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Abstract  
 
 

1. Context 

Nuclear reactors must follow stringent norms for their reliable and safe 

operation. To meet such requirements, all safety critical systems in Nuclear 

Power Plants (NPPs) must be validated using diverse methods.  

Presently in NPPs, measurement of generated thermal power is 

performed through neutronic channels, which also require validation. The 

neutronic readings are calibrated using absolute/steady state value of the core 

temperature at regular time intervals. Hence, there is a need for a diverse 

method to complement the existing power measurement. Also, presence of 

alternative method may help in facing complex and unforeseen situations such as 

unavailability of other monitoring systems. Hence, a new method for power 

measurement must be investigated to meet safety requirements. 

2. Objectives 

(i) To investigate the feasibility of using temperature fluctuations in coolant at 

the outlet of subassemblies to estimate reactor power. 

(ii)    To study the properties of associated temperature fluctuations at various 

reactor thermal power levels.  

(iii) To propose a method to derive generated thermal power information from 

temperature fluctuations. 

(iv) To estimate the resource utilization for a signal processing implementation 

on a FPGA-based reference platform. 
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3. Methods 

To study the feasibility of using temperature fluctuations for reactor power 

estimation; time, frequency, time-frequency, and statistical tests were 

performed on the data collected from the Fast Breeder Test Reactor (FBTR), at 

every discrete power level for both constant as well as during reactor power 

increase.  

A hybrid approach was developed to derive a parameter proportional to 

core thermal power after utilizing information from various domain analyses. 

Standard deviation (time domain), Fourier analysis (frequency domain), various 

time-frequency distributions (TFDs) (time-frequency domain), and many 

stationarity tests were performed on the data for in-depth analysis of 

temperature fluctuations. As part of statistical tests, KPSS (Kwiatkowski-Phillips-

Schmidt-Shin) test, Reverse Arrangement test (RAT) and Runs test were 

performed. NULL hypothesis ( oH ) for KPSS test was that the data is stationary. 

oH  for RAT and runs test was that the data is from a random source. 

Approximate Entropy and Recurrence plots were utilized as a measure to 

quantify the amount of regularity and the unpredictability of fluctuations over 

time-series. The signal processing model was proposed on the basis of above test 

results. The proposed model was simulated with simulated data and validated 

with actual reactor data. Signal processing blocks were coded in verilog and 

tested for resource utilization for implementation on Altera FPGA, and to check 

for functionality and timing constraints. 
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4. Results 

The calculated parameter (CP) from such approach was found to be in close 

correlation with actual thermal power as well as neutronic calculation-based 

thermal power. Standard deviation ( ) was observed to increase with thermal 

power, but with a few major exceptions. It was observed that the trend was 

highly dependent on the number of data points taken to calculate . Also, a few 

  values were observed to be out of trend with thermal power. Using Fourier 

analysis, temperature fluctuations were found to be in the frequency range of 

0.001 Hz to 5 Hz. The scale factor obtained in case of scalogram technique was 

found to increase with thermal power. oH  was passed in KPSS test and rejected 

in RAT and runs test.  

5. Conclusions 

It is concluded that: 

 The overall degree of fluctuation increases with thermal power. 

 These fluctuations are non-linearly localized in time. 

 Scalogram technique best suits for fluctuation analysis. 

 Recurrence analysis helps in good understanding of the dynamic 

system evolution with time.  
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INTRODUCTION 

 

 

 

1.1 Problem Statement 

All safety critical systems in Nuclear Power Plants (NPPs) must be validated using diverse 

methods. Measurement of thermal power in NPPs is very important. It is done through 

neutronic method, which also has to be validated.  

 Fluctuations present in the thermocouple output of Central Subassembly (CSA) 

changes with reactor thermal power. This thesis is intended to provide detailed analysis 

of temperature fluctuations in CSA to derive a parameter proportional to reactor 

thermal power. This includes statistical and multi domain testing, model development, 

and validation of model. 

1 
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1.2 Objective of thesis 

The major objectives of the thesis are 

 To analyze the feasibility of using temperature fluctuations in fuel subassemblies 

to estimate thermal power in the core. 

 To propose a model to establish correlation between thermal power and 

temperature fluctuations.  

 To use data driven model based design approach to achieve the correlation. 

 To estimate resource utilization and performance optimization for practical 

implementation of such approach. 

 To analyze main factors affecting the formation of temperature fluctuations in 

subassemblies. 

1.3 Background information 

1.3.1 Core Structure of a Fast Reactor 

Fig. 1.1 shows a pool type fast breeder reactor setup. Heat energy released during 

fission process in core is transported to steam generator by liquid sodium as coolant in 

various steps. There are two loops for coolant flow, viz. primary and secondary loop. 

The flow in these loops is maintained by pumps. Heat energy is first transferred to 

secondary sodium loop through intermediate heat exchanger (IHX). Then, this energy is 

used to convert water into steam in steam generator (SG). The core, primary sodium 

pump, and intermediate heat exchanger (IHX) are present submerged in liquid sodium 

inside main vessel in case of a pool type reactor. 
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Fast Breeder Test Reactor (FBTR) is another type of fast reactor known as loop type 

reactor where pump and IHX are outside the main vessel [1]. Fuel is arranged in closely 

packed manner inside cylindrical metallic pins known as fuel pins. This closely packed 

arrangement of fuel pins known as subassembly, which has a hexagonal sheath. Many 

subassemblies are placed together in a structure to form reactor core. A typical 

arrangement of core with subassemblies and fuel pins is shown in Fig. 1.2. There are 65 

fuel pins per subassembly and 55 subassemblies in total. When coolant flows through 

each subassembly, it takes heat energy from the surface of fuel pins to the pool of 

sodium where coolant streams from other subassemblies get mixed and give rise to an 

average coolant temperature. The whole heat transport phenomenon in this process is 

convection type and since the flow is maintained by pump, it is known as forced 

convection. The temperature of each subassembly is monitored by individual pair of 

thermocouples located just above the subassembly outlet. The central subassembly lies 

at the center of the core and exhibits maximum temperature due to highest flux levels. 

1.3.2 Power Calculation in a Fast Reactor 

Thermal power ( thP ) in a fast reactor is proportional to the fast neutron flux ( th ) [2]. 

th thP       (1) 

thP  is measured in a fast reactor by processing the neutronic signals over a wide range. 

The complete range is divided in several decades categorized into three regions: pulse 

( 0 5 210 10 / .secn cm ), MSV (mean square value)/Campbell ( 4 10 210 10 / .secn cm ) and 

power region ( 6 12 210 10 / .secn cm ) [3]. In pulse region, as the neutron flux is low, the 

output of the neutron detector is a series of pulses proportional to neutron flux. The 
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detector used in this region is capable of discriminating gamma induced signals. In 

Campbell region, fluctuations in neutron detector signal are processed. 

 

Fig. 1.1: Pool type reactor. 

  

Fig. 1.2: Typical Subassembly arrangement inside a fast reactor. 

This method is based on the fact that variance is a direct measure of mean for signals 

which follow Poisson distribution [4]. 
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 2 n               (2) 

where n  is the mean no. of counts indicated by sensor in a given time interval. This 

technique offers better discrimination against high gamma background [5].  

Equation (3) and (4) represents discrimination ratios for standard method of measuring 

direct current of ionization chamber, and Campbell’s method respectively. 
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In power region, where the reactor operates near or at full power; a dc (direct current) 

component derived from sensor reading gives power measurement.  

1.4 Related Work 

Most of the previous temperature fluctuation related analysis focused on study of 

thermal stripping, blockage and other thermodynamic studies (figure 1.3), which are 

discussed below. 
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Fig. 1.3: Analysis history. 

Tsunoda [6] performed temperature fluctuation experiments with water and strongly 

recommended the idea of using the temperature fluctuations in aid to detect flow 

blockages or local hot-spot. It was assumed that the turbulent mixing in subassembly 

gives rises to random temperature fields which follow a flat (constant) power spectral 

density (white noise).  

Miyazaki et al. [7] performed forced sodium circulation experiment in an annular 

channel and simulated blockage and concluded that the detector (thermocouple) 

location should be near to the outlet of reactor core in order to get a high level of 

fluctuation signal, and the root mean square (RMS) value of such fluctuations are 

proportional to clad material and fluid temperature difference. Presence of Vortex 

Street due to blockage under the presence of temperature gradient was suggested as 

the main reason for temperature fluctuation generation, and that temperature gradient 

depends strongly on the turbulence factor. One important conclusion made by the 
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authors was that the temperature gradient overtook the turbulence effect on 

fluctuation level. 

Greef [8] established a technique for local blockage detection in a fast reactor 

subassembly using temperature fluctuations and proposed a theoretical model of noise 

production and dissipation in subassembly. The temperature noise technique was 

proposed covering In-cluster attenuation, peak wake temperatures, downstream flow 

recovery, generation and dissipation of temperature fluctuations downstream of the pin 

cluster, background noise sources, effects of reactor geometry, and its implications for 

the fast reactor. 

Krebs and Weinkotz and [9] took different blockage sizes into consideration in their 

experimental work and proposed the concept of bundle coefficient to indicate the 

coolant channel disturbances. Authors concluded that significant boiling detection is 

possible by the use of statistical analysis of temperature fluctuations at the outlet of a 

subassembly. 

Inujima et al. [10] suggested a good technique to detect a local sodium boiling accident 

using temperature and flow fluctuations. The whiteness test method (WTM) of 

fluctuation signals was suggested as a sensitive and reliable way for detecting local 

accidents in a subassembly, provided the boiling intensity becomes fairly large. However, 

the correlation between temperature fluctuations at different positions at the outlet of 

the subassembly was not clarified. 

Analysis done by Wey et al. [11] proved that central blockages as small as 2–3% could be 

detected by RMS values of temperature. Modeled axial variation of turbulence field was 
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analyzed along with temperature profile with the help of STATEN (STatistical Analysis of 

TEmperature Noise) code. Authors suggested that for larger size blockages, skewness or 

kurtosis could be used for detection. 

Krebs and Weinkotz [12] performed experiments for analysis of mean and fluctuating 

temperature profiles downstream of a simulated reactor subassembly. They suggested 

use of a faster SS–Na (stainless steel-Sodium) junction thermocouple for enhanced 

detection of temperature fluctuations, thereby improving reactor instrumentation.  

However, Ogino and Inujima [13] supported the idea of using flow fluctuations over 

temperature as the variation of former was considerably higher. With the help of a 

series of tests conducted using simulated pin bundle tests, authors insisted that a local 

blockage can be detected with the help of temperature fluctuation at the outlet of 

subassembly only when there is significant reduction in flow and a large variation in 

radial temperature distribution at the end of the subassembly. 

Nomoto et al. [14] summarized observation of subassembly outlet coolant temperature 

distributions obtained at various power levels, different coolant flowrates, and unequal 

reactor inlet temperatures. Authors observed that the subassembly outlet temperature 

increases proportionally with power increase, and that the individual subassemblies 

flowrates vary slightly with changes in total system flowrate, which resulted in variations 

in axisymmetric temperature distribution across the core. 

Takeda et al. [15] proposed a 3D model for root mean square (RMS) of fluctuation 

distribution for fuel subassemblies with blockages. Authors concluded that RMS values 
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of temperature fluctuations depend on transverse eddy diffusivity of enthalpy and 

Taylor’s microscale, with latter having large effect on RMS value.   

Takeda et al. [16] in another experiment analyzed RMS for fuel subassemblies with 

bundle and upper plenum region. The authors found out that RMS ratios for blockage to 

that without blockage increases with power, and temperature noise can be used 

efficiently for detection of local flow blockages. 

Takeshi et al. [17] observed that the RMS values of temperature noise increases 

fourteen times at the subassembly outlet in case half of edge cells blocked. Also, it was 

found out that edge blockages are easily detectable than central blockages, and that 

increase in no. of pins in a subassembly results into less attenuation of temperature 

noise downstream to the outlet. 

A method for detecting vibrations in absorber rod using reactivity noise was proposed 

by Lord et al. [18] and concluded that dominant source of noise is subassembly vibration. 

Edelmann et al. [19] analyzed different techniques for calculating thermal hydraulic 

parameters using noise and concluded that noise analysis and reactivity perturbation  

techniques are applicable under normal reactor operating conditions. 

Edelmann et al. in another analysis [20] suggested that heat transfer parameters of fuel 

elements can be possibly determined by analyzing reactor power transients, and early 

fuel failure detection could be possible if the thermocouples are placed nearer to the 

subassembly outlet.   
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Seong et al. [21] developed and recommended a neural network model for detection of 

partial blockage in an assembly by using simulated temperature profiles obtained from 

Large Eddy Simulation (LES) turbulence model.  

Velusamy et al. [22] developed a suitable model for numerically simulating thermal 

stripping, which is caused by mixing of different temperature streams and results into a 

random component. These fluctuations are responsible for high cycle fatigue to 

mechanical structures. The oscillations in temperature become more periodic under 

forced convection, and tend to become random when free convection also occurs.  

Velusamy et al in another study [23] highlighted thermal hydraulics of a fast breeder 

reactor, design constraints and other investigations related to thermal stratification, 

thermal stripping, and gas entrainment. A quick detection of 6-8% flow reduction by 

absolute temperature readings has been reported. For different interfaces, the 

frequency of temperature oscillations has been reported to be in the range 2-40 Hz. Low 

frequency (0·01–2 Hz) temperature oscillations of large amplitude were reported in case 

of thermal stratification. 

Chapuliot et al. [24] investigated cracking of piping due to thermal loading in flow mixing 

zone, such as residual heat removal system mixing tee. Authors found out that strong 

temperature fluctuations in the region results into high thermal load, and that the high 

frequency random fluctuations lead to large scale instability.  

Kasahara et al. [25], in a bid to analyze innovative reactor structural designs which can 

withstand high cycle thermal fatigue, discussed presence of fluid temperature 

fluctuations at junctions where mixing of different temperature streams takes place.  
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Krishna Chandran et al. [26] performed a numerical analysis of thermal stripping 

phenomenon for Prototype Fast Breeder Test Reactor (PFBR) using ten jet water model. 

It was suggested that the temperature fluctuations reduces as the velocity ratio for hot 

and cold jets increases. The main conclusion of the study was that the effects of high 

temperature fluctuations can be reduced by maintaining a proper hot to cold jet velocity. 

In a recent work by Mesquita et al [27], new processes for reactor power measurement 

by thermal means were proposed; out of which thermal balance method was decided to 

be chosen as standard for IPR-R1 TRIGA reactor. 

1.5 Thesis Structure 

The thesis is organized as follows.  

Chapter 2 explains various methods and techniques used in analyzing experimental data. 

The probability distribution of fluctuations is investigated by the use of various test 

statistics. Statistical tests; time, frequency and time-frequency domain methods and 

visual recurrence analysis are employed to understand the system’s evolution with 

power. The experimental data used for analysis is reviewed for coverage of complete 

power range.  

Chapter 3 is devoted to detailed analysis of reactor data and subsequent conclusions 

from those tests. A signal processing model is proposed in Chapter 4 based on the 

findings of the tests. This model is validated by a different set of data for FBTR. Also, a 

method to simulate various power level temperature fluctuations is devised. This helps 

in obtaining abundant data sets for their possible use in other analysis. Also, the effect 
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of various other parameters such as sensor time-constant, flow rate etc., on fluctuations 

is also discussed, which is necessary for a proper correlation.  

Chapter 5 encompasses the resource utilization details of block level implementation on 

a FPGA based hardware platform. 

Chapter 6 summarizes the work, contributions and highlights future directions for the 

present work. 

1.6 Conclusions 

The motivation and objectives for the research topic were presented. Literature survey 

in the related area/domain was also discussed. It is found that there always has been an 

interest in the analysis of dynamic signal variations such as temperature fluctuations, in 

order to obtain meaningful information. But exploration of temperature fluctuation 

data for a possible correlation with thermal power has been an area largely uncovered 

so far. The exploration of vast amount of information present in coolant outlet 

temperature fluctuations is the prime focus of the thesis. 
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RESEARCH METHODOLOGY 

 

 

 

This chapter discusses the use and applicability of various techniques for developing a 

system model from temperature fluctuation data of a fast reactor. A data driven grey 

box model based design concept is adopted for the model development. The method 

involves detailed testing of temperature fluctuation data for determinism/stochasticity, 

stationarity, multi domain analysis and various other statistical analysis namely 

approximate entropy (ApEn) and recurrence plots (RPs). 
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2.1 Data driven model based design 

System identification involves development of mathematical models from measured 

data [28]. The model so developed comes under model based design methodology. 

Model based design simplifies problems associated with low complex to highly complex 

systems in the areas of signal processing, control theory, instrumentation, embedded 

systems etc. Model based design approach has several benefits such as fast prototyping, 

testing and verification.  Such designs can be based on either first principles (FP) or data 

driven (DD) [29]. Models based on former are termed as white box models and black (or 

grey) for the latter. First principles involve mathematical equations associated with the 

physical process of the system. But, it becomes difficult to build models from FP when 

the system complexity is higher. Data driven approach involves establishing 

mathematical relations between several observed input-output parameters of the 

system. No information regarding the internals of the system is available in a black box 

model. In grey box models, however, a little insight of the system is utilized during the 

process of model development. In present work, a grey box model approach is adopted 

towards model design. Central subassembly outlet temperature, reactor outlet 

temperature, primary sodium flow, inlet temperature, neutronic measurements are 

considered for the analysis. The various types of analysis are as shown in figure 2.1. The 

system data is univariate since temperature readings from thermocouple would yield 

steady state value and parameters such as standard deviation, mean etc. can be 

calculated with the help of recorded data. The need for the usage of several tests arises 
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due to complexity of a nuclear reactor system, as their use in analysis gives confidence 

in the model building process. 

 
Figure 2.1: Analysis tree. 

2.2 Domain based Analysis Techniques  

The concept of unique parameters in different domains acts as a powerful indicator of 

information contained in the observed data. Study of these parameters leads to the 

different time series analysis techniques [30]. Many such related works can be found in 

[31], [32], [33], where useful information was extracted from the time-series. 

In time domain, it is necessary to explore the nature of the signal under study. The signal 

can be classified as deterministic, stochastic, stationary and non-stationary [34]. Figure 

2.2 shows deterministic and stochastic signals. There are many ways to test a time series 

for stochasticity which are discussed in section 2.5. Histograms are useful in 

differentiating between stationary and non-stationary signals, since probability 
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distribution of non-stationary signals shifts with time. Figure 2.3 shows such signals 

along with their amplitude histograms at different time instants.  

 
Figure 2.2: Deterministic vs. Stochastic signal. 

Corresponding equations for waveforms shown in figure 2.2 are as follows. 

sin( )x t , 
 () : (0, 2)A rand A R  , 
 () : (0, / 2)rand R    ,  

.*sin( )y A t    (SCILAB command), where  is angular frequency in radian/sec. 

In time domain, autocorrelation function (ACF) plays an important role in understanding 

general features of a time series. Figure 2.4 shows the ACF plots for sine, (sine + noise) 

and white noise. ACF and partial ACF (PACF) plots reveals information about possible 

use of autoregressive (AR) and/or moving average (MA) components for a time series.  

If the PACF of the differenced series displays a sharp cutoff and/or autocorrelation is 

positive at the origin, then the model contains an AR term.  Similarly, if the ACF of the 
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differenced series displays a sharp cutoff and/or autocorrelation is negative at the origin, 

then a MA component is present in the model. However, an AR(1) term is equivalent to 

first order difference operation [35]. 

 
Figure 2.3: Stationary vs. Non-stationary signal. 

Frame statistic for time domain data gives useful visual information about stationarity. 

Parameters such as mean or root mean square (RMS) can be used for such frame 

statistics.  RMS value for a sample data can be calculated as; 

    



N

n
nrms x

N
X

1

21                  (6) 

The running RMS value is calculated over a defined value of window length, say W, such 

that; 







WN

Wn
nWrms x

N
X

1

2
,

1     (7) 
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where  .,.........3,2,1,0W for a continuously recorded data. 

Figure 2.5 shows running rms value for two different signals. 

In frequency domain, spectral analysis by using Fourier transform gives details about the 

frequency content of the signal. Figure 2.6 shows the FFT plot for signals with different 

fluctuation level.  

 
Figure 2.4: Autocorrelation plots. 
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Figure 2.5: RMS plots. 

The sample signals shown in figure 2.5 can be generated with the help of grand command in 

SCILAB with following syntax. 

grand(1,400,’nor’,8,2) and grand(1,400,’nor’,4,2) 

 
Figure 2.6: FFT plot. 
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Time  frequency  analysis  is  used  to  study  a  signal in  both  time  and  frequency  

domains  simultaneously, by the use of time-frequency representations.  The choice of 

representation depends on nature of the signal.  The time frequency representations 

include Wigner-Ville distribution, time varying Power Spectral Density. (PSD), windowed 

Fourier transforms viz. (Short Time Fourier Transform (STFT), spectrogram, Gabor 

transform), altered function of time, instantaneous power spectrum, and energy density 

[36]. 

Each technique has its unique applicability which is discussed below. 

 Wigner-Ville distribution - The WVD of a signal ( )s t  is given by 

 *( , ) { ( / 2) ( / 2)}z f
W t f F z t z t


 


                         (8) 

where ( )z t  is  the  analytic  associate  of  signal  s(t).  One of the advantages of WVD is 

its high resolution and it gives good result when the signals under examination consist of 

a small number of higher harmonics. 

 Time-varying PSDs - Time  varying  PSDs  make  use  of  the  Wiener-Khintchine 

theorem, which relates PSD to autocorrelation function.  

 ( , ) { ( , )}z zf
S t f F R t





     (9) 

where ( , )zR t  is the autocorrelation of ( )z t . ( , )S t f is also known as Wigner-Ville 

Spectrum.  

 Windowed Fourier Transform - STFT distribution is given as 

( , ) { ( ) ( )}s f
F t f F s t


  


      (10) 

where ( )s   and ( )  are signal and window resp.  
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Spectrogram is the squared magnitude of STFT. 

2
( , ) ( , )s sS t f F t f        (11) 

Gabor transform is given as 

, { ( ) ( )}n k k f
c F s n t  


        (12) 

where ,n kc are  the  complex  coefficients  assigned  to  each logon, ( , )n k being time and 

frequency indices, respectively. 

 Other transforms such as Continuous Wavelet Transform (CWT), scalogram etc. 

provide time-scale description equivalent to STFT, but uses different functional 

basis [36],[37]. 

,
1( )a b

t bt
aa

 
   

 
          ,a b , 0a                       (13) 

where   is the mother wavelet, a  and b  are scaling and time shift of the wavelet with  

respect to signal.  

Scalogram is the magnitude squared version of CWT. Wavelets such as Haar, Morlet, 

Daubechies, Mexican hat, Symlet etc. are used for such purpose, amongst which Morlet 

wavelet is widely used as it is well localized in time and frequency domain. Morlet 

wavelet is obtained by modulation of a Gaussian, and given as 

2
2 1/4 1( ) ( ) exp 2

2o o
o

th t t i t
t

 
       

   
    (14) 

Figure 2.7 illustrates the performance of spectrogram and Wigner-Ville distribution in 

time-frequency/scale domain obtained using time frequency toolbox of SCILAB [38]. 
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For the analysis of random signals, the scalogram and STFT give better time and 

frequency resolution as compared to other techniques. One such plot is shown in fig. 2.8, 

where it is observed that temporal resolution is better for scalogram, whereas STFT 

offers a better frequency resolution. 

2.3 Visual Recurrence Analysis: Recurrence Plots   

Recurrence plots were first proposed by Eckmann et al. [39] for nonlinear data analysis.  

These plots indicate the recurrence of a system state in phase space. A recurrence plot 

is mathematically expressed as 

, ( )i j i i jR x x    , m
ix  , , 1....i j N     (15) 

where, N is the number of considered states ix , i is threshold distance, is 2-norm 

operator and  is Heaviside function [40]. 

 
Figure 2.7: Time-frequency plot: frequency modulated signal. 
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Figure 2.8: Time-frequency plot: random signal. 

The visual details of RP give information about the evolution of system states.  RPs 

contains small scale (texture) and large scale (typology) structures which are specific to 

different properties [41]. The  typology  consists  of  features  such  as  homogeneous, 

periodic, drift and disrupted, whereas texture consists of single dots,  diagonal,  vertical  

and  horizontal  lines.  Several work [42], [43], [44] based on this technique have been 

reported to derive system parameters. RP for two different time series is shown in 

figure 2.9, which are for sine and noise mixed sine wave. 
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Figure 2.9: Recurrence plots. 

As compared to the first plot, second plot reveals hidden patterns, even in the presence 

of noise. As shown in figure 2.9, the horizontal and vertical lines signify periodicity and 

homogeneity signifies stationarity of the signal. 

2.4 Approximate Entropy as a Complexity Measure 

Approximate entropy (ApEn) is a statistical parameter used to quantify the 

unpredictability of fluctuations in a time series. It was developed by Steve Pincus by 

using exact regularity statistic Kolmogorov-Sinai entropy [45]. ApEn reflects the 

likelihood of non repetitive occurrence of similar observations. Hence, a time series with 

smaller ApEn is highly predictable than a time series with higher ApEn statistics. ApEn is 

calculated as, 
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1( ( ) ( ( ))m mApEn r r         (16) 

where 

1

1
log ( )

( )
1

N m
m
i

m i
C r

r
N m

 



  
 

 


 and 

N = length of time series 

m
iC is calculated as follows: 

(1) First, m and r are defined ( m =2, r =3). The value of r can be changed without 

affecting the result.  

(2) Then, the original time series [ (1)x x  (2)x  (3)x …. ( 1)]x N m   is divided into 

vectors of length m , such that 

(1) [ (1)y x  (2)]x  

(2) [ (2)y x  (3)]x  

..  

..  

( 1) [ ( 1)y N m x N     ( )]x N  

(3) m
iC is the no. of ( )y j divided by ( 1)N m  such that  

rd jyiy )(),(      (17) 

(4) The same process is repeated for m replaced by ( 1)m  

It would be better to understand ApEn with the help of an example here. Let us 

assume two time series as shown in figure 10, which are required to be analyzed for 

regularity. 

[22x   23  23  28  20 25  22  23  22 27] , 2, 3m r   
[22z   26  22  26  22 26  22  26 22 26] , 2, 3m r   
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Figure 2.10: Example time-series. 

Then,  
(1) [22y   23]  
(2) [23y   23]  
(3) [23y   28]  
(4) [28y   20]  
(5) [20y   25]  
(6) [25y   22]  
(7) [22y   23]  
(8) [23y   22]  
(9) [22y   27]  

                            [ (1), (1)] max( ([0d y y abs  0])) 0 ,        which is r  
     Similarly,             [ (1), (2)] max( ([ 1d y y abs   0])) 1  r  
                                  [ (1), (3)] max( ([ 1d y y abs   5])) 5   r  
                                  [ (1), (4)] max( ([ 6d y y abs   3])) 6  r  

       [ (1), (5)] max( ([2d y y abs  2])) 2   r  
       [ (1), (6)] max( ([ 3d y y abs   1])) 3  r  
       [ (1), (7)] max( ([0d y y abs  0])) 0  r  
       [ (1), (8)] max( ([ 1d y y abs   1])) 1  r  
       [ (1), (9)] max( ([0d y y abs  4])) 4   r  
 

       2
1 (3) 6 / ( 1) 6 / 9C N m     

                                                 Similarly, 2
2 (3) 6 / 9C   
2
3 (3) 3 / 9C   
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2
4 (3) 2 / 9C   
2
5 (3) 7 / 9C   
2
6 (3) 6 / 9C   
2
7 (3) 6 / 9C   
2
8 (3) 6 / 9C   
2
9 (3) 3 / 9C   

 


1

1
log ( )

( ) 0.9139952  
1

N m
m
i

m i
C r

r
N m

 



  
   

 


 

                  1( ) 1.5400377    m r    
 
Hence, 0.9139952 ( 1.5400377)ApEn      
  0.6260425  
 

In the same manner, the ApEn  value for z  comes out to be 0.1239686, which confirms 

the better regularity and predictability of z than x . 

2.5 Statistical Tests : KPSS, RAT and Runs test  

Statistical tests are considered very important part of time series analysis. Various tests 

for randomness and stationarity check are discussed below.  

KPSS (Kwiatkowski–Phillips–Schmidt–Shin) Test: 

Though the stationarity test as proposed by Kwiatkowski et al. [46] was related to 

econometrics, its testing capabilities in signal processing were also recognized and 

utilized in [47], [48], and [49]. The null hypothesis oH  in KPSS test is that the time series 

is stationary around a deterministic trend. oH  is rejected if the KPSS test statistic is 

greater than the 100 (1 )%  quantile from the appropriate distribution. (for eg. 

Normal distribution). A stationary time series is represented as Integrated of zeroth 

order (0)I . If oH  is rejected for a time series, and if it becomes stationary after 
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performing thk order differencing; then the time series is represented as ( )I k . Hence, 

KPSS test proves to be of immense utility in determining the mathematical 

transformations to be applied on original time series in part.  

There are various software tools available for performing KPSS test, such as Gretl, R, 

Matlab, Scilab etc. Gretl is open source software and provides various options for 

performing a KPSS test. The KPSS critical values (quantiles) are listed in Table 2.1. 

TABLE 2.1 
Critical values for KPSS test 

 10% 5% 1% 
Critical values: 0.347 0.461 0.743 

 

Reverse Arrangement test (RAT): 

While the earlier discussed method (KPSS) make assumptions about the distribution of 

the data, RAT is one of the non-parametric test procedures, where no assumption is 

required to be made about the distribution of the data. The test statistic [50] is 

calculated as follows. 

 Let 1 2,i Nx x x x    be the time series. Then, for 1,2 ( 1)i N     and 

, 1,j i i N      

1,
0,

i j
ij

x x
d

otherwise


 


     (18) 

                                        
1

1 1

N N

ij
i j i

A d


  

        (19) 

oH in RAT is that the data is from a random source. oH is rejected if the calculated z-

score is > 1.96. The z-score is calculated as follows. 
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A

A

Az 



  

where A  is the no. of reverse arrangements, and  

( 1)
4A

N N 
 ,

3 2
2 2 3 5

72A
N N N


 

 , N is the length of time series 

Runs test: 

The runs test [51] is used to decide if a data set is from a random process. oH in runs 

test is that the data has been produced in a random manner. For 5 % significance level, a 

test statistic 1.96z   indicates non-randomness. z score is calculated as follows. 

 The test data is divided into several groups (runs) whenever there is a transition 

above/below a certain fixed value. This fixed value can be rms, mean etc. 

 Each group is consecutively designated as 1n and 2n . 

 Then, z score is calculated as 

r

r rz



       (20) 

  where r  is the total no. of runs 

             r  Expected no. of runs 1 2

1 2

2 1n n
n n

 


, and 

             2 1 2 1 2 1 2
2

1 2 1 2

2 (2 )
( ) ( 1)r
n n n n n n
n n n n

  


  
     (21) 

2.6 Selection of Fast Breeder Test Reactor (FBTR) Data 

To perform the above discussed tests, a large size and wide range of data is required.  

Hence, reactor core temperature data was collected for various power levels during 



 

30 
 

stable as well as transient (shut-down and start-up) reactor operations. The data 

includes central subassembly outlet temperature, reactor outlet temperature, primary 

sodium flow and neutronic signals. K-type, Cr-Al (Chromel-Alumel) thermocouples 

without thermowell, directly in contact with sodium is used for measuring central 

subassembly outlet temperature for this purpose. This results in a faster response of 

thermocouple. As shown in figure 2.11, the thermocouple output is taken to a reference 

insulated junction box. The reference junction box temperature is measured with the 

help of an RTD (Resistance Temperature Detector). The output signals in mV (millivolts) 

are then fed to isolation amplifiers, where they are amplified and standardized to 0-10 V 

d.c. These standardized signals are then fed to Analog Input Card (AIC) of embedded 

computer system, where they are continuously monitored for various safety actions. 

The calibrated temperature data along with various other reactor parameters are 

logged to computer memory as .CSV (Comma Separated Value) file. These files consist 

of temperature time-series and can be taken at different times of reactor operation. 

Each time series is 2400 samples long, with each sample spaced 0.1 second apart. The 

reactor power ranges from few MWTh (thermal) to 18 MWTh.  

 

Figure 2.11: Data Acquisition setup.  
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The proposed analysis method involves utilization of CSA (Central Sub-Assembly) 

temperature time-series for various tests and analysis discussed so far; hence to give a 

meaningful insight of the signal processing architecture needed for the purpose of 

estimating power from temperature fluctuation data.  

2.7 Conclusion 

A process for data driven model based design approach was outlined for proposed 

temperature fluctuation analysis. A single domain or type of analysis would be 

insufficient in judging the characteristics of the data. Hence analysis in time, frequency 

and mutually correlated domain was introduced. The tests associated with extraction of 

main features of data i.e., determinism/stochasticity and stationarity/non-stationarity 

were discussed for their possible use in FBTR data time series analysis. It is found that 

performing such analysis would give sufficient information to build a mathematical 

model for signal processing of the dynamic temperature fluctuations. 
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CORE TEMPERATURE ANALYSIS OF FAST BREEDER TEST 

REACTOR 

 

 

This chapter discusses the various test results for core temperature of fast reactor. 

Central Subassembly (CSA) outlet temperature profile is used for the analysis. CSA 

exhibits highest temperature in the core. Though, the concept of flow zoning [52] is 

utilized for coolant flow in core to give a uniform temperature profile, there exist a 

minimum degree of fluctuation at each reactor power level [8]. Hence, a proper analysis 

is required in order to establish a correlation between thermal power and temperature 

fluctuations. 

 

 

3 
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3.1 FBTR Data  

The data in the form of a time series consists of various reactor parameters. These 

parameters are listed in Table 3.1.  

TABLE 3.1: Signal Nomenclature for time-series 
 

Signal Name Description 
FML020A, FML030A, FME020B Linear and log power safety channel 
NNA000, NNA100, NNA101, NNA200, 
NNA201 

Sodium level in reactor, pump, IHX 

PAR332 Argon gas pressure 
TNA000Z Central subassembly temperature 
 
 
Figure 3.1 shows core structure of FBTR. The central subassembly (CSA) data in the time-

series consists of 2400 samples spaced 0.1 s apart. This data is taken for a large power 

range i.e., from 1 MWTh to 18 MWTh, at reactor startup and shutdown, as well as few 

power levels at stable power. Figure 3.2 shows the CSA temperature profile at different 

power levels. Figure 3.3 shows temperature profile for stable power levels. 

 
Figure 3.1: FBTR Core structure. 
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Figure 3.2: Temperature profile: reactor power increase. 

A visual inspection of these profiles suggests that the degree of fluctuation increases 

with an increase in mean temperature value. This can be verified by taking note of 

maximum deviation from mean level at a particular reactor power. For e.g.; at 409.4 oC 

and 512.3 oC, the maximum deviation are 0.29 and 0.43 respectively. Further analysis 

would give valuable information about key building blocks of signal processing 

architecture required for fluctuation processing. 
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Figure 3.3: Temperature profile: Stable power. 

3.2 Domain based Analysis    

Time-domain: Autocorrelation plot of temperature profiles at various power levels gives 

information about similarity between time series and its time-shifted version. This gives 

clue about the inclusion of mathematical operation needed in the architecture.  

Figure 3.4 shows the autocorrelation (ACF) plot of CSA temperature for different power 

levels obtained during raising of reactor power. The ACF plot for two different and 

stable power levels is shown in figure 3.5.  

It is important to observe ACF plot for stable power, since the same plots for raising 

reactor power operation would convey less information about the nature of fluctuations. 

As can be seen in the above figures, the autocorrelation slowly decreases and doesn’t 

crosses zero immediately. Also, the autocorrelation value at zero lag (mean square value) 

shows irregular behavior of fluctuations at different power levels.  

The parametric signal source modeling for an AR(1) process can written as [53]; 
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Figure 3.4: ACF plots - transient power level. 

 
Figure 3.5: ACF plots – Stable power levels. 
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),1()()(~  nxnxnx where )(nx  is in oC.  

Another approach to obtain the fluctuation signal can be given as; 

),()()(~ nxnxnx  where )(nx is the mean level in oC. 

 

 
Figure 3.6: ACF plots – Differenced data. 

 
With a view from making computationally easier operation, the first approach as 

mentioned above has been utilized here. The ACF plot for fluctuation signal (for reactor 

power-up operation) obtained by first order differencing at various temperature levels 

are shown in shown in figure 3.6 and 3.7. 
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The plots crosses the horizontal axis immediately and hence confirms the presence of 

AR(1) component in the signal, and has to be included in the model.  

Histogram plots for time series at different mean CSA temperatures, and for its 

differenced version are shown in figure 3.8 and 3.9 respectively. 

 

Figure 3.7: ACF plots – Differenced data (stable power). 
 

 
 

Figure 3.8: Histogram plot –at various mean TCSA 
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Figure 3.9: Histogram plot – for differenced time series at various mean TCSA 

It can be observed from above histogram plots that temperature values at different 

power levels (and hence at different TCSA) gets distributed uniformly and hence becomes 

stationary after performing first order differencing.  

       

Figure 3.10: Frame statistics (std. deviation) for different temperature data. 
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Frame statistics of data at different temperatures and for various window lengths is 

shown in figure 3.10. For e.g., standard deviation for each set of 5 data points at 

different temperature levels is calculated. It is clear that the signal in its raw state may 

not be suitable for deriving the desired parameter. 

 
Figure 3.11: Fourier analysis. 

Figure 3.11 shows the FFT (Fast Fourier Transform) plot for two different power levels. It 

is clear from the plot that there is an increase in fluctuation levels at comparatively 

higher temperatures. However, the fluctuations obtained even after differencing are 

non-linearly localized in time. To analyze its behavior in localized time and frequency 

domains, time-frequency plots at various power levels are shown in figure 3.12, 3.13 

and 3.14. 



 41

 
Figure 3.12: Time-frequency plot analysis (a) 215.6oC (b) 269.2 oC. 

 

 
Figure 3.13: Time-frequency plot (a) 379.1oC  (b) 405.4oC . 

 
It is observed from the above plots that no. of fluctuations as well as their magnitude 

increases with temperature. However, it is also observed that the magnitude increase 

may deviate slightly at certain temperatures. This can be contributed to magnitude 

distribution amongst the no. of fluctuations [56]. 

Hence, for certain temperatures; even if the magnitude of fluctuations doesn’t increases, 

the reduction is well reflected by increase in no. of fluctuations occurring. For eg., as 
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shown in figure 3.13, the magnitude reduction is accompanied by increased occurrence 

of fluctuations. 

 
Figure 3.14: Time-frequency plot (a) 409.4oC (b) 512.3oC . 

 
A detailed analysis explaining the observed CSA temperature fluctuation behavior with 

respect to thermal power has been discussed in section 3.6. 

3.3 Recurrence plot analysis  

Figure 3.15 shows the recurrence plots for differenced temperature data at various 

power levels. Small scale (texture) and large scale (typology) structures as visible in the 

figure explain the system evolution with increasing temperature. It confirms the 

presence of laminar states at discrete power levels, since the system state changes 

slowly with time. Also, the RP looks homogeneous which agrees with stationarity 

principle [57]. 
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Figure 3.15: VRA (a) 215.6oC (b) 269.2oC (c) 379.1oC (d) 405.4oC. 

 

 
Figure 3.16: VRA (a) 409.4 oC  (b) 512.3oC . 
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3.4 Approximate Entropy analysis 

A time series with smaller ApEn is highly predictable than a time series with higher ApEn 

[58]. ApEn is a parameter used to quantify regularity in data and doesn’t need prior 

knowledge of the system generating it. The ApEn statistics obtained for temperature 

data with pattern length (m) of 3, and similarity criterion (r) being multiple of variance 

of time series is shown in figure 3.17, which confirms the presence of statistical pattern 

in it. The ApEn value as compared to that for a pure random series is very less, thereby 

making it comparatively more predictable. Similar results in other studies in different 

domains have been found in [59], [60].  

The ApEn statistics for the present study has motivated for further analysis of core 

temperature. The temperature fluctuations are not merely random observations and 

supports the idea of information extraction from the temperature fluctuations in 

reactor core.  

 

Figure 3.17: ApEn test statistic. 
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3.5 Statistical Test analysis 

KPSS Test: The test result for temperature data at various power levels are shown in 

figure 3.18 and 3.19.  

 
 

Figure 3.18: KPSS test statistic for raw data. 

 

Figure 3.19: KPSS test statistic for 1st order diff. data. 
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KPSS test statistics in figure 3.18 shows that the data is non-stationary for all power 

levels. Since the aim is to correlate temperature fluctuations with reactor power, the 

mean 

level value is removed by performing first order differencing, which in turn complies 

with stationarity . A KPSS test run for 1-D data is shown in figure 3.19.  This data passes 

the Ho (as explained in section 2.5), and hence becomes stationary. Similarly, the test 

statistics for stable power levels of 11 and 18 MWTh are [12.99, 17.88] (raw data) and 

[0.013, 0.019] (1st order differenced data) respectively. 

Reverse Arrangement test (RAT): Figure 3.20 shows the test statistic behavior for 

temperature data. It is clear from the figure that data is not from a random process. 

However, the test result doesn’t correctly differentiate between differenced and un-

differenced signal time series, and thus necessitates the use of alternative test. 

 
 

Figure 3.20: Reverse arrangement test statistic. 
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Runs test: As shown in figure 3.21, it is observed that the Ho (data is from a random 

source) passes only after a certain value of mean temperature. However the p-value, 

which represents the evidence against Ho, also increases several folds. Hence 

temperature fluctuations tend to become more random with increase in power, but still 

following a unique statistical pattern [6], i.e. fluctuation behavior is related to the 

thermal power in reactor core. 

 
Figure 3.21: Runs test statistic for 1st order diff. data. 

The statistical test results are summarized in Table 3.2. With appropriate data 

transformation, it is possible to extract useful information from the fluctuation data. 
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TABLE 3.2: Statistical test results. 

Test Test statistic Critical value (z) Conclusion 

 Increasing Stable   
  11 MWt 18MWt   

KPSS 0.007 to 0.71 0.0138 0.014 0.743 Ho accepted : 
Hence, Data becomes 
stationary after 1-D 

RAT 23.26 to 31.04 31.29 27.8 1.96 Ho rejected: 
Hence, Data is not from a 
random source 

Runs* 0.9 to 2.75 2.6488 2.17139 1.96 Ho rejected: 
Hence, Data is not from a 
random source 

 
* Ho passes after a particular mean temperature level, but corresponding p-value also increases, 
suggesting against the passing of Ho 

 

3.6 Discussion 

Initial multi domain analysis helps in building the base for desired model. The necessary 

blocks to be included such as differencing, absolute/rms are the conclusive outcomes of 

domain analysis. Also, a comparative analysis of the properties of such blocks highlights 

the necessary complexity required for processing. For e.g., a larger window length 

beyond a level for rms or moving average may not further improve statistics [61]. The 

tests suggest that the data becomes stationary after processing. The random looking like 

signal in fact contains a lot of information about internal thermodynamics [62]. The 

temperature fluctuation behavior inherits a good correlation with thermal power. The 

model once developed has to be validated with reactor data. The use of various 

statistical tests also proved to be very helpful in understanding the fluctuation behavior.  
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Figure 3.22: Thermophysical properties of sodium with Temperature. 
 

Effect of thermophysical properties of sodium: 

Figure 3.22 shows variations in various thermophysical properties of sodium (coolant) 

with temperature [63]. Heat transfer correlations in liquid metal fast breeder reactors 

are based on Peclet number (Pe), given as [2], 

Pe = Pr ∗ Re 

where Pr and Re being Prandtl and Reynolds no. respectively. The coolant flow through 

subassemblies is turbulent forced convection type due to high value of Reynolds no. for 

liquid sodium [64]. The value of Pr is very small (P r<0.01). The Pe value is high and more 

than 100 for LMFBRs [65]. At low Pe, molecular diffusion (conduction) is the prominent 

heat transfer mechanism whereas at higher Pe, mechanical mixing (convection) 
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dominates [66]. Nusselt’s no. which defines the overall heat transfer characteristics, is 

given as, 

Nu = a + b(Pe )c 

where a is the contribution due to conduction and the remaining portion is due to 

forced convection. Presence of a is due to high thermal conductivity of sodium [67]. As 

shown in figure 3.22, value of thermal conductivity (k) decreases with increasing 

temperature. Hence, the heat transfer contribution due to conduction further decreases. 

Figure 3.23 shows that Pr value, which is already low for liquid sodium, further 

decreases with temperature. There is a relative 70% decrease in Pr value from 0.0075 

(200oC) to 0.0044 (470oC). This results into slight enlargement of thermal boundary layer 

(figure 3.24).  

 
Figure 3.23: Pr vs. Temperature. 

 
The same correlation can be understood by the relationship between Pe and thermal 

diffusivity (α) as [68], 

Pe = UD/α 
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where U is the velocity, and D is the characteristic dimension. From figure 3.22, it can be 

observed that α remains fairly constant in the range 200-470oC (0.73% decrease).  

 
Figure 3.24: Thermal boundary layer ( T ) vs. Temperature. 

 
However, as temperature further increases, value of α falls by 5% (480-700oC). The net 

effect is a relative increment towards Pe value after a certain temperature. Hence with 

increasing temperatures, more convective heat transfer takes place. It is concluded from 

the above discussion that the convective heat transfer dominates the one due to 

conduction, and this domination increases with increase in temperature. 

The radial core temperature distribution depends on neutron flux profile in core, flow 

through each subassembly etc [69]. Measures are adopted to maintain a flat radial 

temperature distribution in the core. Since for the present study, CSA temperature 

profile is utilized; the fluctuations so observed are mainly due to the coupled effect of 

turbulent flow and slight temperature differences amongst the fuel pins. The thermal 

power is directly proportional to the temperature difference and coolant flow rate. 



 52

Since the flow rate is almost maintained constant (figure 3.25), the increase in thermal 

power is attributed to increase in core temperature.  

 
 

Figure 3.25: Primary coolant flow. 

Any increment in CSA temperature means a slight increase in temperature difference 

amongst individual fuel pins within the CSA [70]. This gives rise to increase in magnitude 

and frequency of temperature fluctuations at the outlet of subassembly, and gets 

reflected in the signal as sensed by thermocouple. 

3.7 Conclusion 

Analysis of CSA outlet temperature data suggests the presence of a strong correlation 

between temperature fluctuation and thermal power in a fuel subassembly. It is 

possible to derive a proportional parameter with the help of mathematical 

transformation of raw temperature data. The usability of various tests in time series 

analysis is also highlighted for complex fluctuation signal analysis. The mathematical 

operations include first order difference, absolute/rms and moving average. 
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MODELLING & SIMULATION FOR SIGNAL PROCESSING 

ARCHITECTURE  

 

 

This chapter discusses the model development and simulation procedure for an 

appropriate signal processing scheme. The model is validated for reactor data. A 

comparison is presented here to differentiate between blockage induced fluctuations 

with that of fluctuations generated under normal operation. The effect of variations in 

thermocouple time-constant on the sensing of temperature fluctuations is also studied.  

4.1 Temperature fluctuation correlation with thermal power  

Fluctuations in coolant temperature occur due to many reasons for all possible reactor 

operations. For e.g., in case of a blockage, temperature fluctuations are generated due 

to formation of vortex [7].  Under normal operating condition, fluctuations are sensed 

4 
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due to variations in thermophysical properties of sodium with temperature and 

turbulent mixing. But in both the cases, increase in fluctuations resembles increase in 

thermal power. Hence, the modelling of temperature fluctuations is divided into two 

parts; one considering a blockage scenario and the second for normal operations. In first 

case, it is assumed that the overall fluctuation level increases after a blockage happens, 

since the temperature around blockage spot keep on increasing in the absence of 

sufficient heat removal. However in second case, the generation of fluctuations is 

dominated by statistical parameters associated with thermophysical quantities, and is 

relatively complex to model. Both models are data-driven.  

4.2 Model design 

4.2.1 Model under blockage condition 

This analysis requires the knowledge of mean temperature value at a particular power 

level. Roychowdhry et.al. [71] reported a considerable increase of 36.85oC of 

temperature across a 30% blockage. With increase in temperature being a function of 

blockage size, the temperature fluctuation generation can be modeled at different 

blockage size. Figure 4.1 shows the central subassembly outlet temperature at different 

power levels.  

With the initiation of flow blockage, the fuel pin temperature begins to increase and 

give rise to temperature fluctuations in coolant passing by, due to difference in relative 

temperature. The mean over which these fluctuations lie, also increases with time. The 

continued presence of such blockage may shoot the temperature to a dangerous level, 

sacrificing the safety of reactor core. 
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Figure 4.1: TCSA vs. Pth
. 

The temperature readings for central subassembly (CSA) are used for model design and 

determine model parameters as shown in figure 4.2. While maximum and minimum 

temperature values are used here to generate fluctuations, the standard deviation 

around a particular mean temperature value at discrete thermal power values was used 

for the validation of the code. The statistical analysis of the readings suggested a proper 

design and use of bandpass filter using mathematical details. Table 4.1 gives the 

bandpass filter specifications.  

 

Figure 4.2: Model development methodology. 
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Table 4.1: Bandpass Filter Specification 
1 1cf   (lower cut-off frequency) 0.1 Hz 
2 2cf  (upper cut-off frequency) 50 Hz 
3 sf   (Sampling frequency)   100 Hz 
4 sA  Stopband attenuation   31 dB 
5 pA  Passband gain     0.34 dB 

6 pR  Passband ripple 1.39 

 

The lower, upper and sampling frequencies, respectively chosen are 0.1, 50 and 100Hz. 

Hence, the normalized frequencies are  

1 1 / 0.001n c sf f f   and  

2 2 / 0.5n c sf f f   

The magnitude squared response of an elliptic filter is given as, 

    2
2 2
1( )

1 ( )n

H
R


 




          (22) 

where   is the pass band ripple factor and ( )nR  is the Jacobian elliptic function. A 

bilinear transformation method is used here for designing the bandpass filter. For that, a 

low pass filter is designed and then transformed to a bandpass filter. The SCILAB  

commands associated with such designs are,  

     hz iir n, ftype, fdesign, frq,delta ;  hzt trans hz, tr _ type, frq ;   

where n, ftype, fdesign, frq, delta are filter order, filter type, cutoff frequencies and 

error values, respectively. The stopband attenuation (As) and passband ripple (Rp) are 

predefined with 31dB and 1.39, respectively for further calculations. Then, the error 

values are calculated as follows:  
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11
1

kd
k





, and /202 (1 1) 10 sAd d       (23) 

where /2010 pRk   

     delta = [d1 d2] 

The passband gain (PBG) of the filter is given as: 

2

1 0.3402
1 (1.39)

PBG dB 


    (24) 

Using the predefined values, values of 0.08 and 0.03 are obtained for d1 and d2 

respectively. 

 A model representing the temperature fluctuation generation due to blockage is shown 

in figure 4.3. The model works on the basis of defined maximum and minimum value of 

temperature. The temperature values so obtained are sensed and correspondingly 

shaped by thermocouple transfer function. Most of these fluctuations lie in extreme low 

frequency range. Hence, a band pass filter is incorporated into the model. As a pure 

indicator of fluctuation level, rms (root mean square) is calculated.  

 
Figure 4.3: Simulation model. 

The fluctuations are generated assuming a uniform distribution ),( yxu  at particular 

power levels.  The degree of temperature variation is decided by setting x and y values, 

where x and y denotes the minimum and maximum temperature for a particular test. 

The lower value is set according to practical data obtained from various sources for a 
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fixed power level.  The upper limit is adjusted during simulation in correspondence to 

the desired fluctuation level. The variation value is incremented in various ways. First, a 

temperature fluctuation variation is achieved in steps of 10oC, 20oC, 30oC, 40oC and 50oC 

over time, for slower increase. Then the temperature variation is achieved in steps of 

50oC and 100oC. The standard deviation   in both the cases is quite different. Hence, if 

a phenomenal sudden increase in   is to that of abnormal occurrence is observed in 

coolant flow, blockage can be predicted. 

For determination of a maximum safe limit for the degree of fluctuations, a worst case 

scenario can also be considered, in which the temperature starts fluctuating over 120-

130oC in few seconds. In the analysis of neutron flux noise, it was found that the noise in 

frequencies lower than 1.5 × 10−2 Hz are mainly due to the inlet temperature noises, 

which should be eliminated. Hence, a proper bandpass filter is required.  For a k-type 

thermocouple, whose response time is 300ms, it is fairly good enough to consider a 

sampling rate of 100 samples per second. Any two successive temperature fluctuation 

values are 0.01s apart.  It is to be noted as shown in Fig. 4.3, the modeled units prior to 

thermocouple is actually the analog component of signal detection scheme.  The 

remaining signal processing can be performed digitally either in a real time computer or 

FPGA [72] board.  Hence, this procedure gives the possibility of program development of 

FPGA with simulated fluctuations in temperature. 

Results: Figure 4.4 shows the case in which there is a slow increase in fluctuation (10oC, 

20oC, 30oC, 40oC and 50oC). The sample number on x-axis denotes the data element 

index of the signal matrix.  
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Figure 4.4: Gen. Temperature profile: A=380oC, variation=10oC, 20oC, 30oC, 40oC, 50oC. 

The minimum temperature A is kept at 380oC. Hence, value of B attains 390oC, 400oC, 

410oC, 420oC, 430oC and 440oC in 2400 iterations. The thermocouple response time is 

taken as 300ms and the sampling rate is 10 samples per second.  Hence for 2400 

samples, equivalent time taken is 4 mins. Figure 4.5 shows the thermocouple response 

for temperature range up to 700oC. 

 
Figure 4.5: Simulated thermocouple response. 
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As explained earlier, analysis of neutron flux noise [73] reveals that inlet temperature 

noises fall in the region lower than 1.5 × 10−2 Hz, which are not suitable for the purpose 

of blockage detection or which might otherwise affect relevant signal considerably. 

Hence, it is necessary to filter the signal in a narrow specific frequency range. The 

generated signal is passed through a bandpass filter with specifications given in Table 

4.1. RMS value is then calculated for the generated data, and the data profile so 

obtained is shown in Fig. 4.6 for thermocouple response time ( ) of 0.3s. In running 

RMS calculations, two successive data elements say x1 and x2 are taken and a coefficient 

is calculated as; 

 2
2

2
12

1 xx   

For calculation of next rms value, x1 takes the previous value of x2 and x2 gets a new 

value. Figure 4.7 shows the running RMS values for the case in which the temperature 

fluctuations rapidly shoots up to a higher limit in 50oC and 100oC.  

It can be observed from Figs. 4.6 and 4.7 that the RMS value increases from 0.16oC to 

0.5oC due to sudden increase in fluctuations. 
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Figure 4.6: Running RMS, variation = 10oC, 20oC, 30oC, 40oC and 50oC,  =300ms. 

 

 
Figure 4.7: Running RMS, variation = 50oC, and 100oC,  =300ms. 

 

If simulation is performed for a sequence of 110oC, 115oC and 120oC, its RMS values 

reflects a shift in mean level as shown in Fig. 4.8. It would also be useful to see the effect 

of small fluctuations which arise due to turbulent mixing of fluid (2oC, 3oC and 4oC).  
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Figure 4.8: Running RMS, variation = 110oC, 115oC and 120oC,  =300ms. 

 
Figure 4.9: RMS for very less fluctuations: A=380oC, variation=2oC, 3oC and 4oC, =300ms. 

 
It is clear from figure 4.9 that RMS value or a function of RMS value itself could be useful 

for the purpose of detecting malfunctions.  

One more advantage of such an analysis could be the fact that these fluctuations not 

only represent the effect of rising temperature due to improper cooling in case of a 

blockage, but also can be used to point out the size of blockage.  As the size of blockage 



 63

increases, the chances of mixing or fading up of the fluctuations throughout 

downstream of subassembly decreases [74], thereby generating greater fluctuations at 

the outlet.  Although in such cases, the location of blockage plays a significant role. Also, 

the flow rate of coolant would have a direct impact on fluctuations. The higher the flow 

rate, lesser is the fluctuation value due to better turbulent mixing. However, it would be 

possible to detect malfunction for a steady power operation for which the values of flow, 

heat flux are constant throughout the operation.  

It would be useful to understand the impact of using a thermocouple which is placed 

inside a thermowell in order to have a longer sensor life time. This results in a longer 

response time (5-6s). Under such condition, the RMS values for two cases viz. 10oC, 20oC,  

30oC, 40oC, 50oC and 50oC, 100oC are shown in Figs. 4.10 and 4.11.  

 
Figure 4.10: Running RMS, variation = 10oC, 20oC, 30oC, 40oC and 50oC,  =6s. 

It is clear that the mean RMS level drops to a very low value and also increases the time 

required to digitally calculate RMS values for the same period.  Hence, it is always better 

to use a faster thermocouple for the intended purpose. For getting an insight into the 
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spectral content of such fluctuations, Fourier analysis is performed for the 

thermocouple output as shown in Fig.4.12. It is clear that presence of fluctuations 

appears in the frequency range of few Hz, which suggests the possible use of extremely 

low frequency (ELF) bandpass filter. 

 

 
Figure 4.11: Running RMS, variation = 50oC and 100oC,  = 6s. 

 
Figure 4.12: Fourier analysis with variation of 2oC, 3oC and 4oC. 

Figure 4.13a:Phase response with variation of 2oC, 3oC and 4oC. 
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Fluctuation due to fluid mixing: A subassembly is surrounded by many other similar 

subassemblies through which coolant flows as depicted in Fig. 4.13. Let us consider a 

condition where partial blockage occurs in one such subassembly, along with normal 

coolant flow in other neighboring subassemblies. Then the subassembly outlet where 

the sensors are located, witnesses the mixing of fluid from two channels. With a liberal 

approach to analyze the effect of mixing on fluctuation properties, a Fourier analysis of 

running RMS values obtained from mixed fluid temperature signal is performed, as 

shown in Fig. 4.14.  

 

Figure 4.13: A section of subassembly arrangement. 

 
Figure 4.14: Fourier analysis in case of fluid mixing:  =300ms, SA1 - variation 2 ◦C, 3◦C, and 4◦C, 

SA2 - variation 50–100◦C 
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Model Validation: For validation of the model, reactor data in the form of CSA 

temperature was collected during FBTR power range from 1 to 15MWt. CSA location has 

highest temperature due to highest flux levels in that region. However, standard 

deviation tends to fluctuate; a best possible set of standard deviation of temperature 

values for each discrete power level of the reactor is considered. This data is used to 

simulate the fluctuations in SCILAB model. Figure 4.15 shows the comparison of 

standard deviation of the experimental data and synthetic data at each power level. 

 
Figure 4.15: Simulated vs real time data. 

 
4.2.2 Model under normal reactor operation 

With the help of results obtained in chapter 3, a mathematical model (figure 4.16) is 

formulated which expresses the correlation between thermal power and temperature 

fluctuations.  

 
Figure 4.16: Proposed Model. 

The parameter (CP) calculated on the basis of such correlation is found to be 

proportional to the reactor thermal power (Pth).   

( )thCP f P      (26) 
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Let the time-series under analysis be X, such that 

1X x , 2x , 3x , 4x …........ Nx      (27) 

The AR(1) term is equivalent to the first order difference of the time series, 

1n nD x x   ; where (2n to N ) 

Pure fluctuation levels can be extracted as, A = |D| (absolute of difference) or rms(D) 

The MA(w) (moving average)term is calculated as, 

11( , ) ( )
k w

i k
MA k w A i

w

 



  , where 1k   to ( 1) / )N w   (28) 

 
Figure 4.17: Calculated parameter at different power levels. 

 
 

The window length w is large owing to the response time of thermocouple. But with 

appropriate digital signal processing, this effect can be minimized. For eg., if a window 

length of 1000 samples is required, then initially all the data elements (1000) in the 

memory can be initialized with the first sampled signal. Subsequently, parameter 
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calculation can be achieved by giving a left shift to the data set and adding the newly 

sampled data to the set. 

The results for temperature data at different power level are shown in figure 4.17 and 

4.18.  The reasons for presence of increased fluctuations at higher power levels have 

been discussed in detail in section 3.6. 

 
Figure 4.18: Calculated parameter at different power levels. 

It is clear from these figures that the parameter calculated on the basis of coolant 

temperature fluctuation reflects a strong correlation with thermal power in the reactor.  

4.3 Effect of variations in thermocouple time-constant 

Time-constant of thermocouples which are used for measuring coolant temperature in 

fast reactor, varies owing to various factors. Hence, it becomes necessary to investigate 

the effect of change in time-constant on sensed fluctuations. A SCILAB model consisting 

of source temperature profile, second order thermocouple and histogram calculation is 
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designed here. Simulation is performed for various levels of fluctuations, fix and variable 

thermocouple time-constants. Kurtosis for each condition is calculated with the help of 

histogram. Thermocouple time-constant value plays an important role in detecting 

these fluctuations, as smaller time-constants are more efficient in recording them [75]. 

In order to study the factors affecting the fluctuations, an analysis is attempted while 

considering thermocouple parameters, source temperature and fluctuating time-

constants. The details about sensor and its typical arrangement in a fast reactor 

subassembly are discussed here.  

Thermocouple  

Thermocouple is widely used in numerous industrial applications including nuclear   

reactors due to there range, ruggedness and accuracy. A first order model is generally 

used to describe thermocouple. However, thermocouple time constant is considered 

multiordered [76].  

 A second order model of thermocouple can be given as  

2
1( )

1
H s

s s


 
     (29) 

where  τ  is  the  thermocouple  time-constant  (time  taken  to reach 63.2% of the final 

value). Thermocouple response time vary  with  various  configurations  such  as  directly  

exposed (few ms), grounded sheathed (100 ms), ungrounded sheathed (few 100 ms), 

inside thermowell (5-7 seconds). Time-constant depends on the mass of thermocouple  

(m), specific heat of thermocouple wire material (c), convective heat transfer coefficient 

(h) of local medium and the surface area (A) [77] and given as  
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mc
hA

       (30) 

The bandwidth of a thermocouple is [78] given as 

2m m
B kd v       (31) 

where K is some invariant constant, m is constant (0.3≤m≤0.7), d is wire diameter and 

v is coolant velocity. In terms of wire diameter, τ is represented as [79] 

2

4 4 u g

cd cd
h N

 


       (32) 

where ρ is wire material density, Nu is Nusselts number, λg is thermal conductivity of 

fluid around thermocouple. Nu is a function of Reynolds number, Grashoff number and 

Prandtl number. 

(Re, , Pr)uN f Gr  

It is clear from these equations that τ is dependent on many parameters involving the 

construction and geometry of the sensor as well as the operating conditions. The 

effective bandwidth offered by a thermocouple depends on coolant flow, which in turn 

affects τ.  

The parameters which are used for modelling and simulation are mean temperature 

value (µ) and corresponding standard deviation σ, where σ represents the degree of 

fluctuation.  Hence a  higher  power  level  would  have  a  high  values  of  µ  and σ.  It  is  

to  be  noted  that  though  σ  increases  with  power,  it is  non-linearly  localized  in  

time,  since  the  source  of  such fluctuations  is  due  to  mixing  of  highly  turbulent  

coolant streams passing through a subassembly. The value of (µ, σ) is (409.44, 0.17)oC 



 71

for 11 MWTh and  (512.39,  0.45)oC  for  18  MWTh.  Table 4.2 represents unique (µ, σ) 

for increasing reactor power. The differenced series is added to the overall mean of 

actual series. If a is the original time series, b being the differenced series, stationary 

time series c is calculated as, 

c     

Table 4.2 
 µ Recalculated σ 

1 221.86 0.091 
3 378.66 0.102 
4 409.44 0.17 
5 512.39 0.45 

 

By using the collected reactor data, a simulation model is proposed as shown in fig. 4.19. 

K-type  thermocouple  is  modeled  for  various  values  of  τ ranging  from  0.05  s  to  0.5  

s  using  polynomial  coefficients from  NIST  database  [80].  Based on the reactor data, 

source temperature profile with fixed mean and standard deviation is obtained using 

grand function of SCILAB [81]. Mean value is fixed at 300oC for closer approach towards 

analysis of the effect of variable fluctuations in source (coolant) (σ) itself. The following 

conditions were analyzed for fixed µ to observe their relative effect: 

-Various constant values of σ and τ 

-Various fluctuating levels of σ and τ 

 
Figure 4.19: Simulation methodology. 
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Response to fluctuating (variable) values of τ is calculated by multiplexing even and odd 

terms of two different τ response values. Histogram plot gives frequency versus variable 

information of the data and is performed for the calculation of mean and standard 

deviation from the simulated sensor output. From these two parameters, kurtosis is 

calculated which gives an estimate of probability distribution (frequency distribution) of 

the data. So for all the test conditions, data profiles are simulated and kurtosis is 

calculated by using histogram. The mean (µh), standard deviation (σh) and kurtosis (β2) is 

calculated as follows. 
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Maximum possible value of kurtosis is given as [82], 
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Many works have been reported on the use of kurtosis in signal processing such as [83], 

[84]. The main characteristic of kurtosis is that it accurately depicts the peak and 

distribution of the data. Any  change  in  the  distribution  of  observation  data  would 

reflect  in  a  different  β2 value.  The idea is to observe the relative effect on β2 for ±x% 

fluctuations in σ, keeping τ constant and vice versa, i.e.; to observe the effect on β2 for 

±x% fluctuations in τ, keeping σ constant.  
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Simulation results are obtained to study the effect of various combinations of 

parameters on the fluctuations. Table 4.3 indicates the variation of β2 with σ, which 

shows a relative variation of 3.8 for β2. Similarly, table 4.4 gives variation of β2 with τ. In 

this case, the relative variation is 0.043. It is clear that variations in source (coolant) 

temperature have higher impact on β2. 

                                                 Table 4.3: β2 vs σ, µ = 300oC, τ = 0.1s 
σ β2 

0.05 0.087 
0.1 0.350 

0.15 1.059 
0.2 1.819 

0.25 2.270 
0.3 3.893 

 
                                              Table 4.4: β2 vs τ , µ = 300oC, σ = 0.1oC 

τ β2 
0.05 0.416 
0.1 0.425 

0.15 0.434 
0.2 0.443 

0.25 0.451 
0.3 0.459 

 
Figure 4.20: β2 vs σ . 
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Fig. 4.20 shows the kurtosis variation for different values for τ and σ. For analyzing 

variable σ and τ (i.e. both source profile as well as thermocouple time constant tend to 

fluctuate due to reactor thermodynamic conditions), various levels of source and time-

constant fluctuations are generated by specifying the minimum and maximum threshold 

values. Results for various combinations of source and time-constant behavior are 

shown in fig. 4.21 and 4.22. 

The mean value of σ and τ are fixed at 0.1oC and 0.1 s respectively. Fluctuation levels of 

5-35% around these mean values were simulated in different cases. 

 

Figure 4.21: β2 vs variations in σ . 
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Figure 4.22: β2 vs variations in τ. 

 

Figure 4.23: β2 vs variations in τ. 

To simulate a more realistic condition, where both source and time-constant tend to vary, both 

σ and τ are allowed to swing between fixed levels in many possible combinations. For eg., 5% 

fluctuation in σ with ±(5,15,25,35)% fluctuations in τ and vice versa. The result is shown in fig. 
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4.23. The cases so far considered comprises of values which vary around mean values of 

σ= 0.1oC and τ= 0.1 s. Result for the values of σ, τ  constant and analyzed with respect to 

fluctuating levels mutually are shown in fig.4.24.  It is clear that the degree of change in 

kurtosis is far greater for fluctuating σ, than that of fluctuating τ i.e. fluctuations 

observed in thermocouple readings are largely due to the fluctuations in source (coolant) 

itself and hence a good indicator of coolant temperature with time. 

Any change in kurtosis value denotes a shift in the signal properties by means of the 

frequency distribution.  In  a  fast reactor,  where  the  mean  temperature  level  as  well  

as the associated fluctuations increases with thermal power, kurtosis acts as an 

indicator of change in the frequency distribution of the signal. As it is observed that 

kurtosis increases with σ, it explains why the fluctuations at higher power level attain a 

sharper and narrow distribution. 

 

Figure 4.24: β2 behavior. 
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It means that the core temperature signal is broadly distributed with lesser peakedness 

at low thermal power than at higher power. These results give sufficient confidence in 

estimating parameters based on temperature fluctuations. Also,  it  supports  the  idea  

of  using fluctuations in  spite  of  its  non-stationarity. As already discussed, non-

stationarity can be removed by performing first order differencing. 

4.4 Discussion 

The fundamental difference between fluctuation generation under two different 

conditions viz. blockage and normal operation can be understood by analyzing the 

related data. For analysis, maximum and minimum values of temperatures are set, and 

corresponding data is generated. For example, the profile for fluid temperature varying 

in the range of 380-390oC is shown in figure 4.25.  

 
Figure 4.25: Temperature profile in case of blockage. 
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Figure 4.26: Temperature profile for normal condition. 

Temperature profile with similar mean and variance is generated for normal operation 

and is shown in figure 4.26. Visual inspection suggests that peaks in case of normal 

operation can be assumed to be distributed non-linearly, whereas the fluctuations in 

case of blockage tend to become more stationary, making them easier to detect. 

However, mean temperature increases under continued presence of blockage. This in 

turn makes the fluctuations behave like as if there is an increase in thermal power. 

Hence, with the same algorithmic approach for estimating thermal power from 

fluctuations, presence of blockage can be detected if there is any unusual deviation in 

the calculated parameter. 

Figure 4.27 shows the variation in calculated parameter with thermal power, which also 

validates the proposed model. The curve defined in the figure as “No weights” is 

obtained as; 

)}({ 1 orderavg diffabsMCP       (37) 
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whereas the curve obtained as “with weights” is calculated by providing a fixed 

weightage to the CP for particular thermal power, given as; 

)}]({[ 1)( orderavgMWThP diffabsMACP      (38) 

where )(MWThPA = weightage given to CP at particular thermal power. 

 
Figure 4.27: Calculated parameter vs thermal power. 

4.5 Conclusion 

A mathematical model was derived and simulated for various operational conditions. It 

was found that temperature fluctuation behavior is unique for variations in thermal 

power and that it initially differs from blockage induced fluctuations. Since the net effect 

of blockage is an overall increase in temperature, fluctuation behavior also changes. The 

fluctuation based calculated parameter shows strong relationship with thermal power. 

Hence, temperature fluctuations can be used for the purpose of estimating reactor 

power assuming a constant flow rate and use of thermocouple with small time-constant.  
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RESOURCE UTILIZATION FOR PRACTICAL IMPLEMENTATION 

 

This chapter discusses the technical aspects for practical implementation of the 

proposed mathematical approach on a FPGA based platform. Various tools for design, 

synthesis, simulation and testing of the proposed approach are explained. 

5.1 Altera Quartus II & SOPC builder 

Altera Quartus II® 12.0 web edition is free programmable logic device design software. 

User can analyze and synthesize HDL designs, perform compilation, timing analysis, 

examine RTL diagrams, simulate, and programme the target device. SOPC Builder is a 

part of Quartus II tool used for system development. FPGAs can implement logical 

functions with great flexibility. The FPGA design flow is shown in figure 5.1.  

5 
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System design is the description of individual modules or whole system in hardware 

description languages such as VHDL, verilog, system C etc. [85]. The design entry can be 

block level also where logic gates are connected to implement the system. SOPC is also a 

means for system design. 

 
Figure 5.1: FPGA design flow. 

System design and I/O assignment are accompanied by functional simulation, design 

rule check and RTL viewer. Power analysis, timing analysis, gate level simulation and 

signal integrity analysis are performed during placement and routing. TimeQuest timing 

analyzer and PowerPlay are available for such purpose as a part of Quartus II. The final 

generated bitmap file is ready to be loaded onto FPGA. The FPGA type has to be pre-

defined in order to obtain a correct binary file. For the proposed signal processing 

approach as shown in figure 5.2, Cyclone  III  family  FPGA  development  board  DE0 is 

used,  which  is  equipped  with  EP3C16F484C6  FPGA  device comprising   of   15,408   

LEs(Logic   Elements).   The   board provides 346 user I/O pins. 
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5.2 Implementation statistics 

 

Figure 5.2: various math blocks. 

As shown above, the input to system design has either temperature readings saved in a 

ROM or it can be direct user input for simulation purpose. The implementation cost for 

each module is as shown below. 

Differencing + Absolute: 

 
Figure 5.3: RTL diagram. 

 

Figure 5.4: Flow summary. 
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Figure 5.3 shows the generated RTL map of the mathematical operation. The usage 

summary is as shown in figure 5.4. For a 20 bit operation, the resource consumption is 

very less even for a mid range FPGA. The simulation results are obtained using Altera 

Quartus II for random user inputs, and are shown in figure 5.5 and 5.6 with the help of 

gtkwave software for vcd (value change dump) file format. 

 

Figure 5.5: Input (upper) and Output (lower) for absolute and differencing operation. 

 

Figure 5.6: For another type of input: absolute and differencing operation. 

It is interesting to note that increasing the no. of input bits (40 bit) leads to total logic 

elements requirement to increases from 80 to 167, which is still very less than actual 
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available resources. Hence, future upgrades for system doesn’t put any limits on the 

hardware. 

Moving Average: 

Figure 5.7 shows the RTL map of the moving average filter with a window length of four. 

The usage summary is shown in figure 5.8. 

 
Figure 5.7: RTL diagram: moving average. 

 

Figure 5.8: Flow Summary: moving average. 

The simulation result (using gtkwave viewer) for moving average block with a window 

length of four is shown in figure 5.9. The simulation result for window lengths of 25 and 

50 are shown in figure 5.10. 
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Figure 5.9: Simulation result – moving average of window length four. 

 

Figure 5.10: Simulation result- moving average of window length 4, 25 and 50 respectively. 

 

Figure 5.11: Flow summary- moving average for simultaneous operation. 

The resource usage status for simultaneous applications of moving average operation 

for all the thee window lengths viz 4, 25 and 50 is shown in figure 5.11, from which it is 

clear that even simultaneous operation is possible on the FPGA (EP3C16F484C6). Hence, 
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a wide variety of processing algorithms can be used in parallel on the same platform 

without any compromise in functionality. 

Though a minimal resource usage makes it possible to implement it on a microcontroller 

too, the choice for selecting FPGA as platform is very specific. It is possible to include the 

findings of other researches in the area of dynamic temperature analysis based on the 

current work. Hence, FPGA could accommodate the increased resource usage 

requirements which may otherwise arise. Figure 5.12 shows a simple C code to 

implement the proposed algorithm, which makes it platform independent. It may be 

noted that the input to the code are the values stored in local memory, which are 

temperature values. 

 
Figure 5.12: C-code for the proposed algorithm. 
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5.3 Conclusion 

The details related to practical implementation of proposed algorithm was discussed. It 

was found that FPGAs are perfect for implementing complex mathematical operation as 

a part of signal processing architecture. Their use has grown enormous in present world 

applications. Also, the biggest advantage offered is in terms of re-configurability. The 

present study also highlights the usage of free software available for the analysis. 
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SUMMARY AND FUTURE DIRECTIONS 

 

 

6.1 Summary 

This thesis has put forward the use of temperature fluctuation in fuel subassemblies to 

estimate reactor power. The overall research flow can be summarized as: 

 The work presented in the thesis is novel in terms of system identification, 

model development and parameter estimation based on temperature 

fluctuations in CSA, with respect to reactor thermal power.  

 A detailed and multi domain analysis approach of outlet temperature 

fluctuations for a   fuel subassembly (CSA) in a fast reactor.  

 Study on the correlation of temperature fluctuations with reactor thermal power. 

6 
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 Use of data driven model based design in development of suitable signal 

processing methodology for fluctuation processing. 

 Development of a simulation model to generate temperature profile of desired 

characteristics for fluctuation studies. 

 Effect analysis of thermocouple time constant on the sensing of temperature 

fluctuations 

6.2 Key findings of the work 

 The technique presented in this work has helped to establish a proper  

       correlation  between the calculated parameter (moving average of absolute first     

       order differenced data) to that of thermal power.  

 Standard deviation ( ) was observed to increase with thermal power. However,    

       with non-linear localization in time, the trend being highly dependent on the     

      sample window length. 

 Temperature fluctuations have been found to be in the extreme low frequency  

       range of 0.001 Hz to 5 Hz. 

 Time-frequency analysis proved to be of immense use for understanding the  

       temperature fluctuation behavior.  

 The statistical test results have shown that it is possible to extract the  

       information present in the fluctuations, and a proper mathematical formula was     

      derived. 

 Analysis regarding the implementation cost in terms of required logic element  

      showed that a mid-level FPGA with few thousand of logic elements (LEs) would 



 90

      be sufficient for the purpose.  

6.3 Future directions 

 Since only central subassembly features a fast response thermocouple, it would 

be helpful to study the temperature fluctuation behavior for other fuel 

subassemblies with a faster response thermocouple. 

 It has been found that coolant flow rate has a direct impact on temperature 

fluctuations, with lesser fluctuation amplitude for high flow rates. Hence, it 

would be interesting to study effects of flow rate under various reactor power 

conditions. 

 A similar approach of fluctuation analysis can be effectively used for other 

industrial dynamic system also, where a lot of system state information is 

present in the form of fluctuations. 
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