
METHODOLOGY AND ESTIMATION OF SOFTWARE

RELIABILITY FOR SAFETY SYSTEMS

By

 D.Thirugnana Murthy

Enrollment Number: ENGG 02200804015

 Indira Gandhi Centre for Atomic Research, Kalpakkam, India

A thesis submitted to the Board of studies in Engineering Sciences

In partial fulfillment of requirements
For the Degree of

DOCTOR OF PHILOSOPHY
 of

HOMI BHABHA NATIONAL INSTITUTE
MUMBAI, INDIA.

Dec 2013

DEDICATIONS

To

K. Doraiswamy

(Friend, Philosopher and Father)

&

B. Mangalakshmi

(Mother, Who had more confidence in me than myself)

ACKNOWLEDGEMENTS

My Sincere thanks

to all those people

I came across

I

CONTENTS

Title Page Number

SYNOPSIS... V

LIST OF FIGURES...XII

LIST OF TABLES... XIII

CHAPTER 1. INTRODUCTION... 1

1.1 Foreword .. 1

1.2. Motivation ... 6

1.3. Objectives and Scope of the Present Research Work ... 7

1.4. Organisation of the thesis.. 8

CHAPTER 2. SOFTWARE LIFE CYCLE MODEL FOR SAFETY SYSTEMS....... 10

2.1 Introduction .. 10

2.2 Available software life cycle models ... 10

2.2.1 Waterfall model ... 10

2.2.2 Spiral model ... 11

2.2.3. Iterative and incremental development... 11

2.2.4. Agile development .. 12

2.2.5. Code and fix.. 12

2.3. Model suggested for NPP.. 12

CHAPTER 3. ISSUES AND IMPORTANCE OF SOFTWARE TESTING WITH
RESPECT TO RELIABILITY .. 17

3.1 Introduction .. 17

3.2 Software Testing .. 18

3.2.1 White Box Testing ... 18

3.2.2 The Nature of Software Defects .. 18

3.2.3 Basis Path Testing.. 19

3.2.4 Flow Graphs... 19

3.2.5 The Basis Set ... 19

II

3.3 Deriving Test Cases ... 20

3.4 Loop Testing .. 20

3.5. Other White Box Techniques.. 21

3.6. Black Box Testing... 21

3.7 Equivalence Partitioning .. 22

3.8 Boundary Value Analysis (BVA) .. 23

3.9 Mutation testing ... 23

3.10 Fault injection testing... 25

3.11 Testing of Safety systems of Fast reactor .. 27

3.12 Inferences ... 33

CHAPTER 4. EVALUATION OF SOFTWARE METRICS AND TOOL 35

4.1 Evaluation of Software Metrics ... 35

4.1.1 Cyclomatic Complexity (CC) .. 35

4.1.2 Nesting Level ... 35

4.1.3 Comment to Code ratio.. 36

4.1.4 Ternary Operator.. 36

4.1.5 Dynamic Memory .. 36

4.1.6 Goto and Continue Statements .. 36

4.1.7 Number of code lines in a function.. 37

4.1.8 Recursive functions.. 37

4.1.9 Unused functions and Variables .. 37

4.2 Software Quality Metrics IEEE-1061 standard .. 37

4.3 Thirty Software Engineering Measures .. 39

4.3 Static Analyser Tool... 40

4.4 Inferences ... 43

CHAPTER 5. VERIFICATION AND VALIDATION PROCEDURE........................ 46

III

5.1 Introduction .. 46

5.2. Verification procedure for Custom-Built Systems (CBS) .. 47

5.2.1 Documents submitted .. 47

5.2.2 Procedure for Verification ... 48

5.2.3 System Requirements Specification (SyRS) Review .. 49

5.2.4 System Architecture Review (SAR) .. 50

5.2.5 Software Requirement Specification (SRS) Review ... 51

5.2.6 Software Design Description (SDD) Review .. 51

5.2.7 Software Implementation Review ... 51

5.2.8 System Integration Review.. 52

5.2.9 System Validation Review... 53

5.3 Inferences ... 53

CHAPTER 6. SOFTWARE RELIABILITY MODELING... 56

6.1 Introduction .. 56

6.2 Types and Approaches ... 63

6.3 Static Model ... 65

6.3.1 Phase-based Model: Gaffney and Davis .. 66

6.3.2 Predictive Development Life Cycle Model: Dalal and Ho.................................. 66

6.4 Dynamic Models: Reliability growth models for testing and operational use........... 67

6.4.1 A General Class of Models .. 67

6.4.2 Assumptions Underlying the Reliability Growth Models 67

6.5 Software Reliability Growth Modeling.. 68

6.5.1 A Generalized Non-homogeneous Poisson Process Model................................. 68

6.6 A Reliability Model with Considerations of Random Field Environments............... 69

6.7 Precautions in Using Reliability Growth Models .. 70

6.8 Reliability Growth Modeling with Covariates... 71

6.9 Time to Stop Software Testing .. 71

IV

6.10 Inferences ... 72

CHAPTER 7. ESTIMATION OF SOFTWARE RELIABILITY................................. 75

7.1 Introduction .. 75

7.2 Reliability Estimation... 76

7.3 Typical Estimation for Safety Critical System... 83

7.4 Inferences ... 88

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 89

8.1 Conclusions .. 89

8.2. Scope For Future Work ... 90

APPENDIX – I: Definitions and Abbreviations ... 91

APPENDIX – II: Checklist for System Requirement Review....................................... 95

APPENDIX – III: Checklist for System Architecture Review.................................... 101

APPENDIX – IV: Check list for Software Requirement Specification Review 106

APPENDIX – V: Checklist for Detailed Design Verification...................................... 111

APPENDIX – VI: Checklist for System Integration Verification............................... 114

APPENDIX – VII: Checklist for System Validation Review 115

PUBLICATIONS BASED ON THE THESIS... 117

V

SYNOPSIS

I. INTRODUCTION

Software design, development and testing have become very intricate with the advent of

modern highly distributed systems, networks, middleware and interdependent applications.

The demand for complex software systems has increased more rapidly than the ability to

design, implement, test, and maintain them, and hence the reliability of software systems

has become a major concern. Today software is being deployed in safety applications due

to the advancement of technology. In nuclear power plants (NPP), many systems are being

used in safety critical and safety related applications, which demand a very high reliability

[1]. As software becomes an increasingly important part of many different types of systems

that perform complex and critical functions in many applications, such as defense, nuclear

reactors, etc., the risk and impacts of software-caused failures have increased. There is now

a general agreement on the need to increase software reliability by eliminating errors made

during software development and maintenance.

Software is a collection of instructions or statements in a computer language. It is also

called a computer program, or simply a program. A software program is designed to

perform a set of specified functions. Upon execution of a program, an input state is

translated into an output state. An input state can be defined as a combination of input

variables or a typical transaction to the program. When the actual output deviates from the

expected output, a failure occurs. It is estimated that 60-90% of current computer errors is

from software faults [2].

VI

Software reliability is defined as the probability of failure-free software operations in a

specified environment [3]. The software reliability field discusses ways of quantifying it

and using it for improvement and control of the software development process. A number

of standards have emerged in the area of developing reliable software consistently and

efficiently [4]. The Software Engineering Institute has established a standard called the

software Capability Maturity Model (CMM) that scores organizations on multiple criteria

and gives a numeric grade from one to five.

The Software faults are most often caused by the requirement and design faults. The

requirement fault can be incomplete requirement or interpreted in different or wrong way.

The incomplete / missing of requirement may be covered under “Adequacy” check. An

ambiguous statement may lead to wrong interpretation. It generally happens because of

user’s “implicit specification”, i.e., user assumes it is obvious. Design faults occur when a

designer either misunderstands a specification or simply makes a mistake. Software faults

are common for the simple reason that the complexity in modern systems is often pushed

into the software part of the system. Software reliability is operationally measured by the

number of field failures, or failures seen in development, along with a variety of ancillary

information. The ancillary information includes the time at which the failure was found,

part of the software where it was found, the state of software at that time, the nature of the

failure, time of deployment, etc. Most of the software quality improvement efforts are

triggered by lack of software reliability. Thus, software managers recognize the need for

systematic approaches to measure and assure software reliability, and devote a major share

of project development resources to this. Formally, software reliability engineering is the

field that quantifies the operational behavior of software based systems with respect to user

VII

requirements with bearing on reliability. It includes data collection on reliability, statistical

estimation, metrics and attributes of product architecture, design, software development,

time of deployment and the operational environment. Besides its use for operational

decisions like deployment, it includes guiding software architecture, design, development

and testing. Most of the testing process is driven by software reliability concerns, and

applications of software reliability models are to improve effectiveness of testing [5].

II. MOTIVATION

From the important software disasters, it is clear that software errors cost the country

economy in rework, lost productivity and actual damages. Faulty software can also be

expensive, embarrassing, destructive and deadly. It is well recognized that assessing the

reliability of software applications is a major issue in reliability engineering [6]. Prediction

of software reliability is highly involved. Perhaps the major difficulty is that we are

concerned primarily with design faults, which is a very different situation from that tackled

by conventional hardware theory. The input values to the software modules (functions)

either internally or externally may be considered as arriving to the software randomly. So

although software failure may not be generated stochastically, it may be detected in such a

manner. Therefore, we can use stochastic models of the underlying random process that

governs the software failure [7]. Hence, for safety critical software / highly dependable

software systems the estimation of software reliability becomes prime important to

evaluate the overall system reliability with the data available on hardware reliability. The

hardware and software reliability together becomes more meaningful and useful for

predicating the system performance and availability [8].

VIII

III. OBJECTIVES AND SCOPE OF THE PRESENT WORK

The main objective of the research is the estimation of software reliability for safety

systems of Nuclear Power Plants. In case of NPP, the safety is of main concern and

systems use mainly “Structured Programming” for safety systems instead of Object

oriented or Commercially off the shelf (COTS) components [9].

In the process of assessment of reliability, the following sub-objectives are envisaged since

software reliability is more concerned with design, methodologies, practices and tools used

in the process of software development.

The sub-objectives are

(a) Development of software life cycle model for safety systems.

Assessing various life cycle models and the identification of a suitable software life cycle

model for safety systems, which ensures highly reliable software delivery is one of the

tasks of the current research.

(b) Determination of software metrics and development of software metric tool.

The identification of the software metrics that affect the reliability in terms of quality

attribute and the development of tool to evaluate the metrics from the software code is very

important.

IX

(c) Development of Software Verification and Validation (V&V) methodology.

To evolve a comprehensive methodology to be followed for V&V throughout the life cycle

to ensure quality artifacts are generated. The standards to be practiced and the detailed

audit procedures and the checklist for each stage of the development, the role of V&V

members and their independence in terms of evaluation are explained. This methodology is

for the software fused in custom built computer based systems (CBS). This V&V

procedure is developed from IEEE standard [10], NPCIL procedures on C&I system [11]

and V&V procedure [12] so that it is suited for nuclear power plants.

(d) Development of Software Reliability Model.

Software reliability measurement includes two types of models namely static and dynamic

reliability estimation, used typically in the earlier and later stages of development

respectively. A key use of the reliability models is in the area of when to stop testing. One

purpose of reliability models is to perform reliability prediction at an early stage of

software development. This activity determines future software reliability based upon

available software metrics and measures. Particularly when field failure data are not

available (e.g. software is in the design or coding stage), the metrics obtained from the

software development process and the characteristics of the resulting product can be used

to estimate the reliability of the software upon testing or delivery.

(e) Procedure for Estimation of Software Reliability.

As a part of the research, a comprehensive procedure to estimate software reliability for a

given software program coded in “C” language has been established. Robustness and

X

validation of the methodology has been demonstrated by applying it to software deployed

in safety systems of a fast reactor.

The above said sub-objectives form the basis for the estimation of software reliability for

safety systems of NPP. The current work is specifically for the software development on

Instrumentation & Control systems employed in NPP. Due to large human contribution in

the software development, the reliability calculation will have significant uncertainty. The

variations among individuals need to be properly accounted in software development in

particular during code development. The unreliability attached with Human Error

Probability is assumed to be minimal which is basically the boundary within which the

exercise has been carried out.

XI

REFERENCES

1. Design safety guide on computer based systems, Atomic Energy Regulatory Board

AERB/SG/D10 - Design Safety Guide on Safety Crtical Systems, 2002.

2. Watts S. Humphery, Managing the software process, SEI series in software

engineering, Addison Wesley Longman Inc, ISBN-981-235-916-8, 1999.

3. Sommerville, I., Software Engineering, Pearson Education, 6th Ed., 2001.

4. IEEE Standards Software Engineering, 1999 Edition volume one – four, ISBN-0-7381-

1559-2, ISBN-0-7381-1560-6, ISBN-0-7381-1561-4, ISBN-0-7381-1562-2.

5. IAEA-TECDOC-1335 Configuration Management in Nuclear Power Plants, Jan 2003,

International Atomic Energy Agencies, Vienna, ISBN 92-0-100503-2.

6. Software reliability and safety in Nuclear reactor protection systems by J. Dennis

Lawrence for U.S Nuclear Regulatory Commission. UCRL-ID-114839.

7. T.T.Soong, Fundamentals of Probability and Statistics for Engineers, State University

of New York, USA, John Wiley & Sons Ltd, ISBN –0-470-86913-7, 2004.

8. Design safety guide on computer based systems, Atomic Energy Regulatory Board

AERB/NPP – PHWR/SG/D20 - Safety Related Instrumentation & Control for

pressurized heavy water reactor based nuclear power plants, 2003.

9. Design safety guide on computer based systems, Atomic Energy Regulatory Board

AERB/SG/D25 - Computer Based systems of Pressurized Heavy water Reactor, 2001.

10. IEEE Std 1012-1998 - IEEE Standard for Software Verification and Validation, 1998.

11. NPCIL / ED-PROC - Engineering Procedure for Computer Based C&I Systems, 2003.

12. NPCIL / IVVC Proc. Version 1.0- Procedure for Independent Verification and

Validation of Computer Based C&I systems, 2003.

XII

LIST OF FIGURES

Figure 1.1 SEI - Capability Maturity Model levels .. 5

Figure 2.1 Software life cycle “V” Model .. 13

Figure 4.1 Typical output screen of the SA with Cyclomatic Complexity 40

Figure 4.2 Screen output of the SA detailing Comment to Code ratio......................... 41

Figure 4.3 Typical variation of failure intensity. .. 43

Figure 6.1 Classifications of Software Reliability Model... 57

Figure 6.2 Intensity of Failure in Normal development and Deployment.................... 60

Figure 6.3 Concatenated failure rate function for Jelinski - Moranda mod................ 65

Figure 6.4 Testing in software development cycle .. 69

Figure 6.5 Intensity of Failure in Reliability Growth model ... 70

Figure 6.6 Typical System Un-Availability ... 72

XIII

LIST OF TABLES

Table 2.1 Lifecycle in this Study versus Recommended Life-cycle in IEEE610.......... 14

Table 3.1 List of I &C Systems... 28

Table 3.2 Errors found during inspection of NPP software .. 29

Table 3.3 Sample Test Cases for I&C of Air Conditioning and Ventilation System ..32

Table 4.1 Recommended Limit Values on code.. 42

Table 5.1 Software Criticality Levels... 47

Table 5.2 Review Taskforce Committee .. 48

Table 7.1 Mapping of П factors to “Category of Levels” .. 79

Table 7.2 Template for Quality Parameters of Function... 79

Table 7.3 List of Failures for functions ... 81

Table 7.4 Software Failure Calculation for function ... 84

Table 7.5 Estimated reliability based on the number of input combinations 86

Table 7.6 Software Version history of SCS – Part I ... 87

Table 7.7 Software Version history of SCS – Part II ... 88

1

CHAPTER 1. INTRODUCTION

1.1 Foreword

Software design, development and testing have become very intricate with the advent of

modern highly distributed systems, networks, middleware and interdependent applications.

The demand for complex software systems has increased more rapidly than the ability to

design, implement, test and maintain them and hence, the reliability of software systems

has become a major concern. Today software is being deployed in safety applications due

to the advancement of technology. In a nuclear reactor, many systems are being used in

safety applications, which demand high reliability [1.1]. As software becomes an

increasingly important part of many systems that perform complex and critical functions,

such as military defense, nuclear reactors, etc., the risk and impacts of software caused

failures have increased dramatically. There is now general agreement on the need to

increase software reliability by eliminating errors made during software development [1.2].

Software is a collection of instructions or statements in a computer language also known as

a program, which is designed to perform a set of specified functions. Upon execution of a

program, an input state is translated into an output state. An input state can be defined as a

combination of input variables or a typical transaction to the program. When the actual

output deviates from the expected output, a failure occurs. The definition of failure,

however, differs from application to application and should be clearly defined in

specifications. For instance, a response time of 30s is a serious failure for air traffic

system, but acceptable for a railway ticket reservation system.

2

Within the last decade of the 20th century and the first few years of the 21st century, many

reported system outages or machine crashes were traced back to computer software

failures. For example, in the health industry, the Therac-25 radiation therapy machine was

hit by software errors in its sophisticated control systems and claimed several patients’

lives in 1985 and 1986 [1.2]. In the telecommunications industry, known for its high

reliability, the nation wide network of a major carrier suffered with embarrassing network

outage on 15 January 1990, due to a software problem [1.3]. In 1991, a series of local

network outages occurred in a number of US-cities due to software problems in central

office switches [1.2]. Software failures have impaired several high visibility programs in

space, telecommunications, defense and health industries. The Mars Climate Orbiter

crashed in 1999. The Mars Climate Orbiter Mission Failure Investigation Board

concluded, the ‘root cause’ of the loss of the spacecraft, was the failed translation of

English units into metric units in a segment of ground-based, navigation-related mission

software [1.3]. Besides the loss of money, it delayed the space program by more than a

year. Current versions of the Osprey aircraft, developed at a cost of billions of dollars are

not deployed because of software-induced field failures. The costly “Y2K” problem

resulted because of a design failure, a problem that occupied tens of thousands of

programmers and costs running to tens of billions of dollars [1.3].

Software faults are most often caused by requirement and design faults that occur when a

designer either misunderstands a specification or simply makes a mistake. Software faults

are common for the simple reason that the complexity in modern systems is often pushed

into the software part of the system. It is estimated that 60-90% of current computer errors

is from software faults [1.4]. Software faults may also occur from hardware where these

3

faults are usually transitory in nature and can be masked using a combination of current

software and hardware fault tolerance techniques.

The current assumption is that software cannot be made without bugs. This assumption

may be true, but software does not have to be as traditional buggy as it is now. It is well

recognized that assessing the reliability of software applications is a major issue in

reliability engineering. Predicting software reliability is not easy. Perhaps the major

difficulty is that we are concerned primarily with design faults, which is a very different

situation from that tackled by conventional hardware theory. A fault (or bug) refers to a

manifestation in the code of a mistake made by the programmer or designer with respect to

the specification of the software. Activation of a fault by an input value leads to an

incorrect output. Detection of such an event corresponds to an occurrence of a software

failure. Input values may be considered as arriving to the software randomly. So, although

software failure may not be generated stochastically, it may be detected in such a manner.

Therefore, this justifies the use of stochastic models of the underlying random process that

governs the software failures.

Software reliability is defined as the probability of failure-free software operations in a

specified environment. The software reliability field discusses ways of quantifying it,

using it for improvement and control of the software development process. Software

reliability is operationally measured by the number of field failures, or failures seen in

development, along with a variety of ancillary information. The ancillary information

includes the time at which the failure was found, the part of the software where it was

found, the state of software at that time, the nature of the failure, etc. Most quality

4

improvement efforts are triggered by lack of software reliability. Thus, software companies

recognize the need for systematic approaches to measure and assure software reliability,

and devote a major share of project development resources to this. A number of standards

have emerged in the area of developing reliable software consistently and efficiently. The

Software Engineering Institute (SEI) has proposed an elaborate standard known as the

software Capability Maturity Model (CMM) that scores software development

organizations on multiple criteria and gives a numeric grade from one to five. The software

reliability is being viewed more in terms of software quality, measurements and control.

SEI has devised the CMM by adopting two parameters viz, level and key problem areas as

shown in Figure 1.1 [1.5]. This methodology provides a step-by-step procedure to improve

reliability from level 1 to level 5. SEI-CMM level certification is issued based on the

process adopted in the organization.

The main limitation of software maturity model is that it does not relate to risk or

reliability. The levels are arranged to a large variety of software developments and it is not

tuned for specific software. It has the provision to accommodate all software organization

in to the certification. On the other hand, for nuclear power plants, the safety is of main

concern and systems use mainly the “Structured Programming” for safety systems instead

of Object oriented or Commercially Off The Shelf (COTS) components [1.6]. So, this

research work is aimed at developing a reliability model for the safety systems with

software components deployed in Nuclear Power Plants.

5

Level Key Problem Areas

Initial Project Management

Project Planning

Configuration Management

Quality Assurance

Repeatable Training

Technical Practices

Process focus

Defined Process Management

Process Analysis

Quantitative quality plans

Managed Change in Technology

Problem Analysis

Problem Prevention

Optimizing Automation

Figure 1.1 SEI - Capability Maturity Model levels

Software reliability engineering quantifies the operational behavior of software-based

systems with respect to user requirements with bearing on reliability. It includes data

collection on reliability, statistical estimation, metrics and attributes of product

architecture, design, software development, and the operational environment. Besides its

use for operational decisions like deployment, it includes guiding software architecture,

design, development and testing. Testing process is driven by software reliability concerns

and software reliability models to improve the effectiveness.

R
I
S
K

R
E
L
I
A
B
I
L
I
T
Y

6

1.2. Motivation

From the software disasters, it is clear that software errors have a strong potential to cause

serious damage to economy in terms of rework and productivity. It is well recognized that

assessing the reliability of software applications is a major issue in reliability engineering

[1.7]. Prediction of software reliability is highly involved. Perhaps the major difficulty is

that we are concerned primarily with design faults, which is a very different situation from

that tackled by conventional hardware theory. Input values may be considered as arriving

to the software randomly. So although software failure may not be generated

stochastically, it may be detected in such a manner. Therefore, we can use stochastic

models of the underlying random process that governs the software failure [1.7].

Hence, for safety / highly dependable software systems the estimation of software

reliability becomes prime important to evaluate the overall system reliability with the data

available on hardware reliability. The hardware and software reliability together becomes

more meaningful and useful for predicting the system performance and availability [1.8].

The University of Maryland (UMD) based its study on previous research carried out by

Lawrence Livermore National Laboratory (LLNL) identified a pool of 78 software

engineering measures. These measures related to software reliability and established a set

of software engineering ranking criteria which is used to assess the metric’s potential as

software reliability indicator. This set was then reduced to 30 using importance

considerations and these 30 software-engineering measures constitute the basis of the

UMD study [1.9].

7

Four categories of models have been considered as “potential candidates” for modeling the

reliability of software. The four categories include reliability growth models, input domain

models, architectural models and early prediction models. The first category captures

failure behavior during testing and extrapolates it to behavior during operation. Hence, this

category of models uses failure data and trends observed in the failure data to derive

reliability predictions. The second category of models uses properties of the input domain

of the software to derive a correctness probability estimate from test cases that executed

properly. The third category of model emphasizes on the architecture of the software and

derives reliability estimates by combining estimates obtained for the different modules of

the software. Finally, the fourth category of models uses characteristics of the software

development process from requirements to test and extrapolates this information to

behavior during operation.

1.3. Objectives and Scope of the Present Research Work

Further to the literature review and the motivation behind this research, the main objective

of the research is the estimation of software reliability for safety systems of Nuclear Power

Plants (NPP). In the process of assessment of reliability, the following sub-objectives are

envisaged since software reliability is more concerned with design, methodologies,

practices and the tools used in the process of software development.

The sub-objectives are

(a) Development of software life cycle model for safety systems.

(b) Determination of software metrics and development of software metric tool.

(c) Development of Software Verification and Validation methodology.

(d) Development of Software Reliability Model.

8

These form the basis for the Estimation of software reliability for safety systems of NPP.

The present work is focussed towards software development on Instrumentation and

Control systems employed in NPP. Around fifty software systems of I&C of fast reactor

are taken for analysis. All these systems have been developed using “C” Programming

language as part of the embedded systems to perform a specific task. The unreliability

attached with Human Error Probability is assumed to be minimal which is basically the

boundary within which the exercise has been carried out.

1.4. Organisation of the thesis

The thesis is arranged in eight chapters and they are

Chapter 1. Introduction

Chapter 2. Software life cycle model for safety systems

Chapter 3. Issues and Importance of Software Testing With Respect To Reliability

Chapter 4. Evaluation of Software Metrics and Tool Development

Chapter 5. Verification and Validation Methodology

Chapter 6. Software Reliability Modeling

Chapter 7. Estimation of Software Reliability

Chapter 8. Conclusions and Scope for Future Work

9

REFERENCES

[1.1] P. Swaminathan, Design Aspects of Safety Critical Instrumentation of Nuclear

Installations, International journal of Nuclear energy Science and Technology

Vol.1, nos.2/3, p.254-263,2005

[1.2] Design safety guide on computer based systems, Atomic Energy Regulatory Board

AERB/NPP – PHWR/SG/D20 - Safety Related Instrumentation and Control for

pressurized heavy water reactor based nuclear power plants, 2003.

[1.3] www.devtopics.com/20-famous-software-disasters

[1.4] Sommerville, I., Software Engineering, Pearson Education, 6th Ed., 2001.

[1.5] Watts S. Humphery, Managing the software process, SEI series in software

engineering, Addision wesley longman Inc, ISBN-981-235-916-8, 1999.

[1.6] Design safety guide on computer based systems, Atomic Energy Regulatory Board

AERB/SG/D25 - Computer Based systems of Pressurized Heavy water Reactor,

2001.

[1.7] Soong.T.T., Fundamentals of Probability and Statistics for Engineers, John wiley

and sons, ISBN –0-470-86913-7, 2004.

[1.8] Hoang Pham, Handbook of Reliability Engineering, Springer – Verlag, London,

ISBN-I-85233-453-3, 2003.

[1.9] Software Engineering Measures for Predicting Software Reliability in Safety

Critical Digital Systems.NUREG/GR-0019, UMD-RE-2000-23 University of

Maryland, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001,

2000.

10

 CHAPTER 2. SOFTWARE LIFE CYCLE MODEL FOR SAFETY SYSTEMS

2.1 Introduction

Software life cycle, is a structure imposed on the development of a software product. It is

considered as a subset of systems development life cycle. There are several models for

such processes, each describing the approach to a variety of tasks or activities that take

place during the process. ISO/IEC 12207 is an international standard for software life-

cycle processes. It aims to be the standard that defines all the tasks required for developing

and maintaining software [2.1]. Assessing various life cycle models and the identification

of a suitable software life cycle model for safety systems, which ensures high reliability.

software delivery is one of the prime tasks of the current research.

2.2 Available software life cycle models

The Planning, implementation, testing, documenting, deployment and maintenance are the

steps in the software life cycle development process. Several models exist to streamline the

development process. Each one has its pros and cons, and it's up to the development team

to adopt the most appropriate one for the project.

2.2.1 Waterfall model

The waterfall model depicts a process, where developers are to adopt the following phases

in order:

1. Requirement Specification (Requirement Analysis)

2. Software Design

3. Integration

11

4. Testing (or Validation)

5. Deployment (or Installation)

6. Maintenance

In this model, after each phase is completed, it proceeds to the next stage. Reviews may

occur before moving to the next phase, which allow for the possibility of changes.

Waterfall discourages revisiting any prior phase once it is complete. This "inflexibility" is

the main limitation of this model [2.2].

2.2.2 Spiral model

The main characteristic of a Spiral model is risk management at regular stages in the

development cycle. Barry Boehm [2.3] proposed a formal software system development

"spiral model", with emphasis on a key area of risk analysis that is neglected by other

methodologies. The spiral model is visualized as a process passing through a number of

iterations. The first stage is to formulate a plan, and then strive to find and remove all

potential risks through careful analysis and, if necessary, by constructing a prototype. If

some risks cannot be ruled out, the user has to decide whether to terminate the project or to

ignore the risks.

2.2.3. Iterative and incremental development

Iterative development model prescribes the construction of initially small but ever-larger

portions of a software project to help all those involved to uncover important issues early

before problems or faulty assumptions can lead to disaster. Iterative processes can assist

with revealing and refined definition of design goal [2.1].

12

2.2.4. Agile development

Agile software development uses iterative development as a basis but advocates a lighter

and more people-centric viewpoint [2.4]. Agile processes use feedback as primary control

mechanism. First, one writes automated tests, to provide concrete goals for development.

The next step is coding by a pair of programmers, which is complete when all the tests are

successfully passed. The incomplete but functional system is demonstrated for the users.

At this point, the practitioners start again on writing tests for the next most important part

of the system.

2.2.5. Code and fix

"Code and fix" development is not a deliberate strategy and schedule pressure on software

developers. With incomplete design, programmers begin producing code. At some point,

testing begins (often late in the development cycle), to fix the bugs before shipment [2.1].

2.3. Model suggested for NPP

Since the software requirements are very well defined and finalized in the case of software

for NPP, the waterfall model may be suitable [2.5]. But there is no checking mechanism in

each stage of life cycle, so, by introducing verification at the end of every stage [2.6] with

the respective artifact and enforcing validation of the product (code) with the specification

it can fulfill the safety requirements of NPP [2.7]. The modified model suitable for

software to be deployed in NPP is shown in Figure 2.1.

13

Figure 2.1 Software life cycle “V” Model

This model ensures verification at all the stages before moving on to the next phase and

also the validation of the product. Each artifact is checked against the testing scheme,

which ensures the completeness and correctness of the artifact. It also provides a complete

control on the life cycle of the software, which in turn ensures well-matured and stable

software product, which is the requirement for NPP software [2.8]. As the “test-cases”

generated by an independent team in the presence of the developers is carrying out the

testing, it ensures that the software product confirms to the specification of its indented

functions. The software developed for safety system of fast reactor by following this “V”

model resulted in better quality and phenomenal improvements in reliability. The only key

parameter is that the testing team is an independent team but with the domain knowledge

and its deployment with respect to the other systems and modes of operation. It should also

be noted that an inherent assumption of the study is that the software described follows a

waterfall life-cycle [2.9]. A waterfall life-cycle is typically characterized by the succession

ValidationVerification

14

of the phases from requirements to operation without too many backwards steps such as

for instance the fact of going back from design to requirements. Other software

development lifecycles exist such as for instance the spiral model [2.10], a lifecycle where

development is driven by perceived risk areas and the resolution of these risks in an

iterative fashion. Spiral development makes heavy use of prototyping and is typically used

for software with a strong user interface component. Waterfall development on the other

hand is recommended for programs with strong algorithmic component such as the

software used in safety applications [2.11].

The Table 2-1 shows the mapping of the software development phases used in this study to

the IEEE610 standard phases [2.12].

Table 2.1 Lifecycle in this Study versus Recommended Life-cycle in IEEE610.

Life-Cycle in this Study Equivalent Life-Cycle in IEEE610 standard

Requirements Concept Requirements

Design Design

Implementation Implementation

Testing Test, Installation & Checkout Installation

Operation Operation & Maintenance, Retirement

15

REFERENCES

[2.1] http://en.wikipedia.org/wiki/Software_development_process.

[2.2] Roger Pressman, Software Engineering: A Practitioner's Approach, Mc Graw Hill,

Fifth Edition, 2001.

[2.3] Sommerville, I., Software Engineering, Pearson Education, 6th Ed., 2001.

[2.4] Watts S. Humphery, Managing the software process, SEI series in software

engineering, Addision wesley longman Inc, ISBN-981-235-916-8, 1999.

[2.5] IAEA-TECDOC-1335 Configuration Management in Nuclear Power Plants,

2003, International Atomic Energy Agencies, Vienna, ISBN 92-0-100503-2.

[2.6] Design safety guide on computer based systems, Atomic Energy Regulatory

Board AERB/SG/D10 - Design Safety Guide on Safety Crtical Systems, 2002.

[2.7] Design safety guide on computer based systems, Atomic Energy Regulatory

Board AERB/NPP – PHWR/SG/D20 - Safety Related Instrumentation and

Control for pressurized heavy water reactor based nuclear power plants, 2003.

[2.8] Design safety guide on computer based systems, Atomic Energy Regulatory

Board AERB/SG/D25 - Computer Based systems of Pressurized Heavy water

Reactor, 2001.

[2.9] Schach, S. R., Software Engineering 2nd Edition, Richard D. Irwin, Inc., and

Aksen Associates, Inc., Boston, 1993.

[2.10] Boehmn, B. W., "A Spiral Model of Software Development and Enhancement",

IEEE Computer 21, pp. 61-72, 1988.

[2.11] Software Engineering Measures for Predicting Software Reliability in Safety

Critical Digital Systems.NUREG/GR-0019, University of Maryland, U.S. Nuclear

Regulatory Commission, Washington, DC 20555-0001, 2000.

16

[2.12] T.Sridevi, A.Shanmugam, D.Thirugnana Murthy, S.Ilango Sambasivan,

P. Swaminathan, Software Lifecycle for Safety Critical Systems , International

Conference on Trends in Intelligent Electronics System , Chennai , Nov 2007,

vol.II, p.563-566

17

CHAPTER 3. ISSUES AND IMPORTANCE OF SOFTWARE TESTING WITH

RESPECT TO RELIABILITY

3.1 Introduction

It is because of the human designer’s vulnerability for errors and its own abstract and

complex nature, software development must be accompanied by quality assurance

activities. It is not unusual for developers to spend 40% of the total project time on testing.

For life-critical software (e.g. flight control, reactor monitoring), testing can cost 3 to 5

times as much as all other activities combined. The destructive nature of testing requires

that the developer discards preconceived notions of the correctness of his/her developed

software. Since the advent of high-level languages, the practice of developing software in

a different environment compared to the environment in which it will eventually be used

has become common. The development environment is referred to as the host, and the

environment in which the software will be used is referred to as the target. Such a

development strategy is referred to as host-target development, and the associated testing

practices as host-target testing or cross testing.

Traditionally, host-target development has been used for embedded systems, where a

powerful multi-user host environment is used to develop software, which is ultimately

executed in an embedded microprocessor target environment. The Personal Computer (PC)

explosion has opened new avenues for host-target development, with PCs being used as a

development host for embedded systems, and also as a host to develop software, which

will eventually be executed on mini or mainframe systems.

18

3.2 Software Testing

Testing is a process of executing a program with the intent of finding an error. A good test

case is one that has a high probability of finding an as yet undiscovered error. A successful

test is one that uncovers an as yet undiscovered error. Testing should systematically

uncover different classes of errors in a minimum duration of time and with a minimum

amount of effort. A secondary benefit of testing is that it demonstrates that the software

appears to be working as stated in the specifications. The data collected through testing can

also provide an indication of the software's reliability and quality. But, testing cannot show

the absence of defect. It can only show that software defects are present [3.1].

3.2.1 White Box Testing

White box testing is a test case design method that uses the control structure of the

procedural design to derive test cases. Test cases can be derived to

1. Guarantee that all independent paths in a module have been exercised at least once,

2. Exercise all logical decisions on their true and false sides,

3. Execute all loops at their boundaries and within their operational bounds, and

4. Exercise internal data structures to ensure their validity.

3.2.2 The Nature of Software Defects

The logic errors and incorrect assumptions are inversely proportional to the probability

that a program path will be executed. General processing tends to be well understood that

while special case processing tends to be prone to errors. It is often believed that a logical

path is not likely to be executed when it may be executed on a regular basis. Unconscious

19

assumptions of the developer about control flow and data lead to design errors that can

only be detected by path testing.

3.2.3 Basis Path Testing

This method enables the designer to derive a logical complexity measure of a procedural

design and use it as a guide for defining a basis set of execution paths. Test cases that

exercise the basis set are guaranteed to execute every statement in the program at least

once during testing.

3.2.4 Flow Graphs

Flow graphs can be used to represent control flow in a program and can help in the

derivation of the basis set. Each flow graph node represents one or more procedural

statements. The edges between nodes represent flow of control. An edge must terminate at

a node, even if the node does not represent any useful procedural statements. A region in a

flow graph is an area bounded by edges and nodes. Each node that contains a condition is

called a predicate node. Cyclomatic complexity is a metric that provides a quantitative

measure of the logical complexity of a program. It defines the number of independent

executable paths in the basis set and thus provides an upper bound for the number of tests

that must be performed [3.2].

3.2.5 The Basis Set

An independent executable path is any path through a program that introduces at least one

new set of processing statements (move along at least one new edge in that path) [3.3].

20

The basis set is not unique. Any number of different basis sets can be derived for a given

procedural design. Cyclomatic complexity, V (G), for a flow graph G is equal to

1. The number of regions in the flow graph.

2. V (G) = E - N + 2 where E is the number of edges and N is the number of nodes.

3. V (G) = P + 1 where P is the number of predicate nodes.

3.3 Deriving Test Cases

Towards deriving a test case, the following procedure needs to be adopted.

1. From the design or source code, derive flow graph i.e-independent executable paths.

2. Determine the cyclomatic complexity of this flow graph.

Even without a flow graph, V (G) can be determined by counting the number of

conditional statements in the code.

3. Determine a basis set of linearly independent paths.

Predicate nodes are useful for determining the necessary paths.

4. Prepare test cases that will force execution of each path in the basis set.

Each test case is executed and compared with the expected results.

3.4 Loop Testing

The white box technique focuses exclusively on the validity of loop constructs. The

following are the four different classes of loops that can be defined:

1. Simple loops

2. Nested loops

3. Concatenated loops and

4. Unstructured loops.

21

3.5. Other White Box Techniques

Other white box testing techniques include:

1. Condition testing that exercises the logical conditions in a program.

2. Data flow testing that selects test paths according to the locations of definitions and

uses of variables in the program.

3.6. Black Box Testing

Black box testing attempts to derive sets of inputs that will fully exercise all the functional

requirements of a system. It is not an alternative to white box testing [3.4]. This type of

testing attempts to find errors in the following categories:

1. Incorrect or missing functions

2. Interface errors

3. Errors in data structures or external database access

4. Performance errors and

5. Initialization and termination errors.

Tests are designed to answer the following questions:

1. How is the function's validity tested?

2. What classes of input will make good test cases?

3. Is the system particularly sensitive to certain input values?

4. How are the boundaries of a data class isolated?

5. What data rates and data volume can the system tolerate?

6. What effect will specific combinations of data have on system operation?

22

White box testing should be performed early in the testing process, while black box testing

tends to be applied during later stages. Test cases should be derived which

1. Reduce the number of additional test cases that must be designed to achieve

reasonable testing and

2. Prompts us something about the presence or absence of classes of errors, rather

than an error associated only with the specific test at hand.

3.7 Equivalence Partitioning

This method divides the input domain of a program into classes of data from which test

cases can be derived. Equivalence partitioning strives to define a test case that uncovers

classes of errors and thereby reduces the number of test cases needed. It is based on an

evaluation of equivalence classes for an input condition. An equivalence class represents a

set of valid or invalid states for input conditions.

Equivalence classes may be defined according to the following guidelines:

1. If an input condition specifies a range, one valid and two invalid

equivalence classes are defined.

2. If an input, condition requires a specific value, then one valid and two

invalid equivalence classes are defined.

3. If an input, condition specifies a member of a set, then one valid and one invalid

equivalence classes are defined.

4. If an input condition is Boolean, then one valid and one invalid equivalence,

classes are defined.

23

3.8 Boundary Value Analysis (BVA)

This method leads to a selection of test cases that exercise boundary values. It

complements equivalence partitioning since it selects test cases at the edges of a class.

Rather than focusing on input conditions solely, BVA derives test cases from the output

domain also. BVA guidelines include:

1. For input ranges bounded by a and b, test cases should include values a and b and

just above and just below a and b respectively.

2. If an input condition specifies a number of values, test cases should be developed

to exercise the minimum and maximum numbers and values just above and below

these limits.

3. Apply guidelines 1 and 2 to the output.

4. If internal data structures have prescribed boundaries, a test case should be

designed to exercise the data structure at its boundary.

3.9 Mutation testing

The Mutation testing, Mutation analysis and Program mutation are used to design new

software tests and evaluate the quality of software tests. Mutation testing involves

modifying a program's source code or byte code in small ways [3.5]. Each mutated version

is called a mutant and tests detect and reject mutants by causing the behavior of the

original version to differ from the mutant. This is called killing the mutant. Test suites are

measured by the percentage of mutants that they kill. New tests can be designed to kill

additional mutants. Mutants are based on well-defined mutation operators that either

mimic typical programming errors such as using the wrong operator or variable name or

force the creation of valuable tests such as driving each expression to zero. The purpose is

24

to help the tester to develop effective tests or locate weaknesses in the test data used for the

program or in sections of the code that are seldom or never accessed during execution.

Tests can be created to verify the correctness of the implementation of a given software

system, but the creation of tests still poses the question whether the tests are correct and

sufficiently cover the requirements that have originated the implementation. Mutation

testing is done by selecting a set of mutation operators and then applying them to the

source program one at a time for each applicable piece of the source code.

For example, consider the following C code fragment:

if (a && b) { c = 1; } else { c = 0;}

The condition mutation operator would replace && with || and produce the following

mutant:

if (a || b) { c = 1; } else { c = 0; }

Now, for the test to kill this mutant, the following three conditions should be met:

1. A test must reach the mutated statement.

2. Test input data should infect the program state by causing different program states for

the mutant and the original program. For example, a test with a = 1 and b = 0 would do

this.

3. The incorrect Program State, the value of ‘c’ must propagate to the program's output and

be checked by the test.

However, it is not possible to find a test case that could kill some mutant. The resulting

program is behaviorally equivalent to the original one and they are called equivalent

mutants. Equivalent mutants detection is one of biggest obstacles for practical usage of

25

mutation testing. The effort needed to check if mutants are equivalent or not can be very

high even for small programs [3.6].

Here are some examples of mutation operators for imperative languages:

Replace each boolean sub-expression with true and false.

Replace each arithmetic operation with another, e.g. + with *, - and /.

Replace each boolean relation with another, e.g. > with >=, == and <=.

Replace each variable with another variable declared in the same scope.

mutation score = number of mutants killed / total number of mutants

These mutation operators are also called traditional mutation operators.

3.10 Fault injection testing

In software testing, fault injection is a technique for improving the coverage of a test by

introducing faults to test code paths, in particular error handling code paths, that might

otherwise rarely be followed [3.7]. It is often used with stress testing and is widely

considered to be an important part of developing robust software [3.8]. The propagation of

a fault to an observable failure follows a well defined cycle. When executed, a fault may

cause an error, which is an invalid state within a system boundary. An error may cause

further errors within the system boundary. Therefore each new error acts as a fault, or it

may propagate to the system boundary and be observable. When error states are observed

at the system boundary they are termed failures. This mechanism is termed the fault-error-

failure cycle and is a key mechanism in dependability.

26

Software Implemented fault injection techniques for software can be categorized into two

types and they are compile time injection and runtime injection. Compile-time injection is

an injection technique where source code is modified to inject simulated faults into a

system. A simple example of this technique could be changing

 a = a + 1 to a = a – 1

Code mutation produces faults, which are very similar to those unintentionally added by

programmers. A refinement of code mutation is Code Insertion Fault Injection which adds

code, rather than modifies existing code. This is usually done through the use of

perturbation functions which are simple functions which take an existing value and perturb

it via some logic into another value, for example

 int pFunc(int value) { return value + 20; }

 int main(int argc, char * argv[]) {

 int a = pFunc(aFunction(atoi(argv[1])));

 if (a > 20) { /* do something */ }

 else { /* do something else */ }

In this case, pFunc is the perturbation function and it is applied to the return value of the

function that has been called introducing a fault into the system.

Runtime Injection techniques uses a software trigger to inject a fault into a running

software system. Faults can be injected via a number of physical methods and triggers can

be implemented in a number of ways. Runtime injection techniques can use a number of

different techniques to insert faults into a system via a trigger like corruption of memory

space i.e., corrupting memory, processor registers, and I/O map. These techniques are

often based around the debugging facilities provided by computer processor architectures.

27

3.11 Testing of Safety systems of Fast reactor

The Safety systems of fast reactors are tested and verified by systematic approach

employing the techniques listed in sub-sections 3.1 to 3.8. The Table 3.1 shows the

selective list of instrumentation and control (I&C) systems [3.9], for which verification

was carried out using the above techniques.

The I&C systems are basically Triplicated or Dual redundant fault tolerant systems with

switch over logic configured as distributed control systems and connected to the plant

backbone network. This network is in-turn connected to the high-end servers to view any

of the plant parameter at one single place in different format. The servers also log the data

for future analysis. Each system runs the application software written in “C” programming

language. The independent Verification / Testing team generates the test case for each sub-

system. The validation of the I&C system is carried out using the dynamic simulator which

can generate the scenario of the running nuclear power plant. The simulator is capable of

generating the disturbance / Event as it can occur in the plant.

The errors generally encountered during testing of software developed for deploying in

Nuclear power plant installations are listed in Table 3.2. A typical sample “Test Cases” for

Instrumentation and control of Air Conditioning and Ventilation (AC&V) is represented in

Table 3.3.

28

Table 3.1 List of I &C Systems

Systems
Discordance Supervision

Reactor Startup Authorisation

Fuel Handling Startup Authorisation

Chilled water and Service Water system

Argon Supply and Distribution

Nitrogen Supply and Distribution

Supervision and control system for spent

Subassembly Storage Bay

Biological Shield Cooling System

Reactor Assembly Components

Control Building, Steam Generator Building &

Reactor Containment Building Air Conditioning

and Ventilation system

Secondary Sodium Purification Circuit

Steam Generator Tube Leak Detection System

Safety Grade Decay Heat Removal system

Primary Sodium Main Circuit

Secondary Sodium Main Circuit

Top Shield Cooling System

Core Temperature Monitoring

Process Disturbance Analyser

Event Sequencer Recorder

Fuel Handling Systems

Radioactive Effluent System

29

Table 3.2 Errors found during inspection of NPP software

System Symptom Error

Running continuously for 40

hours and then stopping

Stack Overflow because of the

Interrupt Service Routine

Process

Disturbance

Analyzer Storing 10 samples of same

value

Array index not incremented

properly

Generator

Temperature

Monitoring

Gray shade of alarm panel

appears on CRT and even other

display comes up on the screen

Alarm panel display is the default

display and it occupies same place

on CRT

It stops working in the

beginning hours of first

working day of the week

When no entry for more than one

day, it tries to send empty record

continuously to server

Attendance

System

It shows busy (CPU 99%) and

not recording the proximity

card entries

The Antivirus was trying to

establish connection over internet

but the system is kept in isolation

SCADA In the code, comment was

written in confusing way to run

redundant code

The execution of the code produces

delay and the comment was not

written properly

Guide tube

profile

Software works fine when it is

on Single Stepping

Timing mismatch happens when it

is running in full speed

Control

System

Over writing on other channel

parameters

Usage of old library files

30

Check on alarms inconsistent Checking with “single &”, instead

of “double &&” on the flags

Pump

Interlock

Interlock works for some

combination and not for other

combinations

Usage of “and” & “or” operation is

one “if” without brackets and

precedence is not taken care of.

The condition never happens Checking for equality in floating

point numbers

Permissive

check for

Startup Code and comment mismatch

leads to ambiguity

Code is modified but comment was

not modified

Software reaches some

undefined space and stops

working

Variable of one element is declared

as POSITION[1] but used as

POSITION[1] instead of

POSITION[0]

When Plug Rotates, "Unlock"

was removed and hence it

Stopped. But when

"Normalized" it started

rotating.

Resetting the output after anyone

condition is violated was not done.

Rotating

plug

alignment

system

Repetition rate sometimes

becomes large

If execution takes more time than

the repetition rate, the timer counter

reaches maximum value and takes

time

31

Sodium fill

and Drain

system

Switching to standby pump

was not happening

when standby started it trips since

no flow is there. Therefore delay is

introduced in sensing

Decay Heat

Removal

System

Switching from Auto / Manual

and vice versa was not bump-

less

Resetting the Values and not

carrying the “state information” in

switchover caused the problem

Alarm

System

Periodically readings become

empty and comes back to

normal

Circular Buffer end point to

beginning not synchronized

32

Table 3.3 Sample Test Cases for I&C of Air Conditioning and Ventilation System

Cabinet No : SPCsg115 Code version Number: 1.1

No. Test Case
Description

Procedure /
Input

Expected
Outputs/

Behaviour

Observed
outputs/

Behaviour

Test
Pass

or fail

Remarks

1 To check the DI
channels (Level
switches)

Change the
state of DI-102
CH 1 to 12

Respective
channel on
GUI has to go
ON

Same as
expected

PASS

2 To check the DO
channels
(Remote/Local
selection of
Pumps) DO 103
ch 1-12

When the
remote
selection is
selected ie.
When SSW is
ON (DI102 ch
7-12)

STR,STP of
the
corresponding
pumps should
be enabled to
operate.

Same as
expected

PASS

3 To check the DO
channels
(Remote/Local
selection of
Pumps) DO 103
ch 1-12

When the
remote
selection is
selected ie.
When SSW is
OFF (DI 102
ch 7-12)

STR,STP of
the
corresponding
pumps should
be disabled to
operate.

Same as
expected

PASS

4 Auto mode
operation of the
pumps

DO 103
ch13,14, DO-
108 ch 1-4
should be ON
for remote
operation

DO 103
ch13,14, DO-
108 ch 1-4
should be ON
for remote
operation

Same as
expected

PASS

5 Analog inputs
(Pressure
Transmitter)

Feed 4mA,
12mA and
20mA in AI-
106 ch 1-4

0MPa,
0.55MPa
1.1MPa
respectively

0MPa,
0.549MPa
and
1.098MPa

PASS

6 To check the DI
channels
(Pressure
switches)

Change the
state of DI-107
CH 1 to 6

Respective
channel on
GUI has to go
ON

Same as
expected

PASS

Prepared by :

Testing carried
out by:

33

3.12 Inferences

This chapter covered the testing techniques deployed in the I&C systems of fast reactor

that are listed in table 3.1. These systems are basically embedded systems with MC68020

as the processor, which uses the VME bus. The table 3.2 shows the errors found during the

inspection of the software code written in “C” language. A typical sample of “Test Cases”

is also shown in Table 3.3. Elaborate “Test Cases” were written for each of I&C systems.

Planned systematic software testing and the error removal increase the reliability.

34

REFERENCES

[3.1] Roger Pressman, Software Engineering: A Practitioner's Approach ,Mc Graw

Hill, Fifth Edition, 2001.

[3.2] Sommerville, I., Software Engineering, Pearson Education, 6th Ed., 2001.

[3.3] Watts S. Humphery, Managing the software process, SEI series in software

engineering, Addision wesley longman Inc, ISBN-981-235-916-8, 1999.

[3.4] IEEE Standards Software Engineering, vol 1 – 4, 1999.

[3.5] http://en.wikipedia.org/wiki/Mutation_testing.

[3.6] A Practical System for Mutation Testing: Help for the Common Programmer by

A. Jefferson Offutt.

[3.6] http://en.wikipedia.org/wiki/Fault_injection.

[3.7] J. Voas, "Fault Injection for the Masses," Computer, vol. 30, pp. 129–130, 1997.

[3.8] N. Sridhar, B. Krishnakumar and S. Ilango Sambasivan ,Computer Based Systems

for Prototype Fast Breeder Reactor, (ANIMMA, June 7-10, 2009) Advancements

in Nuclear Instrumentation, Measurement Methods and their Applications, (ISBN:

978-1-4244-5207-1, DOI: 10.1109/ANIMMA.2009. 5503832

[3.9] M.A. Sanjith, K.Kameswari, B.Ramasamy Pillai, S.Ilango Sambasivan &

P. Swaminathan , Real Time Computer Based Control Systems for Prototype Fast

Breeder Reactor, National Syposium on Applications of computer and Embedded

Technology(SACET09), BARC, Mumbai

35

CHAPTER 4. EVALUATION OF SOFTWARE METRICS AND TOOL

4.1 Evaluation of Software Metrics

Identification of the software metrics that affect the reliability in terms of quality attribute

and the development of tool to evaluate the metrics from the software code are very

important. The various quality parameters that contribute to reliability [4.1] are described

in the following subsections.

4.1.1 Cyclomatic Complexity (CC)

This attribute measures the complexity of each function in terms of number of independent

executable paths, i.e, number of branches. Less the number of branches, better for the

reliability. CC is a software metric developed by Thomas J. McCabe [4.2] and is the

indicator of complexity. It is computed using the control flow graph of the program, where

the nodes of the graph correspond to indivisible groups of commands, and a directed edge

connects two nodes. It can also be applied to individual functions within a program. The

number of test cases in the Basis Path Testing strategy is proportional to the cyclomatic

complexity of the program.

4.1.2 Nesting Level

The depth of “condition branches” or the “loops” is the measure for each function. When

the depth is less, the reliability is better, “test cases” are less and the testability and

coverage are good.

36

4.1.3 Comment to Code ratio

Comments in the code is one way of documentation that goes with the code. More the

comments is an indication of good understanding of the internal details of the function.

Comments play a major role as part of maintenance in terms of fixing the problem or

upgrading the software.

4.1.4 Ternary Operator

Programming languages use the feature, ternary operator, “?:,” which defines a conditional

expression. It is sometimes referred to as "the ternary operator", though it is more

accurately referred to as the “conditional operator”. The functional programming does not

need such an operator as their regular conditional expression, e.g., if (a > b) {result = x;}

else { result = y; } can be rewritten as the following ternary statement: result = a > b ? x: y;

This kind of convention is prone to error forcing difficulties during software maintenance.

4.1.5 Dynamic Memory

Dynamic memory allocation also known as heap-based memory allocation is the allocation

of memory storage for use during the run-time. It can also be seen as a way of distributing

ownership of limited memory resources among many pieces of data and code. Hence it is

vulnerable for memory overflow and resulting in failure [4.3].

4.1.6 Goto and Continue Statements

The use of the ‘go to’ statement has an immediate consequence that it becomes hard to find

a meaningful set of coordinates. The ‘go to’ statement as it stands is too primitive and

could be a potential source of error. The “Continue” statement is used to add delay and it is

37

used to keep the label number to jump in. This leads to program un-structured and

sensitive to location.

4.1.7 Number of code lines in a function

Less the number of lines of code, it will be easier to understand, test and maintain. On the

other hand, when the code is lengthy and complex it is prone to error. So the number of

code lines should be less and it should be simple in logic [4.4].

4.1.8 Recursive functions

This creates ambiguity and in-turn it is vulnerable for failures because of the unknown

number of iterations which may result in stack overflow [4.5].

4.1.9 Unused functions and Variables

The unused functions and variables are called as “Dead Codes”. It will unnecessarily

occupy memory and leading to ambiguity during maintenance and in impact analysis.

4.2 Software Quality Metrics IEEE-1061 standard

In developing a Set of Metrics, IEEE Standard 1061 [4.6] lays out a methodology for

developing metrics for software quality attributes. The standard defines an attribute as "a

measurable physical or abstract property of an entity”. A quality factor is a type of

attribute, “a management-oriented attribute of software that contributes to its quality”. A

metric is a measurement function, and a software quality metric is “a function whose

inputs are software data and whose output is a single numerical value that can be

interpreted as the degree to which software adhere to a given attribute that affects its

38

quality”. To develop a set of metrics for a project, one creates a list of quality factors that

are important for it. Associated with each quality factor is a direct metric that serves as a

quantitative representation of a quality factor. For example, a direct metric for the factor

reliability could be mean time to failure (MTTF). Identify one or more direct metrics and

target values to associate with each factor, such as an execution time of 1 sec, which is set

by project management. Otherwise, there is no way to determine whether the factor has

been achieved [4.6].

For each quality factor, assign one or more direct metrics to represent the quality factor to

serve as quantitative requirements for that quality factor. For example, if "high efficiency"

was one of the quality requirements, assign a direct metric "actual resource utilization /

allocated resource utilization" with a value of 90%. Use direct metrics to verify the

achievement of the quality requirements [4.7]. Use only validated metrics (i.e., either

direct metrics or metrics validated with respect to direct metrics) to assess current and

future product and process quality. The Section 4.5 of IEEE Standard 1061 lays out several

criteria for validation, which are summarized as follows:

1) Correlation: The metric should be linearly related to the quality factor as measured by

the statistical correlation between the metric and the corresponding quality factor.

 2) Consistency: Let F be the quality factor variable and Y be the output of the metrics

function, M: F->Y. M must be a monotonic function. That is, if f1 > f2 > f3, then we must

obtain y1 > y2 > y3.

3) Tracking: For metrics function, M: F->Y. As F changes from f1 to f2 in real time, M(f)

should change promptly from y1 to y2.

39

4) Predictability: For metrics function, M: F->Y. If we know the value of Y at some point

in time, we should be able to predict the value of F.

5) Discriminative power: A metric shall be able to discriminate between high-quality

software components (e.g., high MTTF) and low-quality software components (e.g., low

MTTF). The set of metric values associated with the former should be significantly higher

(or lower) than those associated with the latter.

6) Reliability: A metric shall demonstrate the correlation, consistency, predictability,

tracking and discriminative power properties of the application metric.

The validation criteria are expressed in terms of quantitative relationships between the

attribute being measured (the quality factor) and the metric. The IEEE Standard 1061

recommends the use of direct metrics. A direct metric is a metric that does not depend

upon a measure of any other attribute.

4.3 Thirty Software Engineering Measures

The set of thirty measures considered in the University of Maryland (UMD) study is listed

below. The resulting measures constitute the basis of their study [4.8].

Bugs per line of code (Gaffney estimate), Cause & effect graphing

Code defect density Cohesion

Completeness Cumulative failure profile

Cyclomatic complexity Data flow complexity

Design defect density Error distribution

Failure rate Fault density

Fault-days number Feature point analysis

Function point analysis Functional test coverage

40

Graph-theoretic static arch. complexity Human hours per major defect detected

Mean time to failure Minimal unit test case determination

 Modular test coverage Mutation testing (error seeding)

Number of faults remaining (error seeding) Requirements compliance

Requirements specification change requests Requirements traceability

Reviews, inspections and walkthroughs Software capability maturity model

System design complexity Test coverage

4.3 Static Analyser Tool

This tool evaluates the software quality parameters and generates the report on the quality

attribute metrics [4.9]. The report of Cyclomatic complexity with respect to each function

of a typical safety system of NPP is shown in Figure 4.1. The right side of the screen

shows the cyclomatic complexity of all the functions with the scroll bar.

Figure 4.1 Typical output screen of the SA with Cyclomatic Complexity

41

The Figure 4.1 shows the typical output screen with cyclomatic complexity detailing. All

the parameters are listed on the left side of the screen. User can view any one parameter in

detail by clicking the “Lens Icon”. The details of that parameter will appear on the right

side of the screen. Here it is shown that “scan” and “pdsr” cyclomatic complexity is much

higher than the prescribed limits. Each parameter “Help” is provided which explains the

algorithm used in calculating the parameter and how to use the application software.

Figure 4.2 Screen output of the SA detailing Comment to Code ratio

The Figure 4.2 is detailing the Comment to Code ratio of the safety critical system

software, which comprises of the complete project file. The comment percentage is only

44%, limit values shows that it should be minimum 50%. Table 4.1 presents the

recommended limit values of Quality parameters on the code. This data is used to measure

in terms of maintainability and the project development time [4.10]. The SA software is

42

developed using “Microsoft Visual Basic” as the programming language. The typical

screen output of the developed tool of “Static Analyser” is shown in Figure 4.2.

Table 4.1 Recommended Limit Values on code

Parameter Limit Value Remarks

Comment to Code ratio Greater Than or Equal

to 50%

 i) As per number of lines

 ii) Comments should be fairly

distributed

 iii) Quality comments

Cyclomatic Complexity Less than 20 for SC II

Less than 15 for SC I

As per CASE tool

Nesting Level Less than 4 As per CASE tool

Ternary Operator Not Allowed As per MISRA guidelines

Dynamic Memory Not allowed As per MISRA guidelines

Goto, Continue Not Allowed As per MISRA guidelines

Number of code lines in a

function

Less than 50 lines Including comment lines

Recursive functions Not allowed Vulnerable to Stack Overflow

Unused functions Not allowed Dead code,

As per MISRA guidelines

Variable number of

arguments in a function

Not allowed

Unused Variables Not allowed As per MISRA guidelines

43

4.4 Inferences

The in-house developed Static Analyzer tool lists out the quality parameters with the

measurements for each function of application software, which will be useful in calculating

the software reliability. The recommended limit values on code based on the systems with

the safety level criteria, which we have analyzed in almost 50 software modules of fast

reactor, is also listed. Figure 4.3 shows the typical variation of failure intensity (Number of

incorrect code segments) observed over the time (in hours) for three different embedded

software, viz., a, b and c.

Figure 4.3 Typical variation of failure intensity.

44

REFERENCES

[4.1] Watts S. Humphery, Managing the software process, SEI series in software

engineering, Addision wesley longman Inc, ISBN-981-235-916-8, 1999.

[4.2] Sommerville, I., Software Engineering, Pearson Education, 6th Ed., 2001.

[4.3] Roger Pressman, Software Engineering: A Practitioner's Approach, Mc Graw

Hill, Fifth Edition, 2001.

[4.4] Design safety guide on computer based systems, Atomic Energy Regulatory

Board AERB/NPP – PHWR/SG/D20 - Safety Related Instrumentation and

Control for pressurized heavy water reactor based nuclear power plants, 2003.

[4.5] Design safety guide on computer based systems, Atomic Energy Regulatory

Board AERB/SG/D25 - Computer Based systems of Pressurized Heavy water

Reactor, 2001.

[4.6] IEEE, "IEEE Std. 1061-1998, Standard for a Software Quality Metrics

Methodology, revision." Piscataway, NJ,: IEEE Standards Dept., 1998.

[4.7] Software Engineering Metrics: What Do They Measure and How Do We Know?

Cem Kaner, Senior Member, IEEE, and Walter P. Bond, 10th International

Software Metrics Symposium, METRICS, 2004.

[4.8] Software Engineering Measures for Predicting Software Reliability in Safety

Critical Digital Systems.NUREG/GR-0019, University of Maryland, U.S. Nuclear

Regulatory Commission, Washington, DC 20555-0001, 2000.

[4.9] T.Sridevi, A.Shanmugam, D.Thirugnana Murthy, S.I. Sambasivan and

P.Swaminathan, Static Analyzer for Computer Based Safety Systems, Journal of

the Instrument Society of India (ISOI), Vol. 37(1), pp. 40-48, 2007.

45

[4.10] T.Sridevi, D.Thirugnana Murthy, B. Krishnakumar, S.A.V. SatyaMurty and

P.Swaminathan, Software Quality Assessment for Safety Systems of Nuclear

Reactor, 2nd International Conference on Asian Nuclear Prospects (ANUP-2010),

Oct 11-13, Mahabalipuram, Tamilnadu

46

CHAPTER 5. VERIFICATION AND VALIDATION PROCEDURE

5.1 Introduction

Software verification and validation (V&V) is a technical discipline of systems

engineering. The purpose of software V&V is to help the developer to build quality into

the software during the software life cycle. The software V&V processes determine if

development products of a given activity confirm to the requirements of that activity, and

if the software satisfies the intended use and user needs. The determination includes

assessment, analysis, evaluation, review, inspection and testing of software products and

processes. The software V&V is performed in parallel with the software development, not

at the end of the software development [5.1]. The complete framework of V&V procedure

developed as part of research work encompassing artifacts, checklists, traceability matrix

are detailed here. The V&V procedure evaluates on the following key concepts. They are

software safety levels, V&V tasks for each software safety level, systems viewpoint and

Compliance with International and IEEE standards. The V & V procedure is developed to

 Establish a common framework for V&V processes, activities, and tasks in support of

all software life cycle processes.

 Define the V&V tasks, required inputs, and required outputs.

 Identify the minimum V&V tasks corresponding to software safety levels using a

three-level scheme [5.2].

This V&V procedure shall use the following three-level software integrity scheme as a

method to define the minimum V&V tasks that are assigned to each software criticality

level as listed in Table 5.1 [5.3]

47

Table 5.1 Software Criticality Levels

Criticality Description Level

Safety

Critical

Initiates the shutdown of the reactor when the signal crosses

the safety limit.
1

Safety

Related
Selected function affects important system performance. 2

Non Nuclear

Safety
Systems not related to nuclear safety. 3

5.2. Verification procedure for Custom-Built Systems (CBS)

5.2.1 Documents submitted

The following design documents along with Traceability matrix have to be submitted by

the designer / developer to the V&V committee as and when required as the verification

process progresses. The documents are generated as per the standards [5.4]

Design Basis Document System Requirements Specification (SyRS)

System Design Guidelines System Architectural Design (SAD)

System Integration & Test Procedure(SysITP)Software Requirements Specification (SRS)

Software Design Description (SDD) Software Integration & Test Procedure (SITP)

Programming Guidelines (PG) Software Implementation (source and Object code)

User Documentation (UD) System Build

During the process of V&V, all the documents are reviewed for clarity, completeness,

correctness, consistency and compliance to standards. They are verified for complete

traceability [5.5].

48

The following test reports have to be submitted to V&V Committee during system

validation [5.6].

Software Unit Test Report (SUTR) Software Integration and Test Report (SITR)

System Integration and Test Report (SyITR) System Acceptance Test Report

System Safety Analysis Report (SSAR)

5.2.2 Procedure for Verification

The procedure for verification has the following stages of review. They are System

Requirements, System Architecture, Hardware / software specifications, Hardware /

software Design, Hardware / software Implementation, System Integration and System

Validation [5.7]. The V& V process is initiated once the SyRS for a particular system is

submitted to the V&V Committee and the committee forms a review task force, which

comprises the following members as minimum requirement as shown in Table 5.2.

Table 5.2 Review Taskforce Committee

S.No Responsibility Resource

1 Convenor From V&V

2 Co-convenor From V&V

3 Member From V&V

4 Subject Matter Expert (SME) / Domain Expert Invitee

5 Inspectors / Peers Invitee

6 Author Designer / Developer

49

The task force reviews the document submitted / presented at various stages by the

designer / developer and verifies for its compliance with the baselined documents and

checks for the consistency of the document and produces verification report. In case of no

anomaly, the document may be cleared and in case of any anomaly or controversy with the

any document, a revision will be recommended to the designer. In that case, the designer

has to re-submit the document again with the compliance report that states the reason for

anomaly. After verification, the task force, issues verification report through V&V

Committee. Once a document baseline, any change to that will initiate the review process

to documents submitted thereafter [5.8].

5.2.3 System Requirements Specification (SyRS) Review

The Purpose of SyRS review is to verify that SyRS covers all of the I & C design

requirements of the corresponding system as described in Design Basis and all the

requirements are unambiguous, complete, consistent, traceable and verifiable. The

documents to be submitted are Design Basis, System Requirements Specification as per

IEEE standard 1233 [5.9] and other specific requirements, if any. The documents

generated are Review comments along with Compliance Report and Traceability matrix

report to track defect closure, which contains total defects, review efficiency and defect

density. The System Requirements Specification document is base-lined after review.

When the review task force identifies any defect, it has to be recorded by Convener for the

traceability purpose. The consolidated defects identified in the review process should be

circulated to the review task force. The checklist for the system requirement review is

detailed in Appendix-II. The review process may be repeated iteratively, once the defects

50

are fixed. The review process should ensure System consistency, safety, reliability and

maintainability. The V&V effort shall perform, as appropriate for the selected system

integrity level Traceability Analysis, System Requirements Evaluation, Interface Analysis,

Criticality Analysis, System V&V Test Plan Generation and Verification, Acceptance

V&V Test Plan Generation and Verification, Configuration Management Assessment and

Safety Analysis.

5.2.4 System Architecture Review (SAR)

The documents to be submitted are baselined System Requirements Specification (SyRS),

Software Design Guidelines, Software Integration Test Procedure and System Architecture

Design. The documents generated are Review comments along with compliance report and

traceability matrix report to track defect closure, which contains total defects and defect

density. The System Architecture Design document is base-lined after review.

The baselined SyRS document forms the starting point for this review. This review is to

ensure the completeness of the architecture design document. The review task force

conduct the review process as per the given architecture review checklist and consolidate

the defects in the compliance report. The same is communicated to the designer for the

completeness of the document. This review process ensures the forward and backward

traceability of the system. The checklist for system architecture review is provided in

Appendix-III. The objectives of V&V are to demonstrate that the design is a correct,

accurate, and complete transformation of the system requirements and no unintended

features are introduced.

51

5.2.5 Software Requirement Specification (SRS) Review

The Purpose is to verify that the software requirements specification confirms to the

system requirement specification, system architecture design and traceability. The

documents submitted are baselined SyRS, SAD and SRS as per IEEE 830 [5.10],

Traceability matrix with SyRS and SAD. The documents generated are Verification report

of SRS, SRS document Check List and System V & V test plan. The V&V effort shall

perform, as appropriate for the selected system integrity level. The checklist for the

software requirement review is presented in Appendix-IV.

5.2.6 Software Design Description (SDD) Review

The purpose is to verify that the software design confirms to the software requirements and

it is traceable. The documents submitted are baselined SRS with SDD as per IEEE 1012

[5.11] and Traceability matrix with SRS and SDD. The documents generated are

Verification report of SDD and SDD checklist. The design V&V activity addresses

software architectural design and software detailed design. The objectives of V&V are to

demonstrate that the design is a correct, accurate, and complete transformation of the

software requirements and that no unintended features exists. The checklist for the

software design review is provided in Appendix-V.

5.2.7 Software Implementation Review

The documents submitted are software (both source code and object files), baselined

Software Design Description (SDD), Traceability Matrix (SDD to Source Code), Observed

Programming Guidelines, Software Unit Test Report (SUTR), Software Integration Test

Report (SITR) and System Build Settings.

52

The documents generated include the code non-compliance report with respect to MISRA

‘C’ guidelines and to the observed programming guidelines [5.12], static and dynamic

analysis report and the manual code walk-through report. The software coding, testing, and

build settings are evaluated [5.13].

The code is subjected to static analysis to verify if the structure of code is as per the

programming guidelines. For example, if Cyclomatic complexity of safety critical function

software is defined to be within 10, and if the code does not meet this requirement then the

code will be returned for correction. Only when the code passes the static analysis check,

the software shall be taken for further verification process. The compliance of the source

code to the observed standard is also checked before it is taken up for further verification

process. Safety systems software will undergo manual code walk-through besides static

analysis. V&V team shall evaluate the source code for correctness, consistency,

completeness, accuracy, readability and testability [5.14].

5.2.8 System Integration Review

The documents submitted are baselined System Requirement Specification, System

Architectural Design, Interface Requirement Specification and System Integration Test

Report. The document generated is System Integration Verification Report including the

check list given in Appendix-VI. SyITR is reviewed for its completeness and consistency.

53

5.2.9 System Validation Review

The documents submitted are baselined System Requirement Specification, Traceability

Matrix SyRS to Implementation (Software functions / Hardware) and System Acceptance

Test Report [5.15]. The document generated is System Validation Report including the

checklist for the system validation review as given in Appendix-VII.

5.3 Inferences

The framework of V&V procedure developed as part of research work encompassing

artifacts, checklists, traceability matrix are applied on the I&C systems of nuclear power

plant, resulted in phenomenal increase in quality, reliability and confidence on these

systems.

54

REFERENCES

[5.1] IEEE Std 1012-1998 - IEEE Standard for Software Verification and Validation.

[5.2] NPCIL / IVVC Proc. Version 1.0- Procedure for Independent Verification and

Validation of Computer Based C&I systems.

[5.3] P. Swaminathan, Design Aspects of Safety Critical Instrumentation of Nuclear

Installations, International journal of Nuclear energy Science and Technology

,Vol.1, nos.2/3, p.254-263,2005

[5.4] Software Standards and Qualification for Safety Related Systems of PFBR,

(NSNI, Feb 24-26, 2010) DAE-BRNS National Symposium on Nuclear

Instrumentation-2010, K.Kameswari, B.Ramasamy Pillai, S.Ilango Sambasivan &

P. Swaminathan

[5.5] AERB/SG/D25 - Computer Based systems of Pressurized Heavy water Reactor.

[5.6] IEC 880 – Software for computers in safety systems of nuclear power stations.

[5.7] C.K.Pithawa, Fault Tolerant Safety Related Computer based Process control

system for TAPP3&4. Proceedings of SACI-2005, p 56-68

[5.8] S.G.Bhandarkar “Design of hardware for Computer Based Systems, Proceedings

of National Symposium on Nuclear Instrumentation-2004” ,pp 84-86.

[5.9] IEEE Std 1233, 1998 Edition, IEEE Guide for Developing System Requirements

Specifications.

[5.10] IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements

Specifications.

[5.11] IEEE Std 1016-1998, IEEE Recommended Practice for Software Design

Descriptions.

55

[5.12] BARC/1999/E/021 - Programming Guidelines for Computer Systems of NPPs,

BARC, Mumbai.

[5.13] NPCIL / ED-PROC - Engineering Procedure for Computer Based C&I Systems.

[5.14] D. Thirugnana Murthy, T. Sridevi, A. Shanmugam, P. Swaminathan, Verification

& Validtion for Safety Critical Real Time Computers (ISSN 0973-9238),

International Journal on Intelligent Electronic Systems, Vol.1, No.1 Nov 2007,

p15-21

[5.15] D.Thirugnana Murthy ,T.Sridevi, SAV Satyamurty , P.Swaminathan, Verification

and Validation of Computer based Safety Systems for Nuclear Reactors,

International Conference on Peaceful uses of Atomic Energy, Delhi, Sep 2009,

p158-159

56

CHAPTER 6. SOFTWARE RELIABILITY MODELING

6.1 Introduction

It is well recognized that assessing the reliability of software applications is a major issue

in reliability engineering. Predicting software reliability is not an easy task. The major

difficulty is concerned primarily with design faults, which is a very different situation from

that handled by conventional hardware theory. A fault refers to a manifestation in the code

of an error made by the programmer or designer with respect to the specification of the

software. Activation of a fault by an input value leads to an incorrect output. Detection of

such an event corresponds to an occurrence of a software failure [6.1]. The input values to

the software modules (functions) either internally or externally may be considered as

arriving to the software randomly. So although software failure may not be generated

stochastically, it may be detected in such a manner. Therefore, it justifies the use of

stochastic models of the underlying random process that governs the software failures.

Six categories of models have been considered as potential candidates for modeling the

reliability of software. Classification of software reliability models is presented according

to software development life cycle phases as shown in Figure 6.1. The six categories

include early prediction models, architectural based models, hybrid white box approach,

hybrid black box approach, reliability growth models and input domain models. The early

prediction model uses characteristics of the software development process from

requirements to test and extrapolates this information to behavior during operation. The

architectural based models put emphasis on the architecture of the software and derive

reliability estimates by combining estimates obtained for the different modules of the

software. The reliability growth model captures failure behavior during testing and

57

extrapolates it to behavior during operation. Hence, this category of models uses failure

data and trends observed in the failure data to derive reliability predictions. The input

domain model uses properties of the input domain of the software to derive a correctness

probability estimate from test cases that executed properly.

Figure 6.1 Classifications of Software Reliability Model

Hybrid black box models combine the features of input domain models and software

Software Development Life Cycle Phases

Requirements Design Implementation Testing Validation

Early Prediction
Models Architecture

based
Models

Hybrid White
Box Approaches

Hybrid Black
Box Approaches

Software
Reliability
Growth
Models

Input
Domain
Based
Models

. Phase Based Model

. Rome Laboratory Model

. Raleigh Model

. Musa Prediction Model

. Industry Data Collection

. Historical Data Collection

. A time/structure based model for
estimating software reliability

. Input domain
based

Software reliability
growth model

. Nelson

.Tsoukalas

. Weiss &
 Weyuker

S-shaped Models Concave Models

State Based
Models

Path Based
Models

Additive
Models

. Yamada S-shaped
 Model
. Gompertz Model

. Musa Basic Model

. Goel Okumoto NHPP
 Model
. Musa Okumoto NHPP
 Model
. Musa Poisson Execution
 Time Model
. Jelinski Moranda Model
. Littlewood Verall Model
. Weibull Model
. Raleigh Model

. An architecture-based .
 software reliability model
. Heterogeneous software
 reliability model
. Laprie model
. Gokhale et al model
. Gokhale et al reliability
 simulation approach

. Shooman
 model
. Krishnamurthy
 and Mathur
 model
. Yacoub, Cukic
 and Ammar
 model

. Everett model

. Xie and Wohlin model

58

reliability growth models. Hybrid white box models use selected features from both white

box models and black box models. However, each group of models has its inherent flaws

when applying them to safety systems [6.2].

The traditional input domain model, Nelson model [6.3], is as simple as a point estimate of

failure rate based on the number of failures and number of total test cases. This model

needs exorbitant amounts of testing for safety systems. Nelson and other researchers

introduced the concept of equivalence class, which significantly reduces the amount of

testing required. These models started with a problematic assumption that the input domain

can be thoroughly identified and classified into equivalence classes. Extreme caution

should be exercised when applying this model to safety systems. The inputs of such a

system are generally infinite and unpredictable. The structural models are widely used in

fault-tolerant systems [6.4] [6.5]. The failure rate (or transition rate) from the normal state

to the abnormal state (or vice versa) is assumed to be available. However, how to estimate

this parameter is not known. In essence, this rate is the failure rate of a subsystem in the

fault-tolerant system. The estimation of the rate requires the failure data to be available.

Ramamoorthy and Bastani model [6.6] is an Input domain based model. This pertains to

critical, real time and process control programs. In such systems, no failures should be

detected during the reliability estimation phase, such that the reliability estimated is unity.

Thus, the important metric of concern is the confidence level in the reliability estimate.

This model provides an estimation of the conditional probability that the program is

correct for all possible inputs given that it is correct for a specified set of inputs.

Several early prediction models exist [6.7 – 6.9]. The Gaffiney and Davis model [6.7] is

59

based on the assumption that the size of the system in lines of code is available (or

predictable) at the time the prediction is made. Then the number of discovered faults is

given by an empirical relationship. Unfortunately, there is still a long way to go from the

number of discovered faults to reliability prediction. The Rome laboratory model [6.8]

derives reliability from copious data sources by means of some unexplainable empirical

relationships. No research shows that this model is applicable to safety systems [6.9].

Software reliability models have their genesis in hardware reliability models, but there are

differences between hardware and software reliability models. Failures in hardware are

typically based on the age of hardware and the stress of the operational environment,

whereas failures in software are due to incorrect requirements, design, coding, or the

inability to inter-operate with other related software. Software failures typically manifest

when the software is operated in an environment for which it is not designed. Typically,

except for the infant mortality factor in hardware, hardware reliability decreases with age,

whereas software reliability can increase with age (due to fault fixes).

A software reliability model specifies the general form of the dependence of the failure

process on the principal factors that affect it namely fault introduction, fault removal, and

the operational environment. During the test phase, the failure rate of a software system is

generally decreasing due to the identification and correction of software faults. With

record-keeping procedures, it is used to analyze the historical record.

The purpose of this analysis is two folds:

 To predict the additional time needed to achieve a specified reliability objective.

 To predict the expected reliability when testing is completed.

The assumption is that the software system being tested remains fixed throughout (except

60

for the removal of faults as they are found). This assumption is frequently violated. As we

move in the life of the software, the number of failures generally follows the profile

depicted in Figure 6.2.

 Figure 6.2 Intensity of Failure in Normal development and Deployment

The major goal of the Software Reliability modeling is to predict the future value of

metrics from the gathered failure data. A central problem in Software Reliability is in

selecting a model. The predictive quality of a Software Reliability model may be

drastically improved by using preprocessing of data. In particular, statistical tests have

been designed to capture trends in data. Thus, reliability trend analysis allows the use of

software reliability models that are adapted to reliability growth and stable reliability.

The failure intensity decay parameter Ø is considered as taking an unknown but fixed

value. Two basic methods to estimate the value of Ø are the method of maximum

PROBABILITY
OF

FAILURE

TIME “t”

IDEAL

PEAKINGDevelopment

Operation

AFTER EACH
ITERATION

61

likelihood (ML) and the least square method. That is, we have to optimize with respect to

Ø an objective function and collected failure data to get a point estimate. Another standard

procedure, namely, interval estimation, gives an interval of values as estimate of Ø.

The problem of imperfect debugging may be addressed in a Bayesian framework.

Reliability growth is captured through a deterministically non-increasing sequence of

failure rates ri. In a Bayesian framework, parameters of ri are considered as random.

Hence, with stochastically decreasing sequence of random variables ri, which allows one to

take into account the uncertainty on the effect of a corrective action can be dealt. Assume

that each fault detected has a probability ρ to be removed from the software. The hazard

rate after (i – 1) repairs is λi-1 = Ø [N - ρ (i – 1)]. ……………6.1

But the problem of eventual introduction of new faults is not addressed. Addressing the

problem of eventual insertion of new faults is concerned with finite Non-Homogenous

Poisson Process (NHPP) models.

The complexity of software is an influencing factor of the reliability attributed. Typically,

the computation of Halstead and McCabe metrics, which are respectively program size and

control flow measures, is performed. Most software complexity metrics is strongly related

to the structure of software code. Thus, including a complexity factor in software

reliability may be thought of as a first attempt to take into account the architecture of the

software in reliability assessment.

Other empirical evidence suggests that the higher the test coverage, then the higher the

reliability of the software would be. Thus, a model that incorporates information on

62

functional testing as soon as it is available is of value. This issue is addressed in an NHPP

model proposed by Gokhale and Trivedi [6.10]. It consists of defining an appropriate

parameterization of a finite NHPP model, which relates software reliability to the

measurements that can be obtained from the code during functional testing. Let “a” be the

expected number of faults that would be detected in a given infinite time testing. The

intensity function λ is assumed to be proportional to the expected number of remaining

failures:

λ(t)=[a-Δ(t)] φ(t) ……………………….6.2

where φ(t) is the hazard rate per fault.

Finally, the time-dependent function φ(t) is of the form

 φ(t) = (dc(t)/dt) / (1 – c(t)) ………………..6.3

where c(t) is the coverage function. It is, the ratio of the number of potential faults

covered by time t divided by the total number of potential faults under consideration

during testing. Function c(t) is assumed to be continuous and monotonic as a function of

testing time. Specific forms of function c(t) allow the retrieving of some well-known finite

failure models.

The software reliability models generally ignore the factors affecting software reliability.

Imperfect debugging is related to the fact that new faults may be inserted during a repair.

The complexity attributes of software are strongly correlated to its fault-proneness.

Empirical investigations show that the development process, testing procedure,

programmer skill, human factors, the operational profile and many others factors affect the

reliability.

63

6.2 Types and Approaches

Software reliability measurement includes two types of model, namely, static and dynamic

reliability estimation, used typically in the earlier and later stages of development

respectively. A key use of the reliability models is in the area of when to stop testing. Two

approaches are used in software reliability modeling. The most prevalent is the black-box

approach, in which only the interactions of the software with the environment are

considered. Self-exciting point processes as a basic tool to model the failure process. A

second approach, called the white-box approach, incorporates information on the structure

of the software in the models and proposes basic techniques for calibrating black-box

models. Fault prevention, fault removal, fault tolerances are three methods to achieve

reliable software. The reliability of the software is a measure of the continuous delivery of

the correct service by the software under a specified environment. This is a measure of the

time to failure. The first failure time is a random variable T with distribution function

F (t) = P {T < t} t ε R ……………………….6.4

If F has a probability density function f, then we define the hazard rate of the random

variable T by

 f (t)

r (t) = ---------- t > 0 …………………………6.5

 R (t)

with R(t) = 1 – F(t) = P{T>t}. Function R (t) is called the survivor function of the random

variable T. The hazard rate function is interpreted to be

64

 r(t) dt ≈ P{t < T ≤ t + dt |T >t} ……………………….6.6

 ≈ P{a failure occurs in [t, t + dt] given that no failure occurred up to time t }

Thus, the phenomenon of reliability growth is represented by a decreasing hazard rate.

When F is continuous, the hazard rate function characterizes the probability distribution of

T through the exponentiation formula

 t

R(t) = exp (− ∫ r(s) ds) ………………………..6.7

0

Finally, the mean time to failure (MTTF) is the expectation of the waiting time of the first

failure.A basic way to represent time evolution with confidence in software is as follows:

At instant zero, the first failure occurs at time t1 according to a random variable X1 = T1

with hazard rate r1. Given time T1 = t1 it is observed a second failure at time t2 at rate r2.

Function r2 is the hazard rate of the inter-failure random variable X2 = T2 - T1 given T1 =

t1. The choice of r2 is based on the fact that one fault was detected at time t1.

A third failure occurs at t3 with failure rate r3. Function r3 is the hazard rate of the random

variable X3 = T3 - T2 given T1 = t1, T2 = t2 and is selected according to the “past” of the

failure process at time t2. The two observed failures at times t1 and t2 and so on.It is

expected that, due to a fault removal activity, confidence in the software’s ability to deliver

a proper service will be improved during its life cycle. Therefore, a basic model in

Software Reliability has to capture the phenomenon of reliability growth. Reliability

growth basically follows a sequence of inequalities of the following form

ri+1 (t − ti) ≤ ri (ti) on t ≥ ti ………………6.8

65

From selection of decreasing hazard rates ri. It illustrates this “modeling process” on the

Jelinski - Moranda model (JM). It is assumed that software includes only a finite number

N of faults [6.11]. The first hazard rate is r1 (t; Ø, N) = ØN ………………………6.9

 where Ø is some non-negative parameter. From time T1 = t1, a second failure occurs

with the hazard rate r2 (t; Ø, N) = Ø (N-1) …………………….…6.10

In a more formal setting, the two parameters N and Ø will be encompassed as background

history ƒ0, which is any background information about the software. Then “the failure

rate” is called the concatenated failure rate function. The graphical display of a path of

this stochastic function is given in Figure 6.3.

Figure 6.3 Concatenated failure rate function for Jelinski - Moranda mod

6.3 Static Model

One purpose of reliability models is to perform reliability prediction in an early stage of

software development. This activity determines future software reliability based upon

available software metrics and measures. Particularly when field failure data are not

available (e.g, software is in the design or coding stage), the metrics obtained from the

software development process and the characteristics of the resulting product can be used

to estimate the reliability of the software upon testing or delivery. Two prediction models,

0 t1 t2 t3

N Ø
Ø

Ø

Ø

66

the phase-based model by Gaffney and Davis and a predictive development life cycle

model from Dalal and Ho exists [6.11].

6.3.1 Phase-based Model: Gaffney and Davis

This model assumes that code size estimates are available during the early phases of

development. Further, it assumes that faults found in different phases follow a Raleigh

density function when normalized by the lines of code. This model is clearly motivated by

the corresponding model used in hardware reliability, and the predictions are hardwired in

the model based on one parameter. This model is one of the first to leverage information

available in earlier development life cycle phases.

6.3.2 Predictive Development Life Cycle Model: Dalal and Ho

This model does not postulate a fixed relationship between the numbers of faults

discovered during different phases. Instead, it leverages past releases of similar products to

determine the relationships. The relationships are not postulated beforehand, but are

determined from data using only a few releases per product. Similarity is measured by

using an empirical hierarchical Bayes framework. The number of releases used as data is

kept minimal , typically, only the most recent one or two releases are used for prediction.

The basic assumptions behind this model are as follows:

(i). Defect rates from different products in the same product life cycle phase are samples

from a statistical universe of products coming from that development organization.

(ii). Different releases from a given product are samples from a statistical universe of

releases for that product.

The first assumption reflects the fact that the products developed within the same

67

organization at the same life cycle maturity are more or less homogeneous.

6.4 Dynamic Models: Reliability growth models for testing and operational use

Software reliability estimation determines the current software reliability by applying

statistical inference techniques to failure data obtained during system test or during system

operation. Since reliability improves over time during the software testing and operation

periods because of removal of faults, the models are also called reliability growth models.

6.4.1 A General Class of Models

In binomial models the total number of faults is N, the number found by time t has a

binomial distribution with mean µ(t) = NF (t), where F(t) is the probability of a particular

fault being found by time t. Thus, the number of faults found in any interval of time

(including the interval (t, ∞)) is also binomial [6.10]. F (t) could be any arbitrary

cumulative distribution function. Then, a general class of reliability models is obtained by

appropriate parameterization of µ (t) and N.

Letting N be Poisson (with some mean ν) gives the related Poisson model, wherein the

number of faults found in any interval is Poisson, and for disjoint intervals these numbers

are independent. Denoting the derivative of F by F’, the hazard rate at time t is

 rt = F’ (t) / [1 − F(t)] ………………6.11

These models are Markovian but not strongly Markovian, except when F is exponential.

6.4.2 Assumptions Underlying the Reliability Growth Models

Most of the models are based on common underlying assumptions as listed

1. The system being tested remains essentially unchanged throughout testing, except for

68

the removal of faults as they are found.

2. Removing a fault does not affect the chance that a different fault will be found.

3. The model is Markovian. The future evolution of the testing process depends only on

the present state (the current time, the number of faults found and remaining, and the

overall parameters of the model) and not on the past history.

4. All faults are of equal importance (contribute equally to the failure rate).

5. At the start of testing, there is some finite total number of faults, which maybe fixed or

random. If random, its distribution may be known or of known form with unknown

parameters. Alternatively, the “number of faults” is not assumed finite, so that, if testing

continues indefinitely, an ever-increasing number of faults will be found.

6. Between failures, the hazard rate follows a known functional form. This is a constant.

6.5 Software Reliability Growth Modeling

6.5.1 A Generalized Non-homogeneous Poisson Process Model

The only environmental factor available in this application is the testing team size. Team

size is one of the most useful measures in the software development process. It has a close

relationship with the testing effort, testing efficiency, and the development management

issues. From the correlation analysis of the 32 environmental factors, team size is the only

factor correlated to the program complexity, which is the number one significant factor

according to our environmental factor study [6.11]. Since the testing team size ranges from

one to eight, we categorize the team size factor two levels as follows and denoted as z1.

 0 team size ranges from 1 to 4

z1 = ………………..6.12

 1 team size ranges from 5 to 8

69

6.6 A Reliability Model with Considerations of Random Field Environments

Once a software product is released, it can be used in many different locations,

applications, tasks and industries. The field environments for the software product are quite

different from place to place. Therefore, the random effects of the end-user environment

will affect the software reliability in an unpredictable way. Software reliability model with

consideration of random field environments unified software reliability model that covers

both testing and operation phases in the software life cycle. The model also allows to

remove faults if a software failure occurs in the field and can be used to describe the

common practice of so-called ‘beta testing’ in the software industry. During beta testing,

software faults will still be removed from the software after failures occur, but beta testing

is conducted in an environment that is the same as the end-user environment, and it is

different from the in-house testing environment. The quality of the software depends on

how much time testing takes and what testing methodologies are used. Figure 6.4 shows

the entire software development life cycle considered in this software cost model, the in-

house testing, beta testing, and operation. The beta testing and operation are conducted in

the field environment, which is commonly quite different from the environment where the

in-house testing is conducted.

 0 t0 Field Environments Time

Figure 6.4 Testing in software development cycle

Let us consider the following.

1. There is a set-up cost at the beginning of the in-house testing, it is assumed constant.

2. The cost to do testing is a linear function of in-house testing time.

In house Testing Beta Testing
Tw

Operation
x

70

3. The cost to remove faults during the in-house testing period is proportional to the total

time of removing all faults detected during this period.

4. The cost to remove faults during the beta-testing period is proportional to the total time

of removing all faults detected in the time interval [t0, t0 + Tw].

5. It takes time to remove faults and it is assumed that the time to remove each fault

follows a truncated exponential distribution.

6. There is a penalty cost due to the software failure after formally releasing the software.

As we move in the life of the software the number of failures keeps on decreasing as

shown in Figure 6.5 as per reliability growth model where rigorous V&V is carried out

during development and rigorous impact analysis after every updating of the software.

Figure 6.5 Intensity of Failure in Reliability Growth model

6.7 Precautions in Using Reliability Growth Models

In fitting any model to a given data set, due consideration to be given for the assumptions.

For example, a model may assume that a fixed number of software faults will be removed

TIME “t”

PROBABILITY
OF

FAILURE
IDEAL

OPERATION

Development

After Each
Correction

71

within a limited period of time. But in the observed process the number of faults is not

fixed (e.g. new faults are inserted due to imperfect fault removal, or new code is added),

then one should adopt a model that does not suffer from this assumption. Then the

limitation and implementation issue of the model concerns future predictions. If the

software is being operated in a manner different from the way it is tested the failure history

of the past will not reflect these changes, and poor predictions may result. Then another

issue is related to the software development environment. Most reliability growth models

are primarily applicable from testing onwards. The software is assumed to have matured to

the point that extensive changes are not being made.

6.8 Reliability Growth Modeling with Covariates

It is testing process, for all but small systems involving short development and life cycles.

For large systems there are variables, other than time, that are very relevant. For example,

it is typically assumed that the number of faults (found and unfound) in a system under test

remains stable during testing. This implies that the code remains frozen during testing.

However, this is rarely the case for large systems, since aggressive delivery cycles force

the final phases of development to overlap with the initial stages of system test. Thus, the

size of code and the number of faults in a large system can vary widely during testing. If

these changes in code size are not considered as a covariate, then it is likely to have an

increase in variability. The associated a loss in predictive performance resulting in a poor

fitting model with unstable parameter estimates.

6.9 Time to Stop Software Testing

Dynamic reliability growth models can be used to make decisions about when to stop

testing. Software testing is a necessary but expensive process, consuming one-third to one-

half the cost of a typical development project [6.12]. More testing can lead to a product

72

that is overpriced and late to market, whereas fixing a fault in a released system is usually

an order of magnitude more expensive than fixing the fault in the testing laboratory [6.13].

Thus, the question of how much to test is an important economic parameter.

6.10 Inferences

The Various reliability models were discussed in this section and it is found that

“Reliability Growth Model” is suitable for NPP software. This model is very much

applicable because of rigorous verification and validation as well as the impact analysis

during software maintenance. It is observed in the practice of software for NPP that the

reliability increases after correction because of the many mandatory criteria imposed on the

safety. Figure 6.6 shows the system Un-availbility XUA with respect to time when we adopt

the reliability growth models [6.14].

Figure 6.6 Typical System Un-Availability

REFERENCES

[6.1] Software reliability and safety in Nuclear reactor protection systems by J. Dennis

Lawrence for U.S Nuclear Regulatory Commission. UCRL-ID-114839.

[6.2] Software Engineering Measures for Predicting Software Reliability in Safety

XUA_MAX

XUA_MIN

Time

Un-Availability

73

Critical Digital Systems.NUREG/GR-0019, University of Maryland, U.S. Nuclear

Regulatory Commission, Washington, DC 20555-0001.

[6.3] E. Nelson, Estimating Software Reliability from Test Data, Microelectronics and

Reliability, Vol 17, pp. 67- 74, Pergamon, New York, 1978.

[6.4] J.B.Dugan, M.Lyu. Dependability Modeling for Fault Tolerant Software and

Systems, Software Fault Tolerance, John Wiley & Sons Ltd., 1995.

[6.5] R.K. Scott, J. W. Gault, D. F. McAllister, Fault-Tolerant Software Reliability

Modeling, IEEE Transactions on Software Engineering, vol. SE-13, No.5, May

1987.

[6.6] CV Ramamoorthy, FB Bastani, Software Reliability—Status and Perspectives,

IEEE Transactions on Software Engineering, 1982.

[6.7] J. E. Gaffney, C. F. Davis, An approach to estimating software errors and

availability, SPC-TR88-077, version 1.0, March 1988.

[6.8] Rome Laboratory (RL), Methodology for Software Reliability Prediction ad

Assessment, Technical Report RL-TR-92-52, Vol. 1 and 2, 1992.

[6.9] M. Stutzke, C. Smidts, A Stochastic Model of Fault Introduction and Removal

during Software Development, Probabilistic Safety Assessment and Management

-PSAM'4, Vol 1, Springer, pp 1111-1116, 1998.

[6.10] Fundamentals of Probability and Statistics for Engineers, T.T.Soong, State

university of New York, USA, John wiley and sons Ltd, ISBN –0-470-86913-7,

2004.

[6.11] Handbook of Reliability Engineering by Hoang Pham, Springer - Verlag London

limited press, ISBN-I-85233-453-3, 2003.

74

[6.12] Managing the software process, Watts S. Humphery, SEI series in software

engineering, Addision wesley longman Inc, ISBN-981-235-916-8, 1999.

[6.13] Sommerville, I., Software Engineering, Pearson Education, 6th Ed., 2001.

[6.14] Handbook of Software Reliability Engineering, Edited by Michael R. Lyu,

Published by IEEE Computer Society Press and McGraw-Hill Book Company

http://www.cse.cuhk.edu.hk/~lyu/book/reliability/.

75

CHAPTER 7. ESTIMATION OF SOFTWARE RELIABILITY

7.1 Introduction

This chapter explains the step by step procedure involved in calculating software reliability

for the safety systems of NPP. A comprehensive procedure to estimate software reliability

for a given software program coded in “C” language is detailed. The safety systems of

NPP are embedded systems, implemented in “C” language. The software metrics required

for each function is obtained by running the “Static Analyser” tool developed as a part of

this research or by any Computer Aided Software Engineering tools. It is also assumed that

the software has undergone vigorous V&V procedure developed as part of this research,

which is detailed in chapter 5. It is also assumed that the subsequent version improves

reliability i.e. changes fixes the bug or new functionality added without introducing error

in the existing working code. In view of this the reliability growth model is assumed.

It is from the experience of the software deployed in NPP and Heavy water plants, a set of

parameters influencing the software reliability is derived. The reliability estimation is

based on the following parameters:

a) Lines of code

b) Number of functions

c) Cyclomatic Complexity

d) Local and Global Variables

e) Nesting Levels

f) Number of times functions invoked

g) Number of distinct operators

h) Dynamic Memory usage

76

i) Adherence to the standards

j) V&V iterations - Versions

k) Comment to code ratio

l) Number of interrupts

m) Criticality of the software (Safety Critical, Safety Related and Non nuclear Safety)

7.2 Reliability Estimation

This procedure is evolved with the data collected on the successful operation of software

systems from operating nuclear power plants and other Atomic Energy establishments like

Heavy Water Plants over the last two decades. This procedure involves basically five steps.

The detailed explanation of these steps is as follows:

Step 1: List out the “functions” used in the software

The “C” language basically deals with only the “functions” as its basic sub-units of the

program. The first step for calculating reliability starts with finding out the “functions” for

the complete project. The complete project includes Source files, Library files and Header

files. For the software deployed in safety systems the complete source code is available

including library and header files. All the necessary library functions are developed instead

of using object files so that it is amenable for Verification and Validation at source code

level.

List out the names of all the functions used in the complete software project including the

function “main ()”

Step 2: Measure the parameters and tabulate for all the functions

77

The parameters pertaining to each function of the complete software is measured using the

“Static Analyser”. It is basically the software metrics pertaining to each of the functions

are evaluated and tabulated. These parameters directly influence the reliability of the

software. In terms of severity of parameter’s influence on reliability, it is categorized as

different levels with “Level 0” as the highest severity of levels are tabulated in Table 7.1.

The next sequence is to measure the following parameters and fill up the Table 7.2.

The parameters identified are

a) Lines of Code

Less the number of lines of code, it will be easier to understand, test and maintain. On the

other hand, when the code is lengthy and complex it is prone to error. So the number of

code lines should be less to improve the reliability. This forms the basis for the base failure

rate of the function.

b) Cyclomatic Complexity (CC)

This attribute measures the complexity of each function in terms of number of independent

paths, i.e., number of branches. Less the number of branches, better is the reliability. It is

applied to individual functions within a program. The number of “test cases” in the Basis

Path Testing strategy is proportional to the cyclomatic complexity of the program. This

falls in the category of Level 0, which means that its contribution is significant.

c) Local Variables

Usage of more variables results in occupying more memory and particularly the stack in

case of usage of “static” variables under Local Variables. Usage of local variables is

preferred compared to Global Variables because of vulnerability in affecting and becomes

concern in “Impact Analysis” on top of being occupying memory throughout the life of the

78

program. This falls in the category of Level 3, which means that its contribution is

minimum in affecting the reliability.

d) Global Variables

It is always better to minimise global variables but still some values are required to be of

scope covering the complete project. Usage of local variables is preferred compared to

Global Variables because of vulnerability in affecting and becoming concern in “Impact

Analysis” on top of being occupying memory throughout the life of the program. This falls

in the category of Level 2, which means that its contribution is moderate and affects

reliability to some extent.

e) Number of times invoked / used

This parameter is to give weight-age as per the usage of the functions. Less the frequency

of usage less will be the combination of inputs that result in better reliability. This falls in

the category of Level 3, which means that its contribution is minimal in affecting the

reliability.

f) Level of nesting

The depth of “condition branches” or the “loops” is the measure for each function. When

the depth is less, the reliability is better, number of test cases is less and hence, the

testability and coverage are good. This falls in the category of Level 1 which means that its

contribution is large and affects reliability to large extent.

g) Dynamic Memory usage (Number of times)

Dynamic memory allocation also known as heap-based memory allocation is the allocation

of memory storage for use during the run-time. It can also be seen as a way of distributing

ownership of limited memory resources among many pieces of data and code. Hence, it is

vulnerable for memory overflow resulting in failure. When the number of occurrences is

79

more it is more vulnerable for failure resulting in decrease in reliability. This falls in the

category of Level 1 which means that its contribution is large and affects reliability to a

large extent.

h) Number of distinct operators

The complexity of arithmetic is directly related to the number of distinct operators used in

the algorithms. As the number of operators increases the reliability decreases. This falls in

the category of Level 3, which means that its contribution is minimal in affecting the

reliability.

The П factors are derived depending on their “Category of Level” assigned to the

parameters. Table 7.1. Shows the mapping of level to П factor equation. In the next step

using this table П factors are evaluated and used in calculation for its contribution to

reliability.

Table 7.1 Mapping of П factors to “Category of Levels”

Severity Levels П factor equation Description

0 1.0 x Parameter Significant

1 1 + (1.0 x Parameter) Large

2 1 + (0.1 x Parameter) Moderate

3 1+(0.01 x parameter) Minimum

4 1/(1+(0.01 * parameter)) Small improvement

5 1/(1+(0.1 x parameter)) Large improvement

Table 7.2 Template for Quality Parameters of Function

80

Function

Name

Lines

Of

code

Cyclomatic

Complexity

Local

Variable

Global

Variable

Times

used

Nesting Dyn.

Memory

operators

Func 1

Func 2

Func 3

Func 4

Func 5

Step 3: Apply the equation to calculate failure per combination for all the functions

The equation for failure of a function per input combination is defined as Фf

The Фf is calculated as,Фf = Фb ПC ПLV ПGV ПTU ПN ПD ПO ………………………(7.1)

where

Фb Base failure / Combination = Number of lines x 10-8 For Non Nuclear Safety

= Number of lines x 10-9 For Safety Related systems

= Number of lines x 10-10 For Safety Critical systems

ПC Cyclomatic Complexity Factor = 1.0 x Cyclomatic Complexity

ПLV Local Variable Factor = 1 + (0.01 x Number of Local Variable)

ПGV Global Variable Factor = 1 + (0.1 x Number of Global Variable)

ПTU No. of Times Used Factor = 1 + (0.01 x Number of Times used)

ПN Nesting Factor = 1 + (1.0 x Nesting Level)

ПD Dynamic Memory Factor = 1 + (1.0 x Dynamic Memory usage)

ПO Operators Factor = 1+(0.01 x number of operators used)

81

The weights for each factor is arrived from analyzing around fifty software modules of fast

reactor and with the methodology applied in the organization. If necessary these factors

can be tuned as per the organization methodology and its perception. The Failure /

Combination Фf of all the functions shall be calculated and tabulated as in the Table 7.3.

Table 7.3 List of Failures for functions

Function Name Failure / Combination

 Фf x 10-10

Func 1

Func 2

Func 3

Func 4

Step 4: Apply the equation to calculate failure per combination for software

Now for the complete software the failure is calculated by arriving at subtotal and then by

multiplying the common factor affecting the complete software to achieve the total failure /

input combination. The sub-total of failure / input combination is calculated using the

Equation 7.2 by summing up all the functions failures since all the functions have to

operate to achieve the required functionality of the software.

 N

ФSubTotal(ST) = Σ Фfi …………………………………….(7.2)

 i= 1

Once the sub-total is calculated the total failure / input combination for the complete

software is calculated using Equation 7.3 by normalizing with the common quality factors

pertaining to the project.

82

ФTOTAL = ФST ПVer ПCC ПSTD Пint …………………………….(7.3)

Where

ПVer Version Number factor = 1 / (1+(0.1 * number of versions))

ПCC Comment to Code Factor = 1 / (1+(0.1 * percentage of comment to code))

ПCC Conformance to Standards Factor = 1+(10 – (10 * (0.01 * percentage of

conformance)))

Пint Number of Interrupts used factor = 1 + 10 * Number of interrupts

Once the sub total is calculated, the factors which are affecting / increasing the reliability

are considered to arrive the total failure / input combinations. The global factors are

a) Version Number : As the version number increases, the new releases covers the “bug”

fixing and covers the requirements overlooked. In essence the new releases increase the

reliability to certain extent.

b) Comment to Code Ratio : The Comments in the code is like document embedded in

the code. This helps in large extend to understand the algorithm and flow of the

software

c) Conformance to Standards: The degree of conformance to standards (like MISRA)

greatly enhances reliability because we will be avoiding error prone and complex way

of expression. It also facilitates good practices, which can trap invalid combinations

(like “default” in Case statement).

d) Number of Interrupts: As the number of interrupts used in the software increases, the

software becomes complex. It becomes difficult to do the testing since the simulation of

asynchronous interrupts during the normal courses of action and also simultaneous

83

triggering of multiple interrupts. Hence the reliability tends to decreases as the number of

interrupts increases.

Step 5: Estimation of reliability

The reliability over the number of input combinations is given by

R(c) = e – (Ф * COMBINATIONS) ……………………………(7.4)

7.3 Typical Estimation for Safety Critical System

As a case study, the software developed for a fast reactor, which does the supervision of

sodium temperature at inlet and outlet of fuel subassemblies and initiating shutdown of the

nuclear plant on finding abnormalities is taken up. This software falls in the category of

Safety Critical System. The step by step procedure for estimation of the software reliability

is shown next

Step 1: List out the functions used in the software

The Safety Critical System software has the following functions

main Main module

scan Scan Module

median To Calculate Median

ptsr Pre Treatment Sub Routine

mvsr Mean Value Sub Routine

mgsr Mean Gradient Subroutine

spcs Supervision of Core Subassembly

init Initialization

84

Step 2: Measure the parameters and tabulate them for all the functions

The parameters are calculated for each functions and filled in the Table 7.3. Then Фf is

calculated using Eq. 7.1. and filled in Table 7.4 as explained in step 3.

Table 7.4 Software Failure Calculation for function

Function

Name

Lines

Of

code

CC Local

Var

Global

Var

Times

used

Nesting Dyn.

mem

ope

rat

ors

Failure /

combination

Фf x 10-10

Init 26 2 1 21 1 1 0 4 342.0354

Scan 240 36 19 10 1 2 0 10 68537.1456

Median 55 11 6 6 1 1 0 9 2259.2229

Ptsr 35 4 7 8 1 1 0 8 588.2466

Mvsr 87 12 8 17 1 2 0 7 6579.8586

Mgsr 63 7 4 20 1 2 0 5 13002.4440

Spcs 78 12 2 15 1 2 0 6 7665.9242

Main 98 8 6 20 1 3 0 5 10575.8150

CC – Cyclomatic Complexity Sub Total 108550.9623 x 10-10

Step 3: Apply the equation to calculate failure / combination for all the function

The equation for failure of a function per input combination is computed as Фf

Фf = Фb ПC ПLV ПGV ПTU ПN ПD ПO

For the “Init” function

Фb = 26 x 10-10 ПC = 1.0 x 2 ПLV = 1+(0.01 x1)

ПGV = 1+(0.1 x21) ПTU = 1+(0.01 x1) ПN = 1+(1.0 x 1)

85

ПD = 1+(1.0 x 0) ПO = 1+(0.01 x 4)

Фf of “Init” function is 342.0354 x 10-10 failures / combination

In the same way, Фf is calculated for all the functions and entered on to the Table 7.4.

Step 4: Apply the equation to calculate failure / combination for software

Now for the complete software the failure is calculated by arriving at subtotal and then by

multiplying the common factor affecting the complete software to achieve the total failure /

input combination as

 N

ФSubTotal(ST) = Σ Фfi = 108550.9623 x 10-10 failures / combination

 i= 1

Once the sub-total is calculated the total failure / input combination for the complete

software is calculated using Eq. 7.3 by normalizing with the common quality factors.

ФTOTAL = ФST ПVer ПCC ПSTD Пint .

 The Safety Critical System software has the data as follows:

Number of Versions = 39 Comment to Code Ratio = 63%

Conforming to Standards = Fully, 100 % No. of Interrupts = Nil

ФTOTAL = 108550.9623 x 10-10 * [1.0/(1+(0.1*39))] * [1.0/(1+(0.1*63)] *

 [1+(10-10*(0.01*100))] * [1+(10 * 0)]

ФTOTAL = 108550.9623 x 10-10 * [0.204] * [0.136] * [1.0] * [1]

=3034.6928 x 10-10 failures / combination

86

Step 5: Estimation of reliability

The reliability over the number of input combinations is given by Eq. 7.4

R(c) = e – (Ф * COMBINATIONS)

The Table 7.5 lists the estimated reliability based on the number of input combinations for

the ФTOTAL of 3034.6928 failures / combination with the variation of criticality levels as

Safety Critical, Safety Related and Non-nuclear safety. The reliability of the sample system

for 5000 combinations becomes R (5000) = 0.9984838041

Table 7.5 Estimated reliability based on the number of input combinations

Reliability with

input Combinations

Safety Critical

(SC1)

Safety Related

(SR)

Non Nuclear Safety

(NNS)

R(100) e – (0.0000003034 * 100)

= 0.9999696535

e – (0.000003034 * 100)

= 0.9996965767

e – (0.00003034 * 100)

= 0.9969699072

R(1000) e – (0.0000003034 * 1000)

= 0.9996965767

e – (0.000003034 * 1000)

= 0.9969699072

e – (0.00003034 * 1000)

= 0.970115638

R(5000) e – (0.0000003034 * 5000)

0.9984838041

e – (0.000003034 * 5000)

= 0.9849410729

e – (0.00003034 * 5000)

= 0.859246015

R(10000) e – (0.0000003034 * 10000)

0.9969699072

e – (0.000003034 * 10000)

= 0.97010891721

e – (0.00003034 * 10000)

= 0.738303715

The typical safety critical software deployed in the reactor is taken for reliability

estimation. This software basically does the core supervision, initiates alarm if the value

exceeds the Alarm limits. It also gives command to shutdown whenever the parameter is

approaching to design limits. These functions help to keep the core integrity and safe

operation of the plant. The version history of the software is tabulated in Table 7.6 and 7.7

87

Table 7.6 Software Version history of SCS – Part I

Version No. & Date obs Description of important observations(obs)

31.5.2005 Ver 1.0 30 Comments were less - 23%,

Three Functions Cyclomatic Complexity (CC) > 15,

One function Nesting is greater than 5,

Intialisation of some variables missing,

Multiple Returns in functions, Usage of Library,

Power Function is wrong i.e 10 1.9 =79.4 instead of 10,

Compute was wrong,

cr_count ++ - No Reset keeps on incrementing

7.1.2006 Ver 4.0 20 Comments 21%, CC > 15 : 5 functions,

Nesting > 3 : 2 functions, unused variables,

Multiple Returns, Library Used

Float equality check

17.1.2006 Ver 4.1 15 Comments 46%, CC > 15 : 3 functions,

Nesting>3 : 2 functionss, unused code,

Library Used, typecasting

2.2.2006 Ver 4.2 10 Comments 46%, CC > 15 : 3 functions,

Nesting>3 : 1 fn, Library Used,

Hard-coding of numbers

14.2.2006 Ver 4.21 5 Comments 46%, CC > 15 : 3 functions,

Nesting>3 : 1 function, Library Used

88

Table 7.7 Software Version history of SCS – Part II

Version No. & Date obs Description of important observations(obs)

12.3.2007 Ver 4.21 5 Comments 46%, CC > 15 : 3 functions,

Nesting>3 : 1 function

13.1.2009 Ver 4.3

Constants modified

5 Comments 46%, CC > 15 : 3 functions,

Nesting>3 : 1 function, Unused Macros & Variables

30.1.2009 Ver 4.4

LOR Modification

3 Comments 46%, CC > 15 : 3 functions,

Nesting>3 : 1 function, This version is temporary

2.9.2009 Ver 4.3.1

New 15 Channel ROP

3 Comments 46%, CC > 15 : 3 functions,

Nesting>3 : 1 function

13.12.2011 Ver 4.3.1

1 SPGS Group added

3 Comments 46%, CC > 15 : 3 functions,

Nesting>3 : 1 function

10.2.2012 Ver 4.4

Removal of FIT

2 CC > 15 : 2 functions, Nesting >2 : 1 function

Ref. Tolerance count is high

15.1.2013 Ver 4.4.1

Test SA modification

2 CC > 15 : 1 function, Nesting>2 : 1 function

This version is temporary

17.10.2013 Ver 4.5

Pac Assembly added

2 CC > 15 : 1 function, Nesting>2 : 1 function

Separate PDSR for sphere Pac Fuel Sub Assembly

7.4 Inferences

A comprehensive procedure to estimate software reliability for a given software program

coded in “C” language has been established. The data required for each function is

obtained by running the “Static Analyser” tool developed as a part of this research.

89

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

8.1 Conclusions

The present research work is directed towards development of a robust methodology for

developing reliable software and estimation of reliability of software used in safety

systems for nuclear reactor.

In the process of developing reliable software, the following artifacts are developed.

 Development of software life cycle model for safety systems – “V” model is developed

to ensure the development process free from un-intentional errors with the checking

mechanism at each stage.

 Determination of software metrics and development of software metric tools – Listing

out the software metrics which affect the quality of the software and development

of a “Static Analyser” tool to evaluate the quality parameters which have bearing

on the reliability.

 Development of software Verification and Validation methodology – The complete

methodology as step-by-step procedure to practice Verification and Validation of

software is evolved to ensure the software reliability.

Although the most important sources of information in predicting software reliability are

known as software engineering measures, limited study systematically demonstrates how

software-engineering measures determine software reliability. The study in this report was

a constructive attempt towards the establishment of a relationship between software

engineering measures and software reliability.

90

In the process of Estimating Reliability of the software the following artifacts are

developed.

 Development of Software Reliability Model – The software reliability growth model

suitable for safety systems of nuclear reactor has been developed.

 Procedure for estimation of software reliability – A comprehensive procedure to

estimate software reliability for a given software program coded in “C” language

has been established.

Robustness and validation of the methodology has been demonstrated by applying it to

software deployed in safety critical and safety related systems of fast reactor.

8.2. Scope For Future Work

Strong presence of human element and variations among individuals are envisaged in

software development in particular during code development. The unreliability attached

with the Human Error Probability is assumed to be minimal which is basically the

boundary within which the research has been carried out.

Generally the application software for Human Machine Interface are developed using

object oriented concepts. The same methodology can be extended for “Object Oriented

Programming” considering the impact of Class, polymorphism and inheritance. It can also

be extended for standard reuse library with which the object oriented system works.

91

APPENDIX – I: Definitions and Abbreviations
Definitions

Acceptance testing: Testing conducted in an operational environment to determine

whether a system satisfies its acceptance criteria (i.e., initial requirements and current

needs of its user) and to enable the customer to determine whether to accept the system.

Component testing: Testing conducted to verify the correct implementation of the design

and compliance with program requirements for one software element (e.g., unit, module)

or a collection of software elements.

Criticality: A subjective description of the intended use and application of the system.

Software criticality properties may include safety, security, complexity, reliability,

performance, or other characteristics.

 Criticality analysis: A structured evaluation of the software characteristics (e.g., safety,

security, complexity, performance) for severity of impact of system failure, system

degradation, or failure to meet software requirements or system objectives.

Designer: The agency that generates the detailed specifications of the system interacts

with the developer, manufacturer and regulator and is responsible for the final acceptance

of the system.

Developer: The agency that does all project management activities, designs the system

architecture, carries out detailed development and testing of the system, generates all

relevant documents, has the relevant documents subjected to Quality Analysis and internal

verification and carries out need based interaction with manufacturer and regulator.

Integration testing: An orderly progression of testing of incremental pieces of the

software program in which software elements, hardware elements, or both are combined

and tested until the entire system has been integrated to show compliance with the program

92

design, and capabilities and requirements of the system.

Interface Design Document (IDD): Documentation that describes the architecture and

design of interfaces between system and components. These descriptions include control

algorithms, protocols, data contents, formats, and performance.

Interface requirement specification (IRS): Documentation that specifies requirements

for interfaces between systems, which include constraints on formats and timing.

Life cycle process: A set of inter-related activities that result in the development or

assessment of software products. Each activity consists of set of tasks. The life cycle

processes may overlap one another. For V&V purposes, no process is concluded until its

products are verified and validated according to the defined tasks as per procedure.

Minimum tasks: Those V&V tasks required for the software safety level assigned to the

software to be verified and validated.

Optional tasks: Those V&V tasks that may be added to the minimum V&V tasks to

address specific application requirements.

Required inputs: The set of items necessary to perform the minimum V&V tasks

mandated within any life cycle activity.

Required outputs: The set of items produced as a result of performing the minimum V&V

tasks within any life cycle activity.

Software Design Description (SDD): A representation of software created to facilitate

analysis, planning, implementation and decision-making. The software design description

is used as a medium for communicating software design information and may be thought

of as a blueprint or model of the system.

Software Requirements Specification (SRS): Documentation of the essential

requirements (i.e., functions, performance, design constraints and attributes) of the

93

software and its external interfaces. The software requirements are derived from the system

specification.

Software Verification and Validation Plan (SVVP): A plan describing the conduct of

software V&V.

Software Verification and Validation Report (SVVR): Documentation of V&V results

and software quality assessments.

System testing: The activities of testing an integrated hardware and software system to

verify and validate whether the system meets its original objectives.

Test case: Documentation that specifies input, predicted results, and a set of execution

conditions for a test item.

Test design: Documentation that specifies the details of the test approach for a software

feature or combination of software features and identifying the associated tests.

Test plan: Documentation that specifies the scope, approach, resources, and schedule of

intended testing activities.

Test procedure: Documentation that specifies a sequence of actions for execution of tests.

Validation: The process of verifying whether the software was built as per the

requirements or not is called as Validation, e.g., system and integration testing, user

acceptance-testing etc.

Verification: The process of verifying whether the software is being built as per the

requirements of the previous phase or not is called as verification, e.g, peer review, unit

test, code walkthrough, software inspection etc.

Verification and Validation Committee (V&VC): V&V processes performed by an

organization with a specified degree of technical, managerial, and financial independence

from the development organization.

94

Abbreviations

The following abbreviations appear in this document:

AERB : Atomic Energy Regulatory Board

AC&V : Air Conditioning and Ventilation

COTS : Commercial Off The Shelf

IDD : Interface Design Document

IEC : International Electro-technical Commission

IRS : Interface Requirements Specification

IV&V : Independent Verification and Validation

MVF : Mean value function

NNS : Non Nuclear Safety

PFBR : Prototype Fast Breeder Reactor

QA : Quality Assurance

SC-I / SCS : Safety Class I / Safety Critical Systems

SC-II / SR : Safety Class II / Safety Related Systems

SDD : Software Design Description

SRE : Software reliability engineering.

SRGM : Software reliability growth model

SRS : Software requirement specification

SSE : Sum of squared errors

SVVP : Software Verification and Validation Plan

SVVR : Software Verification and Validation Report

V&V : Verification and Validation

95

APPENDIX – II: Checklist for System Requirement Review

Sl.

No.

Items to be examined Yes/ No/

NA

Comments of the

examiner

1.0 General

1.1 Does the system requirements bring out the

following

1.1.1 Role of the system in nuclear power plants

1.1.2 Salient features

1.1.3 Safety Class (SCS, SRS, NNS)

1.1.4 Whether context diagram exists

1.2 Whether various operating modes are listed

1.3 Are the requirements free of duplication and

conflict with other requirements?

1.4 Is each requirement written in consistent,

clear and concise language?

1.5 Does each requirement have only one

interpretation? If a term could have multiple

meanings, is it defined?

1.6 Is each requirement verifiable by testing,

demonstration, review, or analysis?

1.7 Are there measurable acceptance criteria for

all functional & non-functional requirement?

1.8 Is each requirement uniquely and correctly

96

identified?

1.9 Is each requirement traceable to its source

(including derived requirements)?

1.10 Is each requirement in scope for the project?

1.11 Have appropriate requirements documentation

standards been followed?

1.12 Are all figures, tables, and diagrams labeled

and referenced?

1.13 Are all terms and units of measure defined?

1.14 Has full life cycle support been addressed,

including maintenance?

2.0 Functional Requirements

2.1 Are the requirements unambiguous?

2.2 Are they consistent?

2.3 Are they verifiable?

2.4 Whether all inputs required to achieve a

function listed?

2.5 Whether the safety class of the function

specified?

2.6 Are there any priorities? If so, are they

specified?

3.0 Performance Requirements

97

3.1 Whether following attributes of output

specified for all operating modes?

Accuracy, Resolution and Response time

3.2 If the performance requirements are different

under any hardware/ software failure

condition, are they specified?

4.0 Interface Requirements With Other Computer based systems

4.1 Are the functions provided and required by

the system at the interfaces described?

4.2 Whether the nature of information to be

transferred to/ from other systems specified?

4.3 Frequency of interactions and protocol to be

followed specified ?

4.4 Clock synchronization with other systems

specified ?

4.5 Speed of data transfer specified ?

4.6 Isolation requirements specified?

4.7 Action to be taken on fault specified?

5.0 Interface Requirements With Field I/O

5.1 Whether the type of all inputs / outputs from/

to plant processes/ equipments and operator

panels specified?

5.2 Whether static/ dynamic characteristics of

98

sensors and actuators, if required, are

mentioned?

5.3 Signal conditioning requirements for inputs

and type of output?

5.4 Validation checks on inputs / outputs?

6.0 Human Machine Interface (HMI) Requirement

6.1 No. of interface points

6.2 Nature of interfaces

6.3 Refresh rates of displays

6.4 Details of operator function required at each

interface

6.5 Precision of outputs

6.6 Ergonomic requirements of controls and

displays

6.7 System response time to operator requests

6.8 Scheme for use of colours on displays

6.9 Menu navigational requirements for normal as

well as emergency operations

6.10 Error messages for HMI operator’s

convenience

6.11 Help facility

7.0 Power Supply Requirements

99

7.1 Does power supply requirements cover the

type of supply available, short and long term

variations, noise level, interruption time

during change over to back up supply?

8.0 Testing, Diagnostics and Self Supervision Requirements

8.1 Whether online and offline diagnostics are

covered?

8.2 Identification of system components to be

checked?

8.3 Periodicity of testing

8.4 Fault annunciation methods

9.0 Data Archival and Retrieval Requirements

9.1 Whether data archival requirements in

different modes of operation mentioned

9.2 Has the format and frequency of archiving

specified?

9.3 What is the lifetime of archived information

required?

10.0 Safety requirements

10.1 Whether fail-safe state of system outputs

specified?

11.0 Access Control Requirements

100

11.1 Is the access control policy defined?

11.2 Whether method to indicate security breach is

mentioned?

12.0 Environmental Requirements

12.1 Whether the environmental conditions to

which the system will be subjected is

specified?

13.0 Reliability/ maintainability Requirements

13.1 The Mean Time Between Failure and Mean

Time To Repair requirements specified?

13.2 Demand failure probability specified if the

safety class desires so

14.0 Whether installation, cabling and

grounding requirements included?

15.0 Acceptance criteria specified?

101

APPENDIX – III: Checklist for System Architecture Review

Sl.

No
Items to be examined

Yes/ No/

NA

Comments of the

Examiner

1.0. Verification of Architectural

Design

1.1 Structure

1.1.1 Does the architecture allow for

implementation of all of the

requirements?

1.1.2 Has the architecture been adequately

decomposed?

1.1.3 Have the system functions been

appropriately allocated to

components?

1.1.4 Does the architecture provide an

adequate base for subsequent design

work?

1.1.5 Is the architecture feasible for

implementation?

1.1.6 Have maintainability issues been

adequately addressed?

1.1.7 Can the program set be integrated

102

and tested in an incremental

fashion?

1.2 Correctness

1.2.1 Does the architecture avoid

unnecessary redundancy?

1.2.2 Have all reliability and performance

requirements been addressed?

1.2.3 Have all security considerations

been addressed?

1.2.4 Does the architecture consider all

existing constraints?

1.2.5 Are all necessary, and only the

necessary, data structures defined?

1.2.6 Will the proposed architecture

satisfy all specified quality attributes

and performance goals?

1.3 Clarity

1.3.1 Is the architecture, including the

data flow, control flow, and

interfaces, clearly represented?

1.3.2 Are multiple representations of the

design consistent with each other?

103

1.3.3 Are all of the decisions,

dependencies, and assumptions for

this design documented?

1.4 Is the interface with other system

shown in the context diagram?

1.5 Are all the subsystems/ packages

(hardware as well as software)

individually named?

1.6 Are the interfaces external to the

system identified and mapped to

the subsystem/ package?

1.7 Are the following available for each hardware

1.7.1 Purpose

1.7.2 Functional requirements

1.7.3 Performance requirements

1.7.4 Resource requirements

1.7.5 Interfaces external to the system

1.7.6 Field interfaces

1.7.7 Human machine interface

1.7.8 Interfaces with other computer based

systems

1.7.9 Interfaces with other subsystems

1.7.10 Dependency with other subsystems

104

1.7.11 Hardware related parameters

required for software design

1.7.12 Data validation criteria for each

input and output

1.8 Are the following available for each software

1.8.1 Purpose

1.8.2 Functional requirements

1.8.3 Performance requirements

1.8.4 Resource requirements

1.8.5 Interfaces external to the system

1.8.6 Field interfaces

1.8.7 Human machine interface

1.8.8 Interfaces with other computer based

systems

1.8.9 Interfaces with other software

1.8.10 Dependency with other packages

1.8.11 Software related parameters required

for hardware design

1.8.12 Data validation criteria for each I/O

1.9 Is there a consistent and complete

description of what hardware is

expected to do within the

proposed implementation

105

1.10 Is there a consistent and complete

description of what software is

expected to do within the

proposed implementation

1.11 Have the following been demonstrated for the system

1.11.1 Fault tolerance

1.11.2 Fail safe action

1.11.3 Reliability

1.11.4 Security

1.11.5 Redundancy

2.0 Traceability

2.1 Backward traceability

2.1.1 Are the functions of each hardware/

software traceable to the

requirements stated in SyRS

2.2 Forward traceability

2.2.1 Is each and every requirement stated

in SyRS covered as a function of

one or the other hardware/ software

106

APPENDIX – IV: Check list for Software Requirement Specification Review

Sl.

No. Items to be examined

Yes/

No/ NA

Comments

of the

Examiner

1.0 Standards Compliance

1.1 Have the standards/guidelines and naming

conventions been established for the document?

1.2 Does the document format conform to the specified

standard/guideline?

1.3 Are the standards and naming conventions established

followed throughout the document?

2.0 Document Content

2.1 Is there a high-level system overview?

2.2 Do the high-level system diagrams depict the internal

and external interfaces and data flows?

2.3 Is the system’s functional flow clearly and completely

described?

2.4 Has the software environment been specified (i.e.,

hardware, software resources, users)?

2.5 Are the communication interfaces to other systems or

devices such as LAN, serial devices clearly defined?

2.6 Are all referenced documents listed?

107

2.7 Are all definitions, acronyms, and abbreviations

included?

2.8 Is there a general description of the software system

and operational concepts?

2.9 Are the software functions described at a high-level?

2.10 Are the user characteristics defined?

2.11 Are general design and implementation constraints

noted?

2.12 Are general assumptions that affect implementation

been stated?

2.13 Are general dependencies noted?

2.14 Is each function defined separately?

2.15 Does each function fully define its purpose and scope?

2.16 Have the functional requirements been stated in terms

of inputs, outputs, and processing?

2.17 Are the functional requirements clear and specific

enough to be the basis for detailed design and

functional test cases?

2.18 Is there a description of the performance requirements

for each function?

2.19 Are the operational hardware limitations discussed for

each function?

2.20 Are any software limitations discussed for each

108

function?

2.21 Are safety-critical software requirements uniquely

identified?

2.22 Are security requirements identified?

2.23 Are software quality requirements identified (e.g.,

reliability, portability, reusability, maintainability)?

2.24 Are personnel-related requirements identified?

2.25 Are environmental requirements and conditions

identified?

2.26 Are all packaging requirements identified?

2.27 Are all delivery requirements identified?

2.28 Are requirements provided for the operational

computer hardware?

2.29 Are computer software resources identified (e.g.,

operating system, network software, databases, test

software)?

2.30 Have overall integration, test and acceptance criteria

been established?

2.31 Have test methods been identified for requirements?

3.0 Traceability

3.1 Is each functional requirement uniquely and correctly

identified?

3.2 Can each software functional requirement be traced to

109

one or more high-level system requirements?

4.0 General

4.1 Are all common functions identified?

4.2 Are interface requirements to other major functions or

external entities clearly identified?

4.3 Are the requirements stated so that they are discrete,

unambiguous, and testable?

4.4 Has each decision, selection, and computational

function that the software must perform been clearly

defined?

4.5 Is a dictionary for all data elements provided?

4.6 Is the data dictionary complete?

5.0 Information - Concise, Complete and Consistent

5.1 Is the document concise and easy to follow?

5.2 Does the level of detail provided reflect a level of

detail appropriate to the purpose of the document?

5.3 Are requirements stated consistently without

contradicting themselves or other requirements?

5.4 Is there evidence of documentation control?

5.5 Was the document baseline prior to the Software

Requirements Review?

6.0 System/Node Integrity

110

6.1 Do the requirements cover system/node integrity

checks?

6.2 Have the diagnostic tests on hardware that have to be

executed while the system is running been specified?

6.3 Have the integrity checks to be performed on software

been specified?

6.4 Have data integrity checks been specified?

7.0 Performance

7.1 Have the precision, accuracy of outputs and frequency

of update been specified?

7.2 Have the response times for important functions been

specified?

7.3 Have the time outs for communication failures and

recovery time for the various software functions been

specified?

7.4 Are memory requirements provided?

7.5 Are the timing and memory limits compatible with

hardware constraints?

7.6 Are all limits and restrictions on software performance

defined?

111

APPENDIX – V: Checklist for Detailed Design Verification

Sl.

No.
Items to be examined

Yes/ No/

NA

Comments of the

Examiner

1.0 Standards Compliance

1.1 Were standards/guidelines and naming

conventions established for the document?

1.2 Does the document format conform to the

specified standard/guideline?

1.3 Are the standards and naming conventions

established followed throughout the document?

2.0 General

2.1 Have similar solutions within the common

application domain been considered?

2.2 Has the architecture been exercised against

existing usage scenarios?

2.3 Have the interfaces to software, hardware and

user been accounted for in the architecture?

2.4 If diagrams are used, do they help in

understanding the design?

2.5 Is there unnecessary text or unnecessary

pictures in the design document?

2.6 Is the description of external interfaces correct?

112

2.7 Are there any multiple descriptions of the same

interfaces between program units?

3.0 Modularity

3.1 Are modules/packages/subsystems that have

been defined highly cohesive within

themselves, while they are loosely coupled to

others?

3.2 Does each module have a distinct purpose?

3.3 Have the interfaces between modules been

adequately defined?

3.4 Is the structure of program units easy to

understand?

3.5 Is the design easy to modify?

3.6 Are all program units sufficiently described?

4.0 Error Recovery

4.1 Is there a consistently applied policy for

handling exceptional situations?

4.2 Is there a consistently applied policy for

handling data corruption in the database/files

etc.?

4.3 Is there is a defined strategy for handling "I/O

queue full" or "buffer full" conditions, if any?

113

5.0 Reliability

5.1 Have strategy for achieving required

availability been worked out?

6.0 Performance

6.1 Have nominal and maximal performance

requirements for various operations been

specified so as to meet the overall performance?

7.0 Traceability

7.1 Is there specified what requirements

specification to meet?

7.2 Is the correct version of the requirements

specification referred?

7.3 Does the design document cater for all

requirements?

7.4 Are all the architectural entities traceable back

to the SRS?

7.5 Does each architectural entity have a clear

identifier for forward traceability?

114

APPENDIX – VI: Checklist for System Integration Verification

Sl.

No. Items to be examined

Yes/

No/

NA

Comments

of the

Examiner

1 Is the system integration test report complete and correct?

2 Is the communication across the system tested?

3 Whether exceptions are handled if the communication

fails?

4 Whether common mode/cause failures are avoided in case

of redundant systems?

5 Whether the failure of any system is indicated in case of

the redundant systems?

6 Whether fail safe mode of the system is asserted?

7 Whether the signal wiring/connectivity diagram is

matching to the database list in the software?

8 Whether appropriate class of power supply is fed to the

system?

9 Whether system is located in the corresponding cabinet

with appropriate safety class?

10 Whether system is connected to the appropriate safety

class data highway for network connectivity?

115

APPENDIX – VII: Checklist for System Validation Review

Sl.

No. Items to be examined

Yes/

No/

NA

Comments

of the

Examiner

1 Is the Traceability Matrix complete?

2 Are there any features that cannot be tested directly?

3 Is the test setup complete for each type of requirement?

4 Are the test cases and procedures complete, consistent

and traceable to requirement specification?

1. Functional requirements

2. Performance requirements

3. Interface requirements

4. External interface

5. Human machine interface

6. Power supply requirements

7. Fault tolerance requirement

8. Testing, diagnostics and self supervision

requirement

9. Data archival and retrieval requirement

10. Safety requirement

11. Security requirement

12. Reliability requirement

13. Maintainability requirement

116

14. Environmental requirement

15. Grounding, cabling and installation requirement

5 Are the acceptance criteria traceable to requirement

specifications?

6 Is the verified and validated software loaded in the

system?

7 Is there a physical / administrative protection in place

to safeguard that only verified and validated software

is running in the system?

117

PUBLICATIONS BASED ON THE THESIS
JOURNALS

1. D. Thirugnana Murthy, T. Sridevi, A. Shanmugam and P. Swaminathan,

Verification & Validation for Safety Critical Real Time Computers (ISSN 0973-9238)

International Journal on Intelligent Electronic Systems, pp 15 -21 , November 2007.

2. T.Sridevi, A.Shanmugam, D.Thirugnana Murthy, S.I. Sambasivan and

P.Swaminathan, Static Analyzer for Computer Based Safety Systems, Journal of the

Instrument Society of India (ISOI), Vol. 37(1), pp. 40-48, 2007.

3. D.Thirugnana Murthy, N.Murali, T.Sridevi, S.A.V. Satya Murty, K.velusamy,

Software Reliability Growth Model For Safety Systems of Nuclear Reactor , accepted

by Journal of Life Cycle Reliability and Safety Engineering, Society for Reliability and

Safety (SRESA), ISSN 2250 0820

4. D.Thirugnana Murthy, Software Reliability Assessment and Modeling for

Safety Systems of Nuclear Reactor Communicated to International Conference on

Advances in Communication, Network and Computing

www.easychair.org/conferences/?conf=cnc2012 – CONC 2012, The Proceedings will be

published by Springer and it will be available in the Springer Digital Library.

5. D.Thirugnana Murthy, Verification and Validation of Safety Systems for

Nuclear Reactors, Communicated to Elsevier Nuclear Engineering and Design, NED-D-

11-00652, http://ees.elsevier.com/ned.

118

6. D.Thirugnana Murthy, K,Velusamy, The Methodology for Software Quality

Assessment and Control of Safety Systems in Nuclear Reactor, Communicated to

“TechnoHub”, International Journal of Engineering and Technology , ISSN 2277 – 7708.

CONFERENCE PROCEEDINGS

1. T.Sridevi, A.Shanmugam, D.Thirugnana Murthy, S.Ilango Sambasivan and

P.Swaminathan, “Software Lifecycle for Safety Critical Systems” , Proc. Int. Conf. on

Trends in Intelligent Electronics System, Satyabama University, Chennai, Nov 2007.

2. D.Thirugnana Murthy , T.Sridevi, SAV Satyamurty and P.Swaminathan,

Verification and Validation of Computer Based Safety Systems for Nuclear Reactors ,

Proc. Int. Conf. on Peaceful Uses of Atomic Energy, New Delhi, September 2009.

3. T.Sridevi, D.Thirugnana Murthy, B. Krishnakumar, S.A.V. SatyaMurty and

P.Swaminathan, “Software Quality Assessment for Safety Systems of Nuclear

Reactor”, 2nd International Conference on Asian Nuclear Prospects (ANUP-2010), Oct 11-

13, Mahabalipuram, Tamilnadu.

4. L.Srivani, D.Thirugnana Murthy, N.Murali and S.A.V.Satyamurty, “Reliability

Analysis of Safety Critical I&C Systems in Nuclear Power Plants”. Proc. International

Applied Reliability Symposium, Chennai, Oct 10 -12, 2012.

