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Abstract 

This thesis summarizes a detailed study of the implementation of computational 

intelligence systems in nuclear reactors as intelligent monitors. It provides elaborated  

description of the implementation of computationally intelligent models for parameter 

estimation in Intermediate Heat Exchanger of Fast Breeder Test Reactor (FBTR) and 

Neutronics System of Prototype Fast Breeder Reactor (PFBR). The parameters predicted 

are: temperature of sodium in intermediate heat exchanger of FBTR and reactor power 

in PFBR. It briefly covers the event identification in Neutronics System and Primary 

Sodium Circuit System of Prototype Fast Breeder Reactor.  

A novel neural network model is proposed to estimate the value of temperature 

parameters in Fast Breeder Reactor subsystems. Supervised back propagation algorithm 

is proposed, fine-tuned and from the results obtained, it is shown that this algorithm 

shows faster convergence compared to conventional theoretical models developed earlier 

for fast reactors. The significant parameters used for prediction of the temperature of 

sodium are primary inlet temperature, primary flow, secondary inlet temperature and 

secondary flow. The desired output parameters to be predicted are primary outlet 

temperature and secondary outlet temperature. Input data for intermediate heat 

exchanger has been generated from the Quadratic Upstream Interpolation for Convective 

Kinetics (QUICK) code. It took 10 minutes time to generate the data set using QUICK 

code. After fine tuning, the neural network is trained for 10
5
 iterations using back 

propagation algorithm and the achieved error convergence is of the order of 10
-4

. The 

network is also trained with radial basis function algorithm. A comparative study of back 

propagation algorithm and radial basis function algorithm is carried out to predict the 



   

ii 

 

temperature parameters of intermediate heat exchanger of FBTR. The training results 

show that radial basis function algorithm is much faster compared to the standard back 

propagation algorithm as the network got converged to mean square error 8.9 10
-6

 in 

10
4 

iterations itself. To train the network using radial basis function it took 3 minutes on 

a typical personal computer system (2.66 GHz Intel Core 2 Duo processor). Once 

trained, the network gives the test outputs in few milliseconds time. 

Reactor power estimation has also been carried out using back propagation 

algorithm using multilayer perceptron model. The input parameters to the neural 

networks are position of nine control and safety rods and the output parameter is reactor 

power. To predict the reactor power output for one sample the time taken is 23.34 

seconds in the PFBR simulator manually. While, artificial neural network is able to 

obtain the output in few milliseconds giving accurate predictions. Back propagation 

algorithm along with its variants namely standard back propagation, back propagation 

with momentum in pattern mode, back propagation with momentum in batch mode, quick 

propagation and resilient back propagation algorithm are also applied for process 

modeling of neutronics system. Among those algorithms resilient algorithm has 

converged faster with less number of epochs and an error convergence of 4.9 10
-7

 and 

produces the target output which is well agreement with the desired output. 

Neural network model has also been implemented for identification of events or 

unsought occurrence of plant conditions which affect the safe operation of plant. In 

nuclear reactor, thousands of alarms are generated within a fraction of seconds. So, the 

operator has to take immediate as well as appropriate action which can prevent 

occurrence of any abnormal plant conditions. Neural network is a tool that helps in 



   

iii 

 

predicting plant behavior in a fast and reliable manner. The neutronics system and 

primary sodium circuit related events of PFBR have been monitored using neural 

network algorithms. The event related input data have been generated from in-house 

developed thermal hydraulics code and has been validated as per the event analysis 

reports of PFBR. To detect uncontrolled withdrawal of control and safety rod, it took 3.8 

seconds and to detect primary sodium pump trip it took 0.43 seconds using simulator. 

Whereas, neural network predicts event in milliseconds range. Four different events are 

integrated in a single neural network and back propagation algorithm and its variants 

are implemented. The events are: uncontrolled withdrawal of control and safety rod and 

primary sodium circuit related events, primary sodium pump trip, and primary sodium 

pump seizure. The significant parameters for these four events are reactivity ( ), linear 

power (Lin P), central subassembly outlet temperature ( CSAM ), increase in the central 

subassembly temperature ( CSA ), increase in the mean core temperature ( M ), power 

to flow ratio  ( QP / ), pump speed (
pN ) and these are used to represent as input nodes to 

the neural network. The network is trained using BIKAS (Bhabha Atomic Research 

Centre – Indian Institute of Technology Kanpur-Artificial Neural Networks – Simulator) 

with variants of back propagation algorithms. Among these algorithms, resilient back 

propagation algorithm shows least mean square error convergence of 4.29 10
-4

 

providing better performance compared to other algorithms. From the obtained test 

results, it is observed that the neural network could identify the events successfully.  

A hybrid genetic algorithm based neural network model has been developed for 

sodium temperature parameter estimation of intermediate heat exchanger of FBTR and 

the results are compared with standard back propagation algorithm. From the results 



   

iv 

 

obtained, it could be observed that genetic algorithm based neural network has faster 

convergence with less time of computation in comparison with standard back 

propagation algorithm.  

From the results obtained in this thesis, it is seen that artificial neural network 

can be used to predict the parameters and detect the anomalies of subsystems accurately 

and consistently, which will be an aid to operators handling non-linear complex systems 

in nuclear reactors. 
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Chapter 1 

Introduction 

This chapter gives an introduction to the study of computational intelligence and 

its applications in the operation and control of nuclear reactors. It gives a brief 

description about the Fast Breeder Test Reactor, Prototype Fast Breeder Reactor and the 

application of computational intelligence in the operation of Fast Breeder Reactors. 

 

1.1. Introduction 

Nuclear power plant is a very complex arrangement of machinery consisting of a 

large number of control and support systems exhibiting nonlinear behavior. Accurate 

assessment of the operational characteristics in a nuclear power plant is of paramount 

importance. The plant must be designed and operated within a quantitative risk-informed 

approach, integrating both deterministic and probabilistic techniques, where the outputs 

of both the approaches complement with each other. There should be a balance between 

deterministic approaches and probabilistic analyses, in order to achieve an integrated 

decision making process that serves in an optimal fashion to ensure nuclear reactor 

safety. Employing conventional physical model is often time consuming. Hence, it is 

preferable to go for empirical modeling for gaining insights into the overall processing 

behavior of the complex systems in comparison with the conventional physical models 

based on rigorous mathematical equations.  

In real time, it is possible to implement intelligent systems in the form of artificial 

neural network, data mining, and expert system etc., for modeling the nuclear power 

plant. Artificial neural network model, being nonlinear, data driven and having black box 
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approach, is a powerful tool for identification of relevant physical parameters. A less 

understood system with large input and output datasets can be modeled using artificial 

neural network without having much knowledge of its internals [1.1, 1.2]. The present 

study is primarily concerned with the development of artificial neural network models for 

parameter estimation and fault detection of the systems in a nuclear reactor. 

The major contributions of the work carried out in the thesis is summarized and given 

below.  

o The role of computational intelligence and applications of neural network in 

the operation of a nuclear reactor are presented.  

o The generalization ability and the optimization methods of neural network 

have been studied.  

o Advanced neural network training algorithms for parameter estimation and 

event identification have been studied and applied for some of the subsystems 

of Fast Breeder Reactor. 

o Intermediate heat exchanger of Fast Breeder Test Reactor and neutronics 

system and primary sodium circuit of Prototype Fast Breeder Reactor are the 

subsystems studied.  

o A unified empirical model has been developed for optimizing different aspects 

of artificial neural networks in parameter estimation and event identification. 

This model is implemented using various forms of hardware and software. 

o It is seen from the results obtained, that artificial neural network could be used 

to estimate and identify the events and parametric values of the nuclear reactor 

accurately and consistently. 



                                                                                                                         Chapter1 

3 

 

1.2. Overview of the Thesis 

An overview of this thesis is presented in this section. 

 Chapter 1 begins with a brief introduction to nuclear power plant, its 

complexity, characteristics and the methods adopted to achieve its safe operation. A 

detailed explanation of the concept of computational intelligence and its hierarchy is 

presented. The applications of computational intelligence in nuclear power plant 

operation are also described. The Fast Breeder Test Reactor (FBTR) and Prototype Fast 

Breeder Reactor (PFBR) subsystems are described. The scope of the present study 

namely, parameter estimation and event identification in Fast Breeder Reactor have been 

depicted. 

Chapter 2 briefly covers the basics of artificial neural network (ANN), its 

advantages, disadvantages etc and its comparison with biological neural network (BNN). 

Different architectures of artificial neural network are presented. Various learning 

procedures and activation functions used in artificial neural network are outlined. Various 

neural network algorithms are also described. A literature survey on the applications of 

artificial neural network in various nuclear reactor studies has been carried out and 

presented.   

Chapter 3 starts with a brief description of intermediate heat exchanger of Fast 

Breeder Reactor. It deals with the estimation of temperature parameters in intermediate 

heat exchanger of FBTR using standard back propagation algorithm for steady state 

condition. Further, starting from steady state to transient state, the network is trained with 

standard back propagation algorithm and radial basis function algorithm and results 
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obtained are compared. Reactor power estimation of neutronics system of PFBR has been 

carried out using standard back propagation algorithm, and compared with its variants.  

Chapter 4 outlines the event identification of nuclear reactor subsystems using 

neural network algorithms. The events associated with neutronics system and primary 

sodium circuit systems of PFBR are described in detail.  The neural network is trained 

with standard back propagation algorithm to identify PFBR related events. The different 

events considered are: uncontrolled withdrawal of control and safety rod, primary sodium 

pump trip, primary sodium pump seizure, primary pump rupture. An Event Detection 

System (EDS) has been developed for identifying these four events in PFBR subsystems 

at the earliest time of occurrence using back propagation algorithm and its variants and 

the results are compared. 

Chapter 5 Genetic algorithm has been considered as one of the potential 

candidates for optimization of weight parameters of neural network. A hybrid genetic 

algorithm based neural network model has been developed for parameter estimation of 

intermediate heat exchanger of FBTR. The training of neural network has been 

accomplished using the weight optimization method of genetic algorithm based neural 

network to predict the temperature parameters of intermediate heat exchanger of FBTR.  

Chapter 6 summarizes the work carried out in this thesis and the relevant 

conclusions drawn based on the study. The chapter ends with suggestions for future work 

in this field. 

1.3. Computational Intelligence 

Computational intelligence (CI) being a relatively new area, its identity and 

definition are still a subject of debate. According to one of the definition, it is an area of 
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applied research involving the study of adaptive mechanisms to enable or facilitate 

intelligent behavior in complex and changing environments [1.3]. It can be described as 

the science of “Synthetic Psychology” or “Experimental Philosophy” or “Computational 

Epistemology”-epistemology being the study of knowledge [1.4]. A Computationally 

intelligent system deals with numerical (low-level) data, has pattern recognition 

component and it begins to exhibit computational adaptability, computational fault 

tolerance and speed approaching human-like turnaround, error rates that approximates 

human performance [1.6].  

The main building blocks of computational intelligence are artificial neural 

network, fuzzy logic, evolutionary computing, genetic algorithm and artificial life. The 

hierarchy of computational intelligence is given in Fig. 1.1. Computational intelligence 

being the parent node, represents a broader discipline and is subdivided into child nodes 

such as granular computing, neuro-computing, evolutionary computing and artificial life 

[1.5]. These child nodes are again subdivided further more as shown in Fig. 1.1.  
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                             Fig. 1. 1 A fragment of computational intelligence family tree 

 

Computational intelligence differs from the traditional artificial intelligence (AI) 

in few aspects, as it uses sub-symbolic knowledge i.e., numerical knowledge 

representation and processing, where as classical artificial intelligence uses symbolic 

approaches. Symbolic approach of artificial intelligence and distributed approach of 

computational intelligence are clearly distinguishable and can be explained as follows: in 

a symbolic representation, the knowledge can be described in symbols (e.g. a concept in a 

semantic net) in which each symbol has a particular meaning. Whereas, in distributed or 

sub symbolic representations, a meaning or specific part of the knowledge cannot be 

clearly located. The knowledge is represented in the whole state of the system. Neither 

humans nor any other animal thinks in symbols. Language is purely symbolic. But a 

person does not think in language. When he thinks of a concept which can be described 

by a symbol (a word of the language), he does not think of the symbol itself, but of all the 

associations that he has, when he hears the specific word. These associations can often 
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also be described by symbols, but they are not symbols themselves. They are made of 

many recollections of past internal states of the system, which is produced by sensory 

inputs combined with the previous states of the system. In simpler terms it can be stated 

that, a person thinks in the combined recollections of many images, sounds, smells and 

other past sensory experiences. Hence the natural or sub-symbolic approach has a more 

promising future even though it is easier for us to build symbolic systems which are 

therefore still often the best choice. 

Artificial intelligence techniques follow top-down approach i.e. the structure of a 

given problem (environment, domain context) is analyzed beforehand and the 

construction of the intelligent system is based upon this structure. Computational 

intelligence techniques follow bottom-up approach where order and structure emerge 

from an unstructured beginning rather than being imposed from above [1.7]. A 

comparison of artificial intelligence with computational intelligence, which comes under 

machine intelligence, is given in Fig. 1.2. Artificial intelligence is based on hard 

computing whereas computational intelligence is based on soft computing. Hard 

computing is oriented towards the analysis and design of physical process and systems.   

 

                      Fig. 1.2 Artificial Intelligence vs. Computational Intelligence 

Machine Intelligence

Artificial Intelligence Computational Intelligence

Hard Computing Soft Computing
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It has characteristics like precision, formality and categoricity. It is based on binary logic, 

crisp systems, numerical analysis, probability theory, differential equations, functional 

analysis, mathematical programming, approximation theory and crisp software. Soft 

computing is oriented towards the analysis and design of intelligent systems. It is based 

on fuzzy logic, artificial neural networks algorithms, genetic algorithms, chaos theory and 

a part of machine learning. While in hard computing, impression and uncertainty are 

undesirable properties, in soft computing the tolerance for imprecision and uncertainty is 

exploited to achieve an acceptable solution at a low cost, tractability and high machine 

intelligence quotient.  

Artificial intelligence is defined as “the branch of science which deals with 

helping machines to find solutions to complex problems in a more human-like 

fashion”[1.8]. The discipline of human engineered systems exhibiting intelligence has 

been described in three levels of complexity by Bezdeck[1.9]. Level A stands for 

artificial or symbolic, Level B for biological or organic, Level C stands for computational 

or numeric systems. This is represented in Fig. 1.3. 

 

Fig. 1.3 Relationship among components of intelligent systems 
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According to Bezdek, computational intelligence would be a subset of artificial 

intelligence which in turn is a subset of biological intelligence [1.6]. Fogel expressed a 

different view that the central focus in traditional artificial intelligence research has been 

on emulating human behavior by extracting rules and knowledge from human experts 

[1.6]. The vast majority of artificial intelligence programs have nothing to do with 

learning. In contrast, computational intelligence techniques model natural processes or 

end products associated with intelligent behavior, either at the level of neuronal activity 

and function, human behavior or evolutionary learning in terms of the adaptive behavior. 

Hence, the objective of this research work is to exploit their characteristics for their 

application to the nuclear reactor systems, without being too specific about the definitions 

of artificial intelligence and computational intelligence. 

1.4. Application of Computational Intelligence in Condition Monitoring          

      of Nuclear Reactor 

The next generation nuclear power plants (NPP) are being planned to have their 

licenses up to 60 years. The development of condition monitoring and diagnostic 

techniques is in constant transition and evolving towards its best to achieve plant 

operating objectives, meeting the future needs and regulatory requirements. Monitoring 

the plant as and when required is termed as condition monitoring. It helps in monitoring 

the plant characteristics using the changes and trends of monitored signals in order to 

predict the need for maintenance before occurrence of any anomaly, avoiding failures and 

minimizing the downtime. It is an optimal method in comparison with time based 

maintenance [1.9]. Computational intelligence is one of the promising options in solving 
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many intricate problems associated with maintenance of the nuclear reactor. However, it 

is a challenging task due to the requirement of adhering to strict nuclear safety regulation.  

  Computational intelligence is implemented in diagnosing specific abnormal 

conditions, identifying non linear dynamics and transients, validating the signals, 

monitoring plant parameters etc. Some of the computational intelligence techniques 

implemented in nuclear reactors are mentioned below. 

Noise Analysis: It is a computational intelligence technique that determines the 

state of the system, the monitoring of loose parts, acoustic leak monitoring and so on 

[1.10]. 

Online Monitoring and Verification of Sensor Calibration: Some of the online 

monitoring activities carried out for transient identification, alarm management and 

general equipment monitoring using various computational intelligence techniques are 

presented [1.9, 1.10]. These are multivariate state estimation techniques, auto-associative 

neural network, probabilistic neural network etc.  

Nuclear Power Plant Efficiency Improvement: Several models are developed 

using computational intelligence techniques and are available to monitor the 

thermodynamic performance of a plant and to help in diagnosing the operating problems 

and the effects of changes in equipment and operating parameters, which could save 

power plants considerable amount of money annually [1.10]. 

Autonomous Anticipatory Control and Intelligent Agents: In the new 

generation of reactors (Gen IV), it is envisaged to introduce multi-intelligent agent 

system to aid semi-autonomous operation, thereby reducing the requirement of human 

resources. The multi-intelligent agent system consists of intelligent controllers that 
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contain perception module performing fuzzy inference, information integration and 

response module performing operational assessment, planning etc [1.10-1.15].   

The three stage nuclear power programme has been described in next section and 

FBTR and PFBR are briefly described in the following section. 

1.5. Three stage Nuclear Power Programme 

For a large country like India, energy security is an important and inevitable need 

from economic and strategic point of view. The energy demand is being met largely 

through utilization of coal and hydro resources. Taking into consideration the CO2 

emission and environmental impacts of using fossil fuels, nuclear resources have come a 

long way to meet the energy needs for many years [1.16]. The nuclear energy options are 

being pursued as a source of energy for long term energy security in a developing country 

like India. A strong indigenous research and development infrastructure including trained 

scientific and engineering manpower needs to be developed and deployed for utilizing all 

the nuclear energy sources optimally. The nuclear power programme is being 

implemented in three stages in India (Fig. 1.4), considering the limited uranium 

resources. Natural uranium fuelled Pressurized Heavy Water Reactors (PHWR) are being 

operated in the first stage. In the second stage, plutonium generated from PHWR and the 

depleted uranium are being utilized in the Fast Breeder Reactors and thorium is being 

utilized to generate U
233

. This in turn will launch large scale thorium-uranium fuel cycle 

in the third stage [1.17, 1.18].  
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                         Fig. 1.4 Three Stages of Nuclear Power Programme 

 

In India, Fast Breeder Test Reactor is in operation at Indira Gandhi Centre for 

Atomic Research, Kalpakkam. Prototype Fast Breeder Reactor is designed by IGCAR 

and is under construction at Kalpakkam [1.19]. Case studies conducted in this thesis are 

based upon the modeling of systems of these two reactors. A brief description of these 

reactors is given below. 

1.5.1. Fast Breeder Test Reactor 

 Fast Breeder Test Reactor constitutes the second stage of India‟s three stage 

nuclear energy program. It is a 13.2 Megawatt electrical sodium cooled, loop type, mixed 

carbide fuelled reactor. The main purpose of FBTR is to acquire experience in the design, 

development and operation of the fast reactors. It serves as a test bed for irradiation of 

fuel materials and provides experience in large scale sodium handling and reactor 

operation. The reactor started operating with Mark I Core (70% PuC-30% UC) which is 
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indigenously developed. It has two primary and secondary loops and a common steam 

water circuit with once through steam generator (SG) supplying super heated steam to the 

condensing turbine. There are two steam generators per loop and are located in the 

common casing. The heat transportation circuit has been divided in to two loops so that 

incase of non availability of one loop, the other loop is available for removing the decay 

heat from the core. Heat generated by the reactor is removed by these two primary 

sodium loops, and transferred to corresponding secondary sodium loops through 

intermediate heat exchangers. Flow sheet of FBTR is shown in Fig. 1.5 and the major 

parts of the reactor are briefly explained below. 

1.5.1.1. Reactor Core 

The core of the reactor constitutes fuel at the centre, surrounded by nickel 

reflectors, thoria blankets and steel reflectors. The core is vertical and freestanding, with 

 

Fig. 1.5 Flow Sheet of Fast Breeder Test Reactor 

FBTR Flow Sheet
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the subassemblies supported at the bottom by the grid plate.  The reactor vessel houses 

the core and serves as a conduit for the primary sodium coolant flow through the core. 

The sodium inlet pipe joins the reactor vessel at the bottom and two sodium outlet pipes 

radially branch out of the vessel above the core. The reactor is closed at the top by large 

and small rotatable plugs serving as top shields. Thermal shields are provided inside the 

reactor vessel to minimize the thermal stresses due to cold and hot shocks. A steel vessel 

with thermal insulation surrounds the reactor vessel.  

1.5.1.2. Primary Sodium System 

The major components of the primary system are reactor assembly, intermediate 

heat exchanger and two sodium pumps. The entire primary system is provided with a 

double envelope filled with nitrogen, designed to reduce the sodium level drop in the 

reactor in the event of any sodium leak. Primary sodium is pumped into the reactor by 

primary sodium pumps and flows by gravity to the intermediate heat exchangers (IHX) 

and back to the pump suction. The IHXs are vertical, counter-flow heat exchangers and 

transfer heat from the active primary sodium to the inactive secondary sodium. Primary 

sodium flows on the shell side and secondary sodium on the tube side. The shell is fixed 

and the tube bundles are removable. Secondary sodium is pumped into the IHXs by the 

secondary sodium pumps. After removing the heat from primary sodium, the secondary 

sodium enters the steam generator. The four sodium pumps are vertical, single stage 

centrifugal pumps with axial suction and radial discharge.  

1.5.1.3. Secondary Sodium System 

The main system consists of secondary sodium pumps, reheaters, surge tanks, 

steam generators and the connecting pipes. The steam generator modules are once-

through, counter-flow type, with sodium entering the shell side from the top and water 
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entering the tube side from the bottom. The steam generators are not insulated to 

facilitate removal of the decay heat by natural convection of air casing. The modules 

have a serpentine configuration, with evaporation and superheating occurring in a single 

pass. The surge tanks are cylindrical tanks interposed between the IHX and steam 

generator to dampen the pressure surges to the intermediate heat exchanger in the event 

of a sodium-water reaction in steam generator.  

1.5.1.4. Steam Water Circuit 

The steam water circuit forms the tertiary loop of the heat transport system. It 

consists of three subsystems viz; an on-line condensate polishing unit that meets the 

stringent feed water chemistry requirements of the once-through steam generators, feed 

water system and steam system. In once-through steam generator, sodium flows on the 

low pressure shell side whereas water/steam flows on the high pressure tube side. A 

cooling tower that serves as terminal heat sink is also present. It also consists of single 

cylinder, non reheating condensing turbine.  

1.5.1.5. Instrumentation and Control 

The reactor power and reactor shutdown are controlled by six control rods. For 

shutdown the control rods are inserted into the core by two methods, i.e., lowering of the 

rods, wherein all the rods are driven down by the respective drive mechanisms at a speed 

of 1 mm/s and Safety Control Rod Accelerated Movement (SCRAM), wherein the rods 

are dropped down by gravity in less than 400 milli-seconds. Lowering of rods is ordered 

by thermal hydraulics parameters of the plant, whereas SCRAM is ordered by neutronic 

parameters, core parameters and delayed neutron detection system. 

Though FBTR is designed and developed based on the French reactor Rapsodie, 

more than 80% of the components were indigenously developed. The excellent 
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performance of the components and structures during the past 26 years bears the 

testimony to the caliber of Indian industries [1.20-1.22]. 

1.5.2. Prototype Fast Breeder Reactor 

Prototype Fast breeder Reactor (PFBR) is a 500 Megawatt electrical (MWe), 

sodium cooled, pool type, mixed oxide (MOX) fuelled reactor, with two secondary loops.  

The primary objective of PFBR is to demonstrate techno-economic viability of Fast 

Breeder Reactors on an industrial scale. PFBR being a commercial demonstration plant, 

mixed oxide fuel is selected on account of its proven capability for safe operation, high 

burnup, ease of fabrication and proven reprocessing. Pool type concept is adopted due to 

its inherently high thermal inertia of the large mass of sodium in the pool which eases the 

removal of decay heat. Two loop designs have been adopted from economic and safety 

point of view. The flow sheet of PFBR having all the components is shown in Fig. 1.6. 

The main components of PFBR are reactor core, reactor assembly, heat transport system 

and steam water system shown in the flow sheet given below. PFBR has been designed 

and constructed based on the experience gained from FBTR [1.17, 1.18].  

1.5.2.1. Reactor Core 

A homogeneous core concept with two fissile enrichment zones is adopted for 

power flattening. The active core where most of the nuclear heat is generated consists of 

181 fuel subassemblies, 12 absorber rods viz; 9 control and safety rods and three diverse 

safety rods are arranged in two rings. Two independent and diverse shutdown systems are 

provided for ensuring safe shutdown of reactor even when one system is unavailable.  

 



                                                                                                                         Chapter1 

17 

 

 

Fig. 1.6 Flow Sheet of Prototype Fast Breeder Reactor 

 

1.5.2.2. Reactor Assembly 

The entire primary sodium circuit consisting of core, primary pumps, intermediate 

heat exchanger and primary pipe connecting the pumps and grid plate, is contained in a 

single large vessel, main vessel. The main vessel is cooled by cold sodium to enhance its 

structural integrity. The main vessel is surrounded by safety vessel and the gap in-

between is filled with nitrogen. An inner vessel separates the hot and cold pools of 

sodium. The main vessel is closed at its top by a top shield which includes roof slab, 

large and small rotatable plugs and control plug. 

1.5.2.3. Heat Transport System 

Liquid sodium is circulated by two primary sodium pumps through the core which 

in turn gets heated. The hot primary sodium is radioactive and it is not used directly to 

produce steam, but it transfers the heat to secondary sodium through intermediate heat 



                                                                                                                         Chapter1 

18 

 

exchangers. The non radioactive secondary sodium is circulated through two independent 

secondary loops, each having a sodium pump, two intermediate heat exchangers and four 

steam generators. The primary and secondary pumps are vertical, single stage and single 

suction centrifugal type. The steam generator is once through integrated type with 

straight tubes and an expansion in each tube. Decay heat removal under normal 

conditions is done by the Operation Grade Decay Heat Removal system (OGDHRS) of 

maximum 20 Megawatt capacity in the steam water system. In case of off-site power 

failure or non availability of steam water system, the decay heat is removed by passive 

Safety Grade Decay Heat Removal (SGDHR) circuit.  

1.5.2.4. Steam Water System 

The steam water system adopts a reheat and regenerative cycle using steam for 

reheating. High pressure superheated steam from the steam generators drives the turbo 

alternator. Three boiler feed pumps are provided to deliver the feed water to the steam 

generator.   

 1.6. Summary 

 In the present study, the artificial neural network algorithms are applied for 

parameter estimation and event identification in subsystems of Fast Breeder Reactors. 

The subsystems considered for application are intermediate heat exchangers of FBTR and 

neutronics system, primary sodium circuit of PFBR. Using various architectures and 

learning algorithms artificial neural networks are modeled for predicting the plant 

parameters and identifying the events. The details of case studies carried out in this 

research work are presented in Table 1. In the subsequent chapters the detailed 

description of case studies is given. 
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Table 1: Systems used for parameter estimation and event identification in Fast Breeder   
              Reactor 
 

CASE STUDIES INPUTS OUTPUTS 
Intermediate heat exchanger 
(temperature parameter estimation 

of FBTR) 

primary sodium inlet 
temperature , secondary 

sodium inlet temperature, 

primary sodium flow, 

secondary sodium flow 

primary sodium outlet 
temperature , secondary outlet 

sodium inlet temperature  

in 
0
C 

Neutronics system (reactor power 

estimation of PFBR) 
nine control and safety rods 

positions (9 input 

parameters)  

reactor power in Megawatt 

Neutronics system related event 
of PFBR 

reactivity, linear Power, 
central subassembly 

temperature 

control and safety rod 
withdrawal event 

Primary 
sodium circuit 

related event of 

PFBR  

Primary sodium 
pump trip 

pump speed, power to flow 
ratio, central subassembly 

temperature, central 

subassembly temperature 

rise, mean core temperature 
rise 

 

 
primary sodium pump trip 
event 

Primary sodium 

pump seizure 
pump speed, power to flow 

ratio, central subassembly 
temperature, central 

subassembly temperature 

rise, mean core temperature 

rise, reactivity 

 

 
primary sodium pump seizure 

event 

Event 

Detection 

System of 
PFBR 

Control and 

safety rod 

withdrawal  

reactivity, linear power, 

central subassembly outlet 

temperature, increase in 
central subassembly 

temperature rise, mean core 

temperature rise, power to 

flow ratio and Pump speed 

control and safety rod 

withdrawal event 

 
primary sodium pump trip 

event 

 
primary sodium pump seizure 

event 

 
primary pipe rupture event 

Primary sodium 
pump trip 
Primary sodium 

pump seizure 
Primary pipe 
rupture 
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Chapter 2 

Artificial Neural Networks and their applications 

in the Operation and Maintenance of  

Nuclear Reactor 

 

Artificial neural networks are examples of electronic models. This chapter gives a 

brief introduction to artificial neural networks, their advantages, disadvantages and 

comparison with their biological counterparts. This chapter also depicts their 

architectures, associated algorithms and applications of artificial neural networks in the 

maintenance and control of nuclear reactor design. 

 

2.1. Principles of Artificial Neural Network 

An artificial neural network (ANN) is a processing device, either an algorithm or 

an actual hardware that is inspired by the biological nervous system. It is well suited in 

real-time systems because of its parallel architecture leading to faster response and less 

computation time. A neural network tries to replicate the most basic function of brain. 

Brain is a highly complex, nonlinear and parallel computer having billions of nerve cells 

with trillions of interconnections. Hence mimicking a brain is not an easy task to do. The 

cell body in the neuron receives incoming impulses through synapses located on the 

dendrites (receiver) by means of chemical processes. If the number of incoming impulses 

exceed certain threshold value the neuron is activated and emits a signal though the axon.  
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Fig. 2.1 Schematization of biological neuron 

 

This signal might be sent to another synapse, and might activate other neurons. Fig. 2.1 

represents a schematic of a biological neuron.  

Artificial neural network consists of a large number of interconnected processing 

elements called neurons. However, the operation of an artificial neuron is far more 

simplified compared to the brain. An artificial neuron can be described as simple 

operator, performing multi-dimension input to one-dimension output mapping by 

adjusting the free parameters, called as the strength of connection units or the weight 

parameters. In artificial neural network, the knowledge lies in the interconnection weights 

between the neurons. Artificial neural networks learn by example, have the ability to 

derive meaning from complicated and imprecise data. A trained artificial neural network 

might be thought of as adept in some applications such as pattern recognition, data 

classification, optimization function, approximation, vector quantization etc. Fig. 2.2 

shows promising areas where neural network has been implemented [2.1]. 
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Fig. 2.2 Multi-disciplinary point of view of Neural Networks 

 

The biological neural network and artificial neural network are compared in the following 

section. 

2.2. Biological Neural Network versus Artificial Neural Network 

Speed: Cycle time of execution of biological neural network is of nanoseconds 

while that of artificial neural network is of milliseconds. Hence the artificial neural 

networks are slow in processing information.  

Processing: Artificial neural network performs instructions sequentially one after 

another, while human brain performs large number of parallel operations. 

Size and complexity: Human brain has 10
11

 number of neurons and hence much 

more complex while artificial neural network has less number of neurons.  

Storage capacity: Biological neural network stores the information in its 

interconnections or synapses. But in artificial neural network it is stored in some specific 
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memory location. In artificial neural network sometimes new information overloads the 

older ones by destroying it. But in case of biological neural network new information can 

be added without destroying the older information. 

Control mechanism: In artificial neural network there is a CPU which processes 

simpler interconnections and is free from chemical actions which take place in brain. 

Hence artificial neural network is much simpler than biological neural network [2.2]. 

The advantages of artificial neural network are summarized below. 

2.3. Advantages of Artificial Neural Network 

Artificial neural network is having capability of fast response and generalization 

from trained examples. This capability of artificial neural network enables to correctly 

classify patterns containing noise and incomplete or missing data. The non-algorithmic 

nature of artificial neural network simulation makes it possible to model complex systems 

where only data of system inputs and outputs are available. The artificial neural network 

characteristics are described as follows. 

 Adaptive learning: Artificial neural network is empowered with the ability 

to learn how to do tasks based on the initial experience. 

 Generalization ability: It possesses the capability to generalize, and make 

predictions for the new cases that are not trained. 

 Self organization: It can self organize its structure based on the information 

given during learning. 

 Fault tolerance: Some networks show the capability to learn even if there is 

partial destruction of neural network components. 

 Parallelism: They are massively parallel and distributed in nature. 
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The objective of artificial neural network is to develop a computational device by 

modeling few characteristics of brain to perform various computational tasks. For neural 

network implementation, high-speed digital computers are required to make the 

simulation process feasible. A brief description of the basic models of artificial neural 

network is given below. 

2.4. Basic models of Artificial Neural Network 

The models can be specified on the basis of the three entities. 

 Synaptic interconnections or architecture 

 Training or learning rules 

 Activation functions 

2.4.1. Architectures of Artificial Neural Network 

The arrangement of neurons in layers and the connection patterns formed within 

and between layers is called the network architecture. It may be of single layer or 

multilayer network.  Input layer receives the input and helps in buffering the input signal. 

The output layer generates the output. Hidden layer has no direct contact with the 

external environment. It provides efficient output response. There exists two basic type of 

neural network architecture. 

2.4.1.1. Feed Forward Network 

In feed forward network the signals travel in one way from input to output. It 

forms an acyclic graph. There is no feedback (loops) i.e. the output of any layer does not 

affect that same layer. Feed forward artificial neural networks tend to be straightforward 

networks that associate inputs with outputs. A typical multi layer feed forward network is 

shown in Fig. 2.3. 



                                                                                                                        Chapter2 

27 

 

 

Fig. 2.3 A typical feed forward network 

 

2.4.1.2. Feedback Network 

The feedback neural networks have loops that feedback information to the hidden 

and input layers. They are developed to deal with the time varying or time-lagged 

patterns and are used for the problems where the dynamics of the considered process is 

complex and the measured data is noisy. Specific groups of the units get the feedback 

signals from the previous time steps and these units are called context unit. The network 

can be either fully or partially connected. In a fully connected network all the hidden 

units are connected recurrently, whereas in a partially connected network the recurrent 

connections are omitted partially. Examples of recurrent neural networks are Hopfield 

Networks, Regressive Networks, Jordan-Elman Networks, and Brain-State-In-A-Box 

(BSB) Networks [2.4]. A typical feedback network is presented in Fig. 2.4.  
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Fig. 2.4 A typical feedback network 

2.4.2. Learning Algorithms 

Learning is a process by means of which a neural network adapts itself to a 

stimulus by making proper weight adjustments which results desired response. Neural 

network has the inherent ability to adapt to a changing environment. In the process of 

adaptation they generate internal models of sampled environmental data. Learning 

algorithms define an architecture-dependent procedure to encode pattern information into 

weights to generate these internal models. It is an important characteristic of artificial 

neural network as in this process, the weights are adjusted and updated based on the 

training input and output parameters [2.5]. The selection of input parameters for neural 

network model development includes identification of the most relevant information 

about the desired output parameters. The various types of learning mechanisms presented 

are: Error Correction Learning, Hebbian Learning, Competitive Learning, and Boltzmann 

Learning. Error correction learning follows the simple delta rule which adjusts the 

weights using the error between the input and output. Hebbian learning is closest to 

biological learning. It describes that if both the pre-synaptic and post-synaptic neurons 
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have got activated at the same time step, then the strength weights between them 

increased.  Competitive learning follows the “winner takes all” rule where the inputs 

compete with each other and only the weights of winner are adjusted. Boltzmann learning 

is stochastic derived from statistical mechanics [2.6]. In a network, the probability of a 

state of neuron going to be changed is stochastic in nature. Fig. 2.5 illustrates the 

classification of learning algorithms.  

Learning can also be classified into three categories as  

 Supervised Learning 

 Unsupervised Learning 

 Reinforcement Learning 

 

 

Fig. 2.5 Classification of learning algorithms 
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2.4.2.1. Supervised Learning 

It is a type of learning performed with the help of a teacher. Each input vector 

requires a corresponding target output.  During the training each input is presented to the 

network, which generates an actual output. This actual output is compared with a desired 

output and if there exits any difference, the difference or the error signal is used for the 

corresponding weight adjustment until the actual output matches the target output. 

Supervised learning is a process which adapts to reduce the output error for the current 

training pattern, with minimal disturbance to responses already learned [2.7]. 

2.4.2.2. Unsupervised Learning 

It allows self-organization of its parameters to generate internal prototypes of 

sample vectors. The network here receives the input patterns and organizes these patterns 

to form clusters. When a new input pattern is applied, the network gives an output 

response indicating the class to which the input pattern belongs. Classes are derived from 

clusters by appropriate labeling. If for an input pattern, class cannot be found, then a new 

class is generated. This type of learning is often driven by a complex competitive-

cooperative process where, individual neurons compete and co-operate with each other to 

update the weights based on inputs and out of that only winning neuron or clusters of 

neuron learn. 

2.4.2.3. Reinforcement Learning 

This type of learning is similar to supervised learning. But only critical 

information about the output is available instead of exact information. The network 

receives some feedback from its environment. But the feedback obtained here is 

evaluative not instructive. The external reinforcement signals are processed in the critical 
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signal generator, and the obtained critical signals are sent to the artificial neural network 

for weight adjustments. It is also called as learning with critic. 

2.4.3. Activation Function 

Activation function or transfer function is applied to artificial neural network in 

order to achieve more efficient and exact output. The nonlinear activation function is 

used to make sure that a neuron‟s response is bounded. The actual response is 

conditioned or controlled by applying the activation function. For hidden units, sigmoid 

activation functions are usually preferable to threshold activation functions. Networks 

with threshold units are difficult to train because the error function is stepwise constant, 

hence the gradient either does not exist or is zero. Sigmoid units are easier to train than 

threshold units. With sigmoid units, a small change in the weights will usually produce a 

change in the outputs, which makes it possible to tell whether that change in the weights 

is good or bad. With threshold units, a small change in the weights will often produce no 

change in the outputs. Various types of activation functions are binary step function, 

bipolar step function, sigmoid function, ramp function etc. For the output units, activation 

function suited to the distribution of the target values should be properly chosen. Various 

types of transfer function graphs are shown in Fig. 2.6. The transfer functions are to be 

used for different targets given below. 

 For binary targets, the logistic function is an excellent choice 

 For continuous-valued targets with a bounded range, the logistic and tan-

hyperbolic functions can be used.  

 For continuous-valued targets with no known bounds, the identity or linear 

activation function can be used. 
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Artificial neural network models being nonlinear, data driven and having black 

box approach are very attractive choices for application in nuclear reactors. Artificial 

neural network plays a major role, whenever it is necessary to model complex or less 

understood processes with large input and output datasets, as well as to replace models 

that are too complicated to solve in real time [2.3]. The present study undertaken is 

primarily concerned with the development of neural network models for parameter 

estimation and fault detection in nuclear reactors. 

2.5. Applications of Artificial Neural Network in Nuclear Reactors  

 Artificial neural network is one of the methods for aiding operation monitoring 

and diagnostics of a nuclear power plant. Artificial neural network is found to be one 

among the notably good non-linear statistical data modeling tool. Some of the 

applications of artificial neural network in nuclear power plant already implemented are 

listed below. 

Fig. 2.6 Transfer functions 
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 Development of a fission gas release model to predict fission gas release in UO2 

fuel under reactivity initiated accidents conditions [2.8].  

 Estimation of system parameters in Pressurized Water Reactor during transient 

conditions [2.9].  

 Investigation of the deformation behavior of type 304L stainless steel during hot 

torsion in Fast Breeder Reactor [2.10].  

 Development of a parallel multilayer neural network controller and simulation of 

load following operation for wide range of power regulation in Pressurized Water 

Reactor [2.11].  

 Development of hybrid accident simulation methodology for prediction of critical 

parameters in Korean nuclear power plant [2.12].  

 Numerical simulation of natural circulation Boiling Water Reactor to predict the 

thermal-hydraulic trends successfully [2.13].  

 Prediction of critical heat flux parameter under low pressure for either natural 

circulation or forced circulation [2.14].  

 Diagnosis of accidents based on Pressurized Heavy Water Reactor process 

parameters [2.15-2.17].  

 Prediction of correlation between chemical composition, process variables and 

flow stress of austenitic stainless steels under hot compression [2.18].  

 Prediction of the local power peaking factor in nuclear fuel reactor optimization in 

Boiling Water Reactor fuel lattice [2.19].  
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 Prediction of the release of volatile fission products from both Canada Deuterium 

Uranium (CANDU) Reactor and Light Water Reactor (LWR) under severe 

accident conditions [2.20]. 

 Neural network modeling for selecting the testing data of the self-unbalancing 

system to ensure sufficient perturbations covering proper dynamic and load 

conditions [2.21]. 

 Modeling of pressure drop coefficient for Cyclone Separators [2.22].  

 Investigation of cavitations detection under given operating conditions to predict 

cavitation characteristics of any device without cavitation testing [2.23].  

 Identification of vertical flow regime based on theoretical two phase flow 

simulation [2.24].  

 Prediction of the influence of welding process on pitting corrosion behavior of the 

resistance spot welding joints of austenitic stainless steel [2.25].  

 Detection of coolant boiling in the Hogner Onderwijs Reactor (HOR) [2.26].  

 Modeling of the physical relationship among state variables to predict one 

particular variable among other ones in Belgian nuclear power plant [2.27].  

 Fault detection and diagnosis in a realistic Heat Exchanger-Continuous Stirred 

Tank Reactor [2.28]. 

 Prediction of safety core parameters such as multiplication factor effK  and fuel 

powers peaks maxP in Light Water Research Reactor [2.29].  

 Problems of thermo-hydraulic prediction in advanced nuclear heat exchangers in 

evaluating, designing and optimizing the thermo-hydraulic performances [2.30].  
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 System identification, like predicting the concentration of reactor product and 

process monitoring and control [2.31]. 

In the present study, implementation of various neural network algorithms and hybrid 

genetic algorithm for subsystems of nuclear reactors subsystem has been taken up and 

described in the following chapters.  
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Chapter 3 

Parameter Estimation of Fast Breeder Reactor 

Subsystem using Artificial Neural Network 

 

This chapter gives brief introduction to the subsystems of sodium cooled fast 

reactor and the estimation of the parametric values using the artificial neural network. 

Primary and secondary sodium outlet temperatures of intermediate heat exchanger of 

FBTR have been predicted using the back propagation multi layer perceptron (MLP) 

algorithm. Sodium temperatures of intermediate heat exchanger has also been estimated 

by standard back propagation as well as radial basis network taking into consideration 

the reactor data, starting from steady state to the transient states. A comparison study 

has been carried out between the two algorithms. The reactor power of PFBR is also 

determined using the positions of control and safety rods implementing the standard back 

propagation algorithm and a comparison study is carried out applying variants of back 

propagation algorithms.    

 

3.1. Process Modeling of Intermediate Heat Exchanger of FBTR for  

       Steady State Condition using Artificial Neural Network  

Neural network is a powerful tool for prediction of relevant physical parameters 

which are difficult to measure conventionally in nuclear reactor subsystems [3.1]. 

Prediction of temperature of sodium in intermediate heat exchanger of FBTR is very 

important for monitoring the state of the reactor. Hence accurate evaluation of sodium 
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temperature is of major concern in case of both offline and online operation of the plant. 

Artificial neural network model has been developed to predict process parameters of 

intermediate heat exchanger subsystem of FBTR. Based on the theoretical computations 

carried out for primary and secondary outlet temperatures of intermediate heat exchanger, 

the input-output datasets are generated. Multi layer neural network is implemented with 

the standard back propagation algorithm to train the theoretically generated datasets. The 

advantages of artificial neural network over conventional method of temperature 

calculation include faster and accurate prediction. Artificial neural network being a data 

driven technique needs to know little about the process itself [3.2]. The feed forward 

neural network model learns about the reactor in steady state conditions and performs 

nonlinear regression analysis [3.3-3.7]. The main objective of regression analysis is to 

predict the value of continuous variables even if the variable interactions are not 

completely understood. 

3.1.1 Intermediate Heat Exchanger  

The intermediate heat exchanger transfers the heat from primary sodium which is 

radioactive to non radioactive secondary sodium in a reactor. It is housed in a fixed vessel 

with its double envelope. It is a vertical shell and tube counter flow unit featuring single 

pass on both shell and tube with primary sodium on shell side and secondary sodium on 

tube side. The tube bundle is placed in a fixed shell immersed in sodium pool. The 

intermediate heat exchanger is supported on the roof slab and is removable from the top. 

Heat passes from hot pool to cold pool through a stand pipe of the inner vessel. The 

sealing between the hot pool and cold pool is by mechanical seal. A manually operated 

sleeve type valve is provided on each intermediate heat exchanger for primary sodium 
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                                  Fig. 3.1. Schematic of Intermediate Heat Exchanger of Fast Breeder Reactor 

 

side isolation in the event of reactor operation with one secondary sodium circuit. In the 

reference fast reactor system there are two intermediate heat exchangers in primary 

circuit, one in each loop [3.8].  The schematic of intermediate heat exchanger is shown in 

Fig. 3.1.  

When reactor is in operation, the control rods are taken out partially so that the 

neutrons generated can actively participate in the fission reaction, generating heat. The 

primary sodium will take heat from the radiated core and then will move in upward 

direction (because of low density property of sodium). Then it will reach up to 

intermediate heat exchanger and enters in radial manner to the shell side of intermediate 

heat exchanger at the top. The primary sodium flows vertically downwards and comes 

out radially at the bottom to the cold pool. The secondary sodium flows upwards inside 
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the tubes. Heat is then transferred from primary sodium to secondary sodium which in 

turn goes to the steam generator to produce superheated steam. This steam rotates the 

turbine to generate electricity.                                                                                                     

3.1.2 Architecture of Neural Network Model for Intermediate Heat Exchanger  

Variable selection for process modeling of intermediate heat exchanger includes 

identification of the parameters having the most relevant information about the desired 

output parameters [3.9].  The input layer has five input nodes (including bias) which are 

primary inlet temperature, primary flow, secondary inlet temperature and secondary flow. 

The output layer has two output nodes which are primary outlet temperature and 

secondary outlet temperature. The neural architecture of the intermediate heat exchanger 

is represented in Fig. 3.2. 

3.1.3 Training with Back Propagation Algorithm 

The objective of neural network training is to adjust the parameters of the network 

based on a given set of input–output pairs. Neural network training is usually divided into 

two phases: off-line and on-line learning. For off-line training of a neural model, it is 

necessary to identify an error criterion that is used to determine when learning is 

complete. Once off-line learning phase is completed and a relatively accurate empirical 

model of the reactor core has been identified, further learning is accomplished online, 

capturing any dynamics not included in the training set used in the prior learning phase as 

well as for tracking any slow plant drifts [3.10]. 
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Fig. 3.2 Architecture of neural network model for Intermediate Heat Exchanger 

 

 Back propagation is the method for computing the gradient of the case-wise 

error function with respect to the weights for a feed-forward network, a straightforward 

but elegant application of the chain rule of elementary calculus. Standard back 

propagation can be used for both batch training (in which the weights are updated after 

processing the entire training set) and incremental training (in which the weights are 

updated after processing each case). For batch training, standard back propagation 

usually converges (eventually) to a local minimum, if one exists. For incremental 

training, standard back propagation does not converge to a stationary point of the error 

surface. To obtain convergence, the learning rate must be slowly reduced.  

The back propagation algorithm uses the supervised learning which consists of 

two passes. One is forward pass, where the input values are propagated from input layer 

to output layer through hidden layer by applying non linear sigmoid function at each 

layer and finally matching the desired output with the actual output. This generates an 
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error which in squared form is known as mean square error (MSE). The other is 

backward pass, where the estimated mean square error is back propagated to adjust the 

weight vectors.  It minimizes a quadratic cost function by a gradient descent method. The 

steps involved in back propagation algorithm are presented below. 

1. Present a training sample to the neural network.  

2. Compare the output of network with the desired output. Calculate the error in 

each output neuron.  

3. For each neuron, calculate what the output should have been, and a scaling factor, 

how much lower or higher the output must be adjusted to match the desired 

output. This is the local error.  

4. Adjust the weights of each neuron to lower the local error.  

5. Update the weights and repeat from step 3 on the neurons at the previous level.  

6. Save the weights and outputs. 

Since the input training data is of wide range, it has to be scaled down between 

zero to one which is also known as normalization. The normalization formula is given by 

equation 3.1. 

                               normd = 

minmax

min

dd

dd
                                              (3.1) 

where normd  is the normalized value of the input and d  is the input parameter value and 

maxd  is the maximum value, mind is the minimum value of the respective parameters.  

Back propagation algorithm is a steepest gradient descent algorithm. The multi 

layer perceptron is having a nonlinear transfer function known as sigmoid activation 
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function. The activation function has been modified as follows in order to have better 

convergence and is presented by equation 3.2.  

                                1
1

2
xe

f                                                    (3.2) 

 Subsequently fine tuning of the algorithm is required, in order to make mean square error 

as small as possible. To achieve this, different number of hidden nodes ( nhn ) and 

learning rate ( lr ) parameters are used and the network is trained so as to fix their values 

where mean square error is least. The formula for mean square error is given in equation 

3.3 

       Mean Square Error =

NON

k

TSN

tTSN 11

1
*

2
ktkt Odout

 
     (3.3) 

where TSN  is the number of training samples and NON  is the number of outputs nodes, 

ktoutd is the desired output and ktO is the actual output.  One more parameter known as 

momentum can also be used which filters out high-frequency changes in the weight 

values. By iterating the algorithm, the desired weight parameters can be found. 

The weight parameters can be calculated using equations 3.4a and 3.4b. 

1WWW kjkj                                                   (3.4a) 

2WWW jiji                                                              (3.4b) 

where kjW  is the weight vector from hidden to output layer, jiW  is the weight 

vector from input to output layer and W1, W2 are the respective change in weight 

parameters. When the testing data is given to the algorithm, using the above weight 
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parameters the neural network will be able to generate outputs almost matching with the 

desired outputs. This can be represented as ability to generalize. 

The main advantage of neural network is that any unknown plant conditions, 

which the input sample set never learnt before can approximately be calculated. The 

artificial neural network with adaptive learning finds the weights and consequently the 

model is changed by updating the weights. The iterative process is continued until the 

convergence is found. So when any unseen data is given to the artificial neural network it 

generalizes the characteristics and produces an output corresponding to the input. The 

back propagation algorithm tries to minimize the mean square error value between the 

desired output and actual output. To make the algorithm converge faster, it is needed to 

use a learning rate coefficient ( lr ). The learning rate has to be selected carefully because 

if it is too small, the convergence is extremely slow and if it is too large, the artificial 

neural network may not converge at all. The learning rate and the number of hidden 

nodes are varied one by one such that after fine-tuning, result having minimum mean 

square error is obtained.  The coding has been done in C language.  

3.1.4 Results and Discussion 

Out of 150 samples, a dataset of 140 are used for training. After training, learning 

rate is fine-tuned and found to be lr = 0.015 and number of hidden nodes to be nhn = 12 

at 3 10
5
 iterations, with mean square error value=1 10

-4
. The dataset for training is 

presented in Table A of Annexure 1 and the output obtained using the test data are 

compared with the desired output and presented in Table B of Annexure 1. Fig. 3.3 shows 

the optimal hidden nodes and the learning rate parameter. To show the predicted outputs, 
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the graph is plotted between the total number of training sample sets and the 

corresponding outputs. As observed from the graph of Fig. 3.4, the actual output 

approaches to the desired output.     

 

 
Fig. 3.3 Mean square error versus number of epochs for (a) learning rate (b) various hidden nodes 

for Intermediate Heat Exchanger 
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Fig. 3.4 Estimation of (a) primary outlet temperature (b) secondary outlet temperature of 

Intermediate Heat Exchanger for training sample index  
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Neural network models are data driven and therefore resist analytical or 

theoretical validation. These models are constructed by training using a data set, i.e., the 

model shifts from a random state to a “trained” state, and must be empirically validated. 

Validation of the back propagation algorithm is carried out with a test dataset which is 

within the range of the training sample data. Ten samples of testing data have been used 

for validation. From Fig. 3.5 it has been found that the trained neural network model is 

able to generalize and give a meaningful output for the untrained data. The graph shows 

the testing results of ten unknown samples from which it is observed that the desired and 

actual outputs are in well agreement with each other. The difference between the desired 

and actual output is set as 2  °C which is well within the permissible limit. The 

predicted outputs are compared with the actual outputs are compared in Fig. 3.6. 
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Fig. 3.5 Estimation of (a) primary outlet temperature (b) secondary outlet temperature of 

Intermediate Heat Exchanger for test sample index  
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Fig. 3.6 Scatter plot between actual and desired output values for (a) primary outlet temperature (b) 

secondary outlet temperature of Intermediate Heat Exchanger 
 

 

The higher value of correlation coefficient between the actual temperature of 

intermediate heat exchanger and temperature predicted by artificial neural network 
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indicates network having good fit. From Fig. 3.6, it is shown that the correlation 

coefficient value is 0.99992 and 0.99988 for primary outlet temperature and secondary 

outlet temperature respectively.  The time taken to obtain the training data set is 30 

minutes using theoretical calculations in a personal computer (2.66 GHz Intel Core 2 Duo 

processor). Whereas, in neural network it is giving outputs in milliseconds range. 

3.2. Neural Network Model for Intermediate Heat Exchanger using Real  

      Time Data 

Nuclear reactors are by nature nonlinear and their performances vary with time as 

a function of power level, fuel burnup, and control rod positions. Neural network model 

shows considerable reduction in computation time in comparison with conventional 

system and also shows good stability and performance for a wide range of operation 

[3.11]. The sole purpose of this model is to compliment the conventional model [3.12].  

The model can be applied for prediction of sodium outlet temperature of intermediate 

heat exchanger as a function of sodium inlet temperatures and flow parameters [3.13]. 

By taking the real time data from the FBTR, an artificial neural network model 

for intermediate heat exchanger subsystem has been developed. The data has been taken 

from the online operation of the reactor from reactor startup to 18 Mega Watt thermal 

power from the Central Data Processing System (CDPS). A brief description about the 

central data processing system architecture is explained below. 

3.2.1 Central Data Processing System Architecture 

Central data processing system in FBTR consists of two real time embedded 

computer based system connected in fault tolerant configuration. Each system is 

classified as follows. 
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1) Safety Critical System (SCS) 

2) Safety Related System(SRS) 

3) Non-Safety System(NSS)                   

Fig. 3.7 shows the central data processing system architecture from where the real time 

data is saved. The data sent by each of the three systems has to be presented to the user as 

a single user interface. Hence, the purpose of the data server is to receive the data sent by 

safety critical system, safety related system, and non-safety system, store them and 

present to the operator using graphical user interface. The safety critical, safety related 

real time data has been taken from the data server  in every half an hour interval of time 

from reactor startup to 18 Megawatt thermal power using graphical user interface 

software in control room of FBTR. 

 

Fig3.7. Schematic of Central Data Processing System Architecture 
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3.2.2 Results and Discussion            

451 training dataset and 14 test dataset have been used. Training and fine tuning 

of the parameters has been carried out for different hidden nodes and learning rates. From 

Fig. 3.8 it is seen that for number of hidden node 3 and learning rate 0.007 the mean 

square error is least. 

 

 
Fig. 3.8 Mean square error versus number of epochs for (a) learning rate (b) various hidden nodes 

for Intermediate Heat Exchanger 
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Fig. 3.9 Estimation of (a) primary outlet temperature (b) secondary outlet temperature of 

Intermediate Heat Exchanger for training sample index 
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Fig. 3.10 Estimation of (a) primary outlet temperature (b) secondary outlet temperature of 

Intermediate Heat Exchanger for test sample index 
 

 

After choosing the learning rate and hidden nodes the program is run for an 

additional number of epochs and it is found that at 6000 epochs, convergence of the 

algorithm is obtained. The graph shows the comparison between the real time data and 
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the neural network data for training and testing. Fig. 3.9 shows that both the desired and 

actual output for training samples is overlapping with each other. 

 

Fig. 3.10 depicts the ability to predict the outlet temperature using the testing 

samples. It shows the comparison between the real time output and the output obtained 

from the neural network. The difference limit between the desired and actual output is set 

as 2  °C and it tends to be in the permissible range. Fig.3.11shows that, the correlation 

coefficient value is 0.99393 and 0.99017 for primary outlet temperature and secondary 

outlet temperature respectively, which is very close to 1 indicating a good fit between 

desired and actual artificial neural network output.   

 
Fig. 3.11 (a) Scatter plot between actual and desired output values for primary outlet temperature of 

Intermediate Heat Exchanger 
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Fig. 3.11 (b) Scatter plot between actual and desired output values for secondary outlet temperature 

of Intermediate Heat Exchanger 
 
 

3.3. Neural Network Modeling for Transient Conditions of Sodium-     

       Sodium Heat Exchanger 

A detailed non linear model is developed based on the physical parameter 

approach for a typical nuclear power plant.  System behavior starting from steady state to 

transient is simulated. Simulation results are used as inputs to the nuclear reactor for 

parameter estimation. After training, the network is used to predict certain system 

parameters of the reactor for a number of different valued inputs. Artificial neural 

networks can be used as good estimator and as alternative to empirical models. The major 

drawback of the conventional systems is rather long computation time where as the 

artificial neural network developed in this project yields system behavior within a short 

computation time with acceptable accuracy [3.14-3.20].   
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3.3.1 Heat Exchanger Modeling using Back Propagation Algorithm and Radial                     

         Basis Function Algorithm 

Artificial neural network model has been developed for sodium-sodium heat 

exchanger to study its behavior at transient conditions. Sodium-sodium heat exchanger is 

a very crucial component of the reactor which transfers heat from primary side to the 

secondary side of a fast reactor and the heat in turn is used for electricity generation. 

Using simulated data generated from the Quadratic Upstream Interpolation for 

Convective Kinetics (QUICK) code, a three layer artificial neural network is trained 

[3.21]. Artificial neural network can work efficiently where non-linear functions are used 

for evaluating the physical parameters at transient conditions with the help of powerful 

algorithms like back propagation algorithm [3.22-3.24]. The objective of this modeling is 

to evaluate primary and secondary sodium outlet temperatures for given mass flow rate in 

shell and tube side and respective inlet (primary and secondary) temperatures. The 

temperature prediction for severe unbalanced primary and secondary flow is predicted 

using Nodal Heat Balance (NHB) method [3.25]. Later it has been modified with the help 

of QUICK scheme and from the code using this scheme, the required input data has been 

generated [3.21]. The artificial neural network evaluates the outlet temperatures of heat 

exchanger during severely unbalanced flow conditions. Training and testing results show 

the successful modeling of plant dynamics of the reactor with improved accuracy. 

Artificial neural network performs better compared to the conventional method in 

estimating the outlet temperatures for normal and transient operating conditions. Further 

the model is trained with radial basis function neural network which gives comparatively 

better convergence than the multilayer back propagation network. 
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3.3.2 Quadratic Upstream Interpolation for Convective Kinetics (QUICK) Scheme 

QUICK scheme is a higher order up winding numerical scheme which takes care 

of strong convective flow. It uses a three point upstream weighted quadratic interpolation 

for cell face values.  The cell face values of fluxes are always calculated by quadratic 

interpolation between two upstream nodes and one downstream node. Since the scheme 

is based on a quadratic function, its accuracy in terms of the Taylor series truncation error 

is of third order on a uniform mesh [3.21]. It is an explicit scheme which uses 

discretization method which puts values in terms of nodes. The nodes themselves are 

treated as ordered or discrete values. With the help of QUICK scheme primary and 

secondary outlet and inlet temperatures have been evaluated for given mass flow rates of 

sodium-sodium heat exchanger in shell and tube side.  

The energy balance diagram for a control volume is shown in Fig. 3.12. 

 

                                         Fig. 3.12 Energy balance diagram for control volume    
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This is a 1-D model representing energy balance equations for the primary side and 

secondary side in equation 3.5 and 3.6.                        

Primary side:   

     
JsppewJp

J

p

JpCVp TTAUTTCPm
t

T
CPm              (3.5) 

Secondary side: 
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J

s

JsCVs TTAUTTCPm
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T
CPm                  (3.6) 

Where, CVm =Mass of a Control Volume (kg) 

m =Mass flow rate (kg/s) 

CP=Specific Heat (J/kg K) 

U=Overall heat transfer coefficient (W/m
2
 K) 

A= Heat transfer area (m
2
) 

CP=Specific Heat (J/kg K) 

pT =Primary inlet temperature (
0
 C) 

sT = Secondary inlet temperature (
0
 C) 

wT =West face of control volume 

eT =East face of control volume 

Using explicit scheme the above mentioned equations for next time step in terms of 

current time steps are given in equation (3.7a-3.7b). 
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where, 
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In equations (3.8a-3.8d), A,B,C,D are the coefficients of the equation taking into 

account of the thermal capacity of metal such as vessel and tube. Fig. 3.13 represents heat 

exchanger in terms of nodes. In this scheme the cell face temperatures wT  and eT  are 

discretized by fitting a quadratic polynomial between two upstream and one downstream 

node as given in equation 3.9. 

 

                   Fig. 3.13 Cross sectional view of sodium-sodium heat exchanger using the nodes 
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Similarly for boundary nodes also, the temperatures can be determined. 

Subsequently substitution of the values of wT  and eT  from equation 3.9 in equation 3.7 

yields, 
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 (3.10)  

where, 0)1( BA and 0)1( DC  is the criteria to make the solution stable. 

Finally the outlet temperature of primary and secondary sodium can be estimated 

using linear interpolation and is given in 3.11a and 3.11b.  

1
5.05.1

KpKpoutp TTT                                   (3.11a) 

21
5.05.1 ssouts TTT                                       (3.11b)       

 The required temperature and flow of sodium-sodium heat exchanger have been 

calculated by running the QUICK code which is used for training the artificial neural 

network model. The network is modeled using back propagation algorithm and then 

compared with radial basis function algorithm. As the input data is spread over a wide 

range, it has to be scaled down between zero to one which is also known as 

normalization. The normalization formula is given by equation 3.12. 



                                                                                                                        Chapter3 

63 

 

                               normd = 

m axd

d
                                                (3.12) 

where, normd the normalized value of the input and d  is the input parameter value and 

maxd  is the maximum value of the respective parameters. The radial basis function 

algorithm is described below. 

3.3.3 Radial Basis Function (RBF) Algorithm 

Radial basis function (RBF) approach is designed as a curve fitting problem in 

high-dimensional space that provides the best curve fit for the applied dataset during 

training. A general radial basis function network consists of three layers, each of the 

layers having different utilities. The input layer consists of nodes where the datasets are 

applied (during training and testing). The second layer is the hidden layer of the network 

and unlike multilayer perceprton back propagation network radial basis function network 

contains a single hidden layer. The hidden layer applies a nonlinear transformation to the 

applied data to bring it to a hidden space of higher dimensionality. The set of functions 

that the hidden layer provides, constitute an arbitrary „basis‟ for the input pattern when 

they are expanded into hidden space. These functions are called „radial basis functions‟. 

The third layer is the output layer of the network and it gives a linear transformation to 

the hidden space contents that forms the response of the network to the applied dataset.  

In radial basis function the error vector generated is utilized to modify the 

network weights. The linear weights of the output units tend to evolve on a different 

„time scale‟ compared to the nonlinear activation function of the hidden layer. Thus 

weights associated with the output layer adjust themselves rapidly than the weights of 

hidden layers due to a linear optimization strategy. The locations of centers are chosen 

randomly from the training dataset. The hidden layer basis functions are generally 
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Gaussian function whose standard deviation is fixed according to the spread at the 

centers. 

The different radial basis functions used are: 

 

                         

where, ( )r = basis function 

 =width parameter 

 r =center 

 =multi-quadric function with values ...-3/2,-1/2,1/2,3/2.... 

The radial basis function is similar to the Gaussian density function which is 

defined by a „centre‟ position and a „width‟ parameter. It is a real valued function whose 

value depends only on the distance from its receptive field center to input x. The 

Gaussian function gives the highest output when the incoming variables are closest to the 

centre position and decreases monotonically as the distance from the centre increases. 

The width of the radial basis function unit controls the rate of decrease; for example, a 

small width gives a rapidly decreasing function and a large value gives a slowly 

decreasing function. When the distance between x and ,(denoted as x ), is smaller 

than the respective field width , the function has an appreciable value. Once the 
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normalized center and training data are available, the width of the basis functions is 

found by the formula represented in equation 3.13.   

                    
nhn

d

*2

max    (3.13) 

where σ = fixed width of all basis functions in the net 

           
maxd = maximum distance between centre 

            nhn = number of hidden nodes 

The non linear transfer function used here is Gaussian basis function whose 

output is inversely proportional to the distance from the center of the neuron and that is 

stated in equation 3.14. 

     
2

2
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j

j
j

x
Z   (3.14) 

where, x  is the input vector and j  and j  are the center and width of the basis function 

and jZ  is corresponding activation function. In multilayer perceptron, the network is 

trained with single global supervised algorithm, whereas radial basis function is trained 

one layer at a time with first layer unsupervised. 

The output expression for the network is computed by the formula given in 

equation 3.15 with ],.....,[ 2,1 kyyyy  and iy as the output of the i
th

 neuron given by 

         iy = bZw j

nhn

i

ji *
1

 for i=1,2,...,k (3.15) 

where, 
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nhn  = number of hidden layer nodes (radial basis function) 

jZ  = output value of node in hidden layer for the thi  incoming pattern   

jiw = weight between thj  radial basis function unit and  thi  output node 

b = biasing term  

Radial basis function neural networks are classified as universal approximators, as 

this type of network structure, using basis functions for mapping the network neurons can 

approximate virtually any function of interest to any desired degree of accuracy, provided 

sufficient number of neurons are represented in the hidden layers of the network. 

When the testing data is given to the algorithm, using the above weight 

parameters, the neural network will be able to generate outputs almost matching with the 

desired outputs. This can be represented as ability to generalize. The coding has been 

performed in C. Out of 77 sets of data generated from the QUICK code for prediction of 

temperature of IHX, the network has been trained with 70 sets. A set of seven distinct test 

cases have been chosen within the range of inputs already trained, for testing the network.  

The time taken to generate the data set using QUICK code is 10 minutes.   

3.3.4 Results and Discussion 

Different trials have been carried out using back propagation algorithm in the 

training phase, to get the optimal values for different number of hidden nodes and 

learning rates. Fig. 3.14 shows mean square error parameter with respect to the number of 

iterations for various learning rates and number of hidden nodes. At first the value of 

learning rate is varied keeping number of hidden nodes constant. Then the number of 

hidden nodes is varied keeping learning rate constant. The optimal learning rate and 
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number of hidden node are nhn = 4 and learning rate lr = 0.01 showing least mean square 

error of 9.5 10
-5

 for 10
5
 iterations.  

 

 
Fig. 3.14 Mean square error with respect to number of epochs for (a) various learning rates (b) 

number of hidden nodes for Intermediate Heat Exchanger 
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Fig. 3.15. Estimation of (a) primary outlet temperature (b) secondary outlet temperature of 

Intermediate Heat Exchanger for training sample index   

 

 

 After fine tuning, the network is further trained for 10
6
 iterations using back 

propagation algorithm. Finally the network is again trained using the radial basis function 
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algorithm. The number of centers used for radial basis function network is four. Both 

back propagation algorithm and radial basis function algorithm are employed. Variation 

in the graph plotted between the total number of training sample sets of primary and 

secondary outlet temperatures for desired and actual outputs are presented in Fig. 3.15. It 

can easily be seen that the actual outputs achieved from back propagation algorithm and 

radial basis function algorithm agree with the desired output.  

The training results show that radial basis function algorithm is much faster 

compared to the standard back propagation algorithm as the network got converged to  

8.9 10
-6

 in 10
4
 iterations itself. In Fig. 3.16, the graph for testing samples using the back 

propagation algorithm and radial basis function algorithm is plotted. The testing samples 

are not present in the training set but these are taken from the range of training samples. 

This is the validation phase. The graph shows that the testing samples for desired and 

actual output of primary and secondary outlet temperatures overlap with each other and 

their difference (set to be 2 °C) is also not very large. From the results given above it 

can be observed that, compared to the conventional methods used for the prediction of 

intermediate heat exchanger temperature, the standard back propagation algorithm shows 

better results and compared to standard back propagation algorithm, radial basis function 

algorithm shows better convergence. 
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Fig. 3.16 Estimation of (a) primary outlet temperature (b) secondary outlet temperature of 

Intermediate Heat Exchanger for test sample index 
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Fig. 3.17 Scatter plot between desired and predicted output values for QUICK code, back 

propagation and radial basis function for (a) primary outlet temperature (b) secondary outlet 

temperature of Intermediate Heat Exchanger 
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Fig. 3.17 depicts scatter plots between desired and actual outputs for testing 

samples. The data treatment yielded the correlation coefficient of 0.99995 (for standard 

back propagation network), 0.99975 (for radial basis function network) for primary outlet 

temperature and 0.99849 (for standard back propagation network) and 0.99852 (for radial 

basis function network) for secondary outlet temperature. The correlation approaching to 

unity indicates that the desired and the actual data lie on a 1:1 straight line when plotted 

against each another. The standard back propagation has certain drawbacks as it can get 

trapped in local minima instead of reaching the global minima [3.26]. This is overcome 

by radial basis function algorithm which uses Gaussian function as transfer function. The 

time taken to train the network using radial basis function is three minutes on a typical 

personal computer system (2.66 GHz Intel Core 2 Duo processor). Once trained, the 

network gives the output in few milliseconds with expected accuracy, which is set as the 

difference between expected output and desired output to be 2 0
C. 

3.4. Development of Artificial Neural Network Model for Prediction of         

       Reactor Power Using Neutronics Subsystem of PFBR 

The ability to model the dynamic systems has become a fundamental aspect for 

the safe and economically competitive operation of modern nuclear power plants. System 

design and validation, fault detection and control are among the tasks in modern 

engineering which rely on the ability of identifying and modeling dynamic systems. The 

knowledge of the state of a system during each instant of its operation is a desirable 

feature of all nuclear power plants. This requires quick calculation of the physical 

parameters which are difficult to achieve in a conventional, complex code dynamics 

model, because it consumes more time. The main objective of this study is to utilize the 
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ability of neural network to create data-driven representations of the underlying dynamics 

of reactor subsystem with less reliance on accurate mathematical or physical modeling. 

The subsystem taken for study is neutronics subsystem of PFBR [3.27-3.33]. 

3.4.1 Neutronics Model 

Neutronics model is an important subsystem of PFBR simulator which simulates 

the neutron flux and power generation by the reactor core. This model was originally 

developed based on the one dimensional plant dynamic analysis code called DYANA-P 

[3.34]. 

It uses point kinetics equation to calculate the reactor power above criticality. The 

objectives of this model being: 

- It should generate signals corresponding to reactor power, reactivity and period. 

- It should give necessary trip parameters to shutdown system‟s simulation model 

and should operate in all stages of reactor such as startup and power operation.  

- In order to train the operator to handle possible incidents and malfunctions, the 

neutronics model should be able to simulate the following transient conditions 

- Uncontrolled withdrawal of one control rod 

- Reactor power raising / lowering 

- Neutronic transients arising due to change of system temperature  

caused due to other events 

- Exercising facility for control and safety rods 

The basic input to the model is the reactivity change, which is calculated, based 

on the position of the control and safety rods. The neutronics model should generate the 

signals corresponding to power, reactivity and reactor period in all stages of reactor  
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Fig. 3.18 Schematic of Neutronics Model 

 

operation such as shutdown, start up and power operation. Fig. 3.18 represents the 

neutronics model of PFBR. 

3.4.2 Neural Network Architecture for Neutronics System 

Multilayer perceptron with feed forward neural network model is developed using 

back propagation algorithm to predict process parameters of neutronics subsystem. The 

multilayer perceptron is having three layers, one input layer, one hidden layer and output 

layer. The neural network model is having ten input nodes (including bias) denotes nine 

control and safety rod positions and the output layer has only one output node and that is 

reactor power. Artificial neural network with adaptive learning finds the weights and 

consequently the model is changed by updating the weights. Back propagation algorithm 

starts with a discrete jump, where the step size is adjusted by the number of hidden nodes 
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and learning rate parameter. The iterative process is continued until the convergence is 

achieved.  

3.4.3 Results and Discussion 

100 sample sets of data has been taken out of which 95 samples are used for 

training and rest 5 are used for testing. 

 

 

Fig. 3.19. Mean square error with respect to number of epochs for (a) various learning rates (b) 

number of hidden nodes for Neutronics System 
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The data used for training and testing is obtained from the simulator using DYANA-P 

code [3.34]. The dataset for training is presented in Table-C of Annexure 2 and the output 

obtained using the test data are compared with the desired output and are presented in 

Table D of Annexure 2. The training time is 3 hours and 20 minutes for 2 10
7
 iterations 

on a computational system (2.66 Gigahertz Intel Core 2 Duo PC). Different trials have 

been carried out to get the optimal parameters (the process of fine-tuning) in the training 

process of neural network and results are summarized in    Fig. 3.19. It shows that by 

varying the number of hidden layers, learning rate and the number of iterations, it is 

possible to reduce the mean square error (difference between desired and actual output). 

After training the artificial neural network with learning rate= 0.02 and number of 

hidden nodes= 5 with 2 10
7 

iterations, the mean square error value= 4.5 10
-6

 has been 

obtained. The parameters have been adopted as optimal. Fine tuning of the neural 

network is represented in Fig. 3.19.    

 

Fig. 3.20 Graph plotted between reactor power in Megawatt and the number of training sample 

index for desired and actual outputs of Neutronics System 
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Fig. 3.20 shows the graph plotted between the total number of training sample set 

and the corresponding outputs. It is seen from the graph that the actual output agrees with 

the desired output. Validation of the back propagation algorithm can be proved by testing 

a set of data which is within the range of training sample data. Here five sets of testing 

data have been used and it has been found that the trained neural network model is able to 

generalize and give a meaningful output for a given data within the range. Fig. 3.21 

represents the graph showing the test results for desired and actual reactor power and 

their difference. 

The artificial neural network model is tested with random inputs within the 

trained range. It has been found that the results produced are matching with expected 

outputs and the difference ( 2  Megawatt) between the desired and actual output is well 

within the permissible limit.  

 

Fig. 3.21 Graph plotted between reactor power in Megawatt and the number of test sample index for 

desired and actual outputs of Neutronics System 
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Fig. 3.22 Scatter plot between actual and back propagation neural network predicted values for 

reactor power in Megawatt of Neutronics System 

 

The output data for one sample is obtained in 23.34 seconds from the simulator. 

Whereas, artificial neural network is able to obtain the output in few milliseconds giving 

accurate predictions.  Fig. 3.22 gives the scatter plot between the actual and desired 

reactor power outputs. From the fit the correlation coefficient is found to be 0.9999 and 

which indicates a good fit between the desired and actual output.  

 

3.5 Artificial Neural Network Model for Prediction of Reactor Power of                            

      Neutronics Subsystem of PFBR Using Variants of Back Propagation       

     Algorithms 

In this study, an artificial neural network model has been developed and trained 

with various back propagation learning algorithms to estimate neutronics power and 

model the plant dynamics. The best performing algorithm in terms of faster convergence 
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has been identified among the variants of back propagation network (BPN). Out of 893 

sets of data obtained from the neutronics mathematical model, 883 datasets are selected 

for training the network. Ten samples which are not part of the training set are used for 

prediction. The learning rate factor used in weight optimization formula is standardized 

based on the experience gained from our earlier artificial neural network simulation work 

and set as 0.7. The optimal number of hidden nodes is found to be 8 after carrying out 

trials with various hidden nodes starting from 5 to 10. After optimizing the key 

parameters, the network is further trained with different variants of back propagation 

algorithms to find the optimal results.   

BIKAS (Bhabha Atomic Research Centre – Indian Institute of Technology 

Kanpur-Artificial Neural Networks – simulator) has been used for carrying out the 

training and testing. It is a general purpose neural network simulator written in JAVA. 

BIKAS has been used for training the network with various back propagation learning 

algorithms with different weight optimization schemes. The datasets are normalized 

using the simulator in order to scale down the entire range of data into 0.1-0.9 before 

training. Different weight optimization algorithms namely standard back propagation, 

back propagation with momentum in pattern mode, back propagation with momentum in 

batch mode, quick propagation and resilient back propagation have been applied and 

results are analyzed. A brief explanation of each of the algorithms is given below [3.35].  

3.5.1 Back Propagation Algorithm and its Variants 

3.5.1.1 Standard Back Propagation (BP) Algorithm with Pattern Mode 

In standard back propagation algorithm, the inputs are applied to the input layer of 

the network. The random weights are then applied to the connection links between input 

layer and hidden layer neurons. The weights are in turn multiplied with the inputs and the 
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summed up result is then applied with an activation function to calculate the output for 

hidden layer. In standard back propagation algorithm with pattern mode, the weights are 

updated after each input pattern is applied [3.36]. 

3.5.1.2 Back Propagation Algorithm with Momentum and Pattern Mode 

In case of back propagation algorithm with pattern mode and momentum, the 

momentum factor is used in order to improve the local minima problem. This method 

takes the error estimate from the result in presenting just the current pattern. It introduces 

noise into the learning process and it is known that an accurate calculation of the error 

gradient is possible only when all training patterns have been presented. The momentum 

term also avoids the oscillations of the error curve. The momentum value used here is 

0.8. 

3.5.1.3 Back Propagation Algorithm with Momentum and Batch Mode 

Back propagation algorithm with momentum and batch mode learning, explains 

that the weight update is done after the entire training set is applied to the input layer. It 

takes the total training error over all the patterns into account. The momentum speeds up 

convergence while training a feed-forward neural network. 

3.5.1.4 Quick Propagation Algorithm 

The quick propagation algorithm requires the computation of the second order 

derivatives of the error function. Everything proceeds as in standard back-propagation, 

but for each weight, a copy of the value of )1(/ twE , the error derivative computed 

during the previous training epoch, along with the difference between the current and 

previous values of this weight is saved. The wE / value for the current training epoch is 

also available at weight-update time. It assumes the error to be locally quadratic and 
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attempts to jump in one step from the current position directly in to the minimum of the 

parabola. The weight update formula is represented in equation 3.16. 

              )1(
)()1(

)(
)( tw

tsts

ts
tw                                  (3.16)         

where )(ts  and )1(ts  are the current and previous values of the error gradient vector

wE / , )(tw is the weight change and )1(tw is weight change in previous step [3.37]. 

This new weight update value is only a crude approximation to the optimum value for the 

weight, but when applied iteratively, effective results can be obtained. 

3.5.1.5 Resilient Back Propagation Algorithm 

Resilient back propagation is known to provide faster local adaptation of weights 

and biases without sacrificing the accuracy of the network designed. This accelerated 

back propagation procedure achieves improved performance by adapting weights and 

biases on the basis of the polarities of the partial derivatives of ijwE / only, not 

considering the magnitude of ijwE / . One of the distinguishing features of resilient back 

propagation is that here all the weights, whether in hidden or output layer, are similarly 

affected after each iteration. This is in sharp contrast to most of the other variants of back 

propagation, where weights in output layer are more sensitive to ijwE / than the weights 

in hidden layer. A uniform updating of all weights and biases after each iteration in 

resilient back propagation, ensures potential acceleration in training philosophy [3.38]. 

The basic principle of resilient back propagation is to eliminate the harmful 

influence of the size of the partial derivative on the weight step. As a consequence, only 

the sign of the derivative is considered to indicate the direction of weight step. A step size 

ij  i.e., the update amount of weight ijW , is adapted for each weight individually. The 

main difference of resilient back propagation compared to other techniques is that the 
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step sizes are independent of the absolute value of the partial derivatives. The weight 

formula is shown is equation 3.17 and 3.18 [3.39]. 

       
)1(

)1(

)1(

)(

t

t

t

t

ij

ij

ij

ij

       

otherwise

t
w

E
t

w

E
if

t
w

E
t

w

E
if

ijij

ijij

0)1()(

0)1()(

              (3.17) 

Where 
ij

 represents the new update value that solely determines the weight-update. 

)(/ twE ij , )1(/ twE ij  are partial derivatives of error for current and previous steps. 

The adaption rule is as follows. Every time a partial derivative of the corresponding 

weight ijW changes its sign, which indicates the last update is too big and the algorithm 

has jumped over a local minimum, the update value ij is decreased by the factor . If 

the derivative retains its sign, the update value is slightly increased by factor , in order 

to accelerate convergence in the shallow region. Once the update value for each weight is 

adapted, the weight update can be represented as follows: if the derivative is positive 

(increasing error), the weight is decreased by its update value, if the derivative value is 

negative, the update value is added. 
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where )(twij determines the change in weight parameter. The value of two learning rate 

factors  and  are 1.2 and 0.5 respectively. The value of 0  is 0.07, max is 50 and

min is 0.001. 
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3.5.2 Results and Discussion 

Back propagation learning algorithm and its variants are applied to model the 

neutronics system using artificial neural network approach. Table 3.1 below shows the 

mean square error values for different algorithms with respect to number of epochs.  

Table3.1. Mean Square Errors for various algorithms with respect to number of epochs 

Algorithms              Epochs          Mean Square Error

  

Back Propagation (Pattern mode)              10000             2.3 10
-6

 

Back Propagation  

(Pattern mode, Momentum)       10000             2.1 10
-6

 

Back Propagation 

(Batch mode with Momentum)       10000             7.8 10
-4

  

Quick Propagation                10000             8.3 10
-4 

Resilient Back Propagation                1800             4.9  10
-7 

 

From the results shown in the above table, it can be seen that the resilient back 

propagation algorithm is showing faster convergence and yields satisfactory results with 

less number of iterations. Fig. 3.23 shows the training results of resilient back 

propagation algorithm for 99 training samples. The graph explains the overlapping of the 

conventional and artificial neural network results for neutronics power with minimal 

difference between each other.    
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Fig. 3.23 Graph plotted between reactor power in Megawatt and the number of training sample 

index for desired and actual outputs of Neutronics System 

 

Fig. 3.24 Graph plotted between reactor power in Megawatt and the number of test sample index for 

desired and actual outputs of Neutronics System 
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Fig. 3.25 Scatter plot between desired and actual predicted values for reactor power in Megawatt of 

Neutronics System 
 

During validation phase after testing, ten samples, not used in training the data, 

are used for prediction. The prediction results shown in Fig. 3.24 are in excellent 

agreement with the results obtained from conventional model. Fig. 3.25 shows the scatter 

plot between desired and actual output. The correlation coefficient is found to be 0.99994 

confirming the fit to be good and predicted values are in good agreement. 

3.6. Conclusion 

Neural network models have fast and accurate prediction capability for plant 

conditions starting from steady state to transient state covering a wide range of data sets 

and can be used for plant dynamic analysis. It also helps in studying the behavioral model 

of the subsystems at steady state and transient states.  

 The first two cases are implemented using standard back propagation algorithms 

for temperature parameter estimation of intermediate heat exchanger.  
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 In the third case, the network is first trained and tested using back propagation 

algorithm and is again trained with radial basis function algorithm. The results of 

radial basis function algorithm are compared with standard back propagation 

algorithm. It is seen that the radial basis function algorithm is better as compared 

to standard back propagation network having faster convergence. From the results 

of the work carried out, it is found that the neural network model is able to 

generalize and produce satisfactory results for a wide range of data with faster 

response than the conventional methods.  

 In the fourth case, standard back propagation algorithm is implemented for 

process modeling of neutronics system. 

 In the fifth case, the back propagation algorithm along with variants is applied for 

process modeling of neutronics system. Among those algorithms, resilient back 

propagation algorithm converged faster with less number of epochs. 
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Chapter 4 

Event Identification in  

Fast Breeder Reactor Subsystems 

This chapter provides detailed description of some of the events associated with 

the Prototype Fast Breeder Reactor (PFBR) subsystems and identification of those events 

using the artificial neural network algorithms. The events related to neutronics system: 

uncontrolled withdrawal of control and safety rod and primary sodium circuit: primary 

sodium pump trips, primary sodium pump seizure, have been identified using the 

standard back propagation algorithm. An Event Detection System is proposed for 

integrating and identifying four events using the variants of back propagation algorithms. 

The best suited algorithm has been chosen from among them depending on the early 

convergence criteria.   

 

4.1. Neural Network Based Event Identification (Uncontrolled                                        

       Withdrawal of Control and Safety Rod) for Neutronics System in                                                                                                             

        PFBR 

The analytical methods used for the precise modeling of behavior of nuclear 

reactor are very complex and sometimes difficult to achieve. Thus, practical approach for 

event identification of dynamic systems like nuclear reactor is to use an empirical model 

with a nonlinear structure. Among empirical models, neural networks have been widely 

considered. The method of representing dynamic systems by vector differential equations 
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is currently well established in system theory and applied to a fairly large class of 

systems. For example, in a multi-input, multi-output (MIMO) system of order n

 with )(ku  representing the inputs, )(kx  the state variables, and )(ky , the output of the 

system is given by the differential equations 4.1 and 4.2. 

)](),([)1( kukxkx   (4.1) 

)]([)( kxky     (4.2) 

When the functions Φ and ψ are unknown, the problem of identification of the unknown 

system arises. The use of information gathered to complete, part or all of an unknown 

system model (either physical or empirical) is known as system (model) identification. 

The identification objective is to construct a suitable identification model which when 

subjected to the same input )(kup  as the plant produces an output )(ky p   which 

approximates )(kyp . Fig. 4.1 below shows the method of identification of a multi-input, 

multi-output system. The choice of the identification model (i.e., its parameterization) 

and adjusting the model parameters based on the identification error )(kei  constitute two 

principal parts of the identification problem. The ability of neural networks to 

approximate large classes of nonlinear functions sufficiently and accurately, makes them 

the prime candidates for use in dynamic models representation of nonlinear plants [4.1]. 
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                          Fig. 4.1 System identification method of multi input, multi output system  

 

Nuclear reactors are highly complex systems that are manned by the operators. As 

the safety of the plant depends upon the response to various events that affect the plant, 

identification of events at the earliest is a very important task. Maximum care has to be 

taken to keep the likelihood of potential risks to a very low value. However, in the event 

of an unlikely abnormal occurrence of plant condition, the operator has to take necessary 

actions relatively faster, which involve complex judgments, making trade-offs between 

partly incompatible demands, and requires expertise to take proper decision. It is well 

known that timely and correct decisions in these situations could either prevent the 

undesired incident from developing into a severe accident or palliate the undesired 

consequences of an accident. The operators sometimes may get confused by seeing 

multiple alarms, and may lead to delay in reacting [4.2]. Moreover, in such situations, 

poor decisions may be taken because of the short time available for sorting out the 

relevant information and lack of expert knowledge. To tackle this, artificial neural 

network model has been implemented which helps the operators to take diagnostic and 

corrective actions. Early detection will help in minimizing or even mitigating the 

negative consequences of such transients. Transient detection can be classified as a 
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pattern recognition problem. When a transient occurs starting from steady state operation, 

the instrument‟s readings develop a time dependent pattern. These patterns are unique 

with respect to the type of accident, severity of accident, and initial conditions. For 

example, the control and safety rod withdrawal event will differ from primary sodium 

pump trip event. Therefore, by properly selecting the variables used by the pattern 

recognition system, the relevant features will be extracted from the measurements. 

The objective of this study is to develop an artificial neural network model which 

can detect the neutronics system related events of PFBR simulator and help operators to 

take possible control actions in order to keep the reactor in safe operating condition [4.3, 

4.4]. PFBR operator training simulator is a full-scope, replica type simulator being 

developed at Computer Division with the objective of providing comprehensive training 

to operators in the PFBR plant operations. The scope of simulator covers the entire plant. 

Being a replica simulator, it completely replicates the reference plant configuration, 

control system, operator interface and information systems. The data used for event 

identification is taken from the PFBR simulator. Using artificial neural network, the 

characteristics of neutronics subsystem have been modeled to identify the occurrence of 

uncontrolled withdrawal of control and safety rod event.  

In a nuclear reactor, neutronic power generation is controlled by the insertion or 

withdrawal of control and safety rod. In normal operation, the control and safety rods are 

inserted to introduce negative reactivity (hence reduce the neutronic power) and it is 

withdrawn to add positive reactivity (hence increase the neutronic power). These 

operations are manually controlled by operators. The event associated with neutronics 

system, uncontrolled withdrawal of a control and safety rod, is identified using the 



                                                                                                                        Chapter4 

93 

 

artificial neural network model. Most effective process parameters related to this event 

are properly selected and a range of data is generated for the process parameters using the 

thermal hydraulics code [4.5]. The data generated is validated and documented in the 

event analysis report of PFBR [4.6]. 

PFBR has been provided with two independent and diverse reactor shutdown 

systems namely shutdown system-1 (SDS 1) and shutdown system-2 (SDS 2), each 

system consisting of two different types of absorber rod mechanism. They are classified 

as CSRDM (Control and Safety Rods Drive Mechanism) and DSRDM (Diverse Safety 

Rods Drive Mechanism). The shutdown systems are capable of ordering safety action 

through the activation of two sets of mechanisms and absorber rods of different design. 

The first sets of rods are called control and safety rods and second sets are called diverse 

safety rods (DSR). There are nine control and safety rods arranged in two rings. The 

speed of insertion and withdrawal of control and safety rods is fixed as 2 mm/s. During 

Safety Control Rods Accelerated Movement (SCRAM), the lead holding the control and 

safety rods and diverse safety rods are de-energized and they drop under gravity. 

SCRAM is an important safety action which results in the safe shutdown of the reactor. 

The drop time is less than one second [4.7]. The event associated with the uncontrolled 

withdrawal of control and safety rods (CSR) is explained below. 

4.1.1 Uncontrolled Withdrawal of One Control and Safety Rod 

The safety of PFBR is evaluated by the response of the plant to various events 

which affect the plant and they are known as design basis events (DBE). These design 

basis events are classified into 4 categories namely category 1 (all planned conditions), 

category 2 (> 10
-2

/reactor year (ry)), category 3 (   10
-2

/ry but > 10
-4

/ry) and category 4 
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events (  10
-4

/ry but > 10
-6

/ry).  A typical event considered for the study is: uncontrolled 

withdrawal of one control and safety rod, which may happen due to some faults in the 

drive mechanism or shutdown system logic. Under this event, the positive reactivity is 

added continuously to the system which in turn will result in SCRAM i.e., dropping of 

rods to shutdown the reactor. It is a category 2 event (based on frequency of occurrence). 

The reactor in full power operation has been considered for identification of the event. At 

the beginning of the reactor start up, all the control rods are at a maximum inserted 

position. During the startup, diverse safety rods are fully withdrawn and the control and 

safety rods are then gradually withdrawn to make the reactor critical. Then by further 

withdrawing the control and safety rods, the reactor is brought to full power. To 

compensate the burn up loss of the fuel, the control and safety rods are lifted up gradually 

so as to maintain the full power production in the core. The uncontrolled withdrawal of 

control and safety rod event has been simulated by considering that one control and 

safety rod moves upward from its initial location at a speed of 2 mm/s. The reactivity 

insertion rate during this transient has been calculated based on the speed of movement 

and the reactivity worth data of control and safety rod corresponding to its position inside 

the core at that instant. 

Because of the insertion of external reactivity, reactor power increases and as a 

result the temperature of the coolant increases. When the reactivity crosses the trip 

threshold of +10 percent mili at 3.47 seconds, SCRAM is initiated. Apart from reactivity 

( ) the other effective SCRAM parameters available during this event are: high linear 

power (Lin P) and high central subassembly outlet temperature ( CSAM). Among these 

parameters  and CSAM are the first SCRAM parameters that trigger reactor SCRAM 
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independently by shutdown system 1 and shutdown system 2 respectively. Because of 

large uncertainty associated with measurement of , next effective parameter Lin P is 

considered for shutdown System 1. Fig. 4.2 gives graphs showing the evolution of 

SCRAM parameters involved in the uncontrolled withdrawal of control and safety rod 

event. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Evolution of process values of (a) reactivity, (b) temperature and power related SCRAM 

parameter during one control and safety rod withdrawal event 
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4.1.2 Artificial Neural Network Model for Control and Safety Rod Withdrawal      

         Event 

The neural network architecture consisting of three layer model has been chosen to detect 

the control and safety rod withdrawal event of neutronics System. The input layer 

consists of three inputs: , Lin P and CSA  The hidden layer contains the optimal number 

of hidden nodes, which is decided after several trials and fine tuning. The output layer 

consists of one output i.e., the control and safety rod withdrawal event. Each neuron is 

connected to few of its neighbors with varying coefficients of connectivity that represents 

the strength of these connections. Learning is achieved by adjusting these strengths to 

cause overall network to output the appropriate results. The neural network architecture 

of control and safety rod withdrawal event is depicted in Fig.4.3. 

 

 

                  Fig. 4.3 Artificial neural network architecture of control and safety rod withdrawal event 
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4.1.3 Training and Fine Tuning of the Neural Network 

The standard multi layer neural network with back propagation algorithm has 

been used for the relevant event identification, uncontrolled withdrawal of one control 

and safety rod. The occurrence of event is subscribed as value 1 and the absence of event 

is considered as value 0. 

The dataset used in training the network is divided into training samples and 

testing samples in an approximately 90:10 ratio. The dataset is normalized between zero 

to one and then fed to the neural network with random weights assigned to them. The 

input signals move from input layer to output layer through hidden layer. The number of 

hidden nodes in a hidden layer is varied in accordance with the problem. The inputs after 

getting multiplied with random weights are summed up. The summed up value is fed to a 

non linear sigmoid activation function. The result is then compared with the desired 

output and if it disagrees with the desired output the difference in desired and actual 

output is back propagated and put in the weight change step. The weight is then updated 

by adding the change in weight to the previous weight. Learning rate parameter is applied 

to the weight change factor in order to get faster convergence. Although multilayer neural 

network falls prey to local minima problem, it is a reasonable and well known 

approximation, that if proper parameters are chosen and the network is trained with a 

large dataset covering the entire range of operation, the neural network model will 

approximate the inter-relations that the conventional model obeys. For a continuous 

regression function, a single layer is sufficient enough for approximation [4.8]. 

The dataset for training is presented in Table E of Annexure 3 and the output 

obtained using the test data are compared with the desired output and are presented in 
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Annexure 3-Table F. Fifty-three samples are used for training and five distinct test 

samples are used for validation. Both the training and testing samples cover the range of 

data from steady state to transient.  The network is first trained and the weight parameters 

obtained from the training process are used in the testing phase with unknown set of test 

samples. 

4.1.4 Results and Discussion 

 

 

Fig4.4. Graph plotted between mean square errors with respect to number of epochs for (a) various 

learning rates and (b) hidden nodes for control and safety rod withdrawal event 
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Different trial methods have been carried out for fine tuning the hidden nodes and 

learning rates to get the least mean square error. Fig. 4.4 shows at number of hidden node 

5 and learning rate 0.04, the mean square error is 1.8 10
-4 which is the least. The 

algorithm is then trained for 10
5
 iterations and the time taken for this is, 4 minutes 38 

seconds in a 2.66 Gigahertz Intel Core 2 Duo PC. It is seen from Fig. 4.5 that at            

10
5 

iterations the desired output matches with the actual output. 

The neural network is then validated using the test samples and it shows that the 

desired and actual output overlap with each other while there is a slight difference which 

is well within the acceptable limit. The value of output equal to one indicates the 

occurrence of the event, whereas the value zero indicates the non occurrence of the event.  

 

Fig. 4.5. Neural Network results for training sample index of control and safety rod withdrawal event 

for desired and actual output 
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Fig. 4.6 shows the results for test samples and the difference between desired and actual 

output. The difference limit between the desired and actual output is set as 2.0 .  

 

Fig. 4.6 Neural network results for test sample index of control and safety rod withdrawal event for 

desired and actual output  

 

 

Fig. 4.7 Scatter plot between the results of obtained from the actual and desired output for control 

and safety rod withdrawal event 
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Fig. 4.6 shows that uncontrolled withdrawal of control and safety rod event can be 

detected by neural network model. It shows that output obtained from neural network is 

agreeing with the outputs obtained from the PFBR simulator. The difference between the 

desired and actual outputs is well within the permissible range. Fig. 4.7 shows the plot 

between the desired and actual artificial neural network output. The correlation 

coefficient is 0.9997, indicating a good fit between the desired and actual output. The 

event detected using artificial neural network takes less computation time as compared to 

the event detected by manually operating the PFBR simulator. The time taken to get the 

first SCRAM using simulator is 3.8 seconds. But artificial neural network model, once 

trained, takes few milliseconds to get the outputs after validation.  

4.2. Event Identification in Primary Sodium Circuit of PFBR using    

       Artificial Neural Network 

An artificial neural network model for event identification of primary sodium 

system of PFBR has been developed. In reactor under normal operating condition, the 

primary sodium pump takes the sodium from the cold pool towards the core. Due to some 

mechanical and electrical problems the primary sodium pump may trip and primary 

sodium pump seizure may occur which can be identified manually after analyzing the 

process parameters. Current study involves implementation of two artificial neural 

network models to identify the occurrence of these two events. The effective parameters 

considered for these two events are SCRAM parameters. The training data for modeling 

the neural network is prepared using the thermo hydraulics simulation code of PFBR 

simulator [4.5].  
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The heat transport system of PFBR consists of primary sodium circuit, secondary 

sodium circuit and steam water system. The subsystem considered here is primary 

sodium circuit of PFBR. The primary sodium circuit is contained inside the main vessel 

of the reactor and consists of two primary sodium pumps and four intermediate heat 

exchangers. The main objectives of primary sodium circuit are: 

- To transfer the nuclear heat generated in the core to the secondary sodium 

circuit through intermediate heat exchanger and maintain the safe operating 

temperature of core subassemblies and main vessel. 

- To ensure safe operating temperature of the core subassembly and main Vessel 

by transferring the decay heat from the core subassembly to secondary sodium 

circuit. 

4.2.1 Description of Primary Sodium Pump (PSP) 

The primary sodium pump is a single top suction, single stage vertical shaft 

centrifugal pump placed in cold sodium pool [4.9]. Each pump is located between two 

intermediate heat exchangers around the core. The pumps operate in parallel across the 

core. The nominal speed of the pump is 590 rpm (revolutions per minute). The operating 

temperature of the pump is 670 
0
K and the fluid inside the pump is liquid sodium. The 

schematic of primary sodium pump and its operation is shown in Fig. 4.8 [4.10]. 
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                                    Fig. 4.8 Schematic of primary sodium pump 

4.2.2 Events Associated with Primary Sodium Pump  

There are several events associated with primary sodium pump. Two important 

events among those, primary sodium pump trip and primary sodium pump seizure have 

been considered for modeling. Primary sodium pump trip is a category 2 event. It may 

happen due to mechanical problems such as misalignment in flywheel, bearings and 

seismic events etc. and electrical problems like fault in power supply and failure in pony 

motor etc. Primary sodium pump seizure is a category 3 event. This may occur by some 

mechanical faults like insufficient hydrostatic bearing clearance, seismic events, foreign 

particle etc.  

4.2.2.1 One Primary Sodium Pump (PSP) Trip event    

When one primary sodium pump trip occurs, the speed of the tripped primary 

sodium pump flow reduces gradually against inertia to 50% in 2.6 seconds and to 0% in 

9.4 seconds. Due to parallel operation of two primary sodium pumps, the operating 
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primary sodium pump flow increases to 126% in order to balance the core flow. The total 

core flow reduces to 61% in 10 seconds. Hence the power to flow ratio (P/Q) increases 

and the central subassembly outlet temperature ( CSA ) increases which leads to increase in 

the central subassembly temperature ( CSA ) and the mean core temperature ( M ). The 

temperature of the hot pool sodium increases, resulting in the increase of the cold pool 

sodium temperature or reactor inlet temperature, leading to SCRAM.  Among the 

SCRAM parameters, five effective SCRAM parameters viz. PN  (Pump speed), QP / ,

CSA , CSA  and M  are used for prediction of this event. Among these, the parameters 

that independently trigger reactor SCRAM by shutdown systems are, PN  and 
MCSA  

respectively. The reactor is designed to ensure that the design safety limits are not 

exceeded during the normal operational range.  

4.2.2.2 One Primary Sodium Pump (PSP) Seizure Event 

When a primary sodium pump seizure occurs there is a ramp reduction of the 

speed of one pump to zero in one second. The second pump is considered to be 

continuing to operate at full speed. The operating primary sodium pump flow increases to 

125% and the core flow reduces to 37% in 1.7seconds. Decrease in flow at such a fast 

rate, results in the rapid increase of the sodium temperature. Among the SCRAM 

parameters, six effective parameters viz. PN , QP / , 
MCSA ,  (reactivity), 

MCSA  and 

M parameters are used for prediction of the event.  
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4.2.3 Analysis of Design Basis Events 

Various SCRAM parameters and the time at which they cross the threshold values are 

shown in Fig 4.9. It can be observed from the graph that for primary sodium pump trip, 

  

Fig. 4.9 Evolutions of process values of SCRAM parameters during one (a) primary sodium pump 

trip and (b) primary sodium pump seizure event 
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the 
pN  parameter crosses its threshold of 95% at 0.45 seconds and for primary sodium 

pump seizure, it crosses the threshold at 0.05 seconds. Similarly the QP / parameter 

crosses its threshold of 1.1 at 1.6 seconds for primary sodium pump trip and at 0.21 

seconds for primary sodium pump seizure. Threshold values for SCRAM parameters are 

indicated in Fig. 4.9. 

4.2.4 Training and Fine Tuning of the Neural Network 

A multilayer neural network using back propagation algorithm has been used for 

training. All the relevant parameters causing the occurrence of the events have been taken 

as input to the neural network. The event to be identified is presented by the output node 

of the neural network. The occurrence of event is set as 1 and the absence of event is set 

as 0. The neural network is having five input nodes and one output node. The input 

parameters for primary sodium pump trip are PN , QP / , CSA and CSA  and M . 

Likewise, the inputs for primary sodium pump seizure event are six, PN , QP / , 
MCSA ,  

(reactivity), 
MCSA  and M .The transient data is used for training and testing are 

generated using thermo-hydraulics (DYANA-P)code [4.6].  

 For the study of primary sodium pump trip, 49 samples are used for training. The 

dataset for training is presented in Table G of Annexure 4 and the output obtained using 

the test data are compared with the desired output and are presented in Table H of 

Annexure 4. The neural network developed for primary sodium pump trip event has three 

layers. Input layer consists of 5 nodes, the event related SCRAM parameters. The hidden 

layer can be varied and fine tuned and output layer consists of one output, i.e., the event 

itself. In case of primary sodium pump seizure, 54 samples are used for training the 
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neural network. The input layer consists of 6 input nodes and output layer has one output 

node, the event. Both the training and testing samples cover the range of data from steady 

state to transients.  The network is trained using the back propagation algorithm and the 

coding has been done in C-programming. Fine tuning has been carried out by various 

trials for finding the optimal number of hidden nodes and learning rates leading to least 

mean square error. The trial results for primary sodium pump trip and primary sodium 

pump seizure are shown in Fig. 4.10 and Fig. 4.11 respectively. The optimal mean square 

error value of 8.1 10
-5

 is achieved with number of hidden nodes 11 and learning rate 

0.05 for 10
5
 iterations for primary sodium pump trip. The optimal mean square error 

value of 2.8 10
-5

 is achieved with number of hidden nodes 12 and learning rate= 0.005 

for 10
5
 iterations for primary sodium pump seizure. The training time for 10

5
 iterations is 

4 minutes in a 2.66 GHz Intel Core 2 Duo PC. 
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Fig. 4.10 Graph plotted between mean square error and number of epochs for (a) various learning 

rates (b) number of hidden nodes for primary sodium pump trip event 
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Fig. 4.11 Graph plotted between mean square error and number of epochs for (a) various learning 

rates (b) number of hidden nodes primary sodium pump seizure event 
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From Fig. 4.12 and Fig. 4.13 it can be observed that the actual outputs obtained 

during training and testing for primary sodium pump trip event are almost matching with 

the desired outputs after 10
5
 iterations. 

 

 

Fig. 4.12 Neural Network training results for primary sodium pump trip event for desired and actual 

output 
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Fig. 4.13 Neural Network test results for primary sodium pump trip event for desired and actual 

output 
 

 

For primary sodium pump trip, four distinct test samples and for primary sodium 

pump seizure, five distinct test samples were taken from the trained input range to 

validate the network. The neural network model is then validated against the test samples 

and it can be seen from training and testing results that the occurrence of primary sodium 

pump trip and primary sodium pump seizure events could be identified with negligible 

error as shown in Fig. 4.14 and Fig. 4.15 respectively. The difference limit between the 

desired and the actual output is set as 2.0 . From the graph it can be seen that the 

difference is within the permissible range. 
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Fig. 4.14 Training results for primary sodium pump seizure event for desired and actual output 

 

Fig. 4.15 Test results for primary sodium pump seizure event for desired and actual output 

 

In Fig. 4.16 and Fig. 4.17, the scatter plot between the desired and artificial neural 

network outputs are presented for primary sodium pump trip and primary sodium pump 
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seizure. The correlation coefficient primary sodium pump trip is 1 and primary sodium 

pump seizure is 0.99689.  It shows how properly the variation in the neural network 

output is explained by the desired output. Correlation coefficient gives the linear 

relationship between the desired samples and the samples obtained from neural network 

model. The high degree of correlation coefficient represents the potential of artificial 

neural network model to identify the event with desired accuracy. The desired accuracy is 

achieved if difference between expected output and desired output comes in the range of

01.0 .   

 

 

 

 

 
 

Fig. 4.16 Scatter plot between the results of desired and actual output for primary pump trip event 
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Fig. 4.17 Scatter plot between the results of desired and actual output for primary pump seizure 

event 
 

       

 

 

The time taken to get the first SCRAM using simulator is 0.43 and 0.05 seconds 

respectively for primary sodium pump trip and primary sodium pump seizure.  Artificial 

neural network model, once trained, is able to give the desired outputs in few 

milliseconds. 

 

4.3 Event Detection System for PFBR Subsystems 

An event detection system (EDS) has been developed for identifying various 

events in PFBR subsystems at the earliest time of occurrence. The event detection system 

is based on, data driven, single neural network model that helps the operator in detecting 

the events much faster and accurate compared to the conventional methods. It can 

efficiently simulate the intricate relationship between the individual inputs and outputs 

while identifying various events. By taking into consideration both explanatory 



                                                                                                                        Chapter4 

115 

 

perceptivity and extraordinary predictive capability of neural network, it is concluded that 

it can efficiently be applied to detect the nuclear reactor related events and understand the 

phenomena in depth [4.6]. 

It mainly consists of three stages of processing, namely, input, event identification 

stage and output stage. In the input stage, the data is taken from the database and 

processed into training and testing files. This data is used for training and testing the 

neural networks in the event identification stage. There are unique sets of parameters for 

different events and they are categorized under design basis events. At the event 

identification stage, neural network processes the data through a bank of artificial neuron 

layers and arrives at an optimum solution by adjusting the synaptic weights. Finally, the 

diagnostic results obtained in the event identification stage are displayed at the output 

stage. This type of problem is modeled as a pattern recognition problem in artificial 

neural networks wherein a set of input values (known as pattern) with respect to time 

represents a class of output. Thus, the events are classified into several classes based on 

the input patterns [4.11-4.18].  

4.3.1 PFBR Related Events 

A database of transient data of reactor process parameters ranging from steady 

state of operation to transient states have been generated using Dynamic Analysis-P code 

to train the neural network [4.5]. Standard back propagation learning algorithm and its 

variants have been applied and tested to arrive at the best suited algorithm. The 

subsystems considered here are primary sodium circuit and neutronics system. The event 

associated with neutronics system is uncontrolled withdrawal of control and safety rod.  

The events associated with primary sodium circuit are primary pipe rupture, primary 
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sodium pump trip and primary pump seizure. Table 4.1 shows the events that are taken 

into consideration for identification using artificial neural network model. The events are 

modeled based on the relevant reactor process parameters with time dependent data as 

available on the simulator. 

 

Table4.1. Events associated with PFBR Subsystems 

Events    Description

 

1                                             Primary Sodium Pump Trip 

2                                             Uncontrolled Withdrawal of Control and Safety Rod  

3                                             Primary Sodium Pump Seizure 

4                                             Primary Pipe Rupture 

 

 

Control and safety rod withdrawal event, primary sodium pump trip event and 

primary pump seizure event have been explained in detail in previous section 4.2. In this 

section primary pipe rupture event is explained. 

 

 

Fig. 4.18 Evolution of process values of temperature and power related SCRAM parameter during 

primary pipe rupture 
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In case of primary pipe rupture event, primary sodium flow by-passes the core 

back to the cold pool through the break and the core flow decreases rapidly. The core 

flow goes as low as to 30% at about 0.6 seconds before stabilizing at 32 %. The rapid 

reduction in the flow through the core results in the rise of sodium and core temperatures. 

Four effective SCRAM parameters viz. QP / , 
MCSA ,  and 

MCSA , are available during 

the event. The evolution of process values of flow and temperature related SCRAM 

parameters for both the events are shown in Fig. 4.18. 

4.3.2 Data Collection and Description of Algorithms Used in Training 

The event related input data has been generated from in-house developed thermal 

hydraulics code and validated as per the event analysis reports of PFBR. The input 

dataset containing 172 samples has been chosen in such a way that it covers the entire 

range of operations from steady state to transient conditions.  The dataset for training is 

presented in Table I of Annexure 5 and the output obtained using the test data are 

compared with the desired output and are presented in Table J of Annexure 5.  The 

significant parameters namely reactivity ( ), linear power (Lin P), central subassembly 

outlet temperature ( CSAM ), increase in central subassembly temperature ( CSA ), 

increase of mean core temperature ( M ), power to flow ratio ( QP / ), pump speed ( pN

), are used to represent input nodes to the neural network. The nominal and threshold 

limits of parameter values associated with the events are shown in Table 4.2. The neural 

network designed for event detection system is a feed forward network with multilayer 

perceptron architecture. The network has seven input nodes in the input layer, four output 

nodes in the output layer and one hidden layer where hidden nodes can be varied.   
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Table4.2. Nominal and Threshold values for SCRAM parameters 

SCRAM parameters             Nominal Value                       Threshold 

 

QP /                  1.1                                         0.99 

PN                    590 rpm                                -5% of nominal value 

MCSA                853 K                                    +10K of nominal value 

MCSA             423K                                    +10K of nominal value 

M                  433K                                    +10K of nominal value 

          1.2 pcm                                10 percent mili 

          Lin P               1250 MWt                           +10% of nominal value   

 

 

                   Fig. 4.19 Architecture of neural network of event detection system 

 

The four output nodes in the artificial neural network designate four different 

events namely; primary sodium pump trip, control and safety rod withdrawal, primary 

sodium pump seizure and primary pipe rupture respectively. Fig. 4.19 depicts the three-

layer neural network architecture used for identifying the four events. The network is 

trained using BIKAS (Bhabha Atomic Research Centre – Indian Institute of Technology 
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Kanpur-Artificial Neural Networks – Simulator) for back propagation algorithms and its 

variants, namely, standard back propagation, back propagation with momentum in pattern 

mode, back propagation with momentum in batch mode, quick propagation and resilient 

back propagation algorithm [4.19-4.21]. 

4.3.3 Fine Tuning of Neural Network 

Out of 172 samples in the input dataset, 152 samples have been chosen for 

training. 20 distinct datasets, which are not included in the training set, are used for 

prediction. The performance goal error value is set at 1 10
-4

. The learning rate factor 

used in weight optimization formula is standardized based on the experience gained from 

earlier artificial neural network simulation work and set as 0.7.  The optimal number of 

hidden nodes is found to be 8 after carrying out the parametric study with various hidden 

nodes ranging from 5 to 12. After optimizing the key parameters, the network is trained 

with different variants of back propagation algorithm to find out the suitable model which 

produces optimal results. 

 Fig. 4.20 depicts the graph for standard back propagation algorithm with pattern 

mode learning. The error value starts with 5.7 10
-3

. After ten thousand iterations the 

error reduces up to 7.4 10
-4

. The time taken to run BIKAS simulator program is 30 

minutes for ten thousand iterations in (2.66 GHz Intel Core 2 Duo processor). Fig. 4.21 

indicates the back propagation algorithm with pattern mode learning and momentum 

parameter. The performance goal error value starts with 5.7 10
-2

. It shows that the mean 

square error reduces to 9.1 10
-4

 after ten thousand iterations.  
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          Fig. 4.20 Error vs. epoch curve for standard back propagation algorithm (pattern mode) 

 

Fig. 4.21 Error vs. epoch curve for standard back propagation algorithm (pattern mode with 

momentum) 
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Fig. 4.22 Error vs. epoch curve for standard back propagation algorithm (batch mode with 

momentum) 
 

Fig. 4.22 shows the standard back propagation algorithm with batch mode 

learning with momentum parameter. The performance goal error value starts with 6 10
-2

 

and after ten thousand iterations the error factor reduces to 5.9 10
-3

. 

 

 

                 Fig. 4.23 Error vs. epoch curve for quick propagation algorithm 
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                   Fig. 4.24 Error vs. epoch curve for resilient back propagation algorithm 

 

Fig. 4.23 shows the graph for quick propagation algorithm. The performance goal 

error value starts with 7 10
-2

 and after ten thousand iterations the error factor reduces to 

4.8 10
-4

. Fig. 4.24 depicts the graph of mean square error versus epochs. The 

performance goal error value starts with 8 10
-2

and mean square error reduces 4.2 10
-4 

after 10000 iterations.   

4.3.4 Results and Discussion 

Multi layer feed forward artificial neural network model has been implemented 

and trained with back propagation algorithm and its variants to identify events related to 

PFBR subsystems. The best performing algorithm having faster convergence is found out 

during the training process.  

From Fig. 4.25 shown above, it can be seen that the resilient back propagation 

algorithm is showing faster convergence and yields satisfactory results. The graph also 
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shows that the back propagation algorithm with batch mode and momentum parameter is 

not able to converge to the required performance goal error even after ten thousand 

epochs. After training, testing has been carried out for resilient back propagation model 

 

Fig. 4.25 Mean square error for five different algorithms for 10000 epochs 

with 20 samples within the range of input data set. The training results are shown in    

Fig. 4.26 and the graph shows that the neural network results are almost matching with 

the desired outputs.  

Few case studies are carried out with the transients of some selected event 

scenarios which are not used for training of the artificial neural network. Twenty distinct 

samples which are not used in training set are applied to the resilient back propagation 

model for prediction. The red color mark represents primary sodium pump trip event, the 

green mark represents control and safety rod withdrawal event, the blue color mark 
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represents primary pump seizure event and the light green color mark represents primary 

pipe rupture event. 

 

Fig. 4.26 Neural Network results for training sample index of four events for desired and actual 

output 
   

 
 Fig. 4.27 Prediction results for four events for desired and output 
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Similarly, the green color mark represents primary sodium pump trip event, the 

pink color mark represents control and safety rod withdrawal event, the blue color mark 

represents primary pump seizure event and the red color mark represents primary pipe 

rupture event. The cross validation method has been used by using BIKAS simulator 

which yields similar results. The predicted results of artificial neural network shown in 

Fig. 4.27 are in agreement with the results obtained by the simulator data. It could be 

demonstrated that using neural network model, the occurrence of events can be identified 

with negligible error and in less computation time in comparison with the conventional 

model.  

4.4 Conclusion 

Different neural network architectures for identifications of events in nuclear 

power plants have been investigated. The systems associated with the PFBR are 

neutronics system and primary sodium circuit. In first case, uncontrolled withdrawal of 

control and safety rods is identified using standard back propagation algorithm. The 

second case is implemented using standard back propagation algorithm to identify 

primary sodium pump trip and primary sodium pump seizure events. In third case, an 

event detection system is modeled to identify four events: control and safety rods 

withdrawal, primary sodium pump trip, primary sodium pump seizure and primary pipe 

rupture. Back propagation algorithm and its variants are implemented for the 

identification of these events. After training the network with various algorithms, the 

analysis results show that the resilient back propagation algorithm is showing faster 

convergence and yields satisfactory results. It demonstrates that the occurrence of events 

can be identified with negligible error using the neural network model. 
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Chapter 5 

Optimization of Feed Forward Neural Network 

using Genetic Algorithm 

 

This chapter presents description of genetic algorithm based neural network for 

parameter estimation of Fast Breeder Reactor subsystem. The parameter estimated here 

is temperature of the intermediate heat exchanger of FBTR.  Genetic algorithm based 

neural network is a global search algorithm having less probability of being trapped in 

local minima problem, than a standard back propagation algorithm. Various 

development stages of genetic algorithm based neural network, such as, the preparation 

of the training set, weight extraction from the genetic population, training of the neural 

network and validation phase etc have been described in detail. 

 

5.1. Introduction 

Genetic algorithms (GA) are adaptive search and optimization techniques, 

mimicking the principles of natural evolution. Genetic algorithm has remarkable abilities 

which include, being able to solve non-smooth, non-continuous, non-differentiable fitness 

functions to escape the local optima and acquire a neighbourhood optimal solution. 

Genetic algorithms have been proposed as one of the potential candidates for 

optimization of weight parameters of neural network. For efficient and quick learning, the 

weight optimization in back propagation neural network has been carried out using 

genetic algorithm. Conventionally, standard back propagation network, performing 
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gradient descent learning algorithms, have encountered difficulties by getting trapped in 

local minima problem. While genetic algorithm does not guarantee a global minimum 

solution, it can locate the neighborhood of optimum solution. It solves many complex 

problems by exploring virtually all regions of the state space and exploiting promising 

areas through mutation, crossover and selection operations applied to individuals in the 

populations [5.1]. This helps in reducing the large number iterations needed for training 

the standard back propagation network. Genetic algorithm encodes the parameters of 

neural network as string of properties of the network, i.e. chromosomes. A large 

population of chromosomes representing many possible parameters sets is generated and 

crossover, mutation and reproduction are then performed by replacing the unsuitable 

candidates in order to arrive at the best fit of optimized parameters.  

Genetic algorithms work with population of individual strings, each representing 

a possible solution to the problem considered. Each string is assigned a fitness value for 

assessing how good the solution is. The string having high fitness values, participate in 

reproduction yielding new strings by cross breeding. The least fit individuals are 

discarded out. A whole new set of population, containing characteristics which are better 

than their ancestors, are generated by selecting the high fit individuals. Progressing in this 

way, after many generations, the entire population inheriting the best characteristics is 

formed. If the genetic algorithm is well implemented, the most promising areas of search 

space are explored, with the population having fitness values increasing towards the 

global optimum. A population is said to have converged, if 95% of the individuals 

constituting the population share the same fitness value [5.2, 5.3].  Fig. 5.1 represents the 

flow chart representation of the genetic algorithm based feed forward neural network. 



                                                                                                                        Chapter5 

130 

 

Population Selection 

Fitness Calculation Artificial 

Neural Network 

No 

Best Individuals 

Achieved 

Yes 

Stopping 

Criterion 

Met? 

Mutation 

Cross Over 

Reproduction 

Fig. 5.1 Hybrid genetic algorithm for weight optimization of artificial neural network 

5.2. Training of the Network 

The training of present network has been accomplished using the genetic 

algorithm based neural network (GANN) to predict the temperature parameters of 

intermediate heat exchanger of FBTR [5.4, 5.5]. In order to estimate primary outlet 

temperature, secondary outlet temperature, the input parameters taken into consideration 

are primary inlet temperature, primary flow, secondary inlet temperature and secondary 

flow. The input and output dataset for training the neural network has been generated 

using the Quadratic Upstream Interpolation for Convective Kinetics (QUICK) scheme 

which is discussed in detail in section 3.3.2 of Chapter 3. Since the data covers a wide 
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range, it has to be scaled down between zero to one which is also known as 

normalization. The normalization formula is given by equation 5.1. 

                               normd = 

m axd

d
                                                (5.1) 

where normd the normalized value of the input and d  is the input parameter value and 

maxd  is the maximum value of the respective parameters. The normalized data is used for 

training and testing of the network. 

Conventionally, a back propagation network determines its weights based on a 

gradient search technique and hence runs the risk of encountering the local minima 

problem [5.6]. On the other hand, genetic algorithm based neural network is found to be 

good at generating reasonably acceptable solutions with less number of iterations. The 

key idea is to hybridize genetic algorithm and neural network for weight optimization. 

Genetic algorithms use a direct analogy of natural behavior and with a population of 

individual strings, each representing a possible solution to the problem considered [5.7-

5.10]. The optimization is based on evolution, and the "Survival of the fittest" concept. 

The back propagation neural network learning process consists of two stages: firstly 

employing genetic algorithm to search for optimal or approximate optimal connection 

weights and thresholds for the network, then using the back-propagation learning rule and 

training algorithm to adjust the final weights. The weights and thresholds of back 

propagation neural network are initialized as genes of chromosome, and then the optimal 

solution is searched through selection, crossover and mutation operators of genetic 

algorithm. This procedure is completed by applying a back propagation algorithm on the 

genetic algorithm having initial connection weights and thresholds. If the total mean 

squared error of back propagation network is bigger than the expected error, the weights 
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and thresholds will be updated; otherwise, these are saved as initial value of propagation 

network training. After that, the weights are further adjusted under propagation learning 

rule to get the best results [5.11]. 

In the present study, the genetic algorithm has been modeled with 12 genes which 

represent the potential solutions to the problem and the genes are joined together to form 

a string, referred to as a chromosome. The back propagation network is having the 

configuration of 4-2-2 representing 4 input layers, 2 hidden layers and 2 output layers. 

The number of weights that are to be determined are (4+2) 2=12. With each weight 

being real number and the number of digits in individual gene or the gene length to be 5, 

the string length of the chromosome is 12 5=60. This chromosome string represents the 

weight matrices of the input-hidden and hidden-output layers, in a linear form. An initial 

population size of p  chromosomes is randomly generated. The weights from the 

individual chromosome are extracted using a weight formula and the fitness function is 

calculated using FITGEN algorithm [5.3]. These are described in the following section. 

 

5.2.1. Weight extraction 

Suppose Ld XXXX ,....,,...., 21  represent a chromosome and dkkdkd XXX )1(21 ,....,  

represent the thk  gene )0(k  in the chromosome. The weight can be calculated by the 

equation    

    kW =  
,

,

M
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5.2.2. Algorithm FITGEN  

{ 

Let ii TI ,  ;,...,2,1 Ni where  ),....,( 21 iIIII liii  and ),....,( 21 iTTTT liii  represent the 

input–output pairs of the problem to be solved by back propagation network with a 

configuration nml  ( l  being input neurons, m  hidden neurons and n  output 

neurons). For each chromosome ,iC pi ,...,2,1  belonging to the current population 

,iP  whose size is p  

{ 

 Extract weights ,iW from ,iC  Keeping ,iW as a fixed weight setting, train the back 

propagation network for the N input instances; calculate error iE for each of the 

input instances using the formula, 

2
)(

j

jijii OTE
    

(5.3)
 

Where, jiO  is the output vector calculated by back propagation network; find the 

root mean square E  of the errors ,iE  ;,...,2,1 Ni ;,...,2,1 Nj  

i.e  
N

E

E i

i

    (5.4) 

Calculate the fitness value iF  for each of the individual string of the population as 

E
Fi 1     (5.5)    

      } 

      Output iF  for each ,iC pi ,...,2,1 ; 

      
}               

5.2.3. Genetic Algorithm Based Weight Determination   
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{ 

i 0; 

Generate the initial population iP  of real-coded chromosomes J

iC  each representing a 

weight set for the back propagation network;  

While the current population iP  has not converged 

{ 

 Generate fitness values J

iF  for each J

iC  iP  using the algorithm FITGEN; Get the 

mating pool ready by terminating worst fit individuals and duplicating high fit 

individuals; Using the cross over mechanism, reproduce offspring from the parent 

chromosomes; 

i 1i ; 

Call the current population iP ; Calculate fitness values J

iF  for each J

iC  iP ; 

   } 

   Extract weights from iP  to be used by the back propagation network; 

} 

5.3. Results and Discussion 

The network has been trained using a supervised learning method, with 92 

training samples using both standard back propagation algorithm and genetic algorithm 

based back propagation algorithm. The input and the corresponding learning output have 

been presented to the network till it learnt the desired relationship. The training data have 

been normalized to be in the binary form for speedy training of the network. About 90% 

of the data has been used in the training set and the rest of the data has been used for 

validation of the network model. In the genetic algorithm based network, a population is 
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said to have converged when 95% of the individuals constituting the population share the 

same fitness value [5.3]. This criterion is achieved by the present network after 210 

iterations with satisfactory results in comparison to 50000 iterations required when 

trained with standard back propagation algorithm. This indicates the efficiency of the 

genetic algorithm based back propagation algorithm.The network is validated using nine 

test samples and the graph is plotted. It can be observed that neural network based genetic 

algorithm is used to generate reasonably acceptable results with less number of iterations. 

Thus a lot of time can be saved using this model without sacrificing the appreciable 

computational accuracy. The difference between the desired and actual output is set as 

1.0  which is coming well within the permissible limit.   

While using the optimized neural network model to predict the sodium 

temperature, the comparison of results from the predictive values of testing samples 

which do not participate in training network and actual values of them is shown in       

Fig. 5.2 and 5.3. As can be seen from the figures, the temperature predicted by the 

genetic algorithm based neural network model is very close to the actual input data. 
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Fig. 5.2 Estimation of primary outlet temperature of Intermediate Heat Exchanger in normalized 

form for test sample index using artificial neural network (ANN) and genetic algorithm based 

artificial neural network (GANN) 

 

 

Fig. 5.3 Estimation of secondary outlet temperature of Intermediate Heat Exchanger in normalized 

form for test sample index using artificial neural network (ANN) and genetic algorithm based 

artificial neural network (GANN) 
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Fig. 5.4 Scatter plot between desired and actual predicted values of artificial neural network (ANN) 

and genetic algorithm based artificial neural network (GANN) for (a) primary outlet temperature in 

normalized form (b) secondary outlet temperature in normalized form for Intermediate Heat 

Exchanger 
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The scatter plot between the desired and actual output for primary and secondary 

sodium outlet temperatures have been presented for both artificial neural network based 

back propagation and genetic algorithm based back propagation network in Fig. 5.4. The 

correlation coefficient of 0.078 (for genetic algorithm based neural network), (0.92637 

for standard back propagation network) for primary outlet temperature and 0.92617 (for 

genetic algorithm based neural network) and 0.8678 (for standard back propagation 

network) for secondary outlet temperature is obtained. 

5.4. Conclusion 

A genetic algorithm based neural network is developed for parameter estimation 

of nuclear reactor subsystem. The network is implemented to predict primary and 

secondary sodium temperatures of intermediate heat exchanger of Fast Breeder Test 

Reactor. The hybrid genetic algorithm is used for weight optimization to enhance the 

convergence speed. Various stages of development of genetic algorithm based neural 

network are described. The network is trained both with back propagation algorithm and 

genetic algorithm based neural network. From the results it could be concluded that 

genetic algorithm based neural network is a useful method for prediction of parameters in 

nuclear reactor subsystems with less number of iterations compared to back propagation 

algorithm providing acceptably good generalization ability and faster convergence. This 

has been proved to be a useful approach to improve upon the capability of parameter 

estimation using neural network. 
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Chapter 6 

 

Summary and Suggestions for Future Work 
 

This chapter includes the important conclusions drawn from the results of the 

research work carried out in the area of parameter estimation and event identification in 

Fast Breeder Reactor subsystems using artificial neural network techniques. Also, it 

provides suggestion for future work to be carried out in this field which helps in 

achieving full-fledged online computational intelligence systems for aid of the operator in 

condition based maintenance of nuclear reactor subsystems. 

 

6.1. Summary 

This work has been motivated by a need to develop computational intelligence 

systems capable of coping with the complexity and nonlinearity of nuclear reactor 

subsystems. The objective of this work is to implement artificial neural network models 

for parameter estimation and event identification in Fast Breeder Reactors. Artificial 

neural network models have been developed using the input-output measurement data 

from the conventional models of the reactor to fulfill the above objective. The chapter 

wise summary of the thesis is given below.  

 A brief introduction to nuclear power plant, its complexity and characteristics and 

the goals to achieve its safe operation are presented in Chapter 1. A detailed 

explanation of computational intelligence, the hierarchy of whole human 

engineered intelligence is provided.  The application of computational intelligence 

in the operation of nuclear power plant is also described. The FBTR and PFBR 
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subsystems are briefly covered in the Chapter 1.  The scope of the present study 

namely, parameter estimation and event identification in Fast breeder Reactor 

systems, are also described in this chapter. 

 Basics of artificial neural network, its advantages and disadvantages and its 

comparison with biological neural network have been described in the Chapter 2. 

Different architectures of artificial neural network are discussed. Various learning 

procedures and activation functions used in artificial neural network are outlined. 

Neural network algorithms are also described in this chapter. A literature survey 

on applications of artificial neural network in operation and maintenance of 

various nuclear reactors is presented in this chapter. 

 Modeling of two different subsystems of a nuclear reactor, one from FBTR and 

another from PFBR, for parameter estimation using artificial neural network 

algorithms have been described in the Chapter 3. A brief description of 

intermediate heat exchanger of FBTR and neutronics system of PFBR has been 

presented. Artificial neural network model has been developed to predict process 

parameters of intermediate heat exchanger subsystem of FBTR. The architecture 

of the neural network for intermediate heat exchanger and neutronics system is 

highlighted. The standard back propagation algorithm is described in detail. The 

temperature parameters of intermediate heat exchanger of FBTR and reactor 

power of PFBR are estimated using multilayer percepton and back propagation 

algorithm. Radial basis function is described at length and implemented for 

prediction of temperature parameters in intermediate heat exchanger starting from 

steady state to transient state of FBTR. The results are compared with standard 
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back propagation algorithm.  Standard back propagation algorithm and its variants 

namely, standard back propagation, back propagation with momentum in pattern 

mode, back propagation with momentum in batch mode, quick propagation and 

resilient back propagation have been implemented using BIKAS simulator for 

estimating the reactor power of PFBR.  

 Chapter 4 provides detailed description of four events related to two of the PFBR 

subsystems. The subsystems taken in to consideration are primary sodium circuit 

and neutronics subsystem of PFBR. The event associated with neutronics system 

is, uncontrolled withdrawal of control and safety rod event; and events associated 

with primary sodium circuit are, primary sodium pump trip and primary sodium 

pump seizure, primary pipe rupture. All the relevant parameters causing the 

occurrence of the events have been taken as input to the neural network. The 

event to be identified is given in output node of neural network.  The network is 

trained using the back propagation algorithm and the coding has been done in    

C-programming. The neural network model is then validated against the test 

samples and from the results; it is shown that the occurrences of events could be 

identified faster with negligible error in comparison with the conventional 

models. Finally, four different events are integrated in a single neural network and 

back propagation algorithms and its variants are implemented. From the results it 

is observed that the neural network could be able to identify the events 

successfully. 

 Chapter 5 describes the implementation of genetic algorithm based neural 

network for prediction of temperature parameters of intermediate heat exchanger 
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of FBTR. Sometimes, standard back propagation network with gradient descent 

learning algorithms may encounter difficulties by getting trapped into a local 

minima problem. Even though genetic algorithm does not guarantee a global 

minimum solution, it can locate the neighborhood of optimum solution much 

quicker than conventional strategies and provide encouraging results. The 

network has been trained using both standard back propagation algorithm and 

genetic algorithm based back propagation algorithm. It can be observed that 

genetic algorithm based neural network has been used to generate reasonably 

acceptable results with less number of iterations compared to standard back 

propagation algorithms. Thus, considerable amount of time can be saved using 

this model without sacrificing any appreciable computational accuracy. 

6.2. Conclusions 

In the present work, neural network approach for parameter estimation and event 

identification has been proposed. Multi layer neural networks are implemented for 

parameter estimation and event detection. The reactor data used in training the neural 

network has been generated from various sources such as theoretical calculations, 

historical database of reactor and event analysis reports. The results of the applications of 

neural network to nuclear reactor are summarized below.  

 The developed artificial neural network model using standard back propagation 

algorithm is capable of predicting system parameters accurately and takes much 

less computational time in comparison with the conventional models of Fast 

Breeder Reactors.  
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 The artificial neural network model is also able to detect the events associated 

with the Fast Breeder Reactor subsystems.  

 The model does not require any theoretical rigorous calculation for measuring the 

system parameters and its inherent attributes allow it to simulate non linear 

phenomena in complex systems. 

 The radial basis function implemented in prediction of temperature parameter, is 

found to be an effective algorithm in terms of faster convergence criteria, 

compared to the standard back propagation algorithm.  

 Of the variants of back propagation algorithms, implemented in reactor power 

estimation and event identification in PFBR systems, resilient back propagation 

algorithm is found to be faster in convergence with less number of iterations. 

  The genetic algorithm based neural network implemented for estimation of 

temperature parameter of intermediate heat exchanger of FBTR yields reasonably 

acceptable results with less number of iterations compared to standard back 

propagation algorithm. 

6.3. Scope for Future Work 

This research work contributes to the theory and applications of neural network 

learning algorithms. Having successfully applied, the artificial neural network in 

operation of nuclear reactor applications, the following are suggested for future work. 

 There is a need to develop a full-fledged online artificial intelligent system for 

Fast Breeder Reactors; use of neural network in combination with expert system 

will be appropriate in this context. After receiving the output from neural 

network, the outputs can be fed to the expert system which uses the entire 
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knowledge database of nuclear reactor and can display the relevant corrective 

decisions.  

 Each and every subsystem of Fast Breeder Reactor should be modeled using 

artificial intelligent techniques. 

 All other possible events can be detected using various neural network algorithms 

which will help operator maintenance.  

 Furthermore, various other learning methodologies can also be explored to 

achieve better convergence.    

 Various learning methods such as support vector machine of kernel logistic 

regression or kernel least square regression can be implemented to achieve the 

better global minimum in learning.  
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Annexure 1 

Table A Presents the predicted primary and secondary sodium outlet temperature 

temperatures with respect to primary and secondary sodium inlet temperatures and  

primary and secondary flow for training samples of Intermediate Heat Exchanger 

of Fast Breeder Test Reactor 

Table A 

Primary 

Flow 

m3/hr 

Secondary 

Flow 

m3/hr 

Primary 

Inlet 

Temperature 
0C  

Secondary 

Inlet 

Temperature 
0C 

Primary 

Outlet 

Temperature 
0C 

Secondary 

Outlet 

Temperature 
0C 

100 50 400 200 300.4167 399.1665 

105 50 400 200 305.0812 399.3295 

100 55 400 200 290.9499 398.2730 

100 50 410 200 305.4376 409.1248 

100 50 400 205 302.9063 399.1873 

105 55 400 200 295.9740 398.5950 

105 50 410 200 310.3353 409.2959 

105 50 400 205 307.4542 399.3463 

100 55 410 200 295.4973 408.1866 

100 50 410 205 307.9272 409.1456 

105 55 410 200 300.7727 408.5248 

105 55 400 205 298.5747 398.6302 

105 50 410 205 312.7082 409.3127 

100 55 410 205 298.2236 408.2298 

105 55 410 205 303.3734 408.5599 

110 55 410 205 308.0933 408.8134 

105 60 410 205 294.3694 407.3536 

105 55 420 205 308.1721 418.4897 

110 60 410 205 299.3831 407.7975 

110 55 420 205 313.1222 418.7556 

110 55 410 210 310.5788 408.8423 

105 60 420 205 298.7289 417.2245 

105 60 410 210 297.1896 407.4182 

105 55 420 210 310.7727 418.5248 

110 60 420 205 303.9872 417.6902 

110 60 410 210 302.0811 407.8513 

110 55 420 210 315.6078 418.7845 

110 60 420 210 306.6852 417.7439 

115 60 420 210 311.4248 418.1025 

110 65 420 210 298.1410 416.2229 
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Table A Continued 

Primary 

Flow 

m3/hr 

Secondary 

Flow 

m3/hr 

Primary 

Inlet 

Temperature 
0C  

Secondary 

Inlet 

Temperature 
0C 

Primary 

Outlet 

Temperature 
0C 

Secondary 

Outlet 

Temperature 
0C 

110 60 430 210 311.2892 427.6364 

110 60 420 215 309.3831 417.7975 

115 65 420 210 303.1159 416.7949 

115 60 430 210 316.2545 428.0122 

115 60 420 215 314.0099 418.1477 

110 65 430 210 302.3382 426.0431 

110 60 430 215 313.9872 427.6902 

115 65 430 210 307.5500 426.6423 

115 65 420 215 305.8989 416.8712 

115 60 430 215 318.8397 428.0573 

110 65 430 215 305.2396 426.1331 

115 65 430 215 310.3329 426.7186 

120 65 430 215 315.0632 427.1910 

115 70 430 215 302.2368 424.8966 

115 65 440 215 314.7671 436.5660 

120 70 430 215        307.1520  425.5960 

120 65 440 215 319.7173 437.0604 

120 65 430 220 317.7361 427.2563 

115 70 440 215 306.2944 434.6592 

115 70 430 220 305.2081 425.0153 

115 65 440 220 317.5500 436.6423 

120 70 440 215 311.4381 435.3918 

120 70 430 220 310.0089 425.6989 

120 65 440 220 322.3903 437.1257 

120 70 440 220 314.2951 435.4942 

125 70 440 220 318.9933 436.0835 

120 75 440 220 306.6285 433.3944 

120 70 450 220 318.5812 445.2894 

120 70 440 225 317.1520 435.5966 

125 75 440 220 311.4693 434.2178 

125 70 450 220 323.4930 445.9055 

125 70 440 225 321.7434 436.1725 

120 75 450 220 310.5662 443.0941 

120 70 450 225 321.4381 445.3918 

125 75 450 220 315.6270 443.9549 

125 75 440 225 314.3905 434.3492 

125 70 450 225 326.2431 445.9944 
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Table A Continued 

Primary 

Flow 

m3/hr 

Secondary 

Flow 

m3/hr 

Primary 

Inlet 

Temperature 
0C  

Secondary 

Inlet 

Temperature 
0C 

Primary 

Outlet 

Temperature 
0C 

Secondary 

Outlet 

Temperature 
0C 

120 75 450 225 313.5974 443.2442 

125 75 450 225 318.5482 444.0864 

130 75 450 225 323.1974 444.7911 

125 80 450 225 311.2881 441.7374 

125 75 460 225 322.7059 453.8235 

130 80 450 225 316.0452 442.6765 

130 75 460 225 327.5617 454.5597 

130 75 450 230 326.0152 444.9070 

125 80 460 225 315.1231 451.3701 

125 80 450 230 314.3706 441.9210 

125 75 460 230 325.6270 453.9549 

130 80 460 225 320.0917 452.3510 

130 80 450 230 319.0220 442.8393 

130 75 460 230 330.3796 454.6754 

130 80 460 230 323.0684 452.5138 

135 80 460 230 327.6566 453.3294 

130 85 460 230 316.1893 449.9458 

130 80 470 230 327.1149 462.1883 

130 80 460 235 326.0452 452.6765 

135 85 460 230 320.8573 450.9914 

135 80 470 230 331.9026 463.0394 

135 80 460 235 330.5337 453.4744 

130 85 470 230 319.9366 459.5087 

130 80 470 235 330.0917 462.3510 

135 85 470 230 324.8076 460.5997 

135 85 460 235 323.8821 451.1872 

135 80 470 235 334.7796 463.1844 

130 85 470 235 323.0630 459.7272 

135 85 470 235 327.8324 460.7956 

140 85 470 235 332.3516 461.7150 

135 90 470 235 321.3077 458.0384 

135 85 480 235 331.7827 470.4039 

135 85 470 240 330.8573 460.9914 

140 90 470 235 325.8842 459.1801 

140 85 480 235 336.4942 471.3624 

140 85 470 240 335.2803 461.8913 

135 90 480 235 324.9804 467.5294 
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Table A Continued 

Primary 

Flow 

m3/hr 

Secondary 

Flow 

m3/hr 

Primary 

Inlet 

Temperature 
0C  

Secondary 

Inlet 

Temperature 
0C 

Primary 

Outlet 

Temperature 
0C 

Secondary 

Outlet 

Temperature 
0C 

135 90 470 240 324.4714 458.2929 

135 85 480 240 334.8076 470.5997 

140 90 480 235 329.7516 468.7197 

140 90 470 240 328.9505 459.4103 

140 85 480 240 339.4229 471.5387 

135 90 480 240 328.1441 467.7839 

140 90 480 240 332.8179 468.9499 

145 90 480 240 337.2631 469.965 

140 95 480 240 326.6215 466.0314 

140 90 490 240 336.6853 478.4895 

140 90 480 245 335.8842 469.1801 

145 95 480 240 331.1062 467.2589 

145 90 490 240 341.3157 479.5469 

145 90 480 245 340.2368 470.1741 

140 95 490 240 330.2307 475.4494 

140 95 480 245 329.8169 466.3225 

140 90 490 245 339.7516 478.7197 

145 95 490 240 334.9023 476.7281 

145 95 480 245 334.2082 467.5244 

145 90 490 245 344.2894 479.7559 

140 95 490 245 333.4261 475.7404 

145 95 490 245 338.0043 476.9935 

150 95 490 245 342.3729 478.0954 

145 100 490 245 332.1109 473.9391 

145 95 500 245 341.8004 486.4626 

145 95 490 250 341.1062 477.2589 

150 100 490 245 336.5052 475.2422 

150 95 500 245 346.3473 487.6095 

150 95 490 250 345.3857 478.3383 

145 100 500 245 335.6665 483.2836 

145 100 490 250 335.3332 474.2669 

145 95 500 250 344.9023 486.7281 

150 100 500 245 340.2401 484.6399 

150 100 490 250 339.6377 475.5435 

150 95 500 250 349.3601 487.8524 

145 100 500 250 338.8887 483.6113 
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Table B Presents the predicted primary and secondary sodium outlet temperature 

temperatures with respect to primary and secondary sodium inlet temperatures and  

primary and secondary flow for test samples of Intermediate Heat Exchanger of 

Fast Breeder Test Reactor 

Table B 

Primary 

Flow 

m3/hr 

 

  

 

 

Secondary 

Flow 

m3/hr 

 

 

 

 

Primary 

Inlet 

Temperature 
0C 

 

 

  

Secondary 

Inlet 

Temperature 
0C 

 

 

 

Primary 

Outlet 

Temperature 
0C 

(Desired 

Output) 

  

Secondary 

Outlet 

Temperature 
0C 

(Desired 

Output) 

 

Primary 

Outlet 

Temperature 
0C 

(Actual 

Output) 

 

Secondary 

Outlet 

Temperature 
0C 

(Actual 

Output) 

 

100 55 400 205 293.6761 398.316162 293.8872 398.3713 

105 55 410 210 305.9740 408.595032 306.1547 408.6037 

105 60 420 210 301.5491 417.289062 301.9362 417.2373 

110 65 420 215 301.0424 416.312866 301.0706 416.5668 

115 65 430 220 313.1159 426.794922 313.2534 426.8904 

115 70 440 220 309.2656 434.777893 309.6465 435.2324 

120 75 440 225 309.6597 433.544495 309.8797 434.2891 

125 75 450 230 321.4693 444.217773 321.7333 444.0524 

125 80 460 230 318.2056 451.553711 318.3877 451.7146 

130 85 460 235 319.3156 450.164398 319.4108 450.0202 
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Annexure 2 

Table C presents the predicted reactor power with respect to control and safety rod 

(CSR) positions for training samples of Neutronics System 

Table C 

Sl 

No. 

CSR1 

in 

mm 

CSR2 

in 

mm 

CSR3 

in 

mm 

CSR4 

in 

mm 

CSR5 

in 

mm 

CSR6 

in 

mm 

CSR7 

in 

mm 

CSR8 

in 

mm 

CSR9 

in 

mm 

Reactor Power in 

Megawatt 

1 490 491 492 493 494 495 496 497 498 1095.810 

2 491 492 493 494 495 496 497 498 499 1058.816 

3 492 493 494 495 496 497 498 499 500 1000.518 

4 493 494 495 496 497 498 499 500 501 929.951 

5 494 495 496 497 498 499 500 501 502 868.705 

6 495 496 497 498 499 500 501 502 503 809.542 

7 496 497 498 499 500 501 502 503 504 753.325 

8 497 498 499 500 501 502 503 504 505 699.312 

9 498 499 500 501 502 503 504 505 506 647.915 

10 500 501 502 503 504 505 506 507 508 538.551 

11 501 502 503 504 505 506 507 508 509 515.124 

12 502 503 504 505 506 507 508 509 510 470.613 

13 503 504 505 506 507 508 509 510 511 429.820 

14 504 505 506 507 508 509 510 511 512 396.383 

15 506 507 508 509 510 511 512 513 514 341.543 

16 507 508 509 510 511 512 513 514 515 316.716 

17 508 509 510 511 512 513 514 515 516 294.660 

18 509 510 511 512 513 514 515 516 517 275.102 

19 510 511 512 513 514 515 516 517 518 257.916 

20 512 513 514 515 516 517 518 519 520 229.686 

21 513 514 515 516 517 518 519 520 521 218.990 

22 514 515 516 517 518 519 520 521 522 207.111 

23 515 516 517 518 519 520 521 522 523 199.394 

24 516 517 518 519 520 521 522 523 524 191.730 

25 518 519 520 521 522 523 524 525 526 179.122 

26 519 520 521 522 523 524 525 526 527 173.950 

27 520 521 522 523 524 525 526 527 528 169.342 

28 521 522 523 524 525 526 527 528 529 164.837 

29 522 523 524 525 526 527 528 529 530 161.644 

30 524 525 526 527 528 529 530 531 532 155.830 

31 525 526 527 528 529 530 531 532 533 152.924 

32 526 527 528 529 530 531 532 533 534 150.576 

33 527 528 529 530 531 532 533 534 535 148.680 

34 528 529 530 531 532 533 534 535 536 146.526 
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Table C Continued 

Sl 
No. 

CSR1 
in 

mm 

CSR2 
in 

mm 

CSR3 
in 

mm 

CSR4 
in 

mm 

CSR5 
in 

mm 

CSR6 
in 

mm 

CSR7 
in 

mm 

CSR8 
in 

mm 

CSR9 
in 

mm 

Reactor Power in 

Megawatt 

35 529 530 531 532 533 534 535 536 537 144.772 

36 530 531 532 533 534 535 536 537 538 143.170 

37 531 532 533 534 535 536 537 538 539 141.708 

38 532 533 534 535 536 537 538 539 540 140.230 

39 533 534 535 536 537 538 539 540 541 139.118 

40 534 535 536 537 538 539 540 541 542 137.856 

41 535 536 537 538 539 540 541 542 543 136.809 

42 536 537 538 539 540 541 542 543 544 135.944 

43 537 538 539 540 541 542 543 544 545 134.934 

44 538 539 540 541 542 543 544 545 546 134.184 

45 539 540 541 542 543 544 545 546 547 132.394 

46 540 541 542 543 544 545 546 547 548 132.577 

47 541 542 543 544 545 546 547 548 549 132.040 

48 542 543 544 545 546 547 548 549 550 131.250 

49 543 544 545 546 547 548 549 550 551 130.641 

50 544 545 546 547 548 549 550 551 552 130.134 

51 545 546 547 548 549 550 551 552 553 129.537 

52 546 547 548 549 550 551 552 553 554 129.084 

53 547 548 549 550 551 552 553 554 555 128.546 

54 548 549 550 551 552 553 554 555 556 128.048 

55 549 550 551 552 553 554 555 556 557 127.671 

56 550 551 552 553 554 555 556 557 558 127.296 

57 551 552 553 554 555 556 557 558 559 126.909 

58 552 553 554 555 556 557 558 559 560 126.550 

59 553 554 555 556 557 558 559 560 561 126.196 

60 554 555 556 557 558 559 560 561 562 125.828 

61 555 556 557 558 559 560 561 562 563 125.508 

62 556 557 558 559 560 561 562 563 564 125.265 

63 557 558 559 560 561 562 563 564 565 124.944 

64 558 559 560 561 562 563 564 565 566 124.640 

65 559 560 561 562 563 564 565 566 567 124.370 

66 560 561 562 563 564 565 566 567 568 124.114 

67 561 562 563 564 565 566 567 568 569 123.898 

68 562 563 564 565 566 567 568 569 570 123.664 

69 563 564 565 566 567 568 569 570 571 123.460 

70 564 565 566 567 568 569 570 571 572 123.245 

71 565 566 567 568 569 570 571 572 573 123.016 

72 566 567 568 569 570 571 572 573 574 122.786 
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Table C Continued 

 

 

  

Sl 
No. 

CSR1 
in 

mm 

CSR2 
in 

mm 

CSR3 
in 

mm 

CSR4 
in 

mm 

CSR5 
in 

mm 

CSR6 
in 

mm 

CSR7 
in 

mm 

CSR8 
in 

mm 

CSR9 
in 

mm 

Reactor Power in 

Megawatt 

73 567 568 569 570 571 572 573 574 575 122.593 

74 568 569 570 571 572 573 574 575 576 122.410 

75 569 570 571 572 573 574 575 576 577 122.230 

76 570 571 572 573 574 575 576 577 578 122.038 

77 571 572 573 574 575 576 577 578 579 121.912 

78 572 573 574 575 576 577 578 579 580 121.770 

79 573 574 575 576 577 578 579 580 581 121.574 

80 574 575 576 577 578 579 580 581 582 121.444 

81 575 576 577 578 579 580 581 582 583 121.295 

82 576 577 578 579 580 581 582 583 584 121.154 

83 577 578 579 580 581 582 583 584 585 121.002 

84 578 579 580 581 582 583 584 585 586 120.886 

85 579 580 581 582 583 584 585 586 587 120.770 

86 580 581 582 583 584 585 586 587 588 120.619 

87 581 582 583 584 585 586 587 588 589 120.525 

88 582 583 584 585 586 587 588 589 590 120.405 

89 583 584 585 586 587 588 589 590 591 120.278 

90 584 585 586 587 588 589 590 591 592 120.168 

91 585 586 587 588 589 590 591 592 593 120.070 

92 586 587 588 589 590 591 592 593 594 119.975 

93 587 588 589 590 591 592 593 594 595 119.858 

94 588 589 590 591 592 593 594 595 596 119.757 

95 589 590 591 592 593 594 595 596 597 119.666 
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Table D presents the predicted reactor power with respect to control and safety rod 

positions for test samples of Neutronics System 

Table D 

CSR

1 in 

mm 

 
 

 

CSR

2 in 

mm 

 
 

 

CSR

3 in 

mm 

 
 

 

CSR4 

in mm 

 

 
 

 

CSR5 

in mm 

 

 
 

 

CSR6 

in mm 

 

 
 

 

CSR7 

in mm 

 

 
 

 

CSR

8 in 

mm 

 
 

 

CSR9 

in mm 

 

 
 

 

Reactor 

Power in 

Megawatt 

(Desired 
Output) 

 

Reactor 

Power in 

Megawatt 

(Actual 
Output) 

 

499 500 501 502 503 504 505 506 507 578.160 578.962 

505 506 507 508 509 510 511 512 513 356.209 355.928 

511 512 513 514 515 516 517 518 519 236.559 235.332 

517 518 519 520 521 522 523 524 525 182.209 181.884 

523 524 525 526 527 528 529 530 531 157.050 157.179 
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Annexure 3 

Table E presents the predicted control and safety rod withdrawal event output with 

respect to effective (Safety Control Rod Accelerated Movement) SCRAM 

parameters for training samples 

Table E 

 Lin P 

Megawatt 

CSA  
0
K

 Output 

0 1250 850.0 0 

0.7 1253 850.0 0 

1.4 1256 850.0 0 

2.2 1259 850.0 0 

2.9 1262 850.0 0 

3.5 1265 850.1 0 

4.2 1268 850.1 0 

4.7 1271 850.1 0 

5.5 1274 850.1 0 

6.0 1277 850.2 0 

6.5 1280 850.2 0 

7.2 1283 850.2 0 

7.7 1286 850.3 0 

8.2 1289 850.3 0 

8.8 1292 850.4 0 

9.2 1295 850.5 0 

9.6 1298 850.6 0 

10.0 1301 850.7 1 

10.4 1304 850.8 1 

10.9 1307 850.9 1 

11.3 1310 851.0 1 

12.0 1313 851.2 1 

12.4 1316 851.4 1 

12.8 1319 851.5 1 

13.2 1322 851.6 1 

13.6 1325 851.8 1 

0 1328 852.0 0 

0 1331 852.4 0 

0 1334 852.8 0 

0 1337 853.2 0 

0 1340 853.6 0 

0 1343 854.0 0 

0 1346 854.4 0 

0 1349 854.8 0 

0 1352 855.2 0 

0 1355 856.0 0 

0 1358 856.4 0 

0 1361 856.8 0 

0 1364 857.2 0 

0 1367 857.6 0 

0 1370 858.0 0 

0 1373 859.2 0 
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Table E Continued 

 Lin P 

Megawatt 
CSA  

0
K

 Output 

0 1376 859.6 1 

0 1379 859.6 1 

0 1382 859.6 1 

0 0 859.6 0 

0 0 859.6 0 

0 0 859.6 0 

0 0 860.0 1 

0 0 860.4 1 

0 0 860.8 1 

0 0 861.2 1 

0 0 861.6 1 

 

 

                     = reactivity 

                     Lin P= Linear Power  

                     CSA =central subassembly temperature 
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Table F presents the predicted control and safety rod withdrawal event output with 

respect to effective (Safety Control Rod Accelerated Movement) SCRAM 

parameters for test samples 

Table F 

 Lin P 

Megawatt 
CSA  

0
K

 Desired 

Output 

Actual 

Output 

9.6 1298 850.6 0 0.020912 

10.4 1304 850.8 1 1.000000 

0 1382 859.6 1 0.991220 

0 0 859.6 0 -0.010640 

0 0 861.2 1 1.000000 
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Annexure 4 

Table G presents the predicted primary sodium pump trip event output with respect 

to effective (Safety Control Rod Accelerated Movement) SCRAM parameters for 

training samples 

Table G 

P/Q rpmNP  CSA
0
K

 
CSA

0
K

 
M

0
K

 Output 

0.00 590 853 423 433 0 

0.10 590 853 423 433 0 

0.15 586 853 423 433 0 

0.20 584 853 423 433 0 

0.30 575 853 423 435 0 

0.35 570 854 424 435 0 

0.40 565 854 424 435 0 

0.45 560 855 425 436 1 

0.50 535 855 425 436 1 

0.60 525 857 427 437 1 

0.65 520 858 428 438 0 

0.70 515 859 429 438 0 

0.80 510 861 431 439 0 

1.00 495 863 433 440 1 

1.05 490 864 434 441 1 

1.10 488 865 435 442 0 

1.12 486 865 435 442 0 

1.15 485 865 435 443 1 

1.20 480 866 436 443 1 

1.30 474 869 439 444 1 

1.35 470 870 440 445 1 

1.40 466 871 441 446 1 

1.45 462 872 442 447 1 

1.50 458 873 443 448 1 

1.55 454 874 444 449 1 

1.60 450 875 445 450 1 

1.65 446 876 446 451 1 

1.70 442 877 447 452 1 

1.75 436 878 448 453 1 

1.80 433 879 449 454 1 

1.85 430 880 450 455 1 

1.90 427 881 451 456 1 

1.95 425 882 452 457 1 

2.00 422 883 453 458 1 

2.05 420 884 454 459 1 

2.10 417 885 455 460 1 

2.15 415 886 456 461 1 

2.20 412 887 457 462 1 

2.25 410 888 458 463 1 

2.30 407 889 459 464 1 

2.35 405 890 460 465 1 

2.40 402 891 461 466 1 

2.45 400 892 462 467 1 
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Table G Continued 

P/Q rpmNP  CSA
0
K

 
CSA

0
K

 
M

0
K

 Output 

2.50 398 893 463 468 1 

2.55 396 894 464 469 1 

2.60 393 895 465 470 1 

2.65 391 896 466 471 1 

2.70 390 897 467 472 1 

2.75 388 900 470 473 1 

 

 

                     P/Q=power to flow ratio  

                     Lin P= Linear Power  

                     CSA =central subassembly temperature 

                     
PN =pump Speed in revolution per minute in 0

K
 

                    CSA = 
change in central subassembly temperature in 

0
K 

        M = mean core temperature in 0
K
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Table H presents the predicted primary sodium pump trip event output with respect 

to effective (Safety Control Rod Accelerated Movement) SCRAM parameters for 

test samples 

Table H 

P/Q rpmNP  CSA 0
K

 CSA 0
K

 M
0
K

 Desired 

Output 

Actual 

Output 

0.25 580 853.5 423.5 434.5 0 0.06789 

0.55 530 856.2 426.2 437.0 1 0.99999 

1.25 476 868.0 438.0 444.0 1 0.99998 

2.30 407 889.0 459.0 464.0 1 1.00000 
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Annexure 5 

Table I presents the predicted events(primary sodium pump trip, uncontrolled withdrawal of control and safety rod, primary 

pump seizure and primary pipe rupture) output with respect to effective (Safety Control Rod Accelerated Movement) 

SCRAM parameters for training samples 

Table I 
Reactivity 

P/Q 

Linp 

(Megawatt) 

Theta(CSA) 

k 

DeltaTheta(CSA) 

k 

DeltaThetaM 

k 

Np(rpm) OP1 OP2 OP3 OP4 

0.3 0.910 1260 853.0 423.0 433.0 590 1 0 0 0 

0.5 0.915 1270 853.0 423.0 433.0 586 1 0 0 0 

1.2 0.920 1280 853.0 423.0 433.0 584 1 0 0 0 

1.3 0.925 1285 853.5 423.5 434.5 580 1 0 0 0 

1.3 0.930 1290 853.7 423.7 435.0 575 1 0 0 0 

1.4 0.935 1294 854.5 424.5 435.0 570 1 0 0 0 

1.4 0.940 1296 854.2 424.2 435.5 565 1 0 0 0 

1.5 0.945 1300 855.0 425.0 436.0 560 1 0 0 0 

1.5 1.000 600 862.0 432.0 439.5 505 1 0 0 0 

1.5 1.100 300 863.0 433.0 440.0 495 1 0 0 0 

1.5 1.050 125 864.0 434.0 441.0 490 1 0 0 0 

1.5 1.150 125 865.0 435.0 443.0 485 1 0 0 0 

1.5 1.200 125 866.0 436.0 443.5 480 1 0 0 0 

1.5 1.250 125 868.0 438.0 444.0 476 1 0 0 0 

1.5 1.300 125 869.0 439.0 444.5 474 1 0 0 0 

1.5 1.350 125 870.0 440.0 445.0 470 1 0 0 0 

1.5 1.400 125 871.0 441.0 446.0 466 1 0 0 0 

1.5 1.450 125 872.0 442.0 447.0 462 1 0 0 0 

1.5 1.500 125 873.0 443.0 448.0 458 1 0 0 0 

1.5 1.550 125 874.0 444.0 449.0 454 1 0 0 0 

1.5 1.600 125 875.0 445.0 450.0 450 1 0 0 0 

1.5 1.650 125 876.0 446.0 451.0 446 1 0 0 0 

1.5 1.700 125 877.0 447.0 452.0 442 1 0 0 0 
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Table I Continued 
Reactivity 

P/Q 
Linp 
(Megawatt) 

Theta(CSA) 
k 

DeltaTheta(CSA) 
k 

DeltaThetaM 
k 

Np(rpm) OP1 OP2 OP3 OP4 

1.5 1.750 125 878.0 448.0 453.0 436 1 0 0 0 

1.5 1.800 125 879.0 449.0 454.0 433 1 0 0 0 

1.5 1.850 125 880.0 450.0 455.0 430 1 0 0 0 

1.5 1.900 125 881.0 451.0 456.0 427 1 0 0 0 

1.5 1.950 125 882.0 452.0 457.0 425 1 0 0 0 

1.5 2.050 125 884.0 454.0 459.0 420 1 0 0 0 

1.5 2.100 125 885.0 455.0 460.0 417 1 0 0 0 

1.5 2.150 125 886.0 456.0 461.0 415 1 0 0 0 

1.5 2.200 125 887.0 457.0 462.0 412 1 0 0 0 

1.5 2.250 125 888.0 458.0 463.0 410 1 0 0 0 

1.5 2.300 125 889.0 459.0 464.0 407 1 0 0 0 

1.5 2.350 125 890.0 460.0 465.0 405 1 0 0 0 

1.5 2.400 125 891.0 461.0 466.0 402 1 0 0 0 

1.5 2.450 125 892.0 462.0 467.0 400 1 0 0 0 

1.5 2.500 125 893.0 463.0 468.0 398 1 0 0 0 

1.5 2.550 125 894.0 464.0 469.0 396 1 0 0 0 

1.5 2.600 125 895.0 465.0 470.0 393 1 0 0 0 

1.5 2.650 125 896.0 466.0 471.0 391 1 0 0 0 

1.5 2.700 125 897.0 467.0 472.0 390 1 0 0 0 

1.5 2.750 125 900.0 470.0 473.0 388 1 0 0 0 

1.0 0.904 1253 853.0 423.0 433.0 590 0 1 0 0 

1.5 0.908 1256 853.0 423.0 433.0 590 0 1 0 0 

2.5 0.918 1262 853.0 423.0 433.0 590 0 1 0 0 

3.0 0.924 1265 853.1 423.1 433.0 590 0 1 0 0 

3.5 0.928 1268 853.1 423.1 433.0 590 0 1 0 0 

4.0 0.932 1271 853.1 423.1 434.0 590 0 1 0 0 

4.5 0.936 1274 853.1 423.1 434.0 590 0 1 0 0 

5.0 0.938 1277 853.2 423.2 434.0 590 0 1 0 0 

5.5 0.944 1280 853.2 423.2 435.0 590 0 1 0 0 

6.0 0.948 1283 853.2 423.2 436.0 590 0 1 0 0 

6.5 0.953 1286 853.3 423.3 437.0 590 0 1 0 0 
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Table I Continued 
Reactivity 

P/Q 
Linp 
(Megawatt) 

Theta(CSA) 
k 

DeltaTheta(CSA) 
k 

DeltaThetaM 
k 

Np(rpm) OP1 OP2 OP3 OP4 

7.0 0.958 1289 853.3 423.3 438.0 590 0 1 0 0 

7.5 0.962 1292 853.4 423.4 439.0 590 0 1 0 0 

8.0 0.966 1295 853.5 423.5 440.0 590 0 1 0 0 

9.0 0.970 1298 853.7 423.7 441.0 590 0 1 0 0 

10.0 0.972 1301 853.9 423.9 442.0 590 0 1 0 0 

10.5 0.976 1304 854.0 424.0 444.0 590 0 1 0 0 

11.0 0.978 1307 854.2 424.2 445.0 590 0 1 0 0 

11.5 0.980 1310 854.4 424.4 446.0 590 0 1 0 0 

12.0 0.982 1313 854.5 424.5 448.0 590 0 1 0 0 

12.5 0.984 1316 854.6 424.6 450.0 590 0 1 0 0 

13.0 0.988 1322 855.0 425.0 452.0 590 0 1 0 0 

13.2 0.990 1325 855.4 425.4 454.0 590 0 1 0 0 

13.4 0.991 1328 855.8 425.8 455.0 590 0 1 0 0 

13.6 0.992 1331 856.2 426.2 456.0 590 0 1 0 0 

13.8 0.994 1334 856.6 426.6 458.0 590 0 1 0 0 

14.0 0.996 1337 857.0 427.0 459.0 590 0 1 0 0 

14.2 0.997 1340 857.4 427.4 460.0 590 0 1 0 0 

14.4 0.999 1343 857.8 427.8 461.0 590 0 1 0 0 

14.6 1.000 1346 858.2 428.2 462.0 590 0 1 0 0 

14.8 1.010 1349 859.0 429.0 463.0 590 0 1 0 0 

15.0 1.020 1352 859.4 429.4 464.0 590 0 1 0 0 

15.3 1.030 1355 859.8 429.8 465.0 590 0 1 0 0 

15.7 1.040 1358 860.2 430.2 467.0 590 0 1 0 0 

16.0 1.050 1361 860.6 430.6 468.0 590 0 1 0 0 

16.2 1.060 1364 861.0 431.0 469.0 590 0 1 0 0 

16.5 1.080 1367 862.2 432.2 470.0 590 0 1 0 0 

16.8 1.090 1370 862.6 432.6 471.0 590 0 1 0 0 

17.0 1.100 1376 862.8 432.8 472.0 590 0 1 0 0 

17.2 1.120 1376 863.0 433.0 473.0 590 0 1 0 0 

18.8 1.350 1394 865.0 435.0 482.0 590 0 1 0 0 

19.0 1.380 1397 866.4 436.4 484.0 590 0 1 0 0 

19.6 1.400 1400 867.0 437.0 485.0 590 0 1 0 0 
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Table I Continued 
Reactivity 

P/Q 
Linp 
(Megawatt) 

Theta(CSA) 
k 

DeltaTheta(CSA) 
k 

DeltaThetaM 
k 

Np(rpm) OP1 OP2 OP3 OP4 

20.0 1.440 1400 868.0 438.0 488.0 590 0 1 0 0 

0.0 0.940 1300 853.0 423.0 433.0 560 0 0 1 0 

0.2 0.980 1200 853.0 423.0 433.0 530 0 0 1 0 

0.4 1.000 1100 853.0 423.0 433.0 500 0 0 1 0 

0.7 1.100 1000 853.0 423.0 433.0 470 0 0 1 0 

1.5 1.200 800 853.0 423.0 433.0 440 0 0 1 0 

2.0 1.250 700 853.0 423.0 433.0 410 0 0 1 0 

2.8 1.300 600 854.0 424.0 434.0 380 0 0 1 0 

4.5 1.400 400 854.1 424.1 434.5 350 0 0 1 0 

5.2 1.450 300 855.0 425.0 435.0 348 0 0 1 0 

6.4 1.500 200 854.5 425.5 435.5 346 0 0 1 0 

7.6 1.540 150 856.0 426.0 436.0 344 0 0 1 0 

8.4 1.580 125 857.0 427.0 436.5 342 0 0 1 0 

10.0 1.600 125 858.0 428.0 437.0 340 0 0 1 0 

11.1 1.630 125 859.0 429.0 438.0 334 0 0 1 0 

12.0 1.680 125 860.0 430.0 439.0 330 0 0 1 0 

12.6 1.700 125 861.0 431.0 440.0 328 0 0 1 0 

13.6 1.740 125 863.0 433.0 441.0 326 0 0 1 0 

14.0 1.760 125 864.0 434.0 442.0 324 0 0 1 0 

14.8 1.780 125 865.0 435.0 443.0 322 0 0 1 0 

14.0 1.860 125 880.0 450.0 462.0 322 0 0 1 0 

13.6 1.870 125 883.0 453.0 466.0 322 0 0 1 0 

13.2 1.880 125 886.0 456.0 468.0 322 0 0 1 0 

12.8 1.890 125 890.0 460.0 470.0 322 0 0 1 0 

12.4 1.900 125 892.0 462.0 472.0 322 0 0 1 0 

12.0 1.900 125 896.0 466.0 476.0 322 0 0 1 0 

11.6 1.900 125 900.0 470.0 480.0 322 0 0 1 0 

10.4 1.900 125 904.0 476.0 482.0 322 0 0 1 0 

10.2 1.900 125 908.0 480.0 486.0 322 0 0 1 0 

10.0 1.900 125 912.0 482.0 490.0 322 0 0 1 0 

9.2 1.900 125 916.0 486.0 494.0 322 0 0 1 0 

9.0 1.900 125 920.0 490.0 498.0 322 0 0 1 0 
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Table I Continued 
Reactivity 

P/Q 
Linp 
(Megawatt) 

Theta(CSA) 
k 

DeltaTheta(CSA) 
k 

DeltaThetaM 
k 

Np(rpm) OP1 OP2 OP3 OP4 

8.0 1.900 125 926.0 496.0 504.0 322 0 0 1 0 

2.0 1.000 1255 853.0 423.0 433.0 560 0 0 0 1 

4.0 1.100 1260 853.0 423.0 433.0 322 0 0 0 1 

6.0 1.200 1265 853.0 423.0 433.0 322 0 0 0 1 

8.0 1.250 1270 853.0 423.0 433.0 322 0 0 0 1 

9.0 1.300 1275 853.0 423.0 433.0 322 0 0 0 1 

10.0 1.350 1280 853.0 423.0 433.0 322 0 0 0 1 

13.0 1.450 1300 854.0 424.0 433.0 322 0 0 0 1 

14.0 1.500 1200 854.1 424.1 433.0 322 0 0 0 1 

15.0 1.540 1100 855.0 425.0 434.5 322 0 0 0 1 

16.0 1.600 1000 854.5 425.5 434.5 322 0 0 0 1 

17.0 1.600 900 856.0 426.0 434.5 322 0 0 0 1 

18.0 1.600 800 857.0 427.0 435.0 322 0 0 0 1 

19.0 1.600 700 858.0 428.0 436.0 322 0 0 0 1 

20.0 1.600 600 859.0 429.0 438.0 322 0 0 0 1 

21.0 1.600 500 860.0 430.0 440.0 322 0 0 0 1 

21.0 1.600 450 861.0 431.0 441.0 322 0 0 0 1 

21.0 1.600 350 862.0 432.0 441.5 322 0 0 0 1 

20.0 1.600 250 863.0 423.0 442.0 322 0 0 0 1 

17.0 1.600 125 872.0 442.0 451.0 322 0 0 0 1 

16.5 1.600 125 874.0 444.0 452.0 322 0 0 0 1 

16.0 1.600 125 877.0 447.0 453.0 322 0 0 0 1 

15.5 1.600 125 880.0 450.0 454.0 322 0 0 0 1 

15.0 1.600 125 883.0 453.0 456.0 322 0 0 0 1 

14.5 1.600 125 886.0 456.0 457.0 322 0 0 0 1 

14.0 1.600 125 890.0 460.0 459.0 322 0 0 0 1 

13.5 1.600 125 892.0 462.0 460.0 322 0 0 0 1 

13.0 1.600 125 896.0 466.0 461.0 322 0 0 0 1 

12.0 1.600 125 904.0 476.0 463.0 322 0 0 0 1 

11.5 1.600 125 908.0 480.0 465.0 322 0 0 0 1 

10.0 1.600 125 912.0 482.0 466.0 322 0 0 0 1 

9.0 1.600 125 916.0 486.0 467.0 322 0 0 0 1 
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Table I Continued 
Reactivity 

P/Q 

Linp 

(Megawatt) 

Theta(CSA) 

k 

DeltaTheta(CSA) 

k 

DeltaThetaM 

k 

Np(rpm) OP1 OP2 OP3 OP
4 

           

8.0 1.600 125 920.0 490.0 469.0 322 0 0 0 1 

7.0 1.600 125 922.0 492.0 170.0 322 0 0 0 1 

 

 

 

 

 

 

 

                     = reactivity 

                     P/Q=power to flow ratio  

                     Lin P= Linear Power  

                     CSA =central subassembly temperature 

                     
PN =pump Speed in revolution per minute in 0

K
 

                    CSA = 
change in central subassembly temperature in 

0
K 

        M = mean core temperature in 0
K  

                    OP=Output 

                    DOP=Desired Output 

                    AOP=Actual Output 
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Table J presents the predicted events(primary sodium pump trip, uncontrolled withdrawal of control and safety rod, primary 

pump seizure and primary pipe rupture) output with respect to effective (Safety Control Rod Accelerated Movement) 

SCRAM parameters for test samples 

Table J 

 P/Q 

 

 

Lin P 

 

 

CSA 0
K

 

 

CSA 0
K

 

 

CSA 0
K

 

 

Np DOP1 DOP2 DOP3 DOP4 AOP1 AOP2 AOP3 AOP4 

1.5 0.95 1310 855.7 425.7 436.5 535 1 0 0 0 0.8846 -0.1184 0.2154 0.2146 

1.5 0.96 1250 857.0 427.0 437.5 525 1 0 0 0 0.8782 -0.1188 0.2613 0.1931 

1.5 0.97 1200 858.0 428.0 438.0 520 1 0 0 0 0.8528 -0.1175 0.2975 0.1589 

1.5 0.98 1000 859.5 429.5 438.5 515 1 0 0 0 0.7481 -0.0726 0.2506 0.0313 

1.5 0.99 800 861.0 431.0 439.0 510 1 0 0 0 0.7866 0.1067 0.1006 -0.019 

17.4 1.16 1379 863.2 433.2 474.0 590 0 1 0 0 -

0.0266 1.0133 0.0282 -0.0092 

17.7 1.20 1382 863.4 433.4 476.0 590 0 1 0 0 -

0.0267 1.0222 0.0283 -0.0123 

18.0 1.24 1385 863.6 433.6 479.0 590 0 1 0 0 -

0.0269 1.0299 0.0282 -0.0151 

18.2 1.28 1388 863.8 433.8 480.0 590 0 1 0 0 -

0.0268 1.0382 0.0271 -0.0181 

18.4 1.30 1391 864.6 434.6 481.0 590 0 1 0 0 -

0.0272 1.0420 0.0293 -0.0201 

15.0 1.80 125 867.0 437.0 445.0 322 0 0 1 0 -

0.1241 0.0011 0.8744 0.0559 

15.4 1.82 125 868.0 438.0 447.0 322 0 0 1 0 -
0.1238 0.0374 0.8265 0.0614 

15.3 1.83 125 870.0 440.0 450.0 322 0 0 1 0 -

0.1239 0.0472 0.836 0.0547 

14.9 1.85 125 874.0 444.0 456.0 322 0 0 1 0 -

0.1242 0.0474 0.9021 0.0284 

14.8 1.85 125 877.0 447.0 458.0 322 0 0 1 0 -

0.1238 0.0759 0.837 0.0488 

 



                                                                                                                                                                                                                                                 

168 

 

Table J continued 

 P/Q 
 

 

Lin P 
 

 

CSA 0
K

 

 

CSA 0
K

 

 

CSA 0
K

 

 

Np DOP1 DOP2 DOP3 DOP4 AOP1 AOP2 AOP3 AOP4 

19.5 1.60 175 864.0 434.0 443.0 322 0 0 0 1 -

0.0345 -0.0797 0.003 1.0446 

19.0 1.60 125 865.0 435.0 444.0 322 0 0 0 1 -

0.0367 -0.0460 -0.0139 1.0397 

18.5 1.60 125 867.0 437.0 446.0 322 0 0 0 1 -

0.0329 -0.0377 -0.0177 1.0304 

18.0 1.60 125 868.0 438.0 447.0 322 0 0 0 1 -

0.0256 -0.0275 -0.0230 1.0105 

17.5 1.60 125 870.0 440.0 449.0 322 0 0 0 1 -

0.0222 -0.0191 -0.0260 0.9990 
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