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SYNOPSIS 

 
 

1. Preamble 

 Computational Intelligence (CI) is one of the major domains of artificial 

intelligence that deals with adaptive mechanisms to enable or facilitate intelligent 

behaviour in complex and changing environment. The three main pillars of 

Computational Intelligence are Artificial Neural Networks, Fuzzy Logic Systems and 

Genetic Algorithms. Computational Intelligence techniques have been successfully 

employed in a wide range of applications which include the domains of medicine, 

bioinformatics, electronics, communications and business. Even though there has been 

certain progress during the last two decades, the potential for the application of 

Computational Intelligence in the nuclear domain has not been explored to significant 

extent. The stringent nuclear safety regulations pertaining to reactor environment, poses 

additional challenge in the application of Computational Intelligence in various nuclear 

systems.   

Genetic Algorithm is one of the main Computational Intelligence paradigms 

where the elements of Darwin’s theory of natural evolution are modelled 

algorithmically. Genetic Algorithms have been shown to be more efficient than 

classical optimization algorithms (like gradient based methods and simplex methods) 

for discontinuous, non-differentiable and multimodal problems. The advantages of 

Genetic Algorithm offer considerable scope for its applications in nuclear reactor 

related optimization problems. In fact, one of the early practical applications of Genetic 
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Algorithm was in nuclear reactor environment, specifically in nuclear fuel management 

of Pressurized Water Reactors. 

 The literature survey carried out as the part of this work indicates that there are 

potential areas in nuclear engineering filed which are little explored for the application 

of an intelligent optimization technique like Genetic Algorithm. For example, even 

though there has been progress in the application of Genetic Algorithms in nuclear fuel 

management of Pressurized Water Reactors and Boiling Water Reactors, similar 

applications in Pressurized Heavy Water Reactors (PHWRs) and Fast Breeder Reactors 

(FBRs) were found to be limited. These two types of reactors are the important building 

blocks of the three-stage nuclear power programme of India. Therefore, the focus of the 

work carried out as part of the thesis is on the application of Genetic Algorithm based 

optimization methodologies in PHWRs and FBRs. 

2. Motivation for the Research 

The main motivation behind the presented work is the application and 

comparison of Genetic Algorithm based optimization methodologies in the selected 

reactor systems, to arrive at the suitability of a methodology for a particular type of 

application. There is a scope for exploring the possibilities of a modular approach in 

developing such applications, which helps in extending the Genetic Algorithm based 

optimization methodologies to other reactor systems.  

One of the potential areas of application of Genetic Algorithm is in the 

optimization problems of nuclear fuel management. The nuclear fuel management 

optimizations represent a range of optimal decision making problems, from the amount 

and physical properties of the fuel inventory to the loading patterns of fuel elements. 

The general objective is to maximize reactor performance or improve the flexibility of 

reactor operation, subjected to operational and safety constraints. The advanced tools, 
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based on intelligent optimization techniques like Genetic Algorithms, are of great 

potential in this field. The present status of Genetic Algorithm based methodologies in 

nuclear fuel management is surveyed in the work carried out as part of the thesis and 

arrived at two relevant methodologies applicable for the study. The methodologies 

selected for the study are, Penalty Functions based Genetic Algorithm (referred to as 

Penalty-function GA) and Multi Objective Genetic Algorithm (referred to as Multi-

objective GA). In the case of Penalty-function GA, the multi-objective optimization 

problem is converted in to single objective by adding penalty functions and constraints. 

Multi-objective GA handles the multiple objectives altogether, by incorporating the 

concepts of Pareto-optimality and dominance. The evaluation of these methodologies 

for reactor applications is a novel initiative highlighted in this work. The study also 

explores in identifying the appropriate choice of Genetic Algorithm methodology for a 

particular reactor application.  

3. Description of the Work  

A modular approach has been employed in the development and 

implementation of the optimization methodologies. The development procedure 

employed in the study is divided in to three modules: (i) Genetic Algorithm module 

(ii) interface module (iii) reactor process simulation module. The development of 

Genetic Algorithm module involves the mathematical formulation of the reactor based 

optimization problem and the development of computer codes (using ‘C’ programming 

language) for implementing different Genetic Algorithm methodologies to obtain the 

solutions. The interface module acts as a communication channel between the Genetic 

Algorithm module and the reactor process simulation module. The interface module 

developed (using ‘C’ and ‘R’ programming languages) for a particular reactor 

application is unique and capable of automated iterative execution. This approach has 
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provided the flexibility in modifying the modules for extending the applications to 

other reactor systems. 

 The optimization studies carried out as part of the thesis include, design 

optimization problem of steam condenser of 500 MWe Prototype Fast Breeder Reactor 

(PFBR), fuel bundle optimization of a 220 MWe natural uranium fuelled Pressurized 

Heavy Water Reactor (PHWR), optimal core configuration for Prototype Fast Breeder 

Reactor (PFBR) having two different fuel enrichment zones and optimal core 

configuration for 1000 MWe Fast Breeder Reactor having three different fuel 

enrichment zones. The first study is an engineering design optimization application and 

the other three are of nuclear fuel management. The standard real-parameter Genetic 

Algorithm model is chosen for the steam condenser optimization study. The 

Penalty-function GA and Multi-objective GA are applied and evaluated in the nuclear 

fuel management studies. The studies carried out as part of the thesis are briefly 

described in the following subsections. 

 

3.1. Steam Condenser Optimization  

The subsystem considered for the optimization study is the steam condenser (or 

circulating water system) of PFBR. The study is an engineering design optimization 

problem. The purpose of the study is to apply standard real-parameter Genetic 

Algorithm for single objective optimization problem of reactor systems. The 

determination of feasible values for the design parameters of the condenser, that 

influence the system performance, is the aim of the study. Then, Genetic Algorithm 

based performance-cost analysis is carried out to find the optimum circulating water 

system design, based on the maximum capitalized profit. The design parameters 

considered are: flow rate of condenser, outer diameter of condenser tube, length of 
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condenser tube and velocity of water inside the tube. The optimization problem has the 

objective of maximization of the capitalized profit and has to satisfy two constraints. 

The first constraint is related to the temperature range of the circulating water system 

and the second one is related terminal temperature difference of the condenser. The 

results obtained are validated by comparing with the results available based on the 

conventional optimization study. 

3.2. Fuel Bundle Burnup Optimization of Pressurized Heavy Water Reactor 

(PHWR) 

The fuel bundle optimization of PHWR involves, finding the arrangement of 

fresh and partially burned fuel bundles within the reactor core that optimizes the 

performance of the reactor, while ensuring that operational and safety features are 

satisfied. The aim of the study is to calculate the optimum discharge burnups of the fuel 

bundles which give maximum reactor power without violating various constraints, such 

as maximum bundle power and maximum channel power. In the presented work, the 

number of burnup zones of the reactor core is fixed as two; an inner zone of high 

burnup and an outer zone of low burnup. The objectives selected for the optimization 

are: maximization of the average discharge burnup, maximization of the effective 

multiplication factor, minimization of the maximum bundle power and minimization of 

the maximum channel power. The discharge burnups arrived by the Genetic Algorithm 

based optimization methodologies can be utilized, in fixing the most suitable reference 

discharge burnups for the two burnup zones of the reactor core. Two optimization 

methodologies, i.e. the Penalty-function GA and the Multi-objective GA, have been 

applied and compared.  
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3.3. Core Configuration Optimization Studies on Fast Breeder Reactors 

The studies presented on optimal core configuration of Fast Breeder Reactor 

cores explore the machine learning and computational intelligence abilities associated 

with Genetic Algorithms in finding the optimal number of subassemblies in the reactor 

core to achieve the best performance of the reactor. Finding out optimal core 

configuration of Fast Breeder Reactor, is the result of detailed neutronics scoping 

studies, taking into consideration of several factors like, size of the core, enrichment of 

the fuel, linear heat rating of the fuel pins, excess reactivity of the core, control rod 

design, and the inventory of the fuel. Therefore, optimization of the core configuration 

design is a complex task in terms of computational effort and time. Two different Fast 

Breeder Reactor cores, (i) 500 MWe core having two different fuel enrichment zones 

(ii) 1000 MWe core having three different fuel enrichment zones, are considered in the 

studies. The two reactor cores are different in their size, generated power, number of 

subassemblies present in the core, types of fuel, fuel enrichments and number of 

enrichment zones present.  

The objectives selected for the optimization (in  both cases) are related to linear 

heat rate of the enrichment zones, excess reactivity of the core, breeding ratio achieved 

for the configuration and the required fuel inventory. The linear heat rating is the power 

generated per unit length of the fuel pin. The objective is to limit its value such that the 

temperature in the fuel pin does not exceed the melting point of the fuel. The excess 

reactivity of the core indicates the effective neutron multiplication factor to be provided 

in the core in order to override all the reactivity losses during an operational cycle. 

Higher breeding ratio is desirable to generate enough fissile material for self-sufficient 

closed fuel cycle of Fast Breeder Reactor programme. It is also desirable to attain core 
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configuration with possible minimum fuel inventory, which has an impact on the fuel 

economy.  

Two optimization methodologies, i.e. the Penalty-function GA and the 

Multi-objective GA have been applied and compared. The results obtained from the 

study are verified with the reference core configurations. A modular approach has been 

employed in the implementation of the optimization methodologies. 

4. Summary  

The study carried out in the presented work was motivated by the need to develop 

and study, appropriate optimization methodologies based on Genetic Algorithms for the 

applications in diverse reactor environments. As part of the study, appropriate Genetic 

Algorithm based methodologies have been applied and compared in a set of diverse and 

less explored reactor environments of Pressurized Heavy Water Reactor and Fast 

Breeder Reactor. The major findings from the study are: 

 The suitability of the selected Genetic Algorithm methodologies namely, 

Penalty-function GA and Multi-objective GA, are verified for different types of 

optimization problems of nuclear fuel management. 

 The Multi-objective GA is found to be better than the Penalty-function GA in 

two important aspects: one, in terms of the diversity of generated solutions and 

two, in the speed of convergence of the algorithm. 

 The suitability of standard real-parameter Genetic Algorithm is verified for the 

engineering design optimization of reactor subsystem with single objective and 

limited number of constraints.  

 A modular approach has been employed, in applying and comparing different 

methodologies based on Genetic Algorithm, in the optimization problems of 

nuclear fuel management. 
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5. Future Scope of the Work 

The results obtained from the studies carried out as part of the thesis clearly 

establishes the suitability of the selected Genetic Algorithm methodologies, in the 

optimization studies related to different nuclear reactor systems. The modular approach 

followed in the present studies, allow extending the application of the Genetic Algorithm 

methodologies to many other optimization studies of nuclear fuel management. In the 

direction of extending the applications, the following areas of study can be considered: 

(i) fuel bundle optimization of Pressurized Heavy Water Reactor core with different 

geometries of inner and outer burnup zones (ii) finding out the optimal control rod 

positions in the Fast Breeder Reactor core (iii) fuel enrichment optimization in different 

zones of the Fast Breeder Reactor core. The major obstacle in extending the Genetic 

Algorithm application is the computational time requirement associated with the running of 

process simulation codes of reactors. A solution for this is the development and 

application of “parallel” Genetic Algorithms (genetic algorithms developed by 

employing parallel programming concepts) which are capable of running in parallel 

computers.  

6. Organization of the Thesis 

The thesis is divided in to six chapters. In the Chapter 1, a brief introduction to 

the research work is given. The description and findings from the literature survey 

carried out in the field of Computational Intelligence methods applicable in different 

nuclear systems, including the applications of Genetic Algorithm in nuclear fuel 

management, are given. Chapter 2 introduces the Genetic Algorithm operators and 

parameters, used in the studies carried out as part of the thesis. The two methodologies 

of Genetic Algorithm which are employed in the optimization studies of nuclear fuel 

management, i.e. Penalty-function GA and Multi-objective GA, are discussed in detail. 
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Chapter 3 addresses the engineering optimization study conducted on steam condenser 

of PFBR. Chapter 4 explains the work carried out for the fuel bundle optimization of 

PHWR. Chapter 5 covers the two different optimization studies carried out on core 

configuration of Fast Breeder Reactors. Chapter 6 summarizes the work carried out in 

the thesis, the conclusions are drawn from the studies carried out and possible areas of 

future work.   
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter gives an introduction to the major disciplines connected to the area of 

Computational Intelligence, nuclear reactors and the applications of Computational 

Intelligence in nuclear reactors. The literature survey carried out in the area of 

application of Genetic Algorithms in nuclear fuel management and the findings from 

the survey are presented.

 

The increasing demand for intelligent search, optimization and machine 

learning in several applications opened up new avenues for the use of Computational 

Intelligence methods. These methods have been successfully employed in a wide range 

of applications which include the domains of medicine, bioinformatics, electronics, 

communications and business. Even though there has been certain progress during the 

last two decades, the potential for the application of Computational Intelligence in the 

nuclear reactor domain is yet to be thoroughly explored. The stringent nuclear safety 

regulations pertaining to reactor environment poses additional challenge in the 

application of Computational Intelligence to various nuclear subsystems. 

Genetic Algorithm is one of the major optimization methods coming under the 

umbrella of Computational Intelligence. Genetic Algorithms have been shown to be 

more efficient than classical optimization algorithms (like gradient based methods and 

simplex methods) for discontinuous, non-differentiable and multimodal problems. The 
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advantages of Genetic Algorithm offer scope for its application to optimization 

problems relating to nuclear reactors. The work presented in the thesis explores the 

application of Genetic Algorithm based optimization methodologies to a set of diverse 

and less explored subsystems of nuclear reactors. An introduction to Computational 

Intelligence covering its features, major constituents and applications are outlined in the 

next section. 

1.1. COMPUTATIONAL INTELLIGENCE 

Computational Intelligence (CI) being a relatively new area, its identity and 

definition are still subjects of debate. Computational Intelligence and Artificial 

Intelligence (AI) are closely interlinked domains but have certain differences among 

them. The traditional problem solving methods in Artificial Intelligence (AI) are more 

concerned with symbolic representation of problem states and construction of a set of 

rules to describe transitions in the problem states [1, 2]. Computational Intelligence 

differs from the traditional Artificial Intelligence in few aspects, such as:  

(i) its use of sub-symbolic knowledge i.e., working with numerical (low-level) 

data 

(ii) having a pattern recognition component 

(iii) showing tolerance for errors and noises  

(iv) exhibit computational adaptability 

The traditional Artificial Intelligence is not very competent to handle a vide 

category of machine learning problems. In order to address several real life problems, 

where some sort of “intelligence” is required in arriving at feasible solutions, a set of 

Computational Intelligence models and tools have been developed. These collection of 

tools and methods of Computational Intelligence are coming under the fabric of 
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“soft computing” [3]. They are often designed to mimic one or more aspects of the 

intelligence of biological systems. 

The major members coming under the broad discipline of Computational 

Intelligence are outlined in Figure 1. The figure represents only a part of the family tree 

of Computational Intelligence, since more and more computational methods are being 

included as members of this domain. The Computational Intelligence can be subdivided 

into child nodes such as Granular Computing, Neuro Computing, Evolutionary 

Computing and Artificial Life [1]. The Granular Computing deals with the processing 

of complex information entities called information granules, which arise in the process 

of data abstraction and derivation of knowledge from information or data. The major 

constituents of Granular Computing are fuzzy sets, rough sets and probabilistic 

reasoning. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  Computational Intelligence family tree showing the major 

members of the domain 
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The next child node i.e., Neuro Computing includes all the machine learning 

methods related to the neural networks. Evolutionary Computing is the collective name 

for a range of problem-solving methods based on principles of biological evolution. 

The Genetic Algorithm - the tool used in the studies presented in the thesis - is coming 

under the category of Evolutionary Computing. Artificial Life is another emerging 

discipline that is based on the assumption that physical and chemical laws are good 

enough to explain intelligence of the living organisms. As the names indicate, the 

Evolutionary Computing and the Artificial Life are closely related fields where the 

main difference lies in defining the fitness of the agents (agent represents the solution 

candidates which behave in accordance with the environment and the goal). 

Even though the comprehensive list of members coming under the family of 

Computational Intelligence is large, there are three primary members, which are: 

(i) Artificial Neural Networks (ANN; also referred to as neural networks in the 

rest of the thesis) 

(ii) Fuzzy Logic Systems (FLS; also referred to as fuzzy logic in the rest of the 

thesis) 

(iii) Evolutionary algorithms like Genetic Algorithms (Genetic Algorithm is 

referred to as GA in the rest of the thesis) 

Each of the above-mentioned paradigms of Computational Intelligence has its origin in 

biological systems. Neural networks model biological neural systems, Evolutionary 

Algorithms model natural evolution, and fuzzy logic evolved from studies of 

organism’s interaction with their environment [2]. 

Computational Intelligence methods have been successfully employed in a wide 

range of applications which include engineering design [4], scheduling of factory 

processes [5], robots for hazardous environments [6], autonomous vehicles [7], 
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intelligent information retrieval [8] and natural language translation [3, 9]. In fact, the 

domains of applications vary from agriculture and farming to control of modern power 

systems [10]. There are several examples in which more than one Computational 

Intelligence tools are applied in tandem, in order to solve certain complex tasks. One 

such example is the application of neural network and genetic algorithm together for 

extracting decision trees from a trained network [11]. Several new classes of algorithms 

are also emerging under the domain of Computational Intelligence. Majority of them 

are applied in machine learning methods like classification, regression and ranking. 

One such example is the bipartite ranking algorithm that is applied in identifying genes 

related to diseases like cancer [12, 13]. 

As the work carried out in the thesis is related to application of Computational 

Intelligence to the domain of nuclear reactors, a brief introduction to the nuclear 

reactors and their role in the Indian energy scenario are presented next. 

1.2. NUCLEAR REACTORS  

Nuclear reactors have been a part of the world's electrical energy generation 

system since 1950s with almost no greenhouse gas emissions. According to the World 

Nuclear Association (WNA), there are over four hundred commercial 

nuclear power reactors, being operated in 31 countries across the world with about 11% 

share of world’s electricity production [14]. Nuclear power is one of the 

environmentally benign ways of producing electricity on a large scale to meet the 

increasing energy demands of the world. Having gained decades of operational 

experience and benefiting from the ongoing development, use of nuclear reactors is a 

clearly viable option, for the fulfillment of future power demands of a developing 

country like India.  
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Nuclear reactors can be classified in various ways, but one general classification 

is based on the speed of neutrons causing most of the fission in the given reactor [15]. 

Accordingly, nuclear reactors can be classified in to two: thermal reactors and fast 

reactors. The core of thermal reactors contains a considerable portion of moderator 

materials that decrease the energy of neutrons to the thermal region. The core of fast 

reactors contains coolants with low neutron moderation property and the majority of 

fissions are produced by fast neutrons. Fast reactors need higher enrichment, i.e. 

fraction of fissile material in the fuel, than thermal reactors. The other features of fast 

reactors include lower pressure in the reactor vessel, higher inlet/outlet temperatures of 

coolant and the higher thermal efficiency [16]. The Fast Breeder Reactors (referred to 

as FBR) are a special category of fast reactors, in which more fissile material is 

produced by neutron capture than the fissile material consumed. The FBRs are of major 

interest for the Indian nuclear programme. They are referred to as Liquid Metal Fast 

Breeder Reactor (LMFBR), with the liquid sodium as coolant.  

The thermal reactors can be further classified as: 

 Pressurized Water Reactors (PWR): They are cooled and moderated by 

high-pressure liquid water. These reactors use a pressure vessel to contain the 

nuclear fuel, control rods, moderator and coolant.  

 Boiling Water Reactors (BWR):  They are cooled and moderated by water, 

but at a lower pressure, which allows the water to boil inside the pressure vessel 

producing the steam that runs the turbines.  

 Pressurized Heavy Water Reactors (PHWR): They are cooled and moderated 

by heavy water and fuelled by natural uranium. The reactor design originated in 

Canada and they are often referred to as CANDU (CANada Deuterium 

Uranium) reactors. 

http://www.innovateus.net/science/what-nuclear-breeder-reactor
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 Gas Cooled Reactors (GCR) and Advanced Gas Cooled Reactors (AGR): 

These are generally moderated by graphite and cooled by carbon dioxide. They 

can have a high thermal efficiency compared with PWRs due to higher 

operating temperatures. 

Among the different types of nuclear reactors mentioned, the Fast Breeder Reactors and 

Pressurized Heavy Water Reactors got special significance in the nuclear power 

programme of India. Homi Bhabha, father of Indian nuclear programme, envisaged a 

three-stage nuclear power programme for India which is discussed briefly in the next 

section.  

1.3. THE THREE STAGE NUCLEAR POWER PROGRAMME OF INDIA  

The emphasis of the three-stage nuclear power programme is on self-reliance 

and judicious utilization of country’s limited uranium resources and effective utilization 

of vast thorium resources [17, 18]. The schematic of the Indian three-stage nuclear 

power programme is shown in Figure 1.2. Natural uranium fuelled Pressurized Heavy 

Water Reactors (PHWRs) are being operated in the first stage. The majority of the 

operating nuclear power plants in India are based on PHWR, which can efficiently 

produce the fissile material required for the country’s second stage of nuclear 

programme. In the second stage, plutonium and the depleted uranium from PHWR 

would be utilized in the Fast Breeder Reactors (shown as “Pu Fuelled Breeders” in the 

figure). During this stage, thorium will be used in the blanket for breeding U233.The 

third stage is based on the thermal breeder reactors (shown as “U233 Breeders” in the 

figure), where the thorium and the U233 (bred from the FBRs) will be used in the core as 

fuel. This in turn will use large-scale thorium-uranium fuel cycle in the third stage. 

http://www.innovateus.net/content/what-thermal-energy
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Figure 1.2: Schematic of the three-stage nuclear power programme of India 

 

 

Since the development of nuclear power envisages the design and development 

of newer reactors, the scope for application of Computational Intelligence methods in 

the domain is found to be promising. A literature survey was carried out in the area of 

applications of Computational Intelligence in the domain of nuclear reactors and the 

major findings are presented next.  

1.4. APPLICATION OF COMPUTATIONAL INTELLIGENCE IN THE 

DOMAIN OF NUCLEAR REACTORS  

Applications of Computational Intelligence (considering its primary members 

i.e., Neural networks, Fuzzy logic systems and genetic algorithms) in the domain of 

nuclear reactors are categorized in general as: 

(i) Neural networks which are suitable for parameter estimation or prediction  
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(ii) Fuzzy logic systems which are used in the applications related to the plant 

control  

(iii) Genetic algorithms for use in the applications related to optimization  

There are many hybrid systems where methods from these different paradigms are 

combined to solve complex problems. In the following discussion, some of the 

applications of hybrid systems, in the domain of nuclear reactors, are also described. 

1.4.1. Application of Artificial Neural Network (ANN) in Reactor Environment 

ANN is an algorithmic model of biological neural systems, which is capable 

of machine learning as well as pattern recognition. Neural networks can automatically 

learn to recognize patterns in data from real systems, from physical models, from 

computer programs or from other sources. They can learn new associations, new 

functional dependencies and new patterns [19]. The applications of neural networks 

cover a wide range, including diagnosis of diseases, speech recognition, data mining, 

pattern recognition, image processing, manufacturing, marketing and finance [20].  

One of the major applications of neural networks in the domain of nuclear 

reactors is in transient identification. The early identification of unexpected 

departures from steady state behavior i.e. transients, is an essential step for the safe 

operation, control and accident management in nuclear reactors. The neural network 

based system for transient identification is basically a pattern recognition system 

utilizing neural network modules to detect the patterns corresponding to the 

transients [21]. One of the early applications of neural networks in transient 

identification of nuclear reactor was by Bartlett and Uhrig [22]. They applied the 

concept in identifying a set of transients related to loss of coolant, ejection of control 

rods and tube leak in steam generators. A novel model of two level classifier systems 

based on neural network was proposed by Mo and colleagues [23]. According to their 

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Pattern_recognition
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model, the input signals from the nuclear reactor are fed to the first level of the system 

which recognizes the type of the transient. The results of the first level are sent to the 

second level where each transient type is handled by a separate ANN module. In the 

second level, the severity and the location of the transient are analyzed and detailed 

information about the transients is provided to the operators.  

Another application of neural networks is in the power prediction and control 

of the reactors. The reactor power control is usually done using control rods, made up 

of neutron absorbing materials. In such situation, it is useful for the reactor operator to 

know in advance, how the reactor power is varying in accordance with the control rod 

movement. The neural network model can be trained with the reactor power at different 

positions of the control rod. A well-trained ANN model can predict the reactor power 

instantly at various operational stages, with control rods at different positions. Models 

based on the neural networks for online power prediction and control of reactor was 

investigated by Roh et al. [24] and Arab-Alibeik et al. [25]. 

Another well-investigated application of neural network by many researchers is 

in the noise analysis during the operation of nuclear reactor. Reactor noise analysis can 

be used mainly in fault detection and diagnosis of various components of nuclear 

reactors [26]. In many cases, these methods are used in early detection of degradation 

and malfunction in reactor components. The neural networks are trained using the data 

obtained during normal fault free operation of the selected equipment or system. The 

faults are detected as the abnormal vibration pattern, generated from the equipment that 

is being monitored. The above-mentioned neural networks based concept has been 

applied in the fault detection of primary coolant pump shaft of the Experimental 

Breeder Reactor (EBR-II) [27]. Seker and colleagues [28] applied neural network 

model to detect damage to the bearing of induction motors in a Gas Cooled Reactor. 
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1.4.2. Application of Fuzzy Logic Systems in Reactor Environment 

Fuzzy logic systems allow “approximate reasoning”, by which an element can 

be assigned to a set with a degree of certainty. These systems try to imitate human 

reasoning that allows reasoning with uncertain facts to infer new facts, with a degree 

of certainty associated with each fact. The applications of fuzzy logic systems in 

nuclear reactors cover a wide range from traditional control applications like heater 

on/off, water level control etc. to advance applications like transient identification, 

signal prediction, etc. In general, the application of fuzzy logic in plant control 

application of nuclear reactor is to mimic the hardware based conventional controller, 

like Proportional Integral Derivative (PID) controller [29]. The fuzzy logic based 

controller has certain advantages over a PID controller. Fuzzy logic controllers are 

software based; therefore, they are more flexible and can be used for controlling both 

linear and non-linear systems.  

A typical control application of fuzzy logic in nuclear reactors is in power 

controlling. Hah and Lee [30] applied a fuzzy logic based automatic power shape 

control mechanism for a Pressurized Water Reactor. Liu and colleagues [31] proposed 

a fuzzy logic controller tuned by the genetic algorithm in the power control system of 

Pressurized Water Reactor. In the proposed model, the genetic algorithm is used for 

tuning the membership functions of the fuzzy logic controller. Ramirez and 

colleagues [32] proposed an automated fuzzy based control scheme for tracking an 

optimal power profile in a Mexican research reactor. 

Another application of fuzzy based controller reported is in the water level 

control of steam generator. During the low power operation of the reactors, poor 

control of water level of the steam generator can lead to emergency shutdowns. 

Therefore, the application of fuzzy logic controller in control of water in the steam 
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generator has a scope of enhancing plant availability [33]. Kuan and colleagues [34] 

applied the fuzzy logic in the water level control of steam generator of a Pressurized 

Water Reactor. They used a set of linguistic rules based on the fuzzy logic, adopted 

from human operator experience, and achieved real-time control with improved 

controller performance. Similar concept was applied for Boiling Water Reactor by Lin 

and colleagues [35]. Habibiyan and colleagues [33] applied a fuzzy-gain-scheduled 

neural controller to control the steam generator water level of a Pressurized Water 

Reactor. 

1.4.3. Application of Genetic Algorithms in Reactor Environment 

Genetic Algorithms (GAs) are powerful and broadly applicable stochastic 

search and optimization methods, based on principles from evolution theory [36]. Most 

of the classical optimization methods generate a deterministic sequence of computation 

based on the gradient or higher-order derivative of objective function. GAs perform a 

multi-directional search by maintaining a population of potential solutions that make 

the search escape from local optima. The detailed study of the principles, operators and 

behavior of the algorithm is presented in Chapter 2. During the past few decades, 

genetic algorithms are being applied to solve many complex optimization problems 

inherent in different subsystems of nuclear reactors. The findings based on a literature 

survey conducted on the application of GA methods in the domain of nuclear reactor 

are presented below. 

One of the applications of GA in the domain of nuclear reactors is in the 

reactor power control. Application of GA in reactor power control is focused in 

finding out the optimal way of using reactivity control mechanisms. In most of the 

cases, it is related to the selection and movement of control rods in the reactor core. 

GA models can help in finding the optimal control rod movements while satisfying all 
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the safety criteria. A model based on GA for the power control of a Pressurized Water 

Reactor by simulating effective reactivity parameters was proposed by Marseguerra 

and Zio [37]. The optimization of power ascension path for a Boiling Water Reactor 

using GA was done by Lee and Lin [38]. Initially, they used a 3-D simulation code to 

model the core characteristics. Later, they improved the model by incorporating the 

neural network concepts for faster predictions of core characteristics [39]. In a recent 

study, Kim and colleagues [40] proposed the design of a load-following controller for 

Pressurized Water Reactor by using GA to optimize non-linear discrete speed of 

control rods.  

Another well-investigated application of GA in the domain of nuclear reactors 

is in the test interval optimization of safety systems. The reactor safety systems are 

tested and maintained periodically in order to ensure their serviceability. The 

optimization of test intervals, based on risk (or unavailability) and cost (or resource 

expenditure) is a complex problem, with non-linear objective functions and 

constraints. Jiejuan and colleagues [41] studied the risk-cost models based on the GA 

for surveillance test interval and preventive maintenance period optimization of a 

Chinese Pressurized Water Reactor. Gopika and colleagues [42] applied GA for 

optimizing in-service inspection intervals of channel feeders of a Pressurized Heavy 

Water Reactor core. A GA model has been applied in the surveillance test policy of 

auxiliary feed-water system of a Pressurized Water Reactor by Pereira and Lapa [43]. 

A risk-cost model based on multi-objective genetic algorithm was applied to decide 

the surveillance test interval and the preventive maintenance period for an Indian 

Pressurized Water Reactor by Mishra and colleagues [44]. The study was later 

augmented by the use of clustering technique in order to improve the performance of 

the multi objective GA [45]. An advanced progressive, real-coded genetic algorithm 
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was developed and applied for the availability-optimization of emergency core cooling 

system of two separate Pressurized Water Reactors, by Aghaie and colleagues [46]. 

Mehra and colleagues [47, 48] applied the GA based risk-cost optimization model, for 

surveillance test interval optimization of the passive standby decay heat removal 

system of Prototype Fast Breeder Reactor (PFBR). 

Apart from the domains mentioned above, applications of GA are investigated 

in the various engineering design optimizations also. For example, Sacco and 

colleagues [49] applied GA in the steam-turbine system of reactors for finding the 

optimal fraction of mass flow rate to be extracted from each stage of the turbines of a 

Pressurized Water Reactor. The study conducted by the team revealed the robustness 

and efficiency of GA based model in finding possible changes of the existing plants’ 

turbine extractions or in the design of new power plant turbine system. Kin and 

Moon [50] applied an optimization approach based on GA, for the radiation shielding 

design of a small-sized spaceship reactor (which acts as a power source for an 

unmanned spaceship).  

Another important application of GA, i.e. GA in the nuclear fuel management 

has been taken up as the main focus of the work carried out in the thesis. The remaining 

part of the chapter presents a detailed description about the nuclear fuel management 

and the applications of intelligent optimization methods, including the GA. The 

findings presented are based on the literature survey carried out in the area of application 

of GA in the domain of nuclear fuel management. 

1.5. NUCLEAR FUEL MANAGEMENT AND INTELLIGENT 

OPTIMIZATION METHODS  

The prime aim of nuclear fuel management is to achieve higher fuel utilization 

during the reactor operation without compromising safety. Nuclear fuel management 



Chapter 1 

 15 

 

 

 

 

entails making decisions that influence how a nuclear reactor core’s reactivity, 

neutronics flux, power, and burnup distribution vary in order to extract electrical energy 

in a cost effective way. The cost reduction is achieved through various means: 

maximization of fuel cycle length, maximization of the burnup, minimization of fuel 

inventory, and minimization of the inventory of reactivity control material. In essence, 

the common aim of nuclear fuel management problems is to achieve higher fuel 

utilization; but the objectives and constraints vary with the type of fuel management 

problem. 

 Generally, the nuclear fuel management problem has multiple objectives and 

constraints. When all these objectives and constraints are considered together, some of 

them will conflict with the other. Hence, any one of the final solutions represents some 

sort of compromise in which no further improvement in a given performance index can 

be obtained without a degradation in at least one of the other performance indices. 

Therefore, the goal of the nuclear fuel management is to identify the solution vector 

that suggests the best compromise among the objectives, while satisfying the given 

constraints. 

1.5.1. General Classification of Nuclear Fuel Management Problems 

Traditionally, nuclear fuel management has been divided into two categories, 

out-of-core and in-core fuel management. Out-of-core fuel management focuses on 

answering the questions “What to manufacture?” and “What to insert?” in the context 

of multi-cycle operations of the reactor. These questions are to be answered during the 

initial design stage of the reactor core. Out-of-core fuel management includes the 

decision on number and composition of fresh fuel assemblies. It also decides on the 

type and configuration of reactivity control materials. In essence, out-of-core fuel 
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management addresses the design issues of the reactor core and strives to arrive at the 

optimal core design. 

In-core nuclear fuel management focuses on answering the question “Where to 

position?” the fuel assemblies or reactivity control materials in the core. The in-core 

fuel management entails the arrangement of fresh and partially burned fuel assemblies 

and reactivity control mechanisms within the core that optimizes the performance of the 

reactor over the next operating cycle, while ensuring that operational constraints are 

always satisfied [51, 52]. The determination of location and orientation of different fuel 

subassemblies and reactivity control materials are the two issues normally addressed by 

in-core nuclear fuel management decisions. Majority of the nuclear fuel management 

problems where intelligent optimization methods like GA applied are coming under the 

in-core fuel management. 

1.5.2. Nuclear Fuel Management Problems in Different Types of Reactors 

The fuel management of Pressurized Water Reactor (PWR) and Boiling Water 

Reactor (BWR) are having many common features along with certain differences 

among them. In both types of reactors, the refueling is off-power i.e. refueling is done 

after shutting down the reactor. The refueling scheme is also similar in both the type of 

reactors, where shuffling of burned fuel assemblies is done. The use of burnable 

poisons as a reactivity control material is also common in PWR and BWR. In PWR, 

separate burnable poison rods which are similar to the fuel assemblies but 

manufactured with neutron absorbing materials, may also be present. Apart from the 

burnable poison, soluble poison like boric acid (called as chemical shim) is used for 

excess reactivity control in PWR. Since chemical shim is used to ensure reactor 

criticality at the desired core flow rate (known as criticality constraint), control rod 

positions and insertions are not coming as a decision variable in PWR in-core fuel 
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management optimization problems. However, in the case of BWR, where chemical 

shim is not used, the criticality constraint is achieved by positioning of control rods. 

The positioning of control rods as a function of cycle burn up is called control rod 

program. In BWR, the in-core fuel management should consider optimum control rods 

program also, for each potential “loading pattern” of fuel assemblies which result in 

added complexity for the optimization problem [52]. The term “loading pattern” 

indicates the location and orientation of different subassemblies in the reactor core. The 

reactor physics based neutronics simulation codes used in BWR are usually 

3-dimensional because of the presence of more number of fuel assemblies in the core, 

presence of strong axial heterogeneities and coolant voidity. This results in more 

computational time for in-core fuel management problems of BWR. 

The in-core fuel management scheme of Pressurized Heavy Water Reactor 

(PHWR) is different from that of PWR and BWR. In the case of PWR and BWR, the 

fuel assemblies are loaded at the beginning of cycle and there is no fuel assembly 

movement until the reactor is shut down for refueling operations. There, the fuel 

management scheme aims to determine the best fuel arrangement throughout a fuel 

cycle. In PHWR, the refueling is on-power (i.e. while the reactor is in operation) and on 

a daily basis to continue the controlled chain reaction in the reactor and also to maintain 

the designed power distribution. Because of the on-power refueling scheme, the 

equilibrium core of the reactor is not uniquely defined. Generally, the time-average 

core calculation is used to search for an optimum power distribution by changing the 

number of fuel bundles loaded per refueling operation and adjusting the discharge 

burnups of the inner and outer cores in the PHWR. 

 The in-core fuel management scheme of the fast breeder reactor (FBR) is 

off-power which is similar to that of PWR and BWR. One major difference in FBR is 
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that the reshuffling of burned fuel assemblies is not usually done during refueling 

operation. This is due to the bowing of subassemblies in response to fast neutron flux 

and temperature gradients. Another noteworthy point is that in FBR, neutron 

moderators are absent and hence neutron poison mechanisms (made up of neutron 

absorbing materials) like burnable poisons or chemical shims are also absent.  

 There are some special cases of in-core fuel management where instead of 

regular fuel reloading, some special cases of fuel loading patterns are considered as the 

objective. Examples of such special case fuel management problems are optimization 

of thorium loading in fresh core [53] and optimization of depleted uranium bundle 

loading in fresh core [54, 55] of PHWR.  

1.5.3. Optimization Methods Applied in Nuclear Fuel Management 

Optimal nuclear fuel management is a classical optimization problem in the 

field of nuclear engineering that was initially solved manually by experts. Finding out 

the optimal reactor core configuration is crucial for initial fuel assembly loading as well 

as periodic fuel assembly reloading, irrespective of the type of nuclear reactor. 

Therefore, the need for suitable optimization technique in this field was evident from 

the early stages of nuclear reactor design and implementation. All the early 

optimization methods applied in nuclear fuel management were using gradient search 

or hill climbing methods for finding the optimal solutions [56]. These methods were 

having the possibility of getting trapped in local optima. Therefore, the requirement of 

intelligent optimization methods for nuclear fuel management was realized from early 

stages of nuclear fuel management. 

During the period of seventies and eighties, inventions of global optimization 

methods like GA by John Holland [57] and simulated annealing by Kirkpatrick et al. 

[58] became available. Nuclear fuel management problems found an immediate 
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suitability for application of these global optimization methods [51]. During the past 

two decades, several other Computational Intelligence methods have also been used in 

nuclear fuel management field by many researchers. Some of them are: Tabu 

Search [59], Ant Colony Optimization (ACO) [60, 61], Ant-Q optimization [62], 

Particle Swarm Optimization (PSO) [63, 64], Artificial Bee Colony Optimization 

(ABCO) [65, 66], Harmony Search Algorithm (HSA) [67] and Continuous Firefly 

Algorithm (CFA) [68]. The methods listed above, come under the category of nature 

inspired intelligent algorithms. There are other types of optimization methods applied 

in the field, for example, Mixed Integer Programming [69], Estimation Distribution 

Algorithm (EDA) [70, 53] and Particle Collision Algorithm (PCA) [71]. Even though 

developments in other Computational Intelligence methods are taking place in parallel, 

GA still stands as a well-proven and widely accepted optimization technique in the 

field of nuclear fuel management. At present, many new variants of GA are being 

applied in nuclear fuel management of different types of reactors [72, 73, 74]. 

1.6. GENETIC ALGORITHMS IN NUCLEAR FUEL MANAGEMENT 

One of the early applications of GA in nuclear fuel management was presented 

by Poon and Parks [51]. A detailed comparison between the GA and simulated 

annealing was presented in their work; the advantage of GA in the global search and 

GA’s suitability for parallel computers was observed therein. The GA has got several 

interesting and intriguing applications in the domain of nuclear fuel management, as 

can be seen by the number of papers that have been published internationally. There are 

two major approaches in formulating nuclear fuel management optimization models 

using GA:  

(i) Constrained optimization with penalty functions (referred to as 

Penalty-function GA in the rest of the thesis)  
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(ii) Multi-objective genetic algorithms (referred to as Multi-objective GA in the 

rest of the thesis) 

In the case of as Penalty-function GA, the multi-objective optimization problem is 

converted in to a single objective by adding penalty functions and constraints. 

Multi-objective GA handles the multiple objectives altogether, by incorporating the 

concept of Pareto-optimality and dominance. The Penalty-function GA and 

Multi-objective GA are the methodologies studied in detail in the thesis, where in the 

applications of GA in nuclear fuel management are considered. Detailed description 

about these two methodologies is given in the next chapter (see Section 2.7). 

There is yet another category, i.e. GA based on the parallel programs (referred 

to as Parallel GA) where the execution part of GA is divided to parallel executable 

units. The computational overheads due to complex neutronics calculations are 

involved in nuclear fuel management problems; hence, the parallel computing concepts 

of Parallel GA are promising. It is important to note here that the parallelization 

concept of Parallel GA is for dividing and distributing the computational burden among 

multiple processors. However, for handling the constraints of fuel management 

problems in Parallel GA, one has to follow the Penalty-function GA or the 

Multi-objective GA approach.  

The findings from the literature survey carried out on the types of applications 

of GA in nuclear fuel management are summarized in Table 1.1. The table shows 

“where and how” different categories of GA are applied, in nuclear fuel management 

field. The term “Core design” in the table is used to refer the out-of-core fuel 

management problems. All other types of problems given in the table (indicated as 

“Loading pattern”, “Burnable poisons” etc.) are coming under in-core fuel 

management.  
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Table 1.1: Summary of different types of GA in nuclear fuel management 

applications 

 

Type of GA Type of reactor Type of problem    References 

 

 

 

 

 

 

 

 

Penalty-function 

         GA 

 

Pressurized Water 

Reactor (PWR) 

 

Loading pattern  
   70,74,75, 

   76,77,78 

Burnable poisons     79,80,81 

Loading pattern 

and Burnable 

poisons  

51,82,83,84, 

85,86,87,88 

Core Design     89,90 

 

Boiling Water 

Reactor (BWR) 

 

Loading pattern    91,92,93 

 

Pressurized Heavy 

Water Reactor 

(PHWR) 

 

Online Refueling         94 

Thorium Loading         53 

Advanced Gas 

cooled Reactor 

(AGR) 

Loading pattern        95,96 

Research reactor Loading pattern        97,98 

 

 

Multi Objective 

        GA 

 

 

Pressurized Water 

Reactor (PWR)  

 

Loading pattern  

and Burnable 

poisons  

        99 

Core Design        100 

 

Boiling Water 

Reactor (BWR) 

 

Loading pattern  

and CRP 
101,102,103 

Pressurized Heavy 

Water Reactor 

(PHWR) 

Online Refueling      104 

Fast Breeder 

Reactor (FBR) 
Loading pattern    105,106 

Research reactor Loading pattern       107 

 

  Parallel GA 

Pressurized Water 

Reactor (PWR)  

Loading pattern       108 

Loading pattern  

and Burnable 

poisons  

     109 

Core Design   110,111 
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It is evident from the table that, the most commonly applied GA method in 

nuclear fuel management is the Penalty-function GA. In fact, the four articles listed in 

the table under Parallel GA also in turn follow the Penalty-function GA for handling 

the fuel management constraints. Hence, out of the forty one articles on nuclear fuel 

management based on the GA reviewed here, thirty two (including four articles coming 

under Parallel GA) are of the Penalty-function GA. The reason for this being the 

simplicity of this approach in GA model formulation, in which multiple constraints are 

converted in to a single objective function. The potential of Multi-objective GA in 

nuclear fuel management is not explored enough. Another important observation is 

that, even though there has been progress in the application of GA in nuclear fuel 

management of Pressurized Water Reactors and Boiling Water Reactors, similar 

applications in Pressurized Heavy Water Reactors and Fast Breeder Reactors were 

found to be limited. 

1.7. MOTIVATION FOR THE RESEARCH 

The review of literature indicated that there are only few studies that deal with 

application of GA in nuclear fuel management of Pressurized Heavy Water Reactors 

and Fast Breeder Reactors. Out of forty-one articles reviewed, three article pertain to 

PHWR and two relating to FBR (see Table 1.1). As these types of reactors are the main 

building blocks of the three-stage nuclear power programme of India (see Section 1.3), 

the task of developing GA based optimization procedures has been taken up. It is also 

envisaged that the study and application of different methodologies of GA will help in 

applying the intelligent optimization methods to more subsystems of these types of 

reactors.  
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From the survey of literature, it can be seen that the total optimization procedure 

is developed as a single module including that of neutronics simulation module. There 

is a scope for dividing the total optimization procedure in to:  GA module, interface 

module and neutronics simulation module. The GA module is considered as the 

optimization module, the neutronics simulation module as the fitness evaluation 

module. An interface module is developed for communicating among these modules. 

Such configuration would offer the two major advantages: (i) allows developing more 

efficient communication mechanisms between the GA module and the neutronics 

simulation module (ii) minimization of the changes required when extending the 

application of optimization procedure to other studies of similar nature. 

Further, it is seen from the literature survey that, the reason for opting for a 

particular GA methodology for a given optimization of the chosen parameters, is not 

addressed. To get a better understanding about the suitability and performance of two 

different methodologies, namely Penalty-function GA and the Multi-objective GA, can 

be applied and compared for a problem like optimization problems of nuclear fuel 

management. 

1.8. OBJECTIVES AND SCOPE OF THE RESEARCH 

As part of the study, different optimization methodologies based on the Genetic 

Algorithm are applied and evaluated in a set of diverse and less explored environments 

of Pressurized Heavy Water Reactors and Fast Breeder Reactors. The scope of the 

present work is mainly limited to the two methodologies of GA, i.e. Penalty function 

GA and Multi-objective GA in dealing with the nuclear fuel management problems. 

Apart from that, the scope of application of the standard procedure of GA in an 

engineering design optimization of the circulating water system of a reactor is also 

investigated. 

The main objectives of the study can be summarized as follows: 

 Application of GA in nuclear fuel management of Pressurized Heavy Water 

Reactors and Fast Breeder Reactors.  
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 Follow a modular approach in applying optimization methodologies based on 

the Genetic Algorithm in various subsystems of nuclear reactors. 

 Study and verify the suitability of different methodologies of the Genetic 

Algorithm namely, Penalty-function GA and Multi-objective GA, for different 

types of nuclear fuel management optimizations. 

 

1.9. ORGANIZATION OF THE THESIS 

The thesis is organized in six chapters and the significant contribution in each of 

the chapter can be briefly summarized as follows: 

 In the Chapter 1, an introduction to the research work is given. The description 

and findings from the literature survey carried out in the field of Computational 

Intelligence applicable in different nuclear subsystems, including the Genetic 

Algorithm applications in nuclear fuel management, are covered.  

 Chapter 2 presents a study on GA and the evaluation of performance of the 

algorithm on a benchmark optimization problem. Operators and parameters of 

GA, used in the work carried out as part of the thesis are introduced in the 

chapter. The methodologies of GA applied in the optimization studies of nuclear 

fuel management are also introduced.  

 Chapter 3 addresses the optimization study of engineering design conducted on 

steam condenser of Prototype Fast Breeder Reactor (PFBR).  

 Chapter 4 explains the work carried out for the 220 MWe PHWR fuel bundle 

optimization.  

 Chapter 5 covers the optimization studies carried out on two different core 

configurations of Fast Breeder Reactors.  

 Chapter 6 summarizes the work carried out in the thesis, the conclusions drawn 

from the studies carried out and possible areas of future work. 
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CHAPTER 2 

 

A STUDY ON GENETIC ALGORITHMS  

 

In the chapter, the overall process and procedure of Genetic Algorithms, the 

experiments conducted on the performance of the Genetic Algorithm using a 

benchmark optimization function and the Genetic Algorithm methodologies followed in 

the nuclear fuel management studies are discussed. Various operators, parameters and 

methodologies of the Genetic Algorithms used in the work carried out as part of the 

thesis are also introduced in the chapter. 

 

2.1. INTRODUCTION 

Several biological concepts are applied in the domain of Computational 

Intelligence, and Genetic Algorithm (GA) is an example for that. GA is powerful and 

broadly applicable to several stochastic search and optimization processes, and is based 

on the principles derived from the evolution theory. The algorithm draws inspiration 

from Darwin’s theory of the survival of the fittest and natural selection. GA was 

developed by John Holland [57] and later popularized by one of his students, David 

Goldberg, who successfully applied it to several engineering problems [112].  

 Not only the basic concepts, but also much of the vocabulary of GA has been 

borrowed from genetics and evolution theory. In GA, a part of the solution space that 

has been randomly chosen forms the ‘population’. Then the population is iteratively 

improved using a set of genetic operations like, ‘selection’, ‘crossover’ and ‘mutation’. 
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The GA population consists of a set of solutions each of which is known as 

‘chromosome’ which forms the blueprint of an ‘individual’. GA chromosomes are 

made up of the basic units called ‘genes’; every gene normally controls the inheritance 

of a particular character in the solution space of the optimization problem. Any 

character of individuals can manifest itself differently; each different manifestation is 

said to be an ‘allele’ of the gene. Every iteration of GA simulates a ‘generation’ in 

natural evolution. 

One important feature of GA is its ability to balance intelligently between 

exploiting the best solution and exploring the search space [113]. At the beginning of 

genetic search, there is a widely random and diverse population and crossover operator 

tends to perform widespread exploration of the search space. During the later stages of 

the search, the same crossover operator enables exploitation in the neighborhood of the 

solution space arrived. In addition, the genetic operators of the algorithm are designed 

as general-purpose (domain-independent) search methods; they perform essentially a 

blind search and could not always guarantee to yield an improved offspring.    

2.2. GENETIC ALGORITHM: THE PROCESS FLOW 

As stated in the introduction, GA is based on the principles of natural selection 

and natural genetics. The GA process mimics the “survival of the fittest” principle of 

the nature. The overall process of the standard GA is shown in the flowchart 

(Figure 2.1). The algorithm starts with generating an initial population of solutions. The 

population evolves through successive iterations of the algorithm, called generations. 

During each generation, the individuals (also known as chromosomes) of the 

population are evaluated, using some measures of ‘fitness’.  
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Figure 2.1: The process flow of standard Genetic Algorithm showing the major 

operations involved in the algorithm. 

 

Based on the results of the evaluation, the parents are selected which participate in the 

‘reproduction’ process and ‘offspring’ (or children) are generated. The basic genetic 

operators for the reproduction are crossover and mutation. Normally, these operations 

are happening with certain assigned probabilities. Therefore, occasionally there is a 

chance of copying of the parents without any changes to the offspring pool. In the 

standard GA procedure, the generation of offspring is repeated until a new generation 

of population is created. This refining process of the population is happening, till the 

termination condition (or conditions) specified in the algorithm is satisfied.  
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The ‘selection’ operation is carried out according to the fitness values assigned 

to the chromosomes; fitter chromosomes have higher probabilities of being selected. 

The ‘crossover’ operator acts on two chromosomes (or individuals) at a time and 

produces offspring by combining the two chromosomes’ features. The ‘mutation’ is a 

background operator which produces spontaneous random changes in various 

chromosomes. There are several representation schemes of chromosomes, suitable for 

different types of optimization problems. The types of operators are also varied 

accordingly. The representation of chromosomes is an important point that decides the 

overall performance of the algorithm. Next, the strategies adopted in representing the 

chromosomes are presented. 

2.3. CHROMOSOME REPRESENTATION 

Every search and optimization algorithm requires a suitable encoding scheme to 

represent the probable solutions. Traditionally, representation in GA is carried out 

using binary strings, mainly because of its amenability to simple implementation and 

ease of theoretical analysis. For several other real world applications, the binary 

encoding is difficult to apply, because the binary representation is not becoming a 

natural coding mechanism for such applications [36]. During the past two decades, 

various non-string representation methods have been created; one such scheme is 

real-number representation (also known as floating-point representation). The studies 

carried out as part of the thesis use binary representation and real-number 

representation. Therefore, those schemes are described in the following sections. 

2.3.1. Binary Representation 

In binary representation, every chromosome is a string of bits, 0 or 1. The 

concept is simple here; convert the entire decision variable of the problem to the 

suitable binary strings. The aggregation of such binary strings forms the chromosome. 
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The length of the binary chromosome depends on the number of decision variables, 

range of the decision variables and the required precision. Assume that the problem is 

with one decision variable of real number type. In which case, the required bits 

(denoted by ‘m’) can be calculated as: 

                                2𝑚−1 < (𝑈 − 𝐿) × 10𝑝  ≤  2𝑚 − 1                                     (2.1) 

where, 𝑈 and 𝐿 represents the upper and lower limits of the decision variable 

respectively and ‘p’ represents the required precision or the required number of digits 

after the decimal point.  

For example, let the range of the decision variable be between ‘-5’ and ‘+5’ and 

let the required precision be in four places after the decimal point. Substituting 

corresponding values in Eqn. 2.1, we get: 

2𝑚−1 < (5 − (−5)) × 104  ≤  2𝑚 − 1 

2𝑚−1 < 105  ≤  2𝑚 − 1 

216 < 105  ≤  217 − 1 

Therefore, the number of bits required for the example is 17. If the problem is with 

more than one decision variables, then for each of the decision variable, the length of 

the binary string is calculated separately according to the above rule.   

The binary representation facilitates the use of several elegant genetic operators. 

The standard GA operators like crossover and mutation can perform efficiently on the 

binary strings. One disadvantage of binary representation is that, for large number of 

decision variables, the chromosome will become extremely lengthy. The operations on 

the lengthy binary chromosome become computationally time consuming and 

eventually affect the performance of the algorithm, especially when the problem space 

is large [113]. For example, for 100 variables with domain in the range (-500, 500) 

where a precision of six digits after the decimal point is required, the length of the 
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chromosome becomes 3000 bits. This in turn, generates a search space of about 101000. 

For such a large search space, the binary representation performs poorly. 

2.3.2. Real-number Representation 

The real-number representation offers a natural way of chromosome 

representation without explicit encoding mechanism, when the decision variables are of 

real numbers. Each chromosome vector is coded as a floating-point vector, of the same 

length as the solution vector. Each element is forced to be within the desired range, and 

the operators like crossover and mutation are carefully designed to preserve this 

requirement [113]. The precision of such an approach depends on the underlying 

machine, but is generally much better than that of binary representation.  

The real-number representation is more suitable for the continuous parameter 

optimization due to the encoding followed in the algorithm being better suited to the 

continuous problem domain [114, 115]. However, special genetic operators are 

required for them. The details about the operators suitable for real-number 

representation are discussed in the next section. The main objective of such operators is 

to move the solutions closer to the problem space. Therefore, in the case of real-number 

representation, the genetic operators for crossover and mutation are more specific to the 

type of problem. 

In essence, it is difficult to conclude that any one particular representation is 

better in all the situations. Each among the two chromosome representation schemes is 

having advantages and some drawbacks. The choice between binary and real-number 

representation mainly depend on the problem domain. In order to understand the 

behavior of the two representation schemes, further studies are carried out as part of the 

thesis work (see Section 2.5). 
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Next, the important operations of the GA i.e. selection, crossover and mutation 

are discussed. When these three operations are carried out in coherence, the percentage 

of good individuals, in the population is getting improved generation wise. 

2.4. GENETIC ALGORITHM OPERATORS 

During each generation of GA, selection, crossover and mutation operations are 

sequentially applied to each individual by obeying certain probabilities of occurrence. 

They are the basic GA operators and several mechanisms are described in the literature, 

for implementing each among them [36, 112, 113]. The operators of GA employed in 

the work carried out as part of the thesis are discussed in detail below. 

2.4.1. Selection Operation 

As mentioned earlier, the selection of parents for the reproduction is according 

to the fitness values assigned to the chromosomes. The fitter chromosomes have higher 

probabilities of being selected. Selection is one of the main ways to maintain diversity 

in a population. The selection process can be handled in a number of ways. The 

“Roulette wheel” method (also known as fitness proportional selection) is the 

well-accepted selection method for several implementations of the GA [113] and the 

same is employed in the present work. The other type of selection method used in the 

present work is “Pareto-optimal front” based ranking which is used in multi-objective 

genetic algorithm implementations. The concepts related to the Pareto-optimal front are 

further discussed while dealing with the multi-objective genetic algorithm (referred to 

as Multi-objective GA). The Roulette wheel based selection procedure is detailed in the 

following section. 

2.4.2. Roulette wheel Method 

The Roulette wheel method defines a mechanism in assigning greater 

probability of being selected for the chromosomes with higher fitness values. In order 
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to achieve this, the Roulette wheel can be thought of as marked with the proportionate 

fitness values of the chromosomes. As an example, let us consider there are five 

chromosomes with different fitness proportions (marked in percentage values) as 

shown in Figure 2.2. The chromosomes numbers are assigned from 1 to 5 in the figure. 

Let us assume that during every iteration, the wheel is rotated and the chromosome 

coming closer to the “selection point” is selected as the parent. As shown in the figure, 

the probability of selecting chromosome number 3 is the highest (i.e. 38%); next higher 

probability being that of chromosome number 1 (i.e. 31%), and so on. When the wheel 

is spun ‘n’ times (‘n’ being sufficiently large number), the probability of individuals 

being selected for the reproduction will be in accordance with their fitness values. 

Therefore, the method improves the probability of the good individuals being selected, 

while keeping the diversity amongst the population. Once the individuals from the 

population are properly selected, they have to undergo the process of crossover and 

mutation. These operations are explained below. 

 

 
 

Figure 2.2: Illustration of Roulette wheel method. During each iteration of the 

selection procedure, the wheel is rotated and the individual coming closer to the 

“selection point” is selected. 
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2.4.3. Crossover 

Crossover is the operation by which two parent chromosomes are combined to 

give two new chromosomes, which have some of the characteristics of the parents. 

During this process, there is a probability of getting offspring which are better than the 

parents. Crossover occurs during evolution according to a user definable crossover 

probability or crossover rate. The crossover rate defines a value that indicates how 

often the crossover operation is performed. The common type of crossover mechanism 

defined in literature, for binary representation, is the single-point crossover [112, 113]. 

In the case of real-number representation, special crossover methods like arithmetical 

crossover are to be used [113, 114]. The single-point crossover and the arithmetical 

crossover methods are further explained below. 

2.4.4. Single-point Crossover 

In single-point crossover, two binary chromosomes are randomly selected for 

the crossover operation. The chromosomes selected are cut once along the crossover 

point and the sections after the cuts are exchanged.  

 

 

Figure 2.3: Illustration of the single-point crossover operation. The vertical line 

after fifth bit of ‘parents’ represents the crossover point. During the crossover, 

chromosome content is exchanged with respect to that point. 
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The crossover point is selected at random, along the length of the chromosome. In the 

example shown in Figure 2.3, the crossover point is selected just after the fifth bit of the 

‘parents’ and is denoted by a vertical line. The resultant chromosomes (after the 

exchange of portions between the parents) are shown as ‘children’ in the figure. The 

operation results in the proper mixing of the genetic content of the parents during the 

production of the children. 

2.4.5. Arithmetical Crossover  

The Arithmetical crossover is a method suitable for real-number chromosome 

representation, which linearly combines two parent chromosome vectors to produce 

two new offspring [113]. Assume that 𝑥1 and x2 represent two real number type 

chromosomes. When the chromosome 𝑥1 and x2 are crossed, the resulting offspring are 

generated by the linear combination of the two vectors as: 

 𝑎𝑥1 + (1 − 𝑎)𝑥2           (2.2) 

                                                          𝑎𝑥2 + (1 − 𝑎)𝑥1                                           (2.3) 

where ‘𝑎’ is a random real number, generated between the range 0 and 1.  

As an example, consider two chromosome vectors, i.e. 𝑥1 = (10.05, 30.50) 

and 𝑥2 = (60.20, 15.80), the resulting offspring, 𝑜1 and 𝑜2, after arithmetical crossover 

operation is represented as: 

𝑜1 = (𝑎 × 10.05 + (1 − 𝑎) × 60.20, 𝑎 × 30.50 + (1 − 𝑎) × 15.80) 

𝑜2 = (𝑎 × 60.20 + (1 − 𝑎) × 10.05, 𝑎 × 15.80 + (1 − 𝑎) × 30.50) 

At a particular instance, if a = 0.2672, then the resultant offspring chromosomes are: 

𝑜1 = (46.80, 19.73) 

𝑜2 = (23.45, 26.57) 

(the results are represented after rounding off to two decimal places) 
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2.4.6. Mutation 

Mutation adds new information in a random way to the genetic search process 

and ultimately helps the algorithm from getting trapped at local optima. It is an operator 

that introduces diversity in the population whenever the population tends to become 

homogeneous due to repeated use of the refining mechanisms of the algorithm. 

Mutation occurs during the evolution according to a user-definable mutation probability 

or mutation rate. This probability should usually be set fairly low. If it is set to high, the 

search will turn into a primitive random search. The common type of mutation 

mechanism described in the literature, for binary representation scheme is the flip-bit 

mutation [36]. In the case of real-number representation, special mutation methods like 

non-uniform mutation may have to be used. The flip-bit mutation and non-uniform 

mutation methods are used in different GA implementations in the present work. The 

two methods are further explained in the following sections. 

2.4.7. Flit-bit Mutation 

It is a mutation operator that simply inverts the value of the chosen bit (i.e., if 

chosen bit is 0, then it is inverted to 1, or vice versa). This mutation operator can only 

be used for binary representation. Figure 2.4 illustrates the flip-bit mutation method. In 

flip-bit mutation, one bit of the chromosome is selected randomly according to the 

given mutation rate. In the figure, the fourth bit of the ‘parent’ chromosome is 

undergoing bit inversion and the resultant chromosome is shown as the ‘child’. 

 

Figure 2.4: Illustration of the mutation operation. During the mutation, fourth 

bit of the ‘parent’ is inverted from ‘0’ to ‘1’, resulting into the ‘child’. 
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2.4.8. Non-uniform Mutation 

The mutation method applied for the real-number representation is the 

non-uniform mutation. A special feature of the method is that the mutation rate is not 

uniform i.e. it is related to the generation number of the algorithm [113]. The mutation 

rate decreases as the generation number increases and approaches a value close to zero. 

This property causes the algorithm to search the space uniformly initially and very 

locally at later stages and allows to fine tune the results. 

If  𝑥1 = (𝑣1, … , 𝑣m) is the chromosome vector, the element ‘𝑣𝑘’ was selected 

for the mutation and the resultant chromosome vector is  𝑥1
′ = (𝑣1, … , 𝑣𝑘

𝑙 , … , 𝑣𝑚), then 

the non-uniform mutation operator is defined as:  

 𝑣𝑘 + ∆ (𝑡, 𝑈𝐵 −  𝑣𝑘) if a random digit is 0 

                                   𝑣𝑘
𝑙  = 

    𝑣𝑘 − ∆ (𝑡, 𝑣𝑘 −  𝐿𝐵) if a random digit is 1           (2.4) 

 

where, 𝑈𝐵 and 𝐿𝐵 are upper and lower bounds of ‘𝑣𝑘’ and ‘𝑡’ is the generation 

number.  

The function ∆ (𝑡, 𝑦) which returns a value in the range[0, 𝑦] is defined as: 

∆ (𝑡, 𝑦) =  𝑦 (1 −  𝑟(1− 
𝑡

𝑇
)𝑏

)           (2.5) 

where, ‘r’ is a random real number, generated between the range 0 and 1, ‘T’ is the 

maximal generation number of the genetic algorithm, and ‘𝑏’ is a parameter 

determining the degree of dependency on the generation number. The value of ‘b’ is 

assigned to 5, for all the non-uniform mutation implementations throughout the work 

carried out as part of the thesis. 

As a continuation of the example considered in Section 2.4.5, let us take the 

chromosome vectors created by the arithmetical crossover operation,                  

i.e. 𝑜1 = (46.80, 19.73) and 𝑜2 = (23.45, 26.57). The chromosome vector (and also 
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the particular element of that chromosome) for the mutation operation is selected 

randomly. Assume that one of the offspring (i.e. 𝑜1) got from the crossover operation is 

undergoing the non-uniform mutation at 10th generation (i.e.  𝑡=10) of the algorithm. 

For this example, the other parameters like the maximal generation number of the 

genetic algorithm, (T) is taken as 50 and the generation dependency parameter, (b) is 

taken as 5. If the second element of ‘𝑜1’ is chosen for the mutation operation     

(i.e.𝑣𝑘 = 26.57). The 𝑈𝐵 and 𝐿𝐵 values represent the upper and lower bounds for the 

second element of the chromosome vector. Let UB and LB for the given example be 

100.00 and 0.00 respectively. If the random digit generated as part of non-uniform 

mutation operator ‘𝑣𝑘
𝑙 ’ is 0, then according to the Eqn. 2.4, 

𝑣𝑘
𝑙 = 26.57 +  ∆ (10, (100.00 − 26.57))   

For a the random real number, r = 0.60 , the ∆ (𝑡, 𝑦)  function (see Eqn.2.5) 

results in 63.91 and the mutated element ‘𝑣𝑘
𝑙 ’ results in 90.48. In essence, for the 

example considered, the non-uniform mutation operation modifies the chromosome 

value from 26.57 to 90.48.   

2.4.9. Elitism 

According to the concept of ‘elitism’, the population is constructed by allowing 

some of the better chromosomes from the previous generation to carry over to the next, 

unaltered. This strategy ensures that the fitness values do not deteriorate as the 

generation moves along. This, relatively simple operation, improves the convergence of 

the algorithm manifold. The rate of convergence increases, as the number of elite 

members (i.e. the number of better individuals from the previous generations that 

replace an equal number of worse individuals) increases. However if the number of 

elite members is made too high, it can result in pre-mature convergence causing a lack 

of required diversity in the chromosome pool.  
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Some sort of elitism strategy is important for any type of genetic 

algorithms [116]. It makes sure that, a good solution found early on in the run can never 

be lost unless better solution is discovered. The elitism has been used in almost all the 

implementations of genetic algorithms, considered in the present work. 

With an understanding of different encoding schemes and operators used in the 

present work, a look at the performance of these mechanisms on a typical sample 

problem is taken up and analyzed in the next section. 

2.5. PERFORMANCE OF DIFFERENT  SCHEMES AND OPERATORS OF 

GA   

One of the aims of the present study is to get the understanding about arriving at 

the proper values of genetic parameters for the given optimization problem. The sample 

problem considered for the study is the Ackley’s function. The choice of crossover rate 

and mutation rate is known to critically affect the behavior and performance of genetic 

algorithms. Even if there are general guidelines available in the literature about 

choosing typical values for crossover and mutation rates, it is desirable to carry out 

trial-and-error experiments because the optimal values of those rates are specific to the 

problem under consideration [117]. The insight got from this study is utilized in 

selecting the genetic parameters for the works related to the applications of GA in 

various subsystems of reactors, mentioned in the subsequent chapters. 

2.5.1. Ackley’s function 

Ackley’s function is a continuous and multimodal (with multiple optima) test 

function, widely used for testing optimization algorithms, obtained by modulating an 

exponential function with a cosine wave of moderate amplitude [36]. The function has 

multiple local minima and single global minimum, at the origin with function value 0. 

The topology of the Ackley’s function is shown in Figure 2.5.  
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Figure 2.5: Ackley’s function. The function is characterized by multiple local 

minima and single global minimum (global minimum value=0) at the center 

(source: https://en.wikipedia.org/wiki/Test_functions_for_optimization) 

 

The Ackley’s function is given as:  

min 𝑓(𝑥1, 𝑥2) =   

−𝑐1. 𝑒𝑥𝑝 (𝑐2√
1

2
 ∑ 𝑥𝑗

22
𝑗=1 ) −  𝑒𝑥𝑝 (

1

2
∑ 𝑐𝑜𝑠(𝑐3. 𝑥𝑗)2

𝑗=1 ) + 𝑐1 + 𝑒           (2.6) 

where, 𝑐1=20,  𝑐2=0.2,  𝑐3 = 2π,  e = 2.71282 and domain of the problem is : 

−5 ≤ 𝑥𝑗 ≤ 5,   𝑗 = 1,2 

The Ackley’s function provides reasonable test cases for genetic algorithm 

search, since it causes moderate complications to the search [36] by having multiple 

local minima. A strictly local optimization algorithm that performs hill climbing would 

surely get trapped in local optimum, but a search strategy that scans a slightly bigger 

neighborhood would be able to cross the intervening valleys toward increasingly better 
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optima. Therefore, the Ackley’s function is selected for studying the performance of the 

algorithm. In the study, the function is used to test the performance of various 

representation schemes and operators of the standard GA. 

2.5.2. General Points about the Study 

One of the common methods of assessing the performance of GA is by 

measuring the average fitness value in each generation [36, 113]. The average fitness is 

calculated by adding the individual fitness values obtained from the fitness evaluation 

step of the algorithm, and dividing it by the population size. Since the present study is 

with the objective of minimization, the lower values of average fitness are better. The 

best possible average fitness value is zero for the Ackley’s function. The two 

representation schemes implemented in the study are binary and real-number 

representations. The implementations are carried out using ‘C’ programming language. 

The experiments are conducted on a computer system with Intel Xeon dual six-core 

CPU@ 3.06 GHz and 48 GB RAM. The chromosome length for binary representation 

is of 50 bits; the first 25 bits to code the variable 𝑥1 and the next 25 bits to code 

variable 𝑥2 of the Ackley’s function (see Eqn. 2.6). In the case of real-number 

representation, one chromosome is represented by two double precision real numbers; 

the first number represents variable 𝑥1 and the second one represents variable 𝑥2. 

Throughout the remaining discussion, ‘CR’ represents the crossover rate, ‘MR’ 

represents the mutation rate, and ‘EL’ represents the number of elite members. The 

algorithm parameters set in this experiment are listed below: 

Crossover :  Single-point (for binary representation), 

Arithmetic (for real-number representation) 

Mutation : Flip-bit (for binary representation) 

Non-uniform (for real-number representation) 
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The parameters set common in the GA implementations of the two 

representation schemes are: 

Selection  : Roulette wheel 

Population size :  100 

Generations   :  500  

2.5.3. Effect of Variations in Crossover and Mutation Rates  

The aim of the present study is to understand how the GA is getting influenced 

by different crossover and mutation rates. At first, let us consider solving the Ackley’s 

function using GA, by changing the crossover rates, in the absence of other genetic 

operators. The cross over rate controls the capability of GA in exploiting a located hill 

of the search space to reach the local optima. The general guidelines available in the 

literature suggest that the typical values of crossover rate (CR) are above 0.5, 

i.e. crossover probability are above 50%  [112, 113, 117]. As part of the present study, 

several trial runs have been conducted by varying the crossover rate (for both binary 

and real-number representations) in the range between 0.5 and 0.9. The mutation rate 

(MR) and the number of elite members (EL) are assigned to zeroes i.e., MR=0 and 

EL=0. The results of the trial runs are shown in the Figure 2.6. The effect of crossover 

rate on the binary representation of GA is shown in the Figure 2.6(a) and that on the 

real-number representation is shown in Figure 2.6(b). As shown in the figure, the 

crossover operation has more visible impact for the binary representation than the 

real-number representation (in the absence of other genetic operators). The reason for 

this can be attributed to the arithmetic crossover mechanism implemented for the 

real-number representation, where the exchange of genetic content is less vigorous in 

the absence of the mutation operation.  
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      (a)                (b)  

 

Figure 2.6: The results with different crossover rates, in the absence of 

mutation and elitism. (a) Binary representation (b) Real-number representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)              (b)  

Figure 2.7: The results with different mutation rates (in the absence of 

crossover and elitism), i.e. absence of mutation (MR=0.00), typical small value 

(MR=0.05) and very high value (i.e. MR=0.80). (a) Binary representation 

(b) Real-number representation. 
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Another point is that, there is no uniform improvement in arriving better solution, when 

the crossover rate is increased from 0.5 to 0.9. This point is valid for the binary as well 

as the real-number representations. 

The influence of mutation rete on the standard GA is studied next. The mutation 

operator helps the GA from being trapped in local optima of the entire search space. 

The mutation rate (MR) controls the ability of the algorithm in exploiting new areas of 

the search space. According to the general guidelines available in the literature, smaller 

values of mutation rates (when compared with the crossover rates) are commonly 

adopted [112, 113, 117]. The mutation rates considered for the studies are in the range 

between 0.00 and 0.80. During the trial runs, the other genetic operators (i.e. crossover 

and mutation) are made absent, by assigning the crossover rate and the number of elite 

members to zeroes i.e., CR=0 and EL=0. The effect of crossover rate on the binary 

representation of GA is shown in the Figure 2.7(a) and that on the real-number 

representation is shown in Figure 2.7(b). By conducting different trial runs, the absence 

of mutation (MR=0), a typical small value of mutation rate (MR=0.05) and a high 

mutation rate (MR=0.80), are compared. As can be observed from the figures, the 

absence of mutation as well as the high mutation rates are not supporting the fast 

convergence of the algorithm. Therefore, it can be concluded that a suitably selected 

small value of mutation rate can improve the convergence of the algorithm.  

The effect of the GA operators on the performance of the algorithm, by 

considering one operator at a time, is illustrated above. The aggregate performance of 

the algorithm is analyzed next, by considering the algorithm operators altogether.   

2.5.4. Aggregate Performance of the Algorithm 

 The aggregate performance of the GA indicates the convergence of the 

algorithm, when suitable values of genetic parameters are assigned for the algorithm 
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operators. The suitable values are arrived at based on the initial trial runs carried out by 

varying the genetic parameters, like crossover rate, mutation rate and the number of 

elite members. In order to get a clear understanding of the influence of these parameters 

altogether, fifty trial runs are carried out (for both the binary and real-number 

representations) in the absence of crossover, mutation and elitism (i.e. CR=0, MR=0, 

EL=0). The results of five trail runs (selected randomly from the fifty trial runs) carried 

out in the absence of crossover, mutation and elitism are shown in Figure 2.8. The 

results of binary representation are shown in Figure 2.8(a) and the results of 

real-number representation are shown in Figure 2.8(b). Similarly, the results of five 

trail runs (selected randomly from the fifty trial runs) carried out by assigning suitable 

values to the genetic parameters are shown in Figure 2.9. The parameter values 

assigned for binary as well as real-number representations are: CR=0.80, MR=0.05 and 

EL=5. The results of binary representation are shown in Figure 2.9(a) and the results of 

real-number representation are shown in Figure 2.9(b). It can be observed form the 

figures that, assigning suitable values to the genetic parameters are important for the 

convergence of the algorithm. 

The aggregate performance of the algorithm is further investigated by considering 

consolidated results of fifty trial runs. The parameters considered for measuring the 

performance of the algorithm are listed as: 

Best value: For every trial run, the best solution among the population (100 is the 

population size) produced in the final generation is recorded. The “Best value” denotes 

the best solution obtained amongst the 50 trial runs results. 

Mean value: Similar to the case of Best value calculation, the best solution among the 

100 solutions of the population produced in the final generation is recorded. 
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(a)               (b)  

 

Figure 2.8: The results of the trial runs (five results selected randomly from the 

fifty trial runs) in the absence of crossover, mutation and elitism (i.e. CR=0, 

MR=0, EL=0). (a) Binary representation (b) Real-number representation. 

 

 

 

 

 

 

 

 

 

 

    (a)               (b)  

 

Figure 2.9: The results of the trial runs (five results selected randomly from the 

fifty trial runs) with CR=0.80, MR=0.05 and EL=5. (a) Binary representation                     

(b) Real-number representation.  
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The arithmetic mean of the Best values obtained for the 50 trial runs is denoted as 

“Mean value”. 

Standard deviation: This value represents the Standard deviation of the “Mean value” 

over the 50 trial runs. 

The result of the experiment is furnished in Table 2.1. Different sets of fifty trial 

runs are conducted with elitism (EL=5) and also without elitism (EL=0) and the 

consolidated results are furnished in the table. During the experiment the crossover and 

mutation rates are assigned as CR=0.80 and MR=0.05. 

Following observations can be made from the results given in the table: 

 The algorithm is able to converge to “near zero” values for both binary and 

real-number representations in the presence of elitism (EL=5). 

 In the absence of elitism (EL=0), the performance of binary representation is 

better than real-number representation. 

 The presence of elitism improves the stability and robustness of the algorithm, 

which is evident from the lower values of mean and standard deviation 

obtained with the presence of elitism. 

 

Table 2.1: The results of the aggregate performance of the algorithm by 

conducting fifty trial runs, in the presence and absence of elitism (with 

CR=0.80 and MR=0.05) 

 

 Binary representation Real-number representation 

EL=0 EL=5 EL=0 EL=5 

Best value 0.0004 0.0003 0.0038 0.0007 

Mean value 0.0451 0.0081 0.3255 0.0120 

Standard 

deviation 

 

0.0649 0.0188 0.2601 0.0085 
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The study conducted on the performance of various representation schemes and 

algorithm operators has given the understanding on how the algorithm performance is 

influenced by them. The inferences from the results of the experiments help in selecting 

the suitable operators and the parameter values when GA is applied in solving the 

optimization problems related to different nuclear reactor subsystems. Nuclear fuel 

management is one such application considered in the present work. The overall 

procedure typically followed when genetic algorithms are applied in the nuclear fuel 

management is described in the following section. 

2.6. GENETIC ALGORITHM IN NUCLEAR FUEL MANAGEMENT 

The nuclear fuel management problems, their general classification and 

applications in various reactor subsystems are described in Chapter 1. When compared 

with the implementation of Ackley’s function, the optimization problems of nuclear 

fuel management are more complex for mathematical formulation and algorithm 

implementation. While the Ackley’s function has only one objective, typically the fuel 

management problems are with multiple objectives and constraints. Therefore, the 

standard GA that was considered for the implementation of the Ackley’s function, 

cannot directly be applied to majority of the nuclear fuel management problems. 

However, some of the representation schemes and the operators available for the 

standard GA can be adopted, while formulating the GA methodologies for nuclear fuel 

management studies.  

 The overall procedure followed in the development of GA for nuclear fuel 

management problems, considering their special features and requirements, is 

considered next. The optimization procedure includes GA module (that includes steps 

of the standard GA procedure), interface module, and neutronics simulation codes, as 
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shown in the flowchart of Figure 2.12. The fitness evaluation function of fuel 

management problem involves calling neutronics simulation codes which require 

complex mathematical calculations and take more computational time.  

 

 

Figure 2.10: Overall flowchart of GA based optimization procedure that is 

commonly followed in the nuclear fuel management problems 
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The understanding about the basic functionalities and the overall working of 

neutronics simulation codes are necessary, for the development the optimization 

procedure. This can be achieved by conducting several independent trial runs of the 

neutronics simulation codes. The trial runs are conducted by proving typical input test 

conditions to the codes and verifying the output generated. Conducting such trial runs 

gives the understanding about the locations of important parameter values within the 

input and the output files of the neutronics simulation codes. During the optimization 

procedure, the input files are to be modified and output files are to be read back, in an 

automated way i.e. without user intervention. Therefore, the experience gained from 

conducting such trial runs is useful for the development the optimization procedure. 

As can be seen in the flowchart, there is an interface module present between 

the GA module and the neutronics simulation codes. Most of the neutronics simulation 

codes used in the nuclear fuel management have been developed in FORTRAN 

programming language and are specific to the type of the reactor [51, 81]. If the GA 

implementation part is developed in any other language (for example, ‘C’ programming 

language is used in the present work), then the interface module should be able to 

generate the input files (without any user intervention) which satisfy the requirements 

of the neutronics simulation codes. Similarly, the required output values generated by 

the neutronics simulation codes should be searched and read by the interface module 

and given back to the GA module for further calculations. The step mentioned above 

involves searching of patterns in big output files generated by the neutronics simulation 

codes. Therefore, efficient pattern searching mechanisms are to be incorporated in the 

interface module. Another important functionality of the interface module is to carry 

out the whole procedure in an automated way. 
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A modular approach has been followed in the present work, for the formulation 

of the optimization procedure of nuclear fuel management problems, which facilitates 

in extending the applications easily to other reactor cores. Conceptually, the GA 

implementation part share many common features among the fuel management 

optimization of different reactor cores. Similarly, the algorithm methodologies (like 

Penalty-function GA and Multi-objective GA) are also commonly applicable for 

different nuclear subsystems. By considering these factors, the development of 

interface module is carried out in the present work. In essence, the interface module 

acts as a decoupling mechanism that separate the implementation details of the GA 

from the neutronics simulation codes.  

In the above discussion, the overall GA based optimization procedure of the 

nuclear fuel management has been dealt with. Next, the different approaches in 

formulating nuclear fuel optimization model for GA, is discussed.  

2.7. THE TWO GA METHODOLOGIES APPLIED : PENALTY-FUNCTION 

GA AND MULTI-OBJECTIVE GA 

The literature survey carried out as the part of the present work indicates that, 

the major approaches in formulating GA based nuclear fuel optimization models are 

penalty functions based approach and multi-objective optimization approach. The 

corresponding two algorithm methodologies applied in various reactor subsystems, as 

part of the present work, are: 

(i) Penalty functions based Genetic Algorithms (referred to as Penalty-function 

GA in the rest of the thesis)  

(ii) Multi-objective Genetic Algorithms (referred to as Multi-objective GA in the 

rest of the thesis)  

These two methodologies are further elaborated in the following sections. 
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2.7.1. Penalty-function GA 

In the case of Penalty-function GA, the multi-objective problem of fuel 

management optimization is converted into single objective by adding penalty 

functions and constraints. In general, this approach transforms a constrained 

optimization problem to an unconstrained optimization problem by defining a suitable 

penalty function. The penalty function is needed to be formulated in such a way that, it 

should not affect the actual objective function when constraints are not violated. On the 

other hand, in the case of constraint violation, the penalty function will decrement the 

value of objective function, in accordance with the degree of constraint 

violation [113, 118]. If the penalty coefficients and the constraints are properly 

selected, this approach will give feasible solutions. Therefore, the proper selection is 

important for the convergence of Penalty-function GA. Generally, the selection of the 

penalty coefficients and the constraints are based on the inputs from the reactor core 

designer.  

The application of the Penalty-function GA in the nuclear fuel management 

field is explained by taking a typical example from the optimization of a fuel assembly 

loading pattern (the term “loading pattern” indicates the location and orientation of 

different subassemblies in the reactor core). In the Chapter 1, we have seen that the 

Penalty-function GA is applied in many such applications (see Table 1.1). Generally, in 

the loading pattern optimization problem, the major objectives are to find the optimal 

loading pattern that maximizes the effective multiplication factor (Keff) and to minimize 

the power peaking factor (PPF) [97]. The maximization of multiplication factor can 

help in extending the cycle length of the refueling operation. In addition, the power 

peaking factor should be as low as possible, because it defines the highest local power 

density of the fuel subassemblies. These objectives are considered as competing and 
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conflicting with each other, because any attempt at maximization of the effective 

multiplication factor (Keff) is limited by the power peaking factor (PPF) constraint. In 

summary, the loading pattern optimization considered in the example is a bi-objective 

optimization problem with conflicting objectives. The penalized objective function can 

be formulated according to the penalty function method as follows: 

          Max (Fitness) = Keff – P1,         (2.7) 

where, Max represents maximization, Fitness represents the value used by the genetic 

algorithm for the fitness evaluation of the solution, and P1 represents the penalty 

function. The penalty function (P1) is further defined as:  

          P1 = (PPF – PPF0) × Ap,           (2.8) 

where, PPF0 represents the maximum permitted limit for the power peaking factor, and 

Ap denote the penalty coefficient selected to give proper weightage to the penalty 

function. For normal solutions, when PPF < PPF0, the value of P1 becomes negative 

and is added to the Fitness (see Eqn.2.7). During constraint violations, when 

PPF > PPF0, the value of P1 becomes positive and is subtracted from the Fitness. This 

way, the penalty function improves the fitness values for better solutions with smaller 

PPF and at the same time penalizes (decrease) the fitness values for constraint 

violations. 

In the above example, the proper selection of penalty coefficients and the 

constraints yield feasible solutions. One issue with the Penalty-function model is that, 

the multiple objectives are converted to single objective, which leads to the 

identification of solutions having less diversity in the trade-off surface. Another 

problem of the approach is that it is not always easy to aggregate these multiple 

objectives into a single performance index, until their relative importance is well 

understood. However, instances of the application of the Penalty-function GA are 
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comparatively more in number for nuclear fuel management optimizations, mainly 

because it is easier to model and implement. In the case of fuel management 

applications, where the diversity in the solutions are of less importance and the savings 

in the time of the algorithm implementation is of more importance, the Penalty-function 

GA becomes a better choice. 

2.7.2. Multi-objective GA 

Multi-objective GA relies on the concepts of Pareto-optimality and dominance. 

Essentially, the main task of the Multi-objective GA is to find the Pareto-optimal 

solutions for the given problem with multiple conflicting objectives [116,119]. The 

Pareto-optimal solution is the one in which an improvement in one of the objectives 

requires a degradation of another. The set that consists of all the Pareto-optimal 

solutions for a given problem forms the Pareto-optimal front (or non-dominated front). 

The method makes it possible to identify the “trade-offs” between conflicting 

objectives in a single optimization run. The best solution is subjective and depends on 

the need of the designer or the decision maker. The multi-objective optimization 

concepts followed in the Multi-objective GA can formally be stated as follows [119]:  

Find the vector, �̅�* = [x*
1, x*

2,…,x*
n]

T  of decision variables which will satisfy the 

‘m’ inequality constraints, i.e., 

       gi(�⃗�)  ≥ 0, i = 1,2,…, m,                                (2.9) 

and the ‘p’ equality constraints, i.e., 

       hi(�⃗�)  = 0, i = 1,2,…, p,       (2.10) 

and optimize the vector function, i.e.,  

𝑓(̅�̅�) = [𝑓1(�̅�), 𝑓2(�̅�), … . , 𝑓𝑘(�̅�)]T                 (2.11) 
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The constraints given in Eqns. (2.9) and (2.10) define the feasible region ‘𝛽’, which 

contains all the admissible solutions. The vector �̅�* denotes an optimal solution in ‘𝛽’. 

In the context of multi-objective optimization, it is difficult to arrive at a situation 

where a single vector �⃗�* represents the optimum solution to all the objective functions.  

 The concept of Pareto-optimality comes handy in the domain of multi-objective 

optimization. A formal definition of Pareto-optimality from the viewpoint of the 

minimization problem can be given as follows:  

A decision vector �̅�* is called Pareto-optimal, if and only if there is no �̅� that dominates, 

�̅�* i.e., there is no �̅� such that 

     ∀𝑖 ∈ 1,2, … . , 𝑘, 𝑓𝑖(�̅�)  ≤ 𝑓𝑖(�̅�* )       (2.12) 

and 

     ∃𝑖 ∈ 1,2, … . . 𝑘, 𝑓𝑖(�̅�)  ≤ 𝑓𝑖(�̅�* )        (2.13) 

In other words, �̅�∗ is Pareto-optimal, if there exists no feasible vector �̅� which causes a 

reduction in some criterion without a simultaneous increase in at least one other.  

The concept of Pareto-optimality and non-domination is further illustrated in 

Figure 2.13. In the illustration, two objectives, 𝑓1 and 𝑓2 are minimized simultaneously. 

The shaded region represents the complete set 𝛽 of feasible solutions. The ‘𝑥𝑖’s 

(i.e. 𝑥1, 𝑥2, … 𝑥𝑛) represent solutions in the objective space. The solutions, 

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 and 𝑥6 are not dominated by any other solution in 𝛽. Hence, the set 

{𝑥𝑖}, 𝑖 = 1,2, … ,6,  represents the Pareto-optimal set. 

A multi-objective optimization approach should achieve the following three 

conflicting goals [119]:   

(i) The best-known Pareto front should be as close as possible to the true Pareto 

front. Ideally, the best-known Pareto set should be a subset of the 

Pareto-optimal set. 



Chapter 2 

 55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Illustrative example of Pareto-optimality and non-domination  

(ii) Solutions in the best-known Pareto set should be uniformly distributed and 

diverse over the Pareto front, in order to provide the decision maker a true 

picture of tradeoffs. 

(iii) The best-known Pareto front should capture the whole spectrum to the Pareto 

front. This requires investigating solutions at the extreme ends of the objective 

function space. 

For a given computational time limit, the first goal is best served by focusing 

(intensifying) the search on a particular region of the Pareto front. In contrast, the 

second goal demands the search effort to be uniformly distributed over the Pareto front. 

The third goal aims at extending the Pareto front at both ends, exploring new extreme 

solutions. 
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2.7.3. Different Types of Multi-objective GA 

During the last two decades, a number of different flavours of the 

Multi-objective GA are evolved and applied to solve several real-world optimization 

problems. There are two basic categories of the Multi-objective GA, namely 

“non-elitist Multi-objective GA” and “elitist Multi-objective GA” [116,120]. According 

to the concept of ‘elitism’, a fixed number of GA chromosomes having higher fitness 

values are considered as elite chromosomes and are retained in the new generation. The 

initial implementations of Multi-objective GA, reported in the literature are of the 

non-elitist category [116]. For example, David Schaffer suggested one such algorithm 

namely, Vector Evaluated Genetic Algorithm (VEGA) [120]. The other examples of 

the non-elitist Multi-objective GA are weight-based Genetic Algorithm [121], Multiple 

Objective Genetic Algorithm (called MOGA) [122], non-dominated sorting Genetic 

Algorithm [123], and niched-Pareto Genetic Algorithm [124]. The more recent 

implementations of the Multi-objective GA are the elitist Multi-objective GA. In 

general, the elitist Multi-objective GAs are more efficient, since the elitism helps to 

preserve the best solutions in the past generation and speedup the convergence of the 

algorithm. Among the elitist Multi-objective GA implementations, some have wide 

acceptance due to their efficiency in producing better Pareto fronts and the examples 

are: distance-based Pareto Genetic Algorithm [125], Strength-Pareto Evolutionary 

Algorithm (SPEA) [126], and Pareto-archived Evolution Strategy [127] and 

Non-dominated Sorting Genetic Algorithm-II (referred to as NSGA-II in the rest of the 

thesis). Deb and colleagues [116,128] showed that NSGA-II outperforms the other 

three algorithms described, in terms of finding a diverse set of solutions and in 

converging nearer to the true Pareto-optimal set with more efficiency. 
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The features of Non-dominated Sorting Genetic Algorithm-II (NSGA-II), 

mentioned above, are useful for the nuclear fuel management related optimization 

studies. Hedayat and colleagues demonstrated the suitability and efficiency of the 

NSGA-II in solving the optimization problems of nuclear fuel management [107]. The 

flavour of the Multi-objective GA considered in the present work is NSGA-II. In the 

following section, the details of the implementation of the NSGA-II algorithm are 

considered.  

2.7.4. Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) 

  The procedure followed for the NSGA-II algorithm is shown in the flowchart 

(Figure 2.14). The procedure of the standard GA like crossover and mutation are the 

same in NSGA-II also. When NSGA-II is applied to nuclear fuel management 

application, the fitness evaluation is carried out as usual, by calling the neutronics 

simulation codes from the algorithm. However, the additional steps for incorporating 

concepts of Pareto-optimality and dominance are added in the procedure. 

The first step of the NSGA-II procedure is to generate the initial parent 

population, 𝑃𝑡 of the size N. Then, the fitness evolution is carried out for each member 

of 𝑃𝑡. During the next step, the crossover and mutation operations are performed on 𝑃𝑡  

to get offspring population, 𝑄𝑡. This step is carried out before the fitness evaluation 

operation of 𝑄𝑡, and results in getting a new population of size N. The combined 

population of 𝑃𝑡 and 𝑄𝑡 (denoted as 𝑅𝑡) undergoes the non-dominated sorting, in the 

subsequent step of the algorithm. Finally, N elements are selected from the combined 

population and the new population is formed. The whole procedure mentioned above is 

repeated until the algorithm is getting converged. The non-dominated sorting is used to 

classify 𝑅𝑡 into different Pareto-optimal fronts. 
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Figure 2.12: Flowchart of Multi-objective GA (NSGA-II implementation). The 

procedure consists of the standard GA operations and the additional steps of 

non-dominated sorting and non-domination ranking [116, 119, 128]. 
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According to the concept of dominance, a solution x(1) is said to dominate 

another solution x(2), if both of the following two conditions are satisfied [119]: 

(i) The solution x(1) is not worse than x(2), when all the objectives are considered 

(ii) The solution x(1) is strictly better than x(2) , in at least one objective 

In the first condition, the term “not worse than” indicates that two solutions can equally 

be good with respect to an objective. The term “strictly better than” in the second 

condition emphasizes that the equally good solutions are not considered in that case. 

The solutions belonging to the best Pareto-optimal front, 𝐹1, are the best solutions in 

the combined population. If the size of 𝐹1, is smaller than N, all the members of 𝐹1  are 

added to the new population,  𝑃𝑡+1 . The remaining members of  𝑃𝑡+1  , are chosen from 

subsequent Pareto-optimal fronts in the order of their ranking. To choose exactly N 

population members, solutions of the last allowed front are sorted using the crowded 

comparison operator (normally denoted by <𝑐 ). The new population 𝑃𝑡+1 , is taken as 

the input for generating offspring population 𝑄𝑡+1 , by applying crowded comparison 

operator, crossover, and mutation. 

The crowded comparison operator assumes that every solution ‘𝑖’ has two 

attributes: a non-domination rank, 𝑟𝑖 (corresponding to the Pareto-optimal front to 

which the solution belongs), and a local crowding distance, 𝑑𝑖 (a measure of density of 

solutions in the neighborhood of the Pareto-optimal front). According to the definition 

of crowded comparison operator, a solution ‘𝑖’ wins over another solution ‘𝑗’, if any of 

the following conditions are satisfied: 

(i) If solution ‘𝑖’ has a better rank than solution ‘𝑗’, i.e.  𝑟𝑖 < 𝑟𝑗  

(ii) If they have the same rank but solution ‘𝑖’ has a better crowding distance than 

solution ‘𝑗’, i.e. 𝑟𝑖 = 𝑟𝑗  and  𝑑𝑖 >  𝑑𝑗 
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The crowded comparison operator guides the selection process at various stages 

of the algorithm towards a uniform spread of solutions along the best-known Pareto 

front. The main advantage of using the crowded comparison operator is that a measure 

of population density around a solution is computed without requiring a user-defined 

niche size or the kth closest neighbor [129, 107]. The sorting of the population based on 

non-domination ranks along with the crowded comparison operation as a 

diversity-preserving mechanism and provides NSGA-II a powerful ‘elitism’ strategy. 

The NSGA-II implementation described above allows the optimization procedure in 

performing the search process efficiently under the given multiple objectives and 

constraints.  

The nuclear fuel management problems addressed in the present work are 

implemented by using both the methodologies mentioned above i.e., Penalty-function 

GA and Multi-objective GA (NSGA-II). This facilitates a comparative study between 

them, in order to find out the methodology that is more suitable for the particular 

optimization problem of nuclear fuel management. 

2.8. SUMMARY 

The overall procedure of the standard GA and the study conducted on the 

performance of standard GA are covered in the chapter. The different chromosome 

encoding schemes and operators of the GA, employed in the work carried out as the 

part of the thesis, are explained. By implementing the GA for solving the Ackley’s 

function based optimization problem, several investigations are conducted in order to 

understand the influence of various representation schemes and operators on the 

algorithms performance.  
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 The GA methodologies followed in the work carried out as part of the thesis are 

discussed. The overall procedure, typically followed when genetic algorithms are 

applied in the nuclear fuel management, is formulated. The two methodologies in 

formulating nuclear fuel optimization models for GA, namely Penalty-function GA and 

Multi-objective GA are discussed. The flavor of Multi-objective GA followed in the 

present work is Non-Dominated Sorting Genetic Algorithm-II (NSGA-II). Therefore, a 

detailed description about the procedure and the implementation of NSGA-II is 

presented in the chapter. 
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CHAPTER 3 

  

APPLICATION OF GENETIC ALGORITHM   

IN STEAM CONDENSER OPTIMIZATION  

OF PROTOTYPE FAST BREEDER REACTOR 

 

This chapter presents an engineering design optimization study, conducted on 

the steam condenser of a fast breeder reactor. In the present study, the standard GA 

(real-parameter) is applied for solving a single objective problem with limited 

constraints. As part of the optimization procedure, the GA based performance-cost 

analysis of the circulating water system is carried out. The purpose of the study is to 

demonstrate the suitability of the standard real-parameter GA in the engineering 

design application of a reactor subsystem.  

 

 

3.1. INTRODUCTION 

The 500 MWe Prototype Fast Breeder Reactor (PFBR) is designed by Indira 

Gandhi Centre for Atomic Research (IGCAR) and is being commissioned at 

Kalpakkam, India [130]. Prototype Fast breeder reactor (PFBR) is a sodium cooled, 

pool type, mixed-oxide fuelled reactor with two secondary loops [131]. The primary 

objective of PFBR is to demonstrate the techno-economic viability of fast breeder 

reactors on an industrial scale. The design optimization of the steam condenser of the 
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PFBR is considered in the present work. The two important functions of steam 

condenser are:  

(i) condense the exhaust steam from the steam turbine to get better efficiency 

(ii) convert the turbine exhaust steam into pure water so that it may be reused in 

the steam generator as boiler feed water  

Therefore, the steam condenser is an important part of the Circulating Water System of 

a nuclear power plant. The Circulating Water System of PFBR is once-through cooling 

type system, where water from the sea is pumped to the steam condenser and is 

returned back to the sea. 

The proper design of the Circulating Water System (referred to as CWS in the 

rest of the paper) in a power plant improves the electrical output for a given input heat 

energy. Nearly 2/3rd of the heat energy generated in the power cycle is ultimately 

rejected to the atmosphere in the form of waste heat through the CWS. Lowering of the 

saturation temperature of the exhaust steam through the efficient design of the steam 

condenser can improve the efficiency of the total CWS. The design parameters of the 

steam condenser which are influencing the efficiency of the CWS are selected for the 

study. The optimization procedure is based on the performance-cost analysis carried out 

by applying the optimization concepts of GA. The optimal values for the design 

parameters are arrived from the study, in order to get the maximum capitalized profit 

from the CWS. 

The Circulating Water System of Prototype Fast Breeder Reactor (PFBR) is 

designed based on the conventional design optimization concepts [132]. The design 

parameters are arrived based on the calculation approach in which the parameter values 

are incremented or decremented in every iteration of the optimization procedure. A 

study has been conducted based on the above approach by Sen [132]. In the present 
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work, the parameters of the optimization problem and their specifications are adopted 

from that reference study. The results obtained from the present work are compared 

with the results reported from the reference study.  

The optimization problem - the design of Circulating Water System (CWS) - 

considered in the present study is of less computational complexity in terms of 

objective search space and parameter evaluation procedure. The aim of the study is to 

extend the application of the standard GA procedure and the GA operators applied for 

the benchmark problem (Ackley’s function optimization presented in Chapter 2) to a 

relevant engineering application of a reactor subsystem. In the study, the suitability of 

the standard real-parameter GA in the engineering design application of a reactor 

subsystem is demonstrated.  

3.2. PROBLEM DESCRIPTION AND OPTIMIZATION MODEL 

FORMULATION  

The Circulating Water System (CWS) of Prototype Fast Breeder Reactor 

(PFBR) consists of steam surface condenser (single pass shell and tube heat 

exchanger), circulating water pumps and drives, pump house, piping/ducts, seal well, 

outfall structure etc. Direct cooling system with seawater is envisaged for the PFBR. 

Usually for a direct cooling system, a single pass condenser is a better configuration, 

from techno-economic point of view, than a two-pass condenser [133]. Therefore, a 

single pass condenser has been considered in this study. The schematic of CWS of 

PFBR is shown in Figure 3.1. The seawater is drawn through a submarine tunnel to the 

onshore pump house. The pump house has screening mechanisms for filtering seawater 

before it enters the pumps. It houses two numbers of condenser cooling water pumps 

and two numbers of auxiliary seawater pumps. Water is pumped to the steam condenser 

by the condenser cooling water pumps and to the process heat exchangers by the 

auxiliary seawater pumps.  
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Figure 3.1: Schematic of circulating water system of Prototype Fast Breeder 

Reactor (PFBR). 

 

The discharge of the condenser is led to the seal pit through subsurface concrete ducts, 

while the discharge of the process heat exchangers is let to the seal pit through the 

buried discharge pipes. The water is discharged to the sea from the outfall. 

During the optimization procedure, four design parameters of the condenser are 

considered and the profit generated by the total Circulation Water System (CWS) for 

the given values of design parameters are calculated. The parameters which are selected 

as design candidates for this study are:  

(i) condenser flow rate (Q)  
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(ii) outer diameter of condenser tube (do) 

(iii) condenser tube length (l)  

(iv) velocity of water inside the tube (v)   

The aim of the optimization procedure is to find the optimum values for the 

above parameters that would provide highest capitalized profit. The environmental 

regulation stipulates that the hot water released to the sea should not exceed 7 degree 

above the ambient temperature of the intake seawater. Therefore, the feed-water 

temperature rise or the temperature range (denoted as ‘r’) of the CWS is fixed 

accordingly. Another constraint in the study is related to the terminal temperature 

difference (denoted as ‘TTD’) of the condenser which is defined as the saturation 

temperature of the extraction steam minus the feed-water outlet temperature. An 

increase in TTD indicates a reduction in the heat transfer, while a decrease indicates an 

improvement. The recommended lower limit of TTD for the condenser is 2.78 degree 

[134]. Therefore, if the rise of water temperature in the condenser exceeds 7 degree or 

the terminal temperature difference for the condenser is less than 2.78 degree, then that 

design candidate is rejected during the optimization.  

Considering the given design parameters and the associated constraints, a 

mathematical model formulation of the given optimization problem is arrived at as 

follows: 

                                            Max (Capitalized profit) = f (Q, do, l, v)               (3.1) 

Such that, 

   r < 7 degree,  TTD > 2.78 degree       (3.2) 

In the above representation f () represents the fitness function with the parameters 

involved as the arguments and Max represents the maximization. The problem has the 

following boundary conditions for the design parameters: 
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        96000.00  Q   105000.00      (3.3) 

                                                        do = 22.225 or 25.400       (3.4) 

                                                               12   l  18                   (3.5) 

                                                            2.10   v   2.70                            (3.6) 

The boundary conditions given above are arrived by considering the results of 

the reference study [132]. During the optimization procedure, the condenser flow rate 

(Q) is assigned with real number values from the given range (the assigned precision is 

of two decimal places). The outer diameter of condenser tube (do) can take either of the 

given two values during the optimization procedure i.e. either 22.225 or 25.400. This 

constraint is based on the commercially available condenser tube specifications. The 

condenser tube length (l) is assigned with integer values in the given range. The 

velocity of water inside the tube (v) can take any real number value with the assigned 

precision of two decimal places, from the specified range. The values of constraints 

given in the Eqn. 3.2 (i.e. values of ‘r’ and ‘TTD’) are calculated during the fitness 

evaluation of the optimization procedure. A detailed description about the procedure of 

fitness evaluation is given in the following section. 

3.3. THE FITNESS EVALUATION PROCEDURE 

The given optimization problem is formulated as a profit maximization problem 

as described above. During the optimization procedure, the fitness evaluation function 

is called by the GA, for finding the capitalized profit values. The fitness evaluation is 

carried out for every individual in the population of GA, with the four decision 

parameters as the chromosome elements. The evaluated capitalized profit values (or the 

fitness values) are assigned to the corresponding individual. The procedure used for 

fitness evaluation is divided in to two, namely, calculation of performance and 

calculation of profit. 
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3.3.1. Calculation of the System Performance  

The methodology used for calculation of the performance of the Circulating 

Water System (CWS) is described as follows. For the selected chromosome, the 

performance of the system is evaluated for a given cooling water temperature based on 

the thermodynamic relationship between the condenser backpressure and turbine 

output. The calculation takes into account the correction factors for the tube diameter, 

inlet seawater temperature, tube material and gauge factor, and tube cleanliness. The 

term ‘performance’ means calculation of the saturation temperature and corresponding 

pressure of the condensing steam at the turbine exhaust and hence the power generated 

and corresponding revenue earned.  

During the above performance calculation, if the solution violates constraints 

regarding the rise of condenser inlet-outlet temperature, ‘r’ and the difference of 

terminal temperature, ‘TTD’, then the performance calculation is repeated by rejecting 

the present solution and replacing the gene values with randomly selected new set of 

values. The above step is continued until the viable solution candidates are obtained 

from performance calculation. Then, the next steps are carried out for calculating the 

capitalized profit, associated with every solution set. The basic equations involved in 

the performance calculation are summarized in Table 3.1. The flowchart representing 

the computational procedure followed in the performance calculation is given in 

Figure 3.2. 

3.3.2. Calculation of the Capitalized Profit  

The term ‘capitalized profit’ indicates the profit added by the Circulating Water 

System (CWS) over a period of years to the capital. The calculation of capitalized 

profit involves two components, i.e. calculation of the system cost and calculation of 

the capitalized revenue. The cost of CWS for each design candidate is calculated first.  

 



Chapter 3 

 70 

 

 

 

 

Table 3.1: Basic equations involved in the performance calculation of the 

Circulating Water System (CWS) 

 

 

 

 

 

H        =  P.1000.(Hr- 860) 

 

 

(3.7) 

 H        =  γ.Q.r.Cp (3.8) 

 Q        =  3600.(π/4).𝑑 2
𝑖
.v. nt (3.9) 

 A        =  π . dol. nt. np (3.10) 

 H        =  U. A. (LMTD) (3.11) 

 U        =  U1. Fw.Fm. Fc (3.12) 

 𝐿𝑀𝑇𝐷 =
𝐻𝑊𝑇 − 𝐶𝑊𝑇

𝑙𝑛[ (𝑇𝑠 − 𝐶𝑊𝑇)/(𝑇𝑠 − 𝐻𝑊𝑇)]
 (3.13) 

 TTD=  r/[exp{r. U. A/H}-1] (3.14) 

  r          =  HWT-CWT (3.15) 

 Ts        =  HWD+TTD (3.16) 

 

Parameter Meaning (unit) Parameter Meaning (unit) 

H Heat rejection rate (kcal/hr.) A 
Surface area of the Condenser 

(m2) 

P Electrical power output (MW) LMTD 

Log mean temperature 

difference between water and 

steam (K) 

Hr 
Heat rate of power cycle 

(kcal/kWhr.) 
U1 

Uncorrected heat  transfer 

coefficients 

γ 
Specific weight of sea 

water (kg/m3) 
Fw 

Inlet water temperature 

correction factor 

Q 
Circulating water flow-

rate (m3/hr) 
Fm 

Tube material and gauge 

correction factor               

l Length of tube (m) Fc Cleanliness correction factor       

Cp 
Specific heat of sea 

water 
v 

Velocity of water inside the 

tube (m/sec) 

di 
Condenser tube inner 

diameter (m) 
HWT 

Hot water temp. at condenser 

outlet (K) 

do 
Condenser tube outer 

diameter (m) 
CWT 

Cold water temp. at condenser 

inlet (K) 

nt 
Number of tubes per 

pass 
Ts 

Saturation temperature of steam 

(K)         

np 
Number of passes in the 

condenser          
r 

Rise in feed water 

temperature (K) 

U 
Overall heat transfer 

coefficient (kcal/m2hrK) 
TTD Terminal temp. difference (K) 
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Figure 3.2: The computational procedure followed in the performance 

calculation of the Circulating Water System (the equations given in Table 3.1 

are referred in the flowchart) 
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The investment cost of equipment and the capitalized operating cost of circulating 

water pumps are considered for the cost calculation. Then the capitalized revenue 

earned is calculated based on the electricity generated from the plant. Finally, the 

capitalized profit is calculated as capitalized revenue minus cost of CWS. All costs and 

economic figures in the present work are in lakhs of Indian rupees (referred to as Rs in 

the rest of the study). The lifetime of the system is considered as 40 years, the 

amortization rate is 14.5%, energy cost of Rs 3.25/- unit at the rate of increase of 3% 

per year and pump efficiency of 87%. The detailed description of steps involved in the 

calculation of capitalized profit is given below. 

3.3.2.1. Cost of the Circulating Water System 

 The components of costs which determine the cost of the Circulating Water 

System (CWS) are:  

(i) investment cost 

(ii) operational cost  

These costs are calculated as follows: 

(i) Investment Cost 

The investment cost (denoted as ′𝐶𝐼𝑁′) has three major components and are 

described below: 

 Cost of the surface condenser  

    Cost of the condenser = A  c
A
                                (3.17) 

  where,    A = Surface area of the condenser (m2) 
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  c
A
 = Cost per unit surface area (Rs /m2) 

 Cost of the Circulating Water System pumps and drives 

                          Cost of the pumps and drives = 𝑁𝑝 [
9.81 𝑄𝑝 𝛾 𝐻𝑝

1000𝑃 𝑀 
] 𝐶𝑃𝑘𝑤   (3.18)     

 where, 𝑁𝑝  =  Number of CWS pumps 

     𝑄𝑝 = Flow rate through each pump (m3/sec) 

     𝛾  = Specific weight of seawater (kg/m3) 

     𝐻𝑝 = Pumping Head (m) 

     
𝑃

 = Efficiency of pump 

     
𝑀

 = Efficiency of motor 

     𝐶𝑃𝑘𝑤= Cost of the pump drive per kW (Rs/kW) 

 Cost of the pump house, tunnel, forebay and ducts/pipes 

 The costs of pump house, tunnel, forebay and CWS duct/pipe are not fixed, i.e. 

costs will vary according to the flow rate of water through the CWS. The costs of the 

components mentioned above, for different flow rates given, have been taken from the 

reference study [132]. The cost of in-between flow rates are interpolated as part of the 

GA based optimization procedure. The cost of seal well and outfall structure has not 

been considered in the study. 

(ii) Operational Cost 

The major component of the operational cost is attributed to the energy 

consumption by the pumps of CWS, which is calculated as: 

 

                                                         𝐶𝑂𝑃  = 𝐶𝑓 𝐸𝑒 𝑃𝑠    (3.19) 
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where, 

   𝐶𝑂𝑃     = Operational cost (based on the capitalized cost of  

         energy consumption by the pumps) 

    𝐶𝑓  = Capitalization factor (function of plant life, interest 

           rate and rate of rise of cost of electricity) 

   𝐸𝑒  = Yearly energy consumption (kW hr) by the pumps 

    = ep NH
 

   𝑃𝑠 = Unit selling price of electricity (Rs / kWhr) 

   NH = Number of hours of plant operation per year 

   ep = Electrical power required by the pumps (kW) 

    = 𝑁𝑟 [
9.81 𝑄𝑝 𝛾 𝐻𝑝

1000𝑃 𝑀 
]  

   Nr = Number of pumps running  

3.3.2.2.  Calculation of the Capitalized Revenue Earned 

 After the calculation of the cost of the Circulating Water System, the next step is 

the calculation of capitalized revenue earned from the system, based on the total power 

produced in a year. It is assumed that ‘𝑃1’ is the power produced (in MW) for a 

particular water temperature at the condenser inlet (i.e. the cold water temperature 

‘CWT’) which occurs for ′𝑛1′ hours. Then, the electricity generated during the period is 

given by:  

     𝑒1 (in kWh) = 1000 𝑃1 𝑛1                                      (3.20)         

The total electricity generation is calculated based on the number of hours of plant 

operation and the total number of hours of plant operation (denoted as ‘NH’) is 

calculated as: 

  NH   =  𝑛1 + 𝑛2 + 𝑛3 + ⋯ + 𝑛𝑛            (3.21) 

where,  𝑛1, 𝑛2 … 𝑛𝑛 represents different time periods of plant operation at different 

power levels. 
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Total electricity generation in a year, ′𝐸𝑇′ is calculated by summing up the electricity 

generation for all the time periods, as given below: 

    𝐸𝑇 =  𝑒1 + 𝑒2 + 𝑒3 + ⋯ + 𝑒𝑛         (3.22) 

In the above equations, ′𝑒1′ represents the electricity generated for ′𝑛1′ hours, ′𝑒2′ 

represents the electricity generated for ′𝑛2′ hours, and so on. 

Let ′𝑃′𝑠 be the unit-selling price of electricity in Rs/kWh. Then, 

𝑅𝐶      = 𝐶𝑓𝐸𝑇 𝑃𝑠                 (3.23)   

 where, 

        𝑅𝐶     = Capitalized revenue earned 

     𝐶𝑓  = Capitalization factor  

    𝐸𝑇 = Total electricity generation in a year 

    𝑃𝑠 = Unit selling price of electricity (Rs / kWhr) 

3.3.2.3.  Calculation of the Total Cost 

 The investment cost and operational costs are added to get the total cost 

(denoted as ′𝐶𝑇𝑂𝑇′) of the system as follows: 

                𝐶𝑇𝑂𝑇 = 𝐶𝐼𝑁 + 𝐶𝑂𝑃                                   (3.24)  

where, 

𝐶𝐼𝑁      = Investment cost 

𝐶𝑂𝑃  = Operational cost 

3.3.2.4.  Calculation of the Capitalized Profit 

 The capitalized profit is obtained by subtracting the total cost (𝐶𝑇𝑂𝑇) from the 

capitalized revenue (𝑅𝐶), and is represented as: 

   Capitalized profit = 𝑅𝐶 – 𝐶𝑇𝑂𝑇                 (3.25)     

  The capitalized profit calculated is assigned as the fitness value of the individual 

solution candidate (or chromosome) of the algorithm. The implementation details of the 

algorithm are covered in the next section. 
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3.4. DETAILS OF IMPLEMENTATION  

The design parameters (Q, l, do, v) selected for the study form the decision 

variables for the GA based optimization procedure. All the four decision variables are 

real numbers and hence the real-number representation is followed in the chromosome 

representation of the algorithm. The GA parameters, operators and methods considered 

for the study are summarized in Table 3.2. The operators and their values given in the 

table are arrived at, based on the results of the study carried out on the benchmark 

optimization problem addressed in Chapter 2. 

As an example, two chromosomes generated by the algorithm are shown in 

Figure 3.3. The chromosome representations follow the order of the design parameters 

i.e., Q, do, l and v. The values assigned to the chromosomes in the example are taken 

from the first generation of a trial run (Trial No. 1). The third chromosome element that 

represents the parameter ‘l’ is defined as a real number variable in the implementation, 

but always gets truncated to the corresponding integer value, before storing to the 

chromosome representation. 

 

Table 3.2: Genetic parameters and methods or values used in the GA based 

optimization procedure. 

 

Parameter Methods/Values 

Chromosome representation Real-number 

Population size 50 

Crossover Method Arithmetical 

Crossover Probability (CR) 0.8 

Mutation Method Non-uniform 

Mutation Probability (MR) 0.01 

Maximum number of Generations 100 

Number of Elite members (EL) 5 



Chapter 3 

 77 

 

 

 

 

 

 

Figure 3.3: Examples of two chromosomes generated by the algorithm. The 

same chromosomes are considered in the illustration of the crossover operation. 
 

As the crossover method suitable for real-number representation is arithmetical 

crossover, the same method is employed in the present work. The arithmetical 

crossover method is applied for the first, third and the fourth elements of the 

chromosome which represents the parameters Q, l and v respectively. However, for the 

second element of the chromosome, that represents the parameter do, the crossover 

operation is achieved by the ‘swapping’ of elements.  

The crossover based on ‘swapping’, satisfies the special requirement of the 

parameter ‘do’, i.e., it can take only two values, either 25.400 or 22.225. This constraint 

is based on the commercially available specifications of condenser tubes. Once two 

parents are selected, all the four elements of parents are undergoing the crossover 

operation. In order to illustrate operations of the algorithm, the chromosomes given in 

the example (Figure 3.3) can be represented as two chromosome vectors as follows: 

𝑥1 = (103166.75,   25.4, 17.0,   2.58   )                  (3.26) 

𝑥2 = (98594.01,   22.225, 12.0, 2.12)                        (3.27) 

Let us now assume that the above chromosome vectors are selected as parents for the 

crossover operation. The arithmetical crossover operation performed on the first 

elements of the parent chromosome (i.e. on 103166.75 and 98594.01) can be 

represented as: 
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𝑡11 = ( 𝑎 × 103166.75 + (1 − 𝑎) × 98594.01 )                (3.28) 

𝑡12 = ( 𝑎 × 98594.01  + (1 − 𝑎) × 103166.75 )               (3.29) 

(by following the equations which define the arithmetical crossover, given in 

Chapter 2, i.e. Eqns. 2.2 and 2.3) 

where, 𝑡11 and 𝑡12 represent the first two elements in the resulting offspring and ‘a’ is 

the random number generated between 0 and 1. As mentioned earlier, the crossover of 

the second element of the parent chromosomes is achieved by just swapping the 

contents. The arithmetical crossover happening on the third elements of the parent 

chromosome (i.e. on 17.0 and 12.0) can be represented as: 

                                           𝑡31 = ( 𝑎 × 17.0 + (1 − 𝑎) × 12.0 )                     (3.30) 

          𝑡32 = ( 𝑎 × 12.0 + (1 − 𝑎) × 17.0 )                     (3.31) 

where, 𝑡31 and 𝑡32 represents the third two elements in the resulting offspring and ‘a’ is 

the random number generated between 0 and 1. Similarly, the arithmetical crossover 

performed on the fourth element of the parent chromosome (i.e. on 2.58 and 2.12) can 

be represented as: 

         𝑡41 = ( 𝑎 × 2.58 + (1 − 𝑎) × 2.12 )                        (3.32) 

         𝑡42 = ( 𝑎 × 2.12 + (1 − 𝑎) × 2.58 )                         (3.33) 

where, 𝑡41 and 𝑡42 represents the fourth two elements in the resulting offspring and ‘a’ 

is the random number generated between 0 and 1. At a particular instance, for ‘a’ = 

0.6358, then the resultant offspring chromosomes, ‘𝑜1’ and ‘𝑜2’ (arrived based on Eqns. 

3.28 to 3.33) are: 

                                           𝑜1 = (101501.36, 22.225, 15.0,   2.41)                (3.34) 

                                           𝑜2 = (100259.40,   25.4,   13.0,   2.29)                 (3.35) 

The arithmetical crossover operation explained above is illustrated in the 

Figure 3.4. The examples of two chromosomes generated by the algorithm are 

considered as the parents. The crossover operation generates the children as shown in 

the figure. 
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Figure 3.4: Illustration of the arithmetical crossover operation. The two 

chromosomes generated by the algorithm are considered as parents. The 

crossover operation generates the children as shown.  
 

The next operation that comes under the procedure of GA is the mutation. The 

mutation method followed in the implementation is the non-uniform mutation. In order 

to avoid getting infeasible values, the mutation operation is not performed on the 

parameter ‘do’. In continuation of the example considered above, assuming that one of 

the offspring (𝑜1) derived from crossover operation is undergoing the non-uniform 

mutation at 60th generation ( 𝑡=60). It is assumed that, the first element of ‘𝑜1’ (that 

represents the parameter ‘Q’) is chosen for the mutation operation (i.e. 𝑣𝑘 =

101501.36). The given upper and lower bounds for the parameter ‘Q’ are 105000.00 

and 96000.00 respectively. If the random digit generated, as part of the non-uniform 

mutation operator is 0, then the mutated element  𝑣𝑘
𝑙  is calculated as: 

𝑣𝑘
𝑙 = 101501.36 +  ∆ [60, (105000.00 − 101501.36)]      (3.36) 

(by following the equations which define the non-uniform mutation, given in 

Chapter 2, i.e. Eqn. 2.4 and 2.5) 

Now, if 𝑟 = 0.80, then ∆ (𝑡, 𝑦)  function in the above step will return 2239.13 

and  𝑣𝑘
𝑙  will get 103740.49. In essence, for the considered example, the non-uniform 

mutation operation changes the first chromosome element’s value from 101501.36 

to 103740.49. The non-uniform mutation operation explained above is illustrated in 

the Figure 3.5. 
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Figure 3.5: Illustration of the non-uniform mutation operation. In the example, 

the first chromosome generated by the crossover operation, is considered as the 

parent. The value representing the condenser flow rate (Q) is modified during 

the mutation operation. 

 

The ‘C’ programming language is used for the implementation of algorithm. 

The initial population is generated by calling the random number generation function of 

the C programming language. Using the function, random numbers are generated 

within the range of boundary conditions for the specific values of decision parameter. 

The selection method followed is Roulette-Wheel method (see Section 2.4.2. for 

details). The concept of Elitism is also incorporated in the selection method of GA, 

where a fixed number of the chromosomes having higher fitness values are considered 

as elite chromosomes and are retained in the new generation. The results generated by 

the optimization procedure are discussed in the next section. 

3.5. RESULTS AND DISCUSSIONS 

As part of the tuning of algorithm parameters, several trial runs were conducted 

with randomly generated initial population of the GA. Each trial run was started with 

entirely different initial population ensuring different initial search space for different 

trial runs. Based on the results generated initially, the GA parameters were fine-tuned 

and the final parameters used in the study are arrived at. The fine-tuned version of the 

algorithm is used to generate final results by conducting eight independent trial runs. 

The best result (i.e. with maximum capitalized profit) of the final generation population 

is extracted for every trial run and is presented in Table 3.3. The economic figures 
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(i.e., total cost, capitalized revenue and capitalized profit) arrived at from the 

optimization procedures are also presented in the table. These economic figures are 

used in analyzing the performance of the algorithm performance. 

The results reported by the reference study [132] and the results arrived from 

the present optimization study are given in Table 3.4. The summary of results presented 

in the table indicate the values or range of values to be assigned to the design 

parameters of the condenser, for getting the maximum capitalized profit from the 

Circulating Water System (CWS). The following observations can be arrived from the 

results of the trial runs (Table 3.3) and from the summary of results (Table 3.4): 

 The GA based optimization procedure is able to generate feasible design 

parameter values which fall in line with the results of the reference study. All 

the four design parameter values (i.e. Q, l, do, v) generated by the algorithm fall 

in the range of results of the reference study.   

 Different trial runs generate different design parameter values (with in the range 

of optimal solutions) and corresponding economic parameter values. This 

behavior is due to the stochastic nature of the GA. 

3.5.1. Performance of the Algorithm 

One of the common methods of assessing the performance of GA is by 

measuring the average fitness value in each generation [113]. The capitalized profit 

represents the fitness value for the algorithm. The average fitness is calculated by 

adding the individual fitness values calculated by the fitness evaluation step of the 

algorithm, and dividing it by the population size. Since the present study is with the 

objective of profit maximization, achieving the higher values of average fitness is 

desired. 
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Table 3.3: The results obtained by the present study for the design parameters 

and the corresponding economic figures. The best results from the final 

population of every trial run are presented 

 

 

Trial 

No. 

 

Q 

 

do 

 

l 

 

v 

 

Total Cost 

(in lakhs of 

Rs) 

 

Capitalized 

revenue(in 

lakhs of Rs) 

 

Capitalized 

Profit(in 

lakhs of Rs) 

1 98334.15 25.4 15 2.11 30484.69 816746.81 786262.12 

2 98940.37 25.4 15 2.10 31274.31 817082.37 786129.82 

3 98657.38 25.4 15 2.10 30846.38 816853.61 786207.03 

4 98077.18 25.4 15 2.11 30401.88 816721.23 786319.36 

5 98216.48 25.4 14 2.10 29427.47 814811.94 786230.78 

6 98022.23 25.4 16 2.10 30831.23 817048.85 786217.63 

7 98418.05 25.4 16 2.10 30977.28 817079.22 786101.94 

8 98487.48  25.4 15 2.10 30526.72 816765.15 786238.44 

 

Table 3.4: The summary of results obtained from the reference study* and the 

present study 

 

 

Parameter 

 

Unit 

Results 

(value/range) 

Results 

(value/range) 

Reference study* Present Study 

 

Condenser flow rate (Q) 

 

 

m3/hr 

 

     98,000.00  to 

99,000.00 

 

 

    98,022.23 to 

98,940.37 

 

 

Outer diameter of condenser tube (do) 

 

 

mm 

 

25.4 

 

25.4 

 

Condenser tube length (l) 

 

 

m 

 

14.0 - 16.0 

 

14.0 - 16.0 

 

Velocity of water inside the tube (v) 

 

 

m/s 

 

2.10 

 

2.10 - 2.11 

 *Doc No. PFBR/71200/DN/2053 Rev.4(2007) [132] 
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The generation wise evolutions of the average fitness for the eight trial runs are 

shown in Figure 3.6. The overall trend is for increasing the average fitness values 

towards the end of generations. Even though, all the trial runs are able to improve their 

average fitness values towards the final generations, the variations in average fitness 

are randomly high between the generations. The reason for this behavior can be 

explained as follows. According to the procedure of calculation of the system 

performance (see Section 3.3.1), a rejection strategy is followed when a solution 

candidate does not obey the constraints related to the rise in water temperature (r) and 

the terminal temperature difference (TTD). In that case, a new solution candidate is 

randomly generated and the performance calculation is started afresh. The fitness value 

evaluated for the new solution candidate can fluctuate substantially from the average 

fitness of the previous generation. When the numbers of such new solution candidates 

are more in a generation, the average fitness of that generation fluctuates randomly with 

respect to the previous generation. 

Next, the generation wise evolution of the best fitness is considered. The best 

fitness represents the candidate solution in a generation with maximum capitalized 

profit. The improvement in best fitness is an important property of the algorithm. The 

generation wise evolutions of the best fitness for the eight trial runs are shown in 

Figure 3.7. The best fitness values are getting improved towards the end of the 

generations in all the trial runs. The ‘elitism’ helps in achieving this feature by the 

algorithm. Once a better solution candidate is generated by the standard GA operators, 

that solution is preserved and given forward to the subsequent generations by the 

‘elitism’.  
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Figure 3.6: The generation wise evolutions of the average fitness (or average values 

of the capitalized profit in lakhs of Indian rupees) for different independent trial runs. 
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Figure 3.7: The generation wise evolutions of the best fitness (or best values of the 

capitalized profit in lakhs of Indian rupees) for different independent trial runs. 
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3.5.2. Influence of Chromosome Elements on Economic Figures 

The chromosome elements of the algorithm are constituted by the four design 

parameters (i.e. Q, l, do, v). During the evolution of the algorithm, different sets of 

values are assigned to the design parameters by the algorithm. The total cost, the 

capitalized revenue and the capitalized profit are calculated based on the values 

assigned to the design parameters. The objective of the optimization is to maximize the 

capitalized profit. In order to achieve this objective, there are different possibilities like, 

minimizing the total cost or maximizing the capitalized revenue or doing both together. 

The algorithm will automatically select the one which comes under the influence of its 

chromosome elements. In order to find out the influence, the evolution of total cost and 

capitalized revenue for the eight independent trial runs are shown in 

Figures. 3.8 and 3.9 respectively. It can be observed from Figure 3.8 that the total costs 

are getting minimized towards the end of generations. However, there is no trend of 

maximization for the capitalized revenue (Figure 3.9). Therefore, it can be concluded 

that the chromosome elements have more influence on the total cost than on the 

capitalized revenue. 

3.6. SUMMARY 

In the chapter, the application of the standard GA procedure in the optimization 

of design parameters for the steam condenser of Prototype Fast Breeder Reactor 

(PFBR), is considered. The real-number encoding, arithmetical crossover, non-uniform 

mutation and elitism are applied in the GA implementation. The design parameters 

considered for the optimization procedure are condenser flow rate (Q), outer diameter 

of condenser tube (do), condenser tube length (l) and velocity of water inside the tube 

(v). The result obtained from the study shows that the design parameter values 

generated by the algorithm fall in the range of results of the reference study. 
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Figure 3.8: The generation wise evolution of total cost (in lakhs of Indian rupees) 

for different independent trial runs 
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Figure 3.9: The generation wise evolution of capitalized revenue (in lakhs of Indian 

rupees) for different independent trial runs 
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The performance of the algorithm is analyzed by considering the generation 

wise evolution of the average fitness and the best fitness. The algorithm is able to 

improve values of the average fitness as well as the best fitness, towards the end of 

generations. The influence of chromosome elements on economic figures, like total 

cost and capitalized revenue, are also analyzed. The result shows that the chromosome 

elements have more influence on the total cost than the capitalized revenue. In essence, 

the study shows the suitability of application of standard GA, in the engineering design 

optimization problems like the one selected for the study i.e. the steam condenser 

optimization of a nuclear reactor.  
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CHAPTER 4 

 

A STUDY ON GENETIC ALGORITHM METHODOLOGIES       

IN FUEL BUNDLE BURNUP OPTIMIZATION                   

OF PRESSURIZED HEAVY WATER REACTOR 

 

An optimization problem of nuclear fuel management with multiple objectives 

and constraints is considered in the chapter. The problem studied is the fuel bundle 

burnup optimization of Pressurized Heavy Water Reactor which optimizes the 

performance of the reactor core, while ensuring that operational and safety features 

are satisfied. As part of the study, two different GA methodologies, namely 

Penalty-function GA and Multi-objective GA, are applied and compared. 

 

4.1. INTRODUCTION 

Pressurized Heavy Water Reactors constitute the major category of commercial 

nuclear reactors, coming under the first stage of the three-stage nuclear power 

programme of India. The majority of operating nuclear power plants in India is based 

on Pressurized Heavy Water Reactor (PHWR) which can efficiently produce the fissile 

material required for the country’s second stage of nuclear programme [17]. In India, 

there are eighteen such power plants in operation and four more plants of this category 

are under construction [135]. The optimization of fuel bundle burnup of PHWR 

involves in finding the arrangement of fresh and partially burned fuel bundles within 

the reactor core to optimize the performance of the reactor over the next operating 
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cycle, while ensuring that operational constraints are always satisfied. The term 

‘burnup’ defines the cumulative exposure of nuclear fuel in a reactor, which is 

expressed in terms of megawatt-days of thermal energy per metric ton (MWd/t) [15]. 

The aim of the study is to apply and evaluate the GA methodologies in deriving 

optimal discharge burnups which give maximum power, without violating various 

safety aspects of the reactor. The discharge burnups arrived by the GA based 

optimization procedure can be utilized in fixing the most suitable reference discharge 

burnups for the two burnup zones of the reactor core. Finding out the optimal values of 

reference discharge burnup of fuel bundles is important in maximizing the fuel 

utilization, while satisfying the safety and operational constraints of the reactor. The 

problem of the fuel bundle burnup optimization of a PHWR core has multiple 

objectives and constraints, some of which are in conflict with each other. This would 

result in the difficulty in optimization of all the parameters simultaneously. Therefore, 

optimization of the fuel bundle burnup is an involved task in terms of computational 

effort and time. 

The reactor core considered in the present study is of an Indian PHWR 

(220 MWe) that uses natural uranium dioxide as fuel, heavy water as moderator and 

coolant. A brief description about the core of the reactor is given in the following 

section. 

4.2. THE 220 MWe PHWR CORE  

The PHWR core consists of a low-pressure horizontal reactor vessel 

(‘calandria’) containing the moderator at normal pressure and temperature. The 

calandria of the PHWR considered for this study is pierced by 306 pressure tubes, also 

known as coolant channels. Each coolant channel contains 12 cylindrical fuel bundles 

made up of zircaloy (an alloy of zirconium, tin and other metals), through which 
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pressurized heavy water coolant circulates. Each fuel bundle holds 19 fuel elements and 

each fuel element consists of a stack of sintered cylindrical fuel pellets of natural 

uranium [136]. In PHWR, the fuelling is on-power (i.e. while reactor is in operation) 

and on a daily basis to continue the controlled chain reaction in the reactor. The fuelling 

operations are carried out by two remotely controlled fuelling machines, operating at 

each end of a fuel channel. The 8-bundle shift scheme is followed in the daily refueling 

operation in which eight fresh fuel bundles are inserted in to a channel from one end 

and eight burnt fuel bundles are taken out from the other end of the channel. The 

fuelling direction is opposite in adjacent channels. It helps in axial flux flattening [53]. 

The term “flux flattening” refers to a more uniform distribution of the power density 

across the reactor core which improves the average burnup of peripheral 

subassemblies [15].  

The division of the core into two burnup zones is important for the PHWR. It is 

seen that without the burnup zones division, the radial neutron flux shape is peaked at 

the central region of the core and the bundle power at that region will exceed the 

operating limit at full power operation [53]. The radial flux flattening at the central 

region is essential to keep the maximum bundle power below the operating bundle 

power limit at full power operation. In order to get radial flux flattening, the reactor 

core is divided in to two burnup zones as shown in Figure 4.1. The inner zone contains 

78 fuel channels and the outer zone contains 228 fuel channels. The typical discharge 

burnups for a 220 MWe PHWR are around 10200 MWd/t and 5500 MWd/t for inner 

and outer zones respectively. By keeping the discharge burnup of inner zone higher, the 

fissile inventory is kept relatively lower at the inner zone as compared to the outer zone 

channels. This leads to flattening of the neutron flux at the inner region and with that, 

the maximum bundle power is within operating bundle power limit [53].  
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Figure 4.1: The two burnup zones of the 220 MWe Pressurized Heavy Water 

Reactor (PHWR) core  

 

The channel coolant flows are fixed according to the reference channel powers 

in order to get uniform channel coolant outlet temperature. Since the channel flows are 

already fixed for the operating 220 MWe PHWR, the actual channel power cannot be 

kept more than its reference channel power. Therefore, maximum channel power comes 

as one of the constraints while deciding optimal discharge burnup for the inner and the 

outer zones of the reactor core.  

 The various parameters of the reactor core, required for the optimization 

procedure, are calculated by running the neutronics simulation code. The neutronics 

simulation code is used during the fitness evaluation step of the GA based optimization 

procedure. As has been seen during the discussion about the overall procedure of GA in 

nuclear fuel management (see Section 2.6 of Chapter 2), the neutronics simulation code 

plays a key role in predicting the reactor core behavior during the optimization 

procedure. The understanding about the basic functionalities and the overall working of 
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neutronics simulation code is achieved by conducting several independent trial runs of 

the code. The details about the neutronics simulation code used in the study are 

described in the next section. 

4.3. NEUTRONICS SIMULATION MODULE : TAQUIL 

The reactor physics based simulation code used for this study is called TAQUIL 

which is developed in FORTRAN programming language [137, 138]. The code is 

particularly suitable for the simulation studies of equilibrium core of PHWRs. In 

TAQUIL, the refueling scheme is simulated using time-average model of the selected 

PHWR core. The presence of on-power refueling in PHWR results in the absence of a 

constant core power distribution shape for the equilibrium core. In the time-average 

model, channel wise power distribution is averaged over a period of fuel residence time 

to get approximately constant core power distribution. The time-average model is 

useful in determining three-dimensional power distribution, expected refueling 

frequency and the expected value of discharge burnup which produces maximum 

power without violating a set of safety and operational constraints. The discharge 

burnup values for the inner and outer zones act as input for TAQUIL code. The total 

core power and the refueling frequency are fixed; the code finds out bundle powers, 

channel powers, effective reactivity multiplication factors and average value of 

discharge burnup for the total core. 

4.4. FUEL BUNDLE BURNUP OPTIMIZATION PROBLEM: MODEL 

FORMULATION 

The aim of the optimization carried out in the present study is to find optimum 

values of reference discharge burnup for the inner and outer zones, in order to obtain 

maximum average discharge burnup for the total core. The values of discharge burnups 

arrived at can be utilized in fixing the most suitable reference discharge burnups for the 

two zones. Once the fuel bundle burnup reaches the corresponding zone’s reference 

discharge burnup, then that fuel bundle can be replaced during the online refueling 
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operation. In order to derive the appropriate values of reference discharge burnup 

through the optimization procedure, it is necessary to formulate a model that is suitable 

for applying different methodologies of GA.  

During every iteration of GA (irrespective of the GA methodology considered), 

inner and outer burnup values are assigned to each of the chromosome of the GA 

population. The TAQUIL code is used to calculate corresponding neutronics parameter 

values. These output values from TAQUIL are used for the fitness evaluation stage in 

every iteration of GA. The passing of input burnup values from GA chromosomes to 

TAQUIL and parsing the required output values from the output file generated by 

TAQUIL to the GA are done by the interface module developed in the C programming 

language. The optimization problem of fuel bundle burnup is implemented with GA as 

the optimization tool and the neutronics simulation module (TAQUIL) as the fitness 

evaluation tool. The communication among these modules is smoothly achieved by the 

interface module.  

This modular approach has been employed by following the GA based 

optimization procedure, described in Chapter 2 (Section 2.6). The mathematical model 

of the present optimization problem is incorporated in to the GA module. In the next 

section, the mathematical model formulation of the selected problem is considered. 

4.4.1. The Mathematical Model of the Optimization Problem 

The optimization problem taken for the study comes under the category of 

multi-objective optimization with four objectives and four constraints. The 

objectives/constraints are:  

(i) maximum bundle power (MBP) 

(ii) maximum channel power (MCP) 

(iii) effective reactivity multiplication factor (Keff)  

(iv) average discharge burnup of the total core (BUave)  
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The “maximum bundle power” (MBP) and the “maximum channel power” 

(MCP) define limits to the maximum attainable power (by considering the safety and 

operational constraints) for the fuel bundles and channels respectively. The units of 

MBP, MCP, and BUave are kW, MW and MWd/t respectively. The primary objective for 

the study is the maximization of BUave. The minimization of MBP and MCP and the 

maximization of Keff are the other objectives. This approach is followed to achieve the 

neutron flux-flattening requirement of the reactor core. As higher Keff of the core leads 

to more excess reactivity of the core, which can be utilized for increasing the discharge 

burnup further, during the reactor operation. If the optimization study results in two 

burnup patterns, the one with higher Keff , with all other parameters like BUave , MBP 

and MCP remains the same, then the pattern with higher Keff is the better option. The 

present study considers the discharge burnup of inner zone as in the range between 

8500 and 11000 MWd/t and that of outer zone as in the range between 4000 and 

6500 MWd/t. A solution to the problem can be termed as feasible, only if it satisfies all 

the four constraints given. The optimization problem is defined with following 

objectives and constraints: 

Objectives: 

to maximize,  BUave (of the total core) 

to minimize, MBP 

to minimize, MCP 

to maximize, Keff 

Constraints:  

MBP should be less than 430 kW 

MCP should be less than 3.2 MW 

Keff should be greater than 1.0005 

BUave should be greater than 6700 MWd/t 
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The given objectives are functions of the burnups of inner and outer zones. The 

mathematical formulation of the given problem is given as: 

Max (BUave, Keff) and Min (MBP,MCP) 

     = f (inner zone burnup, outer zone burnup)         (4.1) 

Such that,   

   MBP < 430 KW, MCP < 3.2 MW, 

Keff > 1.0005 and BUave > 6700 MWd/t                     (4.2) 

where, Max represents the maximization, Min represents the minimization and f () 

represents “function of”. The problem has the following boundary conditions for the 

input values: 

        8500 MWd/t ≤ inner zone burnup ≤ 11000 MWd/t       (4.3) 

         4000 MWd/t ≤ outer zone burnup ≤ 6500 MWd/t       (4.4) 

The mathematical model formulated above is a generic optimization model of 

the given problem. In order to apply the specific GA methodologies, the above model 

need to be further refined. The model formulations for the Penalty-function GA and for 

the Multi-objective GA are discussed in the following sections. 

4.4.2. Optimization Model Formulation for the Penalty-function GA 

In the case of Penalty-function GA, the multi-objective problem of fuel 

management optimization is converted in to single objective by adding penalty 

functions and constraints. A detailed description about the Penalty-function GA is 

given in Chapter 2 (Section 2.7.1). The model formulation of the Penalty-function GA 

for the selected optimization problem is considered next. Among the four objectives of 

the problem, the maximization of BUave is taken as the primary objective for 

Penalty-function GA and other three objectives are converted to penalty functions. The 

penalized objective function for the selected problem is formulated as follows: 
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               Fitness = BUave – P1 – P2 – P3                                  (4.5) 

where, 

 P1  = (MBP-MBP0) × Abp 

 P2  = (MCP-MCP0) × Acp 

 P3  = (K0
eff - Keff ) × Akef 

P1  : penalty function related to maximum bundle power constraint  

P2  : penalty function related to maximum channel power constraint 

P3  : penalty function related to effective multiplication factor  constraint 

MBP0  : maximum permitted bundle power (=430) 

MCP0  : maximum permitted channel power (=3.2) 

K0
eff  : minimum required effective multiplication factor (=1.0005) 

Fitness : penalized objective function used for the fitness evaluation of the GA. 

The terms Abp, Acp and Akef are used to denote constant values selected to give proper 

weightage to penalty functions. These constants are estimated such that the penalty 

caused by each factor is numerically in the order as that of BUave (the magnitude of 

BUave is in the order of thousands). For the present work, the values of Abp, Acp and 

Akef are fixed as 10, 1000 and 100000 respectively. The penalty functions (P1, P2 and 

P3) are formulated in a special way for the present problem, as compared with the 

penalty approach commonly available in the literature [113, 118]. In the usual 

approach, penalty function is formulated in such a way that, it should not affect the 

actual objective function if constraints are not violated. On the other hand, in the case 

of constraint violation, the penalty function will put a high value in the opposite 

direction of the objective function. In the present work, the penalty function affects the 

objective function, even in the case of non-violation of the constraints (but in the same 

direction as that of the objective function). Therefore, the penalty functions additionally 

help in reaching the three objectives of the problem, i.e. Max (Keff) and Min (MBP, 
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MCP). In order to achieve this, the penalty functions are formulated such a way that, 

penalty function values (P1, P2 and P3) are becoming negative under the conditions 

when MBP < MBP0 or MCP < MCP0 or Keff  > K0
eff. 

 

4.4.3. Optimization Model Formulation for the Multi-objective GA 

The implementation of Multi-objective GA followed is the Non-Dominated 

Sorting Genetic Algorithm-II (NSGA-II) [116, 123]. A detailed description about the 

procedure of NSGA-II is covered in Chapter 2 (Section 2.7.4). The handling of the 

constraint violations in the NSGA-II is specific to the optimization problem being 

considered. The handling of constraint violations for the selected problem is explained 

next. As mentioned in Section 4.1, the optimization problem of fuel bundle burnup that 

considered is having four objectives and four constraints. The constraint violations are 

handled by an approach which is similar to the penalty handling mechanism of Penalty-

function GA. The constraint functions are first normalized and then the violation for 

each constraint is calculated. For the four constraints of the selected problem, 

corresponding constraint violations are calculated as: 

   C1 = 
𝑀𝐵𝑃−𝑀𝐵𝑃0

𝑀𝐵𝑃𝑚𝑎𝑥−𝑀𝐵𝑃0   ,         if MBP > MBP0
 

    =             0, otherwise       (4.6) 

 

 C2 = 
𝑀𝐶𝑃 − 𝑀𝐶𝑃0

𝑀𝐶𝑃𝑚𝑎𝑥 − 𝑀𝐶𝑃0  ,  if MCP > MCP0 

    =             0, otherwise       (4.7) 

 

   C3 = 
𝐾0

𝑒𝑓𝑓  −  𝐾𝑒𝑓𝑓

𝐾𝑒𝑓𝑓
0  − 𝐾𝑒𝑓𝑓𝑚𝑖𝑛

 ,  if Keff  < K0
eff 

    =              0, otherwise       (4.8) 

 

   C4 =   
𝐵𝑈𝑎𝑣𝑒

0  − 𝐵𝑈𝑎𝑣𝑒

𝐵𝑈𝑎𝑣𝑒
0  − 𝐵𝑈𝑎𝑣𝑒𝑚𝑖𝑛

  ,  if BUave  < BU0
ave 

    =         0,  otherwise       (4.9) 
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where, 

C1 : constraint violation value related to maximum bundle power 

 C2 : constraint violation value related to maximum channel power 

 C3 : constraint violation value related to effective multiplication factor 

 C4 : constraint violation value related to average discharge burnup 

MBP0 : maximum permitted bundle power (=430) 

MBPmax: maximum possible value of bundle power 

 MCP0 : maximum permitted channel power (=3.2) 

 MCPmax: maximum possible value of channel power 

 K0
eff  : minimum required effective multiplication factor (=1.0005) 

Keffmin  : minimum possible value of effective multiplication factor 

BU0
ave : minimum limit for average discharge burnup (=6700)  

 BUavemin : minimum possible value of average discharge burnup 

The individual constraint violations corresponding to the four constraints of the 

problem are calculated (see Eqns. 4.6 to 4.9). Then the overall constraint violation (Ctot) 

is calculated as:  

Ctot = C1+C2+C3+C4                               (4.10) 

The next step is to modify each objective function value, according to the overall 

constraint violation. The overall constraint violation is multiplied with suitable constant 

values and the product is added to each of the objective function values to get the 

modified objective function values as: 

           MBPmod=MBP + Bbp × Ctot                  (4.11) 

             MCPmod=MCP + Bcp × Ctot            (4.12) 

                 Keffmod=Keff – Bkef × Ctot                     (4.13) 

                  BUavemod=BUave – Bbu × Ctot             (4.14) 



Chapter 4 

 102 

 

 

 

 

where, 

MBPmod  : modified value for the maximum bundle power 

Ctot   : overall constraint violation  

MCPmod  : modified value for maximum channel power 

Keffmod   : modified value for effective multiplication factor 

BUavemod  : modified value for average discharge burnup   

The terms Bbp, Bcp, Bkef and Bbu are used to denote constant values selected to make 

both terms on the right side of the above equations to have the same order of 

magnitude. For a feasible solution, Ctot is calculated as 0 and the modified values of the 

objective functions are same as that of actual objective function values. For an 

infeasible solution, a penalty is added to each of the objective function corresponding to 

overall constraint violation. Once the modified objective functions are calculated, those 

values are used by the algorithm for Pareto-optimal fronts sorting. The Pareto-optimal 

front sorting is followed based on non-domination ranks and crowded comparison 

operation in the NSGA-II implementation, as described in Chapter 2 (Section 2.7.4).  

4.5. DETAILS OF IMPLEMENTATION  

The real-number representation (see Chapter 2, Section 2.3.2) is selected for the 

implementations of both Penalty-function GA and Multi-objective GA. The 

real-number representation offers a natural way of chromosome representation without 

explicit encoding mechanism, when the decision variables are real numbers [36, 113]. 

In the present study, the decision variables i.e. inner and outer zone burnup values, are 

real numbers and can be directly encoded as chromosome. Therefore, the real-number 

representation has been selected. The ‘C’ programming language is used for 

implementation of the Penalty-function GA and the Multi-objective GA. The interface 

module for the communication between the GA modules and the neutronics simulation 
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module (i.e. TAQUIL) is also developed in the ‘C’ programming language. While 

comparing the performance of the two algorithms, it is important to keep the GA 

related parameters, corresponding values and methods as the same. The information 

relating to the GA parameters, employed in the optimization procedure, is given in the 

Table 4.1. The methods and values given in the Table 4.1 are common for the 

Penalty-function GA and the Multi-objective GA.  

The first step of the algorithm procedure is to generate the initial parent 

population. Each element in the chromosome vector is assigned to be within the desired 

range at the time of generation of the initial population. The crossover and mutation 

operators selected for the GA implementations are also designed to meet this 

requirement. 

 

Table 4.1: Genetic Parameters and methods or values used in the GA based 

optimization procedure. The values given in the table are the common 

parameters for the Penalty-function GA and the Multi-objective GA. 

 

 

Parameter Methods/Values 

Encoding Floating point 

Population size 50 

Crossover Method Arithmetical 

Crossover Probability (CR) 0.6 

Mutation Method Non-uniform 

Mutation Probability (MR) 0.05 

Maximum no. of Generations 100 



Chapter 4 

 104 

 

 

 

 

As an example, two typical chromosomes vectors, 𝑥1 and 𝑥2 generated by the 

algorithm can be represented as: 

𝑥1 = (10281.35 , 6034.42)           (4.15) 

 𝑥2 = (8941.24 , 5281.71)          (4.16) 

The first elements in 𝑥1 and  𝑥2 denote the inner zone burnup values and the second 

elements denote the outer zone burnup values. As has been seen in Chapter 2, the 

Arithmetical crossover is a method suitable for real-number representation and it is 

followed in the study. For the chromosomes vectors considered in the above example, 

i.e. x1 = (10281.35, 6034.42) and x2 = (8941.24, 5281.71), the resulting offspring, 𝑜1 

and 𝑜2, after arithmetical crossover operation is represented as: 

𝑜1 =    ( a × 10281.35 + (1 − a) × 8941.24 ,  

                  a × 6034.42 + (1 − a) × 5281.71 )                 (4.17) 

      𝑜2 =    ( a × 8941.24 + (1 − a) × 10281.35 ,  

    a × 5281.71 + (1 − a) × 6034.42 )               (4.18) 

(by following the equations which define the arithmetical crossover, given in 

Chapter 2, i.e. Eqns. 2.2 and 2.3) 

At a particular instance, when a = 0.3351 (the random number generated between 0 

and 1), the resultant offspring chromosomes are: 

𝑜1 =  (9390.31, 5533.94)                               (4.19) 

𝑜2 = (9832.28, 5782.19)             (4.20) 

The mutation method followed is the non-uniform mutation for both 

Penalty-function GA and Multi-objective GA. The details about the non-uniform 

mutation are given in Chapter 2 (Section 2.4.8.). In continuation of the example 

considered above, assuming that one of the offspring (𝑜1) derived from crossover 
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operation is undergoing the non-uniform mutation at 40th generation ( 𝑡=40). If the 

second element of 𝑜1 (that represents the outer zone burnup) is chosen for the mutation 

operation (i.e. 𝑣𝑘 = 5782.19). The UB and LB values, representing the upper and 

lower bounds for the outer zone burnup, are 6500.00 and 4000.00 respectively. If the 

random digit generated as part of non-uniform mutation operator is 0 (by selecting 

either 0 or 1 with equal probability), then the mutated element  𝑣𝑘
𝑙  can be calculated as: 

  𝑣𝑘
𝑙 = 5782.19 +  ∆ [40, (6500.00 − 5782.19)]               (4.21) 

(by following the equations which define the non-uniform mutation, given in 

Chapter 2, i.e. Eqn. 2.4 and 2.5) 

Now, if 𝑟 = 0.70, then ∆ (𝑡, 𝑦)  function in the above step will return 19.63 and  𝑣𝑘
𝑙  

will get 5801.82. In essence, for the considered example, the non-uniform mutation 

operation changes the outer burnup value from 5782.19 to 5801.82.   

The methods followed in the study for producing the new population are 

considered next. The initial population is generated by calling the random number 

generation function of the C programming language. Using the function, random 

numbers are generated within the range of input boundary conditions. The selection 

used in Penalty-function GA is Roulette-Wheel method, which is discussed in 

Chapter 2 (Section 2.4.2.). The selection in Multi-objective GA is based on the ranks 

assigned to individual chromosomes by non-dominated sorting of Pareto-optimal 

fronts, as discussed in Chapter 2 (Section 2.7.4.). The concept of Elitism is also 

incorporated in the selection method of Penalty-function GA, where a fixed number the 

chromosomes having  higher fitness values are considered as elite chromosomes and 

are retained in the new generation. The number of elite chromosomes in each 

generation is assigned as five for the implementation of Penalty-function GA. 
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4.6. RESULTS 

Several trial runs were conducted with randomly generated initial GA 

population (both for the Penalty Function-GA and for the Multi-objective GA). Each 

trial run was started with entirely different initial populations, ensuring different initial 

search space for different trial runs. Based on the results generated initially, GA 

parameters and penalty coefficients were fine-tuned. Both GA methodologies were 

studied in detail to ascertain the suitability for the selected problem. During the 

comparison process: population size, maximum number of generations, encoding 

scheme of GA, crossover mutation methods and their probability values, are kept same 

for both the algorithms and are given in Table 4.1. The fine-tuned versions of the 

algorithms are used to generate final results by conducting twenty trial runs for each of 

the algorithms.  

4.6.1. Comparison of Maximum and Minimum Values of Objective Functions 

The maximum and minimum values of the four objective functions, obtained in 

the final generation (i.e., 100th generation in the present study) of the Penalty 

Function-GA and the Multi-objective GA, are given in Tables 4.2 and 4.3., 

respectively. The maximum and minimum values of the solutions arrived at (i.e. burnup 

values of inner and outer zones) are also presented. The feasible solutions generated by 

both the algorithms are considered. The TAQUIL code can accept inputs and generate 

outputs with accuracy up to six decimal places. The results presented for burnups and 

MBP are rounded to two decimal places. In the case of MCP, the selected values were 

rounded off to five decimal places and that of Keff to six decimal places, to reflect the 

variation in the expected range. It can be seen from the results that the maximum and 

the minimum values obtained for all the objective functions by the Penalty 

Function-GA lies in narrower range as compared to Multi-objective GA.  
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Table 4.2: Maximum and minimum values of the four objective functions and the 

solutions arrived in the final generation of the Penalty Function-GA (results of twenty 

independent trial runs are presented) 

  

Trial 

No. 

Max 

Min 

Values  obtained for objective function Solution arrived 

MBP MCP Keff BUave 
Inner zone 

burn up 

Outer zone 

burn up 

1 
Max 423.27     3.09439     1.000503     6835.85 10416.73     5954.35     

Min 423.23 3.09416 1.000502 6835.81 10416.46 5954.32 

2 
Max 423.25     3.09429     1.000506     6835.53 10416.49     5953.95     

Min 423.23 3.09418 1.000504 6835.2 10416.19 5953.66 

3 
Max 423.99     3.09955     1.000563     6834.57 10393.71     5954.95     

Min 423.94 3.09916 1.000558 6834.02 10392.57 5954.50 

4 
Max 423.42     3.09549     1.000521     6834.76 10412.51     5953.69     

Min 423.33 3.09487 1.000516 6834.6 10410.43 5953.45 

5 
Max 423.27     3.09436     1.000522     6833.19 10413.98     5951.82     

Min 423.25 3.09425 1.000519 6832.82 10413.84 5951.44 

6 
Max 423.27     3.09447     1.000507     6835.75 10415.87     5954.29     

Min 423.25 3.09434 1.000504 6835.26 10415.36 5953.85 

7 
Max 423.28     3.09399     1.000506     6835.24 10417.66     5953.59     

Min 423.23 3.09367 1.000503 6834.54 10417.43 5952.89 

8 
Max 423.28     3.09451     1.000527     6834.10 10416.49     5952.49     

Min 423.22 3.09390 1.000510 6832.13 10412.51 5950.85 

9 
Max 423.30     3.09472     1.000510     6836.52 10415.96     5955.06     

Min 423.27 3.09443 1.000501 6835.25 10414.48 5953.87 

10 
Max 423.26     3.09434     1.000505     6835.96 10416.82     5954.42     

Min 423.23 3.09410 1.000501 6835.25 10416.65 5953.74 

11 
Max 423.27     3.09415     1.000502     6835.84 10417.62     5954.17     

Min 423.22 3.09394 1.000500 6835.65 10417.09 5954.13 

12 
Max 423.27     3.09408     1.000515     6833.99 10416.14     5952.42     

Min 423.22 3.09390 1.000511 6833.32 10415.52 5951.85 

13 
Max 423.30     3.09470     1.000506     6836.30 10415.67     5954.85     

Min 423.27 3.09448 1.000502 6835.95 10414.68 5954.59 

14 
Max 423.27     3.09438     1.000504     6836.15 10416.84     5954.58     

Min 423.24 3.09420 1.000501 6835.57 10416.06 5954.09 

15 
Max 423.42     3.09549     1.000524     6834.19 10410.48     5953.12     

Min 423.38 3.09525 1.000522 6834.13 10410.19 5953.1 

16 
Max 423.27     3.09417     1.000507     6835.15 10417.24     5953.5     

Min 423.21 3.09388 1.000504 6834.69 10416.87 5953.12 

17 
Max 423.27     3.09428     1.000520     6834.46 10415.97     5952.9     

Min 423.23 3.09403 1.000510 6832.94 10414.36 5951.49 

18 
Max 423.36     3.09513     1.000503     6837.21 10414.75     5955.89     

Min 423.33 3.09487 1.000501 6836.8 10414.34 5955.53 

19 
Max 423.29     3.09443     1.000545     6829.72 10411.11     5948.43     

Min 423.25 3.09424 1.000540 6829.01 10410.29 5947.83 

20 
Max 423.27     3.09416     1.000503     6835.9 10417.43     5954.28     

Min 423.23 3.09398 1.000501 6835.56 10416.9 5953.99 
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Table 4.3: Maximum and minimum values of the four objective functions and the 

solutions arrived in the final generation of the Multi-objective GA (results of twenty 

independent trial runs are presented) 

  

  

Trial 

No. 

Max 

Min 

Values  obtained for objective functions Solutions arrived 

MBP MCP Keff BUave 
Inner zone 

burn up 

Outer zone 

burn up 

1 
Max 429.44     3.13845     1.001593     6900.34 10440.74     6033.63     

Min 423.23 3.07084 1.000504 6706.74 10170.42 5841.56 

2 
Max 430.00 3.14217     1.001548     6905.55 10426.05 6039.38     

Min 423.31 3.07111 1.000501 6700.83 10193.47 5831.75 

3 
Max 429.99     3.14166     1.001723     6904.63 10467.83     6038.51     

Min 423.25 3.07096 1.000501 6702.62 10108.28 5831.70 

4 
Max 429.84     3.13966     1.001698     6886.37 10445.63     6018.79     

Min 423.28 3.07105 1.000512 6705.40 10114.87 5833.03 

5 
Max 429.72     3.13972     1.001568     6896.90 10416.81     6028.71     

Min 423.21 3.07113 1.000500 6703.16 10165.89 5818.01 

6 
Max 430.00 3.14193     1.001498     6885.35 10437.8     6017.18     

Min 423.25 3.07077 1.000545 6700.10 10216.98 5818.17 

7 
Max 429.68     3.14015     1.001411     6900.35 10488.18     6034.25     

Min 423.23 3.07092 1.000500 6705.43 10220.24 5829.27 

8 
Max 429.93     3.14164     1.001595     6903.31 10462.43     6037.57     

Min 423.29 3.07095 1.000503 6712.12 10135.4 5841.25 

9 
Max 429.88     3.14152     1.001707     6897.55 10466.59     6032.05     

Min 423.26 3.07115 1.000509 6705.36 10121.83 5844.49 

10 
Max 429.98     3.14210     1.001509     6902.74 10423.73     6036.68     

Min 423.23 3.07104 1.000511 6700.27 10153.91 5821.33 

11 
Max 429.96     3.14172     1.001557     6886.05 10198.87 6016.54     

Min 423.27 3.07096 1.000504 6700.21 10455.82     5819.02 

12 
Max 429.97     3.14222     1.001580     6899.81 10468.28     6034.63     

Min 423.25 3.07110 1.000519 6700.28 10184.99 5825.25 

13 
Max 430.00 3.14181 1.001598     6905.85 10460.55     6040.07     

Min 423.25 3.07096 1.000509 6703.83 10129.58 5830.82 

14 
Max 429.79     3.14094     1.001546     6906.33 10453.21     6040.38     

Min 423.23 3.07096 1.000502 6702.29 10151.93 5820.18 

15 
Max 430.00 3.14192     1.001602     6898.35 10447.46     6030.53     

Min 423.21 3.07105 1.000501 6702.68 10155.7 5823.34 

16 
Max 429.97     3.14117     1.001497     6878.56 10446.75     6006.08     

Min 423.24 3.07115 1.000500 6700.01 10163.55 5829.69 

17 
Max 429.96     3.14194     1.001318     6894.81 10455.6     6026.16     

Min 423.24 3.07085 1.000502 6702.76 10248.57 5826.06 

18 
Max 429.99     3.14184     1.001587     6906.15 10448.45     6040.09     

Min 423.27 3.07098 1.000501 6700.59 10160.15 5823.10 

19 
Max 429.89     3.14163     1.001655     6905.12 10426.97     6039.46     

Min 423.28 3.07101 1.000515 6700.24 10154.8 5836.22 

20 
Max 430.00 3.14244     1.001594     6907.53 10462.62     6041.93     

Min 423.23 3.07102 1.000502 6700.83 10151.43 5818.21 
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The maximum and minimum values of the feasible solutions arrived at, also show the 

same behavior. This behavior is consistent with the results of twenty trial runs of the 

algorithms. The major observations from the results are: 

 Both, Penalty Function-GA and Multi-objective GA, are able to produce 

feasible solutions at the final generation. 

 Always, the Multi-objective GA is capable of generating wide range of feasible 

values for the objective functions and for the solutions. 

The ability of Multi-objective GA to generate wide range of different feasible solutions 

is an important feature for the selected nuclear fuel management problem. That helps 

the reactor operator in getting more choices when deciding the appropriate discharge 

burnup of the core zones. 

4.6.2. Comparison of GA Performance: Generation wise Production of Feasible 

Solutions  

 The number of feasible or good solutions produced in successive generations 

can be treated as a measure of effectiveness of GA implementation [36, 113]. This 

indicates a measure of “speed of convergence” of the algorithm. For the selected 

problem of fuel bundle optimization, one generated solution is termed as feasible, if it 

satisfies all the four constraints. That is, a feasible solution satisfies the conditions such 

as, MBP should be less than 430 KW, MCP should be less than 3.2 MW, Keff should be 

greater than 1.0005 and BUave should be greater than 6700 MWd/t.  

The average numbers of feasible solutions produced in successive generations 

by the two algorithms are compared in Figure 4.2. The average number of feasible 

solutions produced by considering the twenty trial runs of the Penalty-function GA is 

given in Figure 4.2(a) and that of the Multi-objective GA is given in Figure 4.2(b). 
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Figure 4.2: Average number of feasible solutions (generation wise) for twenty 

trial runs: (a) for Penalty-function GA. (b) for Multi-objective GA. 
 

The conditions of feasibility are kept the same for both the algorithms. The 

Multi-objective GA produces feasible solutions in a faster rate at earlier generations 

and has a better convergence speed. A comparison is made on GA performance based 

on the average CPU time taken to produce equal number of number of feasible 

solutions. The comparison is done on a computer system with Dual Six Core 64 bit 

Intel Xeon @ 3.06 GHz processor and 48 GB RAM. The average CPU times and 

generations taken for producing 80% of population with feasible solutions, (i.e. 40 

feasible solutions out of the 50 members of the population) are taken in the comparison. 

The Penalty-function GA took 32 generations and 174.82 seconds to produce 40 

feasible solutions. The Multi-objective GA took 12 generations and 60.04 seconds to 

produce the same number of 40 feasible solutions; implying that the Multi-objective 

GA is 66% faster than Penalty-function GA, with respect to CPU time for generating 

80% of the population with feasible solutions. At the same time, the number of 

generations taken (for generating 40 feasible solutions) by Multi-objective GA is 63% 

(a) (b) 



Chapter 4 

 111 

 

 

 

 

less than the number needed for the Penalty-function GA. The behavior observed can 

be utilized in reducing the computational time by lowering the number of required 

generations of the algorithm. Another observation is that the when the computational 

time requirement for a fixed number of generations are considered, there is no 

significant difference between Penalty-function and Multi-objective GA. The average 

CPU time requirement (for twenty trial runs, each with 100 generations) for 

Penalty-function GA is 546.31 seconds whereas for Multi-objective GA it is 500.36 

seconds. It is seen that, when average computational time of fixed generations are 

considered, Multi-objective GA has a marginal advantage of 8% faster than 

Penalty-function GA. The overall observation from the comparison is that the 

Multi-objective GA has a significant advantage in convergence speed and has a 

marginal advantage in computational time, when compared with the Penalty-function 

GA. 

4.6.3. Convergence of Objective functions: Final Generation 

The feasible solutions generated at the final generations of Penalty-function GA 

and Multi-objective GA are considered in the comparison. The results generated by 

four trial runs are presented in Figure 4.3. The distributions of generated objective 

function values in feasible solutions, at the final generation (i.e. 100th generation) are 

effectively represented by box plots (also known as box and whisker plots) [139]. The 

bottom and top of the box represent the first and third quartiles (Q1 and Q3) and the 

band inside the box represents the second quartile or the median (Q2). The vertical 

dotted lines at each end of the box are called whiskers. The bottom whisker goes from 

first quartile to the smallest non-outlier (outlier represents data point that diverges 

greatly from the overall pattern of data) in the data set; the top whisker goes from third 

quartile to the largest non-outlier. The outliers are represented by small circles (for our 

http://en.wikipedia.org/wiki/Quartile
http://en.wikipedia.org/wiki/Quartile
http://en.wikipedia.org/wiki/Median
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results, there is no outliers and hence no circles shown in Figure 4.3). The inter-quartile 

range, which is a measure of variability, is represented by the vertical height of the box 

(i.e. Q3 minus Q1). The distributions of objective functions for four trial runs of 

Penalty-function GA are plotted in left hand side and those for Multi-objective GA are 

plotted in the right hand side in the figure (Figure 4.3). The results for the two 

algorithms are plotted under the same scale, which enables a good comparison. The 

vertical heights of the boxes represent the spread of feasible solutions for 50% of the 

data samples. The boxes generated for the Penalty-function GA are so narrow that they 

are represented as simple thick lines.  

The feasible solutions generated at the final generations of all the twenty trial 

runs for each of the algorithms are considered next. The maximum (Max), 

minimum (Min), average (Ave) and standard deviation (SD) values for the four 

objective functions are given in Table 4.4. The maximum values are calculated by 

taking the average of maximum values produced (separately for each of the four 

objective functions) at the final generation in twenty trial runs. Similarly, the minimum 

values are calculated by taking the average of minimum values generated. The average 

values shown in the table are calculated by finding the average of respective objective 

function values (by considering the 50 members of the final population) for twenty trial 

runs and corresponding standard deviations are also calculated. 

Following observations can be made from the comparison of the distribution of 

feasible solutions in final generation given in Figure 4.3 and Table 4.4: 

 Multi-objective GA produces wide range of feasible solutions in the final 

generation with respect to the four objectives of the selected problem.  

 Penalty-function GA produces feasible solutions in much narrow range in the 

final generation.  
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Figure 4.3: Box plots to represent the four objective functions distribution 

among the generated feasible solutions at the final generation (for four trial 

runs). A comparison between Penalty-function GA and Multi-objective GA is 

given in every plot.  

 

 

Table 4.4: Feasible Solution values obtained in final generation considering the 

twenty trial runs. 

Penalty Function GA Multi-objective GA 

 MBP MCP Keff BUave MBP MCP Keff BUave 

Max 423.33 3.0948 1.000515 6835.02 429.90 3.1413 1.001569 6898.58 

Min 423.29 3.0945 1.000511 6834.43 423.25 3.0710 1.000507 6702.79 

Ave 423.30 3.0946 1.000512 6834.83 426.12 3.1112 1.000897 6797.50 

SD 0.1600 0.0012 1.5x10-05 1.6100 0.2900 0.0024 5.1x10-05 8.5200 
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4.6.4. Generation wise evolution of Objective functions 

The convergence of the algorithms at the end of generation has been discussed 

above. Now, the convergence of the given objectives during the whole evolution of the 

Penalty-function GA and Multi-objective GA is considered. The results are plotted in 

Figure 4.4. The solid black points denote the average value of the objective for the 

whole population of that particular generation. The dotted lines above and below 

denote the standard deviation.  

The convergences of the four objectives for Penalty-function GA are shown in 

Figure 4.4(a) to 4.4(d). Similarly, the convergences of the four objectives of 

Multi-objective GA are shown Figure 4.4(e) to 4.4(h). Following are the observations 

from the comparison of the convergences of the objectives: 

 Both Penalty-function GA and Multi-objective GA are capable of 

arriving at around the same converged area with respect to the given 

objectives. 

 The objective functions have converged to a narrower region for 

Penalty-function GA as compared to Multi-objective GA. 

 The speed of convergence is faster for Multi-objective GA as compared 

to Penalty-function GA. 

4.6.5. Aggregate Diversity of Objective Functions: Generation wise  

The term ‘diversity’ represents the distribution of the selected parameter within 

the allowable range. The aim is to consider the generation wise evolution of 

Penalty-function GA and Multi-objective GA; by comparing the aggregate diversity of 

all the four objective functions. The diversity in the values of these objective functions, 

gives further insight about the range of generated final objective values. 
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Figure 4.4: Convergences of the objectives during the generation wise evolution of the 

algorithms: (a) to (d) for Penalty-function GA. (e) to (h) for Multi-objective GA. 
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  A common procedure is followed to find the aggregate diversity of four 

objective functions. The aggregate diversity of generated solutions, at successive stages 

of generations is calculated using the following procedure: 

 The arithmetic mean is calculated for each objective function in the population 

(The population size is 50 and each individual of the population represents a 

solution set with four objective function values). 

 The distance from the arithmetic mean is calculated for each individual’s 

objective functions and square the distances. 

 Summation of the distances (for every objective function separately) for all the 

individuals of the population. 

 Dividing the total distance found for every objective function by the population 

size. (Corresponding to the four objective functions, four values are thus 

obtained).  

 Normalize the four values obtained in the previous step, on a 0 to 10 scale.  

 Calculate the average of the normalized values which represents the aggregate 

diversity of the four objective functions for that generation. 

Using the above procedure, the normalized aggregate diversity is calculated for all 

successive generations for both of the algorithms, i.e. Penalty-function GA and 

Multi-objective GA. The complete diversity plots (i.e. for all generations from first 

generation to hundredth generation) for a trial run of Penalty-function GA and 

Multi-objective GA are shown in Figure 4.5.  
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Figure 4.5: Generation wise evolution of normalized aggregate diversity of four 

objective functions (a) for Penalty-function GA. (b) for Multi-objective GA. 

(from first generation to hundredth generation) 

 

Wide ranges of values of objective functions are produced in both of the 

algorithms’ initial generations. The reason for this is that both algorithms are started 

from the randomly generated initial solution space which has the maximum diversity. 

The range of diversity narrows down towards the end generations. The variation in 

diversity is approaching a very small value (near zero in a normalized scale between 0 

and 10) for Penalty-function GA but it is still better for Multi-objective GA (see 

Figure 4.5).  

The diversity towards end generations can be represented in a wider scale, if a 

few initial generations are removed from the plots. The first nine generations are 

omitted (to represent the diversity at the end generations in a wider scale) and the result 

plots are given in Figures 4.6 and 4.7. The results generated by four trial runs 

(randomly selected from the twenty trial runs) are presented here. The normalized 

aggregate diversity over the evolution from tenth generation up to hundredth 

generation, for the Penalty-function GA is shown in Figure 4.6. It can be seen that for 

the Penalty-function GA, diversity among the objective functions is drastically 

(a) (b) 
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reducing and approaching a very small value (near zero) towards the end generations. 

This clearly indicates that a high number of solutions are generated within a very small 

segment of the entire solution range by the Penalty-function GA. Similarly, Figure 4.7 

shows the normalized aggregate diversity over the evolution from tenth generation up 

to hundredth generation for the Multi-objective GA. The results show the ability of 

Multi-objective GA to retain the diversity among the objective functions, in a much 

better way as compared to Penalty-function GA. Thus, Multi-objective GA produces 

wide range feasible solutions as final results.  

 

 

Figure 4.6: Generation wise evolution of normalized aggregate diversity of four 

objective functions for Penalty-function GA (from tenth generation to hundredth 

generation) 
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Figure 4.7: Generation wise evolution of normalized aggregate diversity of four 

objective functions for Multi-objective GA (from tenth generation to hundredth 

generation) 

 

Following observations can be made from the comparison of the normalized 

aggregate diversity plots given in Figures 4.6 and 4.7: 

 Aggregate diversity among the four objective function values are shrinking to a 

narrow range (near zero) towards the end of generations for the Penalty based 

GA.  

 On the other hand, Multi-objective GA is capable of retaining the wider range 

of solutions with respect to all the four objectives of the selected problem. 
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4.6.6. Solution Diversity: Initial Population Vs. Final Population 

The inner and outer zone burnup values forms the solution candidates for the 

selected problem. The distribution of solution candidates in the initial generation 

population and final generation population (in the overall search space) are compared in 

Figure 4.8. The Figure 4.8(a) shows solution diversity of the initial and the final 

populations for Penalty-function GA and Figure 4.8(b) show that of Multi-objective 

GA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Solution diversity comparison of the algorithms: (a) Penalty-function 

GA: initial population vs. final population (b) Multi-objective GA: initial 

population vs. final population 

(a)

(b) 
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The total population and corresponding solution candidates of a single trial run are 

being considered here. The solution values converge to a very narrow area (represented 

as single point in the diagram) in the case of Penalty-function GA, but to a wider area 

for Multi-objective GA. This shows that, as in the case of diversity of objective 

functions, the solution diversity also is better for Multi-objective GA. 

4.7. SUMMARY 

In this study, two different GA methodologies namely Penalty-function GA and 

Multi-objective GA are applied in the fuel bundle burnup optimization of PHWR. The 

result obtained from the study shows the suitability of Multi-objective GA over 

Penalty-function GA, in solving problems like the one selected for this study. The 

Multi-objective GA is able to generate diverse optimal solutions with respect to all the 

five objectives considered in this study. The ability to find much better spread of 

solutions by the Multi-objective GA is a key point with respect to the present study. It 

is resulting in getting more choices for the reactor operator while deciding the fuel 

bundle discharge burnups of inner and outer zones of the reactor core. Another 

behavior shown by the Multi-objective GA for the selected problem is the better speed 

of convergence compared with the Penalty-function GA. This implies that the total 

number of generations required for convergence of the optimization problem is less in 

the case of Multi-objective GA. The behavior observed can be utilized in reducing the 

computational time by lowering the number of required generations of the algorithm. 

When average computational times of fixed generations are considered, it is observed 

that both the Penalty-function GA and the Multi-objective GA perform almost equally 

well.  

A modular approach has been followed in the implementation. The 

communication between the GA module and the neutronics simulation codes is 
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achieved by the interface module in the middle. The GA module and the interface 

modules are developed in ‘C’ programming language. The interface module facilitates 

a smooth communication between the GA module and the neutronics simulation codes 

which are developed in FORTRAN programming language. The changes in the GA 

modules can easily be done without affecting the interface module. The modular 

approach has given the advantage of extending the implementation easily to the other 

similar burnup optimization studies.  
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CHAPTER 5 

 

APPLICATION OF GENETIC ALGORITHM METHODOLOGIES 

IN CORE CONFIGURATION OPTIMIZATION STUDIES  

OF FAST BREEDER REACTORS 

 

The multi objective, nuclear fuel management problems considered in this 

chapter aim to find out the optimal number of subassemblies in the reactor core, in 

order to achieve the best performance of the reactor. Two separate studies are 

conducted based on the cores of two different fast breeder reactors. Commensurate 

with the methodologies of Chapter 4, the Penalty-function GA and the Multi-objective 

GA are applied and compared. 

 

5.1. INTRODUCTION 

Fast breeder reactors play an important role in the three-stage nuclear power 

programme of India. Fast breeder reactors along with associated fuel reprocessing 

technologies, can help to ensure energy security in India. The milestone in the second 

stage is the 500 MWe Prototype Fast Breeder Reactor (PFBR), designed by Indira 

Gandhi Centre for Atomic Research (IGCAR) and is being commissioned at 

Kalpakkam, India [140, 141]. India is planning to construct more number of fast 

breeder reactors with improved economy and enhanced safety. In this direction, studies 

are being conducted at IGCAR towards the design of 500/600 MWe and 1000 MWe 
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fast breeder reactors [142]. The configuration of the reactor core is an important aspect 

which has to be optimized for efficient, economic and safe production of power.   

Finding out optimal core configuration of Fast Breeder Reactor (FBR), is the 

result of detailed neutronics scoping studies, taking into consideration of several factors 

like, size of the core, enrichment of the fuel, linear heat rating of the fuel pins, excess 

reactivity of the core, control rod design, and the inventory of the fuel. The 

optimization problem has multiple objectives and constraints, some of which are in 

conflict with each other. Any final solution inevitably requires some sort of 

compromise, in meeting the given objectives. Therefore, optimization of the core 

configuration design is a complex task in terms of computational effort and time.  

The studies presented in this chapter are based on the cores of two different fast 

breeder reactors. The optimization studies are for the core configuration of:  

(i) 500 MWe mixed-oxide fuelled reactor with two fuel enrichment zones  

(ii) 1000 MWe metal-fuelled reactor with three fuel enrichment zones  

Division of the core into different fuel enrichment zones is usually carried out during 

the design stage of the reactor, in order to achieve better power output [15]. The power 

output of the reactor can be increased by a more uniform distribution of the power 

density across the core. This is referred to as “flux flattening” which improves the 

average power and burnup of the peripheral subassemblies. Generally, the central zone 

of the core - where the neutron flux is highest - is loaded with fuel subassemblies of 

lower enrichment than that utilized in the outer zones. This may also provide improved 

utilization of the fuel and leading to decrease the cost of the power produced by the 

reactor.  

The aim of the optimization problems of the 500 MWe and the 1000 MWe 

cores, considered in the present study, is to arrive at the optimal number of fuel 

subassemblies in different fuel enrichment zones of the reactor core, which gives the 
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maximum fuel economy, while satisfying the operational and safety related constraints. 

The parameters which have significant influence in determining the optimal number of 

subassemblies of the core are selected as the objectives. These parameters are: 

(i) excess reactivity of the core 

(ii) linear heat rating of different fuel enrichment zones of the core 

(iii)  mass of the fuel required by considering the fuel enrichment of different 

zones 

(iv)  breeding ratio of the core  

The excess reactivity of the core indicates the effective neutron multiplication factor to 

be provided in the core in order to override all the reactivity losses during 

an operational cycle. In the case of fast breeder reactor core, it includes the losses of 

reactivity due to temperature and power rise, core burnup and operating margin 

provided due to restrictions in the control rod movement [143]. The linear heat rating 

is the power generated per unit length of the fuel pin. The objective is to limit its value 

such that the temperature in the fuel pin does not exceed the melting point of the fuel. 

The fuel inventory represents the amount of fissile material used in the core and the 

objective is to get a core configuration with minimum fuel inventory, which has an 

impact on the fuel economy. The breeding ratio indicates the ratio of fissile 

material obtained to the fissile material spent. Higher breeding ratio is desirable to 

generate enough fissile material for self-sufficient closed fuel cycle of Fast Breeder 

Reactor programme.  

 The GA methodologies introduced in Chapter 2, i.e. Penalty-function GA and 

Multi-objective GA, are applied and studied in solve the optimization problems of the 

500 MWe and the 1000 MWe cores. The optimization procedure followed in the two 

studies share several common features. For example, overall schemes of calculation as 

well as the neutronics simulation codes employed are the same for the two studies. 
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Therefore, the overall schemes of calculation of both the optimization problems can be 

considered together and are described in the following section.  

5.2. OVERALL SCHEME OF CALCULATION FOLLOWED IN THE 

OPTIMIZATION PROCEDURE 

The first step in applying GA to nuclear fuel optimization is to determine the 

representation method which is suitable for the problem. As part of GA representation, 

a candidate solution (in the present studies, the number of fuel subassemblies in 

different enrichment zones) is encoded as a digital chromosome which has enough 

information to reproduce the original solution. While being executed, GA generates 

a collection of trial solutions i.e. a population of chromosomes, and the fitness values of 

each chromosome is evaluated. For example, in the study of 500 MWe core, two 

integer numbers that represent number of subassemblies in the corresponding fuel 

enrichment zones of the core form one chromosome. Similarly, in the case of 

1000 MWe core, three integer numbers that represent number of subassemblies in the 

three fuel enrichment zones of the core form one chromosome. The fitness value 

corresponding to each such chromosome is calculated by running the neutronics 

simulation codes. Subsequently, the fitness values calculated are used by the selection 

procedure of the GA. 

The flowchart illustrating the overall scheme of calculation followed in the 

optimization procedure is given in Figure 5.1. The scheme of calculation includes GA 

module, interface module, and neutronics simulation codes. The optimization procedure 

is implemented with GA as the optimization module and the neutronics simulation 

codes, as the fitness evaluation module. The communication among these modules is 

smoothly achieved by the interface module. As shown in the flowchart, the interface 

module provides two-way communication between the GA module and the neutronics 

simulation codes.  
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Figure 5.1: Flowchart of the overall scheme of calculation followed in the 

optimization procedure. ATOMIX, CONSYST, EFCONSY, ALCIALMI, and 

ALEX are the neutronics simulation codes. ABBN-93 is the multi group 

cross-section library. 
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The GA module is developed in ‘C’ programming language. Most of the 

neutronics codes used in the nuclear fuel management are in FORTRAN programming 

language and are specific to the type of reactor [51, 81]. The neutronics codes used in 

the present studies were also written in the FORTRAN programming language. The 

interface module should be compatible with the neutronics codes and also should be 

able to create the input files without user intervention. Similarly, the required output 

values generated by the neutronics simulation codes should be searched and read by the 

interface module and given back to the GA module for further calculations. The ‘R’ 

programming language [144, 145], which supports several efficient pattern searching 

and file-handling operators, is used in developing the interface module. Further, the ‘R’ 

programming language supports calling functions of the GA module during the 

runtime, as Dynamic Link Libraries (DLLs), which facilitates the smooth 

communication between the modules. Even though, a similar approach has been 

followed in the burnup optimization study presented in Chapter 4, the modular 

approach has been enhanced in the present study, by the use of the ‘R’ programming 

language. The enhanced modular approach gives novelty to the work carried out as part 

of the present studies, with certain advantages like:  

(i) The GA modules as well as the neutronics simulation codes can easily be 

invoked from the interface module, during the runtime.  

(ii) Interface modules having efficient pattern searching capabilities, can easily be 

modified to meet the requirement of different neutronics simulation codes. 

This allows extending optimization procedure to other studies of similar 

nature. 

As has been seen during the discussion about the overall procedure of GA in 

nuclear fuel management (see Section 2.6 of Chapter 2), the neutronics simulation 

codes play a key role in predicting the reactor core behavior during the optimization 
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procedure. The understanding about the basic functionalities and the overall working of 

neutronics simulation codes are achieved by conducting several independent trial runs 

of the codes. As depicted in Figure 5.1., there are five neutronics simulation codes used 

in the present studies which include ATOMIX, CONSYST, EFCONSY, ALCIALMI, 

and ALEX [143]. The number densities of various nuclei present in the different 

regions of the core are calculated using the code ATOMIX. Using the multi-group 

library of ABBN-93, self-shielded cross-sections are calculated by running CONSYST 

and EFCONSY codes [146, 147]. The excess reactivity of the core is calculated using 

the two-dimensional diffusion theory code, ALCIALMI, which uses R-Z geometry of 

the core for calculations. The code ALEX gives the power densities, from which linear 

heat rating of the fuel pins are calculated. The code ALEX also calculates breeding 

ratio of the given core configuration. In the present studies, the aim is confined to 

finding out the optimal number of fuel subassemblies, without varying the fuel 

enrichments of different zones. In every iteration of the optimization procedure, fuel 

inventory requirements are calculated based on the number of subassemblies assigned 

to the enrichment zones. Since the fuel enrichments of different zones are fixed in the 

present studies, the number density and cross-section calculations need not be repeated 

for every iteration of the fitness evaluation. Therefore, the codes - ATOMIX, 

CONSYST, EFCONSY - which are used for the number density and cross-section 

calculations, are represented outside the “Fitness evaluation” block in the flowchart 

(Figure 5.1). Even though the neutronics simulation codes employed are the same for 

optimizations of the 500 MWe core and the 1000 MWe core, these two studies differ in 

the following aspects: 

(i) The types of fuel used is different, i.e. oxide fuel (UO2-PuO2) used in the 

500 MWe core and metallic fuel (U-Pu-Zr) used in the 1000 MWe core. 

Therefore, the neutronics characteristics of the cores are different and hence, 
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objectives and constraints defining the neutronics parameters of the studies 

are also different. 

(ii) The power generation capacities of the cores are different. Therefore, the 

thermal characteristics of the cores are different and hence the objectives and 

constraints defining the thermal parameters of the studies are also different. 

(iii) The number of fuel enrichment zones and the enrichment of fuel in the zones 

are different. Therefore, the models of the core employed in the optimization 

studies are different. 

The overall scheme of calculation and the important differences between the 

optimization studies of 500MWe and 1000 MWe cores have been explained above. 

Next, the optimization of the 500 MWe core configuration is explained in detail. 

5.3. OPTIMIZATION OF 500 MWe CORE CONFIGURATION 

As mentioned earlier, the fast breeder reactor core of 500 MWe with two radial 

fuel enrichment zones is considered for the study. The model of the core used in the 

study is similar to the core of 500 MWe Prototype Fast Breeder Reactor (PFBR) in 

terms of: 

(i) size and capacity of power generation of the core 

(ii) types of fuel used  

(iii) number of fuel enrichment zones present  

(iv) types of subassemblies used  

(v) neutronics and thermal characteristics of the core  

The core configuration of the PFBR is already designed by conducting several detailed 

neutronics scoping studies using the conventional optimization methods (i.e., without 

employing intelligent optimization techniques like GA). The neutronics scoping studies 

were conducted by employing several neutronics simulation codes in order to predict 
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the characteristics of the core. The same neutronics simulation codes are used in the 

present GA based optimization study (see Section 5.2 for the description about the 

codes). The inputs for the codes which define the required characteristics of the core 

are also the same. Therefore, the neutronics parameter arrived at for the PFBR core is 

used as a reference for verifying the results obtained from the present study. A brief 

description about the core of PFBR is given in the following section. 

5.3.1. Reference Core Used for the Study : The Core of PFBR 

The cross sectional view of the core of PFBR is shown in Figure 5.2 [143]. The 

core is composed of several types of subassemblies like fuel, control, blanket, and 

shielding. The fuel subassembly contains the mixed-oxide fuel (UO2-PuO2) with axial 

blanket and shield. The active core, where most of the nuclear heat is generated, 

consists of 181 fuel subassemblies. The active core (i.e. the fuel region) is divided in to 

two radial fissile enrichment zones: inner zone (referred to as core-1 in the rest of the 

study) and outer zone (referred to as core-2 in the rest of the study). The core-1 consists 

of 85 subassemblies with 21% PuO2. Core-1 also houses 9 Control and Safety Rods 

(CSR) and 3 Diverse Safety Rods (DSR) for reactivity control and reactor shutdown. 

The core-1 is surrounded by 96 subassemblies of core-2, with relatively higher 

enrichment of 28% PuO2. The variation of enrichments in the radial direction helps in 

radial flux flattening. In the axial direction, the fuel subassemblies mainly comprise of 

fuel material, upper axial blanket and lower axial blanket. The blanket subassemblies 

contain depleted uranium and the breeding happens in these subassemblies. The steel 

reflectors (denoted as ‘Steel SA’ in the figure) minimize leakage of neutrons from the 

core. The B4C subassemblies shown in the figure are the neutron shielding 

subassemblies.  
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Figure 5.2: Cross sectional view of 500 MWe core of PFBR 

 

There are certain differences between the core of PFBR and the model of the 

core employed in the present optimization procedure. The detail about the model of the 

core used in the optimization procedure is described in the following section. 

5.3.2. Model of the Core Used in the Optimization Procedure 

The neutronics simulation codes employed in the optimization procedure use 

two-dimensional core geometries which are based on R-Z models of the cores. The R-Z 

model of the 500 MWe core used for the study is shown in Figure 5.3.  
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Figure 5.3. R-Z model of 500 MWe fast breeder reactor core used for the study 

(control rods, i.e. CSR and DSR, are not considered in the model) 

 

The model shown in the figure differs from the core of PFBR (shown in 

Figure 5.2) by way of not considering the Control and Safety Rods (CSR) and Diverse 

Safety Rods (DSR). The presence of CSR and DSR is not having any significant 

influence on the objectives and the final solutions of the optimization problem. Further, 

the exclusion of CSR and DSR from the model for optimization allows varying the 

number of subassemblies in different enrichment zones of the core in an easier way. 

For finding out the optimal core configuration, the number of subassemblies placed in 

the enrichment zones are being changed in every iteration of the optimization 

procedure. Then, the evaluation of each of the configuration is carried out based on the 
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objectives and constraints of the optimization problem. The above steps are to be 

repeated in the procedure without any manual intervention. The presence of CSR and 

DSR pose difficulty in achieving automatic variations in the model, and hence not 

considered in the optimization model. 

As part of the optimization procedure, when the numbers of subassemblies in 

the enrichment zones are changed, the diameter of the core in the radial direction 

(i.e. radial width of the core) changes accordingly, while the height of the core remains 

unchanged. The variations in the radial width of the core during the optimization 

procedure are explained further in the following discussion. During the optimization 

procedure, when the diameter of the core changes, the radial width of the portions 

above and below the core-1 and core-2 (consisting of axial blankets, axial plenum and 

stainless steel reflector, see Figure 5.3) also vary accordingly. However, the radial 

width of the portions of the core beyond core-2 (consisting of radial blanket, radial 

blanket plenum, radial blanket foot and stainless steel reflector) remains unchanged. 

The radial width variation of the core geometry is more clearly depicted by the 

schematic representations in Figure 5.4.  

The Figures 5.4(a) and 5.4(b) represent the radial widths of different core 

regions at two randomly selected iterations of the optimization procedure. In the 

figures, ‘R1’ and ‘R2’ denote the radii of core-1 and core-2 respectively. The terms 

‘C1’ and ‘C2’ represent the radial width of blanket and steel reflectors respectively. 

The total radius of the core is denoted by ‘R3’ i.e., R3=R1+(R2-R1)+C1+C2. During 

different iterations of the optimization procedure, ‘R1’ and ‘R2’ (hence R3 also) are 

varied independently but ‘C1’ and ‘C2’ are kept constant. Therefore, the optimization 

procedure that finds the optimal number of fuel subassemblies in core-1 and core-2 

would represent the corresponding geometry of the total core also.  
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Figure 5.4: The schematic representations showing the radial width variations of 

the core regions for two different iterations in the optimization procedure. 

(a) Represents the iteration for bigger core geometry with higher values of R1, R2 

and R3. (b) Represents the iteration for smaller core geometry with lower values 

of R1, R2 and R3. 

 

Next, the details about mathematical model formulation of the optimization 

problem are taken up for consideration. The formulation of the generic mathematical 

model is considered first and then, the specific models for the Penalty-function GA and 

for the Multi-objective GA are considered. The models formulated are incorporated to 

the GA module of the optimization procedure.  

5.3.3. Mathematical Model Formulation of the Optimization Problem 

As already mentioned, the aim of the present study is to find the optimal number 

of subassemblies in core-1 and core-2 of a 500 MWe fast breeder reactor core. The 

optimal core configuration design is arrived at, while trying to satisfy the given 

objectives and constraints. The given optimization problem has five objectives and five 

constraints. The objectives for maximization are related to core excess reactivity 

(denoted by RHO) and breeding ratio (denoted by BR). The objectives for minimization 
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are linear heat rating of core-1 (denoted by LHR1), linear heat rating of core-2 (denoted 

by LHR2), and percentage deviation of fuel inventory from a selected upper limit value 

(denoted by FUI). The objectives for minimization of linear heat ratings (i.e. LHR1 and 

LHR2) are to be within a specified limit for the selected problem. Generally, higher 

linear heat rating is better for minimizing the fuel inventory. However, the linear heat 

rating should not exceed a maximum upper limit by considering the structural integrity 

of the fuel pins. In the present study, the fresh core configuration at the initial startup of 

the reactor is considered. Subsequently, the minimization of linear heat ratings within 

the specified limits, in order to accommodate the effects of flux flattening happening 

during the prolonged operation of the reactor, is taken up. The unit of core excess 

reactivity is pcm (percent-milli) (1 pcm = 10−5 Δ𝑘

𝑘
 , where ‘𝑘’denotes the effective 

neutron multiplication factor, ‘Δ𝑘’ denotes its deviation from the unity) and that of 

linear heat rating is W/cm.  

The upper and lower limits are defined for the constraints related to the 

parameters of RHO, LHR1, and LHR2. The constraint related to FUI has an upper limit 

and that of BR has a lower limit. The limits of the constraints are taken in accordance 

with the uncertainties involved in their estimation. A solution to the problem can be 

termed as feasible, only if it satisfies all the five constraints mentioned above. 

Accordingly, the mathematical formulation of the given optimization problem can be 

arrived as: 

Max (RHO, BR) and Min (LHR1, LHR2, FUI)  

= f (number of subassemblies of core-1,  

                number of subassemblies of core-2)          (5.1) 
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Such that,  

10800 ≤ RHO ≤ 11200 pcm,  465≤  LHR1 ≤ 485 W/cm, 430 ≤  LHR2 ≤ 460 W/cm,  

          FUI  < given upper limit (in % deviation),  BR > 1.045   (5.2)  

where, Max represents the maximization, Min represents the minimization and f () 

represents “function of”. The given objectives are function of the number of 

subassemblies of core-1 and core-2. The number of subassemblies explored for the 

core-1 and the core-2 are fixed to certain ranges, arrived based on the results of initial 

trial runs of the neutronics simulation codes. Accordingly, the given problem has the 

two boundary conditions for the input values, as given below:  

40 ≤ number of subassemblies of core-1≤ 95  (5.3) 

50 ≤ number of subassemblies of core-2 ≤ 108              (5.4) 

The generic mathematical model formulated above need to be further refined, in 

order to apply to the specific GA methodologies. The model formulations for the 

Penalty-function GA and for the Multi-objective GA are covered in the next section. 

5.3.4. Model Formulation for the Penalty-function GA 

In the case of Penalty-function GA, the multi-objective problem of fuel 

management optimization is converted in to a single objective by adding penalty 

functions and constraints. A detailed description about the Penalty-function GA is 

given in Chapter 2 (see Section 2.7.1). The model formulation of Penalty-function GA 

for the present optimization problem is considered here. Among the five objectives of 

the problem, the maximization of BR is taken as the primary objective for the 

Penalty-function GA and the other four objectives are converted to penalty functions. 

The penalized objective function for the selected problem is formulated as follows: 

 Fitness = BR– P1 – P2 – P3 – P4                 (5.5) 
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where, 

𝑃1  = |𝐿𝐻𝑅1𝑚𝑖𝑑 − 𝐿𝐻𝑅1| × 𝐴1, if LHR1 < LHR1lb or LHR1 > LHR1ub 

         = [𝐿𝐻𝑅1 − (𝐿𝐻𝑅1𝑢𝑏 + 1)] × 𝐴1, otherwise 

𝑃2   = |𝐿𝐻𝑅2𝑚𝑖𝑑 − 𝐿𝐻𝑅2| × 𝐴2,  if LHR2 < LHR2lb or LHR2 > LHR2ub 

         = [𝐿𝐻𝑅2 − (𝐿𝐻𝑅2𝑢𝑏 + 1)] × 𝐴2, otherwise 

 𝑃3   = |𝑅𝐻𝑂𝑚𝑖𝑑 − 𝑅𝐻𝑂| × 𝐴3, if RHO < RHOlb or RHO > RHOub 

          = [(𝑅𝐻𝑂𝑢𝑏 + 1) − 𝑅𝐻𝑂] × 𝐴3,  otherwise  

 𝑃4   = (𝐹𝑈𝐼 − 𝐹𝑈𝐼𝑢𝑏) × 𝐴4 

P1 : penalty function related to LHR1   

P2 : penalty function related to LHR2 

P3 : penalty function related to RHO 

P4 : penalty function related to FUI 

Fitness: penalized objective function used for the fitness evaluation in GA 

A1, A2, A3, A4: constant values selected to give proper weightage to the 

corresponding penalty functions 

In the above equations, the subscripts have the following meanings related to the 

corresponding objective functions: 

 mid  : middle value of the feasible range 

lb  : lower bound value of the feasible range 

ub  : upper bound value of the feasible range. 

The penalty functions (P1, P2, P3 and P4) are formulated in such a way that, if the 

objectives fall with in the corresponding feasible range, then a positive value is added 

to the BR to get a higher “Fitness” value. On the other hand, if the objectives fall above 

or below the feasible range, then a negative value is added to the BR to get a lower 

“Fitness” value. 
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5.3.5. Model Formulation for the Multi-objective GA 

Based on the generic mathematical model, the multi-objective GA has been 

implemented (NSGA-II implementation) to find the optimal number of subassemblies 

in core-1 and core-2. A detailed description about the procedure of NSGA-II is covered 

in Chapter 2 (see Section 2.7.4). One important step in the multi-objective GA is the 

handling of constraint violations, which helps the algorithm to bias the search through a 

constrained space. The constraint violations are handled by an approach which is 

similar to the penalty handling mechanism in the Penalty-function GA. The constraint 

functions are first normalized and then the violation for each constraint is calculated. 

For the five constraints of the selected problem, corresponding constraint violations are 

calculated as:                 

  C1 = 
𝑅𝐻𝑂−𝑅𝐻𝑂𝑚𝑖𝑑

𝑅𝐻𝑂𝑚𝑖𝑛−𝑅𝐻𝑂𝑚𝑖𝑑
 ,        if RHO < RHOlb

 

   = 
𝑅𝐻𝑂−𝑅𝐻𝑂𝑚𝑖𝑑

𝑅𝐻𝑂𝑚𝑎𝑥−𝑅𝐻𝑂𝑚𝑖𝑑
 ,        if RHO > RHOub

 

   =                 0,   otherwise               (5.6) 

 

  C2 = 
𝐿𝐻𝑅1−𝐿𝐻𝑅1𝑚𝑖𝑑

𝐿𝐻𝑅1𝑚𝑖𝑛−𝐿𝐻𝑅1𝑚𝑖𝑑
 ,      if LHR1 < LHR1lb

 

   = 
𝐿𝐻𝑅1−𝐿𝐻𝑅1𝑚𝑖𝑑

𝐿𝐻𝑅1𝑚𝑎𝑥−𝐿𝐻𝑅1𝑚𝑖𝑑
 ,     if LHR1 > LHR1ub

 

   =                    0,   otherwise                   (5.7) 

 

  C3 = 
𝐿𝐻𝑅2−𝐿𝐻𝑅2𝑚𝑖𝑑

𝐿𝐻𝑅2𝑚𝑖𝑛−𝐿𝐻𝑅2𝑚𝑖𝑑
 ,    if LHR2 < LHR2lb

 

   = 
𝐿𝐻𝑅2−𝐿𝐻𝑅2𝑚𝑖𝑑

𝐿𝐻𝑅2𝑚𝑎𝑥−𝐿𝐻𝑅2𝑚𝑖𝑑
 ,      if LHR2 > LHR2ub

 

   =                    0,    otherwise                   (5.8) 

 

C4 = 
𝐹𝑈𝐼 − 𝐹𝑈𝐼𝑢

𝐹𝑈𝐼𝑚𝑎𝑥 − 𝐹𝑈𝐼𝑢
 ,    if FUI > FUIu 

   =   0,    otherwise                   (5.9) 
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C5 = 
𝐵𝑅𝑙 − 𝐵𝑅

𝐵𝑅𝑙  − 𝐵𝑅𝑚𝑖𝑛
 ,  if BR <BRl 

   =           0, otherwise                   (5.10) 

where, the terms C1, C2, C3, C4 and C5   represents the constraint violation values 

related to RHO, LHR1, LHR2, FUI and BR respectively. In the above equations, the 

subscripts have the following meanings related to the corresponding objective 

functions: 

min  : minimum value possible 

max  : minimum value possible 

mid  : middle value of the feasible range 

lb  : lower bound value of the feasible range 

ub  : upper bound value of the feasible range 

l  : lower limit value 

u  : upper limit value. 

According to the above procedure, the individual constraint violations corresponding to 

the five constraints of the problem are calculated. Then, the overall constraint violation 

(Ctot) is calculated as:  

   Ctot = C1+C2+C3+C4+C5                   (5.11) 

The next step is to modify each objective function value, according to the overall 

constraint violation. The overall constraint violation is multiplied with suitable constant 

values and the product is added to each of the objectives, to get the modified values of 

the objectives as: 

   RHOmod  =  RHO + B1 × Ctot        (5.12) 

   LHR1mod  =  LHR1 + B2 × Ctot        (5.13) 

LHR2mod  =  LHR2 + B3 × Ctot        (5.14) 

FUImod   =  FUI + B4 × Ctot       (5.15) 

BRmod    =  BR + B5 × Ctot       (5.16) 
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where, the term Ctot  represents the overall constraint violation. The subscript ‘mod’ 

denotes the modified values of the objectives. The terms B1, B2, B3, B4, and B5 are 

used to denote constant values, assigned to make both terms on the right side of the 

above equations to have the same order of magnitude. For a feasible solution, Ctot 

should be 0 and in that case, the modified values of the objectives are same as that of 

actual objective function values. For an infeasible solution, a penalty is added to each 

of the objective functions, corresponding to their constraint violations. Once the 

modified objective functions are calculated, those values are used by the 

multi-objective GA for Pareto-optimal fronts sorting.  

The details of formulations of the optimization models suitable for the two 

GA methodologies are discussed above. The next step is to implement the models by 

following the overall scheme of calculation of the optimization procedure. The details 

of implementation of the optimization models are considered in the following section.  

5.3.6. Details of the Implementations 

As part of the study, a comparison is made by considering the performance of 

the Penalty-function GA and the Multi-objective GA. Therefore, the representation 

schemes and parameter values of GA, selected for the implementation of the algorithms 

are kept the same. The parameters, those are kept the same for both the algorithms, are: 

(i) encoding scheme of GA 

(ii) population size  

(iii) crossover mutation methods and their probability  

(iv) maximum number of generations  

The values assigned for these parameters are given in Table 5.1. The real-number 

representation is selected for the implementation of both the Penalty-function GA and 

the Multi-objective GA. In the study, the decision variables (i.e. number of 
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subassemblies in the different enrichment zones of the core) are not real numbers, but 

are integers. Therefore, the truncated values of the real numbers are encoded in the 

chromosomes. The study has been carried out on a computer system with Intel Core2 

Duo CPU@3GHz and 2 GB RAM. The implementation of algorithms (both for the 

Penalty Function-GA and for the Multi-objective GA) are carried out by using the ‘C’ 

programming language and the interface module is implemented using the ‘R’ 

programming language. The initial population is generated by calling the random 

number generation function of the ‘C’ programming language. Several trial runs were 

conducted with randomly generated initial population of the GA, ensuring different 

initial search space. The results of implementations of the algorithms are discussed 

next.  

Table 5.1: Genetic parameters and methods or values used in the study. The 

parameters given in the table are kept the same for Penalty-function GA and 

Multi-objective GA 

 

   Parameter Methods/Values 

Encoding Floating point 

Population size  40 

Crossover method Arithmetical 

Crossover probability (CR) 0.6 

Mutation method Non-uniform 

Mutation probability (MR) 0.025 

 Maximum number of generations 50 
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5.4. RESULTS OF THE STUDY OF 500 MWe CORE CONFIGURATION  

Both of the GA methodologies, i.e. the Penalty Function-GA and the 

Multi-objective GA, are studied in detail to ascertain the suitability for the selected 

problem. Based on the results generated initially, GA parameters and penalty 

coefficients are fine-tuned. The fine-tuned versions of the algorithms are used to 

generate final results by conducting ten trial runs for each of the algorithms.  

The core configuration of the Prototype Fast Breeder Reactor (PFBR) is 

considered as the reference for the present study. Therefore, the number of fuel 

subassemblies designed for the PFBR core is compared with the results arrived from 

the optimization study, and presented in Table 5.2. The average of the number of 

subassemblies arrived from the ten trial runs for each of the algorithms is furnished in 

the table. All of the feasible solutions arrived at the final generation (50th generation) 

are considered and the average number of subassemblies in core-1 and core-2 are 

calculated. The values given in the table are arrived at, by rounding the average values 

(which are real numbers) to the nearest integers. It can be observed that both of the GA 

methodologies, i.e. the Penalty Function-GA and the Multi-objective GA, are able to 

generate feasible solutions which are agreeing with the number of subassemblies of the 

reference core. 

Table 5.2: Comparison of the results obtained from the present study with the 

number of fuel subassemblies of the reference core (core of PFBR). 

 

Fuel enrichment 

zones 

Number of subassemblies 

Reference core: 

PFBR 

Results of the present study 

Penalty-function GA Multi-objective GA 

Core-1 85 86 85 

Core-2 96 95 95 
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The small variations in the results are attributed to the stochastic nature of the genetic 

algorithms and also to the approximations employed in the optimization models. 

5.4.1. Convergence of Objective Functions : Final Generation 

The feasible solutions obtained in the final generation (i.e. 50th generation) of 

the Penalty Function-GA and the Multi-objective GA, generated by the ten trial runs of 

each of the algorithms, are given in Tables 5.3 and 5.4. The maximum and minimum 

values of each of the objectives, from the final generations of the algorithms, are 

presented in the tables. Corresponding number of subassemblies arrived, as the 

solutions to the optimization problem, are also given in the table. The outputs generated 

by neutronics simulation codes are represented with the accuracy of two decimal places 

for RHO, LHR1, and LHR2. In the case of FUI, the percentage deviation is calculated 

from the given upper limit and represented with the accuracy of two decimal places. 

The BR is represented with the accuracy of four decimal places, for proper 

representation of deviations in their values.  

The consolidated results obtained, by considering the feasible solutions 

generated by the Penalty Function-GA and the Multi-objective GA, in the final 

generation of ten trial runs are furnished in Table 5.5. The maximum (Max), minimum 

(Min), average (Ave) and standard deviation (SD) values for the five objectives are 

given in the table. The maximum values are calculated by taking the average of 

maximum values produced (separately for each of the five objective functions) at the 

final generation for the ten trial runs. Similarly, the minimum values are calculated by 

taking the average of minimum values generated. The average values shown in the 

table are calculated by finding the average values of respective objectives (by 

considering the 50 members of the final population) for the ten trial runs and then, the 

corresponding standard deviations are calculated.   
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Table 5.3: Maximum and minimum values obtained in the final generation for 

the five objective functions and the corresponding solutions (Penalty-function 

GA) 

 

 

 

 

   

Trial      

No. 
Max 

/Min 

Values  obtained for objective functions Solutions arrived 

RHO LHR1 LHR2 FUI BR Core-1 Core-2 

1 
Max 10860.15     477.58     441.14     -9.18    1.0611     90 94 

Min 
10838.62 472.43 431.44 -7.82 1.0605 87 94 

2 
Max 11041.68     472.09     436.61     -8.18     1.0589     89 96 

Min 10951.69 466.71 432.18 -7.18 1.0567 88 95 

3 
Max 10987.33     482.90     451.19     -10.55     1.0617     85 95 

Min 
10885.44 477.28 446.45 -9.55 1.0595 84 94 

4 
Max 11157.74     479.33     444.45     -9.64    1.0613     87 97 

Min 
10868.13 466.39 437.26 -7.55 1.0551 86 94 

5 
Max 10943.84     474.13     434.64     -8.27 1.0607     90 95 

Min 10845.40 468.72 430.24 -7.27     1.0585 89 94 

6 
Max 11178.23     475.25     448.41     -9.45    1.0576     85 97 

Min 11078.31 469.78 443.73 -8.45 1.0554 84 96 

7 
Max 10943.84     474.13    434.64     -8.27    1.0607     90 95 

Min 10845.40 468.72 430.24 -7.27 1.0585 89 94 

8 
Max 11167.78     468.07     440.48     -8.00    1.0552     87 97 

Min 11157.74 466.39 437.26 -7.55 1.0551 86 97 

9 
Max 11088.59 480.85 453.19 -10.45 1.0598 85 96 

Min 10987.33 473.51 445.08 -9.00 1.0574 83 95 

10 
Max 11178.23     484.71     454.62     -11.00 1.0619 85 97 

Min 10885.44 469.78 443.73 -8.45 1.0554 83 94 
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Table 5.4: Maximum and minimum values obtained in the final generation for the 

five objective functions and the corresponding solutions (Multi-objective GA)  

 

 

 

 

 

 

  

Trial 

No. 
Max 

/Min 

Values  obtained for objective functions Solutions arrived 

RHO LHR1 LHR2 FUI BR Core-1 Core-2 

1 
Max 11189.17 484.71 456.63 -11.00 1.0619 87 97 

Min 10860.15 471.51 439.85   -8.64 1.0555 82 94 

2 
Max 11110.48 482.90 456.63 -10.91 1.0617 88 96 

Min 10860.15 471.78 436.61   -8.18 1.0573 82 94 

3 
Max 11189.17 484.71 455.17 -11.00 1.0619 90 97 

Min 10838.62 468.07 430.24   -7.27 1.0552 82 94 

4 
Max 11189.17 484.71 456.63 -11.00 1.0619 90 97 

Min 10838.62 469.77 431.44   -7.73 1.0554 82 94 

5 
Max 10997.37 484.71 454.62 -11.00 1.0619 86 95 

Min 10868.13 477.28 444.45   -9.55 1.0595 83 94 

6 
Max 11189.17 484.71 458.60 -11.00 1.0619 89 97 

Min 10852.56 466.39 432.18   -7.18 1.0551 81 94 

7 
Max 11088.59 484.71 456.63 -11.00 1.0619 87 96 

Min 10868.13 473.51 439.85   -8.64 1.0574 82 94 

8 
Max 11178.23 484.71 458.60 -11.00 1.0619 89 97 

Min 10852.56 466.71 432.18   -7.18 1.0552 81 94 

9 
Max 11189.17 482.90 458.60 -11.00 1.0617 89 97 

Min 10852.56 469.78 433.41   -7.73 1.0554 81 94 

10 
Max 11189.17 484.71 456.63 -10.91 1.0619 85 97 

Min 10876.57 471.51 445.08   -8.91 1.0555 82 94 
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Table 5.5: Values of feasible solutions arrived at the final generation (for ten 

trial runs) of the Penalty-function GA and the Multi-objective GA  

 

 

The convergence of feasible solutions at the final generation by the two 

algorithms can be clearly understood from the box plots presented in Figure 5.5. The 

results generated at the final generation of the Penalty-function GA and the 

Multi-objective GA by the ten trial runs are given in the box plots. The distributions of 

the five objectives for the Penalty-function GA are shown in Figure 5.5(a) and those for 

the Multi-objective GA are shown in Figure 5.5(b). The vertical height of the boxes 

represents the spread of feasible solutions for 50% of the data samples. 

The major observations from the results presented in the Tables 5.3 to 5.5 and 

the Figure 5.5 are: 

 

 Max Min Ave SD 
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 RHO 11054.74 10934.35 10977.12 41.68 

LHR1 476.90 469.97 474.45 2.21 

LHR2 443.94 437.76 441.69 1.87 

FUI -9.30 -8.01 -8.85 -99.6 

BR 1.0599 1.0572 1.0590 0.0009 
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RHO 11150.97 10856.81 10990.25 95.52 

LHR1 484.35 470.63 477.26 4.23 

LHR2 456.87 436.53 446.95 5.99 

FUI -10.98 -8.10 -9.57 -99.12 

BR 1.0619 1.0562 1.0593 0.0018 
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Figure 5.5: Box plots to represent the distribution of the five objectives among 

generated feasible solutions in the final generation of ten trial runs: (a) for 

Penalty-function GA. (b) for Multi-objective GA. 
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 Both of the algorithms, i.e. the Penalty Function-GA and the Multi-objective 

GA, are able to produce feasible solutions consistently at the final generation. 

 The feasible solutions generated by the Penalty Function-GA lies in narrower 

range as compared with the Multi-objective GA. 

5.4.2. Comparison of GA Performance: Generation wise Production of Feasible 

Solutions  

A performance comparison has been done by considering the number of 

feasible or good solutions produced in successive generations of the Penalty-function 

GA and the Multi-objective GA. In the present optimization problem, one generated 

solution is termed as feasible, if it satisfies all the five constraints. That is, a feasible 

solution satisfies the conditions such as, RHO should be in the range between 10800 

and 11200 pcm, LHR1 should be in the range between 465 and 485 W/cm, LHR2 

should be in the range between 430 and 460 W/cm, FUI should be less than the given 

upper limit and BR should be greater than 1.045. 

Figure 5.6 shows the average number of feasible solutions produced in 

successive generations by ten trial runs of the Penalty-function GA (Figure 5.6(a)) and 

ten trial runs of the Multi-objective GA (Figure 5.6(b)). The conditions of feasibility 

are kept the same for both the algorithms. It can be observed from the figures that the 

Multi-objective GA produces feasible solutions at a faster rate for earlier generations 

and has a better convergence speed. A comparison is made on GA performance based 

on the average CPU time taken to produce equal number of feasible solutions.  
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Figure 5.6: Average Number of feasible solutions (generation wise) of the ten 

trial runs: (a) for Penalty-function GA. (b) for Multi-objective GA. 
 

The average times and generations taken for producing 80% of population with feasible 

solutions (i.e. 32 feasible solutions out of the 40 members of the population) are taken 

in the comparison. The Penalty-function GA took 35 generations and 6564.60 seconds 

to produce 32 feasible solutions. The Multi-objective GA took 10 generations and 

1807.90 seconds to produce the same number of 32 feasible solutions; implying that the 

Multi-objective GA is 73% faster than Penalty-function GA, with respect to CPU time 

for generating 80% of the population with feasible solutions.  

The behavior observed can be utilized in reducing the computational time by 

lowering the number of required generations of the Multi-objective GA. Another 

observation is that, when the computational time requirement for a fixed number of 

generations are considered, there is no significant difference between the 

Penalty-function and the Multi-objective GA. The average CPU time requirement (for 

(a) (b) 
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ten trial runs, each with 50 generations) for the Penalty-function GA is 9377.92 seconds 

whereas for the Multi-objective GA it is 9039.40 seconds. It is seen that, when average 

computational time of fixed number of generations are considered, the Multi-objective 

GA has a marginal advantage being 4% faster than the Penalty-function GA. The 

overall observation from the comparison is that the Multi-objective GA has a 

significant advantage in convergence speed and has a marginal advantage in 

computational time, when compared with the Penalty-function GA. 

5.4.3. Generation wise Evolution of Objective Functions 

The convergences of the five objectives during the whole evolution of the 

algorithms are presented in Figure 5.7. The solid black points denote the average value 

of the objective for the whole population of that particular generation. The dotted lines 

above and below denote the standard deviation. The convergences of the five objectives 

for the Penalty-function GA are shown in Figure 5.7(a) to 5.7(e). Similarly, the 

convergences of the five objectives of the Multi-objective GA are shown 

Figure 5.7(f) to 5.7(j). Following observations can be made by comparing the results:  

 Both of the algorithms, i.e. Penalty-function GA and Multi-objective GA, are 

capable of arriving at around the same converging area of feasible solutions 

with respect to the given objectives. 

 The objective functions are converging to a narrower region towards the end of 

generations for the Penalty-function GA as compared to the Multi-objective 

GA. 
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Figure 5.7: Convergences of the five objectives during the generation wise 

evolution of the algorithms: (a) to (e) for Penalty-function GA. (f) to (j) for 

Multi-objective GA. 
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 The speed of convergence is faster for the Multi-objective GA as compared to 

the Penalty-function GA. 

 In the case of Multi-objective GA, for all the five objectives, the standard 

deviations (shown as dotted lines) are shrinking between the 5th and 10th 

generations and are getting wider in the later generations. This indicates the 

ability of the Multi-objective GA in converging faster to a feasible area in the 

search space and then, exploring more diversity around that area towards the 

end of the generations. 

5.4.4. Solution Diversity: Initial Population Vs. Final Population 

The number of subassemblies in core-1 and in core-2, forms the solution 

candidates for the optimization problem. The distributions of solution candidates, in the 

population of initial generation and also in the population of final generation, with 

respect to the overall search space are compared in Figure 5.8. The solution diversity of 

the initial and the final populations for the Penalty-function GA are shown in 

Figure 5.8(a) and that of the Multi-objective GA are shown in Figure 5.8(b). The total 

population and the corresponding solution candidates of a single trial run are 

considered here. The solution values converge to a narrow area in case of the 

Penalty-function GA, but to a wider area for the Multi-objective GA. This indicates, as 

in the case of diversity of the objectives, that the diversity of solutions is also better for 

the Multi-objective GA. 
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Figure 5.8: Comparison of solution diversity of the algorithms (initial population 

vs. final population) (a) for Penalty-function GA. (b) for Multi-objective GA. 

  

(a) 

(b) 
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The optimization study presented above deals with the 500 MWe fast breeder 

reactor core. Details of the study of 1000 MWe core are presented next. 

5.5. OPTIMIZATION OF 1000 MWe CORE CONFIGURATION  

As mentioned earlier, the 1000 MWe fast breeder reactor with metal-fuelled 

core is considered for the present GA based optimization study. In fast breeder reactors, 

the basic thermal and neutronics performance of metal fuels (U-Pu-Zr) is better than 

oxide fuel [148]. Therefore, several studies are being conducted at IGCAR towards the 

design of metal-fuelled fast breeder reactors [148, 149, 150]. The core configuration of 

one such reactors, proposed by Riyas and colleagues, is considered as the reference for 

the present optimization study [148] and a brief description of the core is given in the 

following section. 

5.5.1. Reference Core Used for the Study 

The proposed 1000 MWe fast breeder reactor core is having three radial fuel 

enrichment zones [148]. Generally, for better flux flattening and fuel utilization, the 

number of fuel enrichment zones increases as the core size increases [15]. Therefore, 

three fuel enrichment zones are envisaged for the 1000 MWe core, whereas only two 

enrichment zones were there for the 500 MWe core. The cross sectional view of the 

core representing the radial distribution of subassemblies is shown in Figure 5.9. The 

fuel subassemblies contains metallic ternary alloy of U-Pu-Zr with axial blanket and 

shield. The active core is divided in to three radial fissile enrichment zones viz., core-1, 

core-2 and core-3. The core-1 houses 79 subassemblies with 12% of fuel enrichment, 

core-2 has 96 subassemblies with 13% of enrichment and core-3 has 72 subassemblies 

with 18% of enrichment. There are 18 numbers of Control and Safety Rods (CSR) and 

6 numbers of Diverse Safety Rods (DSR) placed in the core, as shown in Figure 5.9.  
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Figure 5.9: Cross sectional view of 1000 MWe Fast Breeder Reactor core 

The fuel subassemblies comprise of fuel material, upper blanket and lower blanket, in 

the axial direction. In the radial direction, the peripheral region of the core contains 

redial blankets and steel reflectors (denoted as ‘Steel SA’ in the figure). 

The model of the core, discussed above is similar to the model used for the 

present optimization study, but not exactly the same. The actual model of the core used 

in the study is discussed in the next section. 
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5.5.2. Model of the Core Used in the Optimization Procedure 

The neutronics simulation codes employed in the optimization procedure use 

two-dimensional core geometries which are based on the R-Z model of the 1000 MWe 

core. The R-Z model of the core used for the study is shown in Figure 5.10. As in the 

case of the optimization study of the 500 MWe core, the model used in the present 

study differs from the reference core of 1000 MWe by way of not considering the 

control rods, i.e. Control and Safety Rods (CSR) and Diverse Safety Rods (DSR). 

 

 

Figure 5.10: R-Z model of 1000 MWe fast breeder reactor core used for 

the study (control rods i.e. CSR and DSR are not considered in the model) 
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The exclusion of CSR and DSR from the model for optimization allows varying the 

number of subassemblies in different enrichment zones of the core in an easier way. 

Further, the presence of CSR and DSR are not having significant influence on the 

objectives and the final solutions of the optimization problem.  

5.5.3. Mathematical Model Formulation of the Optimization Problem 

The optimization problem presented in the study aims to find the optimal 

number of subassemblies in the three enrichment zones of a 1000 MWe fast breeder 

reactor core. The three enrichment zones are referred to as core-1, core-2 and core-3. 

The optimal number of subassemblies in the three enrichment zones are arrived while 

trying to satisfy the given objectives and constraints. The given optimization problem 

has six objectives and six constraints. The objectives for maximization are related to 

core excess reactivity (denoted by RHO) and breeding ratio (denoted by BR). The 

objectives for minimization are linear heat ratings of core-1 (denoted by LHR1), core-2 

(denoted by LHR2), core-3 (denoted by LHR3) and percentage deviation of fuel 

inventory from a selected upper limit value (denoted by FUI ). The upper and lower 

limits are defined for the constraints related to the parameters of RHO, LHR1, LHR2 

and LHR3. The constraint related to FUI has an upper limit and that of BR has a lower 

limit. The limits of the constraints are taken in accordance with the uncertainties 

involved in their estimation. A solution to the problem can be termed as feasible, only 

if it satisfies all the six constraints. Accordingly, the mathematical formulation of the 

given optimization problem is given as: 

Max (RHO, BR) and Min (LHR1, LHR2, LHR3, FUI)  

= f (number of subassemblies of core-1, number of subassemblies of 

core-2, number of subassemblies of core-3)                       (5.17) 
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Such that,  

8800 ≤ RHO ≤ 9200 pcm,  485≤  LHR1 ≤ 505 W/cm,  

510 ≤ LHR2 ≤ 530 W/cm, 500 ≤  LHR3 ≤ 520 W/cm, 

  FUI  < given upper limit (in % deviation), and BR > 1.35          (5.18) 

where, Max represents the maximization, Min represents the minimization and f () 

represents “function of”. The given objectives are function of the number of 

subassemblies of core-1 core-2 and core-3. The number of subassemblies explored for 

core-1, core-2 and core-3 are fixed to certain ranges, calculated based on the results 

from the initial trial runs of the neutronics simulation codes. By considering the ranges 

arrived, the optimization problem is assigned with three boundary conditions for the 

input values, as given below:  

60 ≤ number of subassemblies of core-1≤ 100              (5.19) 

            70 ≤ number of subassemblies of core-2 ≤ 110             (5.20) 

    50 ≤ number of subassemblies of core-3 ≤ 90               (5.21) 

5.5.4. Model Formulation for the Penalty-function GA 

The optimization model formulation of Penalty-function GA for the present 

study is similar to that of 500 MWe core, but has one more enrichment zone i.e. core-3. 

Therefore, there is an additional objective and constraint that is related to the linear heat 

rating of core-3 (denoted as LHR3). Among the six objectives of the problem, the 

maximization of BR is taken as the primary objective for the Penalty-function GA and 

the other five objectives are converted to penalty functions. The penalized objective 

function for the selected problem is formulated as follows: 
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             Fitness = BR– P1 – P2 – P3 – P4– P5       (5.22) 

where, 

𝑃1    = |𝐿𝐻𝑅1𝑚𝑖𝑑 − 𝐿𝐻𝑅1| × 𝐴1, if LHR1 < LHR1lb or LHR1 > LHR1ub 

           = [𝐿𝐻𝑅1 − (𝐿𝐻𝑅1𝑢𝑏 + 1)] × 𝐴1, otherwise 

𝑃2    = |𝐿𝐻𝑅2𝑚𝑖𝑑 − 𝐿𝐻𝑅2| × 𝐴2,  if LHR2 < LHR2lb or LHR2 > LHR2ub 

          = [𝐿𝐻𝑅2 − (𝐿𝐻𝑅2𝑢𝑏 + 1)] × 𝐴2, otherwise 

𝑃3    = |𝐿𝐻𝑅3𝑚𝑖𝑑 − 𝐿𝐻𝑅3| × 𝐴3,  if LHR3 < LHR3lb or LHR3 > LHR3ub 

          = [𝐿𝐻𝑅3 − (𝐿𝐻𝑅3𝑢𝑏 + 1)] × 𝐴3, otherwise 

 𝑃4    = |𝑅𝐻𝑂𝑚𝑖𝑑 − 𝑅𝐻𝑂| × 𝐴4, if RHO < RHOlb or RHO > RHOub 

           = [(𝑅𝐻𝑂𝑢𝑏 + 1) − 𝑅𝐻𝑂] × 𝐴4, otherwise  

 𝑃5    = (𝐹𝑈𝐼 − 𝐹𝑈𝐼𝑢𝑏) × 𝐴5 

P1 : penalty function related to LHR1   

P2 : penalty function related to LHR2 

P3 : penalty function related to LHR3 

P4 : penalty function related to RHO 

P5 : penalty function related to FUI 

A1, A2, A3, A4 and A5: constant values selected to give proper weightage to the 

corresponding penalty functions 

Fitness: penalized objective function used for the fitness evaluation in GA. 

In the above equations, the subscripts have the following meanings related to the 

corresponding objective functions: 

 mid  : denotes the middle value of the feasible range 

lb  : denotes the lower bound value of the feasible range 

ub  : denotes the upper bound value of the feasible range 
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The penalty functions (P1, P2, P3, P4 and P5) are formulated in such a way 

that, if the objectives fall with in the corresponding feasible range, then a positive value 

is added to the BR to get a higher “Fitness” value. On the other hand, if the objectives 

fall above or below the feasible range, then a negative value is added to the BR to get a 

lower “Fitness” value. 

5.5.5. Model Formulation for the Multi-objective GA 

The optimization model formulation of Multi-objective GA (for the NSGA-II 

implementation) is similar to that of 500 MWe core, but additionally has to handle the 

objective and the constraint of LHR3. The constraint violations are handled by an 

approach which is similar to the penalty handling mechanism in the 

Penalty-function GA. The constraint functions are first normalized and then the 

violation for each constraint is calculated. For the six constraints of the present study, 

corresponding constraint violations are calculated as: 

                  

  C1 = 
𝑅𝐻𝑂−𝑅𝐻𝑂𝑚𝑖𝑑

𝑅𝐻𝑂𝑚𝑖𝑛−𝑅𝐻𝑂𝑚𝑖𝑑
 ,        if RHO < RHOlb

 

   = 
𝑅𝐻𝑂−𝑅𝐻𝑂𝑚𝑖𝑑

𝑅𝐻𝑂𝑚𝑎𝑥−𝑅𝐻𝑂𝑚𝑖𝑑
 ,        if RHO > RHOub

 

   =                  0,   otherwise        (5.23) 

 

  C2 = 
𝐿𝐻𝑅1−𝐿𝐻𝑅1𝑚𝑖𝑑

𝐿𝐻𝑅1𝑚𝑖𝑛−𝐿𝐻𝑅1𝑚𝑖𝑑
 ,        if LHR1 < LHR1lb

 

   = 
𝐿𝐻𝑅1−𝐿𝐻𝑅1𝑚𝑖𝑑

𝐿𝐻𝑅1𝑚𝑎𝑥−𝐿𝐻𝑅1𝑚𝑖𝑑
 ,      if LHR1 > LHR1ub

 

   =                     0,    otherwise        (5.24) 

 

  C3 = 
𝐿𝐻𝑅2−𝐿𝐻𝑅2𝑚𝑖𝑑

𝐿𝐻𝑅2𝑚𝑖𝑛−𝐿𝐻𝑅2𝑚𝑖𝑑
 ,   if LHR2 < LHR2lb

 

   = 
𝐿𝐻𝑅2−𝐿𝐻𝑅2𝑚𝑖𝑑

𝐿𝐻𝑅2𝑚𝑎𝑥−𝐿𝐻𝑅2𝑚𝑖𝑑
 ,     if LHR2 > LHR2ub

 

   =                     0,   otherwise       (5.25) 
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  C4 = 
𝐿𝐻𝑅3−𝐿𝐻𝑅3𝑚𝑖𝑑

𝐿𝐻𝑅3𝑚𝑖𝑛−𝐿𝐻𝑅3𝑚𝑖𝑑
 ,     if LHR3 < LHR3lb

 

   = 
𝐿𝐻𝑅3−𝐿𝐻𝑅3𝑚𝑖𝑑

𝐿𝐻𝑅3𝑚𝑎𝑥−𝐿𝐻𝑅3𝑚𝑖𝑑
 ,      if LHR3 > LHR3ub

 

   =                     0,     otherwise        (5.26) 

 

C5 = 
𝐹𝑈𝐼 − 𝐹𝑈𝐼𝑢

𝐹𝑈𝐼𝑚𝑎𝑥 − 𝐹𝑈𝐼𝑢
 , if FUI > FUIu 

   =   0, otherwise       (5.27) 

 

C6 = 
𝐵𝑅𝑙 − 𝐵𝑅

𝐵𝑅𝑙  − 𝐵𝑅𝑚𝑖𝑛
 ,  if BR <BRl 

   =            0, otherwise        (5.28) 

 

where, the terms C1, C2, C3, C4, C5 and C6 represents the constraint violation values 

related to RHO, LHR1, LHR2, LHR3, FUI and BR respectively. In the above equations, 

the subscripts have the following meanings related to the corresponding objective 

functions: 

min  : minimum value possible 

max  : minimum value possible 

mid  : middle value of the feasible range 

lb  : lower bound value of the feasible range 

ub  : upper bound value of the feasible range 

l  : lower limit value 

u  : upper limit value 

After calculating the six constraint violations, the overall constraint violation (Ctot) is 

calculated as:  

        Ctot = C1+C2+C3+C4+C5+C6                   (5.29) 
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The next step is to modify the values of the objectives, according to the overall 

constraint violation. The overall constraint violation is multiplied with suitable constant 

values and the product is added to each of the objectives to get the modified values of 

the objective functions, as given below: 

RHOmod  =  RHO + B1 × Ctot                   (5.30) 

  LHR1mod  =  LHR1 + B2 × Ctot        (5.31) 

LHR2mod  =  LHR2 + B3 × Ctot          (5.32) 

LHR3mod  =  LHR3 + B4 × Ctot                   (5.33) 

FUImod   =  FUI + B5 × Ctot                          (5.34) 

BRmod    =  BR + B6 × Ctot                  (5.35) 

where, the term Ctot  represents the overall constraint violation. The subscript ‘mod’ 

denotes the modified objective function values obtained. The terms B1, B2, B3, B4, B5 

and B6 are used to denote constant values, assigned to make both terms on the right 

side of the above equations to have the same order of magnitude.  

For a feasible solution, Ctot should be 0 and in that case, the modified values of 

the objective functions are same as that of actual objective function values. For an 

infeasible solution, a penalty is added to each of the objectives, in accordance with their 

constraint violations. Once the modified objective functions are calculated, those values 

are used by the multi-objective GA for Pareto-optimal fronts sorting. 

5.5.6. Details of the Implementations 

Implementation strategy followed in the present study is similar to that 

employed in the optimization study of 500 MWe core. The implementations of 

algorithms (both for the Penalty Function-GA and for the Multi-objective GA) are 
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carried out by using the ‘C’ programming language and the interface module is 

implemented using the ‘R’ programming language. The same parameters of GA are 

selected for the implementation of both Penalty-function GA and Multi-objective GA. 

There is an additional chromosome element for the present study, in order to 

represent the number of subassemblies in core-3. The presence of the additional 

chromosome element increases the computational complexity of the optimization 

problem and that is addressed in the implementation by increasing the population size. 

The population size for the present study is increased to 60 (for the study of 500 MWe 

core, the population size was 40).The study has been carried out on a computer system 

with Intel Core2 Duo CPU@3GHz and 2 GB RAM. The values assigned for the GA 

parameters are given in Table 5.6. 

The two GA methodologies are implemented as per the details given above. The 

results of the study are presented next.  

 

Table 5.6: Genetic parameters and methods or values used in the study. The 

parameters given in the table are kept the same for Penalty-function GA and 

Multi-objective GA. 

 

 Parameter Methods/Values 

Encoding Floating point 

Population size  60 

Crossover Method Arithmetical 

Crossover Probability (CR) 0.6 

Mutation Method Non-uniform 

Mutation Probability (MR) 0.025 

Maximum no. of Generations 50 
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5.6. RESULTS OF THE STUDY OF 1000 MWe CORE CONFIGURATION   

The procedures followed in generating the results are similar to that of the study 

of 500 MWe core. Several trial runs were conducted with randomly generated initial 

population of the GA (both for the Penalty Function-GA and for the Multi-objective 

GA). The fine-tuned versions of the algorithms are used to generate final results by 

conducting ten trial runs for each of the algorithms.  

As mentioned earlier, the core configuration of the 1000 MWe fast breeder 

reactor designed by IGCAR is considered as the reference for the present study 

(see Section 5.1.1 for the description about the reference core). The number of fuel 

subassemblies designed for the reference core is compared with the results obtained 

from the optimization study, and presented in Table 5.7. The average of the number of 

subassemblies arrived from ten trial runs for each of the algorithms is furnished in the 

table. The values given in the table are arrived at, by rounding the average values 

(which are real numbers) to the nearest integers. It can be observed that both of the GA 

methodologies, i.e. the Penalty Function-GA and the Multi-objective GA, are able to 

generate feasible solutions which are agreeing with the number of subassemblies of the 

reference core. 

 

Table 5.7: Comparison of the results obtained from the present study with the 

number of fuel subassemblies of the reference core (core of 1000 MWe Fast 

Breeder Reactor). 

 

Fuel enrichment 

zones 

Number of subassemblies 

Reference core  

Results of the present study 

Penalty-function GA Multi-objective GA 

Core-1 79 79 78 

Core-2 96 94 97 

Core-3 72 72 72 
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5.6.1. Convergence of Objective Functions : Final Generation 

The optimization problem presented in the study has six objectives and six 

constraints. The maximum and minimum values of the objectives, from the final 

generation of the Penalty Function-GA and the Multi-objective GA, are presented in 

Tables 5.8 and 5.9, respectively. Corresponding number of subassemblies arrived at, as 

the solutions to the optimization problem, are also given in the table.  

The consolidated results, by considering the feasible solutions generated by the 

Penalty Function-GA and the Multi-objective GA, in the final generations of ten trial 

runs are furnished in Table 5.10. The maximum (Max), minimum (Min), average (Ave) 

and standard deviation (SD) values for the six objectives are given in the table. The 

maximum values are calculated by taking the average of maximum values produced 

(separately for each of the six objective functions) at the final generation for the ten 

trial runs. Similarly, the minimum values are calculated by taking the average of 

minimum values generated. The average values shown in the table are calculated by 

finding the average values of respective objectives (by considering the 50 members of 

the final population) for the ten trial runs and then, the corresponding standard 

deviations are calculated.  

The convergence of the six objectives of the optimization problem, taken up in 

the study can be clearly pictured using box plots as shown in Figure 5.11. The results 

generated at the final generation (i.e. 50th generation) of the Penalty-function GA 

(Figure 5.11(a)) and the Multi-objective GA (Figure 5.11(b)), by the ten trial runs are 

given in the figures. The plots shows that the overall convergences of the objectives are 

similar to the convergences of the objectives presented for the study of 500 MWe core 

(see Figure 5.5).  



Chapter 5 

 167 

 

 

 

 

 

 

 

 

Table 5.8: Maximum and minimum values obtained in the final generation for the six 

objective functions and the corresponding solutions (Penalty function-GA). 

 

 

 

  

Tr. 

No. 

Max 

/Min 

Values  obtained for objective functions Solutions arrived 

RHO LHR1 LHR2 LHR3 FUI BR 
Core-

1 

Core-

2 

Core-

3 

  1 
Max 8968.17 501.52 524.48 517.62 -16.98 1.3562 79 97 72 

Min 8919.88 496.39 519.90 513.22 -16.59 1.3550 77 95 71 

  2 
Max 8926.59 504.31 524.37 518.07 -17.36 1.3580 79 94 72 

Min 8846.15 498.67 521.43 517.09 -16.94 1.3561 79 94 71 

  3 
Max 8926.59 500.50 522.98 521.05 -17.25 1.3565 79 94 72 

Min 8916.28 498.67 521.43 518.07 -16.94 1.3561 79 93 72 

  4 
Max 8968.17 501.98 524.48 517.62 -17.01 1.3569 78 97 72 

Min 8888.41 496.39 520.69 513.22 -16.59 1.3550 77 95 71 

  5 
Max 8926.59 504.82 523.53 521.05 -17.39 1.3588 80 94 72 

Min 8814.78 498.67 520.64 517.53 -16.94 1.3561 79 93 71 

  6 
Max 8926.59 504.21 526.10 527.10 -17.89 1.3572 79 94 72 

Min 8895.73 498.67 521.43 518.07 -16.94 1.3561 79 91 72 

  7 
Max 8926.59 499.15 521.43 518.50 -16.97 1.3568 80 94 72 

Min 8895.43 497.31 519.11 515.54 -16.65 1.3561 79 93 72 

  8 

Max 8955.22 499.15 520.64 519.84 -16.97 1.3571 81 94 73 

Min 8874.81 492.22 515.46 515.54 -16.25 1.3552 80 92 72 

  9 
Max 8926.59 506.19 525.92 521.05 -17.68 1.3585 79 94 72 

Min 8835.29 498.67 521.43 518.07 -16.94 1.3561 79 93 71 

 10 
Max 8926.59 500.99 522.18 521.49 -17.28 1.3572 80 94 72 

Min 8885.01 497.31 519.11 515.54 -16.65 1.3561 79 92 72 
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Table 5.9: Maximum and minimum values obtained in the final generation for the six 

objective functions and the corresponding solutions (Multi-objective GA).  

 

 

  

Tr. 

No. 

Max 

/Min 

Values  obtained for objective functions Solutions arrived 

RHO LHR1 LHR2 LHR3 FUI BR 
Core

-1 

Core

-2 

Core

-3 

  1 
Max 9160.96 504.84 528.41 519.84 -17.59 1.3587 83 101 73 

Min 8805.57 486.19 510.07 500.06 -15.07 1.3501 75 92 70 

  2 
Max 9157.59 504.84 526.79 519.72 -17.36 1.3590 83 104 73 

Min 8802.46 485.18 510.74 500.20 -15.00 1.3505 72 90 70 

  3 
Max 9179.71 504.36 529.38 519.68 -17.55 1.3588 86 103 73 

Min 8802.46 485.58 510.18 500.06 -15.04 1.3501 71 88 71 

  4 
Max 9179.71 504.84 529.33 519.84 -17.59 1.3583 81 102 73 

Min 8816.62 485.58 510.97 500.01 -15.04 1.3501 71 92 70 

  5 
Max 9097.23 504.82 526.03 519.87 -17.39 1.3588 84 96 74 

Min 8805.57 485.79 510.18 504.79 -15.30 1.3518 77 92 71 

  6 
Max 9151.38 504.84 528.49 518.09 -17.24 1.3584 79 101 70 

Min 8811.47 485.18 512.47 500.48 -15.18 1.3504 74 96 73 

  7 
Max 9128.13 504.78 529.32 519.68 -17.59 1.3584 82 100 74 

Min 8807.96 485.36 510.07 500.06 -15.04 1.3510 73 95 70 

  8 
Max 9100.83 503.83 525.20 519.84 -17.33 1.3587 83 99 74 

Min 8805.57 485.41 510.21 501.10 -15.07 1.3519 76 91 71 

  9 
Max 9077.53 504.78 529.33 519.68 -17.59 1.3580 82 102 73 

Min 8836.71 485.58 510.07 500.06 -15.00 1.3519 73 94 70 

 10 
Max 9141.79 504.82 528.41 519.68 -17.59 1.3588 82 99 73 

Min 8807.96 486.92 511.54 500.06 -15.07 1.3508 75 93 71 
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Table 5.10: Values of feasible solutions obtained in the final generation 

(for ten trial runs) of Penalty-function GA and Multi-objective GA. 

 

 

 

 

 

  

 Max Min Ave SD 

P
en

a
lt

y
-f

u
n

ct
io

n
 G

A
 

RHO 8937.77 8877.18 8900.87 20.95 

LHR1 502.28 497.30 500.25 1.67 

LHR2 523.61 520.06 522.10 1.07 

LHR3 520.34 516.19 518.56 1.31 

FUI -17.28 -16.74 -17.09 -99.83 

BR 1.3573 1.3558 1.3567 0.0005 

M
u

lt
i-

o
b

je
ct

iv
e 

G
A

 

RHO 9137.49 8810.24 8946.76 56.83 

LHR1 504.67 485.68 495.63 5.21 

LHR2 528.07 510.65 519.03 5.03 

LHR3 519.59 500.69 510.19 5.39 

FUI -17.48 -15.08 -16.26 -99.31 

BR 1.3586 1.3509 1.3553 0.0014 
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Figure 5.11: Box plots to represent the five objective functions distribution 

among the generated feasible solutions in final generation of ten trial runs:     

(a) for Penalty-function GA. (b) for Multi-objective GA 
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The major observations from the results presented in Tables 5.8 to 5.10 and 

Figure 5.11 are: 

 Both of the algorithms, i.e. the Penalty Function-GA and the Multi-objective 

GA, are able to produce feasible solutions consistently at the final generation. 

 The feasible solutions generated by the Penalty Function-GA remains in a 

narrower range as compared with the Multi-objective GA.  

It is important to note that the observations mentioned above are similar to the 

observations from the study of 500 MWe core. 

5.6.2. Comparison of GA Performance: Generation wise Production of Feasible 

Solutions  

The performances of the algorithms are compared based on the number of 

feasible solutions produced in successive generations. In the present problem, one 

generated solution is termed as feasible, if it satisfies all the six constraints. That is, a 

feasible solution should satisfy the conditions:  

(i) RHO should be in the range between 8800 and 9200 pcm  

(ii) LHR1 should be in the range between 485 and 505 W/cm  

(iii) LHR2 should be in the range between 510 and 530 W/cm  

(iv) LHR3 should be in the range between 500 and 520 W/cm  

(v) FUI should be less than the given upper limit  

(vi) BR should be greater than 1.35 

Figure 5.12 shows the average number of feasible solutions produced in successive 

generations by ten trial runs of the Penalty-function GA (Figure 5.12(a)) and ten trial 

runs of the Multi-objective GA (Figure 5.12(b)). The conditions of feasibility are kept 

the same for both the algorithms. The average CPU times and generations taken for 
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producing 80% of population with feasible solutions (i.e. 48 feasible solutions out of 

the 60 members of the population), are taken in the comparison. The Penalty-function 

GA took 23 generations and 3937.37 seconds to produce 48 feasible solutions.  

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Average Number of feasible solutions (generation wise) of the ten trial 

runs: (a) for Penalty-function GA. (b) for Multi-objective GA. 
 

The Multi-objective GA took 8 generations and 1328.00 seconds to produce the 

same number of 48 feasible solutions; implying that the Multi-objective GA is 66% 

faster than Penalty-function GA, with respect to CPU time for generating 80% of the 

population with feasible solutions. The behavior observed, can be utilized in reducing 

the computational time by lowering the number of required generations of the 

algorithm. Another observation is that, when the computational time requirement for a 

fixed number of generations are considered, there is no significant difference between 

Penalty-function and Multi-objective GA. The average CPU time requirement (for ten 

trial runs, each with 50 generations) for Penalty-function GA is 8559.29 seconds 

whereas for Multi-objective GA it is 8300.28 seconds. It is seen that, when average 

(a) (b) 



Chapter 5 

 173 

 

 

 

 

computational time of fixed generations are considered, Multi-objective GA has a 

marginal advantage of 3% faster than Penalty-function GA. 

The overall observation from the comparison is that the Multi-objective GA has 

a significant advantage in convergence speed and has a marginal advantage in 

computational time, when compared with the Penalty-function GA. 

5.6.3. Generation wise Evolution of Objective Functions 

The convergence of the six objectives during the whole evolution of the 

Penalty-function GA and the Multi-objective GA is presented in Figure 5.13. The solid 

black points denote the average value of the objective and the dotted lines above and 

below denote the standard deviation. The convergences of the six objectives for the 

Penalty-function GA are shown in Figures 5.13(a) to 5.13(f). Similarly, the 

convergences of the six objectives of Multi-objective GA are shown 

Figures 5.13(g) to 5.13(l). The observations from comparing the results are given 

below: 

 Both of the algorithms, i.e. Penalty-function GA and Multi-objective GA, are 

capable of arriving at around the same converged area of feasible solutions with 

respect to the given objectives. 

 The objective functions converge to a narrower region towards the end of 

generations for the Penalty-function GA as compared to the Multi-objective 

GA. 

 The speed of convergence is faster for the Multi-objective GA as compared to 

the Penalty-function GA. 

5.6.4. Solution Diversity: Initial Population Vs. Final Population 

A solution candidate of the given optimization problem represents the number 

of subassemblies present in core-1, core-2 and core-3. The distribution of solution 

candidates (of a single trial run) in the population of initial generation and in the 

population of final generation are compared using the 3-D plots shown in Figure 5.14  
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Figure 5.13: Convergences of the objectives during the generation wise evolution of 

the algorithms: (a) to (e) for Penalty-function GA. (f) to (j) for Multi-objective GA. 
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Figure 5.14: Comparison of solution diversity of the algorithms (initial population vs. 

final population) (a) for Penalty-function GA. (b) for Multi-objective GA.  

 

  

Final population Initial population 

(a)
 

  

(b) 

 

  

Initial population Final population 



Chapter 5 

 176 

 

 

 

 

The star shaped heads of the vertical lines represent the solution candidates in 

the figure. The solution diversity of the initial and the final populations for the 

Penalty-function GA is shown in Figure 5.14(a) and that of the Multi-objective GA is 

shown in Figure 5.14(b). As shown in the figure, the solution candidates converge to a 

narrow area for the Penalty-function GA, but to a wider area for the Multi-objective 

GA. Therefore, as in the case of diversity among the objectives, the diversity among the 

solution candidates is also better for the Multi-objective GA. 

5.7. SUMMARY 

Two separate optimization studies of core configuration, based on the cores of 

two different fast breeder reactors, are included in this chapter. The first study is for a 

500 MWe core with two fuel enrichment zones and the second study is for a 

1000 MWe core with three fuel enrichment zones. The aim of the studies is to find the 

optimal number of fuel subassemblies in the different enrichment zones of the cores. 

Two GA methodologies i.e., the Penalty-function GA and the Multi-objective GA are 

applied and compared. 

The result obtained from the studies show that, both the Penalty-function GA 

and the Multi-objective GA are capable of arriving at, around the same converged area 

of feasible solutions, with respect to all the objectives. When diversity of the feasible 

solutions are compared, the Multi-objective GA performs better than the 

Penalty-function GA. The Multi-objective GA has better convergence speed also. 

When average computational times of fixed generations are considered, it is observed 

that both the Penalty-function GA and the Multi-objective GA perform almost equally 

well. 

The modular approach followed in the burnup optimization study (presented in 

chapter 4) has been enhanced in the present studies, by employing the pattern searching 
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capabilities of the ‘R’ programming language. The ‘R’ programming language is used 

for developing the interface module, which facilitates a smooth communication 

between the GA module (which is developed in ‘C’ programming language) and the 

neutronics simulation codes which are based on FORTRAN programming language. 

The changes in the GA modules can easily be done without affecting the interface 

module. This modular approach has given the advantage of extending the 

implementation easily to other studies of similar nature. The studies helped in 

establishing a path for the application of GA in many other optimization problems of 

the core design, pertaining to the fast breeder reactor programme. 
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CHAPTER 6 

 

SUMMARY AND SUGGESTIONS FOR FUTURE STUDIES 

 

 

This chapter presents summary and important conclusions drawn from the 

results of the research work, carried out in the domain of the application of Genetic 

Algorithm based optimization methodologies to some diverse reactor environments. 

Suggestions for extending the applications of such intelligent optimization 

methodologies to other reactor systems are also given.

 

6.1. SUMMARY 

The motivation behind the work carried out in the present study was the 

application and comparison of Genetic Algorithm based optimization methodologies in 

different reactor environments, with the aim of arriving at the suitability of a given 

methodology for a particular type of application. The possibility of developing a 

modular approach in the implementations of the methodologies was explored. The 

methodologies applied and studied are standard real-parameter GA, Penalty-function 

GA and Multi-objective GA. The subsystems of reactors selected are:    

(i) steam condenser of Prototype Fast Breeder Reactor (PFBR)  

(ii) burnup zones of the core of a 220 MWe Pressurized Heavy Water Reactor 

(PHWR)  

(iii) fuel enrichment zones of the cores of a 500 MWe Fast Breeder Reactor (FBR)  
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(iv) fuel enrichment zones of the cores of a 1000 MWe FBR  

The study on steam condenser is an engineering design optimization and the 

other three studies pertain to nuclear fuel management. The chapter wise content of the 

thesis is summarized below: 

 An introduction to the research work has been presented in Chapter 1. The 

description and findings from the literature survey carried out in the field of 

Computational Intelligence methods applicable in different nuclear 

subsystems, including the applications of the GA in nuclear fuel management, 

were given. The GA methodologies employed for nuclear fuel management 

and their features were summarized in the chapter. The objectives and the 

scope of the work carried out in the present study were described in the 

chapter. 

 Chapter 2 introduced the Genetic Algorithm operators and parameters used in 

the studies carried out as part of the thesis. Several investigations were 

conducted in order to understand the influence of various representation 

schemes and operators on the performance of the algorithms, using a typical 

mathematical optimization function named Ackley’s function. The two 

methodologies of GA which were employed in the optimization studies of 

nuclear fuel management, i.e. Penalty-function GA and Multi-objective GA, 

were discussed in detail. In essence, the tools and methods employed in 

different studies presented in the thesis are explained in the chapter.  

 An optimization study for the engineering design, conducted on the steam 

condenser (circulating water system) of Prototype Fast Breeder Reactor 

(PFBR), was discussed in Chapter 3. The purpose of the study was to apply 

standard real-parameter Genetic Algorithm for the single objective 



Chapter 6 

 181 

 

 

 

 

optimization problem pertaining to the design of the circulating water system. 

In the study, the GA based performance-cost analysis was carried out based 

on the maximum capitalized profit generated by the system. The suitability of 

the standard real-parameter GA in the engineering design application of a 

reactor subsystem was demonstrated by the study. 

 Chapter 4 described the work carried out for the fuel bundle burnup 

optimization of a Pressurized Heavy Water Reactor (PHWR). The aim of the 

study was to calculate the optimum discharge burnups of the fuel bundles in 

the inner and outer burnup zones which give maximum reactor power, by 

satisfying the multiple constraints. The purpose of the study was to apply and 

compare the performance of the Penalty-function GA and the Multi-objective 

GA in the burnup optimization problem having multiple objectives and 

constraints. The discharge burnups arrived by the GA based optimization 

procedure can be utilized in fixing the most suitable reference discharge 

burnups for the two burnup zones of the reactor core. A modular approach has 

been employed in the implementation of the optimization methodologies. The 

results obtained from the study showed the suitability of Multi-objective GA 

over Penalty-function GA, in solving problems like the one selected for this 

study. 

 The problem of finding out optimal number of subassemblies in the core of 

Fast Breeder Reactor (FBR) was addressed in Chapter 5. This was with the 

aim of achieving the best performance. Two different Fast Breeder Reactor 

cores, (i) 500 MWe core having two different fuel enrichment zones 

(ii) 1000 MWe core having three different fuel enrichment zones, were 

considered in the studies. Two optimization methodologies, i.e. the 
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Penalty-function GA and the Multi-objective GA have been applied and 

compared. The Multi-objective GA was found to be better than the Penalty-

function GA, in terms of diversity of generated solutions and in the speed of 

convergence. The modular approach followed in the burnup optimization 

study (presented in chapter 4) has been enhanced by employing the pattern 

searching capabilities of the ‘R’ programming language. 

6.2. SUMMARY OF THE RESULTS 

The work carried out in the present study addresses three gap areas found in the 

current state of the art of optimization in nuclear fuel management using the GA. The 

gap areas are: (i) application of GA in nuclear fuel management of Pressurized Heavy 

Water Reactors and Fast Breeder Reactors are not explored in full potential (ii) a 

modular approach that divides total optimization procedure in to GA module, interface 

module and neutronics simulation module, is not available (iii) the organized way of 

application and comparison of GA based optimization methodologies, with the aim of 

verifying their suitability, is not addressed. The studies have given some contributions 

to bridge the gaps mentioned above. The major findings from the studies are 

summarized as follows: 

 the selected GA methodologies namely, Penalty-function GA and 

Multi-objective GA, are suitable for solving nuclear fuel management 

problems of Pressurized Heavy Water Reactors and Fast Breeder Reactors 

 The Multi-objective GA is found to be better than the Penalty-function GA in 

two important aspects: one, in terms of the diversity of generated solutions 

and two, in the speed of convergence of the algorithm. 

 The Penalty-function GA is easier to model and implement than the 

Multi-objective GA. Therefore, when the diversity in the solutions is of less 
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importance and the savings in the time of the software development is of more 

importance, the Penalty-function GA becomes a good option. 

 The suitability of standard real-parameter Genetic Algorithm is verified for the 

engineering design optimization of reactor subsystem with single objective and 

limited number of constraints. 

 A modular approach has been employed, in applying and comparing different 

methodologies based on the GA, in the optimization problems of nuclear fuel 

management. The optimization procedure employed in the study was divided 

in to the GA module, the interface module and the neutronics simulation 

module. This approach has provided the possibility of developing more 

efficient communication mechanisms and the flexibility in modifying the 

modules for extending the applications to other reactor systems.  

 The tools and methods employed for the comparison of the GA methodologies 

were uniformly applied to different types of fuel management problems, in an 

organized way. The parameters taken up for the comparisons of 

methodologies, pertaining to different studies carried out as the part of the 

thesis, are:  

(i)  maximum and minimum values of the objective function  

(ii)  diversity among the objective functions and among the feasible solutions  

(iii)  generation wise production of the feasible solutions. 

6.3. SUGGESTIONS FOR FUTURE STUDIES 

The modular approach followed in the present studies, allow extending the 

application of the GA methodologies to many other optimization studies of nuclear fuel 

management. In the direction of extending the applications, the following areas of study 

can be considered: 
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(i) fuel bundle optimization of Pressurized Heavy Water Reactor (PHWR) core with 

different geometries of inner and outer burnup zones 

(ii) finding out the optimal control rod positions in the Fast Breeder Reactor (FBR) 

core 

(iii) fuel enrichment optimization in different zones of the FBR core 

There are many other “nature inspired intelligent algorithms” such as 

Tabu Search, Ant Colony Optimization, Particle Swarm Optimization, Artificial Bee 

Colony Optimization, Harmony Search Algorithm, Continuous Firefly Algorithm etc. 

and the field is continuously evolving. Some of the methods mentioned above, have the 

advantage of reduced search length, resulting in less computational time, but perhaps at 

the price of a reduced capability of coming close to the true optimum. It is possible to 

try these methods and evaluate their suitability in the optimization studies of different 

reactor subsystems. Another possibility in this direction is the development and 

application of efficient “parallel” genetic algorithms (genetic algorithms developed by 

employing parallel programming concepts) which are capable of running in parallel 

computers.  

The work presented in the current thesis explores the application of Genetic 

Algorithm, one of the major optimization methods coming under the umbrella of 

Computational Intelligence, to a set of diverse reactor environments. The role of 

Computational Intelligence in the domain of nuclear reactors is getting wider 

acceptance by considering the present objectives of the plant operation and the future 

needs. The development and use of such methods is important for the next generation 

nuclear reactors, which are expected to operate semi-autonomously for long periods of 

time.
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