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ABSTRACT 

The inverse problem of eddy current (EC) non-destructive evaluation (NDE) is described as 

the task of sizing defects from EC signals and images. Sizing of defects with respect to 

determination of length, width, depth, and height is essential for fracture mechanics based 

studies and for structural integrity assessment of various engineering components. The 

inverse problem of EC NDE is ill-posed, essentially, due to the diffusive and divergent 

propagation of electromagnetic fields in the test object. This demands the use of machine 

learning and artificial intelligence techniques for automated and operator independent sizing 

defects. Machine learning algorithms such as artificial neural networks, radial basis function 

neural networks, and support vector machines are used for sizing surface breaking defects. 

However, EC inversion of subsurface defects using machine learning is challenging, as it 

involves sizing depth locations below surface additionally. Studies to develop machine 

learning algorithms for simultaneous determination of all the four important defect 

characteristics, viz. length, width, depth, and height are very limited in literature. The 

limitation with the conventional machine learning algorithms is their inability to incorporate 

dependency among various defect characteristics and they demand the use of several learning 

algorithms for sizing different defect characteristics. 

This thesis focuses development of novel machine learning algorithms for automated sizing 

of subsurface defects in metallic materials using EC images. It follows a new concept in 

machine learning, called multidimensional learning, involving prediction of multiple class 

variables. This thesis proposes a novel multidimensional radial basis function (MD-RBF) 

neural network to address dependency among the four defect characteristics and to 

simultaneously size all four defect characteristics in a single learning algorithm fed with 
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input features obtained from EC images. An extensive study has carried out relating 17 

extracted features from EC images and 4 defect characteristics. It is also established that the 

extracted features are noise tolerant and rotation invariant and they form very good input 

features for the proposed MD-RBF neural network. Using these extracted features, it has 

been established from the experiments that the dependency can be effectively incorporated by 

the MD-RBF neural network. Training of the MD-RBF neural network has been carried out 

using numerically modeled EC images, while experimentally obtained EC images have been 

evaluated. The MD-RBF neural network has achieved a global accuracy of 83% with a 

relatively less number of computations as compared to the global accuracy of 76% produced 

by the conventional RBF neural networks. 

Information content in EC images depends on the scan pitch i.e. the distance between two 

consecutive line scans during raster scan imaging. Influence of scan pitch on defect sizing 

performance by the proposed MD-RBF neural network has been systematically studied. From 

this study, it has been identified that the MD-RBF neural network is robust in defect sizing 

from EC images obtained even at higher scan pitches (lower resolutions) than that used for 

training. The most and least influencing defect characteristics have been identified, for the 

first time. This study has revealed a limit scan pitch for each defect characteristic below 

which defect sizing is accurate, however, at the least possible time than that of training. 

This thesis proposes a novel chain classification coupled with greedy breadth-first-search 

(GBFS) algorithm to study the influence of dependency among the defect characteristics. The 

optimal sequence that strongly indicates the dependency structure during sizing has been 

identified, for the first time, using the GBFS algorithm. The efficacy of the chain 

classification has been demonstrated using numerically modeled as well as experimentally 

obtained EC images of defects. 
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In order to expand the scope of empirical inversion by incorporating dependency for other 

robust learning algorithms, a novel generalized MDLearn wrapper framework has been 

proposed. From the studies using benchmark real world dataset and EC images of defects, the 

framework has been validated. Studies clearly established that the proposed MDLearn 

framework can be effectively used for inversion.  

The work presented in this thesis has significantly improved the capabilities of inversion for 

accurate and automated sizing of defects from features extracted from EC images. It has also 

provided better insights into the existence of dependencies among the defect characteristics 

and utilization of dependency enhanced sizing accuracy of inversion. Besides EC inversion, 

the multidimensional learning algorithms proposed in this thesis can be applied to any 

machine learning applications with multiple class variables. 
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1  INTRODUCTION TO EDDY CURRENT 

INVERSION FOR DEFECT SIZING 

 

The scope of this chapter is to introduce the context of inverse problems in eddy current 

non-destructive evaluation (NDE). The chapter starts with a brief introduction to NDE. The 

principle of eddy current NDE along with the characteristics of eddy current signals and images 

are highlighted. The inverse problems and their importance are discussed in detail with an 

emphasis on eddy current inversion. The basics of machine learning employed for solving 

inverse problems are also discussed. 

Rapid advances in computing science and robotics have enabled automation of various industrial 

processes. With automation increased throughput, consistency of output, robustness of the 

processes are possible and this will improve customer satisfaction, in turn, profitability for the 

industry. Automation completely relies on development of expert systems that are capable of 

taking decisions on their own. Artificial intelligence (AI) plays a key role in the expert systems, 

which replace human role for decision making. It exploits the computing power that is 

exponentially increasing in the past few decades without involving additional costs. Developing 

AI based expert systems often involves automated planning, automated reasoning, image 

analysis, and solving mathematical inverse problems. Example tasks that deal with automation 

using expert systems are automated manufacturing [1], automated diagnosis [2], and various 

other engineering and manufacturing areas [3] including structural health assessment of 

engineering components and structures [4].  
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1.1  NONDESTRUCTIVE EVALUATION 

Nondestructive evaluation is an interdisciplinary science that deals with assessment of soundness 

and integrity of components or structures through detection and quantification of discontinuities 

viz. defects, microstructure variations and stresses without causing any damage to the 

components or structures [5,6]. NDE is an essential ingredient of modern engineering practice 

contributing significantly to quality, safety, and reliability of critical components in nuclear 

power plants, transportation, aerospace, petrochemical, and other industries, essentially because 

failures can affect the plant availability, productivity, and profitability. Any discontinuity that 

creates a substantial chance of failure of a component or structure in service is commonly called 

a defect. Common types of defects are cracks, delaminations, cavities, material loss, porosity, 

pitting, etc. Defects can form in a material or component during manufacturing process (process 

induced defects) such as casting, welding, rolling, forging, and machining; and defects can also 

form during service life (service induced defects) like creep cavities, fatigue cracks, hydrogen or 

helium embrittlement, and stress corrosion crack.  

Stainless steels are one of the major structural materials used in various industries, due to their 

good corrosion resistance and better mechanical properties (yield, ductility, and toughness). 

NDE of stainless steels for detection of defects is important. In these steels, defects form in 

components due to exposure to high temperatures, pressures, irradiation, and hostile corrosive 

media. Defect detection and sizing are essential to ensure safety and reliability of components 

made of stainless steels. 

A few widely used NDE techniques for detection of discontinuities include ultrasonic testing, 

radiography, eddy current testing, liquid penetrant testing, magnetic flux leakage, infrared 

thermography, and other optical techniques [7,8]. The schematic representation of a generic 

NDE system is shown in Figure 1.1. It consists of a source input e.g. electromagnetic energy in 

eddy current testing, to introduce energy into test object using an exciter. The transmitted energy 
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in the test material is modified depending on the discontinuity present in the test material. The 

modified reflected or transmitted energy is picked up by a receiver or sensor. This response is 

processed and displayed in the form of a signal or an image to extract information about the 

defect or discontinuity. 

 

Figure 1.1 A generic nondestructive evaluation system. 

Among the host of NDE techniques, electromagnetic NDE (ENDE) techniques are popular for 

testing thin (thickness ≤5 mm) electrically conducting materials such as stainless steel, 

aluminum, brass, titanium, and Inconel. Electromagnetic NDE techniques include a number of 

techniques that are based on electromagnetic field interaction with electrically conducting 

materials. These techniques include eddy current testing, magnetic flux leakage, magnetic 

Barkhausen emission and potential drop (PD) testing.  

The ENDE techniques use static (steady state) and low frequency (diffusive) electromagnetic 

fields to interrogate the material. They use coils as well as solid state sensors to detect the 

manifestations. The ENDE techniques are influenced by several physical variables such as 

electrical conductivity, magnetic permeability, dielectric permittivity, excitation frequency, etc. 

Deterministic modeling of the ENDE techniques is possible, which means the result of 

performing an ENDE technique can be predicted by analytical and numerical models by solving 

the governing partial differential equations (PDE). These techniques are mostly non-contact. 

These techniques are sensitive to changes in electrical conductivity and magnetic permeability of 

the material being tested and are also sensitive to microstructural changes that effect 

Energy source 

Exciter Object with defect Receiver Data acquisition system 
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conductivity and permeability [9]. ENDE techniques are useful for measurement of coating 

thickness and conductivity measurements as well as detection and sizing of defects and 

characterization of microstructures [10,11].  

1.2  EDDY CURRENT TESTING 

Eddy current (EC) testing is an important ENDE technique widely used in aerospace, nuclear, 

petrochemical, and other industries. Almost all heat exchangers (boilers, steam generators, 

condensers) and aircrafts are inspected using this technique. The main reasons  behind this 

widespread use are excellent sensitivity to surface as well as subsurface defects in metallic 

materials. Besides higher sensitivity, other attractive features of this technique include ease of 

operation, versatility, extremely high testing speeds (up to 10 m/s), data storage possibility and 

repeatability. This technique can detect wall thinning, cracks, pitting, stress corrosion cracking, 

hydrogen embrittlement, denting and deposits. The most popular applications of this technique 

include detection of defects in plates, tubes, rods, bars, multi-layer structures, discs, welds, 

blades, and other regular as well as irregular geometries; material sorting; heat treatment 

adequacy assessment; proximity sensing; and coating thickness measurements [12]. 

1.2.1 Principle of eddy current testing 

Eddy current testing works on the principle of electromagnetic induction. In this technique, a coil 

(also called probe or sensor) placed over an electrically conducting material, e.g. stainless steel, 

aluminum, etc., as shown in Figure 1.2 is excited with a sinusoidal alternating current.  Following 

the Ampere's law, this current generates a primary magnetic field in the vicinity of the coil. 

When an electrically conducting material is brought close to this coil, eddy currents are induced 

in the material according to the Faraday's law. These eddy currents also generate a secondary 

magnetic field, but in the opposite direction to the primary magnetic field following the Lenz’s 

law and this field in turn, change the coil impedance, , which is a complex quantity with 
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resistance (real component) and inductive reactance (imaginary component). Defects such as 

cracks, voids, inclusions, corrosion, wall loss etc. cause distortion of the eddy currents and they 

also change the coil impedance. The impedance change for defect-free and defective regions are 

different and this enables one to detect the presence of a defect [13].  

 

Figure 1.2 EC testing of an electrically conducting plate for detection of surface and subsurface 

defects. 

The governing differential equation for coil excited with current density J and producing eddy 

currents in a homogeneous isotropic electrically conducting material is derived from the 

Maxwell’s curl equations [14] as. 

  (1.1)  

  (1.2)  

where E is the electric field, B is the magnetic field vector, J is the current density and μ is the 

magnetic permeability of the material. The governing PDE of eddy current testing for the current 

density in a homogenous medium is given as  

  (1.3)  
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Solving Equation (1.3) provides the distribution of the eddy current density in the lateral and 

depth directions of the excitation coil [15]: 

  (1.4)  

where Jz is the current density anywhere along the thickness of the material (z-axis) and J0 is the 

current density at the surface of the material and β is defined as follows: 

  (1.5)  

The solution obtained in Equation (1.4) contains the magnitude (exponential) and phase terms, 

depicting the fact that flow of eddy currents in material is not uniform in the depth and lateral 

directions. The magnitude term describes the exponential attenuation of the eddy currents along 

the thickness of the material. The phase term β implies the linear variation of the phase of the 

eddy current sinusoids with thickness (depth). The depths at which the current density falls to 1/e 

times the surface current density J0 in a material is called standard depth of penetration denoted 

as δ [14]: 

  (1.6)  

 where f is the excitation frequency, μ is the magnetic permeability and σ is the electrical 

conductivity. As can be seen, the standard depth of penetration of eddy currents in the test object 

decreases with increase in σ, µ and f.  Thus, the eddy currents are quite dense at the surface as 

compared to that at deep inside and this phenomenon is generally known as skin effect.  

Selection of frequency for excitation of an EC probe is very important in EC testing. A simpler 

way to determine the excitation frequency range involves, assuming values 1 and 2 for δ in 

equation (1.6) and calculating the extreme frequencies upon substituting σ and μ values of the 

test material.  
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The electrical conductivity is usually expressed as percentage IACS (International Annealed 

Copper Standard) in which the electrical conductivity of pure copper at 25°C is taken as 5.8 x10
7
 

Siemens/meter. The IACS% value of austenitic stainless steel (SS) type 304 is 2.5 with an 

absolute electrical conductivity of 1.45x10
6
.  

The impedance change response from an EC probe during a line scan on material surface is 

usually represented in form of EC signals. Visualization of defects in form of EC images 

obtained from several line scan EC signals has also attracted considerable interest for better 

representation and interpretation [15]. 

1.2.2 Eddy current signal 

The locus of changes in impedance of an EC probe, during the movement of the probe over a test 

material as illustrated in Figure 1.3 is called an EC signal. The signal consists of two 

components viz. resistance and inductive reactance as a function of distance or time, as shown in 

Figure 1.4a. The EC signal is also visualized as a Lissajous figure on complex (impedance) plane 

as shown in Figure 1.4b with resistance, , as abscissa and inductive reactance, , as ordinate. 

Figure 1.4 typically shows time domain as well as impedance plane EC signals for four defects; 

D1 with 20.0 mm length, D2 with 25.0 mm length, and D3 and D4 with 30.0 mm length. Defect 

D3 is a surface defect, while D4 is a subsurface defect located at a depth of 3.0 mm from surface. 

 

Figure 1.3 Typical EC testing (line scan) on a plate having three surface defects and a subsurface 

defect. 

EC Probe D1 D3 D2 

Diameter,φ 

Thickness 

Length 

D4 



8 

 

 

Figure 1.4 Typical EC signals for four different defects (width: 1.0 mm and height: 1.5 mm) shown in 

Figure 1.3. 

The maximum magnitude of EC signal corresponds to the maximum interaction region of the 

probe with a defect and this provides information about the defect severity. On the other hand, 

the signal phase angle provides information about the defect height, as can be seen from Figure 

1.4b. In the impedance plane, magnitude and phase can be seen, however, the signal extent or 

defect length cannot be visualized. As can be observed from Figure 1.4b, the defect D3 and D4 

has different maximum magnitude, however, at different phase angles. On the contrary, in the 

time domain signals with time or distance as abscissa, phase angle information that is essential 

for sizing is absent.  

In practical inspections, EC signals are usually seen with noise which arises from disturbing 

variables such as surface roughness, probe tilt, and variation in lift-off between the probe and test 

material. In order to suppress the noise and to enhance information from defects, various signal 

processing methods are usually employed. These include the use of filters, Fourier analysis [16], 

and wavelet analysis [17]. 

a) Time-domain signals b) Impedance plane signals 

θD1  

 108

 54

0

54

108

Resistance, X

Inductive rea ctance, Y

D1 D2 D3
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1.2.3 Eddy current imaging 

Using EC signals, one can detect defects and can get information about height of defects. 

However, defects which are described as three-dimensional functions of the space co-ordinates, 

cannot be completely reconstructed by merely scanning an EC probe over a defect in one 

direction, even using sophisticated signal processing methods. A definite benefit exists if a series 

of parallel line scans (raster scan) are made and the resulting eddy current data viz. resistance, 

inductive reactance, magnitude, and phase are presented in the form of a pseudo color or a gray 

level image [18,19,20]. This often referred as EC imaging, automates the measurement process. 

Typical resistance image, inductive reactance image, magnitude image, and phase image 

obtained for a defect (length: 20.0 mm, width: 2.0 mm, and height: 1.5 mm) in an SS plate with 

5.0 mm thickness at 5 kHz are shown in Figure 1.5.  

 

Figure 1.5 Typical raster scanning of an EC probe and different EC images obtained for a defect. 

As can be seen from Figure 1.5, EC images are more convenient to interpret and are useful to 

obtain the spatial extent such as length and width of a defect. In addition to detection of defect, it 

a) EC testing (raster scan) in a plate b) Magnitude image 

c) Resistance image d) Inductive reactance image e) Phase image 

mV 

mV mV mV 
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is also possible to quantify the defect height e.g. from the phase angle image. However, major 

problems that arise by EC imaging are:  

1) EC images are blurred due to convolution of probe footprint point spread function (PSF) 

with defect. 

2) The defect profile is a mere mapping of conductivity profile in the test material and 

cannot always be directly correlated with defect height or location from the surface. 

3) EC images have the influence of disturbing variables, similar to signals. 

4) EC imaging is a time intensive process. 

1.2.4 Multi-frequency eddy current testing 

Interestingly, it is also possible to simultaneously excite an EC probe coil with several 

frequencies by suitable instrumentation. This multi-frequency EC testing is very useful and is 

applied to cancel out unwanted noise to improve the signal-to noise ratio (SNR) for better 

detection of defects. Multi-frequency EC testing is also very important for sizing of defects, 

especially the subsurface defects, as one can obtain several responses of a defect from different 

interrogating depths (excitation frequencies). Multi-frequency EC response of a defect with 

length 20.0 mm, width 2.0 mm, depth 2.0 mm, and height 1.0 mm in a 5.0 mm thick SS plate at 

1, 5, 10 and 25 kHz are shown in Figure 1.6. 
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Figure 1.6 Typical multi-frequency EC response of a defect at four different excitation frequencies. 

Instead of continuous alternating current, if the source coil is excited with a repetitive broadband 

pulse, such as a square wave, conventional EC technique becomes pulsed eddy current (PEC) 

technique.  PEC induces transient eddy currents associated with highly attenuated magnetic 

pulses, to propagate through the test material at a large range of excitation frequencies. The 

response from defects in the test material is picked up by a probe. At each probe location, a 

series of voltage-time data pairs are produced as the induced fields decay. Defects close to the 

surface will produce eddy current response earlier in time than that of deep-surface defects. The 

response obtained from PEC testing is rather more complex than multi-frequency ECT. PEC has 

an inadequate dynamic range limited by sharing of driver power to entire frequency spectrum 

and slow repetition rate limited by settling time of the PEC waveform. 

1.2.5 Defect sizing using eddy current testing 

Determination of shape, size, location, and orientation of defects in a component is essential for 

fracture mechanics based studies and for structural integrity assessment of components. 

EC probe merely maps the electrical conductivity profile at the point of interrogation in a test 

material. Thus, the measurements made are relative and not absolute. As a result, calibration or 

a) Impedance plane signals b) EC images 
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reference standards consisting of artificial defects are used for comparison and for interpretation 

of the measured EC signal or image and in turn, for defect sizing [21]. Calibration standards are 

made from a specimen having identical geometry, material properties and other metallurgical 

conditions such as ageing, etc. as that of the component being inspected. Artificial defects such 

as saw cuts, flat bottom holes, and electro-discharge machining (EDM) notches are often used to 

represent the real-world linear as well as volumetric defects, for EC instrument calibration and 

defect sizing. There are a number of standards such as ASME, ASTM, RCCMR, BS and BIS, 

which provide the standard guidelines for preparation of EC test procedures and for carrying out 

EC tests on products and components. 

As many disturbing variables change the probe coil impedance, detection and sizing of defects is 

not straight forward. In EC testing, defect sizing is an inverse problem of electromagnetism and 

this requires mathematical modeling, optimization, artificial intelligence, and machine learning. 

1.3  INVERSE PROBLEMS 

One of the scientific procedures to study any physical system is by representing the system as a 

mathematical model and analyze. It can be assumed that the underlying fundamental physics of 

the system are well understood, so a function, , relating the model parameters and observations 

of the system may be specified as 

  (1.7)  

where m, is the vector of parameters characterizing the model and d is the vector of observable 

data. With this definition of the mathematical model of a physical system, two major classes of 

problems can be defined: 1) Forward problem and 2) Inverse problem. Forward problem is 

defined as prediction of the observable data , given the model parameters m. Practically, d may 

be a function of time or space or collection of discrete observations. The forward mapping 

is well defined. Given ,  is the function which can take many forms. In some 
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cases,  is an ordinary differential equation (ODE) or partial differential equations (PDE). In 

some other cases, it is a linear or non linear system of algebraic equations. Given the model 

parameters, , the observable or measured data, , are uniquely identified due to the causality in 

the physical system. Forward mapping is usually many-to-one mapping. Solving the forward 

problem helps in understanding the underlying physics of the system and enables prediction of 

observable data for a known model parameters.  

Inverse problems are defined as the use of observed data, , to infer the model parameters, . 

The function space  defines inverse mapping with the function . The 

function  is far more than computing simply a mathematical function. In many situations 

inverse problems are ill-posed. A function is said to be ill-posed if it does not possess any of the 

three following properties: 

1. Existence of solution 

2. Uniqueness of solution 

3. Stability of solution 

Inverse problems are ill-posed because there may be no model that exactly fits the data. This can 

occur in practice because mathematical model is an approximate or the data contains noise which 

complicates both inverse and forward problems. In contrast to forward mapping, inverse 

mapping is one-to-many and many models can adequately fit the data. Thus, there is a lack of 

uniqueness. The inverse problems are numerically unstable, i.e. small changes in the 

measurement data may lead to large changes in the model parameters. Therefore, inverse 

problems do not have a solution or if they have a solution, it may not be unique or might not 

depend continuously on the model or both [22]. Inverse problems are popular in many branches 

of science and mathematics, including computer vision (determination of objects from 

photographic images), medical imaging (detection of tumors), geophysics (understanding density 
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and velocity of a propagating wave), remote sensing (determination of objects on the Earth), 

astronomy (understanding properties of objects in the universe) and nondestructive testing 

(estimation of electrical conductivity, magnetic permeability, and sizing of defects) [23,24]. In 

order to solve the ill-posed inverse problems, several procedures such as regularization [25], 

Bayesian inversion [23], and empirical inversion [26] are reported in open literature. 

1.3.1 Eddy current inversion 

Eddy current inverse problem can be described as the task of reconstruction of an unknown 

defect from eddy current signals or image. Its success will have a significant impact on accurate 

sizing of defects in engineering components. The forward model of EC testing abstractly can be 

defined in a function space as : 

  (1.8)  

The function  can be stated as a map from defect space ( ) to observed signal/image space ( ): 

 

With this definition two types of solution for inverse problems exist: Direct inversion and 

Empirical inversion. 

1.3.2 Direct inversion method 

Direct inversion defines an initial defect profile , and modifies the defect profile iteratively, 

such that the error ℯ is minimized, where error ℯ is the difference between the actual defect 

profile d and the modified defect profile . 
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(1.9)  

where s is the variable representing observed signal or image itself or features derived from it. In 

general, defect profile   is accepted, for any arbitrary ε, if ℯ ≤ ε. If ε is too large, convergence 

to a solution will be faster and the solution requires less number of iterations but the accuracy 

will be compromised. If ε is too small, convergence will be slow and the solution will require 

more number of iterations, but the accuracy of the predicted defect profile will be reliable.  

The task of modifying the defect profile can be performed by using traditional continuous 

optimization methods such as steepest descent and conjugate gradient methods [27]. Discrete 

heuristics search and swarm intelligence strategies for optimization such as genetic algorithm 

and particle swarm optimization can also be used for error minimization. Typical flowchart for a 

direct inversion method is shown in Figure 1.7. 

 

Figure 1.7 Flowchart of a direct inversion method for solving inverse problems. 
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Convergence to a solution depends on the initial defect profile used for inversion. In many 

practical situations, the initial defect profile will be random in nature. For accurate estimation, ε 

should be essentially a small value and hence this will be computationally intensive and 

therefore, has limited practical application [28].  

In eddy current NDE, direct inversion is complicated, due to the diffusive nature of the 

electromagnetic fields. The interactions are exponential and different in depth and lateral 

directions, depending on the PSF of the EC probe and excitation frequency. Several variables 

simultaneously affect the probe coil impedance change. Further, various defect characteristics 

and noise influence the impedance change differently. The above mentioned processes are non-

linear. Hence, direct inversion to obtain defect dimensions from EC signals or images is very 

cumbersome. 

1.3.3 Empirical inversion method 

Empirical inversion is the problem of computing an inverse function for the forward model .  

 
 

 
(1.10)  

 
 

 
(1.11)  

Since, 
-1

 is not a well defined function in mathematical sense, in empirical inversion it is 

approximated with a known function ℱ such that 

  (1.12)  

such that 

  (1.13)  

The known function ℱ is determined from a set of universal approximation functions (UAF). 

Any function can be approximated as accurately as desired by a function in UAF. The class of 
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functions such as multilayer perceptron with one or more hidden layers, the class of radial basis 

functions are the example of UAF [29]. Functions from the set of UAF are parametric in nature 

and it is essential to find optimal parameters. The task of finding the optimal parameters is 

usually carried out by learning algorithms. The learning algorithms generally require similar data 

with known outputs for optimization called training data, which is obtained either by forward 

modeling or by systematic experimentation and covering all possible defect characteristics. 

Empirical inversion has been reported for reconstruction of defects from eddy current data 

[30,31,32,33,34]. The direct and empirical inversion methods are compared in Table 1.1. 
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Table 1.1  Comparison of direct inversion and empirical inversion methods. 

CRIT ERIA  DIRECT  INVERSION  EMP IRICAL INVE RSI ON  

Optimization parameter Defect profile d′. Such that  

 

 

Inverse function 
-1

. Such that 

 

 

and 

 

Preparation time of algorithm  Training of data to the algorithm is not required and 

hence, no initial preparation time. 

 Initial training of data is required to find the optimal 

parameters for the approximation function. 

 Time depends on size of training data and 

complexity of function and learning algorithm. 

Running time of algorithm  Depends on initial defect profile and value assigned 

to ε 

 Number of iterations required for convergence.  

 Repetition of whole process required for each new 

signal/image. 

 Once trained, running time is small. 

 Can be deployed any number of times with same 

trained function. 

Accuracy   Depends on initial defect profile and value assigned 

to ε. 

 Exactness of the physical process. 

 Depends on training data. 

 Generalization capability of approximation function 

and learning algorithm. 

Search space Infinite Finite 

Search methodology Incomplete search in the infinite space Complete generalization in the finite space 
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1.4  MACHINE LEARNING FOR EMPIRICAL INVERSION 

In NDE, automated detection and sizing of defects got richly benefitted in the recent years by 

machine learning, especially to obtain operator independent and consistent information of 

defects. Machine learning was applied for classification of different types of welding defects 

using data from ultrasonic testing [35] and radiography [36]. Apart from defect detection, 

machine learning was also applied to characterize metal loss from magnetic flux leakage signals 

[37]. Defect detection and sizing height of defects in composite materials and complex shapes 

were also reported using machine learning algorithms [38,39]. 

Machine learning is a branch of artificial intelligence with concepts influenced from different 

fields of science, including mathematics, computer science, statistics, biology, and economics. It 

involves development of computer programs/algorithms which improve the performance at 

certain task through experience [40]. In the past decade, machine learning was successfully 

implemented for performance of various real world tasks other than NDE, such as medical 

decision support [41], automated image classification [42], and speech recognition [43].  

Machine learning can be defined as a function map. Given a dataset  containing N samples of 

 pairs called training data. This training data is the experience provided to the 

machine learning algorithm. Training data is a set of past observations with x ∈  ⊂ ℝd as the 

input and its outcome y ∈  . The goal of machine learning is to learn a function f that maps the 

input space  to output space : 

 

 

 

(1.14)  

This function f(⋅)is capable of predicting the outcome ypred for any new input xnew. Based on the 

nature of output variable y, machine learning is classified into different types. If the function 
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map is a continuous value in certain range, it is described as regression. On the other hand, if it is 

discrete, it is termed as a classifier or a classification function [44,45]. Learning can be 

unsupervised (y is unknown even for training data) or semi-supervised (y is partially known). 

The general steps followed in a learning system are shown in Figure 1.8. The training data in the 

raw form will be unstructured or have more dimensions like raw eddy current image of a defect. 

Hence, it is required to extract certain features from the training data which have certain relation 

to the output. Feature extraction facilitates to structure and produce relatively low dimensional 

data which have non redundant information about the output. These features are served as input 

to a machine learning algorithm whose output is a learned function fd, that can be used to predict 

the output for any unknown input. Machine learning algorithm has two steps 1) identification of 

a functional representation and 2) learning process corresponding to the identified function [46].  

 

Figure 1.8 Steps followed in a learning system. 

Functions must be represented in a formal language that can be computed. The representation 

decides a set, over which the learning algorithm searches a function. The set is called as 

hypothesis space. If a function which provides better solution for xnew is not present in the 

hypothesis space, it cannot be learned by any learning algorithm [46]. 

Structured training data
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Any set of machine learning functions representation is usually parametric in nature and required 

to find the optimal parameters that can predict the output accurately for unknown input. The 

optimal parameters can be obtained by a learning algorithm. The learning algorithm can be 

defined as a map ℒ from training dataset  to a function fd: . The objective of learning 

is to predict y accurately for a new x, not present in dataset  using the learned function fd from 

 such that ypred = fd(xnew). There are many issues with finding the optimal parameters such as 

the existence of local minima, the reachability of global minimum and generalization to unseen 

data.  

1.5  MACHINE LEARNING ALGORITHMS 

Advancements in the field of machine learning have produced many practical algorithms, for 

addressing the issues mentioned in Section 1.4. Some of the function representations and 

learning algorithm commonly used in machine learning are summarized in Table 1.2 and Table 

1.3 respectively. 

 

Table 1.2 Types of function and their representations. 

REP RESENT AT ION  FUNCT ION  

Instance based   K-nearest neighbors 

 Support vector machine 

Hyperplanes  Naïve Bayes 

Axis parallel hyperplanes  Decision trees 

Neural nets  Multilayer perceptrons 

 Radial basis function neural nets 

Graphical models  Bayesian networks 
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Table 1.3 Examples of functions and learning algorithms. 

FUNCTION  LEA RNIN G A L GORI THM S  

Decision trees  Information Gain 

 Gini Index 

Support vector machine  Quadratic programming 

 Sequential minimal optimization 

Multilayer perceptron  Back-propagation 

 Quick propagation 

 Resilient back propagation  

Radial basis function neural networks  Orthogonal least squares 

  

The representation and learning algorithms for different types of machine learning relevant to 

this thesis viz. ANN and SVM are discussed in this section. 

1.5.1 Artificial neural networks 

Artificial neural networks are based on emulation of biological nervous systems. They combine a 

large amount of simple processing elements which are highly interconnected. The processing 

elements are generally called neurons and they are structured in layers. Graphically, architecture 

of a typical ANN is shown in Figure 1.9. The first layer is called the input layer and the last layer 

is termed as the output layer. The layers of neurons, which are interconnected between input and 

output layers, are called hidden layers. Mathematically, a neuron function g(x) is a composition 

of other functions which are usually a nonlinear weighted sum: , where h(⋅) 

is a predefined non-linear activation function. Some of the commonly used activation functions 

are: Sigmoidal including logistic, hyperbolic tangent and arctangent in multilayer perceptron 

(MLP) neural networks while Gaussian and multiquadric in radial basis function (RBF) neural 

networks. 
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Figure 1.9 Architecture of a typical artificial neural network. 

1.5.1.1 Multilayer perceptron 

A neural network with sigmoidal units of neurons in the hidden layer is commonly called 

multilayer perceptron neural network [47]. The nodes produce the following output function 

based on logistic sigmoidal function: 

  (1.15)  

The commonly used learning algorithm for MLP neural networks is back-propagation. The MLP 

neural networks have an important property: the family of real functions that represent those 

networks can approximate any function with enough precision, if requisite number of hidden 

nodes are selected. However, due to large number of variables, tuning of MLP neural networks is 

a time consuming process. Moreover, it considers the entire input data as a single entity and 

local information about the input space are not considered. Local information about the input 

data is very important for the eddy current inverse problems because, it cannot be represented as 

a mathematical function. 

1.5.1.2 Probabilistic neural networks 

A probabilistic neural network (PNN) is a four layered feed forward network [48] viz. input 

layer, pattern layer, summation layer and output layer as shown in Figure 1.10.  
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Figure 1.10 Architecture of a probabilistic neural network. 

The pattern layer accepts the weighted sum of inputs and applies Gaussian function as 

  (1.16)  

where zi can be defined as follows 

  (1.17)  

The summation layer sums the outputs from the pattern layer nodes corresponding to a specific 

class. The output layer determines the output using user defined weight for each class as 

  (1.18)  

The training process of PNN is essentially determining the value of  and this does not involve 

any iterations. Often the values of  and ck are user defined parameters and the user need to 

determine them based on the relevant importance of individual classes. In general, training of 

PNN is faster than MLP. Training samples can be added or removed without extensive 

retraining. PNN has large memory requirements and as a result, slow in execution. Moreover, to 

achieve a good classification, large training data set is required, even more than that of MLP 

neural networks and other types of neural networks. PNN completely relies on a priori 

information from the training data. 
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1.5.1.3 Radial basis function neural network 

A radial basis function (RBF) is a real-valued function whose value depends on distance from 

the origin or any other points called centroids. This RBF function allows data to contribute the 

neural network but not equally and it is based on its distance from the centroids. The 

contribution of the data decays with increase in distance from the centroids. RBF neural 

networks are represented as three layer neural network and have RBF nodes in the hidden layer. 

A general architecture of a RBF neural network is given in Figure 1.11. 

 

Figure 1.11 Architecture of a RBF neural network. 

Each hidden node makes an independent approximation of the input space, typically by an 

activation function. There are different types of activation functions which include: 

GAUSSIAN FUNCTION:  
 (1.19)  

 

MULTIQUADRIC 

FUNCTION:  

  (1.20)  
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INVERSE MULTIQUADRIC 

FUNCTION:  

 

 

(1.21)  

 

INVERSE QUADRIC 

FUNCTION:  

 
(1.22)  

 

WINDOW FUNCTION:   (1.23)  

where  is the input, v is the centroid,  is the ℓ
2
 norm, and σ is the spread parameter. The 

different activation functions with a constant spread parameter ζ, can be visualized as given in 

Figure 1.12.  

 

 Figure 1.12 Various RBF activation functions. 

The output layer of a RBF neural network combines the effect of all the hidden nodes by 

weighted sum of each obtained value in the hidden layer. The key aspect is that each node is 

a) Gaussian function 

e) Window function 

b) Multiquadric function c) Inverse multiquadric function 

d) Inverse quadric function 
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placed in a region in the input space i.e. centroids and locally they represents the whole input 

space by a specific radius or spread parameter, ζ for generalization. 

The learning process for RBFs consists of determining and tuning the hidden layer nodes and ζ 

in the input space such that entire input space is mapped. Generally, unsupervised learning 

algorithms such as k-means algorithm and its variants and Kohonen self organizing maps are 

employed for the purpose. The learning process also involves determination of weights from the 

hidden layer to the output layer. The weight determination is usually carried out using singular 

value decomposition (SVD) or orthogonal least squares in order to minimize the error between 

the hidden and the output layer mapping: 

  (1.24)  

where  is the true ouptut. 

RBF neural networks have been proved to be universal approximation functions. Compared to 

the MLP neural networks, RBF neural networks have the advantage of utilizing local 

information about the input space in the function and as a consequence, only some neurons 

based on their vicinity in the input space will be activated for a specific input. This facilitates the 

training process, and both local optima and error surface complexity are reduced during weight 

optimization. The MLP training generally is a single phase learning process, while it is two 

phase for the RBF neural networks: determination of centroids by unsupervised learning and 

weight optimization by supervised learning. 

1.5.2 Support vector machine 

Support vector machine (SVM) is a non-probabilistic binary linear classifier [49]. It 

discriminates different categories of training data by a linear separator w, such that they are 

divided by a clear gap that is as wide as possible, as shown in Figure 1.13. Let the training data 
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, where xi ϵ  ⊂ ℝm
 is the input data and yi ϵ {-1, +1} is the output value. N is the 

size of training data. The general form of SVM prediction function: 

  (1.25)  

where <⋅ , ⋅ > is the dot product in Ω and the function ϕ is the mapping ϕ:  → Ω. The goal of 

SVM is to determine the values of w and b. 

 

Figure 1.13  Typical decision boundary learned by support vector machine. 

The basic requirement of a SVM is to find a decision boundary in the form of hyperplane that 

bisects the training data into separate classes. A constraint is posed to the decision boundary that 

it should contain a large margin between the classes. Formally, it leads to the convex 

optimization problem: 

 

 

   subject to:  

(1.26)  
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where ξ is the slack variable added to tolerate error. It is possible to construct Lagrangian for the 

optimization problem and this problem is more solvable in its dual form. After several reductions 

of the optimization problem in its dual form, the prediction function f (x) becomes: 

 

 (1.27)  

The above function for classification is applied when the data is linearly separable. For nonlinear 

classification, kernel method is applied. The kernel method allows computation of dot products 

in high dimensional feature spaces, using simple functions defined on training data. It facilitates 

formulation of nonlinear variants of any algorithm that can be cast in terms of dot products. The 

basic motivation for working in high dimensional spaces is that it can help to linearly separate 

the data, which otherwise, not linearly separable in the input space. The prediction function f (x) 

using kernel method is given by: 

 

 (1.28)  

where . The kernel is a symmetric function and the availability of such a 

function is ensured by the Mercer’s theorem [49]. Some of the popular kernels include: 

 4. Polynomial kernel:  (1.29)  

 
5. Radial basis function kernel:  

(1.30)  

 6. Sigmoidal kernel:  (1.31)  

where c, d, ω, β, γ  are the parameters of the kernel.  

Advantage of SVM includes scalability to large datasets, noise tolerance, and good 

generalization capability [45]. However, SVM is applicable only for binary classification. For 

multiclass classification, techniques such as one-against-one class and one-against-all classes 
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have to be applied [45]. In one-against-one class classification, each pair of classes is considered 

as a binary classification. In one-against-all class classification, a binary classification is 

performed for each possible class, where the class is coded as positive training data and all other 

classes are coded as negative. By voting, a possible class value is determined for both 

techniques.  

1.6  SUMMARY 

Eddy current testing is important for nondestructive detection of defects in metallic materials 

which are widely used in nuclear, aerospace, and other industries. Sizing defects (inversion) with 

respect to size and location is important for fracture mechanics based structural integrity 

assessment of engineering components and structures. Empirical inversion is a practically 

feasible technique for eddy current data and this thesis focuses on the development of novel 

machine learning algorithms for efficient sizing of defects from eddy current images. 
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2  EMPIRICAL INVERSION 

 

This chapter covers the reported literature on defect sizing in eddy current inversion and 

related areas. It also identifies the gap areas which helped in setting the motivation and in 

identifying the objectives of the research work. 

2.1  LITERATURE SURVEY 

Copley (1983) [18] carried out eddy current imaging for defect sizing by superimposing a 

number of EC signals by generating parallel line scans for various rectangular and cylindrical 

surface defects in Rene 95 alloy. He noted that the length of surface defects showed a linear 

correlation with the geometric distance between the 10% maximum magnitudes towards the 

length direction. He also reported that the phase angle increases with defect height 

irrespective of the length. After systematic studies he discussed that first estimating height of 

surface defects and then finding length from the knowledge of magnitude change and defect 

height would be beneficial. 

Udpa et al (1986) implemented MLP neural network for determination of type of defects in 

Inconel 600 tubes. The EC signals from defects in tubes were parameterized using Fourier 

descriptors [15], which are invariant under translation, rotation, and scaling, apart from data 

compression. Signals were obtained at 100 kHz from a differential EC probe. 4 different 

types of defects viz. through hole, axi-symmetric OD slot, and flat bottom hole were trained 

as four classes of MLP neural network. 8 Fourier descriptors of the EC signals from 24 

different defects were fed as input to the MLP neural network.  The results were compared 

2 
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with conventional K-means algorithm and it was found that the MLP neural network 

achieved 100% classification for the 24 defects studied while K-means misclassified a 

through hole as an axi-symmetric slot [50]. 

Hedengren and Ritscher (1990) proposed three approaches to estimate the point spread 

function (PSF) of an EC probe by linear approximation [51] which can be used for defect 

sizing. The first approach considered a small hole (diameter: 0.254 mm) assumed as a point 

defect and its EC response was taken as the PSF. Second approach was based on the results 

of the first approximation where analytical model was used to produce a smooth 

approximation. The third approach minimizes the least mean square error (LMSE) between 

EC images and defect geometry of defects varying in lengths viz. 0.254, 0.508, 1.270, and 

2.540 mm. It was reported that the LMSE method was better to estimate the PSF. 

Mann et al (1991) [52] used EC signals from an uniform field EC probe at 10 different 

frequencies and determined the length and height of surface defects using MLP neural 

network. The network was trained using magnitude and phase information of 1000 simulated 

defects and MLP neural network was used to evaluate 8 defects of known dimensions. MLP 

was successful in determining the length and height, with an error of ±10%.  

Norton and Bowler (1993) proposed eddy current inversion studies using the direct iterative 

method [27]. In this method, a defect present in an electrically conducting material was 

represented in terms of electrical conductivity. An algorithm based on mean-square error 

formulated in terms of gradient of the impedance was implemented for inversion. The 

method derived the gradient analytically from a forward problem. It successfully determined 

a simulated crack of semi elliptical (length: 22.10 mm, height: 8.61 mm) and irregular shape 

(length: 49.78 mm, height: 8.94 mm) in a 24.00 mm thick aluminum alloy plate with an error 

of ±4% [53]. 
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Burke (1994) proposed a method for estimating defect height using EC data [54]. This 

method was based on applying least square polynomial fit to the approximate solution of 

Maxwell’s equation for nonmagnetic conducting materials. The method used computation of 

two functions: a normalizing function depends on probe parameters and skin-depth, and crack 

function depends on probe and defect height. It was implemented for EDM defects of varying 

heights from 1.0 mm to 12.0 mm on 3 different aluminum plates. It was found that the actual 

defect height and the estimated height from EC measurements were in close agreement with 

an error of ±10%. Later, Burke (2001) applied the same algorithm using swept frequency 

data for a range of semi elliptical and rectangular defects [55]. It was determined that the 

heights of defects were estimated ±15% error as shown in Figure 2.1. 

 

Figure 2.1 Crack depth determined by swept-frequency eddy current NDE for a series of rectangular 

and semi-elliptical EDM slots in Al alloy plates [55]. 

Shyamsunder et al (2000) [56] studied classification of different types of surface defects viz. 

partial/through thickness holes and notches of various dimensions, fatigue cracks, stress 
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corrosion cracks and wall thinning in stainless steel sheet of 1.0 mm thickness and stainless 

steel plate of 12.0 mm thickness. They used four different types of probes varying size and 

core, 8 different scanning patterns and three different frequencies viz. 100 kHz, 250 kHz, and 

500 kHz. Results of classification using a total of 72 extracted features including pulse shape 

features, power features, and statistical descriptors were reported for 6 different classifiers 

viz. linear discriminant, minimum distance, empirical Bayesian, K-nearest neighbor, MLP 

neural network, and Kohonen self organizing map. They reported best results for MLP neural 

network which produced 98% accuracy for classification of holes and notches, and 100% 

accuracy for fatigue crack, stress corrosion cracks and wall thinning. 

Song and Shin (2000) proposed empirical inversion method based on 2D finite element 

method (FEM) and MLP neural networks [57]. They considered axisymmetric defects in an 

1.28 mm thick Inconel 600 tube. 4 types of defects were studied; 'I' and 'V' shaped present on 

inner diameter (ID) surface and in outer diameter (OD) surface of the tube. 200 defect 

samples were simulated using FEM at 100 kHz and 400 kHz. 3 artificial OD grooves were 

used with 75%, 58%, and 38% depth of tube wall thickness. Dataset was generated by 

extracting 22 features (11 from each frequency) from the defects. Based on a study related to 

performance and redundancy by individual feature, 10 features were selected. A probabilistic 

neural network (PNN) was used to classify the 4 defect types with 91% success. Further, four 

different MLPs were used for sizing type of defect and a separate MLP for sizing width and 

height. A linear correlation of 0.97 was reported between the actual and estimated size of 

width and height of defects. However, the methods used in this study required 6 different 

classification algorithms for determining the shape and width and height values. Training and 

parameter tuning of different classification algorithms are tedious and cumbersome. Efforts 

to develop a single algorithm that can simultaneous size of all the characteristics of defects 

are not found in literature. 
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Rao et al (2000) [58] proposed a scheme using artificial neural network and image processing 

method to address the three important aspects concerning sizing of defects from EC images 

viz. influence of disturbing variables, image blurring, and large imaging time. In this scheme, 

an MLP neural network was first developed to evaluate the critical and most important 

characteristic of defect i.e. the height of defects in the presence of disturbing variables. Using 

this neural network, raster scan imaging was carried out to form height-profile images, which 

were later subjected to an image processing method for restoration of length and width of the 

defects. The proposed scheme was implemented on stainless steel plates and welds. 56 EDM 

defects with heights ranging from 0.200 to 1.400 mm were considered, of which 24 were 

used for training the online neural network and 32 for testing. An absolute EC probe of 

4.000 mm diameter was used with an excitation frequency of 75 kHz and 150 kHz. 12 

features were used as input for online neural network including magnitude, phase, and their 

higher orders. With raster scan imaging, the maximum deviation using optimized and trained 

neural network for evaluation of height was found to be 0.055 mm. The height-profile images 

were subjected to image processing involving edge detection, filtering algorithms, 

determination of the effective diameter of the probe, and removal of blur for restoration of 

length and width. With processing of images the maximum deviation in length and width 

estimation was found to be 3 times the scan interval of raster scanning. 

In order to realize fast imaging and sizing of defects a two step intelligent imaging scheme 

was proposed [59]. Binary images were obtained in a first step at coarse scan pitch of 1.0 mm 

and defect region were localized with defective and non defective region. This localized 

region was subjected to fine scan with a pitch of 0.3 mm to obtain accurate height-profile 

image using separate neural networks for linear and circular defects. Typical result obtained 

by superimposing binary image on height profile image and magnitude image were shown in 
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Figure 2.2. Localised binary image and height profile image were fused to form 3-dimensional 

sketch of a defect as shown in Figure 2.3.  

 

Figure 2.2 The restored image of a notch (length 4.0 mm, width 0.3 mm, depth 0.4 mm) superimposed 

(after assigning a gray-level value of 0 for the sake of visual convenience) a) on the 

height-profile image and b) on the magnitude image [59]. 

 

Figure 2.3 3-D image of a notch (length 6.0 mm, width 0.3 mm, depth 0.4 mm) in a stainless steel 

plate after fusion of depth-profile image and restored image [59]. 

This work was extended by Rao et al (2002) [60] for estimation of height of surface defects 

in stainless steel welds. 48 EDM defects with height in the range of 0.20 mm to 1.50 mm and 

length in the range of 0.20 mm to 1.50 mm were introduced in a weld region of a stainless 

steel plate. 24 defects were used for training of online neural network and another set of 24 

were used for testing. They reported that the online neural network was able to evaluate the 

height with the maximum deviation of 0.08 mm. 

b) a) 
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Thirunavukkarasu et al (2004) proposed radial basis function neural network, for estimating 

the height of defects in stainless steel plates with magnetic permeability variations [61]. EC 

signals from EDM notches with depth ranging from 0.200 mm to 1.200 mm and length 3.000 

mm, 5.000 mm, and 8.000 mm were used to train the RBF neural network. An absolute coil 

probe of 4.000 mm diameter was used at 75 kHz and 150 kHz excitation frequencies. RBF 

neural network was able to evaluate depth with the maximum deviation of 0.035 mm. The 

interpolation capability of RBF neural network was studied by excluding few intermittent 

defects and training extreme defects and the maximum deviation was found to be 0.050 mm. 

The extrapolation capability of RBF neural network was also studied by estimating the 

extreme defect such as with depth 1.200 mm using network trained with defects which were 

≤ 0.800 mm and found the deviation to be 0.055 mm. 

Yusa et al (2002) [62] proposed a generalized MLP neural network for simulation of 

mapping between eddy current signals and defect profiles in an Inconel 600 tube with outer 

diameter 11.23 mm and wall thickness 1.27 mm. Signals were experimentally obtained with a 

scan pitch of 0.50 mm using a four sensor probe and an excitation coil which was optimized 

for maximum detection sensitivity. 400 cases of defects were used to generate the training 

data using FEM. The area of inspection was 10.00 mm in length, 0.20 mm in width and was 

divided into 20 × 1 × 10 cells. Since the output neuron of MLP neural network is a real 

number, Yusa et al took the degree of excitation of the most-excited neuron also into 

consideration, and proposed this parameter as a q parameter. EC signals from two real defects 

were used with trained MLP neural network for validation and the results are shown in 

Figure 2.4. It was revealed that Defect 1 was 3.00–4.00 mm in length and 60% in maximum 

depth. Defect 2 was also 3.00–4.00 mm in length and 53% in maximum depth (the solid line 

in Figure 2.4). Good agreement between reconstructed and real profiles of the cracks was 

reported. 



38 

 

 

Figure 2.4 True and reconstructed profiles of natural cracks [62]. 

Chady et al (2007) [63] reported a multifrequency excitation and spectrogram (MFES) eddy 

current system and inverse model to detect defects in a 1.23 mm thick Inconel 600 plates. 15 

defects of 3 different length viz. 2.00, 3.00, and 5.00 mm and 5 different heights ranging 

from 10% to 80% thickness of plate were studied at 15 different frequencies ranging from 36 

to 204 kHz. An MLP neural network, combined with low pass filter (LPF) and signal 

approximation (X-APP) using a Gaussian function were used to estimate the defect profiles 

as shown in Figure 2.5. Frequency components of the sensor output signal, taken from a 

moving window of EC signal constituted the input. For estimation of defect length, 8 

different combinations of LPF, X-APP, and frequency characteristic approximation were 

used. 

.   

Figure 2.5 Scheme of inverse dynamic ANN models with a moving window for flaw profile 

estimation [63].  

The algorithm was tested with signals of different SNR. All noise-free data and 20% of noisy 

data were used for training, 10% of noisy data were used for validation, and 70% for testing. It 
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was reported that better results (in the case of height and length estimation) were achieved using 

the approximation-based algorithms than that of the filtered signals, as typically shown in Figure 

2.6.  

 

Figure 2.6 Estimated profiles of the defects: LPF is the identification using the filtered signals, X-APP 

identification using the approximated signals [63]. 

Though results of the methods proposed in [52] - [63] were encouraging, the reported studies 

were mostly concentrated on sizing height of the surface defects from EC signals. the 

applicability of these methods to detect and size subsurface and three dimensional defects 

involving length, width, depth, height, and orientation are neither known nor found in the open 

literature. For this, extensive study on feature extraction from EC images and development of 

novel inversion algorithms are necessary.  

Ramos et al (2014) [64] studied SVM for estimation of thickness of plates from pulsed eddy 

current testing. EC signals of stainless steel plates with thickness ranging from 1.00 mm to 

3.50 mm, Aluminum 1050 with thickness ranging from 1.00 mm to 5.00 mm, and Aluminum 

3105 with thickness ranging from 1.00 mm to 7.00 mm were used for training the SVM. Raw 

signals along with 5 coefficients from discrete cosine transform of signals, sum of all the 

elements of the signal, and 4 values of auto regressive model of the signal were used as the 

features (2510 features). It was reported that during cross validation, the SVM was able to 

estimate the thickness of the plates with errors of 1.52% and maximum mean deviation around 
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0.05 mm. The use of SVM showed promising performance, however, the features used in [64] 

were found to be influenced by noise. Efficient feature extraction may be useful to handle the 

noise and efficient computation. The authors further suggested the use of other features such as 

principal component analysis for this purpose [64]. 

Most of the inversion studies reported in the literature [52] - [64], assumed that the EC response 

obtained is independent with respect to different defect characteristics. This assumption leads to 

the development of independent inversion algorithms for each defect characteristic. However, 

the electromagnetic fields from EC probe interact with all the defect characteristics 

simultaneously and the measured impedance change is a combined influence of all the 

perturbations in the defect region. In this context, there is a clear benefit if weightage is given to 

the use of image format and incorporate dependency among the defect characteristics. By 

studying the effect of dependency and implementing it during the inversion process the 

performance of inversion process is expected to enhance.  

Bernieri et al (2008) [65] performed empirical inversion of subsurface defects in an aluminum 

plate of 2.00 mm thickness using two different machine learning algorithms viz. MLP neural 

network and SVM. The information of length was used to predict height of defect. Further, the 

information of length and height were used for predicting the depth of the defects. In this work, 

200 numerically simulated subsurface defects (length: 3.00 mm, height: 1.00 mm, and 

depth: 1.00 mm) were used for sizing the length, depth, and height of defects. The influence of 

width of the defect was assumed to be negligible and width was kept constant at 0.50 mm. They 

used peak amplitude and peak distance as features for MLP neural network and SVM. They 

estimated the length with a mean absolute error (MAE) of 0.04 mm, depth and height with a 

MAE of 0.12 mm for a test set of 10 defects. 
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Recently, Bernieri et al (2014) [66] studied defect sizing using 550 numerically simulated 

subsurface defects (length: 1.00 mm to 9.00 mm, height: 0.20 mm to 1.80 mm, and depth: up to 

1.60 mm) in an aluminum plate of 2.00 mm thickness. They used peak amplitude and peak 

distance obtained from 23 different excitation frequencies in the range 5 Hz to 5 kHz as features 

for SVM. They proposed a new architecture and in this the information of length was used to 

predict depth of the defect. Further, the information of length and depth were used for predicting 

the height of the defect. With the above approach, MAE values of 0.10 mm, 0.40 mm, and 0.08 

mm were obtained for depth, length, and height respectively, for a test set of 12 defects. 

Bernieri et al (2014) did not study the reason for variation in MAE by the two architectures and 

they did not compare the results with the existing algorithms in the literature. They carried out 

studies on aluminum plates which have high electrical conductivity. In such materials, the 

resolution of defect sizing along the depth direction was poor even at lower excitation 

frequencies. Moreover, with three different defect characteristics considered by Bernieri et al, 

there is the possibility of 13 different sequences, which were not systematically studied and 

optimized. In this context, it is beneficial, if a single machine learning algorithm is developed 

which incorporates the dependency implicitly. This will eliminate the optimization process to 

find the best sequence among the defect characteristics. Further, an extensive study to identify 

the most optimum sequence for defect sizing is important and essential. 

Apart from the classical machine learning algorithms such as MLP, PNN, and RBF, there are 

some significant contributions to the literature of machine learning for better understanding of 

algorithms and their process. Bielza and Li (2011) studied machine learning algorithms capable 

of incorporating dependency [67]. They modified the classical probabilistic graphical Bayesian 

networks for machine learning problems with multiple outputs (multidimensional learning). It 

was implemented for dataset such as yeast gene expression analysis, natural scene construction 

from images and emotion analysis from music. However, learning with Bayesian networks is 
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strongly dependent on the quality of prior belief, i.e. statistical distribution of classes in a given 

dataset for classification. Further, it assumes the input features to be discrete. These methods 

cannot be applied for defect sizing from eddy current data, as it is difficult to obtain reliable 

a priori information from systematically generated data. 

2.2  MOTIVATION 

Stainless steels are one of the important materials in nuclear, petrochemical, and aerospace 

industries and these steels are subjected to eddy current testing. Eddy current testing is efficient 

in detecting surface and subsurface defects reliably. However, sizing of defects is very important 

for fracture mechanics based studies and for structural integrity assessment of components. 

Defect sizing from EC response in stainless steels is very limited in open literature. Being a low 

conducting material, use of high frequency EC testing will give the same skin depth as that of the 

high conducting materials, e.g. aluminum, but at a relatively higher SNR. This is encouraging for 

defect sizing in stainless steels, essentially because, for high SNR detection, highest possible 

frequency is preferred.  

Inspired by encouraging performance of the empirical inversion in the literature, along with 

recent developments in the field of machine learning, studies can be focused on exploring 

empirical inversion for sizing of defects. The EC empirical inversion studies available in the 

literature, however, are limited to surface breaking planar cracks. But, formation of subsurface 

defects in components is a possibility during manufacturing and service life and their sizing is 

very important. Although, sizing of subsurface defects includes determination of orientation, 

multiple defect reconstruction and spacing between defects, the most important characteristics 

for subsurface defect sizing are length, width, depth, and height.  

Eddy current empirical inversion of subsurface defects using machine learning is challenging, as 

it involves sizing of additional variable, i.e. depth, in contrast to surface defects extensively 
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studied in literature. It is also expected that the response from these defects is feeble as compared 

to that of surface defects, following the skin effect phenomenon. Attempts to develop machine 

learning algorithms for determination of all the four defect characteristics, viz. length, width, 

depth, and height are very limited in the literature. 

Inversion algorithms proposed in the literature are concentrated of sizing of height of surface 

defects from EC signals. However, defects are three-dimensional functions of the space co-

ordinates and they cannot be completely reconstructed by EC signals from a line scan. Due to 

limited information content available in the EC signals, use of EC images is advantageous for 

sizing defect characteristics. The two major challenges which directly influence the performance 

of machine learning algorithms when EC images are used for defect sizing are feature extraction 

and scan pitch (scan step size during raster imaging). Extraction of features from EC images 

relevant to each defect characteristic is essential and information on this for subsurface defects is 

very limited in open literature. Further, no literature is found concerning the influence of scan 

pitch of EC images on the performance of inversion algorithms for sizing. A study on 

determining the optimum scan pitch may be useful and this can reduce the time required EC 

imaging without compromising the defect sizing performance. 

Traditional eddy current empirical inversion assumes that the EC response is dependent on one 

or two defect characteristics. However, it can be easily understood from the electromagnetic 

interactions that EC image is dependent on all the defect characteristics. The interactions are 

different in depth and length directions. It is evident from the literature that use of one defect 

characteristics as input to evaluate other defect characteristics is beneficial. It is attractive to 

develop learning algorithms that are capable of incorporating dependency in some way. This will 

fully exploit the expressive power of the learning algorithms and in turn, the algorithms will be 

capable of producing enhanced performance than the conventional algorithms. 
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All the inversion algorithms proposed in the literature implement separate learning algorithms 

for sizing of each defect characteristic. Training several algorithms and their parameter tuning is 

time consuming and cumbersome. Hence, it is beneficial, if research is focused to develop a 

single multidimensional learning algorithm that can simultaneously size all the defect 

characteristics. 

RBF neural network is one of the most studied neural network structures in NDE and it is also 

proved to be a universal approximation function. Compared to other neural network 

architectures, RBF neural networks use fewer parameters, less complex, and more efficient in 

using local data information for generalization.  

A clear benefit exists with an extensive study, to identify the most optimum sequence for defect 

sizing, where the outputs of known defect characteristics are fed as input to estimate the other 

unknown defect characteristics. The studies reported in this direction are incomplete and 

inconsistent. An extensive study concerning of determination of optimum sequence is expected 

to bring out the sequence of most dependent among the defect characteristics for sizing and it 

will enable accurate sizing. It is also worth exploring the prospects of developing a generalized 

framework with which any robust machine learning algorithm that incorporates dependency can 

be used for eddy current inversion, in particular, other NDE techniques, in general. 

2.3  OBJECTIVE OF THE THESIS 

The primary objective of the thesis is to develop efficient machine learning algorithms for 

empirical inversion of eddy current images to size defects in stainless steel plates. The objectives 

of the thesis are detailed below:  

1. To develop a single multidimensional machine learning algorithm for sizing subsurface 

defects by incorporating dependency implicitly among the defect characteristics using 

features from eddy current images.  
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2. To study various features from eddy current images and identify features relevant to each of 

the defect characteristics. 

3. To study the influence of imaging scan pitch on defect sizing and identify, if there is any 

limit scan pitch, for defect sizing. 

4. To study the influence of dependency on defect sizing and to develop machine learning 

algorithms for sizing defects by incorporating dependency among different defect 

characteristics.  

5. To evolve a generalized framework with which any other robust machine learning algorithm 

that incorporates dependency can be utilized for defect sizing purpose in NDE. 
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3  MULTIDIMENSIONAL RADIAL BASIS 

FUNCTION ALGORITHM FOR 

SIMULTANEOUS SIZING OF DEFECT 

CHARACTERISTICS 

 

In this chapter, a new multidimensional radial basis function (MD-RBF) neural network is 

proposed for simultaneous sizing of 4 defect characteristics viz. length, width, depth, and height 

in a single machine learning algorithm with input features related to the 4 defect characteristics. 

MD-RBF neural network is designed to address dependency among the 4 defect characteristics. 

The robustness of the proposed MD-RBF neural network to size surface and subsurface defects 

is systematically studied and evaluated. The performance of MD RBF neural network is also 

compared with that of conventional RBF neural networks in this chapter. In this thesis, defects 

and notches are used interchangeably, because the dimensions of notches considered are large, they 

are realistic defects.  

3.1  MULTIDIMENSIONAL LEARNING 

Most of the previous studies in machine learning, based on supervised classification assume that 

the input data has to be classified with a single class. However, defect sizing requires 

classification of multiple class variables such as length, width, depth, and height from input 

features of eddy current images of defects. The machine learning algorithms for defect sizing 

task require a learning function that maps a vector of input features into a vector of class values 

3 
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(outputs). This is a recent concept in machine learning, called multidimensional learning. In 

contrast to conventional machine learning, the dataset  used for defect sizing is of the form that 

can be represented as   as shown in Table 3.1. 

Table 3.1 Training dataset for conventional machine learning and multidimensional learning 

S AMP LE 

NUMB ER  INP UT  

OUT P UT  

CONVENT IONAL 

LE ARNING  

MU LT IDIMENSIONAL 

LE ARNING  

1       

2       

        

N       

3.1.1 Multidimenisonal classification 

The multidimensional classification attempts to learn a function  that would assign a  

dimensional vector of class variables  such that ,   

for an  dimensional input : 

 

 

 

 

(3.1)  

In the above mapping  represents the sample space of  and  denotes the 

space of their joint configuration. For defect sizing, the input  is the features extracted from EC 

images and the output dimension  is the number of defect characteristics considered for sizing. 

Certain intuitive approaches are possible for solving the multidimensional classification. One 

approach decomposes all the dimensions and solves each dimension like a conventional 

multiclass classification as follows: 
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  (3.2)  

However, by this approach, possible dependencies among the classes are not considered and the 

expressive power of the machine learning algorithms is restricted. Another approach builds a 

new set of classes by taking the Cartesian product of the classes belonging to all the dimensions. 

With this approach, dependency among classes is ensured. However, the number of new classes 

required for learning will increase exponentially, with the addition of each dimension and this 

will leave insufficient data to train each new class and with a high potential for overfitting.  

Working in this direction, a new algorithm using radial basis function neural network is 

proposed. This is a single function capable of simultaneous classification of all the outputs, 

incorporating the dependency among them. 

3.2  MULTIDIMENSIONAL RADIAL BASIS FUNCTION 

NEURAL NETWORK 

Radial basis function neural network is one of the most studied ANN architecture, represented 

by three layers, input layer, hidden layer, and output layer. In general, the hidden layer is 

represented by prototype vectors formed from centroids, which are determined by performing 

cluster analysis on the input. The hidden layer is activated by a basis function usually of 

Gaussian type. In contrast to conventional neural network, the multidimensional radial basis 

function (MD-RBF) neural network is unique in a way that it takes the input of all defect 

characteristics in a single training and produces the output. This implicitly considers the 

dependency among the defect characteristics. The architecture of the conventional RBF neural 

networks and the proposed MD-RBF neural network are given in Figure 3.1.  

The input layer nodes of MD-RBF neural network takes m dimensional input features x 

extracted from EC images. The output layer nodes represents D dimensional output class 
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variable (defect characteristics), . Each class variable is discretized into few class 

values .  

 

Figure 3.1 The architecture of the conventional RBF neural networks and the proposed MD-RBF 

neural network. 

Determination of the hidden layer nodes from the input layer and its association with output 

layer requires training. Training of the MD-RBF neural network is carried out with a dataset of 

known input (EC image features) and output (defect characteristics) pairs.  

Let this dataset be  obtained from N instances of the EC images i.e. N 

defects.  be a matrix formed from vectors of m dimensional input features and 

 be a matrix of output vector formed from D dimensional class variables (defect 

characteristics) such that  associated with each input feature xn. In this thesis, four 

class variables, i.e. 4 geometric defect characteristics for a subsurface defect such as length, width, 

depth, and height are considered as schematically shown for a subsurface defect in Figure 3.2. The 
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characteristics for a surface defect are length, width, and height. As depth tends to 0 in Figure 3.2, the 

defect becomes a surface defect.  

 

Figure 3.2 Schematic of a subsurface defect with four defect characteristics. 

Using this formulation, training of the MD-RBF neural network is carried out in two phases: 

 Representation of the prototype vectors 

 Weight optimization of the hidden and output layers 

The dependency among the output class variables is addressed by the way of representation of 

prototype vectors and determination of the output class values through weight optimization. 

3.2.1 Representation of the prototype vectors 

The prototype vectors in the proposed algorithm are formed from the centroids computed by 

performing supervised cluster analysis on each possible class value of every class variable i.e. on 

merged class space   and . For each 

class value , clustering using k-means algorithm is carried out on the set of input 

instances  with class value , i.e. . Therefore, 

 clustered groups are formed for each class value . The number of clusters is set as a 

fraction of the number of instances, α, in , such that . The centroids of  

clustered groups form the prototype vectors . Prototype 

vectors and their corresponding basis functions 

Height
5mm

Depth
Le

ng
th
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 form the hidden layer, which are 

re-indexed from 1 through L thus  and Ωl(⋅) (0 ≤ l ≤ L). The basis function (⋅) for 

prototype vectors are Gaussian style activation as described below: 

 
 

(3.3)  

where  is the ℓ
2
 norm  and 0(xn) is kept constant at 1, σ is a factor of  average Euclidean 

distance between the prototype vectors as defined in the following equation: 

  (3.4)  

where μ is the spread parameter, the factor of scaling σ. For better generalization and desired 

performance, it is important to optimize α and μ of the MD-RBF neural network. 

3.2.2 Weight optimization 

The mapping among the hidden layer and output layer is governed by a weight matrix W of 

dimension (L+1) × J. The matrix W=[wij](L+1)×J is obtained by training which is performed by 

minimizing the sum of squares error, E, as given in equation (3.5) with required output for each 

class variable is coded as +1, if the class value is true class else it is set to -1.  

  (3.5)  

where  is the true class. Differentiating the equation (3.5) with respect to w and setting the 

derivative to zero gives the following normal equation for linear sum-of-squares that can be used 

to compute weights: 

  (3.6)  
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3.2.3 Output 

Upon minimizing the error function E, a real value is obtained for each class of each dimension 

in merged class space , the class which 

obtains the maximum real value for each class variable  is declared as 

the predicted class. The pseudocode for computing the proposed MD-RBF neural network is 

given in Algorithm 3.1. 

Algorithm 3.1 Multidimensional radial basis function neural network. 

 

It can be noted that in the hidden layer itself, a partial classification is carried out by representing 

cluster centroids associated with all possible class values. Thus, the information about all the 

class variables is fully utilised for each class value during the optimization of weights. Thus, the 

MD-RBF neural network produces D predicted classes for each input xi, and this takes care of 

the dependency among the defect characteristics implicitly, from the eddy current images of 

defects. 

Z = train_MD-RBF ( , α, μ,z) 

Input:  

 : the multidimensional training set  with D output dimensions 

 α: the clustering parameter 

 μ: the spread parameter 

 z: the test instance 

Output: 

 Z: predicted multidimensional classes of the test instance 

Process: 

 foreach d ∈ D do 

  set  

  compute ld centroids  

 end 

 form matrix of Ω using equation (3.5) 

 compute W using equation (3.6) 

 foreach d ∈ D do 

   

 end 

 return Z 
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3.3  TRAINING AND EVALUATION OF MD-RBF NEURAL 

NETWORK 

The approach followed for training and evaluation of the proposed MD-RBF neural network is 

shown in Figure 3.3. Machining of defects and generation of EC images of defects in large 

numbers experimentally for training is time consuming and cumbersome. In order to train the 

proposed MD-RBF neural network, large amount of dataset covering defects of different sizes is 

required. It is also difficult to machine subsurface defects with known dimensions, e.g. 2.0 mm 

height notch located at 2.0 mm below surface in a 5.0 mm thick plate. Therefore, EC images 

obtained from numerical model are used for training purpose. Experimental EC images of 

defects of known size, fabricated using electric discharge machining (EDM) are used for testing 

and evaluation. 

 

Figure 3.3 Proposed approach for sizing of defects. 
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As EC images are essentially high dimensional data, direct classification using whole image data 

is computationally expensive. Therefore, certain characteristic features are obtained for 

dimensionality reduction and for redundancy elimination. The overall training of the MD-RBF 

neural network and optimization of its parameter viz. α and μ is carried out using 10-fold cross 

validation process. In this process, the whole dataset is randomly permuted and partitioned into 

10 mutually exclusive subsets of equivalent size. At a time, 9 subsets are used as training and the 

untrained subset is used for testing. The process is continued 10 times till all the subsets are 

tested. The cross validation can assess true performance and generalization capability of the 

learning algorithm. To minimize variability in results, 10-fold cross validation has been 

performed 10 times and the average has been used for the analysis. 

3.3.1 Dataset generation 

3.3.1.1 Model based generation of EC images 

Eddy current images have been generated using CIVA modeling software version 9. CIVA is 

benchmarked software for numerical simulation of eddy current, ultrasonic, and radiography 

NDE techniques. The simulation in CIVA is based on semi-analytical methods using dyadic 

Greens function approach [68]. In this approach, the interaction between defect and electric field 

generated by the probe is described with an integral equation, which is derived from Maxwell’s 

equations and solved numerically using the method of moments. 

  (3.7)  

The unknown fictitious current density,  is defined in the volume Ω containing the defect and 

depends on the total electric field. The solved current density is used for calculating the probe 

response or signal for a defect. The term  in Equation (3.7) is an excitation term that depends 

on the total primary electric field  emitted by the probe in the region Ω containing the 



56 

 

defect. The dyad  links the fictitious current density to the electric field it creates inside Ω.  

The contrast function  in equation (3.7) is defined by  

  (3.8)  

where ζ0 is the specimen conductivity and ζ(r) is the flaw conductivity.  

CIVA eddy current module has been extensively validated by others through a series of 

experiments [68,69]. CIVA facilitates graphical user interface as typically shown in Figure 3.4. 

The EC probe used for modelling is a transmit-receive type probe with one coil for AC 

excitation and the other coil for reception of the EC response. The excitation coil is shielded with 

cup core ferrite. The cross section of the probe used is given in Figure 3.5. In order to verify the 

proposed MD-RBF neural network, only one type and configuration of probe has been 

considered in this study. 

 

Figure 3.4 Graphical user interface of CIVA software. 
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Figure 3.5 Cross sectional view of the EC probe used for modeling. 

3.3.1.2 EC imaging experimental setup 

To assess the performance of the MD-RBF neural network for sizing realistic defects, 

experimentally obtained EC images obtained from rectangular machined notches have been 

used. The block diagram of the experimental setup is shown in Figure 3.6. The EC instrument 

used for generation of images consists of three major systems as defined below: 

1) PROBE EXCITATION SYSTEM: The probe excitation system consists of a sine 

wave generator and a power amplifier. The sine wave generator is capable of generating 

single frequency sine wave in the rage of 500 Hz to 80 kHz. The sine wave generator 

output is fed to the power amplifier which drives the EC probe. A calibrated ammeter is 

attached to the power amplifier to monitor the current in the EC probe. The power 

amplifier is capable of driving up to a maximum current of 3A in to the excitation coil. 

2) SCANNING SYSTEM:  The scanning system essentially moves the EC probe over 

the surface of test specimen in a raster scanning pattern. The scanning system consists of 

two stages viz. X and Y. It also has a probe holder for mounting the transmit-receive EC 

probe onto it. The scanner has a maximum coverage area of 500 mm × 500 mm. Stepper 

motors are used to move the X and Y stages. The minimum possible scan pitch for both 

Excitation coil 
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X and Y stage is 0.01mm and the reposition accuracy is also 0.01 mm. The National 

Instrument PCI-7330 stepper motor controller interface is used to connect the scanner to 

PC and LabView software has been used to move the scanner in a raster pattern. Images 

of defects are obtained by automated raster scanning of the EC probe over test sample 

with a lift-off of about 0.1 mm from the specimen. 

3) MEASUREMENT AND DATA ACQUISITION SYSTEM:  This system 

consists of a 16 bit analog-to-digital converter card, digital signal processing based lock-

in amplifier and a PC. The analog-to-digital converter card has 4 channels with 16 bit 

high dynamic resolution with a sampling frequency of 250 kHz. The Lock-in amplifier is 

used for phase lock-in measurement. Lock-in amplifier is used for measuring the 

in-phase and quadrature components of a sinusoid which is buried in noise. It selectively 

measures the response of the sinusoidal signal with respect to a reference frequency, 

thereby acting like a narrow band pass filter with a bandwidth of the order of mHz. The 

measured in-phase and quadrature components using the lock-in amplifier from 2 

different frequencies are digitised and stored for further analysis. The movement of the 

scanner is synchronised with the data acquisition system to acquire data at discrete points 

during the raster scanning.   

Photograph of the EC instrument and the probe used in the studies are shown in Figure 3.7.  
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Figure 3.6 Block diagram of the EC measurement system used for generation of EC images. 

 

Figure 3.7 Photograph of the a) EC instrument and b) probe used for test data generation. 
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3.3.1.3 Validation of model 

In order to validate, the model used for generation of EC images for training purpose, care has 

been taken that all the parameters in the model are nearly same as the experimental conditions. 

For imaging, centre of the EC image i.e. ROI is aligned with the centre of the defect. The scan 

pitch has been fixed as 1.0 mm along both the directions. The distance covered by the EC probe 

along the length direction is 60.0 mm while it is 70.0 mm across the defect. The region 

surrounding a detected feature in all four directions above a threshold of 10 mV is segmented 

and considered as ROI.  

The typical CIVA modeled EC images of two defects at 5 kHz and 10 kHz and experimentally 

obtained images of these defects are shown in Figure 3.8 and Figure 3.9 respectively. As can be 

seen, a good agreement of <5% exists between the experimental and modelled EC images. This 

gives the confidence that the CIVA model correctly represents the experimental condition and 

hence CIVA model can be used to generate images of defects for training the proposed MD-RBF 

neural network. 

 

Figure 3.8 CIVA modeled (a and c) and experimental (b and d) EC images of a notch (depth: 2.0 mm, 

height: 3.0 mm, length: 25.0 mm, width: 2.0 mm) at 5 kHz and 10 kHz. 

a) Modeled b) Experimental 

 

c) Modeled d) Experimental 

5 kHz 10 kHz 10 kHz 5 kHz 
mV 
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Figure 3.9 CIVA modeled (a and c) and experimental (b and d) EC images of a notch (depth: 3.0 mm, 

height: 2.0 mm, length: 25.0 mm, width: 2.0 mm) at 5 kHz and 10 kHz. 

3.3.1.4 Generation of EC images for inversion 

Notches of three different widths (1.0, 2.0, and 3.0 mm) in AISI type 304 austenitic stainless 

steel plate of 5.0 mm thickness have been modeled. Length of notches has been varied from 

20.0 mm to 35.0 mm in steps of 5.0 mm. EC images of notches have been obtained at 5 kHz and 

10 kHz. These frequencies ensure full penetration of eddy currents in the thickness direction and 

obtain redundant information of defects within a depth of 5.0 mm. The disturbing variables such 

as surface roughness, probe tilt, and variation in lift-off are not considered in the present study, 

hence, input features from two frequencies are assumed to be adequate. Only one defect is 

considered as ROI of 70 × 60 sized images have been obtained at an equal scan pitch of 1.0 mm 

along both the directions.  

A total of 372 defects have been modeled with combinations of different depths (0.0, 1.0, 1.2, 

1.3, 1.4, 1.7, 1.8, 2.0, 2.2, 2.6, 2.7, 3.0, 3.2, and 3.7 mm) and heights (0.5, 1.0, 1.4, 1.6, 1.8, 2.0, 

2.2, 2.4, 2.8, 3.0, 3.3, 3.7, 3.8, and 4.0 mm). Among the modeled defects, 300 are subsurface 

defects and 72 are surface defects (depth: 0.0 mm). The dataset also includes defects with length 

shorter (20.0 and 25.0 mm) as well as longer (30.0 and 35.0 mm) than the probe diameter 

(26.0 mm).  

10 kHz 10 kHz 5 kHz 5 kHz 

a) Modeled b) Experimental 

 

c) Modeled d) Experimental 

mV 
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For evaluation, ten notches as detailed in Table 3.2 have been specified for electric discharge 

machining on a 5.0 mm thick stainless steel plate. The error in machining for notches is specified 

with a tolerance of ± 0.05 mm. 

Table 3.2 Dimensions of EDM notches specified for fabrications. 

DEFEC T  LEN GTH,  mm  WID TH,  mm  DEPTH,  mm  HEI GHT,  mm  

Defect-1 25.0 2.0 2.0 3.0 

Defect-2 25.0 2.0 3.0 2.0 

Defect-3 25.0 3.0 2.0 3.0 

Defect-4 30.0 2.0 3.0 2.0 

Defect-5 30.0 2.0 2.0 3.0 

Defect-6 30.0 3.0 2.0 3.0 

Defect-7 35.0 2.0 3.0 2.0 

Defect-8 30.0 2.0 1.0 4.0 

Defect-9 35.0 2.0 2.0 3.0 

Defect-10 25.0 2.0 0.0 2.0 

 

The defects have been categorized into 5 depth classes, 4 length classes, and 3 classes for height 

and width as shown in Table 3.3. The defects belong to depth class D1 in Table 3.3 are surface 

defects while others are subsurface defects. 

Table 3.3 Description of classes for defect sizing. 

LENGT H , 

mm CLASS   

W IDT H , 

mm CLASS   

DEPT H , 

mm CLASS   

HEIGHT , 

mm CLASS  

17.5-22.5 L1  0.5-1.5 W1  0.0 D1  <2.0 H1 

22.5-27.5 L2  1.5-2.5 W2  0.5-1.5 D2  2.0-3.5 H2 

27.5-32.5 L3  2.5-3.5 W3  1.5-2.5 D3  >3.5 H3 

32.5-37.5 L4     2.5-3.5 D4    

      >3.5 D5    

3.3.2 Feature extraction 

There exists a definite benefit, if features extracted from EC signals as well as from EC images 

are used for defect sizing.  Following this, interesting sets of features have been extracted from 

images as well as signals. A total of 40 features have been analyzed and the best 17 features that 

have information related to length, width, depth, and height have been chosen. These 17 features 

are enlisted in Table 3.4. 
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Table 3.4 The features extracted from an EC image for a defect. 

FEAT URE  DESC RIP TION  

F1 Distance from peak magnitude to 25% of peak magnitude along length direction at 

5 kHz  

F2 Distance from peak magnitude to 50% of peak magnitude along length direction at 

5 kHz 

F3 Distance between extreme peak magnitudes along length direction at 5 kHz 

F4 Total area of defect response covering within 25% of peak magnitude in the image at 

5 kHz 

F5 Total area of defect response covering within 50% of peak magnitude in the image at 

5 kHz 

F6 Distance between extreme peak magnitudes along width direction at 5 kHz 

F7 Maximum magnitude in the EC image at 5 kHz 

F8 Phase angle at the maximum magnitude in the EC image at 5 kHz 

F9 Ratio of maximum magnitudes of EC image at 5 kHz and 10 kHz 

F10 Distance from peak magnitude to 25% of peak magnitude along length direction at 

10 kHz 

F11 Distance from peak magnitude to 50% of peak magnitude along length direction at 

10 kHz 

F12 Distance between extreme peak magnitudes along length direction at 10 kHz 

F13 Total area of defect response covering within 25% of peak magnitude in the image at 10 

kHz 

F14 Total area of defect response covering within 50% of peak magnitude in the image at 10 

kHz 

F15 Distance between extreme peak magnitudes along width direction at 10 kHz 

F16 Maximum magnitude in the EC image at 10 kHz 

F17 Phase angle at the maximum magnitude in the EC image at 10 kHz 

 

The geometrical distance covered from maximum peak magnitude to degrade 25%, and 50% of 

peak magnitude has been taken as the features for classification of length of the defects (F1, F2, 

F10, and F11). Total area of defect response covering within 25%, and 50% of peak magnitude 

in the image and geometrical distance covered between two extreme peaks have been used as the 

features for length and width (F3, F4, F5, F6, F12, F13, F14, and F15). The magnitude and phase 

angles of signals have been extracted as the features for classification of depth and height (F7, 

F8, F16, and F17). The chosen features are pictorially represented in Figure 3.10.  
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Figure 3.10 Description of the features extracted from an EC image at one excitation frequency. 

Additionally, for defect height sizing purpose, a new feature proposed in this thesis, ratio of 

maximum magnitude at two frequencies (F9) has been used, for the first time. Features F4, 

F5, F13, and F14 are image features; Feature F9 is the derived feature from two frequencies 

while all other features are from EC signals. The relationship between these features and the 

defect characteristics has been studied extensively and discussed in the following 

subsections. These 17 features extracted from EC images have been used as the input for the 

proposed MD-RBF neural network. 

3.3.2.1 Relationship between input features and defect characteristics 

To confirm the effectiveness of the features extracted from the EC images, a systematic 

comparative study has been carried out. Length of the defect has been compared to the features 

F1 

F3 

F4 

F7 
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F1, F2, and F3. The features F1 and F3 have been plotted as a function of length varying from 

5.0 mm to 40.0 mm and shown in Figure 3.11. Three different cases varying width, depth, and 

height of defects has been considered at 5 kHz frequency and are shown in Figure 3.11.  

 

Figure 3.11 Comparison of length of defect versus features a) F1 and b) F2. (○: width = 1.0 mm, 

depth = 0.0 mm, height = 1.0 mm; □: width = 2.0 mm, depth = 1.0 mm, height = 1.0 mm; 

Δ: width = 1.0 mm, depth = 2.0 mm, height = 1.0 mm). 

A monotonic increase in feature F1 has been observed for all the lengths considered in each case, 

while the feature F3 has shown a monotonic increase from length above 15.0 mm. This has 

confirmed the strong correlation between the chosen features and defect length. Similarly, a very 

good correlation has been observed between defect width and features F4, F5, and F6. Features 

F7 and F8 have been studied and the results are plotted as the function of depth varying from 0.0 

to 2.0 mm in Figure 3.12. Three different cases have been studied at 5 kHz frequency and the 

results are shown in Figure 3.12.  

a) b) 
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Figure 3.12 Comparison of depth of defect versus features a) F7 and b) F8. (○: length = 20.0 mm, 

width = 1.0 mm, height = 3.0 mm; □: length = 25.0 mm, width = 2.0 mm, height = 

3.0 mm; Δ: length =30.0, width = 2.0 mm, height = 3.0 mm). 

It can be seen from Figure 3.12 that both the features decrease monotonically with increase in 

defect depth provided all other defect characteristics are constant. This monotonic increase 

points out the suitability of the choice of features for sizing defect depth effectively. Features F7 

and F16 have been plotted as a function of height in the range of 0.5 to 4 for three different cases 

in Figure 3.13.  

 

Figure 3.13 Comparison of height of defect versus features a) F7 and b) F16. (○:length = 25.0 mm, 

width = 2.0 mm, depth = 0.0 mm; □:length = 30.0 mm, width = 2.0 mm, depth = 0.0 mm; 

Δ: length =35.0,  width = 3.0 mm, depth = 0.0 mm). 

a) b) 

a) b) 
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Figure 3.14 displays the results for feature F9 for sizing height of defect. Feature F9 shows 

constant variability between different cases than that of features F7 and F16, which show a 

monotonic increase with increase in height. From this study it can be confirmed that the 

Feature F9 has strong relationship with that of the height of defect.  

 

Figure 3.14 Comparison of height of defect versus feature F9. (○: length = 25.0 mm, width = 2.0 mm, 

depth = 0.0 mm;  □: length = 30.0 mm, width = 2.0  mm, depth = 0.0  mm; Δ: length = 

35.0 mm,  width = 3.0 mm, depth = 0.0 mm).  

The study clearly brings out the existence of relationship between each of the defect 

characteristics and the features extracted from the EC images. However, there exists 

variability in the feature values with different cases which pose difficulty for simultaneous 

sizing. The plots given in Figure 3.11 to Figure 3.14 illustrate the variations in features with 

respect to individual defect characteristics. These plots cannot be directly used for complete 

sizing of all defect characteristics. Error in sizing will be large when other characteristics 

vary. This results in large scatter in sizing. These difficulties demand the use of robust 

inversion algorithms. Table 3.5 gives a typical set of 10 defects chosen from training data. 

The extracted features for these defects are given in Table 3.6. 
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Table 3.5 A set of 10 typical training defects. 

DEFECT  LENGT H,  mm  W IDT H,  mm  DEPT H,  mm  HEIGHT ,  mm 

Defect-T1 25.0 3.0 0.0 3.0 
Defect-T2 25.0 2.0 1.0 1.4 

Defect-T3 30.0 1.0 1.0 3.7 

Defect-T4 25.0 1.0 1.8 2.4 

Defect-T5 30.0 2.0 2.2 2.8 

Defect-T6 20.0 1.0 3.0 2.0 

Defect-T7 25.0 1.0 2.7 1.6 

Defect-T8 20.0 1.0 3.7 1.0 

Defect-T9 20.0 2.0 3.7 1.0 

Defect-T10 25.0 1.0 3.7 1.0 

Table 3.6 Typical features of the defects in Table 3.5. 

DEFEC T  F1  F2  F3  F4  F5  F6  F7  F8  F9  

Defect-T1 21.00 18.00 26.00 1008.00 648.00 0.00 635.80 -0.76 2.60 
Defect-T2 22.00 33.00 26.00 1968.00 1188.00 2.00 119.76 -0.56 2.45 

Defect-T3 24.00 20.00 32.00 1056.00 640.00 0.00 267.54 -0.41 2.28 

Defect-T4 22.00 18.00 26.00 1056.00 648.00 0.00 101.16 -0.34 2.28 

Defect-T5 25.00 21.00 30.00 1300.00 840.00 0.00 180.94 -0.25 2.20 

Defect-T6 21.00 18.00 20.00 1092.00 720.00 0.00 49.39 -0.24 2.27 

Defect-T7 22.00 18.00 26.00 1144.00 720.00 0.00 42.71 -0.22 2.21 

Defect-T8 41.00 33.00 22.00 1804.00 1056.00 6.00 13.76 -0.14 2.22 

Defect-T9 39.00 31.00 16.00 1716.00 992.00 8.00 22.78 -0.14 2.20 

Defect-T10 45.00 37.00 26.00 2340.00 1480.00 2.00 16.52 -0.10 2.14 
DEFECT  F1 0  F1 1  F1 2  F1 3  F1 4  F1 5  F1 6  F1 7  

 Defect-T1 21.00 18.00 26.00 924.00 648.00 0.00 1650.63 -0.41 
 Defect-T2 22.00 31.00 26.00 1008.00 680.00 0.00 292.85 -0.06 
 Defect-T3 24.00 20.00 26.00 1012.00 640.00 0.00 587.55 0.18 
 Defect-T4 21.00 17.00 26.00 924.00 612.00 0.00 230.74 0.32 
 Defect-T5 24.00 20.00 30.00 1152.00 720.00 0.00 397.57 0.45 
 Defect-T6 20.00 17.00 20.00 960.00 612.00 0.00 112.26 0.54 
 Defect-T7 21.00 17.00 26.00 1008.00 680.00 0.00 94.21 0.54 
 Defect-T8 39.00 31.00 20.00 1716.00 1116.00 4.00 30.51 0.68 
 Defect-T9 38.00 30.00 18.00 1480.00 812.00 8.00 50.11 0.69 
 Defect-T10 43.00 35.00 26.00 1144.00 720.00 0.00 35.40 0.74 
 

3.3.2.2 Effect of noise on input features  

Noise is inevitable in EC imaging due to disturbing variables such as surface roughness, probe tilt, and 

variation in lift-off between EC probe and test material. To understand the effect of noise on the extracted 

features for defect sizing, a study has been carried out. Since there are several random variables 

involved, following the central limit theorem, the convolution of them converges to Gaussian 

distribution. These do not require the individual random variables to have any particular 
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distribution, or even that the random variables belong to the same distribution. Three defects viz. 

Defect-T1, Defect-T4, and Defect T6 (Table 3.5) have been considered to study the effect of noise. 

Random additive white Gaussian noise (AWGN) up to 10 dB has been added to the EC images of defects 

and the resulting EC images for Defect-T6 are shown in Figure 3.15. The features values from EC 

images with AWGN are given in Table 3.7.  

 

Figure 3.15 EC images with different noise for a Defect-T6. 

Table 3.7 Effect of noise on the input features. 

FEAT -

URE  
DEFECT -T 1 DEFECT -T 4  DEFECT -T 6 

0% 7%  15% 0% 7%  15% 0% 7%  15% 

F1 21.00 22.00 22.00 22.00 24.00 23.00 21.00 20.00 20.00 

F2 18.00 19.00 19.00 18.00 21.00 18.00 18.00 17.00 17.00 

F3 26.00 26.00 25.00 26.00 25.00 25.00 20.00 20.00 20.00 

F4 1008.00 1056.00 792.00 1056.00 1056.00 1196.00 1092.00 960.00 880.00 

F5 648.00 684.00 608.00 648.00 756.00 792.00 720.00 612.00 544.00 

F6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F7 635.81 655.75 639.77 101.17 104.92 103.05 49.40 50.98 55.41 

F8 -0.77 -0.75 -0.78 -0.35 -0.31 -0.32 -0.24 -0.23 -0.23 

F9 2.60 2.59 2.81 2.28 2.30 2.37 2.27 2.25 2.07 

F10 21.00 21.00 20.00 21.00 21.00 22.00 20.00 19.00 21.00 

F11 18.00 17.00 17.00 17.00 17.00 17.00 17.00 16.00 17.00 

F12 26.00 26.00 25.00 26.00 26.00 25.00 20.00 20.00 20.00 

F13 924.00 880.00 880.00 924.00 924.00 836.00 960.00 1092.00 880.00 

F14 648.00 612.00 612.00 612.00 360.00 448.00 612.00 720.00 680.00 

F15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F16 112.27 112.16 114.45 197.34 198.04 204.62 321.78 319.93 339.06 

F17 0.54 0.53 0.52 0.44 0.44 0.45 -0.49 -0.49 -0.45 

 

mV 

a) EC image without noise b) EC image with 7% AWGN c) EC image with 15% AWGN 

SNR: 30 dB SNR: 10 dB 



70 

 

It can be observed from Table 3.7 that the features extracted from EC images with noise are nearly same 

as that of the features from noise-free EC images. Small variations in the features are expected to be 

tolerated by the Gaussian basis function present in the hidden layer of the proposed MD-RBF neural 

network with an optimized ζ. Thus, the chosen 17 features are considered to be noise tolerant. 

3.3.2.3 Effect of defect orientation on input features 

In realistic EC test situations, orientation of a defect with respect to the measurement surface is 

non deterministic. It is essential to identify the angle of orientation of the defect for feature 

selection and image rotation. By assuming the maximum magnitude of an EC image as the 

reference origin, the energy of a line (signal) in all directions can be computed. The angle with 

maximum energy can be taken as the angle of orientation of the defect and the image can be 

rotated to make the angle of orientation parallel to the standard X-axis.  

To study the effect of orientation on the features, three defects (Defect-T1, Defect-T4, and 

Defect T6) have been considered and their dimensions are given in Table 3.5 and the images for 

different orientations viz, 30°, 45°, and 60° for Defect-T6 are shown in Figure 3.16. 

 

Figure 3.16 EC images of a defect (length: 20.0 mm, width: 1.0 mm, depth: 3.0 mm, and 

height: 2.0 mm) oriented with respect to surface of the testing specimen. 

a)  30°   b) 45°   c) 60°   
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Features have been extracted from the EC images are given in Table 3.8. As can be observed, 

the defect orientations have no influence on the extracted features. Thus, the extracted 

features are considered rotation invariant. 

Table 3.8 Effect of orientation of the extracted features. 

FEAT -

URE  

DEFECT -T 1 DEFECT -T 4  DEFECT -T 6 

30°  45° 60° 30° 45° 60° 30° 45° 60° 

F1 21.00 21.00 21.00 22.00 22.00 22.00 21.00 21.00 21.00 

F2 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 

F3 26.00 26.00 26.00 26.00 26.00 26.00 20.00 20.00 20.00 

F4 1008.00 1008.00 1008.00 1056.00 1056.00 1056.00 1092.00 1092.00 1092.00 

F5 648.00 648.00 648.00 648.00 648.00 648.00 720.00 720.00 720.00 

F6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F7 635.81 635.81 635.81 101.17 101.17 101.17 49.40 49.40 49.40 

F8 -0.77 -0.77 -0.77 -0.35 -0.35 -0.35 -0.24 -0.24 -0.24 

F9 2.60 2.60 2.60 2.28 2.28 2.28 2.27 2.27 2.27 

F10 21.00 21.00 21.00 21.00 21.00 21.00 20.00 20.00 20.00 

F11 18.00 18.00 18.00 17.00 17.00 17.00 17.00 17.00 17.00 

F12 26.00 26.00 26.00 26.00 26.00 26.00 20.00 20.00 20.00 

F13 924.00 924.00 924.00 924.00 924.00 924.00 960.00 960.00 960.00 

F14 648.00 648.00 648.00 612.00 612.00 612.00 612.00 612.00 612.00 

F15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F16 1650.63 1650.63 1650.63 230.74 230.74 230.74 112.27 112.27 112.27 

F17 -0.41 -0.41 -0.41 0.32 0.32 0.32 0.54 0.54 0.54 

3.3.3 Performance evaluation metrics 

To evaluate the performance of the proposed MD-RBF neural network, normalised accuracy in 

the range of 0 to 1 has been considered as the metric for individual defect characteristics. Apart 

from evaluation for individual class variable, it is also possible to evaluate the overall 

performance of the learning algorithm for all the class variables together. Performance 

evaluation metrics for multidimensional learning are different from the metrics that are 

commonly used for single output classification, namely accuracy, precision, recall, F1-measure, 

etc. Multidimensional evaluation metrics are mean accuracy, global accuracy, and entropy of 

accuracy. These metrics are discussed in the following subsections.  
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Given a test set with N instances and D dimensional of input feature  and a 

predicted set of class , then the evaluation metrics are the following: 

3.3.3.1 Mean accuracy 

Mean accuracy is the average of accuracy predicted for each class variable. It can be stated as 

follows: 

  (3.9)  

where . 

3.3.3.2 Global accuracy 

Global accuracy considers a set of classes associated with each instance as a single entity and it 

credits only if all classes, for an instance, are predicted accurately. Global accuracy is defined as 

follows: 

  (3.10)  

where  

3.3.3.3 Entropy of accuracy 

The mean accuracy and global accuracy do not consider the bias of accuracy on few class 

variables. In certain situations, most of the predicted classes are accurate only on some particular 

subset of class variables. This situation can be handled effectively by entropy of accuracy which 

is defined as follows: 
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  (3.11)  

 

  (3.12)  

 

 

 

(3.13)  

The entropy of accuracy is a real valued factor in the range from 0 to 1 of mean accuracy and it 

is related to the extent of spread of predicted accuracy over the class variables. Entropy of 

accuracy is a newly proposed metric for multidimensional evaluation in this thesis.The higher 

the value of mean accuracy, global accuracy, and entropy of accuracy, the better is the 

performance of the MD-RBF neural network.  

3.3.3.4 Comparison of multidimensional evaluation metrics 

Each evaluation metric described above has unique characteristics. To understand them an 

example with 4 different cases are illustrated in Figure 3.17. Each case represents 10 instances of 

predictions of length, width, and height of a surface defect. The () mark in Figure 3.17, 

indicates the correct predictions. Mean accuracy considers average of overall performance. It can 

be noted that for all the cases the mean accuracy is 0.3. This is because, on average, there are 9 

correct predictions in all the cases. Global accuracy is a strict measure which credits correct 

prediction, only if all the outputs are predicted accurately. This is reflected in Figure 3.17, as 

expected for Case-1, all other cases have global accuracy as 0. Mean accuracy and global 

accuracy do not consider the bias of accuracy on any particular output. As a result, the mean 
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accuracy is higher and the global accuracy is 0, as depicted in Figure 3.17, for Case-2, Case-3, 

and Case-4. This situation is ably handled by the entropy of accuracy, which measures the spread 

of accuracy among the outputs. Case-2 has 3 correct predictions in each output, hence, the 

entropy of accuracy is equal to the mean accuracy. In Case-4, only height has given correct 

prediction, hence, the entropy of accuracy is equal to global accuracy. By using entropy of 

accuracy, it is possible to access the performance in comprehensive manner because it takes 

spread across the dimensions in to account. 

 

Figure 3.17 An illustration to compare the three metrics for performance evaluation of the proposed 

MD-RBF neural network. 

3.3.4 Cross validation 

The overall training of the MD-RBF neural network and optimization of its parameters viz. α 

and μ have been carried out using 10-fold cross validation process. In this process, the whole 

dataset is randomly permuted and partitioned into 10 mutually exclusive subsets of equivalent 
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size. At a time, 9 subsets are used as training and the untrained subset is used for testing. The 

process continues 10 times till all the subsets are tested. This 10-fold cross validation is able to 

assess the true performance and generalization capability of the MD-RBF neural network. To 

minimize the variability in the results, 10-fold cross validation has been performed 10 times and 

average data has been used for the analysis. Extensive analysis has been carried out by 10-fold 

cross validation to optimize the MD RBF neural network and the conventional RBF neural 

networks by varying the parameters α and μ. Mean accuracy has been chosen as the 

multidimensional evaluation metric for optimization purpose. It is important to note that four 

different trainings are required for conventional RBF neural network each of the defect 

characteristic. On the contrary, the proposed MD-RBF neural network requires only one training 

to estimate all the four defect characteristics. 

3.3.5 Parameter optimization 

The parameters of the conventional RBF neural networks and the MD-RBF neural network viz. 

α and μ have been optimized to produce maximum performance. The results of the optimization 

based on the performance of the RBF neural networks and the MD-RBF neural network are 

given in Figure 3.18. As can be observed, for constant μ, the accuracy initially improves 

significantly with increase in α and for further increase in α, the performance tends to remain 

nearly constant. On the contrary, when α is fixed, the curves get closer as μ increases. The 

important aspect to note from Figure 3.18 is the optimal range of clustering factor, α, for the 

RBF neural networks and the MD-RBF neural network. The optimal range of α is between 0.3 

and 0.5 for the RBF neural networks while it is between 0.015 and 0.02 for the MD-RBF neural 

network. Based on these observations, μ has been selected as 1 for both the algorithms and α has 

been selected as 0.37 for the RBF neural networks and 0.0188 for the MD-RBF neural network. 

At this clustering factor, the number of clusters required for optimal sizing using MD-RBF 

neural network for each of the four characteristic of defects is 7. Hence, a total of about 28 
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clusters have to be identified for the hidden layer of the MD-RBF neural network. In contrast, 

the number of clusters required for one RBF for sizing of one characteristic of defects is 138. 

Hence, a total of 552 different clusters have to be identified for the hidden layer of the 4 different 

RBF neural networks for optimal performance. This exemplifies the superior capability of the 

MD-RBF neural network. The optimal performance of the MD-RBF neural network with a 

significantly less number of clusters relative to the conventional RBF neural networks can be 

attributed to the systematic identification of the clusters in the hidden layer. 

 

Figure 3.18 10-fold cross validation performance for classification of a) RBF neural networks and b) 

MD-RBF neural network. 

3.4  PERFORMANCE EVALUATION OF MD-RBF NEURAL 

NETWORK 

3.4.1 Performance evaluation of MD-RBF neural network on modeled images 

The individual performance using accuracy as metric for 10-fold cross validation with optimal 

parameter settings for each defect characteristic is given in Table 3.9. It can be noted from Table 

3.9 that even though MD-RBF neural network required comparatively less number of clusters 

than the conventional RBF neural networks, the performance of the MD-RBF neural network for 

a)  b) 



77 

 

sizing all the 4 defect characteristics clearly shows promise for sizing. The performance for 

sizing the height of defects has substantially increased to 0.9435 from 0.9005. This enhancement 

can be attributed to addressing the dependency implicitly among the defect characteristics by the 

proposed MD-RBF neural network. 

Table 3.9 Comparison of performance of the conventional RBF neural networks and 

MD-RBF neural network for 10-fold cross validation. 

CLASSIFI C AT ION 

ALGO RIT HMS  

ACC UR ACY  

LENGT H  W IDT H DEPT H  HEIGHT  

RBF neural networks 0.9634 0.9118 0.9462 0.9005 

MD-RBF neural network 0.9710 0.9277 0.9637 0.9435 

 

Table 3.10 tabulates the overall performance (in terms of mean ± standard deviation) of the RBF 

neural networks and MD-RBF neural network for ten independent runs of 10-fold cross 

validation with the optimal parameter settings. As can be observed, the mean accuracy has 

increased to 0.9515 from 0.9305. The entropy of accuracy for the conventional RBF neural 

networks and MD-RBF neural network is similar to their corresponding mean accuracies. This 

indicates that the accuracy is not biased to a few defect characteristics. The MD-RBF neural 

network considers all the defect characteristics simultaneously, while RBF neural networks 

consider each defect characteristic as an independent entity. 

Table 3.10 Comparison of performance of the RBF neural networks and MD-RBF neural 

network by 10-fold cross validation on training data using evaluation metrics. 

CLASSIFI C AT ION 

ALGO RIT HM  

MEAN 

ACC UR ACY  

GLOB AL 

ACC UR ACY  

ENT ROP Y OF 

ACC UR ACY  

RBF neural networks 0.9305 ± 0.0053 0.7634 ± 0.0221 0.9302± 0.0053 

MD-RBF neural network 0.9515 ± 0.0027 0.8306 ± 0.0100 0.9514 ± 0.0027 

 

Using the MD-RBF neural network, 83% of defects have been successfully classified all their 

defect characteristics accurately, as reflected by the global accuracy. This is against 76% that 

achieved by the conventional RBF neural networks. Similar performance has been observed by 

changing the number of classes for each defect characteristics. This is a significant new result. 
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To understand the factor of dependency addressed by the MD-RBF neural network, an analysis 

has been carried out by implementing one separate MD-RBF neural network for each of the 

defect characteristics. The result of this analysis is given in Table 3.11. {D, W} in Table 3.11 

denotes implementation of a single MD-RBF neural network for sizing depth and width together 

and separate neural network for sizing height and length. {D, W, H, L} denotes a single 

MD-RBF neural network implemented for sizing depth, width, height, and length together. It can 

be observed from Table 3.11 that the mean accuracy has gradually increased to 0.9515 from 

0.9360 for MD-RBF neural network that classified all 4 defect characteristics together. Upon 

comparison of the results, it has been established that the independent classification of each 

different defect characteristic may result in poor accuracy. This is directly attributed to the 

dependency effectively handled by the proposed MD-RBF neural network. To understand the 

dependency among the defect characteristics, extensive study has been carried out and discussed 

in Chapter 5. 

Table 3.11 Comparison of performance of the MD-RBF neural network following the 

dependency sequence. 

MD-RB F NEUR AL 

NET W ORK  

ACC UR ACY  
MEAN 

ACC UR ACY  DEPT H  W IDT H HEIGHT  LENGT H  

{D},{W},{H},{L} 0.9489 0.9140 0.9242 0.9570 0.9360 

{D, W},{H},{L} 0.9513     0.9126 0.9242 0.9570 0.9362 

{D,W,H},{L} 0.9637 0.9245     0.9435 0.9570 0.9471 

{D, W, H, L} 0.9637 0.9277 0.9435 0.9710 0.9515 

 

For illustration of the predictions made by the MD-RBF neural network, a set of 10 defects 

(Defect-T1 through Defect-T10) from training set given in Table 3.5 were considered and the 

classification results during cross validation are given in Table 3.12. The predicted value for 

depth and height are assumed to be the midpoint of the class range for each. It can be noted from 

Table 3.12 that the predictions of depth and height by the MD-RBF neural network closely agree 

with that of the actual dimensions, measured using optical method with an accuracy of 0.05 mm. 

The length and width are accurately predicted for all the defects. 
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Table 3.12 Performance of the MD-RBF neural network on a set of defects from training 

data. 

DEFEC T  LEN GTH,  mm  WID TH,  mm  DEPTH,  mm  HEI GHT,  mm  

Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

Defect-T1 25.0 25.0 3.0 3.0 0.0 0.0 3.0 2.8 
Defect-T2 25.0 25.0 2.0 2.0 1.0 0.8 1.4 1.0 
Defect-T3 30.0 30.0 1.0 1.0 1.0 0.8 3.7 4.3 
Defect-T4 25.0 25.0 1.0 1.0 1.8 2.0 2.4 2.8 
Defect-T5 30.0 30.0 2.0 2.0 2.2 2.0 2.8 2.8 
Defect-T6 20.0 20.0 1.0 1.0 3.0 3.0 2.0 1.0 
Defect-T7 25.0 25.0 1.0 1.0 2.7 3.0 1.6 1.0 
Defect-T8 20.0 20.0 1.0 1.0 3.7 4.3 1.0 1.0 
Defect-T9 20.0 20.0 2.0 2.0 3.7 4.3 1.0 1.0 
Defect-T10 25.0 25.0 1.0 1.0 3.7 4.3 1.0 1.0 

3.4.2 Performance evaluation of the MD-RBF neural network on experimental 
images of rectangular defects 

Performance of the trained MD-RBF neural network with simulated EC images has been tested 

on experimental images of EDM notches, and the results are given in Table 3.13. As can be 

observed, the results of MD-RBF neural networks closely agree with the actual values for all the 

4 defect characteristics.  

Table 3.13 Performance of MD-RBF neural networks on experimental images of EDM 

notches. 

DEFEC T  LEN GTH,  mm  WID TH,  mm  DEPTH,  mm  HEI GHT,  mm  

Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

Defect-1 25.0 25.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-2 25.0 25.0 2.0 2.0 3.0 3.0 2.0 2.8 

Defect-3 25.0 25.0 3.0 3.0 2.0 2.0 3.0 2.8 

Defect-4 30.0 30.0 2.0 2.0 3.0 3.0 2.0 2.8 

Defect-5 30.0 30.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-6 30.0 30.0 3.0 3.0 2.0 2.0 3.0 2.8 

Defect-7 35.0 35.0 2.0 2.0 3.0 3.0 2.0 1.0 

Defect-8 30.0 30.0 2.0 2.0 1.0 0.8 4.0 4.3 

Defect-9 35.0 35.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-10 25.0 25.0 2.0 2.0 0.0 0.0 2.0 1.0 

         

The results of classification during cross validation for individual RBF neural networks for 

defects given in Table 3.5 are tabulated in Table 3.14. The individual RBF neural networks have 

predicted the length of defects accurately, however, misclassified the width of Defect-8. It can 
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also be observed that height prediction by the MD-RBF neural network is closer to the actual 

height measured by using the optical method than the predictions by the individual RBF neural 

networks. 

Table 3.14 Performance of the individual RBF neural networks on a set of defects from 

training data. 

DEFEC T  LEN GTH,  mm  WID TH,  mm  DEPTH,  mm  HEI GHT,  mm  

Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

Defect-T1 25.0 25.0 3.0 3.0 0.0 0.0 3.0 2.8 

Defect-T2 25.0 25.0 2.0 2.0 1.0 0.8 1.4 1.0 

Defect-T3 30.0 30.0 1.0 1.0 1.0 0.8 3.7 4.3 

Defect-T4 25.0 25.0 1.0 1.0 1.8 2.0 2.4 2.8 

Defect-T5 30.0 30.0 2.0 2.0 2.2 2.0 2.8 2.8 

Defect-T6 20.0 25.0 1.0 1.0 3.0 3.0 2.0 1.0 

Defect-T7 25.0 25.0 1.0 1.0 2.7 3.0 1.6 2.8 

Defect-T8 20.0 20.0 1.0 2.0 3.7 4.3 1.0 2.8 

Defect-T9 20.0 20.0 2.0 2.0 3.7 4.3 1.0 2.8 

Defect-T10 25.0 25.0 1.0 1.0 3.7 4.3 1.0 1.0 

         

The results of validation using experimental EC images by individual RBF neural networks are 

given in Table 3.15. As can be observed, the individual RBF neural networks misclassified the 

width of Defect-7. The height of Defect-2 and Defect-4 are not as close to the actual value. 

These are deeper defects considered in this study with depth ≥ 3.0 mm.  

Table 3.15 Performance of individual RBF neural networks on experimental images of EDM 

defects. 

DEFEC T  LEN GTH,  mm  WID TH,  mm  DEPTH,  mm  HEI GHT,  mm  

Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

Defect-1 25.0 25.0 2.0 2.0 2.0 2.0 3.0 1.0 

Defect-2 25.0 25.0 2.0 2.0 3.0 3.0 2.0 2.8 

Defect-3 25.0 25.0 3.0 3.0 2.0 2.0 3.0 2.8 

Defect-4 30.0 30.0 2.0 3.0 3.0 3.0 2.0 1.0 

Defect-5 30.0 30.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-6 30.0 30.0 3.0 3.0 2.0 2.0 3.0 2.8 

Defect-7 35.0 35.0 2.0 1.0 3.0 3.0 2.0 2.8 

Defect-8 30.0 30.0 2.0 2.0 1.0 0.8 4.0 4.3 

Defect-9 35.0 35.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-10 25.0 25.0 2.0 2.0 0.0 0.0 2.0 1.0 
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From comparison of the performance of MD-RBF neural network with the RBF neural 

networks, it can be clearly stated that simultaneous prediction of all the four defect 

characteristics by proposed MD-RBF neural network is more accurate than that of the 

individual RBF neural networks, essentially due to the effective incorporation of the 

dependency. 

3.4.3 Performance evaluation of MD-RBF neural network on modeled images 
of other defects 

To verify the performance of the MD-RBF neural network for non-rectangular shaped defects 

and for defects smaller than the probe diameter, studies have been carried out and reported in 

following subsections.  

3.4.3.1 Performance evaluation of MD-RBF neural network for non-rectangular shaped 

defects 

For non-rectangular shaped defects, the bottom curvature of the rectangular defects has been 

modified such that it resembles ellipsoidal shape. Two ellipsoidal defects (Defect-E1 and 

Defect-E2) having identical length, width, depth, and height have been modeled using CIVA. 

The dimensions of the ellipsoidal defects are described by four parameters, viz. semi-major axis 

(R1), semi-minor axis (R2), height, and width. The sectional view of a typical ellipsoidal defect 

is shown in Figure 3.19.  

 

Figure 3.19 Schematic of the ellipsoidal defect modeled in CIVA. 
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The dimensions of the ellipsoidal defects are shown in Figure 3.20a and Figure 3.20b. The 

difference between defects E1 and E2 are their radii R1 and R2. The radii of defect E1 are 

R1-10.0 mm and R2-1.0 mm, while the radii of E2 are R1-20.0 mm, R2-7.5 mm. The semi-

major axis, semi-minor axis, and the heights of Defect-E1 and Defect-E2 are chosen such 

that the length and width of the defects are 20.0 mm and 1.0 mm, respectively. Figure 3.20c 

shows the rectangular defects with the same dimensions (i.e. length: 20.0 mm, width: 1.0 

mm, depth: 1.0 mm, height: 1.0 mm), for comparison purpose.  

 

Figure 3.20 Dimensions of a) Defect-E1, b) Defect-E2, and c) rectangular defect modeled by CIVA. 

The predicted EC images of these defects at 5 kHz are shown in Figure 3.21 and the evaluation 

results of the MD-RBF neural network are given in Table 3.16. As can be observed, the 

predictions of MD RBF neural network are identical, despite change in the shape of the defects. 

This brings out the capability of the proposed MD-RBF neural network for sizing 

non-rectangular realistic defects. 

a) b) 

c) 
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Figure 3.21 EC images of a) Defect-E1, b) Defect-E2, and c) rectangular defect at 5 kHz. 

Table 3.16 Performance evaluation of MD-RBF neural network for the ellipsoidal defects. 

DEFECT  
LENGT H,  mm  W IDT H,  mm  DEPT H,  mm  HEIGHT ,  mm 

Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

Defect-E1 20.0 20.0 1.0 1.0 2.0 2.0 1.0 1.0 

Defect-E2 20.0 20.0 1.0 1.0 2.0 2.0 1.0 1.0 

3.4.3.2 Performance assessment for defects smaller than EC probe diameter 

In order to assess the capability of the proposed MD-RBF, defects that are smaller than the probe 

diameter of 26.0 mm have been considered. Two sets of defects with lengths of 5.0 mm and 10.0 

mm have been modeled using CIVA.  Set-1 contains defects with depth 3.0 mm, height 2.0 mm, 

and width 1.0 mm, and Set-2 contains defects with depth 2.0 mm, height 3.0 mm, and width 

1.0 mm.  

For these 4 notches, length was estimated as 20.0 mm. The extracted image features relevant to 

length (F1, F2, F3, F10, F11, and F12) are given in Table 3.17. As can be observed from Table 

3.17, these 6 features have direct correlation with defect length. This result is encouraging and 

this increases the confidence that defects smaller than the probe diameter can be sized with 

reasonable error, although they are not used for training. Further, increasing the number of 

a) b) c) 

mV 
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classes for defect length, the error in length estimation can be reduced significantly without 

much penalty on computational resources.  

Table 3.17 Extracted EC image features relevant to length for defects smaller than the probe 

diameter. 

FEAT URES  FEAT URE V ALUE  

LENGT H:  5 .0  mm  LENGT H:  1 0 .0  mm  LENGT H:  2 0 .0  mm  

SET -1  

F1 17.0 19.0 21.0 

F2 15.0 17.0 20.0 

F3 14.0 16.0 20.0 

F10 13.0 13.0 18.0 

F11 11.0 13.0 17.0 

F12 14.0 14.0 20.0 
SET -2  

F1 17.0 19.0 21.0 

F2 15.0 17.0 20.0 

F3 14.0 14.0 20.0 

F10 11.0 13.0 18.0 

F11 11.0 13.0 17.0 

F12 14.0 14.0 20.0 

3.5  SUMMARY 

A new multidimensional radial basis function (MD-RBF) neural network has been proposed for 

eddy current inversion. This incorporates dependency implicitly. It is capable of sizing 

simultaneously all the four characteristics of defects (i.e. length, width, depth, and height) 

considered with all the input features together through a single training. It overcomes the 

limitation of conventional RBF neural networks that require the selective input for each 

characteristic of a defect and a separate neural network for sizing each of the defect 

characteristic.  

Features are extracted from EC images based on their relevance to defect characteristics. It has 

been established that the extracted features considered in this thesis show strong relationship 

with the defect characteristics. The extracted features proposed in this thesis are found to be 

noise tolerant (up to 10 dB) and they are also found to be rotation invariant.  
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The MD-RBF neural network has ensured a global accuracy of 83% with a relatively less 

number of computations as compared to the global accuracy of 76% achieved by the 

conventional RBF neural networks.  

The proposed MD-RBF neural network has successfully sized defects that are located even 

3.0 mm below the surface. For subsurface machined notches, no miss-classifications have been 

observed by the MD-RBF neural network, while three misclassifications have been observed by 

the conventional RBFs.  Further, the MD RBF neural network has been able to size non-

rectangular defects that have not been used during training. 

The proposed MD-RBF neural network has shown promising performance for sizing 4 

characteristics of rectangular defects from EC images obtained from modelling as well as 

experiments. The MD-RBF neural network ensured successful sizing of defects that are 

relatively larger than the probe diameter as well as defects slightly smaller than the probe 

diameter. It is able to size both surface and subsurface defects in stainless steel plates. 
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4  INFLUENCE OF SCAN PITCH ON 

DEFECT SIZING 

 

Multidimensional learning has produced encouraging results for sizing defects. Probe scan pitch 

is an important variable in eddy current imaging and this is expected to influence defect sizing. 

This chapter is devoted to study the influence of scan pitch on defect sizing and to determine, if 

there is any limit of scan pitch for an EC probe below which the MD-RBF neural network 

ensures reliable sizing of defects. 

4.1  SCAN PITCH 

Unlike other imaging modalities, eddy current images are formed by collecting discrete raster 

scans. Thus, the quality of an EC image depends on the number of the data points acquired in 

ROI. Scan pitch is defined as the distance between two consecutive line scans during the raster 

scan imaging, as typically shown in Figure 4.1. 

EC images obtained at smaller scan pitch produce high resolution images as typically shown in 

Figure 4.2a. High resolution EC images have higher probability of detection as well as better 

interpretation of defects. However, the time required for raster scan imaging is very high. On the 

contrary, EC images obtained at larger scan pitches produce low resolution images as shown in 

Figure 4.2b. Low resolution images have relatively limited information and they are not suitable 

for accurate sizing. Hence, it becomes paramount importance to study the influence of scan pitch 

on defect sizing. 

4 
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Figure 4.1 Comparison of two different scan pitches. 

 

Figure 4.2 Comparison of CIVA modeled images obtained at two different scan pitches. 

For analysis of influence of scan pitch on defect sizing, the proposed MD-RBF neural network 

has been trained with training dataset as described in Section 3.3.1.4 (Page no 61). It is important 

to note that these training defects are obtained at a scan pitch of 1.0 mm and the size of each 

image is 70 × 60. The trained MD-RBF is tested with a set of EC images of defects which are 

not trained and obtained at higher scan pitches than those of the training EC images, but 

covering the same area i.e. ROI. In all the cases, it has been assumed that the center line scan 

passes through the center of defect.  

The time taken for scanning at a point during experiment using the setup discussed in Section 

3.3.1.2 has found to be 0.14 second while moving the probe 1.0 mm requires 0.03 seconds in 

a) High resolution image obtained 

with small scan pitch 
b) Low resolution image obtained 

with large scan pitch 

 

a) Raster scanning with small scan pitch b) Raster scanning with large scan pitch 
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either of the direction. The time taken for EC imaging of a defect at various scan pitches for an 

area of 70 mm × 60 mm is given in Figure 4.3. It can be observed there is a near exponential fall 

in time taken with changes in scan pitch. Thus, it is beneficial to find a highest scan pitch below 

which defect sizing is accurate and consistent as to that of scan pitch 1.0 mm. This is called as 

limit scan pitch. The objective of this study is to identify limit scan pitch, λ, for each of the 

defect characteristics viz. λl, λw, and λd for length, width, and depth, respectively.  This will 

reduce considerable time during EC imaging for sizing of different defect characteristics. 

 

Figure 4.3 Time taken for EC imaging of a defect at different scan pitches for an area of 70 mm × 

60 mm. 

4.2  INFLUENCE OF SCAN PITCH ON SIZING LENGTH OF 

DEFECTS 

The influence of scan pitch on the performance of sizing length of defects is studied using defect 

cases which are not used in the training and by varying the scan pitch in the range of 1.0 mm to 

10.0 mm. The width, depth, and height of defects are kept constant, as 1.0 mm, 2.2 mm, and 

1.0 mm respectively, for subsurface defects. For surface defects, width and height of the defects 

are kept constant, as 1.0 mm. The results of performance for scan pitch ranging from 6.0 to 

10.0 mm for surface and subsurface defects are shown in Figure 4.4. The actual length of the 

defects considered is represented as the abscissa and the predicted length by the MD-RBF neural 
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network is represented as the ordinate. It is desired that the actual and the predicted lengths show 

good correlation. It can be observed from Figure 4.4, that the predicted and actual lengths are 

nearly same until a scan pitch of 6.0 mm for surface defects and 7.0 mm for subsurface defects. 

Increase in scan pitch has lead to underestimation of the larger surface defects, while 

overestimation has been observed for the subsurface defects.  

 

Figure 4.4 Influence of scan pitch on sizing length. 

This can be better understood by studying the features relevant to length of defects. A 

comparison between various scan pitches and distance between extreme peaks along the length 

direction in EC image (Feature F8 and Feature F12) for surface defects is shown in Figure 4.5. It 

is clearly observed that the geometrical distance between the extreme peaks is constant until the 

scan pitch is 6.0 mm. These features lead to accurate prediction by MD-RBF neural network 

until a scan pitch of 6.0 mm. Similar observations can be made from Figure 4.5 for subsurface 

defects with a comparison between various scan pitches and the geometrical distance covered 

between peak magnitude and 25% of peak magnitude (F1). It is clearly observed that the Feature 

F1 changes significantly after the scan pitch is 6.0 mm for defects with length 20.0, 25.0, and 

30.0 mm, thus causing erroneous predictions in length for a scan pitch above 6.0 mm. Hence, the 

a) Surface defects b) Subsurface defects 
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limit scan pitch λl is 6.0 mm for the EC probe chosen in the thesis. At this limit scan pitch the 

time taken for EC imaging is about 25% of the time required to obtain EC images at 1.0 mm 

scan pitch. 

 

Figure 4.5 Influence of scan pitch on length related features. 

4.3  INFLUENCE OF SCAN PITCH ON SIZING WIDTH OF 

DEFECTS 

The influence of scan pitch on the performance of sizing width of defects is studied by varying 

the scan pitch in the range of 1.0 to 10.0 mm. The length, depth, and height of defects are kept 

constant as 25.0 mm, 2.2 mm, and 1.0 mm respectively, for subsurface defects. For surface 

defects, length and height of defects are kept constant, as 25.0 mm and 1.0 mm respectively. The 

comparison between the actual width and predicted width by the MD-RBF neural network for 

scan pitch in the range of 6.0 mm to 10.0 mm is shown in Figure 4.6. As can be observed from 

Figure 4.6, the predicted and actual widths show a good correlation until a scan pitch of 6.0 mm 

for both surface as well as subsurface defects similar to that of the length predictions. Thus, the 

limit scan pitch for width λw is found to be 6.0 mm for both surface defects and subsurface 

defects, for the probe chosen in the thesis. 

a) Surface defects b) Subsurface defects 
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Figure 4.6 Influence of scan pitch on sizing. 

4.4  INFLUENCE OF SCAN PITCH ON SIZING DEPTH OF 

DEFECTS 

Influence of scan pitch on the performance of MD-RBF neural network for sizing depth of 

defects is investigated by varying the scan pitch from 1.0 to 30.0 mm. Other characteristics of 

defects such as length, width, and height have been kept constant, as 25.0 mm, 1.0 mm, and 

1.0 mm, respectively. The depth of defect has been considered as 0.0 mm (surface), 1.4 mm, 

1.8 mm, 2.2 mm, and 3.7 mm. The predicted value for depth is assumed to be the midpoint of the 

class range (refer Table 3.3). The results are given in Table 4.1.  

Table 4.1 Predictions of MD-RBF neural network for different scan pitches. 

ACTUA L 

DEPTH,  mm  
3.0 mm 4.0 mm 6.0 mm 8.0 mm 

10.0 

mm 

15.0 

mm 

30.0 

mm 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1.0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

1.8 2.0 3.0 3.0 3.0 3.0 3.0 3.0 

2.2 2.0 2.0 2.0 2.0 3.0 3.0 3.0 

4.0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 

        

It is observed that the predictions of MD-RBF neural network for depth closely agree with that 

of the actual value measured by the optical method, even for 30.0 mm scan pitch. The 17 feature 

a) Surface defects b) Subsurface defects 
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values for one typical defect are given in Table 4.2. It is observed that the change with scan pitch 

in feature values relevant to depth such as maximum magnitude (F7/F16) is less than that of the 

change in distance between maximum magnitudes (F3/F12) even for 30.0 mm scan pitch, 

provided the center line scan of EC image and center line of defects are aligned. Thus, limit scan 

pitch for depth λd = 30.0 mm and this study clearly brings out an interesting observation that 

depth sizing is least influenced by the scan pitch. The time taken for depth sizing at this scan 

pitch is 95.61 seconds which is 10 times less than that of EC images obtained at scan pitch of 

1.0 mm. 

Table 4.2  Feature value at different scan pitches for a defect (length: 25.0 mm, width: 

1.0 mm, depth: 1.4 mm, height: 1.0 mm). 

FEATU RE 

NO  
3.0 mm 4.0 mm 6.0 mm 8.0 mm 10.0 mm 15.0 mm 30.0 mm 

F1 21.0 21.0 21.0 21.0 21.0 21.0 21.0 

F2 17.0 17.0 17.0 17.0 16.0 16.0 16.0 

F3 26.0 28.0 28.0 0.0 0.0 0.0 0.0 

F4 420.0 336.0 252.0 252.0 168.0 168.0 168.0 

F5 272.0 272.0 204.0 136.0 128.0 128.0 128.0 

F6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

F7 43.4 43.5 42.9 42.9 39.9 39.9 39.9 

F8 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 

F9 2.4 2.4 2.4 2.4 2.3 2.3 2.3 

F10 21.0 21.0 21.0 21.0 21.0 21.0 21.0 

F11 17.0 17.0 17.0 17.0 15.0 15.0 15.0 

F12 26.0 28.0 28.0 0.0 0.0 0.0 0.0 

F13 420.0 336.0 252.0 252.0 160.0 160.0 160.0 

F14 272.0 272.0 192.0 128.0 120.0 120.0 120.0 

F15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

F16 103.7 104.0 102.1 102.1 93.6 93.6 93.6 

F17 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 

4.5  SUMMARY 

EC images obtained at smaller scan pitch produce high resolution images and better for defect 

sizing. It is essential to evaluate the performance of MD-RBF neural network with respect to 

change in scan pitch, in order to find the highest scan pitch below which defect sizing is 
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accurate, with least possible time. This has been studied in this chapter, for the first time. It has 

been observed that the performance of MD-RBF neural network is robust for EC images 

obtained at higher scan pitches than that of the training images, for the probe chosen in this 

thesis. It has been found, for the first time, that the limit scan pitch λ, varies for different defect 

characteristics (λl = 6.0 mm, λw = 6.0 mm, and λd = 30.0 mm). Sizing length and width of defects 

has more influence on the scan pitch while sizing depth of defects has found to be the least 

influence on the scan pitch. While the scan pitch has definite influence on the sizing accuracy, 

the performance of MD-RBF neural network has not significantly altered by the change in scan 

pitch up to 6.0 mm when MD-RBF neural network is trained with EC images of 1.0 mm scan 

pitch. For the chosen probe of 26 mm diameter, the limit scan pitch of 6 mm is about 25%. Thus 

when raster scan imaging is performed at a scan pitch of 6 mm the probability of accurate size 

estimation of length, width, depth, and height is very high by the chosen probe. The scan pitch is 

dependent on the diameter of the probe and hence, limit scan pitch required to be estimated for 

every probe used for inversion. 
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5  CHAIN CLASSIFICATION BASED ON 

GREEDY BREADTH-FIRST-SEARCH 

FOR DEFECT SIZING 

The scope of this chapter is to extensively study the nature of dependency on sizing for each 

defect characteristics. The chapter discusses a new methodology called chain classification 

proposed to incorporate dependency among the 4 defect characteristics. A new algorithm called 

greedy breadth-first-search (GBFS) is also proposed to identify the sequence of dependency for 

chain classification. Based on the performance of the chain classification using GBFS, the 

dependency structure of the defect characteristics is identified. 

5.1  CHAIN CLASSIFICATION 

As discussed in Section 3.4.1, the proposed MD-RBF neural network incorporates the 

dependency implicitly. However, it is important to understand the explicit structure of the 

dependency among the defect characteristics. This will provide a better insight into the empirical 

inversion process for defect sizing. By incorporating the explicit nature of dependency, 

improvement in accuracy of defect sizing is also expected, as evident from the results discussed 

in Section 3.4.1. In this context, the explicit structure of dependency for defect sizing has been 

investigated systematically. For this, chain classification method recently proposed and applied 

for several real world datasets, [70,71] is employed.   

For a dataset  represented as , the chain classification decomposes the dimensions 

of multidimensional data in such a way that previous predictions are used for present 

classification as: 

5 
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  (5.1)  

In chain classification, d independent classification functions  are trained, 

representing d class variables. The process starts with the function , where 

 is a vector of input features, predicting class values . Then, during execution of the 

function , along with x, the class values  is also provided as input: , 

that predicts class values . In this way, the input feature x along with all class values 

-  
is provided to the function . The chain process completes with the function 

 predicting the class values . Thus, by including 

predictions from previous classification, the chain classification explicitly incorporates 

dependency.  

Figure 5.1 shows an example of possible chain classification scheme for sizing of length, width, 

depth, and height of a subsurface defect from its EC images. The classification function can 

be any supervised classification algorithm such as multilayer perceptron, radial basis function 

neural network, SVM, decision trees, and KNN. The benefits of chain classification are: 1) It 

explicitly incorporates dependency among the class variables during classification and 2) The 

optimal sequence represents the dependency structure among the defect characteristics during 

sizing. In this study, two diverse representations and learning algorithms, namely, RBF neural 

network and SVM have been considered based on their good performance for defect sizing in 

literature  for chain classification [61,64,65].  

The central question that remains with chain classification is determination of an optimal 

sequence of class variables to incorporate in the chain. This is an optimization problem which 

aims at identifying a sequence that maximizes the performance of the chain.  
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Figure 5.1 Typical chain classification scheme for subsurface defect sizing. 

5.2  GREEDY BREADTH-FIRST-SEARCH (GBFS) 

ALGORITHM FOR DETERMINATION OF AN 

OPTIMAL SEQUENCE 

If the D dimensional class variables are represented as a set of vertices of a graph  = { C1, 

C2, … Cd} then the sequence of class variables can be defined as a directed acyclic graph 

(DAG) , where ℰ ⊆  ×  is the directed edges between the vertices. For chain 

classification in this thesis, the number of incoming (indegree) and outgoing (outdegree) 

edges from a node of the DAG is restricted to at most one. An example DAG randomly 

chosen with 5 vertices is shown in Figure 5.2. 

 

Figure 5.2  A random directed acyclic graph with 5 vertices. 

C1 C2 

C3 C4 

C5 

Vertices:  = { C1, C2, C3, C4, 

and C5} 

Edges: 
 

Length 

classification 

Features for length Features for width Features for depth Features for height 

Width 

classification 

Height 

classification 
Depth 

classification 

Depth Height Width Length 
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Given a DAG  it is easy to implement the chain classifier. As an example, following Figure 

5.2, chain classifier for class variables of dimension d = 5 can be implemented as follows: 

 Implement independent classifier with input features  to determine the 

class values . 

 Along with input feature , include the class values of  to determine 

the class values of . 

 Along with input feature , include the class values of to determine 

the class values of . 

 Along with input feature , include the class values of to determine 

the class values of . 

 Implement independent classifier with input features  to determine the 

class values . 

But given the dimension D of class variables, it is difficult to determine the best possible 

sequence of dependency. Because all possible enumeration of a DAG for D dimension when 

the indegree and outdegree of each node restricted to 1 is 

  (5.2)  

where a(D) is the number of possible DAGs for a given dimension D and k = 0, 1,…, D-2. It 

can also be represented as a recurrence relation as follows: 

 

 

 

(5.3)  

For D =1, 2, 3, 4, 5, 6… possible enumerations are 1, 3, 13, 61, 321, 1951, … Hence, it is 

difficult to implement the chain by an exhaustive search of all possible sequences and trace 
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the optimal sequence. The determination of an optimal sequence for the chain classification is 

an optimization problem which can be represented as a search tree and it is different from the 

traditional search strategies [72] in the following aspects: 

 Initially, the target (optimal sequence) is unknown. 

 Performance evaluation (requires computation of classification algorithm) at each node 

(node expansion) of the search tree is computationally intensive than a mere visit to the 

node. 

 Performance is a vector (a component for each class variable) and depending on the path 

and level of the search tree, the evaluation function modifies different components of the 

performance vector. 

 Performance evaluation at a node of the search tree provides only partial information 

about the target. 

To address the above optimization problem, a modified breadth-first-search (BFS) strategy, 

greedy breadth-first-search (GBFS) is proposed. GBFS can optimize the sequence rapidly than 

traditional uninformed search strategies. The objective of the GBFS is to trace the best sequences 

that possibly enhance the performance by propagating in the chain. 

An example search tree for the GBFS is illustrated in Figure 5.3. Three class variables {C
1
, C

2
 

and C
3
} are taken in the example with its nodes (vertices) represented as . is 

considered as the root node of the search tree and the first level and the second level chains are 

also displayed in Figure 5.3.  

In the example, initially,  is visited and expanded, followed by the visit and expansion of 

 and .  represents the class values of C
1
 that are included 

during the prediction of C
2
. The searching process continues, following the BFS. In the example, 

the performance of is computed by classification, only if, the 
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performance of C
2
 in  is greater or equal to the performance of C

2
 during 

independent classification. Similarly, the performance of is computed by 

classification only if the performance of C
3
 in is greater or equal to the 

performance of C
3
 in , if it is expanded, otherwise it is compared to 

independent classification of C
3
. The pseudocode for GBFS is given in Algorithm 5.1. 

 

Figure 5.3 Classifier chain tree and sequence of expansion of nodes using BFS and GBFS. 

 

1:  

 
2:  

 

3:  

4:  5:  

Root node 

First level 

Second level 

Sequence of expansion for BFS and GBFS 

BFS :  

1⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 

GBFS : 

Case 1: (if  performance ( ) >  performance ( )):  

1 ⇒ 2 ⇒ 3 ⇒ 5 

{assuming  performance ( ) <  performance ( )} 

Case 2: (if  performance ( ) >  performance ( )):  

 1 ⇒ 2 ⇒ 3 ⇒ 4  

 {assuming performance ( ) <  performance ( )} 

Case 3: (if  performance ( ) >  performance ( )):  

 1 ⇒ 2 ⇒ 3  

 {assuming performance ( ) >  performance ( )} 

 

 

 



101 

 

Algorithm 5.1 Greedy breadth-first-search 

 

Input to the GBFS algorithm is a class variable represented as a root node of the search tree. The 

children of this node are the first level chain, formed from all possible remaining class variables, 

and so on. The algorithm initiates with a queue, for implementation of the BFS, and a 

bestPerformance tracker, containing the performance of each class variable. Any comparison is 

carried out only to the concerned individual class variable. The tracker bestPerformance is 

GBFS(v)  

 //Initialize bestPerformance as a vector of performance of independent classification 

for  //each class variable 

 Q ← ∅ // an empty queue 

 bestPath ← ∅ 

 Q.enqueue(v) // enqueue a vertex v onto Q 

 while Q ≠ ∅ loop 

  t ← Q.dequeue () 

  if parent (t) = ∅ then 

   for each children (t) loop 

    u ← children (t) 

    Q.enqueue(u)// enqueue vertex u onto Q 

   end loop 

   continue 

  end if 

  if performance (parent (t)) < bestPerformance then 

   continue 

  else 

   p ← computePerformance (t) 

   // using classification algorithm 

   if p < bestPerformance then 

    bestPath ← bestPath ⋃ parent(t) 

    continue 

   else if children (t) = ∅ then 

    bestPath ← bestPath ⋃ t 

    continue 

   else  

   bestPerformance ← p  

   for each children (t) loop 

    u ← children (t) 

    Q.enqueue(u)// enqueue vertex u onto Q 

   end loop 

   end if 

  end if 

  return unique (bestPath) 

 end loop 
 end GBFS 



102 

 

updated at each node expansion. A node is expanded using computePerformance(.) only if the 

performance of its parent is equal to the value of the bestPerformance tracker for the concerned 

class variable. At the end, all the paths that improved the performance over independent 

classification are returned. 

5.3  RESULTS AND DISCUSSION 

All the subsurface defects used in the training dataset described in Section 3.3.1.4 have been 

used for defect sizing using chain classification. For classification of four defect characteristics 

(length, width, depth, and height), different set of features have been used based on their 

relationship to the defect characteristics as discussed in Section 3.3.2. RBF neural network and 

SVM have been used as classification algorithms in chain classification. The clustering required 

for hidden layer determination of RBF neural networks has been carried out by the traditional 

k-means algorithm, while polynomial function has been used as the kernel of SVM. 

5.3.1 Independent classification 

In order to understand the sensitivity of the classification algorithms and optimize the 

performance, with respect to α and μ for RBF neural networks and d for the polynomial kernel of 

SVM, systematic analysis has been performed. The performance has been evaluated using 

accuracy on a scale of 0-1 during stratified 10-fold cross validation of training data, and the 

average of 10 independent runs is used. The higher the accuracy, the better the performance. 

5.3.1.1 Sensitivity analysis of RBF neural networks 

Figure 5.4 and Figure 5.5 illustrate the performance of the RBF neural networks under different 

parameter settings, namely, the clustering factor, α and the spread μ. α has been varied from 0.05 

to 0.65 with an interval of 0.05 and the variation in accuracy has been studied for different fixed 

μ of 0.2, 0.4, 0.6, 0.8 and 1.0.  
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Figure 5.4 10-fold cross validation performance of RBF neural networks for classification of a) length 
and b) width for different α and μ. 

 

Figure 5.5 10-fold cross validation performance of RBF neural networks for classification of a) depth 
and b) height for different α and μ. 

From Figure 5.4 and Figure 5.5, it can be observed that for constant μ, the initial performance 

improves significantly with increase in α. As α increases further, the accuracy remains nearly 

constant for width and depth, but it decreases for length and height. For height, even for μ = 1.0, 

the performance decreases with increase in α after a short constant period. On the contrary, when 

α is fixed, the curves get closer to each other as μ increases, especially for α in the range between 

a) b) 

a) b) 
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0.2 and 0.3. It can be interpreted as the accuracy tends to produce stable performance as μ 

increases. Based on these observations, optimal α has been set to 0.25 and optimal μ has been set 

to 1.0. These parameter values have been used throughout the rest of the analysis.  

5.3.1.2 Sensitivity analysis of SVM 

Sensitivity analysis of SVM has been carried out by varying the polynomial kernel parameter, d 

and the results are shown in Figure 5.6. As can be observed, there is an initial increase in 

accuracy when d increases from 1 to 3. With further increase in d, the accuracy is found to be 

nearly constant until d reaches 6 and later it is decreased. Based on the accuracy, optimal value 

for d has been chosen as 3 and this has been used throughout the rest of the analysis.  

 

Figure 5.6 10-fold cross validation performance of SVM for classification of all defect characteristics 

for different polynomial kernel parameter, d. 

With these optimal parameters of RBF neural networks and SVM, performance of the 

classification algorithms has been compared with mean accuracy and given in Table 5.1. It can 

be observed from Table 5.1, that the SVM has produced better mean accuracy of 0.9400 than 

that of the RBF neural networks which produced a mean accuracy of 0.9150. 

 



105 

 

Table 5.1 Comparison of performance of independent RBF neural networks and SVM for 

defect sizing on training data. 

LE ARNING 

ALGO RIT HM  

ACC UR ACY  MEAN 

ACC UR ACY  LENGT H  W IDT H DEPT H  HEIGHT  

RBF neural networks 0.9793 0.9020 0.9207 0.8580 0.9150 

SVM 0.9216 0.9436 0.9876 0.9072 0.9400 

5.3.2 GBFS algorithm for an optimal sequence identification 

Results of the GBFS algorithm for optimal sequence identification are represented in the form of 

a tree diagram, typically shown in Figure 5.7. L, W, D, and H indicate the classification results 

of tenfold cross validation on the training data for length, width, depth and height respectively.  

L → W represents the results, when length is assessed as an independent classifier and the 

results of length are given during the classification of width. Similarly, L → W → D represents 

independent evaluation of length. And the results of length are given during the classification of 

width and further, results of length and width are given for the classification of depth. 

5.3.2.1 GBFS algorithm using RBF neural network 

Figure 5.7 demonstrates the results of chain classifiers using the RBF neural network as the 

classification algorithm for length as a root node of the search tree. 

 

Figure 5.7 GBFS outcome using RBF neural network as the classification algorithm with length as the 

root node of the search tree. 
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L→W→D 

Depth: 0.9053 

L→W→H 

Height: 0.8947 

< (D)  

L→H→D 

Depth: 0.9007 

L→H→W 

Width: 0.8987 

< (D)  < (W)  

L→W→H→D 

Depth: 0.8847 < (D)  
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As can be seen from Figure 5.7, the performance of the RBF neural network for width and height 

evaluation has been improved when length is added as input to them during classification than 

independent classification, thus the chain has expanded further. However, the performance for 

depth has reduced and further, the classification has been terminated, as it has not met the greedy 

requirement. It can also be noted from Figure 5.7 that none of the sequences improved the 

performance of all the defect characteristics. The best sequence obtained when length is 

considered as root node, which maximized the defect characterization, is L → W → H. This 

sequence resulted in a mean accuracy of 0.9244, as compared to the mean accuracy of 0.9150, 

achievable by the independent classification. Figure 5.8 shows the results of the chain classifiers 

using RBF neural network as the classification algorithm for width as the root node of the search 

tree. Here, no sequence improved the performance of the chain classification. The RBF neural 

network for chain classification using width as the root node is not promising than that of the 

independent classification. 

 

Figure 5.8 GBFS outcome using RBF neural network as the classification algorithm with width as the 

root node of the search tree. 

Figure 5.9 gives the search tree with depth as the root node. From Figure 5.9, it can be observed 

that the depth as the root node has improved the classification performance for many sequences. 

W 

W→L W→D W→H 

Length: 0.9727 Height: 0.9027 

 
Depth: 0.9147 

 

< (D)  

W→H→L 

Length: 0.9787 

 

W→H→D 

Depth: 0.9107 

 

< (D)  < (L)  

Depth: 0.9207 

 
Length: 0.9793 

 
Width: 0.9020 

 
Height: 0.8580 

 

< (L)  

L D H 
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Thus, the most promising sequence is D → W → H → L. This sequence achieved a mean 

accuracy of 0.9306 which is highest among any other sequence. When height is considered as 

the root node, the mean accuracy has reduced for all the sequences and this can be observed from 

Figure 5.10. 

 

Figure 5.9 GBFS outcome using RBF neural network as the classification algorithm with depth as the 

root node of the search tree. 

 

Figure 5.10 GBFS outcome using RBF neural network as the classification algorithm with height as 

the root node of the search tree. 

The total number of nodes expanded by the GBFS for RBF neural network is 25 including 1 for 

independent classification for the root nodes. Table 5.2 summarizes the sequences using RBF 

H 

H→L H→W H→D 

Length: 0.9753 Width: 0.9007 Depth: 0.9047 

< (D)  < (W)  < (L)  

Depth: 0.9207 Length: 0.9793 Width: 0.9020 Height: 0.8580 

D W L 

D 

D→L D→W D→H 

Depth: 0.9207 

Length: 0.9807 Width: 0.9073 Height: 0.8787 

D→L→W  

 
Width: 0.8947 

D→L→H  
 

Height: 0.8807 

D→W→L  
 

Length: 0.9627 

D→W→H  
 

Height: 0.9140 

D→W→H→ L 

 
Length: 0.9807 < (D → W)  < (L)  

Length: 0.9793 Width: 0.9020 Height: 0.8580 

< (D→W→H)  

< (D → W→ H)  

W L H 
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neural network that improved the performance of the chain classification over the independent 

classification. 

Table 5.2 Performance of RBF neural network in chain sequence with different defect 

characteristics as root node of the GBFS. 

SEQUENCE  MEAN AC CUR ACY  

D→W→H→ L 0.9306 

D→W→H  0.9303 

W→H 0.9261 

L→W→H 0.9244 

D→L→H  0.9209 

L→H 0.9205 

D→H 0.9201 

D→W 0.9163 

L→W 0.9153 

D→L 0.9153 

Independent 0.9150 

5.3.2.2 GBFS algorithm using SVM  

Figure 5.11 to Figure 5.14 illustrate the results of the chain classifiers using SVM as the 

classification algorithm for different defect characteristics as the root node of the search tree. 

The best sequence identified by SVM is D → W → H → L. This sequence resulted in a mean 

accuracy of 0.9622. 

 

Figure 5.11 GBFS outcome using SVM as the classification algorithm with length as the root node of 

the search tree. 

L 

Depth: 0.9876 Length: 0.9216 Width: 0.9436 Height: 0.9072 
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Figure 5.12 GBFS outcome using SVM as the classification algorithm with width as the root node of 

the search tree. 

 

Figure 5.13 GBFS outcome using SVM as the classification algorithm with depth as the root node of 

the search tree. 
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Figure 5.14 GBFS outcome using SVM as the classification algorithm with height as the root node of 

the search tree. 

The total number of nodes expanded by the GBFS for SVM is 27. Table 5.3 summarizes the 

sequences using SVM that improved the performance of the chain classification over the 

independent classification. 

Table 5.3 Performance of SVM in chain sequence with different defect characteristics as root 

node of the GBFS. 

 

 

Comparison of total number of nodes expanded for RBF neural network and SVM with each 

class variable as root node is given in Table 5.4. In total, the GBFS has terminated with 

SEQUENCE  MEAN AC CUR ACY  

D→W→H→ L 0.9622 

D→W→H  0.9547 

W→H→L 0.9510 

D→H→L  0.9494 

W→H 0.9490 

W→L→H 0.9486 

H→L 0.9479 

D→L→H  0.9460 

D→W→L  0.9442 

D→L 0.9438 

W→L 0.9419 

D→H 0.9419 

D→W 0.9417 

Independent 0.9400 

  

H 

Depth: 0.9876 Length: 0.9216 Width: 0.9436 Height: 0.9072 

H→L H→W H→D 

Length: 0.9533 Width: 0.9340 Depth: 0.9787 

< (D)  < (W)  

H→L→D 

Depth: 0.9727 

H→L→W 

Width: 0.9400 

< (W)  < (D)  

D W L 
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expansion of 25 nodes for RBF neural network while SVM terminated with 27 nodes. This 

includes 1 node expansion for independent classification. It would have required 61 expansions 

using either of the algorithms in brute force without greedy.  

Table 5.4 Comparison of number of node expansion required and number of nodes expanded 

by GBFS. 

CLASS 

VARI AB LE 

OF ROOT  

NODE 

NUMB ER OF  

NODE EXP ANSIO NS 

REQUIRED  

NUMB ER OF NODE S EXP A NDED FO R GB F S  

RB F NEUR AL 

NET W ORKS  SVM  

Length 15 8 3 

Width 15 5 8 

Depth 15 8 10 

Height 15 3 5 

Total 60 24 26 

 

Table 5.5 summarizes the sequences that improved the performance of the chain classification 

over the independent classification by either of the algorithm.  

Table 5.5 Comparison of performance of RBF neural networks and SVM in chain sequence 

with different defect characteristics as root node of the GBFS. 

 

 

DEFECT  

CH AR ACT ERIST ICS  SEQUENCE  

MEAN AC CUR ACY  

RB F 

NEUR AL 

NET W ORKS  SVM  

 Independent 0.9150 0.9400 

Length L→W 0.9153 - 

L→W→H 0.9244 - 

L→H 0.9205 - 

Width W→L - 0.9419 

W→H 0.9261 0.9490 

W→L→H - 0.9486 

W→H→L - 0.9510 

Depth D→L 0.9153 0.9438 

D→W 0.9163 0.9417 

D→H 0.9201 0.9419 

D→L→H  0.9209 0.9460 

D→W→L  - 0.9442 

D→W→H  0.9303 0.9547 

D→W→H→ L 0.9306 0.9622 

D→H→L  - 0.9494 

Height H→L - 0.9479 
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Interestingly, many sequences listed in Table 5.5, have improved the accuracy over the 

independent classification for RBF neural network as well as SVM. This can be interpreted as 

the class variables are dependent on one another and they cannot be isolated. However, 

D→W→H→L sequence has produced the best results with a mean accuracy of 0.9303 and 

0.9622 for RBF neural networks and SVM, respectively. 

Table 5.6 compares the performance of the chain classification and independent classification 

algorithms. It can be observed that the classification for length and width have produced a 

marginal improvement in accuracy to 0.9807 from 0.9793, and to 0.9073 from 0.9020 

respectively, using the RBF neural network. Accuracy has increased to 0.9560 from 0.9216 and 

to 0.9505 from 0.9436 for length and width, respectively, using SVM.  

Table 5.6 Comparison of performance of independent as well as chain classification. 

LE ARNING ALGO RITHM  

ACC UR ACY  

LENGT H  W IDT H DEPT H  HEIGHT  

Independent RBF neural networks 0.9793 0.9020 0.9207 0.8580 

Chain RBF neural networks (D→W→H→ L) 0.9807 0.9073 0.9207 0.9140 

Independent SVM 0.9216 0.9436 0.9876 0.9072 

Chain SVM (D→W→H→ L) 0.9560 0.9505 0.9876 0.9595 

     

It can also be noted that the accuracy in length sizing is 0.9807 using RBF neural network is 

greater than that of the SVM (0.9560). Substantial improvement in classification has been 

achieved for height by both the classification algorithms. For height sizing the accuracy has 

improved to 0.9140 from 0.8580 for the RBF neural network and to 0.9595 from 0.9072 for the 

SVM. Thus, the results clearly establish, for the first time, that the chain classification results in 

superior performance for defect sizing as compared to independent classification. Following 

these observations, it can be stated that the SVM is better for classification of depth, width, and 

height while RBF neural network is better for classification of length. A hybrid chain classifier 

following D→W→H→ L sequence consisting SVM for depth, width, and height and RBF 

neural network for length is able to produce the highest mean accuracy of 0.9694. 
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The optimal sequence D→W→H→L can also be explained from the eddy current test 

phenomenon. Defect depth influences the probe impedance change (magnitude and phase) more 

predominantly than that of length, width, or height. By determining the class of depth first, the 

algorithm has the tendency to classify more accurately the width, height, and length of the 

defect. The sequence can be understood and explained based on skin-effect phenomenon. The 

depth is most influenced by the skin-effect and the features chosen are sufficient enough to give 

accurate results. This is not in the case with length, width, and height. Only when accurate and 

the most influencing depth information is given as input, length and width can be determined 

accurately. 

5.3.3 Chain classification on test data 

The performance of chain classification has been compared with independent classification using 

experimentally obtained images. Table 5.7 and Table 5.8 show the performance of the chain 

classification on experimental images using RBF neural network and SVM respectively. The 

predicted value for depth and height are the midpoint of the class ranges (refer Table 3.3). As 

can be observed from Table 5.7 and Table 5.8, the results of the chain classification closely 

agree with the actual value for all the four defect characteristics, measured using optical method 

with an accuracy of 0.05 mm. 

Table 5.7 Performance of the RBF neural network in chain classification. 

DEFECT  LENGT H,  mm  W IDT H,  mm  DEPT H,  mm  HEIGHT ,  mm 

Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

Defect-1 25.0 25.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-2 25.0 25.0 2.0 2.0 3.0 3.0 2.0 2.8 

Defect-3 25.0 25.0 3.0 3.0 2.0 2.0 3.0 2.8 

Defect-4 30.0 30.0 2.0 2.0 3.0 3.0 2.0 2.8 

Defect-5 30.0 30.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-6 30.0 30.0 3.0 3.0 2.0 2.0 3.0 2.8 

Defect-7 35.0 35.0 2.0 2.0 3.0 3.0 2.0 1.0 

Defect-8 30.0 30.0 2.0 2.0 1.0 0.8 4.0 4.3 

Defect-9 35.0 35.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-10 25.0 25.0 2.0 2.0 0.0 0.0 2.0 1.0 
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Table 5.8 Performance of the SVM in chain classification. 

DEFECT   LENGT H,  mm  W IDT H,  mm  DEPT H,  mm  HEIGHT ,  mm 

Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

Defect-1 25.0 25.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-2 25.0 25.0 2.0 2.0 3.0 3.0 2.0 2.8 

Defect-3 25.0 25.0 3.0 3.0 2.0 2.0 3.0 2.8 

Defect-4 30.0 30.0 2.0 2.0 3.0 3.0 2.0 2.8 

Defect-5 30.0 30.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-6 30.0 30.0 3.0 3.0 2.0 2.0 3.0 2.8 

Defect-7 35.0 35.0 2.0 2.0 3.0 3.0 2.0 1.0 

Defect-8 30.0 30.0 2.0 2.0 1.0 0.8 4.0 4.3 

Defect-9 35.0 35.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-10 25.0 25.0 2.0 2.0 0.0 0.0 2.0 1.0 

         

Table 5.9 and Table 5.10 report the performance of the independent classifiers on the 

experimental images using the RBF neural network and SVM respectively. Independent 

classification using RBF neural network has misclassified height of Defect-1 and Defect-4, and 

width of Defect-7, while SVM has misclassified height of Defect-1, and width of Defect-4 and 

Defect-7. It is noteworthy that Defect-1, Defect-4, and Defect-7 are deeper (located 3.0 mm 

below the surface) among all the defects considered. This success of chain classification is 

attributed to the influence of dependency and its effective incorporation by the chain 

classification. 

Table 5.9 Performance of RBF neural network using independent classification. 

DEFECT   LENGT H,  mm  W IDT H,  mm  DEPT H,  mm  HEIGHT ,  mm 

Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

Defect-1 25.0 25.0 2.0 2.0 2.0 2.0 3.0 1.0 

Defect-2 25.0 25.0 2.0 2.0 3.0 3.0 2.0 1.8 

Defect-3 25.0 25.0 3.0 3.0 2.0 2.0 3.0 2.8 

Defect-4 30.0 30.0 2.0 3.0 3.0 3.0 2.0 1.0 

Defect-5 30.0 30.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-6 30.0 30.0 3.0 3.0 2.0 2.0 3.0 2.8 

Defect-7 35.0 35.0 2.0 1.0 3.0 3.0 2.0 2.8 

Defect-8 30.0 30.0 2.0 2.0 1.0 0.8 4.0 4.3 

Defect-9 35.0 35.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-10 25.0 25.0 2.0 2.0 0.0 0.0 2.0 1.0 
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Table 5.10 Performance of SVM using independent classification. 

DEFECT   LENGT H,  mm  W IDT H,  mm  DEPT H,  mm  HEIGHT ,  mm 

Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

Defect-1 25.0 25.0 2.0 2.0 2.0 2.0 3.0 1.0 

Defect-2 25.0 25.0 2.0 2.0 3.0 3.0 2.0 2.8 

Defect-3 25.0 25.0 3.0 3.0 2.0 2.0 3.0 2.8 

Defect-4 30.0 30.0 2.0 1.0 3.0 3.0 2.0 2.8 

Defect-5 30.0 30.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-6 30.0 30.0 3.0 3.0 2.0 2.0 3.0 2.8 

Defect-7 35.0 35.0 2.0 1.0 3.0 3.0 2.0 1.0 

Defect-8 30.0 30.0 2.0 2.0 1.0 0.8 4.0 4.3 

Defect-9 35.0 35.0 2.0 2.0 2.0 2.0 3.0 2.8 

Defect-10 25.0 25.0 2.0 2.0 0.0 0.0 2.0 1.0 

5.3.4 Testing the robustness of the chain classification 

Following the skin effect, the exponential fall of eddy currents is expected to influence the 

feature values substantially. Using the trained chain classifiers with subsurface defects, the 

robustness of the chain classification is tested using EC images of 3 surface defects (depth: 

0.0 mm) and 3 near-surface defects (depth: 0.2 mm). The heights of the defects have been taken 

as 1.0, 2.0, and 3.0 mm, while length and width of the defects have been kept constant at 

30.0 mm and 2.0 mm, respectively. The EC images of a typical surface and the near surface 

defects at 5 kHz are shown in Figure 5.15. The extracted features for these defects are given in 

Table 5.11. 

 

Figure 5.15 EC images of a) surface and b) near-surface defect (length: 30.0 mm, width: 2.0 mm and 

height: 1.0 mm) at 5 kHz. 

mV 

a) Surface defects b) Near surface defects 
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Table 5.11 Extracted features for a surface defect (depth: 0.0 mm) and near surface defect 

(depth: 0.2 mm). 

FEAT URE  

5  kHz  

FEAT URE  

1 0  kHz  

DEPT H:  

0 .0  mm  

DEPT H:  

0 .2  mm  

DEPT H:  

0 .0  mm  

DEPT H:  

0 .2  mm  

F1 23.0 23.0 F10 22.0 22.0 

F2 12.0 12.0 F11 10.0 10.0 

F3 34.0 34.0 F12 34.0 34.0 

F4 1104.0 1104.0 F13 968.0 1012.0 

F5 432.0 480.0 F14 432.0 432.0 

F6 0.0 0.0 F15 0.0 0.0 

F7 147.0 119.0 F16 401.0 321.0 

F8 -0.8 -0.8 F17 2.7 2.7 

F9 7.1 7.1    

 

Chain classification with RBF neural networks and SVM has successfully classified depth and 

height as class D1 and H1, respectively. This step has been repeated for other 10 defects and 

correct classification has been observed for all the 10 defects. Thus, the chain classification can 

be used to size both surface and subsurface defects. 

5.4  SUMMARY 

Chain classification methodology has been proposed to incorporate dependency among the class 

variables (length, width, depth, and height); this otherwise assumed to be independent for 

efficient defect sizing from eddy current images. For optimization of the best sequence to be 

used in the chain, a new algorithm called greedy breadth-first-search (GBFS) has been proposed. 

GBFS with RBF neural network and SVM have been found to be capable of rapid sequence 

optimization for chain classification. 

Chain classification has successfully resulted in sizing of defects located even 3.0 mm below the 

surface, from the response obtained through numerical modelling as well as through 

experimental measurements. D → W → H → L is found to be the optimal sequence, for the first 

time, by both RBF neural network and SVM. The same sequence determination by two diverse 

algorithms strongly indicates the dependency structure during sizing. Chain classification is able 
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to successfully classify, depth and height of the surface as well as near surface defects, 

confirming its robustness. This sequence can be justified based on skin-effect. The depth is the 

most influenced by the skin-effect and hence, once the depth is estimated other characteristics of 

defects can be sized with better accuracy. Length is usually larger than the probe size, hence 

least perturbed in the eddy currents and also least influenced by skin-effect. The influence of 

width is dependent on the size of the probe. For a small probe or defects larger than the effective 

size of the probe, width is expected to behave as length with least influence. In this study, the 

probe size is larger than the width and hence, it has least influence on length and height. 

Studies have been shown that the SVM is better for classification of depth, width, and height 

while RBF neural network is better for classification of length. 

Experimental studies on various fabricated defects confirm the effectiveness and efficiency of 

the chain classification, indicating that it is a promising method for accurate sizing of defects. 

Even though, chain classification addresses dependency, it requires explicit optimal sequence 

determination and also requires several learning algorithms. 
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6  GENERALIZED WRAPPER 

FRAMEWORK TO INCORPORATE 

MULTILABEL ALGORITHMS FOR 

DEFECT SIZING 

 

As discussed in Chapter 3 and Chapter 5, defect sizing requires multiple class variables and each 

class variable is a multiclass classification problem (multidimensional learning). Multilabel 

learning is a recent concept in machine learning which also deals with multiple class variables. 

However, they are confined to binary classification. In order to utilize the multilabel learning 

algorithms a generalized wrapper framework is proposed. This chapter introduces the concept of 

the proposed generalized wrapper framework and provides results of the framework applied to 

real world benchmark multilabel dataset as well as for eddy current inversion problem. 

6.1  MULTILABEL LEARNING 

6.1.1 Multilabel classification 

Multilabel learning studies the learning problem where each input is associated with a set of 

classes simultaneously. The training dataset is assume to be associated with more than one 

classes simultaneously and the task is to assign all the associated class from a set for each unseen 

instance [73]. Multilabel classification can be formally defined as a function  which assigns 

6 
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a subset of class from a set, e.g. C= {1, 2, …, d} to each unseen m dimensional vector of feature 

,  given a multilabel training set   = {(xi, ci)|1≤ i≤ n} given with c ⊂ C: 

 

where denoting the sample space of feature variable xj for j=1, 2, …, m. The mapping 

function  is generally built by considering the dependency between each of class in class 

space C. Multilabel classification problems mostly solved using multilabel ranking. 

6.1.2 Multilabel ranking 

Multilabel ranking is a problem of learning a function  which produces a vector of real 

numbers with size d=|C| as output to each unseen instance of a feature vector x ∈ X for a training 

set D={(xi, ci)|1≤ i≤ n} given by 

 

where ℝ is the set of real numbers. The function h(∙,∙) is 

expected to have the property of ordering the set of labels C, so that the topmost labels are more 

related to the unknown input. Most of the multilabel classification problems deal with post 

processing of multilabel ranking using a threshold function. With multilabel ranking, labels 

which are above the threshold for a given unknown instance are considered as the classes of that 

instance, such that 

  (6.1)  

where  is threshold function which can be a constant function [74,75] or stacking method 

[76] or algorithm specific threshold [77]. However, multidimensional learning problem cannot 

be solved using conventional multilabel classification because threshold based multilabel 

classification has two undesired possibilities [78]: 
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 None of the class in a given dimension exceeds threshold. 

 More than one class in a given dimension exceeds threshold. 

The brief characteristics of multilabel learning are the following: 

 Size of classes has to be classified is unknown a priori and vary with each input instance 

of data.  

 Dependency exists within input features, between features and classes as well as within 

the classes.  

Since the size of the predicted classes is unknown a priori in multilabel learning problems, there 

are possibilities that output for some of dimensions are not predicted, if they are considered for 

multidimensional learning. Numerous multilabel learning algorithms were proposed in the 

literature which takes cares of the above mentioned properties including dependency [73,79]. 

Since, the size of the predicted classes in multilabel learning vary with each input instance of 

data, multilabel learning can predict more than one class in a dimension for multidimensional 

problems as described in Section 3.1. Hence, multilabel learning cannot be directly used for 

multidimensional learning. In order to utilise the multilabel classification for multidimensional 

classification which can be further used for defect sizing a framework is propose in this thesis. 

6.2  WRAPPER FRAMEWORK FOR MULTIDIMENSIONAL 

SUPERVISED LEARNING  

The proposed framework for multidimensional learning (MDLearn) is a wrapper method. Figure 

6.1 gives the schematic of the wrapper framework. Consider a d dimension domain of class space 

C containing all possible classes in each dimension, such that 

  and multilabel representation can be achieved by 

treating each possible class in each dimension as an individual class in a single dimension such 

that  that is  and 



122 

 

. Now, multilabel learning can be performed on  as a class space 

instead of C. A vector  retains the cardinality of each dimension.  

 

Figure 6.1 A wrapper framework for multidimensional supervised learning. 

Algorithm 6.1 gives a pseudocode for the class transformation phase of the MDLearn wrapper. 

This algorithm codes as +1 for true class and -1 for all other classes in a given dimension, hence 

there will be d true classes. 

Algorithm 6.1 MDLearn wrapper - class transformation. 

 

As a second stage of wrapper, any multilabel ranking algorithm [73] which considers the class 

dependency property can be applied as a base ranking method. In this thesis, evaluation of this 

ψ = Transform_Class(c,k) 

Input: 

 c={c1, c2, …, cd}, an instance of d dimensional index of true class at each  

dimension 

k={k1,k2, …, kd},
icik for 1≤i≤d, an integer vector comprises cardinality of 

each dimension 

Output: 

 ψ, multilabel class representation 

Process: 

 ψ ←NULL 

for i ←1 to d do // each dimension of C   

 for  j ← 1 to ki do // each class in
ic
   

  if ci = j then c′ ←+1 

      else c′ ← -1 

  ψ ←{ψ,c′}  

 end 

end 
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proposed framework is carried out using multilabel radial basis function (ML-RBF) and 

multilabel k-nearest neighbours (ML-KNN) for comparison purpose [74,75].  

For a successfully learned system, it is claimed to exhibit the property , for every   

k ≠ j in a given dimension a, where R(·) is the real valued rank of a class obtained through h(∙,∙). 

Hence, a multidimensional function f(xi) can be derived from h(xi,ψi), a multilabel ranking 

algorithm which  produces real valued output for all the classes such that : 

 

 

 

(6.2)  

A pseudocode for multidimensional representation and prediction of classes based on this is 

given in Algorithm 6.2. 

Algorithm 6.2 MDLearn wrapper - class prediction. 

 

The algorithm takes two vectors. The first vector is the predicted rank for each class in ψ 

obtained through multilabel ranking algorithm. The second vector is k which comprises 

 = Predict_Class(ψ', k) 

Input:  

  ψ', a vector of predicted rank of class obtained through multilabel ranking 

k={k1,k2, …, kd},
icik for i={1, 2, …, d}, an integer vector  

comprises cardinality of each dimension 

Output: 

 
dccc ,...,,' 21c

 
an instance of d dimensional predicted class vector 

Process: 

j ← 1 

foreach i in ki do 

 h ← j + ki  - 1 

ic ← class (index (max ( htoj ..ψ ))) //max is the regular maximum  

 function  

 j ← h + 1 

end 
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cardinality of each dimension. For each dimension, a class with maximum rank among other 

classes is declared as the predicted class for that particular dimension. 

6.3  DATASET DESCRIPTION 

Performance evaluation has been carried out using two multilabel ranking algorithms, 

i) ML-RBF neural network and ii) ML-KNN, on the proposed framework and they are termed as 

MDLearnML-RBF and MDLearnML-KNN respectively. There are no benchmark multidimensional 

datasets available. Hence, before applying the proposed framework to eddy current data, for 

validation of assumptions made in building the wrapper framework, studies have been  carried 

out using real world benchmark multilabel dataset (by casting it into multidimensional model). 

Results have been compared against the same base ranking algorithm (ML-RBF neural network 

and ML-KNN) with appropriate threshold function for assigning the classes, as commonly used 

in multilabel learning. Subsequently, studies on the proposed framework have been carried out 

using multidimensional dataset of defect sizing. EC images of 300 subsurface defects as 

described in Section 3.3.1.4 have been used for defect sizing using the MDLearn framework. 

The real world datasets available at http://mulan.sourceforge.net/datasets.html has been used for 

validation of the assumptions. The description of the datasets is the following: 

1. YEAST:  The yeast data consists of genes described by concatenation of micro-array 

expression data and phylogenetic profile of the Yeast saccharomyces cervisiae, which is one 

of the best studied organisms. Each gene is organized into 103 features. Elisseeff and Weston 

[80] preprocessed the dataset where only the known structure of the functional classes 

belonging to the top level of hierarchy were retained. This dataset consists of 2417 genes and 

14 possible functional classes for each gene. The task is to predict the set of functional 

classes associated with each gene among the 14 functional classes. 

http://mulan.sourceforge.net/datasets.html
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2. EMOTIONS: The dataset for emotion classification was collected by Trohidis et al [81]. It 

consists of 100 songs from each of the following 7 different genres: classical, reggae, rock, 

pop, hip-hop, techno and jazz. From each song a period of 30 seconds after the initial 30 

seconds was extracted and consists of 593 sound clips among which 72 features were 

extracted. The Tellegen-Watson-Clark model was employed for labelling the data with 8 

emotions viz. amazed-surprised, happy-pleased, relaxing-calm, quit-still, sad-lonely and 

angry-aggressive. The task is to predict the set of classes for each sound clip among the 8 

classes. 

3. SCENE:  In natural scene classification, each natural scene image may belong to several 

image types (classes) simultaneously, for example the image shown in Figure 6.2a can be 

classified as a mountain as well as a foliage, while the image shown in Figure 6.2b can be 

classified as a sea as well as a mountain. Through analyzing images with known label sets, a 

multilabel learning system will automatically predict the sets of labels for unseen images. 

The above process of semantic scene classification can be applied to many areas, including 

content-based indexing, organization, and image enhancement. The dataset of images used 

for scene classification was preprocessed by Boutell et al [82] containing 2407 pictures and 

each picture is associated with a set of semantic classes among six classes (beach, sunset, 

foliage, field, mountain and urban) and each picture is represented with 294 attributes based 

on colour information of images. 
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Figure 6.2 Examples of multilabel images. 

6.4  RESULTS AND DISCUSSION 

6.4.1 Real world benchmark multilabel data 

Table 6.1 summarizes the results of the evaluation metrics viz. mean accuracy, global accuracy, 

and entropy of accuracy. Results are interpreted as mean ± std. deviation of 10 independent runs 

as conventionally carried out to compare the machine learning algorithms. It has been assumed 

that the independent runs are Gaussian in nature. Performance of all evaluation metrics (refer 

Section 3.3.3) based on pair wise t-test at 5% significant level has been carried out and the 

results are given in Table 6.2. A≻B represents performance of A is statistically better than B and 

A≍B represents performance of A is statistically similar to B. From the results obtained from 

Table 6.1 and further analysis of two-tailed paired t-test in Table 6.2 on the benchmark 

multilabel dataset, it is evident that the proposed wrapper framework is able to produce identical 

results with that of the threshold based multilabel ranking algorithm. Hence, it can be stated that 

all the assumptions made in design of the framework hold good. 

 

a) Class labels: mountain, foliage b) Class labels: mountain, sea 
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Table 6.1 performance evaluation (mean ± std. deviation) for ten-fold cross validation on 

benchmark multilabel dataset. 

DAT ASET  MDLE ARN M L - R B F  ML-RB F  MDLE ARN M L - K N N  ML-KNN  

MEAN AC CUR ACY  

Yeast 0.7946 ± 0.0021 0.8050 ± 0.0013 0.7762 ± 0.0015 0.8047 ± 0.0004 

Scene 0.9218 ± 0.0014 0.9133 ± 0.0009 0.8888 ± 0.0011 0.8885 ± 0.0010 

Emotion 0.7817 ± 0.0036 0.7640 ± 0.0020 0.7181 ± 0.0024 0.7418 ± 0.0047 
ENT ROP Y AC CUR AC Y  

Yeast 0.7926 ± 0.0022 0.8032 ± 0.0013 0.7739 ± 0.0015 0.8029 ± 0.0004 

Scene 0.9212 ± 0.0014 0.9128 ± 0.0009 0.8879 ± 0.0012 0.8875 ± 0.0011 

Emotion 0.7808 ± 0.0036 0.7633 ± 0.0020 0.7173 ± 0.0024 0.7414 ± 0.0047 
GLOB AL ACCU R ACY  

Yeast 0.1664 ± 0.0041 0.1820 ± 0.0022 0.1118 ± 0.0070 0.1799 ± 0.0027 

Scene 0.6369 ± 0.0063 0.5988 ± 0.0055 0.4398 ± 0.0025 0.6292 ± 0.0034 

Emotion 0.2511 ± 0.0069 0.2077 ± 0.0092 0.2029 ± 0.0030 0.1333 ± 0.0123 
HAM MING LOSS  

Yeast 0.2053 ± 0.0021 0.1949 ± 0.0013 0.2819 ± 0.0024 0.1952 ± 0.0004 

Scene 0.0782 ± 0.0014 0.0866 ± 0.0009 0.2010 ± 0.0014 0.0867 ± 0.0010 

Emotion 0.2182 ± 0.0036 0.2360 ± 0.0020 0.1111 ± 0.0011 0.2581 ± 0.0047 

Table 6.2 Overall performance of all evaluation metrics based on two-tailed paired t-test at 

5% significant level (MDLearnML-RBF → A, ML-RBF → B, 

MDLearnML-KNN → C, ML-KNN → D) 

DAT ASET  MEAN 

ACC UR ACY  

ENT ROP Y 

ACC UR ACY  

GLOB AL 

ACC UR ACY  

HAM MING 

LOS S  

Yeast A ≍ B, C ≍ D A ≍ B, C ≍ D A ≍ B, C ≺ D A ≍ B, C ≺ D 

Scene A ≍ B, C ≍ D A ≍ B, C ≍ D A ≍ B, C ≺ D A ≍ B, C ≺ D 

Emotion A ≍ B, C ≍ D A ≍ B, C ≍ D A ≻ B, C ≺ D A ≍ B, C ≻ D 

     

Further, the results obtained for real world dataset has been compared with the results 

published previously in [74,75,67]  using ML-RBF neural network and ML-KNN and the 

results are given in Table 6.3. It is observed that the results obtained were consistent or 

slightly better than the previously published results. 

Table 6.3 Comparison of results for hamming loss reported in [67,74,75] and proposed 

framework. 

 

DAT ASET  

ML-RB F NEU R AL NET W ORK  ML -KNN  

RESU LT S 

REP ORT ED 

IN[7 4 ]  

RESU LT S 

OB T AINED  

RESU LT S 

REP ORT ED 

IN[6 7 ,75 ]  

RESU LT S 

OB T AINED  

Yeast 0.1950±0.0110 0.1949 ± 0.0013 0.1950±0.0100 0.1952±0.0004 

Scene - 0.0866 ±0.0009 0.1804±0.0092 0.0867±0.0010 

Emotion - 0.2360 ± 0.0020 0.3867±0.0169 0.2581±0.0047 
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6.4.2 Eddy current testing data 

The proposed framework has been applied to eddy current data of subsurface defects as 

discussed in Section 3.3.1.4. Table 6.4 gives the performance of MDLearn framework as well 

as conventional uni-dimensional variant of the same learning algorithm for 10-fold cross 

validation of individual dimensions (defect characteristics).  

Table 6.4 Accuracy of MDLearn and conventional uni-dimensional algorithm for individual 

dimension of EC data. 

ALGO RIT HMS  P ERFORM AN CE EV ALUAT I ON -  ACCU R ACY  

LENGT H  W IDT H DEPT H  HEIGHT  

MDLearnML-RBF 0.9807 ± 0.010 0.9118 ± 0.013 0.9207 ± 0.010 0.9072 ± 0.011 

RBF 0.9793 ± 0.080 0.9020 ± 0.080 0.9207 ± 0.060 0.8580 ± 0.083 

MDLearnML-KNN  0.8774 ± 0.008 0.7158 ± 0.011 0.8239 ± 0.006 0.8353 ± 0.013 

KNN 0.8737 ± 0.007 0.6745 ± 0.013 0.8180 ±0.005 0.8175 ± 0.080 

It can be observed from Table 6.4 that all the characteristics of defects considered such as 

length, width, depth, and height could be classified with considerable accuracy. Further, it 

can be noted that the depth and length are relatively easier to classify than that of the height 

and width. The results have been evaluated using multidimensional evaluation metrics such 

as mean accuracy, global accuracy, and entropy of accuracy and given in Table 6.5.  

Table 6.5 Performance of MDLearn and conventional uni-dimensional algorithm for EC data. 

ALGO RIT HMS  P ERFORM AN CE EV ALUAT I ON 

MEAN 

ACC UR ACY  

GLOB AL 

ACC UR ACY  

ENT ROP Y OF 

ACC UR ACY  

MDLearnML-RBF 0.9300 ± 0.004 0.7947 ± 0.012 0.9288 ± 0.004 

RBF 0.9144 ± 0.004 0.7265 ± 0.006 0.9112 ± 0.004 

MDLearnML-KNN  0.8120 ± 0.004 0.5433 ± 0.008 0.8102 ± 0.005 

KNN 0.7925 ± 0.004 0.3859 ± 0.009 0.7912 ± 0.005 

    

As can be observed from Table 6.5, the MDLearn framework under ML-RBF neural network for 

four defect characteristics viz, length, width, depth, and height has produced 93% mean 

accuracy, 79% global accuracy and 92% entropy of accuracy, when compared to that of the 

conventional RBF neural networks, which produced 91% mean accuracy, 72% global and 91% 
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entropy of accuracy. Being a naïve algorithm, KNN has produced a modest 79% mean accuracy. 

However, this has been improved to 81% by MDLearn framework using ML-KNN.  

It can be inferred from Table 6.4 and Table 6.5 that the MDLearn using ML-RBF neural network 

and ML-KNN has given better results when compared to their uni-dimensional counterparts, 

RBF and KNN respectively. This is directly attributed to the fact that statistical dependency 

exists between each defect characteristic. ML-RBF neural network as base ranking for MDLearn 

framework has given the maximum performance, as compared to the other three algorithms. The 

entropy of accuracy in Table 6.5 remains equal with a small margin to the mean accuracy in all 

the algorithms, with which it can be interpreted that the accuracy is not biased towards any 

particular defect characteristic. It can be noted that there is a significant improvement in terms of 

global accuracy with MDLearnML-RBF as compared to the conventional RBF neural network. 

Hence, with MDLearnML-RBF the probability of getting accurate classification across all the 

dimensions is high. It is evident from Table 6.4 and Table 6.5 that proposed MDLearn 

framework is capable of producing efficient results for true multidimensional dataset (≥3 class in 

each dimension) and superior than uni-dimensional learning. Thus, the MDLearn framework 

enables simultaneous prediction of length, width, depth, and height of a defect from its EC 

images from two frequencies. This framework can be used to other NDE techniques such as 

radiography techniques for defect sizing and ultrasonic testing for defect classification. 

6.5  SUMMARY 

In order to utilize the multilabel learning algorithms, a generalized wrapper framework is 

proposed, for the first time. In this framework, input multidimensional data are represented in the 

form of multilabel data. Later, class for each dimension is predicted based on rank of class 

present in each dimension assuming true class gives maximum rank with multilabel ranking. 

This framework has been applied to real world benchmark multilabel dataset viz. yeast, scene, 
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and emotion for validation of assumptions made in building the wrapper framework. The results 

produced by the proposed framework have been found to be consistent or better than the 

previously published results using real world benchmark multilabel dataset (by casting it into 

multidimensional model). This has validated the assumptions of the framework.  

Proposed framework has been applied for defect sizing using EC images. It has been observed 

that the framework using ML-RBF neural network has achieved a significant improvement in 

global accuracy to 79% for four dimensions (4 defect characteristics viz, length, width, depth, 

and height). In contrast, the conventional uni-dimensional RBF neural network has been able to 

produce 72% global accuracy. It can also be stated that the MDLearn framework enables 

simultaneous prediction of length, width, depth, and height of a defect from its EC images. This 

framework can be applied to other NDE techniques for defect classification and sizing. 
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7  CONCLUSION 

 

The thesis has focused on development of novel machine learning algorithms for defect sizing 

from eddy current (EC) images of metallic materials. The major conclusions of the thesis are the 

following: 

A new multidimensional radial basis function (MD-RBF) neural network has been proposed. It 

is capable of sizing simultaneously length, width, depth, and height when all the input features 

are fed together, through a single training. It overcomes the limitation of conventional machine 

learning algorithms including ANN and RBF neural networks that require the selective input for 

each characteristic of a defect and a separate neural network for each defect characteristic. 

MD-RBF also incorporates dependency implicitly among the defect characteristics.  

EC images have been segmented by identifying a ROI around the defect response. Features are 

extracted from EC images and studied for their relevance to defect characteristics. It has been 

established that the extracted features show good correlation with defect characteristics. The 

features have been found to be noise tolerant up to 15% additive white Gaussian noise in EC 

images. It has been also found that these extracted features are rotation invariant. MD-RBF 

neural network has been trained with EC images obtained from numerical modeling of 

rectangular defects while evaluated using EC experiments.  

With MD-RBF neural networks, there is a significant improvement in the sizing performance. 

Global accuracy increased to 83% with a relatively less number of computations as compared to 

the global accuracy of 76% achievable by the conventional RBF neural networks. Significant 

7 
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improvement in sizing height has been observed for MD-RBF neural network (94%) than RBF 

neural networks (90%). The MD-RBF neural network has also been evaluated to defects which 

are non-rectangular in shape and found that the results are consistent.  The MD-RBF neural 

network results in approximated length, width, depth, and height when input is features of real 

crack or other shape. 

The performance of MD-RBF neural network with change in scan pitch, for the chosen probe, 

has been studied, for the first time. From this study, it has been identified that the proposed 

MD-RBF neural network is robust for defect sizing for EC images obtained even at certain 

higher scan pitches (lower resolutions) than that of the training images. It has been found, for the 

first time, that the limit scan pitch λ, for the chosen probe varies for different defect 

characteristics (λl = 6.0 mm, λw = 6.0 mm, and λd = 30.0 mm). Sizing length and width of defects 

has more influence on the scan pitch and sizing depth of defects has found to be the least 

influence on the scan pitch. Although the effect of scan pitch is studied for MD-RBF neural 

network in this thesis, this study is generic in nature and applicable to any inversion algorithm. 

The explicit dependency structure of the defect characteristics has been systematically studied in 

this thesis using a novel chain classification methodology. For optimization of the best sequence 

to be used in the chain, a new algorithm called greedy breadth-first-search (GBFS) has been 

proposed. GBFS with RBF neural network and support vector machine is capable of rapid 

sequence optimization for chain classification, thus avoiding the search of poor sequences, if 

any, that degrade the classification performance. It has been observed, for the first time, that 

depth→width→height→length is the optimal sequence for eddy current. The sequence has been 

identified by two diverse algorithms (RBF neural network and SVM) which strongly indicate the 

dependency structure during empirical eddy current inversion. Unlike MD-RBF neural network, 

chain classification cannot simultaneously size all the defect characteristics. It requires 
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identification of optimal sequence for better performance. It is computationally intensive than 

the MD-RBF neural network. 

In order to expand the scope of empirical inversion by way of incorporating other robust learning 

algorithms, a novel MDLearn wrapper framework has been proposed. This framework has been 

applied to real world benchmark multilabel dataset viz. yeast, scene, and emotion for validation 

of assumptions made in building the wrapper framework. The results from the proposed 

framework have established that the assumptions made in the design of the framework hold 

good. Proposed framework using ML-RBF neural network has produced 79% global accuracy 

for four dimensions (4 defect characteristics) as compared to 72% achievable by the 

conventional uni-dimensional RBF neural networks. From the studies using benchmark real 

world multilabel dataset, and EC images of defects, it has been established that the MDLearn 

framework can be effectively used for empirical inversion. This framework can also be applied 

for defect classification and sizing using any other NDE techniques. 

The approaches proposed in this thesis can easily be generalized to other diffusion based NDE 

techniques. One such potential technique is lock-in thermography. The propagation of heat 

energy in a material is diffusive like the electromagnetic fields in EC testing. In such a situation, 

lock-in thermography images obtained from components can be subjected to the 

multidimensional learning algorithms proposed in this thesis for efficient inversion. The features 

proposed in this thesis such as maximum magnitude, phase, and ratio of magnitude can be 

extracted from lock-in thermography images and they are directly related to the defect depth and 

height. Lock-in thermography can quickly detect defects in components with relatively larger 

surface area and the proposed multidimensional learning algorithms for subsurface defect sizing 

using can be effectively applied to lock-in thermography. 
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7.1  TECHNICAL AND SCIENTIFIC CONTRIBUTIONS 

The major contributions of this thesis are the following: 

 For simultaneous sizing of four important defect characteristics viz. length, width, 

depth, and height incorporating dependency, a novel MD-RBF neural network has 

been proposed. The MD-RBF neural network has been found to be more effective 

than the individual RBF neural networks. It can detect and size surface as well as 

subsurface defects. 

 Influence of scan pitch of EC images on performance of defect sizing by the proposed 

MD-RBF neural network has been studied for the first time. From this study, it has 

been found that the limit scan pitch λ, exists and it is different for defect 

characteristics (λl = 6.0 mm, λw = 6.0 mm, and λd = 30.0 mm). Sizing length and 

width of defects has more influence on the scan pitch and sizing depth of defects has 

found to be the least influence on the scan pitch. 

 A methodology using chain classification and novel algorithm called greedy 

breadth-first-search (GBFS) have been proposed to study the influence of dependency 

among the considered four defect characteristics for sizing. It has been observed, for 

the first time, that depth→width→height→length is the optimal sequence for 

empirical eddy current inversion.  

 In order to expand the scope of the empirical inversion to incorporate other robust 

multilabel machine learning algorithms for NDE inversion, a novel MDLearn 

wrapper framework has been proposed. From the studies using benchmark real world 

multilabel dataset, it has been established that the MDLearn framework can be 

effectively used for inversion. 
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8  FUTURE WORKS 

 

The work presented in this thesis has significantly improved capabilities of empirical inversion 

for accurate and automated sizing of defects using eddy current images. The thesis proposed new 

and efficient algorithms to size more than one defect characteristics and their dependency of 

defect characteristics for sizing. It also provided better insights into the existence of 

dependencies among the defect characteristics and highlighting the role of dependency on sizing 

accuracy during inversion. The work in this thesis can be extended in the following ways: 

The eddy current inversion studies carried throughout this thesis are concentrated on sizing 

of 4 important characteristics of a defect i.e. length, width, depth, and height. However, a 

defect cannot be always restrained to 4 dimensions and it cannot be applicable to defects 

varying in shape and type, such as pitting corrosion, voids, and material loss. A defect can 

be a branching crack or sometimes it can be a crack which varying width at start of the 

crack and increasing gradually or irregularly. These defects are not studied in this thesis for 

sizing. However, all the methods and inversion algorithms reported in this thesis can be 

applied for sizing these types of defects in the metallic material. Hence, it may be worth 

exploring other characteristics of defects such as orientation to XYZ planes and other 

regular and irregular geometries using the methods proposed in this thesis. Dataset with 

realistic defects will capture the real world statistical distribution and will perform accurate 

sizing than artificial defect. It is also worth exploring the proposed methods using dataset 

with complete realistic defects for training and testing.  

8 
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In the present study, input features from only two excitation frequencies have been extracted. 

However, more information can be obtained from multi-frequency EC data and it will be useful, 

especially when disturbing variables such as surface roughness, probe tilt, and variation in lift 

off are present during the measurements replicating the actual test conditions. Use of multi-

frequency inputs is expected to increase the sizing accuracy in the presence of these disturbing 

variables, however, at the cost of computation time.  

In the present study, features are extracted directly from the EC signals and images. However, it 

is also beneficial to study the use of other derived features such as PCA, wavelet coefficients, 

etc, and their combinations as input features for MD-RBF neural network. 

The inversion methodologies studied in this thesis are applicable to only those EC images which 

are acquired with EC probe having identical dimensions and spectral characteristics. However, 

all the proposed machine learning algorithms in this thesis cannot be applied for inversion using 

any probe. In this direction, it is beneficial to study the performance of the proposed inversion 

methodologies using multiple probes by varying diameters and configurations towards 

generalization of the inversion algorithms. 

MD-RBF proposed in this thesis can be improved to address multidimensional regression 

problems, by training with the actual value of the defect characteristics rather than categorization 

as performed in this thesis. This can also achieved by categorizing and considering more than 

one output and interpolating relatively. Extensive comparative study may be required in order to 

find the better among them. 

It was identified from the study that there is variation in the influence of the scan pitch limit on 

performance for defect sizing. The limit scan pitch found in this thesis is limited to the chosen 

probe. However, this work can be extended by studying the limit scan pitch for various 
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diameters and an empirical relationship between the limit scan pitch for an inversion algorithm 

and the probe diameter, can be obtained for generalization purpose. 

The optimal sequence depth→width→height→length following the dependency has been 

obtained for the probe chosen and in stainless steels. It may be required to study the sequence for 

different materials and probes. 

In principle, lock-in thermography works similar to eddy current testing as the underlying 

physical phenomenon is same i.e. diffusion. However, the disturbing variables and source of 

noise are different namely, reflectivity, emissivity, etc. Electrical conductivity and magnetic 

permeability have no effect on lock-in thermography. Thus, it may be worth studying inversion 

using fused redundant and complimentary information from eddy current testing and lock-in 

thermography. 
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APPENDIX 

1 Matlab code for training of MD-RBF neural network 

function [Centroids,Sigma,Weights, classes]= 

MD_RBFTrain(train_data,train_target,ratio,mu) 
  

%train_data is a matrix a×b 

%train_data is a matrix a×c 

%ratio (clustering parameter α) is a real number the range 0-1 

%mu is a real number in the range 0-1 

 
[instance,labels]=size(train_target); 
for i=1:labels 
    numClass(i)=size(unique(train_target(:,i)),1); 
end 
fLabel=-1*ones(instance,sum(numClass));n=0; 
class=1; 
for i=1:labels 
    mc=unique(train_target(:,i)); 
    cls{i}=unique(train_target(:,i)); 
    class=[class,mc']; 
    for j=1:numClass(i) 
        n=n+1; 
        fLabel(:,n)=fLabel(:,n)+2*(train_target(:,i)>=mc(j)); 
    end 
end 
class(1)=[]; 
classes.name=class; 
classes.num=numClass; 
[Centroids,Sigma,Weights]= MD_RBF_train(train_data,fLabel',ratio,mu); 
 

function 

[Centroids,Sigma,Weights]=MD_RBF_train(train_data,train_target,ratio,mu) 
numClass,num_train]=size(train_target); 
Dim=size(train_data,2); 
num_cluster=zeros(1,numClass); 
for j=1:numClass 
        num_cluster(1,j)=ceil(ratio*sum(train_target(j,:)==1)); 
end 
num_centroid=sum(num_cluster); 

%Initial clustering for each dimensions 
Centroids=zeros(num_centroid,Dim); 
for j=1:numClass 
      temp_index=find(train_target(j,:)==1); 
    if ~isempty(temp_index) && num_cluster(1,j)>0 && 

(size(temp_index,2)>=num_cluster(1,j)) 
        temp_train_data=train_data(temp_index,:); 
  

[~,CEN]=kmeans(temp_train_data,num_cluster(1,j),'EmptyAction','singleton'); 
        low=sum(num_cluster(1:j-1))+1; 
        high=sum(num_cluster(1:j)); 
        Centroids(low:high,:)=CEN; 
    else 
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        num_cluster(1,j)=0; 
    end 
end 

%%%Computing prototype vectors 
distfun='euclidean'; 
Y1=pdist(Centroids,distfun); 
centroid_dist=squareform(Y1); 
numerator=sum(sum(triu(centroid_dist,1))); 
denominator=num_centroid*(num_centroid-1)/2; 
sigma=mu*(numerator/denominator); 
Sigma=zeros(1,num_centroid); 
counter=0; 
for j=1:numClass 
    sigma_j=sigma; 

     
    for k=1:num_cluster(j) 
        counter=counter+1; 
        Sigma(1,counter)=sigma_j; 
    end 
end 

  
A=zeros(num_train,num_centroid+1); 
B=zeros(num_train,numClass); 
 %Determination of weight 

 
for i1=1:num_train 
    temp_vec=zeros(1,num_centroid); 

     
    for k=1:num_centroid 
        temp_sigma=Sigma(1,k); 
        vec1=train_data(i1,:); 
        vec2=Centroids(k,:); 
        tmp=sqrt((vec1-vec2)*(vec1-vec2)'); 
        temp_vec(1,k)=exp((-tmp^2)/(2*temp_sigma^2)); 
    end 
    temp_vec=[1,temp_vec]; 
    A(i1,:)=temp_vec; 

     
    B(i1,:)=train_target(:,i1)'; 
end 
Weights=A\B; 
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2. Matlab code for testing of MD-RBF neural network 

function 

[Outputs,Predictions]=MDO_RBF_test(test_data,Centroids,Sigma,Weights,classe

s) 

 
[rows,columns]=size(test_data); 
num_centroid=size(Centroids,1); 
A=zeros(rows,num_centroid+1); 

 
for i=1:size(test_data,1) 

     
    temp_vec=zeros(1,num_centroid); 
    for k=1:num_centroid 
        vec1=test_data(i,:); 
        vec2=Centroids(k,:); 
        tmp=sqrt((vec1-vec2)*(vec1-vec2)'); 
        temp_sigma=Sigma(1,k); 
        temp_vec(1,k)=exp(-tmp^2/(2*temp_sigma^2)); 
    end 
    temp_vec=[1,temp_vec]; 

     
    A(i,:)=temp_vec; 
end 

  
Outputs=(A*Weights); 
Predictions=zeros(length(classes.num),rows); 

  
for i=1:rows 
    start=1; 
    for j=1:length(classes.num) 
        stop=start+classes.num(j)-1; 
        tem=find((Outputs(i,start:stop)>0)==1, 1, 'last' ); 
        Predictions(j,i)=tem(1); 
        start=start+classes.num(j); 
    end 
end 
Predictions=Predictions'; 
count=0; 
for i=1:length(classes.num) 
    Predictions(:,i)=classes.name(Predictions(:,i)+count); 
    count=count+classes.num(i); 
end 
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3. Matlab code for chain classification. 

function 

predictions=ChainClassify(features,training,targets,test,predictions,labelC

ount,index,classifierparams1 , classifierparams2) 

%clainclassify recursively train for each classifier and a label and in 

nextpredictions, previous predictions will be added as training data. 

 

 
label1=targets(:,index); 
label=(full(ind2vec(label1)))'; 
target=(~label-2)+3*label; 
featuredTraining=training(:,[features{index},end:-1:end-index+1]); 
featuredTest=test(:,[features{index},end:-1:end-index+1]); 
[a,b,c,d]= ... %classifier parameters 
 trainClassifier(featuredTraining,target',classifierparams1 , 

classifierparams2); %classifiers -SVMTrain, RBFTrain, MLPTrain etc, 
[~,PreLabels,~]= testClassifier(featuredTest',a,b,c,d); 
training=[training,targets(:,index)]; 
PreLabel=(full(ind2vec(PreLabels)))'; 
PreLabel1=(~PreLabel-2)+3*PreLabel; 
test=[test,PreLabels']; 
labelCount=labelCount-1; 
predictions(:,index)=PreLabels; 
index=index+1; 
if labelCount~=0 
 predictions= 

ChainClassify(features,training,targets,test,predictions,la

 belCount,index,ratio,mu); 
end 
end 
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4. Matlab Code for MDLearn wrapper training (class transformation). 

function 

[Centroids,Sigma_value,Weights,tr_time,classes]=MDLearn_train(train_data,tr

ain_target,classifierparams) 

%train_data is a matrix a×b 

%train_data is a matrix a×c 

 
[instance,labels]=size(train_target); 
for i=1:labels 
    num_class(i)=size(unique(train_target(:,i)),1); 
end 
fLabel=-1*ones(instance,sum(num_class));n=0; 
class=1; 
for i=1:labels 
    mc=unique(train_target(:,i)); 
    class=[class,mc']; 
    for j=1:num_class(i) 
        n=n+1; 
        fLabel(:,n)=fLabel(:,n)+2*(train_target(:,i)==mc(j)); 
    end 
end 
class(1)=[]; 
classes.name=class; 
classes.num=num_class; 

[classifierTrainOutputs] = MultilabelClassifierTraining(train_data,fLabel', 

classifierparams) 
%example 

[Centroids,Sigma_value,Weights]=MLRBFTrain(train_data,fLabel',ratio,mu);  
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5. Matlab Code for MDLearn wrapper prediction. 

function [Predictions]=MDLearnPrediction(classifierTrainOutputs,classes) 
%All the input parameters are derived from MDLearn_train 

 

Predictions=zeros(length(classes.num),rows); 

  
for i=1:rows 
    start=1; 
    for j=1:length(classes.num) 
        stop=start+classes.num(j)-1; 
        

tem=find(classifierTrainOutputs(i,start:stop)==max(classifierTrainOutputs(i

,start:stop))); 
        Predictions(j,i)=tem(1); 
        start=start+classes.num(j); 
    end 
end 
Predictions=Predictions'; 
%naming the classes 
count=0; 
for i=1:length(classes.num) 
    Predictions(:,i)=classes.name(Predictions(:,i)+count); 
    count=count+classes.num(i); 
end 
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