N = 8, S = 4 ... 62

Fig. 4.7 Simulation with WF =2, N = 8, S = 4 .. 62

Fig. 4.8 Simulation with WF =2, N = 5, S = 4 ... 63

Fig. 4.9 Simulation with WF =2, N = 2, S = 4 ... 63

Fig. 4.10 Simulation with fault in Node-1 (Clock offset stuck at constant high value), WF=2,

N = 8, S = 4 .. 64

Fig. 4.11 Simulation with fault in Node-1 (Clock offset stuck at constant low value), WF=2, N

= 8, S = 4 .. 64

Fig. 4.12 Simulation with fault in Node-1 (Clock offset stuck at monotonically decreasing

value), WF=2, N = 8, S = 4 .. 65

Fig. 4.13 Simulation with fault in Node-1 (Clock offset with varying transitions), WF=2, N =

8, S = 4 ... 65

Fig. 4.14 Simulation with WF= 2, N = 16, S= 4 to analyze effect of stack size 66

Fig. 4.15 Simulation with WF= 2, N = 16, S= 8 to analyze effect of stack size 66

Fig. 4.16 Simulation with WF= 2, N = 16, S= 12 to analyze effect of stack size 67

Fig. 4.17 Simulation with WF= 2, N = 16, S= 15 to analyze effect of stack size 67

Fig. 4.18 Bitwise strict majority voting membership algorithm .. 69

file:///C:/Users/Admin/Downloads/MTechFinalThesis_Sampada.docx%23_Toc63934362

Page 8 of 98

Fig. 4.19 Initialization result with all nodes non-faulty ... 70

Fig. 4.20 One node failure (Both transmit / receive failure) .. 71

Fig. 4.21 One node transmit failure ... 72

Fig. 4.22 One node receive failure ... 73

Fig. 5.1 Architecture of a DFTCP network.. 74

Fig. 5.2 State diagram for protocol .. 78

Fig. 5.3 Architecture of the custom TT network ... 79

Fig. 5.4 Experimental set-up .. 80

Fig. 5.5 Network cycle ... 80

Fig. 5.6 Frame format .. 80

Fig. 5.7 Control word ... 81

Fig. 5.8 Screenshot of software denoting data packets received from the nodes 82

Fig. 5.9 Data packets received from the 3 node system over the broadcast network 83

Fig. 5.10 Digital output from two 2 nodes, toggling after every network cycle 84

Fig. 5.11 Digital outputs from 2 different nodes, at 3 different time instants 84

Fig. 6.1 Block Diagram of local cluster ... 87

Fig. 6.2 Block Diagram of sensor node ... 88

Fig. 6.3 Block Diagram of sensor network’s hub .. 89

file:///C:/Users/Admin/Downloads/MTechFinalThesis_Sampada.docx%23_Toc63934368
file:///C:/Users/Admin/Downloads/MTechFinalThesis_Sampada.docx%23_Toc63934369
file:///C:/Users/Admin/Downloads/MTechFinalThesis_Sampada.docx%23_Toc63934371
file:///C:/Users/Admin/Downloads/MTechFinalThesis_Sampada.docx%23_Toc63934372
file:///C:/Users/Admin/Downloads/MTechFinalThesis_Sampada.docx%23_Toc63934378
file:///C:/Users/Admin/Downloads/MTechFinalThesis_Sampada.docx%23_Toc63934379
file:///C:/Users/Admin/Downloads/MTechFinalThesis_Sampada.docx%23_Toc63934380

Page 9 of 98

List of tables

Table 2.1: SAE Network classes .. 21

Table 2.2: Physical layer comparison: ... 30

Table 2.3: Data link layer comparison: .. 31

Table 2.4: Application layer Comparison: ... 32

Table 2.5: Comparison between the ET and TT paradigms .. 33

Table 5.1: Events causing state transition (Refer Figure 5.2) .. 78

Table 5.2: Membership vectors over different fault conditions ... 85

Table 6.1: No. of nodes as per cycle time .. 90

Page 10 of 98

Abstract

In modern C&I applications, reliable and deterministic data communication is an essential part

of distributed control systems to improve the performance & for higher availability. In time

triggered communication, a time-driven static scheduling provides fixed latency and improves

determinism. It can be used to provide real-time communication with determinism and fault

tolerance. It is a master-less protocol with broadcast transmission and conflict free TDMA bus

access as per a static schedule-table. All nodes in the network are synchronized in temporal

domain with distributed clock synchronization algorithm. A network of distributed intelligent

sensor nodes with time-triggered synchronized communication provides overall sensor data in

real-time to control and monitoring systems. It will provide robust and fault tolerant

communication for distributed sensors in a nuclear plant environment and also result in

substantial savings in cabling and penetrations.

As a part of the project, study and comparison of architecture and protocols used in existing

sensor level networks has been carried out. A custom deterministic and fault tolerant network

architecture and protocol suitable for a sensor level network in nuclear plants and facilities has

been evolved. Formulation and simulation of the two core algorithms namely clock

synchronization and group membership algorithms required for protocol operation has been

carried out. The main objective of the project is to design a robust sensor level network protocol

based on study and simulation to verify performance and quality parameters.

Page 11 of 98

1 CHAPTER 1: Introduction

As computing and communications become irreplaceable tools, reliability, availability, fault

tolerance and fail silence are important aspects. In all safety critical systems including flight

control system, railway signaling, automotive system, emergency response systems; airline

flight controls; health care; and most of all, nuclear power plant safety systems, requirement of

reliability and fault tolerance has increased with high-performance computing and

communications. The concept of fault tolerance was formulated in 1967: “A system is fault-

tolerant if its programs can be properly executed despite the occurrence of logic faults”.

1.1 Motivation

In typical real-time (RT) applications, the computer system has to perform a multitude of

different functions in parallel, e.g. the processing of inputs, the monitoring of system state to

detect alarm conditions, display to operator etc. In distributed computer systems, these different

functions are normally allocated to different nodes. In real-time systems using communication

data, bounded data latency in presence of disturbing factors such as overload or faults is a

fundamental requirement. A real-time system has to meet the strict timing deadlines dictated

by its environment. If a real-time system misses a deadline, it has failed. But for safety critical

systems, single fault tolerance is an important criterion. Fault tolerance guarantees that the

systems will perform as per design specifications and also ensure trust of users. This was the

motivation to work on aforementioned topic of “Study, Design and Simulation of Time

Triggered Protocol for Distributed Sensor Network”.

Page 12 of 98

1.2 Objectives

In order to reduce cabling costs, the nodes of distributed control system are connected to each

other via a network. Network systems offer the opportunity of modularity and scalability which

allow a flexible design of variants. Further, (intelligent) sensors and actuators are used in a

multiple way to realize high level functions and services.

There is a huge number of possible network topologies, like for instance, the currently

frequently used bus communication, topologies with gateways, active stars or cascaded star

structures. If the application requires fault-tolerance, the classic redundant network or a mixed

redundant network which efficiently maps the system safety structure into a system architecture

is utilized. Bus topology has been discussed further. Unfortunately, communication networks

introduce delays. Furthermore, these delays may be varying in a random fashion, making the

control system time varying.

If one is concerned to formulate the requirements of distributed control systems two different

situations should be distinguished:

1. Occurrence of a critical situation, for instance, any parameter value getting beyond process

range

2. The regular operation of the control system.

The former situation requires as fast as possible reaction to the asynchronous event in order to

start emergency mechanisms. For that purpose, event and time-triggered communication are

compared later.

During the regular (periodical) operation of distributed control systems, time-triggered

Page 13 of 98

architectures seem to be ideally suited. They often lead to a higher latency compared with

event-triggered architectures, but there is no jitter if all participating nodes at the network are

synchronized to a global time.

As a part of the project, study and comparison of architecture and protocols used in existing

sensor level networks has been carried out. In which, time-triggered architectures offer very

interesting properties from the control design point of view. The main objective of the project

is to design a deterministic sensor level network protocol based on study and simulation.

1.3 Scope

The work consists of design of custom time triggered protocol, formulation and simulation of

algorithms for use in network of smart sensors. The scope of work is as under:

1) Literature survey and comparative study of sensor network architecture and

communication protocols existing in real-time for distributed sensor networks.

2) Formulation of clock synchronization algorithm for custom time triggered protocol.

3) Formulation of membership algorithm for custom time triggered protocol.

4) Modelling and Simulation of synchronization algorithm and membership algorithm

using simulation tool.

5) Validation on suitable hardware and conceptual design of sensor node.

1.4 Organization of report

Chapter 2 describes the important findings from the literature survey. In distributed control

systems (DCS) two conceptually distinct models have been identified, named event-triggered

(ET) and time-triggered (TT) which are compared in the beginning of chapter 2. Later is the

Page 14 of 98

list of various communication fieldbuses present in the market. Among those, the most

prevalent in the industry are described in detail with comparison of their significant features.

How TTP is a candidate protocol for our requirements of Fault-tolerant Deterministic network

is described in detail in Chapter 3.

One of the core aspects TTP, which is clock synchronization algorithm, has been studied during

literature survey. Chapter 4 describes the two core algorithms of the protocol i.e. clock

synchronization and group membership protocol. The former part of the chapter mentions the

necessity of clock synchronization algorithm and its implementation details. Simulation results

and conclusions are depicted in the same. The other important core aspect of TTP is Group

membership. This has been described in detail along with illustrations of its simulation at

various different fault scenarios in the latter part of the chapter.

Chapter 5 consists of details regarding the hardware set-up used for validation of the

algorithms. The observations, after the execution of the algorithms over the test set-up, are also

illustrated in this chapter.

Chapter 6 comprises of the conceptual design of the sensor node along with a performance

specifications of designed system. The details of custom designed Time triggered protocol are

also described in this chapter.

Chapter 7 concludes the thesis and explains the future scope of this activity.

Page 15 of 98

2 CHAPTER 2: Literature survey

In distributed control systems (DCS) two conceptually distinct communication models have

been identified, named event-triggered (ET) and time-triggered (TT). In event-triggered

communication, message exchanges are initiated when a significant event occurs. They include

arbitrary state changes in the computer system or the environment (e.g., interrupt from a

sensor). In time-triggered systems, message exchange is derived from a clock tick according to

a static schedule table. In distributed control systems (DCS) two conceptually distinct models

have been identified [1], named event-triggered (ET) and time-triggered (TT) and compared

below.

2.1 Event-triggered (ET) communication

In an event-triggered system all actions are triggered due to the occurrence of a significant

event or state change. With respect to communication, only transmitter nodes have knowledge

about the exact instant a message will be sent, that is, each node has only its own view of the

physical time.

 The major advantage of an event-triggered bus is the better responsiveness to asynchronous

external events (e.g. an alarm condition) at low communication load. System reaction is

fast since the transmission times of messages are not under the control of the platform

architecture, that is, a node is able to try for media access whenever it needs. The problem

is that, depending on the bus arbitration mechanism of the protocol, collisions will have

direct impact on response times of communication services.

 In addition, event-triggered distributed systems are more flexible. The total bandwidth of

the channel is shared among the nodes which means that it can automatically readapt when

Page 16 of 98

nodes are removed or included even if there is ongoing communication (hot-plug)[2].

 Nonetheless, in event-triggered systems the response times of data transmission

deteriorates as communication load increases.

 Even at low loads the communication behavior will experiment quite large latency

variations, which has negative impact on the control performance.

2.2 Time-Triggered (TT) communication

At the other opposite, a time-triggered distributed system is characterized by its regular,

deterministic time behavior. All transmission times of messages are defined in a global

schedule at design time, prior to deployment and the communication controller is responsible

for every communication activity (transmission and reception of messages) and operates

independently from the host computer.

 An important advantage is that time-triggered based protocols offer cyclical data

communication services with fixed latencies.

 The bandwidth is partitioned into dedicated time slots inside which only one node can

transmit at a time hereby collisions never occur under normal operation.

 If there are no collisions, the transmission of messages defined in the global schedule is

never delayed. This is the Time-Division Multiple Access (TDMA) arbitration mechanism.

 Moreover, time-triggered systems have a very attractive property from the point of view of

embedded system design which is named composability, that is, the possibility to develop

two subsystems independently with prior guarantees that the integration will not jeopardize

timing and other functional characteristics that were individually defined. Time-triggered

buses are composable because communication media access is multiplexed, that is, each

node has its own portion of bandwidth that will never be snatched by another node under

normal conditions.

Page 17 of 98

 Error detection is performed inside the controllers by verifying if every message was

received within its expected time window. This facility providing intrinsic means to verify

a node crash.

 A shortcoming of the time-triggered paradigm is its lack of flexibility. For every node

inclusion that was not previously predicted, the whole system must be reprogrammed.

When comparing design complexity, the implementation of time-triggered systems is indeed

more complicated. Within each node it must be ensured that the application layer follows the

communication scheme correctly. This means that the worst-case execution time (WCET) of

all tasks in a node must be carefully estimated in order to avoid inconsistencies in the values

that are used by actuators to interact with the system under control. During system design, not

only the communication schedule but also the schedule of all control tasks must be defined [3].

A small change in one subsystem may in general imply an entire new system design. The

system design itself is very complicated and there is still a lack of adequate tools for the design

process. It depends on the actual application whether a time-triggered or an event-triggered

behavior is more suitable. Very safety critical systems require fault-tolerance and redundancy.

The implementation of such systems probably will fail without the framework of time-triggered

architectures. For large-scale problems time-triggered architectures are a good choice and

offers some interesting opportunities.

Today, there are two emerging time-triggered solutions claiming being able to fulfil the

rigorous demands of predictability, performance and reliability. The first one is the TTP/C

protocol and its Time-Triggered Architecture [4]. The other one is the FlexRay

Page 18 of 98

Communications System developed by the FlexRay Consortium formed by a group of strong

companies in the automotive area [5].

It is noteworthy that the two paradigms (ET and TT) are not mutually exclusive in practice but

one of them always prevails against the other. Both FlexRay and TTP/C architectures provide

event-triggered services in addition to their strictly regular time-triggered communication. For

instance, the communication cycle in FlexRay is divided into four different time windows: a

static segment, an optional dynamic segment, a symbol window and the network idle time

(NIT) [6]. All communication services are handled within the static and dynamic segments.

Therefore, this protocol prioritizes time-triggered traffic as the static segment is mandatory and

the dynamic is optional. The former segment is used for time-triggered traffic while the other

is shared among the nodes for asynchronous transmissions. Reaction to external events can be

quite slow depending on the length of the static segment. Consider for example that an

asynchronous transmission request arrives at the end of the idle time. In this case, the

transmission will be delayed at least by the entire duration of the static segment. In TTP/C,

however, there is no time window reserved to handle asynchronous requests, event-triggered

services are implemented over the time-triggered scheduled using empty slots (if any). Having

all that in mind, it is clear that in an inherent time-triggered system, the cyclical traffic is always

prioritized.

Event-triggered and time-triggered concepts do not have a direct relationship with synchronous

and asynchronous communication model present in traditional distributed system theory. An

asynchronous model refers to the application processing in a distributed environment which

has no notion of time at all whereas the event-triggered node in the DCS has its own notion of

time. Research on embedded DCS has recognized the time-triggered communication model as

Page 19 of 98

the most adequate design paradigm for safety-critical applications [7]. Bus architectures

derived from the time-triggered model have some desirable properties like low communication

jitter, predictable transmission delays, composability and efficient support for fault-tolerant

techniques.

2.3 Communication protocols in distributed systems

An industrial distributed control system (such as manufacturing assembly line) consists of an

organized hierarchy of controllers. In this hierarchy, there is usually a Human Machine

Interface (HMI) at the top, where an operator can monitor or operate the system. This is

typically linked to a middle layer of programmable logic controllers (PLC) via a non-time-

critical communications system (e.g. Ethernet). At the bottom of the control chain is the

fieldbus. It links the PLCs to the components that actually do the work, such as sensors,

actuators, electric motors, console lights, switches, valves and contactors. Fieldbus is the name

of a family of industrial computer network protocols used for real-time distributed control of

field devices, standardized as IEC 61158.

2.3.1 Challenges in Fieldbus

Users see the following as some of the challenges

 Selecting the best combination of bus technologies for the application

 Integration options and solutions

 Technology training & development at all levels of the organization

 Testing and interoperability issues

Page 20 of 98

2.4 Prominent communication protocols for fieldbus

The prominently used protocols (in an industrial environment) are described further briefly:

2.4.1 TTP/C

The Time-Triggered Protocol (TTP) is a communication protocol for distributed fault-tolerant

real-time systems [8]. It is designed for applications with stringent requirements concerning

safety and availability, such as avionic, automotive, industrial control and railway systems.

TTP was initially named TTP/C and later renamed TTP. The initial name of the communication

protocol originated from the classification of communication protocols of the Society of

Automotive Engineers (SAE), which distinguishes four classes of in-vehicle (refer Table 2.1)

networks based on the performance TTP/C satisfies the highest performance requirements in

this classification of in-vehicle networks and is suitable for network classes C and above.

TTP provides a consistent distributed computing base in order to ease the construction of

reliable distributed applications. Given the assumptions of the fault hypothesis, TTP guarantees

that all correct nodes perceive messages consistently in the value and time domains. In addition,

TTP provides consistent information about the operational state of all nodes in the cluster.

Page 21 of 98

Table 2.1: SAE Network classes

Network

Class

Examples of Protocols Bandwidth Typical

Latencies

Automotive

Applications

Class A

Local Interconnect

Network (LIN)

< 10 kbps 10-100ms

sensor/actuator

access

Class B

Controller Area Network

(CAN)

10kbps-125kbps 10-100ms comfort domain

Class C

Controller Area Network

(CAN)

125kbps-1Mbps 5ms powertrain domain

Class D

Time-Triggered Protocol

(TTP), FlexRay

> 1 Mbps 5ms

multimedia, X-by-

wire

2.4.2 TTP/A

The TTP/A protocol is the low-cost field-bus protocol that is harmonized with the fault-tolerant

system bus TTP/C of the time-triggered architecture (TTA). It is intended for the connection

of smart sensors and actuators in embedded real-time systems in different application domains,

e.g., industrial, automotive, etc. It is the objective of TTP/A to provide all services needed by

a smart sensor, including timely communication, remote online diagnostics, and plug-and-play

capability.

TTP/A implements the Object Management Group (OMG) Smart Transducer Interface (STI)

standard. The STI standard defines a smart transducer system as a system comprising several

clusters with transducer nodes connected to a bus. Via a master node, each cluster is connected

Page 22 of 98

to a gateway. It is possible to monitor the smart transducer system via the interface without

disturbing the real-time traffic.

In TTP/A, the master nodes of each cluster share a synchronized time that supports coordinated

actions (e. g., synchronized measurements) over transducer nodes in several clusters. Each

cluster can address up to 250 smart transducers that communicate via a cluster-wide broadcast

communication channel. There may be redundant shadow masters to support fault tolerance.

One active master controls the communication within a cluster.

2.4.3 FlexRay

It is fault tolerant and deterministic, and is aimed at advanced applications such as x-by-wire.

Data is transmitted on the FlexRay bus in both timed and event driven manner. Each message

is divided into static segment and the dynamic segment. The static segment is defined during

the configuration of the application and transmits the data on a TDMA basis. The dynamic

segment of the message handles data on an event triggered basis. The protocol defines parts of

the physical layer, data link layer, presentation layer and application layer of the OSI model in

the context of a FlexRay communication controller [6].

FlexRay have different time slots for messages i.e., scheduled by static cyclic and fixed priority.

Static cyclic scheduling got the advantages that it is easy to calculate response times and is very

predictable. However, since it needs to be scheduled before runtime it got some limitations,

like how to schedule very important messages that rarely needs to be sent. In worst case that

kind of message may have to wait for a whole cycle if its slot has passed, or multiple slots have

to be assigned to that message but then these slots will pass empty most of the time. Making a

static schedule may not be that easy for complex systems. Using one static section and one

Page 23 of 98

dynamic section like FlexRay may be an advantage since frequent real-time messages can be

sent in the static segment, while uncommon high priority messages and lower prioritized

messages can use the dynamic segment. Data rate is up to 10Mbps over dual redundant channel.

2.4.4 Controller Area Network

The CAN protocol is internationally standardized in ISO 11898-1 and comprises the data link

layer and components of the physical layer of the 7-layer ISO-OSI reference model [9]. The

main principles of CAN are:

• Multi-master: Any node may send if the bus is idle.

• Guarantee of latency times: It is possible to calculate the worst case time for a message to

be sent and reached at the destination node.

• Configuration flexibility: Nodes can be added to the network without change in hardware

or software.

• Prioritization of messages: Conflicts are avoided by prioritizing the messages.

• Broadcast communication: Every transmitted message is received in all nodes

CAN use Fixed Priority scheduling, which means that each message got a set priority, and

higher prioritized messages will get access to the bus before lower prioritized messages. The

advantage with this system is that high prioritized messages will have a quick response time,

however low prioritized messages may have to wait a long time before they get bus access.

Another disadvantage with fixed priority scheduling is that it is not very predictable. However,

it is possible to calculate worst case response times for every message. Maximum baud rate is

1 Mbps and overheads are more than 50 percent.

Page 24 of 98

2.4.5 TTCAN

Time-Triggered CAN (TTCAN) [10] uses the concept of cyclic communication, divided into

slots to implement time-triggered behavior. The standard requires that all activity assigned to

one slot (including interrupt handling) is finished until the next slot starts, whereas one message

can be assigned to several slots.

It is important to note that TTCAN adds an additional layer before the existing standard CAN

layers. The physical layer and data link layer of CAN are kept unchanged. Mapped to the ISO-

OSI model, TTCAN resides on layer 5, the session layer. Within this layer, TTCAN is divided

into two different modes of operation. While level 1 and level 2 both support time-triggered

behavior, the capabilities of these levels differ in key properties.

The most outstanding difference is the notion of a global time, that only exists in level 2, and

allows a much more fine grained synchronization of the nodes in a TTCAN network.

2.4.6 TTEthernet

Time-Triggered Ethernet (TTEthernet) [11] expands classical Ethernet use with powerful

services (SAE AS6802) to meet the new requirements of reliable, real-time data delivery in

advanced integrated systems. With TTEthernet, critical control systems, audio/video and

standard LAN applications can share one network. TTEthernet facilitates design of mixed

criticality systems and system-of systems integration.

Time-Triggered Ethernet network devices are Ethernet devices which at least implement:

SAE AS6802 synchronization services for advanced integrated architectures, fail-operational

and safety-critical systems time-triggered traffic flow control with traffic scheduling per-flow

policing of packet timing for time-triggered traffic robust internal architecture with traffic

Page 25 of 98

partitioning TTEthernet (or TTE) network devices from TTTech are standard Ethernet devices

with additional capability to configure and establish robust synchronization, synchronous

packet switching, traffic scheduling and bandwidth partitioning, as described in SAE AS6802.

If no time-triggered traffic capability is configured or used, rugged TTEthernet devices operate

as full duplex switched Ethernet devices compliant with IEEE802.3 and IEEE802.1 standard.

2.4.7 HART

The HART Communication Protocol (Highway Addressable Remote Transducer) is a hybrid

(analog+digital) communication standard. The purpose of the HART standard was to create a

way for instruments to digitally communicate with one another over the same two wires used

to convey a 4-20 mA analog instrument signal. So, HART is a hybrid communication standard,

with one variable (channel) of information communicated by the analog value of a 4-20 mA

DC signal, and another channel for digital communication whereby many other variables could

be communicated using pulses of current to represent binary bit values of 0 and 1. Those digital

current pulses are superimposed upon the analog DC current signal, such that the same two

wires carry both analog and digital data simultaneously.

HART communication over 4-20 mA signal wires is a legacy technology. HART protocol is

the most popular form of wired digital field instrument communication in industrial use. In

applications where speed is not a concern, HART communication is a very practical solution

for acquiring multiple channels of data from one instrument over a single pair of wires.

However, more modern digital standards such as Profibus and FOUNDATION Fieldbus

deliver all the benefits of HART technology and more. It seems that wired-HART will remain

in wide industrial use for many years to come, but it is really just the beginning of digital field

instrument technology and does not represent the state of the art.

Page 26 of 98

2.4.8 MODBUS

Modbus is a protocol designed specifically for exchanging process data between industrial

control devices. The Modbus standard does not specify any details of physical networking, and

thus may be deployed on many different types of physical networks. In other words, Modbus

primarily falls within layer 7 of the OSI Reference Model (the so-called “Application Layer”)

and therefore is compatible with any lower-level communication protocols including EIA/TIA-

232, EIA/TIA-485, Ethernet (the latter via TCP/IP), and a special token-passing network also

developed by Modicon called Modbus Plus.

The Modbus standard primarily defines the meaning of various Modbus commands, the

addressing scheme used to place data within devices, and the formatting of the data. Modbus

consists of a set of standardized digital codes intended to read data from and write data to

industrial devices. A Modbus-compliant industrial device has been programmed to understand

these codes and respond to them appropriately when received.

The channel arbitration mechanism is master/slave, where one PLC functions as the master

Modbus device and all other devices function as Modbus slaves. Even when Modbus

commands are communicated via networks with their own differing arbitration methods, same

mechanism is followed. For example, Modbus commands communicated over Ethernet still

reference “slave” addresses even though the Ethernet network those messages are sent over

uses CSMA/CD arbitration. In other words, there is a hint of OSI layer 2 embedded within

Modbus messages that still dictates which Modbus devices may issue commands and which

must obey commands.

Page 27 of 98

2.4.9 Foundation Fieldbus (FF)

Foundation Fieldbus is an all-digital, serial, two-way communications system that serves as the

base-level network in a plant or factory automation environment. It is an open architecture

targeted for applications using basic and advanced regulatory control, and for much of the

discrete control associated with those functions. Foundation Fieldbus technology is mostly

used in process industries, but has recently been implemented in power plants.

Two related implementations of Foundation Fieldbus have been introduced to meet different

needs within the process automation environment. These two implementations use different

physical media and communication speeds:

 FF H1 - Operates at 31.25 kbit/s and is generally used to connect to field devices and host

systems. It provides communication and power over standard stranded twisted-pair wiring in

both conventional and intrinsic safety applications. H1 is currently the most common

implementation.

 FF HSE (High-speed Ethernet) - Operates at 100/1000 Mbit/s and generally connects

input/output subsystems, host systems, linking devices and gateways.

Fieldbus H1 network communication may be divided into two broad categories: scheduled

(cyclic) and unscheduled (acyclic). Scheduled communication events are reserved for

exchanging critical control data such as process variable measurements, cascaded setpoints,

and valve position commands. These scheduled communications happen on a regular, timed

schedule so that loop determinism is guaranteed. Unscheduled communications, by contrast,

are the way in which all other data is communicated along an H1 segment. Manual setpoint

Page 28 of 98

changes, configuration updates, alarms, and other data transfers of lesser importance are

exchanged between devices in the times between scheduled communication events. The

Fieldbus Foundation recommends new H1 segments be configured for no more than 30%

scheduled communications during each macrocycle (70% unscheduled time). This should leave

plenty of “free time” for all necessary acyclic communications to take place without having to

routinely wait multiple macrocycles.

Foundation Fieldbus was originally intended as a replacement for the 4-20 mA standard, and

today it coexists alongside other technologies such as Modbus, Profibus, and Industrial

Ethernet. Foundation Fieldbus today enjoys a growing installed base in many heavy process

applications such as refining, petrochemicals, power generation, and even food and beverage,

pharmaceuticals, and nuclear applications.

The International Electrotechnical Commission (IEC) standard on field bus, including

Foundation Fieldbus, is IEC 61158. Type 1 is Foundation Fieldbus H1, while Type 5 is

Foundation Fieldbus HSE.

2.4.10 Profibus

PROFIBUS (Process Field Bus) is a standard for fieldbus communication in automation

technology. PROFIBUS is openly published as part of IEC 61158. Profibus DP (Decentralised

Peripherals) is a protocol made for (deterministic) communication between Profibus masters

and their remote I/O slaves. There are two variations of PROFIBUS in use today; the most

commonly used PROFIBUS DP, and the lesser used, application specific, PROFIBUS PA:

PROFIBUS DP is used to operate sensors and actuators via a centralized controller in

Page 29 of 98

production (factory) automation applications. The many standard diagnostic options, in

particular, are focused in PROFIBUS DP.

PROFIBUS PA (Process Automation) is used to monitor measuring equipment via a process

control system in process automation applications. This variant is designed for use in

explosion/hazardous areas (Ex-zone 0 and 1). The Physical Layer (i.e. the cable) conforms to

IEC 61158-2, which allows power to be delivered over the bus to field instruments, while

limiting current flows so that explosive conditions are not created, even if a malfunction occurs.

The number of devices attached to a PA segment is limited by this feature. PA has a data

transmission rate of 31.25 kbit/s. However, PA uses the same protocol as DP, and can be linked

to a DP network using a coupler device.

The much faster DP acts as a backbone network for transmitting process signals to the

controller. This means that DP and PA can work tightly together, especially in hybrid

applications where process and factory automation networks operate side by side. Moreover,

the physical layer of Foundation Fieldbus happens to be identical to that of Profibus-PA, further

simplifying installation by allowing the use of common network validation tools and

connection hardware.

Page 30 of 98

2.5 Comparison among the protocols

The Open Systems Interconnection (OSI) model is a conceptual model that characterizes and

standardizes the communication functions of a telecommunication system without regard to its

underlying internal structure and technology. The physical layer of the OSI model is

responsible for the transmission and reception of data between a device and a physical medium.

The physical layer specifications of the protocols are compared in the Table 2.2 given below:

Table 2.2: Physical layer comparison:

Bus

Technology

Standards
Comm.

Type

Comm.

Speed

Max

Distance

devices

FF H1

IEC

61158,

ISA

SP50

All Digital 31.25 Kbs
1.9km,

9.5 km
32 per seg

Profibus PA IEC 61158 All Digital 31.25 Kbs
1.9km,

9.5 km
32 per seg

FF HSE

IEC

8802,

IEEE

802.3

All Digital
100 Mbs, 1

Gbs
100 m Unlimited

ProfiNet

IEC

8802,

IEEE

802.3

All Digital
100 Mbs, 1

Gbs
100 m Unlimited

MODBUS

IEEE

1451.2,

TIA-485

All Digital
9.6 Kbs –

12 Mbs
1512 m 247 per seg

Profibus DP

IEEE

1451.2,

TIA-485

All Digital
9.6 Kbs –

12 Mbs
1512 m 127 per seg

HART
Bell 202,

4-20mA

Digital over

analog

1.2 Kps – 9.6

Kps
3.0 km

64 in

multidrop

TTP/C SAE AS6003 All Digital 25 MB/s

It will depend

on the

physical layer.

64

Page 31 of 98

The data link layer provides node-to-node data transfer—a link between two directly connected

nodes. It detects and possibly corrects errors that may occur in the physical layer. It defines the

protocol to establish and terminate a connection between two physically connected devices. It

also defines the protocol for flow control between them.

The Data link layer specifications of the protocols described before are compared in the Table

2.3 given below.

Table 2.3: Data link layer comparison:

Bus

Technology
 Standards

Data Link

Type

Error

Detection
Deterministic

Comm

Relationships

FF H1
IEC 61158,

ISA SP50

Token

Passing
16-bit CRC Yes

Client/server,

pub/sub,

sink/source

Profibus PA IEC 61158
Token

Passing
16-bit CRC Yes Master/slave

FF HSE IEC 8802
Token

Passing
16-bit CRC No

Client/server,

pub/sub,

sink/source

ProfiNet IEC 8802
Token

Passing
16-bit CRC No Master/slave

MODBUS None

master/slave

address

scheme

1-bit No Master/slave

Profibus DP IEC 61158

master/slave

address

scheme

1-bit No
Master/slave,

pub/sub

HART None
Flat

addressing
CRC No Master/slave

TTP SAE AS6003 TDMA 24- bit CRC Yes Masterless

Page 32 of 98

The application layer is the OSI layer closest to the end user, which means both the OSI

application layer and the user interact directly with the software application. Application-layer

functions typically include identifying communication partners, determining resource

availability, and synchronizing communication.

The Application layer specifications of the protocols described before are compared in the

Table 2.4 given below.

Table 2.4: Application layer Comparison:

Bus

Technology
Standards Data Transfer

Supports

Control in

the Field

Peer to Peer

Comm

Alerts and

Trends in

Devices

FF H1

IEC 61158,

ISA SP50,

Function

block

application

based on IEC

61804 (Draft)

AI, AO, DI, DO,

PID, PD, CS,

MIO, many more

Yes Yes Yes

Profibus PA IEC 61158 AI, AO, DI, DO No No Yes

FF HSE IEC 61158 Same as H1 Yes Yes Yes

ProfiNet IEC 61158 Same as DP No No Yes

MODBUS IEC 61158 Registers No No No

Profibus DP IEC 61158 AI, AO, DI, DO No No No

HART IEC 61158 Commands Yes No No

Page 33 of 98

For a reliable data communication in distributed systems, determinism and fault tolerance are

important aspects. For this reason, Time Triggered Architecture (TTA) have been used and

proposed to be used in various safety-critical applications. Conflict free time-triggered medium

access provides deterministic behavior (constant latency with guaranteed transmission), since

all nodes know which node is next to transmit at all times.

Table 2.5 lists the differences between the features of Event-triggered and Time-triggered

architectures briefly.

Table 2.5: Comparison between the ET and TT paradigms

 Event-triggered (ET)

Time-triggered (TT)

Control traffic latencies Variable Fixed

Channel bandwidth Shared Dedicated

Temporal behavior - Predictable

Fault tolerance May fail under heavy load Good

Latency - Constant

Verification required Extensive system tests -

Resource utilization Better -

Reaction to external events Fast Slow

Flexibility Average Low

Design complexity Low Average

Time-triggered architectures support features such as 1) Single failure criterion, 2) Fail silence

and 3) Determinism to provide a predictable service. Hence TTP has been explored further.

Page 34 of 98

2.6 Clock synchronization algorithm in Time Triggered Architecture

The control signals for the CPU originate from a physical oscillator, a quartz crystal. Because

the mechanical dimensions of any two physical quartz crystals are slightly different, no two

physical oscillators have the same drift. Since any clock drifts, the clock times of an ensemble

of clocks will drift apart if they are not periodically re-synchronized with respect to each other.

The clocks of a subsystem are called local clocks. Clock synchronization is concerned with

bringing the time of local clocks in close relation with respect to each other.

Approaches to clock synchronization are refined for the employment in large distributed

systems [12]. Rushby and von Henke have formally verified clock synchronization algorithms

[13]. Schedl simulated several clock synchronization algorithms [14].

Most of the presented clock synchronization algorithms use replication as fault tolerance

strategy. Dolev, Welch and Papatriantafilou present approaches that achieve fault tolerance

using self-stabilization [15][16][17]. Analyses of self-stabilizing clock synchronization

algorithms can be found in [18][19]. Measurement and control applications are increasingly

using distributed system technologies such as network communication, local computing and

distributed objects. As these measurement and control applications are based on distributed

embedded systems, clock synchronization has become an important area for standardization.

In 2001, the IEEE standard organization started a standardization process for clock

synchronization in measurement and control applications. In 2002, the standardization

committee published a draft standard for clock synchronization, called “Precision Time

Protocol” (IEEE P1588). This standard was revised and extended in 2008 and is called “IEEE

Standard for a Precision Clock Synchronization Protocol for Networked Measurement and

Control Systems” [20]. This standard addresses the needs of measurement and control systems:

Page 35 of 98

microsecond to submicrosecond accuracy; administration free; and most importantly,

accessible for both high-end devices and low-cost, low-end devices. This standard decouples

the application and communication task by introducing an application and a communication

layer and an isolation layer that isolates application activities from communication activities

and provides time provision services. The communication layer of the protocol requires all

communicating nodes to follow a time-division multiple access (TDMA) strategy for the

communication medium in order to achieve low latency jitter.

2.6.1 Convergence Functions

In the literature, clock synchronization approaches often differentiate themselves via the

convergence function. The convergence function uses the different remote clock estimates and

calculates a single new clock value which the local clock uses to correct itself to. Schneider

and Anceaume and Puaut [21][22] list different convergence functions with the following being

the most often referenced ones.

A. Convergence Averaging Techniques

In the following, some kind of averaging on clock estimates characterizes the convergence

functions. Some functions tolerate potentially faulty clock estimates, while others don’t. For

the overview, f (pi,x1, ...,xn) identifies a convergence function, where pi is the processor (or

node) requesting the convergence function and x1, ...,xn are the estimated clock values. For the

convergence function fmm and fim, xi is an interval otherwise an integer value.

a. Interactive convergence function. Egocentric average function denoted by fe. fe(pi,x1,

...,xn) returns the average of the arguments modified in the following: xj, 1 ≤ j ≤ n, stays

x j if |xj −xi| < ω¯ (i.e., if xj is not further than ω¯ away from xi) otherwise xj is replaced

Page 36 of 98

with xi. ω¯ has to be chosen appropriately, but be at least ω¯ > π, π being the precision.

For fe no sorting algorithm needs to be applied to the remote clock estimates, which is

an advantage.

b. Fast convergence function. f f c returns the average of all arguments x1 to xn that are

within ω¯ of at least n− f other arguments. f f c yields a high-quality precision, but is

computationally quite complex.

c. Fault-tolerant midpoint function. Denoted f f tm and used in [23] returns the midpoint

of the range of values spanned by arguments x1 to xn after the f highest and f lowest

values have been discarded.

d. Differential fault-tolerant midpoint. Denoted fd ftm and used in [24][25] is optimal

with respect to the best precision achievable and best drift rate achievable for logical

clocks. fd ftm is defined as (min(T−Θ,xl)+max(T+Θ,xu)) / 2 ,

Where xl = xhf+1 ,xu = xhn−f with xh1≤ xh2 ≤ xhn , hp /= hq; 1 ≤ hp hq ≤ n where

T is p’s logical time and Θ is the maximum reading error of a remote clock.

e. Sliding window function. This function selects a fixed size window w that contains

the larger number of clock estimates. This function is proposed in [26] and proposed to

convergence functions differing by the way a window is chosen when multiple

windows contain the same number of clock estimates and differing by the way the

correction term is computed once the window has been identified. The first function, f

det mean, chooses the first window and returns the mean of the clock values contained

Page 37 of 98

in the window instance. The second function, fmedian, chooses the window containing

clock estimates having the smallest variance and returns the median of all clock

estimates within the selected window. The main interest of sliding window convergence

functions is that logical clocks closeness degrades gracefully when more failures are

assumed to occur.

f. Minimization of the maximum error interval-based function. Denoted fmm and

takes for each xi an interval [Lpi (t)−epi (t),Lpi (t)+epi (t)], where epi (t) is the maximum

error on pi’s clock estimate and returns an interval for the corrected clock value. fmm is

used in [27].

g. Intersection of the maximum error interval-based function. Denoted fim and also

used in [28] is similar to fmm in the sense that it also takes intervals representing clock

estimates as arguments. fim, however, returns an intersection of the intervals of the clock

estimates.

B. Convergence Non-Averaging Techniques

Convergence non-averaging techniques compute a new clock value based on the fact that a

fixed number of estimates of remote clocks have been received to compute a new clock value.

The number of expected clock estimates depends on the type and number of tolerated failures.

When all required clock estimates are received, the local clock is corrected to the value that is

computed using the respective algorithm. Reference [28] uses only one estimate as only

performance failures are tolerated and the logical clock is corrected with kR, where k is the

round number and R is the round duration.

Page 38 of 98

2.6.2 Classifications of Clock Synchronization Algorithms

Clock synchronization algorithms can be classified by the clocks used as reference clocks. If

the clocks used as reference are not part of the synchronizing ensemble, this is commonly called

external clock synchronization. Examples of external clock synchronization algorithms are

[27][29]. If the clocks used as reference are also synchronizing clocks, this is called internal

clock synchronization.

2.6.3 Hardware Versus Software Implementation

Clock synchronization algorithms that are implemented in hardware use specialized hardware

components and achieve tight synchronization. On the other side, implementations in software,

do not achieve synchronization as tight as hardware algorithms, but use commercial-off-the-

shelf components. Lately, the trend towards support of some critical clock synchronization

elements being supported by hardware enables tighter precision values for clock

synchronization. An example of this trend is driven by the standardization activities around

IEEE 1588 [20] effectively requiring some hardware support to be efficiently possible.

2.6.4 Performance of Clock Synchronization Algorithms and its limitations

As the remote clock readings are estimates of local clocks by other nodes and contain some

unknown variances, clock synchronization can never be perfect. In other words, local clocks

cannot be re-synchronized perfectly, so that at a given time the local clock readings are equal

at all clocks. For a symmetric clock synchronization algorithm and a given uncertainty ε and n

local clocks, the bound that a symmetric clock synchronization algorithm can achieve

immediately after resynchronization cannot be smaller than ε(1−1/n). For asymmetrical clock

synchronization and one master, the bound is ε, the uncertainty of the remote clock reading of

the master reference clock. Krause et al. show in [30] that there is a relationship between

Page 39 of 98

precision and drift of the global time. The more frequently an algorithm synchronizes, the

tighter the precision, but frequent resynchronization may lead to a larger drift of the global

time. This is easily explained by the fact that any error terms in remote clock readings are

integrated and increase the drift.

Also, the problem of reaching a common input data or time reference value in spite of faults is

an interesting investigation subject [31][32]. It is called "interactive consistency" or "source

congruency". It appears that it is theoretically impossible for three computers to agree on a

common value, and that at least 4 are required for this. The proof for it is known as the

"Byzantine Generals' problem".

The situations which can occur are shown in Fig. 2.1. This way, one can see that to solve this

problem you need at least 3t + 1 participants to cope with t traitors.

Fig. 2.1 The Byzantine Generals problem

There are however two ways to solve this situation with only 3t participants:

1. Encryption. General A should encrypt his message such that B cannot falsify it, for instance,

by writing the command on security paper with his seal and signature. Situation 3 can no longer

occur, since B cannot falsify the command it received from A. The worst he can do is not

deliver it. So, if situation 2 occurs, C knows that A is the traitor.

2. Atomic broadcast. If the message system is such that the command is transmitted

Page 40 of 98

simultaneously to all participants, then A cannot send a different message to C and B, and

situation 2) cannot occur any more. In addition, since C and B broadcast their commands, the

traitor will be immediately uncovered. This transmission requires that the message is either

received identically or not at all by all participants. Atomic broadcast requires that the message

be encoded with an error detecting code such as a CRC. Then, the probability is extremely

small that any participant recognizes a false message as good.

2.6.5 Interfacing to Time-Triggered Communication Systems

A paper discusses different interfacing techniques between a computing component (CC) and

a time-triggered communication network [33]. The results show that best predictability in time

and value domain is achieved by synchronous interfacing, where the execution of activities at

the CC is synchronous with the message communication over the time-triggered network. To

achieve this, the local clock of the CC has to be synchronized to the global clock of the time-

triggered network. With asynchronous access, no clock synchronization is required, but it

comes at the cost of unpredictability in the value domain, as it is not ensured which message

instance is obtained by a read access.

2.6.6 Global synchronization in the context of the sensor network paradigm

Many emerging sensor network applications require that the sensors in the network agree on

the time. A sensor system with global clock will be capable of coordinated operation and data

synthesis for future predictions [32]. Consider, for example, a vehicle tracking application.

Each sensor may know the time when a vehicle is approaching. By matching the sensor location

and sensing time, the sensor system may predict the vehicle moving direction and speed.

Without a global agreement on time, the data from different sensors cannot be matched up.

Most applications that require the coordination of locally sensed data (e.g., environment

Page 41 of 98

monitoring) or coordination of mobile nodes (e.g., localization in the presence of mobility) are

facilitated by the ability of the system to achieve global clock synchronization.

Clock synchronization has been a seminal topic in distributed systems but extending these

results and designing clock synchronization algorithms in the context of a sensor network is

challenging for several reasons. First, traditional distributed systems assume that all the nodes

in a network can communicate directly with each other. A sensor network, however, is subject

to spatial constraints. Communication between two remote nodes is accomplished by message

relay using intermediate nodes. Second, nodes in a sensor network generally relies on less

information about the system than more traditional distributed systems, where nodes have

access to the clock values of all the other members of the system, including the faulty nodes.

Third, a sensor node has only limited processing capability. The computation intensive

signature algorithms, such as RSA, are not suitable for sensor networks. Instead, some light-

weight algorithms (such as using a one-way key chain or a key management scheme) are more

suitable. The spatial constraints, the communication cost and delay, and the diminished

computational capability are key reasons why localized algorithms that involve lightweight

computations are preferred for sensor networks.

Among the various methods discussed in [34], the ‘all-node based’ and ‘cluster based’ methods

require a node to initiate the global synchronization, which is neither fault tolerant nor

localized. In the ‘diffusion-based’ method, each node can perform its operation locally, but still

achieve the global clock value over the whole network. There are two implementations of the

clock diffusion: synchronous and asynchronous. The synchronous method assumes all the

nodes perform their local operations in a set order, while the asynchronous method relaxes the

constraint by allowing each node to perform its operation at random. The ‘fault-tolerant

Page 42 of 98

diffusion-based’ protocol goes one step further in assuming the presence of malicious nodes

that exhibit Byzantine faults. These algorithms can be extended to other sensor network

applications, such as data aggregation.

2.6.7 Interaction of clock synchronization and membership algorithm

TTA is able to tolerate more than a single fault by reconfiguring to exclude nodes that are

detected to be faulty. This is accomplished by the group membership algorithm of TTA, which

is discussed in the following section. The four clocks considered for synchronization are chosen

from the members of the current membership; it is therefore essential that group membership

have the property that all non-faulty nodes have the same members at all times. A node whose

clock loses synchronization will suffer send and/or receive faults and will therefore be detected

and excluded by the group membership algorithm. The TTA algorithm is intended to operate

in networks where there are at least four good clocks, and it is able to mask any single fault in

this circumstance [35].

2.7 Group Membership algorithm

The clock synchronization algorithm tolerates only a single (arbitrary) fault. Additional faults

are tolerated by diagnosing the faulty node and reconfiguring to exclude it. This diagnosis and

reconfiguration is performed by the group membership algorithm, which ensures that each node

has a record of which nodes are currently considered non-faulty.

In addition to supporting the internal fault tolerance, membership information is made available

as a service to applications; this supports the construction of strategies for tolerating faults at

the application level. For example, in an automobile brake-by-wire application, the node at

each wheel can adjust its braking force to compensate for the failure (as indicated in the

Page 43 of 98

membership information) of the node or brake at another wheel. For such strategies to work, it

is obviously necessary that the membership information should be reliable, and that the

application state of nonmembers should be predictable.

Group membership is a distributed algorithm: each node maintains a private membership list,

which records all the nodes that it believes to be non-faulty. The group membership algorithm

has to fulfill three major correctness requirements [35]:

 Validity: At all times, non-faulty processors should have all and only the non-faulty

processors in their membership sets, while faulty processors should have removed

themselves from their sets. This requirement is, however, impossible to satisfy as it may

take some time to diagnose the faultiness of a processor. We therefore must allow a

single faulty processor to be included in the membership sets of non-faulty processors,

while faulty processors may have (a subset of) the non-faulty processors plus

themselves in their sets.

 Agreement: All non-faulty processors should have the same membership sets.

 Self-diagnosis: A faulty processor should eventually diagnose its fault and remove

itself from its own membership set.

These properties are subject to two additional assumptions that constitute the fault hypothesis.

First, as processors will be able to diagnose a fault only if no new fault occurs during that

process, the specification of the Time-Triggered Protocol requires the membership algorithm

to work properly only if two successive failures occur at least two TDMA rounds apart. More

frequent fault arrivals are dealt with by other protocol mechanisms of TTP.

The goal of group membership is to maintain a consistent record of those processors that

communicate reliably and execute the protocol. A group membership protocol need not tolerate

all the types of faults that may afflict the complete system. For example, redundant broadcast

Page 44 of 98

buses, and strong CRCs (checksums), effectively eliminate message corruption and reduce

message loss to a very low level. Clock synchronization ensures that all non-faulty processors

share a common notion of time, and "bus guardians" with independent knowledge of the

broadcast schedule prevent faulty processors from speaking out of turn.

Send fault: a processor fails to broadcast when its slot is reached.

Receive fault: a processor fails to receive a broadcast.

Other types of faults can be ignored because they are separately detected by other elements of

the total protocol suite and then manifest themselves as either send or receive faults. For

example, a transient internal fault can lead to a processor shutting down and thus exhibiting a

send fault when its slot is next reached.

The requirements mentioned before can be satisfied only under restricted fault hypotheses. For

example, validity cannot be satisfied if new faults arrive too rapidly, and it is provably

impossible to diagnose an arbitrary-faulty node with certainty. When unable to maintain

accurate membership, the best recourse is to maintain agreement, but sacrifice validity. This

weakened requirement is called clique avoidance.

2.7.1 Clique Avoidance mechanism

Nodes that suffer receive faults have their local membership lists differ from those of non-

faulty nodes, so their next broadcast will be rejected by both their successors. However, TTP

employs a slightly different mechanism that is also used to avoid the formation of disjoint

cliques at the same time. A clique is a group of processors where agreement on the current state

is reached only within the group.

Each node maintains accept and reject counters that are initialized to 1 and 0, respectively,

Page 45 of 98

following its own broadcast. Incoming messages that indicate a membership matching that of

the receiver cause the receiver to increment it’s accept count; others (and missing messages)

cause it to increment its reject count. Before broadcasting, each node compares it’s accept and

reject counts and shuts down unless the former is greater than the latter.

TTA operates as a broadcast bus (even though the recent versions are stars topologically); the

global schedule executes as a repetitive series of rounds, and each node is allocated one or more

broadcast slots in round. The fault hypothesis of the membership algorithm is a benign one:

faults must arrive two or more rounds apart, and must be symmetric in their manifestations:

either all or exactly one node may fail to receive a broadcast message (the former called a send

fault, the latter a receive fault). The membership requirements would become relatively easy

to satisfy if each node were to attach a copy of its membership list to each message that it

broadcasts. Unfortunately, since messages are typically very short, this would use rather a lot

of bandwidth (and bandwidth was a precious commodity in early implementations of TTA), so

it operates with less explicit information and nodes must infer the state and membership of

other nodes through indirect means.

2.7.2 Implicit Acknowledgement mechanism in TTP/C

Frames are broadcast over the bus to all stations but they are not explicitly acknowledged. TTP

has implicit acknowledgment. Implicit acknowledgment in TTP/C contains an additional

feature involving first and second successors. Transmission faults are detected as follows: each

broadcaster listens for the message from its first successor (roughly speaking, this will be the

next node to broadcast) to check whether it suffered a transmission fault: this will be indicated

by its exclusion from the membership list of the message from its first successor. However,

this indication is ambiguous: it could be the result of a transmission fault by the original

Page 46 of 98

broadcaster, or of a receive fault by the successor. Nodes use the local membership carried by

the message from their second successor to resolve this ambiguity: a membership that excludes

the original broadcaster but includes the first successor indicates a transmission fault by the

original broadcaster, and one that includes the original broadcaster but excludes the first

successor indicates a receive fault by the first successor.

This operates as follows: Each active TTA node maintains a membership list of those nodes

(including itself) that it believes to be active and operating correctly. Each node listens for

messages from other nodes and updates its membership list according to the information that

it receives. The time-triggered nature of the protocol means that each node knows when to

expect a message from another node, and it can therefore detect the absence of such a message.

Each message carries a CRC checksum that encodes information about its sender’s C-State

(State of distributed system consisting of membership vector, global time and the current slot

position), which includes its local membership list. To infer the local membership of the sender

of a message, receivers must append their estimate of that membership (and other C-state

information) to the message and then check whether the calculated CRC matches that sent with

the message. If it is not feasible to try all possible memberships, receivers perform the check

against just their own local membership, and one or two variants.

2.7.3 Low overhead membership algorithm

In [36], a protocol for synchronous group membership that, driven by practical considerations,

trades a very restrictive fault model in return for very low communications overhead--just one

bit per message has been described and proved. Despite the paucity of information carried by

each message, the protocol allows rapid and accurate identification and elimination of faulty

processors. However, it has the following limitations:

Page 47 of 98

 The fault arrival rate assumed in the fault model is at most one new faulty processor in any

consecutive n + 1 slots. This is clearly tight, since if n were used in place of n + 1, the

algorithm fails. Consider a scenario with a receive fault of the processor just before the

broadcaster, followed n steps later by a send fault of that same broadcaster. Since the

receive-faulty processor will self-diagnose and fall silent in its slot just before the

subsequent send fault, all non-faulty processors will not receive two consecutive expected

broadcasts. They will all then incorrectly remove themselves from their local membership

sets.

 The low overhead group membership protocol has no provision for readmitting previously-

faulty processors that now appear to be working correctly again. Simple extensions, such

as allowing a repaired processor to just "speak up" when its slot comes by, are inadequate.

(A processor that has a receive fault just as the new member speaks up will not be aware of

the fact and its local membership set will diverge from that of the other processors; a second

fault can then provoke catastrophic failure of the entire system.).

So, if we consider that each sending node piggybacks ‘k’ flags to its message so as to confirm

or refute having received the messages from its predecessors, increasing k makes the protocol

resilient to a greater number of simultaneous or near-coincident failures but imposes a higher

tax on the communication bandwidth. For this reason, the balance between protocol resilience

and overhead can be adjusted, at design time, for each system.

Since the bandwidth requirements of a sensor network are not very intensive (specially if there

are less no. of nodes), overhead cannot be considered as an issue. Group membership algorithm

based on majority voting logic, suitable for smart sensor network, has been formulated and

explained in details in section 4.5

Page 48 of 98

3 CHAPTER 3: Design of Time-Triggered Protocol

3.1 Introduction

The Time-Triggered Protocol (TTP) is intended for use in distributed real-time control

applications that require a high dependability and guaranteed timeliness. It integrates all

services that are required in the design of a fault-tolerant real-time system, such as predictable

message transmission, message acknowledgment in group communication, clock

synchronization, membership, rapid mode changes, redundancy management, and temporary

blackout handling. It supports fault-tolerant configurations with replicated nodes and replicated

communication channels. TTP provides these services with a small overhead so it can be wed

efficiently on twisted pair channels as well as on fiber optic networks.

The objective during the design of the Time-Triggered Protocol (TTP) was to develop an

integrated protocol that provides all services needed in a fault-tolerant real-time application. In

an automotive context, TTP is intended for real-time control systems requiring guaranteed

timeliness and fault tolerance.

3.2 Goals for design of protocol

The following goals were considered in the design of the protocol:

1. Predictable low latency:

In a real-time system the temporal accuracy of information is affected by the duration of the

protocol execution. A good real-time protocol must have a low maximum execution time and

a small variability of the execution time under all specified load and fault conditions.

Page 49 of 98

2. Fault tolerance:

A real-time computer system for safety-critical applications must be fault tolerant. The protocol

must tolerate all node and channel failures that are listed in the fault hypothesis without

violating the functional or temporal specification. Standard communication protocols provide

error detection at the sender’s site. In real-time applications communication errors that cannot

be masked by redundancy must be detected at the receiving site as well as at the sending site

with minimal error detection latency.

3. Temporary blackout handling:

A temporary blackout is the temporary interference of some powerful external disturbance with

the operation of the control system. The protocol must detect and handle temporary blackouts

promptly.

4. Clock synchronization:

The establishment of a global time base with known precision is one of the basic services that

must be provided to distributed real-time applications.

5. Implicit acknowledgement and Membership service:

A membership service provides a consistent view about the health of all nodes. In TTP the

membership service is the basis for the implementation of atomic multicast protocols and

redundancy management protocols. It is also needed to detect incoming and outgoing link

failures. Such a failure detection is required for the implementation of the fail-silent abstraction

of nodes.

6. Distributed redundancy management:

The removal of failed nodes and the reintegration of spare nodes and repaired nodes has to be

controlled by the redundancy management protocol. In a distributed system the redundancy

management itself has to be distributed in order to avoid a single point of failure.

Page 50 of 98

7. Support for rapid mode change:

In many real-time applications a set of different operational modes can be distinguished, e.g.,

start-up, normal operation, emergency, etc.. The protocol should support the consistent and

rapid change from one mode to another mode.

8. Minimal overhead:

The protocol should provide the specified service with minimal overhead, both in message

length and in the number of messages.

9. Flexibility, Scalability with determinism:

Flexibility and predictability are competing goals. The protocol should provide utmost

flexibility as long as determinism can be maintained. The protocol should be scalable to high

data rates. It should operate efficiently on twisted wires as well as on optical fibers.

Existing time triggered protocol specification require further formulation for implementation

and poses dependability issues, since the algorithms are not available in open domain. Hence,

it cannot be directly utilized in our custom protocol design for use in nuclear plans and

facilities. To implement a custom time triggered sensor network protocol, algorithm

formulation, simulation and conceptual design has to be carried out. A custom protocol targeted

for proven physical layer devices will be provide robustness and determinism and can be

qualified for use in distributed sensor level networks of future nuclear plants and facilities.

TTP is an integrated protocol that provides the services listed previously without the strict

separation of concerns proposed in the layered OS1 model. The OS1 model is considered an

excellent conceptual model for reasoning about the different design issues. But the OS1 model

is not a good implementation model for the development of time-critical protocols, since

timeliness was not a goal in the development of the OS1 model.

Page 51 of 98

Major sub-systems:

A real-time application can be decomposed into a set of subsystems called clusters eg a

controlled object i.e. the machine that is to be controlled and the controlling computer system.

Computational Clusters: The controlling computer system consists of at least one

computational cluster. Such a computational cluster comprises a set of self-contained

computers nodes which communicate via a broadcast bus using the TTP Protocol. An

approximate global time base is established throughout the cluster by synchronizing the clocks

located within the nodes. Each node is considered to be fail silent i.e. only crash failures and

omission failures can occur. On the cluster level node failures and communication failures can

be masked by replicating the nodes and grouping them into fault-tolerant units (FTUs).

Message transmission is replicated in both the space domain by using two buses and the time

domain by sending the messages twice on each bus.

Within a computational cluster the communication subsystem manages the global concern of

providing reliable real time message transmission. The host subsystem comprises the host

CPUs of each node computer which execute the local real time application. The interface

between these two subsystems the communication network interface is called the Message

Base Interface MBI providing host CPUs with a memory area for submitting and receiving

messages and for obtaining status and control information about the real time network.

 The system wide partitioning into host subsystem and communication subsystem is reflected

by the design of the node computer hardware. The host subsystem executes the local part of a

distributed real time application. The Interface is implemented with a dual-ported memory and

represents the interface to the communication Subsystem; which executes the real time

Page 52 of 98

communication protocol TTP. The protocol code as well as static configuration data is stored

in a ROM device. The TTP controller is supported by two bus guardians (BGs). Each channel

is protected by one of these devices which protect the bus from being monopolized by a faulty

node sending at arbitrary points in time (babbling idiot failure).

3.3 TDMA Bus Access

Each node on bus is assigned a time slot, in which exactly one node is allowed to transmit

information on the bus. Thus, latency of all messages can be estimated, which ensures

determinism of all real-time messages. TDMA schedule of packet transmission is statically

designed and programmed in the schedule table of the controller. The network cycle is a

recurring sequence of one or more TDMA cycles. The communication is organized into

network cycle as shown in Figure 3.1. Each TDMA round is divided into slots and each slot

can be of varying time duration. Each active node in the communication system has exactly

one “sending slot” to send a frame in a TDMA round. Different messages can be transmitted

in different TDMA rounds but the pattern will repeat in each network cycle.

Fig. 3.1 TDMA bus access scheme

3.4 Timing and Synchronization

Synchronized clocks and a global schedule ensure that non-faulty nodes broadcast their

TDMA-1 TDMA-1 TDMA-2 …… TDMA-n

1 Network Cycle = n * TDMA Rounds

Slot-1 Slot-2 Slot-3 … Slot-m

1 TDMA Round = m * slots

Page 53 of 98

messages in disjoint time slots: messages sent by non-faulty nodes are guaranteed not to collide

on the bus. A faulty node, however, could broadcast at any time—it could even broadcast

constantly (the babbling failure mode). This fault is countered by use of a separate fault

containment unit called a guardian that has independent knowledge of the time and the

schedule: a message sent by one node will reach others only if the guardian agrees that it is

indeed scheduled for that time.

Now, the sending node, the guardian, and each receiving node have synchronized clocks, but

there must be some slack in the time window they assign to each slot so that good messages

are not truncated or rejected due to clock skew within the bounds guaranteed by the

synchronization algorithm. The design rules used are as follows, where Π is the maximum

clock skew between synchronized components.

 The receive window extends from the beginning of the slot to 4Π beyond its allotted

duration.

 Transmission begins 2Π units after the beginning of the slot and should last no longer than

the allotted duration.

 The bus guardian for a transmitter opens its window Π units after the beginning of the slot

and closes it 3Π beyond its allotted duration.

These rules are intended to ensure the following requirements.

 Agreement: If any non-faulty node accepts a transmission, then all non-faulty nodes do.

 Validity: If any non-faulty node transmits a message, then all non-faulty nodes will accept

the transmission.

 Separation: messages sent by non-faulty nodes or passed by non-faulty guardians do not

arrive before other components have finished the previous slot, nor after they have started

the following one.

Page 54 of 98

4 CHAPTER 4: Formulation and Simulation of Clock synchronization

algorithm and Group membership algorithm

4.1 Introduction to Clock Synchronization

The common notion of time is used to sequence events and to trigger actions. Hence, each node

in a time-triggered system maintains a local clock. It is not possible to have oscillators with

exactly same nominal frequency in all nodes. So, the local clocks within each node will diverge.

A uniform time base among all nodes should be generated within sufficient precision. One of

the strategy is to periodically execute a clock synchronization algorithm in each node to bring

their local clock close to a common value and to establish a system-wide global time base.

Precision is a quality parameter for this global time base which is the maximum deviation

between any two clocks in the system. The achievable precision will depend on message

transmission jitter caused by the communication system and by clock drifts. With low-quality

oscillators, the algorithm should be executed more frequently to keep the clocks of all nodes

within the defined precision.

4.2 Details of Clock Synchronization algorithm

Each node maintains a local clock, triggered by a crystal oscillator. This clock drift apart but

the algorithm computes correction term and applied on the local clock periodically to keep the

time in agreement with other nodes. The corrected clock is used by the nodes during operation.

Every receiving node knows the deviation between the sender's clock and its own clock by

comparing expected known frame reception time with actual frame reception time. This

correction term is used by fault tolerant average (FTA) algorithm. Clock synchronization can

be describe using following steps:

Page 55 of 98

1) For each valid message received, determine the difference between expected and observed

arrival time for the incoming message at every receiving slot.

2) If a valid message has been received, store four such difference values in a stack.

3) When the stack is full, calculate a new correction term by taking the average of the middle

values after ignoring the highest & lowest values.

4) Correction is not applied when the term is very small or beyond tolerance. Discarding the

minimum & maximum values ensure that the algorithm works with one faulty node.

5) The propagation delay is subtracted from the correction term to get the final offset value.

In this way adjustment is applied. Propagation delay values (depend on the distance

between the nodes) will be available as a configuration in static schedule table for every

slot.

6) In this way, adjustment is applied to the local time periodically in order to keep time in

agreement with all other nodes.

Thus, global time base and static TDMA schedule together provide collision-free

communication on a broadcast channel. The above algorithm will work correctly under

following conditions:

1) The clocks of all non-faulty nodes must be within a linear envelope of real-time. That is,

the drift of hardware clock of all nodes is bounded by some constant ρ

1 – ρ ≤ d(LC(t))/dt ≤ 1 + ρ

Where LC(t) is the local clock value at any time t.

2) The number of nodes (n) is known in the whole system and each node can send messages

to all other nodes. (each message is broadcasted by every node)

Page 56 of 98

3) To tolerate f number of faulty clocks there is a constraint on the number of operating

nodes: n ≥ 3f +1. (To tolerate single fault, n ≥ 4 because f=1)

4) All clocks are synchronized in the beginning:

| LCi(t0) - LCj(t0) | ≤ П /2

Where, LCi(t0) and LCj(t0) are the local clock value of ith and jth node at initial time (t0)

respectively. П is the precision value of global time base. The frame delivery delay is limited.

A message is delivered with a finite jitter. In simulation it is assumed that the frame delivery

delay is constant with no jitter. The algorithm runs in rounds, resynchronizing after certain time

interval to correct the clocks drifting out of synchrony, and using a fault-tolerant averaging

function.

Most other clock synchronization algorithms that run in rounds eg. Welch-Lynch algorithm,

they differ in the step-2, in which the calculation term is calculated from the difference-values

stored in the stack. For a stack of size S, after sorting of stack-values, WLA takes the average

of two values: (f+1)th stack entry and (n-f)th stack entry, FTA takes the average of all values

between (f+1)th stack entry and (n-f)th stack entry. Based on simulation results, stack size has

been taken as four and the average of 2nd and 3rd stack entry is calculated.

4.3 Simulation of Clock Synchronization in Scilab

Simulation is a reasonable and powerful means for gaining insight into the functionality of

systems. It is important to simulate clock synchronization algorithm to verify correctness and

to tune parameters used for implementation since complete information and implementation

aspects are not available in literature like the effect of stack size, effect of large drift in faulty

node, number of iterations required for initial convergence etc. Simulation also verified the

fault tolerance capability of the algorithm and the effect of applying weighted correction value

Page 57 of 98

has been analyzed.

The algorithm was modeled and simulated to verify the correctness and convergence in Scilab.

Scilab is an open source high-level, numerically oriented programming language. It provides

an interpreted programming environment, with matrices as main data type. The core of Scilab

is based on linear algebraic libraries. Scilab is a powerful and accessible tool for education all

over the world.

Following elements were defined in Scilab program:

1) Number of nodes (N): taken as input from user.

2) TimeOffsetMatrix: It stores time offset of each node with respect to real time. Each

column corresponds to a particular node. The elements of each row is updated with every

iteration of algorithm execution.

3) Number of iterations: Iterations for which algorithm will execute. After some iterations of

algorithm execution, Offset value converge (same value within precision).

4) TimeDiffMatrix: A collection of stack maintained by each node. Each stack has a depth 4

or a configurable stack size (S).

Following are the steps used for simulation:

1) Initial offset values for all nodes are generated and stored in first row of TimeOffsetMatrix.

For each slot, the time difference as seen by a particular node is calculated and stored in

TimeDiffMatrix.

2) After the collection of S (stack size) values, algorithm computes correction term. It is

applied by changing the offset value of the corresponding node (say ith node) and is stored

Page 58 of 98

as a new time value in the next row of ith column (TimeOffsetMatrix). This is one-

iteration.

3) Drift for each node is added.

4) Steps from 2nd to 4th are repeated for 10 iterations.

5) In step 4, instead of adding the drift term directly, the correction term is divided by a value

which has been named as ‘weighing factor (WF)’ and now this drift term is added.

4.4 Observations

Graph were plotted to see how the time offset / local clock in each node change while applying

the correction term as per the existing algorithm. Figure 4.1 to Figure 4.3 show graph for

varying number of nodes. Time values of all nodes (N) converge to a single value when N ≥ 3.

But, for N = 2, the time value does not converge.

Fig. 4.1 Simulation for N = 8, S=4

Page 59 of 98

Fig. 4.2 Simulation for N = 5, S = 4

Fig. 4.3 Simulation for N = 2, S = 4

Page 60 of 98

i. Effect of weighing factor

Calculated correction value is divided by a weighting factor (WF). Choosing a no weighing

factor (equivalent to choosing weighing factor= 1) does not allow convergence of a N=2 node

system as depicted in Figure 4.3. It was observed that using a weighing factor < 1 caused the

divergence, refer Figure 4.4 (WF=0.5). Whereas using a weighing factor much greater than 1

caused the weighing factor to converge sluggishly leading to more no. of iterations required

for convergence, refer Figure 4.5 (WF=4). Figure 4.6 depicts the convergence for WF=1.5.

Considering various observations, the optimized value of weighing factor of 2 has been chosen.

ii. Results with modification to existing algorithm

Figure 4.7 to Figure 4.9 are graphs generated using weighting factor as 2. Using this

modification, convergence is smooth and possible with a set of two nodes. For the FTA

algorithm to operate, N ≥ 4 is required to tolerate single Byzantine fault [31]. However, with

this modification, N ≥ 3 is required to tolerate single Byzantine fault.

iii. Verification of fault tolerance

Fault was injected in Node-1 by forcing the time offset to Constant high (out of bound value),

Constant low (out of bound value), monotonically decreasing and High-Low transitions.

Graphs in Figure 4.10 to Figure 4.13 show that a fault introduced in a single node (Node-1) do

not affect convergence and it also verify the single failure criteria of the algorithm. In this case

bus guardian forces the faulty node to be fail-silent.

iv. Effect of stack size

Stack size (S) effects the final value at which all nodes will converge. Stack size was varied

and results were generated. It was found that final converged value is close to nodes of initial

slots when stack size is less and vice versa. Simulation has been done for S < N and results are

shown in Figure 4.14 to Figure 4.17.

Page 61 of 98

Fig. 4.4 Simulation with WF =0.5, N = 8, S = 4

Fig. 4.5 Simulation with WF = 4, N = 8, S = 4

Page 62 of 98

Fig. 4.6 Simulation with WF = 1.5, N = 8, S = 4

Fig. 4.7 Simulation with WF =2, N = 8, S = 4

Page 63 of 98

Fig. 4.8 Simulation with WF =2, N = 5, S = 4

Fig. 4.9 Simulation with WF =2, N = 2, S = 4

Page 64 of 98

Fig. 4.10 Simulation with fault in Node-1 (Clock offset stuck at constant high value),

WF=2, N = 8, S = 4

Fig. 4.11 Simulation with fault in Node-1 (Clock offset stuck at constant low value),

WF=2, N = 8, S = 4

Page 65 of 98

Fig. 4.12 Simulation with fault in Node-1 (Clock offset stuck at monotonically

decreasing value), WF=2, N = 8, S = 4

Fig. 4.13 Simulation with fault in Node-1 (Clock offset with varying transitions), WF=2,

N = 8, S = 4

Page 66 of 98

Fig. 4.14 Simulation with WF= 2, N = 16, S= 4 to analyze effect of stack size

Fig. 4.15 Simulation with WF= 2, N = 16, S= 8 to analyze effect of stack size

Page 67 of 98

Fig. 4.16 Simulation with WF= 2, N = 16, S= 12 to analyze effect of stack size

Fig. 4.17 Simulation with WF= 2, N = 16, S= 15 to analyze effect of stack size

Page 68 of 98

4.5 Majority voting Group membership algorithm

A majority voting based group membership algorithm for sensor network will provide implicit

acknowledgement and a consistent view of status of all nodes in the network. Each node in the

network maintains a list of valid frame receipt status called as Local Membership Vector

(LMV). In each slot the node updates its LMV based on the condition whether valid frame was

received or not. If a valid frame is received from the expected node, then an entry is marked as

valid (‘1’) else marked as invalid (‘0’).

In sending slot, the node will piggyback and transmit the LMV as a header along with the data

frame to all the nodes. Thus each node piggybacks the acknowledgments of the previous

transactions from all other nodes with its own broadcast transmission. This kind of

acknowledgment does not require any separate frame.

Every node receives the LMV of all other nodes and a matrix called as “Acknowledgement

State Matrix” is formed as shown in Figure 4.18. Thus, enough data is collected to perform a

membership algorithm. To get a consistent view of status of nodes throughout the network, a

strict majority voting is carried out and the final result (Global Membership) is calculated. It is

possible that there can be an equal amount of ones and zeroes if the number of nodes in the

system is even. The system will then vote zero since it is safer to assume that an application is

down. A node which finds itself voted out goes into idle state (or shut down), so as to not

disturb the timely transmission of other nodes. Acknowledgment is done at communication

controller level and does not require any processing from host. It should be noted that all nodes

together decide about the health of a node.

To summarize, the controller autonomously checks the acknowledgment; provides the Global

Page 69 of 98

membership using the algorithm and the host computer may or may not use it. Also, this

algorithm will send a faulty node to idle-state if it is itself faulty or sending faulty frames, thus

adding a feature of fail silent.

4.6 Simulation results of Group membership algorithm

Simulation has been performed on ‘spyder’. Spyder is a scientific Python Development

Environment. Python is an interactive, object-oriented, high-level and general-purpose

interpreted programming language. Its Language Constructs and Object-Oriented Approach

aim to help programmers write clear, logical code for small and large-scale projects. The

‘tkinter’ module has been used to develop the Graphical User Interface (GUI) for simulating

the group membership algorithm. ‘tkinter’ is the standard GUI library for Python. Python when

combined with tkinter provides a fast and easy way to create GUI applications. Tkinter provides

a powerful object-oriented interface to the Tk GUI toolkit.

For the group membership simulation, in the beginning the number of nodes in the system has

to be given input by user. GUI will display the Local Membership Vector (LMV),

Acknowledgement State Matrix (ASM) and Global Membership Vector (GMV) corresponding

0

1

2

3

1

1

0

0

0

2

1

0

1

0

3

0

1

0

1

4

1

1

0

1

5

1

1

1

1

4 0 1 0 1 1

Node Number

Slot No.

Acknowledgement State of a Slot

Number of Nodes

Global Membership

GM 0 1 0 1 1

Decision

Function

Fig. 4.18 Bitwise strict majority voting membership algorithm

Page 70 of 98

to every node. There is provision of injecting faults (Transmit fault, Receive fault or both) using

button clicks.

i. Normal operating condition with no faults

When there are 5 nodes operating in normal working state, it was observed that for a system of

5 nodes, 3 have successfully been inferred as ‘active’ by the algorithm (through GMV of all

nodes). If this observation is generalized it can be stated that for a system with N nodes, N/2

(for even N) or (N+1)/2 (for odd N) nodes will become ‘active’ in 1st TDMA cycle of

initialization.

It can be observed that for a system of 5 nodes, all 5 nodes have successfully been inferred as

‘active’ by the GMV of all nodes by the end of 2 TDMA cycles, refer Figure 4.19. If this

observation is generalized it can be stated that for a system with N nodes, all N nodes will

become ‘active’ after 2nd TDMA cycle (initialization).

Fig. 4.19 Initialization result with all nodes non-faulty

Page 71 of 98

ii. One Node failure (Both Transmit / Receive fault)

When a node is powered off or is completely disconnected from the system, the faulty node

does not receive valid data and it doesn’t transmit valid data as well. The same has been

incorporated accordingly in the LMVs and consequently in ASMs through the algorithm. It has

been observed (refer Figure 4.20) that the algorithm detects the fault because all the other nodes

(non-faulty ones) have the corresponding faulty node’s bit transformed from ‘1’ to ‘0’ in their

respective GMV.

Fig. 4.20 One node failure (Both transmit / receive failure)

iii. One Node Transmit failure

Similar to the Transmit / Receive fault detection, transmit fault in a network is detected and

that node is removed from the active set of nodes, refer Figure 4.21.

Observe that a send fault can only occur to a processor when it is in the broadcast slot, and a

receive fault can only occur to a processor different from the broadcaster. Also, notice that

messages cannot be corrupted, and that a send fault is consistent: no processor receives a

Page 72 of 98

message from a send-faulty broadcaster.

Fig. 4.21 One node transmit failure

iv. One Node Receive failure

If a node suffers a symmetric send fault, then after having completed the Implicit

Acknowledgement algorithm, it will reconsider its clique assignment. However, when a single

node suffers a symmetric receive fault it will form a clique with only a single member (refer

Figure 4.22). Note that the GMV of the node with receive fault is different than the all the other

non-faulty nodes.

So, it is considered that this fault is an asymmetric send fault where a malicious sender node

sent correct data to all nodes except a single one. In this way, receive fault in a network is

detected and that node is removed from the active set of nodes. Note that since the node is out

of working set of nodes its GMV has no bound to follow the property of ‘Agreement’ anymore.

And since no data is received on the node, all the bits of its GMV are calculated to come out

as zero.

Page 73 of 98

Fig. 4.22 One node receive failure

Page 74 of 98

5 CHAPTER 5: Experiments and Observations

5.1 Custom protocol Hardware Architecture

A custom protocol and architecture named as Deterministic Fault Tolerant Communication

Protocol (DFTCP) is formulated. DFTCP is based on time triggered communication with

conflict-free static TDMA bus access and dual redundant communication channels. It is master-

less and messages are transmitted as broadcast. All nodes are time synchronized using

distributed clock synchronization algorithm. Each node consists of a host computer and a

communication controller based on time triggered architecture as shown in Fig. 5.1.

Fig. 5.1 Architecture of a DFTCP network

Host is responsible for execution of user application, whereas the communication controller

executes the communication protocol. The incoming and outgoing messages are stored in

DPRAM and it acts as a temporal firewall between the host and controller. A temporal firewall

provides control-free interface between two subsystems. An understandable abstraction of the

subsystem behind the firewall, confines the impact of most changes to the encapsulated

subsystem, and limits the potential of error propagation.

The protocol is designed to isolate and/or tolerate single fault. Media access is through an

independent bus guardian at for each communication link of the node. It is implemented using

….

HOST

DPRAM

CONTROLLER

NODE -1

HOST

DPRAM

CONTROLLER

NODE -2

HOST

DPRAM

CONTROLLER

NODE -n

Page 75 of 98

a separate onboard clock. Bus guardian is a kind of hardware watchdog to ensure fail-silent

behavior and it guards against “babbling idiots”. It guarantees that a faulty host can’t kill

protocol operation.

This protocol will be specifically designed for safety-critical fault-tolerant applications. The

system will have fault tolerance implemented in both hardware and software. Whereas the

hardware relies on duplicated communication channels, the software uses algorithms that

control such basic services as membership agreement, clique avoidance, and clock

synchronization. To tolerate the failure of a node, nodes can also be replicated, & may grouped

into Fault Tolerant Units (FTUs).

5.2 Considerations in hardware implementation

To select transmission medium best suited for an application; this protocol does not specify the

medium or signaling method. In fact, there are no restrictions on the signaling method because

DFTCP is not an arbitration-based protocol. An encoding technique such as modified

frequency modulation, which has fewer than one transition per bit, can be used to increase the

channel capacity on twisted pairs. DFTCP also scales well to high transmission speeds for

fiber- optic systems since it requires no bit-wise arbitration.

The interface between a host computer and the DFTCP controller can be realized with a dual-

ported RAM that contains the control registers for the DFTCP controller, the descriptor fields

of the modes, and the memory for the incoming and outgoing data objects.

The present global time and the recent history of membership fields are available in special

registers. Eventually, DFTCP must be implemented in a hardware communication controller.

DFTCP’s conflict-free media-access protocol simplifies the interface at the signaling level and

Page 76 of 98

makes the protocol scalable to very high transmission speeds.

i. Start-up and Integration

The change of an unsynchronized network to a synchronized one is performed by the startup

and Integration Logic.

When a node is started after power-on or reset, it is unsynchronized and does no transmission.

If this unsynchronized node finds a running network, it adopts the time-base, and this procedure

is called as integration. If the unsynchronized node does not find any valid frames on the

network, it will send special-frame named as Network-Startup Frame, to start communication

and to allow other nodes to acquire to its time-base. This procedure is termed as Startup. The

controller goes through the following sequence of events:

1. Initialization of the DFTCP controller.

2. Listen on both the broadcast-channels for frames for the duration of the listen timeout.

a. If a frame is received, the controller adopts the slot number obtained from the received

frame and integrates. The listen timeout of each controller is same and is equal to twice

the TDMA cycle.

b. If a silent network is detected and if startup from this node is allowed (each node may

or may not have startup rights as configured by the Communication Schedule) the node

sends ‘network startup frame’ after a unique Startup-TimeOut. This node, now expects

that other nodes will integrate on this frame. If it receives a data frame from any other

node, it goes to active state & starts its normal operation.

3. When more than one node transmits startup frames simultaneously, a collision is sensed,

by detecting CRC error, and then it restarts its unique startup timer and retries startup after

Page 77 of 98

time out. The collision can occur only at the startup. As all nodes with startup rights have

unique timeout no more collisions are expected.

4. If startup is not allowed from this node, it will continue to be in listen state till it receives

any valid data frame or Network-Startup frame. There is no Listen-Timeout for these nodes.

ii. Protocol states

For the operation, seven protocol states are defined:

i. Idle: The execution of the protocol is halted until the controller is given a reset.

ii. Init: initialization.

iii. Listen: Listen for any valid frame to integrate until the listen timer expires. If valid

frame received, then it will integrate & go to Active state or Passive state, for

monitoring node. If no valid frame received before listen timer expires then controller

will go to startup wait state if this node has startup rights.

iv. Passive: Monitoring node will enter this state. The controller is synchronized but frame

transmission is prohibited.

v. Startup wait: If no frames received for the unique startup-timeout, then it enters the

Startup state. If valid frame received, then it will integrate & will go to Active state.

vi. Startup: It facilitates the integration of other controllers by periodically sending

Network startup frames until it receives a response from another controller, or if it runs

out of startup retries; in this case, it goes back to the listen state. On receiving the

response from other controllers, it will go into the active state.

vii.Active: The controller is synchronized with the group. It transmits frames according to

its schedule-table.

Page 78 of 98

Table 5.16: Events causing state transition (Refer Figure 5.2)

(0) Power Switched ON.

(1) Reset from Host, start on the operation of the controller.

(2) Schedule-Table CRC check failed or controller initialization error.

(3) Initialization Completed successfully

(4) Listen timeout expired, startup is allowed

(5) Startup-Timer expires.

(6) Collision detected.

(7)

Startup Frame or Data Frame from any other node was received. The node has

integrated on it.

Init

Listen

Active

Startup

Wait

Idle

Passive

Startup

(11)

(5)

(0) - Power On

(2)

 (11)

(9)

 (7)

(9)

 (11)

(9)

 (6)

(4)

(3)

(8)

(11)

(1)

(7)

(11)

(10)

Fig. 5.2 State diagram for protocol

Page 79 of 98

8)

Response from other nodes were received i.e. other nodes have integrated by the

Startup Frame sent.

(9)

Synchronization error, Membership error, Periodic Schedule-Table CRC check

failed.

(10) If the node is a monitoring node and any valid frame received.

(11) Host has given a RESET command.

5.3 Experimental Set-up

The objective is to validate clock synchronization algorithm and group membership algorithm.

Since the jitter to be achieved is in the order of few micro-seconds and parallel processing of

many functions is required, an existing FPGA board with RS485 interface has been used. Refer

Figure 5.3 for block diagram.

Digital output from nodes

Half duplex RS 485

PC

FPGA

UART

RS 485

Transceiver

NODE - 0

FPGA

UART

RS 485

Transceiver

NODE - 1

….

FPGA

UART

RS 485

Transceiver

NODE - 3

Oscilloscope

Fig. 5.3 Architecture of the custom TT network

Page 80 of 98

 The experimental set-up was used to observe the behavior of a network with 3 active nodes as

shown in Figure 5.4.

Fig. 5.4 Experimental set-up

The protocol operation and the communication are handled by the controller implemented in a

FPGA. The software has been divided into a number of modules that execute in parallel inside

the FPGA. The software is developed using VHDL. The protocol includes limited services

necessary to validate clock synchronization and membership algorithm.

Specifications assumed in VHDL code:

Software consists of a constant static schedule of a 4 node system with 2 TDMA rounds as

shown in Figure 5.5. Data rate has been considered as 921.6 kbps with 16 bit CRC. Slot time

of 5 msec and data length of 250 bytes was configured.

The frame format used is as shown in Figure 5.6.

Control-Word
Membership

Vector (MV)
Data CRC-16

2-Bytes 2-Byte 250 Bytes 2-Bytes

TDMA round-1

Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3

 TDMA round -2

0 1 2 3 4 5 6 7

Fig. 5.5 Network cycle

Fig. 5.6 Frame format

Page 81 of 98

The Control-Word contains slot number, size of the M, Channel-ID and reserved bits as shown

in Figure 5.7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Slot number Ch-ID/ MV size/ Reserved

Fig. 5.7 Control word

Hence, for Slot No. 0, 2 TDMA rounds and 16-bit MV (Membership vector), control word is

0x20 0x00, for Slot No. 1 it is 0x 60 0x 00 and so on. MV indicated the healthy nodes (active

nodes) in the network. In this configuration, TDMA round has 4 slots, 3 Active nodes (Node

0, Node1 and Node 3) has been considered. Node-2 has been considered as inactive/faulty and

is not connected. So the membership vector with all 3 non-faulty nodes will be 0x0B 0x 0x00

(0000 1011 0000 0000).

5.4 Observations

Packets over RS485 network are captured in PC using “Free Device Monitoring Studio”

software (screenshot in Figure 5.8) to view packets transmitted by each node on the network.

Page 82 of 98

Fig. 5.8 Screenshot of software denoting data packets received from the nodes

Figure 5.9 shows the snapshot of the exported html file. It can be observed that all nodes (Node

0, Node 1 and Node 3) follow the schedule and has sent the data packets in its own scheduled

slot accordingly.

Page 83 of 98

Fig. 5.9 Data packets received from the 3 node system over the broadcast network

i. Validation of clock synchronization algorithm

A digital output of FPGA has been programed to toggle on every network cycle change (every

5*4=20 ms) as per its global time, refer Figure 5.10. Objective is to see the global time is

Frame transmitted in Slot 0 by

Node 0

Frame transmitted in Slot 1 by

Node 1

Frame transmitted in Slot 3 by

Node 3

Frame transmitted in Slot 4 by

Node 0

Membership vector Control word

Page 84 of 98

synchronized in two nodes. The output from 2 nodes has been captured in oscilloscope and

jitter was found to be in the order of µsecs:

Fig. 5.10 Digital output from two 2 nodes, toggling after every network cycle

Fig. 5.11 Digital outputs from 2 different nodes, at 3 different time instants

It was observed that the global time was synchronized among the nodes. The clock

synchronization algorithm managed to converge time of each node well within 10 µs which

was the design tolerance for the algorithm. Refer Figure 5.11 which depicts synchronization

at 3 different instants after resetting of nodes.

Page 85 of 98

ii. Validation of membership algorithm

For validation of the membership algorithm, each node was powered off one by one and the

broadcast packet transmission was observed. Following Table 5.2 denotes the observations:

Table 5.27: Membership vectors over different fault conditions

Fault conditions
Expected MV (hex) Observed MV (hex)

Node 1 Node 2 Node 3

Ok Ok Ok 0B 00 0B 00

Faulty Ok Ok 0A 00 0A 00

Ok Faulty Ok 09 00 09 00

Ok Ok Faulty 03 00 03 00

It was observed that powering off of a node (which is the same as incorporating a transmit

fault as well as receive fault), was successfully acknowledged by other nodes in the system.

The membership vector accurately represented all and only the active nodes in the network

with only implicit acknowledgement from other nodes.

Page 86 of 98

6 CHAPTER 6: Conceptual design of sensor network

6.1 Sensor network system overview

Sensor network will consist of sensor nodes which will transmit data on DFTCP network. Each

independent network of sensor nodes is named as Local Cluster (LC). Each LC is a network of

sensors over redundant RS485 channels.

All sensor networks will send its measurement data one at a time over DFTCP. A smart sensor

network is designed to consist maximum 10 local clusters. The LC will provide redundant

RS485 interface to connect with Senor Network’s Hub (SNH). Maximum RS485 segment

length will be 24 meters. For distance more than 24 m, repeater will be used. Refer Figure 6.1.

Page 87 of 98

i. Sensor Node (SN)

A sensor node will have sensor input, signal conditioning circuitry and redundant

communication controller. Each sensor node perform data acquisition and transmits field value

and diagnostics over the network.

Each controller will have independent bus guardian and RS485 channels. Signal from sensor

input will be digitized and will be communicated on RS485 channel though DFTCP controller.

R-Repeater

SNH-Sensor Network Hub

NMS- Network Management System

Local Cluster-1

R

R

SNH

RS485

Ch-A

Ethernet

(1Gbps)

Node

Local Cluster -2

Local Cluster -10

SCADA/ Plant Server

Port-1

Port-2

Port-10

RS485

Ch-B

NMS

Ethernet

.

.

.

.

Node Node

SCADA/ Plant Server

Ethernet

(1Gbps)

Fig. 6.1 Block Diagram of local cluster

Page 88 of 98

DFTCP parameters will be available in a schedule table. Schedule Table will be encrypted

inside a non-volatile memory of each node. When powered on, it will check the integrity of

schedule table. Refer Figure 6.2.

ii. Sensor Network’s Hub (SNH)

This device will allow integration of multiple local clusters. Maximum of 10 LC can be

connected to SN Hub. It will have a separate RS485 port for each LC. Each LC will operate

with an independent DFTCP schedule. SN Hub will act as a monitoring node for respective LC

connected on that port. So, it will gather data in real time and will be synchronized with each

LC separately. It will forward all acquired data on redundant 1Gbps Ethernet Network. SN hub

will be rack mountable in a 19” width rack/panel which is widely used in nuclear plants and

facilities. Refer Figure 6.3.

NMS which for Network Management Software, will be a PC based software. It will have

functionalities such as: planning, analyzing data for decoding of time-stamped data packets,

DFTCP

Controller A

Sig. Conditioning

 & Diagnosis

Bus Guardian

RS485 Ch-A

DFTCP

Controller B

Bus Guardian

RS485 Ch-B

Sensor I/P

Fig. 6.2 Block Diagram of sensor node

Page 89 of 98

maintain statistics and performance monitoring. NMS shall run on a Windows or Linux PC and

provide operator console for user interface. This shall provide the facility to design / configure

local cluster parameters.

From security perspective, following points shall be taken care of:

a. Schedule table as generated will be encrypted.

b. Downloading of encrypted file to each sensor node will be done after sensor node

authentication.

c. Read back of firmware of configurable devices will not be possible.

6.2 Performance

1) Each sensor node will communicate over DFTCP and will be time synchronized

within 50 µsec (microseconds). Communication controller will be designed using

FPGA/processor based on this requirement.

2) Sensor Node RS485 baud rate: 8 Mbps.

FPGA

RS485 Ch-A

Ethernet

.

.

.

.

Ethernet (100/1000 Mbps)

Ethernet

NMS

RS485 Ch-B

Local Cluster -1

Local Cluster -2

RS485 Ch-A

RS485 Ch-B

RS485 Ch-A

RS485 Ch-B

Local Cluster -10

Fig. 6.3 Block Diagram of sensor network’s hub

Page 90 of 98

Scalability:

Considering the synchronization within 50 µsec and 6 byte data and 2 byte of CRC-16:

Let N be the no. of nodes that are allowed in the network

Packet size: = 6 Bytes (Data) + 2 Bytes (CRC) + (N / 8) Bytes

 = 8 + N / 8 Bytes

 = 80 + 10N / 8 bits [considering 1 start bit, 1 stop bit and 8 data bits]

Transmission time = (80 + 10N / 8) bits * 1 / (8 µsec)

 = 10 + 10N / 64

N * [Transmission Time + 50 µsec] < Cycle time

N * [10N / 64 + 50 + 10] µsec < CT

N * [10N / 64 + 60] µsec < CT

10N2 / 64 + 60N µsec < CT

Solving this quadratic equation for various values of ‘Cycle Time’, we get the values of No. of

nodes N as shown in the following Table 6.1:

Table 86.1: No. of nodes as per cycle time

Cycle time (in millisec) N Total no. of nodes the network (10 Local Cluster)

1 16 160

2 31 310

3 70 700

So, if the cycle time of 1 millisecond is considered, Maximum number of nodes per LC will

be: 160.

Page 91 of 98

6.3 Timing Analysis for Data Communication

The data communication in DFTCP will be deterministic. This is because the worst case latency is

very less, constant and computable. The worst case latency will be mathematically formulated in

the timing analysis carried out further.

For any data communication, the time delay of a message, Tdelay, is defined as the difference

between the time when the source node wants to send a message, Tsrc, and the time when the

destination node receives this message, Tdest, i.e.,

Tdelay = Tdest - Tsrc.

The total time delay can be broken into three parts, representing the time delays:

1. At the source node:

The time delay at the source node includes the preprocessing time (Tpre), and the waiting

time (Twait). Preprocessing time (Tpre) is the sum of the computation time (Tscomp), the

encoding time (Tscode). The waiting time (Tw) is the is the time a message must wait once a

node is ready to send it. Depending on the amount of data the source node must send and

the traffic on the network, the waiting time may be significant.

2. On the network channel:

The network time delay includes the total transmission time of a message and the

propagation delay of the network. This will depend on message size, data rate, and the

length of the network cable.

3. At the destination node.

The time delay at the destination node only includes the post-processing time (Tpost), which

is the sum of the decoding time (Tdcode), and the computation time (Tdcomp), at the destination

node.

Page 92 of 98

The time delay can be explicitly expressed by the following equations:

Tdelay = Tdest - Tsrc.

 = Tpre + Twait + Ttx + Tpost

 = (Tscomp + Tscode) + Twait + (Tframe + Tprop) + (Tdcode + Tdcomp)

For DFTCP, (Tscomp + Tscode) is included in the Pre-Send Interval (TPSI) of the slot timing & (Tdcode

+ Tdcomp) is included in the Post Receive Interval(TPRI) of the slot timing. The worst case delay can

be approximated as:

Tdelay = TPSI + Twait + Tframe + Tprop + TPRI

Waiting time:

The waiting time (Twait), which is the time a message must wait once a node is ready to send it,

depends on the network protocol and is a major factor in the determinism and the performance of

a control network. In a real-time communication system, the data should be processed immediately

for transmission or reception. It should not use FIFO for storing the data frames. Queuing will not

be there in the DFTCP controller. Hence, there is no queuing time, only the blocking time.

Irrespective of the slot time, each node will be allowed to transmit only at the start of its transmit

interval. The host will provide the data for transmission at a fixed instant of time, before the slot

for that controller begins, once in each TDMA round. This instant of time will be marked by the

interrupt given by the controller. Hence the overall blocking time will be fixed and constant.

Let the time for which the data waits before transmission be represented by Tb. The receiver will

have a slightly different perception of the global time bounded by the precision π. So the receiver

may get the frame delayed by π more.

Twait (min.) = Tb - π

Twait (max) = Tb + π

Page 93 of 98

Frame Time

The frame time, Tframe, will depend on the size of the data and the overhead. There will not be any

padding or stuffing. Let Ndata be the size of data in terms of bytes & Novhd be the number of bytes

used as overhead. The frame time can then be expressed as:

Tframe = [Ndata + Novhd] * 8 * Tbit

Tframe shall be used to estimate the slot time during the communication system design.

Propagation time:

Propagation time for the electrical signal for 100m is 0.5μs (Considering that the speed of

propagation in a transmission line as 2/3rd that of speed of light). The proposed, DFTCP

prototype system will have the maximum length of the communication channel as 24m. For a

maximum distance of 24m from source to node, the propagation time will not exceed 0.12μs.

Hence, the worst case delay was computed to be:

Tdelay = TPSI + Twait + Tframe + Tprop + TPRI

Considering the above analysis, the delay is constant given by:

Tdelay = Tb + [Ndata + Novhd] *8* Tbit + Tprop + TPSI + TPRI ± π

The major factor determining the total delay will be the waiting time (which consists of the blocking

time). The values of TPSI & TPRI cannot be calculated mathematically. It will depend on the

controller processing speed & the amount of protocol services and the complexity of the algorithms

to be executed.

Page 94 of 98

7 CHAPTER 7: Conclusion and future work

7.1 Concluding remarks

A time triggered communication provides deterministic, fault tolerant and fail silent

communication. This is best suitable for C&I system in which control data is communicated

over shared medium. Clock synchronization and membership algorithm are necessary in time

triggered communication for proper operation and to achieve determinism and fault tolerance.

A conceptual design of sensor network was formulated and the specifications of the

deterministic fault tolerant time triggered protocol was designed. It will provide robust and

fault tolerant communication for distributed sensors in a nuclear plant environment and also

result in substantial savings in cabling and penetrations

The clock synchronization algorithm used in DFTCP was verified using simulation in Scilab

and was validated by actual hardware. It was observed that the time values of distributed

nodes communicating in a time triggered architecture converges to a single value. The

correctness, convergence and fault tolerance property of the FTA algorithm was verified by

the simulation results. Fault was injected and it was observed that time offset of all nodes

converge and satisfy single failure criteria. It was also shown that the convergence was

possible between two nodes by applying a fraction of the correction term instead of applying

the complete correction term.

A majority voting membership algorithm has been formulated to get an implicit

acknowledgment and a consistent view of status of all nodes of the network. Simulation of

membership algorithm was carried out in Python. Faults were injected and it was observed

that the algorithm detect transmit fault, receive fault and is capable in clique avoidance.

Page 95 of 98

These algorithms were implemented in FPGA and a test setup is used to validate the correctness

of these two algorithms. Time synchronization of the nodes has been observed with the help of

an oscilloscope in which jitter within 10 microseconds was observed. Information regarding

the faulty nodes is depicted in the membership vector broadcasted by each node. It was

observed that faulty nodes were successfully acknowledged by other nodes in the system. Thus

both: clock synchronization algorithm and the group membership algorithm were validated on

hardware.

7.2 Future work

 Simulation and testing of integration and startup algorithm for time triggered

communication and implementation.

 Development of prototype sensor node and network with time triggered

communication. Integrated testing of the same.

 Development of time triggered communication over Ethernet.

Page 96 of 98

References

[1] Amos Albert, “Comparison of Event-Triggered and Time-Triggered Concepts with

Regard to Distributed Control Systems”, Embedded World Nurnberg, 17.– pages 235–252,

2004.

[2] Real, Jorge, Sergio Sáez, and Alfons Crespo. "A hierarchical architecture for time-and

event-triggered real-time systems" Journal of Systems Architecture 101: 101652., 2019.

[3] Ataíde, Fernando H., Fabiano C. Carvalho, Carlos E. Pereira, and Marco A.

Wehrmeister. "A comparative study of embedded protocols for safety-critical control

applications." IFAC Proceedings Volumes 39, no. 3, pages 87-94, 2006.

[4] Kopetz, Hermann, and Günther Bauer. "The time-triggered architecture." Proceedings

of the IEEE 91.1 : 112-126, January 2003.

[5] FlexRay “FlexRay Communications System Protocol Specification Version 3.0.1”

FlexRay Consortium, October 2010.

[6] B. Abdul Rahim1, S.Krishnaveni , “Comparison of CAN, TTP and Flexray

Communication Protocols”, International Journal of Innovative Research in Computer and

Communication Engineering Vol.2, Special Issue 4, September 2014.

[7] Rushby, J., “A comparison of bus architectures for safety critical embedded systems”,

Technical report. SRI International. Menlo Park California, 2001.

[8] Kopetz, H. and G. Grunsteidl, “TTP - A time-triggered protocol for fault-tolerant real-

time systems”, In IS Fault-Tolerant Computing (23th FTCS). IEEE Press. Toulouse,

France 1993.

[9] ISO 11898-1:2015 Road vehicles — Controller area network (CAN) — Part 1: Data

link layer and physical signalling

[10] Fuehrer, T., Mueller, B., Hartwich, F., and Hugel, R., "Time Triggered CAN

(TTCAN)," SAE Technical Paper 2001-01-0073

[11] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch, “TTEthernet: Time- Triggered

Ethernet,” in Time-Triggered Communication, R. Obermaisser, Ed. CRC Press, Aug 2011.

[12] Veríssimo, P., Rodrigues, L. & Casimiro, A. CesiumSpray: “A Precise and Accurate

Global Time Service for Large-scale Systems”, Real-Time Systems 12, 243–294, 1997.

[13] J. Rushby and F. von Henke. “Formal verification of the interactive convergence clock

synchronization algorithm”. Technical Report CSL-89-3R, Computer Science Laboratory,

SRI International, CA, Menlo Park, USA, February 1989.

[14] A. Schedl, “Design and Simulation of Clock Synchronization in Distributed Systems”.

Page 97 of 98

Doctoral thesis, Institut fu¨r Technische Informatik, Technische Universita¨t Wien,

Treitlstr. 1-3/3/182-1, Vienna, Austria, April 1996.

[15] S. Dolev. “Possible and impossible self-stabilizing digital clock synchronization in

general graphs”. Real-Time Systems, 12(1):95–107, January 1997.

[16] S. Dolev and J.L. Welch. “Self-stabilizing clock synchronization with Byzantine faults.

In Proceedings of the 14th ACM Symposium on Principles of Distributed Computing”,

page 256. ACM Press, 1995.

[17] M. Papatriantafilou and P. Tsigas. “Self-stabilizing wait-free clock synchronization”.

In Proceedings of the 4th Scandinavian Workshop on Algorithm Theory, volume 824 of

Lecture Notes in Computer Science, pages 267–277. Springer-Verlag Berlin Heidelberg,

Germany, July 1994.

[18] M. Lu, D. Zhang, and T. Murata, “Analysis of self-stabilizing clock synchronization by

means of stochastic Petri nets”, IEEE Transactions on Computers, 39(5):597–604, 1990.

[19] G. Ciardo and C. Lindemann. “Comments on analysis of self-stabilizing clock

synchronization by means of stochastic Petri nets.” IEEE Transactions on Computers,

43(12):1453–1456, 1994.

[20] IEEE Standard “IEEE Standard for a Precision Clock Synchronization Protocol for

Networked Measurement and Control Systems”. IEEE Press, New York, NY, USA, IEEE

Standard No. 1588, February 2009.

[21] E. Anceaume and I. Puaut, “Performance evaluation of clock synchronization

algorithms” Research Report 3526, Institut National de Recherche en Informatique et

Syst`emes Al´eatoires (IRISA), Rennes, France, October 1998.

[22] E. Anceaume and I. Puaut. “A taxonomy of clock synchronization algorithms”

Research Report 1103, Institut National de Recherche en Informatique et Syst`emes

Al´eatoires (IRISA), Rennes, France, July 1997.

[23] J. Welch and L. Lynch, “A new fault-tolerant algorithm for clock synchronization”

Information and Computation (formerly Information and Control), 77(1):1–36, 1988.

[24] C. Fetzer and F. Cristian, “An optimal internal clock synchronization algorithm”, In

Proceedings of the 10th Conference on Computer Assurance, pages 187– 196,

Gaithersburg, MD, USA, IEEE, June 1995.

[25] C. Fetzer and F. Cristian, “Integrating external and internal clock synchronization”,

Real-Time Systems, 12:123–171, March 1997.

[26] M. Pfluegl and D. Blough, “A new and improved algorithm for fault-tolerant clock

synchronization”, Journal of Parallel and Distributed Computing, 27:1– 14, 1995.

Page 98 of 98

[27] K. Marzullo and S. Owicki, “Maintaining the time in a distributed system”, In

Proceedings of the 2nd ACM Symposium on Principles of Distributed Computing, pages

295–305, 1983.

[28] F. Cristian, H. Aghili, and R. Strong, “Clock synchronization in the presence of

omission and performance failures, and processor joins”, In Proc. of 16th Int. Symp. on

Fault-Tolerant Computing Systems, July 1996.

[29] F. Cristian and C. Fetzer, “Fault-tolerant external clock synchronization”, In

Proceedings of the 15th International Conference on Distributed Computing Systems,

pages 70–77, Los Alamitos, CA, USA, IEEE, May 30–June 2 1995.

[30] J.M. Krause, M.J. Englehart, and D.A Shaner, “Achievable performance of fault

tolerant avionics clocks”, In AIAA Computing in Aerospace Conference, 8th, Technical

Papers. Vol. 2 (A92-17576 05-61), pages p. 608–622, Baltimore, MD, American Institute

of Aeronautics and Astronautics, Oct. 21-24 1991.

[31] L. Lamport, R. Shostak, & M. Pease, "The Byzantine Generals Problem", ACM

Transactions on Programming Languages and Systems, Vol.4, No.3, pp. 382-401, July

1982.

[32] W. R. Moore, N.A. Haynes, "A review of synchronisation and matching in fault-

tolerant systems", IEEE Proceedings, Vol. 131, Pt.E, No.4, pp. 119-124, July 1984.

[33] Peter Puschner, Raimund Kirner, “Interfacing to Time-Triggered Communication

Systems”, IEEE 22nd International Symposium on Real-Time Distributed Computing

(ISORC), 2019.

[34] Li, Q., & Rus, D., “Global clock synchronization in sensor networks”, IEEE

Transactions on computers, 55(2), 214-226, 2006.

[35] John Rushby, “An Overview of Formal Verification for the Time-Triggered

Architecture”, 7th International Symposium, FTRTFT 2002 Co-sponsored by IFIP WG 2.2

Oldenburg, Germany, September 9-12 2002.

[36] Shmuel Katz, Pat Lincoln, and John Rushby, “Low-overhead time-triggered group

Membership”, In Marios Mavronicolas and Philippas Tsigas, editors, 11th International

Workshop on Distributed Algorithms (WDAG ’97), volume 1320 of Lecture Notes in

Computer Science, pages 155–169, Saarbr¨ucken Germany, Springer-Verlag., September

1997.

