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SYNOPSIS 

A nuclear power plants (NPP) consists of a large number of subsystems having varied 

response times. The concept of óredundancy and independencyô is followed seriously in the 

design of the NPP to ensure safety of the plant, public and environment from possible effects of a 

severe accident. Safety can be ensured by suitable design, proper monitoring of the current status 

and appropriate reaction to any adverse situation in the plant. The main control room (MCR) in a 

nuclear power plant (NPP) is assigned the primary responsibility of monitoring and controlling 

the current status in various subsystems of the plant. Any major imbalance in the plant caused 

due to any design basis event needs to be reported in the MCR at the earliest.  Further, proper 

handling of such events leads to customary functioning of the plant again. Improper handling or 

delayed actions to these design basis events can affect the plant adversely. Quick and 

unambiguous identification of such events and proper handling of the events are the essential 

plant protection operations. The task of identifying the events is otherwise known as 

classification problem. One of the ways to deal with the classification problem is using 

supervised machine learning. Supervised machine learning is a procedure used to train a network 

which calculates the output for a set of labeled inputs. Here, the labeled inputs are known as 

training data along with its true output or class or label or event during the learning phase of the 

network. Another way to counter the classification problems is by the usage of soft computing 

techniques. A network or system which is exclusively trained to combat classification problems 

is known as a classifier. The main objective of a classifier in a NPP is to achieve the maximum 

possible accuracy. The events which have been considered as class or labels in the thesis are 
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mostly some of the transients in the steam water system along with some malfunctions in typical 

500MWe pool type sodium cooled fast reactor (SFR). 

Fuzzy rule based classification system (FRBCS) is a method to tackle classification 

problems. The combination of a well crafted rule base along with a set of properly assigned input 

and output membership functions helps in classifying the dataset using FRBCS. The present 

research work focuses on the performance analysis of FRBCS for transient identification in a 

SFR along with the importance of feature selection to have higher interpretability and acceptable 

accuracy. It also investigates the usefulness of monitoring the output of a classifier for a certain 

period of time instead of instantaneous conclusion, in case of online event identification in order 

to ascertain the occurrence of a particular transient.  

A novel approach to reduce the number of training samples has been developed which is 

known as training dataset reduction (TDR) approach. In TDR approach, some of the training 

samples are discarded based on the Euclidean distance calculated using a portion of test dataset. 

A cut-off Euclidean distance is calculated using TDR approach which creates a hypothetical 

boundary and selects the samples which have lesser Euclidean distance than it. The resulting 

reduced training dataset is fed as input to a classifier which gets trained using a supervised 

machine learning algorithm. The performance of the TDR approach on some of the real world 

datasets and the feasibility of this approach in classifying some of the transients in SFR has also 

been studied. 

The preprocessing of the training dataset in order to filter out necessary information from 

the huge bank of data provides a greater impact on the training process and eventually helps in 

improving the classification accuracy. One way of preprocessing the training dataset to reduce 

the quantum of data is carried out using various dimensionality reduction techniques such as 
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principal component analysis (PCA). PCA dumps the lesser important features from the 

calculated principal components thereby reducing the number of columns in the training dataset. 

Further, this reduced training dataset is fed as input to a classifier that gets trained. One of the 

extensively used classifier is an adaptive neuro-fuzzy inference system (ANFIS) which has the 

advantage of both neural networks and fuzzy inference system. In ANFIS, the neural network 

concept is used to tune the fuzzy membership function. This thesis emphasizes on the research 

undertaken on the feasibility of usage of PCA based ANFIS for multiclass event classification in 

SFR considering dimensionality reduction. 

Another common issue associated with any classification dataset is the problem of 

imbalanced dataset. Traditionally, the classification accuracy is biased towards majority class 

thereby neglecting the minority class. One of the solutions to such problem is oversampling of 

the minority class samples known as synthetic minority oversampling technique (SMOTE), 

wherein, each minority sample generates equal number of synthetic data in order to make the 

dataset balanced. In this thesis, a modification to SMOTE which solves the imbalanced dataset 

problem, termed as weighted SMOTE is studied. In this algorithm, instead of oversampling each 

minority sample with same amount of synthetic data, different weights are assigned to each 

minority sample. Based on the weights assigned, the generation of the amount of synthetic data 

varies for each minority sample. Finally, the performance of the weighted SMOTE on various 

real world imbalanced datasets is compared with the traditional SMOTE. 

As the MCR in a NPP is studded with many important consoles and panels consisting of 

numerous alarms, displays, hooters, etc, a proper graphical user interface (GUI) to display any 

result is extremely crucial. A user friendly GUI with all the necessary information about the 

condition of the plant is an asset for the operators in the MCR. Information overloading on the 
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operators can cause panic stricken decision making which eventually may lead to an unsafe 

circumstance. Hence, the main objective of a GUI must be to display the most obligatory 

information at any instance, avoiding information overloading on the operator. Instead of 

displaying numerical data, the demonstration of such information are also made in a more 

informative manner such as graphs, pie charts, bar graphs, etc, based on requirement and 

feasibility. This approach develops an improved decision making ability of the operator as the 

information is conveyed to them in a lucid manner. 

The present thesis attempts to understand the various supervised machine learning 

algorithms for classification problems and their implementation and feasibility with respect to 

various events in a NPP. The feasibility deals with mostly focusing on the classification accuracy 

of the classifier. The thesis also attempts on analyzing various aspects of the training data and 

processing the same in order to achieve better classification accuracy. Further, the GUIs 

developed and mentioned in the thesis provide a better idea on various information by which the 

operator can be benefited during an emergency situation. 
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1  
INTRODUCTION  

The present chapter introduces the classification problems and highlights the relevance of the 

study of classification of events in nuclear power plant. A brief description on nuclear power 

plant emphasizing on medium sized Fast Breeder Reactor and the importance of event 

classification is outlined in the present chapter. It delineates some of the major soft computing 

and machine learning algorithms also. 

1.1 Introduction  

 Classification of events accurately in a small scale or a large scale industry has a 

significant impact on the overall outcome of the industry. The malfunctioning of any component 

or the occurrence of failure of any component must be monitored and controlled in order to avoid 

any imbalance in the industry. If this minor imbalance is not noticed and not treated on time then 

it might lead to major disaster affecting human beings along with the environment. This 

particular kind of industry or system is known as safety critical system. An example of a safety 

critical system is a nuclear power plant (NPP) which is a complex engineering. It consists of a 

huge number of complex systems integrated together in a systematic manner along with their 

control and support systems made up of several components. Hence, the safety of the plant 

largely depends on proper classification of any design basis events at the earliest so that proper 

steps can be taken to overcome any catastrophic situation. 
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 The monitoring of the current status of the plant is brought to a higher confidence level if 

there is a suitable equilibrium between the physical models and empirical models. The physical 

model and empirical model works on deterministic and probabilistic techniques respectively to 

produce output from a model. The status at a particular instance becomes more obvious and 

convincing if both these models generate identical results and thereby validate each other. 

Hence, the final status is a result of an integrated decision making ability of both these models. 

Generally, probabilistic models are bit faster than the deterministic models. This aides the 

operator prepare for the upcoming scenario before the integrated results. The present thesis 

focuses on discussing a variety of empirical methods and its practicability that would assist in 

identifying various events of a NPP. 

1.2 Nuclear Power Plant 

 For a country like India with the second largest population in the world, sufficing the 

energy requirement for power generation has always been a challenging mission. The primary 

source of energy generation in India is coal and based on the amount of carbon dioxide emission, 

it has a callous impact on the environment. The nuclear power generation has played a 

noteworthy role in counteracting these issues. The three stage nuclear power program formulated 

by Dr. Homi Bhabha aims at efficiently utilizing the abundant thorium resources in India to 

pacify the increasing energy demand. It is a three generation of nuclear reactors using three 

different fuels. In the first stage, natural or enriched uranium is used as nuclear fuels for thermal 

reactors. The Plutonium-239 reprocessed from the depleted fuel for the first stage reactors is 

used as fuel along with Uranium-238 and Thorium-232 blankets in the second stage breeder 

reactors such as Prototype Fast Breeder Reactor (PFBR). The excess Plutonium-239 produced in 

these reactors is used to fuel the new breeder reactors. The Uranium-233 produced in the second 
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stage along with Thorium-232 blankets is used as fuel in the third stage reactors to complete the 

Uranium-Thorium cycle.   

As every NPP is a safety critical process with safety being the major goal along with 

power production, utmost importance and obligatory measures have been in use to accomplish 

both [1, 2]. One of the ways of achieving safety is by continuously monitoring the current status 

of the plant and thereby taking suitable measures on being informed about the occurrence of any 

event which might cause imbalance in the plant.  This can be put into action in a constructive 

manner only if the event which has occurred is correctly diagnosed. An erroneous detection of 

the incurred event may challenge plant control and safety system eventually leading to severe 

accident. Hence, event classification plays an imperative responsibility in attaining the perfect 

balance of a plant as huge as the PFBR.  

 PFBR is a 500MWe NPP which is in an advanced stage of commissioning at Kalpakkam, 

India. It is a pool type, MOX (Mixed Oxide of Plutonium and Uranium) fuel Fast Breeder 

Reactor with sodium as coolant. A pool type reactor has a superior safety features which enables 

its selection over loop type reactor. The advantages of MOX fuel are safe operation to high 

burnup, ease of fabrication and proven reprocessing. The reactor core is a compact core 

containing 181 fuel subassemblies and 12 absorber rods. The absorber rods are divided as control 

and safety rods and diverse safety rods with 9 and 3 rods respectively arranged in two rings. The 

heat transport system consists of primary sodium circuit, secondary sodium circuit and steam 

water system. The thermal energy generated in the reactor core is transferred through the primary 

and secondary sodium circuits and ends up in the steam generator producing steam. The steam 

water system produces superheated steam which drives the Turbo Generator to produce electric 

power. In case of reactor shutdown, the decay heat retained due to fission reaction is removed by 
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two decay heat removal systems ï operation grade decay heat removal system (OGDHR) which 

is an active method and safety grade decay heat removal system (SGDHR) which is a passive 

method. The complete flow sheet of a 500MWe FBR containing the major components is shown 

in Fig. 1.1. To ensure safety, a defense-in-depth philosophy, consisting of three levels of safety, 

i.e., design with adequate safety margin, early detection of abnormal events to prevent accidents 

and mitigation of consequences of accidents, if any, is adopted [3].  

 PFBR has many complex systems which need proper training to handle. To provide 

extensive and elaborate training to the operator about the different plant operations and 

conditions, a full scope replica type operator training simulator (OTS) has been developed [4]. 

Efficient plant operation depends upon two main factors, i.e., well defined operating procedures 

and well trained operators possessing good knowledge about the plant [5]. The operator is 

trained on the simulated transients, malfunctions and abnormal conditions as in the real plant. 

This enables early detection of abnormalities, aiding in proper decision making and taking swift 

responses during crisis situation in the real plant.  

 In any NPP, efficient monitoring of the current status of the plant plays a key role in 

maintaining the equilibrium of the plant at each instance. Any imbalance in the plant is 

monitored and highlighted in the main control room (MCR) so that necessary steps are taken in 

time to avoid any fatal accidents. In such case, proper identification or classification of the 

occurrence of any event should be quick and unambiguous. To support such scenarios, transient 

identification systems have been devised to help operator identify transients and take fast and 

right corrective actions in due time [6]. Data driven methods such as artificial neural network and 

other soft computing techniques are used for transient identification in NPP [7].   
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Figure 1.1 : Flow sheet of a 500MWe Fast Breeder Reactor 

1.3 Event Classification  

 A NPP consists of a number of complex components which are integrated in a very 

systematic manner. Though the design of the plant has undertaken a rigorous planning and 

research, it is natural to have improper working of the components at some instance during the 

plant life span which may affect the balance of the plant. Such occurrence of conditions is known 

as designed basis events (DBE). These events may be a transient or a malfunction which may 

lead to vulnerable circumstances if not addressed on time. Prior to reacting to the event which 

has occurred, the classification of the correct event decides the course of action. The action to a 

particular event which actually never happened may lead to unnecessary chaos and eventually 

affect the balance and productivity of the plant. Hence, accurate event classification takes care of 

the safety along with economy and eventually the profitability factor of the plant.  
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 Along with deterministic models which help in event identification and classification in 

NPP, various probabilistic models do assist in this regard. Some of the probabilistic approaches 

used are fuzzy computing, machine learning, and evolutionary computing. Firstly, fuzzy 

computing relates fuzzy logic to probabilistic reasoning in order to approach classification 

problems such as image processing [8], wireless sensor networks [9], data security [10], fault 

classification in transmission lines [11], etc. Fuzzy logic based modulation classification for non 

ideal environment has also been established where it is difficult to use probabilistic methods 

[12].  The usage of fuzzy rule based classification system (FRBCS) which is a category of fuzzy 

rule based system (FRBS) used for classification problems have been also extensively used and 

modified for usage in many diverse fields. Enhancing the performance of FRBCSs by extending 

the knowledge base with the application of the concept of Interval-Valued Fuzzy Sets is one such 

modification [13]. A learning algorithm based on reward and punishment has also been proposed 

to adjust the weights of each fuzzy rule in the rule-base by Jahromi et al. [14]. Pair wise learning 

and preference relations based linguistic FRBCS for solving multiclass problems are dealt by 

Fernandez et al. [15]. The study on the application of instance selection technique in genetic 

FRBCS is outlined by Fazzolari et al [16]. Ishibuchi et al. [17] reported the effect of rule weights 

on FRBCS. Secondly, machine learning is a mode of making computers behave as a human by 

providing a set of information which helps to find the possible outcome to a preferred input. 

Among the various diverse applications of machine learning, some of the most promising 

domains have been text categorization [18], medical diagnosis [19], data mining and information 

retrieval [20], etc. Lastly, evolutionary computing uses different principles of biological 

evolution such as natural selection and genetic inheritance to solve various problems including 

event classification. Some of the evolutionary computing techniques are genetic algorithm [21], 
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multi objective evolutionary algorithm [22], hybrid algorithm of linguistic classification rules 

and multi objective genetic algorithm [23], artificial bee colony [24],  swarm intelligence [25], 

etc. 

 The fault detection and diagnosis methods are given much importance as they improve 

the safety, reliability and availability of NPP [26]. Event classification is one of the application 

areas of these methods. There have been a wide acceptance on the usage of probabilistic 

techniques along with many soft computing techniques to diagnose the event classification in 

NPP [27]. The feasibility study on transient identification using support vector machine (SVM) 

have been reported and it indicated that SVM classifiers showed promising results [28, 29]. 

Artificial neural network (ANN) has also showed its competence in various event identification 

[30] and transient classification [31]. A novel technique based on neural networks, aimed at 

reducing the variability of fault manifestations through a process of "intelligent normalisation" of 

transients for transient classification is reported by Roverso [32]. After a number of case studies, 

the use of back propagation algorithm for the development of connectionist expert system for 

transient identification in nuclear power plant is reported by Cheon et al. [33].  ANN has also 

been used for developing diagnostic systems for identification of various accident scenarios in 

NPP [34]. The classification of a transient as a ñdonôt knowò transient if a classifier system do 

not have the accumulated knowledge regarding it, is certainly a wise way of reporting than 

incorrect classification [35]. This approach uses Kohonenôs self organizing map along with 

learning vector quantization instead of multilayer perceptron. The application of fuzzy logic 

based method for transient identification in NPP is reported by Marseguerra et al. [36]. Various 

adaptation to fuzzy logic based method  has also been used to classify transient  using optimized 

fuzzy clustering [37] and evolutionary fuzzy clustering [38]. One among all the innovative 
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approaches for transient classification is the ALADDIN methodology [39]. The ALADDIN 

approach combines three techniques for dynamic event and fault diagnosis in an attempt to 

improve the practical applicability and scalability of this type of system to real processes and 

machinery.  

1.4 Problem Statement 

 The problem of classification of the occurrence of an event correctly and efficiently in a 

nuclear reactor holds the utmost priority. This classification system must produce results 

regarding occurrence of the events in a quick, correct and unambiguous manner. There is always 

a scope of improvement in achieving classification accuracy better than the previous best one. 

Moreover, nuclear reactor being safety critical systems, study on improving the classification 

accuracy becomes further more important. The present thesis delineates the usage of machine 

learning algorithms and soft computing techniques for such event classification in nuclear 

reactors. The generation of a massive volume of dataset in nuclear reactors increases the 

computational complexity of the classifiers. Though event classification in nuclear reactor have 

been studied using various techniques by many researchers, preprocessing of the dataset to 

reduce the computational cost have hardly been reported. The present work emphasizes on the 

usage of preprocessing of the dataset in an efficient manner prior to feeding it to a classifier so 

that it eventually improves the performance of the classifier. The preprocessing of the dataset 

results in reduction of the dimensionality and sample size of the dataset.  

1.5 Objective and Scope of work 

 The present work demarcates some of the machine learning and soft computing 

algorithms for event classification in nuclear reactors. The events include some of the transient 
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and malfunctions occurring in the steam water system of a nuclear reactor. In a broader sense, 

this thesis aims at improving the NPP event classification system. The various objectives that 

have been set for the present research work are as follows: 

ü To check the performance of usage of soft computing techniques such as fuzzy logic for 

transient identification in nuclear reactors. 

ü To analyze the importance of feature selection for achieving better performance from the 

fuzzy logic systems.  

ü Study on the performance of supervised machine learning algorithms such as artificial 

neural network and adaptive neuro fuzzy inference system for multiclass transient 

classification in nuclear reactors. 

ü To develop an algorithm for preprocessing the dataset that reduces the training data 

samples and invigilating the performance of the classifier due to implementation of such 

approach. 

ü To study the feasibility of dimensionality reduction technique using principal component 

analysis for event identification in nuclear reactors. 

ü To address the issue of imbalanced dataset where the samples are not evenly distributed for 

each category of class that needs to be classified.  

ü To develop intelligent GUI based on machine learning algorithms and soft computing 

techniques. 

 The present research broadly aims at aiding a quick and unambiguous decision making 

process of the operator stationed at the main control room of nuclear reactors. It also helps in 

reducing the information overloading on the human operator due to the volume of information 
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being projected at him at every instance. The scope of the present work is diverse and global in 

nature as it can address similar issues from different domains of application.  

1.6 Thesis Structure 

 The thesis is divided into a total of seven chapters. Chapter 1 includes a brief 

introduction to NPP along with a detailed explanation on the need of event classification in NPP. 

Machine learning and its application in event classification problems are also elaborately 

described in this chapter. The problem statement which mostly addresses the event classification 

problem in nuclear reactors and its presentation using intelligent GUI are also explained clearly. 

The objective and scope of the research are discussed towards the end of this chapter. 

Chapter 2 outlines two of the very popular techniques to solve event classification 

problem, i.e., ANN and FIS. This chapter also explains about some supervised machine learning 

algorithms for classification such as kNN and SVM. A collection of information regarding the 

various research carried out related to classification problems is also depicted. Towards the end of 

this chapter, the performance metrics of these classifiers are also elucidated. 

 Chapter 3 focuses on the concept of fuzzy logic used in the FIS in order to develop a 

FRBS for event identification. Two popularly used FRBS methods i.e. Mamdani type FRBS and 

TSK-type FRBS are explained in detail. The significance of generation of proper input and 

output membership functions along with an appropriate rule base and input features are 

delineated. A specific category of FRBS which is used for classification related problems is 

known as FRBCS. This chapter elucidates the possibility of usage of a simple FRBCS with 

optimized features for online event classification for a system which has very short cycle time. 
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Some of the transients from the steam water system (SWS) are considered as the events for 

experimentation. 

 Chapter 4 illuminates on a novel approach to reduce the number of training samples in a 

dataset named as training dataset reduction (TDR). The algorithm which governs this technique 

involves the creation of a hypothetical boundary based on a cut-off Euclidean distance (ED). The 

two methods adopted to find this cut-off ED named as mean-Ŭ-standard deviation method and 

area selection method are explained elaborately. A comparison is made on both these methods on 

some real world datasets and the result from these experiments is used to classify some of the 

transients in the SWS. A detailed inference on the practicability of usage of TDR for transient 

classification in nuclear reactors is summarized. 

 Chapter 5 explains the importance of dimensionality reduction of a dataset. One such 

dimensionality reduction algorithm named principal component analysis (PCA) is elucidated. 

The classifier used to classify the events is the adaptive neuro-fuzzy inference system (ANFIS) 

which has the advantage of both ANN and FIS. An elaborate description on this algorithm is 

presented along with its advantages and disadvantages. A feasibility confirmation on the 

performance of ANFIS classifier used for classifying some of the events in NPP considering 

PCA for dimensionality reduction is carried out and illustrated. A comparison on the usage of 

Multiple-ANFIS (MANFIS) with single ANFIS is also presented. 

 Chapter 6 deals with imbalanced dataset and the issues related to the usage of such 

datasets for classification purpose. Some of the most admired way of solving such problem is 

mentioned in this chapter, emphasizing on the oversampling technique. A detailed mechanism of 

operation of Synthetic minority oversampling technique (SMOTE), which is the popularly used 
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oversampling technique of addressing imbalanced dataset problem is expounded. Further, a 

modification to this approach named Weighted-SMOTE is illustrated. A comparison on the 

performance of the weighted-SMOTE and SMOTE is revealed using some real world datasets. 

The performance measures used to study such analysis are recall and F-measure as these two 

metrics exposes the real credibility of the classifier using an imbalanced dataset. 

 Chapter 7 projects the reason behind development of appropriate GUI, the various 

properties that should be taken care of during development of a GUI and the advantages of 

developing an intelligent GUI for an operator in various industries emphasizing on NPP. The 

developed GUI along with its various properties is elaborated in this chapter. 

 Chapter 8 summarizes the study and work carried out in the thesis and the conclusions 

drawn based on the research. This chapter ends by addressing the future scope of research. 
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2 
BACKGROUND INFORMATION  

The present chapter describes the background information on some of the supervised 

classification algorithms used in this thesis in detail. This chapter also elucidates on the various 

performance measures used to evaluate the performance of a classifier. This includes the 

confusion matrix, receiver operating characteristics and area under the receiver operating 

characteristics. An insight on the performance of a multi class classifier is also included in this 

thesis. 

2.1 Fuzzy logic and fuzzy inference system 

 Fuzzy logic depicts the real world scenario in a more sensible approach using linguistic 

variables, overlapping classes and approximate reasoning. The need of fuzzy logic came into 

existence when people realized that everything in the world cannot be categorized or expressed 

in terms of only óYesô or óNoô, óTrueô or óFalseô and ó1ô or ó0ô. Zadeh [40] introduced the world 

about fuzzy logic and the concept of fuzzy set. This is a breed of revolution of its kind. Fuzzy 

logic uses variables which practically denote values which are not integers and produces an 

output with respect to the corresponding input. A membership function explains the fuzzy 

variables in a graphical manner. Fuzzy logic has a wide range of applications, including process 

controllers and event identification. Fuzzy logic is conceptually easy to understand as it uses 

simple english words  in order to explain a particular set or domain.  
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A fuzzy inference system (FIS) or fuzzy rule base system (FRBS) is a data driven system 

in which a relationship is being established between the input and the output, based on a set of 

IF-THEN rules or otherwise called as fuzzy rules. The set of desired input-output numerical data 

pairs are represented as: 

 (x1
(1) 

, x2
(1) 

; y
(1)

) , (x1
(2) 

, x2
(2) 

; y
(2)
) , éééé , (x1

(n) 
, x2

(n) 
; y

(n)
)  (2.1) 

where x1 and x2 are inputs and y is the output of a two inputs and one output system.  The fuzzy 

rules are generated from these input output pairs which determines a mapping f : (x1 , x2) Ÿ y 

[41]. An example of a fuzzy rule in this kind of system is of the form 

 R
l
 : IF x 1

(1)
 is F1

l
 and x2

(1)
 is F2

l
 THEN y

(1)
 is G

l
 (2.2) 

  Here Fk
l
 represent the linguistic variable and Fk

l
 Ṓ f(Xk) , k = 1, 2, 3, . . ., n, are the 

antecedent membership functions, and G
l
 Ṓ f(Y) is the consequent membership function [42]. 

The input linguistic variables are denoted by xk , k = 1, 2, 3, . . . n and the output linguistic 

variable is denoted by y. For classification using FRBS, the consequent part of the rule can be 

categorized into three varieties [43]. In the present thesis, the fuzzy rules with the class in 

consequent have been used for classification purpose. This approach is chosen because the FRBS 

would take data from a safety critical system which needs faster and interpretable outcomes. A 

general flow sheet depicting the different phases in the FIS is pictorially represented in Fig. 

Figure 2.1. 
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Figure 2.1:  Flow sheet of a fuzzy inference system 

2.1.1 Membership function (MF) 

Universe of Discourse is the set that contains all the sets of interest for the given context 

problem. The membership function (µA(x)) of the fuzzy set (A) maps the universe of discourse 

(X) on to the numerical values in the range [0, 1].  

 µA(x) : X Ÿ [0,1]  (2.3) 

  A = {(x, µA(x)) ; x  X , µA(x)  [0,1]} (2.4) 

2.1.2 Mamdani-type FRBS 

 There are mostly two types of FRBS. One of them is the Mamdani-type FRBS as shown 

in Fig.Figure 2. The following steps are involved in Mamdani-type FRBS approach. These are  

Step 1: Segregation of the universe of discourse into fuzzy regions 

Step 2: Generation of the fuzzy rules and rule base 

Step 3: Processing of input output numerical data pairs 

Step 4: Defuzzification procedure 
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¶ Step 1: Segregation of the universe of discourse into fuzzy regions 

 This is the initial step where the domain interval of each fuzzy region is decided based on 

the input numerical data. The membership function for each input domain and output domain is 

constructed based on this segregation. The shape of the membership functions depends on the 

system designer who decides it based on the problem statement and the uncertainty present in it. 

Generally, the shape of the membership functions is triangular, trapezoidal, sigmoidal or 

Gaussian. The shape being constant in a particular problem for all the membership functions, the 

area of these regions may differ. This is based on the numerical data and the experience of the 

expert. Each segregated fuzzy domain is denoted by simple comparative phrases such as taller, 

much taller, somewhat taller etc for a domain representing height. Figure 2.3 shows an example 

where the input domains intervals x1 and x2 are divided into three and five regions respectively 

and the output domain interval y is divided into five regions with triangular shaped membership 

functions with different areas.  

 

Figure 2.2: Block diagram of Mamdani-type fuzzy rule based system 
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 Figure 2 explains the Mamdani-type fuzzy rule based system. Here, I1, I2, . . . , In are the 

set of numerical input data being mapped to their respective input membership functions IMF1, 

IMF2, . . . , IMFn and produces their respective fuzzy input data, F1, F2, . . . , Fn. The FIS 

produces the fuzzy output data y by mapping all the fuzzy input data on to the output 

membership function (OMF) using the corresponding rules R from the rule base. Y is the 

defuzzified numerical value of y. 

 

Figure 2.3: Diagrammatic representation of the membership functions operation in Mamdani 

type FRBS 

¶ Step 2: Generation of the fuzzy rules and rule base 

The rules produce a relationship between the input domains and the output domain. This 

relationship is based on simple óIF-THENô statement. The óIF-THENô statement consists of an 

óIFô part explaining the antecedent proposition and the óTHENô part explaining the consequent 
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proposition. Both these parts can have multiple conditions separated by operators such as AND 

or OR. For a particular problem statement, each rule is based on a proper analysis on the input 

numerical data and the expertôs experience. A rule based on these conditions as shown in 

Fig.Figure 2.3, could be of the form  

 R
1
 : IF x 1 is F1

3
 and x2 is F2

4
 THEN y is F3

3
 (2.5) 

The rule R
1
 generated here is based on the problem statement which demanded an AND 

operation or otherwise it could have been an OR also. This depends on the context of the 

problem statement. All the rules are generated likewise based on the numerical data and the 

fuzzy regions with the expertôs experience taken into consideration.  

The representation of these rules is done in a matrix form known as fuzzy rule base. This 

representation becomes difficult when the number of input parameters is more. The choice of the 

number of parameters and the rule base decide the interpretability and accuracy of the FRBS. 

Interpretability of fuzzy systems is an ability to explain the behavior of the system in an 

understandable way [44]. Increase in the number of input parameters need not always lead to a 

better accuracy of the output. This is because fuzzy models and controllers cannot usually have a 

large number of variables without falling prey to the curse of dimensionality [44].  Another way 

of approaching it is to make the rules more concise and subtle covering all the aspects of the 

particular problem statement. The best option for a FRBS would be to have a rule base covering 

the entire input and output domain efficiently using minimum number of input parameters and 

the output being within the output error margin. This should satisfy the tradeoff between the 

interpretability and the accuracy of the FRBS. 
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¶ Step 3: Processing of input output numerical data pairs 

 After the generation of all the membership functions and the rule base, the input 

numerical data is mapped with the output numerical data based on the membership functions and 

rule base. The input numerical data is initially mapped on to the respective membership 

functions and their specific membership degree is found. As described earlier in Step 2, a degree 

is assigned to each input numerical data based on their respective membership function.  Now, 

based on rule governing that particular input numerical data, the resultant of the mapped degree 

calculated from the antecedent proposition is mapped on to the output membership function. This 

is concurrently done for all the input membership functions and finally a number of clipped 

output membership functions are collected.  Figure 2.3 shows that after mapping x1
(1)

 on F1 

series of membership function, the first stage output degree is found to be (0F1
1
, 0F1

2
, 0.8F1

3
). 

Similarly for mapping x2
(1)

 on F2 series of membership function, the second stage output degree 

is found to be (0F2
1
, 0F2

2
, 0F2

3
, 0.5F2

4
, 0.3F2

5
). The rule R

1
 has AND operator in the antecedent 

proposition. Hence, the minimum degree from all the combinations of the mapped input 

membership function is considered. The combination which has no consequent proposition is 

considered as zero or the rule does not exist. The final degree for each case is now mapped on to 

the output membership function based on the rule base. Finally, a bunch of clipped output 

membership functions are collected and aggregated. 

¶ Step 4:  Defuzzification procedure 

 The aggregated output membership functions go through a stage called as defuzzification 

where these collective information needs to be converted to a numerical data for usage in real 

systems. There are many defuzzification processes such as Centroid method, bisector method, 
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middle of maximum, smallest of maximum, largest of maximum, etc. The easiest and arguably 

the best one is the Centroid method. The final output (Y) from this method is calculated as  

 Y = 
В ◐░ ʭ Ⱨ

═░
░ ◐░

╚
░

В Ⱨ
═░
░ ◐░

╚
░

 (2.6) 

Here y
i
 denotes the center value of A

i
 (the center of a fuzzy region is defined as the point that has 

the smallest absolute value among all the points at which the membership function for this region 

has membership value equal to one) and K is the number of fuzzy rules in the fuzzy rule base 

[44]. 

2.1.3 Takagi-Sugeno-Kang (TSK) type FRBS 

Takagi-Sugeno-Kang (TSK) type FRBS is almost similar to Mamdani-type FRBS with 

some changes. One of the changes is done at the generation of the rules. The antecedent 

proposition of the rule is composed of linguistic variables but the consequent proposition is 

represented as a function of the input variables [45]. For an input-output pair (x1
(1)

, x2
(1)

; y
(1)

), say 

the rule is as follows 

 R
1
 : IF x 1

(1)
 is F1

1
 and x2

(1)
 is F2

1
 THEN y

(1)
 = f1(x1

(1)
, x2

(1)
) (2.7) 

 R
2
: IF x 1

(1)
 is F1

2
 and x2

(1)
 is F2

2
 THEN y

(2)
 = f2(x1

(1)
, x2

(1)
) (2.8) 

Here, f1(x1
(1)

, x2
(1)

) = p1 x1
(1)

 + q1 x2
(1)

 + r 1 and f2(x1
(1)

, x2
(1)

) = p2 x1
(1)

 + q2 x2
(1)

 + r 2 where (pi, qi, 

r i) is a vector of real numbers. The resulting output (Y) is based on the degree of applicability, 

i.e., ɚ1 and ɚ2 for the inputs, i.e., x1
(1)

 and x2
(1) 

respectively. The resulting output is  

 
Y = 

ⱦ◐  ⱦ◐

ⱦ  ⱦ
 (2.9) 
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In general representation of the resulting output with R number of rules is as follows 

 
Y = 

В ⱦ░◐
░╡

░

В ⱦ░
╡
░

 (2.10) 

Here, the defuzzification stage is bypassed with a weighted average in order to get a crisp output. 

So this does not have an output membership function. The expressive power and interpretability 

of Mamdani output is lost in the Sugeno FIS since the consequents of the rules are not fuzzy 

[46]. For this reason, Mamdani-type FRBS is used widely as compared to TSK-type FRBS. But 

TSK-type FRBS has a better processing time as the weighted average replaces the time 

consuming defuzzification process [47].  

 

Figure 2.4 : Block diagram of Takagi-Sugeno-Kang-type fuzzy rule based system 

 Figure 2.4 shows the diagrammatic representation of the TSK-type FRBS. Here, I 

represents the set of numerical input variables each cycle and F being the fuzzified value of those 

I. ɚô denotes the degree of applicability and ɚ denotes the final degree of applicability. The fuzzy 

input data F and the selected rule from the rule base R are fed to FIS. Eq represents the set of 
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equations selected based on rule R and fuzzy input data F. The substitution of numerical input 

data I on to the equations Eq is done by f(I) which produces the numerical output data y. The 

final degree of applicability ɚ along with numerical output data y generates the final output data. 

This is the approach undertaken by TSK-type FRBS for classification problems. 

2.2 Supervised Machine Learning Algorithms 

 Supervised machine learning (SML) is a machine learning methodology where a training 

set of data with known input and output labels, is used to train a system for unknown or test data. 

The output label of the test data is found by mapping a test data on to a function inferred from 

the training data. Some of the very common SML algorithms used for classification problems are 

k-nearest neighbor (kNN), support vector machine (SVM), artificial neural networks (ANN), etc. 

Unsupervised machine learning and reinforcement learning are the two other broad categories of 

machine learning. In unsupervised machine learning, labels are not available; hence the feature 

learning is done on its own by finding clusters in the inputs. Unsupervised learning algorithms 

according to Ghahramani [48] are used to find structures from data samples. Some of the 

examples of the unsupervised learning algorithms are self-organizing map (SOM), adaptive 

resonance theory (ART), k-means clustering, etc. The reinforcement learning is a process in 

which the system learns by interacting with the environment and learning gets modified based on 

the feedback from the interaction with the environment. According to Kaelbling et al. [49] , 

reinforcement learning is the problem faced by an agent that learns behavior through trial-and-

error interactions with a dynamic environment. Some of the reinforcement algorithms are 

temporal difference learning, Q-learning, state-action-reward-state-action (SARSA), etc. This 

thesis focuses only on SML and some of the algorithms based on this concept. 
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2.2.1 k-nearest neighbor 

 The kNN algorithm is a supervised learning algorithm which classifies a query or a test 

data based on the k-nearest training data taken as reference as presented in Fig.Figure 2.5. It 

basically has two phases: Training phase and Classification phase. In training phase, a previously 

collected training data containing a multi dimensional input attributes along with their respective 

output labels is taken as reference and mapped. In the classification phase, the test data is 

mapped based on its input attributes and the output label is determined by taking a vote from the 

k-nearest neighbors of that test data. The nearest neighbor is found out by finding the distance 

between the test data and each of the training data individually and finding the k-least distance 

training data. The accuracy of the kNN approach heavily depends on the metric used to compute 

the distance between two samples [50]. The usage of Mahanabolis distance metric for kNN 

classification by semi definite programming is shown by Weinberger et al.  [51]. This algorithm 

proves to be very effective, in terms of reducing the misclassiýcation error, when the number of 

samples in training dataset is large [52]. Another advantage of the kNN method over many other 

supervised learning methods like SVM, decision tree, ANN, etc., is that it can easily deal with 

problems in which the class size is three and higher [53].   

 

Figure 2.5: Classification using kNN Algorithm 
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Consider a dataset X with consisting R number of rows and C number of columns. Each 

row is a sample denoted as Xi = { xi1, xi2, . . ., xiC}. Hence the resultant column matrix of the 

dataset X = [X1, X2, . . ., XR]
T
. Similar is the case with another dataset Y = [Y1, Y2, . . ., YR]

T
 where 

Yj = { yj1, yj2, . . ., yjC}. The distance between the vectors Xi  and Yj is calculated in different 

manners out of which some are described below. 

ü City block metric 

  

╓░▒ ╧░▓  ╨▒▓

╒

▓

 (2.11) 

ü Euclidean distance  

  ╓░▒  ╧░  ╨▒ ╧░  ╨▒
╣ (2.12) 

ü Minkowski metric 

 

  ╓░▒ ╧░▓  ╨▒▓
▬

╒

▓

▬

 (2.13) 

This shows that for p=1; Minkowski metric gives City block metric. 

It also shows that for p=2; Minkowski metric gives Euclidean distance. 

ü Mahalanobis distance 

 ╓░▒  ╧░  ╨▒╥ ╧░  ╨▒
╣ (2.14) 

V is the covariance matrix 

2.2.2 Support vector machine  

 SVM [54] is a supervised learning algorithm which is mostly used for classification or 

regression analysis. A SVM constructs an optimal hyper plane (OHP) with the largest distance 
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between the nearest training data of opposite class called as support vectors as shown in Fig. 

Figure 2.6. This distance is called functional margin which is inversely proportional to the 

generalization error of the classifier [55]. According to Roobaert [56], let the training data is 

given as {(x1,y1), (x2,y2), é.., (xl,yl)}, where xi ắ R and yi ắ {1, -1}, then the OHP, w Å x + b = 0, 

can be found by minimizing  

   ᴁἿᴁ    

constrained by:  yi(wi Å xi + b) Ó 1   for i = 1, 2, . . . . , l 

This optimization problem can be solved by finding the saddle point of the Lagrangian óLô using 

the method of Lagrange multipliers where  

 L = ᴁ◌ᴁ ï В ♪░
■
░ ◐░◌░ Ɇ ●░  ╫  + В ♪░

■
░  (2.15) 

Here, Ŭi the non-negative Lagrange multiplier. This is equivalent to find the saddle point in the 

dual formation by maximizing Ldual 

 Ldual = -  В ♪░♪▒◐░◐▒●░Ɇ●▒
■
░ȟ▒  + В ♪░

■
░   (2.16) 

with constraints : 0 Ò Ŭi   for i = 1, 2, . . . . , l  

and              В ‌ώ = 0 

This is a quadratic programming problem and the solution of this problem, w*, can be written as 

a linear combination: w* = В ŬÙØ 

 Another way of getting the maximum margin hyperplane is by creating non linear 

classifiers using kernel trick. Some commonly used kernels are polynomial kernel, Gaussian 

radial basis function kernel and hyperbolic tangent kernel whose mathematical equations are 
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mentioned below where d, ɔ, Ŭ and ɓ are parameters of the kernel. Multi kernels SVM [57] are 

also used with high accuracy and great generalization.  

ü Polynomial kernel   

 ╚╧ȟ╨ ╧Ͻ ╨ ▀ (2.17) 

ü Gaussian radial basis kernel 

 ἕἦȟἧ ἭὀἸ ᴁἦ ἧᴁ  (2.18) 

ü Hyperbolic tangent kernel 

 ╚╧ȟ╨ ◄╪▪▐♪╧Ͻ╨  ♫  (2.19) 

 

Figure 2.6: Basic decision boundary learned by support vector machine 

2.2.3 Artificial neural network 

 ANN is a family of computational models based on biological nervous system used for 

information processing. Here, information processing mostly emphasizes on estimating or 

approximating functions that are dependent on input data. Figure 2.7 illustrates the structure of a 

basic ANN model. The model has a structured layer with the starting layer being the input layer 

and the end layer being the output layer. Both these layers are interconnected by one or more 
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hidden layers. Each layer consists of a number of nodes which are otherwise known as artificial 

neuron. An artificial neuron resembles in a similar fashion as that of the biological neuron. A 

biological neuron receives signal through a specific region in the dendrites known as synapses. 

On receiving a signal higher than the threshold value, the neuron gets activated and it transmits a 

signal through its axon to another neuron which might activate it. 

 

Figure 2.7: Architecture of a basic artificial neural network 

 Figure 2.8 illustrates the structure of an artificial neuron as modeled by McCulloch and 

Pitts [58].  

 

Figure 2.8: A basic artificial neuron model 
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A basic artificial neuron basically consists of two sections; sum and threshold. The sum section 

adds the input values with their respective weights. The threshold section consists of the 

activation function or otherwise known as the transfer function which takes the triggering 

decision of the neuron. There are broadly two categories of activation functions, i.e., linear 

activation function and non-linear activation functions. Non linear activation functions keep the 

response of the neuron in the bounded region. Figure 2.9 describes some of the commonly used 

activation functions like linear, step, Gaussian, sigmoidal and tan-hyperbolic activation 

functions.  

ü Linear activation function  

 █● ● (2.20) 

ü Step activation function 

 █● ▼▌▪ ● (2.21) 

ü Gaussian activation function 

 
█● ▄●▬

● Ⱨ

Ɑ
 (2.22) 

ü Sigmoidal activation function 

 
█●

▄●▬ ♫●
 (2.23) 

ü Tangent-hyberbolic function 

 
█● ◄╪▪▐●  

▄●▬●  ▄●▬●

▄●▬●  ▄●▬●
 (2.24) 



29 
 

 

Figure 2.9: Commonly used activation functions 

 Neural networks are broadly classified into feed-forward networks and recurrent or 

feedback networks. The feed-forward neural networks do not form a loop or feedback among the 

different layers and the data passes through layer by layer and produces output at the output 

layer. The recurrent or the feedback network is a section of ANN where the network connections 

are feedback in nature. This approach allows the network to reveal dynamic temporal behavior 

which results in its application an unsegmented connected handwriting recognition or speech 

recognition. The feed-forward neural networks are further segregated as single layer perceptron, 

multilayer perceptron and radial basis function neural network. The recurrent neural network is 

classified into competitive networks, Kohonenôs self organizing map, Hopefield network and 
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adaptive resonance theory models. This thesis emphasizes on feed-forward networks for the 

classification problems. 

 The operation of feed-forward network is divided into two categories, i.e., learning phase 

and testing phase. In the learning phase or otherwise called as training phase, a supervised 

learning algorithm is undertaken to train the classifier which is the feed-forward neural network 

over here. The input patterns are passed through each layer in a transformed manner using the 

weights assigned to each connection. Eventually, after crossing through these layers, the final 

output of an input pattern is produced and compared with the ideal output in the output layer. 

The units in the output layer belong to different categories. Ideally, the correct category output 

should have the largest value compared to all the other output values which should be 

comparatively very small. The comparison of the calculated output and actual output helps in 

modifying the weights assigned to each connection of neurons by a procedural algorithm. This 

modification in weights aims at decreasing the error between each output layer actual value and 

calculated value during each epoch. This procedure continues till an appropriate stopping 

criterion is valid. These stopping criteria might be achieving the necessary threshold error or 

reaching the maximum number of epochs that the system should undergo in this procedure.  

Once either of the stopping criteria is satisfied, the learning phase culminates and it is said that 

the feedforward network is trained. This gives the final weights of each connection of neurons 

which cannot be further modified. The testing phase commences after the learning phases 

culminates. Each of the test data which has not been used as the training dataset is fed as input to 

the trained neural network one at a time. The output of each test data is calculated and compared 

with the corresponding actual output. Once all the test dataôs outputs are calculated and 
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compared with their corresponding actual test output, the performance of the classifier is 

calculated. 

 Multilayer perceptron (MLP) is a feedforward ANN model that works on the principle of 

supervised machine learning algorithm to map a set of input data to its respective output. A MLP 

consists of one or more hidden layers along with the input and output layer which are fully 

connected to the preceding and the following layer as depicted in Fig.Figure 2.10. The hidden 

layers and the output layers consist of non-linear activation function. Backpropagation is the 

supervised machine learning algorithm which MLP uses for training process. Backpropagation 

algorithm propagates the error gradient or loss function gradient in a reverse direction during the 

training process which gets used in the next iteration. This process continues in each of the 

iterations till the error reaches the threshold error margin. The activation function during the 

backpropagation must be differentiable in order to proceed with this training process. Hence, 

generally a sigmoidal activation function is used in MLP. MLP is competent enough to learn 

non-linear models and online learning models. Due to the non convexity of the gradient of the 

loss function, the global maximum is not guaranteed using backpropagation with gradient 

descent method for optimization. This approach also needs optimization of the hyperparameters 

such as number of hidden neurons, layers and iterations. It is reported that multilayer feed 

forward networks with as few as one hidden layer are a class of universal approximators [59]. 
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Figure 2.10: Architecture of a multilayer perceptron 

 Radial basis function (RBF) network is a feed forward ANN with only one hidden layer 

using radial basis function as the activation function. The output layer is a linear summation 

function. Figure 2.11 depicts the commonly used RBF using the Gaussian function. Initially, the 

training process of the RBF network undergoes calculating the spread of the input space about 

the centroid of the activation function. This is done by using an unsupervised learning algorithm, 

mostly k-means clustering.  Later, the weights from the hidden to output layer are updated using 

least square function or singular value decomposition. The major two drawbacks of RBF 

networks are (i) its performance with noisy data is very poor and (ii) its computationally 

inefficient performance for larger dataset because of only one hidden layer. In order to improve 

the performance there has been a lot of modifications to RBF network. . RBF network is useful 

in function approximation, classification and modeling of dynamic systems and time series [60]. 

One among them is replacing the Gaussian activation function to sigmoidal activation function 
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for better capability of approximation, faster learning speed, better size of network and high 

robustness to outliers [61]. 

 
Figure 2.11: Architecture of a radial basis function network 

 As mentioned earlier, backpropagation algorithm is the common learning algorithm used 

for training the neural networks. The step wise approach of this algorithm is outlined below [62]. 

I. The weights of each node to node connection are initialized to small random 

values. 

II.  From the training dataset, randomly an input pattern x
(i)

 is chosen.  

III.  The signal corresponding to this selected input pattern is propagated forward 

through all the layers (l = 1 to L) in the network. 

IV.  The error ŭ at the output layer is calculated considering the difference in the 

actual output Ὠ and the calculated output ώ using the net input Ὤ at the i
th
 unit 

of the l
th
 layer along with the derivative of the activation function.  
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 ░
╛ ▌ǋ▐░

╛ ▀░
╛  ◐░

╛                   here , l = L (2.25) 

V. This error is propagated backwards and the deltas at each nodes are calculated 

 ░
■ ▌ǋ▐░

■ В◌░▒
■

░
■

▒             for l = (L-1), . . ., 1 (2.26) 

VI.  The weights are also updated in each layer in a backward direction based on a 

particular learning rate ɖ. 

 ◕◌▒░
■ Ɫ░

■ὁ▒
■  (2.27) 

 ◌▒░
■ ◌▒░

■  ◕◌▒░
■ (2.28) 

VII.  The procedure from step II is repeated for the next randomly selected input 

pattern until any of the stopping criterion gets satisfied. 

2.3 Performance metrics 

 A confusion matrix is an important measure to check the performance of a classifier 

network learned using any machine learning algorithm. Figure 2.12 shows the representation of a 

confusion matrix for a binary classification problem.  True Negatives (TN) are the number of 

negative examples which are correctly classified as negative. False Positives (FP) are the number 

of negative examples which are incorrectly classified as positive. True Positives (TP) are the 

number of positive examples which are correctly classified as positive. False Negatives (FN) are 

the number of positive examples which are incorrectly classified as negative. In the present 

thesis, the majority class samples are the negative class samples and the minority class samples 

are the positive class samples. 



35 
 

 

Figure 2.12: Basic representation of a confusion matrix for a binary classifier 

 The most commonly used performance measures derived from the confusion matrix are 

accuracy and error rate. Accuracy is the ratio of the number of all the correctly classified samples 

to the total number of test samples. Error rate is the ratio of all the incorrectly classified samples 

to the total number of test samples. It is quite obvious that accuracy and error rate sum up to 1.  

 ═╬╬◊►╪╬◐ ╣╝ ╣╟ ╣╝ ╕╟ ╕╝ ╣╟ϳ  (2.29) 

 

  

╔►►▫► ►╪◄▄ ╕╟ ╕╝ ╣╝ ╕╟ ╕╝ ╣╟ϳ  (2.30) 

 Accuracy and error rate measures are very deceptive as these are data dependent. In case 

of imbalanced dataset where the number of majority samples is too high compared to the 

minority samples, the classifier gets biased towards the majority samples. In such cases, the 

accuracy metric results in a very high value and the error rate being very less. These results 

project as if the classifier is an ideal one which actually is not the real scenario. In such cases, the 

minority class does not get properly classified yet these two metrics suggest the classifier to be 

an efficient one. In order to overcome such imbalanced dataset scenarios, there are some other 

evaluation metrics which states the actual performance of the classifier. These metrics are 
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precision, recall, specificity, fall-out, F-measure and G-mean. These measures are calculated as 

follows. 

 ╟►▄╬░▼░▫▪ ╣╟╣╟ ╕╟ ϳ  (2.31) 

 ╡▄╬╪■■ ▫► ╢▄▪▼░◄░○░◄◐ ▫► ╣►◊▄ ╟▫▼░◄░○▄ ╡╪◄▄ ╣╟╣╟ ╕╝ ϳ  (2.32) 

 ╢▬▄╬░█░╬░◄◐ ▫► ╣►◊▄ ╝▄▌╪◄░○▄ ╡╪◄▄ ╣╝ ╣╝ ╕╟ ϳ  (2.33) 

 ╕╪■■ɀ▫◊◄ ▫► ╕╪■▼▄ ╟▫▼░◄░○▄ ╡╪◄▄ ▫► ╢▬▄╬░█░╬░◄◐ ╕╟╣╝ ╕╟ ϳ  (2.34) 

 
╕ɀ╜▄╪▼◊►▄

♫  ╡▄╬╪■■ ╟►▄╬░▼░▫▪

♫ ╡▄╬╪■■ ╟►▄╬░▼░▫▪
 (2.35) 

 ╖ɀ╜▄╪▪Ѝ╟►▄╬░▼░▫▪╡▄╬╪■■ (2.36) 

 In Eq. 2.35, ‍ is the coefficient to adjust the relative importance of precision and recall. 

Usually precision and recall have equal importance so ‍ = 1. F-measure is the harmonic mean 

and G-mean is the geometric mean of precision and recall. So, Eq. 2.35 can be simplified as 

follows. 

 
╕ɀ╜▄╪▼◊►▄

 ╡▄╬╪■■ ╟►▄╬░▼░▫▪

╡▄╬╪■■ ╟►▄╬░▼░▫▪
 (2.37) 

 Precision is the measure of the exactness of the samples which are correctly classified 

positive out of the samples which are classified positive. Recall is the measure of the samples 

which are correctly classified positive out of the samples which are actually positive. Recall is 

also known as sensitivity or true positive rate. The importance and information of both precision 
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and recall can be combined together as a measure known as F-measure. F-measure is the 

harmonic mean where as G-mean is the geometric mean of precision and recall. Specificity is the 

measure of the samples which are correctly classified negative out of the samples which are 

actually negative. This is similar to sensitivity. It is also called true negative rate. Fall-out is the 

measure of the samples which are incorrectly classified positive out of all the samples which are 

actually negative. Fall-out is also called false positive rate or 1-specificity. In case of imbalanced 

dataset where a particular class has the minority of the samples compared to others, precision, 

recall and F-measure defines the performance of the classifier. In those cases, only accuracy does 

not provide the correct conclusion about the performance of the classifier. More about such cases 

is explained in Chapter 5 of the present thesis which elucidates on the imbalanced dataset 

problem and its solutions. 

 Another way of analyzing the performance of a classifier is by plotting a receiver 

operating characteristics (ROC) curve which is a two-dimensional depiction of the classifierôs 

performance [63]. ROC curves are used to judge the discrimination ability of various statistical 

methods that combine various clues, test results, etc for predictive purposes [64]. The ROC curve 

is the plot between the false positive rate (FPR) in the X-axis and true positive rate (TPR) in the 

Y-axis. TPR is also known as sensitivity and FPR is known as (1-specificity). Specificity is the 

measure of the percentage of the negatives that are properly classified as negatives. Visually, the 

more ROC shifts towards the left corner of the curve, i.e., towards the Y-axis, the better is the 

classifier. This is a very simple and efficient way of comparing the performances of two or more 

classifiers.  

 The most common way to represent ROC in a scalar value is finding the area under the 

ROC curve (AUC) [65]. ROC curves are widely used in signal detection theory to illustrate the 
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tradeoff between hit rates and false alarm rates of a classifier [66, 67]. As AUC is the area under 

a unit square in ROC, its value lies between 0 and 1. The worst classifier which classifies all 

positive or all negative has an AUC of 0.5. Hence, no realistic classifier should have an AUC 

below 0.5 [63].  An ideal classifier has an AUC value equal to 1. Figure 2.13 explains three 

classifiers represented as {A, B, C}. In this figure, C represents the worst classifier with an AUC 

value of 0.5 followed by a better classifier in B and eventually A being the best classifier with an 

ideal AUC value of 1. 

 

Figure 2.13: Diagram showing a receiver operating characteristics 

 ROC is used only in the case of binary classifiers where the output class is one among 

two of the trained classes. Multiclass classification problem is the classification problem where 

more than two classes needs to be classified in the output stage for a multiple input single output 

classifier system. In order to compare the performance of multi class classifiers, a robust 

classification algorithm based on probability estimation trees is proposed [68]. 
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3   
FUZZY RULE BASED CLASSIFICATION SYSTEM FOR 

TRANSIENT IDENTIFICATION  

The present chapter elucidates on the analysis undertaken in using FRBCS for classifying some 

of the transients from the steam water system in a nuclear power plant. The importance of 

proper feature selection is elaborately explained by analyzing the effects on the performance of 

the classifier by conducting experiments with different input variables to the FRBCS. This 

chapter also clarifies the importance of response time in analyzing the performance of FRBCS in 

online transient classification of system which have very short cycle time. 

3.1 Introduction  

 The performance of modeling a system using fuzzy modeling more often depends on 

interpretability and accuracy of the FRBS. These two phenomena are contradictory in nature 

where interpretability indicates the capability to express the behavior of the real system in a 

understandable way, and accuracy defines the capability to faithfully represent the real system 

[69]. The usual reasoning follows the óóprinciple of incompatibilityò formulated by Zadeh [70]: 

As the complexity of a system increases, our ability to make precise and yet significant 

statements about its behavior diminishes until a threshold is reached beyond which precision 

and significance become almost mutually exclusive characteristics. The closer one looks at a 

real-world problem, the fuzzier becomes its solution. It is usually assumed that a highly complex 
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systems lack interpretability. Based on the requirement, fuzzy modeling is segregated into 

linguistic fuzzy modeling approach and piecewise fuzzy modeling approach. Linguistic fuzzy 

modeling approach primarily focuses on the interpretability and then tries to improve the 

accuracy [71]. Piecewise fuzzy modeling approach primarily focuses on the accuracy and then 

tries to improve the interpretability [72]. Fuzzy modeling not only aims at a high interpretability 

but also a better accuracy. Therefore, recent research emphasizes on good accuracy-

interpretability trade-off in order to attain a compact and robust fuzzy system. 

 FRBCS as stated earlier,  is a category of FRBS dedicated to classification problems, is 

widely recognized for its robustness to imperfect data and interpretability [73]. The accuracy of a 

FRBCS is calculated by comparing the fuzzy model output and the actual output. The percentage 

of the correctly classified fuzzy output from the total dataset gives the accuracy of the model. 

The interpretability of a FRBCS depends on the selection of a proper input feature set. A input 

feature set comprises of the model structure, number of input variables, number of rules, number 

of linguistic terms, shape of the membership function and so on [74]. The selection of an 

appropriate input feature set depends on the expert knowledge as there is no predefined 

procedure to do so.  

 NPP having a cycle time of 200 milliseconds, generates about ten thousand signal data 

each cycle. There is a need of developing a highly interpretable FRBCS for online transient 

identification in NPP which has such a short cycle time. To make a highly interpretable system, 

the complexity must be reduced but this may not result in desired accuracy. On the other hand, 

any increase in the input parameters of the FRBCS, i.e., increase in complexity may increase the 

accuracy of the classifier but makes the model low in interpretability. The present chapter 

explains the process of development of a FRBCS for transient identification in the PFBR. It also 
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explains about the importance of feature selection for quick and better classification results. In 

addition to this, the present chapter also stresses on some of the salient features that needs to be 

taken utmost care before concluding on the final classification result from the developed online 

FRBCS. 

3.2 FRBCS for transient identification 

 Modeling a classifier using fuzzy logic can be handy as well as efficient as a redundant 

prediction system in order to aid the operator to take legitimate decisions. The identification of 

transients at the earliest without any ambiguity helps the operator in taking necessary steps in 

order to combat the severity of the event. The thesis attempts at developing a prediction system 

whose quick and unambiguous output guides the controllers to take necessary actions. Ideally a 

system should be robust to external interferences to provide best results. Filtering out the noise 

data by pre-processing it clears the chances of interference. Apart from this any other 

interference does not affect the FRBCS. Based on the time taken by the transient from the 

initiation of the event till the reactor is shutdown, the transients are categorized into fast 

occurring transients and slow occurring transients. Fast occurring transients such as transients in 

the neutronics system, lead to reactor shutdown within a few scanning cycles at the earliest. 

Hence, monitoring such kind of transients is not possible as the reaction time is too short. On the 

contrary, the slow occurring transients such as the transients in the steam water system give 

ample time for the classifier to predict the correct transient. The sooner the transient is predicted 

correctly by the classifier, the more time is provided to the operator to react to it. Hence, some of 

the transients in the steam water system are considered for the current experimental purpose. The 

experimental data for each considered transient are collected from the operator training simulator 

(OTS). The OTS is a full scope replica type simulator which simulates various plant conditions 
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and operations. It is used to train the operator extensively on monitoring and reacting to various 

transients and malfunction in the plant as well as to prepare the operator for real plant scenarios. 

Noise is not generated in OTS intentionally or unintentionally, hence the implication of it is 

nearly weak in FRBCS. The current study is conducted in two phases. The first phase consisted 

of three transients and the second phase consisted of five transients from the steam water system 

as the considered events. The first phase is again divided into two sub-phases and the second 

phase is divided into three sub-phases where each sub-phase consist of a designated set of input 

features along with its membership function and rule base. All these different sets of simulated 

experiments generated from the OTS are conducted to generalize the final inference without 

much of ambiguity.  

3.3 Phase-1 of FRBCS 

 In this phase, three transients from the steam water system are considered for event 

classification using FRBCS. These transients are as follows 

i. One Condensate Extraction Pump Trip with stand by not taking over (1-CEP trip) 

ii.  Both the Condensate Extraction Pumps Trip (2-CEP trip) 

iii.  Both Boiler Feed Pumps Trip (2-BFP trip) 

A detailed description about the PFBR plant is reported in Chetal et al. [3]. In order to analyze 

the effect of selection of the input features, two diverse plant parameters are chosen for 

experimental purpose. These plant parameters are reactor inlet temperature (ɗRI) and deaerator 

level (DL). 

 



43 
 

¶ Reactor Inlet Temperature 

 Reactor inlet temperature (ɗRI) in PFBR is the temperature of the primary sodium at the 

inlet to the core. At full power condition of the reactor, this temperature is 397°C.This 

temperature may increase when any abnormality occurs in the reactor. The alarm comes when 

this temperature increases by 5°C and the reactor is tripped when it increases by 10°C. 

Considering the transients, ɗRI gets affected a little late compared to many other nearby plant 

parameters. It is a trip signal which initiates reactor shutdown when the value crosses the 

threshold. Figure 3.1 shows the time series pattern of ɗRI for the considered transients.  

 
Figure 3.1: Time series pattern of ɗRI for the considered transients 

¶  Deaerator Level 

 Deaerator is used for the removal of dissolved gases from feed water which is then fed to 

the once through Steam Generator for heat absorption from the secondary sodium (refer Fig 1.1). 

In the deaerator, the deaerator level (DL) has to be maintained at 2.4m with the pressure and 

temperature being around 485kPa and 150°C respectively. The feed water from here is pumped 

into the steam generator (SG) by the boiler feed pumps. The feed water temperature in the 
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deaerator is maintained at 150°C to meet the steam-water system start up condition. This enables 

thermal recycling in order to maintain the system efficiency. DL gets immediately affected on 

the occurrence of the considered transients.  Figure 3.2 depicts the time series pattern of DL for 

the considered transients.  

 
Figure 3.2: Time series pattern of DL for the considered transients 

3.3.1 FRBCS for Phaseï1 using ɗRI and ȹ ɗRI (Phaseï1a) 

 The OTS generates data on all plant parameters every 200 milliseconds and ɗRI is 

collected from it. The change in reactor inlet temperature (ȹɗRI) is considered as another input 

parameter along with ɗRI and is calculated by subtracting two consecutive ɗRI values. ȹɗRI along 

with ɗRI would provide more clarity to the transient prediction both being the features of the 

input feature vector. Based on the prepared input feature vector and the expertsô opinion, the 

fuzzy linguistic variables for the input and the output domains are segregated. 

3.3.1.1  Membership functions for Phase-1a 

 The input membership functions and the output membership functions are prepared based 

on the domain segregation using expertsô knowledge as shown in Fig. 3.3. This segregation 
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involves the design threshold for each input parameter which is decided by the designers along 

with some intuition regarding the number of windows so that the rule base does not become over 

crowded. A handshaking between the threshold values and a deep analysis on the pattern of each 

parameter for each class along with some logic initiates a faster approach to finding the final 

output. This segregation also keeps in mind the unique combination of the input parameters 

which provides a clear classification boundary of different classes that is to be classified. This 

approach is the same for all the cases in this chapter. FP abbreviates for full power which means 

the plant running in full power condition. The classification of an event is done based on the 

defuzzified value. If the defuzzified output is nearly 1 then the classified event is 1CEP trip, if it 

is around 2 then 1or2CEP trip and so on as shown in Fig. 3.3(c). This analogy is adhered 

throughout this thesis for FRBCS. 

a. Fuzzy values for the input linguistic variable ɗRI = {MOREBELOW, BELOW, 

NORMAL, ALARM, PRETRIP}  

b. Fuzzy values for the input linguistic variable ȹɗRI = {LOW, ZERO, LESSHIGH, HIGH, 

VERYHIGH}  

c. Fuzzy values for the output linguistic variable = {FP, 1-CEP, 1OR2CEP, 2-CEP, 2-BFP} 
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(a) 

 
(b) 

 
(c) 

Figure 3.3: Membership functions of FRBCS for Phase-1a 

3.3.1.2 Rule Base for Phase-1a 

 The preparation of the rule base commences once the generation of the input membership 

functions and the output membership function terminates. The rule base consists of simple ñIF-
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THENò statements that cover the entire domain of the considered transients. The preparation of 

the rule base is a very important stage and requires expertsô suggestion to produce the best one. 

The rule base produced for Phaseï1a is shown in Table 3.1. The empty boxes in the tables 

denote that, under any circumstances, the data would not fall in this category for the considered 

transients. A fuzzy output variable as 1or2-CEP Trip is considered here because for a certain 

period of time, it is not conclusive on the occurrence of either 1-CEP Trip or 2-CEP Trip as the 

values are quite identical. Some of the examples of the rules generated by the rule base are as 

follows. 

If ɗRI is NORMAL and ȹɗRI is ZERO then the plant is running on FP. 

If ɗRI is MOREBELOW and ȹɗRI is LOW then 1-CEP trip has happened. 

If ɗRI is BELOW and ȹɗRI is LOW then 1or2-CEP trip has happened. 

If ɗRI is BELOW and ȹɗRI is LESSHIGH then 2-CEP trip has happened. 

If ɗRI is NORMAL and ȹɗRI is LESSHIGH then 2-BFP trip has happened. 

Table 3.1: Rule base of FRBCS for Phase ï1a 

ɗRI ȹɗRI LOW  ZERO LESSHIGH HIGH  VERYHIGH  

MOREBELOW  1-CEP  1-CEP  - - - 

BELOW  1OR2-CEP 1OR2-CEP 2-CEP  2-CEP  2-CEP  

NORMAL  - FP 2-BFP  2-CEP  2-CEP  

ALARM  - 2-BFP  2-BFP  2-BFP  2-CEP  

PRETRIP - - - 2-CEP  2-CEP  

3.3.1.3 Output for Phase-1a 

 Phase-1a produces the output class as the transient which is identified using the FRBCS 

model. This output is based on the crisp output produced by the FRBCS using the output 
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membership function described earlier. The decision boundary which governs the output of the 

FRBCS is fixed at a range of ï0.5 and +0.5 of the mean value of the output membership 

function. This segregation remains same for all the further consideration of output result for a 

FRBCS. 

 

Figure 3.4: Defuzzified output of FRBCS for Phase-1a 

3.3.1.4 Response time for Phase-1a 

 The time taken by a FRBCS in order to give a confident result on the occurrence of an 

event is called the response time. A graph is considered stable when there is a very minimal 

fluctuation in the defuzzified output value for an event classification.  Based on this criterion, the 

response time for all the phases have been found out. Some figures show very stable graphs 

which is due to the parameter chosen. Others are not so stable which is due to the incapability of 
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the parameter to classify properly.  Figure 3.4 shows that the defuzzified output for 1-CEP trip 

and 2-CEP trip remains the same for a considerable amount of time till about 200s. This shows 

that the trend for the considered input feature, i.e., ɗRI is same for both these transients. The 

defuzzified output for 2-CEP trip is 3 at around 330s which is its value according to the output 

membership function and stabilizes around 350s. Hence the response time of the FRBCS for 

Phase-1a for 2-CEP trip is 350s. Regarding, 1-CEP trip, the ɗRI responds in a similar manner like 

2-CEP trip for some period initially. Once the confusing period between 450s to 550s is over 

where it is unsure of a 1-CEP or 2-CEP trip, there is a conclusive evidence of the occurrence of 

1-CEP trip with a defuzzified value of 1 as in the output membership function in Fig 3.3c.  It is 

also evident from this figure that the defuzzified output for 1-CEP trip stabilizes at 1 after 550s, 

hence that being its response time. Compared to both these transients, 2-BFP trip for this case 

attains stability by 12s which signifies that the response time for this transient is comparatively 

better than the other two considered transients. Beyond 35s, the plant would have reached the 

shutdown state. The fluctuations in all the graphs in this chapter is due to the safety actions being 

taken by the system automatically in the OTS in order to counter act these abnormal changes in 

the plant.  

3.3.2   FRBCS for Phaseï1 using DL and ȹDL (Phaseï1b) 

 Phase-1b considered the parameters which is very near to the occurrence of the event and 

gets most affected. Including DL, the change in deaerator level (ȹDL) promises to give an 

insight on the characteristic of each transient which eventually might result in better 

classification accuracy and response time. 



50 
 

3.3.2.1 Membership functions for Phase-1b 

 Similar to Phase-1a, the input and output membership functions are prepared based on the 

segregation of the selected input feature domain, i.e. DL and ȹDL, into specific linguistic fuzzy 

variables.  It is observed in Fig. 3.5c, that the generation of an intermediate transient generated in 

Phase-1a, i.e., 1or2CEP trip is avoided in this case on the usage on DL and ȹDL as the input 

features. This is because DL and ȹDL parameters have clear segregation in the values avoiding 

any sort of confusion related to the events that need to be classified. This means at no sampling 

time, the DL and ȹDL values were same for 1-CEP and 2-CEP trip, thus giving clear boundaries 

for classification which was missing in Phase-1a. The segregation of the input and output 

domains into fuzzy linguistic variables is done as the following.  

a. Fuzzy values for the input linguistic variable DL = {VERYLOW, LOW, NORMAL, 

HIGH}  

b. Fuzzy values for the input linguistic variable ȹDL = {NEGATIVEFAST, 

NEGATIVESLOW, OK, POSITIVESLOW, POSITIVEFAST}  

c. Fuzzy values for the output linguistic variable = {FP, 1-CEP, 2-CEP, 2-BFP}  
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(a) 

 
(b) 

(c) 

Figure 3.5: Membership functions of FRBCS for Phase-1b 

3.3.2.2 Rule base for Phase-1b 

 The fuzzy rules governing the fuzzy linguistic variables of DL and ȹDL are generated and 

stored as the rule base for Phase-1b referred as Table 3.2. This approach is similar to the rule 

base preparation in Phase-1a. Some of the fuzzy rules for this sub-phase are as follows. 

If DL is NORMAL and ȹDL is OK then the plant is running on FP. 
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If DL is LOW and ȹDLI is NEGATIVESLOW then 1-CEP Trip has happened. 

If DL is VERYLOW and ȹDL is NEGATIVEFAST then 2-CEP Trip has happened. 

If DL is HIGH and ȹDL is POSITIVEFAST then 2-BFP Trip has happened. 

Table 3.2: Rule base of FRBCS for Phase-1b 

DL ȹDL 

NEGATIVE  

FAST 

NEGATIVE  

SLOW 

OK 

POSITIVE  

SLOW 

POSITIVE  

FAST 

VERYLOW  2-CEP  2-CEP  2-CEP  2-CEP  - 

LOW  2-CEP 1-CEP  1-CEP  1-CEP 2-BFP  

NORMAL  - 1-CEP FP - 2-BFP 

HIGH  - - - 2-BFP  2-BFP  

 

3.3.2.3 Output for Phase-1b 

 The procedure in finding the defuzzified output of the FRBCS for Phase-1b is similar to 

that of Phase-1a. Each data is fed as input one by one and based on the input membership 

function the rule is selected from the rule base which produces the fuzzy output. This fuzzy 

output is defuzzified using the output membership function which yield the crisp output. The 

defuzzified or crisp outputs for the three considered transients are shown in Fig. 3.6. 
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Figure 3.6: Defuzzified output of FRBCS for Phase-1b 

3.3.2.4 Response time for Phase-1b 

 Figure 3.6 clearly depicts that for initial 10s, 1CEP trip and 2-CEP trip produces same 

defuzzified output from the FRBCS for Phase-1b. It is only after 10s, the defuzzified output 

changes to 2 and stabilizes at this value which confirms that the transient occurred is a 2-CEP 

trip. The defuzzified output for 1-CEP trip remains constant throughout the series after this 

moment. Hence, it is learnt from the figure that the response time for 1-CEP trip is around 15s 

whereas for 2-CEP trip it is around 12s. This 3s window is kept to bypass the noise interference 

if any. A similar window is there in each case in this chapter. The response time for 2-BFP trip is 

8s as evident from Fig. 3.6.    
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3.3.3 Comparison between Phase-1a and Phase-1b 

 The response time for each transient in both the phases has been mentioned in Table 3.3. 

The difference in the response time for 2-BFP trip is quite less comparing the difference in case 

of 1-CEP trip and 2-CEP trip. This shows that Phase-1a which uses DL and ȹDL as the input 

features produces better result in all the three transients compared to the FRBCS in Phase-1b 

which uses ɗRI and ȹɗRI as their input features. This concludes that the parameter near the 

occurrence of the transient gives far better result as they get affected at the earliest compared to 

the trip parameter which is far away from the occurrence of the event. 

Table 3.3: Response time of the two FRBCS in Phase-1 

Phase Inputs 1-CEP Trip  2-CEP Trip  2-BFP Trip  

1a ɗRI -ȹɗRI 550 sec 350 sec 12 sec 

1b DL-ȹDL 15 sec 12 sec 8 sec 

 

3.4 Phase-2 of FRBCS 

 In this phase, five transients from the steam water system are considered compared to 

three transients in Phase-2, for event classification using FRBCS in order to increase the 

complexity of the transients. These transients are as follows 

i. One Condensate Extraction Pump Trip with stand by not taking over (1-CEP trip) 

ii.  Both the Condensate Extraction Pumps Trip (2-CEP trip) 

iii.  One Boiler Feed Pump Trip with stand by not taking over (1-BFP trip) 

iv. Both Boiler Feed Pumps Trip (2-BFP trip) 
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v. Both Cooling Water Pumps Trip (2-CWP trip) 

As inferred in Phase-1, the parameters nearer to the occurrence of the event produces better 

result compared to the far away parameters. In order to analyze the effect of selection of the 

input features which are nearer to the occurrence of the events, two such plant parameters are 

chosen for experimental purpose. These plant parameters are deaerator level (DL) and 

condensate pressure (CP). DL is taken because it gave the better result of the two in the previous 

case and has been explained earlier in the present chapter. Figure 3.7 shows the time series 

pattern of DL for the considered transients.  

 
Figure 3.7:  Time series pattern of DL for the considered transients 

¶ Condensate pressure 

 After the super heated steam has passed the last stage of the turbine, the leftover heat 

content in the steam which is approximately 750MWt has to be dumped. This is done in the 

condenser with the help of sea water. In the condenser, heat exchange takes place where the 

steam flows through the shell side and the sea water flows through the tube side. Here, the 

condenser pressure or otherwise called as condensate pressure is maintained at 9.2kPa by the 
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help of air evacuation system with two vacuum pumps. If this pressure crosses the designed 

limits then that may affect the blades of the last stage of the turbine. Figure 3.8 depicts the time 

series pattern of CP for the considered transients. 

 
Figure 3.8: Time series pattern of CP for the considered transients 

3.4.1 FRBCS for Phaseï2 using DL and ȹDL (Phaseï2a) 

 Phase-2a has considered change in DL along with the DL as the input feature for the 

FRBCS. It is similar to Phase-1b with increased number of classes which somehow complicates 

the system. 

3.4.1.1 Membership functions for Phase-2a 

 Similar to the previous phase, the input membership function and the output membership 

function are prepared considering the domain of the selected input features in Phase-2a as 

depicted in Fig. 3.9. Phase-2a has same input membership function as that in Phase-1b whereas 

the output membership function has introduced two new transients. The segregation of the input 

and output domains into fuzzy linguistic variables is done as the following. 



57 
 

a. Fuzzy values for the input linguistic variable DL = {VERYLOW, LOW, NORMAL, 

HIGH}  

b. Fuzzy values for the input linguistic variable ȹDL = {NEGFAST, NEGSLOW, OK, 

POSSLOW, POSFAST}  

c. Fuzzy values for the output linguistic variable = {FP, 1-CEP, 2-CEP, 1-BFP, 2-BFP, 2-

CWP}  
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(a) 

 

(b) 

 

(c) 

Figure 3.9 : Defuzzified output of FRBCS for Phase-1b 

3.4.1.2 Rule base for Phase-2a 

 The rule base is generated by producing fuzzy rules for each linguistic fuzzy variable 

shown in Table 3.4. Some of the examples of the generated rules are as follows.  
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 If DL is NORMAL and ȹDL is OK then the plant is running on FP. 

 If DL is LOW and ȹDL is NEGATIVE SLOW then 1-CEP Trip has happened. 

 If DL is VERY LOW and ȹDL is NEGATIVE SLOW then 2-CEP Trip has happened. 

 If DL is HIGH and ȹDL is OK then 1-BFP Trip has happened. 

 If DL is HIGH and ȹDL is POSITIVE SLOW then it is 2BFP Trip has happened. 

 If DL is HIGH and ȹDL is NEGATIVE FAST then it is 2CWP Trip has happened. 

Table 3.4: Rule base of FRBCS for Phase-2a 

DL ȹDL 
NEGATIVE  

FAST 

NEGATIVE  

SLOW 
OK 

POSITIVE  

SLOW 

POSITIVE  

FAST 

VERYLOW  2-CEP 2-CEP 2-CWP 2-CEP - 

LOW  2-CEP 1-CEP 1-CEP 2-BFP 2-BFP 

NORMAL  - 1-CEP FP 1-BFP 2-BFP 

HIGH  2-CWP 2-CWP 1-BFP 2-BFP 2-BFP 

 

3.4.1.3 Output for Phase-2a 

 The defuzzified output in this phase is based on the assumption as undertaken in Phase-1. 

Figure 3.10 shows the defuzzified output during online event classification of transients. 
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Figure 3.10: Defuzzified output of FRBCS for Phase-2a 

3.4.1.4 Response time for Phase-2a 

 As mentioned earlier in Phase-1, the data collected for 1-CEP trip and 2-CEP trip have 

almost similar data for certain period of time. Hence, it is advisable to wait for certain duration in 

order to reach at any conclusion on the occurrence of the transient. Figure 3.10 show that till 10s 

both these transients show same defuzzified output. Hence, only after this duration, conclusive 

evidence is gathered on to the correct classification of transient. Hence, the response time for 1-

CEP trip is 20s as the defuzzified output stabilizes at 1 beyond this mark. Similarly, the 

defuzzified output for 2-CEP trip stabilizes at 2 beyond a response time of 15s. Beyond 70s, the 

2CEP trip shows spikes due to automatic safety measures taken by the controllers in the plant. 

These spikes enlighten that safety actions are taken at this point of time after the occurrence of 

the event where as these actions could have been taken well before by the help of FRBCS.   For 

1-BFP trip, the output stabilizes at nearly 3 with a response time of 20s whereas for 2-BFP trip 


























































































































































































































