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Chapter 1

Introduction

Jonathan Bird, an American Photographer heads down to Cancun in

Mexico on an expedition to �lm one of the world's fastest �sh - the

sail�sh! He gets in the water with a school of sail�sh zooming around

hunting sardines. As the sail�sh shows up, the sardines form a bait ball

to confuse the predator. In that video, the sail�sh (predator) is attacking

repeatedly the bait ball from various directions and a situation is spot-

ted where the sardines are approaching towards the sail�sh instead of

moving away from the predator. This unusual movement of the sardines

indicates that the school of sardines (system) under certain conditions is

negatively susceptible to the predator (external perturbation) when the

bait ball acts as a system of hydro-dynamically coupled dipoles. The

occurrence of negative susceptibility for a system of dipoles under the

in�uence of external perturbation is explained in this thesis and a similar

phenomenon is simulated on an ensemble of superparamagnetic particles

and veri�ed experimentally on magnetic nano-composites.

A bait ball is a swarm of small �shes in a tightly packed spherical formation with

a common center and it acts as a system. Systems of various types are classi�ed
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in physics viz., open system, closed system, isolated system etc. An open system

can exchange both matter and energy with its surroundings. On the contrary, an

isolated system does not interact with its surroundings so that the mass and energy

of the system do not change with time. In reality, systems are never isolated, they

are coupled with the neighboring systems and their environment. Two systems are

coupled if information from one is transmitted to, and alters the behavior of, the

other. If the information exchange is bidirectional and periodic, the system is called

an oscillator and the time evolution of such dynamical system is represented by

second order di�erential equation. In the case of coupled systems, the dynamics

is governed by coupled di�erential equations. The behavioral patterns of coupled

systems corroborate many natural phenomena. Hence, the study of time evolution of

the dynamical process of coupled system through in-silico experiments has attracted

many researchers. Coupled di�erential equations can be formed but the solutions

of those di�erential equations are not straight forward. It becomes more complex

when the coupled system interacts with the time varying environment.

Examples of systems of coupled oscillators are numerous as they are ubiquitous

in nature as well as in man-made world. The familiar systems of coupled oscillators

are coupled either by linear deformations or torsion of springs, or it may be the

case of electrical devices, e.g., coupled LC circuits. The canonical example consists

of two pendula horizontally connected with a weak spring whose relaxed length is

restricted by the distance between the bobs of the pendula [1] [2]. Number of mass-

points interconnected by co-linear springs in three dimensional matrix is a useful

model to study the oscillations of molecules in crystals [1] [3]. The vibrational

solution of coupled oscillators is expressed in terms of the normal modes and these

normal modes certainly have importance in the understanding of many physical

phenomena.

Symmetry and pattern formation is another interesting topic where integrated
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studies of system of coupled oscillators and its environment reveal certain complex

patterns [4] and those patterns do not evolve when an oscillator and its environment

are studied individually. In general, these patterns are observed in the environment

that changes periodically. It is usual that a periodic external perturbation compels

the coupled system to follow its own pace and the overall system dynamics will have

a phase lag with respect to the perturbation. This phase lag is the consequence

of intrinsic parameters of the system and it also depends on both frequency and

amplitude of the perturbation. The phase lag is an important property that increases

with frequency and simultaneously there is a variation of extent of oscillation or

amplitude.

The physical properties of coupled systems are often described either by intensive

or by extensive properties. An intensive property is a bulk property of a system that

does not depend on the system size. An extensive property is a physical quantity

which is the sum of the properties of noninteracting subsystems that compose the

entire system. There is a complex parameter to de�ne the collective response of the

oscillators under external perturbation, called susceptibility of the system. More

general, a susceptibility, χ is a quanti�cation for the change of an extensive property

under the variation of an intensive property. It is a dimensionless proportionality

constant that indicates the degree of polarization in the system in response to an

external perturbation. Susceptibility is frequency dependent and it develops due to

the interactions among the constituent subunits in the system. If the subunits of the

system are oscillators, the susceptibility of the system of oscillators depends on the

extent of oscillation (amplitude). χ becomes non-linear for large oscillations, and

the higher order terms in the expression of χ appear signi�cant when the system

experiences external perturbations of large magnitude. This nonlinearity introduces

phase lag between the collective system dynamics and the external perturbation. As

a result, there is a possibility of change of gross dynamical properties in the system

of coupled oscillators.
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If this phase lag exceeds 90◦ with respect to the external perturbation, the suscep-

tibility becomes negative and the system intrinsically opposes the perturbation i.e.,

a diamagnetic susceptibility in the system. This is uncommon in nature. Is there

any possibility where the dynamics of the coupled oscillators system goes more than

90◦ out of phase of the external perturbation? This thesis reveals a possibility of

such crossover of susceptibility in a coupled dipolar system under certain condi-

tions and it has also been established experimentally in an ensemble of interacting

superparamagnetic particles in nano-composites.

Many researchers have contributed to the �eld of coupled systems and a large

volumes of reported works is available in various literature but only a few works

have been done on susceptibility of coupled dipole oscillator system so far [5].

1.1 Literature Survey

The problem addressed in this thesis is solved classically by computer simulation.

Very few relevant works have been reported in the past but the model studied in

this work is related to several models available in the literature. Although dynamics

of dipoles under periodic external perturbations have been reported adequately, dy-

namic patterns formation particularly in coupled dipolar systems has been observed

in a few occasions only [6].

There are several kinds of dipole formations in nature, for example electric dipole,

magnetic dipole, �ow dipole, vortex dipole, etc. All these dipoles interact among

themselves by a long range interaction and this interaction in�uences the dynamics

of the dipolar systems when they are allowed to rotate about their axis. There

is a complex parameter to de�ne the collective responsiveness of the dipoles under

external perturbation i.e., susceptibility of the system. In 1994, Nikazima et al. have

presented a microscopic theory to study the two-dimensional orientational phase
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transition of the interacting dipolar system and its dynamic susceptibility in the

para electric phase [7]. On the basis of a classical mechanical model, they have

carried out the statistical mechanical calculations in the framework of the molecular

�eld approximation and linear response theory. In their studies, an orientational

phase transition and its dynamic susceptibility have been reported.

A single dipole is too small in dimension to carry out some physical experiment

in the laboratory. Macroscopically, a magnetic needle is a representation of a large

dipole. Meissner and Schmidt have carried out simple experiments on a magnetic

needle to study the transition from normal modes of vibration to chaotic vibration

under oscillatory external �eld [8]. Magnetic needle in external magnetic �eld is a

non linear dynamical system where angular displacement is large and it also exhibits

periodic behavior under certain conditions. The period of such system is related to

the external driving force and inertia of the needle.

There are physical systems that are modeled as an array of interacting oscillators

based on Kuramoto model [9]. Dynamics of N-body oscillator system possesses

unique normal modes of oscillation limited by the number of degrees of freedom

[10]. Simplest model of this kind is the spring coupled mass system that resonates

at the frequencies of its normal modes. These normal modes depend upon the

intrinsic parameters of the system. The dynamics of the system can be appreciated

only when the oscillators are in a collective motion. In this collective motion, an

order parameter has to be identi�ed to characterize the dynamics. Relative phase

among the oscillators can be an order parameter as it characterizes the modes of

coordination [11]. Kuramoto has suggested a model to understand the complex

dynamics of coupled oscillator system. Later Sakaguchi has extended Kuramoto

(KM) model in the presence of external periodic �eld [12],[13]. The order parameter

is de�ned as r(t)ei(ωt+φ) = 1
N

∑N
j=1 e

iθj [13] where r(t) with 0 ≤ r(t) ≤ 1 measures

the phase coherence of the oscillators, φ measures the average phase lag with respect
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to the external �eld, θj is the phase of the jth oscillator and ω is the frequency of

the external periodic �eld. Oleh et al. has investigated the transition to synchrony

in a system of phase oscillators that are globally coupled with a phase lag using

Sakaguchi-KM model [14]. They have shown some unusual types of synchronization

transitions for certain frequency distributions.

Normally, this phase lag of the system relative to the external �eld increases

to 90◦ as the frequency of the external wave reaches the frequencies of the normal

modes and it exceeds 90◦ as the external frequency goes beyond the normal modes of

oscillations [10]. This holds good for oscillators performing small oscillations in linear

response domain but the scenario becomes di�erent if the oscillators are nonlinear

and coupled. The variation of this phase lag with the frequency of the external

wave is entirely di�erent in comparison to the linear case. The dynamics of such

coupled system depends upon the instantaneous relative position of the subunits in

the phase space. In this thesis related study, subunits are dipole oscillators. The

parameters governing the di�erential equation of the dipole oscillator de�ne whether

the dynamics to be chaotic or non-chaotic under the in�uence of an external periodic

�eld [6]. The coupled oscillations of N number of nonlinear non-chaotic dipoles

show an interesting feature. It is capable to oscillate collectively at a common

frequency or phase, irrespective of the intrinsic natural frequencies or initial phases

of the individual oscillators [10]. This phenomenon in the �eld of coupled system

is termed as synchronization. Synchronization, a prominent and well-studied topic

of coupled systems, is the phenomenon observed everywhere in nature and �nding

several applications in engineering and physics. In 1973, Huygens may have reported

synchronous motion �rst in the literature [15]. Later, in recent decades, the subject

of synchronization has attracted many researchers. For example, arrays of chaotic

systems are studied in [16, 17, 18, 19]. For coupled nonlinear oscillators, a seminal

study to understand synchronization was done by Kuramoto [9]; the work is reviewed

in [20, 21]. Synchronization of phase and suppression of chaos of the nonlinear
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oscillators are the two signi�cant criteria when the system is periodically driven.

Some times small damping is applied to the system to control chaos [22] and a

periodic stable state of the system can be achieved.

The dynamics of the N-body oscillator system become more realistic if the cou-

pling of the subunit (dipole oscillator) is considered to be of long range. Due to the

long range interaction, the behavior of the subunits located in the core of the array

di�ers considerably with respect to those located in the periphery. There exists a

possibility of occurrence of cooperative phenomenon among the subunits as observed

in the nature e.g., in the �sh schooling dynamics [23]. The existence of this type of

cooperative phenomenon has been established analytically by Sakaguchi [13]. This

cooperative phenomenon in the array of coupled systems depends strongly on the

type and the strength of interaction among the subunits. In this work, the dynam-

ics of a system of coupled dipoles oscillating in a dissipative medium subjected to

an external periodic �eld has been studied. It is observed that the phase lag of

the system exceeds 90◦ at a frequency of the external �eld lower than the frequen-

cies of normal modes of the system. This type of phenomenon is new in classical

system and it has been observed experimentally in nano-magnetic composites [24].

This dynamical phenomenon is rare to observe because the parameter values of the

governing di�erential equation are very critical for its occurrences. This model is

useful in the simulation of cluster of nano-magnets, �sh-schooling dynamics or in the

development of high sensitive nano-magnetic detectors. Magnetic nano-composites

consist of a collection of superparamagnetic particles. If the average distance of

separation between the superparamagnetic particles is comparable to the particle

dimensions, then the interaction between the particles becomes signi�cant and the

system acts as a coupled dipole system.

The nano-magnetic ensemble appears in many contexts and several theories have

been suggested to understand its behavior due to applied magnetic �eld [25]-[29].
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The deviation of the behavioral patterns of interacting nano-magnetic particles from

the models of Stoner-Wohlfarth [30] and Neel-Brown [31] are accredited to dipolar

interaction and applied magnetic �eld. In the nano-magnetic particle system, dipo-

lar interaction is ubiquitous due to the long range interactions and manifests many

exotic physical phenomena [32]. The dynamic magnetization of a dipolar nano-

magnetic ensemble due to the applied magnetic �eld is in�uenced by anisotropic

energy, dipolar interaction energy and Zeeman energy. In most of the earlier stud-

ies, the dynamics of the nano-magnets have been studied while the Zeeman en-

ergy supersedes the other two forms of energies [33, 34]. However, to appreciate

the synergetic e�ect of these three energies their magnitudes should be compara-

ble. The relaxation time of non-interacting nano-magnetic particles depends on the

anisotropic energy barrier only, however the presence of long range dipolar interac-

tion has a predominant in�uence in determining the relaxation time and has been

addressed extensively at several theoretical [35] and experimental studies [36]. The

theoretical approaches are primarily based on the mean �eld theory, where a lo-

calized interaction �eld appears to be responsible for the observed e�ects [37] and

demands analytical solutions. Traditional mean �eld theories overlook local �uctu-

ations due to dipolar interaction. The mean �eld approach is limited in its e�ort to

explain the exact behavioral pattern of magnetization for an applied magnetic �eld

on a �nite assembly of nano-magnetic particles. In the interacting nano-magnetic

particle system the local interaction �eld brings the system into a stable minimum

energy state [38, 39, 40]. External magnetic �eld acts as a perturbation to this

interacting particle system and disturbs the magnetic ordering and the stability in

turn [25]. The system will try intrinsically to oppose the applied �eld, the cause

of its instability. This leads to a new concept of diamagnetism in the interacting

nano-magnetic ensemble.

For experimental veri�cation of frequency adapted crossover of magnetism in

nano-magnetic ensembles, a susceptometer is developed and susceptibility of the
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magnetic nano-composites is measured. Susceptibility measurement setups are pre-

dominantly non contact type and based on the comparison of unequal mutual in-

ductance technique. This technique has its own advantages and has been proposed

by Hartshorn [41]. An AC magnetic �eld is applied by a primary coil and the elec-

tro motive force induced in the gradiometer coil is used to measure the magnetic

susceptibility [42] [43] of samples. The sensitivity of the susceptometer has been in-

creased by modern low noise electronic components [44]. Principle of measurement

remains the same. Many researchers have started developing miniature susceptome-

ter [45] [46]. Some of them use Superconductor Quantum Interference Device [47]

for small samples at low temperature and at low magnetic �eld measurements. AC

source, precision sensing coils and high-sensitive lock-in ampli�er are the major

components to measure in- and out-of-phase susceptibility. Sensing coils are even

replaced by a toroid with a thin cut as proposed by Fannin et al. [48]. Short circuit

and open circuit transmission line technique has been used for the measurement

of complex susceptibility in microwave region [49]. Park et al. have developed a

compact AC susceptometer for ferro�uids in a very low magnetic �eld (10µT ) [50].

Another technique exists that is absolute coil self-inductance method to measure

magnetic susceptibility where, the accuracy depends on the precise measurement of

inductance. Hence, design of such type of susceptometers encounters several practi-

cal di�culties associated with many limitations. Primarily, the complex impedance

sources viz., inter-turn capacitance, line capacitance, coil-resistance etc. of a coil

varies with temperature and frequency. These factors limit the upper cut-o� fre-

quency in the measurement of the AC susceptometer. Secondly, due to the use of

smaller dimension of the self-inductance coil, the magnetic �eld is non-uniform over

the sample. However, uniformity of the �eld is necessary and the uniform �eld is

very much obtainable in long solenoid. The limitations mentioned above do not

restrict the use of self-inductance type susceptometer in the measurement of abso-

lute susceptibility as proposed by Dho [51]. In- and out-of-phase components of
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complex susceptibility can be derived from the phase associated with the sample,

where the phase is measured using a high frequency digital lock-in ampli�er. Lock-in

ampli�er in the range of MHz is very costly. So the phase measurement without

lock-in ampli�er as proposed by Das et al. [52] is a very simple analog technique

and can replace the high cost lock-in ampli�er for normal laboratory use. In this

susceptometer development, the small coils have been wound on a specially shaped

bobbin to avoid the non-homogeneity of the magnetic �eld [53].

Magnetic coils are usually cylindrical inductive coils to produce magnetic �eld for

various engineering and scienti�c applications [54, 55, 56, 57]. Susceptometer de-

mands uniformity of the magnetic �eld within a volume of interest. In�nite solenoid

produces uniform magnetic �eld but in reality, magnetic �eld uniformity is a chal-

lenging task especially for the solenoids used in the nano- or bio-electromagnetic

experiments [57]. Helmholtz coil system [57] is used in laboratory for the gener-

ation of uniform magnetic �eld in smaller volume of interest. Merritt and Ruben

coil systems are implemented where large volume of uniform magnetic �eld is re-

quired [55, 56]. However, a Ruben coil system is more di�cult to build [58]. Speci�c

applications like calorimetric measurements of nano-particles, cancer therapy, eddy

current probes, etc. demand uniformity of magnetic �eld generated by solenoid of

smaller dimensions than that are being used in Magnetic Resonance Imaging (MRI)

[59] systems. Some researchers have attempted to build minimum volume coil con�g-

urations using a linear-programming technique [60] or �nite-element method (FEM)

[58] to produce uniform magnetic �eld. The magnetic �eld strength is maximum

at the center of a �nite solenoid and it reduces towards the ends. Improvement of

uniformity of magnetic �eld inside a solenoid is realized with the help of structural

modi�cations along with the magnetic �ux concentrator rings at the coil ends [57].

Two-dimensional �nite element analysis simulation software e.g., FEMM [61] is usu-

ally used to validate the design. In this thesis, the principle, design methodology

and performance of a kind of miniature solenoid which can be used for development
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of self-inductive type susceptometer have been described. A typical shape of the

winding surface has been arrived at which would achieve the required uniformity

of magnetic �eld of the solenoid has been arrived. In engineering shape design,

there are various methods. An optimization technique using non-dominated sorting

genetic algorithm (GA) has been adopted, which is a multi-objective optimization

method in real engineering problems [62, 63]. In this case, the required region and

extent of uniformity of the magnetic �eld within the solenoid has been identi�ed

and the design was optimized by using GA, as explained in the Chapter 5.

1.2 Thesis Outline

The main body of the thesis consists of the following chapters.

• Introduction ( Chapter 1)

• Problem De�nition (Chapter 2)

• Susceptibility of Chaotic System of Oscillators (Chapter 3)

• Crossover of Susceptibility: Simulation Studies (Chapter 4)

• Crossover of Susceptibility: Experimental Veri�cation (Chapter 5)

• Summary and Outlook (Chapter 6)

1.3 Thesis Contributions

The major focus of the thesis is to demonstrate the occurrence of negative AC

susceptibility in an assembly of interacting magnetic dipoles placed in an external

magnetic �eld which is a periodic function of time. The result is established by
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carrying out exhaustive computer simulation as well as through the designing and

setting up of an experimental arrangement involving magnetic nano-composites. To

explain the genesis of the idea, the example of a �sh population with predator-prey

type situation is invoked which exhibits a negative susceptibility-like phenomenon

with the prey population (sardines) moving towards the predator (sail�sh) when

attacked from various directions. Chapter 1 and 2 of the thesis introduce the basic

concepts associated with the problem studied in the thesis along with a literature

survey. The dynamics of both linear and nonlinear oscillators driven by a periodic

external force are discussed. The discussion is extended to a system of coupled

nonlinear oscillators, e.g., the Kuramoto model which exhibits the phenomenon of

synchronization. The possibility of a system of coupled limit cycle oscillators (limit

cycle behaviour is obtained in a dissipative system) under a periodic driving force

exhibiting diamagnetic susceptibility is also pointed out. Chapter 3 and 4 describe

the theoretical studies, namely, the numerical computations carried out in the thesis

to demonstrate the crossover of the susceptibility from the paramagnetic (positive

susceptibility) to the diamagnetic (negative susceptibility) regime. The type of os-

cillator considered is represented by a magnetic dipole originating from either a

magnetic needle (Chapter 3) or a single domain nano-magnet (Chapter 4). The

dynamics of a magnetic needle in a magnetic �eld that varies sinusoidally with time

include chaotic behaviour which is obtained as the limiting result of a cascade of

period doubling bifurcations as the external magnetic �eld strength is varied. In

the case of a coupled dipolar system, synchronization and chaos suppression are

achieved by introducing damping in the dipolar dynamics. The dipolar dynamics

is further subjected to a double well potential with the minima of the potential

representing the two favourable orientation of a dipole, indicative of the presence of

considerable magnetic anisotropy in the dipolar system. The dipoles further inter-

act via long range interaction with the interaction strength inversely proportional

to the cube of the distance separating the dipoles. The full di�erential equation
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developed in the thesis governs the dynamics of interacting dipoles in a time peri-

odic external magnetic �eld in dissipative double well potential. In the thesis, the

number of dipoles in the coupled system (the dipoles arranged in one dimensional

array) is N=91. Three parameters, namely, α (external perturbation), β (damping)

and γ (interaction strength) govern the system dynamics. The 91 coupled di�eren-

tial equations are solved numerically using fourth order Runge Kutta method. The

average phase lag of the dipolar system with respect to that of the magnetic �eld

is controlled by the parameter γ. The average phase lag has to exceed the value

π/2 for obtaining negative susceptibility. The computations carried out on the one

dimensional system provide conclusive evidence of negative susceptibility in certain

frequency ranges of the external magnetic �eld. In Chapter 4 and 5 of the thesis,

the bulk of the evidence towards the crossover of susceptibility in a coupled dipolar

system is presented. In Chapter 4, simulation studies are carried out on a collec-

tive system of N magnetic dipole oscillators interacting via long range interactions

and subjected to an oscillating magnetic �eld. The magnetic dipole originates from

a single domain nano-magnet, i.e., a superparamagnetic particle. The dipoles are

arranged a three dimensional array. A magnetic moment has certain possible orien-

tations (easy axes), parallel or anti-parallel to easy axis, thus it can be represented

as an Ising variable. The Hamiltonian describing the system of interacting dipoles is

an Ising-type Hamiltonian with long range interactions. The mean �eld approxima-

tion is made in the treatment of the Hamiltonian. An exhaustive simulation study

of the dipolar system is undertaken to provide the evidence of a crossover to the

diamagnetic phase, characterised by a negative susceptibility. How the crossover

occurs with the changes of frequency is described using �gures. In tabular form,

a summary of the conditions for the observance of the negative susceptibility is

also presented. The dependence of the crossover frequency on various parameters

like particle size, particle spacing, �eld strength, temperature and system size is

broughtout in the simulation study. Chapter 5 provides an experimental demon-
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stration of the phenomenon of susceptibility crossover. Magnetic nano-composites

constitute an experimental realization of the system of interacting dipoles. The

experimental arrangement devised in the thesis for the measurement of susceptibil-

ity meets the twin challenges of weak �eld and high frequency measurements. A

self-inductance type susceptometer is designed, as part of the thesis investigation,

to demonstrate the susceptibility crossover. The experimental results provide clear

evidence of frequency-dependent susceptibility crossover. In summery, the thesis

makes an important contribution in demonstrating the exsistance of a susceptibil-

ity crossover from para-to-dia regime in a coupled dipolar system by an oscillating

magnetic �eld. The most important thing in this thesis is experimental veri�cation

of the results in simulations. The study further elucidates a physical mechanism for

the occurrence of negative susceptibility.
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Chapter 2

Problem De�nition

Resonance and vibration in normal modes are the classical phenomena, they are

detected in driven and coupled linear harmonic oscillators and they have relevance

in all the natural sciences and in engineering. Linearity of oscillators is considered for

small parametric approximations. Real life oscillators are nonlinear and the system

of coupled oscillators can in general be of very complex dynamics. The associated

equations of motion are not exactly integrable. Hence, numerical integration is

required. Any small inaccuracy in the prescription of the initial state may build up

an exponential divergence of nearby trajectories and this extreme sensitiveness of the

system turns it chaotic. Large amplitude oscillation, large driving force or coupling

between the oscillators leads non-linear oscillator to chaotic oscillator. Now-a-days,

the study of chaotic oscillators has emerged as an object of interest in physics,

mathematics and engineering. The classical results of the dynamics of driven, or

coupled harmonic oscillators, are important because these results reveal the question

of which phenomena emerge when chaotic oscillators are coupled or somehow driven

or perturbed. The most relevant phenomena studied theoretically or experimentally

until now are the synchronization and the suppression of chaos in the dynamics of

the chaotic systems driven by weak external periodic force.
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The periodic force driving the oscillator is characterized by its amplitude, and its

frequency, f . The phase of the force at any instant t is simply 2πft. The dynamics

of the chaotic coupled oscillators follows the pace of the periodically driven force.

The phase of the oscillator gets modi�ed to follow the driving force, called phase

synchronization. This is a fundamental phenomenon which appears in many situa-

tions found in science and engineering. An incoherent collective behavior appears in

the dynamics of an ensemble made of similar, but not identical chaotic oscillators.

In some of the experiments, a weak external applied force may be introduced where

certain coherence in the collective behavior emerges due to the phenomenon of phase

synchronization. For example, circadian rhythm is a biological oscillation. These

rhythms are due to a circadian clock, and they have been widely observed in plants,

animals, fungi, and cyanobacteria. The chaotic synchronization is useful in biology

to understand the development of externally imposed circadian rhythms [65]. In

another example in electrical engineering, the integration of multiple elements in a

single unit requires the dynamics of the di�erent elements to be paced. This occurs

particularly in multichannel chaotic communications [66].

A second phenomenon that has been observed in the study of chaotic oscillators

driven by a periodic force is the suppression of chaos under weak applied forces. This

suppression of chaos draws the interest of many researchers because the knowledge of

this phenomenon reveals the understanding of the physics on nonlinear systems. It

has vast applications not only in applied sciences but in technology as well. There

are many systems in the natural sciences that are driven by periodic perturba-

tions; e.g., the climate system and the living organisms which are acted on by daily,

monthly and yearly basis perturbations. The understanding of many phenomena in

climatology and biology require to take into account of this suppression of chaos.

In many technical systems, chaos is harmful; this occurs in con�ned plasma used in

thermonuclear fusion, as well as in mechanical, electrical and optical systems. With

a little modi�cation of the system, chaos can be eliminated and it has got a lot of
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practical interest.

For linear oscillators, analytical solutions are available whereas, for non-linear

oscillators, there is no straight forward solution. The analytical solutions of sim-

ple harmonic oscillators under dissipative or forced (or combination of both) have

been used in the explanation of many physical phenomena. The results are certain

and well known. Although non-linear oscillators have explained many physical phe-

nomena, still there are immense possibilities to get many interesting results that

may not have been explored so far. Following sections will explain a new problem

that emerges when there is a mutual synchronization among dissipative coupled

non-linear oscillators under periodic force.

2.1 Harmonic Oscillator

When a system is a free harmonic oscillator, the time evolution of the state of the

system is given by Eq. (2.1)

x(t) = A sin(ω0t+ δ) (2.1)

This simple harmonic oscillation describes a variety of practical instances. The dy-

namical behavior of the harmonic oscillator is studied by means of simple pendulum

in the gravitational �eld under free small oscillations. According to Newton's laws

of motion, x(t) has to obey the dynamical law Eq. (2.2)

d2x

dt2
+ ω2

0x = 0, (2.2)

whose general solution is Eq. (2.1) and ω0 is the natural frequency of the oscillator.

An element which is relevant in most practical cases is dissipation. Dissipation

is meant as an e�ect which opposes to the change of x, and it is assumed that it
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behaves like a friction force proportional to ẋ. In this approximation, the di�erential

equation for the dynamical variable, x(t), of the harmonic oscillator becomes

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x = 0, (2.3)

where the new positive parameter, γ, measures the intensity of the dissipation. The

general solution of this dynamical equation [67] depends on the relation between γ

and ω0, as stated by the following expressions:

x(t) = Ae−γt cos(ωγt+ δ), for ω2
0 > γ2;

x(t) = (C1 + C2)e
−γt, for ω2

0 = γ2;

x(t) = C1e
+γt + C1e

−γt, for ω2
0 < γ2;

(2.4)

A damped oscillation of angular frequency ωγ evolves in underdamped condition

(ω2
0 > γ2). An important property of the harmonic oscillator is linearity. This means

that the dynamical equations are such that if x1(t) and x2(t) are two independent

solutions of Eq. (2.2) or (2.3), then any linear combination of them x(t) = c1x1(t) +

c2x2(t), with c1 and c2 real numbers is also a solution. This property is used in the

theory of linear ordinary di�erential equations to get the solution.

A simple but interesting case, is when there is a periodic external driving force.

That is, the case of a damped harmonic oscillator driven by an external periodic

force, whose dynamical behavior, x(t), is described by the linear second order dif-

ferential equation

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x = F sinωt, (2.5)

where the term in the right hand side of Eq. (2.5) is the external periodic force.

The general solution of Eq. (2.5) is given as
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x(t) = x0(t) +
F sin(ωt+ φ)√

(ω2
0 − ω2)2 + (2γω)2

, (2.6)

with φ = − tan−1 2γω
ω2
0−ω2 , and x0(t) is given by Eq. (2.4). In Eq. (2.6), x0(t) is

transient part of the dynamics.

When systems of interest are made of two or more oscillators and they interact

weakly among them, the dynamics of such systems is complex. The results on the

dynamics of coupled harmonic oscillators can be obtained by the consideration of two

identical free oscillators mutually coupled. The coupled dynamics of these systems

are given by

d2x1
dt2

+ ω2
0x1 + κ2(x1 − x2) = 0,

d2x2
dt2

+ ω2
0x2 + κ2(x2 − x1) = 0,

(2.7)

where the two oscillators are labeled 1 and 2, respectively, and κ2 is a measure

of the strength of the coupling. The condition of weak coupling is expressed by

the condition κ < ω0. The time evolution of this coupled system, obtained by the

application of the standard techniques for the solution of systems of ordinary linear

di�erential equations, is then given by

x1(t) = A1 sin(ω1t+ δ1) + A2 sin(ω2t+ δ2),

x2(t) = −A1 sin(ω1t+ δ1) + A2 sin(ω2t+ δ2)

(2.8)

All the linear oscillators, as discussed above, illustrate some of the important

properties. These include

• oscillations around stable equilibrium,

• dissipation leads to equilibrium state,
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• loss of memory of initial conditions,

• external forces combined with dissipation allows sustained oscillations that are

independent of the initial conditions.

Linear oscillators should have a single frequency but they are not linear in strict

sense. A pendulum is not a simple oscillator, but rather a non-linear one, with the

frequency decreasing with increased amplitude. The e�ect of non-linearity becomes

signi�cant for larger amplitudes. The frequency changes with amplitude make in-

teresting responses when the system is driven at di�erent amplitudes.

2.2 Non-linear Oscillators

So long, linear oscillator systems have been discussed, but in practice, nonlinearity

is the reality, it is signi�cant and relevant. A non-conservative system in which

energy is added to and subtracted from the system, results a periodic motion called

a limit cycle. In mathematics, non-linear oscillator is a very signi�cant type of

oscillator that exhibits limit cycle oscillation. By the limit cycle oscillator, we mean

a mathematical object whose parameters evolve in time and periodically return to

their initial values after a threshold is crossed. In the study of collective dynamical

systems with two-dimensional phase space, a limit cycle is a closed trajectory in

phase space having the property that at least another trajectory spirals into it in

asymptotic time. Such behavior is exhibited in some nonlinear systems. Limit cycles

have been used to model the behavior of many real world oscillatory systems. The

study of limit cycles was initiated by Henri Poincare (1854-1912) [64]. The equation

of motion of general form of nonlinear dynamical system is

d2x

dt2
+ f(x,

dx

dt
) +

dV (x)

dx
= A0 sinωt (2.9)
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where V (x) is the potential function (having at least one stable equilibrium or

minima), and f(x, ẋ) is a damping term, may not be linearly varying with the ve-

locity. F. C. Moon has experimentally realized this model by means of a simple

magneto-mechanical system [68]. This is made up of a vertical magnetic �exible

beam �xed at its upper end to a vibrating support which provides the chaos en-

hancing force A0 sinωt (as shown in Fig 2.1). The wire is acted on at the lower

free end by two North-pole magnets that create two equilibrium points, and then

the double-well potential, V (x). Eq. (2.9) allows many di�erent and interesting re-

alizations, which include the Du�ng equations, and others such as the equations

of the motion of a driven pendulum undergoing large amplitude oscillations. The

di�erential equation of these cases may be expressed in the form of Eq. (2.10).

d2x

dt2
+ 2γ

dx

dt
+ ω2

0 sinx = A0 cosωt. (2.10)

Figure 2.1: Mechanical model of Du�ng oscillator, with double well potential
developed by the pair of N-poles.

The dynamical properties with linear oscillators summarized in the previous page

hold for nonlinear oscillators too. Nonlinearity has additional signi�cance on the

dynamical behaviors and hence nonlinear systems allow new kinds of solutions for the

oscillations around the equilibrium. These solutions have been named as aperiodic
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solutions. The time evolution of the system observable, x(t), when an aperiodic (or

transient) solution vanishes with time, oscillates around the equilibrium; however,

there is no de�nite form of the function x(t), limited to a �nite time interval that

repeats itself. Moreover, the phase space plots of such systems do not converge to

closed curves nor approaches to the equilibrium, instead, they trace cloudy entangled

trajectories that never repeat themselves.

Nonlinear systems can be modeled by means of nonlinear di�erential equations,

like Eq. (2.9). There is no general method to solve nonlinear equations like the one

that is employed to obtain the motions of the several types of harmonic oscillators

[69] studied above. In general, and especially when aperiodic solutions are involved,

the motion of the oscillator in phase space has to be obtained by means of one or

more of the numerical methods that have been developed to solve di�erential equa-

tions [70] . Although there are analytical tools to deal with nonlinear systems [71],

computational methods play an important role in the study of nonlinear dynamical

systems.

The following section describes the dynamics of large number of coupled systems,

they are called collective systems.

2.3 System of Limit Cycle Oscillators

Studying dynamics of collective behavior is of great interest for the scientists from

di�erent disciplines for a quite long time. The most interesting thing observed in

collective systems composed of many dynamical components is synchronization. The

occurrence of synchronization occurs in systems composed of limit cycle oscillators

has been described by a simple model proposed by Yoshiki Kuramoto [72]. According
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to the model, Kuramoto proposed a simple coupled equation given in Eq. (2.11).

θ̇i = ωi −
K

N

N∑
j=1

sin(θi − θj), (2.11)

where θi represents the phase of the ith oscillator, and N the total number of the

oscillators. Kuramoto model [9] provides quantitative measures by which we can

study the phenomenon of synchronization at the steady state of the system or while

the system is evolving into the steady state. Sakaguchi has extended the model for

periodic external force given in Eq. (2.12) [13].

θ̇i = ωi −
K

N

N∑
j=1

sin(θi − θj)−B sin(θi − ωt). (2.12)

In this collective motion of the oscillators, an order parameter has to be identi�ed

to characterize the dynamics. Relative phase among the oscillators is an order

parameter as it characterizes the modes of coordination [73]. In this model, the

order parameter (φ) is de�ned as r(t)ei(ωt+φ) = 1
N

N∑
j=1

eiθj where r(t) with 0 ≤ r(t) ≤

1 measures the phase coherence, and φ is the average phase. Sometimes these

oscillators are called phase oscillators.

2.4 N-body Limit Cycle Oscillators Poses A New

Problem

The ordinary di�erential equation Eq. (2.5) represents the damped harmonic oscil-

lator under external periodic force and its phase (φ) is equal to − tan−1 2γω
ω2
0−ω2 . The

phase lag depends upon the strength of dissipation (γ) and frequency of external

force (ω). Here, the negative sign indicates lag and φ is higher for higher damping

strength and frequency. The phase lag also increases as ω approaches towards ω0.
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Therefore, for all possible values of ω, phase lag cannot exceeds 90◦. This holds good

not only for an isolated harmonic oscillator but also for an oscillator in a coupled

system because the dynamics follow Eq. (2.6). In collective system, the phase of

individual limit cycle oscillators does not exceed 90◦ hence, the average phase φ of

Eq. (2.12) apparently cannot exceed 90◦.

Some interesting questions that come up in this context are:

• What is the maximum possible phase lag of a limit cycle oscillator when it is

sitting in a system?

• Is it possible that the average phase lag exceeds 90◦ in the system of N-body limit

cycle oscillators? In that case, the dynamics of the oscillators is such that

the system opposes the external �eld, resulting in a diamagnetic state of the

system.

Now the problem is de�ned as :

• Is there any possibility that the phase lag of the system exceeds 90◦ for ω < ω0?

• Is there any possibility that a system of oscillators can show a negative (diamag-

netic) susceptibility at a frequency lower than the natural frequency of the

oscillators?

• How and at what conditions the phase of the collective motion demonstrate dia-

magnetic susceptibility?

This problem cannot be solved by any generalized approach or by any standard

models rather it requires more speci�c formulation of the system dynamics. This

brings in the possibility for a new concept of negatively susceptible system excited

by periodic perturbation. The following chapters will validate the above statement

by numerical simulation and by veri�ng experimentally using nano-magnetic com-

posites.
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Chapter 3

Susceptibility of Chaotic Oscillators

System

The problem de�ned in Chapter 2 has originated from a natural phenomenon, the

predator-prey interaction of school of �shes. When a predator shows up, a disorga-

nized school of �shes regroup and swim closer together with coordinated movements.

Someone in the school spots a predator and starts to take some sort of evasive ac-

tion, all fellow �shes also respond [74]. Prey grouping and predator confusion have

been studied and simulated by many researchers [75] providing a more quantitative

view of the evolved grouping strategies considering nearest neighbor distance and

degree of coordination. In the case of moving or stationary group of �shes, there

is a tendency that denser groups (having a smaller distance of separation between

the neighbors) o�er greater safety in terms of the confusing the predator. This was

proposed by Kunz [75] and practically demonstrated in several Youtube videos e.g.,

School of Fish! [76]. Because of their immense size, school of �shes often confuses

predators, making it di�cult for the predator to single out one individual prey. Po-

larization or coordinated movement is seen when they are at closer distance. Tsang

et al. have suggested �sh motion as a moving dipole in a doubly periodic domain
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[77]. Dipolar interaction is the cause of their coordinated movement.

Dipole formations in nature are of various types, e.g., electric dipole, magnetic

dipole, �ow dipole, vortex dipole, etc. An electric dipole is a small separation of equal

positive and negative charges. A magnetic dipole is a tiny magnet of microscopic

size, equivalent to a �ow of electric charge around a loop. A �ow dipole is also

formed by the separation of a sink and a source in the �ow. Vortex dipole is formed

around the object in the �owing �uid. Equal and opposite vortices are developed

at the head and tail of a �sh when it swims, as if �sh is a �oating dipole in water.

The dynamics of school of �shes is considered to be a collection of dipoles in an

unbounded viscous �uid that captures long range hydrodynamic interaction. Fish

swims preferentially parallel or anti-parallel to the �ow of water. Therefore, the �ow

of water imposes a double well potential on the collective dynamics of the �shes.

Similar to electrical dipoles, �sh schooling dynamics is also modeled considering

dipole-dipole interaction [78]. All these dipoles experience long range interaction and

this interaction in�uences the dynamics of the dipolar systems. In some occasions

(Jonathan Bird's Blue World: Sail�sh!) [79], it is seen that a predator deviates

the collective movement of the �shes by attacking them. The predator can de�ect

the �shes who are heading the school. Sudden appearance of a predator initiates

a cooperative turning in the school and the school is still continues to turn in the

opposite direction of the predator even when the predator at that instant may have

moved away from the school. In the video, produced by Jonathan [79], it is seen

that a situation arises when the �shes are approaching towards the predator instead

of moving away from the predator and this is due to the repeated attack of the

predator alternately from upstream and downstream directions (vide Appendix A).

Thus, the group of �shes shows a negatively susceptible system against the external

perturbation of the predator. From the above discussions, following conclusions are

drawn.
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• Fish in a stream acts as vortex dipole [77].

• Fish-dipoles are in a double well potential [77].

• School of �shes shows a high degree of polarization among themselves [74].

• Degree of coordination among the �shes increases with the narrowing of the sep-

arating distance among the neighbors [74].

• The predator gets confused for higher degree of coordination in the school of �shes

[75].

• The predator attacks alternately from di�erent directions. But, it is seen that

the �shes are heading towards the predator instead of �eeing away (Appendix

A). This means that the system is opposing the external perturbation [79] and

that is a negatively susceptible system [24].

In this chapter, feasibility of a negatively susceptible system is demonstrated

considering a collection of dipole oscillators under a periodic perturbation. To realize

negative susceptibility, an array of interacting dipoles is considered as oscillators.

Here the dipoles oscillate about the axis by the in�uence of an external magnetic

�eld.

3.1 Interacting System of Oscillators

Interaction between the oscillators may be between the nearest neighbors or of long

range. The dynamics of collective system becomes more realistic if the coupling of

the oscillators is considered to be of long range instead of nearest neighbor coupling.

When oscillators of similar type are spatially distributed, essentially they occupy a

volume. For long range interaction, the strength of interaction is a function of dis-

tance (r) between the oscillators (typically proportional to r−n); n is a real number.
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Due to this varied strength of interaction, the behavior of the oscillators located in

the central part of the occupied volume di�ers considerably with respect to those

located at the surface. The strength of interaction �eld is shown in Fig. 3.1. This

�gure illustrates that the oscillators in the central region are strongly coupled than

the oscillators located at the surface. Although the oscillators are similar yet due to

long range interaction, the Hamiltonians of the oscillators are di�erent. Therefore,

the relative phase of the oscillators at the central region is more than those located

at the surface. In a coupled system, there exists always a possibility of occurrence

of cooperative phenomenon among the oscillators due to presence of external per-

turbation as observed in the nature [23]. The existence of this type of cooperative

phenomenon has been established analytically by Sakaguchi [13]. This cooperative

phenomena in the assembly of coupled systems primarily depends on the type and

the strength of interaction among the oscillators. Since the external perturbation

is the primary cause of the cooperative phenomenon in the limit cycle oscillator

system. So, there must be a time lag between the e�ect and it's cause. This delay

predominantly depends on the strength of interaction, intensity of dissipation, and

many other parameters of the system.

Figure 3.1: An ensemble of 71 × 71 × 71 dipoles in a three dimensional lattice is
arranged in an anti-ferromagnetic ordering. The dipole-dipole interaction �eld along
the central line of the ensemble is plotted.
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The topic discussed in this thesis is the susceptibility of a system of coupled

dipoles. If the dipoles are �xed at its center of mass and free to rotate, the dipoles

act as a phase oscillator. The angular displacement with respect to the periodic �eld

is measured. Practically working with dipoles is di�cult but magnetic needle is a

good approximation of a big dipole. A magnetic needle acts as an oscillator and the

dynamics of the needle becomes chaotic under certain conditions. This phenomenon

is discussed in the following section.

3.2 Magnetic Needle, a Huge Dipole

The basic building block in the system of coupled oscillators is dipole. Magnetic

needle is equivalent to a dipole other than the dimension. The dynamics of a spinning

compass needle in a magnetic �eld that varies sinusoidally with time is studied in

this section to understand the basic characteristics of the dynamics of the dipoles.

Meissner and Schmidt have performed a simple experiment to study the transition

of order to chaos in a magnetic needle as shown in Fig. 3.2 [8]. The electromagnets

are generating time varying uniform magnetic �eld H = H0 sinωt. If the angle

between the compass needle of moment m and the magnetic �eld direction θ, the

torque exerted on the needle is Γ = ~µ× ~H = µH sin θn̂. The equation of motion is

written as,

I
d2θ

dt2
= µH0 sinωt sin θ, (3.1)

where I is the moment of inertia of the needle. This simple Eq. (3.1) is non-

integrable just like multi-body problem.

The total energy (Hamiltonian) of the mechanical system may be written as given

in Eq. (3.2).
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Figure 3.2: Compass needle in a uniform magnetic oscillating �eld.

H(θ, J, t) =
J2

2I
+ µH0 sinωt cos θ, (3.2)

Initially, the system is periodic with time and by gradually increasing a parameter

(say H0) causes a �xed point to bifurcate by period doubling, e.g., it becomes a

periodic orbit of period 2, further increase of H0 results in another bifurcation to

period 4 and so on to period 2n. When n→∞, the system becomes chaotic.

3.3 A Dipole Oscillator in Double Well Potential

In this coupled dynamical system, dipole oscillators are the limit cycle oscillators in

the system. Dipole is a pair of equal and opposite strength (±µ) points separated

by a �nite distance as shown in Fig. 3.3. Each dipole is �xed at the middle and

rotates on the plane about an axis passing through the center of mass of the dipole

and perpendicular to its length. These dipoles are placed with a regular spacing in

a straight line and all experience an external periodic �eld H0 sinωt as shown in the

Fig. 3.3. The dynamics of the dipoles is constrained by double well potential and

dipped in a viscous medium.

To understand the coupled dynamics, it is essential to look into the uncoupled

motion of the dipoles. In the case of a freely rotating dipole under periodic �eld, the
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Figure 3.3: Arrangement of coupled dipoles in an array.

dynamics is represented by the ordinary di�erential equation (ODE) (3.1). Dipole

behaves chaotic when ω <
√

2µH0

I
and non-chaotic when ω >

√
2µH0

I
[8]. This crite-

rion does not follow when the motion of the dipole is restrained by some potential

well.

If the dipoles are associated with a pair of favorable axes, its motion is biased

by a double well potential and these two favorable orientations of the dipoles are

separated by an energy barrier of height κ. The double well potential used in this

study is represented by the function -κ cos2 θ which has two minima at 2nπ and

(2n + 1)π respectively, as shown in Fig.3.4. This is a standard potential function

used in magnetic anisotropy [30]. The shape of the potential well gets modi�ed by

the external �eld as -κ cos2 θ + µH0 cos θ sinωt and is shown in Fig.3.4 for di�erent

strength H0 of applied magnetic �eld.

If µH0 sinωt, the energy imparted to the dipoles by the external �eld, does not

exceed 2κ, the dipole may not �ip to the other minima and the motion of the dipole

will always be restricted within a particular well. The dynamics of such dipole will

follow the ODE as given in Eq.(3.3) derived from the Hamiltonian of the dipole

oscillator (Appendix B), where β is the damping coe�cient, α = µH0

I
and ω0 =

√
κ
I
.

These four parameters ω0, α, β, ω govern the dynamics of the dipoles.
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Figure 3.4: Functional representation of the double well potential due to various
applied �eld strength.

d2θ

dt2
= −ω2

0 sin 2θ + α sinωt sin θ − βθ̇ (3.3)

The prime interest is to study the dynamics of the dipoles when the dipoles toggle

between the two minima in a non chaotic manner. This can be achieved when the

dynamics satis�es two criteria. The �rst criterion is µH0 should be more than 2κ

(i.e., α > 2ω2
0). To satisfy this criterion, the system becomes prone to energy

blow-up and chaotic, because there is a constant supply of energy to the system

by the driving agent. To avoid this, damping is introduced in the dynamics of the

system [22]. The second criterion is that the system has to settle at the minima

alternately for each half cycle of the driving force. Hence, the damping coe�cient β

should be optimized to make the settling time less than T
2
, where T is the time period

of the external wave. By adjusting suitable values of β, the settling time is made to

less than T
2
and the numerical solution of Eq.(3.3) is shown in Fig. 3.5. This �gure

shows that the dipole toggles from one minimum to the other when the external �eld

changes its polarity and it undulates about the minima and settles to equilibrium.

The dynamics of these non-interacting dipoles in the dissipative medium is projected

in the domain of the angular position (rads) vs. angular velocity (rads/sec), as shown
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Figure 3.5: Under-damped oscillation of a dipole, restricted within the two minima
at θ = 0 and π.

in Fig. 3.6 and it looks like a �xed point attractor and the system tend towards 0 or

π alternately. The behavior of the dipole oscillator as shown in Fig. 3.5 is similar to

an under-damped oscillator. The oscillations of the dipoles before settling to 0 or π

are damped depending upon the values of β. In the next section, coupled dynamics

of the dipoles is discussed.

3.4 Dynamics of Coupled System

According to the Caldeira-Leggett model, one can establish a minimal Hamiltonian

model of a coupled system to replicate the realistic physical phenomenon and can

be solved numerically [81]. If J is the angular momentum of the dipoles and rij

represents distance between the ith and jth dipoles, the Hamiltonian of ith dipole in

coupled condition is given by the following Eq. (3.4). Here the
∑

term arises due

to collective dipolar interactions.
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Figure 3.6: Dynamics of dipole attractor at the two minima indicating suppression
of chaos by weak damping.

Hi = J2/2I − κ cos2 θi + µH0 sinωt cos θi − βθi

+µ2

N∑
j=1(i 6=j)

1

r3ij
(−2 cos θi cos θj + sin θi sin θj)

(3.4)

From this Hamiltonian the dynamics of the individual dipoles in the coupled

system is derived (Appendix B) as in the Eq.(3.5).

d2θ

dt2
= − ω2

0sin2θ + α sinωt sin θ − βθ̇

+γ
N∑

j=1(i 6=j)

1

r3ij
(2 sin θi sin θj + cos θi cos θj)

(3.5)

The ODE described in Eq.(3.5) has three critical parameters α (external per-

turbation), β (damping) and γ (strength of interaction, γ = µ2

I
) that governs the

dynamics of the system. If α is very large compared to β and γ, the dynamics of

the system is dominated by the external �eld. The following section explains the
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numerical solutions of the coupled ODE, as given in Eq.(3.5).

3.5 Numerical Analysis

In the model of the coupled system, N=91 dipoles are considered and 91 coupled

equations are solved numerically using 4th order Runge-Kutta method. The natural

frequency, ω0 of the dipoles is chosen to be 2π per second. α and β are chosen to be

18ω2
0 and 0.3ω2

0 respectively so that the overshoot of oscillation dies down to prevent

chaos. γ is varied from 0.5ω2
0 to 3.0ω2

0 to understand the nature of the dynamics

when α and β remain constant. For γ = 0, all the dipoles are non-interacting and

follow the external �eld with a constant phase lag less than 20◦, as shown in Fig. 3.5.

For γ 6= 0, additional phase lag with respect to the external �eld develops in the

system and it increases with higher values of γ. Fig. 3.7 shows various combinations

of the parameters for which the coupled system demonstrates the average phase lag

more than 90◦ for a limited range of frequencies of the external �eld. For lower

values of γ (< 0.5ω2
0), the average phase lag never exceeds 90◦. For γ = ω2

0, the

phase lag of the system exceeds 90◦ between the applied frequency 3.8 rad/sec to

6.4 rad/sec. Further increase in γ value, the phase lag exceeds 90◦ at lower frequency

range. For γ = 3ω2
0, the phase lag of the system is above 90◦ between the frequency

range 0.1 rad/sec to 1.8 rad/sec, otherwise the system is chaotic. This indicates

that the strength of interaction is the prime cause of this phenomenon. It is also

important to note that the phase lag is not same for all the dipoles in the system. In

Fig. 3.8, the variation of the phase lag among the dipoles is shown separately. The

dipoles in the core has phase lag more than the dipoles located at the ends. The

dynamics of the coupled oscillators can be explained physically based on the results

obtained from numerical computation.

A continual counteraction between the external �eld and dipolar interaction gov-
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Figure 3.7: For various γ values phase lag of the system is demonstrated. Phase
lag of the system exceed 90◦ for some de�nite frequency ranges only.

erns the dynamics of the system. When the external �eld surpasses the dipolar

interaction, the phase lag is less than 90◦ but for certain combination of the param-

eters, dipolar interaction overcomes the external �eld and the phase lag becomes

greater than 90◦. Due to the long range interaction, dipoles located at the ends are

loosely coupled and hence the system initiates to respond to the external �eld at

either ends of the array. This turning of the dipoles at the ends, sets o� a series of

sequential turnings in the array due to the sudden change in the interaction �eld

caused by the neighbor reversal [13], [82]. This makes the dipolar orientation in

the outer region aligned with respect to the applied �eld whereas the core remains

in opposition to the applied �eld. Thus the dipoles in the core experience a �eld

generated collectively by the dipoles at the ends. The opposing �eld created by the

dipoles at the ends becomes adequately high to turn a large number of dipoles in

the core which can be looked as a cooperative switching. Due to this cooperative

switching, majority of the dipoles in the array oppose the applied �eld by more than

90◦. The interesting thing in the observation is that the phase of the system lags
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Figure 3.8: The phase lag with respect to the applie �eld is position dependent.
Dipoles at the ends (blue ) have phase lag less than the dipoles at the center (red).

more than 90◦ to 110◦ when the external frequency is much less than the resonating

frequency of the system. Thus, it originates a new concept of negative susceptibility

in the system of coupled nonlinear oscillators. In the next chapter, a more speci�c

simulation on nano-magnetic ensembles is presented.

3.6 Conclusion

This chapter has explained the term susceptibility i.e., susceptibility of collective

oscillators system subjected to an external perturbation. As magnetic needle is

the gross representation of a dipole, the historical experiment done by Meissner

and Schmidt is explained here to understand how the dynamics of the needle be-

comes chaotic. Ordinary di�erential equation is derived from the Hamiltonian of

the dipole oscillator to analyze the dynamics of the magnetic needle. The synchro-

nization and chaos suppression is achieved by introducing damping in the dynamics
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of the dipoles. A simulation result of 91 dipoles arranged in an one dimensional

array is presented in this chapter where an extra summation term called interaction

potential is added with the coupled equations of motion of the dipoles. The coupled

di�erential equations are solved by Runge-Kutta method and the solution shows

negative susceptbility at some frequencies of the applied �eld.
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Chapter 4

Crossover of Susceptibility:

Simulation Studies

Classical thermodynamics describes macroscopic properties in terms of a few vari-

ables: temperature, pressure and volume; but this is the thermal average of mi-

croscopic states of the constituent subunits. If it is assumed that the system is

made up of a set of identical subunits and average over all of the subunits then

this system is called a statistical ensemble. Here, identical subunits means they

are all in the same thermodynamic state. The most common statistical ensembles

are micro-canonical, canonical and grand canonical ensembles. Micro-canonical en-

semble is a concept used to describe the thermodynamic properties of an isolated

system. Possible states of the system have the same energy and the probability for

the system to be at any given state is the same. Therefore, it describes a system

with a �xed number of particles (N), a �xed volume (V), and a �xed energy (E).

Canonical ensemble describes a system where the number of particles (N) and the

volume (V) are constant, and it has a well de�ned temperature (T), which speci-

�es �uctuation of energy. Grand canonical ensemble describes a system with �xed

volume (V) and temperature (T), but to specify the �uctuation of the number of

39



particles, it introduces chemical potential. In this thesis, the so called identical sub-

units are dipole oscillators. They are �xed in numbers (N) and occupy a constant

volume (V) at temperature T. It is known that the varieties of collective behavior

appear in the dynamics of an ensemble made by similar, but non-identical limit cycle

oscillators [83]. The simplest way to consider the coupling in the collective system

is the nearest neighbor interaction as seen in Ising model where phase transition in

one dimension is not possible. But it has been proved that there is a phase tran-

sition in one-dimensional Dyson model for an in�nite linear chain of spins with 1
rα

as coe�cient of interaction potential [84], [85] when 1 < α < 2. Here, an ensemble

of superparamagnetic particles has been considered. Assuming those single domain

particles as dipoles and the dipoles are coupled with each other with long range

interaction, crossover of susceptibility has been established.

A single domain nano-magnet acts as a magnetic dipole. In addition, it switches

or oscillates its magnetization about the easy axis depending upon its size, tem-

perature and anisotropy. In a grand canonical ensemble of nano-magnets, dipolar

interaction potential varies spatially within the ensemble because a long-range type

of interaction exists between the dipoles (Fig. 3.1). So, dipole-dipole interaction al-

ters the relaxation time of the nano-magnets in the ensemble. The relaxation time of

the interacting nano-magnets depends upon the average separation among the nano-

magnets and the total number of nano-magnets present in the ensemble. Hence, the

aggregation of interacting nano-magnetic dipoles demonstrates both experimentally

and theoretically as a model system to detect intriguing co-operative physical phe-

nomena. A crossover from paramagnetic to diamagnetic phase due to the variation

of frequency of the applied sinusoidal magnetic �eld of a nano-magnetic ensemble is

presented in this chapter. This interesting phenomenon may be signi�cant on the

design and development of magnetic devices. The simulation of the system is in

good agreement with the experimental results and those results will be explained in

chapter 5.
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4.1 Single Domain Magnetic Islands : Superpara-

magnetism

The magnetization reversal of a single domain superparamagnetic particle is due to

the applied magnetic �elds and thermal agitation. In 1948, Stoner and Wohlfarth

(SW) [30] have �rst given the theoretical description of the magnetic switching

of a single domain (diameter < 10nm) nano-magnets. It has been assumed that

due to strong exchange coupling between the atomic spins, all the atoms always

remain in a single domain state. Hence, during reversal process, all the spins reverse

simultaneously as a single domain. Therefore, a single domain of N atomic magnetic

spins (moment= µat) is described as a giant moment µ =
∑
µat of the particle.

In magnetically ordered material, there are certain preferred orientation(s) of the

magnetization. These preferential directions are called easy axes. The magnetic

moment, µ of the single domain nano-magnet prefers to stabilize in the easy axes

only. Due to thermal agitation, polarity of µ (±1) changes with time, and the

average time of switching of magnetization is called superparamagnetic relaxation

time (τ). The reversal of magnetization follows Arrhenius Law as given in Eq. (4.1):

τ = τ0 exp
KV

kBT
, (4.1)

τ0 is called pre-exponential factor (10−9 sec to millions of years), V is the volume

of the particle, kB is Boltzmann constant, K is the anisotropy energy per volume

and T is temperature. The state (orientation) of each nano-magnet about the easy

axis is ±1 and they can �ip between the states due to thermal agitation or external

�elds. This single domain nano-magnet acts as a switching dipole and the rate of

transition between the states ±1 about the easy axis depends upon temperature and

anisotropy, as per Eq. (4.1). Because of this anisotropy, the magnetic dipoles cannot

freely follow the external applied �eld and hence a counter action exists between the
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applied �eld and the dynamics of the magnetic dipoles. As a result, a diamagnetic

susceptibility evolves in the ensemble of superparamagnetic particles . Following

section provides the derivation for the condition of para-to-diamagnetic crossover of

susceptibility by periodic external magnetic �eld in an ensemble of nano-magnets.

4.2 Model and Simulation

In this thesis, exciting results of simulation are presented by computing the dynamic

evolution of magnetization of an ensemble of nano-magnets under the in�uence of

spatial variation of interaction energy along with temporal variation of Zeeman

energy. A three-dimensional Ising-like model with cobalt nano-magnets is considered

at various lattice points of a simple cube. On this account 7 × 7 × 7, 11 × 11 × 11

and 15 × 15 × 15 Ising-like cobalt nano-particles of dimension 6.5 to 7.5 nm are

arranged in a cubic array of lattice constant 8.8 to 15 nm. The easy axes of the

nano-magnets are chosen to be at some random angle with respect to the z-axis.

The magnetic �eld H = H0 sin(ωt) is applied along the z-axis.The ensembles of the

nano-magnets are kept at various temperatures 77K and 300K respectively, which are

well below the magnetic ordering temperature [38] so initially the assembly of nano-

magnets will be in the anti-ferromagnetic ordering. Therefore, in the simulation,

the initial ordered state is taken to be anti-ferromagnetic [40]. In this computation,

the duration of switching is assumed to be instantaneous and the stable state of the

magnetic moment of the nano-magnets is taken to be either parallel or anti-parallel

to easy-axis, energy minima of the nano-magnet. The size of the nano-magnetic

particles, lattice constant and applied magnetic �eld are so chosen that the three

forms (anisotropy, Zeeman and dipole-interaction) of energies are of the same order.

If KCo = 4.1 × 105J/m3, V = 2.21 × 10−25m3(diameter, d = 7.5nm), T = 300K,

Boltmann constant k = 1.3806488×10−23m2kgs−2K−1. Here, Thermal energy,kT =
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4.14 × 10−21 Joules and anisotropy energy,KCoV = 9.06 × 10−22 Joules. Here,

thermal energy is 4.56 times the anisotropy energy. So, the blocking temperature of

the magnetic nanoparticles is less than 16K. If KV >> kT thermal energy cannot

switch the magnetic moment from one orientation to other.

SW model shows how the anisotropies present in a system can lead to a hystere-

sis, although there is no irreversible e�ects associated with domain wall pinning.

Originally, SW model has assumed shape anisotropy, but it is widely used for the

case of uniaxial magneto crystalline anisotropy. The existence of coherent rotation

of the magnetization of each nano-magnet (i.e., no internal degrees of freedom) is

the most important assumption in this model. The equilibrium direction of the

particle magnetization vector is determined by the strength, direction of the applied

magnetic �eld and orientation of the easy axis of anisotropy (Appendix D and E). If

a magnetic �eld H is applied along z-axis and ê is the direction of the easy axis, the

magnetization vector m̂ will rotate away from the easy-axis due to the applied �eld.

The magnetization vector is rotated on the basal plane by an angle ψ, as shown in

Fig. 4.1.

The total energy of the system is given by

E(ψ) = −KV cos2 ψ −MsV H cos(γ0 − ψ), (4.2)

where γ0 is the direction cosine of easy-axis with respect to z-axis, K is the

anisotropy constant, V the volume of the nano-magnet and Ms is the saturation

magnetization of the bulk material. The Eq. (4.2) can be transformed to reduced

energy form as given below.

ξ = (
E

2KV
+

1

4
) = −1

4
cos 2ψ − h cos(γ0 − ψ), (4.3)

where h = MsH
2K

. For given values of γ0 and h (or H), the magnetization vector will
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Figure 4.1: Easy axis of an uniaxial anisotropy crystal (black broken line) Magnetic
moment is shifted away from easy axis by an angle ψ when a �eld H is applied along
Z-axis.

choose ψ so that it minimizes the energy function in Eq. 4.3. Therefore, ∂ξ
∂ψ

= 0 and

∂2ξ
∂ψ2 > 0.

The �rst condition, i.e., the equilibrium condition implies

∂ξ

∂ψ
=

1

2
sin 2ψ − h sin(γ0 − ψ) = 0, (4.4)

The second condition, i.e., the condition for stability limit implies

∂2ξ

∂ψ2
= cos 2ψ + h cos(γ0 − ψ) > 0. (4.5)

Eq. (4.4) has multiple solutions for a given h and γ0 and possibly more than one

of these solutions represent an energy minimum. In order to get a unique solution,

it is essential to specify expected value or follow the history of the value of h for each

γ0. So, instead of analytical solution, numerical method is more suitable to �nd the

44



stable minma of ψ with respect to h. The value of ψ at which the energy minimum

occurs gives the direction cosines of m̂ = cosα, cos β, cos γ. Thus the magnetization

mz in the direction of magnetic �eld is obtained.

Nano-magnets are assumed to experience same external magnetic �eld, h(t) =

h0 sin 2πft. The dynamics of the nano-magnets follows the Hamiltonian as given

in Eq. (4.6) where J(r, r′) is the coupling coe�cient and Sr(±1) is the state of

magnetization.

H = −
N∑

<r,r′>

J(r, r′)SrSr
′ −

N∑
r

h(t)Sr (4.6)

At a given site r, the instantaneous magnetic �eld hT (r, t) experienced by a nano-

magnet is the sum of applied �eld and the �eld produced by the dipoles as given

by Eq. (4.7) where hdd is the �eld produced by the nano-magnets (dipoles). hdd is

expressed in Eq. (4.8).

hT (r, t) = hdd(r, t) + h(t) (4.7)

hdd(r, t) =
N∑

r′(r 6=r′)

J(r, r′)Sr
′

(4.8)

The Brownian relaxation dynamics of a clustered superparamagnetic particle sys-

tem is investigated through characterization of complex magnetic susceptibility due

to frequency and �eld strength variations. In non-equilibrium physics, the phe-

nomenological Langevin model for the motion of a Brownian particle submitted to

an external force yields correlation function which does not ful�ll the sum rules of

linear response theory. This means that the model can actually not be the macro-

scopic manifestation of an underlying microscopic dynamical model [80]. A classical
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heavy particle with a path of classical independent harmonic oscillators - consti-

tutes a special case of the Langevin model. Caldeira and Leggett proposed minimal

Hamiltonian model [81]. In the system considered in this thesis work, the dynamics

of nano-magnets with imposed constraint is analyzed by a minimal Hamiltonian

model which mimics the realistic physical phenomenon [81]. This minimal Hamilto-

nian of the system of interacting nano-magnets is represented in the form of a single

spin Hamiltonian as given in Eq. (4.9).

H = −hT (r, t)Sr = −
N∑

r′(r 6=r′)

J(r, r′)Sr
′
Sr − h(t)Sr (4.9)

Let P (+, t) and P (−, t) are the probabilities that the dipole is in the state of

+1 and -1 respectively at the instant of time t. We also take 1/τ−+ and 1/τ+−

be the transition rates of the dipole from state -1 to +1 and from state +1 to -1

respectively. The master equation of these probabilities is given in Eq. (4.10).

dP

dt
= −P (+, t)

τ−+
+
P (−, t)
τ+−

(4.10)

We assume that the resolution of the observation time of our model δt � τ .

Therefore, during δt, no switching of the dipole occurs, hence dP
dt

= 0 in that interval.

As a result the ratio of the probabilities follow Eq. (4.11).

P (+, t)

P (−, t)
=
τ−+
τ+−

(4.11)

The applied �eld compels the dipoles to align in the �eld direction hence P (+, t) >

P (−, t) in the positive half cycle of the applied �eld and vice versa. In this case,

the dipole will behave paramagnetic. This is quite usual. However, in this study

an unusual occurrence of P (+, t) < P (−, t) in the positive half cycle of the applied
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�eld and vice versa is discussed. In this case only, the system of dipoles manifests

diamagnetism. This diamagnetism occurs when a dipole is in opposition to the

applied magnetic �eld. However, this opposition does not persist for more than the

relaxation time, τ of the dipole and the possibility of sustained diamagnetism exists

when half of the time period (T ) of the applied �eld is less than the relaxation time

of the dipole in the system. This can be easily formulated as τ+− greater than τ−+

and at h = h0 the relaxation time τ−+ is greater than T
2
(= 1

2f
) for the positive half

cycle of the �eld and vice versa.

The minimal Hamiltonian of the system of interacting nano-magnet is repre-

sented in the generalized form of a single spin Hamiltonian as given in Eq. (4.6) and

Eq. (4.9). The same Hamiltonian is rewritten for nano-magnets in Eq. (4.12) where

hT is the �eld experienced by each nano-magnet consisting of the imposed �eld

(h0 sin 2πft) and dipolar magnetic �eld hdd. If the easy axis of the nano-magnets is

parallel to the z-axis, the Hamiltonian is modi�ed with γ0 = 0◦ as given in Eq. (4.13)

whereMs is saturation of magnetization per unit volume (V) and K is the anisotropy

constant.

H = −SrKV cos2 ψ − SrMsV hT cos(γ0 − ψ) (4.12)

H = −SrKV cos2 ψ − SrMsV hT cosψ (4.13)

The net magnetic �eld hT in Eq. (4.13) at any arbitrary jth lattice location at

any instant of time t is given by Eq. (4.14) where Si = ±1 is the state of the ith

nano-magnet and the other variables have their usual meaning. The expression of

hdd is derived in the Appendix C of this thesis.
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hT = h0 sin 2πft+ hdd

= {h0 sin 2πft}ẑ +MsV
N∑

j=1(i 6=j)

Si
1

r3ij


3(xi−xj)(zi−zj)

r2ij
)x̂

+(3(y
i−yj)(zi−zj)

r2ij
)ŷ

+(3(z
i−zj)2
r2ij

− 1)ẑ

 (4.14)

For simplicity, the magnetic moments of the nano-magnets are considered in the

±z directions, the energy expression of each nano-magnet becomes independent of

the transverse components of hT and the corresponding relaxation time τ in relation

with instantaneous net magnetic �eld is given by the Eq. (4.15) and (4.16) where

hK = Ms/2K [29].

τ+− = τ0exp

{
KV

KBT

(
1 +

hT
hK

)2
}

(4.15)

τ−+ = τ0exp

{
KV

KBT

(
1− hT

hK

)2
}

(4.16)

The condition of diamagnetism arises from Eq. (4.11) where τ+− should be less

than τ−+ for positive h.

exp

{
KV

KBT

(
1 +

hT
hK

)2
}
<exp

{
KV

KBT

(
1− hT

hK

)2
}

⇒ 4hT
hK

< 0

⇒ hdd(t) + h(t) < 0

(4.17)

Hence, from Eq. (4.17), it is clear that the diamagnetism is possible for the nano-
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magnetic ensemble if the instantaneous applied �eld h is in opposite polarity with

respect to the instantaneous interaction �eld hdd.

The switching probability of each nano-magnet at di�erent spatial locations in

the ensemble is di�erent and hence the overall magnetization is time varying. So

the magnetization of the ensemble must have a phase lag with respect to the ap-

plied magnetic �eld [29]. The dipolar �eld at each lattice site in the ensemble

depends upon the overall orientation of the nano-magnets and it changes whenever

a nano-magnet switches from one state to the other. Therefore, in the process of

simulation, the dipole-dipole interaction �eld is computed for each nano-magnet

whenever switching occurs at any lattice site. The whole process is stochastic and

the particle switches according to the Boltzmann probability and the time evolution

of the state of the individual nano-magnets is extended from Eq. (4.11) to Eq. (4.18).

P (+, t)

P (−, t)
=
τ−+
τ+−

= exp

(
−2

KV +MsV hT
kBT

)
(4.18)

This theoretical study is converted into a simulation code based on the �owchart

given in the following section.

4.3 Simulation Code �owchart

In the simulations, it is assumed that the magnetic �eld is generated by a solenoid

coil and the nano-magnetic ensemble is situated inside the coil. Externally, the

coil is excited by sinusoidal current. The simulation code has been written in C

programming language and in a sequential �ow. It is started with the initializations

of the system and ended with measurement of susceptibility of the system. In this

section, details of the �ow of the simulation are explained.

49



4.3.1 Step 1:Setting Simulation Parameters

All the parameters in the simulation have been set in �rst step.

Diameter of the nano-magnets, d = 6.5 nm to 7.5 nm and volume, V = π d
3

6

System size: N = Nx ×Ny ×Nz and Nx = Ny = Nz(= 7, 9, 11, 15)

Permeability of cobalt, µCo = 4.2× 10−3 SI unit

Magnetization per unit volume, Ms = 1.4× 106 SI unit

Anisotopy Energy Constant of Co, KCo = 4.1× 105J/m3

Pre-exponential factor, τ0 = 10−9sec

Parameters of the susceptometer solenoid:

Length of the solenoid, L = 25.0× 10−3m

Number of turns, N=300 turns

Diameter of the coil, δ = 5.0× 10−3m

Peak magnetizing current, I0 = 10.0× 10−3 Amp to 25.0× 10−3Amp

Field inside the susceptometer coil, B0 = µCo
NI0
L
Amp/m

Lattice distance, l = 8.8× 10−9 to 15.0× 10−9m

Temperature of the system, T = 77◦K and 300◦K

Frequency of the applied �eld, f = 50× 103 to 1× 106Hz

(Note: In a sample of randomly distributed magnetic nano-particles with
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average moment µ = MsV and average separation l, the dipole interaction energy

Ed ≈ µ0
4π

µ2

l3
where µ0 is the permeability of free space. There is a critical temperature

below which these magnetic nano-particles can result in ordering of the magnetic

moments, the critical temperature T0 ≈ Ed
kb
).

4.3.2 Step 2: System Initialization

Before the simulation was started, the system was initialized by setting the randomly

chosen easy-axis of the nano-magnets. Initial magnetic moment vectors have been

de�ned either in state +1 where the direction cosines are (cosα0, cos β0 and cos γ0)

or in state −1 where the direction cosines are ( cos(180◦ + α0), cos(180◦ + β0) and

cos(180◦ + γ0)) so that the initial ordering of the ensemble of the nano-magnets is

in anti-ferromagnetic ordering.

Set all positions [x,y,z] alternately +1 and -1

Begin loop at position [0,0,0]

Generate random number α0 = 0◦ to 180◦ assign direction cosine

Generate random number β0 = 0◦ to 180◦ assign direction cosine

Generate random number γ0 = 0◦ to 180◦ assign direction cosine

Net magnetization along z-axis, netMz =
∑

(state)× (direction− cosine)

Calculate the hdd at each position as given in Eq. (4.14)

End loop up to position [Nx, Ny, Nz]
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4.3.3 Step 3: External Field Applied

As τ0 is ≈ nano-seconds, hence the time resolution (or sampling time) is measured

in nano seconds. Here, the simulation is continued for the duration of 10 full cycles

(i .e.,10
f
sec) of the applied �eld. Therefore, the total number of data points in nano

seconds resolution are : Dpts= 10× 109

f
and time t is ticked for every nano-sec from

0 to Dpts in the simulation.

For t=0 to Dpts applied �eld h = h0 sin 2πft

4.3.4 Step 4: Main Loop

Loop start t=0 to t=Dpts

Catch each nano-magnet from [0,0,0] of the 3-dimensional matrix

Compute dipolar �eld hdd, Eq. (4.14)

Net magnetic �eld hT = h0 sin 2πft+ hdd

Calculate E, Eq. (4.2)

Find Emin1, Emin2 , Emax1, Emax2

Find ψ for stable minima from E vs. ψ plot (Appendix F).

Find direction cosines (cosα, cos β, cos γ) (Appendix E)

Find τ−+, τ+−

Calculate P (+, t) =
tnoFlip
τ−+

, P (−, t) =
tnoFlip
τ+−

, tnoF lip=duration of no �ip.

Decide �ip or no-�ip based on P (−, t) and P (+, t) ≥ 1.
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Calculate Mx = µ cosα,My = µ cos β,Mz = µ cos γ.

Complete the loop for all particles =Nx, Ny, Nz

Find netMx(t) =
∑
Mx, netMy(t) =

∑
My, netMz(t) =

∑
Mz

Next increment t till t = Dpts

4.3.5 Step 5: Calcutate Susceptibility

Real part of ac susceptibility is the magnetic energy stored in the sample during a

cycle of applied �eld. Imaginary part of ac susceptibility is the energy converted

into heat during one cycle of ac �eld. Here, 10 cycles are taken in the simulation.

If time average is taken for sinusoidal magnetic �eld over a cycle, it becomes zero.

So, it is better to take average of every half cycle. If we take full wave recti�cation,

then this averaging issue is avoided and complete data points are integrated. Thus

computation becomes simpler with very nominal error. It is straight forward and

averaging is done over 10 cycles at a time.

netMz(t) and H(t) = sin 2πft are now available for 10 cycles.

Apply fullwave recti�cation:

for t = 0 to t = Dpts

if H(t) > zero then H(t) = +H(t) and netMz(t) = +netMz(t)

if H(t) < zero then H(t) = −H(t) and netMz(t) = −netMz(t)

Find average �eld and average magnetization:

Average Field=H(t)/Dpts
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Average magnetization=
∑
netMz

Dpts

Get the Susceptibility at frequency f :

Susceptibility(f) = Average Magnetization

Average Field

End of t = Dpts

4.4 Simulation Results

The magnetization of the ensemble is the collective e�ect of the state of the in-

dividual nano-magnets distributed in the ensemble. Hence, the time evolution of

magnetization of the ensemble is determined by the collective state of the spin dis-

tribution determined from the evolution of the spin state of a single nano-magnet

as per the Eq. (4.11). The simulation has been carried out at nano-second intervals

(δt = 10−9sec) for the duration of ten cycles of the external �eld and the average

magnetization per half-cycle has been calculated from the simulation data. The

susceptibility values have been obtained from the ratio of the average magnetization

to the average external �eld. The frequency has been varied from 50 kHz to 10 MHz

and the volume susceptibility of the system has been plotted with respect to the fre-

quency, as shown in Fig. 4.2. The simulation results showed that the susceptibility

changes to a diamagnetic phase at and above certain frequency.

The simulation results are presented for a cluster of 3375 interacting nano-magnets

arranged in a cubic lattice and a cross-over of magnetization could be seen in Fig. 4.2.

From Fig. 4.2 it is seen that the frequency of crossover varies with temperature. This

frequency also depends upon the particle diameter, particle separation, system size

and strength of the excitation �eld. The variation in the crossover frequency de-

pending upon the above parameters is presented in Table 4.1.
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Figure 4.2: The volume susceptibility of cobalt-silica nano-particles against fre-
quency of the applied �eld obtained from the simulation of 15x15x15 nano-magnetic
assembly

Dynamics of magnetic nano-particles in double well potential coupled to each

other in a non magnetic medium is presented. These nano-particles are dipole equiv-

alents and the interaction between the dipoles is considered to be long range and

it is either attractive or repulsive based on the relative orientations of the dipoles.

This dual nature of interaction is important in the occurrence of the cooperative

phenomenon in the dipole system of nano-magnets. Due to the presence of oscil-

latory �eld, the system of nano-particles releases energy with a delay greater than

one fourth of the time-period of the applied �eld. This is discussed in detail in the

next section.
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Table 4.1: Conditions at which negative susceptibility has been observed of an
ensemble of cobalt nano-magnets

Diameter of Particle Magnetizing Crossover
System size nano-magnets Separation current frequency

(nm) (nm) (mAmp) (MHz)

7x7x7 6.5 8.8 10.0 10
7x7x7 7.5 10.0 12.0 10
9x9x9 6.5 10.0 17.0 25
9x9x9 7.5 10.0 17.0 13
9x9x9 7.5 11.0 13.0 13

11x11x11 7.5 10.0 18.0 13
15x15x15 7.5 10.0 20.5 20
15x15x15 7.5 11.0 19.2 10
15x15x15 7.5 15.0 11.2 8.9

4.5 Comments on Simulation Results

Observation of phase transition from para-magnetism to ferro-magnetism is quite

common in literature, however the transition from para-magnetism to diamagnetism

is rare [86]. We have observed a crossover from para-to-dia in an ensemble of cou-

pled nano-magnetic dipole oscillators subjected to a periodic external magnetic �eld.

Classically the ensemble can be looked as a coupled dynamical system with varying

lags or time delays. These time delays are the relaxation times of the nano-magnets.

Nano-magnetic ensemble tries to orient itself parallel to the applied magnetic �eld

in two steps. As the dipole interaction energy of the nano-magnets at the surface

is minimum the switching initiates at the surface of the ensemble. The switching

of the nano-magnets at the surface sets o� a series of switching in the ensemble

due to the sudden change in the interaction �eld caused by the neighbor reversal

[13][82]. Hence, this alignment process penetrates gradually into the sub-surface

which makes the dipolar orientation in the outer shell aligned with respect to the

applied �eld, whereas the core retains in its initial state. Thus, in addition to the

external �eld, the dipoles in the core also experiences a magnetic �eld generated

collectively by the dipoles of the shell. The thickness of the shell increases with time
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and the opposing magnetic �eld created by the shell becomes appreciably higher to

trigger a large number of nano-magnets in the core which can be looked as a cooper-

ative switching. Initially, a small numbers n0 of nano-magnets at the surface initiate

switching. This number increases progressively with time steps to n1, n2, n3, ..., nc.

At the time of cooperative switching nc becomes relatively large. The net mag-

netization M of the ensemble of nano-magnets under the oscillatory magnetic �eld

h0e
i2πft is the superposition of the individual oscillators as given in the Eq. (4.19).

Here n0, n1, ..., nc depend on the geometry and size of the ensemble and θ0, θ1, ..., θc

are the corresponding phase lags of those oscillators.

Mei(2πft+θr) = MsV
(
n0e

i(2πft+θ0) + n1e
i(2πft+θ1) + n2e

i(2πft+θ2) + ...+ nce
i(2πft+θc)

)
(4.19)

The phase θr associated with the net magnetization M with respect to the applied

magnetic �eld predominantly depends upon θc because nc is very large compared to

n0, n1, ..., etc. and the phase is given in Eq. (4.20).

θr = tan−1
n0 sin θ0 + n1 sin θ1 + ...+ nc cos θc
n0 cos θ0 + n1 cos θ1 + ...+ nc cos θc

(4.20)

When θr is greater than π/2, the system exhibits diamagnetism in the interacting

dipolar system, provided the energy of interaction is comparable to the Zeeman

energy and anisotropy energy of the nano-magnets. This phenomena is observed in

Ni-silica, Co-silica nano-magnetic ensembles at lower temperatures like 77K also. At

liquid Nitrogen temperature, the frequency of the crossover is reduced by several kilo

Hertz compared to room temperature. This is because the relaxation time reduces

at lower temperatures and the cooperative switching gets delayed. The temporal

location of this cooperative switching with respect to the applied �eld determines
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the degree of paramagnetism or diamagnetism of the ensemble, as shown in Fig. 4.3

and Fig. 4.4.

Figure 4.3: The observed magnetization of the ensemble of the nano magnets due to
the application of sinusoidal magnetic �eld of low frequency tr < T/4 as observed in
the simulation results. The overall magnetization is paramagnetic at low frequency.

After a time gap of t0, the reversal of magnetization creeps into the sub-surface

of the ensemble until a critical shell thickness develops to initiate the cooperative

switching in the core. The system inherently takes time, td(= t1 + t2 + ... + tc) to

develop the critical shell thickness. As a result, the cooperative switching is further

delayed by td over t0, where td depends on relaxation time of the nano-magnets. The

transition time of total reversal of population of nano-magnets, tr = t0 + td. This

tr is the governing factor of the state of the overall magnetization. The maximum

value of t0 is T/4 when h0 = (hK − hdd(0)), where hdd(0) is the dipolar interaction

�eld at the surface. In that case, tr is always greater than T/4 and the ensemble

should show diamagnetism for all frequencies. If h0 is greater than (hK −hdd(0)), t0

is less than T/4, and the contribution of td becomes important to make tr greater
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Figure 4.4: The observed magnetization of the ensemble of the nano magnets due to
the application of sinusoidal magnetic �eld of high frequency tr > T/4 as observed in
the simulation results. The overall magnetization is diamagnetic at high frequency.
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than T/4. This can be achieved by increasing the frequency or by increasing the

relaxation time of the nano-magnets or the combination of both.

4.6 Conclusion

The results presented in Table: 4.1 and in Fig. 4.2 has been analyzed and presented in

this section. Comparison of simulation results of cobalt superparamagnetic particles

is given below to sum-up the variations of crossover frequency with particle size,

particle spacing, �eld strength, temperature and system size.

1. E�ect of particle size: Larger particle size of the nano-particles results in

higher magnetic moment of the dipole and longer relaxation time. Therefore,

crossover frequency will be lower for bigger particle size. In Table: 4.1, 9×9×9

system, 6.5 nm particle size shows crossover frequency of 25 MHz and 7.5 nm

particle size shows 13 MHz.

2. E�ect of �eld strength: For higher �eld strength (200 Amp/m and above),

when Zeeman energy is more than twice the anisotropy energy (2κ), this

crossover cannot be observed because the dipoles will be forced to follow the

external �eld. The system is simply continues to be paramagnetic.

3. E�ect of temperature: Simulation is done at 300oK and 77oK temperatures.

The crossover frequency reduces with reduction in temperature. This is be-

cause; the relaxation frequency is less at low temperature according to Neel

relaxation expression.

4. Particle spacing: The crossover frequency reduces with larger spacing because

interaction potential is less for larger separations.

5. E�ect of array size of the system: Smaller than 7x7x7 of the system is fully

paramagnetic and no diamagnetism is observed. This phenomenon of para-to-
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dia susceptibility takes place in the array due to a cooperative switching. If the

size of the array does not exceed a minimum value, cooperative phenomenon

does not occur and system continuously behaves as paramagnetic.
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Chapter 5

Crossover of Susceptibility:

Experimental Veri�cation

Crossover of susceptibility in frequency domain is established in the previous chap-

ters. Experimental veri�cation of this �nding is essential to establish its importance

in real life applications. Various types of dipoles are available in nature as explained

in the introductory section of the chapter 1. Two types of simulations are carried

out in this work. In chapter 3, magnetic needle type dipole oscillators are simulated

and in chapter 4, nano-magnets are simulated under external �eld. In both the

simulations, the oscillating objects (magnetic needles or nanomagnets) are able to

oscillate about its centre. The dipoles are immobilized in the array, but allowed

to oscillate. To do a similar arrangement in the experimental setup, Ni-silica and

Co-silica nano-composites are experimented separately. Here, nano sized magnetic

particles are embedded in the silica matrix and undisturbed magnetic moments are

aligned in their respective easy axis. These nano-composites are equivalent to the

simulation arrangements. In powdered form, these metal nano-composites are tested

in the AC susceptometer. The size of the nano-composite powder is in the order

of microns. Therefore, a single nano-composite powder is equivalent to a cluster
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of nano-magnets �xed in the silica matrix. In the simulation, nano-magnets are

arranged in a regular spacing but in the experiments they are randomly distributed

and their easy axes are also randomly oriented. Here, the magnetic nano-composites

are chosen to establish this frequency dependent crossover of susceptibility.

5.1 Sample Preparation : sol-gel process

The sol-gel process [88] is a wet-chemical technique (also known as chemical solution

deposition) used primarily for the synthesis of materials starting from a chemical

solution, which acts as the precursor for an integrated network of either discrete

particles or network polymers. The sol-gel process involves the evolution of net-

works, the formation of a colloidal suspension (sol) and gelation of the sol to form

a network in continuous liquid phase (gel). The precursors used for synthesizing

the colloids generally consist of metallic ions and ligands, which are the elements

surrounded by various reactive species. Alkoxysilanes (e.g., Tetramethyl orthosili-

cate, TMOS and tetraethyl orthosilicate, TEOS) are the most popular precursors

as they react readily with water. In general, sol-gel formation occurs in �ve steps:

Hydrolysis, alcoholysis,Water and alcohol condensation for the Growth of particles

and agglomeration of particles followed by the formation of networks throughout

the liquid medium resulting in thick gel.

Several initial conditions are necessary in the process viz ., pH level, temperature

of the reaction, reagent concentration, duration of reaction, type and concentration

of catalyst, molar ratio of H2O : M+ (where M+ is the cataion), aging temperature

and time of gel formation, etc. It is required to control these parameters to vary

the structural, magnetic, electrical and optical properties of the derived inorganic

sol-gel network.The chemistry involved in sol-gel process is important for proper

preparation of the nano composites.
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Tetra-ethyl ortho-silicate (Si(OC2H5)4)) [TEOS] is the source of Si for silica-gel

formation and it is used as the precursor to prepare silica gel. Here, R = −C2H5

in the reaction. Subsequent condensation reactions involving silanol group (Si-OH)

produce siloxane bonds (Si-O-Si) along with the by-products: water and alcohol.

This gives the required sol. After condensation, the sol is aged for a certain time to

form gel of long chains of siloxane bonds (HO···−Si−O−Si−O−Si−O−Si−···OH),

terminated by hydroxyl groups, resulting in the thickening of the sol to form the

gel. Finally, the gel is heated up in oxygen (or air) atmosphere to get SiO2.

5 ml of TEOS and 5 ml of ethyl alcohol have been taken in a beaker for the

preparation of one solution. In another beaker, 5 ml of double distilled water, 5

ml of ethyl alcohol, required amount metallic salt nitrate (or chloride) and dextrose

have been added. Both the beakers have been kept on continuous stirring at room

temperature using a magnetic stirrer for about 30min. The metallic salt solution ha

been added drop by drop in other beaker in stirring condition. The total mixture in

the �rst beaker has been stirred for another 30 minutes. Thereafter whole system

has been left undisturbed for solidi�cation for 2-3 weeks.

In the preparation of co-silica nano composites, dextrose is used as reducing agent

and cobalt nitrate is the metallic solution and the following reactions take place.

Co(NO3)2 → CoO +NO2

C6H12O6 → 6C + 6H2O

CoO + C → Co+ CO

(5.1)

The following is the stoichiometric calculation of 20% Co-silica nano-composite.

Molecular wt. of Si(OC2H5)4= 208.33 gm/mol

Molecular wt. of SiO2= 60.08 gm/mol
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Molecular wt. of Co= 58.93 gm/mol

Molecular wt. of Co(NO3)2.6H2O= 291.03 gm/mol

Molecular wt. of C6H12O6= 180.15 gm/mol

5 ml of TEOS and 5 ml of ethyl alcohol has been mixed throughly in a beaker.

Density of TEOS is approximately 1gm/cc. Therefore, 5 gm of TEOS is taken. In

another beaker, 5 ml of double distilled water with 5 ml of ethyl alcohol is mixed. In

the second beaker, a measured quantity of cobalt nitrate and dextrose are also to be

mixed throughly. Therefore, in the net solution ratio of TEOS : H2O : C2H5OH is

equal to 1:1:2. The amount of cobalt nitrate and dextrose required in the preparation

is calculated below for 20%wt. cobalt in SiO2 matrix.

Si(OC2H5)4 + 4H2O → SiO2 + 4C2H5OH + 2H2O (5.2)

One mole of SiO2 is obtained from one mole of TEOS. Therefore, 208.33 gm

TEOS gives 60.08 gm SiO2. 5gm of TEOS is taken so, 5 gm TEOS gives 60×5
208

=1.442

gm SiO2

For 20% Co in silica matrix : Amount of Co = 20wt% of SiO2

= 0.20 x 1.442 gm

= 0.2884 gm cobalt is required.

From the chemical reaction, one mole of Co comes from one mole of CoO that means

58.93 gm Co comes from 74.93 gm CoO.

As 0.2884 gm of cobalt is required then, 0.2884 gm Co comes from 0.2884×74.93
58.93

=0.3667

gm CoO.

Following is the calculation to �nd the required amount of cobalt nitrate:

74.93 gm CoO comes from 291.04 gm of Co(NO3)2.6H2O

0.3667 gm CoO comes from 291.04×0.3667
74.93

= 1.424 gm of Co(NO3)2.6H2O. Therefore,

1.424 gm of Co(NO3)2.6H2O is required in the process.
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Following is the calculation for the required amount of dextrose:

In this process carbon acts as reducing agent. Dextrose is the source of required

amount carbon in the reaction.

One mole (12 gm) carbon is required to reduce one mole (74.93 gm) of CoO into

metallic cobalt.

Then, 0.3667 gm CoO is obtained by the reduction process of 12×0.3667
74.93

= 0.0587gm

of carbon. Therefore, 0.0587 gm of carbon is required in the reaction.

72 gm of carbon comes from one mole (180 gm) of C6H12O6

0.0587 gm of carbon comes from 180×0.0587
72

= 0.1468 gm of C6H12O6

Therefore, 0.1468 gm of dextrose is required.

The gel is put into a silica boat. The boat is inserted into the constant hot zone

of a tube furnace for heat treatment. A constant �ow of nitrogen is allowed through

the furnace to maintain an inert atmosphere within it. The temperature of the

furnace is then raised till it reaches 900◦C and is held constant at this temperature

for duration of 30 minutes. Thus, cobalt nano-composite is prepared.

Similarly, in the preparation of Ni-silica nano composites, dextrose is used for

reducing agent and nickel nitrate is the metallic solution and the stoichiometric

calculations are given in the Appendix G.

5.2 Sample Characterization

It is important to have the knowledge of topographic details and internal details of

the nano-composites developed in the sol-gel process. The morphological character-

ization of the magnetic nano-composites has been done by scanning electron micro-

scope (FESEM) and high resolution transmission electron microscope (HRTEM).
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Figure 5.1: Schematic representation of sample preparation of magnetic nano-
composite.

The synthesized powder sample has been placed on a conducting carbon tape, and

a �eld emission scanning electron microscope (FESEM) (Hitachi S4800) is used to

observe the morphological details of the sample. FESEM micrographs have been

used to visualize very small topographic details on the surface of samples (as shown

in Fig. 5.2a and 5.2b).

The existence of the crystallinity of the nano particles has been established by

the selected area di�raction. From the TEM images (in Fig. 5.3) of cobalt and

nickel nano-composites we conclude the average distance among the nano particles

embedded in the silica matrix is around 15 nm and average size of the nano-magnets

inside the composite are of the order of 6.5 nm to 7.5 nm.

Co-silica nano-magnetic composite in powder form has been tested to measure

the susceptibility. Ac susceptibility of the samples at high frequencies have been

measured by an in-house developed susceptometer. The following section describes
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(a) FESEM Cobalt 20%. (b) FESEM Nickel 20%.

Figure 5.2: FESEM micrographs reveal the topographic details of the powdered
nano-composites developed by sol-gel technique. These micrographs are the silica
�akes embedded with Co or Ni nano-particles. The structure and size determination
of these metal nano-particles are carried out by HRTEM.

(a) Cobalt 20% HRTEM (b) Nickel 10% HRTEM

(c) Nickel 20% HRTEM (d) Nickel 30% HRTEM

Figure 5.3: HRTEM micrographs reveal average size and separation of the nano-
magnets inside the powdered nano-composites as synthesized by sol-gel technique.
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the susceptometer that has been developed as a part of this thesis work and that

can also be operated in low magnetic �eld and at high frequencies.

5.3 Susceptometer Development

A simpli�ed instrumentation with nominal circuitry has been developed to measure

accurately, in- and out-of-phase complex magnetic susceptibility of the magnetic

samples. To achieve uniform �eld, a shape modi�ed absolute coil has been adopted

in the measurement system. An innovative phase detection circuit has been incorpo-

rated to measure the complex susceptibility at high frequencies. In this section, de-

sign and performance of the instrumentation is described. Calibration process of the

susceptometer and how to measure susceptibility of the magnetic nano-composites

is also discussed here. This susceptometer is also suitable for liquid samples viz.,

ferro-�uids, blood samples etc.

Susceptibility measurement setups are predominantly non contact type and based

on the principle of comparison of two unequal mutual inductances. The phase

measurement as proposed here is a very simple analog technique, can replace the

high cost lock-in ampli�er for normal laboratory use. The principle and methodology

to obtain the complex susceptibility of the samples without using lock-in ampli�er

is explained in the following sections. Small coils in the susceptometer are wound

on a specially shaped bobbin to avoid the non-homogeneity of the magnetic �eld.

This susceptometer is self-inductance type and the detail of its design is explained

below.

The purpose of this susceptometer development is very signi�cant. Low magnetic

�eld and high frequency of operation are the two important criteria of this develop-

ment. Because of low magnetic �eld, very weak signal will be generated in mutual

inductance type susceptometer. So, self inductance type susceptometer has been

69



decided to develop, where large quantity of sample will be taken. Usually, samples

are taken in microliter so that volume of the sample is small. Small volume ensures

uniformity of magnetic �eld on the sample. To avoid this limitation, shape modi�ed

bobbin is used and measureable output signal is achieved in the susceptometer.

5.3.1 Self-inductance type Susceptometer: Working Princi-

ple

The di�erential of magnetic �ux (Φ) in the solenoid with respect to the current (I)

is the measure of self inductance of the coil. The �ux inside a coil depends on the

magnetic permeability of the core, and hence, the self inductance of the test coil, Ls

is related to the magnetic properties of the sample inserted in it, given by Eq. (5.3).

Here χac is the magnetic susceptibility of the sample and other symbols have their

usual meanings.

Ls = µ0(1 + χac)
d

dI

∫
H.ds (5.3)

In the case of air core, the self-inductance L0 is reduced to

L0 = µ0
d

dI

∫
H.ds (5.4)

From Eq. (5.3) and (5.4), the change in self-inductance due to the insertion of

the sample in the coil is proportional to the a.c. susceptibility [90]. Hence, χac of

the samples at di�erent frequencies and temperatures can be obtained by a well

calibrated precise inductance meter. In this instrumentation, the inductance of the

coil is obtained by a formula based on the voltage drop across the inductor coil.

If it is asumed that a current Irms is passing through the coil and RMS voltages

developed across the coil are vrms−0 and vrms−s for air core and the core �lled with

sample material respectively. If r is the intrinsic resistance of the coil, then the
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change in self-inductance can be represented by Eq. (5.5) which is proportional to

the susceptibility of the sample. The constant of proportionality, κ depends on the

coil parameters, material volume fraction, �ll factor, geometrical arrangements, etc.

of the sample in the coil.

χac = κ∆L =
κ

2πf

{√
v2rms−s − r2

I2rms
−

√
v2rms−0 − r2

I2rms

}
(5.5)

For phase measurement, let us assume V0eiωt is the voltage applied to the L-R

circuit (shown in Fig. 5.4) and θ is the phase lag between the voltage source and the

current passing through the circuit.

Figure 5.4: V0eiωt is the voltage applied to the LR circuit, and there is a phase lag
(θ) between the voltage source and the current passing through the circuit.

A constant current, is maintained through the L-R circuit. I0e
i(ωt−θ0) is the

current passing through the air-core coil, whereas I0ei(ωt−θs) is the current passing

through the coil with the sample in the core. Therefore, the voltage drops across R

are I0Rei(ωt−θ0) and I0Rei(ωt−θs) for the air core and sample respectively. By adding

these two voltages, one can get the resultant amplitude B that carries the phase

ψ = (θs − θ0) linked by the sample in the coil with respect to air (θ0), as given in

Eq. (5.6).
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I0Re
i(ωt−θs) + I0Re

i(ωt−θ0)

= 2I0R cos (
θs − θ0

2
)ei(ωt−

θs+θ0
2

)

= Bei(ωt−
θs+θ0

2
)

(5.6)

The phase ψ is obtained from the ratio ofB and the voltage drop acrossR(vs or v0 =

I0R) as follows.

ψ = 2 cos−1
B

2v0
. (5.7)

From ψ the complex susceptibility is obtained as given in Eq. (5.8).

χreal + χimaginary = χac cosψ − iχac sinψ (5.8)

5.3.2 Measurement Methodology

In this technique, susceptibility measurement is a two step process. Voltages are

measured with sample and then without the sample inside the coil. This double

measurement is not popular and nobody uses this method in automated measure-

ment of susceptibility. This is a limitation of this self-inductance type measurement

technique but here it is modi�ed by using a pair of matched coils. So, instead of

single source, a pair of similar sources are required as shown in Fig. 5.5. The system

has been automated using a two channel arbitrary function generator (Tektronix

AFG 3102), a 16-bit data acquisition module (Advantech USB-4716), an analog

hardware circuit board (shown in Fig. 5.5) and a personal computer for computa-

tion, data storage and control. Two matched coils (instead of a single L-R circuit)

are taken where, one coil L0 acts as a reference with respect to the test coil Ls. The

coils are excited separately by AFG 3102 through the high precision foil resistor

R (±0.005% tolerance, ± 2.0ppm/◦C temperature coe�cient of resistance). These
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resistors (R) act as a current to voltage converter in the circuit. The RMS voltages

of vs and v0 across these resistors are made equal by further adjusting the amplitude

of the function generator of the sample coil. Now the current (Irms = vrms−s/R =

vrms−0/R) passing through both the coils is equal. According to Eq. (5.5), the ab-

solute value of the ac susceptibility of the sample is obtained by the RMS voltages

(Vrms−s and Vrms−0) across the coils.

The sinusoidal voltages vs and v0 across R also carry the phase information of

the individual circuits. Now these voltages are superposed by an adder circuit; the

phase associated by the sample can be derived from the RMS voltage B of the adder

circuit according to Eq. (5.6) and (5.7).

Figure 5.5: Block diagram of analog circuit

A software has been written in C programming language to interface AFG-3102,

analog circuit board and USB-4716 with the computer. Computation block diagram

given in the Fig. 5.6 shows the pictorial �ow chart of the methodology. The starting
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frequency and the amplitude are set from the graphical interface of the computer and

the computer sends respective commands to either channels of the function genera-

tor. When sample is inserted inside the test coil, current imbalance occurs between

the coils. The comparator C1 generates the correction factor and subsequently

added to the set point. The command to the test channel of the function generator

is generated according to the output of C2 and the current balance between the coils

is reestablished. At this current balanced condition, vrms−s and vrms−0 for sample

and air core coils are respectively measured to compute the di�erence in inductance

according to Eq. (5.5). This change in the inductance is proportional to the absolute

susceptibility χac of the material. The constant of proportionality, κ is derived by

using a material of known susceptibility.

Figure 5.6: Block diagram of computational �ow.

The next part of the software �nds the phase associated with the sample. If the

RMS voltage across R of the air-core coil is denoted by A (typically I0R/
√

2) and

RMS voltage of the adder circuit is B, the phase associated by the sample is ex-

pressed by Eq. (5.8). Thus we calculate the in-phase and out-of-phase susceptibility

of the sample for the set frequency given by Eq. (5.8).
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The heart of the susceptometer is the solenoid coil that provides oscillatory mag-

netic �eld to the nano-composite sample. This susceptometer is self-inductance type

and the coil acts as sensor to measure susceptibility. The solenoid coil is designed

using genetic algorithm (GA) optimization technique as explained below.

5.3.3 Design of Coil : Field Uniformity

The uniformity of the magnetic �eld within a speci�ed region of interest is de�ned

as the measure of the maximum deviation of the magnitude of the magnetic �eld in

relation to the average value within the speci�ed domain [91]. Thus, the magnetic

�eld uniformity, η is expressed in Eq. (5.9) where Bmax, Bmin and Bavg are the

maximum, minimum and average values of the magnetic �eld within the working

volume respectively.

η = 1− Bmax −Bmin

Bavg

(5.9)

The magnetic �eld components (Fig. 5.7) produced at any arbitrary location (r, z)

by an in�nitely thin circular current loop of radius Ri carrying current Ii located

at position Zi, is given by Eq. (5.10) [93] where α = r/Ri, β = (z − Zi)/Ri,

γ = (z − Zi)/r, Q = [(1 + α)2 + β2], k = (4α/Q)1/2 and K(k) and E(k) are the

complete elliptical integral functions of �rst and second kind respectively. The �eld,

B0 at the center of the coil is µ0Ii/2Ri. Bi
z(r, z) and Bi

r(r, z) are the axial and radial

components of the magnetic �eld respectively.

Bi
z (r, z) = B0

π
√
Q

[
E (k) 1−α2−β2

Q−4a +K (k)
]

Bi
r (r, z) = B0γ

π
√
Q

[
E (k) 1+α2+β2

Q−4a −K (k)
] (5.10)

The total magnetic �eld of a solenoid of Nturns at a location (r, z) is given in
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Figure 5.7: Axial and radial components of magnetic �eld due to a single cirular
current loop of radius Ri and carrying current Ii

Eq. (5.11). For uniformity of the magnetic �eld, Bz(r, z) and Br(r, z) should be

better than a speci�ed η value for certain volume of interest.

Bz (r, z) =
∑Nturns

i=1 Bi
z (r, z)

Br (r, z) =
∑Nturns

i=1 Bi
r (r, z)

(5.11)

It can be observed in Eq. (5.10) and (5.11) that the radial and axial magnetic

�eld components inside the solenoid depend on the diameter of the current loops.

Therefore, it is possible to change the strength of the magnetic �eld inside a solenoid

by varying R along the axis of the coil. This is the motivation behind the shape

modi�cation of the coil to achieve �eld uniformity. Based on this understanding,

many geometrical shapes are possible. Discrete changes of R with z have been

suggested by Takahiro in large coil systems [92]. In the case of small coil, the

discrete changes of radius of the bobbin in the form of collars impose discontinuities

on the mechanical winding as well as the magnetic �eld distribution. This constraint

has been eliminated in our design by a gradual variation of R with z. The basic
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Figure 5.8: Combined representation of discrete step bobbin and shape modi�ed
bobbin. M is the �eld concentrated region for the discrete coil design. The pro�le of
the shape modi�ed bobbin, for the left half of its length, is de�ned by the generalized
logistic function. The pro�le of the rest half is the mirror image of the former.
θ = tan−1B

Rf−R0

4
for the shape modi�ed bobbin.

design criterion to make a uniform magnetic �eld inside a solenoid is to concentrate

the magnetic �eld strength at the ends in the form of a �eld concentrator by reducing

the radius of the bobbin compared to that at the center. Thus, sigmoid curve can

be assumed to be a better replacement of discrete steps for the pro�le of the bobbin

(see Fig. 5.8). The windings made on the curved surface of the bobbin will have a

tendency to slip o� the surface. Therefore, the frictional force between the bobbin

and the windings should be su�cient to hold the windings in their position. Thus,

the slope of the sigmoid curve at any location should not be more than the co-e�cient

of static friction (µ) between the windings of the coil and the bobbin surface. It is

better to use glue after winding of the coil for rugged usage.

The silhouette of the bobbin is determined by the generalized logistic function as

given in Eq. (5.12).
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R(z) = R0 +
Rf −R0

1 + exp(C −Bz)
(5.12)

In the above equation, the lower asymptote, R0 is the minimum radius at the

ends of the bobbin. The upper asymptote, Rf determines the maximum allowable

radius of the bobbin at the center. R0 is one of the design parameters of the coil.

Here C and B determine the location of the maximum growth rate of R(z). The

growth rate of the logistic curve dR
dz

=
B(Rf−R0)exp(C−Bz))

[1+exp(C−Bz)]2 is slow initially and it

increases to the maximum at the point where z = C
B
, and R =

Rf+R0

2
. Hence,

tan θ =
(
dR
dz

)
max

= B
(Rf−R0)

4
should not exceed µ for the mechanical stability of the

windings. Therefore, B is restricted by the coe�cient of static friction µ as given in

Eq. (5.13). The end �eld concentrator region of this solenoid is from C
B
to 0 as dR

dz

reduces at that region.

B = 4
µ

Rf −R0

(5.13)

The basic parameters for any engineering design evolves from the requirement

speci�cations. In this case, R0, µ, η (desired) and L (length of the solenoid) are the

fundamental required parameters for the design of the miniature solenoid. Based

on this input parameters, our aim is to �nd suitable values of Rf and C to achieve

the desired η. Using the logistic function from Eq.(5.11) pare-to-optimal situation

can be achieved. Keeping in mind the feasibility of windings over the bobbin and

the dimensions of miniature coil, the optimization of Rf and C is obtained from

the objective function. GA algorithm is inspired by the mechanisms of the natural

evolution and they are usually e�ective in rapidly searching of the global optimum

when a number of design variables need to be adjusted. Here Rf and C are taken

from random pool of variables and their ranges are judiciously chosen. B is calculated

from Eq.(5.13) which in turn provides the pro�le of the bobbin and the e�ective
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Figure 5.9: Flow chart for the optimization of the parameters Rf and C

length Le of the curved pro�le is obtained from equation Eq. (5.14).

Le = 2

∫ L
2

0

√
1 +

(
dR

dz

)2

dz (5.14)

The number of turns Nturns is equal to Le/d of the coil where d is the diameter

of the wire used to wound the coil. A simpli�ed �ow chart for GA computation is

given in the Fig. 5.9. From the generated pro�le, the η is calculated from equation

(5.9). This process is iterated to arrive at the desired η. Fig. 5.10 shows the axial

�eld distribution and the optimum pro�le of the bobbin obtained by GA using

MATLAB.

A miniature solenoid coil of length of 25 mm and R0 = 5 mm has been con-

structed. If the ratio of the diameter (d) of the wire to the coil-diameter (D) is of

the order of 10−3 then it can safely be considered that d is in�nitesimal small. The
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Figure 5.10: Axial �eld distribution and the optimum pro�le of the bobbin obtained
by GA using MATLAB. The absica is in terms of the width (0.152 mm) of the wire
(38 SWG). The values Rf = 8.28 mm and C = 15.4 as obtained by GA optimization.

coil has (38 SWG) 164 numbers of turns, the resistance of the coil is 34.5 Ohms

and d
D

= 15.2 × 10−3. The GA optimization technique has estimated the parame-

ters Rf = 8.28 mm and C = 15.4 respectively. FEMM (Finite Element Modeling

Method) simulation of the coil results in η = 88% when volume of interest is 80%

of total volume. η improves reasonably (around 97%) if the volume of interest to

be 60% of the total volume is considered. The designed parameters have been vali-

dated before fabrication of the bobbin by �nite element method [61]. Axis symmetric

modeling has been done considering the estimated dimension of the bobbin. The

uniformity of the magnetic �eld from �nite element simulation is shown in pseudo

color in Fig. 5.11. In Fig. 5.12 it is shown the axial uniformity of �eld inside the coil

as derived from the simulation. The �gure indicates the uniformity of the �eld in

the central part of the coil.

The uniformity of the magnetic �eld for the constructed coil has also been ver-
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Figure 5.11: FEMM plot demostrates uniformity of magnetic �eld at 600KHz.

Figure 5.12: Axial homogeneity of the magnetic �eld obtained from FEMM simula-
tion.
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Figure 5.13: Experimental setup to measure the axial �eld distribution by SPEC-
TRAN Analyzer. Inset of the �gure shows the bobbin (at the left top corner).

i�ed by measuring axial magnetic �eld by a magnetic �eld sni�er-set (Model No.

SPECTRAN NF5035 manufactured by Aaronia AG, Germany). The coil has been

excited by alternating current of 10 mA at a frequency 600 kHz. The measurements

made by the magnetic �eld probe has been compared with the computed results.

To measure the axial �eld, the probe was positioned along the z-axis of the coil

using a solid non-magnetic �xture outside the coil. The probe was inserted from

one end into its central hole to the other end along the axis of the solenoid with

the help of a slide caliper. The �eld was measured throughout the length of the coil

axis by shifting the �xture along the axis in 1 mm increments. Fig. 5.13 shows the

complete experimental setup used and the fabricated bobbin for the construction of

the miniature solenoid. Fig. 5.14 shows the experimental results obtained from this

setup.

The inductance of a coil is usually very precise at low frequencies but it varies

non-linearly at higher frequencies. A pair of matched coils has been used, so that

the noise picked-up by the pair of coils is nulli�ed by subtraction. The frequency
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Figure 5.14: The axial �eld distribution obtained from the experimental setup shown
in the Fig. 5.13.

response of the coils has been veri�ed by a vector network analyzer (Agilent, Model

No. N5239A). The s21 network analyzer data has been converted into impedance

plot as shown in Fig. 5.15. The �gure shows that the coil has a resonance at around

800 kHz. A generalized design procedure for generation of uniform magnetic �eld

inside a miniature cylindrical coil is presented. Optimization technique of the design

process is addressed in detail. Central �eld uniformity and low stray �eld have been

achieved inside the coil. η has been improved to 97% if 60% volume of interest

is considered. The presented procedure is useful in the development of any small

magnetic gadgets and it supplements the concept of concentrator coils. For example,

in tiny eddy current probe design, ferrite cores are used to focus the �eld lines. In

that case, the probe becomes non-linear over frequency range due to the presence of

ferrite core. A shape modi�ed coil based on the above procedure has been used in

the table top susceptometer for the measurement of susceptibility of nano-magnetic

composites.
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Figure 5.15: Network analyzer data shows that the solenoid coil is used below its
resonance frequency.

5.3.4 Analog Circuit Details

An analog circuit has been designed and fabricated using current feedback type op-

erational ampli�er AD811. All the four bu�ers (B), two instrumentation ampli�ers

(IA) and the adder circuit have been designed by using AD811. For current feedback

ampli�ers, the closed-loop bandwidth depends on the value of the feedback resistor.

A supply voltage ±10 V and resistors of 649 Ω have been used in the analog adder

circuit along with a unity gain instrumentation ampli�er. The coils have been ex-

cited by digital function generator through a pair of high power bu�ers BUF634 (B1

in the Fig. 5.5). AD637 has been used for RMS to dc conversion. In RMS circuit,

averaging error capacitor has very important role in the accuracy of the circuit and

the output dc level varies proportionally. But it is essential to note that always the

ratio of two RMS is taken to �nd phase and hence the accuracy is enhanced.
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5.3.5 Validation of Susceptometer

This susceptometer has been validated electronically. A standard L-C-R meter

(Fluke PM6304, accuracy 0.05% ± 1 digit, maximum resolution 0.01µH) has been

used to test the inductances at di�erent frequencies using the designed measurement

system. The error in the measurement has been calculated and shown in Table 5.1

and 5.2. The phase measurement error with frequency has been estimated by in-

troducing a known phase to the function generator in one of the coil and �nding

the phase by the above method. The voltage drop across the inductor is more for

higher frequencies therefore, the measurement error is less at higher frequencies as

compared to lower frequencies (vide Table 5.1 and Table 5.2). The proportionality

constant (κ) has been measured using di�erent materials of known susceptibility

by the test coil with the same �ll factor and ∆L is measured. The average of the

proportionality constant is found to be 10.32 (in Table 5.3). This susceptometer is

also validated with the samples of known susceptibilities assuming κ to be 10.32 (as

given in Table 5.3).

Table 5.1: Error estimation in the measurement of change in inductance ∆L

Freq L0 (air core) Ls ( sample in core) ∆L ∆L Error
(kHz) standard standard standard measured (%)

10 962.55µH 966.62µH 4.07µH 4.096µH +0.64
100 0.96623mH 0.96752mH 1.29µH 1.285µH -0.39

Table 5.2: Error estimation in the measurement phase

Freq Standard θ in ◦ is θ in ◦ is measured Error
(kHz) introduced between the by the system (%)

the channels of function generator

10 0.2 0.2033 +1.65
100 0.2 0.2017 +0.85

This AC susceptometer is novel in coil design and phase measurement. The sens-

ing part of this technique is small compared to the mutual inductance type and hence
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Table 5.3: Constant of proportionality of the susceptometer

Test Material Weight (gm) ∆L (µH) Proportionality constant (κ)

CuSO4, 5H2O 0.3954 2.2538 9.7690
FeO 0.5298 6.3078 11.9822

NiCl2, 6H2O 0.5938 6.8732 9.2135

Table 5.4: Comparison with known materials

Test Material Weight Susceptibility Measured Susceptibility
(gm) (cm3mol−1) (cm3mol−1)

AluminumPowder 0.4133 1.60×10-5 1.73×10-5
Mn2O3 0.9312 1.41×10-2 1.48×10-2

NiCl2, 6H2O 0.3048 1.52×10-2 1.47×10-2

the cryostat can be smaller in size and it can also be adopted in superconductors,

ferro-�uids, biological samples etc. In this development, advantages of both self-

inductance type and mutual inductance type susceptometers have been exploited.

The measurement of RMS voltages at �ve di�erent locations in the analog circuit

enables measurement of complex susceptibility of the samples. The uncertainties of

the measurement using this susceptometer depend on the uncertainties in the mea-

surements of B/2v0 and the �ve RMS voltages. To reduce the uncertainties, higher

resolution Analog-to-Digital converters are needed.

5.4 Experiment with Nano-magnetic Samples and

Results

The �ndings from the simulation study have provided the inspiration to verify exper-

imentally the frequency dependent crossover of susceptibility. Co-silica and Ni-silica

nano composites are prepared by conventional sol-gel technique. The nano compos-

ites are taken in powdered form in a glass container. The container with sample is

inserted inside the susceptometer test coil and an empty container is inserted in the

reference coil of the susceptometer. The SEM micrographs (Fig. 5.2) reveal the size
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of the powdered nano composite particles are of the order of 10 to 50 µm. Nano

sized metal particles (nickel or cobalt) are embedded in the composite. From TEM

images (Fig. 5.3) of cobalt and nickel nano particles, it can be concluded that the

average size of the nano particles embedded in the silica matrix is around 7−10 nm

and average distance of separation among the nano-magnets is 11-15 nm.

The sample susceptibility has been measured by the self-inductance type absolute

coil high frequency susceptometer at 300K [24]. The solenoid of the susceptometer

has been operated below its resonant frequency. In the experiment, the strength of

the applied magnetic �eld was around 70 Amp/m. The homogeneity of the magnetic

�eld inside the susceptometer coil has been maintained by a special design of the

coil [24] and that has been checked by magnetic �eld analyzer (Spectran Analyzer by

Aaronia AG, Germany). The frequency of the magnetic �eld has been raised from

100 kHz to 800 kHz in steps of 50 kHz and the susceptibility has been measured for

each step. Some experimental results are presented in Fig. 5.16, 5.17 and 5.18. A

transition from paramagnetic to diamagnetic with frequency is clearly evident from

the frequency verses susceptibility plot. This indicates that the sample is opposing

the applied �eld at higher frequencies. The same experiment has been repeated

by applying magnetic �eld strength of 200 Amp/m. In that case, the system did

not show any transition to negative susceptibility with frequency. This may be

explained as the Zeeman energy in the later case dominates the other two forms

of energies (interaction energy and anisotropy energy) and the particles are forced

to follow the applied �eld. Hence, the system shows only paramagnetic response

for all the frequencies employed. Ni-silica nano-composite follows para-to-dia trend

similar to that of 20% cobalt-silica nano-composites. The experiments have been

conducted using 10%, 20% and 30% nickel in nickel-silica nano-composites. It is

seen that the crossover frequency varies with percentage of nickel or cobalt in the

nano-composites. This is because, the occurrence of this phenomenon is dependent

on the size and separation of the nano-particles (see Table 5.5).
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Figure 5.16: The variation of volume susceptibility of Ni-silica nano-composites
against frequency of the applied �eld at 77oK from the experimental data.

Figure 5.17: The variation of volume susceptibility of Ni-silica nano-composites
against frequency of the applied �eld at 300oK from the experimental data. Inset
shows the negative susceptibility data.
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Figure 5.18: The variation of volume susceptibility of 20% Co-silica nano-composites
against frequency of the applied �eld at 77oK and 300oK from the experimental data.

The simulation result is presented for a cluster of 3375 interacting nano-magnets

arranged in a cubic lattice and cross-over of magnetization is shown in Fig. 4.2. But

in the experiment carried out, the number of interacting nano-magnets is of the order

of 105 − 106. Here also we �nd experimentally similar type of transition at some

frequency. The frequency response in the experimental �ndings is di�erent from

the simulation data. These anomalies are addressed in the discussion section. The

system will try intrinsically to oppose the applied �eld, the cause of its instability.

This originates a new concept of diamagnetism in the interacting nano-magnetic

ensemble.

5.5 Conclusion

Susceptibility of magnetic nano-composites of cobalt-silica and nickel-silica have

been measured and the results shown in Fig. 5.16, 5.17 and 5.18 are summarized
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Table 5.5: Experimental Results of nano-composites Co-silica and Ni-silica

Nano Composite Temperature (oK) Cross-over Frequency (kHz)

20%Co in silica 300 500
20%Co in silica 77 no diamagnetism observed
10%Ni in silica 300 350
20%Ni in silica 300 350
30%Ni in silica 300 350
10%Ni in silica 77 125
20%Ni in silica 77 175
30%Ni in silica 77 250

in Table: 5.5. The variation of susceptibility in frequency domain shows a crossover

frequency, that means the susceptibility becomes negative above that frequency. The

tests were carried out at room temperature and also at liquid nitrogen temperature.

The size of the powdered nano-composites particles is of the order of 50-100 µm.

Each particles of the nano-composites are basically a silica matrix embedded with

nano-sized metal (Ni or Co) particles. These metal particles are nano-magnets,

distributed randomly in the silica matrix. The average diameter of the nano-magnets

is 7-10 nm. The average separation among the nano-magnets is around 11-15 nm.

Samples have di�erent percentage of metal in silica matrix (10%, 20% and 30% of

metals). From Table: 5.5, the following conclusions are drawn.

1. Change of susceptibility of the nano-composites with frequency has similar

trend as seen in the simulations (in Chapter 4).

2. Crossover frequency increases as the temperature of the sample increases. The

reversal of magnetization follows Arrhenius Law (see Eq. (4.1)) and hence, the

relaxation frequency increases with rise of sample temperature.

3. Crossover frequency of nickel-silica nano-composite at 77oK is increases with

higher percentage of metal in the nano-composite. From the HRTEM images,

higher percentage of metal in the nano-composites indicates larger volume of

the nano-magnets. Bigger nano-magnet has larger magnetic moment result-
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ing in a stronger interaction potential. Stronger interaction potential means

higher spring constant, in mechanical mass-spring equivalent model. Natural

frequency of oscillation is more for higher spring constant. Therefore, crossover

frequency is increases with the increase in the size of the nano-magnets in the

composite.

4. Crossover frequency of nickel in silica nano-composite at 300oK does not

change for di�erent percentages of nickel in the nano-composite. For higher

volume of nano-magnets, relaxation frequency reduces and interaction poten-

tial increases. Increase in interaction potential increases frequency of oscilla-

tion. So both (relaxation frequency and normal modes of oscillations) compen-

sate each others e�ect, resulting in no e�ective change in crossover frequency.

5. At 300oK crossover in susceptibility of cobalt in silica nano-composite is ob-

served but at 77oK, there is no diamagnetism observed. At low temperature

relaxation frequency reduces that means weak applied �eld may not be able

to switch the nano-magnets. Cobalt has higher saturation of magnetization

(higher interaction potential) as compared to nickel, hence this weak external

�eld is unable to initiate the cooperative switching in the core.

6. In the experimental �ndings, the nature of frequency response has similarity

with the simulation results but the frequency at which the crossover of sus-

ceptibility takes place is one order higher in simulation than the experiment.

The crossover frequency depends on the system size. The number of nano-

magnets in the simulation is less than 4000 but the number of nano-magnets

are more than 106 in the nano-composite samples. So, the simulation is done

for an ensemble consisting of a very limited number of nano-magnets with

the assumption that the system follows Boltzman-Gibbs extensive statistics.

The exact dynamic evolution of the moments of the nano-magnets has been

calculated ab-initio instead of using heuristic Monte-Carlo algorithm. In re-
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ality, a canonical ensemble with long range interaction follows non-extensive

statistics and hence the entropy of the system is not extensive. Such systems

cannot be reduced to minimal Hamiltonian model to study the dynamics of

the individual nano-magnets in the ensemble. The partition function of the

non-extensive system of nano-magnetic ensemble will be di�erent compared to

an extensive system and hence, the crossover frequency in the simulation (in

Fig. 4.2) is higher than the experimental results (in Fig. 5.16-5.18).
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Chapter 6

Summary and Outlook

Understanding dynamics of interacting oscillators is an issue of interest for diverse

disciplines ranging from biology to engineering. This insight helps us to interpret

the behavior of many real life complex dynamical systems. A coupled system is rep-

resented by coupled di�erential equations or di�erence equations and such systems

are everywhere in nature with non-linearities and complexities. These di�erential

equations are not always integrable hence numerical solution and computer simula-

tion is essential to analyze such systems. In this work, a special case of collective

dynamics of dipoles has been investigated by computer simulation. The premise

of this thesis is to understand the coupled dynamics of dipoles in a double well

potential. The simulation results are also veri�ed experimentally in magnetic nano-

composites where dipole equivalents are present. This chapter is the summery of the

work carried out in this research. In addition, the outlook and future possibilities

are also discussed in this concluding chapter.
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6.1 Summary

In the �eld of magnetism, paramagnetic and diamagnetic materials do not exhibit

collective magnetic interactions and they are not completely magnetically ordered.

Ferromagnetic materials exhibit long-range magnetic ordering when they are below

a critical temperature. This thesis does not speak about magnetism rather it tells

about ordering of magnetic moments under external magnetic �eld. A system of

oscillating dipoles behave like a paramagnetic material and the dipoles align them-

selves in the direction of the applied �eld. But the system of oscillating dipoles

at some higher frequencies of the applied magnetic �eld shows a majority of the

dipoles in the system opposing the �eld, as a result, a diamagnetic susceptibility is

observed. This phenomenon should not be confused with magnetic phase change.

That is why crossover of susceptibility is included in the title of the thesis.

In the �rst part of this thesis, a natural phenomenon, predator-prey interaction is

introduced where a school of �shes is considered as a coupled system. Any coupled

system comprises of subunits and here the subunits, the �shes are hydro dynamically

interacting dipoles. They have a long range interaction and it is either attractive or

repulsive depending upon their orientations. There is a synchronization and pattern

formation in the �sh school which is a property of chaotic coupled oscillator system.

With some pedagogical approach, the second chapter introduces the harmonic

oscillator. In this context, some of the features like resonance, normal modes of

oscillation of linear and non-linear oscillator are also explained. Phase of a linear

oscillator with respect to the external force varies with the frequency of the applied

force but how this phase lag develops between the applied force and the dynamics

of the oscillator is discussed in this chapter. Oscillators no longer endure linear-

ity if the extent of oscillation or strength of applied force is large but due to some

parametric variations, the dynamics of the non-linear oscillators sometimes becomes

highly dependent on initial conditions which results in a chaotic oscillation. Syn-
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chronization and suppression of chaos are the two topics in externally perturbed

non-linear oscillators system that are pointed out in this chapter because they are

relevant in the simulation work. Additionally, some salient properties of coupled

non-linear oscillators are also described here. Dynamics of oscillating dipoles in a

double well potential is the main focus of the work that has been carried out in this

thesis. For that reason, a mechanical model of double well potential as proposed

by F. C. Moon has been explained in this chapter. All the dipoles in the potential

well are coupled and they oscillate about their axis. To understand the phase of

this coupled oscillator system, a simple and most widely used model proposed by

Kuramoto has been adopted. Kuramoto model introduces the concept of phase os-

cillators system and from this, the problem of this research work on phase variation

in driven coupled oscillator system has been de�ned.

The third chapter has explained the term susceptibility i.e., susceptibility of

collective oscillators system subjected to an external perturbation. The importance

of this work is to �nd the possibility of negative susceptibility in a coupled dipole

system. As magnetic needle is the gross representation of a dipole, the historical

experiment done by Meissner and Schmidt is explained in this chapter to understand

how the dynamics of the needle becomes chaotic. Ordinary di�erential equation

is derived from the Hamiltonian of the dipole oscillator to analyze the dynamics

of the magnetic needle. The synchronization and chaos suppression is achieved by

introducing damping in the dynamics of the dipoles. A simulation result of 91 dipoles

arranged in an one dimensional array is presented in this chapter where an extra

summation term called interaction potential is added with the coupled equations

of motion of the dipoles. The coupled di�erential equations are solved by Runge-

Kutta method and the solution shows negative susceptbility at some frequencies of

the applied �eld.

Fourth chapter is the pivotal part of this thesis; it is about the simulation of an
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ensemble of superparamagnetic particles under the in�uence of oscillatory magnetic

�eld. In the introductory part of this chapter, an example of phase transition in

one dimensional Dyson model is cited, where Dyson has considered long range inter-

action. It is interesting to note that Ising model with nearest neighbor interaction

in one dimension does not show any phase transition. Here, a realistic example of

the transition of susceptibility is established theoretically in an ensemble of sper-

paramagnetic particles. A single domain magnetic islands have coherent switching

of the spins and hence the collective spins act as a dipole. These magnetic dipoles

are arranged in three dimensional array and an oscillatory external �eld is applied

on the ensemble. The simulation results shows crossover of susceptibility depending

upon the frequency of the applied �eld and some other parameters. Switching of the

nano-magnets initiates at the outer population of the ensemble and that initiates

a cooperative switching in the core of the ensemble after some delay. This delay

depends upon the parameters involving the interaction potentials. If this delay is

more than T
4
then the system is diamagnetic where T is time period of the applied

�eld.

The �fth chapter explains the crossover of susceptibility by experimental means.

The experimental setup for the measurement of susceptibility of the sample was a

challenge because it demands two special criteria: weak �eld (10-20 Oe) and high

frequency (MHz) measurement. Weak �eld measurement is prone to noise and high

frequency lock-in ampli�er is not readily available and is also of high cost. Con-

ventional mutual inductance type susceptometer with long mutual inductance coil

requires strong �eld to measure susceptibility. Because of its strong �eld application,

conventional susceptometer cannot be used. A Self inductance type susceptometer

has been specially developed, using a very small coil (2.5 cm). Field uniformity in

this small coil has been achieved up to 80% by a specially designed shape modi�ed

coil. Phase measurement at high frequency is achieved by a simple trigonometric

formula implemented in analog hardware combined with computer software. The
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susceptibility of the magnetic nano-composites is measured for di�erent frequencies

and frequency dependent para-to-dia crossover of susceptibility is observed experi-

mentally.

6.2 Future Outlook

The work described in this thesis contributes to the recent nano-magnetic research

and development. This has also relevance in the research �eld of �sh schooling or

sperm dynamics. Some improvements may be possible in simulation and experi-

ments also. Some future and outlook are discussed below.

• In the experimental �ndings, the nature of frequency response has similarity

with the simulation results but the frequency at which the crossover of sus-

ceptibility takes place is an order higher in simulation than the experiment.

• The crossover frequency depends on the system size. The number of nano-

magnets in the simulation is less than 4000 but the number of nano-magnets

are more than 105 in the particles of the nano-composite samples. So, the

simulation is done for an ensemble consisting of a very limited number of

nano-magnets with the assumption that the system follows Boltzman-Gibbs

extensive statistics.

• The exact dynamic evolution of the moments of the nano-magnets has been

calculated ab-initio instead of using heuristic Monte-Carlo algorithm.

• In reality, a canonical ensemble with long range interaction follows non-extensive

statistics and hence the entropy of the system is not extensive. Such systems

cannot be reduced to minimal Hamiltonian model to study the dynamics of

the individual nano-magnets in the ensemble. The partition function of the

non-extensive system of nano-magnetic ensemble will be di�erent than an ex-
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tensive system and hence, the crossover frequency in the simulation is higher

than the experimental result.

• The simulation is performed on cobalt nano-magnets, where cobalt has only

one easy axis.

• One more simulation could have been done on nickel nano-magnets also. But

nickel has three easy axes and it is a complicated problem to solve because it is

di�cult to get the probable stable axis of the magnetic moment under external

magnetic �eld. The size of the nano-composite particles is of the order of 50-

100 µm therefore, number of nano-magnets are 105 − 106. In the simulation,

less than 4000 nano-magnets are taken because ab-initio computation takes a

very long time.

• The data storage and magnetoelectronics industries are developing smaller and

faster technologies that require sub-hundred-nanometer magnetic structures to

operate in the gigahertz regime. New types of spintronic devices with increased

functionality and performance are being incorporated into data storage and

magnetoelectronic technologies. New techniques are required to characterize

these magnetic structures on nanometer scales and over a wide range of time

scales varying from picoseconds to years. The response of a 50-nanometer

magnetic device, used in a read head or a magnetic random-access memory

(MRAM) element, may be determined by a 5-nanometer region that is un-

dergoing thermal �uctuations at frequencies of 1 hertz to 10 gigahertz. These

�uctuations give rise to noise, non-ideal sensor response, and long-term mem-

ory loss. This crossover of susceptibility in the manufacturing nano-magnetic

devices has to be taken care, otherwise along with thermal �uctuations, stray

magnetic �eld will also generate noise in the devices. Crossover of susceptibil-

ity is an inevitable trade o� between the size minimization and fast response

in the development of nano-magnetic devices.
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• Spintronic devices and nanomagnetic materials are �nding applications in

other areas such as homeland security and biomedical imaging. These in-

dustries require better low-power magnetic �eld sensors for weapons detection,

chemical detection, and magnetocardiograms, and require novel nanomagnetic

materials for MRI contrast agents and defense applications. This frequency

dependent negative susceptibility will be useful in high frequency and low

magnetic �eld sensing device development.
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Appendix A

Fish School approaching towards a

predator

Jonathan Bird has done lot of research on Sail�sh at Cancun, Mexico. Sail�sh has

got a sail and a pointy bill. Sail�sh are a genus Istiophorus of bill�sh living in

warmer sections of all the oceans in the world. They are predominately blue to

gray in color and have a characteristic erectile dorsal �n known as a sail, which

often stretches the entire length of the back. Another notable characteristic is the

elongated bill, resembling that of the sword�sh and other marlins. Sail�sh loves to

eat Sardines. Sardines, or pilchards, are common names used to refer to various

small, oily �sh within the herring family of Clupeidae.

Here, Sail�sh is the predator and Sardine is the prey. As soon as the predator

shows up the sardines form a bait ball. A bait ball, occurs when small �sh swarm

in a tightly packed spherical formation about a common center. It is a last-ditch

defensive measure adopted by small schooling �sh when they are threatened by

predators. In the Fig. A a negatively susceptible system of �shes is shown.
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Figure A.1: Sail�sh attacks Sardines in all directions. Serdines often come pretty
close to the Sail�sh for protection. There are incidences when we see the Sardines
are heading towards the Sail�sh which is very unlikely in nature. This is a condi-
tion where the system is susceptible to the external perturbation but opposing the
perturbation. This is called diamagnetic susceptibility.
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Appendix B

Di�erential Equation : Dynamics of

interacting Dipoles under external

perturbation in a dissipative double

well potential

Magnetic dipoles of pole-strength µ are scattered on a plane and they are free to

rotate about their axis in the same plane. Here, θ is the angular displacement of

the dipoles. Let I is the moment of inertia and J is the angular momentum of the

dipoles then kinetic energy of the dipole is J2

2I
. Dipoles are subjected by a double

well potential, where two minima exist at 0◦ and 180◦ respectively. The shape of

the potential well is sine curve, therfore the potential energy of the dipole in terms

of θ is -κ cos2 θ where, κ is the depth of the potential well. Let β be the dissipative

force of the medium then βθ is the work done by the dipole in the medium. Let

H0 sinωt is the external �eld, the work done on the system is µH0 sinωt cos θ. Let

rij represents distance between the ith and jth dipoles, the Hamiltonian of the ith

dipole in coupled condition is the sum of potential energy and kinetic energy and is
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given in the following Eq. (B.1). Here, the
∑

term arises due to collective dipolar

interactions.

Hi = J2/2I − κ cos2 θi + µH0 sinωt cos θi − βθi

+µ2

N∑
j=1(i 6=j)

1

r3ij
(−2 cos θi cos θj + sin θi sin θj)

(B.1)

The equations of motion are obtained by the properties of Hamiltonian

θ̇i = ∂Hi
∂J

and J̇ = −∂Hi
∂θi

Di�erentiating the Hamiltonian Eq. (B.1) with respect to J , we get ∂Hi
∂J

= J
I

= θ̇i.

Di�erentiating the above expression with time, we get θ̈ = J̇
I

Therefore, θ̈ = J̇
I

= −1
I
∂Hi
∂θi

and

∂Hi

∂θi
=


κ sin 2θi

−µH0 sinωt sin θi

+µ2
∑N

j=1(i 6=j)
1
r3ij

(2 sin θi cos θj + cos θi sin θj)


The ODE described above �nally arrive at the following equation.

d2θ

dt2
= − κ

I
sin2θ +

µH0

I
sinωt sin θ − βθ̇

+
µ2

I

N∑
j=1(i 6=j)

1

r3ij
(2 sin θi sin θj + cos θi cos θj)

(B.2)
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Appendix C

Dipole-Dipole Interaction Potential

Reference: Gri�ths, David J. (2007) Introduction to Electrodynamics, 3rd Edition;

Prentice Hall

We have seen that the potential of a pure dipole with dipole moment p (that is, a

system of charge where only the dipole term in the multipole expansion is non-zero)

is, in spherical coordinates:

V =
1

4πε0r2
p · r̂ =

1

4πε0r2
p cos θ (C.1)

By taking the gradient in spherical coordinates, we can �nd the electric �eld of a

dipole, since E = −∇V .

E = −∂V
∂r

r̂− 1

r

∂V

∂θ
θ̂ − 1

r sin θ

∂V

∂φ
φ̂ =

p

4πε0r3

[
2 cos θr̂ + sin θθ̂

]
(C.2)

We can calculate the average �eld of a dipole over a sphere of radius R but to

do this we need to express the spherical unit vectors in terms of rectangular unit

104



Figure C.1: Dipole dipole interaction.

vectors, since the spherical unit vectors chage with position. We have

r̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑθ̂ = cos θ cosφx̂ + cos θ sinφŷ − sin θẑ (C.3)

Substituting these into the �eld and collecting terms we get

E =
p

4πε0r3
[3 sin θ cos θ cosφx̂ + 3 sin θ cos θ sinφŷ + (3 cos2 θ − 1)ẑ] (C.4)
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From the Fig. C.1 we get

cos θ =
zj − zi
rij

; sin θ =
r
′
ij

rij
; cosφ =

xj − xi
r
′
ij

; cosφ =
yj − yi
r
′
ij

(C.5)

Replacing the sine and cosine values from Eq. (C.5) to Eq. (C.6) we get

E =
p

4πε0r3
[
3(xj − xi)(zj − zi)

r2i j
x̂+

3(yj − yi)(zj − zi)
r2ij

ŷ + (3
(zj − zi)2

r2ij
− 1)ẑ] (C.6)
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Appendix D

Rodrigues' rotation formula

Rotate a vector −→v = (x, y.z) about a general axis with a direction vector n̂ by angle

θ as shown in the Fig. D.1. −→v is decomposed into two components: −→v‖ parallel to

n̂ and −→v⊥ perpendicular to n̂ when −→v = −→v‖ +−→v⊥.

Let
−→
T is the new vector after rotation of θ about n̂. We have to compute

−→
T (−→v ).

Where,
−→
T (−→v ) =

−→
T (−→v‖ +−→v⊥) =

−→
T (−→v‖) +

−→
T (−→v⊥). Also,

−→
T (−→v‖) = −→v‖ since

−→
v‖ has the

same direction as n̂. As −→v is rotated around the axis with the direction vector n̂.

Therefore,
−→
T (−→v ) = −→v‖ +

−→
T (−→v⊥).

So,
−→
T (−→v⊥) is the only quantity to be computed. For this a two dimensional basis

in the plane of rotation is also shown in the Fig. D.1. The �rst basis vector is −→v⊥

and the second is −→w = n̂×−→v⊥ = n̂×−→v .

Looking at the Fig. D.1, we get
−→
T (−→v⊥) = cos θ−→v⊥ + sin θ−→w = cos θ−→v⊥ + sin θ(n̂×−→v ).

Therefore,
−→
T (−→v ) = −→v‖ +

−→
T (−→v⊥)

= (−→v .n̂)n̂+ cos θ−→v⊥ + sin θ(n̂×−→v )

= (−→v .n̂)n̂+ cos θ[−→v − (−→v .n̂)n̂] + sin θ(n̂×−→v )
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Figure D.1: Rotation about a general axis through the origin, showing the axis of
rotation and plane of rotation. Two dimensional basis of the plane of rotation.

= (−→v .n̂)n̂+ cos θ−→v − cos θ(−→v .n̂)n̂+ sin θ(n̂×−→v )

= (1− cos θ)(−→v .n̂)n̂+ cos θ−→v + sin θ(n̂×−→v )
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Appendix E

Direction of magnetic moment after

turning at an angle ψ from easy axis

The plane in the space is determined by a point and an orthogonal vector n̂ that is

perpendicular to the plane. Let P (x0, y0, z0) be given point and n̂ = Aî+Bĵ+Ck̂ is

the orthogonal vector to the plane. Let P (x, y, z) be any point on the plane where

r̂ = xî + yĵ + zk̂ and r̂0 = x0î + y0ĵ + z0k̂ are the position vectors of P0 and P

respectively. Then the vector equation of the plane is given by n̂.r̂ = n̂.r̂0. Hence,

the scalar equation of the plane is given by A(x− x0) +B(y − y0) +C(z − z0) = 0.

The equation of plane can be re-written as Ax + By + Cz + D = 0 where D =

−(Ax0 + By0 + Cz0). If the plane passes through the origin then D = 0 and the

scalar equation of the plane is Ax + By + Cz = 0. Here, A,B,C are the direction

cosines of n̂.

Let ê = a0î + b0ĵ + c0k̂ is a co-planer vector on the plane and the vector has

turned towards west by an angle ψ so that the new vector m̂ = âi + bĵ + ck̂ has

di�erent direction cosines. What is the value of a, b, c in terms of a0, b0, c0, A,B,C

and ψ ?

The scalar equation of ê and m̂ is x
a0

= y
b0

= z
c0
and x

a
= y

b
= z

c
respectively.
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Figure E.1: Direction of magnetic moment after turning at an angle ψ from easy
axis.

The dot product of ê and m̂ is given below:

√
a02 + b0

2 + c02
√
a2 + b2 + c2 cosψ = a0a+ b0b+ c0c (E.1)

The cross product of ê and m̂ is given below:

√
a02 + b0

2 + c02
√
a2 + b2 + c2 sinψn̂ = (b0c−c0b)̂i+(c0a−a0c)ĵ+(a0b−b0a)k̂ (E.2)

From Eq. (??) and (??) the normal vector of the plane n̂ = Aî + Bĵ + Ck̂ is

obtained as given below.

n̂ =
(b0c− c0b)̂i+ (c0a− a0c)ĵ + (a0b− b0a)k̂

(a0a+ b0b+ c0c) tanψ
(E.3)

Let Γ = 1
tanψ

, then

b0c−c0b = AΓ(a0a+b0b+c0c)c0a−a0c = BΓ(a0a+b0b+c0c)a0b−b0a = CΓ(a0a+b0b+c0c)

(E.4)
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This Eq. (E.4) leads to a set of homogeneous equations and di�cult to solve by

computer program. The computation also very time consuming and erroneous. It is

better to use Rodrigues' method of computing to get m̂ as explained in the Appendix

A.

m̂ = (1− cosψ)(ê.n̂)n̂+ cosψê+ sinψ(n̂× ê) (E.5)

For the computational purpose, Eq. (E.5) is required to represent in matrix no-

tation. Let us de�ne N, the cross product matrix of n̂ as given below:

n̂× ê = Nê =


0 −C B

C 0 −A

−B A 0

 ê (E.6)

We know that −→a × (
−→
b ×−→c ) =

−→
b (−→a .−→c )−−→c (−→a .

−→
b ) and replacing −→a =

−→
b = n̂

and −→c = ê we get n̂(n̂.ê) − ê = n̂ × (n̂ × ê) = n̂ × Nê = N2ê. Therefore, m̂ of

Eq. (E.6) will be expressed as

m̂ = [I + (1− cosψ)N2 + sinψN ]ê (E.7)
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Appendix F

Angular Dependence of Energy

Equation

The energy expression of Eq. (4.2) has the form:

E(ψ)=−A cos2 ψ −B cos(γ0 − ψ).

E verses ψ plot has two minima Emin1, Emin2 and two maxima Emax1, Emax2. The

positions of minima and maxima depend on the values of A,B, γ0. These values are

shown in the Fig. F.1. The black curve represents B = 0 and γ0 = 0 i.e., anisopropic

energy variation of the superparamagnetic particle in absence of any external �eld.

Here the two minima are at 0◦ and 180◦ respectively and maxima are at 90◦ and

270◦ respectively. This holds good even for non-zero B.

Color plots represents the E versus ψ for various γ0. The Fig. F.1 shows the

maxima and minima are γ0 dependent.

(Note: In the absence of external �eld nano-magnets will be on the easy axis at

ψ = 0◦ or 180◦. If the applied �eld direction and easy-axis both are along z-axis di-

rection then also the energy minima stay at 0◦ to 180◦. Here, easy-axis is randomly

chosen so there is an angle between H and easy axis. In this case, energy minima
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Figure F.1: Energy plots of various γ0 values

will vary with the instantaneous applied �eld. It is required to �nd the angle at

which energy minima occurs. This angle is the new location where the nano-magnet

will stabilize.)
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Appendix G

Stoichiometric Calculations for

Ni-silica nano-composites

Following is the stoichiometric calculation for the preparation of Ni-silica nano-

composite.

Ni(NO3)2 → NiO +NO2

C6H12O6 → 6C + 6H2O

NiO + C → Ni+ CO

(G.1)

Molecular wt. of Si(OC2H5)4= 208 gm/mol

Molecular wt. of SiO2= 60 gm/mol

Molecular wt. of Ni= 58.69 gm/mol

Molecular wt. of Ni(NO3)2.6H2O= 290.81 gm/mol

Molecular wt. of C6H12O6= 180 gm/mol

TEOS : H2O : C2H5OH=1:1:2 ratio

5ml of TEOS and 5ml of ethyl alcohol mixed throughly in a beaker. Density of

TEOS is 1gm/c.c. therefore, 5gm of TEOS is taken. In another beaker, 5ml of

double distilled water with 5ml of ethyl alcohol is mixed. in this beaker measured
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quantity of cobalt nitrate and dextrose are also to be mixed throughly.

One mole of SiO2 is obtained from one mole of TEOS

Therefore, 208 gm TEOS gives 60 gm SiO2 and 5gm of TEOS is taken

So, 5 gm TEOS gives 60×5
208

=1.442 gm SiO2

For 10% Ni in silica matrix : Amount of Ni = 10wt% of SiO2

= 0.10 x 1.442 gm

= 0.1442 gm nickel is required.

One mole of Ni comes from one mole of NiO. Therefore, 58.69 gm Ni comes from

74.69 gm NiO

Then, 0.1442 gm Ni comes from 0.1442×74.69
58.69

=0.0189 gm NiO

Calculation to �nd the required amount of nickel nitrate:

74.69 gm NiO comes from 290.81 gm of Ni(NO3)2.6H2O

0.0189 gm NiO comes from 290.81×0.0189
74.69

= 0.0736 gm of Ni(NO3)2.6H2O

Required amount of dextrose:

In this process carbon acts as reducing agent. Dextrose provides the required amount

of carbon.

One mole (12 gm) carbon is required to reduce one mole (74.69 gm) of NiO into

metallic nickel.

Then, 0.0189 gm NiO is obtained by the reduction process of 12×0.0189
74.69

= 0.003gm

of carbon.

72 gm of carbon comes from 180 gm of C6H12O6

0.003gm of carbon comes from 180×0.003
72

= 0.0075gm of C6H12O6

Therefore, 0.0075 gm of dextrose is required.
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Appendix H

M-H Curve Co-silica nanocomposite
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Figure H.1: M-H curve of 20%Co-silica nano-composite at room temperature. Re-
manence (Mr) is 0.5432 e.m.u per gm and coercivity is 0.00678 T
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Appendix I

Low frequency susceptibility plot

from simulation data

Software has been developed in this work for the simulation of susceptibility of the

magnetic nanoparticles. Susceptibility value reduces as the frequency increases. At

lower frequency range, susceptibility is high compared with high frequency suscep-

tibility. After some frequency, this susceptibility falls drastically. Figure I.1 shows

susceptibility of cobalt nanoparticles from 5kHz to 100kHz range. This simulation

takes very large time because large number of data points is required to get the data

in nano-second resolutions. Simulation data and experimental data may not exactly

match because we have taken very simple assumptions of the system. But, the order

of susceptibility is same in both simulation and experiment in appendix J.

118



Figure I.1: χac of Co-silica nanocomposites at 300K
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Appendix J

Low frequency susceptibility plot

from experimental data

120



Figure J.1: Real χac of Co-silica nanocomposites at 300K
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Figure J.2: Imaginary χac of Co-silica nanocomposites
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