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SYNOPSIS 

A nuclear power plants (NPP) consists of a large number of subsystems having varied 

response times. The concept of „redundancy and independency‟ is followed seriously in the 

design of the NPP to ensure safety of the plant, public and environment from possible effects of a 

severe accident. Safety can be ensured by suitable design, proper monitoring of the current status 

and appropriate reaction to any adverse situation in the plant. The main control room (MCR) in a 

nuclear power plant (NPP) is assigned the primary responsibility of monitoring and controlling 

the current status in various subsystems of the plant. Any major imbalance in the plant caused 

due to any design basis event needs to be reported in the MCR at the earliest.  Further, proper 

handling of such events leads to customary functioning of the plant again. Improper handling or 

delayed actions to these design basis events can affect the plant adversely. Quick and 

unambiguous identification of such events and proper handling of the events are the essential 

plant protection operations. The task of identifying the events is otherwise known as 

classification problem. One of the ways to deal with the classification problem is using 

supervised machine learning. Supervised machine learning is a procedure used to train a network 

which calculates the output for a set of labeled inputs. Here, the labeled inputs are known as 

training data along with its true output or class or label or event during the learning phase of the 

network. Another way to counter the classification problems is by the usage of soft computing 

techniques. A network or system which is exclusively trained to combat classification problems 

is known as a classifier. The main objective of a classifier in a NPP is to achieve the maximum 

possible accuracy. The events which have been considered as class or labels in the thesis are 



ii 
 

mostly some of the transients in the steam water system along with some malfunctions in typical 

500MWe pool type sodium cooled fast reactor (SFR). 

Fuzzy rule based classification system (FRBCS) is a method to tackle classification 

problems. The combination of a well crafted rule base along with a set of properly assigned input 

and output membership functions helps in classifying the dataset using FRBCS. The present 

research work focuses on the performance analysis of FRBCS for transient identification in a 

SFR along with the importance of feature selection to have higher interpretability and acceptable 

accuracy. It also investigates the usefulness of monitoring the output of a classifier for a certain 

period of time instead of instantaneous conclusion, in case of online event identification in order 

to ascertain the occurrence of a particular transient.  

A novel approach to reduce the number of training samples has been developed which is 

known as training dataset reduction (TDR) approach. In TDR approach, some of the training 

samples are discarded based on the Euclidean distance calculated using a portion of test dataset. 

A cut-off Euclidean distance is calculated using TDR approach which creates a hypothetical 

boundary and selects the samples which have lesser Euclidean distance than it. The resulting 

reduced training dataset is fed as input to a classifier which gets trained using a supervised 

machine learning algorithm. The performance of the TDR approach on some of the real world 

datasets and the feasibility of this approach in classifying some of the transients in SFR has also 

been studied. 

The preprocessing of the training dataset in order to filter out necessary information from 

the huge bank of data provides a greater impact on the training process and eventually helps in 

improving the classification accuracy. One way of preprocessing the training dataset to reduce 

the quantum of data is carried out using various dimensionality reduction techniques such as 
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principal component analysis (PCA). PCA dumps the lesser important features from the 

calculated principal components thereby reducing the number of columns in the training dataset. 

Further, this reduced training dataset is fed as input to a classifier that gets trained. One of the 

extensively used classifier is an adaptive neuro-fuzzy inference system (ANFIS) which has the 

advantage of both neural networks and fuzzy inference system. In ANFIS, the neural network 

concept is used to tune the fuzzy membership function. This thesis emphasizes on the research 

undertaken on the feasibility of usage of PCA based ANFIS for multiclass event classification in 

SFR considering dimensionality reduction. 

Another common issue associated with any classification dataset is the problem of 

imbalanced dataset. Traditionally, the classification accuracy is biased towards majority class 

thereby neglecting the minority class. One of the solutions to such problem is oversampling of 

the minority class samples known as synthetic minority oversampling technique (SMOTE), 

wherein, each minority sample generates equal number of synthetic data in order to make the 

dataset balanced. In this thesis, a modification to SMOTE which solves the imbalanced dataset 

problem, termed as weighted SMOTE is studied. In this algorithm, instead of oversampling each 

minority sample with same amount of synthetic data, different weights are assigned to each 

minority sample. Based on the weights assigned, the generation of the amount of synthetic data 

varies for each minority sample. Finally, the performance of the weighted SMOTE on various 

real world imbalanced datasets is compared with the traditional SMOTE. 

As the MCR in a NPP is studded with many important consoles and panels consisting of 

numerous alarms, displays, hooters, etc, a proper graphical user interface (GUI) to display any 

result is extremely crucial. A user friendly GUI with all the necessary information about the 

condition of the plant is an asset for the operators in the MCR. Information overloading on the 
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operators can cause panic stricken decision making which eventually may lead to an unsafe 

circumstance. Hence, the main objective of a GUI must be to display the most obligatory 

information at any instance, avoiding information overloading on the operator. Instead of 

displaying numerical data, the demonstration of such information are also made in a more 

informative manner such as graphs, pie charts, bar graphs, etc, based on requirement and 

feasibility. This approach develops an improved decision making ability of the operator as the 

information is conveyed to them in a lucid manner. 

The present thesis attempts to understand the various supervised machine learning 

algorithms for classification problems and their implementation and feasibility with respect to 

various events in a NPP. The feasibility deals with mostly focusing on the classification accuracy 

of the classifier. The thesis also attempts on analyzing various aspects of the training data and 

processing the same in order to achieve better classification accuracy. Further, the GUIs 

developed and mentioned in the thesis provide a better idea on various information by which the 

operator can be benefited during an emergency situation. 
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1  
INTRODUCTION 

The present chapter introduces the classification problems and highlights the relevance of the 

study of classification of events in nuclear power plant. A brief description on nuclear power 

plant emphasizing on medium sized Fast Breeder Reactor and the importance of event 

classification is outlined in the present chapter. It delineates some of the major soft computing 

and machine learning algorithms also. 

1.1 Introduction 

 Classification of events accurately in a small scale or a large scale industry has a 

significant impact on the overall outcome of the industry. The malfunctioning of any component 

or the occurrence of failure of any component must be monitored and controlled in order to avoid 

any imbalance in the industry. If this minor imbalance is not noticed and not treated on time then 

it might lead to major disaster affecting human beings along with the environment. This 

particular kind of industry or system is known as safety critical system. An example of a safety 

critical system is a nuclear power plant (NPP) which is a complex engineering. It consists of a 

huge number of complex systems integrated together in a systematic manner along with their 

control and support systems made up of several components. Hence, the safety of the plant 

largely depends on proper classification of any design basis events at the earliest so that proper 

steps can be taken to overcome any catastrophic situation. 
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 The monitoring of the current status of the plant is brought to a higher confidence level if 

there is a suitable equilibrium between the physical models and empirical models. The physical 

model and empirical model works on deterministic and probabilistic techniques respectively to 

produce output from a model. The status at a particular instance becomes more obvious and 

convincing if both these models generate identical results and thereby validate each other. 

Hence, the final status is a result of an integrated decision making ability of both these models. 

Generally, probabilistic models are bit faster than the deterministic models. This aides the 

operator prepare for the upcoming scenario before the integrated results. The present thesis 

focuses on discussing a variety of empirical methods and its practicability that would assist in 

identifying various events of a NPP. 

1.2 Nuclear Power Plant 

 For a country like India with the second largest population in the world, sufficing the 

energy requirement for power generation has always been a challenging mission. The primary 

source of energy generation in India is coal and based on the amount of carbon dioxide emission, 

it has a callous impact on the environment. The nuclear power generation has played a 

noteworthy role in counteracting these issues. The three stage nuclear power program formulated 

by Dr. Homi Bhabha aims at efficiently utilizing the abundant thorium resources in India to 

pacify the increasing energy demand. It is a three generation of nuclear reactors using three 

different fuels. In the first stage, natural or enriched uranium is used as nuclear fuels for thermal 

reactors. The Plutonium-239 reprocessed from the depleted fuel for the first stage reactors is 

used as fuel along with Uranium-238 and Thorium-232 blankets in the second stage breeder 

reactors such as Prototype Fast Breeder Reactor (PFBR). The excess Plutonium-239 produced in 

these reactors is used to fuel the new breeder reactors. The Uranium-233 produced in the second 
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stage along with Thorium-232 blankets is used as fuel in the third stage reactors to complete the 

Uranium-Thorium cycle.   

As every NPP is a safety critical process with safety being the major goal along with 

power production, utmost importance and obligatory measures have been in use to accomplish 

both [1, 2]. One of the ways of achieving safety is by continuously monitoring the current status 

of the plant and thereby taking suitable measures on being informed about the occurrence of any 

event which might cause imbalance in the plant.  This can be put into action in a constructive 

manner only if the event which has occurred is correctly diagnosed. An erroneous detection of 

the incurred event may challenge plant control and safety system eventually leading to severe 

accident. Hence, event classification plays an imperative responsibility in attaining the perfect 

balance of a plant as huge as the PFBR.  

 PFBR is a 500MWe NPP which is in an advanced stage of commissioning at Kalpakkam, 

India. It is a pool type, MOX (Mixed Oxide of Plutonium and Uranium) fuel Fast Breeder 

Reactor with sodium as coolant. A pool type reactor has a superior safety features which enables 

its selection over loop type reactor. The advantages of MOX fuel are safe operation to high 

burnup, ease of fabrication and proven reprocessing. The reactor core is a compact core 

containing 181 fuel subassemblies and 12 absorber rods. The absorber rods are divided as control 

and safety rods and diverse safety rods with 9 and 3 rods respectively arranged in two rings. The 

heat transport system consists of primary sodium circuit, secondary sodium circuit and steam 

water system. The thermal energy generated in the reactor core is transferred through the primary 

and secondary sodium circuits and ends up in the steam generator producing steam. The steam 

water system produces superheated steam which drives the Turbo Generator to produce electric 

power. In case of reactor shutdown, the decay heat retained due to fission reaction is removed by 
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two decay heat removal systems – operation grade decay heat removal system (OGDHR) which 

is an active method and safety grade decay heat removal system (SGDHR) which is a passive 

method. The complete flow sheet of a 500MWe FBR containing the major components is shown 

in Fig. 1.1. To ensure safety, a defense-in-depth philosophy, consisting of three levels of safety, 

i.e., design with adequate safety margin, early detection of abnormal events to prevent accidents 

and mitigation of consequences of accidents, if any, is adopted [3].  

 PFBR has many complex systems which need proper training to handle. To provide 

extensive and elaborate training to the operator about the different plant operations and 

conditions, a full scope replica type operator training simulator (OTS) has been developed [4]. 

Efficient plant operation depends upon two main factors, i.e., well defined operating procedures 

and well trained operators possessing good knowledge about the plant [5]. The operator is 

trained on the simulated transients, malfunctions and abnormal conditions as in the real plant. 

This enables early detection of abnormalities, aiding in proper decision making and taking swift 

responses during crisis situation in the real plant.  

 In any NPP, efficient monitoring of the current status of the plant plays a key role in 

maintaining the equilibrium of the plant at each instance. Any imbalance in the plant is 

monitored and highlighted in the main control room (MCR) so that necessary steps are taken in 

time to avoid any fatal accidents. In such case, proper identification or classification of the 

occurrence of any event should be quick and unambiguous. To support such scenarios, transient 

identification systems have been devised to help operator identify transients and take fast and 

right corrective actions in due time [6]. Data driven methods such as artificial neural network and 

other soft computing techniques are used for transient identification in NPP [7].   



5 
 

 

Figure 1.1 : Flow sheet of a 500MWe Fast Breeder Reactor 

1.3 Event Classification  

 A NPP consists of a number of complex components which are integrated in a very 

systematic manner. Though the design of the plant has undertaken a rigorous planning and 

research, it is natural to have improper working of the components at some instance during the 

plant life span which may affect the balance of the plant. Such occurrence of conditions is known 

as designed basis events (DBE). These events may be a transient or a malfunction which may 

lead to vulnerable circumstances if not addressed on time. Prior to reacting to the event which 

has occurred, the classification of the correct event decides the course of action. The action to a 

particular event which actually never happened may lead to unnecessary chaos and eventually 

affect the balance and productivity of the plant. Hence, accurate event classification takes care of 

the safety along with economy and eventually the profitability factor of the plant.  
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 Along with deterministic models which help in event identification and classification in 

NPP, various probabilistic models do assist in this regard. Some of the probabilistic approaches 

used are fuzzy computing, machine learning, and evolutionary computing. Firstly, fuzzy 

computing relates fuzzy logic to probabilistic reasoning in order to approach classification 

problems such as image processing [8], wireless sensor networks [9], data security [10], fault 

classification in transmission lines [11], etc. Fuzzy logic based modulation classification for non 

ideal environment has also been established where it is difficult to use probabilistic methods 

[12].  The usage of fuzzy rule based classification system (FRBCS) which is a category of fuzzy 

rule based system (FRBS) used for classification problems have been also extensively used and 

modified for usage in many diverse fields. Enhancing the performance of FRBCSs by extending 

the knowledge base with the application of the concept of Interval-Valued Fuzzy Sets is one such 

modification [13]. A learning algorithm based on reward and punishment has also been proposed 

to adjust the weights of each fuzzy rule in the rule-base by Jahromi et al. [14]. Pair wise learning 

and preference relations based linguistic FRBCS for solving multiclass problems are dealt by 

Fernandez et al. [15]. The study on the application of instance selection technique in genetic 

FRBCS is outlined by Fazzolari et al [16]. Ishibuchi et al. [17] reported the effect of rule weights 

on FRBCS. Secondly, machine learning is a mode of making computers behave as a human by 

providing a set of information which helps to find the possible outcome to a preferred input. 

Among the various diverse applications of machine learning, some of the most promising 

domains have been text categorization [18], medical diagnosis [19], data mining and information 

retrieval [20], etc. Lastly, evolutionary computing uses different principles of biological 

evolution such as natural selection and genetic inheritance to solve various problems including 

event classification. Some of the evolutionary computing techniques are genetic algorithm [21], 
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multi objective evolutionary algorithm [22], hybrid algorithm of linguistic classification rules 

and multi objective genetic algorithm [23], artificial bee colony [24],  swarm intelligence [25], 

etc. 

 The fault detection and diagnosis methods are given much importance as they improve 

the safety, reliability and availability of NPP [26]. Event classification is one of the application 

areas of these methods. There have been a wide acceptance on the usage of probabilistic 

techniques along with many soft computing techniques to diagnose the event classification in 

NPP [27]. The feasibility study on transient identification using support vector machine (SVM) 

have been reported and it indicated that SVM classifiers showed promising results [28, 29]. 

Artificial neural network (ANN) has also showed its competence in various event identification 

[30] and transient classification [31]. A novel technique based on neural networks, aimed at 

reducing the variability of fault manifestations through a process of "intelligent normalisation" of 

transients for transient classification is reported by Roverso [32]. After a number of case studies, 

the use of back propagation algorithm for the development of connectionist expert system for 

transient identification in nuclear power plant is reported by Cheon et al. [33].  ANN has also 

been used for developing diagnostic systems for identification of various accident scenarios in 

NPP [34]. The classification of a transient as a “don‟t know” transient if a classifier system do 

not have the accumulated knowledge regarding it, is certainly a wise way of reporting than 

incorrect classification [35]. This approach uses Kohonen‟s self organizing map along with 

learning vector quantization instead of multilayer perceptron. The application of fuzzy logic 

based method for transient identification in NPP is reported by Marseguerra et al. [36]. Various 

adaptation to fuzzy logic based method  has also been used to classify transient  using optimized 

fuzzy clustering [37] and evolutionary fuzzy clustering [38]. One among all the innovative 
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approaches for transient classification is the ALADDIN methodology [39]. The ALADDIN 

approach combines three techniques for dynamic event and fault diagnosis in an attempt to 

improve the practical applicability and scalability of this type of system to real processes and 

machinery.  

1.4 Problem Statement 

 The problem of classification of the occurrence of an event correctly and efficiently in a 

nuclear reactor holds the utmost priority. This classification system must produce results 

regarding occurrence of the events in a quick, correct and unambiguous manner. There is always 

a scope of improvement in achieving classification accuracy better than the previous best one. 

Moreover, nuclear reactor being safety critical systems, study on improving the classification 

accuracy becomes further more important. The present thesis delineates the usage of machine 

learning algorithms and soft computing techniques for such event classification in nuclear 

reactors. The generation of a massive volume of dataset in nuclear reactors increases the 

computational complexity of the classifiers. Though event classification in nuclear reactor have 

been studied using various techniques by many researchers, preprocessing of the dataset to 

reduce the computational cost have hardly been reported. The present work emphasizes on the 

usage of preprocessing of the dataset in an efficient manner prior to feeding it to a classifier so 

that it eventually improves the performance of the classifier. The preprocessing of the dataset 

results in reduction of the dimensionality and sample size of the dataset.  

1.5 Objective and Scope of work 

 The present work demarcates some of the machine learning and soft computing 

algorithms for event classification in nuclear reactors. The events include some of the transient 
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and malfunctions occurring in the steam water system of a nuclear reactor. In a broader sense, 

this thesis aims at improving the NPP event classification system. The various objectives that 

have been set for the present research work are as follows: 

 To check the performance of usage of soft computing techniques such as fuzzy logic for 

transient identification in nuclear reactors. 

 To analyze the importance of feature selection for achieving better performance from the 

fuzzy logic systems.  

 Study on the performance of supervised machine learning algorithms such as artificial 

neural network and adaptive neuro fuzzy inference system for multiclass transient 

classification in nuclear reactors. 

 To develop an algorithm for preprocessing the dataset that reduces the training data 

samples and invigilating the performance of the classifier due to implementation of such 

approach. 

 To study the feasibility of dimensionality reduction technique using principal component 

analysis for event identification in nuclear reactors. 

 To address the issue of imbalanced dataset where the samples are not evenly distributed for 

each category of class that needs to be classified.  

 To develop intelligent GUI based on machine learning algorithms and soft computing 

techniques. 

 The present research broadly aims at aiding a quick and unambiguous decision making 

process of the operator stationed at the main control room of nuclear reactors. It also helps in 

reducing the information overloading on the human operator due to the volume of information 
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being projected at him at every instance. The scope of the present work is diverse and global in 

nature as it can address similar issues from different domains of application.  

1.6 Thesis Structure 

 The thesis is divided into a total of seven chapters. Chapter 1 includes a brief 

introduction to NPP along with a detailed explanation on the need of event classification in NPP. 

Machine learning and its application in event classification problems are also elaborately 

described in this chapter. The problem statement which mostly addresses the event classification 

problem in nuclear reactors and its presentation using intelligent GUI are also explained clearly. 

The objective and scope of the research are discussed towards the end of this chapter. 

Chapter 2 outlines two of the very popular techniques to solve event classification 

problem, i.e., ANN and FIS. This chapter also explains about some supervised machine learning 

algorithms for classification such as kNN and SVM. A collection of information regarding the 

various research carried out related to classification problems is also depicted. Towards the end of 

this chapter, the performance metrics of these classifiers are also elucidated. 

 Chapter 3 focuses on the concept of fuzzy logic used in the FIS in order to develop a 

FRBS for event identification. Two popularly used FRBS methods i.e. Mamdani type FRBS and 

TSK-type FRBS are explained in detail. The significance of generation of proper input and 

output membership functions along with an appropriate rule base and input features are 

delineated. A specific category of FRBS which is used for classification related problems is 

known as FRBCS. This chapter elucidates the possibility of usage of a simple FRBCS with 

optimized features for online event classification for a system which has very short cycle time. 
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Some of the transients from the steam water system (SWS) are considered as the events for 

experimentation. 

 Chapter 4 illuminates on a novel approach to reduce the number of training samples in a 

dataset named as training dataset reduction (TDR). The algorithm which governs this technique 

involves the creation of a hypothetical boundary based on a cut-off Euclidean distance (ED). The 

two methods adopted to find this cut-off ED named as mean-α-standard deviation method and 

area selection method are explained elaborately. A comparison is made on both these methods on 

some real world datasets and the result from these experiments is used to classify some of the 

transients in the SWS. A detailed inference on the practicability of usage of TDR for transient 

classification in nuclear reactors is summarized. 

 Chapter 5 explains the importance of dimensionality reduction of a dataset. One such 

dimensionality reduction algorithm named principal component analysis (PCA) is elucidated. 

The classifier used to classify the events is the adaptive neuro-fuzzy inference system (ANFIS) 

which has the advantage of both ANN and FIS. An elaborate description on this algorithm is 

presented along with its advantages and disadvantages. A feasibility confirmation on the 

performance of ANFIS classifier used for classifying some of the events in NPP considering 

PCA for dimensionality reduction is carried out and illustrated. A comparison on the usage of 

Multiple-ANFIS (MANFIS) with single ANFIS is also presented. 

 Chapter 6 deals with imbalanced dataset and the issues related to the usage of such 

datasets for classification purpose. Some of the most admired way of solving such problem is 

mentioned in this chapter, emphasizing on the oversampling technique. A detailed mechanism of 

operation of Synthetic minority oversampling technique (SMOTE), which is the popularly used 
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oversampling technique of addressing imbalanced dataset problem is expounded. Further, a 

modification to this approach named Weighted-SMOTE is illustrated. A comparison on the 

performance of the weighted-SMOTE and SMOTE is revealed using some real world datasets. 

The performance measures used to study such analysis are recall and F-measure as these two 

metrics exposes the real credibility of the classifier using an imbalanced dataset. 

 Chapter 7 projects the reason behind development of appropriate GUI, the various 

properties that should be taken care of during development of a GUI and the advantages of 

developing an intelligent GUI for an operator in various industries emphasizing on NPP. The 

developed GUI along with its various properties is elaborated in this chapter. 

 Chapter 8 summarizes the study and work carried out in the thesis and the conclusions 

drawn based on the research. This chapter ends by addressing the future scope of research. 
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2 
BACKGROUND INFORMATION  

The present chapter describes the background information on some of the supervised 

classification algorithms used in this thesis in detail. This chapter also elucidates on the various 

performance measures used to evaluate the performance of a classifier. This includes the 

confusion matrix, receiver operating characteristics and area under the receiver operating 

characteristics. An insight on the performance of a multi class classifier is also included in this 

thesis. 

2.1 Fuzzy logic and fuzzy inference system 

 Fuzzy logic depicts the real world scenario in a more sensible approach using linguistic 

variables, overlapping classes and approximate reasoning. The need of fuzzy logic came into 

existence when people realized that everything in the world cannot be categorized or expressed 

in terms of only „Yes‟ or „No‟, „True‟ or „False‟ and „1‟ or „0‟. Zadeh [40] introduced the world 

about fuzzy logic and the concept of fuzzy set. This is a breed of revolution of its kind. Fuzzy 

logic uses variables which practically denote values which are not integers and produces an 

output with respect to the corresponding input. A membership function explains the fuzzy 

variables in a graphical manner. Fuzzy logic has a wide range of applications, including process 

controllers and event identification. Fuzzy logic is conceptually easy to understand as it uses 

simple english words  in order to explain a particular set or domain.  
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A fuzzy inference system (FIS) or fuzzy rule base system (FRBS) is a data driven system 

in which a relationship is being established between the input and the output, based on a set of 

IF-THEN rules or otherwise called as fuzzy rules. The set of desired input-output numerical data 

pairs are represented as: 

 (x1
(1) 

, x2
(1) 

; y
(1)

) , (x1
(2) 

, x2
(2) 

; y
(2)
) , ………… , (x1

(n) 
, x2

(n) 
; y

(n)
)  (2.1) 

where x1 and x2 are inputs and y is the output of a two inputs and one output system.  The fuzzy 

rules are generated from these input output pairs which determines a mapping f : (x1 , x2) → y 

[41]. An example of a fuzzy rule in this kind of system is of the form 

 R
l
 : IF x1

(1)
 is F1

l
 and x2

(1)
 is F2

l
 THEN y

(1)
 is G

l
 (2.2) 

  Here Fk
l
 represent the linguistic variable and Fk

l
 ⊂ f(Xk) , k = 1, 2, 3, . . ., n, are the 

antecedent membership functions, and G
l
 ⊂ f(Y) is the consequent membership function [42]. 

The input linguistic variables are denoted by xk , k = 1, 2, 3, . . . n and the output linguistic 

variable is denoted by y. For classification using FRBS, the consequent part of the rule can be 

categorized into three varieties [43]. In the present thesis, the fuzzy rules with the class in 

consequent have been used for classification purpose. This approach is chosen because the FRBS 

would take data from a safety critical system which needs faster and interpretable outcomes. A 

general flow sheet depicting the different phases in the FIS is pictorially represented in Fig. 

Figure 2.1. 
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Figure 2.1:  Flow sheet of a fuzzy inference system 

2.1.1 Membership function (MF) 

Universe of Discourse is the set that contains all the sets of interest for the given context 

problem. The membership function (µA(x)) of the fuzzy set (A) maps the universe of discourse 

(X) on to the numerical values in the range [0, 1].  

 µA(x) : X → [0,1]  (2.3) 

  A = {(x, µA(x)) ; x  X , µA(x)  [0,1]} (2.4) 

2.1.2 Mamdani-type FRBS 

 There are mostly two types of FRBS. One of them is the Mamdani-type FRBS as shown 

in Fig.Figure 2. The following steps are involved in Mamdani-type FRBS approach. These are  

Step 1: Segregation of the universe of discourse into fuzzy regions 

Step 2: Generation of the fuzzy rules and rule base 

Step 3: Processing of input output numerical data pairs 

Step 4: Defuzzification procedure 
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 Step 1: Segregation of the universe of discourse into fuzzy regions 

 This is the initial step where the domain interval of each fuzzy region is decided based on 

the input numerical data. The membership function for each input domain and output domain is 

constructed based on this segregation. The shape of the membership functions depends on the 

system designer who decides it based on the problem statement and the uncertainty present in it. 

Generally, the shape of the membership functions is triangular, trapezoidal, sigmoidal or 

Gaussian. The shape being constant in a particular problem for all the membership functions, the 

area of these regions may differ. This is based on the numerical data and the experience of the 

expert. Each segregated fuzzy domain is denoted by simple comparative phrases such as taller, 

much taller, somewhat taller etc for a domain representing height. Figure 2.3 shows an example 

where the input domains intervals x1 and x2 are divided into three and five regions respectively 

and the output domain interval y is divided into five regions with triangular shaped membership 

functions with different areas.  

 

Figure 2.2: Block diagram of Mamdani-type fuzzy rule based system 
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 Figure 2 explains the Mamdani-type fuzzy rule based system. Here, I1, I2, . . . , In are the 

set of numerical input data being mapped to their respective input membership functions IMF1, 

IMF2, . . . , IMFn and produces their respective fuzzy input data, F1, F2, . . . , Fn. The FIS 

produces the fuzzy output data y by mapping all the fuzzy input data on to the output 

membership function (OMF) using the corresponding rules R from the rule base. Y is the 

defuzzified numerical value of y. 

 

Figure 2.3: Diagrammatic representation of the membership functions operation in Mamdani 

type FRBS 

 Step 2: Generation of the fuzzy rules and rule base 

The rules produce a relationship between the input domains and the output domain. This 

relationship is based on simple „IF-THEN‟ statement. The „IF-THEN‟ statement consists of an 

„IF‟ part explaining the antecedent proposition and the „THEN‟ part explaining the consequent 
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proposition. Both these parts can have multiple conditions separated by operators such as AND 

or OR. For a particular problem statement, each rule is based on a proper analysis on the input 

numerical data and the expert‟s experience. A rule based on these conditions as shown in 

Fig.Figure 2.3, could be of the form  

 R
1
 : IF x1 is F1

3
 and x2 is F2

4
 THEN y is F3

3
 (2.5) 

The rule R
1
 generated here is based on the problem statement which demanded an AND 

operation or otherwise it could have been an OR also. This depends on the context of the 

problem statement. All the rules are generated likewise based on the numerical data and the 

fuzzy regions with the expert‟s experience taken into consideration.  

The representation of these rules is done in a matrix form known as fuzzy rule base. This 

representation becomes difficult when the number of input parameters is more. The choice of the 

number of parameters and the rule base decide the interpretability and accuracy of the FRBS. 

Interpretability of fuzzy systems is an ability to explain the behavior of the system in an 

understandable way [44]. Increase in the number of input parameters need not always lead to a 

better accuracy of the output. This is because fuzzy models and controllers cannot usually have a 

large number of variables without falling prey to the curse of dimensionality [44].  Another way 

of approaching it is to make the rules more concise and subtle covering all the aspects of the 

particular problem statement. The best option for a FRBS would be to have a rule base covering 

the entire input and output domain efficiently using minimum number of input parameters and 

the output being within the output error margin. This should satisfy the tradeoff between the 

interpretability and the accuracy of the FRBS. 
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 Step 3: Processing of input output numerical data pairs 

 After the generation of all the membership functions and the rule base, the input 

numerical data is mapped with the output numerical data based on the membership functions and 

rule base. The input numerical data is initially mapped on to the respective membership 

functions and their specific membership degree is found. As described earlier in Step 2, a degree 

is assigned to each input numerical data based on their respective membership function.  Now, 

based on rule governing that particular input numerical data, the resultant of the mapped degree 

calculated from the antecedent proposition is mapped on to the output membership function. This 

is concurrently done for all the input membership functions and finally a number of clipped 

output membership functions are collected.  Figure 2.3 shows that after mapping x1
(1)

 on F1 

series of membership function, the first stage output degree is found to be (0F1
1
, 0F1

2
, 0.8F1

3
). 

Similarly for mapping x2
(1)

 on F2 series of membership function, the second stage output degree 

is found to be (0F2
1
, 0F2

2
, 0F2

3
, 0.5F2

4
, 0.3F2

5
). The rule R

1
 has AND operator in the antecedent 

proposition. Hence, the minimum degree from all the combinations of the mapped input 

membership function is considered. The combination which has no consequent proposition is 

considered as zero or the rule does not exist. The final degree for each case is now mapped on to 

the output membership function based on the rule base. Finally, a bunch of clipped output 

membership functions are collected and aggregated. 

 Step 4:  Defuzzification procedure 

 The aggregated output membership functions go through a stage called as defuzzification 

where these collective information needs to be converted to a numerical data for usage in real 

systems. There are many defuzzification processes such as Centroid method, bisector method, 
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middle of maximum, smallest of maximum, largest of maximum, etc. The easiest and arguably 

the best one is the Centroid method. The final output (Y) from this method is calculated as  

 Y = 
∑       

  
     

 
   

∑  
  
     

 
   

 (2.6) 

Here y
i
 denotes the center value of A

i
 (the center of a fuzzy region is defined as the point that has 

the smallest absolute value among all the points at which the membership function for this region 

has membership value equal to one) and K is the number of fuzzy rules in the fuzzy rule base 

[44]. 

2.1.3 Takagi-Sugeno-Kang (TSK) type FRBS 

Takagi-Sugeno-Kang (TSK) type FRBS is almost similar to Mamdani-type FRBS with 

some changes. One of the changes is done at the generation of the rules. The antecedent 

proposition of the rule is composed of linguistic variables but the consequent proposition is 

represented as a function of the input variables [45]. For an input-output pair (x1
(1)

, x2
(1)

; y
(1)

), say 

the rule is as follows 

 R
1
 : IF x1

(1)
 is F1

1
 and x2

(1)
 is F2

1
 THEN y

(1)
 = f1(x1

(1)
, x2

(1)
) (2.7) 

 R
2
: IF x1

(1)
 is F1

2
 and x2

(1)
 is F2

2
 THEN y

(2)
 = f2(x1

(1)
, x2

(1)
) (2.8) 

Here, f1(x1
(1)

, x2
(1)

) = p1 x1
(1)

 + q1 x2
(1)

 + r1 and f2(x1
(1)

, x2
(1)

) = p2 x1
(1)

 + q2 x2
(1)

 + r2 where (pi, qi, 

ri) is a vector of real numbers. The resulting output (Y) is based on the degree of applicability, 

i.e., λ1 and λ2 for the inputs, i.e., x1
(1)

 and x2
(1) 

respectively. The resulting output is  

 
Y = 

   
        

   

      
 (2.9) 
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In general representation of the resulting output with R number of rules is as follows 

 
Y = 

∑    
    

   

∑   
 
   

 (2.10) 

Here, the defuzzification stage is bypassed with a weighted average in order to get a crisp output. 

So this does not have an output membership function. The expressive power and interpretability 

of Mamdani output is lost in the Sugeno FIS since the consequents of the rules are not fuzzy 

[46]. For this reason, Mamdani-type FRBS is used widely as compared to TSK-type FRBS. But 

TSK-type FRBS has a better processing time as the weighted average replaces the time 

consuming defuzzification process [47].  

 

Figure 2.4 : Block diagram of Takagi-Sugeno-Kang-type fuzzy rule based system 

 Figure 2.4 shows the diagrammatic representation of the TSK-type FRBS. Here, I 

represents the set of numerical input variables each cycle and F being the fuzzified value of those 

I. λ’ denotes the degree of applicability and λ denotes the final degree of applicability. The fuzzy 

input data F and the selected rule from the rule base R are fed to FIS. Eq represents the set of 
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equations selected based on rule R and fuzzy input data F. The substitution of numerical input 

data I on to the equations Eq is done by f(I) which produces the numerical output data y. The 

final degree of applicability λ along with numerical output data y generates the final output data. 

This is the approach undertaken by TSK-type FRBS for classification problems. 

2.2 Supervised Machine Learning Algorithms 

 Supervised machine learning (SML) is a machine learning methodology where a training 

set of data with known input and output labels, is used to train a system for unknown or test data. 

The output label of the test data is found by mapping a test data on to a function inferred from 

the training data. Some of the very common SML algorithms used for classification problems are 

k-nearest neighbor (kNN), support vector machine (SVM), artificial neural networks (ANN), etc. 

Unsupervised machine learning and reinforcement learning are the two other broad categories of 

machine learning. In unsupervised machine learning, labels are not available; hence the feature 

learning is done on its own by finding clusters in the inputs. Unsupervised learning algorithms 

according to Ghahramani [48] are used to find structures from data samples. Some of the 

examples of the unsupervised learning algorithms are self-organizing map (SOM), adaptive 

resonance theory (ART), k-means clustering, etc. The reinforcement learning is a process in 

which the system learns by interacting with the environment and learning gets modified based on 

the feedback from the interaction with the environment. According to Kaelbling et al. [49] , 

reinforcement learning is the problem faced by an agent that learns behavior through trial-and-

error interactions with a dynamic environment. Some of the reinforcement algorithms are 

temporal difference learning, Q-learning, state-action-reward-state-action (SARSA), etc. This 

thesis focuses only on SML and some of the algorithms based on this concept. 
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2.2.1 k-nearest neighbor 

 The kNN algorithm is a supervised learning algorithm which classifies a query or a test 

data based on the k-nearest training data taken as reference as presented in Fig.Figure 2.5. It 

basically has two phases: Training phase and Classification phase. In training phase, a previously 

collected training data containing a multi dimensional input attributes along with their respective 

output labels is taken as reference and mapped. In the classification phase, the test data is 

mapped based on its input attributes and the output label is determined by taking a vote from the 

k-nearest neighbors of that test data. The nearest neighbor is found out by finding the distance 

between the test data and each of the training data individually and finding the k-least distance 

training data. The accuracy of the kNN approach heavily depends on the metric used to compute 

the distance between two samples [50]. The usage of Mahanabolis distance metric for kNN 

classification by semi definite programming is shown by Weinberger et al.  [51]. This algorithm 

proves to be very effective, in terms of reducing the misclassification error, when the number of 

samples in training dataset is large [52]. Another advantage of the kNN method over many other 

supervised learning methods like SVM, decision tree, ANN, etc., is that it can easily deal with 

problems in which the class size is three and higher [53].   

 

Figure 2.5: Classification using kNN Algorithm 
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Consider a dataset X with consisting R number of rows and C number of columns. Each 

row is a sample denoted as Xi = {xi1, xi2, . . ., xiC}. Hence the resultant column matrix of the 

dataset X = [X1, X2, . . ., XR]
T
. Similar is the case with another dataset Y = [Y1, Y2, . . ., YR]

T
 where 

Yj = {yj1, yj2, . . ., yjC}. The distance between the vectors Xi  and Yj is calculated in different 

manners out of which some are described below. 

 City block metric 

  

    ∑|        |

 

   

 (2.11) 

 Euclidean distance  

     
                   

  (2.12) 

 Minkowski metric 

 

      √∑|        |
 

 

   

 

 (2.13) 

This shows that for p=1; Minkowski metric gives City block metric. 

It also shows that for p=2; Minkowski metric gives Euclidean distance. 

 Mahalanobis distance 

    
            

          
  (2.14) 

V is the covariance matrix 

2.2.2 Support vector machine  

 SVM [54] is a supervised learning algorithm which is mostly used for classification or 

regression analysis. A SVM constructs an optimal hyper plane (OHP) with the largest distance 
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between the nearest training data of opposite class called as support vectors as shown in Fig. 

Figure 2.6. This distance is called functional margin which is inversely proportional to the 

generalization error of the classifier [55]. According to Roobaert [56], let the training data is 

given as {(x1,y1), (x2,y2), ….., (xl,yl)}, where xi Ɛ R and yi Ɛ {1, -1}, then the OHP, w • x + b = 0, 

can be found by minimizing  

   
 

 
‖ ‖     

constrained by:  yi(wi • xi + b) ≥ 1   for i = 1, 2, . . . . , l 

This optimization problem can be solved by finding the saddle point of the Lagrangian „L‟ using 

the method of Lagrange multipliers where  

 L = 
 

 
‖ ‖  – ∑   

 
                    + ∑   

 
    (2.15) 

Here, αi the non-negative Lagrange multiplier. This is equivalent to find the saddle point in the 

dual formation by maximizing Ldual 

 Ldual = - 
 

 
 ∑                

 
      + ∑   

 
     (2.16) 

with constraints : 0 ≤ αi   for i = 1, 2, . . . . , l  

and              ∑   
 
      = 0 

This is a quadratic programming problem and the solution of this problem, w*, can be written as 

a linear combination: w* = ∑ α 
 
        

 Another way of getting the maximum margin hyperplane is by creating non linear 

classifiers using kernel trick. Some commonly used kernels are polynomial kernel, Gaussian 

radial basis function kernel and hyperbolic tangent kernel whose mathematical equations are 
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mentioned below where d, γ, α and β are parameters of the kernel. Multi kernels SVM [57] are 

also used with high accuracy and great generalization.  

 Polynomial kernel   

                    (2.17) 

 Gaussian radial basis kernel 

              ‖   ‖   (2.18) 

 Hyperbolic tangent kernel 

                         (2.19) 

 

Figure 2.6: Basic decision boundary learned by support vector machine 

2.2.3 Artificial neural network 

 ANN is a family of computational models based on biological nervous system used for 

information processing. Here, information processing mostly emphasizes on estimating or 

approximating functions that are dependent on input data. Figure 2.7 illustrates the structure of a 

basic ANN model. The model has a structured layer with the starting layer being the input layer 

and the end layer being the output layer. Both these layers are interconnected by one or more 
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hidden layers. Each layer consists of a number of nodes which are otherwise known as artificial 

neuron. An artificial neuron resembles in a similar fashion as that of the biological neuron. A 

biological neuron receives signal through a specific region in the dendrites known as synapses. 

On receiving a signal higher than the threshold value, the neuron gets activated and it transmits a 

signal through its axon to another neuron which might activate it. 

 

Figure 2.7: Architecture of a basic artificial neural network 

 Figure 2.8 illustrates the structure of an artificial neuron as modeled by McCulloch and 

Pitts [58].  

 

Figure 2.8: A basic artificial neuron model 
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A basic artificial neuron basically consists of two sections; sum and threshold. The sum section 

adds the input values with their respective weights. The threshold section consists of the 

activation function or otherwise known as the transfer function which takes the triggering 

decision of the neuron. There are broadly two categories of activation functions, i.e., linear 

activation function and non-linear activation functions. Non linear activation functions keep the 

response of the neuron in the bounded region. Figure 2.9 describes some of the commonly used 

activation functions like linear, step, Gaussian, sigmoidal and tan-hyperbolic activation 

functions.  

 Linear activation function  

        (2.20) 

 Step activation function 

              (2.21) 

 Gaussian activation function 

 
        ( 

      

   
) (2.22) 

 Sigmoidal activation function 

 
     

 

             
 (2.23) 

 Tangent-hyberbolic function 

 
              

               

               
 (2.24) 
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Figure 2.9: Commonly used activation functions 

 Neural networks are broadly classified into feed-forward networks and recurrent or 

feedback networks. The feed-forward neural networks do not form a loop or feedback among the 

different layers and the data passes through layer by layer and produces output at the output 

layer. The recurrent or the feedback network is a section of ANN where the network connections 

are feedback in nature. This approach allows the network to reveal dynamic temporal behavior 

which results in its application an unsegmented connected handwriting recognition or speech 

recognition. The feed-forward neural networks are further segregated as single layer perceptron, 

multilayer perceptron and radial basis function neural network. The recurrent neural network is 

classified into competitive networks, Kohonen‟s self organizing map, Hopefield network and 
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adaptive resonance theory models. This thesis emphasizes on feed-forward networks for the 

classification problems. 

 The operation of feed-forward network is divided into two categories, i.e., learning phase 

and testing phase. In the learning phase or otherwise called as training phase, a supervised 

learning algorithm is undertaken to train the classifier which is the feed-forward neural network 

over here. The input patterns are passed through each layer in a transformed manner using the 

weights assigned to each connection. Eventually, after crossing through these layers, the final 

output of an input pattern is produced and compared with the ideal output in the output layer. 

The units in the output layer belong to different categories. Ideally, the correct category output 

should have the largest value compared to all the other output values which should be 

comparatively very small. The comparison of the calculated output and actual output helps in 

modifying the weights assigned to each connection of neurons by a procedural algorithm. This 

modification in weights aims at decreasing the error between each output layer actual value and 

calculated value during each epoch. This procedure continues till an appropriate stopping 

criterion is valid. These stopping criteria might be achieving the necessary threshold error or 

reaching the maximum number of epochs that the system should undergo in this procedure.  

Once either of the stopping criteria is satisfied, the learning phase culminates and it is said that 

the feedforward network is trained. This gives the final weights of each connection of neurons 

which cannot be further modified. The testing phase commences after the learning phases 

culminates. Each of the test data which has not been used as the training dataset is fed as input to 

the trained neural network one at a time. The output of each test data is calculated and compared 

with the corresponding actual output. Once all the test data‟s outputs are calculated and 
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compared with their corresponding actual test output, the performance of the classifier is 

calculated. 

 Multilayer perceptron (MLP) is a feedforward ANN model that works on the principle of 

supervised machine learning algorithm to map a set of input data to its respective output. A MLP 

consists of one or more hidden layers along with the input and output layer which are fully 

connected to the preceding and the following layer as depicted in Fig.Figure 2.10. The hidden 

layers and the output layers consist of non-linear activation function. Backpropagation is the 

supervised machine learning algorithm which MLP uses for training process. Backpropagation 

algorithm propagates the error gradient or loss function gradient in a reverse direction during the 

training process which gets used in the next iteration. This process continues in each of the 

iterations till the error reaches the threshold error margin. The activation function during the 

backpropagation must be differentiable in order to proceed with this training process. Hence, 

generally a sigmoidal activation function is used in MLP. MLP is competent enough to learn 

non-linear models and online learning models. Due to the non convexity of the gradient of the 

loss function, the global maximum is not guaranteed using backpropagation with gradient 

descent method for optimization. This approach also needs optimization of the hyperparameters 

such as number of hidden neurons, layers and iterations. It is reported that multilayer feed 

forward networks with as few as one hidden layer are a class of universal approximators [59]. 
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Figure 2.10: Architecture of a multilayer perceptron 

 Radial basis function (RBF) network is a feed forward ANN with only one hidden layer 

using radial basis function as the activation function. The output layer is a linear summation 

function. Figure 2.11 depicts the commonly used RBF using the Gaussian function. Initially, the 

training process of the RBF network undergoes calculating the spread of the input space about 

the centroid of the activation function. This is done by using an unsupervised learning algorithm, 

mostly k-means clustering.  Later, the weights from the hidden to output layer are updated using 

least square function or singular value decomposition. The major two drawbacks of RBF 

networks are (i) its performance with noisy data is very poor and (ii) its computationally 

inefficient performance for larger dataset because of only one hidden layer. In order to improve 

the performance there has been a lot of modifications to RBF network. . RBF network is useful 

in function approximation, classification and modeling of dynamic systems and time series [60]. 

One among them is replacing the Gaussian activation function to sigmoidal activation function 
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for better capability of approximation, faster learning speed, better size of network and high 

robustness to outliers [61]. 

 
Figure 2.11: Architecture of a radial basis function network 

 As mentioned earlier, backpropagation algorithm is the common learning algorithm used 

for training the neural networks. The step wise approach of this algorithm is outlined below [62]. 

I. The weights of each node to node connection are initialized to small random 

values. 

II. From the training dataset, randomly an input pattern x
(i)

 is chosen.  

III. The signal corresponding to this selected input pattern is propagated forward 

through all the layers (l = 1 to L) in the network. 

IV. The error   
 
 at the output layer is calculated considering the difference in the 

actual output   
  and the calculated output   

  using the net input   
  at the i

th
 unit 

of the l
th

 layer along with the derivative of the activation function.  



34 
 

   
        

   [  
     

 ]                  here , l = L (2.25) 

V. This error is propagated backwards and the deltas at each nodes are calculated 

   
        

   ∑    
     

   
             for l = (L-1), . . ., 1 (2.26) 

VI. The weights are also updated in each layer in a backward direction based on a 

particular learning rate η. 

     
     

   
    (2.27) 

    
     

       
  (2.28) 

VII. The procedure from step II is repeated for the next randomly selected input 

pattern until any of the stopping criterion gets satisfied. 

2.3 Performance metrics 

 A confusion matrix is an important measure to check the performance of a classifier 

network learned using any machine learning algorithm. Figure 2.12 shows the representation of a 

confusion matrix for a binary classification problem.  True Negatives (TN) are the number of 

negative examples which are correctly classified as negative. False Positives (FP) are the number 

of negative examples which are incorrectly classified as positive. True Positives (TP) are the 

number of positive examples which are correctly classified as positive. False Negatives (FN) are 

the number of positive examples which are incorrectly classified as negative. In the present 

thesis, the majority class samples are the negative class samples and the minority class samples 

are the positive class samples. 
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Figure 2.12: Basic representation of a confusion matrix for a binary classifier 

 The most commonly used performance measures derived from the confusion matrix are 

accuracy and error rate. Accuracy is the ratio of the number of all the correctly classified samples 

to the total number of test samples. Error rate is the ratio of all the incorrectly classified samples 

to the total number of test samples. It is quite obvious that accuracy and error rate sum up to 1.  

                                   ⁄  (2.29) 

 

  

                                    ⁄  (2.30) 

 Accuracy and error rate measures are very deceptive as these are data dependent. In case 

of imbalanced dataset where the number of majority samples is too high compared to the 

minority samples, the classifier gets biased towards the majority samples. In such cases, the 

accuracy metric results in a very high value and the error rate being very less. These results 

project as if the classifier is an ideal one which actually is not the real scenario. In such cases, the 

minority class does not get properly classified yet these two metrics suggest the classifier to be 

an efficient one. In order to overcome such imbalanced dataset scenarios, there are some other 

evaluation metrics which states the actual performance of the classifier. These metrics are 
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precision, recall, specificity, fall-out, F-measure and G-mean. These measures are calculated as 

follows. 

                       ⁄  (2.31) 

                                                         ⁄  (2.32) 

                                               ⁄  (2.33) 

                                                                ⁄  (2.34) 

 
          

                          

                       
 (2.35) 

        √                 (2.36) 

 In Eq. 2.35,   is the coefficient to adjust the relative importance of precision and recall. 

Usually precision and recall have equal importance so   = 1. F-measure is the harmonic mean 

and G-mean is the geometric mean of precision and recall. So, Eq. 2.35 can be simplified as 

follows. 

 
          

                    

                 
 (2.37) 

 Precision is the measure of the exactness of the samples which are correctly classified 

positive out of the samples which are classified positive. Recall is the measure of the samples 

which are correctly classified positive out of the samples which are actually positive. Recall is 

also known as sensitivity or true positive rate. The importance and information of both precision 
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and recall can be combined together as a measure known as F-measure. F-measure is the 

harmonic mean where as G-mean is the geometric mean of precision and recall. Specificity is the 

measure of the samples which are correctly classified negative out of the samples which are 

actually negative. This is similar to sensitivity. It is also called true negative rate. Fall-out is the 

measure of the samples which are incorrectly classified positive out of all the samples which are 

actually negative. Fall-out is also called false positive rate or 1-specificity. In case of imbalanced 

dataset where a particular class has the minority of the samples compared to others, precision, 

recall and F-measure defines the performance of the classifier. In those cases, only accuracy does 

not provide the correct conclusion about the performance of the classifier. More about such cases 

is explained in Chapter 5 of the present thesis which elucidates on the imbalanced dataset 

problem and its solutions. 

 Another way of analyzing the performance of a classifier is by plotting a receiver 

operating characteristics (ROC) curve which is a two-dimensional depiction of the classifier‟s 

performance [63]. ROC curves are used to judge the discrimination ability of various statistical 

methods that combine various clues, test results, etc for predictive purposes [64]. The ROC curve 

is the plot between the false positive rate (FPR) in the X-axis and true positive rate (TPR) in the 

Y-axis. TPR is also known as sensitivity and FPR is known as (1-specificity). Specificity is the 

measure of the percentage of the negatives that are properly classified as negatives. Visually, the 

more ROC shifts towards the left corner of the curve, i.e., towards the Y-axis, the better is the 

classifier. This is a very simple and efficient way of comparing the performances of two or more 

classifiers.  

 The most common way to represent ROC in a scalar value is finding the area under the 

ROC curve (AUC) [65]. ROC curves are widely used in signal detection theory to illustrate the 
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tradeoff between hit rates and false alarm rates of a classifier [66, 67]. As AUC is the area under 

a unit square in ROC, its value lies between 0 and 1. The worst classifier which classifies all 

positive or all negative has an AUC of 0.5. Hence, no realistic classifier should have an AUC 

below 0.5 [63].  An ideal classifier has an AUC value equal to 1. Figure 2.13 explains three 

classifiers represented as {A, B, C}. In this figure, C represents the worst classifier with an AUC 

value of 0.5 followed by a better classifier in B and eventually A being the best classifier with an 

ideal AUC value of 1. 

 

Figure 2.13: Diagram showing a receiver operating characteristics 

 ROC is used only in the case of binary classifiers where the output class is one among 

two of the trained classes. Multiclass classification problem is the classification problem where 

more than two classes needs to be classified in the output stage for a multiple input single output 

classifier system. In order to compare the performance of multi class classifiers, a robust 

classification algorithm based on probability estimation trees is proposed [68]. 
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3   
FUZZY RULE BASED CLASSIFICATION SYSTEM FOR 

TRANSIENT IDENTIFICATION 

The present chapter elucidates on the analysis undertaken in using FRBCS for classifying some 

of the transients from the steam water system in a nuclear power plant. The importance of 

proper feature selection is elaborately explained by analyzing the effects on the performance of 

the classifier by conducting experiments with different input variables to the FRBCS. This 

chapter also clarifies the importance of response time in analyzing the performance of FRBCS in 

online transient classification of system which have very short cycle time. 

3.1 Introduction 

 The performance of modeling a system using fuzzy modeling more often depends on 

interpretability and accuracy of the FRBS. These two phenomena are contradictory in nature 

where interpretability indicates the capability to express the behavior of the real system in a 

understandable way, and accuracy defines the capability to faithfully represent the real system 

[69]. The usual reasoning follows the „„principle of incompatibility” formulated by Zadeh [70]: 

As the complexity of a system increases, our ability to make precise and yet significant 

statements about its behavior diminishes until a threshold is reached beyond which precision 

and significance become almost mutually exclusive characteristics. The closer one looks at a 

real-world problem, the fuzzier becomes its solution. It is usually assumed that a highly complex 
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systems lack interpretability. Based on the requirement, fuzzy modeling is segregated into 

linguistic fuzzy modeling approach and piecewise fuzzy modeling approach. Linguistic fuzzy 

modeling approach primarily focuses on the interpretability and then tries to improve the 

accuracy [71]. Piecewise fuzzy modeling approach primarily focuses on the accuracy and then 

tries to improve the interpretability [72]. Fuzzy modeling not only aims at a high interpretability 

but also a better accuracy. Therefore, recent research emphasizes on good accuracy-

interpretability trade-off in order to attain a compact and robust fuzzy system. 

 FRBCS as stated earlier,  is a category of FRBS dedicated to classification problems, is 

widely recognized for its robustness to imperfect data and interpretability [73]. The accuracy of a 

FRBCS is calculated by comparing the fuzzy model output and the actual output. The percentage 

of the correctly classified fuzzy output from the total dataset gives the accuracy of the model. 

The interpretability of a FRBCS depends on the selection of a proper input feature set. A input 

feature set comprises of the model structure, number of input variables, number of rules, number 

of linguistic terms, shape of the membership function and so on [74]. The selection of an 

appropriate input feature set depends on the expert knowledge as there is no predefined 

procedure to do so.  

 NPP having a cycle time of 200 milliseconds, generates about ten thousand signal data 

each cycle. There is a need of developing a highly interpretable FRBCS for online transient 

identification in NPP which has such a short cycle time. To make a highly interpretable system, 

the complexity must be reduced but this may not result in desired accuracy. On the other hand, 

any increase in the input parameters of the FRBCS, i.e., increase in complexity may increase the 

accuracy of the classifier but makes the model low in interpretability. The present chapter 

explains the process of development of a FRBCS for transient identification in the PFBR. It also 
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explains about the importance of feature selection for quick and better classification results. In 

addition to this, the present chapter also stresses on some of the salient features that needs to be 

taken utmost care before concluding on the final classification result from the developed online 

FRBCS. 

3.2 FRBCS for transient identification 

 Modeling a classifier using fuzzy logic can be handy as well as efficient as a redundant 

prediction system in order to aid the operator to take legitimate decisions. The identification of 

transients at the earliest without any ambiguity helps the operator in taking necessary steps in 

order to combat the severity of the event. The thesis attempts at developing a prediction system 

whose quick and unambiguous output guides the controllers to take necessary actions. Ideally a 

system should be robust to external interferences to provide best results. Filtering out the noise 

data by pre-processing it clears the chances of interference. Apart from this any other 

interference does not affect the FRBCS. Based on the time taken by the transient from the 

initiation of the event till the reactor is shutdown, the transients are categorized into fast 

occurring transients and slow occurring transients. Fast occurring transients such as transients in 

the neutronics system, lead to reactor shutdown within a few scanning cycles at the earliest. 

Hence, monitoring such kind of transients is not possible as the reaction time is too short. On the 

contrary, the slow occurring transients such as the transients in the steam water system give 

ample time for the classifier to predict the correct transient. The sooner the transient is predicted 

correctly by the classifier, the more time is provided to the operator to react to it. Hence, some of 

the transients in the steam water system are considered for the current experimental purpose. The 

experimental data for each considered transient are collected from the operator training simulator 

(OTS). The OTS is a full scope replica type simulator which simulates various plant conditions 
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and operations. It is used to train the operator extensively on monitoring and reacting to various 

transients and malfunction in the plant as well as to prepare the operator for real plant scenarios. 

Noise is not generated in OTS intentionally or unintentionally, hence the implication of it is 

nearly weak in FRBCS. The current study is conducted in two phases. The first phase consisted 

of three transients and the second phase consisted of five transients from the steam water system 

as the considered events. The first phase is again divided into two sub-phases and the second 

phase is divided into three sub-phases where each sub-phase consist of a designated set of input 

features along with its membership function and rule base. All these different sets of simulated 

experiments generated from the OTS are conducted to generalize the final inference without 

much of ambiguity.  

3.3 Phase-1 of FRBCS 

 In this phase, three transients from the steam water system are considered for event 

classification using FRBCS. These transients are as follows 

i. One Condensate Extraction Pump Trip with stand by not taking over (1-CEP trip) 

ii. Both the Condensate Extraction Pumps Trip (2-CEP trip) 

iii. Both Boiler Feed Pumps Trip (2-BFP trip) 

A detailed description about the PFBR plant is reported in Chetal et al. [3]. In order to analyze 

the effect of selection of the input features, two diverse plant parameters are chosen for 

experimental purpose. These plant parameters are reactor inlet temperature (θRI) and deaerator 

level (DL). 
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 Reactor Inlet Temperature 

 Reactor inlet temperature (θRI) in PFBR is the temperature of the primary sodium at the 

inlet to the core. At full power condition of the reactor, this temperature is 397°C.This 

temperature may increase when any abnormality occurs in the reactor. The alarm comes when 

this temperature increases by 5°C and the reactor is tripped when it increases by 10°C. 

Considering the transients, θRI gets affected a little late compared to many other nearby plant 

parameters. It is a trip signal which initiates reactor shutdown when the value crosses the 

threshold. Figure 3.1 shows the time series pattern of θRI for the considered transients.  

 
Figure 3.1: Time series pattern of θRI for the considered transients 

  Deaerator Level 

 Deaerator is used for the removal of dissolved gases from feed water which is then fed to 

the once through Steam Generator for heat absorption from the secondary sodium (refer Fig 1.1). 

In the deaerator, the deaerator level (DL) has to be maintained at 2.4m with the pressure and 

temperature being around 485kPa and 150°C respectively. The feed water from here is pumped 

into the steam generator (SG) by the boiler feed pumps. The feed water temperature in the 
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deaerator is maintained at 150°C to meet the steam-water system start up condition. This enables 

thermal recycling in order to maintain the system efficiency. DL gets immediately affected on 

the occurrence of the considered transients.  Figure 3.2 depicts the time series pattern of DL for 

the considered transients.  

 
Figure 3.2: Time series pattern of DL for the considered transients 

3.3.1 FRBCS for Phase–1 using θRI and Δ θRI (Phase–1a) 

 The OTS generates data on all plant parameters every 200 milliseconds and θRI is 

collected from it. The change in reactor inlet temperature (ΔθRI) is considered as another input 

parameter along with θRI and is calculated by subtracting two consecutive θRI values. ΔθRI along 

with θRI would provide more clarity to the transient prediction both being the features of the 

input feature vector. Based on the prepared input feature vector and the experts‟ opinion, the 

fuzzy linguistic variables for the input and the output domains are segregated. 

3.3.1.1  Membership functions for Phase-1a 

 The input membership functions and the output membership functions are prepared based 

on the domain segregation using experts‟ knowledge as shown in Fig. 3.3. This segregation 
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involves the design threshold for each input parameter which is decided by the designers along 

with some intuition regarding the number of windows so that the rule base does not become over 

crowded. A handshaking between the threshold values and a deep analysis on the pattern of each 

parameter for each class along with some logic initiates a faster approach to finding the final 

output. This segregation also keeps in mind the unique combination of the input parameters 

which provides a clear classification boundary of different classes that is to be classified. This 

approach is the same for all the cases in this chapter. FP abbreviates for full power which means 

the plant running in full power condition. The classification of an event is done based on the 

defuzzified value. If the defuzzified output is nearly 1 then the classified event is 1CEP trip, if it 

is around 2 then 1or2CEP trip and so on as shown in Fig. 3.3(c). This analogy is adhered 

throughout this thesis for FRBCS. 

a. Fuzzy values for the input linguistic variable θRI = {MOREBELOW, BELOW, 

NORMAL, ALARM, PRETRIP}  

b. Fuzzy values for the input linguistic variable ΔθRI = {LOW, ZERO, LESSHIGH, HIGH, 

VERYHIGH}  

c. Fuzzy values for the output linguistic variable = {FP, 1-CEP, 1OR2CEP, 2-CEP, 2-BFP} 
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(a) 

 
(b) 

 
(c) 

Figure 3.3: Membership functions of FRBCS for Phase-1a 

3.3.1.2 Rule Base for Phase-1a 

 The preparation of the rule base commences once the generation of the input membership 

functions and the output membership function terminates. The rule base consists of simple “IF-
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THEN” statements that cover the entire domain of the considered transients. The preparation of 

the rule base is a very important stage and requires experts‟ suggestion to produce the best one. 

The rule base produced for Phase–1a is shown in Table 3.1. The empty boxes in the tables 

denote that, under any circumstances, the data would not fall in this category for the considered 

transients. A fuzzy output variable as 1or2-CEP Trip is considered here because for a certain 

period of time, it is not conclusive on the occurrence of either 1-CEP Trip or 2-CEP Trip as the 

values are quite identical. Some of the examples of the rules generated by the rule base are as 

follows. 

If θRI is NORMAL and ΔθRI is ZERO then the plant is running on FP. 

If θRI is MOREBELOW and ΔθRI is LOW then 1-CEP trip has happened. 

If θRI is BELOW and ΔθRI is LOW then 1or2-CEP trip has happened. 

If θRI is BELOW and ΔθRI is LESSHIGH then 2-CEP trip has happened. 

If θRI is NORMAL and ΔθRI is LESSHIGH then 2-BFP trip has happened. 

Table 3.1: Rule base of FRBCS for Phase –1a 

θRI ΔθRI LOW ZERO LESSHIGH HIGH VERYHIGH 

MOREBELOW 1-CEP  1-CEP  - - - 

BELOW 1OR2-CEP 1OR2-CEP 2-CEP  2-CEP  2-CEP  

NORMAL - FP 2-BFP  2-CEP  2-CEP  

ALARM - 2-BFP  2-BFP  2-BFP  2-CEP  

PRETRIP - - - 2-CEP  2-CEP  

3.3.1.3 Output for Phase-1a 

 Phase-1a produces the output class as the transient which is identified using the FRBCS 

model. This output is based on the crisp output produced by the FRBCS using the output 
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membership function described earlier. The decision boundary which governs the output of the 

FRBCS is fixed at a range of –0.5 and +0.5 of the mean value of the output membership 

function. This segregation remains same for all the further consideration of output result for a 

FRBCS. 

 

Figure 3.4: Defuzzified output of FRBCS for Phase-1a 

3.3.1.4 Response time for Phase-1a 

 The time taken by a FRBCS in order to give a confident result on the occurrence of an 

event is called the response time. A graph is considered stable when there is a very minimal 

fluctuation in the defuzzified output value for an event classification.  Based on this criterion, the 

response time for all the phases have been found out. Some figures show very stable graphs 

which is due to the parameter chosen. Others are not so stable which is due to the incapability of 
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the parameter to classify properly.  Figure 3.4 shows that the defuzzified output for 1-CEP trip 

and 2-CEP trip remains the same for a considerable amount of time till about 200s. This shows 

that the trend for the considered input feature, i.e., θRI is same for both these transients. The 

defuzzified output for 2-CEP trip is 3 at around 330s which is its value according to the output 

membership function and stabilizes around 350s. Hence the response time of the FRBCS for 

Phase-1a for 2-CEP trip is 350s. Regarding, 1-CEP trip, the θRI responds in a similar manner like 

2-CEP trip for some period initially. Once the confusing period between 450s to 550s is over 

where it is unsure of a 1-CEP or 2-CEP trip, there is a conclusive evidence of the occurrence of 

1-CEP trip with a defuzzified value of 1 as in the output membership function in Fig 3.3c.  It is 

also evident from this figure that the defuzzified output for 1-CEP trip stabilizes at 1 after 550s, 

hence that being its response time. Compared to both these transients, 2-BFP trip for this case 

attains stability by 12s which signifies that the response time for this transient is comparatively 

better than the other two considered transients. Beyond 35s, the plant would have reached the 

shutdown state. The fluctuations in all the graphs in this chapter is due to the safety actions being 

taken by the system automatically in the OTS in order to counter act these abnormal changes in 

the plant.  

3.3.2   FRBCS for Phase–1 using DL and ΔDL (Phase–1b) 

 Phase-1b considered the parameters which is very near to the occurrence of the event and 

gets most affected. Including DL, the change in deaerator level (ΔDL) promises to give an 

insight on the characteristic of each transient which eventually might result in better 

classification accuracy and response time. 
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3.3.2.1 Membership functions for Phase-1b 

 Similar to Phase-1a, the input and output membership functions are prepared based on the 

segregation of the selected input feature domain, i.e. DL and ΔDL, into specific linguistic fuzzy 

variables.  It is observed in Fig. 3.5c, that the generation of an intermediate transient generated in 

Phase-1a, i.e., 1or2CEP trip is avoided in this case on the usage on DL and ΔDL as the input 

features. This is because DL and ΔDL parameters have clear segregation in the values avoiding 

any sort of confusion related to the events that need to be classified. This means at no sampling 

time, the DL and ΔDL values were same for 1-CEP and 2-CEP trip, thus giving clear boundaries 

for classification which was missing in Phase-1a. The segregation of the input and output 

domains into fuzzy linguistic variables is done as the following.  

a. Fuzzy values for the input linguistic variable DL = {VERYLOW, LOW, NORMAL, 

HIGH}  

b. Fuzzy values for the input linguistic variable ΔDL = {NEGATIVEFAST, 

NEGATIVESLOW, OK, POSITIVESLOW, POSITIVEFAST}  

c. Fuzzy values for the output linguistic variable = {FP, 1-CEP, 2-CEP, 2-BFP} 
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(a) 

 
(b) 

(c) 

Figure 3.5: Membership functions of FRBCS for Phase-1b 

3.3.2.2 Rule base for Phase-1b 

 The fuzzy rules governing the fuzzy linguistic variables of DL and ΔDL are generated and 

stored as the rule base for Phase-1b referred as Table 3.2. This approach is similar to the rule 

base preparation in Phase-1a. Some of the fuzzy rules for this sub-phase are as follows. 

If DL is NORMAL and ΔDL is OK then the plant is running on FP. 
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If DL is LOW and ΔDLI is NEGATIVESLOW then 1-CEP Trip has happened. 

If DL is VERYLOW and ΔDL is NEGATIVEFAST then 2-CEP Trip has happened. 

If DL is HIGH and ΔDL is POSITIVEFAST then 2-BFP Trip has happened. 

Table 3.2: Rule base of FRBCS for Phase-1b 

DL ΔDL 

NEGATIVE 

FAST 

NEGATIVE 

SLOW 

OK 

POSITIVE 

SLOW 

POSITIVE 

FAST 

VERYLOW 2-CEP  2-CEP  2-CEP  2-CEP  - 

LOW 2-CEP 1-CEP  1-CEP  1-CEP 2-BFP  

NORMAL - 1-CEP FP - 2-BFP 

HIGH - - - 2-BFP  2-BFP  

 

3.3.2.3 Output for Phase-1b 

 The procedure in finding the defuzzified output of the FRBCS for Phase-1b is similar to 

that of Phase-1a. Each data is fed as input one by one and based on the input membership 

function the rule is selected from the rule base which produces the fuzzy output. This fuzzy 

output is defuzzified using the output membership function which yield the crisp output. The 

defuzzified or crisp outputs for the three considered transients are shown in Fig. 3.6. 
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Figure 3.6: Defuzzified output of FRBCS for Phase-1b 

3.3.2.4 Response time for Phase-1b 

 Figure 3.6 clearly depicts that for initial 10s, 1CEP trip and 2-CEP trip produces same 

defuzzified output from the FRBCS for Phase-1b. It is only after 10s, the defuzzified output 

changes to 2 and stabilizes at this value which confirms that the transient occurred is a 2-CEP 

trip. The defuzzified output for 1-CEP trip remains constant throughout the series after this 

moment. Hence, it is learnt from the figure that the response time for 1-CEP trip is around 15s 

whereas for 2-CEP trip it is around 12s. This 3s window is kept to bypass the noise interference 

if any. A similar window is there in each case in this chapter. The response time for 2-BFP trip is 

8s as evident from Fig. 3.6.    
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3.3.3 Comparison between Phase-1a and Phase-1b 

 The response time for each transient in both the phases has been mentioned in Table 3.3. 

The difference in the response time for 2-BFP trip is quite less comparing the difference in case 

of 1-CEP trip and 2-CEP trip. This shows that Phase-1a which uses DL and ΔDL as the input 

features produces better result in all the three transients compared to the FRBCS in Phase-1b 

which uses θRI and ΔθRI as their input features. This concludes that the parameter near the 

occurrence of the transient gives far better result as they get affected at the earliest compared to 

the trip parameter which is far away from the occurrence of the event. 

Table 3.3: Response time of the two FRBCS in Phase-1 

Phase Inputs 1-CEP Trip 2-CEP Trip 2-BFP Trip 

1a θRI -ΔθRI 550 sec 350 sec 12 sec 

1b DL-ΔDL 15 sec 12 sec 8 sec 

 

3.4 Phase-2 of FRBCS 

 In this phase, five transients from the steam water system are considered compared to 

three transients in Phase-2, for event classification using FRBCS in order to increase the 

complexity of the transients. These transients are as follows 

i. One Condensate Extraction Pump Trip with stand by not taking over (1-CEP trip) 

ii. Both the Condensate Extraction Pumps Trip (2-CEP trip) 

iii. One Boiler Feed Pump Trip with stand by not taking over (1-BFP trip) 

iv. Both Boiler Feed Pumps Trip (2-BFP trip) 
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v. Both Cooling Water Pumps Trip (2-CWP trip) 

As inferred in Phase-1, the parameters nearer to the occurrence of the event produces better 

result compared to the far away parameters. In order to analyze the effect of selection of the 

input features which are nearer to the occurrence of the events, two such plant parameters are 

chosen for experimental purpose. These plant parameters are deaerator level (DL) and 

condensate pressure (CP). DL is taken because it gave the better result of the two in the previous 

case and has been explained earlier in the present chapter. Figure 3.7 shows the time series 

pattern of DL for the considered transients.  

 
Figure 3.7:  Time series pattern of DL for the considered transients 

 Condensate pressure 

 After the super heated steam has passed the last stage of the turbine, the leftover heat 

content in the steam which is approximately 750MWt has to be dumped. This is done in the 

condenser with the help of sea water. In the condenser, heat exchange takes place where the 

steam flows through the shell side and the sea water flows through the tube side. Here, the 

condenser pressure or otherwise called as condensate pressure is maintained at 9.2kPa by the 
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help of air evacuation system with two vacuum pumps. If this pressure crosses the designed 

limits then that may affect the blades of the last stage of the turbine. Figure 3.8 depicts the time 

series pattern of CP for the considered transients. 

 
Figure 3.8: Time series pattern of CP for the considered transients 

3.4.1 FRBCS for Phase–2 using DL and ΔDL (Phase–2a) 

 Phase-2a has considered change in DL along with the DL as the input feature for the 

FRBCS. It is similar to Phase-1b with increased number of classes which somehow complicates 

the system. 

3.4.1.1 Membership functions for Phase-2a 

 Similar to the previous phase, the input membership function and the output membership 

function are prepared considering the domain of the selected input features in Phase-2a as 

depicted in Fig. 3.9. Phase-2a has same input membership function as that in Phase-1b whereas 

the output membership function has introduced two new transients. The segregation of the input 

and output domains into fuzzy linguistic variables is done as the following. 



57 
 

a. Fuzzy values for the input linguistic variable DL = {VERYLOW, LOW, NORMAL, 

HIGH}  

b. Fuzzy values for the input linguistic variable ΔDL = {NEGFAST, NEGSLOW, OK, 

POSSLOW, POSFAST}  

c. Fuzzy values for the output linguistic variable = {FP, 1-CEP, 2-CEP, 1-BFP, 2-BFP, 2-

CWP} 
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(a) 

 

(b) 

 

(c) 

Figure 3.9 : Defuzzified output of FRBCS for Phase-1b 

3.4.1.2 Rule base for Phase-2a 

 The rule base is generated by producing fuzzy rules for each linguistic fuzzy variable 

shown in Table 3.4. Some of the examples of the generated rules are as follows.  
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 If DL is NORMAL and ΔDL is OK then the plant is running on FP. 

 If DL is LOW and ΔDL is NEGATIVE SLOW then 1-CEP Trip has happened. 

 If DL is VERY LOW and ΔDL is NEGATIVE SLOW then 2-CEP Trip has happened. 

 If DL is HIGH and ΔDL is OK then 1-BFP Trip has happened. 

 If DL is HIGH and ΔDL is POSITIVE SLOW then it is 2BFP Trip has happened. 

 If DL is HIGH and ΔDL is NEGATIVE FAST then it is 2CWP Trip has happened. 

Table 3.4: Rule base of FRBCS for Phase-2a 

DL ΔDL 
NEGATIVE 

FAST 

NEGATIVE 

SLOW 
OK 

POSITIVE 

SLOW 

POSITIVE 

FAST 

VERYLOW 2-CEP 2-CEP 2-CWP 2-CEP - 

LOW 2-CEP 1-CEP 1-CEP 2-BFP 2-BFP 

NORMAL - 1-CEP FP 1-BFP 2-BFP 

HIGH 2-CWP 2-CWP 1-BFP 2-BFP 2-BFP 

 

3.4.1.3 Output for Phase-2a 

 The defuzzified output in this phase is based on the assumption as undertaken in Phase-1. 

Figure 3.10 shows the defuzzified output during online event classification of transients. 
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Figure 3.10: Defuzzified output of FRBCS for Phase-2a 

3.4.1.4 Response time for Phase-2a 

 As mentioned earlier in Phase-1, the data collected for 1-CEP trip and 2-CEP trip have 

almost similar data for certain period of time. Hence, it is advisable to wait for certain duration in 

order to reach at any conclusion on the occurrence of the transient. Figure 3.10 show that till 10s 

both these transients show same defuzzified output. Hence, only after this duration, conclusive 

evidence is gathered on to the correct classification of transient. Hence, the response time for 1-

CEP trip is 20s as the defuzzified output stabilizes at 1 beyond this mark. Similarly, the 

defuzzified output for 2-CEP trip stabilizes at 2 beyond a response time of 15s. Beyond 70s, the 

2CEP trip shows spikes due to automatic safety measures taken by the controllers in the plant. 

These spikes enlighten that safety actions are taken at this point of time after the occurrence of 

the event where as these actions could have been taken well before by the help of FRBCS.   For 

1-BFP trip, the output stabilizes at nearly 3 with a response time of 20s whereas for 2-BFP trip 



61 
 

the output stabilizes at nearly 4 within 10s. For 2-CWP trip, the response time is 360s. This is 

because the variance of DL and ΔDL is not of considerable amount in order to classify the 

occurrence of 2-CWP trip. If the diagnosis of 2-CWP trip was stopped at 200 or 300 seconds, 

event classification would not be an accurate one. As at this time, according to the defuzzified 

output value it shows some other event and not 2-CWP trip. Hence, at any instance, accurate 

event classification is not possible before the response time. 

3.4.2 FRBCS for Phase–2 using DL and CP (Phase–2b) 

 Phase-2a for classification of 2-CWP trip produced a response time on the higher side. 

From previous result, it is quite evident to try with some other nearby parameter which would 

presumably have a shorter response time than the previous case. Hence, CP is used to formulate 

a new FRBCS along with the DL. 

3.4.2.1 Membership functions for Phase-2b 

 The membership is again segregated based on experience and experts‟ opinion. The 

segregation of the fuzzy domain of the input and output data is done using fuzzy linguistic 

variables as shown in Fig. 3.11. These fuzzy linguistic variables are as follows. 

a. Fuzzy values for the input linguistic variable DL = {VERY LOW, LOW, NORMAL, 

HIGH}  

b. Fuzzy values for the input linguistic variable CP = {LESS, OK, LITTLEMORE, MORE, 

HUGE}  

c. Fuzzy values for the output linguistic variable = {FP, 1-CEP, 2-CEP, 1-BFP, 2-BFP, 2-

CWP} 
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(a) 

 

(b) 

 

(c) 

Figure 3.11: Membership function of FRBCD for Phase-2b 

3.4.2.2 Rule base for Phase-2b 

 The fuzzy rules governing the linguistic variables of DL and CP are generated and stored 

in their respective rule base as shown in Table 3.5. For example, 

 If DL is NORMAL and CP is OK then the plant is running on FP. 
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 If DL is LOW and CP is LESS then 1-CEP trip has happened. 

 If DL is VERYLOW and CP is LESS then 2-CEP trip has happened. 

 If DL is HIGH and CP is LITTLEMORE then 1-BFP trip has happened. 

 If DL is HIGH and CP is LESS then it is 2BFP trip has happened. 

 If DL is HIGH and CP is HUGE then it is 2CWP trip has happened. 

Table 3.5: Rule base of FRBCS for Phase-2b 

DL CP LESS OK 
LITTLE 

MORE 
MORE HUGE 

VERYLOW 
2-CEP 2-CEP 2-CEP - - 

LOW 
2-CEP 1-CEP 2-CEP 2-CEP 2-CEP 

NORMAL 
- - FP - 1-BFP 

HIGH 
2-CWP 2-BFP 1-BFP 1-BFP 1-BFP 

 

3.4.2.3 Output for Phase-2b 

The defuzzified output of Phase-2b is illustrated in Fig. 3.12. 
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Figure 3.12: Defuzzified output of FRBCS for Phase-2b 

3.4.2.4 Response time for Phase-2b 

 From Fig. 3.12, it is observed that the defuzzified values for 1-CEP trip and 2-CEP trip 

are almost same i.e. nearly 2, till 600s. Afterwards, the values changed to 1 for 1-CEP trip and 

remained at 2 for 2-CEP trip. This means that the response time for 1-CEP trip is around 600s 

and for 2-CEP trip it is 610s. Similar is the case for 1-BFP trip and 2-BFP trip where the 

defuzzified value is 3 till 35s. Afterwards, the output changed to 4 for 2-BFP trip and remained 

at 3 for 1-BFP trip for certain duration. 1-BFP trip reaches output 4 after about 170s due to the 

values of the input parameters, viz., Deaerator level and Condensate pressure reaching to values 

nearly equal to that of 2-BFP trip case. Due to this the defuzzified output touches 4 after 170 

seconds. This is a possible scenario provided the controllers are near perfect ones.  The response 

time is 50s and 40s for 1-BFP trip and 2-BFP trip respectively. From Fig. 3.12, it is also 
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observed that a defuzzified value of 5 is seen in 2-CWP trip within 70s. During this time itself, 

the system is confident on the occurrence of CWP trip. According to the data, on occurrence of 

2-CWP trip, the CP reaches up to 30kPa. No other considered events have a CP of 30kPa under 

any circumstances.  

3.4.3 FRBCS for Phase–2 using DL, ΔDL and CP (Phase–2c) 

 In this case, three parameters are considered instead of two as input variables to a 

FRBCS. These parameters are accounted based on the advantages from the previous approaches 

for developing FRBCS. 

3.4.3.1 Membership functions for Phase-2c 

Depending on data collected from the transient based on the three selected input 

variables, the membership functions are prepared as shown in Fig. 3.13. The three parameters are 

from Phase-2a and Phase-2b, i.e., DL, ΔDL and CP as the combination of these presumed to give 

better result considering the benefits of both the sub-phases individually. 

a. Fuzzy values for the input linguistic variable DL = {VERYLOW, LOW, NORMAL, 

HIGH} 

b. Fuzzy values for the input linguistic variable ΔDL = {NEGATIVEFAST, 

NEGATIVESLOW, OK, POSITIVESLOW, POSITIVEFAST}  

c. Fuzzy values for the input linguistic variable CP = {LESS, OK, LITTLEMORE, MORE, 

HUGE} 

d. Fuzzy values for the output linguistic variable = {FP, 1-CEP, 2-CEP, 1-BFP, 2-BFP, 2-

CWP} 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.13: Membership functions of FRBCS for Phase-2c 
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3.4.3.2 Rule base for Phase-2c 

 To prepare the rule base with three parameters on a two dimensional matrix, some 

notations are used as shown in Table 3.6. For example say, „a1‟ where „a‟ represents DL and the 

subscript 1 represents the first fuzzy linguistic variable of DL, i.e., very low. Similar is the case 

for b and c which represent ΔDL and CP respectively. So when it is represented as „a1b1‟, this 

represents DL being very low and ΔDL being negative fast. 

Table 3.6: Rule base of FRBCS for Phase-2c 

ab c c1 c2 c3 c4 c5 

a1b1 2-CEP 2-CEP - - - 

a1b2 2-CEP 2-CEP - - - 

a1b3 2-CEP 2-CEP - - - 

a1b4 - - - - - 

a1b5 - - - - - 

a2b1 - - - - - 

a2b2 - - - - - 

a2b3 1-CEP 1-CEP 1-CEP 1-CEP 1-CEP 

a2b4 1-CEP - - - - 

a2b5 - - - - - 

a3b1 - - - - - 

a3b2 - - - - - 

a3b3 1-BFP Full Power 1-CEP 2CWP 2CWP 

a3b4 - 2-BFP - - - 

a3b5 - - - - - 

a4b1 - - - - - 

a4b2 - - - - - 

a4b3 1-BFP 1-BFP 1-BFP - 2-CWP 

a4b4 2-BFP 2-BFP - - - 

a4b5 - - - - - 

 

3.4.3.3 Output for Phase-2c 

The defuzzified output of the FRBCS for Phase-2c is represented in Fig. 3.14. 
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Figure 3.14: Defuzzified output of FRBCS for Phase-2c 

3.4.3.4 Response time for Phase-2c 

 Figure 3.14 shows that the defuzzified outputs for Phase-2c are quite static with low 

fluctuations in the initial stages. Here also, there is need to wait a considerable duration in order 

to distinguish between 1-CEP Trip and 2-CEP Trip as the data are almost equal, as mentioned 

earlier. For 1-CEP Trip, this system takes around 260s and the defuzzified output stabilizes at 1 

whereas for 1-CEP Trip it takes around 250s and stabilizes at 2.  The response time for 1-BFP 

Trip is found to be around 100s as it stabilizes at 3 thereafter. 2-BFP Trip is classified quicker 

than others in this system, around 30s, at a stabilized output value of 4. As the defuzzified value-

5 which belongs to 2-CWP trip never arose in any of the other four transient cases, an output for 

such a short interval of time with defuzzified value-5 was assumed to be a 2-CWP trip. 

Admittedly, this is not the most convincing way of classifying this event and work is in progress 

at this centre to achieve to a more appealing and appreciable algorithm. Another reason for such 

a result is due the improper selection of the input features for the classification of this event. A 

shorter period of time would certainly make the conclusions more prominent. Hence, the 
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response time for 2-CWP trip as it reaches the defuzzified output value of 5 is found to be 55s. It 

stabilizes there for certain duration. Further change in the output in case of 2-CWP Trip is due to 

the automatic safety measures been taken up by the controllers.  

3.4.4 Comparison between response times of the three FRBCS in Phase-2 

 Based on the OTS experiments conducted on the above mentioned three sub-phases in 

Phase-2, Table 3.7 shows the comparison based on the response time of each FRBCS towards 

the specific input variables in this phase. Phase-2a with input variables DL-ΔDL to the FRBCS 

produces output with considerably shorter response time in four of the five events compared to 

FRBCS for Phase-2b and Phase-2c. As the response time of 2-CWP trip in FRBCS for Phase-2a 

is more, a change in input variable from ΔDL to CP is chosen. This is considered because 2-

CWP trip has a direct impact on CP. This change of input variable reduces the response time for 

2-CWP trip but in return increases the response time of all other events. This is because, the CP 

is not able to classify the other four events along with DL as these four transients have no 

immediate impact on CP. Taking all these observations into consideration, FRBCS for Phase-2c 

is produced with three input variables, i.e., DL-ΔDL-CP. This system gives a result which turned 

out to be a trade-off between the FRBCS of Phase-2a and Phase-2b. The response time of the 

FRBCS for Phase-2c is in the midst of both the previous phases. Finally, it is found that FRBCS 

for Phase-2a is better for the first four events with a response time in a reasonable low range and 

FRBCS for Phase-2c being better for classifying 2-CWP trip event only. Hence, DL-ΔDL 

variables proved to be mostly a better combination of input variables for the selected event 

classification.  
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Table 3.7: Response time of the three FRBCS in Phase-2 

Phase 
Input Variables 1-CEP 2-CEP 1-BFP 2-BFP 2-CWP 

2a DL-ΔDL 20 sec 15 sec 20 sec 10 sec 360 sec 

2b DL-CP 600 sec 610 sec 50 sec 40 sec 70 sec 

2c DL-ΔDL-CP 260 sec 250 sec 100 sec 30 sec 55 sec 

 

3.5  Summary 

 The experiment conducted to analyze the effect of the FRBCS for online transient 

classification inferred that a classifier performs well with an appropriate set of input variables. 

 The present chapter infers that parameters near to the occurrence of the transient have a 

major effect on classifying the correct event.  

 Phase-1 demonstrates that FRBCS with DL and ΔDL as input variables proves to be efficient 

with a shorter response time than θRI and ΔθRI.  

 With an increase in the number of transients to be classified, FRBCS with DL and ΔDL as 

input variables has a shorter response time than FRBCS with DL and CP as input variables. 

 Increasing the number of input variables considering FRBCS with DL, ΔDL and CP reduces 

the response time of 2-CWP Trip event only. All the other events produce a higher response 

time comparing the response time of FRBCS with DL and ΔDL as input variables. 

 It is not always the increase in the number of input variables which favors more accurate 

pattern recognition. Judiciously going for the feature selection for a fuzzy system definitely 

leads to a more accurate system whose interpretability is not penalized much. 

 The appropriate process for online classification of events, whose system‟s scanning cycle 

time is too small, is by monitoring the output from a classifier system for a certain number of 
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cycles and then deciding the actual occurrence of an event which gives conclusive evidence 

for the final outcome.  

 This system can be a redundant one in case of any annunciation failures and avoids digging 

into the log records in order to conclude on the occurrence of a transient. It eventually 

reduces information overloading on the operator. 
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4 
DEVELOPMENT OF TRAINING DATASET 

REDUCTION FOR TRANSIENT IDENTIFICATION 

The present chapter outlines the significance of a novel approach of reduction in training 

samples referred as training dataset reduction (TDR). The TDR algorithm has been delineated 

and the performance of the classifier based on TDR algorithm is investigated on some real world 

datasets. Further, the practicability of TDR algorithm, based on the previous results, is validated 

on datasets collected from the transients of a sodium cooled fast reactor (SFR). 

4.1 Introduction 

In supervised machine learning algorithms for classification problem related quandary, 

training the classifier with the training data and testing the same using the test data is the 

universal approach. Quite often these training data and test data are selected randomly from the 

full dataset in the ratio of 80%:20% or 70%:30% respectively. These percentages have a 

momentous role when the full dataset is huge demanding a large memory and the classifier 

taking unacceptably long training time. The computational complexity rises exponentially in 

using an efficient machine learning algorithm for big data [75]. On completion of the training 

procedure, the accuracy of the classifier network with the test data might not be satisfactory 

demanding repetition of the procedure with additional modifications. This process often becomes 

tedious and cumbersome. This unacceptable accuracy stems from the quality of the dataset 
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considered. In such case, it is required to reduce the number of samples in the training dataset so 

that the unnecessary samples are dropped. This technique removes samples in two groups. One 

among them is removing samples that are far from the class centroid. Using outlier samples or 

support vector samples via fuzzy entropy for SVM [76] or multi category proximal SVM [77] 

are some of these approaches. Another approach is removing samples near to each class centroid. 

K-means clustering technique [78] is used to achieve such kind of reduction in samples.   The 

approach undertaken in this chapter is inspired from the concept of removing samples far from 

the class centroid using a different approach and is termed as training dataset reduction (TDR) 

approach. Reducing the training data also reduces the time complexity of the classifier[79]. 

In any classification related problem, the endeavor of the algorithm is to accomplish the 

best accuracy possible for the classifier network. Multi kernel learning (MKL) is an approach 

which improves classification performance effectively but with a large computational 

complexity. Advancement to MKL is the multi-kernel classification machine based on the 

Nystrom approximation which has a better average recognition and a short training time [80]. 

Another area of application where higher accuracy is of immense necessity is the classification 

of the occurrence of transient in a safety critical environment like a NPP where the classifier 

response should be quick, accurate and unambiguous in order to avoid any lethal accidents. A 

valuable approach to this matter is the practice of fuzzy rule base system for transient 

classification in NPP as described in Chapter 2. 

 With a number of supervised machine learning algorithms available, the selection of the 

best one for classification purpose of a dataset may vary based on the characteristics of the 

learning algorithm [81, 82]. This analysis becomes imperative when some of the performance 

parameters of the learning algorithm are of higher precedence compared to others. A real world 
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example which supplements this statement is the accuracy of the classifier network in case of a 

NPP which is of highest priority compared to its training time and computational complexity. 

Hence for such situations, the performance comparison of various supervised machine learning 

algorithms is necessary to find the best one with maximum accuracy. 

 The TDR approach is a preprocessing step carried out before training the classifier 

network. In this approach, the training dataset is reduced and the new reduced training dataset is 

fed as the input to the classifier network. Beyond this step, the classifier network is made to learn 

using a chosen supervised machine learning algorithm. This approach is fruitful only if the 

performance of the classifier network does not deteriorate much on undergoing this approach. 

The TDR approach selects some of the samples which would be used to train the classifier 

network based on a particular cut-off Euclidean distance. In this chapter, some of the methods 

used to find out this cut-off Euclidean distance is described which finally leads to the preparation 

of a reduced training dataset known as the new training dataset. The feasibility of TDR approach 

is verified using some real world datasets based on the performance of the classifier network. 

Furthermore, a diverse dataset considering transients in a SFR for classification is investigated 

for verification of the TDR approach. 

4.2 Concept of Training Dataset Reduction 

 TDR is a novel approach to reduce the number of samples in the training dataset which is 

fed as input to a classifier. It is assumed that the size of the full dataset (FD) is R х C, where R 

represents the total number of rows or samples and C represents the total number of columns or 

features. The output class of a classifier is always a function of the feature vector of a sample and 

the weight vector of the classifier at that instant. Generally, a classification process undergoes 

two phases, training phase and test phase and for each of these phases, the full dataset is 
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segregated into training dataset and test dataset respectively.  Prior to the commencement of the 

training phase, normalization of the full dataset followed by TDR is carried out which produces a 

new training dataset. In the training phase, this new training dataset is fed as input to a classifier 

which gets trained based on a supervised machine learning algorithm. The class of each training 

sample is compared with its real class and the error is back propagated to change the weights of 

the classifier in order to reduce the error in the subsequent iteration. This process is continued till 

the system converges, i.e., either the error or the number of epochs reaches its respective 

thresholds. Finally, after the classifier is trained, the test phase commences with the testing 

dataset used to validate the trained classifier. Generally, the accuracy of the classifier is 

calculated based on the number of correct test classifications with respect to the total number of 

test samples.  It is known that that 

                                               (38) 

4.2.1 Normalization 

 The full dataset is initially normalized before undergoing the process of TDR. 

Normalization is a process of transforming a data to a specific range, say between 0 and 1. This 

part is necessary in order to avoid a huge difference in the values of the features which might 

otherwise make the system ill-conditioned. This process more often assures stable convergence 

of weights and biases. 

 
             

      

         
 (39) 
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4.2.2 Steps involved in TDR 

I. The given normalized dataset is segregated into 80% of training dataset with N rows, and 

the rest 20% of test dataset with M rows and each row containing C columns representing 

the features as shown in Fig. 4.1. 

II. From the test dataset, A% of M rows are randomly selected such that at least one test data 

from each unique class from the full dataset is picked. If the above condition does not 

satisfy then this step is repeatedly carried out with increased percentage of A. This 

selected test dataset is called as pickup test (pTe) dataset which has m rows. 

III. For the i
th

 row present in the pickup test dataset, the Euclidean distance (ED) is calculated 

with respect to the k
th

 row of the training dataset where k varies from 1, 2, . . . ,N. This 

results in a column matrix EDi = [EDi1, EDi2, . . . , EDik, . . ., EDiN]
T 

where   

 

                √∑              
 

 

   

 (40) 

Certainly, due to the curse of dimensionality, Gaussian based functions can be used as 

distance metrics rather than Euclidean distance for higher dimensional datasets. In this 

thesis, a maximum of 10 features has been considered. So, finding the distance using 

Euclidean distance is justified for such low dimensional datasets. Hence, Euclidean 

distance is chosen as the distance metrics in this thesis. 

IV. The EDi is then sorted in an ascending order of their distance values.  

V. The selection of the corresponding training dataset is done using the sorted Euclidean 

distance matrix based on EDcut-off. EDcut-off is assumed as the radius of a hypothetical 

circle which segregates the selected samples from the non selected ones in the entire 
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domain represented as a rectangle in Fig. 4.2. A pickup test data sample is placed at the 

centre of this hypothetical circle. The training sample whose EDi is less than EDcut-off is 

selected. EDcut-off is calculated using either of the following methods.  

i. Mean – αStandard deviation  method 

ii. Area selection method 

VI. The selected training sample from training dataset is appended to the new training dataset 

such that redundancy in the selection of the training samples is avoided. 

VII. Step III to step VI are repeated for i = 1, 2, . . . , m. 

VIII. Now, the new training dataset is used for training the classifier using any machine 

learning algorithm. 

IX. Finally, the test dataset is used to test the classifier‟s performance. 

 

Figure 4.1: Basic block diagram of TDR approach 
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Figure 4.2: Pictorial representation of selecting EDcut-off in TDR 

4.2.3 Mean – αStandard deviation (M-αSD) method 

 Considering the central limit theorem, it is assumed that the arithmetic mean of the ED 

values is normally distributed. Figure 4.3 shows the area distribution of the normal distribution 

curve where the horizontal axis represents the ED ranging from 0 to ∞ and vertical axis is its 

probability distribution function value. In this method, EDcut-off is calculated using the mean 

(μED) and standard deviation (σED) of the ED vector for each pickup test sample as represented in 

Eq. 4.4. In Eq. 4.4, α is an integer which preferably ranges from 0 to 3.Those training samples 

whose corresponding ED satisfies Eq. 4.5 are selected and stored in the new training dataset such 

that no two samples are repeated. 

                     (4.4) 

               (4.5) 
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Figure 4.3: Normal distribution Curve 

4.2.4 Area selection Method 

 As mentioned in the previous method,     is normally distributed and integrating its 

surface within a particular limit gives the area under that limit. Again, it is known that the total 

area under a normal or Gaussian curve is always equal to 100% or 1. Hence, to calculate the 

EDcut-off using this method for a particular range of area covered say 50% or 0.5 from the origin, 

the limit would vary from 0 to EDcut-off  as shown in Eq. 4.9. In the initial step, the Gaussian 

distribution values (GED) are calculated after finding the standardized Euclidean distances (EDS) 

using Eq. 4.6 and 4.7. 

                ⁄  (4.6) 

 
    

 

   √  
     

    
 

 
  (4.7) 

Here, the boundary condition for selection of training samples for new training dataset is 

represented in Eq. 4.8. 

               (4.8) 
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The amount of area selected to find its corresponding EDcut-off is calculated by the following 

equation.  

     Area = ∫            
         

 
 

                         = ∫
 

   √  

         

 
     

    
 

 
          

                         = 
 

   √  
∫      

    
 

 
        

         

 
 

Let k = 
 

   √  
  is a constant; then 
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              (4.9) 
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        (4.10) 

The two ways considered in this chapter to integrate Eq. 4.9 in order to calculate the EDcut-off are 

analytical integration and numerical integration. 

4.2.4.1 Analytical Integration 

 It is known that on integrating the normal distribution function from 0 to a finite value, 

say A, an error function is encountered which is defined as shown in Eq. 4.11.  

 ∫        
 

 
 =  

√ 

 
         (4.11) 

                 
 

√ 
 ∫        

 

 
 (4.12) 

The error function mentioned in Eq. 4.12 can be defined as a Maclaurin series as in Eq. 4.13 

 
                                        

 

√ 
 ∑
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       (4.14) 

Substituting the formula of erf(A) in Eq. 4.14 into Eq. 4.11 yields 
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 ∫       
 

 
        

 

 
    

 

  
     

 

  
    

 

   
        (4.15) 

Considering A = EDcut-off and substituting Eq. 4.15 into Eq. 4.10, results in 

                
 

 
         

   
 

  
         

    
 

  
         

      (4.16) 

Finally, substituting Eq. 4.16 into Eq. 4.9, results in 
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(4.17)) 

Hence, Eq. 3.17 can be used to calculate the EDcut-off for a selected area value. But, the problem 

with this approach is the infinite series and the degree of EDcut-off. Numerical solution to Eq. 3.13 

is a tedious task as it is associated with infinite series along with a factorial term. 

4.2.4.2 Numerical Integration 

 Though the numerical integration approach is not accurate, it is relatively simple 

compared to the analytical integration. Here, the area covered by each adjacent EDS from left to 

right is added up till the selected area value is reached. For example, for a selected area of 0.5, 

the sum of area covered by each EDS from the previous EDS is calculated and this process is 

terminated when the sum of area reaches 0.5. The area of each segment of EDS and previous EDS 

are calculated by assuming each segment to be a trapezium consisting of a rectangle and a right 

angled triangle.   Hence, the area of each trapezoidal segment is the sum of the area of a rectangle 

and a right angled triangle as highlighted in bold in Fig. 4.4. Here, the EDS is x2 with its GED 

value of y2 and the previous EDS is x1 with its GED value of y1. 

            Area of the segment = Area of the rectangle + Area of the triangle 

                      =               
 

 
                     

                        =                 
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                            =  
 

 
        (       )  (41) 

 

Figure 4.4 : Area selection method for Normal or Gaussian distribution Curve 

 This approach may not have high precision but computationally it is low in cost. This 

makes the system really faster compared to using the analytical integration method. On finding 

the sum of the area nearest to the selected area value, the previous EDS is represented as the 

EDcut-off and the selection of the samples for the new training dataset is carried over using the 

boundary condition in Eq. 3.8. In the present research, the numerical integration approach is 

followed for calculating EDcut-off using area selection method. 

4.3 Procedure 

 In order to check the feasibility of the TDR approach, some of the real world datasets or 

otherwise known as benchmark datasets are considered as shown in Table 4.1. These datasets are 

available in the University of California at Irvine (UCI) Repository. These datasets have 

heterogeneity in their number of samples along with the number of features and classes. Each of 

these benchmark datasets are fed as input to a classifier network which is trained using a 

supervised machine learning algorithm. The classifier network used in this approach is a MLP 
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network which is trained by using the back propagation algorithm in tandem with the gradient 

descent rule. In the MLP network, only one hidden layer is used with the number of neurons 

equal to the number of features present in their respective benchmark dataset. The training is 

carried out in a k-fold cross validation manner with k equals to 5. This is because the initial 

segregation of the training and the test data are considered to be 80% and 20% of the FD as 

shown in Fig. 4.1. In this process, the full dataset is divided into k equal number of segments out 

of which one segment is considered as test data and all the rest segments are considered as 

training dataset. This approach is repeated for k-times where each time the segment assigned as 

test data is changed without repetition. Towards the end, k classification accuracies are collected 

from the k-fold cross validation process and the final classification accuracy of the training 

algorithm is calculated taking the average of these accuracies.  

 Table 4.1 describes the considered real world datasets where the column named 

“previous accuracy” mentions the average classification accuracy of the MLP classifier network 

for their respective real world dataset without the intervention of the TDR approach. Figure 4.5 

shows the block diagram of the training process of the classifier network in a k-fold cross 

validation manner using TDR approach. The average accuracy of the same MLP classifier 

network which undergoes TDR approach is calculated for the considered real world datasets.  
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Table 8: Description of Real world datasets 

Dataset 
#Data #Features #Classes 

Previous 

accuracy (%) 

Iris 150 4 3 88.7 

Wine 188 13 3 96.7 

Glass 215 9 6 45.3 

WDBC (Wisconsin Diagnostic Breast 

Cancer) 
569 30 2 93.6 

Balanced scale 625 4 3 85.4 

BCW (Breast Cancer Wisconsin) 684 9 2 96 

Wine quality red 1598 11 6 38.5 

Wine quality white 4898 11 7 43 

 

 

Figure 4.5: Block diagram of training of a benchmark dataset in a k-fold cross validation manner 

4.4 Observation 

 As stated previously in Fig. 4.1, the analysis on the feasibility of the TDR approach 

depends on the percentage of pickup test data and EDcut-off. In this approach, the values of the 

percentage of pick-up test data considered for analysis are 5%, 10%, 15% and 20% in order to 

check their respective effect on the performance of the classifier.  These effects are studied using 

two factors; the percentage reduction in the training samples based on EDcut-off and the difference 
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in classification accuracy with and without using TDR approach. The difference in classification 

accuracy is greater than zero when TDR performs better and less than zero when it does not 

perform better. A particular run is considered acceptable only if the difference in classification 

accuracy at least equals zero, if not more, with some reduction in the training samples. Hence, 

difference in classification accuracy is given higher priority followed by the percentage reduction 

in training samples. 

Table 92: Description of markers in graph 

Marker Graph name Description 

 reduced5 Percentage reduction in training samples using 5% pick-up test data 

 accdiff5 Difference in classification accuracy using 5% pick-up test data 

 reduced10 Percentage reduction in training samples using 10% pick-up test data 

 accdiff10 Difference in classification accuracy using 10% pick-up test data 

 reduced15 Percentage reduction in training samples using 15% pick-up test data 

 accdiff15 Difference in classification accuracy using 15% pick-up test data 

 reduced20 Percentage reduction in training samples using 20% pick-up test data 

 accdiff20 Difference in classification accuracy using 20% pick-up test data 

 Figures 4.6-4.21 show the diagrammatic representation of the performance of TDR 

approach on the considered eight UCI datasets. Each graph contains a single x-axis along with a 

double y-axis. The co-ordinates on the graphs are represented by specific marker as described in 

Table 4.2. Each graph also has a horizontal line at y = 0 corresponding to the secondary y-axis 

which gives a better visualization as to which is an acceptable result. A result is treated as 

acceptable if any half-shaded marker is placed on or above this line. The selection with an 
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acceptable difference in classification accuracy with highest percentage of reduction in training 

samples is considered as better result. 

 Figures 4.6-4.13 show the results of using M-αSD based TDR approach for the 

considered datasets. As shown in Fig. 4.6 for iris dataset, the only selection which placed a half-

shaded marker on the horizontal line is at 20% pick-up test data with α=0. But this results in 

almost 0% reduction in training samples. Hence, no acceptable result is inferred from iris dataset 

using M-αSD based TDR approach. The reason behind this could be the lesser amount of 

training samples in the iris dataset and each of them being quite relevant in the classification 

process. A point to be noted here is that, at α=2 the result is not shown. This is because not a 

single training sample is selected with this constraint. Again, the result for 5% pick-up test data 

is also not shown. This is because, a 5% pick-up test dataset is not able to choose at least one test 

sample from each unique class in the dataset so the percentage of pick-up test data is increased to 

avoid this. Figure 4.7 shows that the half-shaded markers are placed only at α=0 and 1 for 15% 

and 20% pick-up dataset for the wine dataset. Among these two, α=1 shows more amount of 

reduction in training samples which is nearly equal to 60% for both 15% and 20% pick-up test 

data. For the similar reason as mentioned in case of iris dataset, 5% pick-up test data is not 

plotted for wine dataset. In case of the glass dataset shown in Fig. 4.8, both 5% and 10% pick-up 

test data are not able to choose unique samples from the test dataset, hence they are not plotted. 

This is due to more number of classes in the glass dataset with respect to the total number of test 

samples. Here, at α=1, 15% pick-up dataset reduces the training samples by nearly 50% giving 

acceptable results. Figures 4.9 and 4.10 show that for WDBC dataset and balanced scale dataset, 

the best result is achieved by using 5% of pick-up test data for α=1 which reduces the training 

samples by nearly 50%. A comparatively higher reduction in training samples i.e. nearly 70% is 
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achieved by BCW dataset using the same combination of 5% pick-up test data and α=1 shown in 

Fig. 4.11. Figures 4.12 and 4.13 show that, with α=2 along with 5% pick-up test data, the 

reduction in training samples for wine quality red and wine quality white dataset is more 

compared to α=1. The results of these datasets show that with considerable amount of overall 

samples, 5% pick-up test data produces acceptable results at α=1. Further, it can be inferred that 

with an increase in the number of overall samples, the α-value can be increased for 5% pick-up 

test data to produce acceptable results with higher amount of reduction in the training samples 

using M-αSD based TDR approach. 

 

 
Figure 4.6: Performance of Iris dataset using M-αSD based TDR approach 
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Figure 4.7: Performance of Wine dataset using M-αSD based TDR approach 

 

Figure 4.8: Performance of Glass dataset using M-αSD based TDR approach 
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Figure 4.9: Performance of WDBC dataset using M-αSD based TDR approach 

 

Figure 4.10: Performance of Balanced Scale dataset using M-αSD based TDR approach 
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Figure 4.11:Performance of BCW dataset using M-αSD based TDR approach 

 

Figure 4.12: Performance of Wine Quality Red dataset using M-αSD based TDR approach 
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Figure 4.13: Performance of Wine Quality White dataset using M-αSD based TDR approach 

 Figures 4.14-4.21 shows the results of using area selection based TDR approach for the 

considered dataset in Table 4.1. As the M-αSD based TDR approach showed acceptable result 

with 5% pick-up test data, the area selection based TDR approach is also analyzed based on this 

inference. This approach is adhered in order to cross verify the credibility of M-αSD based TDR 

approach. Here, for similar reasons as mentioned earlier, the plot for 5% pick-up test data is not 

shown in Figs. 4.14-4.16 for iris, wine and glass dataset respectively along with 10% pick-up test 

data for glass dataset. Further, similar to Fig. 4.6, Fig. 4.14 shows that the area selection based 

TDR approach for iris dataset does not result in acceptable result as all the half shaded markers 

are considerably below the horizontal line. The result of the wine dataset shown in Fig. 4.15 

depicts an acceptable result in classification accuracy at 80-90% area for 10% pick-up test data 

with a reduction of around 10-20% in training samples. Figure 4.16 shows that for glass dataset, 

the best result is achieved using 15% pick-up test data using 80% of the area which reduces the 
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training samples by nearly 20%. These results are because of the lesser amount of samples in 

these datasets which infers that further reduction in training samples is not necessary. The results 

of WDBC dataset shown in Fig. 4.17 explains that acceptable results are achieved from 60% area 

selection with any percentage of pick-up test data. It is obvious that the amount of reduction in 

the training samples for any percentage of pick-up test data would decrease as the selected area 

increases. Figure 4.18 shows the same descending trend in the percentage reduction in the 

training samples for the balanced scale dataset for 5% pick-up test data where 40-60% area 

produces acceptable results. The acceptable result for the BCW dataset using 5% pick-up test 

data is achieved at 80% area with a reduction of nearly 25% in the training samples as shown in 

Fig. 4.19. A drastic percentage reduction in the training samples is seen in the wine quality red 

dataset as shown in Fig. 4.20. Acceptable results for 5% pick-up test data for this dataset is 

prominent from 30% area selection with the best reduction of 60% in the training samples. For 

wine quality white, the acceptable results ranged from 60-80% area for 5% pick-up test data 

shown in Fig. 4.21.  

 
Figure 4.14: Performance of Iris dataset using area selection based TDR approach 
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Figure 4.15: Performance of Wine dataset using area selection based TDR approach 

 

Figure 4.16: Performance of Glass dataset using area selection based TDR approach 
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Figure 4.17: Performance of WBDC dataset using area selection based TDR approach 

 

Figure 4.18: Performance of Balanced Scale dataset using area selection based TDR approach 
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Figure 4.19: Performance of BCW dataset using area selection based TDR approach 

 

Figure 4.20: Performance of Wine Quality Red dataset using area selection based TDR approach 
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Figure 4.21: Performance of Wine Quality White dataset using area selection based TDR 

approach 

 

 From the above observations, it is inferred that for a considerable amount of samples in a 

dataset, a 5% pick-up test data is enough to achieve acceptable result using TDR approach. If the 

number of samples with respect to the number of unique classes is less then increasing the 

percentage of pick-up test data becomes mandatory. M-αSD based TDR approach uses α=1 for 

considerable amount of dataset and α=2 for high amount of dataset to get acceptable results using 

5% pick-up test data. The area selection based TDR approach gives acceptable results for most 

of the considered datasets at 60% area using 5% pick-up test data. In the next section, these 

results are further verified using the transient data of a nuclear power plant. 
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4.5 Transient classification in a nuclear power plant using TDR approach 

 As already mentioned, PFBR is a 500MWe pool type sodium cooled fast reactor (SFR) 

[3] which is in an advanced stage of commissioning at Kalpakkam, India. It consists of main and 

secondary sodium system along with steam water system as depicted in Fig. 1.1. For 

demonstration of the TDR method for transient identification in the reactor, the steam water 

system has been considered. The steam water system consists of steam generators, turbine, 

condenser, condensate extraction pump (CEP), deaerator, boiler feed pump (BFP) and feed 

heaters. The two sets of transients that have been considered for investigation are related to two 

very important pumps in the steam water system known as BFP and CEP. There are three BFP 

with two running at 50% each and one in stand-by condition. Same is the case for CEP. Each of 

the two sets of transients consists of two events each making them binary classification problems 

in each category. The two transients or classes for the BFP category consisted of one BFP trip 

with stand-by not taking over transient referred as 1-BFP trip and both the BFP trip transient 

referred as 2-BFP trip. Similarly, in CEP category, the two classes are one CEP trip with stand-

by not taking over transient referred as 1-CEP trip and both CEP trip transient referred as 2-CEP 

trip. The features which are considered to prepare the dataset used the deaerator level (DL) and 

change in deaerator level (ΔDL) as these two features gives the best result than others as 

mentioned in Chapter 3. Figure 4.22 and 4.23 shows the time series pattern of DL and ΔDL for 

the four considered transients. The BFP trip category consisted of a considerable 359 training 

samples and CEP trip category consisted of as many as 3138 training samples. Resilient 

backpropagation algorithm is used to train the network which classified the considered transients 

of PFBR. 
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Figure 4.22: Time series pattern of DL for the considered transients 

 

Figure 4.23: Time series pattern of ΔDL for the considered transients 

 Figures 4.22 and 4.23 show the result of the binary transient classification problem using 

M-αSD based TDR approach. Both the BFP trips and CEP trips categories are efficiently 

classified using the TDR approach with reduction in training samples. BFP trip category which 

has considerable amount of training samples used α=1 to give the acceptable result with nearly 

50% reduction in training samples. The CEP trip category which has comparably higher number 
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of training samples, used α=2 to reduce nearly 70% of the training samples providing acceptable 

result. 

 
Figure 4.24: Performance of the BFP Trip classifier using M-αSD based TDR approach 

 
Figure 4.25: Performance of the CEP Trip classifier using M-αSD based TDR approach 
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 Figures 4.24 and 4.25 show the performance of the transient dataset using area selection 

based TDR approach. At 60% area, the BFP trips reduced the training samples by around 40% 

with the classification accuracy in the acceptable range. But, the outcome of the CEP trips using 

60% area for reduction in training samples resulted in reduction of the classification accuracy by 

nearly one percent from the previous classification accuracy which is without the use of TDR 

approach. This shows that, for the considered transient classification problem in PFBR, M-αSD 

based TDR approach produced better results compared to area selection based TDR approach 

with a higher percentage reduction in the training samples. 

 

Figure 4.26: Performance of the BFP trip classifier using area selection based TDR approach 
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Figure 4.27: Performance of the CEP Trip classifier using area selection based TDR approach 

4.6 Summary 

 The high computational complexity involved in a training algorithm is a serious issue 

when a massive amount of data has to be dealt with. In order to reduce this complexity for a 

classifier network, a novel approach such as TDR can be effective.  

 This approach reduces the number of training samples which might not be necessary for 

creation of a hyperspace in order to make a classifier network get trained.  

 The Euclidean distance is the distance measure in TDR approach which helps in 

producing a cut-off boundary for the selection of training samples based on the pick-up 

test dataset.  

 The selected training samples constitute to the new training dataset which is fed as input 

to the classifier network.  
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 For the considered real world datasets, it is found that for a 5% pick-up dataset, Mean-

αStandard deviation based TDR approach gave acceptable results for α=1 (for 

considerable amount of data samples) and α=2 (for high amount of data samples) and for 

area selection based TDR approach  gave satisfactory results for 60%. 

 For datasets with higher number of classes, the pick-up dataset percentage has to be 

increased till at least one sample from each class gets selected in the pick-up dataset. 

 TDR approach does not produce improved result for the dataset consisting of less training 

samples compared to the classifier without the implementation of TDR approach. 

 It is demonstrated that M-αSD based TDR approach along with the MLP classifier 

classified the considered transients in a SFR with a better performance with a positive 

difference in the classification accuracy along with a maximum of about 70% reduction 

in training samples compared to the non usage of TDR.  

 As this approach is too juvenile, more refinement to this approach is needed. This 

refinement might be in the selection of a crisp percentage of pick-up test dataset along with an 

optimum cut-off Euclidean distance value. An approach to select best of these two features 

which produce a reduced training dataset that does not compromise on the accuracy of the 

learning algorithm for the classifier network would make the TDR approach more generalized. 
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5 
DEVELOPMENT OF DIMENSIONALITY REDUCTION 

BASED CLASSIFIER FOR MALFUNCTION 

IDENTIFICATION 

The present chapter emphasizes on the significance of dimensionality reduction of the dataset for 

improved performance of a classifier. Principal component analysis, a dimensionality reduction 

algorithm, is explained in detail along with Adaptive neuro-fuzzy inference system as the 

classifier. A comparative study is done on the implementation and non implementation of the 

above mentioned dimensionality reduction algorithm and classifier for classifying events in SFR. 

5.1 Introduction 

 As already explained in previous chapters, a nuclear power plant is a multifaceted 

engineering composed of many critical yet imperative components. The usage of these 

components is obligatory. But at times, due to some circumstantial effect, these components are 

prone to malfunction or may lead to complete failure. These events should be identified well in 

advance before they lead to any catastrophic results in the plant. In a NPP, during any abnormal 

incident, the operator stationed in the control room must have the appropriate decision making 

ability.  In order to make such decisions quick, unambiguous and accurate, the overloading of 

information must be reduced from the operator. Hence, for smooth operation of the NPP, event 

identification is considered extremely important and a support to the operator [83]. Many soft 

computing techniques facilitate event identification. As stated earlier, the occurrence of a 
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transient is designated as an event in NPP. Transient identification in NPP using fuzzy rule based 

classification system is an example of a soft computing technique being used for event 

identification delineated in Chapter 2. The neural model is also used for such identification in 

dynamic processes [84].  

 An excellent adaptive approach to tune the human-like reasoning capability of a model is 

well constructed and collated in the adaptive network fuzzy inference system (ANFIS) 

technique. This technique is used to tune the shape of the membership functions in order to 

achieve a better result. This is an iterative process where the characteristic features of the 

membership functions are modified. ANFIS is used in many diversified fields for classification 

problems. It is used for fault classification in power distribution system [85]. Automatic RNA 

virus classification using the Entropy-ANFIS method is a novel application of ANFIS [86]. It is 

also used for fault location in underground cables [87]. Multi-ANFIS or MANFIS is an 

improvement of ANFIS for multiple outputs [88] 

 In a NPP, there are almost ten thousand signal data which are sent from the sensors in the 

plant site to the local control centers. Out of these sensor data, four thousand essential signal data 

are sent to the main control room which helps to scrutinize the status of the plant. The plant is 

said to be in normal state or full power when all the sensor signals are within their corresponding 

threshold limits. During an abnormal state, there is a heavy pandemonium with the alteration in 

so many sensor signals. During this state, the operators need to have agile notice on many critical 

signals for taking the best decision to avoid catastrophe.  In order to combat this quandary, it is 

recommended to highlight only the significant and impactful signals. With a large set of sensor 

data being fed every cycle, an algorithm which discards non critical signals automatically for a 

particular event could reduce the information overloading on the operator. Hence, principal 
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component analysis (PCA) can help in processing the sensor data and arrange them in 

descending order of their significance [89]. Instead of monitoring huge data, PCA helps in 

discarding the inconsequential data resulting in dimensionality reduction [89, 90]. In dimension 

reduction process, normalization and standardization are methods used to ensure that the 

variables receive equal attention [91]. PCA is the basic theory and is widely used to reduce the 

dimensionality of time series [92, 93]. A novel method  is developed for time series data mining 

known as asynchronous- based PCA [94]. There are instances where PCA have been used for 

feature extraction  using neural network pattern recognition [95]. 

5.2 Adaptive network based fuzzy inference system 

 ANFIS is a fuzzy inference system (FIS) using Takagi-Sugeno model which exercises 

back propagation technique in artificial neural network (ANN). ANFIS is also termed as adaptive 

neuro-fuzzy inference system. Using this technique, the shapes of the input membership 

functions are varied in order to reduce the error between the desired output and the actual output 

of the system. This technique is introduced by Jang [96]. It coalesce the best features of ANN 

and FIS. In FIS, there is neither a proper procedure to develop the membership function nor the 

rule base. Hence, it is always a herculean task to modify these two sections if the result is not 

satisfactory from the FIS. Back propagation algorithm used in ANN comes as a rescuer to this 

problem. The modification in the shape of the membership functions is done by changing its 

characteristic parameters. These characteristic parameters are denoted as the weights of the ANN 

and using back propagation algorithm these weights are modified. Finally, a comparatively 

reduced error is achieved using ANFIS technique. 

 Figure 5.1 shows the ANFIS architecture which commonly consists of five layers. For 

simplicity, only two input variables x1 and x2 along with the output variable y have been shown 
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in the network. Each input variable has only two linguistic values (say less and high). According 

to Sugeno FIS [97], for a two dimensional input variable containing  two membership functions 

each, there can be four fuzzy rules in the rule set. These fuzzy rules are simple if-then statements 

which cover the necessary domain of the input variables and can be expressed as  

 Rule 1 : If x1 is A1 and x2 is B1, 

    Then f1 = p1x1 + q1x2 + r1. 

 Rule 2 : If x1 is A1 and x2 is B2, 

    Then f2 = p2x1 + q2x2 + r2. 

 Rule 3 : If x1 is A2 and x2 is B1, 

    Then f3 = p3x1 + q3x2 + r3. 

 Rule 4 : If x1 is A2 and x2 is B2, 

    Then f4 = p4x1 + q4x2 + r4. 

 The consequence functions (fi) in the rules mentioned above are function of the 

antecedence variables (x1, x2). The coefficients of the consequence function in Sugeno-type FIS 

(pi, qi, ri) which are otherwise called as consequence parameters are chosen in such a way that it 

describes the output of the model within the fuzzy region. In ANFIS, the consequence 

parameters are adaptive in nature so initialization of these parameters at the beginning is done 

randomly and later on it is modified using least square method during every forward pass of the 

ANFIS until the final output is achieved. 
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Figure 5.1: Typical architecture of an ANFIS network 

5.2.1 Layer 1 

 Every node in this layer l is adaptive in nature. There are two portions as shown in Fig. 

5.1. The input variable x1 along with the linguistic variables, A1 and A2 constitute one portion. 

The other portion x2 along with B1 and B2 is similar to that of the previous portion. The input 

variables are fuzzified and a membership value „  
    from each node i is obtained. 

    
     

                        (42) 

   
       

                     (5.2) 

Here, xi denotes the input variable to node i and    ,     denotes the linguistic variables used to 

categorize the input variable to node i.    
(x) and    

(x) are usually bell shaped or Gaussian 

function which are defined as  
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 Here, {ai, bi, ci} is the parameter set known as the premise parameters. This is because 

the shape of the membership function changes based on the parameter set. Hence, the adaptive 

nature of any node in this layer is typically based on the changes in these parameters.  

5.2.2 Layer 2  

 The circular structure of every node in this layer of Fig. 5.1, labeled  , represents fixed 

nodes. The output of this node is the product of each and every membership value fed to it and is 

known as the firing strength of a node.  

   
         

          
                                      (5.7) 

     
           

          
                (5.8) 

5.2.3 Layer 3 

  Similar to the previous layer, the circular structure of each node in this layer of 

Fig. 5.1, labeled   , represents fixed nodes. This node is used to normalize the firing strengths of 

each node, so it is named as normalized firing strength. 
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                       (5.9) 

5.2.4 Layer 4  

  The rectangular structure of each node in this layer of Fig. 5.1 represents adaptive 

node. Here, each node uses both the input variables along with the normalized firing strength as 

its node function. 

   
                                           (5.10) 

 Here, fi is the linear combination of the input variables with {pi, qi, ri} as their 

coefficients. These coefficients are adaptive in nature and are termed as consequence parameters. 

5.2.5 Layer 5  

  The circular structure of the single node in this layer of Fig. 5.1, labeled Σ, 

represents fixed node. The output of this node is the overall output of this network. It results in 

the sum of all the incoming signals to this node.  
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 Here, ŷk denotes the network output for the k
th

 observation. The error in the output at the 

k
th

 observation is calculated using Eq. 5.12 where yk is the actual output 

         (5.12) 

 The learning of an ANFIS network includes learning of both the premise parameters and 

the consequence parameters. Hence in such case, the hybrid learning algorithm is used which 

consists of learning during both forward pass and backward pass [98]. During forward pass, the 
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consequence parameters in the layer 4 are modified using the least square method whereas 

during backward pass, the premise parameters in the layer 2 are updated using gradient descent 

method. Choosing ANFIS over a classifier such as a decision tree is due to some disadvantages 

related to a decision tree classifier.  The main disadvantage of decision tree classifier is its 

instability. This means that, a minor perturbation in the dataset changes the classifier‟s 

performance a lot which refrains it to become a robust classifier which can adjust to noise. This 

aspect is well taken care of in ANFIS as the error margin and the number of epochs helps to 

achieve so.  

  Multiple-ANFIS or MANFIS is used to evaluate network with multiple output where 

each output is mapped with its independent ANFIS network. This implies that the number of 

outputs equals the number of ANFIS network. For MANFIS, a nonlinear mapping between the 

independent variable x and the multiple response yi, i = 1,2,…,m, is achieved by minimizing an 

error measure E, which is defined as [99] 
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  Here, yik is the i
th

 actual response for the k
th

 observation, ŷik is the i
th

 network response for 

the k
th

 observation and n is the total number of observations. 

5.3 Principal Component Analysis 

 PCA is a technique used to transform a data set to another dimension. This 

transformation is linear in nature and involves many statistical measures to achieve the 

transformation. Statistical computational measures such as standard deviation, covariance matrix, 

eigen values and eigen vectors of the data set are calculated in a procedural manner in order to 
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get the principal components. These principal components are orthogonal to each other which 

eventually help in extracting the important information out of the data set. PCA is very popular 

statistical approach being used for dimensionality reduction [89, 90]. The dimensionality 

reduction is done taking into consideration that the necessary information in that data set is not 

lost. One of the areas of practical usage of this technique is for image compression [100–102]. 

 The new orthogonal data set after being linearly projected to another dimension 

containing a series of principal components. These principal components are arranged in the 

descending order of the eigen vectors based on the respective eigen values. The eigen vector or 

the principal component which has the highest eigen value is termed as the first principal 

component followed by the second principal component and so on till the last column based on 

the decreasing eigen values. The eigen vectors or the principal components whose respective 

eigen values are very small are discarded, thereby producing a new matrix Y. In such case the 

initial data set X which is of the dimension r х c is finally transformed and reduced to a matrix Y 

with dimension r х k, where k is less than c. 

The PCA algorithm is carried out using the following procedure 

Step 1. Data preparation 

 In this step, the data set say Xrxc is prepared with r rows where each row represents a 

sample with c variables. This data set is also called as data matrix. 

Step 2. Mean subtraction 

 In this step, the mean of each column in the data matrix is calculated and subtracted from 

every data of their respective columns. Hence, the new data matrix has data with zero mean. 
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 Here, Irx1 is a unity column vector and M 1xc is a row vector with all the mean values of 

each column [Mj]. 

Step 3. Covariance Matrix 

 Covariance is a useful measure which finds out the variance of the data from the mean 

with respect to other data in that row. The covariance of a data with respect to itself is equivalent 

to the variance of that data. For example, a 3-dimensional data set (x1, x2, x3), the covariance that 

can be calculated are cov(x1, x2), cov(x2, x3) and cov(x1, x3). Hence a covariance matrix C is 

produced with c x c dimension. This is represented as  
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Computationally, a much simpler way of doing this calculation is  
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  (5.19) 
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Step 4. Eigen vectors and eigen values 

 Since the covariance matrix is a square matrix, the calculation of eigen vectors and eigen 

values are possible. The eigen vectors are arranged based on the descending order of their 

respective eigen values (λ). The first column in the eigen vector matrix is the one where the data 

varies the most and is called as the first principal component. All eigen vectors are orthogonal to 

each other. The second column in the eigen vector matrix is called the second principal 

component and so on.  

Step 5. Selection of basis vectors 

 This step is important for undergoing dimensionality reduction of the data set as the cut-

off factor number or column number eventually selects the basis vectors of the reduced eigen 

vector matrix. This selection should be done in an optimized manner where dimensionality 

reduction is achieved without the loss of important information. The basis vectors from all the 

eigen vectors are selected based on a threshold value α which is dependent on the problem 

statement. The threshold value is directly proportional to the precision of the classifier output 

whereas inversely proportional to the amount of dimensionality reduction. This threshold value 

is compared with the sum of the eigen values (bk). 

  
   ∑   

 

   
 (5.21) 

  If bk is greater than the threshold value α and k is the cut-off factor number, then 

the first k eigen vectors are selected as basis vectors. These basis vectors form a new matrix 

named Bcxk where k is less than c. A scree test also helps in deciding the k-value or cut-off factor 

number [103]. 



114 
 

Step 6. Final projected data set 

 The initial Xrxc data set is finally projected on to a new structure with a new set of data 

matrix Yrxk. 

                (5.22) 

This produces a new data set with reduced dimensionality. 

5.4 Experimental Procedure 

 In sodium cooled fast reactors, the cold primary sodium from the cold pool is pumped 

into the core through two primary sodium pumps (PSP). The cold sodium absorbs the fission 

heat generated in the core sub assemblies to enter the hot pool. This hot primary sodium then 

reaches the intermediate heat exchanger (IHX) where it gives away the heat energy to the cold 

secondary sodium. The cold secondary sodium is pumped into the IHX by two secondary sodium 

pumps (SSP). The hot secondary sodium finally reaches the shell side of the steam generator 

(SG). The SG is fed by feed water by two boiler feed pumps (BFP) on the tube side. The feed 

water evolves as superheated steam at SG outlet by absorbing heat from the secondary sodium. 

This superheated steam is used to produce electric power in a conventional steam water system. 

The steam at the turbine exhaust is condensed using condenser which is fed by sea water. The 

condensate is pumped into the deaerator through two condensate extraction pumps (CEP) which 

is fed to the SG using two BFPs thus completing the power cycle as shown in Fig. 5.2. 
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Figure 5.2: Block diagram of the flowchart of PFBR 

 The operators in the main control room are in charge of the balanced working of the 

reactor. Along with the critical components, there are components which are comparatively less 

critical yet important when the component safety is considered. A minute alteration from the 

normal behavior of characteristic features of these components needs to be noticed, monitored 

and attended by the operator stationed in the main control room. These small changes can be 

categorized as some events which in the long run may lead to a bigger mishap if not attended at 

the right time. For experiment purpose, the events initiated from the components SSP and BFP 

have been considered for experiment. These two components are shaded in Fig. 5.2. The four 

primary events which are considered are SSP-1 speed reduction (%), SSP-2 speed reduction (%), 

feed water flow reduction (%) and feed water temperature reduction (°C). All these events have 

been simulated on the OTS. 

5.4.1 Secondary Sodium Pump (SSP) 

 The SSP pumps in cold secondary sodium from the SG into the IHX. There are two SSP 

and four IHX in PFBR (one SSP each for two IHX). The speed of SSP at 100% flow is 900 rpm 

at an operating temperature of 355°C. In the present experiment, reduction in both SSP-1 speed 
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and SSP-2 speed has been considered for the analysis. The changes have been simulated for 

reduction in speed by 10%, 20%, 30% and 40%. Beyond 40% reduction, the reactor shuts down 

automatically and hence, only these four percentage reductions in SSP-1 and SSP-2 speed have 

been considered. 

5.4.2   Boiler Feed Pump (BFP) 

 The BFP pumps sub-cooled feed water to SG at 180 bar pressure. This pumping system 

consists of two 50% turbo-driven BFP and one 50% motor driven BFP which takes over on loss 

of any of the two turbo-driven BFP. The feed water flow and the feed water temperature are the 

two characteristic features of the BFP which are considered in this experiment. The operating 

feed water flow at 100% is 561 kg/s and operating feed water temperature is 235°C at full power. 

The changes that have been considered and analyzed for feed water flow are reduction in flow by 

10%, 20%, . . .,90%. Similarly, the changes in feed water temperature which are considered and 

analyzed are reduction in temperature by 10°C, 20°C, . . ., 80°C. Here also, temperature 

reduction beyond 80°C condition is not considered as the reactor goes to shutdown state. 

5.4.3   Events and features considered 

 Table 5.1 shows all the events which are considered for classification. The first bold row 

denotes the component‟s parameter that gets affected which can be called as the main or primary 

event. For example, feed water flow (%) reduced, feed water temperature (°C) reduced, etc. The 

column to these rows denotes the extent to which the main event has been affected. This can also 

be called as ancillary or secondary event. For example, by 10, by 20, etc. This shows that there 

are 25 events in total, i.e., four main events with each having up to a maximum of nine ancillary 

events. In order to classify all these events, seven common input features are selected from 

expert‟s knowledge. These seven features are feed water flow, feed water inlet temperature, 
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sodium inlet temperature to SG, sodium outlet temperature from SG, SSP-1speed, SSP-2 speed 

and superheated steam outlet temperature from SG.  

 Figure 5.3 shows the occurrence of the seven chosen features in the plant schematic in a 

zoomed in manner. SG being a heat exchanger, the temperature and the flow rate of the liquids 

entering into both the ends of it are crucial parameters. These parameters are the feed water flow, 

feed water temperature, sodium inlet temperature to SG and sodium inlet flow to SG. The 

sodium inlet flow to SG is controlled by SSP-1 and SSP-2. These parameters decide the 

efficiency of the heat exchanger. The feed water flow is the rate at which the cold water or the 

feed water from the deaerator is pumped into the SG by BFP. The temperature of this feed water 

should be maintained above 150°C in order to avoid freezing of sodium during heat transfer. The 

immediate effect of this heat transfer releases super heated steam at the outlet of the SG with a 

very high temperature. These seven parameters are the closest to the initiation point of the 

considered events and get affected immediately. So, these parameters are chosen as the features 

for the data set. The selection of these seven features for the experiment was based on some prior 

knowledge of the system where it is assumed that these features contribute in the classification 

problem. A dimensionality reduction of this dataset is an attempt to verify whether such an effort 

helps in increasing the performance of the classifier. Hence, though there are only seven features 

at the outset, an attempt was made to further reducing it. This particular approach can be scaled 

up where the total number of features is too high and dimensionality reduction would actually 

end up with only the contributory features.  
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Figure 5.3: Occurrence of the considered seven variables in the plant schematic 

Table 10: Events in PFBR considered for classification 

Feed Water Flow  

reduced by 

Feed Water inlet 

temperature reduced by 

SSP-1 speed 

reduced by 

SSP-2 speed 

reduced by 

10% 10°C 10% 10% 

20% 20°C 20% 20% 

30% 30°C 30% 30% 

40% 40°C 40% 40% 

50% 50°C - - 

60% 60°C - - 

70% 70°C - - 

80% 80°C - - 

90% - - - 

 There are two ways of classifying these events. The first approach is similar to the way it 

looks in Table 5.1. Here, the main event or label-1 event and ancillary event or label-2 event 

have separate classifiers. The combination of the two outputs from these two classifiers yields 

the final event. For example, there is an ANFIS-1 which classifies the primary event i.e. say 

Feed Water Flow reduced and the ANFIS-2 classifies the ancillary event i.e. 10%. These two 

classifiers combined together give the output as Feed Water Flow reduced by 10%. In this 
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approach, same dataset is fed to both ANFIS-1 and ANFIS-2 during training and testing, and any 

incorrect output from either of these produces an incorrect classification.  In this approach, 

classifier-1 has to classify 4 classes and classifier-2 has to classify maximum of 9 classes. These 

variables along with their respective labels form a „multiple input multiple output‟ problem for a 

classifier. The second way being very simple where all these events are classified separately 

resulting in a single classifier classifying 25 classes. These variables along with their respective 

label form a „multiple input single output‟ problem for a classifier.  

5.4.4   Classifier 

 The classifier chosen in both the cases for experimental purpose is ANFIS. ANFIS is 

chosen as it has the adaptive nature to adjust the weights of the characteristic features of the 

membership function in a Takagi-Sugeno fuzzy inference system. This converges to an output 

with low error. The bell-shaped membership functions have been used for all the input 

membership functions in this chapter. Each input membership function consisted of a fuzzy set 

with five fuzzy variables. The five fuzzy variables for each input parameter are named as 

{VERYLOW, LOW, MEDIUM, HIGH, VERYHIGH}. These five fuzzy variables are able to 

segregate the input features effectively. Increasing the number of fuzzy variables would increase 

the complexity of the system and decreasing the number of fuzzy variable would decrease the 

precision of the output. Hence, five fuzzy variables are chosen as optimum. The problem 

statement being a multiple output problem in case 1, two ANFIS or MANFIS are used in parallel 

for the two output labels. Prior to feeding in the input data set to ANFIS for training, a 

dimensionality reduction of the input data set is performed using PCA as shown in Fig. 5.4. This 

helps to reduce the complexity of the ANFIS as the number of input variables fed to the model 

gets reduced. After the MANFIS model got trained, a single row of test data is fed at a time, in 
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the same way as for training, to check the performance of the ANFIS classifier as shown in Fig. 

5.5. It is kept in mind that the number of training data samples (r1) and test data samples (r2) 

need not be equal. 

 

Figure 5.4: Block diagram of the training process in case-1 

 

Figure 5.5: Block diagram of the testing process in case-1 

5.4.5   Procedure 

I. The training data set consisted of r1 rows and c columns. The rows represent the samples 

of training data and each row having c columns or features. The output label of each 

training data row is appended to the training data set.  

II. This training data set is fed as input to the PCA which produced a new training data set 

with (r1 х k) dimension. Here k is the cut-off factor number and can be any integer less 

than c.  
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III. The new training data set is fed to two separate ANFIS models (ANFIS-1 and ANFIS-2), 

as our problem statement deals with two output labels. 

IV. Each ANFIS model gets trained separately producing two independent final ANFIS 

models. 

V. Now, the test data set with dimension r2 х k is prepared similar to the training data set as 

in step I. 

VI. This test data set is fed to PCA with the same cut-off factor number k as used in the 

training process. 

VII. The new test data set with reduced dimensionality is fed to both the trained ANFIS model 

which produces two separate output labels known as the ANFIS output event. 

VIII. The prediction accuracies of the trained models are calculated by comparing the actual 

output event and the ANFIS output event. 

IX. This process is repeated for various k-values for PCA and different epochs for ANFIS 

training in order to check at which PCA-k and running the ANFIS for how many epochs, 

the maximum prediction accuracy is achieved. 

 This process is made to run for different number of epochs such as 2, 20, 200, 2000 and 

20000. As the data set is prepared from the OTS database whose cycle time is 200 milliseconds, 

a huge amount of data every cycle is generated with very minor changes in their values. Hence, a 

ten time increment in every epoch level is taken into consideration in order to infer some 

impactful change in the result.  

 This process is repeated for a second case where the event data is fed to only one 

classifier instead of two separate classifiers. Here, the lable-1 events and label-2 events are 

concatenated as a single event and classification is done.  
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5.5 Observation 

5.5.1 Scree Test 

 The scree test or scree plot is a plot between the components or factor numbers in the X-

axis and the eigen values in a descending order in the Y-axis. The eigen values of the covariance 

matrix of the training data set is used here. Another way of plotting the scree plot is by taking the 

percentage of the sum of the eigen values instead of only eigen values. The scree test of the 

considered training data set is shown in Fig. 5.6.  The scree test is a test for determining the 

number of factors to retain in a factor analysis or principal component analysis [104]. In such a 

plot, the aim is to look for a „big gap‟ or an „elbow‟ or a flat line trend. This depicts that the 

components before this point explains the most about the variability of the data but the rest do 

not, so the later are discarded [105]. In Fig. 5.6, it is observed that „big gap‟ or an „elbow‟ is 

quite evident between factors three and four and a flat trend after four. As the data set is from a 

NPP which is a safety critical system any loss of information can be disastrous. So, it is 

advisable to retain the eigen vectors till the fourth principal component instead of third and 

discard the rest. PCA works on eigen vectors of a covariance matrix. This covariance matrix 

calculates the variations in each parameter compared to others. The parameters are arranged in 

descending order of their eigen values which depicts that the parameter which has maximum 

variance is placed in the first column and the one with the least variance is placed at the last. This 

transformation gives an insight on those parameters which contribute in the classification and 

thereby discarding the others which is confirmed by the scree test using the eigen values. This 

approach eventually helps in dimensionality reduction in a constructive manner by eliminating 

parameters which show minimal variations or eigen values nearly equal to 0. Hence, the eigen 

vectors whose eigen values above 0 are selected.  
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.  

Figure 5.6: Scree test of the training data set 

5.5.2 Testing Phase of CASE 1: Using multiple classifiers - MANFIS 

 In the testing phase, the test data is fed to the trained MANFIS model in order to check its 

performance. The way of analyzing the performance of a classifier is by plotting a receiver 

operating characteristics (ROC) as mentioned in Section 1.6 of the present thesis. The ROC 

curve is the plot between the false positive rate (FPR) or 1-specificity and true positive rate 

(TPR) or sensitivity in the X-axis and Y-axis respectively. The more the ROC curve tilts towards 

the left corner of the graph, the better is the classifier. As AUC is the area under a unit square in 

ROC, its value lies between 0 and 1. The worst classifier which classifies all positive or all 

negative has an AUC of 0.5. Hence, no realistic classifier should have an AUC below 0.5 [63].  

Based on the value of AUC, the quality of the classifier on a general practice is categorized as 

bad (0.5 to 0.6), fair (0.6 to 0.7), good (0.7 to 0.8), very good (0.8 to 0.9) and excellent (0.9 to 1). 

An ideal classifier has an AUC value equal to 1.  

 ROC is used only in the case of binary classifiers. In order to compare the performance of 

multi class classifiers, a robust classification algorithm based on probability estimation trees is 

proposed [68]. As the present problem is a multiclass classification problem, this method is 
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adhered to find the performance of the classifiers. Based on the result from this method, a 

comparative study on the classifier‟s performance is done. In this method, for each class, 

separate ROC curves are plotted taking a particular class as positives and all other classes as 

negatives. AUC of this curve (AUC(ci)) is calculated and this process is repeated for all the other 

classes too. The probability estimate of each class is also calculated in a stepwise manner. 

Initially, difference of each classification output from its actual output is found. The modulus of 

this value is averaged out among the other classes as this is the error estimate which the network 

failed to address. The complement of this modulus of error value is the probability estimate of 

the output being correctly classified. Hence, a vector of probability estimates for the output 

classes is prepared for each of the test data and a final averaged probability estimate vector is 

prepared. The final AUC is calculated by summing the product of the AUC of a class with its 

respective averaged probability estimates (     ). 

          ∑                

    

 (5.23) 

 Tables 5.2 and 5.3 show the final AUC of ANFIS-1 and ANFIS-2 respectively for 

different number of epochs (2, 20, 200, 2000 and 20000). In rest of the tables in this chapter, 

PCA is suffixed with an integer which shows the number of columns chosen from the PCA 

matrix representing the factor number. PCA1 means only the first column or the first principal 

component of the PCA matrix is fed as input to ANFIS, PCA2 means the first two columns or 

the first two principal components are fed as input to ANFIS and so on. PCA0 means the data set 

is fed directly to ANFIS without undergoing PCA. The histogram representation of the AUCfinal 

of both the ANFIS for case-1 shown in Tables 5.2 and 5.3 is depicted in Figures 5.7 and 5.8 

respectively. 
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 From the histogram in Fig. 5.7, it is quite clear that the AUC almost remains the same in 

all cases beyond PCA4 for ANFIS-1. It is also evident that the AUC does not change much from 

PCA4 to PCA7 for a particular number of epochs. This confirms that no information is lost 

which could have helped in classifying the events. Moreover, the value of AUC is also in the 

acceptable range in all these cases, i.e., around 0.99. These values are excellent for any classifier. 

PCA2 and PCA3 for this case also give good results but as NPP is a safety critical system, PCA4 

and above suffice the need. Again, PCA4 and above outperforms ANFIS-1 without any PCA, 

i.e., PCA0-ANFIS-1. This means ANFIS-1 performance increases when PCA4 and above is used 

in the preprocessing stage of it. Another analysis which is concluded from Table 5.2 is that there 

is also not much variation to the AUC values for ANFIS-1 for a particular PCA when the number 

of epochs is increased. This states that the performances of the classifiers are almost independent 

of the number of epochs in the training phase. The best AUC for PCA4 is 0.995867 for 200 

number of epochs which is almost equal to the overall best AUC, i.e., 0.996197 for 2000 number 

of epochs for ANFIS-1. According to scree test also, PCA4 is enough to classify the event. 

Hence, it is wise in considering the former in order to achieve dimensionality reduction.  

Table 11: AUCfinal for test data set in ANFIS-1 of case-1 

No. of epochs PCA0 PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7 

2 0.90192 0.759115 0.937026 0.937665 0.98698 0.980936 0.993655 0.993501 

20 0.978244 0.759074 0.937396 0.937948 0.986641 0.98487 0.993799 0.992548 

200 0.978244 0.759524 0.941398 0.956578 0.995867 0.995107 0.993528 0.992922 

2000 0.994099 0.789663 0.948224 0.95875 0.995392 0.996197 0.984511 0.992529 

20000 0.994099 0.789851 0.949562 0.956605 0.994652 0.994846 0.983227 0.992529 
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Figure 5.7: Histogram representation of AUCfinal for test data set in ANFIS-1 of case-1 

 ANFIS-2 of case-1 classifies the ancillary events or label-2 events and an AUC 

exceeding 0.8 is in the acceptable range as these events are secondary events. In Table 5.3, it is 

clear that the AUC of PCA4 and above for ANFIS-2 is greater than 0.85 with the best AUC of 

0.903173 from PCA7 running for 2 epochs. Thus, this range of PCA for ANFIS-2 can be 

considered as very good category based on their AUC values. Figure 5.8 shows the histogram of 

ANFIS-2 which shows the final AUC is almost the same for factor number 4 and above for 

different number of epochs. Similar to ANFIS-1, the optimized cut-off factor number to be 

considered for ANFIS-2 considering dimensionality reduction is PCA4 for 2000 number of 

epochs. Finally, from the AUC analysis, it is concluded that PCA4 for both ANFIS-1 and 

ANFIS-2 for case 1 gives the acceptable results. This conveys a reduction in the dimensionality 

of the data set which is fed as input data to the classifiers.   
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Table 12: AUCfinal for test data set in ANFIS-2 of case-1 

No. of epochs PCA0 PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7 

2 0.76471 0.573468 0.503198 0.620132 0.8527 0.855959 0.881403 0.903173 

20 0.767857 0.573858 0.507918 0.624737 0.859362 0.856954 0.884051 0.90195 

200 0.838264 0.611275 0.612924 0.717984 0.851253 0.868476 0.876478 0.903064 

2000 0.838264 0.56137 0.673773 0.661573 0.892327 0.882119 0.884443 0.901852 

20000 0.838264 0.56137 0.674448 0.649011 0.890361 0.891512 0.898945 0.901852 

 

 

Figure 5.8: Histogram representation of AUCfinal for test data set in ANFIS-2 of case-1 

5.5.3 Test Phase of CASE 2: Using one classifier 

 Similar to case 1, the AUC of the classifier is calculated and shown in Table 5.4.  It is 

evident from Fig 5.9 that the AUC values for the classifier for cut-off factor number 4 and above 

produces better results as compared to others. This matches with the result from the scree test. 

But the AUC values ranges from around 0.7 to 0.9. The best AUC is found to be 0.900634 in 
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PCA5 for 20000 number of epochs. These results are better than the ANFIS performance without 

PCA for the considered number of epochs shown in the column PCA0. Figure 5.9 shows the 

histogram representation of Table 5.4.  

Table 13: AUCfinal for test data set in ANFIS of case-2 

No. of epochs PCA0 PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7 

2 0.693679 0.501235 0.50575 0.564382 0.756205 0.720804 0.712573 0.760396 

20 0.698917 0.501429 0.506841 0.564099 0.755822 0.716565 0.707971 0.752115 

200 0.692521 0.500572 0.54549 0.498386 0.768584 0.752258 0.707247 0.743769 

2000 0.726109 0.604956 0.593397 0.547559 0.743646 0.850903 0.81728 0.743769 

20000 0.725871 0.58395 0.592959 0.572385 0.774226 0.900634 0.856322 0.743769 

 

Figure 5.9: Histogram representation of AUCfinal for test data set in ANFIS of case-2 

5.6 Results 

 Logically comparing the values of AUC for different PCA in case-1 and case-2, PCA4 in 

case-1 performs optimally better among all the others. It is necessary now to choose the optimal 
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number of epochs that both ANFIS-1 and ANFIS-2 should iterate in order to get the best result. 

This can be found using Table 5.5 which appends the values of AUC for PCA4 only, from Table 

5.3 and 5.4. As mentioned earlier, label-1 events classified by ANFIS-1 is the primary event, so 

it has more priority and should have the best AUC among all. Table 5.5 shows that, for 200 

epochs, the AUC for ANFIS-1 is best compared to all others in its column. Even though its 

corresponding AUC value of ANFIS-2 is not the best in its column, iterating for 200 epochs for 

our experiment is wise as our priority is label-1 events. Hence, logically for our experiment, in 

order to classify a multiple output event, it is wise to iterate MANFIS for 200 epochs using 

PCA4 for dimensionality reduction. The ROC curves for the best performers, i.e., PCA4 for 

ANFIS-1 and ANFIS-2 of case-1 for 200 epochs are shown in Figs. 5.10 and 5.11. 

Table 14: Comparison of AUCfinal of PCA4 from Tables 5.3 and 5.4 

No. of epochs ANFIS-1 ANFIS-2 

2 0.98698 0.8527 

20 0.986641 0.859362 

200 0.995867 0.851253 

2000 0.995392 0.892327 

20000 0.994652 0.890361 
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Figure 5.10: ROC curve of PCA4 in ANFIS-1 of case-1 for 200 epochs 

 

 

Figure 5.11: ROC curve of PCA4 in ANFIS-2 of case-1 for 200 epochs 

 Using single ANFIS in case-2, it is observed that the largest AUC of 0.900634 is by 

PCA5 based ANFIS classifier at 20000 number of epochs. Comparing, the AUC values of 

MANFIS with two classifiers and ANFIS with one classifier, it is observed that ANFIS-1 of 

MANFIS which classifies the primary event produces far better AUC than single ANFIS which 

classifies a combined event. It has been also stated earlier that the primary event is given highest 
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priority compared to others. The difference in these two AUC values is too big considering any 

classification problem. Hence, PCA4 based multiple ANFIS classifier at 200 number of epochs 

produces better performance than PCA5 based single ANFIS classifier at 20000 number of 

epochs. In simple terms, the best among the multiple ANFIS gives better performance than the 

best among the single ANFIS classifier using PCA as dimensionality reduction. 

5.7 Summary 

 This chapter outlines the feasibility check on the practice of dimensionality reduction 

using PCA for event classification in a SFR which is a complex critical system where safety is of 

utmost priority. The significant inferences that can be extracted from this chapter are as follows. 

 PCA along with ANFIS can be used as a dimensionality reduction based classifier for 

event classification. 

 It performs better than an ANFIS classifier without dimensionality reduction for the 

considered events. 

 Scree plot is a measure to find the cut-off factor number for dimensionality reduction. 

 PCA based MANFIS produced better performance with higher AUC compared to PCA 

based ANFIS.  

 Hence, dividing an event to sub events like label-1 event or primary event and label-2 

event or ancillary event and then classifying it using MANFIS classifiers gives better 

performance measures compared to a single ANFIS classifier. 
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6 
DEVELOPMENT OF WEIGHTED SMOTE ALGORITHM 

FOR IMBALANCED DATASET 

The present chapter enlightens on the imbalanced dataset problem and emphasizes on the 

oversampling method as solution to this issue. Synthetic minority oversampling technique which 

is a very common approach to address the imbalanced dataset issue has been the focus of the 

study. A modification to this algorithm using weighted approach has been elucidated along with 

the comparison between both using some real world datasets. The feasibility of this weighted 

approach for identifying some malfunctions in SFR has also been studied in this chapter.  

6.1 Introduction 

The necessity of improved performance of a classifier network in classifying minority 

data samples in an imbalanced dataset has brought in a lot of awareness amongst researchers and 

users. An imbalanced dataset with two-classes consists of data samples with a huge difference 

between the number of minority data samples and the majority data samples. The minority 

dataset consists of the samples of a particular class those are less in numbers whereas the 

majority dataset consists of the samples of the other class those are comparatively more in 

numbers. Such kind of imbalance in dataset is called as between-class imbalance [106] compared 

to  within-class imbalance [107]. The performance of the classifier network for such imbalanced 

dataset is always biased towards the majority dataset because of more number of samples it 

contains. Hence, the classifier does not classify the minority data samples accurately and more 
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often than not these samples are misclassified. This leads to a big trouble in cases where 

classifying the minority data samples are of utmost priority compared to majority. An example of 

such scenario is classifying the occurrence of a malignant disease among a group of people who 

have symptoms of that disease. In such a case, very few people will actually have a malignant 

disease compared to all. It can be really catastrophic when a true malignant disease sample which 

in this case in the minority data sample is misclassified. The class imbalance problem is 

generally incurred in the diagnosis fields such as medical diagnosis [108, 109], fraud detection 

[110, 111], intrusion detection [112, 113], bioinformatics [114], data gravitation [115] and 

finance risk management [116] 

A path to counteract such situation is by preprocessing the datasets prior to feeding it as 

input to the classifier network. Most commonly used preprocessing methods for such kind of 

issue are over-sampling, under-sampling and ensemble learning. A wide range of survey of all 

the preprocessing methods have been done by many researchers [106, 117, 118]. The 

oversampling method is mostly concentrated upon in this research work. A widely used 

oversampling method which has been used in a lot of practical applications is the SMOTE 

method (Synthetic Minority Over-sampling Technique) introduced by Chawla et al [119]. A 

series of improvement to SMOTE has been carried out by many researchers from the time it is 

introduced [120–127]. Another approach to tackle imbalanced dataset is the multiple re-sampling 

method [128].  

In most of the SMOTE related oversampling, the amount of oversampling done for each 

minority data sample is fixed. This means that the over sampling is done based on each minority 

data sample, i.e., if the amount of oversampling is 200% then each minority data sample 

generates two synthetic data. This approach at the end produces 200% of the whole minority 
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dataset. In this approach, the oversampling is done with respect to the whole minority dataset 

instead of each minority data sample. This means that for 200% oversampling of the minority 

dataset, the amount of generation of synthetic data sample for each minority data sample varies 

individually but in the end the total amount of oversampling increases up to 200% of the initial 

count of minority dataset. This approach in processed by assigning some weights to each of the 

minority data sample based on its Euclidean distance from rest of the minority data samples. The 

closer the minority data sample, i.e., the lesser the Euclidean distance, the more is the generation 

of synthetic data for that particular minority data sample. This modified method is named as 

Weighted-SMOTE as weights are assigned to each minority data sample for the generation of a 

particular number of synthetic data. The performance of Weighted-SMOTE method is calculated 

using some of the real world datasets those are widely used. These results are compared with the 

performance of SMOTE algorithm in order to make out the difference in performance between 

both of them. The performance is checked for a classifier network which is fed with the input 

dataset preprocessed using both SMOTE and Weighted-SMOTE individually. The performance 

of the network classifier is also calculated without any preprocessing of the dataset in order to 

check the credibility of both the oversampling algorithms. A k-fold cross validation approach is 

undertaken with a k value of ten and the final performance is averaged out of these ten folds. 

This chapter deals with imbalanced datasets where the ratio of number of majority 

sample is way too much than the number of minority samples. This chapter does not deal with 

dimensionality reduction and the main focus is to have a biased learning by the classifier using a 

balanced dataset. Dimensionality reduction can be done once the dataset is balanced where the 

less variant attributes are discarded. 
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6.2 Synthetic minority over-sampling technique (SMOTE) 

SMOTE algorithm is proposed to counteract the imbalanced dataset problem for 

classification [119]. It synthesizes new instances of the minority class by operating in the 

“feature space” rather than the “data space”. This is an oversampling algorithm in which each 

minority data generates N% of synthetic data. The percentage increase in the minority data 

should be in such a way that it is comparable with the number of majority data. This increase in 

instances of the minority data expands the decision reasons for it in the classifiers.  

In this algorithm, some of the parameters are initialized at the beginning. These 

parameters are the amount of oversampling (N%) that each of the T minority class samples need 

to undergo and k value of the k nearest neighbor of a particular minority class sample. Based on 

the amount of oversampling, the selection of one of the k nearest neighbor is chosen. For 

example, if the amount of oversampling is 300% and k value is 5, then randomly three out the 

five nearest neighbors are chosen for oversampling. After this initialization, a minority class 

sample is chosen and its k nearest neighbors out of the rest of the minority class samples is 

found. One among the k nearest neighbors of the minority class sample is randomly chosen. The 

first feature of this selected k nearest neighbor minority class sample is subtracted from the 

initially chosen minority class sample‟s first feature. This difference in value is multiplied with a 

gap value which is any random number between 0 and 1. This multiplied value is added to the 

initial minority class sample‟s first feature which is called as a synthetic data for it. This process 

is carried out for all the other features of a particular minority class sample which generates a 

row of synthetic sample for a particular minority class sample. In order to oversample it for N%, 

this process is carried out for a rounded value of (N/100) to its nearest integer. This generates 

N% of oversampling of a single minority class sample. This procedure is carried out for all the T 



136 
 

minority class samples which finally results in N% oversampling of all the minority class 

samples. In case the N% is less than 100%, then the T minority class samples are randomized so 

that only N% of T are considered for oversampling and N equals to 100. 

6.3 Weighted Synthetic minority over-sampling technique (WSMOTE) 

The weighted SMOTE method is an oversampling method which assigns weights that 

decides the number of new synthetic data which needs to be generated using SMOTE for an 

individual minority data. This is a slight modification to the original SMOTE where each of the 

minority data generating equal number of synthetic data. The weighted SMOTE method uses the 

Euclidean distance of each minority data sample with respect to all the other minority data 

samples in order to produce a weight matrix. This weight matrix along with the total percentage 

of synthetic data generation produces the SMOTE generation matrix which ultimately gives the 

number of synthetic data which needs to be generated for specific minority data sample as shown 

in Fig. 6.1. 

  
[                       ]      

     

   
 [             ]      (6.1) 

 

Figure 6.1: Block diagram of SMOTE Generation matrix 
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The steps involved in Weighted-SMOTE are as follows. 

1. The minority training dataset is considered which contained T number of samples and 

each sample with C number of features. The Euclidean distance (ED) of each of the T 

minority data samples are calculated with respect to all the other minority data. 

 

   (     )  √∑            
 

   

 (6.2) 

Here, i = [1, 2, . . ., T] and j = [1, 2, . . ., T] and j ≠ i. The ED for all the minority data are 

calculated and stored in a column matrix ED = [ED1, ED2, . . ., EDT]
‟
 . 

2. This ED matrix is then normalized using the maximum of the ED (EDmax) and the 

minimum of the ED (EDmin) and called as normalized ED matrix (NED). Normalization 

is done to map the numbers within a range 0 and 1. 

 
     

         

            
 (6.3) 

3. The NED matrix is then modified to a remodeled normalized ED matrix (RNED). RNED 

matrix depicts that the lesser the ED of a minority data, the more share it gets to generate 

the synthetic data out of the total percentage of synthetic data (N%) that needs to be 

generated . RNED matrix is calculated by subtracting the normalized ED value of each 

minority data from the sum of all the normalized ED values. 

 [    ]              [   ]    (6.4) 

4. Finally, the weight matrix is calculated by finding each minority data share fraction with 

respect to the total sum of the shares in the RNED matrix.   
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[             ]      

[    ]   

         
 (6.5) 

5. This weight matrix is used to find the SMOTE generation matrix. 

This is explained with a simple example with T=5, N = 500% with the ED calculated as in Table 

6.1 

Table 15: Example using Weighted SMOTE 

T 
1 2 3 4 5 

ED 2 1 5 3 4 

NED 0.25 0 1 0.5 0.75 

RNED 2.25 2.5 1.5 2 1.75 

Weights 0.225 0.25 0.15 0.2 0.175 

# SMOTE Generation 6 6 4 5 4 

   

Table 6.1 shows that each minority data sample generates different number of synthetic minority 

data ranging from 4 to 6 instead of every minority data sample generating 5 synthetic data. This 

also shows that the smaller the ED, the larger share of synthetic data generation is assigned for 

that particular minority data sample.   

 6.4 Experimental Procedure 

6.4.1 Experiment 

To understand the performance of the proposed algorithm, some real world datasets 

shown in Table 6.2 are considered for analysis. All these datasets are converted to binary dataset 

with minority class samples and majority class samples. This approach can also be carried over 

for multi class classification problem considering multiple binary classes. These datasets have a 
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wide range of difference in the number of samples in the minority and majority classes. The ratio 

of minority to majority class samples is varied from 1:9 to 1:42. 

6.4.1.1 Datasets  

I. E coli dataset: This dataset contains the data regarding the protein localization sites for 

Escherichia coli. This dataset contains 8 attributes along with the class name. The 

dataset is segregated into a total of 8 classes with each class denoting one of the 8 

protein localization sites. This chapter deals with binary imbalanced dataset problems, 

inner membrane cleavable signal sequence (imU) is considered as the minority class 

where as all the others are considered as majority class. Finally, the minority to majority 

class sample ratio is 35:301 which approximately is 1:9. 

II. Abalone dataset: This dataset is used to find the age of the abalone based on 4177 

samples and each sample consisting of seven features. The age of the abalone varies 

from 1 to 29. Hence, the total number of classes in this dataset is 29. For experimental 

purpose, class 9 is considered as the minority class with 42 samples and the class 18 is 

considered as the majority class with 689 samples. The ratio of minority to majority 

class sample in this dataset is 1:16. 

III. Wine Quality dataset:  This dataset classifies the white wine quality which ranges from 0 

to 10 containing 4898 samples with each sample having 11 attributes. Class 8 is 

considered as minority class with 175 samples and the rest 4723 samples as majority 

class. The ratio of minority to majority class sample in this dataset is 1:27. 

IV. Yeast dataset: This dataset classifies the localization position of protein in yeast with 

1484 samples and each sample consisting of 8 attributes. Each sample can be classified 

to any one of the 10 localization site. ME2 (membrane protein, uncleaved signal) is 
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treated as minority class sample with 51 samples and the rest 1433 samples as majority 

class. The ratio of minority to majority class sample in this dataset is 1:28. 

V. Mammography dataset: This dataset has 260 calcifications out of 11183 samples. These 

samples have 6 attributes in each sample. It is important that most of the 260 samples 

should be classified correctly. Hence, these 260 calcifications are considered as minority 

class samples where as the rest 10923 samples are considered as majority class samples. 

The ratio of minority to majority class sample in this dataset is 1:42. 

Table 16: Dataset Distribution 

Dataset 
Minority 

class 
Majority class 

#Minority 

class 

samples (T) 

#Majority 

class 

samples (M) 

Ratio  

(T/M) 

Ecoli imU Remainder 35 301 1:9 

Abalone 9 18 42 689 1:16 

Wine Quality 8 Remainder 175 4723 1:27 

Yeast ME2 Remainder 51 1433 1:28 

Mammography Calcifications 
Non 

calcifications 
260 10923 1:42 

 

All these datasets are available in the University of California at Irvine (UCI) Repository1. The 

sample which has any missing attribute is deleted from the dataset. 

6.4.1.2 Classifier Network 

The classifier network used in this chapter is a multi layer perceptron (MLP) network 

which is trained by using the back propagation algorithm using Levenberg-Marquardt 

                                                           
1
 http://www.ics.uci.edu/~mlearn/ 

http://www.ics.uci.edu/~mlearn/
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optimization method. The number of nodes in each hidden layer is equal to the number of 

attributes present in their respective datasets. 

6.4.2 Procedure 

Each dataset follows a specific procedure as shown in Fig. 6.2 before feeding it as a 

classifier input along with the machine learning algorithm. Each dataset is initially segregated 

into minority dataset and majority dataset based on the class label of each sample in the dataset. 

Afterwards, the minority dataset is divided into two sets, one with 10% and other with 90% of 

the minority dataset. In the same way, the majority dataset is also divided into two sets, one with 

10% and the other with 90% of the majority dataset. This 10% of minority dataset and 10% of 

majority dataset are clubbed together to form the test dataset. The other 90% of minority dataset 

and 90% of majority dataset are clubbed to form the training dataset. Now this training dataset 

which contains both majority and minority dataset is fed as input to the classifier network. This 

classifier network is made to learn using a machine learning algorithm. After the classifier 

network is made to learn, the test dataset is used to check the performance of the trained 

classifier network. A k-fold cross validation with k value equal to 10 is applied and this 

procedure is made to run for 10 folds. The final performance of the classifier network is 

calculated as the average of the 10 folds. The recall and F-measure of the minority class samples 

are observed thoroughly. This is because these two measures explain clearly about the 

performance of the classifier network towards the minority class.  
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Figure 6.2: Preprocessing procedure of a dataset 

6.5 Observation 

The five datasets mentioned in Table 6.2 are used to analyze the performance of artificial 

neural network (ANN) multilayer perceptron in three different ways. In the first case, the 

performance of the classifier network is calculated when the dataset is directly fed as input to the 

ANN classifier without any preprocessing of data and it is denoted as ANN. In the second case, 

the performance of the classifier network is calculated when the dataset underwent SMOTE 

algorithm before being fed as input to the ANN classifier. This particular approach is denoted as 

SANN in this chapter. In the last case, the performance of the classifier network is calculated 
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when the dataset underwent Weighted SMOTE algorithm before being fed as input to the ANN 

classifier. This approach is denoted as WSANN in this chapter. The performance is also 

calculated for different values of the amount of oversampling (N) such as 100%, 200%, 300%, 

400% and 500%.  

For the Ecoli dataset, the WSANN gave better results compared to SANN and ANN for 

recall as well as F-measure in all the five values of N as shown in Figs. 6.3 and 6.4. The recall 

comparison depicted in Fig. 6.5 shows that WSANN gives better result for Abalone dataset than 

others in all the five N values. However, the F-measure for N equal to 200 for WSANN is 

marginally low compared to SANN as shown in Fig. 6.6. In case of Wine quality dataset, the 

recall and F-measure values for WSANN are nearly equal to or slightly better than that of SANN 

as shown in Figs. 6.7 and 6.8. The recall and F-measure values for the Yeast dataset using 

WSANN is comparably better than both SANN and ANN in all the five cases of oversampling 

values as shown in Figs. 6.9 and 6.10. In Fig. 6.11 which shows the recall values of the 

Mammography dataset, WSANN again showed better results compared to the other two whereas 

at 200% oversampling, SANN slightly underperformed compared to ANN. Similarly, for the 

same dataset, the F-measure of WSANN is always better than SANN and ANN whereas ANN 

slightly over performed compared to SANN at 200% and 300% oversampling as shown in Fig. 

6.12. 
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Figure 6.3: Comparison of Recall for Ecoli dataset 

 

Figure 6.4: Comparison of F-Measure for Ecoli dataset 
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Figure 6.5: Comparison of Recall for Abalone dataset 

 

 

Figure 6.6: Comparison of F-Measure for Abalone dataset 
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Figure 6.7: Comparison of Recall for Wine Quality dataset 

 

Figure 6.8: Comparison of F-Measure for Wine Quality dataset 
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Figure 6.9: Comparison of Recall for Yeast dataset 

 

Figure 6.10: Comparison of F-Measure for Yeast dataset 
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Figure 6.11: Comparison of Recall for Mammography dataset 

 

Figure 6.12: Comparison of F-Measure for Mammography dataset 
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6.6 Performance of WSMOTE and SMOTE for imbalanced dataset 

classification in a SFR 

 The application of both WSMOTE and SMOTE is verified using some of the 

malfunctions in a SFR. Two of these events that are subjected to imbalanced dataset are selected 

for testing purpose. The experiment is done in a 10-fold cross validation approach with the final 

performance metrics being the average of the 10 fold values. Here also, recall and f-measure are 

considered as the performance metrics and based on these two values comparison among all the 

three approaches is done. The three approaches are ANN classifier, ANN classifier with SMOTE 

and ANN classifier with WSMOTE.  

 The first event being the feed water speed reduction up to a certain percentage which 

occurs due to malfunctioning of the boiler feed pump located in the steam water system. This 

dataset contains data for the reduction in the feed water speed to 10%, 20%, 30% and so on till 

90% where each of these percentage reductions is denoted as a class. Hence this dataset 

consisted of 9 classes and a total of 3451 samples. The features which are considered for each 

sample are the seven plant parameters considered in Section 4.4 of the present thesis. The 

reduction in the feed water speed to 90% is considered as the minority class containing 229 

samples. Hence the ratio of minority samples to majority samples is nearly 1:14. Figures 6.13 

and 5.14 show that at 200%, 400% and 500% oversampling of minority dataset, WSANN 

produces higher recall and f-measure respectively compared to SANN. In figure 6.13, SANN 

curve reaches a peak at 300, comes down at 400 and increases at 500. This is the behavior of 

ANN using SMOTE. This kind of fluctuation may occur in any kind of classifier which might 

have over fitted during the training phase. In the same figure, behavior of ANN using WSMOTE 

is in an increasing manner as the amount of oversampling increases which suggest the classifier 
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is not over fitted. Moreover, both SANN and WSANN produce better results in both the figures 

than ANN.  

 

Figure 6.13: Comparison of Recall for feed water speed dataset 

 

Figure 6.14: Comparison of F-Measure for feed water speed dataset 
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 The second set of event from a SFR which has imbalanced dataset that is considered for 

validation of WSMOTE is the reduction in secondary sodium pump (SSP) speed due to its 

malfunctioning. The dataset considered for this set of event collected data for reduction in SSP 

speed by 10%, 20%, 30% and 40%. Here, reduction in SSP speed beyond 40% is not considered 

as the reactor goes to shutdown state. Hence, this dataset consisted of 4 classes and a total of 

7785 samples. The seven plant parameters as mentioned in Section 4.4 are considered as features 

for each sample. The reduction in SSP speed by 40% is considered as the minority class with 708 

samples. Hence, the ratio of minority samples to majority samples in this dataset is nearly 1:10. 

It is observed in Figs. 6.15 and 6.16 that both recall and f-measure are zero till the 400% 

oversampling of minority samples. Hence, the experiment is carried out till 800% oversampling 

for better analysis. It is quite evident from both the figures that both recall and f-measure are 

better in case of WSANN compared to SANN. Again, oversampling using SANN and WSANN 

produces better performance than ANN for classifying minority samples. 

 

Figure 6.15: Comparison of Recall for SSP speed dataset 
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Figure 6.16: Comparison of F-Measure for SSP speed dataset 

6.7 Summary 

 Imbalanced dataset problem and the classifier network learning from this imbalanced 

dataset are a real bottleneck for a machine learning researcher. One way of solving this issue is 

by oversampling the minority data samples. Out of the various oversampling methods, SMOTE 

has gained a lot of attention. SMOTE works on the principle of equal amount of oversampling 

(say 500% ) of each minority sample which eventually ends up at the same amount of 

oversampling of the minority dataset on a whole (i.e. 500%). WSMOTE, a modification to 

SMOTE which believes in an approach where eventually in order to achieve a particular amount 

of oversampling of the minority dataset (say 500%), each minority sample need not be 

oversampled at the same rate as in SMOTE. The amount of oversampling for each minority 

sample is done based on the weights. A higher weight is given to samples which are nearby. This 

means that WSMOTE populates the area with more number of synthetic samples where the 
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number of minority samples is more. This reduces the chances of a misclassification of a test 

sample belonging to the minority class. In this chapter, it is observed that 

 WSMOTE uses Euclidean distance to formulate a weighted matrix for oversampling of 

minority samples unequally. 

 Recall and F-measure are the performance metrics which help in analyzing the actual 

performance of a classifier for an imbalanced dataset. 

 WSMOTE along with ANN as classifier produces higher recall and f-measure for the 

considered datasets from UCI Repository datasets for most of the oversampling 

percentages compared to SMOTE with ANN classifier. 

 WSMOTE along with ANN classifier also performs better in terms of recall and f-

measure in identifying the considered malfunction in SFR compared to SMOTE with 

ANN classifier.  
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7 
DEVELOPMENT OF GRAPHICAL USER INTERFACE 

FOR PLANT MONITORING 

The present chapter explains the importance of GUI and its role in reducing the information 

overloading on the operator of NPP. The development of a GUI for online monitoring of plant 

status is also discussed. Some of the developed GUI having varied supervised classification 

algorithms along with multiple features for experimentation and analysis purpose have been also 

showcased. 

7.1  Introduction 

 The main control room (MCR) of a NPP consists of a number of consoles, panels, 

displays, annunciation systems, hooters, etc which guide the operator to monitor as well as 

control the plant. A filtered number of critical and important signals only are monitored at the 

MCR. During off-normal condition of the plant, the information subjected to the operator should 

be productive and reduced in number that avoids information overloading. Information overload 

occurs when the amount of input to a system exceeds its processing capacity [129]. Information 

overload increases the time required to make a decision and increases the confusion regarding 

the decision [130]. Consequently, when information overload occurs, it is likely that a reduction 

in decision quality will occur [131]. Hence, reduced information overloading on the operator 

during such imbalanced condition aids the operator in improving the decision making ability by 

providing quick and unambiguous decisions.  
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 One of the ways to provide reduced information overloading on the operators is by 

producing well-crafted and user-friendly graphical user interface (GUI) which displays crisp and 

obligatory information during off-normal conditions. In a safety critical system like NPP, the 

requirement for faster prediction systems has sparked the usage of intelligent approaches. The 

coagulation of various artificial intelligent algorithms and GUI provides and intelligent way of 

interpreting and displaying data. These GUI produces a very easy interactive interface for 

experimenting on various supervised classification algorithms and finding the performance of the 

classifier. The inclusion of the various dataset transformation techniques explained in the 

previous chapters have also been considered in the GUI.  

7.2 Salient Features of GUI 

 As the GUI concentrates on reduction of information overloading on the operator, there 

are some salient features that has been taken into consideration in developing a GUI. These 

salient features are as follows. 

I. The interface must be simple, user friendly and understandable. 

II. Each of the stages in the interface must be systematic and any unnecessary ambiguous 

display must be avoided. 

III. Graphs, tables and charts need to be used where ever necessary in order to display results 

more clearly. 

IV. Prominent font size including proper color combination should be used in the interface 

for denoting graphs, words, etc. 

V. The interface must take care of all the possible error handling scenarios avoiding sudden 

collapse or seize of the interface. 

VI. Continuous operation of the code for different datasets must be supportable. 
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7.3 GUI for fuzzy rule based classification system 

 The interface developed to experiment on the developed FRBCS mentioned in Chapter 2 

is shown in Figs. 7.1 and 7.2 named as GUI-FRBCS classification tool. Both the figures depict a 

simple GUI which browses for a dataset stored in a database and gives defuzzified output of each 

sample. This defuzzified output is calculated based on the developed FRBCS for transient 

identification. The defuzzified output with 0 depicts that the input test sample represents the 

plant running in full power as shown in Fig. 7.1. The status of the plant is displayed in the 

textbox present on the top of the graph. Any value other than 0 represents that the respective 

sample represents a transient data. It is also evident from these figures that the color of the plot 

also has importance. If the plot is green in color it represents the plant in safe condition that is 

full power. If the plot is in red color it represents that plant is in an unsafe condition because of 

the occurrence of a transient. The mapping of the defuzzified output value with the transient is 

given in Table 7.1. Figure 7.2 shows that the defuzzified value has been stabilized at 1 and 4. It 

means the data that is fed belongs to one condensate extraction pump trip with stand by not 

taking over transient and both boiler extraction pump trip with stand by not taking over transient 

for the defuzzified values of 1 and 4 respectively. This interface helps in online monitoring of the 

plant for the considered five classes.  

Table 17: Mapping of defuzzified value with transients 

Defuzzified output  Class or Plant condition 

0 Full Power 

1 One condensate extraction pump trip with stand by not taking over 

2 Both condensate extraction pump trip with stand by not taking over 

3 One boiler extraction pump trip with stand by not taking over 

4 Both boiler extraction pump trip with stand by not taking over 
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Figure 7.1: GUI-FRBCS classification tool for full power state 

 

Figure 7.2: GUI-FRBCS classification tool for transients 

7.4 GUI for machine learning based classification 

 Figure 7.3 shows the GUI which uses some of the very well known machine learning 

algorithms for classification problem. This GUI has an option to choose PCA for dimensionality 

reduction, if necessary, and analyze the performance of the considered classifier. Hence, this 

GUI is referred to as GUI-ML-PCA classification tool. The GUI basically is segregated into four 

segments as follows. 
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I. Machine learning (ML) algorithms segment 

II. Training segment 

III. Testing segment 

IV. Results segment 

 The first segment of GUI-ML-PCA is dedicated to selection of the machine learning 

algorithm. The algorithms which have been stated for selection are k-nearest neighbor, support 

vector machine and artificial neural network as the classifier. The selection of the ANN 

algorithm is done based on any of the different backpropagation algorithms. These algorithms 

along with the expansion of the abbreviations are mentioned in Table 7.2. Any one of these 

algorithms can be chosen at a time. Only one hidden layered neural network is considered in this 

GUI. The number of nodes in this hidden layer can be fed by the user in the editable text box 

present in the bottom right in this segment. Once this stage is selected, the user can proceed to 

the second stage. 

 The second stage is the training of the chosen classifier in GUI-ML-PCA. This segment 

has a provision to browse for the training dataset which would be fed to the chosen classifier. 

The inclusion of the dimensionality reduction using PCA has made this GUI more fascinating. 

This is an optional choice where implementing or not implementing this approach is dependent 

on the user by selecting the appropriate radio button in this segment. The selection of the number 

of principal components on approving to implement PCA in the training phase is mandatory. 

This gives an option to the user to analyze for various factor numbers in order to test the 

performance of the PCA based classifier for each factor number. There are a few buttons in this 

segment which implement the intended action on clicking it. This stage trains the chosen 

classifier on the selected training dataset with or without the implementation of PCA. 



159 
 

 The third stage of GUI-ML-PCA is dedicated to testing of the trained classifier. It is done 

by browsing through a test dataset. PCA is taken care of using the inputs from the previous stage. 

Hence, there is no need editable text box present in this segment for this purpose. The overall 

prediction accuracy of the classifier is displayed in a text box in this segment once the “TEST” 

button is pressed. 

 The final segment of GUI-ML-PCA shows a detailed result on the performed experiment. 

Among all the buttons in this segment, the test accuracy, confusion matrix and receiver operating 

characteristics (ROC) primarily give an insight on the actual performance of the selected 

classifier. The table segment in this segment also shows the data in the training stage and the test 

stage.  

Table 18: Full form of the Backpropagation algorithms 

Abbreviation Back propagation algorithm 

BR Bayesian Regularization 

RBP Resilient Backpropagation 

GDM Gradient Descent with momentum backpropagation 

GDA Gradient Descent with adaptive learning rate backpropagation 

GDMA Gradient Descent with momentum and adaptive learning rate backpropagation 

SCG Scaled conjugate gradient back propagation 

CGB Conjugate gradient backpropagation with Powell-Beale restarts 

CGF Conjugate gradient backpropagation with Fletcher-Reeves updates 

CFP Conjugate gradient backpropagation with Polak-Ribiére updates 

LM Levenberg-Marquardt backpropagation 

QN BFGS quasi-Newton backpropagation 

OSS One-step secant backpropagation 
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Figure 7.3: GUI-MLC-PCA classification tool 

7.5 Modified GUI for machine learning based classification 

 Figures 7.4 and 7.5 represent the modified version of GUI-ML-PCA which includes 

training dataset reduction approach. Hence it is called as GUI-ML-TDR-PCA classification tool. 

The addition of TDR to this interface includes the selection of EDcut-off using any one of the two 

methods as delineated in Chapter 3. In order to give more clarity on the confusion matrix, the 

metrics deduced from it has been displayed in two ways. The performance metrics explained in 

Chapter 1 such as sensitivity, fallout, miss rate, specificity and accuracy have been used and their 

numeric values are displayed as shown in Fig. 7.4 and named as GUI-ML-TDR-PCA-1 

classification tool. This has been shown in both the training and the test segment. Figure 7.5 

shows the confusion matrix instead of respective performance metrics and is named as GUI-ML-
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TDR-PCA-2 classification tool. Another improvement of this classification tool over the 

previous one is the inclusion of ANFIS classifier in the algorithm list. 

 

Figure 7.4: GUI-ML-TDR-PCA-1 classification tool 
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Figure 7.5: GUI-ML-TDR-PCA-2 classification tool 

7.6 Summary 

 A user-friendly GUI leads to reduction in information overloading on anyone who is 

using it. The necessity of displaying only the important and relevant information reduces the 

time of reaction which is due to the avoidance of confusion. This eventually leads to better 

decision making ability. The usage of such simple yet informative GUI can also be used for 

online monitoring of parameters for knowing about the plant status. Experimentation and 

analysis of various algorithms in one screen becomes easier. From the developed GUI, it is 

observed that 
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 The comparative study on these algorithms based on the performance of the classifier can 

be done instantly. 

 GUI-FRBCS classification tool can be used for online monitoring of plant status for the 

considered events. 

 GUI-ML-PCA classification tool can be used for trying out various modifications to the 

number of nodes in the hidden layer and algorithm selected for a particular classifier. 

 It also includes a feasibility check on various factor numbers for PCA for a dataset for 

analysis purpose. 

 GUI-ML-TDR-PCA classification tool can be used for both TDR and PCA approaches 

for dataset transformation for a considered dataset using a selected supervised 

classification algorithm. 
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8 
SUMMARY AND SCOPE FOR FUTURE WORK OF THE 

THESIS 

The present chapter summarizes the different conclusions from the research work carried out in 

the field of supervised classification algorithms based on dataset transformation in monitoring 

nuclear power plant events. It also provides the scope for future work in this genre for 

monitoring nuclear power plant events and also in general. 

8.1 Summary of the thesis 

The thesis focuses on online monitoring of events and development of dataset 

transformation methods for various supervised classification algorithms. The main objective of 

any classifier is to achieve the highest possible prediction accuracy. Using dataset 

transformation, it has been observed that in addition to increased prediction accuracy, reduction 

in computational cost can also be achieved. The reduction in computational cost may be by 

reducing training time or training samples or number of features. The motivation behind this 

research work has been due to the huge dataset and the amount of time each classifier takes to 

get trained. Moreover, there is no guarantee that the final accuracy of an algorithm is better than 

the previous algorithm. Hence, it is better that a reduced computational cost helps in trying a 

variety of modifications.  

Online monitoring of occurrence of transients in NPP is developed using FRBCS. It is 

observed that a properly prepared rule base and membership functions using expert‟s knowledge 
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for a FRBCS are feasible for transient identification in SFR. It is noted that for NPP which has a 

cycle time of 200 milliseconds, a waiting time or response time of a few seconds can give 

conclusive evidence on the occurrence of a particular transient. Moreover, it is informed earlier 

that the considered events are not fast occurring events and take some seconds to minutes in 

order to trip the reactor. It is also observed that for the considered transients in the steam water 

system of a SFR, deaerator level and change in deaerator level as the input features produced 

significantly lower response time for four out of five transients compared to other considered 

plant parameters. It is found that increase in the number of input features does not necessarily 

increase the performance of the classifier. Hence, judiciously implementing feature selection for 

a fuzzy system can lead to a more accurate system whose interpretability is not penalized much. 

A novel approach for reduction in training samples termed as training dataset reduction 

approach is examined. This approach is implemented to reduce the computational cost of training 

phase of a classifier without compromising on the classification accuracy. This reduction is done 

by creating a hypothetical boundary based on a cut-off Euclidean distance. The cut-off Euclidean 

distance is calculated using either Mean-αStandard deviation method or area selection method. 

For the considered real world datasets, it is found that for a 5% pick-up dataset, Mean-αStandard 

deviation based TDR approach provides acceptable results for α=1 (for considerable amount of 

data samples) and α=2 (for high amount of data samples) and for area selection based TDR 

approach  gives satisfactory results for 60%. For datasets with higher number of classes, the 

pick-up dataset percentage has to be increased till at least one sample from each class gets 

selected in the pick-up dataset. The inference from the real world datasets is tested on some of 

the transients in a SFR. It is found that Mean-αStandard deviation based TDR approach gives 

better and acceptable results than area selection based TDR approach with a positive difference 



166 
 

in the classification accuracy along with a maximum of about 70% reduction in training samples. 

TDR approach does not produce improved result for the dataset consisting of less training 

samples. In such cases, classifier without the implementation of TDR approach proves to be a 

better option for achieving higher classification accuracy. These results have sparked the 

importance and feasibility of TDR approach in NPP and also in other domains. 

Another approach for reducing the computational cost of the training phase of a classifier 

is by the implementation of dimensionality reduction. In this approach, the most important 

features are kept intact dumping the others. Principal component analysis is an algorithm which 

can be used for dimensionality reduction. It is found that on usage of PCA beyond a certain 

factor number produces better performance than the non usage of PCA. The selection of this cut-

off factor number is found using scree-plot approach which arranges the factor number based on 

the descending order of their eigen values of the covariance matrix. Hence, the factor number 

with a steep drop or an eigen value of nearly zero is discarded. The performance measure for this 

approach is the area under the receiver operating characteristics curve (AUC). This approach is 

used for classifying some of the malfunction events in a SFR using an ANFIS classifier. It is 

concluded that beyond a factor number 4 for a seven featured dataset of SFR malfunction event, 

PCA along with MANFIS produces higher AUC than MANFIS without the usage of PCA. A 

comparison on the performance of a multiple-ANFIS and single ANFIS is also carried out. From 

this comparison it is inferred that PCA based MANFIS produces better AUC than PCA based 

single ANFIS. Hence, dividing an event to sub events like label-1event or primary event and 

label-2 event or ancillary event and then classifying it using MANFIS classifiers gives better 

performance measures compared to a single ANFIS classifier. 
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A very commonly used algorithm to overcome the problem of imbalanced dataset is the 

oversampling method. SMOTE is one of the very popular oversampling algorithms. In this 

algorithm, the oversampling of the minority data samples is done in equal numbers. A 

modification to this approach is the WSMOTE which uses weighted approach to oversample the 

minority samples. In this algorithm, the oversampling of the minority data samples need not be 

equal. A comparison on the performance of a classifier using SMOTE and WSMOTE reveals 

that for the considered real world datasets, WSMOTE produced higher recall and f-measure. 

Recall and f-measure are the two metrics which give a clarity regarding the actual performance 

of a classifier for an imbalanced dataset. The comparison is done at different percentage of 

oversampling. This approach is tested for classifying some of the malfunction events in a SFR. 

Again, it is observed that WSMOTE produced better recall and f-measure for most of the 

oversampling percentages compared to SMOTE. It is quite obvious that WSMOTE and SMOTE 

based classifier performed better in all cases than using a classifier without the implementation 

of any of these oversampling techniques. 

The usage of a user-friendly GUI for monitoring plant status without information 

overloading on the operator increases the decision making ability. Also various implementation 

using a variety of algorithms on a single interface helps in proper experimentation and analysis. 

GUI-FRBCS classification tool can be used for online monitoring of plant status for the 

considered events. Both GUI-ML-PCA classification tool and GUI-ML-TDR-PCA classification 

tool can be used to experiment on various modifications and implementation of datasets in 

various supervised classification algorithms. This reduces the time in writing code for each and 

every algorithm separately. 
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8.2 Scope for future work of the thesis 

 The work presented in the thesis emphasizes on the dataset transformation and 

significantly improves the classification algorithm of various supervised classification 

algorithms. Practically, the thesis proposed new and efficient algorithms for classification 

algorithm for normal datasets and imbalanced datasets. Based on the successful completion of 

various algorithms, the scope of future work is outlined as follows. 

 In case of classification using FRBCS, the need to integrate other transient and 

malfunction to a single model is a challenging job. Yet, this would certainly bring 

everything into a single model. 

 Again, in FRBCS, the feature selection is the key to its classification accuracy. Hence, a 

proper analysis on various other plant parameters for classifying all the other transients 

can produce the apt features for a set of transients. 

 In case of TDR approach, a more generalized way of choosing the pick-up dataset and 

cut-off boundary can make the approach more usable in wide spread domain. 

 PCA based ANFIS classifier is used for seven featured malfunction dataset in SFR. 

Hence, the feasibility and performance quality can be checked for a higher dimension 

dataset in order to prove its credibility in a more convincing manner. 

 WSMOTE and SMOTE based classifier are compared for various oversampling 

percentages. Hence, there is not logic behind choosing a particular oversampling 

percentage which should definitely give better accuracy. There is a need to study on this 

aspect of selecting the oversampling percentage. 

 For all these approaches, the testing has been done on few of the classification problems 

in restricted portions of a SFR. This study can be extended on to various other events in 
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other portions of a SFR in order to analyze the feasibility of such approaches in various 

distributed genres of a SFR. 
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