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ABSTRACT 

Nondestructive evaluation (NDE) plays an important role in ensuring structural integrity 

of engineering components through detection and sizing of flaws. It is very important to 

detect flaws in components at the early stages to prevent catastrophic failures. Eddy 

current (EC) NDE technique is simultaneously influenced by several variables such as 

surface roughness, variations in probe lift-off, variations in electrical conductivity and 

magnetic permeability and variations in geometry, apart from flaws. These variations 

produce large amplitude noise and thus, often mask information from shallow surface 

flaws as well as deep seated flaws. Although EC imaging is helpful, detection of shallow 

surface flaws in the presence of such composite noise is challenging.  

Removal of noise in EC images is time consuming, as it involves the use of several 

methods of processing depending on the sources of noise. The reported literature on 

processing of EC images, influenced by noise, is limited to handling one disturbing 

variable at a time. Information related to processing of composite noise in EC images is 

scarce in open literature. This demands development of image processing approaches for 

automated removal of noise in EC images while retaining maximum possible information 

related to flaws. 

This thesis presents the development of image processing approaches for noise reduction 

in EC images of surface flaws in AISI type 316 Stainless steels. It incorporates spatially 

adaptive noise filtering using multiresolution analysis by Discrete Wavelet Transform 

(DWT). It explores Independent Component Analysis (ICA) technique that involves 

separation of sources of noise based on their statistical independence. 

Extensive studies have been carried out on the EC images acquired from plates, weld 

plates and thin walled tubes made of AISI type 316 stainless steels to develop the DWT 
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and ICA based approaches. Performances of these approaches have been evaluated using 

Noise Reduction Percentage (NRP) and Signal to Noise Ratio (SNR).  

This thesis proposes a hybrid image processing approach by combining the advantage of 

the noise reduction ability of DWT based approach and the flaw retention ability of ICA 

based approach. A significant enhancement in flaw amplitude has been achieved by the 

proposed hybrid approach as compared to the individual processing approaches. The 

hybrid approach is found to be noise tolerant to variations in lift-off up to ≤1.5 mm. 

The efficacy of the proposed hybrid approach has been successfully demonstrated on EC 

images acquired at various frequencies (20 kHz, 75 kHz and 150 kHz) using probes of 3.0 

mm, 5.0 mm and 20.0 mm diameter. The denoising capability of the proposed hybrid 

approach has been successfully validated on the influence of composite noise from 

variation in lift-off and wall thickness (geometrical variations) in thin wall SS tubes. The 

applicability of the proposed hybrid approach has been evaluated for enhancement of sub-

surface flaws and natural crack.  

The hybrid approach proposed in this thesis has significantly enhanced the flaw detection 

sensitivity. It has also provided better insight into the existence of statistical dependency 

and utilization of dependency for enhanced effective separation of flaw information. The 

approach proposed in this thesis can be applied to EC images of flaws of varying 

orientation, width and depth and can be extended to other NDE images. 
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Chapter 1 : Introduction 

Preamble 

This chapter provides a brief introduction to non-destructive evaluation (NDE) and eddy 

current NDE technique. It describes the basics of eddy current imaging and enlists the 

sources of noise in eddy current NDE and their influence on flaw detection. It covers the 

basics of image processing approaches employed for noise removal. 

1.1 Nondestructive evaluation  

Nondestructive Evaluation (NDE) is a branch of science that deals with the assessment of 

structural integrity of engineering components through detection and quantification of 

flaws, microstructural variations and residual stresses without causing any damage to the 

components [1]. NDE is an integral part of nuclear, aerospace, petrochemical and other 

industries to ensure safety and reliability of the plant components. The critical components 

such as heat exchangers of boilers, steam generators and condensers, aircraft engines, wire 

ropes, gas pipelines etc. are subjected to NDE, essentially because their failures will affect 

the plant availability, productivity and profitability. Flaws can form in a component during 

manufacturing process e.g. casting, welding, rolling, forging and machining and can also 

form during the service life of a component due to initiation and growth of creep cavities, 

fatigue cracks and stress corrosion cracks [2]. A flaw in a component creates a substantial 

chance of failure over long years of service. To ensure safety and reliability of 

components, early detection and sizing of flaws is essential.  

A variety of NDE techniques such as visual testing (VT), liquid penetrant testing (LPT), 

ultrasonic testing (UT), radiography testing (RT), infrared thermography testing (IRT), 
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acoustic emission testing (AET), eddy current testing (ECT), magnetic particle testing 

(MPT) are popular for detection of flaws. Among these, VT technique is generally used 

for quick assessment of quality of welds while RT and UT techniques are employed for 

volumetric examination. Eddy current (EC) and magnetic (MPT and magnetic flux 

leakage) techniques are preferred for the detection of surface and sub-surface flaws in non-

ferromagnetic and ferromagnetic components respectively [3, 4]. 

In general, a NDE system consists of three units, i.e. excitation, reception and processing 

units. In excitation unit, a particular form of energy, e.g. electromagnetic energy in ECT, 

is used as input to an exciter to send energy into an object under test. The energy is 

transformed depending on the material properties and flaws in the object. The transformed 

energy is picked up by a receiver or sensor in the reception unit. In the processing unit, the 

receiver response is processed and displayed in the form of a signal or an image to extract 

information about the flaw present in the test [5]. 

NDE techniques are based on various physical principles. They use different forms of 

energy as the basis for measurements. Every technique is influenced by a physical 

property and this aspect is used for detection of flaws as shown in Table 1.1. The choice of 

NDE techniques for a particular application is dictated by the material, component 

geometry, characteristics of the expected flaws, accessibility and cost effectiveness.  

Among the host of NDE techniques, EC technique is widely used for testing thin 

(thickness ≤ 5.0 mm) electrically conducting materials, such as stainless steel, titanium, 

brass, aluminium and inconel etc. EC technique is extensively used in aerospace, nuclear, 

petrochemical and automobile industries [6, 7]. This technique can detect wall thinning, 

cracks, pitting, stress corrosion cracking, hydrogen embrittlement, denting and deposits. 

The most popular applications of this technique include detection of flaws in plates, tubes, 



Chapter 1 

3 

 

rods, bars, multi-layer structures, discs, welds, blades, and other regular as well as 

irregular geometries; material sorting, proximity sensing, coating thickness measurements, 

heat treatment adequacy assessment and liquid sodium level monitoring [8, 9]. The 

widespread use of this technique is due to its ease of operation, versatility, excellent 

sensitivity to surface as well as subsurface flaws in metallic materials and repeatability. 

 

Table 1 .1  Lis t  of  various NDE techniques .  

 

EC testing is carried out on stainless steels (SS), which are major structural materials in 

nuclear and chemical industries in view of their good corrosion resistance and better 

mechanical properties (yield, ductility, and toughness). In these steels, early detection of 

flaws is important, since, flaws occur in a component and may grow due to exposure to 

elevated temperatures, hostile media or stresses [10].  

Technique Energy Influence by 

physical property 
Materials 

applicable 
Detection 

of flaws 

ECT 5-5000 kHz 

Electrical 

conductivity 

Magnetic 

permeability 

Conducting 
Surface and 

subsurface 

IRT 
300GHz-

400THz 
Thermal conductivity 

Thermally 

Conducting 

Surface and 

subsurface 

MFL 
Steady state 

10-100 Hz 

Magnetic 

permeability 
Magnetic 

Surface and 

subsurface 

MPT 
Steady state 

magnetic field 

Magnetic 

permeability 
Magnetic Surface 

RT X-ray Density 
Conducting, 

Non-conducting 

Surface and 

subsurface 

UT 
Sound (0.5- 

25 MHz) 
Acoustic impedance 

Conducting, 

Non-conducting 

Surface and 

subsurface 

VT 
Light, UV 

light 

Contrast between 

flaw and background 

Conducting, 

Non-conducting 
Surface 
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Large SS components are made by joining of plates by a welding process. A welded 

component may fail at the weld or heat affected zone (HAZ) regions, because of improper 

design of weld joints, incorrect selection of filler material, inappropriate welding process, 

undesired microstructure, residual stresses and corrosion, etc. Further, a flaw may grow 

during the service life of a welded component. Most commonly found weld flaws include 

lack of fusion, lack of penetration, cracks, cavities, porosities, slag inclusions and an 

excessive penetration. Among these, cracks are more harmful. They classified into 

longitudinal and transverse, depending on their direction with respect to the weld direction 

i.e. along or perpendicular [10].  

Another major component is a tubular product mainly used as heat exchangers and steam 

generators in power and petrochemical industries. EC technique is the most preferred 

technique for testing nonmagnetic (μr=1.0) heat exchanger tubes.  

The measurements made in EC technique, for that matter in all NDE techniques, are 

relative and not absolute. As a result, calibration or reference standards consisting of 

artificial flaws are used for comparison and interpretation of the measured data [8]. 

Calibration standards are made from specimens having identical dimensions, material 

properties and ageing conditions as that of the component being tested. Through holes, flat 

bottom holes and notch type of artificial flaws of different dimensions are often used to 

represent the expected flaws in components, for instrument calibration and for flaw sizing 

purpose. Electric discharge machining (EDM) is used for fabrication of these artificial 

flaws.  
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1.2 Principle of eddy current technique 

EC technique works on the principle of electromagnetic induction [6]. Figure 1.1 shows 

the schematic of basic principles of the EC technique. In this technique, change in coil 

impedance of a coil (also called probe or sensor) excited with sinusoidal current is 

measured when it is placed over an electrically conducting material surface. The primary 

magnetic field set up by the coil induces eddy currents (according to the Faraday's law) in 

the material, which in turn, sets up secondary magnetic fields.  

 

According to the Lenz’s law, the secondary magnetic fields oppose the primary magnetic 

fields of the coil [3]. This results in a reduction of flux linkage to the coil which manifests 

as a change in coil impedance (Z). The impedance is a complex quantity with resistance 

component, R (real) and inductive reactance component XL (imaginary) as  

                 1.1 

where magnitude and phase angle of the coil impedance in expressed as 

Figure 1.1 Principle of eddy current testing technique. 
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          1.2 

         

 
           1.3 

The presence of flaws such as cracks, voids, inclusions, corrosion, wall loss, etc. alters the 

distribution of eddy currents and hence changes the coil impedance [8]. The impedance 

changes for flaw-free and flaw regions are different and this enables successful detection 

of a flaw.  

The amplitude and phase characteristics of eddy current sinusoids in an electrically 

conducting test material can be obtained by solving the governing differential equation. 

The governing differential equation for a coil excited with an alternating current and 

producing eddy currents   in a homogeneous isotropic electrically conducting material is 

derived from the Maxwell’s curl equations [3] 

     
  

  
          1.4 

                1.5 

where E is the electric field, B is the magnetic field density, J is the current density and μ 

is the magnetic permeability of the material. Upon simplifying, the partial differential 

equation describing the ECT is given as 

                   1.6 

Solving equation (1.6) provides the distribution of J in the thickness direction [3]: 

      
                      1.7 

where Jz is the induced current density along the thickness of the material (z-axis) and J0 

is the current density at the surface of the material. The induced current density 
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(equation 1.7) contains amplitude and phase lag information which represents the flow of 

eddy currents in the material. β is the phase lag at depth, z and is defined as  

                  1.8 

The flow of eddy currents is not uniform in the thickness direction. The induced eddy 

current density in equation (1.7), decays exponentially and the phase lag β varies linearly 

with depth in thickness direction (equation 1.8). The eddy currents are maximum at the 

surface of the material and they decrease with depth, following the skin effect 

phenomenon. For a coil excited by an alternating current at a frequency f, the depth at 

which the current density decreases by the factor 1/e (37%) surface current density, is 

called standard depth of penetration (δ) and is defined as  

  
 

     
          1.9 

where f is the excitation frequency, μ is the magnetic permeability and σ is the electrical 

conductivity. As can be seen from the equation (1.9), δ depends on f, σ and μ. Any 

increase in the value of these parameters decreases δ.  

1.2.1 Eddy current probe 

Eddy current probe has two main functions. First, the EC probe establishes varying 

electromagnetic fields that induce eddy currents in the object under test. Second, the EC 

probe senses the change in impedance due to the presence of a flaw in the test object. The 

configuration of an EC probe depends on the geometry of the test object. Different types 

of probe configurations are used for different applications include the following [8]: 

 Surface or pancake probes used for testing plates and bolt-holes. 
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 Encircling probes used for inspection of tubes, bars with outside access. 

 Bobbin probes used for inspection of tubes with inside access. 

EC probes operate in i) absolute mode (single coil), ii) differential mode (two coils wound 

in opposite directions) and iii) send-receive mode (separate excitation coil and separate 

receiver coil or solid state sensor e.g. Hall, GMR). Absolute probes are employed for 

testing plate geometries and they are good for detection of flaws as well as gradual 

variations e.g. wall thickness. However, absolute probes are sensitive to lift-off variation 

(distance between probe and component surface), probe tilt and temperature changes. 

Differential probes are employed for testing of cylindrical objects and they are good for 

detection of small flaws. These probes are immune to changes in temperature as well as 

operator induced probe wobble. Send-receive probes are employed for testing of thick 

objects and they are good for detection of sub-surface flaws.  

1.2.2 Eddy current instrument 

The typical EC instrument consists of a sinusoidal drive unit for producing excitation 

frequencies in the range of 50.0 Hz-5.0 MHz to excite the EC probe. A high precision 

Wheatstone bridge circuit is used for measuring the changes in coil impedance as voltage 

drop. Amplifiers, filters, oscilloscope (to display the impedance changes in a 2-D graph or 

as a vector) and data acquisition card are used for signal handling and display. Signal 

analysis techniques are applied to interpret the received signal. The final result is 

displayed in impedance plane or time-domain.  
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1.2.3 Eddy current signal 

The locus of changes in impedance of an EC probe, during the movement of the probe 

over a over test object is called an EC signal. The EC signal consists of two components 

viz. resistance and inductive reactance as shown in Figure 1.2 (a). The EC signal is also 

visualized as a Lissajous figure on complex (impedance) plane as shown in Figure 1.2 (b) 

with resistance as abscissa and inductive reactance as ordinate for two surface flaws (D1 

and D2) of length 6.0 mm, width 2.0 mm and depths 0.2 mm and 0.5 mm in a 5.0 mm 

thick stainless steel plate. 

From Figure 1.2 (a) the amplitude of EC signal provides information about the severity of 

the flaw. On the other hand, in the impedance plane (Figure 1.2 b) the signal phase angle 

provides information about the depth of the flaw. The signal extent or flaw length cannot 

be visualized by merely scanning the probe over a flaw. A clear benefit exists if a series of 

parallel line scans (raster scan) are made. 

Probe: Absolute 

Diameter: 5.0 mm 

Frequency: 150 kHz 

(a) Time-domain signals (b) Impedance plane signal 

Figure 1.2 Typical EC signals of two surface flaws, D1, D2 (depth 0.1 mm, 0.5 mm) in (a) 

time domain and (b) impedance plane. 

D1 

D1 

D2 

D2 
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1.2.4 Eddy current imaging 

Unlike other NDE imaging modalities (radiography, thermography), EC imaging is 

usually performed by raster scanning of a probe over the test object as illustrated in Figure 

1.3. The impedance values obtained at discrete positions are collated to form a pseudo 

colour or a grey level image. This is mathematically represented by convolution operation.  

 

In other words, convolution of point spread function (psf) of the probe with mapping of 

electrical conductivity and magnetic permeability of the test object results in an EC image 

[11]. EC imaging system can be modelled as a two dimensional linear system where 

output y(m,n) can be obtained by convolution of impulse response      with the input 

flaw image x(m,n). 

                          1.10 

EC imaging can be done in three ways. They are by i) raster scan using a single absolute 

probe, ii) linear scan using single array probe and iii) matrix array probe either stationary 

or moving [12]. Although array probes are advantageous for faster detection of flaws, 

certain drawbacks limit their wide spread use. These include the difficulty in 

Thickness 

Flaw 

Raster scan 

EC Probe 

Diameter 

Length 

Figure 1.3 Schematic representation of raster scan of a plate using a single absolute EC 

probe. 
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(b) Reactance image 

(c) Magnitude image 

(a) Resistance image 

Figure 1.4 Different EC images obtained for a surface flaw. 

(d) Phase image 

manufacturing identical array probe coils, large number of probes required for covering 

the scan area and lower sampling rate due to multiplexing. Hence, EC imaging by raster 

scanning using a single probe is still preferred for reliable detection and accurate sizing of 

flaws [13].  

Typical resistance, inductive reactance, magnitude and phase images of a surface breaking 

flaw (length 6.0 mm, width 0.5 mm and depth 0.5 mm) in 5.0 mm thick SS plate at 5 kHz 

using a single probe are shown in Figure 1.4. EC images are more convenient to interpret 

and are useful to obtain the length and width of the flaw. 
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However, EC images have the influence of disturbing variables, apart from blurring due to 

convolution of psf of a probe with flaws. The variables are the following: 

a) change in electromagnetic coupling due to surface roughness, variations in probe lift-

off and wobble 

b) change in material properties due to alloy non-uniformity either in composition or 

due to heat treatment condition and inhomogeneous microstructure with a 

distribution of magnetic delta ferrite (material properties) in weld region. 

c) change in geometry of the component (wall thickness variations in thin tubular 

component due to die chattering and pilgering effect).  

These variables produce impedance changes. These signals often mask small amplitude 

signals from flaws and influence the detection sensitivity. These are unwanted information 

and are termed as noise.  

The simultaneous occurrence of more than one noise (e.g. variations in material properties 

and variations in lift-off) is phrased as ‘composite noise’ in the thesis. The random 

occurrence of one or more variables generates variations in spatial distribution of noise. 

The removal of this composite noise in EC images is challenging and is investigated in 

this thesis.  

The disturbing noise due to variations in lift-off and material properties is a great concern 

in EC testing of SS plates and welds. The influence of noise from single source and 

composite noise on flaw detection is discussed in the next section.  
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1.3 Influence of noise in EC imaging 

1.3.1 Single source of noise: Variations in lift-off 

Electromagnetic coupling between EC probe and test object under test is very important 

during EC inspections. The distance between the probe and object under test is called lift-

off for pancake probe and is called fill-factor for bobbin as well as encircling probes. The 

variation in coupling due to change in lift-off produces large amplitude signals termed as 

noise and this disturbs the EC testing. During ECT, uniform lift-off is preferred. Usually 

lift-off signal is made parallel to X-axis on the impedance plane display for discriminatory 

purposes.  

A varying lift-off can be caused by an irregular surface of the material or by non uniform 

probe movement. Typical EC image with variations in lift-off (0.0 mm to 1.0 mm) from 

single source is shown in Figure 1.5.  

SNR=7 dB 

Flaw ROI 

Noise ROI 

Figure 1.5 EC image of flaws (D1, D2, D3) of depths 0.5 mm, 0.8 mm and 1.0 mm in a 

SS plate with variations in lift-off (0.0 mm to 1.0mm). 

 

 

D1 
D2 D3 

Probe: Absolute 

Frequency: 150 kHz 
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This is an EC image obtained for a 5.0 mm thick SS plate having three flaws (D1, D2 and 

D3) of length 8.0 mm and width 0.6 mm. Clearly seen, the lift-off variations degrade the 

flaw information present in the image and unambiguous detection of flaw is difficult. 

Figure 1.6 compares the EC signals for two flaws (D1 and D2 shown in Figure 1.2) 

acquired at constant lift-off of 0.3 mm and with variations in lift-off (0.0 mm to 1.0 mm).  

 

The signal quality is being compared quantitatively on the basis on Signal-to-Noise Ratio 

(SNR) which is defined as logarithmic ratio of the mean value of the flaw signal (μsignal) to 

the standard deviation of the noise ( noise ) in the signal [14]. In the case of image, gradient 

vector in two orthogonal directions is estimated. The region having magnitude above an 

acceptable threshold is identified as the region of interest (ROI) of flaw. In the case of 

multiple flaws present in the image, the rectangular region around the smallest flaw 

Figure 1.6 EC signals of two surface flaws (D1 and D2) acquired at constant lift-off and 

with variations in lift-off (0.0 mm to 1.0 mm). 

D1 

D2 

Probe: Absolute 

Frequency: 150 kHz 

SNR: 

           7.0 dB 

           26.0 dB  

Noise ROI Flaw ROI 



Chapter 1 

15 

 

(defect-ROI, refer Fig.4) is considered for estimation of SNR, region between two flaws is 

considered as the noise ROI.  

The variations in lift-off reduced the SNR to 7 dB from 26 dB for the signals obtained at 

0.3 mm constant lift-off. It depicts the ambiguity in detection of shallow flaws, due to the 

influence of lift-off variations.  

1.3.2 Composite noise: Variations in material properties and lift-off  

In austenitic stainless steel welds, inhomogeneous microstructure with a distribution of 

magnetic delta ferrite and variations in grain size are formed due to temperature gradient 

in the weld region during welding. These variations affect the electrical conductivity and 

magnetic permeability (termed as ‘material properties variations’ in the thesis) of the weld 

zone and produce large amplitude disturbing noise. As a result, it is difficult to detect 

flaws in the weld region. 

Figure 1.7 (a) shows typical EC image from a weld region having two surface flaws of 

depths 0.25 mm and 0.5 mm at a constant lift-off of 0.3 mm at 75 kHz (δ=1.5 mm). Large 

amplitude noise due to the material properties variations resulting a SNR of -0.5 dB. 

Figure 1.7 (b) shows the EC image from the same weld region obtained by varying lift-off 

of 0.0 mm to 1.0 mm. Now, in addition to material properties variations, variations in lift-

off produce composite noise masking the shallow flaws (Flaw 1, depth 0.25 mm, Flaw 2, 

depth 0.5 mm) in the weld region. It is clearly observed from Figure 1.7 (b) that composite 

noise degrades the SNR to -1.4 dB (Flaw 1, depth 0.25 mm) and reduces the sensitivity to 

detect shallow flaws. 
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1.3.3 Composite noise: Variations in geometry and lift-off 

Variations in geometry of the test object also influence the EC images. A typical example 

of this is the wall thickness variations in SS tubes due to die chattering and improper 

pilgering that produce periodic thickness variations. The EC image from two flaws of 

depths 0.075 mm and 0.15 mm (length 4.0 mm, width 0.1 mm) in a SS thin wall tube in 

the presence of wall thickness variations is shown in Figure 1.8 (a). The noise due to 

periodic wall thickness variations degrades the SNR (Flaw 1) to 0.2 dB [15]. Additional 

lift-off variations degrade the SNR (Flaw 1) to -0.5 dB. This clearly illustrates the 

challenge in flaw detection in the presence of composite noise. 

Flaw 1: 

Depth 0.25mm 
Flaw 2:  

Depth 0.5mm 

Figure 1.7 EC images of two flaws of depths 0.25 mm and 0.5 mm (length 6.0 mm, width 

0.25 mm) with (a) variations in material properties and (b) composite noise. 

 

(a) Noise: material properties variations 

Flaw 1: 

Depth 0.25mm 

 

Flaw 2:  

Depth 0.5mm 

(b) Noise: composite noise 

Probe: Absolute 

Frequency: 75 kHz 5.0 mm 

SNR=-0.5 dB SNR=-1.4 dB 
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In order to extract information of flaws, processing of EC images is important for 

removing noise. This will enable identification of regions of the flaws and better 

characterisation of flaws. 

1.4 Noise reduction methods 

The EC data has time, frequency, and statistical information and their extent varies 

depending on the interaction of excitation energy with the test material. Hence, 

understanding the properties of information in terms of time, frequency and statistical 

characteristics is helpful for noise reduction. Filtering methods are used for noise 

reduction. These filtering methods are broadly classified into the following four major 

categories and their principles are discussed in detail in this section [16, 17]:  

1) Time domain filtering 

2) Frequency domain filtering  

3) Time-frequency domain filtering  

4) Statistical domain filtering 

Figure 1.8 EC images of two flaws in a thin wall SS tube with (a) wall thickness 

variations and (b) composite noise. 

Flaw 1 

Depth 0.075 mm 

Flaw 1 

Depth 0.075 mm 
Flaw 2 

Depth 0.15 mm 

Flaw 2 

Depth 0.15 mm 

(a)Noise: wall thickness variations 
(b)Noise: composite noise 

Probe: Absolute 

Frequency: 325 kHz 

SNR=0.2 dB SNR=-1.5 dB 

1 
2 
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1.4.1 Time domain filtering 

Time domain filtering is applied for removing additive noise and periodic noise. Mean, 

Maximum, Minimum and median filters are generally used for this purpose. This filtering 

involves operating a window mask of relatively smaller an image of size 3x3, 5x5 or 7x7 

over an EC image and replacing the pixel with the computed value (mean, maximum, 

minimum, median, according to a filter). This is repeated for every step movement of the 

window. The mean filter reduces image blurring and yields a very good result for EC 

images corrupted by impulse noise while the median filter reduces large amplitude sparse 

spikes (salt and pepper noise). However, mean, maximum and minimum filters are not 

effective in complete removal of noise unless the noise characteristics are known [18].  

1.4.2 Frequency domain filtering 

Frequency domain filtering is applied for removing additive noise and periodic noise when 

the frequency characteristics of noise and desired information are distinct [19]. Low-pass, 

high-pass and band-pass filters are used in the Fourier transformed (FT) domain 

depending on the prior knowledge of the frequency content of the desired information. 

This frequency domain information is transformed back to time domain using inverse FT. 

Deconvolution can be applied in frequency domain (equation 1.10). However, this fails if 

the psf image is unknown and noise is very high. Another frequency domain filtering 

called, Wiener filter, forms the foundation of data dependent linear least square error 

filters [16, 20]. For an image with additive noise, the Wiener filter is obtained as 

     
      

             
         1.11 
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where Pxx(f) and PNN(f) are the signal and noise power spectra. Wiener filter recovers the 

desired information from noise, if their spectra do not overlap. Wiener filter has a 

drawback that it requires prior knowledge of desired information or the power spectral 

density of noise and flaw. The use of conventional frequency domain filtering technique is 

beneficial if the desired information and noise have separation in bandwidths. 

1.4.3 Time-frequency domain filtering 

Time-frequency filtering is applied when time localization of spectral components is 

needed. This type of filtering is widely applied to non-stationary time domain signals in 

which specified frequency components exist. EC signal of a flaw is a classical example of 

a non-stationary signal in spatial domain. Short time Fourier transform and wavelet 

transform are examples of time-frequency domain filtering. The wavelet transform (WT) 

processing provides the ability to examine and retain the frequency of a signal/image at 

different scales and resolutions as compared to the Fourier transform [21]. For numerical 

implementation of the wavelet transform two different types of techniques viz., continuous 

wavelet transform (CWT) and discrete wavelet transform (DWT) are used [22]. 

In the continuous wavelet transform, the signal is multiplied with a function called mother 

wavelet, and the transform is computed separately for different segments of the time-

domain signal.  

        
 

  
        

   

 
          1.12 

where ψ(t) is the mother wavelet which is a continuous function in both time and 

frequency domains, τ is the translation factor that depends on time, and s is the scale factor 

which is a function of frequency [23]. Daughter wavelets are derived from the mother 

wavelet by varying the scaling factor. Thus, the frequency bandwidths of daughter wavelet 
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filters are different from each other. The CWT coefficients ψx(τ s,) are obtained by cross-

correlation of x(t) with different daughter wavelet filters. The time-frequency localization 

property of the wavelet filters enables one to use them as band-pass filters at the 

bandwidth of the wavelet. Selection of mother wavelet is important. Usually a wavelet is 

selected such that its shape resembles the shape of the desired features in a signal [15].  

Discrete wavelet transform was developed to save computation time by eliminating 

redundancy in CWT analysis. In DWT, as a first step, decomposition of signal into detail 

(high frequency components) and approximation (low frequency components) coefficients 

is done by employing a windowing technique with variable sized window enabling, dyadic 

sampling [24]. The next step involves, selective elimination of wavelet coefficients by 

thresholding. By performing inverse DWT using synthesis filter (discussed in the 

following section), denoised wavelet coefficients are reconstructed back into the time 

domain signal.  

In 2D DWT, decomposition is achieved by use of separable and non-separable wavelet 

filters. A separable filter implies that filtering can be performed in one dimension (rows) 

followed by filtering in another dimension (columns) [25]. In sub-band decomposition, 

sub bands are logarithmically spaced in frequency and represent octave level 

decompositions. It provides unique directional information that is useful for an image 

representation and feature extraction at different scales [23].  

An image is decomposed into four sub-bands and is schematically illustrated in Figure 

1.9 (a). These sub-bands are formed by the application of horizontal and vertical 

decomposition filters. Sub-bands with label LH1, HL1 and HH1 correspond to finest scale 

coefficients while sub-band LL1 represents coarse level coefficients [26]. The LL1 sub 
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HL1 

HH1 

HH2 

LH1 

LL2 

HH LH2 

HL2 

HL1 

HH1 LH1

H 

LL1 

(a)-One level decomposition (b)-Two level decomposition 

Figure 1.9 Typical denomination of sub-band 2D DWT. 

band is further decomposed to find out the next coarse level of the wavelet coefficients as 

shown in Figure 1.9 (b). 

The denoising performance of the wavelet processing of EC images depends on various 

parameters including the type of wavelet, thresholding method and threshold selection 

rules. Over the past decades, 47 different types unique wavelet filters have been identified 

and used. Selection of the best wavelet filter (within 47 wavelet filters) is very important, 

as it may affect the results of wavelet transform. The topic of wavelet selection has been 

addressed by various researchers and they are either qualitative or quantitative. 

1.4.3.1 Qualitative measure for selection of wavelet  

The wavelet filters are characterised by properties such as orthogonality, symmetry and 

compact support. An orthogonal wavelet is efficient in decomposing a signal into non-

overlapping subfrequency bands. The orthogonality of a wavelet means that the scaling 

function h(n), and wavelet function g(n) of wavelet are similar. The filter satisfies the 

following equality [27]: 
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                       1.13 

The orthogonality between wavelet coefficients and scaling coefficients is defined as 

                      1.14 

The scaling coefficients, which satisfy equation 1.14 are called quadrature mirror filters. 

On the other hand, the biorthogonal property is a generalisation of orthogonality where the 

scaling and the wavelet functions be neither of the same length and not even numbered. 

The scaling function is orthogonal to shifted version of wavelet function (g(n)) dual filter 

and satisfies the following equality and biorthogonal denomination comes from this 

feature. 

                          1.15 

Therefore, the quadrature mirror property is replaced with dual property. The filter 

coefficients are being symmetric leads to linear phase filtering. This is an important and 

required property for filtering operations. A compact support wavelet has nonzero basis 

function within a finite interval. This property allows the wavelet filters to efficiently 

represent signal/image that has localized features. 

One approach to wavelet selection is based on geometric shape matching of wavelet filters 

[28, 29]. It was found that components in a signal may be extracted effectively when a 

base wavelet has the identical shape of the desired signal. As far as shape matching is 

concerned, it is generally difficult to accurately match the shape of a signal to that of a 

wavelet qualitatively. These deficiencies motivate the study on quantitative measures for 

wavelet selection. 
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1.4.3.2 Quantitative measure for selection of wavelet 

The measures such as cross correlation, mutual information and distribution error have 

been used for wavelet selection [30, 31]. The energy content of a signal is a measure that 

uniquely characterises a signal. If a signal contains a particular frequency as the major 

component, then the wavelet coefficients corresponding to that particular scale will have 

relatively high magnitudes. Therefore, a wavelet filter that extracts maximum energy of 

the signal is considered as a optimal wavelet filter. Ambiguity arises with the presence of 

noise of same amount of energy in a number of scales. In that case, the spectral or energy 

distribution can be considered. The energy distribution between inter scale wavelet 

coefficients can be quantitatively described by entropy [32] as 

                       
 
          1.16 

where    
 
                             , where pi is the energy probability 

distribution of wavelet coefficients. The entropy of the wavelet coefficients is bounded by 

                            1.17 

in which Eentropy(s) will be equal to a) zero when wavelet coefficients are zero except for 

one particular scale of coefficient, and b)      , when wavelet coefficients are 

distributed for a number of scales (i.e., I/N). This reveals that an optimum wavelet should 

yield larger magnitude of a few wavelet coefficients at a particular scale than at other 

scales, leading to the minimum entropy.  

1.4.3.3 Wavelet thresholding 

The well known wavelet-based denoising depends on thresholding of wavelet coefficients 

[33]. Threshold optimisation is the center of many studies in signal or image enhancement. 
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Donoho proposed a procedure for denoising i.e., i) decomposition of the image into 

wavelet coefficients, ii) comparing the detail coefficients with a threshold value, 

iii) shrinking these coefficients close to zero to eliminate the effect of noise in the image 

and iv) reconstruction of image from the modified coefficients [34]. 

Hard and soft thresholding techniques are used for image denoising. Hard thresholding 

eliminates all coefficients smaller than a threshold and leaves the other without any 

change. On the contrary, soft thresholding shrinks the coefficients above a threshold. 

Mathematically hard and soft thresholds are expressed as: 

Soft thresholding:                         1.18 

where             
               

             
       1.19 

Hard thresholding:            
              

             
      1.20 

Finding an optimum value for thresholding is an important task. The smaller threshold will 

pass all coefficients correspond to noise and resultant images may still be noisy. On the 

other hand, larger threshold makes more number of coefficients to zero, which provides 

image smoothness, blurring and loss of desired information related to flaws.  

Commonly used threshold methods are universal threshold, minimax, Sqtwolog, Rigrsure 

and Heursure methods. The universal threshold estimates           where N is the 

number of pixels and    is the noise variations. The number of samples is large, then the 

universal threshold gives better results with soft threshold. The minimax estimates an 

optimal threshold in terms of L
2
 risk (minimum value from the mean square error). 

Sqtwolog estimates the threshold equal to the square root of logarithm of the signal length 

(N). SureShrink is an adaptive threshold estimator based on Stein’s Unbiased Risk 
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Estimator (SURE) and was proposed by Donoho and Johnstone [35]. It is a combination of 

universal threshold and SURE threshold. In this method, threshold estimate is assigned 

through the principle of minimising SURE to each dyadic resolution level. The threshold 

   by SureShrink is defined as  

                                                       
  

   1.21 

The goal of SureShrink is to minimise the mean squared error 

    
 

  
                  

           1.22 

where z(x,y) is the estimate of the signal while s(x,y) is the original signal without noise 

and n is the size of the signal. In spite of the high performance, Donoho and Johnstone in 

pointed out that SureShrink in extremely sparse and wavelet representations might obtain 

an inadequate threshold [35]. 

Chang et.al. proposed Bayes Shrink and it estimates a threshold value that minimises the 

Bayesian risk assuming Generalised Gaussian Distribution (GCD) prior [36]. In Bayesian 

risk minimisation,    is estimated by the transformation of the given noisy image y using a 

decision operator D as   =Dy. The optimal operator D is defined as  

                                     1.23 

Suppose xj,k is a set of wavelet coefficients, yj,k is the noisy image and x is the thresholded 

image, then minimising the difference between x and    is called risk minimisation. The 

prior probability should be known to minimise the risk R for Bayesian approach. The 

BeyesShrink threshold minimises the Bayes risk and is described as  

                                        1.24 
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On the other hand, Rigrsure estimates threshold based on the principle of minimising the 

Stein’s Unbiased Risk Estimator. Heursure is a hybrid scheme of the Rigrsure and 

Sqtwolog and this is useful to avoid over smoothing [37]. 

1.4.3.4 Reconstruction 

The reconstruction of the wavelet denoised coefficients is carried out by computing 

inverse 2D DWT by use of synthesis filters g
-1

(n) and h
-1

(n) determined by the equation 

(1.16), for each sub-level decomposition [38]. It may be noted that reconstruction is the 

mirror image of decomposition and associated with up sampling by a factor of two so that 

the reconstructed image can be shown in the original resolution. The schematic of 2D 

decomposition through scaling and wavelet function and reconstruction through synthesis 

filtering is shown in Figure 1.10. 

1.4.4 Statistical domain filtering 

Apart from analysing the frequency contents of EC data, statistical nature of the data can 

be considered for noise reduction. The statistical characteristics of EC signals of noise and 

flaw are studied in terms of their probability distribution. Figure 1.11 (a) shows the signal 

Figure 1.10 2D decomposition and 2D synthesis filtering for image reconstruction [22]. 
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from a flaw and the corresponding probability density function (pdf). The EC signal of 

composite noise (variations in material properties in weld region) and its corresponding 

pdfs are shown in Figure 1.11 (b).  

As per central limit theorem, Gaussian distribution of composite noise gives the evidence 

that the composite noise is independent variable and has statistical independency. As 

clearly seen from the figures, statistically independent nature of noise shows Gaussianity 

Figure 1.11 EC signal and pdf of (a) flaw alone (b) composite noise. 

(a) 

(b) 

Flaw signal 
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(b) Projection of the data on coordinates  

Figure 1.12 Principal component analysis of 2D data. 

(a) 2D data on Cartesian coordinates 

and distinct from flaw information. This indicates the measure of Gaussianity in the EC 

image can be used for identification of noise. The statistical technique that utilises 

information of variance and entropy of the signal or image called, blind source separation 

technique, is found attractive. Two promising blind source separation techniques are 

Principle Component Analysis (PCA) and Independent Component Analysis (ICA). The 

PCA and ICA techniques utilise variance and Kurtosis as a statistical measure to provide 

linear transformation of data to a new coordinate system. Principal component analysis 

Principal component analysis is a method of linear transformation of data to a new 

coordinate system with order of variations (principal components). Schematic projection 

of data and their Eigen value as a new coordinate system are shown in Figure 1.12 (a) and 

(b) respectively. The transformation process of data through decomposing and 

reconstruction is termed as Karhunen Loeve (KL) transform [39] 

1.4.4.1 Principle component analysis 

The KL transform calculates the Eigen values (λ) and Eigen vectors (ν) of covariance 

matrix C. Further the principal component K is estimated by multiplying the normalised 

input data (B) with the transpose of the Eigen vector matrix and is expressed as  
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                 1.25 

KL transform has been used as noise reduction method in EC testing [40, 41]. The PCA 

technique has been utilised to improve the quantification of the pulsed eddy current signals 

for flaw detection and to classify cracks located in the second lower layer of aircraft lap-

joints [42, 43]. The literature survey on these topics found the use of PCA, to optimise the 

feature set of EC signals.  

1.4.4.2 Independent component analysis 

Independent component analysis separates a multivariate signal into additive 

subcomponents by assuming that they are all statistically independent of each other. ICA 

aims to maximise the statistical independence of noise (unconstrained sources) and at the 

same time reducing the divergence among the spatially constrained source [44]. ICA is 

often described as an extension to PCA that un-correlates the signals of higher order 

moments and produces a non-orthogonal basis. PCA and ICA techniques provide linear 

transforms and they differ the way statistical information is utilised to carry out the 

transform. However, the information in signals is mutually correlated, PCA technique fails 

to process the signals that are independent of each other.  

ICA technique transforms the input signals into the ICs subspace, where the direction of 

the components is statistically independent. Suppose N statistically independent signals, 

ψ (t), i = 1,... N is measured using N sensors and resulted N observation signals xi(t), i = 

1, ...N and are linear mixtures of N statistically independent components Si. A fundamental 

aspect of the mixing process is that the sensors must be spatially separated (e.g. 

microphones that are spatially distributed around a room) so that each sensor records a 
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different mixture of the sources. With this spatial separation assumption, mixing process 

with matrix multiplication is written as 

nn2211i Sa...........SaSaX         1.26 

The entire system of n measured signal as X=AS where A is an nXm matrix containing the 

characterised mixing coefficients for the linear mixture [45]. The independent components 

are obtained from the estimation of W, known as de-mixing matrix (A
-1

), as.  

S=WX           1.27 

It is based on the postulation that the sum of two independent signals usually has a 

distribution that is closer to Gaussian distribution of the two original signals. According to 

the central limit theorem the distribution of a sum of independent signals with arbitrary 

distributions tends a Gaussian distribution. Thus a Gaussian signal can be considered as a 

linear combination of many independent signals. Schematic projection of multivariate 

distribution of Gaussian variables and non-Gaussian variables is shown in Figure 1.13 (a) 

and (b) respectively. The data in Figure 1.13 (b) are clearly divided into two clusters.  

S1 

S2 

x1 

x2 

(a) (b) 

Figure 1.13 Independent component analysis of 2D data. 
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The direction of maximum variance (principal component) along the vertical provides no 

separation between the cluster, while non-Gaussianity along the horizontal provides 

optimal separation of the clusters. 

Non-Gaussianity is an important and essential principle in the estimation of mixing matrix 

A. To use non-Gaussianity for estimation of A, there needs to be a quantitative measure of 

non-Gaussianity of a signal. Two commonly used measures are Kurtosis and entropy. 

The Kurtosis of a signal (s), is defined by [46]  

kurt(s) = E{s
4
}−3(E{s

4
})

2        1.28 

when data is pre-processed to have unit variations and zero mean, Kurtosis is equal to the 

fourth moment of the data where E{s
2
}=1. For a Gaussian signal, E{s

4
} = 3(E{s

4
})

2
 and 

hence, its Kurtosis is zero. The Kurtosis is zero for Gaussian random variable and non-

zero for non-Gaussian random variables. Random variables that have a negative Kurtosis 

is called sub-Gaussian (flaw) and with positive Kurtosis is called super-Gaussian. Kurtosis 

has been widely used as measure of Non-Gaussianity in ICA because of its computational, 

theoretical and simplicity. 

From the information theory, entropy is considered as the measure of randomness of a 

signal. Entropy H of discrete-valued signal s is defined as 

H(S) = −∑P(s = ai)logP(s = ai)        1.29 

This definition of entropy can be generalised for a continuous valued signal (s), called 

differential entropy, and is defined as 
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H(S) = −∫ p(s)logp(s)ds         1.30 

The information theory states that Gaussian signal has the largest entropy. For the signals 

that have spiky pdf, i.e., when the variables are clearly clustered, entropy will be small 

[47]. The problem in using differential entropy is, however, that it is computationally 

difficult to determine and it requires an estimate of the pdf. To avoid the problems 

encountered with the differential entropy, new approximations were developed based on 

the maximum entropy principle as  

        
 
                      

       1.31 

where ki are positive constants,   and y are Gaussian variable of zero mean and unit 

variance, G are the non quadratic functions and are 

      
 

  
                    1.32 

                           1.33 

where 1≤a1≤2 is a constant. The non-Gaussianity measured by the approximation of J(y) 

can also be iteratively used such that the direction at which WX maximises the non-

Gaussianity and minimises the randomness in the estimation of W [48].  

The pdf of noise in EC images (refer Figure 1.11), shows Gaussian distribution. As per the 

central limit theorem, the linear combination of noise having statistical independence 

shows Gaussian distribution, gives the evidence that the noise in EC images are of 

statistically independent. The statistical independence of data is measured in terms of 

Gaussianity and ICA that utilises the measure of Gaussianity for separation of statistical 

independent information is a promising technique for noise removal in EC images.  
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Before performing ICA preprocessing steps of centering and whitening are generally 

carried out. The centering step is commonly performed by subtracting the mean (m) of the 

data (x). This results in centered data Xc as 

                 1.34 

This step simplifies the ICA algorithm, and de-mixing matrix is estimated using the 

centered data. The whitening on data involves linearly transforming the data such that 

which are uncorrelated have unit variance. To perform whitening transformation, Eigen 

value decomposition of data X is used. 

                      1.35  

where V is the matrix of Eigen vectors of        and D is the diagonal matrix of Eigen 

values i.e., D=diag {λ1, λ2,…. λn}. Whitening transforms the mixing matrix into a new 

orthogonal coordinate system  

                               1.36  

Whitening thus reduces the number of parameters to be estimated. Instead of having to 

estimate the new elements of the matrix Xc, the orthogonal matrix has n(n-1)/2 degrees of 

freedom. This step of whitening significantly reduces the computational complexity of the 

ICA.  

1.5 Summary 

Eddy current testing is important for nondestructive detection of flaws in stainless steels 

used in nuclear and other industries. EC signals are used for detection of flaws while EC 

imaging is beneficial for three dimensional representations of flaws. EC techniques are 

simultaneously influenced by variations in surface roughness, probe lift-off, electrical 



Chapter 1 

34 

 

conductivity, magnetic permeability and geometrical variations and are reflected as noise 

in EC images. Noise reduces the detection sensitivity to shallow flaws that are detrimental 

to the structural integrity of engineering components. The removal of noise by using 

several filtering techniques in time, frequency, time-frequency and statistical domains are 

discussed. Among them, DWT based on multiresolution analysis and ICA based on 

statistical characteristic of noise are found promising, for removal of noise in EC images.  
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Chapter 2 : Literature review and motivation 

Preamble 

This chapter covers the reported literature on noise removal in eddy current NDE. It also 

identifies the gap areas based on the literature survey, which has helped in setting the 

motivation and identifying the objectives of the research work. This chapter also outlines 

the organization of the thesis. 

2.1 Literature Survey 

As discussed in Section 1.3, variations in lift-off, material properties and geometry 

produce large amplitude noise in EC images and degrade the detection sensitivity of the 

technique. Hence, denoising is an essential step for reliable detection of flaws. Several 

approaches were proposed by many researchers for noise removal [41-49]. 

Koyama et.al., developed an EC probe consisting of a wide tangential exciting coil (length 

40.0 mm, width 30.0 mm, height 30.0 mm) and differential receiver coils (length 4.0 mm, 

width 1.0 mm, height 7.0 mm) for elimination of noise by weld zone in AISI 304 stainless 

steel plates [49]. The tangential coil was designed for inducing uniform eddy currents in 

the plate and a differential receiver coil was used for detecting the normal component of 

the induced magnetic field. In this study, detection performance of a conventional pancake 

probe (10.0 mm outer diameter) and the uniform eddy current probe was compared. The 

schematic of the uniform EC probe is shown in Figure 2.1 (a). ECT of weld zone was 

conducted with SS plates of 1.9 mm thick having a flaw of length 5.0 mm, width 0.2 mm 

and depth 1.7 mm in the weld zone (width 5.0 mm) using the pancake probe and uniform 

EC probe at a test frequency of 70 kHz. Figure 2.1 shows the EC image obtained for a 

flaw perpendicular to the weld centreline using the pancake probe and using the uniform 
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EC probe. They reported that the uniform EC probe was less influenced by weld variations 

due to the self-nulling feature of the probe as compared to the pancake probe [49]. They 

reported that for flaw detection on the surface of the weld zone, repeated scans with 

change in the direction of the probe is necessary, thus the testing is time-consuming. 

 

 

 

 

 

 

Xiang et.al., developed a multifrequency rotating EC probe system that consists of two 

pancake probes and one plus point probe having two coils oriented orthogonal to each 

other, to reduce the influences from support plate and probe wobble during ECT of steam 

generator tubes [50]. Figure 2.2 (a) shows the schematic of the rotating probe and typical 

EC image from a steam generator tube having axial and circumferential flaws.  

Figure 2.1 (a) Structure of the uniform EC probe, EC images of a flaw of depth 1.7 mm in 

a weld zone using (b) pancake probe and (c) uniform EC probe [49]. 

(b) (c) 

weld 

 

 

weld+ flaw 

 

 flaw 

weld 

(a)  Uniform EC probe 
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In addition to probe design, several researchers reported filtering techniques such as 

median filter and low pass filter as a pre-processing tool to reduce noise in EC signals [42, 

51]. Udpa et al. used a few variant Fourier descriptors to estimate depth of flaws in heat 

exchanger tubes and under support plates [52]. Rao et al. proposed an intelligent imaging 

scheme using artificial neural network for fast and automated detection, imaging and 

characterization of surface flaws in 3.0 mm thick SS plates and reported a tenfold 

reduction in inspection time without compromising the probability of flaw detection [53]. 

The Fourier filtering technique has been applied to EC signals having unique and different 

frequency components for flaws and noise. For elimination of noise by Fourier filtering, 

prior knowledge of desired signal or the power spectral density of both noise and flaw is 

required [54]. However, due to the attractive properties like sparsity, edge detection and 

multiresolution, wavelet transform (WT) has gain popularity for spatially adaptive filtering 

applications e.g. for elimination of undesired signals [36]. 

Lopez et.al., applied discrete wavelet transform (DWT) for denoising the probe wobble 

noise caused by slack between EC probe and tube walls of steam generator tubes. They 

studied the efficiency of using four selected wavelet filters (Haar, Birothogonal 3.5, 

Biorthogonal reverse 3.5, Daubechies 5) on EC signals acquired from a SS tube (19.05 

mm internal diameter, 1.24 mm wall thickness) having two artificial through holes of 0.9 

Figure 2.2 (a) Rotating probe geometry and (b) EC image from steam generator tube. 

(a) (b) 
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mm and 1.1 mm diameter [55]. The efficiency of four wavelet filters was compared by the 

retention of unchanged flaw amplitude. They observed that Db5 wavelet could efficiently 

remove the noise without reducing the flaw amplitude as compared to others. They 

attributed this performance to wavelet function shape that closely matches the EC signal of 

the holes. 

Thriunavukkarasu et.al., compared the noise reduction as well as enhancement of remote 

field eddy current (RFEC) signals of flaws in bend region of steam generator tubes using 

Fourier filtering, cross-correlation and wavelet transform based techniques [56]. The noise 

considered to be from expansion bend regions, exciter–receiver coil misalignment, 

bending stresses, probe wobble and magnetic permeability variations that hindered 

detection of flaws. They reported that CWT based technique can unambiguously detect 

10% wall loss present in the bend region with a SNR better than 7 dB. 

It is interesting to learn from literature that correct choice of wavelet and selection of the 

wavelet coefficients are important for reduction of noise. There have been efforts to 

estimate the threshold for coefficients. Commonly used threshold selection methods are 

universal threshold, minimax, Sqtwolog and Rigrsure and Heursure methods. The 

threshold selection algorithms have been studied by Lazaro et.al., with three different rules 

(a) universal, (b) minimax and (c) SURE for different wavelet filters and stated that the 

universal threshold has given the best SNR [57]. The studies of Pardo et.al., with SURE 

threshold, has shown better performance than universal and minimax thresholds [54]. 

However, information related to the applicability of the wavelet threshold selection 

method for noise removal in EC images is scarce. A systematic study on the comparative 

performance of the Heursure, Rigrsure and Sqtwolog methods on EC image denoising is 

beneficial for reliable detection of flaw with minimal reduction in amplitude.  
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Apart from the frequency and wavelet transform based filtering techniques, application of 

statistical techniques are also reported for noise reduction. Principal component analysis 

(PCA), technique was reported for enhanced detection of flaws in aeronautical lap-joints 

[58, 42]. Diraison et al. employed imaging film based EC imager for detection of buried 

flaws in aeronautical lap-joints in the presence of large amplitude noise from the rivets. 

They applied PCA technique and observed that it successfully separated the noise from the 

rivet structure [59]. Rao et al. reported application of PCA technique for noise reduction 

and for enhancement of magnetic flux leakage images of flaws in carbon steel plates [60]. 

Kalyanasundaram et al. proposed an Eigen value based approach for enhancement of EC 

images. In this approach, Eigen pairs having maximum information related to flaws are 

determined and utilised to reconstruct noise-free images [61].  

Shin et.al., applied ICA technique to ECT data from steam generator tubes with support 

plate. They studied the separation of signals due to flaw and support plates and observed 

the successful separation of both the signals. They added random white noise (50 dB of 

signal power) and evaluated the performance of the ICA technique to filter the noise. They 

observed higher SNR and reported that ICA technique can be used to reduce noise in EC 

signals [62].  

Joubert et.al., investigated the application of PCA and ICA techniques to separate signals 

of rivets from flaw response during the inspection of riveted lap-joints. They observed that 

the separation efficiency of the PCA technique increases monotonically with length of 

flaw [63]. 
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2.2 Motivation for research 

Shallow flaws (depth less than 10% of wall thickness) in engineering components are 

detrimental. Hence, early detection of shallow flaws in engineering components is desired. 

Disturbing noise due to variations in lift-off and material properties during EC testing of 

stainless steel plates and welded structures is a concern. The need for improving detection 

sensitivity for smaller flaws in the presence of noise has stimulated interest to investigate 

and develop approaches for removal of noise in EC images, obtained especially during 

remote EC inspection of curved SS plates and weld regions. 

As inferred from the literature discussed in Section 2.1, studies on noise removal are 

limited to processing signals or images influenced by noise due to one disturbing variable 

at a time. However, in practice, the images are simultaneously influenced by disturbing 

noise from different sources like variations in lift-off, material properties and geometry. 

Development of image processing methods for removal of such noise is challenging. 

Systematic investigations have not been reported in processing the EC images to eliminate 

this composite noise. Hence, there is a strong need to develop image processing 

approaches that can simultaneously remove noise in EC images.  

Studies reported in open literature show that time-frequency based wavelet transform 

method is promising for denoising of EC images of flaws. However, systematic studies 

related to the selection of optimum wavelet, decomposition level, selection of wavelet 

coefficients and thresholding methods for EC images are very limited. For automated 

selection of optimal wavelet among the available 47 wavelet filters and suitable optimum 

decomposition level there is no clear cut approach reported in the literature. Hence, there 

is a need to evolve an approach for automated selection of an optimal wavelet and 

thresholding method to efficiently reduce noise in EC images. Information related to 
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wavelet processing of such composite noise is limited. It is worth studying the 

performance of the DWT based processing approach for handling composite noise in EC 

images. 

Literature survey reveals that the statistical domain based PCA and ICA techniques are 

being increasingly applied to EC signals and images of flaws. It is interesting to note that 

the composite noise due to different disturbing variables (random) follow Gaussian 

distribution according to the central limit theorem. In this context, it may be beneficial to 

develop ICA based processing approach, exploiting the Gaussianity of the noise and the 

non-Gaussian nature of the desired information of flaws in EC images.  

Exploiting the statistical independence of noise as well as the spatial frequency 

localization of flaws by DWT in a sequence of processing is attractive to remove the 

composite noise and to retain the flaw amplitude in EC images. A clear benefit exists with 

a study to identify the most optimum sequence of a processing approach using DWT and 

ICA techniques and develop a hybrid image processing approach. A detailed study in this 

regard is beneficial and desired for automated detection of shallow flaws from EC images 

of austenitic stainless steel plates and welds. 

2.3 Objective of research 

The objective of the research work is to develop image processing approaches for removal 

of composite noise from EC images of flaws in stainless steel plates and welds. In order to 

achieve this, studies are focused on developing approaches that exploit the statistical 

independency of composite noise and the spatial frequency localization of flaws in EC 

images. The research is focussed towards removal of noise in EC images and no efforts 
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are made to enhance the flaw information. The following are the objectives of this 

research:  

 To develop DWT based approach for reduction of noise in EC images based on 

automated selection of wavelet filter, decomposition level, and thresholding and 

evaluation of performance of the approach 

 To develop ICA based approach for reduction of noise in EC images based on iterative 

estimation of mixing matrix for separation of statistically independent component and 

evaluation of performance of the approach 

 To develop a hybrid image processing approach that combines the capabilities of the 

DWT based approach and the ICA based approach for removal of composite noise in 

EC images and evaluation of performance of the hybrid approach 

2.4 Organisation of the thesis 

The thesis has been organised in four major chapters addressing the set of objectives, 

towards establishing effective noise reduction in eddy current images, as given below: 

Chapter 3 presents the experimental set up developed for eddy current imaging on planar 

and tubular geometries. It also describes the details of noises and flaws considered for 

experimental investigations. The chapter proposes two new parameters viz Noise 

Reduction Percentage and Flaw Reduction Percentage to assess the noise reduction and 

flaw retention capabilities of the proposed approaches. 

Chapter 4 discusses the development of DWT based image processing approach for 

automated removal of noise in eddy current images. The chapter proposes criteria for 

optimisation of wavelet filter, decomposition level, and selective elimination of noise 

through the implementation of semi-local paradigm for wavelet thresholding method. The 

chapter also discusses the denoising ability of the proposed approach. 



Chapter 2 

43 

 

Chapter 5 details the development of ICA based approach for reduction of noise in EC 

images based on iterative estimation of de-mixing matrix for separation of statistically 

independent component. The performance of the ICA based approach has been analysed 

and compared with that of the DWT based approach in this chapter. 

Chapter 6 discusses the development of a hybrid image processing approach that combines 

the capabilities of the DWT based approach and the ICA based approach for efficient 

removal of composite noise in EC images. This chapter also discusses the experimental 

investigations carried out to study the influence of test parameters on noise removal.  

Chapter 7 summarises the major conclusion drawn from the research work and provides 

the scope for future research.  
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Chapter 3 : Experimental details 

Preamble 

This chapter provides the details of three modules (EC instrument, scanning system and 

data acquisition system) essential for EC imaging on planar and tubular geometries of 

specimens. 

EC images of flaws representing real testing conditions are considered for reduction of 

noise using the DWT based and ICA based image processing approaches. Experimental 

imaging that maps the electrical conductivity and magnetic permeability at a point of 

interrogation of probe in the test specimen is carried out. In order to represent the real 

world flaws, artificial (EDM) notches of different dimensions are machined by electro-

discharge machining (EDM) process in stainless steel specimens of planar, welded and 

tubular geometry are considered.  

3.1 Design of imaging setup 

The imaging setup is designed for acquiring experimental images from plates and tubes 

having single and multiple flaws. The schematic of the experimental imaging setup used to 

carry out raster scan is shown in Figure 3.1. This setup consists of three important modules 

viz. i) EC instrument comprising of signal generator and probe, ii) automated scanner, and 

iii) data acquisition system. 

3.1.1 EC instrument 

The EC instrument consists of a sine wave generator, signal conditioning circuit, 

demodulator and display unit. The sine wave generator generates a single or two 
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frequency sine waves for excitation of the EC probe. The output of the sine wave 

generator is conditioned and this energizes the EC probe. The change in impedance of the 

EC probe is measured in terms of voltage using a Wheatstone bridge circuit. The measured 

voltage is separated into resistance (horizontal) and a reactive (vertical) component by a 

phase discriminator circuit and the response is displayed in xy plane known as the 

impedance plane diagram. A commercial EC instrument-Model Insis EX-4 (supplied by 

M/s. Technofour) is used. 

 

3.1.2 EC probe 

Surface absolute type (pancake) probes are used for testing of plates as well as tubes. 

Probes of 3.0 mm, 5.0 mm and 20.0 mm diameter having wide range of operating 

frequency from 50 kHz to 500 kHz are used. The operating frequencies of 75 kHz (2δ) and 

150 kHz (1δ) are used for imaging of the stainless steel plates. For imaging of stainless 

steel tubes, pancake probe of 3.0 mm diameter operating at 350 kHz is used.  

 

2) Scanning system 

Post processing 

3) Data acquisition system 

Signal generator 

Signal conditioning 

circuit 

Demodulator 

Oscilloscope 

Scanner motion controller 

Data acquisition 

 Figure 3.1 Block diagram of the EC imaging setup. 

EC probe 

1) EC instrument 
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3.1.3 Scanning system  

The XY scanning system used for imaging of plates consists of stepper motor controlled X 

and Y scanning arms and a holder for mounting the EC probe. The scanner has a 

maximum coverage area of 500.0 mm x 500.0 mm. The minimum possible scan pitches 

for both X and Y stages are 0.01 mm and the reposition accuracy is 0.01 mm. The EC 

instrument is interfaced to the XY scanner for automated raster scanning of the EC probe 

over the SS plates and welds. The scanner is controlled using a NI PCI-7330 motion 

control card and LabVIEW software. The raster scanning at 1.0 mm/s is synchronised with 

the data acquisition system to acquire data at discrete points during the raster scanning. 

Figure 3.2 shows the photograph of the setup used for EC imaging of plates. 

For EC imaging of flaws in tubes, Zθ scanner is used. The EC instrument is interfaced to 

the Zθ scanner and controlled using NI PCI-7330 motion control card and LabVIEW 

software. The tube in the Zθ scanner is rotated in steps of 1.0 deg. along the theta 

direction. The rotation of tube along the theta direction is carried out for every 1.0 mm 

movement of the probe along Z direction over 15.0 mm length. Figure 3.3 shows the 

EC Instrument 

EC Probe 

Plate 

XY Scanner 

Figure 3.2 Photograph of the setup used for EC imaging of plates. 
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EC Instrument 

Zθ Scanner 

EC Probe 

Tube 

Figure 3.3 Photograph of the setup used for EC imaging of tubes. 

photograph of the setup used for EC imaging of tubes. 

3.1.4 Data acquisition system 

The EC signals are acquired using a 12 bit analog-digital converter (ADC) card having 

sampling frequency of 1 kHz. During data acquisition, 1000 data points are acquired as the 

probe is kept stationary at every 1.0mm, and its average value is taken as the acquired data 

for that probe position. The measured resistive and reactive component signals are 

digitized and magnitude of the voltage (refer Section 1.2.3) is used for formatting images. 

3.2 Details of specimens 

3.2.1 Material 

The specimens made of AISI type 316 SS (18.0% Cr, 8.0%Ni, 2.0%Mo, 2.0%Mn, 0.75% 

Si, 0.1%N, 0.08%C and Bal., Fe) are considered in this study. 
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3.2.2 Geometry 

The large structures of critical components have planar and welded parts. Fuel clads and 

heat exchanger tubes are also found in nuclear industry. EC signals are influenced by 

variations in lift-off, material properties (electrical conductivity and magnetic 

permeability) in welded part in planar geometry and variation in geometry (wall thickness 

variations) in thin tubular component. Hence, geometries of 1) plate 2) weld region of 

plate (tungsten inert gas welding) and 3) thin tube are considered for imaging. The details 

of the specimens are given Table 3.1. The probe excitation frequency is determined based 

on the thickness of the part and using equation 1.9. 

Table 3.1 Detai ls  of  dimension of  specimens used .  

 

Geometry Dimension, mm  Absolute surface 

Probe Diameter, mm 

Frequency, 

kHz 
Length x Width x Thickness 

Plate 150.0 x 150.0 x 5.0 3.0, 5.0, 20.0 150, 75, 20 

Weld plate 350.0 x 150.0 x 5.0 3.0, 5.0 150  

Tube outer diameter:5.1  

inner diameter 4.36 

wall thickness: 0.37  

3.0 350  

 

 

3.3 Dimensional details of machined Flaws  

Notches of different lengths (6.0 mm, 4.0 mm), widths (0.5 mm, 0.3 mm) and depths 

(0.5 mm, 1.0 mm, 2.0 mm) have been fabricated by electro discharge machining (EDM) 

process in 5.0 mm thick AISI type 316 SS plates and welds. The dimensions of the 

notches machined in plates, weld region of plates, and thin wall tubes are listed in Table 

3.2, 3.3 and 3.4 respectively. The tolerance in the machining of notches is ± 0.05 mm.  
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Table 3 .2  Dimensions of  machined notches in  SS 316 plates .  

 

Plate No. Flaw No. Flaw Dimension (Length x Width x Depth), mm 

 

B1 

F1 4.0x 0.5 x 0.3 

F2 4.0x 0.5 x 0.5 

F3 6.0x 0.5 x 0.7 

F4 6.0x 0.5 x 1.0 

B2 F5 20.0 x 0.5 x0.7 

F6 4.0x 0.5 x 0.7 

B3 F7 4.0x 0.3 x 0.5 

F8 4.0x 0.3 x 1.0 

F9 6.0x 0.5 x 0.7 

F10 6.0x 0.5 x 1.0 

B4 F11 4.0 x 0.3x 0.3 

F12 4.0 x 0.3x 0.5 

F13 6.0 x 0.3x 0.7 

F14 6.0 x 0.3x 1.5 

F15 8.0 x 0.3x 1.0 

F16 8.0 x 0.3x 2.0 

F17 8.0 x 0.5x 0.5 

F18 8.0 x 0.5x 1.0 

F19 8.0 x 0.5x 2.0 

B5 F20 6.0 x 0.3x 1.0 

F21 6.0 x 0.3x 2.0 

F22 6.0 x 0.3x 3.0 

F23 6.0 x 0.3x 3.5 

F24 6.0 x 0.3x 4.0 

F25 6.0 x 0.3x 4.5 

 

 

 

 

Table 3 .3  Dimensions of  machined notches in  weld region of  SS weld 

plates .  

 

Weld 

Plate No. 

Flaw 

No. 

Flaw Dimension, mm Type of Flaw 

Length (L) x Width (W) x Depth (D) 

 

 

W1 

F26 4.0 x 0.25 x 0.2 Longitudinal notch 

F27 4.0 x 0.25 x 0.3 

F28 4.0 x 0.25 x 0.5 

F29 6.0 x 0.25 x 0.5 

F30 6.0 x 0.25 x 1.0 

W2 F31 6.0 x 0.25 x 0.5 Longitudinal notch 

F32 6.0 x 0.25 x 2.0  

Transverse notch F33 8.0 x 0.25 x 0.3 

F34 8.0 x 0.25 x 0.5 

F35 8.0 x 0.25 x 0.6 
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Table 3 .4  Dimensions of  machined notches in  SS 316 tubes .  

 

 

The notches having length 4.0 mm, width 0.5 mm and depth 0.5 mm (10% wall thickness) 

have been considered as shallow flaws among the machined flaws. The detection and 

enhancement of shallow flaws have been particularly considered for assessing the noise 

reduction capability of the processing approaches. The photographs of the specimens 

(plate, weld region and thin tube) having machined flaws are shown in Figure 3.4. 

Tube No. Flaw 

No. 

Flaw Dimension, mm Type of Flaw 

Length (L) x Width (W) x Depth (D) 

T1 F36 4.0x 0.1x 0.075 Longitudinal notch 

F37 4.0x 0.1x 0.075 

T2 F38 4.0x 0.1x 0.075  

Transverse notch F39 4.0x 0.1x 0.075 

F40 4.0 x 0.1 x 0.15 

Figure 3.4 Photographs of the specimens in which machined flaws have been introduced 

by EDM process. 

(c) Tube 

(b) Weld region 

(a) Plate 
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3.4 Feritscope 

In AISI type 316 stainless steel, magnetic delta ferrite in the welded region in the range of 

5-7% is acceptable as it reduces micro fissuring and hot cracking susceptibility [64]. The 

presence of delta ferrite introduces variations in magnetic permeability. The delta ferrite 

content in welds is determined using Feritscope FMP30 (M/s. Fischer Technology), a 

hand-held device that works on the magnetic inductive principle and is shown in Figure 

3.5. For the magnetic permeability measurement, magnetic field is induced on a material 

through magnetic field coupling using coil and the resulting field strength is measured to 

estimate the ratio of magnetic induction to magnetic field strength. The delta ferrite 

content is obtained with an accuracy of 0.1%.  

 

In order to obtain the comparable measurements, calibration of the Feritscope has been 

carried out using the standard specimens having varying ferrite content in the range of 

2.54% to 34.2 %. After completing the calibration procedure, the Feritscope probe has 

been placed on the weld surface and delta ferrite measurements were carried out in a raster 

manner at a step size of 2.0 mm starting from one end of the specimen to the other end, as 

depicted in Figure 3.6. The profile of the permeability variation is shown in Figure 3.6. 

Figure 3.5 The photograph of Feritscope used for measurement of delta ferrite. 
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The delta ferrite in the base metal was found to be 0.4%, and in the weld region was found 

to be 4%. It is also observed that for the delta ferrite % decreases with distance from the 

weld centerline.  

3.5 Generation of EC images 

EC imaging of the test specimens is carried out by scanning the ECT probe over EDM 

notches machined. EC images of notches under variations in lift-off, material properties 

and geometrical variations are acquired. The EC images are processed using the proposed 

approaches for noise removal.  

3.5.1 EC imaging of plates 

Figure 3.7 (a) shows the raster scanning of an EC probe over the plate B1 having four 

flaws F1 to F4 (listed in Table 3.2). Typical EC image acquired with a constant lift-off of 

0.5 mm from plate B1 is shown in Figure 3.7 (b). To simulate the variation in lift-off 

situation encounter during remote inspection of curved surfaces and weld region of 

components, random lift-off variation (< 1.5 mm) is specifically introduced during 

scanning by the movement of flexible probe holder. Figure 3.7 (c) shows the EC image 

Figure 3.6 (a) Schematic of raster scan of weld region and (b) the corresponding delta 

ferrite measured using Feritscope.  

5.0 mm 

 

(a) (b) 
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acquired from the same notches with random lift-off variations (0.0 mm to 1.5 mm), 

simulating the situation encountered during remote inspection of curved surfaces and weld 

regions of components. Figure 3.7 (c) shows clearly the influence of flaw detection where 

small amplitudes from two shallow flaws (F1 and F2) are masked by noise due to 

variations in lift-off.  

 

F1 

F2 

F3 

F4 

F1 

F3 

F2 
F4 

Figure 3.7 (a) Raster scan on a SS plate, EC images of flaws (F1-F4, in Table 3.2), 

acquired (b) at constant lift-off of 0.5 mm and (c) variations in lift-off (0.0 mm to 

1.5 mm). 

F3 F4 

F2 F1 

(c) 

(b) 

(a) 

ROI 

ROI 
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In order to assess the noise removal capability of the proposed approaches, a new 

parameter called the noise reduction percentage (NRP), has been proposed.  

The NRP is calculated as  

     
     

  
              3.1 

where NI is the rms of noise in ROI in the input image before processing and NP is the rms 

of noise in ROI in the image after processing. For NRP estimation, region between two 

flaws is considered as the region of interest (ROI) of noise as shown in Figure 3.7 (b) and 

(c). These ROIs from the identical region are used for estimating rms of noise in the input 

image as well as in the processed image. The higher the NRP, better the noise reduction 

capability. 

Apart from noise reduction, the quality of flaw information is assessed on the basis of 

Signal to Noise Ratio (SNR) which is defined as logarithmic ratio of the mean value of the 

flaw signal (μsignal) to the standard deviation of the noise ( noise ) [14].  

         
          

           
         3.2 

The retention ability of flaw information is being assessed on the basis of reduction in 

peak amplitude of flaw image. A new parameter called Flaw reduction percentage (FRP), 

has been proposed. The degradation in flaw amplitude is estimated in terms of FRP as 

     
     

  
                3.3 

where Fc is the peak amplitude of flaw in the image obtained at constant lift-off (0.3 mm) 

and Fd is the peak amplitude of flaw in the output image processed through the proposed 
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approaches, where the input images are obtained at variable lift-off. The smaller the FRP, 

the better the flaw retention ability and is desirable. 

3.5.2  EC imaging of weld plates 

Figure 3.8 (a) shows the raster scan of an EC probe over the weld region. Figure 3.8 (b) 

shows the EC images acquired from the base metal region having machined EDM notches 

of the same dimension in weld plate W2 (F33 and F34 listed in Table 3.3). 

(d) 

F34 
F33 

(c) 

F33 
F34 

(b) 

F34 F33 

5.0 mm 

F34 F33 

Figure 3.8 (a) Raster scan on a weld plate, EC images of flaws (F33 and F34 in Table 3.3) 

in (b) base metal region (c) weld region (lift-off 0.5 mm) and (d) variations in lift-off (0.0 

mm to 1.5 mm). 

 
(a) 
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 Figure 3.8 (c) shows the typical EC image of the two flaws (F33 and F34) in weld plate 

W2 acquired at constant lift-off (0.5 mm). During imaging, large amplitude signal is 

observed across the weld region as compared to the base metal region (Figure 3.8 a). This 

is attributed to the noise due to material properties variations (refer Section1.3.2).In order 

to assess the electromagnetic characteristics across the weld region, the percentage of delta 

ferrite has been measured using Feritscope (refer Section 3.4). Further, added influence 

due to lift-off variations is shown in Figure 3.8 (d). From Figure 3.8, it is evident that the 

flaws are buried in the composite noise, necessitating the need for noise reduction for 

reliable detection of flaws in the base metal as well as in the weld region.  

3.6 Summary 

An EC imaging setup comprising of EC instrument, probe, scanning system, and data 

acquisition system has been established. A separate scanning system has been developed 

for imaging of SS plates and SS tubes. The notches of varying depths have been machined 

by EDM process in the base metal region and weld region of plates and thin walled clad 

tubes made of AISI type 316 stainless steel. EC images with a) variations in lift-off, b) 

variations in material properties and c) composite noise (variations in material properties 

and lift-off) have been acquired and two new parameters viz NRP and FRP have been 

proposed, for the first time, to assess the noise reduction and flaw retention capabilities of 

the proposed approaches.  
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Chapter 4 : Discrete wavelet transform based 

approach for automated noise removal 

Preamble  

This chapter proposes optimisation of wavelet filter, decomposition level and thresholding 

in DWT based approach for automated noise removal. The chapter presents criteria for 

optimisation of wavelet filter, decomposition level and selective elimination of noise 

through the implementation of semi-local paradigm for wavelet thresholding method. The 

denoising capability of the DWT based approach has been studied using experimental EC 

images of flaws in SS plates and welds. The performance of the DWT based approach has 

been analysed using the metrics NRP, SNR, FRP and flaw amplitude, in the presence of 

variations in lift-off. 

4.1 Proposed DWT based approach 

As discussed in Section 1.4.3, multiresolution capability of wavelet filters is utilised to 

analyse the localisation of space-frequency information in EC images. For effective noise 

removal as well as flaw separation in EC images, selection of an optimum wavelet filter 

among the 47 wavelet filters is required. The selection involves reconstruction of wavelet 

coefficients at different decomposition level for every wavelet filter for every image. This 

process requires a large number of trials and this makes the wavelet filter selection 

cumbersome. This limitation necessitates reducing large numbers of reconstruction trials 

by evolving optimisation criteria that can rank the wavelet filters. In view of this, 

maximum energy characteristic of the wavelet coefficients has been selected as a criterion 

for optimisation of wavelet filter (refer Section1.4.3.2). For optimisation of decomposition 

level, minimum entropy criterion has been selected.  
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Generally, denoising methods estimate a thresholding for the whole image. This may not 

be flexible to handle realistic test situations, where the existence and nature of desired 

signals are not known. This situation exists in EC images, especially where the flaw 

information is embedded within noise. The thresholding methods inadvertently remove the 

flaw information along with noise. Hence, an alternative approach for flexible sub-band 

level thresholding, a semi-local paradigm is proposed, for the first time, for EC images. 

The flow chart of the proposed DWT based approach for optimisation of wavelet filter, 

decomposition level, and thresholding for effective noise removal is shown in Figure 4.1. 

4.1.1 Optimisation of wavelet filter 

The criterion ‘maximum energy’ of wavelet coefficients is chosen to assess the 

performance of the wavelet filters at the decomposition stage. The maximum energy 

Figure 4.1 Flow chart of the proposed DWT based approach. 

Input image 

Decomposition 

1) Optimisation of wavelet filter 

2) Optimisation of decomposition 

level 

 

Thresholding 

 Sub-band level thresholding 

Reconstruction 

 Inverse DWT 

Output image 
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among the wavelet filters is considered based on the following characteristics of optimum 

wavelet filter (refer Section 1.4.3.2): 

a) maximum correlation with a particular frequency 

b) extraction of  higher magnitudes of coefficients at a particular decomposition level 

(scale) 

c) coefficients with negligible magnitude at other levels 

In order to study, the characteristic of wavelet coefficients at each decomposition level 

(scale), the decomposition of EC image is carried out. Typical 2D DWT on an EC image 

of a flaw (F29) in a weld plate using Bior6.8 wavelet and wavelet coefficients at each sub-

band level (finer scale - HL(N)) and coarser scale-LL(N)) are shown in Figure 4.2. It is 

observed that coarser scale coefficients (sub-bands LL1 to LL3) retain information related 

to both flaw and material properties variations. The LL4 sub-band level extracts the 

information related to material properties variations (noise). The finer scale coefficients at 

HL(4) and HL(5) sub-band levels, extract information related to flaw. Since the study 

focuses only on removal of noise, the coarser scale coefficients (LL(N)) are not 

considered. Hence, the finer scale coefficients HL(N) (refer Section 1.4.3.2), that 

extracting information related to flaw have been considered for DWT processing. The 

maximum extraction of flaw information in the HL(4) and HL(5) sub-band levels is 

attributed to the maximum correlation of scaling functions g(4) and g(5) (refer 

Section 1.4.3) with flaw component. Hence, maximum energy of wavelet coefficients is 

considered as a criterion for optimisation of wavelet filter.  

The maximum energy of wavelet coefficients can happen in two ways: 

(a) one or more number of sub-band levels have coefficients with higher magnitude 

(i.e., wide spectrum) or 
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(b) a few sub-band levels have coefficients with higher magnitude (i.e., narrow 

spectrum) and other levels have negligible magnitude 

 

The maximum energy of wavelet coefficients is due to the maximum correlation at a 

particular level. This represents a narrow filtering when the flaw information concentrate 

on a particular level reduces multilevel dependency, and is desirable. Based on this, an 

Figure 4.2 Wavelet coefficients at various sub-band levels. 
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energy criterion has been optimised as (0.9*Emax ≤E≤ Emax), for selecting a set of wavelet 

filters that extract energy within 90% of Emax. The flow chart of the optimisation of 

wavelet filter is shown in Figure 4.3. This optimisation of wavelet filter has the following 

three steps: 

a) Decomposition of EC image using 47 wavelet filters up to HL(6) sub-band level   

b) Estimation of energy of wavelet coefficients for all wavelet filters at each sub-band 

level  

c) Ranking the wavelet filters with maximum energy using the energy criterion 

(0.9*Emax ≤E≤ Emax), selected as an optimum wavelet filter 

Figure 4.3 Flow chart of the optimisation of wavelet filter. 
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4.1.2 Optimisation of decomposition level 

Although, DWT decorrelates the information well, it is found that strong intra-scale and 

inter-scale dependencies between wavelet coefficients exist. It is clear from Figure 4.2, the 

wavelet coefficients related to flaw are extracted at a few sub-band levels. It represents 

inter-scale dependency of flaw information and indicates the flaw has range of frequency 

components. Hence, the wavelet filter that extracts flaw information within a few sub-

band level, known as localization of spectral components (refer Section 1.4.3.2) is 

preferred. The performance of denoising would be significantly improved if such 

dependencies could efficiently be exploited. 

In view of this, to assess the inter-scale dependency between the wavelet coefficients, the 

minimum distribution difference (minimum entropy) among the decomposition levels is 

considered. To estimate the minimum entropy, criterion called weighted risk factor is 

incorporated.  

The optimisation of decomposition level involves the following three steps: 

i. Estimation of entropy for selected wavelet filters at every decomposition level  

ii. Estimation of minimum entropy among decomposition levels using proposed 

criterion called weighted risk factor  

iii. Ranking the decomposition levels having coefficients with minimum entropy, 

selected as an optimum decomposition level. 

The flow chart of the optimisation of decomposition level is shown in Figure 4.4. A 

criterion named, weighted risk factor, has been proposed, for the first time, to select an 

appropriate wavelet filter having minimum entropy among the inter-scale wavelet 

coefficients. 
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It is formulated based on the feature that if the energy distribution of inter sub-band level 

wavelet coefficients is sufficiently close, (better frequency localization) then the difference 

between the coefficients have a minimum mean square error (i.e., minimum risk, 

minimum entropy). Let, the image is decomposed to N levels and the finer scale HL(j) is 

strongly correlated with level HL(j+1). The correlation in the subsequent levels  

j+2,J+3,…L decreases, then it represents the better localization of spectral content, at each 

level wavelet filters, as observed in Figure 4.2. However, subsequent sub band level HL(6) 

shows negligible magnitude of the coefficients and it is found that the coefficients 

correspond to flaw decay rapidly along the finer scales, hence wavelet coefficients up to 

HL6) sub-band level have been considered for entropy estimation. 

The proposed weighted risk factor is described as  

     
 

 
               

 
   

 
           4.1 

where wj=L-j+1, i is the wavelet, j sub-band level, L is the user-defined wavelet multi- 

Figure 4.4 Flow chart of the optimisation of decomposition level. 
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resolution level of decomposition 

( )id j  coefficient of the raw image at sub-band level (HL(j)) 

ˆ ( )id j  coefficient (hard threshold) at sub-band level (HL(j)) 

n number of wavelet coefficients at each sub-band level 

jw  is the assigned weight, calculated according to j and L values 

The weighted risk factor estimates the expected value of the mean squared error associated 

at each decomposition level. This favours the decomposition level (the corresponding 

wavelet filter) that estimates the lowest error. Thus, it implicitly incorporates estimation of 

minimum entropy among the wavelet coefficients in the decomposition levels. The 

weighted risk factor estimates the difference between the coefficients at adjacent scales j 

and j+1. 

4.1.3 Optimisation of thresholding 

As the conventional thresholding methods inadvertently remove the flaw information 

along with the noise, a semi local paradigm for wavelet thresholding is proposed. This 

involves the division of an image into blocks, which are then individually denoised. An 

appropriate threshold limit is estimated for coefficients at each sub-band level, allows 

more flexible denoising. To denoise the blocks, classical thresholding methods viz., 

Sqtwolog Rigrsure and Heursure (refer Section 1.4.3.3) are used to choose the 

thresholding limit. This allows some parts of the images to be denoised more selectively 

than others, providing a flexibility of eliminating noise and preserving desired localized 

coefficients. The rationale of operating on the small blocks than whole block at each sub-

band level is as follows: 
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 First, the individual denoising of small block is analogous to local regression, in 

which all the information in a neighbourhood is used to obtain a fitted value at a 

particular location. This helps to have the denoised versions of adjacent small blocks 

are in complete overlapping with each other.  

 Second, any edge effects during denoising of large blocks will not be manifested due 

to the overlapping between blocks.  

Figure 4.5 shows the flow chart of the semi local paradigm proposed for wavelet 

thresholding at the sub-band level coefficients.  

 

The sequence of thresholding is as follows: 

1) The sub-band level wavelet coefficients from DWT using an optimum wavelet filter 

up to the appropriate decomposition level, are divided into a small non overlapping 

blocks of size (2
2
x2

2
).  
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level coefficients 
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Figure 4.5 Flow chart of the semi local paradigm proposed for wavelet thresholding. 
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2) If the dimensions of the sub-band level coefficients are not multiples of 2
n
, sub-

band level coefficients are augmented (with zero padding) to have the dimensions 

of multiples of 2
n
. 

3) The threshold value for each block is estimated using classical thresholding 

methods viz., Sqtwolog, Rigrsure and Heursure (refer Section 1.4.3.3) 

4) The centers of the denoised blocks are extracted and reassembled, yielding a 

denoised version of the wavelet coefficients at sub-band levels, HL(N). 

5) After denoising, by the level based thresholding on each block, the wavelet 

coefficients are reconstructed to get denoised images. 

Each block in each sub-band level HL(N) is subjected to thresholding, that directly takes 

into account of the local characteristics of the image at each sub-band level. 

4.1.4 Reconstruction of wavelet coefficients 

Each block of denoised wavelet coefficients are reconstructed by a reverse process of 

synthesis filtering, and this is implemented as inverse DWT (refer Section 1.4.3.4).  

4.2 Experimental studies on EC images 

The number of EC images with a single source of noise (due to variations in lift-off) and 

composite noise (due to variations in lift-off and material properties) are processed for 

evaluating the proposed optimisation of wavelet filter, decomposition level and 

thresholding.  
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4.2.1 Optimisation of wavelet filter for images with noise 

The optimisation of wavelet filter for EC images having a) noise due to variations in lift-

off (single source) and b) composite noise have been studied.  

4.2.1.1 Images with noise from single source: Variations in lift-off 

For an input EC image of a flaw (F1, length 4.0 mm, width 0.5 mm, depth 0.3 mm) 

acquired with variations in lift-off (0.0 mm to 1.0 mm), estimated energy of wavelet filter 

is estimated and is tabulated in Table 4.1. Among the wavelet filters, Db5 that estimates 

maximum energy of 72.3, is selected as the optimal wavelet filter.  

Table 4 .1  Est imated  energy for  various wavelet  f i l ters .  

 

 

 

 

 

 

 

 

 

 

 

The performance of the optimisation of wavelet filter is evaluated on EC image of a flaw 

(F1, length 4.0 mm, width 0.5 mm, depth 0.3 mm) in a plate (B1) acquired with variations 

Wavelet filter Energy 

Bior1.1 44.8 

Bior1.3 52.3 

Bior2.4 54.7 

Bior2.6 56.8 

Bior4.4 54.5 

Bior3.5 61.4 

Bior6.8 67.0 

Coif1 60.0 

Coif2 52.0 

Coif3 55.0 

Coif5 65.0 

Db2 45.8 

Db4 47.8 

Db5 72.3 

Db8 69.0 

Db10 51.7 

Db20 61.5 

Sym2 55.0 

Sym3 52.0 

Sym4 42.5 

Sym6 45.1 

Sym8 48.7 
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 in lift-off (0.0 mm to 1.5 mm). To compare the performance of wavelet filter Db5,with 

wavelet filters that extract energy within 90% of the Emax (Table 4.1)) is considered and 

the results are shown in Figure 4.6. The NRP and SNR have been determined. It is 

observed that NRP of 90% is achieved by Db5 as compared to the processed images from 

other three wavelet filters (Bior6.8, coif5, Db8, selected using the energy criteria).  

NRP=85% 

Db8 

 

NRP=78% 

NRP=82% 

 

Bior6.8 

Input image 

NRP=90% 

F1 

Coif5 

 

Figure 4.6 EC image of (a) a flaw (F1) acquired with variations in lift-off (0.0 mm to 1.0 

mm) and (b-e) the DWT processed images using Db5, Bior6.8, coif5, Db8 wavelet filters. 

(a) 

(d) 

(c) 

(b) 

(e) 

Db5 
SNR=-0.5 dB 

SNR=7.5 dB SNR=7.5 dB 

SNR=6.2 dB 

SNR=9.6 dB 
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From Figure 4.6, no uniformity in noise removal as well as separation of flaw is found 

among these wavelet filters. They differ in their flaw retention capability in the presence 

of noise. However, the optimal wavelet filter, Db5 shows better performance. The optimal 

wavelet filters for a number of EC images having flaws as well as noise are identified by 

the proposed DWT based approach. Table 4.2 tabulates the optimal wavelet for the EC 

images and the estimated NRP of the processed image. Studies reveal that Db5 is the 

optimal wavelet for images from plates with single source of noise. 

Table 4 .2  Optimisat ion of  wavelet  f i l ter  for  EC images with a s ingle 

source of  noise.  

 

4.2.1.2 Images with composite noise: Variations in lift-off and material properties 

Table 4.3 lists the estimated the energy of wavelet coefficients for the EC image of a flaw 

(F29, length 6.0 mm, width 0.25 mm, depth 0.5 mm) in a weld plate (Figure 4.2). It is 

observed from the Table 4.3 that Bior6.8 wavelet filter that estimates maximum energy of 

68.8 among the wavelet filters is selected as the optimal wavelet filter.  

The optimal wavelet filters for number of EC images having flaws as well as composite 

noise are identified by the proposed approach. Table 4.4 tabulates the optimal wavelet 

filter for the EC images with composite noise and estimated NRP of the processed image. 

Studies reveal that Bior6.8 is the optimal wavelet for images from weld plates with 

composite noise. 

Image Plate No. Flaw No. Noise Optimal wavelet filter, level NRP, % 

1 B1 F1 Lift-off  Db5, Level5 90 

2 B2 F6 -do- -do- 90 

3 B3 F9, F10 -do- -do- 92 

4 B4 F14, F15 -do- -do- 92 

5 B5 F21 -do- -do- 92 
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Table 4 .3  Est imated  energy for  various wavelet  f i l ters .  

 

 

 

  

 

 

 

 

 

 

Table 4 .4  Optimisat ion of  wavelet  f i l ter  for  EC images with composi te 

noise.  

 

4.2.2 Optimisation of decomposition level for images with noise 

Table 4.5 lists the estimated the entropy of wavelet coefficients at each sub-band level of 

the EC image of a flaw (F1, length 4.0 mm, width 0.5 mm, depth 0.3 mm) in a plate  B1 

Wavelet filter  Energy 

Bior1.1 53.4 

Bior1.3 61.4 

Bior2.4 54.4 

Bior2.6 58.7 

Bior 4.4 52.3 

Bior5.5 54.5 

Bior6.8 68.8 

Coif1 46.1 

Coif2 46.1 

Coif3 54.8 

Coif5 63.6 

Db2 49.1 

Db4 56.1 

Db5 67.0 

Db8 65.0 

Db10 45.1 

Db20 60.1 

Sym2 50.1 

Sym3 44.5 

Sym4 50.1 

Sym6 38.4 

Sym8 46.5 

Image Plate 

No. 

Flaw 

No. 

Noise Optimal wavelet filter, 

level 

NRP, 

% 

1 W1 F28 Composite noise Bior6.8, Level5 80 

2 W1 F29 -do- -do- 82 

3 W2 F31 -do- -do- 80 

4 W2 F35 -do- -do- 85 
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(Figure 4.2). Among the selected wavelet filters, Db5 at decomposition level 5 (HL(5)) 

that estimates minimum entropy of 1.3 is selected as the optimum decomposition level.  

Table 4 .5  Est imated  entropy for  an EC image with noise from a s ingle 

source.  

 

The optimisation of decomposition level for images with composite noise has also been 

studied. Table 4.6 lists the estimated the entropy of wavelet coefficients at each sub-band 

level of the EC image of a flaw (F29, length 6.0 mm, width 0.25 mm, depth 0.5 mm) in a 

weld plate (Figure 4.2). It is observed from the Table 4.6 that wavelet filter Bior6.8 at 

decomposition level 5 that results in the minimum entropy, is selected as the optimum 

decomposition level.  

Table 4 .6  Est imated  entropy for  an EC image with composi te noise.  

 

 

 

 

From the entropy estimation, wavelet filter Db5, level 5 is found to be optimum for EC 

images with noise due to variations in lift-off. For an EC image of composite noise, 

wavelet filter Bior6.8, level 5 is found to be optimum wavelet filter with minimal entropy 

of 2.3 among the selected wavelet filters. 

Wavelet 

filter  

Energy 

(0.9*Emax ≤E≤ Emax) 
Entropy 

Decomposition level 

1 2 3 4 5 6 

Bior6.8 67.0 3.2 3.2 2.5 2.1 2.0 2.6 

Coif5 65.0 3.0 2.8 2.7 3.4 3.6 3.8 

Db5 72.3 2.5 2.7 2.4 1.7 1.3 1.8 

Db8 66.2 3.3 3.0 2.6 2.4 2.2 2.0 

Wavelet 

filter 

Energy 

(0.9*Emax ≤E≤ Emax) 
Entropy 

Decomposition level 

1 2 3 4 5 6 

Bior6.8 68.8 3.6 3.8 3.4 3.0 2.3 2.8 

Db5 67.0 4.5 4.0 3.8 4.2 3.0 3.8 

Db8 65.0 3.5 3.8 4.2 4.8 3.5 4.2 

Coif5 63.6 4.4 3.6 4.8 4.6 3.8 5.3 
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4.2.2.1 Denoising performance of optimal wavelet filter and decomposition level 

The efficacy of the automated selection of optimal wavelet filter, decomposition level in 

the proposed DWT based approach has been evaluated in terms of NRP and SNR. Figure 

4.7 shows the noise removal capability of the optimal wavelet filter Db5 selected for EC 

images having flaw and noise from a single source. A NRP of 92% is observed in the 

processed image by the wavelet filter Db5, level 5 and this indicates the effectiveness of 

the wavelet filter selection.  

 

EC image of a weld plate (W1) having a buried flaw (F26, length 4.0 mm, width 0.25 mm, 

depth 0.2 mm) in composite noise is shown in Figure 4.8 (a). The processed image using 

the wavelet filter Bior6.8, level 5 is shown in Figure 4.8 (b). A NRP of 80% is observed in 

the processed image by the wavelet filter Bior6.8, level 5, and this indicates the 

effectiveness of the wavelet filter selection in the case of composite noise. 

Figure 4.7 EC image of (a) two flaws (F9, F10) in a plate (B3), (b) processed image from 

DWT based approach using wavelet filter Db5, level 5. 

F9 F10 

Input image 

F9 

F10 

(b) 

Processed image 

SNR=12.5 dB 

SNR=0.2 dB NRP=92% 

(a) 
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It has been observed, for the first time that for plates wavelet Db5-level 5 and for weld 

plates wavelet Bior6.8-level 5 are found optimum. For EC images of plates, similarity to 

the shape of flaw of Db5 wavelet filter yields better correlation. In the case of weld plates, 

orthogonality and similarity properties (refer Section 1.4.3.1) of Bior6.8 wavelet filter are 

attributed to the better removal of noise. The similarity yields a maximum correlation, 

while orthogonality of wavelet filter decomposes coefficients into non overlapping sub 

band frequency (refer Section 1.4.3.1), plays a role for removal of multiple sources of 

noise. This, in turn, reduces the inter-scale dependency and results in minimum entropy.  

However, in the case of EC images with composite noise, the undulations present in the 

processed image pose ambiguity in flaw detection (false call). This necessitates further 

removal of noise. In view of this, selective elimination of noise by wavelet thresholding 

method is attempted and this is discussed in the next section. 

 

NRP=80% 

F26 

F26 

(b) Processed image 

SNR=-0.2 dB 

SNR=6.5 dB 

Figure 4.8 EC image of (a) a flaw (F26) in a weld plate (W1) and (b) processed image from 

DWT based approach using wavelet filter Bior6.8, level 5. 

(a) Input image 
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4.2.3 Optimisation of thresholding for images with noise 

The denoising performance of Heursure, Rigrsure and Sqtwolog thresholding methods has 

been assessed using NRP. The effective selection of appropriate coefficients by sub-band 

level dependent thresholding is evaluated on EC images of a weld plate (W1). Figure 4.9 

(a) shows an EC image of a flaw (F26) in weld plate W1, buried in the composite noise. 

The DWT processed image using wavelet filter bior6.8, level 5 is subjected to sub-band 

level thresholding. The denoised image from Heursure, Rigrsure and Sqtwolog 

thresholding methods are shown in Figure 4.9 (b-d) respectively.  

F26 

Figure 4.9 EC image of (a) a flaw (F26) in weld plate W1 buried in composite noise and 

thresholded image from (b) Heursure, (c) Rigrsure and (d) Sqtwolog thresholding.  

(c) (d) 

NRP=60% NRP=98% 

F26 

(a) 

NRP=89% 

SNR=13.5 dB 

SNR=0.1 dB SNR=0.5 dB 

SNR=-0.2 dB 

(b) 
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Rigrsure achieves NRP of 60% and retains some of the composite noise components and 

introduces ambiguity in the identification of flaw region. This is due to the estimation of 

universal threshold limit based on Stein’s Unbiased Risk Estimator. The Sqtwolog 

thresholding method, results in maximum a NRP of 98%, due to the hard thresholding, 

however it removes all the information due to large thresholding.  

Among these methods, Heursure thresholding method achieves NRP of 89%. As seen in 

Figure 4.9 (b), denoised image from the Heursure thresholding method achieves SNR of 

13.5 dB and FRP of 10%. It is noted that sub-band level thresholding, subsequent to DWT 

processing (shown in Figure 4.8(b)) improves NRP from 80% to 89% and removes all the 

undulation and results unambiguous detection of the flaw. This improvement confirms the 

requirement of selective elimination of sub-band level wavelet coefficient using Heursure 

thresholding method.  

The denoising capability of the Heursure thresholding method is attributed to be due to the 

combined thresholding by Stein’s unbiased likelihood estimation and Sqtwolog 

thresholding methods. This method allows two ways of estimation of threshold limit, 

depending on the data. In order to avoid any loss of desired information when data are 

over smoothed, SURE estimation is chosen while Sqtwolog is used when data are under 

smoothed condition. This allows denoising either more conservatively or more selectively 

based on the local characteristics of the image. Hence, Heursure thresholding method is 

adopted and incorporated into the proposed DWT based approach. 

4.3 Performance evaluation of the proposed DWT based approach 

The proposed DWT based approach has been evaluated for a number of EC images having 

i) a single source of noise and ii) composite noise. 
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(c) Denoised image 

NRP=96% 
NRP=99% 

Figure 4.10 EC image of (a) flaw free region in a plate (B1) with variations in lift-off (b) 

processed from DWT using wavelet filter Db5, level 5 and c) denoised image from 

Heursure sub-band level thresholding. 

(b)Processed image 

(a) Input image 

4.3.1 Removal of noise from single source 

The denoising ability of the DWT based approach has been evaluated on an EC image of a 

flaw-free region in a plate (B1) acquired with variations in lift-off (0.0 mm to 0.5 mm) and 

is shown in Figure 4.10 (a). The processed image using the wavelet filter Db5, Level 5 is 

shown in Figure 4.10 (b). Further denoised image from Heursure sub-band level 

thresholding is shown in Figure 4.10 (c). A NRP of 99% is observed. 

 

Figure 4.11 (a) shows the EC image of two flaws (F9, F10, length 5.0 mm, width 0.5 mm, 

depths 0.7 mm, 1.0 mm) in a plate (B3). The processed image using the wavelet filter Db5, 

Level 5 is shown in Figure 4.11 (b) and the denoised image from Heursure sub-band level 
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thresholding is shown in Figure 4.11 (c). A significant improvement in NRP of 95% and 

SNR of 14.5 dB are observed. 

 

The denoising ability of the DWT based approach has been evaluated on a single source of 

noise from weld plate (W1) acquired at constant lift-off of 0.3 mm and is shown in Figure 

4.12 (a). The processed image using the wavelet filter Bior6.8, Level 5 is shown in Figure 

4.12 (b) and the denoised image from Heursure sub-band level thresholding is shown in 

Figure 4.12 (c). A NRP 98% is observed.  

Figure 4.11 EC image of (a) two flaws (F9, F10) in a plate (B3), (b) processed from DWT 

based approach using wavelet filter Db5, level 5 and (c) denoised images from Heursure 

sub-band level thresholding. 

F9 F10 

Processed image 

SNR=0.2 dB 

F9 

F10 

NRP=95% 

SNR=14.5 dB 

F10 

NRP=92% 

SNR=12.5 dB 

F9 

(a) Input image 

(b) Processed image (c) Denoised image 
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The DWT based approach has been evaluated on an EC image of a flaw (F26, length 4.0 

mm, width 0.25 mm, depth 0.2 mm) in a weld plate (W1), with single source of noise from 

material properties variations and is shown in Figure 4.13 (a). The processed image using 

the wavelet filter Bior6.8, Level 5 is shown in Figure 4.13 (b) and the denoised image 

from Heursure sub-band level thresholding is shown in Figure 4.13 (c). A NRP of 97% 

and SNR of 14.5 dB are observed.  

From these results, it is evident that the proposed DWT based approach ensures effective 

noise removal and improved flaw detection in EC images having noise from a single 

source. 

Figure 4.12 EC image of (a) flaw free region in a weld plate (W1) with variations in 

material properties, (b) processed image from DWT using wavelet filter Bior6.8, level 5 

and (c) denoised image from Heursure sub-band level thresholding. 

NRP=95% NRP=98% 

(b) Processed image 

(a) Input image 

(c) Denoised image 
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Figure 4.13 EC image of (a) a flaw (F26) in a weld plate (W1), with variations in material 

properties, (b) processed image from DWT using Bior6.8, level 5 and (c) denoised image 

from Heursure sub-band level thresholding. 

F26 

(a) 

NRP=95% 

(b) Processed image 

SNR=13.5 dB 

SNR=1.0 dB 

F26 F26 

NRP=97% 

SNR=14.5 dB 

(a) Input image 

(c) Denoised image 

 

 

 

 

 

 

 

 

 

 

 

4.3.2 Removal of composite noise 

The proposed DWT based approach has been evaluated for removal of composite noise in 

EC images acquired in the weld region with variations in lift-off (0.0 mm to 1.0 mm). 

Figure 4.14 (a) shows the EC image of two flaws (F34, F35, length 8.0 mm, width 0.25 

mm, depths 0.5 mm, 0.6 mm) with composite noise. The processed image using the 

wavelet filter Bior6.8, Level 5 is shown in Figure 4.14 (b) and the denoised image from 

Heursure sub-band level thresholding is shown in Figure 4.14 (c). A NRP of 90% and 

SNR of 13.0 dB are observed. 
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From these results, it is observed that the proposed DWT based approach promises 

effective removal of noise from single source as well as composite noise. Apart from noise 

reduction, retention ability of flaw information is being assessed on the basis of reduction 

in peak amplitude of flaw image. The degradation in flaw amplitude is estimated in terms 

of FRP. For estimation of FRP, the original amplitude flaw (Fc) is estimated from the EC 

images obtained at constant lift-off of 0.3 mm. 

4.3.3 Flaw retention ability 

The flaw retention ability of the proposed DWT based approach has been evaluated for 

several EC images of plates (B1, B2, B3, B4 and B5) and weld plates (W1 and W2) with 

Figure 4.14 EC image of (a) two flaws (F33, F34) in a weld plate (W1) with composite 

noise, (b) processed image from DWT using wavelet filter Bior6.8, level 5 and (c) 

denoised image from Heursure sub-band level thresholding. 

 

F35 

NRP=80% 

(b) Processed image 

SNR=7.5 dB 

SNR=4.2 dB 

NRP=90% 

SNR=13.0 dB 

F34 

F35 F34 

F35 

(a) Input image 

(c) Denoised image 

F34 
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variations in lift-off (0.0 mm to 1.0 mm). Table 4.7 and Table 4.8 list the estimated NRP, 

SNR, peak amplitude and FRP from the processed images.  

Table 4 .7  Performance evaluat ion of  the DWT based approach  for  EC 

images with a s ingle  source of  noise .  

 

Table 4 .8  Performance evaluat ion of  the DWT based approach  for  EC 

images with composi te noise .  

 

Plate 

No. 

Flaw 

No. 

Flaw Dimension  

(length x width x 

depth), mm 

Input 

image 

SNR, dB 

Denoised image  

NRP, 

% 

SNR, 

dB 

Flaw 

amplitude, V 

FRP,

% 

 

B1 

F1 4.0x 0.5 x 0.3 6.8 90 14.2 0.24 20 

F2 4.0x 0.5 x 0.5 7.2 13.5 0.42 15 

F3 6.0x 0.5 x 0.7 6.5 92 13.4 0.8 20 

F4 6.0x 0.5 x 1.0 8.5 13.9 1.2 14 

B2 F5 20.0 x 0.5 0.7 6.2 90 12.9 0.8 16 

F6 4.0x 0.5 x 0.7 7.0 88 13.2 0.8 20 

B3 F7 4.0x 0.3 x 0.5 6.2 88 14.5 0.42 15 

F8 4.0x 0.3 x 1.0 7.5 14.0 1.2 14 

F9 6.0x 0.5 x 0.7 7.0 93 14.5 0.72 12 

F10 6.0x 0.5 x 1.0 8.0 14.5 1.1 11 

B4 F11 4.0 x 0.3x 0.3 4.5 90 14.5 0.20 26 

F12 4.0 x 0.3x 0.5 5.2 14.0 0.42 20 

F13 6.0 x 0.3x 0.7 6.2 13.2 0.82 18 

F14 6.0 x 0.3x 1.5 8.5 92 13.6 1.8 10 

F15 8.0 x 0.3x 1.0 7.5 13.5 1.2 14 

F16 8.0 x 0.3x 2.0 9.2 13.5 2.1 12 

F17 8.0 x 0.5x 0.5 5.5  11.3 0.4 15 

F18 8.0 x 0.5x 1.0 7.5 92 14.5 1.3 12 

F19 8.0 x 0.5x 2.0 9.2  14.0 2.2 7 

Weld 

Plate 

No. 

Flaw 

No. 

Flaw Dimension Input 

image 

SNR, dB 

Denoised image  

(length x width 

x depth), mm 

NRP, 

% 

SNR, 

dB 

Flaw 

amplitude, V 

FRP, 

% 

 

 

W1 

F26 4.0 x 0.25 x 0.2 4.0 89 13.5 0.13 35 

F27 4.0 x 0.25 x 0.3 4.2 89 13.2 0.22 26 

F28 4.0 x 0.25 x 0.5 4.8 86 13.2 0.38 25 

F29 6.0 x 0.25 x 0.5 4.8 90 13.0 0.4 25 

F30 6.0 x 0.25 x 1.0 5.5 88 13.2 0.85 20 

W2 F31 6.0 x 0.25 x 0.5 4.5 88 13.6 0.39 22 

F32 6.0 x 0.25 x 2.0 5.5 90 13.2 2.1 15 

F33 8.0 x 0.25 x 0.3 4.2 90 13.8 0.2 33 

F34 8.0 x 0.25 x 0.5 4.5 90 13.5 0.4 20 

F35 8.0 x 0.25 x 0.6 4.8 90 13.7 0.53 18 
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Figure 4.15 Estimated FRP for flaws of various depths in the denoised images. 
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From the tables, the retention ability of the proposed DWT based approach in the presence 

of noise due to a single source and composite noise is analysed using FRP. The estimated 

FRP for flaws of various depths for the case of single source of noise and composite noise 

is shown in Figure 4.15 and Figure 4.16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Estimated FRP for flaws of various depths in the denoised images. 
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Some reduction in the flaw amplitude is observed in the processed images. The FRP of 

~26% is observed (flaw depth 0.5 mm) in the case of composite noise removal. This is 

higher as compared ~15% for the case of single source of noise. In general, FRP is less for 

higher flaw amplitude. The reduction in peak amplitude results in underestimation of 

severity of flaw, thus in turn affects the structural assessment of the component.  

4.3.4 Influence of test parameters 

In ECT, depending on the dimension and expected depth location of the flaw, various test 

frequencies and probes of different diameters are used. The variation in test frequency and 

psf of the probe change the field-flaw interaction resulting in variation in flaw information 

and noise. Hence, the influence of these parameters on noise reduction capability of the 

proposed DWT based approach has been studied.  

Several EC images of plates (B1, B2, B3) and weld plates (W1, W2) are acquired using 

probes of 5.0 mm and 20.0 mm diameter at evaluation frequencies of 75 kHz and 20 kHz 

are processed using the proposed DWT based approach. It is observed that DWT based 

approach has selected same wavelet Db5, Level 5 for EC images of the plates and wavelet 

filter Bior6.8, Level 5 for EC images of the weld plates acquired at test frequencies of 20 

kHz, 75 kHz and 150 kHz using probes of 3.0 mm, 5.0 mm and 20.0 mm diameter.  

The denoising ability of the proposed approach for EC images acquired at 75 kHz using 

5.0 mm diameter probe for SS plates and welds are shown in Figure 4.17 and Figure 4.18 

respectively.  
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EC image of four flaws (F1, F2- length 4.0 mm, width 0.5 mm, depths 0.3 mm, 0.5 mm; 

F3, F4 - length 6.0 mm, width 0.5 mm, depths 0.7 mm, 1.0 mm) in a plate (B1) with 

variation in lift-off (0.0 mm to 1.0 mm) is shown in Figure 4.17 (a). The denoised image is 

shown in Figure 4.17 (b). The NRP of 92% and SNR of 13.9 dB are observed.  

 

Figure 4.18 (a) shows the EC image of a flaw (F26, length 4.0 mm, width 0.25 mm, depths 

0.2 mm) in a weld plate (W1) with variations in lift-off (0.0 mm to 1.0 mm). The denoised 

image is shown in Figure 4.18 (b). NRP of 89% and SNR of 13.5 dB are observed. From 

these results, it is observed that testing parameters viz. diameter of 3.0, 5.0, 20.0 mm and 

frequencies of 20 kHz, 75 kHz and 150 kHz do not have significant influence on the 

proposed DWT based approach.  

 

F4 F1 

F2 

F3 

F2 F4 

F3 
F1 

Figure 4.17 EC image of (a) four flaws (F1-F4) in a plate (B1) using 5.0 mm diameter 

probe (5 kHz), (b) denoised image from DWT based approach. 

SNR=0.5 dB 
SNR=13.9 dB 

NRP=92% 

(b) Denoised image 

Frequency: 75 kHz 

Probe dia. 5.0 mm 

(a) Input image 
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4.3.5 Evaluation of noise tolerance 

4.3.5.1 Noise from single source: Variations in lift-off 

The variations in lift-off are mainly encountered during the remote EC inspection of 

curved surfaces. Surface condition is also a concern because EC signals from shallow 

flaws on the surface consist of lift-off noise. This reduces the sensitivity to shallow surface 

flaws. In view of this, noise tolerance of the proposed DWT based approach is evaluated 

for higher amount of noise from variations in lift-off (0.0 mm to 1.5 mm, 0.0 mm to 2.0 

mm).  

The input images of a flaw (F5, length 20.0 mm, width 0.5 mm, depth 0.7 mm) in plate B2 

acquired with variations in lift-off are shown in the first column of Figure 4.19. The 

corresponding denoised images obtained from the proposed DWT based approach are 

shown in the second column of Figure 4.19.  

Figure 4.18 EC image of (a) a flaw (F26) in a weld plate (W1) using 5.0 mm diameter 

probe (5 kHz), (b) denoised image from DWT based approach. 

(b) Denoised image 

SNR=-0.5 dB 
SNR=13.5 dB 
NRP=89% 

F26 

F26 

Frequency: 75 kHz 

Probe dia. 5.0 mm 

(a) Input image 
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Denoised image 

Lift-off (0.0 mm to 1.5 mm) NRP=80% 

NRP=61% 

F5 

F5 F5 

F5 

Figure 4.19 Performance of the DWT based approach for variations in lift-off. 

Input image 

SNR=8.0 dB 

SNR=-1.4 dB 

SNR=6.0 dB 

SNR=5.1 dB 

Lift-off =0.3 mm 

SNR=15.0 dB SNR=16.0 dB 

F5 F5 

Lift-off (0.0 mm to 2.0 mm) 
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It is observed that, NRP as well as SNR decrease with increase in variations in lift-off. The 

influence of the noise on flaw retention ability is estimated in terms of FRP and is shown 

in Figure 4.20. From Figure 4.20, FRP of 10% is observed for 0.0 mm to 1.0 mm 

variations in lift-off. However, at higher variations in lift-off (0.0 mm to 1.5 mm), FRP 

increases to 40% indicating the influence of noise on flaw retention ability of the DWT 

based approach. Table 4.9 lists the estimated NRP, SNR flaw amplitude and FRP from the 

processed images. 

 

 

 

 

Figure 4.20 Estimated FRP from the DWT processed image of a flaw (F5) in a plate B2 

with variations in lift-off. 
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Table 4 .9  Evaluat ion of  the proposed D WT based approach  for  variat ions  

in  l i f t -off  noise.  

 

 

4.3.5.2 Noise from composite source: Variations in lift-off 

The noise tolerance of the proposed DWT based approach for EC images of weld plates 

acquired with higher amount of noise from variations in lift-off (0.0 mm to 1.5 mm, 0.0 

mm to 2.0 mm) has been evaluated. EC images of a flaw (F28, length 4.0 mm, width 0.25 

mm, depth 0.5 mm) in a weld plate (W1) acquired with variations in lift-off is shown in 

the first column of Figure 4.21. The corresponding denoised images resulted by the DWT 

based approach are shown in the second column of Figure 4.21.The estimated NRP, SNR, 

flaw amplitude and FRP from the processed images are given in Table 4.10. 

.  

Plate 

No. 

Flaw 

No. 

Variations 

in lift-off, 

mm 

Input 

image 

SNR, dB 

Denoised image  

NRP, 

% 

SNR, 

dB 

Flaw 

amplitude, V 

FRP, 

% 

B1 F1 

≤0.5 8.0 90 13.5 0.45 10 

≤1.0 6.8 85 10.2 0.45 10 

≤1.5 5.0 82 9.6 0.4 20 

≤2.0 4.5 70 -0.8 0.35 30 

B2 F5 

≤0.5 10.0 92 14.0 0.9 10 

≤1.0 7.9 85 10.9 0.9 10 

≤1.5 6.0 80 8.04 0.8 20 

≤2.0 5.1 61 -1.2 0.6 30 

B3 F8 

≤0.5 10.0 93 14.0 1.2 12 

≤1.0 7.5 87 10.8 1.2 14 

≤1.5 7.2 84 9.8 0.9 35 

≤2.0 6.2 70 -0.7 0.7 50 

B4 F15 

≤0.5 9.5 92 13.5 1.2 14 

≤1.0 8.2 88 11.5 1.1 21 

≤1.5 7.5 82 9.4 0.8 42 

≤2.0 6.0 69 -0.9 0.7 50 
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Denoised image 

Lift-off (0.0 mm to 1.5 mm) 

NRP=78% 

F28 

F28 

F28 

F28 

Figure 4.21 Performance of the DWT based approach for variations in composite noise. 

Input image 

SNR=-0.5 dB 
SNR=6.8 dB 

NRP=95% 

SNR=15.5dB 

F28 

Lift-off =0.3 mm 

SNR=10.0 dB 

NRP=80% 

F28 

SNR=10.4 dB 
SNR=3.0 dB 

Lift-off (0.0 mm to 2.0 mm) 
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Table 4 .10 Resul ts  of  the DWT based approach for  variat ion s  in  

composi te noise.  

 

The influence of the noise on flaw retention ability is estimated in terms of FRP and is 

shown in Figure 4.22. From Figure 4.22, FRP of 24% is observed. However, at higher 

variations in lift-off (0.0 mm to 1.5 mm), FRP increases to 50% indicating the higher 

influence of composite noise on flaw retention ability of the DWT based approach. 

Though this is an expected result, it has been quantitatively analysed for the first time. 

Plate 

No. 

Flaw 

No. 

Variations 

in lift-off, 

mm 

Input 

image 

SNR, dB 

Denoised image  

NRP, 

% 

SNR, 

dB 

Flaw 

amplitude, V 

FRP

, % 

W1 F28 

≤0.5 8.0 85 14.0 0.45 10 

≤1.0 4.8 82 12.2 0.38 24 

≤1.5 3.0 80 10.4 0.30 40 

≤2.0 -0.5 78 6.8 0.25 50 

W2 F31 

≤0.5 7.8 84 14.0 0.48 14 

≤1.0 4.5 80 12.6 0.39 22 

≤1.5 3.2 78 10.2 0.34 32 

≤2.0 -1.0 72 7.8 0.28 44 

Figure 4.22 Estimated FRP from the DWT processed image of a flaw (F28) in a weld 

plate W1 for variations in lift-off. 
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The degradation in flaw amplitude due to the variations in lift-off (single source) and 

composite noise (two sources) is compared in Figure 4.23 for the shallow surface flaws of 

depth 0.5 mm using FRP. 

 

From Figure 4.23, no degradation in flaw amplitude is observed for EC images acquired at 

constant lift-off of 0.3mm. However, FRP increases with increase in lift-off. It indicates 

the influence of noise on flaw retention ability. This is observed more for the composite 

noise than for the single source of noise. DWT shows better noise removal of single 

source of noise as well as composite noise. However, the observation of reduction in flaw 

amplitude indicates the influence of noise on denoising ability of the proposed DWT based 

approach and this demands further studies.  

Input image 
Denoised image 

Figure 4.23 Comparison of FRP for single source of noise and composite noise (weld). 
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4.4 Summary 

DWT based approach has been proposed for removal of noise from single source of noise 

and composite noise in 5.0 mm thick stainless steel plates. Systematic studies on the 

denoising ability of the proposed approach reveal a definite improvement in noise 

removal, as a result of optimisation of wavelet filter, decomposition level and 

thresholding. The observed results are the following: 

 The DWT based approach ensures the automated selection of optimal wavelet filter, 

and decomposition level for processing of EC images. 

 It has been established, for the first time, that the wavelet Db5, level 5 is the optimal 

wavelet for denoising EC images of flaws in SS plates and wavelet Bior6.8, level 5 

for denoising EC images of flaws in weld plates. 

 The sub-band level thresholding complied with Heursure thresholding method, is 

established as an optimum thresholding method from this study. 

 This semi local paradigm for wavelet thresholding enables selective elimination of 

noise and achieves enhancement in SNR of 14. 5 dB and NRP of 92% in the presence 

of single source of noise and SNR of 13.5 dB and NRP of 89% for composite noise. 

 The varying test frequencies in the range of 20 kHz-150 kHz and probes of 3.0 mm, 

5.0 mm and 20.0 mm have no significant influence on the denoising ability of the 

proposed approach. 

 The flaw retention ability of the proposed approach establishes its noise tolerance up 

to the variations in lift-off ≤1.0 mm. 

 The proposed approach is expected to ensure simultaneous removal of composite 

noise and detection of shallow flaws in stainless steel plates and welds.  
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Chapter 5 : Independent component analysis 

based approach for automated noise removal 

Preamble 

This chapter proposes an ICA based approach for automated noise removal. In order to 

considerably reduce the randomness in the estimation of de-mixing matrix, iterative 

process with flexible learning rule using non-linear functions has been proposed. The 

denoising capability of ICA based approach has been studied using experimental EC 

images of flaws in SS plates and welds. The performance of the ICA based approach has 

been analysed and compared with that of the DWT based approach using NRP, SNR, FRP 

and flaw amplitude. 

5.1 Proposed ICA based approach 

ICA that recovers non-gaussianity of the data based on their statistical independency is 

used for separation of noise from EC images. The statistical independence of the noise 

characteristics has been utilised for identifying noise in EC images. Hence, the 

independent component analysis (ICA) technique that calculates the ICs by the 

maximization of non-Gaussianity or minimization of the mutual information between 

signals by seeking statistical independence is utilised in this study.  

The challenging task in noise removal in EC images is identification and separation of 

noise as well as flaw information. As per the central limit theorem (§1.4.4.2), Gaussian pdf 

of noise (refer Figure 1.12) shows evidence of its statistical independence of noise in EC 

images. Following this, ICA based approach that utilises the measure of non-Gaussianity 

for separation of statistically independent information (noise) is proposed in this study. 
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The flow chart of the proposed ICA based approach is shown in Figure 5.1. This approach 

has the following three steps: 

1) Pre-processing of input data: The primary step involves centering and whitening of 

an input image (refer Section §1.4.4.2). It is generally carried out before performing 

ICA. This pre-processing converts an input image to have zero mean and unit 

variance data. The reduction in estimation of number of parameters achieved through 

whitening reduces the computational complexity of the ICA.  

2) Iterative estimation of de-mixing matrix (W): 

Multi-run ICA is carried out to eliminate randomness in estimation of de-mixing 

matrix. In this iterative process, flexible learning rule with selection of suitable non-

linear function based on the measurement of Kurtosis (refer Section 1.4.4.2) is 

incorporated. 

3) Correlation of de-mixing matrix:  

To identify the independent components of data in the input image, correlation of de- 

mixing matrix, W is carried out. By maximising the non-Gaussianity of W
T
x, W 

Figure 5.1 Flow chart of the proposed ICA based approach. 

Input image (noise+flaw) 

Preprocessing 

1. Centering 

2. Whiterning 

Estimation of Kurtosis 

 Multi-run ICA 

 Flexible learning rule 

Decorrelation 

Output image (Kurtosis≤zero) 
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separates the statistically independent data (noise), having value of Kurtosis greater 

than zero. The remaining data having zero value of Kurtosis are statistically 

dependent and are separated as the flaw components. 

5.1.1 Iterative estimation of de-mixing matrix 

The quality of separation of statistically independent data depends mainly on the 

estimation of the de-mixing matrix, W. The randomness associated with the estimation of 

the de-mixing matrix influences the quality of separation (refer Section 1.4.4.2). Hence, to 

overcome this associated randomness, W is estimated by an iterative process as shown in 

Figure 5.2. 

Start ICA 

Output matrix 

Compute de-mixing matrix W 

Yes 

Estimation of Kurtosis 

Selection of non-linear function 

Learning rule 

Convergence 

of ∆W 

 

No 

Figure 5.2 Flow chart of iterative estimation of de-mixing matrix.  

Stop 
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A multi-run ICA processing is incorporated for an iterative estimation of de-mixing 

matrix. The iterative estimation process incorporates and establishes a flexible universal 

learning rule that selectively uses non-linear functions based on Kurtosis of data. At 

eachrun of ICA processing, the universal learning rule estimates the de-mixing matrices 

(W1….Wn). For convergence of W, a suitable nonlinear filter is selected based on 

Kurtosis. Generally, the natural gradient rule has emerged as a technique for solving the 

iterative optimisation problem of W taking into account of the gradient of the loss function 

and is expressed as [63] 

. 
     

  
                          5.1 

where         
            

   
        5.2 

The preconditioned filtered gradient rule is given as  

                                     5.3 

However, the conventional learning rule strongly depends on the shape of the activation 

function fi(yi) and gi(yi). The selection of this function depends on the nature of the pdfs of 

source signals. The limitation reported is that equation 5.1 is able to separate the source 

signals, if pdf is a heavy tailed super Gaussian signal, whereas the equation 5.2 can 

separate the source signals with a light tailed pdf similar to a sub-Gaussian signal. In EC 

images, the measured data contain a mixture of both sub-Gaussian and super Gaussian 

sources (shown in Figure 1.11), then these algorithms fail to separate these signals 

effectively. To make the learning rule more flexible, the two learning rules (equations 5.1 

and 5.3) are combined to form more general and flexible universal learning rule given by. 
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                                       5.4 

where f(y(t)) and g(y(t)) are suitably designed nonlinear functions, e.g. 

       
                             

 
            

                                             

       5.5 

      
            

                   

                                 
          5.6 

where 1≤β≤2 is a constant ri≥2, k4(yi)=E{yi
4
}/E

2
{yi

2
}-3 is the normalised value of Kurtosis 

and δ≥0 is a threshold. The value of Kurtosis is evaluated using 

    
                                              5.7 

The above learning algorithm monitors and estimates the statistics of each output of the 

process and depending on sign or value of its normalised Kurtosis (a measure of distance 

from Gaussianity), automatically selects suitable non-linear functions. Kurtosis is used in 

view of its simplicity both computational and theoretical. This implementation of learning 

rule has the following advantages: 

 The prior knowledge of source signal (pdf) is not required for estimating the 

independent components of non-Gaussian distribution. 

 Suitable selection of nonlinear activation function enables faster convergence rate 

and stability in separation of all nonGaussian sources. 

 One by one estimation of independent components reduces computation cost 

dramatically.  
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EC image -1 

•  Plate (B1) 

• variation in lift-off 

EC image-2 

•  Plate (B1) 

• Flaws (F3,F4) + 
variation in lift-off 

EC image -3 

•  Plate (B2) 

• Flaws (F9, F10) + 
variation in lift-off 

EC image -4 

• Weld  plate (W1) 

• variation in lift-off 
+material property 

EC image-5 

• Weld plate (W1) 

• Flaws (F29) + 
variation in lift-off+ 
material property 

EC image -6 

• Weld plate (W1) 

• Flaws (F31) + 
variation in lift-off+ 
material property 

5.2 Performance evaluation of ICA based approach 

The proposed ICA based approach has been systematically evaluated for removal of noise 

from 1) two single sources viz variations in lift-off or variations in material properties and 

2) composite noise viz variations in lift-off and variations in material properties. For this, 

six numbers of EC images contain these noise are considered for processing. Table 5.1 

gives the details of EC images of flaws acquired from plates and weld plates. The 

performance of ICA based approach has been assessed using NRP, SNR, FRP and flaw 

amplitude. 

Table 5 .1  EC images considered for  ICA based approach .  

5.2.1 Removal of noise from single source 

The denoising ability of the proposed ICA approach has been evaluated on an EC image of 

a flaw-free region in a plate (B1) acquired with variation in lift-off (0.0 mm to 0.5 mm) 

and is shown in Figure 5.3 (a). The output images of flaw and noise components from ICA 

based approach are shown in Figure 5.3 (b and c) respectively. A NRP of 99% is observed 

in the output image. 
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(b) Flaw component image 

     Kurtosis ≤zero 

     NRP=99% 

(c) Independent component image 

    Kurtosis >zero 

(a) Input image  

Figure 5.3 EC images of (a) flaw free region in a plate (B1) with variations in lift-off, (b) 

flaw component image and (c) noise component image from ICA based approach. 

Figure 5.4 (a) shows an EC image of a flaw (F3 and F4, length 6.0 mm, width 0.5 mm, 

depths 0.7 mm and 1.0 mm) in a plate B1 acquired with variation in lift-off (0.0 mm to 1.0 

mm). The output images of flaw and noise components from ICA based approach are 

shown Figure 5.4 (b and c) respectively. A significant improvement in NRP of 94% and 

SNR of 15.5 dB is observed. 

The results of the ICA based approach for single source of noise (variations in material 

properties) from weld plate (W1) obtained at constant lift-off of 0.3 mm are shown in 

Figure 5.5. A NRP of 99% is observed. 
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Figure 5.5 EC image of (a) flaw free region in a weld plate (W1) with variations in material 

properties (single source of noise), (b) output image from ICA based approach. 

NRP=99% 

(b) Ouput image (a) Input image 

(c) Noise component image (b) Flaw component image 

NRP=94%  

Figure 5.4 EC image of (a) two flaws (F3, F4) in a plate (B1) buried in noise due to 

variations in lift-off, output images from ICA based approach (b) flaw component 

(Kurtosis ≤zero) and (c) noise component (Kurtosis>zero). 

F3 

F4 

F3 

F4 

(a) Input image 

SNR=15.5 dB 

SNR=-0.5 dB 
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Figure 5.6 EC image of (a) a flaw (F26) in a weld plate (W1), with single source of noise 

(variations in material properties), (b) output image from ICA based approach. 

F26 

NRP=94% 

(b) Output image 

SNR=14.5 dB 

SNR=1.0 dB 

F26 

(a) Input image 

The flaw separation ability of ICA based approach has been evaluated on an EC image of 

a flaw (F26, length 4.0 mm, width 0.25 mm, depth 0.2 mm) in a weld plate (W1), with 

single source of noise from variations in material properties and the results are shown in 

Figure 5.6 (a). A significant improvement in NRP of 94% and SNR of 14.5 dB are 

observed.  

5.2.2 Removal of composite noise 

The proposed ICA based approach has been evaluated for removal of composite noise in 

EC images acquired in the weld region with variations in lift-off (0.0 mm to 1.0 mm). 

Figure 5.7 shows an EC image of a flaw (F31, length 6.0 mm, width 0.25 mm, depth 0.5 

mm) in a weld plate W2 with composite noise and the results. The NRP and SNR are 82% 

and 12.5 dB respectively.  
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From the results, efficient removal of single source of noise is observed as compared to 

the composite noise removal. The retention of small amount of noise component is 

attributed to the statistical dependency of noise, since ICA based approach has limitation 

in separating the statistically dependent component. On comparing the denoising ability 

with the proposed DWT based approach, the DWT based approach shows effective 

removal of composite noise with improved NRP of 90% and SNR of 13.0 dB.  

Apart from noise reduction, retention ability of flaw information has been assessed on the 

reduction in peak amplitude of flaw. The degradation in flaw amplitude is estimated using 

FRP. 

(b) Flaw component image 

NRP=82%  

(a)Input image  

 

(c) Noise component image 

Figure 5.7 EC image (a) of a flaw (F31) in a weld plate (W2) buried in composite noise, 

output image from ICA based approach (b) flaw component and (c) noise component. 

F31 

F31 

SNR=12.5 dB 

SNR=2.5 dB 
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F11 

F12 F14 

F13 

(b) Output image  

NRP=92% 

 

F13 

F14 
F11 

F12 

SNR=-0.5 dB SNR=14.0dB 

Figure 5.8 EC image of (a) the four flaws (F11, F12, F13, F14) in a plate (B4) buried in 

noise due to variations in lift-off, (b) output image from ICA based approach. 

(a)Input image  

 

5.2.3 Flaw retention ability 

The flaw retention ability of the proposed ICA based approach is evaluated in the presence 

of noise. The EC image of four flaws (F11, F12, F13 and F14) in a plate (B4) is processed 

using the proposed ICA based approach and the results are shown in Figure 5.8. The ICA 

based approach resulted in a NRP of 92% and SNR of 14.0 dB.  

The retention capability of flaw information is assessed in terms of flaw amplitude. The 

same amplitude (1.0 V and 1.4 V) for identical flaws F12 and F13 (length 4.0 mm, width 

0.3 mm, depth 0.7 mm and length 6.0 mm, width 0.3 mm, depth 1.0 mm) and flaws F3 and 

F4 (shown in Figure 5.4) in B1 has been observed, irrespective of the variations in noise 

distribution in both the plates (B1 and B4).  

 

 

The noise removal and flaw retention ability of the proposed ICA based approach for 

several EC images of plates (B1, B2, B3, B4 and B5) and weld plates (W1 and W2) with 

variations in lift-off (0.0 mm to 1.0 mm) are evaluated. Table 5.2 and Table 5.3 give the 

estimated NRP, SNR and flaw amplitude from the processed images. From the tables, it is 
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observed that the proposed ICA based approach retains the original amplitude (acquired at 

constant lift-off) of flaw in plates as well as in weld plates. No reduction in flaw amplitude 

is observed as compared with the amplitude estimated from the image obtained at constant 

lift-off of 0.3 mm. The FRP estimated for various flaws is 0%. The flaw retention ability 

of the proposed ICA approach is noise tolerant up to the variations in lift-off (0.0 mm to 

1.0 mm). 

Table 5 .2  Performance evaluat ion of  t he ICA based approach  for  EC 

images with a s ingle  source of  noise.  

 

 

 

 

Plate 

No. 

Flaw 

No. 

Flaw 

Dimension  

(length x width 

x depth), mm 

Input 

image 

SNR, dB 

Denoised image  

NRP,

% 

SNR, 

dB 

Flaw 

amplitude, 

V 

FRP, 

% 

 

B1 

F1 4.0x 0.5 x 0.3 6.8 93 14.2 0.3 0 

F2 4.0x 0.5 x 0.5 7.2 14.1 0.5 0 

F3 6.0x 0.5 x 0.7 6.5 92 15.5 1.0 0 

F4 6.0x 0.5 x 1.0 8.5 15.5 1.4 0 

B2 F5 20.0 x 0.5x 0.7 6.2 93 13.9 1.0 0 

F6 4.0x 0.5 x 0.7 7.0 93 14.2 1.0 0 

B3 F7 4.0x 0.3 x 0.5 6.2 92 14.5 0.5 0 

F8 4.0x 0.3 x 1.0 7.5 14.0 1.4 0 

F9 6.0x 0.5 x 0.7 7.0 93 13.8 1.0 0 

F10 6.0x 0.5 x 1.0 8.0 14.5 1.4 0 

B4 F11 4.0 x 0.3x 0.3 4.5 92 14.0 0.3 0 

F12 4.0 x 0.3x 0.5 5.2 14.0 0.5 0 

F13 6.0 x 0.3x 0.7 6.2 14.0 0.9 1 

F14 6.0 x 0.3x 1.5 8.5 93 15.2 1.8 0 

F15 8.0 x 0.3x 1.0 7.5 15.5 1.4 0 

F16 8.0 x 0.3x 2.0 9.2 16.5 2.4 0 

F17 8.0 x 0.5x 0.5 5.5  13.3 0.5 0 

F18 8.0 x 0.5x 1.0 7.5 93 14.5 1.4 0 

F19 8.0 x 0.5x 2.0 9.2  14.0 2.4 0 
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Table 5 .3  Performance evaluat ion of  the ICA based approach  for  EC 

images with composi te noise.  

 

The significant removal of noise and enhancement in SNR is observed from Table 5.2 and 

Table 5.3. The proposed ICA approach could detect the shallowest flaw (depth 0.2 mm, 

<10% of wall thickness) with an improved SNR of 12.8 dB.  

5.2.4 Evaluation of noise tolerance on denoising ability 

5.2.4.1 Noise from single source: Variations in lift-off 

The noise tolerance of the proposed ICA based approach for higher amount of noise from 

variations in lift-off ≥ 1.0 mm (0.0 mm to 1.5 mm, 0.0 mm to 2.0 mm) is evaluated. The 

input input images of a flaw (F5, length 20.0 mm, width 0.5 mm, depth 0.7 mm) in a plate 

B2 acquired with variations in lift-off are shown in the first column of Figure 5.9. The 

corresponding denoised EC images from the proposed ICA based approach are shown in 

the second column of Figure 5.9. It is observed that, NRP as well as SNR decrease with 

increase in the variations in lift-off Figure 5.9. From Figure 5.9, the noise removal as well 

Weld 

Plate 

No. 

Flaw 

No. 

Flaw 

Dimension 

Input 

image 

SNR, dB 

Denoised image  

(length x width 

x depth), mm 

NRP, 

% 

SNR, 

dB 

Flaw 

amplitude, V 

FRP, 

% 

 

 

W1 

F26 4.0 x 0.25 x 0.2 4.0 80 12.8 0.2 0 

F27 4.0 x 0.25 x 0.3 4.2 80 13.0 0.3 0 

F28 4.0 x 0.25 x 0.5 4.8 83 13.0 0.5 0 

F29 6.0 x 0.25 x 0.5 4.8 85 12.5 0.5 0 

F30 6.0 x 0.25 x 1.0 5.5 80 13.0 1.4 0 

W2 F31 6.0 x 0.25 x 0.5 4.5 80 12.5 0.5 0 

F32 6.0 x 0.25 x 2.0 5.5 80 12.9 2.4 0 

F33 8.0 x 0.25 x 0.3 4.2 82 13.0 0.3 0 

F34 8.0 x 0.25 x 0.5 4.5 82 13.0 0.5 0 

F35 8.0 x 0.25 x 0.6 4.8 82 13.0 0.65 0 
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Denoised image 

Lift-off≤1.5 mm 

Lift-off≤2.0 mm 

NRP=90% 

NRP=87% 

F5 

F5 

F5 

F5 

Figure 5.9 Performance of the ICA based approach for variations in lift-off. 

Input image 

SNR=5.1 dB 

SNR=6.0 dB 

SNR=14.6 dB 

SNR=13.8 dB 

Lift-off =0.3 mm 

SNR=15.0 dB 

F5 

NRP=92% 

F5 

SNR=15.0 dB 

Lift-off (0.0 mm to 1.5 mm) 

F5 

F5 

SNR=5.1 dB 

Lift-off (0.0 mm to 2.0 mm) 

SNR=6.0 dB 

as flaw retention abilities of the proposed ICA approach is observed for higher amount 

ofnoise variations (lift-off of ≤ 1.5 mm). 
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Figure 5.10 shows the estimated FRP for the processed EC image of a flaw F5 in plate B2 

for variations in lift-off. From Figure 5.10, it is observed that the FRP (F5, length 20.0 

mm, width 0.5mm, depth 0.7  mm ) is estimated as 0% and retained up to variations in lift-

off ≤1.5 mm. FRP of 10% is observed for 0.0 mm to 2.0 mm variations in lift-off. It is 

noted that the reduction in amplitude is less (FRP of 10%) for the ICA based approach as 

compared to the DWT based approach (FRP of 50%).  

 

The NRP, SNR, flaw amplitude and FRP are estimated from a number of processed 

images and are given in Table 5.4. From the table, the decrease in NRP as well as SNR is 

observed for the increase in variations in the lift-off. However, the reduction in flaw 

amplitude in the processed image is less as compared with the peak amplitude of flaws 

obtained at constant lift-off of 0.3 mm. The estimated value of FRP is less as compared to 

Figure 5.10 Estimated FRP from the ICA processed image of a flaw (F5) in a plate B2 for 

variations in lift-off. 
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the DWT based approach (Table 4.8) in the presence of noise due to variations in lift-

off( > 1.5 mm).  

Table 5 .4  Evaluat ion of  the  proposed ICA based approach  for  variat ions  

in  l i f t -off .  

 

5.2.4.2 Noise from composite source: Variations in lift-off 

The noise tolerance of the proposed ICA based approach has also been evaluated for EC 

images of weld plates acquired with higher amount of noise from variations in lift-off (0.0 

mm to 1.5 mm, 0.0 mm to 2.0mm. EC images of a flaw (F28, length 4.0 mm, width 0.25 

mm, depth 0.5 mm) in a weld plate (W1) acquired with variations in lift-off and results are 

shown in Figure 5.11. It is observed that, NRP as well as SNR decrease with increase in 

the variations in lift-off.  

Plate

No. 

Flaw 

No. 

Variations 

in lift-off, 

mm 

Input 

image 

SNR, dB 

Denoised image  

NRP, 

% 

SNR, 

dB 

Flaw 

amplitude, V 

FRP, % 

B1 F1 

≤0.5 8.0 93 12.0 0.5 0 

≤1.0 6.8 92 10.2 0.5 0 

≤1.5 5.0 90 9.6 0.5 0 

≤2.0 4.5 88 -0.8 0.45 10 

B2 F5 

≤0.5 10.0 92 15.0 1.0 0 

≤1.0 7.9 91 14.6 1.0 0 

≤1.5 6.0 90 14.6 1.0 0 

≤2.0 5.1 87 13.8 0.9 10 

B3 F8 

≤0.5 10.0 93 14.0 1.4 0 

≤1.0 7.5 90 10.8 1.4 0 

≤1.5 7.2 90 9.8 1.38 1 

≤2.0 6.2 86 -0.7 1.25 8.5 

B4 F15 

≤0.5 9.5 92 13.2 1.4 0 

≤1.0 8.2 90 11.5 1.4 0 

≤1.5 7.5 90 9.4 1.37 2 

≤2.0 6.0 85 -0.9 1.28 8 
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NRP=95% 

Lift-off ≤1.0 mm 

NRP=68% 

F28 

Figure 5.11 Performance of the ICA based approach for variations in composite noise. 

SNR=15.5dB 

SNR=0.2 dB 

Lift-off =0.3 mm 

SNR=10.0 dB 

F28 

F28 

Lift-off (.0.0 mm to 1.5 mm) 

SNR=-0.5 dB 

F28 

SNR=3.0 dB 

Lift-off (.0.0 mm to 2.0 mm) 

NRP=75% 

F28 

SNR=9.5 dB 

Denoised image 

F28 

Input image 
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Figure 5.12 Estimated FPR from the ICA processed image of a flaw (F28) in a plate W1 

for variations in lift-off. 

Figure 5.12 shows the estimated FRP for the processed EC image of a flaw (F28, length 

4.0 mm, width 0.25 mm, depth 0.5 mm) in a weld plate (W1) for variations in lift-off. As 

can be seen the FRP is estimated as 0% up to variations in lift-off (0.0 mm to 1.0 mm) and 

this degrades to 16% (FRP for 0.0 mm to 2.0 mm variations in lift-off. It is noted that the 

reduction in amplitude is less (FRP of 16%) as compared to the DWT based approach 

(FRP of 50%).  

 

The NRP, SNR, flaw amplitude and FRP are estimated from a number of processed 

images and are given in Table 5.5. From the table, the decrease in NRP as well as SNR is 

observed for the increase in variations in composite noise as compared to the lift-off 

(single source, Table 5.4) noise. However, it is found that the same amplitude of flaw is 

retained as compared to the DWT based approach (Table 4.8). 

Denoised image 
Input image 

F28 
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Table 5 .5  Evaluat ion of  the proposed ICA based approach  for  variat ions 

in  l i f t -off .  

 

The degradation in flaw amplitude due to the influence of varying amount of noise viz. 

variations in lift-off (single source) and composite noise (two sources) is compared for the 

shallow surface flaws of depth 0.5 mm using FRP are shown in Figure 5.13. From Figure 

5.13,  no degradation in flaw amplitude is observed for EC images acquired at constant 

lift-off as well as up to the variations in lift-off 0.0 mm to 1.0 mm. It indicates the less 

influence of noise on flaw retention ability as compared to the DWT based approach.  

Plate 

No. 

Flaw 

No. 

Variations 

in lift-off, 

mm 

Input 

image 

SNR, dB 

Denoised image  

NRP,

% 

SNR,

dB 

Flaw 

amplitude, V 

FRP, 

% 

W1 F28 

≤0.5 8.0 85 14.0 0.5 0 

≤1.0 4.8 80 10.2 0.5 0 

≤1.5 3.0 75 9.5 0.45 10 

≤2.0 -0.5 68 0.2 0.42 16 

W2 F31 

≤0.5 7.8 85 14.0 0.5 0 

≤1.0 4.5 80 10.0 0.5 0 

≤1.5 3.2 73 8.4 0.45 10 

≤2.0 -1.0 71 0.2 0.42 16 

Figure 5.13 Evaluation of noise tolerance of ICA based approach in the presence of 

single source and composite noise. 
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5.2.5 Influence of test parameters 

The influence of testing frequency and diameter of the EC probe on denoising ability of 

the proposed ICA based approach is evaluated. The several EC images of plates (B1, B2, 

B3) and weld plates (W1, W2) acquired using probes of 5.0 mm and 20.0 mm diameter at 

testing frequencies of 75 kHz and 20 kHz are processed using the proposed ICA based 

approach. 

Figure 5.14 (a) shows the EC image of four flaws (F1, F2 - length 4.0 mm, width 0.5 mm, 

depths 0.3 mm, 0.5 mm and F3, F4 - length 6.0 mm, width 0.5 mm, depths 0.7 mm, 1.0 

mm) in a plate (B1) acquired with variations in lift-off (0.0 mm to 1.5 mm) using probe of 

5.0 mm diameter operating at test frequency of 75 kHz. The NRP of 92% and SNR of 14.2 

dB are observed in the output image (Figure 5.14 (b) and promises the same ability of 

noise removal. 

F2 
F4 

F3 

F1 F4 

F1 

F2 

F3 

Figure 5.14 EC image of (a) four flaws (F1-F4) in a plate (B1) using 5.0 mm diameter 

probe (5 kHz), (b) output image from ICA based approach. 

SNR=14.2 dB 

NRP=92% 

(b) Output image 

Frequency: 75 kHz 

Probe dia. 5.0 mm 

SNR=0.5 dB 

(a)Input image  
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Figure 5.15 (a) shows the EC image of a flaw (F26-length 4.0 mm, width 0.25 mm, depth 

0.2 mm) in a weld plate (W1) acquired with variations in lift-off (0.0 mm to 1.5 mm) 

using 5 kHz probe operating at 75 kHz. The NRP of 80% and SNR of 12.8 dB are 

observed in the output image (in Figure 5.15 b). 

From these results, it is observed that no significant influence of testing parameters viz. 

varying diameter of 3.0, 5.0, 20.0 mm and frequencies of 20 kHz, 75 kHz and 150 kHz, on 

the denoising ability of the proposed ICA based approach. 

 

5.3 Comparative study on DWT and ICA based approaches 

The denoising ability of the proposed DWT and ICA based approaches has been compared 

using NRP and flaw amplitude for a flaw (F28) in a weld plate (W1) and the results are 

shown in Figure 5.16.  

F26 

Figure 5.15 EC image of (a) a flaw (F26) in a weld plate (W1) using 5.0 mm diameter 

probe (5 kHz), (b) processed image from the proposed ICA based approach. 

(b) Processed image 

SNR=12.8 dB 

NRP=80% SNR=-0.5 dB 

F26 

Frequency: 75 kHz 

Probe dia. 5.0 mm 

(a)Input image  
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A significant removal of composite noise at higher lift-off variations is achieved by the 

DWT based approach as compared to the ICA based approach. However, ICA based 

approach has shown promising performance for separation of flaw by retaining equal 

amplitude for identical flaws, despite variations in noise distribution in weld plates (refer 

Section 1.3.3).  

The retention ability of flaw amplitude of the ICA and DWT based approaches for varying 

amount of noise due to lift-off variations (single source) and composite noise (two 

sources) is analysed. The denoised EC images of flaws of depth 0.5 mm (F1, F28) from 

plate (B1) and weld plate (W1) have been assessed for variations in lift-off noise. The 

peak amplitude at the flaw region of the processed image from DWT based approach and 

ICA based approach are plotted and are shown in Figure 5.17.  

Figure 5.16 Estimated NRP of the processed images from the DWT and ICA based 

approaches. 
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In the ICA based approach, the same amplitude of the flaw (0.5 V) has been retained even 

in the presence of (single source of noise) lift-off variations up to 1.5 mm. However, in the 

presence of composite noise, flaw retention ability is noise tolerant up to 1.0 mm variation 

in lift-off, higher as compared to the DWT based approach. For higher variations (≤2.0 

mm), the reduction in amplitude in the presence of single source (lift-off) of noise is found 

to be 10% (0.05 V). In the case of composite noise, reduction is about 16% (0.08 V). 

 

The flaw retention ability of the ICA based approach is attributed to the estimation of 

optimal de-mixing matrix that improves the separation of statistically dependent variable 

(flaw) from noise.  

In the DWT based approach, better denoising ability is observed for composite noise as 

compared to the ICA based approach. However, the flaw retention ability of the ICA 

based approach is observed, despite variations in noise distributions. It indicates the flaw 

retention ability is noise tolerant as compared to the DWT based approach.  

Figure 5.17 Flaw retention ability of the proposed DWT and ICA based approaches 

under the influence of variations in lift-off noise. 
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To enhance the noise removal ability of the ICA based approach, sub decomposition of the 

ICA components by a narrow band filtering is found attractive (refer Section 1.4.4.2). By 

the use of narrow band filtering process, the wide band of signals having dependency 

among them can be represented as the sum of a few independent subcomponents and 

dependent subcomponents with different frequency bands. DWT, a well known narrow 

band filtering based on spectral dependence and is found to be an attractive candidate. 

The results indicate that combining the noise reduction ability of the DWT based approach 

and the flaw retention ability of the ICA based approach is advantageous for better noise 

reduction and flaw retention. 

5.4 Summary 

ICA based approach established with an iterative estimation of de-mixing matrix has been 

proposed for removal of noise from single source and composite noise in 5.0 mm thick 

stainless steel plates. The following results are observed: 

 An iterative estimation algorithm to optimise the de-mixing matrix has been 

proposed. 

 The proposed ICA based approach has ensured enhancement in SNR of 14. 5 dB and 

NRP of 93% in the presence of single source of noise and SNR of 13.5 dB and NRP 

of 80% for composite noise, which is three times the SNR of the input images (4.5 

dB). 

 The flaw retention ability of the proposed approach establishes its noise tolerance up 

to the variations in lift-off 0.0 mm to 1.5 mm for single source of noise and up to the 

variations in lift-off 0.0 mm to 1.0 mm for composite noise. 
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 No significant influence on the denoising ability of the proposed approach observed 

for various diameters of probes of 3.0 mm, 5.0 mm and 20.0 mm and varying test 

frequencies in the range of 20 kHz-150 kHz  

 The approach could detect shallows flaws (depth 0.2 mm <10% wall thickness) of 

comparable amplitude with that of noise. 
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Chapter 6 : Hybrid image processing approach for 

automated noise removal 

Preamble 

This chapter proposes a hybrid image processing approach that combines the advantages 

of the DWT based approach and ICA based approach. This chapter presents the 

performance analysis of two sequences of combination of these approaches (DWT-ICA, 

ICA-DWT) using NRP, SNR and flaw amplitude. This chapter describes how ICA based 

approach followed by DWT based approach is the optimal sequence for achieving 

efficient noise removal and discusses the denoising ability of the proposed hybrid ICA-

DWT based approach. 

6.1 Hybrid Image processing approaches : DWT-ICA and ICA-DWT 

A hybrid image processing approach has been proposed by combining the advantages of 

the noise reduction ability of the DWT approach discussed in Section 4.5 and the flaw 

retention ability of the ICA approach demonstrated in Section 5.3. In this approach, 

frequency dependency of flaws and statistical independence of noise is utilised to 

efficiently remove noise in EC images. The flaw retention ability of the ICA based 

approach is indeed the primary motivation to join the DWT and ICA based approaches. 

The orthogonality of the DWT components together with the linearity of the ICA 

components allows possible combination of the DWT and ICA based approaches to 

propose a hybrid image processing approach. Two possible combinations are 1) DWT-

ICA and 2) ICA-DWT. The performance of these two approaches has been analysed using 

NRP, SNR, flaw amplitude and FRP. 
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6.1.1 Hybrid DWT-ICA based approach 

In this approach, the input EC image is first processed by the DWT approach comprising 

optimisation of wavelet filter, decomposition level and Heursure sub-band level 

thresholding (refer Section 4.1.1). The output EC image is then processed by the ICA 

approach. The flow chart of the hybrid DWT-ICA based approach is shown in Figure 6.1. 

6.1.2 Hybrid ICA-DWT based approach 

In this approach, the flaw component from the ICA approach is decomposed into 

frequency domain by the DWT approach. The flow chart of the hybrid ICA-DWT is 

shown in Figure 6.2. 

Figure 6.1 Flow chart of hybrid DWT-ICA based approach. 
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Figure 6.2 Flow chart of hybrid ICA-DWT based approach. 

 

Input image 

Output image 

ICA based approach 

DWT based approach 

 

The denoising ability of the hybrid DWT-ICA and ICA-DWT based approaches have been 

evaluated on a number of EC images having noise due to a) single source of noise and b) 

composite noise and comparative assessment has been made. 

6.2 Performance Evaluation of hybrid approaches 

6.2.1  Removal of noise from single source 

EC image of four flaws (F11, F12, F13 and F14) (length 4.0 mm, width 0.3 mm, depth 0.3 

mm, 0.7 mm and length 6.0 mm, width 0.3 mm, depths 0.7 mm, 1.0 mm) in a plate (B4) 

has been processed by DWT-ICA and ICA-DWT based approaches. Figure 6.3 shows the 

input image and processed image from each stage of these approaches. 

In the hybrid DWT-ICA based approach, at the first stage of processing, the proposed 

DWT based approach achieves NRP of 80%. Further processing through ICA based 

approach shows the improvement in NRP to 88% and SNR from 12.5 dB to 13.5 dB. 

However, the estimation of peak amplitude of the shallow flaw (F11) shows 10% (FRP) 

reduction. This is attributed to the removal of wavelet coefficients of flaw of having at the 

frequencies relevant to the noise information in a few DWT levels.  
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In the hybrid ICA-DWT based approach, the first stage of the ICA approach has achieved 

NRP of 90% and SNR of 14.0 dB with retention of small amount of noise. However, the 

subsequent DWT approach has improved FRP of 95% and SNR of 15.2 dB. From the 

results, it is clear that the ICA-DWT based approach keeps the flaw amplitude unchanged 

and good flaw retention ability. The flaw degradation (FRP) is less and is achieved by the 

removal of statistical dependence of the noise by frequency dependency by the proposed 

DWT based approach resulting in better denoising and enhanced SNR. On comparing both 

these approaches, the ICA-DWT based approach has shown effective denoising and flaw 

enhancement in the presence of noise due to variations in lift-off.  

6.2.2 Removal of composite noise 

The two hybrid approaches have been evaluated for removal of composite noise in EC 

images. EC image of a flaw (F31, length 6.0 mm, width 0.25 mm and depth 0.5 mm) in a 

weld plate (W2) acquired with variations in lift-off (0.0 mm to 1.5 mm) has been 

processed. The input image and processed images from the each stage of these approaches 

are shown in Figure 6.4.  

In the hybrid DWT-ICA based approach, the results show that the DWT approach 

achieves NRP of 88%. The subsequent processing by the ICA approach improves the NRP 

to 90%. However, some of the statistical dependent noise is still present in the image due 

to the limitation of the ICA approach (statistical dependency of noise). It is observed that 

the amount of retained noise is less as compared to the noise removal by the individual 

DWT and ICA approaches. 
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F3 
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F11 
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F11 

F12 

(b) DWT approach 

NRP=80% 

 

F13 

F14 

F11 

F12 

ICA 

 

Figure 6.3 EC image of (a) four flaws (F11, F12, F13 and F14) in a plate (B4), with noise due to variations in lift-off, (b) and (c) output images from 

each stage of the hybrid DWT-ICA based approach and (d) and (e) from each stage of the hybrid ICA-DWT based approach. 

DWT 

 

(c) DWT-ICA based approach  

NRP=88% 

 

(a) Input image 

NRP=90% 

F13 

F14 

F11 

F12 

(e) ICA-DWT based approach 

NRP=95% 

F13 

F14 

F12 

F11 

ICA 

 

DWT 

 

SNR=-0.5 dB 

SNR=2.5 dB 

SNR=14.0 dB SNR=15.2 dB 

SNR=-10.5 dB 

(d) ICA approach  

NRP=90% 
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F31 

(a) Input image 

SNR=2.5 dB 

 

 

DWT 

 

(c) DWT-ICA based approach 

NRP=90% 

SNR=13.5 dB 

(b) DWT approach 

NRP=86% 

SNR=13.5 dB 

F31 

Figure 6.4 EC image of (a) flaw (F31) in a weld plate (W2) with composite noise, (b) and (c) output images from each stage of the hybrid 

DWT-ICA based approach, (d) and (e) from each stage of the hybrid ICA-DWT based approach. 

F31 

(d) ICA approach 

NRP=82% 

SNR=12.5 dB 

ICA 

 

DWT 

 

ICA 

 

(e) ICA-DWT based approach 

NRP=93% 

SNR=15.0 dB 

F31 
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The performance of these approaches has been evaluated on several images having noise 

from single source and composite noise. The estimated NRP, SNR, Flaw amplitude are 

given in Table 6.1. A significant improvement in noise reduction as well as flaw retention 

ability is observed by the ICA-DWT based approach as compared to the DWT-ICA based 

approach.  

Table 6 .1  Performance evaluat ion of  hybrid DWT-ICA and hybrid ICA-

DWT based approach  on experimental  images .  

No. Flaw 

No. 

Input 

image 

SNR, 

dB 

Denoised image 

DWT-ICA based approach ICA-DWT based approach 

NRP, 

% 

SNR, 

dB 

Flaw 

amplitude, V 

NRP, 

% 

SNR, 

dB 

Flaw 

amplitude, V 

 

B1 

F1 6.8 90 13.2 0.3 93 14.2 0.3 

F2 7.2 14.1 0.5  14.1 0.5 

F3 6.5 88 13.5 0.75 92 15.5 1.0 

F4 8.5 13.5 1.1  15.5 1.4 

B2 F5 6.2 88 13.9 1.1 93 15.9 1.4 

F6 7.0 90 14.2 0.9 93 15.2 1.0 

B3 F7 6.2 92 14.5 0.45 92 14.5 0.5 

F8 7.5 14.0 1.2  15.0 1.4 

F9 7.0 90 13.8 1.0 93 14.8 1.0 

F10 8.0 14.5 1.1  14.5 1.4 

B4 F11 4.5 88 14.0 0.3 92 14.0 0.3 

F12 5.2 14.0 0.46  14.0 0.5 

F13 6.2 14.0 0.9  14.5 1.0 

F14 8.5 89 15.2 1.7 93 15.2 1.8 

F15 7.5 15.5 1.3  15.5 1.4 

F16 9.2 16.5 2.0  16.5 2.4 

F17 5.5 13.3 0.42  14.3 0.5 

F18 7.5 14.5 1.3  14.5 1.4 

F19 9.2 14.0 2.2  15.0 2.4 

W1 F26 4.0 86 12.8 0.13 90 14.0 0.2 

 F27 4.2 88 13.2 0.22 92 14.0 0.3 

 F28 4.8 89 13.8 0.4 93 14.5 0.5 

 F29 4.8 90 14.0 0.4 92 14.6 0.5 

 F30 5.5 90 14.2 1.0 93 15.0 1.4 

W2 F31 4.5 88 13.8 0.4 92 14.5 0.5 

 F32 5.5 90 14.5 2.0 92 15.2 2.4 

 F33 4.2 87 13.5 0.22 92 15.0 0.3 

 F34 4.5 88 14.0 0.4 14.5 0.5 

 F35 4.8 90 14.5 0.52 14.8 0.65 
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The ICA based approach has shown SNR of 12.5 dB and NRP of 82%, the DWT based 

approach has shown SNR of 10.0 dB and NRP of 75% and hybrid ICA-DWT based 

approach has shown SNR of 15.0 dB and NRP of 93%. It is noted that hybrid ICA-DWT 

based approach has enhanced the SNR by 2.5 dB and NRP by 11%.  

The difference point between ICA-DWT and ICA approach are that ICA is processed the 

image through mixing matrix with the help of statistical independence of sources and do 

not estimate frequency dependencies. In the ICA-DWT based approach, ICA separates 

most of the noise and passes the data that contains information about Gaussianity to the 

DWT approach. ICA exploits the inherent non-linearity in the separation of components 

with mutual statistical independence. ICA maps the information from the R
PxQ

 domain 

(where P, Q are pixels along the width and height of source images) into a co-domain 

where information is split into sub-information by minimising the mutual information. The 

removal of mutual information reduces multi-scale dependency among the wavelet 

coefficients in the DWT processing and thus resulting in better localization of the flaw 

information. The marked advantages of the ICA-DWT based approach are a) better noise 

reduction ability and b) better flaw retention ability. Thus, the hybrid ICA-DWT based 

approach is a more efficient approach for noise reduction in EC images. 

6.3 Performance of the proposed hybrid ICA-DWT based approach 

6.3.1 Evaluation of noise tolerance: Noise from single source 

The noise tolerance of the proposed hybrid ICA-DWT based approach for higher amount 

of noise from variations in lift-off ≥ 1.0 mm (0.0 mm to 1.5 mm, 0.0 mm to 2.0 mm) is 

evaluated on number of EC images. The input images of a flaw (F5, length 20.0 mm, 

width 0.5 mm, depth 1.0 mm) in a plate B2 acquired with variations in lift-off (0.0 mm to 
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1.5 mm, 0.0 mm to 2.0 mm) and the output of proposed hybrid ICA-DWT based approach 

are shown in Figure 6.5. As can be seen from Figure 6.5, the proposed hybrid ICA-DWT 

based approach is able to remove noise well while retaining flaw information even in the 

presence of higher variations in lift-off noise (≤ 2.0 mm).  

 

NRP=94% 

Output image 

NRP=92% 

F5 

Input image 

SNR=14.2 dB 

SNR=15.0 dB 

F5 

SNR=15.0 dB 

Lift-off =0.3 mm 

F5 

Lift-off (0.0 mm to 1.5 mm) 

F5 

SNR=6.0 dB SNR=14.8dB 

NRP=94% 

F5 

F5 

Lift-off (0.0 mm to 2.0 mm) 

SNR=5.1 dB 

Figure 6.5 Performance of the hybrid ICA-DWT based approach for variations in lift-off. 

 

F5 
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6.3.2 Evaluation of noise tolerance: composite noise 

The noise tolerance of the proposed hybrid ICA-DWT based approach has also been 

evaluated for EC images of weld plates acquired with variations in lift-off (0.0 mm to 1.5 

mm, 0.0 mm to 2.0 mm). Figure 6.6 shows typical EC images of a flaw (F28, length 4.0 

mm, width 0.25 mm, depth 0.5 mm) in a weld plate (W1) acquired with variations in lift-

off and their corresponding output of the hybrid ICA-DWT based approach. The estimated 

NRP, SNR and flaw amplitude of the processed images are given in Table 6.2. 

Table 6 .2  Evaluat ion of  the proposed hybrid  ICA-DWT based approach  

for  variat ions  in  l i f t -off .  

 

Plate 

No. 

Flaw 

No. 

Variations 

in lift-off, 

mm 

Input 

image 

SNR, dB 

Denoised image  

NRP, 

% 

SNR, 

dB 

Flaw 

amplitude, V 

FRP, 

% 

B1 F1 

≤0.5 8.0 93 15.0 0.5 0 

≤1.0 6.8 92 14.2 0.5 0 

≤1.5 5.0 90 13.6 0.5 0 

≤2.0 4.5 88 13.2 0.5 0 

B2 F5 

≤0.5 10.0 94 15.0 1.0 0 

≤1.0 7.9 94 14.8 1.0 0 

≤1.5 6.0 94 14.8 1.0 0 

≤2.0 5.1 92 14.6 0.98 2 

B3 F8 

≤0.5 10.0 93 15.0 1.4 0 

≤1.0 7.5 90 14.8 1.4 0 

≤1.5 7.2 90 15.0 1.38 1 

≤2.0 6.2 86 14.5 1.35 3 

B4 F15 

≤0.5 9.5 92 15.2 1.4 0 

≤1.0 8.2 90 15.0 1.4 0 

≤1.5 7.5 90 14.2 1.37 2 

≤2.0 6.0 85 14.0 1.33 5 

W1 F28 

≤0.5 8.0 94 15.0 0.5 0 

≤1.0 4.8 94 15.0 0.5 0 

≤1.5 3.0 94 14.8 0.5 0 

≤2.0 -0.5 92 14.0 0.48 4 

W2 F31 

≤0.5 7.8 94 15.0 0.5 0 

≤1.0 4.5 92 15.0 0.5 0 

≤1.5 3.2 92 14.6 0.5 0 

≤2.0 -1.0 90 14.2 0.47 5 
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Figure 6.7 and Figure 6.8 depict the comparative performance in NRP, SNR of the 

individual processing DWT, ICA and hybrid approaches for single source of noise and 

Denoised image 

Lift-off≤1.5 mm 

Lift-off≤1.0 mm 

NRP=94% 

F28 

F28 

F28 

F28 

Input image 

SNR=8.0 dB 

SNR=4.8 dB 

SNR=14.8 dB 

NRP=95% 

SNR=15.5dB 

Lift-off =0.3 mm 

F28 

Figure 6.6 Performance of the hybrid ICA-DWT based approach for variations in 

composite noise. 

Lift-off (.0.0 mm to 1.5 mm) 

F28 

SNR=-0.5 dB 

F28 

SNR=3.0 dB 

Lift-off (.0.0 mm to 2.0 mm) SNR=14.0 dB 

NRP=92% 

F28 
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Figure 6.7 Denoising ability of hybrid ICA-DWT based approach for variations in lift-off. 

composite noise respectively. As can be seen, the proposed hybrid ICA-DWT based 

approach enhanced the noise reduction and improved the SNR. In addition, the capability 

of flaw retention indicates its tolerance to the higher amount of noise as compared to the 

individual DWT and ICA based approaches. 
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Figure 6.8 Denoising ability of hybrid ICA-DWT based approach for variations in 

composite noise. 
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The proposed hybrid ICA-DWT based approach exhibits the improved denoising 

capability for single source noise (lift-off noise) as well as composite noise up to the range 

of ≤ 2.0 mm variations in lift-off as compared with individual ICA based approach and 

DWT based approach. The amplitude of the flaw has been retained even in the presence of 

lift-off variations up to 2.0 mm. 

6.3.3 Influence of test parameters 

The influence of testing frequency and diameter of the EC probe on denoising ability of 

the proposed hybrid ICA-DWT based approach is evaluated. The several EC images of 

plates (B1, B2, B3) and weld plates (W1, W2) acquired using probes of 5.0 mm and 20.0 

mm diameter at testing frequencies of 75 kHz and 20 kHz are processed. 

6.3.3.1 Influence of test frequency and probe diameter 

EC images acquired from plate (B4) and weld plate(W2) using 5.0 mm diameter EC probe 

at 75 kHz frequency have been used. The EC image of a plate (B4) having flaws F11 to 

F19 (F11-F1:length 8.0 mm, width 0.3 mm, depth 0.3 mm, 0.5 mm, 0.7 mm, F15-F16, 

length 8.0 mm, width 0.3mm, depth 1.0 mm, 2.0 mm, F17-F19, length 8.0 mm, width 0.5 

mm, depth 0.5 mm, 1.0 mm, 2.0 mm), among them four of them are buried in noise due to 

lift-off variations as shown in Figure 6.9 (a). The processed image from the ICA approach 

and sub decomposition of flaw image using the DWT approaches are shown in Figure 6.9 

(b) and Figure 6.9 (c). The NRP of 85% is achieved by the ICA approach and sub 

decomposition of the flaw component by the DWT approach enhanced the NRP to 92%. 

These results show similar denoising performance and observe no influence of testing 

parameters viz. varying diameter of 3.0, 5.0, 20.0 mm and frequencies of 20 kHz, 75 kHz 

and 150 kHz.  
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The denoising performance of the proposed hybrid approach for removal of composite 

noise at different test parameter (test frequency75 kHz, 5.0 mm diameter probe) has been 

evaluated. The EC image of three flaws (F33, F34 and F35) depths of 0.3, 0.5 and 0.6 mm 

F12 
F18 

F19 

F16 

F13 

F15 

F11 

F17 

F14 

Figure 6.9 EC image of (a) nine flaws (F11-F19) in a plate (B4), output images from (b) 

ICA approach and (c) proposed hybrid ICA-DWT based approach. 

Frequency: 75 kHz 

Probe dia. 5.0 mm 

F11 

(c) Hybrid ICA-DWT based approach 

NRP=92% 

SNR=14.5 dB 
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(b) ICA approach 
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SNR=13.5 dB 
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(a) Input image 
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Chapter 6 

133 

 

Figure 6.10 EC image of (a) thee flaws (F33-F35), output images from (b) ICA approach 

and (c) proposed hybrid ICA-DWT based approach. 

F34 

F33 

F35 F34 

F33 

(a)Input image 

SNR=1.5 dB 

(b) ICA approach 

NRP=88% 

SNR=14.5 dB 

(c) Hybrid ICA-DWT based approach 

NRP=94% 

SNR=15.5 dB 

F35 

Frequency: 75 kHz 

Probe dia. 5.0 mm 

F34 F33

3 

F35 

in a weld plate (W2) buried in composite noise has been tested. The input image and 

output image from the each stage of the approach are shown in Figure 6.10. 

 

Similar performance has been achieved with NRP of 88% from the ICA approach and 

subsequent DWT enhances NRP to 94% and establishes its noise reduction capability. 
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Figure 6.11 Denoising capability of the proposed hybrid ICA-DWT based approach for 

noise due to variations in electrical conductivity. 

(b) ICA based approach  (c)Hybrid ICA-DWT approach  

NRP=83% 

SNR=12.5 dB 

F24 F24 

NRP=90% 

SNR=14.2 dB 

Flaw 

(a)Input image 

SNR=-0.5 dB 

From these results, it is observed that no significant influence of testing parameters 

(varying diameter of 3.0, 5.0, 20.0 mm and frequencies of 20 kHz, 75 kHz and 150 kHz) 

on the performance of the ICA approach. 

6.3.4 Influence of noise due to variations in electrical conductivity 

The performance of the proposed hybrid ICA-DWT approach has also been evaluated for 

removal of noise due to gradual variations in electrical conductivity. EC image of a flaw 

(length 6.0 mm, width 0.3 mm and depth 0.5 mm) in the plate with noise is processed and 

results from each stage of the proposed hybrid ICA-DWT approach are shown in Figure 

6.11. The NRP of 90%, SNR of 14.5 dB, consistent flaw retention ability are observed in 

the processed image. 
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6.3.5 Influence of noise due to geometrical variations  

The denoising ability of the proposed hybrid ICA-DWT based approach for removal of 

noise from geometrical variations has been evaluated. AISI type 316 SS tube of 5.1 mm 

outer diameter and 0.37 mm wall thickness having periodic wall thickness variations of 

the order of 10 to 20 microns (2.6% to 5.2 % wall thickness) is tested using surface 

absolute probe of 3.0 mm diameter at test frequencies of 350 kHz (δ=0.7 mm) and 750 

kHz (δ=0.49 mm). EC images of flaws are of longitudinal notches (length 4.0 mm, width 

0.1 mm, and depth 0.075 mm, 0.15 mm) and circumferential notches (length 4.0 mm, 

width 0.1 mm, depth 0.075, 0.15 mm) are processed by the proposed hybrid approach. 

Two cases of noise a) single source of noise due to wall thickness variations and b) 

composite noise due to wall thickness and lift-off variations are considered. Figure 

6.12 (a) shows the EC image of a flaw (F39-length 4.0 mm, width 0.1 mm, depth 0.075 

mm) in a tube (T2) having wall thickness variations. 

 

F39 

(a) Input image 

Figure 6.12 EC image of (a) flaw (F39, circumferential notch) in a tube T2 with noise due 

to wall thickness variations (single source of noise), (b) output image from the proposed 

hybrid ICA-DWT based approach. 

(b) Denoised image 

F39 

NRP=92% 
SNR=15.2 dB 

SNR=4.2 dB 
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 The processed output image from proposed hybrid ICA-DWT based approach is shown in 

Figure 6.12 (b). NRP, SNR and flaw amplitude are found to be 92%, 15.2 dB and 0.38 V 

respectively. The proposed hybrid ICA-DWT based approach is also evaluated for 

removal of composite noise ( due to wall thickness variations and variations in lift-off (0.0 

mm to 1.0 mm) in an EC image of a flaw (F40- length 4.0 mm, width 0.1 mm, depth 0.15 

mm) and the results are shown in Figure 6.13. NRP, SNR and flaw amplitude are found to 

be 90% , 13.5 dB and 0.72 V respectively. 

6.3.6 Application to sub-surface flaw detection 

Based on these promising results for surface flaws, the applicability of the proposed ICA-

DWT approach is extended to detection of sub-surface flaws. EC image of SS plate (B5) 

having sub-surface flaws (F20-F25, length 6.0 mm, width 0.3 mm) located at 1.0 mm, 2.0 

mm, 3.0 mm, 3.5 mm, 4.0 mm and 4.5 mm below the surface is processed. EC image 

acquired at a 20 kHz (δ=4.0 mm) using 20.0 mm diameter probe (>length of flaw) and the 

results are shown in Figure 6.14. The result shown in Figure 6.14 demonstrates the noise 

Lift-off (0.0 mm to 1.0 mm) 

F40 

NRP=90% 

F40 

(b) Denoised image (a) Input image 

Figure 6.13 EC image of (a) a flaw (F40, circumferential notch) in a tube T2 with 

composite noise and (b) output image from proposed hybrid ICA-DWT based approach. 

SNR=13.5 dB SNR=0.4 dB 
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(b) Hybrid ICA-DWT based approach 

NRP=90% 

SNR=14.5 dB 

Figure 6.14 EC image of (a) sub-surface flaws (F20-F25) and (b) the output image from 

hybrid ICA-DWT based approach. 
 

 

F23 F24 F25 

F22 F21 
F20 

(a) Input image 

SNR=-1.5 dB 

reduction as well as flaw enhancement capabilities of this approach for sub-surface flaws 

with an improvement in NRP of 90% and SNR of 14.5 dB. These results clearly bring out 

an interesting observation that the performance of the proposed approach has not 

significantly been altered by the test frequency and the probe diameter. This result 

indicates the applicability of this approach to sub-surface flaw enhancement. 

 

 

 

6.3.7 Application to surface flaw detection 

Figure 6.15 (a) shows the EC image of surface flaws of length 6.0 mm (width 0.3 mm, 

depths 0.5 mm, 0.7 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm) having relatively limited 

information of the shallow flaws. The reduced sensitivity is due to the large diameter (20.0 

mm) of the probe, which is 3 times greater than the length of the flaw. Figure 6.15 (b) 
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SNR=0.2 dB 

Figure 6.15 Output of the ICA-DWT approach for imaging of surface flaws by a large 

diameter probe. 

NRP=90% 

SNR=14.5 dB 

(a) Input image 

(b) Hybrid ICA-DWT based approach 

shows the output image from hybrid ICA-DWT based approach. The processed image 

shows SNR of 14.5 dB. The approach has detected all the shallow flaws and this proves its 

efficacy for denoising as well as flaw enhancement capability.  

6.3.8 Application to natural flaw detection 

The proposed approaches have demonstrated better noise removal and improved flaw 

detectability for machined flaws. To evaluate the performance of the proposed approaches 

for a realistic flaw, an EC image of a fatigue crack in a SS plate (shown in Figure 6.16) 

has been processed. Figure 6.16 shows an EC image of the fatigue crack (length 12.0 mm, 

width 0.1mm) acquired at 150 kHz using a 3.0 mm diameter probe. Figure 6.16 also shows 

the denoising performance of the DWT, ICA and hybrid ICA-DWT based approaches.  

In the DWT approach, wavelet filter Db5, level 5 has been identified as an optimum 

wavelet, same as that for plates with machined flaws. This promises its capability for  
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Figure 6.16 EC image of (a) a fatigue crack in a SS plate, processed images from (b) 

DWT approach, (c) ICA approach and (d) hybrid ICA-DWT based approach. 

SNR=10.2 dB 

(a) Input image 

(c) ICA based approach 

NRP=92% 

SNR=13.5 dB 

(b)DWT based approach 

NRP=92% 

SNR=13.5 dB 

(d) Hybrid ICA-DWT based approach 

NRP=94% 

SNR=15.5 dB 

Flaw 
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reliable selection of wavelet filter. The individual DWT and ICA based approaches have 

shown improvement in NRP of 92%, SNR of 13.5 dB. The hybrid ICA-DWT based 

approach has been improved the NRP to 94% and SNR to 15.5 dB. This confirms the 

proposed hybrid ICA-DWT approach is useful for denoising EC images of natural cracks.  

6.4 Summary 

After the study on denoising ability of the proposed DWT based approach and ICA based 

approach using NRP, SNR, and flaw amplitude, the possible two sequences, i.e., DWT-

ICA and ICA-DWT have been investigated in detail. The observed results are the 

following: 

 ICA-DWT based approach is a better approach with a significant improvement in 

NRP of 93% and SNR of 15.0 dB  

 The proposed hybrid ICA-DWT approach achieved a NRP of 95% and SNR of 15.5 

dB in the presence of composite noise, which is three times the SNR of the input 

images (4.5 dB).  

 The proposed ICA-DWT approach improves the flaw retention ability and 

establishes its noise tolerance up to the variations in lift-off 0.0 mm to 2.0 mm for 

single source of noise and up to the variations in lift-off 0.0 mm to 1.5 mm for 

composite noise. 

 No influence on denoising and flaw retention ability of the proposed hybrid ICA-

DWT approach for varying test frequencies in the range of 20 kHz-150 kHz and 

probes of 3.0 mm, 5.0 mm and 20.0 mm is observed.  

 The approach could enhance the detection of shallows flaws (depth 0.2 mm <10% 

wall thickness) of comparable amplitude with that of noise. 
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 The denoising capability of the hybrid approach has been successfully validated on 

the influence of composite noise a) due to lift-off and wall thickness variations 

(geometrical variations) in thin wall SS tubes and also b) noise due to gradual 

variation in electrical conductivity along the SS plate.  

 The hybrid ICA-DWT based approach proposed in this thesis has significantly 

enhanced the flaw detection sensitivity of surface flaws, sub-surface flaws and 

natural cracks in EC imaging NDE.  
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Chapter 7 : Conclusion and Future works 

7.1 Conclusion 

The thesis has proposed image processing approaches for denoising of eddy current 

images, influenced by variations in lift-off, variations in material properties and composite 

noise. Detailed investigations on the spectral characteristics of the flaw and statistical 

characteristics of noise have been carried out. These approaches have been evaluated for 

capability of noise removal and enhancement of flaw detection in eddy current images 

acquired from AISI type 316 stainless steel specimens. The major conclusions drawn from 

the thesis are the following: 

The discrete wavelet transform (DWT) based approach has been proposed for automated 

selection of optimal wavelet filter through maximum energy criterion and optimal 

decomposition level through weighted risk factor as an entropy criterion. This automated 

selection overcomes the limitation of employing large number of reconstruction trials for 

selection of wavelet filters and decomposition level. The optimal wavelet filter is 

identified, for the first time, a wavelet filter Db5-level 5 for plates, wavelet filter Bior6.8-

level 5 for weld plates and wavelet filter Bior1.1-level 10 for thin wall tubes. The 

proposed DWT based approach establishes the selective elimination through sub-band 

level Heursure thresholding method. With the optimum thresholding method, there is a 

significant improvement in SNR of 14. 5 dB and NRP of 92% (single source of noise) and 

SNR of 13.5 dB and NRP of 89% (composite noise) achieved.  

It has been found from the experiments that denoising ability of the proposed DWT based 

approach is robust for EC images acquired at 20 kHz, 75 kHz and 150 kHz excitation 

frequencies and probes of 3.0 mm, 5.0 mm, 20.0 mm diameters. The flaw retention ability 
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of the DWT based approach has been evaluated for higher variations in lift-off >1.5 mm 

using FRP. FRP is increased to 30% with higher reduction in amplitude as compared to 

the FRP of 10% at variations in lift-off <1.0 mm and thus establishes its noise tolerance up 

to the variations in lift-off ≤1.0 mm. 

Exploiting statistical independence of the noise, Independent component Analysis (ICA) 

based approach has been proposed. The effectiveness of the noise removal is established 

through the proposed flexible universal rule which selectively uses nonlinear functions 

based on Kurtosis. The optimisation based on Kurtosis overcomes the limitation of the 

strong dependence of pdf of source signals as used in the conventional gradient rule.  

Significant improvement in noise removal (93%) has been observed for a single source of 

noise than for the composite noise (80%). However, ICA based approach has shown 

promising performance for separation of flaw by retaining equal amplitude for identical 

flaws, despite variations in noise distribution. The flaw retention ability of the proposed 

approach establishes its noise tolerance up to the variations in lift-off 0.0 mm to 1.5 mm 

for single source of noise and for composite noise up to the variations in lift-off 0.0 mm to 

1.0 mm. It has been found from the experiments that the varying test frequencies in the 

range of 20 kHz-150 kHz and probes of 3.0 mm, 5.0 mm and 20.0 mm have no significant 

influence on the denoising ability of the ICA based approach. The approach could detect 

shallows flaws (depth 0.2 mm <10% wall thickness) of comparable amplitude with that of 

noise. 

From the study, it is identified that, the statistical dependency (Gaussianity) between some 

of the noise data limits the noise removal. To overcome the limitation, hybrid image 

processing approaches have been studied by combining the advantage of the noise 

reduction ability of the DWT based approach and flaw retention ability of the ICA based 
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approach. In the optimal sequence of ICA based approach followed by DWT, the 

statistical dependency (Gaussianity) of the noise data and has been separated by 

subsequent decomposition of ICA components by a narrow band filtering for the first 

time, using DWT based approach. The proposed hybrid ICA-DWT based approach 

achieves significant improvement in NRP of 95% and SNR of 15.5 dB. The proposed 

ICA-DWT approach has improved the flaw retention ability and established its noise 

tolerance up to the variations in lift-off 0.0 mm to 2.0 mm for single source of noise and 

for composite noise up to the variations in lift-off 0.0 mm to 1.5 mm. The approach could 

detect shallows flaws (depth 0.2 mm <10% wall thickness) of comparable amplitude with 

that of noise. The efficacy of the proposed hybrid ICA-DWT approach has been 

successfully demonstrated on i) subsurface flaws in thick SS plates, ii) thin wall SS tubes 

having periodic wall thickness variations and iii) natural fatigue crack.  

Studies clearly establish that the proposed hybrid approach ensures significant noise 

reduction, enabling better sensitivity to detection of flaws in EC images. It has also 

provided better insight into the existence of statistical dependency between the flaw 

information and utilization of dependency for enhanced effective separation flaw 

information. 

7.2 Technical and scientific contributions 

The major contributions of this thesis are the following: 

For automated removal of noise incorporating optimisation of wavelet filter through 

maximum energy as criterion and a weighted risk factor considering multi-scale 

dependency of flaw as an entropy criterion for optimisation of decomposition level has 

been proposed, for the first time. The optimal wavelet filter is identified for the first time, 
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for plates wavelet filter Db5-level 5, for weld plates wavelet filter Bior6.8-level 5 and for 

thin wall tubes wavelet filter Bior1.1-level 10 is found optimum. 

A semi local paradigm for wavelet thresholding has been established by incorporating sub-

band level thresholding using Heursure thresholding method. There is a significant 

improvement in SNR of 14. 5 dB and NRP of 92% in the presence of single source of 

noise and for composite noise SNR of 13.5 dB and NRP of 89% is achieved. Power of 

proposed DWT based approach for successful handling of noise is achieved due to 

multiresolution capability of optimal wavelet and proposed thresholding method. 

The statistical dependency of noise characteristics has been identified as a tool for 

effective separation of noise in EC images. The incorporation of optimal estimation of de-

mixing matrix, involves selection of nonlinear function through Kurtosis has shown 

promising performance of flaw separation by retaining equal amplitude for identical flaws, 

despite variations in noise distribution.  

The optimisation based on Kurtosis overcomes the limitation of the strong dependence on 

probability density function (pdf) of source signals as used in the conventional gradient 

rule. 

The limitation of ICA denoising in the case of composite noise has been addressed by the 

proposed hybrid ICA-DWT based approach. In this approach, frequency dependency of 

flaws and statistical independence of noise is utilised to eliminate noise in EC image.  

The proposed hybrid ICA-DWT approach achieved a NRP of 95% and SNR of 15.5 dB. 

The denoising and flaw retention ability has no influence on the varying test frequencies in 

the range of 20 kHz-150 kHz and probes of 3.0 mm, 5.0 mm and 20.0 mm.  
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Study brings out the new points that even in one material, wavelet filters are different and 

it gives caution to practitioner not to use a single wavelet filter for all test situations. 

The proposed hybrid approach essentially aids the early detection of shallow flaws and can 

be used in field for in-service inspection of components. Such a faster and cost effective 

processing approach will be beneficial for the assessment of structural integrity to ensure 

safety for the working personal and common public, besides improving the plant 

availability factor and revenue.  

7.3 Future works 

The proposed image processing approaches demonstrated better noise removal and 

improved flaw enhancement in stainless steels. The applicability of the proposed hybrid 

ICA-DWT based approach has been tested on a fatigue crack in stainless steel plate. 

However, application of the proposed hybrid ICA-DWT based approach can be extended 

to cracks of varying orientations, width and depths. 

The study has established optimal wavelet filters for plates, welds and tubes. However, 

reason behind the performance is worth investigating. Extending the study to transient 

state signals e.g. pulsed eddy current may give insight to the performance of the wavelet 

filters. Since it has high frequency components varying with time, effective denoising and 

better resolution may be possible. 

The proposed energy criterion where 90% of Emax of wavelet coefficients and their 

corresponding wavelet filters are considered for wavelet filter optimisation. Further studies 

on selection of lower bound energy may be worth investigating to understand the process 

behind the performance.  
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The studies on the applicability of the proposed hybrid ICA-DWT based approach to EC 

images from components made of different electrical conductivity, magnetic permeability 

may be beneficial. 

EC images from differential type probes, array probes having varying foot prints as 

compared to the surface absolute probe studied, is worth exploring as it may capture the 

real world situations having altogether different statistical and spatial frequency 

distribution of the data.  

In this study, imaging by raster scanning of a single probe is attempted. However, array 

probes are being increasingly used for single line scan imaging purpose. Thus, applying 

this proposed approach to linear array probe images may be beneficial, as it enables rapid 

imaging. 

The flaw enhancement capability of the proposed hybrid ICA-DWT based approach can 

be extended to detect embedded flaws and corrosion in a second and third layer of aircraft 

structures.  

Sizing of flaws has not been attempted. However, the proposed hybrid approach can be 

used in conjunction with feature extraction algorithms as well as classification and sizing 

algorithms for sizing the flaws.  

The present study uses Kurtosis as a measure of non-Gaussianity to optimise de-mixing 

matrix in ICA based approach. A comparative study on the optimisation of de-mixing 

matrix based on approximation of negentropy is worth exploring, as it may give a good 

comparison between the properties of two classical non-Gaussian measures viz. Kurtosis 

and negentropy. 
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It is possible to evolve guidelines for an automated noise removal for flaw detection by 

determining and using suitable thresholds. This requires extensive experimental studies on 

different materials and test conditions. Further, numerical modelling to generate data for 

this purpose is another possibility. 

The discrimination between the various noise sources is not attempted in this thesis. The 

developed techniques appear capable, however, detailed experimental studies using 

wavelet packet analysis and fine tuning of decomposition level are necessary.  

The application of the proposed image processing approaches may be extended to the 

imaging situations that are diffusion phenomenon based. One such technique is infrared 

thermography (IRT). The propagation of heat energy in a material is diffusive like the 

electromagnetic fields in EC testing. However, disturbing variables are different viz. 

reflectivity and emissivity. It may be worth studying the applicability of the proposed 

hybrid approach to IRT, especially, lock-in thermography.  

The applicability of the proposed hybrid approach can be extended to other NDE images. 

The proposed optimal choice of non-linear functions for various noise distributions in 

other NDE images is worth exploring to enhance flaw detection.  

Further, recent techniques such as ensemble empirical mode decomposition (EEMD) 

which uses adaptive intrinsic mode function may be attempted in place of DWT for further 

reduction in noise through adaptive analysis. 
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