
Development of Solution-focused Automatic

Parallelization Mechanism with Tools and Techniques

By

S. PREMA

(Enrolment No: ENGG 02 2011 04 039)

Indira Gandhi Centre for Atomic Research, Kalpakkam

A Thesis Submitted to the

Board of Studies in Engineering Sciences

In partial fulfillment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

August, 2018

Development of Solution-focused Automatic

Parallelization Mechanism with Tools and Techniques

By

S. PREMA

(Enrolment No: ENGG 02 2011 04 039)

Indira Gandhi Centre for Atomic Research, Kalpakkam

A Thesis Submitted to the

Board of Studies in Engineering Sciences

In partial fulfillment of requirements
For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

August, 2018

List of Publications arising from the thesis

Journal

a. Published

1. Analysis of parallelization techniques and tools

S Prema and R Jehadeesan

Int’l J. Information Computation Tech (2013) 3(5):471-478

2. A Study on Popular Auto-Parallelization Frameworks

S. Prema, Rupesh Nasre, R. Jehadeesan, and B. K. Panigrahi

Concurrency and Computation Practice and Experience, 2019;e5168.

https://doi.org/10.1002/cpe.5168)

b. Accepted

1. A comparative study on automatic parallelisation tools and methods to improve

their usage

S. Prema, R. Jehadeesan, and B. K. Panigrahi

International Journal of High Performance Computing and Networking (In Press),

(2018)

URL http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijhpcn

c. Communicated and under preparation

1. Solution-focused Mechanism for Automatic Parallelization of Sequential Codes

S. Prema, R. Jehadeesan, and B. K. Panigrahi

Journal of Supercomputing (Under Review, June 18, 2018)

2. Elimination of Non-affine Issues in Irregular and General-purpose Program

S. Prema, Rupesh Nasre, R. Jehadeesan, and B. K. Panigrahi (To be communicated)

To my beloved Parents

Acknowledgements

I would like to thank the people who were directly involved in the process of making

this thesis a reality.

I am profoundly indebted to my Guide, Dr. B. K. Panigrahi, for his advice and continu-

ous support during my PhD and writing of this thesis. I oblige my deepest gratitude to him,

for his constant motivation and helping me in all ways to carry out a collaborative work.

I am extremely thankful to my Co-guide, Prof. Rupesh Nasre, for being a true source of

inspiration. I thank him for allowing me to carry out my research work at Indian Institute

of Technology (IIT-M) and also for the guidance, constant support, motivation and the

opportunities I have received from him during my PhD and writing of this thesis.

I am very thankful to my Technology Advisor, Shri R. Jehadeesan, for the continuous

support he has delivered ever since the first day and all throughout my PhD and writing of

this thesis. I thank him for his patience, and constant motivation during my PhD.

Besides my advisors, I would like to thank Dr. K. Velusamy, for his invaluable sugges-

tions and helping me in all difficult situations. I would like to thank my Doctoral committee

members, Dr. B. P. C. Rao, Dr. Sharat Chandra, and Dr. Anish kumar, for their insightful

comments and encouragement.

I would like to thank Homi Bhabha National Institute (HBNI) and Department of

Atomic Energy (DAE) for funding my research work. I would like to thank former

Director of the Indira Gandhi Centre for Atomic Research (IGCAR) Shri. S. C. Chetal,

for offering me the opportunity to carry out my research work at Electronics and Instru-

mentation Group, Computer Division, IGCAR. I am deeply grateful to the subsequent

Directors, Dr. P. R. Vasudeva Rao and Dr. Satya Murty and also to the current

Director, Dr. A. K. Bhaduri for allowing me to carry forward my research work in this

esteemed institute (IGCAR). I thank former committee member Dr. M. SaiBaba and

senior scientific officers Mrs. T. Jayanthi, Mrs. S. Rajeswari, Mrs. Jemimah Ebenezer,

and Dr. M. L. Jayalal for their valuable suggestions and constant support.

CONTENTS

SYNOPSIS i

LIST OF ABBREVIATIONS iii

LIST OF TABLES vii

LIST OF FIGURES ix

1 Introduction 1

1.1 Automatic parallelization . 1

1.2 Motivation . 3

1.3 Objectives . 6

1.4 Organization of the thesis . 6

2 Survey on Existing Parallelizing Compilers and their Primary Techniques 9

2.1 Related works . 9

2.1.1 Earlier studies on the performance evaluation of auto-parallelizers 9

2.1.2 Automatic parallelization techniques on irregular and

general-purpose programs . 10

2.1.3 Loop transformation and its significance 11

2.2 Auto-parallelizers from past two decades 13

2.3 Overview of the modern auto-parallelizers and their characteristics . . . 15

2.3.1 Cetus . 15

2.3.2 Par4all . 17

2.3.3 Rose . 17

2.3.4 ICC . 18

2.3.5 Pluto . 18

2.4 Qualitative study of auto-parallelization frameworks 19

2.5 Summary . 24

3 Qualitative Capabilities of Auto-parallelizers 25

3.1 Parallelization mechanisms . 25

3.1.1 Loop transformation techniques 25

3.1.2 Dependence analysis . 31

3.2 Effect of loop transformations on dependences 33

3.2.1 Effect of loop transformations on loop-independent (scalar and vec-

tor) and loop-carried scalar dependence 34

3.2.2 Effect of loop transformations on loop-carried vector dependence 35

3.3 Limitations faced by auto-parallelizers 42

3.4 Auto-parallelizer behavior on complex coding style 42

3.4.1 Support for loops and loop conditions 43

3.4.2 Support of auto-parallelizers for statements, data types and

storage classes . 43

3.4.3 Support of auto-parallelizers for functions 47

3.4.4 Limitations due to OpenMP programming model 49

3.5 Evaluation of auto-parallelizers . 53

3.5.1 Pre-evaluation . 53

3.5.2 Post-evaluation . 55

3.6 Summary . 57

4 Quantitative Analysis of Parallelization Frameworks using

PolyBench Benchmarks 59

4.1 Background . 59

4.1.1 PolyBench . 59

4.1.2 Experimental configuration . 60

4.2 Auto-parallelization of PolyBench . 60

4.2.1 Differences in parallelization 62

4.3 Result analysis . 63

4.3.1 Benchmarks with loop-independent dependence 63

4.3.2 Benchmarks with loop-carried dependences 68

4.4 Effect of static dependences . 72

4.5 Effect of individual techniques on parallelizers parallelized code 75

4.5.1 Effect of Tiling and Unrolling loop transformation techniques . 76

4.6 Summary of performance . 79

4.6.1 Discussion . 81

5 Quantitative Analysis of Parallelization Frameworks using

NAS Parallel Benchmarks 83

5.1 Background . 83

5.1.1 Experimental configuration . 84

5.2 Auto-parallelization of NAS parallel benchmarks (NPB) 84

5.2.1 Differences in parallelization 84

5.2.2 Details of the transformation errors: manual changes on

pre-transformation (α) and post-transformation (β) issues . . . 87

5.3 Experimental results: NPB result analysis 91

5.3.1 Execution overhead problems 96

5.3.2 Nested parallelism problems 101

5.3.3 Scalar and non-affine issues in Pluto 101

5.3.4 Other parallelization issues 105

5.4 Effect of static dependences . 106

5.5 Summary . 109

6 Elimination of Auto-parallelization Issues in Irregular and General-purpose

Programs in Pluto 111

6.1 Background . 111

6.1.1 Polyhedral model . 111

6.2 Limitations of polyhedral model . 115

6.3 Summary of the proposed approach 116

6.4 Analysis on general-purpose and irregular programs 117

6.4.1 Green-Marl analysis . 117

6.4.2 Rodinia analysis . 118

6.4.3 NAS parallel benchmarks (NPB) analysis 121

6.4.4 Overall auto-parallelization issues in Pluto 121

6.5 Method to eliminate Non-affine constructs (NAC) in Pluto 122

6.5.1 Pre-elimination . 124

6.5.2 In-elimination . 128

6.5.3 Post-elimination . 129

6.6 Result analysis . 131

6.6.1 Experimental configuration . 131

6.6.2 Performance impact of elimination method on Green-Marl . . . 131

6.6.3 Performance impact of elimination method on Rodinia 132

6.6.4 Performance impact of elimination method on NPB 134

6.7 Summary . 138

7 Solution-focused Auto-parallelization Mechanism of Sequential Codes 139

7.1 Background . 139

7.2 Proposed method . 140

7.3 Implementation . 143

7.3.1 Profiling . 143

7.3.2 Analysis and code transformation (ACT) 144

7.3.3 Parallelization . 145

7.4 Analysis and code transformation phase-1 (ACT-1) 145

7.4.1 Auto-conversion of while-loop to for-loop 145

7.5 Analysis and code transformation phase-2 (ACT-2) 151

7.5.1 Automatic scalar expansion 151

7.5.2 Automatic conversion of upper to lower bound 160

7.5.3 Automatic conversion of loop increment with step size one . . . 164

7.5.4 Automatic conversion of irregular loop to regular loop 166

7.6 Application exploration . 169

7.6.1 Result analysis . 169

7.7 Summary . 174

8 Conclusion and Scope for Future Investigations 175

8.1 Summary and conclusion . 175

8.1.1 Conclusion derived from qualitative capabilities of

auto-parallelizers . 175

8.1.2 Conclusion derived from quantitative analysis of auto-parallelizers

using PolyBench benchmarks 177

8.1.3 Conclusion derived from quantitative analysis of auto-parallelizers

using NAS parallel benchmarks (NPB) 178

8.1.4 Overall conclusions derived from qualitative and quantitative anal-

yses of auto-parallelizers . 179

8.1.5 Conclusions derived from elimination of auto-parallelization

issues in irregular and general-purpose programs 179

8.1.6 Conclusions derived from solution-focused auto-parallelization

mechanism of sequential codes 180

8.1.7 New techniques to enhance auto-parallelization of open-source

tool: Pluto . 180

8.2 Scope for the future work . 181

References 183

Synopsis

Automatic parallelization is a user-friendly and an optimistic approach for exploiting

the performance potential of today’s multi-core processors. However, even today auto-

parallelizers do not accomplish the consistent performance necessary to be considered

true alternatives to manual parallelization. Recent research lacks in the examination of

the present-day parallelizers. A complete understanding of such tools is vital for both re-

searchers and developers.

The primary objective of the work is to evaluate the effectiveness of modern paralleliz-

ers viz. Cetus, Par4all, Rose, Intel C Compiler (ICC), and Pluto, their capabilities and

limitations. In view of the above, a qualitative and quantitative analysis was carried out

on the five frameworks under study. The qualitative investigation elucidates the combined

effect of parallelization mechanisms, namely, dependence analysis and loop transforma-

tions. This study brings out the effect of tuning techniques on different dependence prob-

lems. Also, evaluation of the tool’s behavior in parallelizing applications with complex

coding styles (in total 76 different programming features) were tested to find the potential

of auto-parallelizers. The study summarizes the limitations of parallelizing compilers in

parallelizing the loops along with potential solutions to improve their effectiveness. The

potential solutions increased the overall proficiency of individual frameworks by 10%.

This thesis explains the quantitative effect of five different frameworks on various Poly-

Bench benchmarks (28 codes). This study investigates the reason for the non-parallelized

PolyBench codes by each framework. The performance of the transformed code is eval-

uated by categorizing benchmarks based on different dependence types namely, (i) loop-

independent dependence (ii) loop-carried dependence due to scalar/vector. It was observed

that Pluto is a good framework that supports maximum number of codes and parallelizes

codes with complex loop-carried dependence due to vector using loop peeling. The obser-

vations reveal that overall ICC (10.9×) and Pluto (9.4×) outperform all other frameworks.

i

In addition, the quantitative analysis is carried out on real-world codes: NAS parallel

benchmarks (NPB) (10 codes). Pre- and post-transformation changes were applied to make

the code amenable to parallelization. The results show that the performance delivered

by the frameworks in parallelizing the NPB benchmarks was largely abysmal. Only ICC

produced the best overall speedup 2.0× and is equal to baseline optimization (-O2). This

work presents a thorough analysis to dig out the reasons for the behavior of the frameworks.

The observation shows that all the frameworks fare inferior over NPB suite as the tools

forbid parallelization due to many auto-parallelization issues.

In this work, an attempt has been made to address the shortcomings of Pluto, a poly-

hedral parallelizer, an open-source tool. The observations reveal that it is efficient in per-

forming loop optimization and parallelizing loop with complex dependences. However,

Pluto is unable to handle non-affine constructs (NAC), which limits its efficacy. Therefore,

a method was introduced to eliminate the NAC in irregular and general-purpose programs

to make the code amenable to parallelization. In total, 9 NACs were found by analyzing

three distinct real-world benchmark suites namely, Green-Marl, Rodinia, and NPB. The

elimination takes place a three-step process (Pre-, In-, and Post-elimination) to address the

pitfalls. The correctness of the proposed method was validated, and further, the quantitative

results are presented to bring out the usage of this method. Performance analysis shows that

Green-Marl (6.6×) and Rodinia (19.9×) show considerable speedup using this method.

A solution-focused automatic parallelization mechanism was introduced to alleviate

few of the parallelization pitfalls that occur specifically to Pluto. Overall, five pitfalls are

explored and resolved in this work. The proposed method is a three-stage process con-

sisting of Profiling, Analysis and Code Transformation (ACT), and Parallelization. The

technique was validated using PolyBench codes. Performance improvement were observed

on benchmarks namely symm 7.1× and ludmcp 4.6×. Overall, the thesis provides a de-

tailed analysis of popular auto-parallelizers, their strengths and limitations, and proposes

techniques to address a subset of the limitations.

ii

LIST OF ABBREVIATIONS

ACT Analysis and Code Transformation

ACT-1 Analysis and Code Transformation (Phase-1)

ACT-2 Analysis and Code Transformation (Phase-2)

ANTLR ANother Tool for Language Recognition

API Application Programming Interface

AST Abstract Syntax Tree

AU Array Updation

CANDL Chunky ANalyzer for Dependences in Loops

CC Constructor Call

CFD Computational Fluid Dynamics

CFG Control Flow Graph

CLooG Chunky Loop Generator

CUDA Compute Unified Device Architecture

DECL Declaration Statements

Dep Number of Static Dependences

DMD Dynamic Memory Disambiguation

EDG Edison Design Group

iii

FC Function Call

FILE File I/O operations

GCC GNU C Compiler

Gprof GNU profiler

GPU Graphical Processing Unit

GUI Graphical User Interface

HPC High Performance Computing

ICC Intel C Compiler

ICW Insufficient Computational Work

ILP Instruction Level Parallelism

IR Intermediate Representation

ISL Integer Set Library

LC Loop-carried dependence

LLVM Low Level Virtual Machine

LS Left-shift operator

MI Missed Inner-loop parallelism

MPI Message Passing Interface

MO Missed Outer-loop parallelism

MS More number of Statements

NAC Non-affine Constructs

NAL Non-affine Loop bound

NAS Non-affine Array Subscript

iv

NIF Non-affine IF constructs

NOP No Optimization reported

NPB NAS Parallel Benchmarks

NPC Not a Parallelization Candidate

OpenACC Open Accelerator

OpenCL Open Computing Language

OpenMP Open Multi-Processing

PDEP Existence of Parallel Dependence

PERFECT PERFormance Evaluation for Cost-effective Transformations

PIPS Parallelization Infrastructure for Parallel Systems

PGI Portland Group Inc

POCC Polyhedral Compiler Collection

RAW Read-After-Write

RS Right-shift operator

SCoP Static Control Part

SGI Silicon Graphics

SI Scalar Increment

SL Scalar variable in the `-value of a statement

SMD Static Memory Disambiguation

SMP Symmetric Multiprocessing

SR Scope Resolution Operator

Stmts Number of Potentially Parallelizable Statements

SUIF Stanford University Intermediate Format

v

UL Upper to Lower bound

UPC Unified Parallel C

VFC Vienna Fortran Compiler

WAR Write-After-Read

WAW Write-After-Write

YACC Yet Another Compiler-Compiler

vi

LIST OF TABLES

2.1 Comparisons of auto-parallelizers from past two decades reported in the

literature . 14

2.2 Popular auto-parallelizers and their methodologies reported in the literature 15

2.3 Compiler options for auto-parallelization of sequential code 19

3.1 Tools support matrix for loop transformation techniques 26

3.2 Effect of loop transformation techniques on loop-independent (scalar and

vector) and loop-carried scalar dependence 34

3.3 Support of auto-parallelizers for loop-carried dependence problems in

single loop using synthetic programs 37

3.4 Support of auto-parallelizers for loop-carried dependence problems in nested

loop using synthetic programs . 41

3.5 Support of auto-parallelizers for statements, data types and storage classes 46

3.6 Support of auto-parallelizers for functions 48

3.7 Solution for OpenMP limitations . 49

3.8 Performance summary of auto-parallelizers on synthetic codes 56

4.1 Characteristics of PolyBench benchmarks and the parallelization results by

various frameworks . 61

4.2 Performance summary of auto-parallelizers on PolyBench codes (with 16,

32 and 64 threads) . 80

vii

5.1 Complexity measurement of NPB using chunky analyzer for dependences

in loops (CANDL) and the parallelization results by various frameworks 85

5.2 Description of NAS parallel benchmarks (NPB) 86

5.3 Performance summary of auto-parallelizers on NPB codes (with 16, 32 and

64 threads) . 92

5.4 Problems identified in non-parallelized loops of NPB codes for individual

parallelizers . 95

5.5 Performance measurement based on parallelism achieved in the compute-

intensive functions . 97

6.1 Non-affine constructs (NAC) that prohibit Pluto parallelization in

Green-Marl . 119

6.2 Non-affine constructs (NAC) that prohibit Pluto parallelization in Rodinia 120

6.3 Non-affine constructs (NAC) that prohibit Pluto parallelization in NAS par-

allel benchmarks (NPB) . 121

6.4 Overall auto-parallelization issues in Pluto 122

6.5 Classification of identified non-affine constructs (NAC) and proposed

solution . 123

7.1 Problems and suggested solutions for static control part (SCoP) rejection

in Pluto . 141

viii

LIST OF FIGURES

1.1 Schematic representation of parallelization procedure 2

2.1 Parallelization of ((a) Original code) by various frameworks (b) Cetus

(c) Par4all . 21

2.1 Parallelization of ((a) Original code) by various frameworks (d) Rose

(e) ICC (f) Pluto (Contd.) . 22

3.1 Privatization applied by Rose . 27

3.2 Loop Peeling applied by Pluto . 27

3.3 Loop Fusion applied by Par4all . 28

3.4 Loop Fission applied by ICC . 28

3.5 Reduction applied by Rose . 29

3.6 Loop Tiling applied by Pluto . 30

3.7 Loop Unrolling applied by Pluto . 30

3.8 Induction Variable Substitution applied by Cetus 31

3.9 Templates of tested loop-carried dependence problems (a) Loop-carried

data dependence (b) Loop-carried anti dependence (c) Loop-carried out-

put dependence (d) Loop-carried data+anti+output dependence 36

3.10 Templates of loop-carried dependence problems in nested loops (a) Loop-

carried data dependence problems (b) Loop-carried anti dependence prob-

lems . 38

ix

3.10 Templates of loop-carried dependence problems in nested loops (c) Loop-

carried output dependence problems (d) Loop-carried data+anti+output de-

pendence problems (Contd.) . 39

3.11 Parallelization of for-loop by auto-parallelizers (a) Parallelization of simple

for-loop (b) Parallelization of concatenated for-loop (c) Parallelization of

nested for-loop(s) . 44

3.12 Solutions for the non-supported constructs (a) Parallelization of switch-

case (b) Parallelization of function call inside parallelizable region (c)

Parallelization of recursive function 51

3.12 Solutions for the non-supported constructs (d) Parallelization of while-loop

(e) Parallelization of codes with multiple index variables in for-loop condi-

tion (f) Parallelization of codes with logical operators in for-loop condition

(g) Parallelization of codes with relational operators in for-loop condition

(Contd.) . 52

3.13 Parallelizers support for different programming features without manual

intervention (pre-evaluation) (a) Loops and loop conditions (b) Statements,

data types and storage classes . 54

3.13 Parallelizers support for different programming features without manual

intervention (c) Functions (Contd.) . 55

4.1 Effect of number of threads on speedup for benchmarks; syrk, syr2k,

and gemm . 64

4.2 Quantitative analysis of PolyBench benchmark with loop-independent

dependences (correlation,covariance, gemm, gemver, syr2k,

and syrk) . 66

4.2 Quantitative analysis of PolyBench benchmark with loop-independent de-

pendences (2mm, 3mm, atax, bicg, doitgen, and mvt) (Contd.) . . 67

4.3 Quantitative analysis of PolyBench benchmark with loop-carried depen-

dences due to scalar/vector (symm, durbin, gramschmidt, ludcmp,

trmm, adi, fdtd-2d, heat-3d) 70

x

4.3 Quantitative analysis of PolyBench benchmark with loop-carried depen-

dences due to scalar/vector (jacobi-1d, jacobi-2d, cholesky, lu,

trisolv, floyd-warshall, nussinov, seidel-2d) (Contd.) . 71

4.4 Effect of static dependences on PolyBench benchmark: A speedup analysis

(a) ICC (b) Pluto . 73

4.4 Effect of static dependences on PolyBench benchmark: A speedup analysis

(c) Par4all (d)Rose (Contd.) . 74

4.4 Effect of static dependences on PolyBench benchmark: A speedup analysis

(e) Cetus (Contd.) . 75

4.5 Effect of loop transformation techniques across different parallelizers :

Speedup measured with 32 threads on PolyBench codes (gemm, syr2k,

syrk, symm, and trmm) . 77

4.6 Effect of Tiling on Pluto and ICC on PolyBench codes: Speedup measured

with 32 threads . 78

4.7 Effect of Unrolling on ICC and Pluto on PolyBench codes: Speedup mea-

sured with 32 threads . 79

4.8 Effect of function inlining on Cetus: Speedup measured with 32 threads 81

5.1 Pre- and post-transformation issues (a) Par4all fails to parallelize DC due

to recursive WriteViewToDisk() (b) Invalid privatization + reduction trans-

formation by Rose (left) and valid manual transformation (right) (c) Rose

produces illegal transformation (return within parallel pragma) (d) Serial

DC code and incorrect for loop initialization by Par4all 88

5.1 Pre- and post-transformation issues (d) Erroneous code transformation by

Pluto (left) and correct manual transformation (right) (e) Serial EP code

(left) and incorrect code transformation by Pluto (Contd.) 89

5.2 Quantitative analysis of NAS parallel benchmarks (NPB) (BT, CG, DC, EP,

FT, IS) . 93

5.2 Quantitative analysis of NAS parallel benchmarks (NPB) (LU, MG, SP, UA)

(Contd.) . 94

xi

5.3 NPB result analysis (a) Parallelization of BT: code snippet from compute_rhs().

Original uses nowait clause, which improves concurrent processing (b)

Parallelization of EP: code snippet from main() - Parallelization of insignif-

icant loop by Pluto . 102

5.3 NPB result analysis (c) Parallelization of CG: code snippet from conj_grad()

(d) Parallelization of MG: code snippet from resid() (Contd.) 103

5.3 NPB result analysis (e) Parallelization of EP: code snippet from main() -

Parallelization of non-supported programming construct in complex nested

(CN) loop (Contd.) . 104

5.4 Effect of static dependences on NPB benchmarks: A speedup analysis (a)

Cetus (b) Par4all (c) Rose . 107

5.4 Effect of static dependences on NPB benchmarks: A speedup analysis (d)

ICC (e) Pluto (Contd.) . 108

6.1 Iteration domain: (a) An example illustration-1 (b) 2D Iteration space . 112

6.2 Scattering function: An example illustration-2 113

6.3 An example illustrating all nine non-affine constructs (NAC) faced by Pluto

(code snippets from Rodinia suite) . 116

6.4 Method to eliminate non-affine constructs (NAC) 123

6.5 Scalar expansion issues and solution (a) Valid scalar expansion (b) Elim-

inating the memory bandwidth bottleneck (c) Two cases where scalar ex-

pansion is invalid . 126

6.6 Making codes amenable to parallelization by elimination method to

port via Pluto (a) Parallelization of adamicAdar (b) Parallelization of

b+tree . 127

6.6 Making codes amenable to parallelization by elimination method to port

via Pluto (c) Parallelization of heartwall (Contd.) 130

6.7 Speedup analysis of Green-Marl (adamicAdar, avg_teen_cnt,

communities, pagerank, sssp_path, rn_sampling,

rdn_sampling, kosaraju) . 133

xii

6.7 Speedup analysis of Green-Marl (sssp, hop_dist, v_cover, conduct)

(Contd.) . 134

6.8 Speedup analysis of Rodinia (heartwall, kmeans, particlefilter,

b+tree, backprop, lavaMD, myocyte, leukocyte) 135

6.9 Speedup analysis of NPB (BT, CG, DC, EP) 136

6.9 Speedup analysis of NPB (FT, LU, MG, SP, UA) (Contd.) 137

7.1 Schematic representation of Rose compiler framework 140

7.2 Suggested solution for the static control part (SCoP) rejection problems in

Pluto (a) Reverse for-loop (b) Updation of for-loop by more than one time

step (c) Irregular loop . 142

7.3 Proposed method for alleviating pitfalls in Pluto (a) Solution-focused auto-

matic parallelization mechanism (b) Profiling 143

7.4 Abstract syntax tree (AST) graph of (a) while-loop (b) for-loop 146

7.5 Flowchart representation of the implementation of analysis and code trans-

formation phase-1 (ACT-1) . 147

7.6 Auto-conversion of while-loop to for-loop (a)Updation at end of the basic

block of while (b) Updation at middle of the basic block of while 148

7.7 Flowchart representation of the implementation of analysis and code trans-

formation phase-2 (ACT-2) . 152

7.8 Example illustration of automatic scalar expansion (a) Data dependence (b)

Illustration for unsupported scalar variables: Loop-carried dependence (c)

Anti dependence . 153

7.8 Example illustration of automatic scalar expansion (d) Output dependence

(e) Nested loop with scalar variable in LHS of S1 (Contd.) 154

7.9 Abstract syntax tree (AST) graph of nested for-loop 159

7.10 Example illustration for automatic conversion of upper to lower bound (a)

Nested upper bound (b) Nested inner replacement 161

7.11 Converting updation by time step one 164

xiii

7.12 Example illustration for automatic conversion of irregular loop to regular

loop . 168

7.13 Automatic code transformation applied to symm benchmark 170

7.14 Automatic code transformation applied to ludcmp benchmark 171

7.15 Automatic code transformation applied to adi benchmark 172

7.16 Parallelization speedup of PolyBench benchmarks after applying to solution-

focused automatic parallelization mechanism (a) symm (b) ludcmp (c)

adi . 173

8.1 Two new approaches to enhance auto-parallelization of Pluto 181

xiv

CHAPTER 1

Introduction

This chapter presents a brief introduction to the importance of parallel programming and

the need for a fully automated framework. It provides a comprehensive description of the

existing auto-parallelizers and their difficulties. This chapter also describes the need to

study the effectiveness of modern parallelizer and the motivation to develop a solution-

focused automatic parallelization mechanism.

1.1 Automatic parallelization
Quest for performance has made multi-core processors mainstream [1]. It becomes vital

for the programmers and algorithm developers to exploit this ubiquitous architecture with

parallel programming. The importance and pervasiveness of multi-core processors and

parallel programming have significantly increased in the last two decades. Utilizing the

potential of multi-core processors through parallel programming is a significant challenge.

Amid several approaches to tame this challenge, a very promising and programmer-friendly

approach is automatic parallelization of sequential codes [2]. Parallel algorithms are de-

veloped in the field of numerical simulations, molecular interaction computation, machine

learning, big data, and many more real-world problems [3]. Manual parallel programming

requires programmer effort in analyzing the region of parallelism which is a time consum-

ing process.

Figure 1.1 depicts a schematic approach for parallelization that elaborates the procedure

to generate an efficient parallel code. Taking the general procedures for parallelization into

consideration, it is clear that loop parallelization plays a major role since 95% of the execu-

tion time is because of loops. Hence, parallelizing the compute-intensive loop improve the

speedup of the code. However, the speedup of the application may get affected by load bal-

ancing, synchronization, memory usage, dependences in code and many more [4]. One of

the important downside is dependences across statement instances, which can be resolved

using several tuning techniques.

1

1.1. Automatic parallelization

Identifying Parallelism

Dependence Analysis

Loop Optimization

Code Generation

Removing Dependences
(Loop Transformations)

Input Code

Target
Parallel Code

Figure 1.1: Schematic representation of parallelization procedure

A fully parallelizable loop comprising intra-iteration dependence is referred below:

1 f o r j = 1 , N

2 A[j] = A[j] + B[j]

The code snippet shows that for any value j1, j2,...,jN , we can compute the value of

A[j1]....A[jN] simultaneously. For instance, the result of A[j1] can be computed at the

same time when A[j2] is calculated without affecting the net result.

It is evident that all loops are not parallelizable, especially when there exists dependence

between statement instances. For instance, the code referred below shows the loop-carried

data dependence.

1 f o r j = 1 , N

2 A[j] = A[j−1]

The resultant A[j], requires the written value from the previous iteration j−1. This loop

can be parallelized after applying dependence removal techniques. Hence, for a complete

2

1.2. Motivation

parallelization of the loop, dependence analysis and removal is necessary. This mechanism

has become a significant concern for parallelization.

Loop transformation optimizes the code by increasing execution speed and reducing the

overhead in loops. In case if the loop iterations are dependant, it is vital to eliminate those

dependences by applying appropriate loop transformation techniques and finally generate

the parallel code. Auto-parallelizersi eliminate the need for a programmer to transform a

sequential code into a parallel code, which is quite attractive. However, parallelizers should

be capable of performing these sequence of parallelization procedure automatically by re-

taining the semantic of the code. Therefore, researchers focus on developing a fully auto-

mated frameworks to complement manual parallelization [2, 5, 6]. Several of the existing

auto-parallelizers such as Cetus [7], Par4all [8], and Rose [9] (parallelizers are listed in Ta-

ble 2.1 in Chapter 2) perform source-to-source transformation with the insertion of parallel

directives. These tools perform the parallelization procedure automatically and do source-

to-source transformation in order to reduce the overall workload of programmers. How-

ever, there are several reasons these auto-parallelization fails, which this thesis discusses.

For instance, complex coding patterns are not handled by existing auto-parallelizers.

1.2 Motivation
Although parallelizers find parallelism, they do not guarantee that the generated parallel

code results in increased performance. Hence, automatic parallelization of sequential pro-

grams combined with performance tuning is an essential alternative to manual paralleliza-

tion. Such a fused mechanism exploits the performance potential of today’s multi-core

processors. The studies related to evaluation of parallelizing compilers; tuning techniques

and their importance; and also the investigations that showed irregular coding patterns af-

fecting performance of parallelizers are reported in the literature.

Earlier studies of the parallelizing compilers using "PERFormance Evaluation for Cost-

effective Transformations" (PERFECT ii) benchmarks performed a detailed analysis of

the code restructuring techniques. The techniques include induction variable elimination,

iAuto-parallelizers is also referred as tools/frameworks/parallelizers.
iiThe PERFECT benchmarks is a suite of 13 Fortran77 programs comprising 60000 lines of source code.

They represent applications in a number of areas of engineering and scientific computing.

3

1.2. Motivation

scalar expansion, forward substitution, strip-mining, and loop interchange. The studies

found that usage of some of the techniques showed improvements, and that scalar expan-

sion led to positive results [10]. An effectiveness study on Polaris compiler with open

multi-processing (OpenMP) [11] parallel code using PERFECT benchmarks proclaimed

performance lag in small parallel loops. The work has illustrated the importance of reduc-

tion operation, which resulted in a moderate (10%) performance improvement [12]. An-

other study have been carried out using an automatic parallelizing compiler to parallelize

computational fluid dynamics (CFD) codes. It has revealed that automatic code conversion

along with user-inserted directives and compiler analysis depicted 2.5 times better speedup

than only the user-inserted directives [13]. A few works evaluated the overall performance

of parallelizing compilers with improved loop timings [14, 15] due to restructuring tech-

niques. In these works, the restructured loops have shown an execution time lesser than

70% of the vectorized loop.

Toru [16] claims that without any loop transformation a program does not have much

coarse-grain parallelism between different loops. Recent research has therefore proposed

automatic tuning techniques to be essential part of the auto-parallelizers with the aim to

overcome the performance degradation [17, 18, 19, 20, 21]. These studies do not evaluate

the effect of loop transformation techniques such as tiling, fission, fusion, unrolling

and peeling on parallelization.

Apart from dependence issues, the primary reason for incomplete parallelization

by auto-parallelizers is due to complex coding style. Earlier parallelizing compilers such

as Paradigm [22], Polaris [23], Rice Fortran D [24], Stanford University Intermediate For-

mat (SUIF) [25], and Vienna Fortran Compiler (VFC) [26] could easily parallelize Fortran

codes. The reason is Fortran provides stronger guarantees about aliasing than languages

such as C which support arbitrary usage of pointers. However, after the development of

parallelizers based on C (discussed in Chapter 2), and due to the complex usage of the

struct, pointers, and arrays, the codes have become unanalyzable by auto-parallelization

frameworks. It sometimes stops the code from parallelization abruptly without spotting the

source of error. Eventually, such a cause leads to performance degradation.

4

1.2. Motivation

PETRA, a portable performance evaluation tool, found that parallelizers are reasonably

successful in about half of the given science-engineering programs. It also illustrated that

some of the algorithms are dependence-free, but the complex program constructs led to a

conservative analysis [27].

Detailed literature survey on the existing parallelization techniques and parallelizing

compilers concludes that it is necessary to investigate the ability of the tools in addressing

loop parallelization issues [27, 28]. Presently, there are many open-source and commercial

tools available that are widespread namely, Cetus [7], Par4all [8], Rose [9], Intel C com-

piler (ICC) [29], and Pluto [20] (discussed in Chapter 2). A complete understanding of

such tools is vital for both researchers and developers. So far no such examination

has been made on present-day parallelizing compilers and its underlying techniques.

Detailed study on the support of different programming constructs by popular tools is un-

available. Empirical evidence of the common loop transformation techniques and their

effectiveness in parallelization of popular benchmarks is missing. Hence, such a study

would be extremely beneficial to identify the relative merits and demerits of various widely-

used auto-parallelization frameworks. In addition, it would help the researchers or users in

choosing the appropriate framework to improve the performance of an application.

In this thesis, an attempt has been made to address the shortcomings of the Pluto par-

allelizer. It is found that polyhedral parallelizers such as Pluto are powerful and perform

various optimizations and transformations for improved performance. However, for the

real-world problems arising due to several non-affine issues and general limitations, the

code becomes unanalyzable by these frameworks. Hence, a method was introduced to

eliminate the non-affine issues in irregular and general-purpose programs to make the code

amenable to parallelization. Another solution-focused automatic parallelization mecha-

nism was introduced to alleviate a few of the parallelization pitfalls that occur specifically

for the polyhedral parallelizer. In this approach, we perform transformation by modifying

the abstract syntax tree (AST) to elucidate the problems. The above two approaches are

aimed at solving the problems pertaining to the polyhedral parallelizer, Pluto, which is an

open-source tool.

5

1.3. Objectives

1.3 Objectives
Automatic parallelization using OpenMP programming model is the focus of the present

study, and the objective of the thesis are as follows:

1. To bring out the importance of parallelization mechanism (dependence analysis and

loop transformation) in automatic parallelization.

2. To provide a comprehensive performance evaluation of modern parallelizing compil-

ers namely, Cetus, Par4all, Rose, ICC, and Pluto and their underlying parallelization

techniques.

3. Finding the capabilities and limitations of the above-mentioned auto-parallelization

frameworks in order to bring out their ability in handling different dependence prob-

lems. Also to study the way in which the loop transformation techniques are applied,

and complex coding styles are handled by auto-parallelizers.

4. To bring out the limitations of polyhedral parallelizer, Pluto and to eliminate non-

affine problems in Pluto during parallelization of irregular and general-purpose pro-

grams.

5. To develop a new solution-focused auto-parallelization mechanism in addressing the

parallelization limitations pertaining to the polyhedral parallelizer, (Pluto).

1.4 Organization of the thesis
Remaining part of the thesis is organized into seven chapters. The details of the content

in each chapter are:

• Chapter 2 presents the literature review on the study of existing parallelizing com-

pilers and their techniques. It also brings out the significance of loop transformation

techniques. The auto-parallelizers from past two decades are listed, compared and

6

1.4. Organization of the thesis

discussed in detail. The reason for choosing five auto-parallelizers namely Cetus,

Par4all, Rose, ICC, and Pluto for the study are illustrated.

• Chapter 3 presents the importance of parallelization mechanisms i.e. dependence

analysis and loop transformations. Chapter 3 also brings out the different dependence

types (loop-independent and loop-carried) and the way in which tuning techniques

are applied to handle such dependences. It also summarizes the limitations of paral-

lelizing compilers in handling different complex programming constructs. Further,

it discusses the potential solutions derived for improving the usage of tools based on

synthetic codes.

• Chapter 4 emphasizes the quantitative effect on PolyBench suite (comprises 28 dis-

tinct applications) by five different auto-parallelizers. The support matrix of the

frameworks in parallelization of PolyBench codes is explained in detail. The ef-

fectiveness of the transformation was examined and explained in this chapter. It

discusses performance by categorizing benchmarks based on different dependence

types namely, (i) loop-independent dependence (ii) loop-carried dependence due to

scalar/vector.

• Chapter 5 emphasizes the quantitative effect on NAS parallel benchmarks (NPB)

(comprises 10 distinct applications) by five different auto-parallelizers. It describes

the support matrix of NPB over different frameworks. This chapter also describes

the detailed analysis to elucidate the causes for the tools inability in parallelization.

In-depth evaluation analysis of NPB results are brought out.

• In Chapter 6, the real-world codes namely Green-Marl, Rodinia, and NPB are exam-

ined and in total nine parallelization issues pertaining to Pluto tool are emphasized,

viz. 1) scalar variables in `-value of a statement, 2) constructor calls, 3) function

calls, 4) declaration statements, 5) non-affine loop bound, 6) non-affine IF construct,

7

1.4. Organization of the thesis

7) scope resolution operator, 8) non-affine array subscripts, and 9) file I/O opera-

tions. This chapter introduces a method to eliminate these issues to make the code

amenable to parallelization using Pluto. It is a three-step process that involves pre-

elimination, in-elimination, and post-elimination. The performance evaluation of the

parallelized code is brought out that highlights the usage of this method.

• In Chapter 7, an automatic methodology has been developed to address the compli-

cations in the polyhedral parallelizer, Pluto. Overall, five pitfalls are explored and

resolved in this chapter, namely, (i) while-loop (ii) scalar variables in the `-value (iii)

reverse for-loop (iv) for-loop updation by more than one-time step, and (v) irregular

loop. It discusses three phases of the proposed method namely, Profiling, Analy-

sis and Code Transformation (ACT), and Parallelization. Further, the performance

analysis on the parallelized code are also studied in detail.

• Chapter 8 presents the highlights of this dissertation, conclusion derived, important

findings and illustrates the scope for the future work.

8

CHAPTER 2

Survey on Existing Parallelizing

Compilers and their Primary

Techniques

This chapter discusses the literature review on the existing parallelizing compilers and their

techniques. It also introduces five parallelization frameworks namely, Cetus, Par4all, Rose,

Intel C compiler (ICC), and Pluto. It discusses in detail the underlying methodologies of

these frameworks with a qualitative analysis.

2.1 Related works
Earlier and recent studies focus towards automatic parallelization. The goal of auto-

matic parallelization is to complement hand-optimized code. Researchers have provided

empirical evidence on the performance metrics of earlier parallelizing compilers, and also

the importance of loop optimization techniques. Following sections briefly discusses the

literature survey carried out.

2.1.1 Earlier studies on the performance evaluation of auto-parallelizers
Several studies had been conducted to evaluate the performance of auto-parallelizers.

Nobayashi and Eoyang [14] performed comparative analysis on automatic vectorizing com-

pilers. Their work illustrates that loops which use restructuring techniques enable the com-

piler to achieve greater than 70% speedup than the vectorized loops. Shen et al. [15] pre-

sented an evaluation of parallelizing compilers which focuses on data dependence analysis

and a few parallel execution techniques. Several studies [10, 12, 30, 31] assessed the effec-

tiveness of parallelizing compilers and their techniques using PERFECT benchmarks.i The

iThe PERFECT benchmark is a suite of 13 Fortran77 programs consisting of 60000 LOC. They represent
applications in many areas of engineering and scientific computing.

9

2.1. Related works

studies emphasized that scalar expansion and reduction replacement are critical in achiev-

ing significant performance gains in a large portion of the benchmark suite.

Hisley et al. [13] evaluated the effectiveness of silicon graphics (SGI) compiler in par-

allelizing CFD codes. The authors have reported that combining automatic parallelization

capabilities of the compiler with user-inserted compiler directives showed nearly 2.5 times

better speedup than only the user-inserted directives.

Eigenmann et al. [5] studied the Kap and Vast parallelizing compiler using PERFECT

benchmarks. They assessed that parallelization of reduction operations and the substitution

of generalized induction variables were the primary contributors to performance.

This thesis has similar goals for the modern set of parallelizing frameworks, and it

assesses them by focusing primarily on the various kinds of loop dependences

2.1.2 Automatic parallelization techniques on irregular and

general-purpose programs
Scientific applications for high performance computing (HPC) can be incredibly com-

plex, in general, it contains irregular control constructs with complicated dependence struc-

tures. Therefore, it is difficult for the compilers to analyze and to perform optimiza-

tions [27, 32]. Such issues are especially applicable for source-to-source parallelizers.

Earlier works deal with improving the data dependence analysis techniques for program

parallelization in irregular applications. Irregular codes comprising loop bounds or array

subscript that are non-linear expressions were not handled by traditional dependence tests.

Blume et al. [33, 34] proved such inequalities using range test, powerful symbolic analysis

and constant propogation techniques. The effectiveness of range test were analyzed and the

results had shown that optimized codes were close to the hand parallelized versions with

maximum speeudp of 43×. Complementing to the work of [33] and [34], Kyriakopoulos

et al. [35] and [36] had introduced set of polynomial-time techniques to identify and handle

complex expressions such as nonlinear and symbolic expressions, complex loop bounds, ar-

rays with coupled subscripts, and if-statement constraints. Evaluation results show that this

technique had produced the highest degree of parallelization among all data dependence

10

2.1. Related works

tests. Banerjee et al. [37] presented an overview of automatic program parallelization tech-

niques which covers dependence analysis techniques. The authors have surveyed several

experimental studies on the effectiveness of parallelizing compilers. Automatic paralleliza-

tion techniques that focus on irregular and general-purpose programs were developed and

studied earlier [28, 38, 39, 40].

In this dissertation, modern parallelizers are examined using NAS parallel benchmarks

(NPB), Green-Marl, and Rodinia, that comprises of several problems including irregular

patterns, imperfectly nested loops, dependences, and other code complexity issues. The

inability of the tools on parallelization of complex coding problems are investigated, and

potential solutions were recommended. The situations where user-intervention was needed

is highlighted.

2.1.3 Loop transformation and its significance
Earlier work on the tuning of automatically parallelized applications has described the

significance of loop transformations [16, 18, 19] which helped in enhancing coarse-grain

parallelism. The authors report that tuned application programs showed better results than

only parallelize code. Rauchwerger [41] discussed the two essential and useful transforma-

tions namely, privatization and reduction parallelization applied to the loop. Liu et al. [42],

Li [43], Tu and Padua [44] revealed that array privatization showed good performance im-

provement. Kim et al. [45] examined the performance analysis of Polaris compiler using

PERFECT benchmarks. The authors found that reduction operation can make a significant

improvement in speedup.

The evaluation results in this study also found that privatization and reduction variable

recognition result in substantial performance improvement during auto-parallelization.

Bacon et al. [46] evaluated a large number of compiler transformations and high-

level program restructuring techniques. The authors demonstrated that these transfor-

mations could yield high performance when applied appropriately. Studies on loop fu-

sion [47, 48, 49] and loop fission [50] have shown improved parallelism due to data local-

ity. Also, loop fusion reduced the use of temporary arrays. Loop unrolling is a well-known

loop transformation used in optimizing compilers; it improves instruction level parallelism.

11

2.1. Related works

Davidson et al. [51] and Sarkar et al. [52] evaluated the importance of loop unrolling.

In [51], dynamic memory disambiguation (DMD) in conjunction with loop unrolling, reg-

ister renaming, and static memory disambiguation (SMD) showed an increase in the in-

struction level parallelism (ILP) of memory intensive benchmarks by as much as 300%

over loops. In [52], the code generated by IBM XL Fortran compiler has shown a more

substantial performance improvement of 2.2× speedup on matrix multiply, and an average

1.08× speedup on seven of the SPEC95fp benchmarks due to unrolling of nested loops. A

set of former works [21, 53] shows the performance impact of loop tiling which provides

load balance, locality, and parallelism. Another important loop transformation technique

is loop peeling [54, 55] which relies on moving computations in early iterations out of the

loop body such that the remaining iterations execute in parallel.

In this study, the polyhedral parallelizer, Pluto supports loop peeling. They are more

powerful [56, 57] in performing automatic optimization, parallelization, and dependence

analysis [58]. In this thesis, experimental evidence shows that the use of the model in

parallelization has shown a significant gain in speedup.

The close to this thesis is a study by Mustafa and Eigenmann [27]. These authors

evaluated the performance of five parallelizing compilers (Cetus, OpenUH, Rose, Portland

Group Inc (PGI), and ICC). They studied the individual techniques of the parallelizers.

Performance studies on Cetus revealed that the parallelized code along with tuning proves

beneficial in achieving considerable performance [17, 27].

In addition to individual techniques of the parallelizers, the common loop transforma-

tion techniques were also examined namely loop tiling, loop fusion, loop unrolling, loop

peeling, and loop fission. In this thesis, polyhedral parallelizer, Pluto, and parallelization

infrastructure for parallel systems (PIPS) based parallelizer, Par4all are studied in detail.

Overall, this dissertation contributes in (i) performance evaluation of modern par-

allelizing compilers, (ii) investigating the ability of the tools in addressing the depen-

dence structures, (iii) illustrating the role of loop transformation techniques in gain-

ing speedup along with parallelization, (iv) studying the auto-parallelizer behavior in

parallelizing regular as well as irregular programs, and (v) introducing methods to

improve the usage of Pluto tool.

12

2.2. Auto-parallelizers from past two decades

2.2 Auto-parallelizers from past two decades
Over the past two decades, researchers and developers have proposed different types

of frameworks (automatic/semi-automatic/model) in order to reduce the manual effort.

Table 2.1 shows the list of some of the research and industrial compilers that were

contributed to the parallel computing community. The table also illustrates the compara-

tive study on the following tools, Cetus, Par4all, Pluto, Rose, ICC, Parallware, low level

virtual machine (LLVM) Polly, ParaWise, ParaGraph, Stanford university intermediate for-

mat (SUIF), gnu C compiler (GCC) Graphite and Polaris. These frameworks support input

languages, C/FORTRAN/C++ and generate target parallel code, OpenMP/OpenCL/multi-

threaded code/open accelerator (OpenACC). Some tools generate compiler specific target

code namely, Polaris, SUIF and LLVM Polly. Among these surveyed frameworks, the ma-

jority support symmetric multiprocessing (SMP), while few support graphical processing

unit (GPU). Practical implementation of the message passing interface (MPI) [73] based

tool is unavailable except ParaWise which is a semi-automatic and proprietary software.

Proposed models on the development of OpenMP based tool, ParaGraph; and MPI based

tool, SUIF is not implemented. Although these existing parallelizers offer considerable

benefits, they still fall short of attaining manual transformation performance. In many pro-

grams, parallelizing compilers are only finding partial parallelism. Several parallelizers do

not utilize all the static information available, while several others fall short of modeling

precision. It leads to either missed parallelism opportunities or unwanted parallelization of

sequential codes.

As a consequence, compared to the original sequential version, the auto-parallelized

code may lead to parallelization overheads and may exhibit poorer performance. Hence,

this thesis also focuses towards finding the capabilities and limitations of modern auto-

parallelizers. The following section briefly describes the currently active OpenMP based

parallelizers under study.

13

2.2. Auto-parallelizers from past two decades

Table 2.1: Comparisons of auto-parallelizers from past two decades reported
in the literature

Tools L.D. Input Target Availability Reference

Pluto 2018 C OpenMP, CUDA Open-source [20, 21]

LLVM Polly 2018 C LLVM IR code Open-source [59]

ICC 2018 C & FORTRAN Multithreaded code Proprietary [29]

Rose 2018 C & C++ OpenMP Open-source [9, 60]

Parallware 2017 C OpenMP, OpenACC Proprietary [61, 62]

Cetus 2017 C OpenMP Open-source [7, 63, 64, 65]

ParaWise* 2016 C & FORTRAN OpenMP, MPI Proprietary [66]

Par4all 2015 C & FORTRAN
OpenMP, CUDA,

OpenCL
Open-source [8, 67]

GCC Graphite 2012 C Multithreaded code Open-source [68]

ParaGraph 2010 C OpenMP Model [69]

Polaris 2002 FORTRAN KAP Proprietary [23, 70]

SUIF 1999 C & FORTRAN SUIF Open-source [25, 71]

SUIF 1999 C & FORTRAN MPI Model [72]

L.D. = Last Development, Input = Input language supported, Target = Generated target parallel

code, Model = Model proposed and no implementation, *Semi-automatic parallelizer

14

2.3. Overview of the modern auto-parallelizers and their characteristics

Table 2.2: Popular auto-parallelizers and their methodologies reported in the
literature

Tools Dependence Analysis Framework(s) Used

Cetus Banerjee [7], Range [7] ANTLR [74], YACC [75], Bison [76]

Par4all Dependence Graph [67] PIPS Framework [77]

Rose Dependence Graph [60] EDG Front-end [60]

ICC Data Flow Analysis [78] Proprietary Parallelization Framework

Pluto ISL [79], CANDL [80] Cloog [81], Clang [82], Openscop [83]

2.3 Overview of the modern auto-parallelizers and their characteristics
Five parallelization frameworks viz. Cetus, Par4all, Rose, ICC, and Pluto are intro-

duced along with their methodologies. The evaluation study in the upcoming chapters

uses these five parallelizers. The selection criteria for these tools are (i) OpenMP based

(ii) widely used and, (iii) non-compiler specific. Typically OpenMP supports for-loop

parallelization.

Table 2.2 presents an overview of auto-parallelizers and its underlying methodologies

viz. dependence techniques and the frameworks adopted by distinct tools. Note: The

methodologies described in the table are obtained from the respective papers pertaining to

the tools. While all others are source-to-source transformers, ICC works at the intermediate

representation (IR) level and does not reveal the transformed code. It prints explicitly a

summary of parallelized transformations performed.

2.3.1 Cetus
Cetus is a source-to-source built-in C parser written in another tool for language recog-

nition (ANTLR) with intermediate representation (IR) classes and optimization passes. Ce-

tus has a more memory-efficient IR, and it parses the source code quickly [65]. It has an

array data-dependence testing framework that includes loop-based affine array-subscript

15

2.3. Overview of the modern auto-parallelizers and their characteristics

testing. Cetus uses Banerjee-Wolfe inequalities [84, 85] for dependence testing; utilizes

yet another compiler-compiler (YACC) and Bison for parsing.

Cetus [7, 63, 65] performs analysis and transformation passes which include a set of

general passes and parallelization passes. It performs the following checks to identify if a

loop is parallelizable: (i) whether the loop is a canonical loop, (ii) whether function calls

within the loop are without side-effects, (iii) whether control-flow modifiers are not present

within the loop body, and (iv) whether the loop increment is an integer constant. Cetus

includes the following general passes and parallelization passes:

• The symbolic analysis that manipulates symbolic expressions, which is essential

while dealing with real programs

• Points-to alias and use-def chain analyses [7]

• Function inlining in place of complete inter-procedural analysis and transforma-

tion [7]. However, the parallel coverage tends to be less when using selective in-

lining.

• Several parallelization passes such as induction variable recognition and substitution,

reduction recognition and transformation, scalar and array privatization [42, 43, 86],

data dependence analysis [86], loop parallelizer, and code generator [63] are available

in Cetus.

Not every loop should be parallelized. Cetus performs profitability tests for eliminating

the smaller loops that are likely to cause overheads. The framework does not parallelize

loops with a workload below a certain threshold. If the workload expression is not evalu-

ated at compile time, the technique uses a runtime OpenMP IF construct technique, called

model-based profitability test. Cetus does not support nested parallelism and parallelizes

only the outer loop. In addition, Cetus has an easy-to-use graphical user interface (GUI)

which makes the parallelization process user-friendly.

16

2.3. Overview of the modern auto-parallelizers and their characteristics

2.3.2 Par4all
Par4all [8, 67] is a source-to-source compiler which supports C and FORTRAN as the

input language and can generate OpenMP or compute unified device architecture (CUDA) [87]

or open computing language (OpenCL) [88] code. It follows the parallelization infras-

tructure for parallel systems framework (PIPS) [77]. PIPS and programmable pass man-

ager together perform various program analyses, locate parallel loops and generate parallel

codes [8]. It delivers advantage from its inter-procedural capabilities such as memory ef-

fects [89, 90], reduction detection, parallelism detection, and also from polyhedral analyses

such as convex array regions [91] and preconditions. Par4all exploits polyhedral compiler

collection (POCC) [92] for optimizing loops. It supports memory access transformations

to improve locality [8].

In order to obtain a good balance between portability and performance, Par4all relies on

an intermediate representation of the input program. It allows increasing code portability

also enabling intermediate code inspection and editing to simplify both debugging and

low-level code optimization. Par4all is very efficient for low-level optimization and code

generation purposes, primarily when it collects coding rules (e.g., no pointers) and hints

(e.g., allocation of functions onto resources) that simplify its work to apply parallelization

operations. Par4all implements fine-grained parallelism [93]. Similar to Cetus, Par4all does

not support nested parallelism. However, unlike Cetus, Par4all may choose to parallelize

an inner loop depending upon an inbuilt heuristic cost function.

2.3.3 Rose
Rose [9, 60] is an open-source compiler framework to build source-to-source code

transformations for C, C++, FORTRAN, OpenMP, and unified parallel C (UPC) appli-

cations. Rose comprises multiple front-ends, implemented using Edison Design Group

(EDG), a mid-end operating on its internal IR, and backends regenerating (unparsed) source

code from IR. The IR encompasses abstract syntax tree (AST), control flow graphs (CFG),

and symbol table with various interfaces for quickly building source-to-source translators.

Rose also includes several program analyses such as control-flow and data-flow analy-

ses, data dependence, and system dependence analyses. Rose has developed a wide range

17

2.3. Overview of the modern auto-parallelizers and their characteristics

of transformations and optimizations via manipulating AST, including partial redundancy

elimination, constant folding, inlining, outlining, automatic parallelization, and various

loop transformations. Rose comprises the autoPar tool, which is an implementation of au-

tomatic parallelization using OpenMP. It can automatically insert OpenMP 3.0 directives

into serial C/C++ codes. In addition, Rose can also perform several loop transformations

such as fusion, fission, interchange, unrolling, blocking, privatization and reduction.

2.3.4 ICC
ICC, a compiler from Intel [29], is capable of performing powerful code transfor-

mations, including auto-parallelization. The code transformations and optimizations in

ICC mainly include code restructuring and inter-procedural optimizations, automatic par-

allelization, and vectorization. It comprises high-level and scalar optimizations such as

loop control and data transformations. Unlike other tools, ICC is not a source-to-source

parallelizer. It examines the data-flow of the code fragments and generates multi-threaded

code. ICC relies on an analytic engine for deciding when it is profitable to parallelize a

loop. Through a user-defined threshold, ICC tries to distribute the overhead of creating

multiple threads versus the amount of work at hand to be shared among the threads. ICC

requires the number of iterations to be known before entry into a loop; if not, the compiler

treats the loop to be computationally less intensive for parallelization. Also, the compiler

performs data-flow analysis to ensure correct parallel execution. ICC performs loop block-

ing, vectorization, data prefetch, scalar replacement, data alignment, optimization level

(On), and subroutine inlining [29].

2.3.5 Pluto
The polyhedral parallelizer, Pluto [20, 21] is designed for programs that deal with lin-

ear algebra, linear programming, and high-level transformations. When the data access

functions and loop bounds are affine combinations of the enclosing loop variables and pa-

rameters, then the polyhedral model is relevant for loop analysis and transformations. Pluto

uses the scanner, parser, and dependence tester from the LooPo infrastructure, which is a

polyhedral source-to-source transformer. The portion of code to be parallelized is called

the static control part (SCoP) [94] and it contains essential information to build a complete

18

2.4. Qualitative study of auto-parallelization frameworks

Table 2.3: Compiler options for auto-parallelization of sequential code

Parallelizer Compiler command to generate parallel code

Cetus via GUI*

Par4all p4a <input>

Rose autoPar -c <input>

ICC icc -parallel -par-report:3 <input>

Pluto polycc –parallel <input>

* No command line interface

source-to-source framework in a polyhedral model [83]. The Clan tool [94, 95] acts as

a front end and automatically translates a SCoP to an OpenScop [83], which is a poly-

hedral, matrix-based representation. ‘Chunky loop generator’ (CLooG) [81] works as the

back-end compiler which improves code locality in the generated parallel code with sev-

eral program transformation facilities and scheduling [96]. It creates the loop by scanning

the Z-polyhedra output from Clan. Pluto uses integer set library (ISL) [79] by default to

compute dependences. Dependence analysis can be performed by using ‘chunky analyzer

for dependences in loops’ (CANDL) [56]. Pluto performs affine transformation analysis

for efficient loop tiling, loop fusion, and loop unrolling. It implements multipipe which

extracts multiple degrees of parallelism [97]

2.4 Qualitative study of auto-parallelization frameworks
Investigating the differences in parallelization of auto-parallelizers under study is nec-

essary. Hence, this section provides a qualitative comparison of various features supported

by the frameworks. First, a simple example parallelized by all the frameworks is presented,

and then the variations in their support functionality are highlighted (Figure 2.1).

Figure 2.1(a) shows a sequential for-loop with loop-independent (intra-iteration) de-

pendence. The qualitative comparison illustrates how this small example is transformed

19

2.4. Qualitative study of auto-parallelization frameworks

by each of the frameworks, namely, Cetus (version 1.3.1), Par4all (1.4.6), Rose (0.9.9.47),

ICC (15.0.0) and Pluto (0.11.4). Note: ICC does not output the transformed source code,

but works at the IR level. For each of the tools’ transformed OpenMP codes, a snippet of

the corresponding Intel assembly code generated by gcc is also presented. Table 2.3 lists

the compiler options that were used to obtain the parallelized code with the aid of various

parallelizers.

Figure 2.1 shows that all tools can parallelize this simple loop (Figure 2.1(a)), and insert

the OpenMP pragma for the for-loop. However, there are variations in the transformations

even for this simple example. These variations stem from the techniques used by the tools,

which are discussed next.

Cetus: The transformed code from Cetus shown in Figure 2.1(b) contains an if condi-

tion, which is an artifact of a cost model which Cetus uses to identify if a loop is paralleliz-

able (section 2.3.1). This technique forbids parallelization of codes with very few iterations

and accesses and compensates for the overhead of thread-creation, etc. The assembly code

shows the comparison with the constant value 10000 which is the default threshold cost.

Par4all: Unlike others, Par4all does not explicitly mark the loop-index i to be a pri-

vate variable. While this does not change the behavior, as, by default, the loop indices are

considered private, this shows that Par4all does not look for opportunities for privatiza-

tion. It forces the runtime to assume variables to be shared, necessitating synchronization

conservatively. Besides, it might lead to an overall reduction in their performance. The

assembly code listed in Figure 2.1(c) shows that the OpenMP compiler inserts a call to

GOMP parallel functionii

Rose: Rose performs transformation of the code similar to other frameworks as de-

picted in Figure 2.1(d), except for the usage of firstprivate. Usage of firstprivate marks

variables n, C, and E as private, but copies their initial values from the outer scope (from

iiThis is invoked when gcc is linked with -fopenmp. Call to this function generates efficient OpenMP
applications.

20

2.4. Qualitative study of auto-parallelization frameworks

(a) Original code

1 f o r (i = 0 ; i < n ; i ++)
2 {
3 A[i] = B[i] + C ;
4 D[i] = A[i] + E ;
5 }

(b) Cetus

1 # pragma omp p a r a l l e l f o r \ \
2 i f ((1 0 0 0 0 < (1L+ (4L*n)))) \ \
3 p r i v a t e (i)
4 f o r (i =0 ; i <n ; i ++)
5 {
6 A[i] = (B[i] +C) ;
7 D[i] = (A[i] +E) ;
8 }

1 . . .
2 cmpq $10000 , %rax
3 s e t g %d l
4 movq −144(%rbp) , %rax
5 movq %rax , −64(% rbp)
6 movq −128(%rbp) , %rax
7 movq %rax , −56(% rbp)
8 movl %edx , %eax
9 x o r l $1 , %eax

10 movzbl %al , %edx
11 l e a q −64(%rbp) , %rax
12 movl $0 , %ecx
13 movq %rax , %r s i
14 movl $main . _omp_fn . 0 , %e d i
15 c a l l GOMP_ p a r a l l e l
16 . . .

(c) Par4all

1 # pragma omp p a r a l l e l f o r
2 f o r (i =0 ; i <= n−1 ; i += 1)
3 {
4 A[i] = B[i] +C ;
5 D[i] = A[i] +E ;
6 }

1 . . .
2 movq %rax , −104(% rbp)
3 movq −144(%rbp) , %rax
4 movq %rax , −64(% rbp)
5 movq −128(%rbp) , %rax
6 movq %rax , −56(% rbp)
7 l e a q −64(%rbp) , %rax
8 movl $0 , %ecx
9 movl $0 , %edx

10 movq %rax , %r s i
11 movl $main . _omp_fn . 0 , %e d i
12 c a l l GOMP_ p a r a l l e l
13 . . .

First column denotes the transformed code and second column denotes the assembly code

Figure 2.1: Parallelization of ((a) Original code) by various frameworks (b) Cetus (c)
Par4all, (continued in next page)

21

2.4. Qualitative study of auto-parallelization frameworks

(d) Rose

1 # pragma omp p a r a l l e l f o r \ \
2 p r i v a t e (i) f i r s t p r i v a t e (n , C , E)
3 f o r (i =0 ; i <= n−1 ; i += 1) {
4 A[i] = B[i] + C ;
5 D[i] = A[i] + E ;
6 }

1 . . .
2 c a l l GOMP_ p a r a l l e l
3 movq −64(%rbp) , %rax
4 movq %rax , −136(% rbp)
5 movq −56(%rbp) , %rax
6 movq %rax , −128(% rbp)
7 . . .

(e) ICC

1 LOOP BEGIN a t sample . c (3 4 , 3)
2 < P e e l e d >
3 LOOP END
4 LOOP BEGIN a t sample . c (3 4 , 3)
5 remark #17109 : LOOP WAS AUTO−PARALLELIZED
6 remark #17101 : p a r a l l e l l oop s h a r e d = { } p r i v a t e ={ }
7 f i r s t p r i v a t e ={ B C A E D i } l a s t p r i v a t e ={ } \ \
8 f i r s t l a s t p r i v a t e ={ } r e d u c t i o n ={ }
9 LOOP END

1 . . .
2 c a l l __kmpc_ok_to_fork
3 t e s t l %eax , %eax
4 j e . . B1 . 1 5 # Prob 50%
5 movl $L_main_27__hpo_ th readed_ loop0_2 . 2 6 , %edx
6 l e a (%r s p) , %r c x
7 movl $. 2 . 3 _ 2 _ h p o _ l o c _ s t r u c t _ p a c k . 2 8 , %e d i
8 . . .
9 movq $0 , 8 (%r s p)

10 c a l l _ _ k m p c _ f o r k _ c a l l
11 . . .

(f) Pluto

1 i f (n >= 1) {
2 l b p =0 ;
3 ubp=n−1 ;
4 # pragma omp p a r a l l e l f o r \ \
5 p r i v a t e (lbv , ubv , t 2)
6 f o r (t 1 = l b p ; t 1 <=ubp ; t 1 ++)
7 {
8 A[t 1] = B[t 1] + C ; ;
9 D[t 1] = A[t 1] + E ; ;

10 }
11 }

1 . . .
2 movl %eax , −16(% rbp)
3 movq −120(%rbp) , %rax
4 movq %rax , −192(% rbp)
5 movq −112(%rbp) , %rax
6 . . .
7 l e a q −192(%rbp) , %rax
8 movl $0 , %edx
9 movq %rax , %r s i

10 movl $main . omp_fn . 0 , %e d i
11 c a l l GOMP_ p a r a l l e l _ s t a r t
12 . . .

First column denotes the transformed code and second column denotes the assembly code

Figure 2.1: Parallelization of ((a) Original code) by various frameworks (d) Rose
(e) ICC (f) Pluto (Contd.)

22

2.4. Qualitative study of auto-parallelization frameworks

outside the parallel scope). The assembly listing shows that there are several movq instruc-

tions after the call to GOMP parallel which is a deviation compared to other parallelizers.

ICC: ICC reports only the diagnostic information. However, this feature can be con-

trolled by using -par-report:n. When n = 3, it informs the auto-parallelizer to

report the diagnostic messages for loops that were successfully and unsuccessfully auto-

parallelized. The report provides additional information about any proven or assumed de-

pendences inhibiting auto-parallelization. Similar to Rose, ICC also uses firstprivate

clause. However, the assembly code for ICC looks quite different compared to other frame-

works; this is primarily due to ICC working at a lower level code form (IR) compared to

other tools (source). It uses KMPC library routines to create threads (Figure 2.1(e)). Inter-

estingly, it also inserts a comment (# Prob 50%) about branch prediction.

Pluto: Pluto does not use a cost model, and in fact, inserts a condition n >= 1 as

shown in Figure 2.1(f). Thus, it does not care for the thread creation overhead. However,

the number of private variables used by Pluto is relatively large. The assembly code reveals

that there are several movq instructions added for the additional private variables. Efficient

execution of such a transformed code relies heavily on compiler optimizations for removing

the unnecessary temporaries.

Thus, it could be concluded that different frameworks apply different transformations

to the same code. However, the transformation differs in their abilities to use the cost

model, or to identify the thread-private variables, or to work at a lower level of the program

representation.

23

2.5. Summary

2.5 Summary
In this chapter, existing parallelization methodologies and their limitations when ap-

plied by different tools were discussed in detail. In total five parallelization frameworks

viz. Cetus, Par4all, Rose, ICC, and Pluto were introduced. Additionally, the usage of

individual methodologies of tools was also discussed in detail. Further, the underlying

methodologies of an individual framework are also explained. A qualitative analysis was

carried out to uncover their support functionality.

It was observed that all frameworks primarily deal with loop parallelization but differ in

the techniques in which they transform the code within the parallelizable region. From this

chapter, we can conclude that the empirical analysis on modern parallelizing frameworks

and their underlying techniques are sorely missing. Therefore, it is important to investigate

the current auto-parallelizing compilers and also to understand their behavior.

24

CHAPTER 3

Qualitative Capabilities of

Auto-parallelizers

This chapter presents the two important parallelization mechanisms namely, dependence

analysis and loop transformation techniques. The common loop transformation techniques

and their support in different parallelizers are well illustrated. This chapter describes the

effect of different dependence problems and the techniques adopted by auto-parallelizers

in handling these issues. It presents the capabilities and limitations of auto-parallelizers in

handling loops with complex coding style.

3.1 Parallelization mechanisms
This section discusses the combined effect of two vital parallelization mechanisms, (i)

loop transformation techniques and, (ii) dependence analysis using the five auto-parallelizers

namely, Cetus, Par4all, Rose, Intel C compiler (ICC), and Pluto. In general, optimizing

compilers have two main phases, program analysis and program transformation. There

are different program analysis techniques such as data dependence analysis, flow analysis,

alias analysis, and symbolic analysis. Our focus is toward showing how loop transforma-

tion techniques effect on dependence problems. Hence we restrict our study to dependence

analysis.

3.1.1 Loop transformation techniques
Loop transformation and its significance have been reported in the literature (discussed

in Chapter 2). This section illustrates the behavior of modern auto-parallelization in apply-

ing common loop transformation techniques. In general, loop optimization is the process of

increasing execution speed and reducing the overhead associated with the loops. This can

be performed by using sequence of specific loop transformation techniques. These tech-

niques play a vital role in making effective use of parallel processing capabilities. However,

25

3.1. Parallelization mechanisms

Table 3.1: Tools support matrix for loop transformation techniques

Priv. Fission Peeling Fusion Red.Var. Tiling Unrolling Ind.Var.

Tool T1 T2 T3 T4 T5 T6 T7 T8

Cetus 3 7 7 7 3 7 7 3

ICC 3 3 3 V 3 V V 7

Par4all 3 7 7 3 3 V V 7

Pluto 3 7 3 3 7 V V 7

Rose 3 V 7 V 3 V V 7

3 is Parallelized (default), 7 is Not Parallelized, Priv. is Privatization, Red.Var. is

Reduction Variable Recognition, Ind.Var. is Induction Variable Substitution,V is

Parallelized after getting enabled via the command line

such a transformation generally must preserve the semantics of the original code (be a legal

transformation) [46]. Table 3.1 illustrates the common loop transformation techniques and

their support using the parallelizers under study.

Privatization

Privatization creates a private copy of a shared variable, thereby removing data races [98].

Privatization reduces thread interference but needs to be applied carefully to ensure correct-

ness. All frameworks inherently perform privatization. Figure 3.1 illustrates an example of

privatization performed in Rose.

Loop Peeling

Loop peeling is a transformation technique which helps in removing loop-independent

dependences, by splitting the dependent portion of the loop outside the parallel

scope [46] [85] [99]. Peeling can help to improve the overall parallelization of the loop

26

3.1. Parallelization mechanisms

1 f o r (i = 0 ; i < n ; i ++)
2 {
3 S1 : A[i] = i +1 ;
4 S2 : B[i] = A[i] + i ;
5 }

1 # pragma omp p a r a l l e l f o r p r i v a t e (i) \ \
2 f i r s t p r i v a t e (n)
3 f o r (i = 0 ; i <= n − 1 ; i += 1) {
4 S1 : A[i] = i + 1 ;
5 S2 : B[i] = A[i] + i ;
6 }

Original Code Transformed Code

Figure 3.1: Privatization applied by Rose

1 f o r (i = 1 ; i < n ; i ++)
2 {
3 S1 : A[i] = i ;
4 S2 : B[i] = A[i−1] +X;
5 }

1 i f (n >= 2) {
2 B[1] = A[1 −1] +X; ;
3 l b p =2 ;
4 ubp=n−1 ;
5 # pragma omp p a r a l l e l f o r \ \
6 p r i v a t e (lbv , ubv , t 2)
7 f o r (t 1 = l b p ; t 1 <=ubp ; t 1 ++) {
8 A[(t 1−1)] = (t 1−1) ; ;
9 B[t 1] = A[t 1−1] +X; ;

10 }
11 A[(n−1)] = (n−1) ; ;
12 }

Original Code Transformed Code

Figure 3.2: Loop Peeling applied by Pluto

by separating its parallelizable and dependent portions. Only ICC and Pluto support loop

peeling. Figure 3.2 illustrates Pluto performing loop peeling.

Loop Fusion

Loop fusion [84] reduces the index variable maintenance overhead by merging two identi-

cal number of loop iterations to a single loop which improves locality. This is inherently

performed by Par4all and Pluto. Figure 3.3 exemplifies the way in which loop fusion occur

in Par4all.

Loop Fission

Loop fission helps in attaining partial parallelization of the loop by splitting it into mul-

tiple loops over the same index range with each taking only a part of the original loop’s

27

3.1. Parallelization mechanisms

1 f o r (i = 0 ; i < n ; i ++)
2 A[i] = i +1 ;
3 f o r (i = 0 ; i < n ; i ++)
4 B[i] = A[i] +5 ;

1 # pragma omp p a r a l l e l f o r
2 f o r (i = 0 ; i <= n−1 ; i += 1)
3 {
4 A[i] = i +1 ;
5 B[i] = A[i] +5 ;
6 }

Original Code Transformed Code

Figure 3.3: Loop Fusion applied by Par4all

1 f o r (i = 0 ; i < n ; i ++)
2 {
3 S1 : A[i] = i +1 ;
4 S2 : B[i] = B[i−1] +A[i] ;
5 }

1 LOOP BEGIN a t f i s s i o n . c (1 0 , 1)
2 < D i s t r i b u t e d chunk1>
3 remark #17100: DISTRIBUTED LOOP WAS \ \
4 AUTO−PARALLELIZED
5 remark #17101: p a r a l l e l l oop s h a r e d ={ }

p r i v a t e ={ } f i r s t p r i v a t e ={ i A } l a s t
p r i v a t e ={ } f i r s t l a s t p r i v a t e ={ }
r e d u c t i o n ={ }

6 LOOP END
7
8 LOOP BEGIN a t f i s s i o n . c (1 0 , 1)
9 < D i s t r i b u t e d chunk2>

10 remark #17104: loop was n o t p a r a l l e l i z e d
: e x i s t e n c e o f p a r a l l e l dependence

11 LOOP END
12
13 LOOP BEGIN a t f i s s i o n . c (1 0 , 1)
14 < Pee led , D i s t r i b u t e d chunk1>
15 LOOP END

Original Code Transformed Code

Figure 3.4: Loop Fission applied by ICC

body [84]. The auto-parallelizing tools need to ensure that the original data dependences

within and across iterations are preserved after fission. Loop fission/distribution can im-

prove both spatial and temporal localities and is uniquely supported by ICC. Figure 3.4 de-

picts ICC’s output where loop distribution is applied (Note: ICC is not a source-to-source

translator and it provides only diagnostic information), where S1 and S2 are non-dependant

and, data dependant instruction respectively.

28

3.1. Parallelization mechanisms

1 f o r (i = 0 ; i < n ; i ++)
2 {
3 S1 : A[i] = i +1 ;
4 S2 : sum += A[i] ;
5 }

1 # pragma omp p a r a l l e l f o r p r i v a t e (i) \ \
2 r e d u c t i o n (+ : sum) f i r s t p r i v a t e (n)
3 f o r (i = 0 ; i <= n − 1 ; i += 1) {
4 A[i] = i + 1 ;
5 sum += A[i] ;
6 }

Original Code Transformed Code

Figure 3.5: Reduction applied by Rose

Reduction variable recognition

In reduction variable recognition, each thread is provided with a copy of the read/write

conflicting variable to operate on and to produce a partial result, which combines with

other threads’ copy to produce a global result [98]. Threads need to cooperate with each

other to enable parallel computation, if failed will lead to incorrect output. Reduction is

applicable only when the underlying computation follows certain algebraic properties such

as associativity (in practice, tools also expect the computation to follow commutativity).

Except Pluto, all other frameworks by default perform reduction technique. Pluto does not

parallelize loop when the `-value of a statement is a scalar. Figure 3.5 depicts reduction

applied by Rose.

Loop Tiling

Loop tiling is another technique which can be used to improve temporal locality. It parti-

tions a loop’s iteration space into smaller chunks or blocks, to ensure the data used in a loop

(tile) stays within cache [100]. Figure 3.6 shows the tiling performed by Pluto when opted.

Tiling has been widely used by auto-parallelizres for optimizing matrix-based codes.

Loop Unrolling

Loop unrolling is the combination of two or more loop iterations together with a corre-

sponding reduction of trip count. It is used to expose more instruction level parallelism

(ILP). Loop Unrolling is depicted in Figure 3.7 (with unroll factor=8).

29

3.1. Parallelization mechanisms

1 f o r (i = 1 ; i < n ; i ++)
2 {
3 S1 : A[i] = i ;
4 S2 : B[i] = A[i−1] +X;
5 }

1 i f (n >= 2) {
2 l b p =0 ;
3 ubp= f l o o r d (n , 3 2) ;
4 # pragma omp p a r a l l e l f o r \ \
5 p r i v a t e (lbv , ubv , t2 , t 3)
6 f o r (t 1 = l b p ; t 1 <=ubp ; t 1 ++) {
7 i f (t 1 == 0) {
8 B[1] = A[1 −1] +X; ;
9 }

10 l b v =max (2 , 3 2 * t 1) ;
11 ubv=min (n−1 ,32 * t 1 + 31) ;
12 # pragma i v d e p
13 # pragma v e c t o r a lways
14 f o r (t 2 = l b v ; t 2 <=ubv ; t 2 ++) {
15 A[(t 2−1)] = (t 2−1) ; ;
16 B[t 2] = A[t 2−1] +X; ;
17 }
18 i f (t 1 >= c e i l d (n−3 1 , 3 2)) {
19 A[(n−1)] = (n−1) ; ;
20 }
21 }
22 }

Original Code Transformed Code

Figure 3.6: Loop Tiling applied by Pluto

1 f o r (i = 0 ; i < n ; i ++)
2 {
3 S1 : A[i] = i +1 ;
4 S2 : sum += A[i] ;
5 }

1 i f (n >= 1) {
2 f o r (t 1 =0 ; t 1 <=n−8 ; t 1 = t 1 + 8) {
3 A[t 1] = t 1 +1 ; ;
4 sum += A[t 1] ; ;
5 A[(t 1 + 1)] = (t 1 + 1) +1 ; ;
6 sum += A[(t 1 + 1)] ; ;
7 .
8 .
9 .

10 A[(t 1 + 7)] = (t 1 + 7) +1 ; ;
11 sum += A[(t 1 + 7)] ; ;
12 }
13 f o r (; t 1 <=n−1 ; t 1 = t 1 + 1) {
14 A[t 1] = t 1 +1 ; ;
15 sum += A[t 1] ; ;
16 }
17 }

Original Code Transformed Code

Figure 3.7: Loop Unrolling applied by Pluto

30

3.1. Parallelization mechanisms

1 j =0
2 f o r (i = 1 ; i < n ; i ++)
3 {
4 S1 : j = j +2 ;
5 S2 : A[j] =B[j] +1 ;
6 }

1 # pragma omp p a r a l l e l f o r \ \
2 i f ((1 0 0 0 0 < (−2L+ (3L*n)))) l a s t p r i v a t e (i)
3 f o r (i =1 ; i <n ; i ++)
4 {
5 A[2 * i] = (B[2 * i] + 1) ;
6 }
7 i f ((−2+n) >= 0)
8 {
9 j += (−2+ (2 *n)) ;

10 }

Original Code Transformed Code

Figure 3.8: Induction Variable Substitution applied by Cetus

Induction Variable Substitution

Induction Variable Substitution [46] in a loop uses the previous value of the induction

variable to compute a new value, usually by adding or multiplying a scalar expression.

If the induction variable derived does not refer to its previous value, then dependence is

removed. Cetus uniquely supports induction variable substitution (Figure 3.8).

Overall,Table 3.1 summarizes that all the frameworks in this study support privatization

of variables by default (T1). All the frameworks except Pluto inherently recognize reduc-

tion variables (T5). However, certain transformations (T8, T2) are uniquely supported i.e.

Cetus performs induction variable substitution (T8) and ICC performs loop fission (T2) by

default. Some of the loop transformations are supported when enabled via command-line

i.e. tiling (T6) and unrolling (T7). In total, Pluto and Par4all support five of the eight

transformations; Rose supports six (except loop peeling); while ICC supports all of them.

Section 3.2 explains the effect of loop transformation techniques on dependence problems.

3.1.2 Dependence analysis
Amdahl’s law [1] reveals that the sequential part of the program limits the amount of

achievable parallelism. Typically, sequential execution is an artifact of data dependence,

which forces an execution order [101]. A loop that contains millions of operations which

are non-dependant can perform parallel, however a single dependant statement may force

the code to run in serial. In order to effectively parallelize an application, dependence

31

3.1. Parallelization mechanisms

analysis must be carefully managed, and then measures should be taken to remove those

dependences. Further, removing the dependences should not affect the original flow of the

program. In general, dependences can be categorized as loop-independent [98] [102] and

loop-carried [98] [102] dependences. Each of these dependences could be scalar or vector

(array-based).

Loop-independent dependences

Data dependences between statement instances S1 and S2 which belong to same loop iter-

ations is termed as loop-independent dependences.

• Data dependence between statements S1δ
fS2 symbolizes that an instruction S2 de-

pends on the result of a previous instruction S1

• Anti-dependence symbolically represented as S1δ
aS2 occurs when an instruction S1

requires a value from S2 that is later updated

• Output dependence S1δ
oS2 shows that S2 modifies the value which S1 has written,

where the change in the order of instructions may affect the final output

Loop-independent dependence can be handled using privatization [86] by replicating

variables across loop iterations. OpenMP automatically handles static dependence in loop

with the use of private clause [11].

Loop-carried dependences

Data dependences between statement instances that belong to different loop iterations is

termed as loop-carried dependences.

• Loop-carried data dependence due to vector occurs when the variables written in

one iteration are then read in a different iteration. For better illustration consider the

following example:

1 f o r i = 1 , N

2 A[i] = A[i−1]

32

3.2. Effect of loop transformations on dependences

• Loop-carried data dependence due to scalar occurs due to reduction operation. For

example:

1 f o r i = 1 , N

2 sum += A[i]

• Loop-carried anti-dependence that is specified under is encountered when variables

read in one iteration and then written in a different iterations. A typical example for

loop-carried anti-dependence is shown below:

1 f o r i = 1 , N

2 A[i] = A[i + 1]

• Loop-carried output dependence normally take place when variable written in one

iteration and then rewritten again in a different iterations. For example:

1 f o r i = 1 , N

2 A[i] = B[i] ;

3 A[i + 1] = C[i] ;

Loop-carried dependence is handled by using loop transformation techniques such as

loop peeling, loop fission, or by manual intervention. Reduction variable recognition is

used in parallelizing code which comprises loop-carried data dependence due to a scalar.

3.2 Effect of loop transformations on dependences
This section discusses the way in which the frameworks handle various kinds of depen-

dences. It presents the effect of loop transformation techniques on different dependences

problems and the study is categorized as:

1. Effect of loop transformations on loop-independent (scalar and vector) and loop-
carried scalar dependence.

2. Effect of loop transformations on loop-carried vector dependence.

33

3.2. Effect of loop transformations on dependences

Table 3.2: Effect of loop transformation techniques on loop-independent (scalar and
vector) and loop-carried scalar dependence

Dependence Problem Cetus Par4all Pluto Rose ICC

Loop-independent (scalar) 3T1 3T1 7 3T1 3T1

Loop-independent (vector) 3T1 3T1 T4 3T1 T4 3T1 3T1

Loop-carried (scalar) 3T1 T5 3T1 T5 7 3T1 T5 3T1 T5

3 is parallelized, 7 is not parallelized, T1 Privatization, T4 Fusion, T5 Reduction

3.2.1 Effect of loop transformations on loop-independent (scalar and

vector) and loop-carried scalar dependence
Table 3.2 shows the behavior of frameworks under study in parallelizing simple for-

loops in the presence of intra-iteration and loop-carried scalar dependences. Dependence

problems are addressed through several of the loop transformation techniques.

For each dependence-framework pair, it is mentioned if the pair is supported (3), and

if so, what transformation technique (T1...T7) the framework uses for enabling the sup-

port. It was observed that the tools primarily rely on privatization (T1), fusion (T4), and

reduction variable recognition (T5). Privatization helps in handling all the dependence

problems. Loop fusion [84] reduces the index variable maintenance overhead by merging

two identical number of loop iterations to a single loop which improves locality, and is

used by Par4all and Pluto. Further, all frameworks (except Pluto) utilize reduction variable

recognition and it removes the loop-carried dependences with scalar variables. The rea-

son for Pluto’s poor support for scalar variables is because it is primarily targeted towards

polyhedral transformations of array accesses, rather than individual shared items.

34

3.2. Effect of loop transformations on dependences

3.2.2 Effect of loop transformations on loop-carried vector dependence
This section brings out the support of loop-carried dependence problems (data, anti,

and output dependences, along with their combinations) by the frameworks.

Loop-carried dependence problems in single loop

Figure 3.9 depicts the different scenarios, which can be used to test various frameworks by

changing the distance vector (α = 1, 2, 3). The two cases (Case 1 and Case 2) mentioned

in the figure depict the forward and the backward dependences, and accordingly, have dif-

ferent loop-index initialization and guard. Since programs with loop-carried dependences

are not uncommon (extensive work on real-world benchmarks is elaborated in Chapter 4

and 5), the way in which various frameworks react to the presence of these dependences

are studied.

Table 3.3 summarizes our observations. Overall, Cetus, Par4all, and Rose did not par-

allelize codes with loop-carried dependence in single loop. On the other hand, Pluto and

ICC support all the loop-carried backward dependence problems (Case 1). However, ICC

did not parallelize loop-carried output forward dependence (Case 2), while Pluto did not

parallelize loop-carried data+anti+output forward dependence. Both these frameworks uti-

lize privatization (T1) and loop peeling (T3) for handling the dependence problems. ICC

additionally makes use of loop fission (T2) along with other optimizations (Table 3.1).

Loop-carried dependence problems in nested loop

This section explains the behavior of the frameworks on programs having nested loops

with loop-carried dependence. Figure 3.10 depicts six such cases: backward i, backward

j, backward i and j, and their forward counterparts. These simple templates suffice to

assess the versatility of each framework.

Table 3.4 summarizes our findings, with distance vector (α = 1, 2, 3). It is observed that

Pluto supports all the six cases of loop-carried dependence problems. This is an artifact

of the powerful polyhedral model underlying Pluto’s transformations. On the other hand,

ICC supports all the cases of loop-carried dependence only when α is 1. When α is 2 or 3,

35

3.2. Effect of loop transformations on dependences

(a) Loop-carried data dependence

1 f o r (i =α ; i <n ; j ++)
2 {
3 A[i] = i ;
4 B[i] = A[i−α] +X;
5 }

1 f o r (i =0 ; i <n−α ; i ++)
2 {
3 A[i] = i ;
4 B[i] = A[i +α] +X;
5 }

Case 1 Case 2

(b) Loop-carried anti dependence

1 f o r (i =α ; i <n ; i ++)
2 {
3 A[i−α] = B[i] ;
4 C[i] = A[i] ;
5 }

1 f o r (i =0 ; i <n−α ; i ++)
2 {
3 A[i +α] = B[i] ;
4 C[i] = A[i] ;
5 }

Case 1 Case 2

(c) Loop-carried output dependence

1 f o r (i =α ; i <n ; i ++)
2 {
3 A[i] = B[i] ;
4 A[i−α] = C[i] ;
5 }

1 f o r (i =0 ; i <n−α ; i ++)
2 {
3 A[i] = B[i] ;
4 A[i +α] = C[i] ;
5 }

Case 1 Case 2

(d) Loop-carried data+anti+output dependence

1 f o r (i =α ; i <n ; i ++)
2 {
3 A[i] = B[i] *X;
4 C[i] = A[i−α] +X;
5 C[i−α] = A[i] +X;
6 D[i−α] = C[i] +X;
7 F [i] = D[i] ;
8 }

1 f o r (i =0 ; i <n−α ; i ++)
2 {
3 A[i] = B[i] *X;
4 C[i] = A[i +α] +X;
5 C[i +α] = A[i] +X;
6 D[i +α] = C[i] +X;
7 F [i] = D[i] ;
8 }

Case 1 Case 2

(Case 1 is backward dependence, Case 2 is forward dependence)

Figure 3.9: Templates of tested loop-carried dependence problems (a) Loop-carried data
dependence (b) Loop-carried anti dependence (c) Loop-carried output dependence (d)
Loop-carried data+anti+output dependence

36

3.2. Effect of loop transformations on dependences

Table 3.3: Support of auto-parallelizers for loop-carried dependence problems in
single loop using synthetic programs

Dependence
Problems

Tools Cetus Par4all Rose ICC Pluto
Distance
Vectors 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Loop-carried
Data

Case 1 7 7 7 7 7 7 7 7 7

3
T1

T2

T3

3
T1

T2

T3

3
T1

T2

T3

3
T1

T3

3
T1

T3

3
T1

T3

Case 2 7 7 7 7 7 7 7 7 7

3
T1

T2

T3

3
T1

T2

T3

3
T1

T2

T3

3
T1

T3

3
T1

T3

3
T1

T3

Loop-carried
Anti

Case 1 7 7 7 7 7 7 7 7 7

3
T1

T2

T3

3
T1

T2

T3

3
T1

T2

T3

3
T1

T3

3
T1

T3

3
T1

T3

Case 2 7 7 7 7 7 7 7 7 7

3
T1

T2

T3

3
T1

T2

T3

3
T1

T2

T3

3
T1

T3

3
T1

T3

3
T1

T3

Loop-carried
Output

Case 1 7 7 7 7 7 7 7 7 7

3
T1

T2

T3

3
T1

T2

T3

3
T1

T2

T3

3
T1

T3

3
T1

T3

3
T1

T3

Case 2 7 7 7 7 7 7 7 7 7 7 7 7

3
T1

T3

3
T1

T3

3
T1

T3

Loop-carried
Data+Anti
+Output

Case 1 7 7 7 7 7 7 7 7 7

3
T1

T2

T3

3
T1

T2

T3

3
T1

T2

T3

3
T1

T3

3
T1

T3

3
T1

T3

Case 2 7 7 7 7 7 7 7 7 7

3
T1

T2

T3

3
T1

T2

T3

3
T1

T2

T3

7 7 7

3 is Parallelized, 7 is Not Parallelized, T1 = Privatization, T2 = Loop Fission, T3 = Loop Peeling,

Distance Vector α = 1, 2, and 3, Case 1 is backward dependence, Case 2 is forward dependence

37

3.2. Effect of loop transformations on dependences

(a) Loop-carried data dependence problems

1 f o r (i =α ; i <n ; i ++)
2 f o r (j =0 ; j <n ; j ++)
3 {
4 A[i] [j] = j ;
5 B[i] [j] =A[i−α] [j] +X;
6 }

1 f o r (i =0 ; i <n ; i ++)
2 f o r (j =α ; j <n ; j ++)
3 {
4 A[i] [j] = j ;
5 B[i] [j] =A[i] [j−α] +X;
6 }

1 f o r (i =α ; i <n ; i ++)
2 f o r (j =α ; j <n ; j ++)
3 {
4 A[i] [j] = j ;
5 B[i] [j] =A[i−α] [j−α] +X;
6 }

Case 1 Case 2 Case 3

1 f o r (i =0 ; i <n−α ; i ++)
2 f o r (j =0 ; j <n ; j ++)
3 {
4 A[i] [j] = j ;
5 B[i] [j] =A[i +α] [j] +X;
6 }

1 f o r (i =0 ; i <n ; i ++)
2 f o r (j =0 ; j <n−α ; j ++)
3 {
4 A[i] [j] = j ;
5 B[i] [j] =A[i] [j +α] +X;
6 }

1 f o r (i =0 ; i <n−α ; i ++)
2 f o r (j =0 ; j <n−α ; j ++)
3 {
4 A[i] [j] = j ;
5 B[i] [j] =A[i +α] [j +α] +X;
6 }

Case 4 Case 5 Case 6

(b) Loop-carried anti dependence problems

1 f o r (i =α ; i <n ; i ++)
2 f o r (j =0 ; j <n ; j ++)
3 {
4 A[i−α] [j] = B[i] [j] ;
5 C[i] [j] = A[i] [j] +X;
6 }

1 f o r (i =0 ; i <n ; i ++)
2 f o r (j =α ; j <n ; j ++)
3 {
4 A[i] [j−α] = B[i] [j] ;
5 C[i] [j] = A[i] [j] +X;
6 }

1 f o r (i =α ; i <n ; i ++)
2 f o r (j =α ; j <n ; j ++)
3 {
4 A[i−α] [j−α] = B[i] [j] ;
5 C[i] [j] = A[i] [j] +X;
6 }

Case 1 Case 2 Case 3

1 f o r (i =0 ; i <n−α ; i ++)
2 f o r (j =0 ; j <n ; j ++)
3 {
4 A[i +α] [j] = B[i] [j] ;
5 C[i] [j] = A[i] [j] +X;
6 }

1 f o r (i =0 ; i <n ; i ++)
2 f o r (j =0 ; j <n−α ; j ++)
3 {
4 A[i] [j +α] = B[i] [j] ;
5 C[i] [j] = A[i] [j] +X;
6 }

1 f o r (i =0 ; i <n−α ; i ++)
2 f o r (j =0 ; j <n−α ; j ++)
3 {
4 A[i +α] [j +α] = B[i] [j] ;
5 C[i] [j] = A[i] [j] +X;
6 }

Case 4 Case 5 Case 6

The six cases are: backward i, backward j, backward i and j, forward i, forward j,
forward i and j. The variable i denotes dependences in outer loop, The variable j denoted
dependences in inner loop

Figure 3.10: Templates of loop-carried dependence problems in nested loops
(a) Loop-carried data dependence problems (b) Loop-carried anti dependence problems,
(continued in next page)

38

3.2. Effect of loop transformations on dependences

(c) Loop-carried output dependence problems

1 f o r (i =α ; i <n ; i ++)
2 f o r (j =1 ; j <n ; j ++)
3 {
4 A[i] [j] =B[i] [j] ;
5 A[i−α] [j] =C[i] [j] +X;
6 }

1 f o r (i =1 ; i <n ; i ++)
2 f o r (j =α ; j <n ; j ++)
3 {
4 A[i] [j] =B[i] [j] ;
5 A[i] [j−α] =C[i] [j] +X;
6 }

1 f o r (i =α ; i <n ; i ++)
2 f o r (j =α ; j <n ; j ++)
3 {
4 A[i] [j] =B[i] [j] ;
5 A[i−α] [j−α] =C[i] [j] +X;
6 }

Case 1 Case 2 Case 3

1 f o r (i =1 ; i <n−α ; i ++)
2 f o r (j =1 ; j <n ; j ++)
3 {
4 A[i] [j] =B[i] [j] ;
5 A[i +α] [j] =C[i] [j] +X;
6 }

1 f o r (i =1 ; i <n ; i ++)
2 f o r (j =1 ; j <n−α ; j ++)
3 {
4 A[i] [j] =B[i] [j] ;
5 A[i] [j +α] =C[i] [j] +X;
6 }

1 f o r (i =1 ; i <n−α ; i ++)
2 f o r (j =1 ; j <n−α ; j ++)
3 {
4 A[i] [j] =B[i] [j] ;
5 A[i +α] [j +α] =C[i] [j] +X;
6 }

Case 4 Case 5 Case 6

(d) Loop-carried data+anti+output dependence problems

1 f o r (i =α ; i <n ; i ++)
2 f o r (j =1 ; j <n ; j ++)
3 {
4 A[i] [j] =B[i] [j] *X;
5 C[i] [j] =A[i−α] [j] +X;
6 C[i−α] [j] =A[i] [j] +X;
7 D[i−α] [j] =C[i] [j] +X;
8 F [i] [j] =D[i] [j] ;
9 }

1 f o r (i =1 ; i <n ; i ++)
2 f o r (j =α ; j <n ; j ++)
3 {
4 A[i] [j] =B[i] [j] *X;
5 C[i] [j] =A[i] [j−α] +X;
6 C[i] [j−α] =A[i] [j] +X;
7 D[i] [j−α] =C[i] [j] +X;
8 F [i] [j] =D[i] [j] ;
9 }

1 f o r (i =α ; i <n ; i ++)
2 f o r (j =α ; j <n ; j ++)
3 {
4 A[i] [j] =B[i] [j] *X;
5 C[i] [j] =A[i−α] [j−α] +X;
6 C[i−α] [j−α] =A[i] [j] +X;
7 D[i−α] [j−α] =C[i] [j] +X;
8 F [i] [j] =D[i] [j] ;
9 }

Case 1 Case 2 Case 3

1 f o r (i =1 ; i <n−α ; i ++)
2 f o r (j =1 ; j <n ; j ++)
3 {
4 A[i] [j] =B[i] [j] *X;
5 C[i] [j] =A[i +α] [j] +X;
6 C[i +α] [j] =A[i] [j] +X;
7 D[i +α] [j] =C[i] [j] +X;
8 F [i] [j] =D[i] [j] ;
9 }

1 f o r (i =1 ; i <n ; i ++)
2 f o r (j =1 ; j <n−α ; j ++)
3 {
4 A[i] [j] =B[i] [j] *X;
5 C[i] [j] =A[i] [j +α] +X;
6 C[i] [j +α] =A[i] [j] +X;
7 D[i] [j +α] =C[i] [j] +X;
8 F [i] [j] =D[i] [j] ;
9 }

1 f o r (i =1 ; i <n−α ; i ++)
2 f o r (j =1 ; j <n−α ; j ++)
3 {
4 A[i] [j] =B[i] [j] *X;
5 C[i] [j] =A[i +α] [j +α] +X;
6 C[i +α] [j +α] =A[i] [j] +X;
7 D[i +α] [j +α] =C[i] [j] +X;
8 F [i] [j] =D[i] [j] ;
9 }

Case 4 Case 5 Case 6

The six cases are: backward i, backward j, backward i and j, forward i, forward j,
forward i and j. The variable i denotes dependences in outer loop, The variable j denoted
dependences in inner loop

Figure 3.10: Templates of loop-carried dependence problems in nested loops
(c) Loop-carried output dependence problems (d) Loop-carried data+anti+output depen-
dence problems (Contd.)

39

3.2. Effect of loop transformations on dependences

it could handle Cases 2 and 5 only (backward and forward dependences in the inner loop).

Thus, when the dependence occurs due to the outer loop of the nested for when α is 2 or

3, ICC failed to parallelize. This is interesting because it indicates that the parallelization

was tuned for distance vector of unity. We believe that ICC supports unit length distance

vector alone as that case was found to be common in practice. In the transformation, Pluto

and ICC use privatization (T1) and loop peeling (T3) for handling the dependence. ICC

additionally makes use of loop fission (T2) along with other optimizations for Cases 2 and

5, that is, when the dependence occurs due to the inner loop of the nested for.

Overall conclusion is that Cetus, Par4all, and Rose could not parallelize codes with

loop-carried dependence in single loop. However, it is observed that these three frame-

works could support loop-carried dependence due to vector occurring either in the inner

loop or the outer loop of a nested for (but not both the loops). Further, they parallelize the

dependence-free loop (inner/outer). Hence concluded the result as non-parallelized for the

nested loops.

40

3.2. Effect of loop transformations on dependences

Table 3.4: Support of auto-parallelizers for loop-carried dependence problems in
nested loop using synthetic programs

Tools Cetus Par4all Rose ICC Pluto
Distance
Vector 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Case 1 7 7 7 7 7 7 7 7 7

3
T1

T3
7 7

3
T1

T3

3
T1

T3

3
T1

T3

Case 2 7 7 7 7 7 7 7 7 7

3
T1

T2

T3

3
T1

T2

T3

3
T1

T2

T3

3
T1

T3

3
T1

T3

3
T1

T3

Case 3 7 7 7 7 7 7 7 7 7

3
T1

T3
7 7

3
T1

T3

3
T1

T3

3
T1

T3

Case 4 7 7 7 7 7 7 7 7 7

3
T1

T3
7 7

3
T1

T3

3
T1

T3

3
T1

T3

Case 5 7 7 7 7 7 7 7 7 7

3
T1

T2

T3

3
T1

T2

T3

3
T1

T2

T3

3
T1

T3

3
T1

T3

3
T1

T3

Case 6 7 7 7 7 7 7 7 7 7

3
T1

T3
7 7

3
T1

T3

3
T1

T3

3
T1

T3

The six cases are: backward i, backward j, backward i and j, forward i, forward j, forward i and

j. The variable i denotes dependences in outer loop, The variable j denoted dependences in inner

loop. (3 Parallelized, 7 Not Parallelized, T1 = Privatization, T2 = Loop Fission, T3 = Loop

Peeling)

41

3.3. Limitations faced by auto-parallelizers

3.3 Limitations faced by auto-parallelizers
This section illustrates the limitations of auto-parallelizers in handling complex cod-

ing style. In general, identifying the code sections that have parallelism possibility is a

cumbersome task. Auto-parallelizer may not parallelize all the loops. Under certain con-

ditions, these tools fail to insert parallel directives. Auto-parallelizer sometimes may or

may not parallelize the loop. The plausible reasons could be due to: (i) dependence within

the code (ii) failure to support specific programming constructs. The different dependences

and their support by auto-parallelizer frameworks are studied and reported in the previous

section (Section 3.2). Identifying and addressing the problematic code section is a fun-

damental aspect of this thesis. At several instances, the parallelization performed using

auto-parallelizer results in an erroneous transformation without offering any hints towards

the source of the error. There is a potential for improvement in finding the origin of the

error. This study helps the programmers to understand the problems in code section which

prevents transformation.

The primary programming features (in total 76) are categorized and tested within the

parallelizable region (loops) in the subsequent section (Section 3.4). OpenMP supports

for-loop parallelization. Hence, support of different programming features is studied only

within for-loop. Testing of these programming features helps us to find the capabilities and

limitations of the auto-parallelizers in parallelizing the loops. This study confers the results

and provides recommendations for compiler researchers, tool developers, and application

scientists.

3.4 Auto-parallelizer behavior on complex coding style
This section reveals some of the problems which prevent parallelization by different

frameworks. Further, it discusses the method to solve the issues prohibiting better utiliza-

tion of parallelizers. Input serial codes are parallelized comprising distinct programming

features via the five frameworks under study. In addition, the testing is performed on an

industrial compiler, Parallware [61] (an industrial framework).

42

3.4. Auto-parallelizer behavior on complex coding style

The programming constructs tested (in total 76) are categorized into three groups, viz.,

(i) Loops and Loop Conditions (ii) Statements, Data Types and Storage Classes (iii) Func-

tions. In case if the parallelizers fail to handle the code due to few non-supported pro-

gramming constructs, then solutions are exposed to uncover the problems and make them

amenable for parallelization. The parallelization pitfalls along with the potential solutions

are discussed in the subsequent sections (Section 3.4.1 to 3.4.4).

3.4.1 Support for loops and loop conditions
The effectiveness of auto-parallelizers in parallelizing the loops and loop conditions

were examined. Figure 3.11 illustrates the parallelization of all for-loops. Three types of

for-loop parallelization, viz. simple, concatenated, and nested are tested. It is observed that

all the tools support parallelization of all these three types of for-loops. Here, concatenated

loop resembles the loops iterating with same problem size. The remaining loops (while,

do-while) and loop conditions are discussed later in Section 3.4.4.

Figure 3.11(b) shows the case where concatenated loops are parallelized using loop fu-

sion transformation. It was observed that Par4all and Pluto merged the loops with the same

number of iterations into a single loop during parallelization. Figure 3.11(c) shows the par-

allelization of nested for-loop case. From the qualitative analysis discussed in Chapter 2,

the following conclusion are made. Among the six frameworks, Pluto, Par4all, Parallware,

ICC, and Rose add parallel directives only to the outermost loop. Cetus enables nested

parallelism by default, hence it inserts parallel directives to all the inner and outer loops.

This eventually leads to execution overhead problem when the number of threads exceeds

the physical core size.

3.4.2 Support of auto-parallelizers for statements, data types and

storage classes
The codes comprising programming constructs, namely statements, data types and stor-

age classes are tested (in total 14). Table 3.5 shows the various features tested and also lists

which frameworks were able to parallelize the constructs successfully. The obtained results

pertaining to the observations in Table 3.5 are discussed in detail below.

43

3.4. Auto-parallelizer behavior on complex coding style

(a) Parallelization of simple for-loop

1 f o r (j = 0 ; j < n ; j ++)
2 c [j] = a [j] + b [j] ;

1 # pragma omp p a r a l l e l f o r p r i v a t e (j)
2 f o r (j = 0 ; j < n ; j ++)
3 c [j] = a [j] + b [j] ;

Original Code Transformed Code

(b) Parallelization of concatenated for-loop

1 f o r (r = 0 ; r < n ; r ++)
2 {
3 a [r] = r ;
4 b [r] = r ;
5 }
6 f o r (i = 0 ; i < n ; i ++)
7 c [i] = a [i] * (a [i] + b [i]) − b [i] ;

1 # pragma omp p a r a l l e l f o r
2 f o r (r = 0 ; r <= n−1 ; r += 1)
3 {
4 a [r] = r ;
5 b [r] = r ;
6 c [r] = a [r] * (a [r] + b [r])−b [r] ;
7 }

Original Code Transformed Code

(c) Parallelization of nested for-loop(s)

1 f o r (l = 0 ; l < n ; l ++)
2 f o r (m = 0 ; m < n ; m++)
3 f o r (p = 0 ; p < n ; p++)
4 c [l] [m] += a [l] [p] * b [p] [m] ;

1 # pragma omp p a r a l l e l f o r \ \
2 p r i v a t e (m, p)
3 f o r (l = 0 ; l <= n−1 ; l += 1)
4 f o r (m = 0 ; m <= n−1 ; m += 1)
5 f o r (p = 0 ; p <= n−1 ; p += 1)
6 c [l] [m] +=a [l] [p] *b [p] [m] ;

Original Code Transformed Code

Figure 3.11: Parallelization of for-loop by auto-parallelizers (a) Parallelization of sim-
ple for-loop (b) Parallelization of concatenated for-loop (c) Parallelization of nested for-
loop(s)

44

3.4. Auto-parallelizer behavior on complex coding style

if statements All six frameworks can apply parallelization when an if statement is used

within for-loop. Figure 3.12(a) (second and third column) shows the parallelization results

of one the auto-parallelizer (Par4all).

switch-case statements Another well-known construct used within the parallelizable

region is switch-case statement. Figure 3.12(a) depicts the way in which switch-case is

handled by Par4all. It was observed that Par4all, Rose, and ICC successfully parallelize

the code by replacing the switch-case with multiple if-else statements, without affecting

the functionality of the program. Similarly, switch-case can be transformed to if-else to

make the code amenable to parallelization.

Data types and storage classes Table 3.5 shows the parallelization support of data types

and storage classes when used within for. There are no data types and storage classes that

could not be parallelized using any of the tools. Par4all supports the maximum features,

while Cetus supports the least. There are no generic solutions for solving the issue. How-

ever, it was observed that defining the unsupported constructs outside the parallelizable

region could alleviate the pitfall.

45

3.4.
A

uto-parallelizerbehavioron
com

plex
coding

style

Table 3.5: Support of auto-parallelizers for statements, data types and
storage classes

Tested Programming
Features Cetus Par4all Pluto Parallware Rose ICC Tprog

Suggested Solutions to
Auto-parallelization

Statements
if 3 3 3 3 3 3

2

-

switch-case 7 3 7 7 3 3

switch-case may be replaced
by multiple if and else if
statements

Data Types

struct 7 3 7 3 3 7

8
Unsupported Data Types
may be defined outside
the parallelizable region

Array of structs 7 3 3 7 7 3

union 7 7 7 3 3 7

typedef 3 3 3 3 3 3

enum 3 3 3 3 3 3

pointers 7 3 7 7 3 7

Array of pointers 7 3 3 7 7 3

Global Variables 3 3 3 7 3 3

Storage
Classes

auto, register 3 3 3 3 3 3

4
Unsupported storage classes
may be defined outside
the parallelizable regionstatic, extern 3 3 3 7 3 3

- - 8 13 10 7 12 11 14 -

7 Not Parallelized, 3 Parallelized, Tprog = Total number of programming features tested under each category

46

3.4. Auto-parallelizer behavior on complex coding style

3.4.3 Support of auto-parallelizers for functions
The tools’ ability is investigated for handling different functions, such as library, user-

defined, and recursive functions within the parallelizable region (in total 46). Table 3.6 lists

the parallelization results of functions by various frameworks. The results derived upon

parallelizing different function using various frameworks are elaborated in detail below.

Library functions

Six categories of library functions are examined, namely, standard I/O, string, memory,

mathematical, standard library, file I/O. Table 3.6 shows the result of frameworks which

were able to handle certain library functions when used within the for-loop. Interestingly,

all frameworks except Rose successfully parallelize loops comprising mathematical func-

tions. However, the performance of Rose upon usage of library functions was found to be

inferior compared to all other frameworks. Parallware supports more number of program-

ming features. In the standard I/O group, except scanf and getc, all other constructs are

supported by at least minimum of the frameworks. In addition, it is found that parallelizers

support the majority of the library functions when used outside the parallelizable region.

Therefore, it could be concluded that the usage of these functions inside the for-loop needs

to be avoided.

User-defined functions

In order to assess the support of user-defined functions in parallelizers, two cases are taken

up viz. (i) loops within function call (ii) function call inside the parallelizable region.

Table 3.6 shows the parallelization results of both cases. Loops within function call is

a primitive scenario which is handled by all the frameworks. Although, the second case

is complicated, it is supported by all frameworks except Rose. To make the latter case

support by the tools, inlining of function can be applied. Figure 3.12(b) depicts the method

to address the pitfall.

47

3.4. Auto-parallelizer behavior on complex coding style

Table 3.6: Support of auto-parallelizers for functions

Tested Programming
Features Cetus Par4all Pluto Parallware Rose ICC Tprog

Suggested Solutions to
Auto-parallelization

Standard I/Oa

scanf 7 7 7 7 7 7

4

Avoid using unsupported
functions within the
parallelizable region

printf 7 7 3 3 7 7

getc 7 7 7 7 7 7

putc 7 7 3 7 7 7

Stringa

strstr,strchr 7 7 7 3 7 3

7

strlen 3 7 7 3 7 3

strcmp 3 7 7 7 7 7

strcat 7 7 3 7 7 7

strcpy 7 7 3 3 7 7

strtok 7 7 7 3 7 7

Memorya memcmp 3 3 7 3 7 3
3

memcpy, memmove 7 7 3 3 7 7

Mathematicala
floor, round, ceil, sin,
cos, tan, sinh, cosh,
tanh, log, log10, exp,
sqrt, pow, trunc, abs

3 3 3 3b 7 3 16

Std librarya

system 7 3 3 3 7 7

5
atoi, atof 3 3 7 3 7 3

rand 3 7 3 3 7 3

abs 3 3 3 3 7 3

File I/Oa
fputc, fputs, fscanf,
fprintf, fwrite 3 3 3 3 7 3

8

fgets, fgetc, feof 3 3 7 3 7 3

User-defined

Loops within
function call 3 3 3 3 3 3

3

Inlining of
functionsFunction call inside

parallelizable region 3 3 3 3 7 3

Recursive Functions 7 7 3 3 7 3

Recursive function
may be replaced
by for-loop

- - 33 31 33 40 1 35 46 -

7 Not Parallelized, 3 Parallelized, Tprog = Total number of programming features tested under each category,
a - Predefined C Procedures, b - Except trunc all mathematical functions are parallelized)

48

3.4. Auto-parallelizer behavior on complex coding style

Table 3.7: Solution for OpenMP limitations

Tested Programming Features Tools Suggested Solutions to Auto-parallelization

while loop 3a Use for-loop instead of while-loop

do-while loop 7 Use for-loop instead of do-while loop

Multiple index variable in
for-loop condition

7
Reform the code structure by removing multiple
initializations and increments in for-loop condition

Logical Operators (&&, ||, !) 7
The for-loop condition with logical operators
may be replaced as if statements within the body

Relational Operators (!=, ==) 7
The for-loop condition with relational operators
may be replaced as if statements within the body

exit, return, and goto 7 Avoid using exit, return, and goto

9 1 -

7Not Parallelized, 3Parallelized, a - Parallware and ICC supports while-loop

Recursive functions are difficult to parallelize due to uncertain recursive depth. There-

fore it is unknown how many times this function will call itself, which eventually com-

plicates parallelization across a fixed number of threads. When tested recursive function

using auto-parallelizers the following results were observed. Pluto, Parallware, and ICC

could support these features and are listed in Table 3.6. In order to solve this problem, the

recursive loops are replaced with for-loop(s) without altering the functionality of the code.

Figure 3.12(c) shows the method to resolve the recursive functions.

3.4.4 Limitations due to OpenMP programming model
Besides parallelization and implementation issues, auto-parallelizer also face few con-

fines due to OpenMP model. Table 3.7 lists the limitations due to OpenMP and the plausible

solution to overcome these issues.

Parallelization of while and do-while loops The ability of tools in handling while and

do-while loops are discussed here. Among all six frameworks only Parallware and ICC

support parallelization of while-loop. Parallware could transform while-loop to for-loop,

49

3.4. Auto-parallelizer behavior on complex coding style

and apply parallelization. Figure 3.12(d) illustrates the transformation and parallelization

process. It is worth noting that no tools parallelized do-while loop.

Multiple index variables in for-loop condition OpenMP does not support multiple

initialization and multiple increment/decrement in for-loop condition, and no tools paral-

lelize such scenario. The explication to overcoming this issue is by reforming the code such

that loop splitting eliminates the second index variable. Figure 3.12(e) shows the manual

transformation and parallelization of input for-loop with multiple initialization/updation.

Logical operators in loop condition Predominantly, OpenMP directives do not

support the use of logical operators (&&, ||, !) in for-loop condition. Hence, no tools

aid parallelization of such cases. Figure 3.12(f) illustrates the use of logical operation in

for-loop condition. The conditions used in for-loop were converted into if statements inside

the for. After applying these modifications, all the tools could successfully parallelize the

code.

Solution for relational operators in for-loop condition Parallelization of loops with re-

lation operators in for-loop condition are tested. All tools parallelize loops with relational

operators (<, >, <=, >=). However, OpenMP does not support relational operators (!=

and ==) when utilized in the for-loop condition. Therefore, in such scenario, loop transfor-

mation techniques can be applied in order to replace these unsupported operators into other

supported relational operators within the if clause. Figure 3.12(g) shows the solution for

parallelization of loops with unsupported relational operators.

Statements: exit, return, and goto OpenMP does not support loop containing exit state-

ments mainly break, return and goto. Hence, it is recommended to avoid the usage of

these statements within the parallelizable region.

50

3.4. Auto-parallelizer behavior on complex coding style

(a) Parallelization of switch-case

1 f o r (i = 0 ; i < n ; i ++)
2 {
3 s w i t c h (s [i])
4 {
5 c a s e ’+ ’ :
6 sum1 = num [i] ;
7 b r e a k ;
8 c a s e ’ * ’ :
9 sum = num [i] ;

10 b r e a k ;
11 }
12 }

1 f o r (i = 0 ; i < n ; i ++)
2 {
3 i f (s [i] == ’+ ’)
4 sum1 = num [i] ;
5 i f (s [i] == ’ * ’)
6 sum = num [i] ;
7 }

1 # pragma omp p a r a l l e l \ \
2 f o r r e d u c t i o n (* : sum) \ \
3 r e d u c t i o n (+ : sum1)
4 f o r (i =0 ; i <=n−1 ; i += 1)
5 {
6 i f (s [i] == ’+ ’)
7 {
8 sum1 += num [i] ;
9 }

10 e l s e i f (s [i] == ’ * ’)
11 {
12 sum *= num [i] ;
13 }
14 }

(b) Parallelization of function call inside parallelizable region

1 main () {
2 f o r (k = 0 ; k<n ; k++)
3 Add (a , b , c , k) ;
4 }
5 i n t Add (i n t a [1 0 0] , \ \
6 i n t b [1 0 0] , \ \
7 i n t c [1 0 0] , i n t k)
8 {
9 c [k] = a [k] + b [k] ;

10 }

1 f o r (k = 0 ; k < n ; k++)
2 c [k] = a [k] + b [k] ;

1 # pragma omp p a r a l l e l f o r
2 f o r (k = 0 ; k < n ; k++)
3 c [k] = a [k] + b [k] ;

(c) Parallelization of recursive function

1 main ()
2 {
3 f o r (i = 0 ; i < n ; i ++)
4 f a c t [i] = f a c (i) ;
5 }
6 i n t f a c (u n s i g n e d \ \
7 i n t i)
8 {
9 i f (i <= 1)

10 r e t u r n 1 ;
11 e l s e
12 r e t u r n i * f a c (i−1) ;
13 }

1 f o r (i =0 ; i <=n ; i ++)
2 {
3 f a c t = 1 ;
4 f o r (j =1 ; j <= i ; j ++)
5 f a c t = f a c t * j ;
6 }

1 # pragma omp p a r a l l e l f o r
2 f o r (i =0 ; i <=n ; i ++)
3 {
4 f a c t = 1 ;
5 f o r (j =1 ; j <= i ; j ++)
6 f a c t = f a c t * j ;
7 }

First column refers to original code, second column refers to reformed code, and third
column refers to reformed+parallelized code

Figure 3.12: Solutions for the non-supported constructs (a) Parallelization of switch-case
(b) Parallelization of function call inside parallelizable region (c) Parallelization of recur-
sive function, (continued in next page)

51

3.4. Auto-parallelizer behavior on complex coding style

(d) Parallelization of while-loop

1 i =0 ;
2 w h i l e (i < n)
3 {
4 c [i] = a [i] + b [i] ;
5 i ++ ;
6 }

1 f o r (i =0 ; i <n ; i ++)
2 c [i] =a [i] +b [i] ;

1 # pragma omp p a r a l l e l \ \
2 s h a r e d (a , b , c) p r i v a t e (i)
3 {
4 # pragma omp f o r \ \
5 s c h e d u l e (s t a t i c)
6 f o r (i =0 ; i <n ; i = i + 1)
7 c [i] = a [i] + b [i] ;
8 }

(e) Parallelization of codes with multiple index variables in for-loop condition

1 f o r (j = 0 , k=n−1 ; j <n ; \ \
2 j ++ , k−−)
3 {
4 c [j] = a [j] + b [j] ;
5 d [k] = a [k] − b [k]
6 }

1 f o r (j =0 ; j <n ; j ++)
2 c [j] = a [j] + b [j] ;
3 f o r (k=n−1 ; k>=0 ; k−−)
4 d [k] = a [k] − b [k] ;

1 # pragma omp p a r a l l e l f o r
2 f o r (j = 0 ; j <= n−1 ; j += 1)
3 c [j] = a [j] +b [j] ;
4 # pragma omp p a r a l l e l f o r
5 f o r (k=n−1 ; k>=0 ; k+=−1)
6 d [k] = a [k]−b [k] ;

(f) Parallelization of codes with logical operators in for-loop condition

1 f o r (j =0 ; (j <s1&&(j−k) \ \
2 <s2) ; j ++)
3 c [j] = a [j] + b [j] ;

1 f o r (j =0 ; (j <s1) ; j ++)
2 i f ((j−k) <s2)
3 c [j] =a [j] + b [j] ;

1 # pragma omp p a r a l l e l \ \
2 f o r p r i v a t e (j)
3 f o r (j = 0 ; j < s1 ; j ++)
4 i f ((j−k) < s2))
5 c [j] =a [j] + b [j] ;

(g) Parallelization of codes with relational operators in for-loop condition

1 f o r (i =0 ; ((a [i]%2) == 0 \ \
2 && i < n) ; i ++)
3 b [i] = i ;

1 f o r (i = 0 ; i < n ; i ++)
2 i f ((a [i]%2) == 0)
3 b [i] = i ;

1 # pragma omp p a r a l l e l \ \
2 f o r p r i v a t e (i)
3 f o r (i = 0 ; i < n ; i ++)
4 i f ((a [i]%2) == 0)
5 b [i] = i ;

First column refers to original code, second column refers to reformed code, and third
column refers to reformed+parallelized code

Figure 3.12: Solutions for the non-supported constructs (d) Parallelization of while-loop
(e) Parallelization of codes with multiple index variables in for-loop condition (f) Paral-
lelization of codes with logical operators in for-loop condition (g) Parallelization of codes
with relational operators in for-loop condition (Contd.)

52

3.5. Evaluation of auto-parallelizers

3.5 Evaluation of auto-parallelizers
The tested programming features (in total 76) are categorized into three groups for

comparative analysis, viz., (i) loops and loop conditions (ii) statements, data types, and

storage classes (iii) functions. This section discusses the parallelization of programming

constructs by auto-parallelizers before (pre-evaluation) and after (post-evaluation) applying

our code modifications.

3.5.1 Pre-evaluation
Figure 3.13(a) shows the support matrix (programming features supported) of auto-

parallelizers, without manual intervention, in parallelizing loops and loop conditions. Here,

Tprog is the total number of programming features tested under each category, which is 8.

Parallware and ICC parallelize all 8 constructs, and remaining frameworks (Cetus, Par4all,

Rose, and Pluto) could parallelize 7 of them. This shows that the commercial tools (Parall-

ware and ICC) have better support for various constructs.

Figure 3.13(b) depicts the tools support for statements, data types and storage classes,

here Tprog is 14. Table 3.5 shows the support of individual features under this category.

The number of constructs parallelized by each tool is: Cetus 8, Par4all 13, Pluto 10,

Parallware 7, Rose 12, ICC 11. This shows that Par4all, Rose and ICC have better support

for statements, data types and storage classes.

Figure 3.13(c) describes the parallelizers’ support for distinct functions, here Tprog is

46. Table 3.6 shows the number of programming features tested under each function cat-

egory. Among the 46 constructs, Parallware could parallelize 40, ICC is a close second

parallelizing 35 of them, while Cetus and Pluto could support 33, and Par4all supports 31.

Rose supports only one construct and is inferior to other tools. These statistics indicate that

the commercial compilers, Parallware and ICC supports maximum features.

In Table 3.8, the second and third columns illustrates the number of programming fea-

tures supported before applying solutions (T1) and its acceptance ratio (Aα) (Equation 3.1)

for each framework.

Aα =
T1
TP

(3.1)

53

3.5. Evaluation of auto-parallelizers

(a) Loops and loop conditions (Tprog=8; for - simple, concatenated and nested;
Relational Operators - <, >, <=, >=)

Cetus Par4all Pluto Parallware Rose ICC
0

1

2

3

4

5

6

7

8
N

o.
 o

f P
ro

gr
am

m
in

g
Fe

at
ur

es
 S

up
po

rte
d

 while(1)

 Relational Operators (4)

 for (3)

(b) Statements, data types and storage classes (Tprog=14)

Cetus Par4all Pluto Parallware Rose ICC
0

2

4

6

8

10

12

14

N
o.

 o
f P

ro
gr

am
m

in
g

Fe
at

ur
es

 S
up

po
rte

d

 Data Types (8)
 Storage Classes (4)
 Statements (2)

The value within the parentheses is the total number of programming features tested under
each subcategory. Tprog-Total number of programming features tested under each category

Figure 3.13: Parallelizers support for different programming features without manual in-
tervention (pre-evaluation) (a) Loops and loop conditions (b) Statements, data types and
storage classes, (continued in next page)

54

3.5. Evaluation of auto-parallelizers

(c) Functions (Tprog=46)

Cetus Par4all Pluto Parallware ICC Rose
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

N
o.

 o
f P

ro
gr

am
m

in
g

Fe
at

ur
es

 S
up

po
rte

d

 File I/O (8)
 Std I/O (4)
 Std Library (5)
 String (7)
 Memory (3)
 Mathematical (16)
 User-defined (3)

The value within the parentheses is the total number of programming features tested under
each subcategory. Tprog-Total number of programming features tested under each category

Figure 3.13: Parallelizers support for different programming features without manual in-
tervention (c) Functions (Contd.)

Here, Tp is the number of programming features tested (76). The results show that Parall-

ware performs better among all frameworks. Except Rose all other frameworks show good

support close to Parallware.

3.5.2 Post-evaluation
Post-evaluation of the results reveal that there is a significant improvement in the per-

formance of auto-parallelizers upon applying of transformations to the unsupported pro-

gramming constructs. Table 3.8 shows performance summary of auto-parallelizers where

in T2 indicates the total number of programming features which were supported and their

corresponding acceptance ratio Aβ after applying coding changes (Equation 3.2).

55

3.5. Evaluation of auto-parallelizers

Table 3.8: Performance summary of auto-parallelizers on synthetic codes

Tools T1 Aα T2 Aβ

Cetus 48 63.2 58 76.3

Par4all 51 67.1 60 78.9

Pluto 50 65.8 59 77.6

Parallware 55 72.4 63 82.9

Rose 20 26.3 30 39.5

ICC 54 71.1 61 80.3

T1 = Programming Features Supported Before Applying Solutions, T2 = Programming Features

Supported After Applying Solutions, Aα = Acceptance Ratio Before Applying Solutions (%), (Aβ)

= Acceptance Ratio After Applying Solutions (%)

Aβ =
T2
Tp

(3.2)

Here, Tp is the total number of features that were tested (76). It was observed that a

similar trend in the support matrix and acceptance ratio of tools as the previous section.

However, Rose shows better performance after applying solutions. Further, it was noted

that there is a considerable increase in the acceptance ratio in all auto-parallelizers is ob-

served upon applying of solutions to the identified pitfalls.

56

3.6. Summary

3.6 Summary
This chapter emphasized the combined effect of two important parallelization mecha-

nisms namely, dependence analysis and loop transformation techniques. It was examined

that few of the loop transformation techniques are supported only by some of the frame-

works. Specific techniques are exclusively applied, for instance, ICC supported loop fis-

sion, and Cetus performed induction variable substitution. All frameworks except Pluto

had inherently support for privatization and reduction.

In addition, the frameworks exhibited varying capabilities in handling the loop-carried

dependences. Cetus, Par4all, and Rose were confined to support codes with loop-independent

dependence using privatization. Pluto and ICC parallelized loops with loop-carried depen-

dence due to vector. Under these circumstances, Pluto applied loop peeling techniques,

while ICC performed both loop peeling and loop fission besides privatization.

This chapter also highlighted the limitations which are faced by auto-parallelizers in

handling complex coding structures. It was observed that the parallelizers had restrictions

in handling and supporting several programming constructs. This study helped us in un-

derstanding the behavior and sophistication of various frameworks. The suggested manual

transformations to the problematic constructs assisted in increasing the percentage of ac-

ceptances of code for parallelization. We note that our conclusions are drawn based only

on the experiments performed as part of this thesis. While we believe that the results gen-

eralize to other programs, we cannot make such a claim for arbitrary programs.

57

CHAPTER 4

Quantitative Analysis of Parallelization

Frameworks using

PolyBench Benchmarks

This chapter explains in detail about the quantitative effect of auto-parallelization frame-

works on various PolyBench benchmarks. It investigates the support matrix of the frame-

works in parallelization of PolyBench codes. This chapter also discusses performance by

categorizing benchmarks based on different dependence types.

4.1 Background
In the previous chapters, using the synthetic programs, the various scenarios under

which the frameworks are able to auto-parallelize were identified. In this chapter, empir-

ical analyses are carried out on the frameworks for the performance of their transformed

codes. PolyBench codes [103, 104] are used for such evaluation. In this section, a detailed

description on PolyBench and experimental setup is illustrated.

4.1.1 PolyBench
PolyBench [103] is a suite of linear algebra kernels with static control parts that can

be represented in the polyhedral model. Hence, these benchmarks have parameteric loop

bound with affine arrary accesses, and are suitable for Polyhedral parallelizers. PolyBench

is a suite of thirty programs implemented in C comprising numerical computations from

different application domains such as linear algebra, image processing, physics simulation,

dynamic programming, and statistics. The PolyBench suite contains several nested loop

structures with complex dependences, hence makes challenging set of codes to be auto-

analyzed by the tools. The benchmarks are based on statistical computation, matrix/matrix-

vector/triangular-matrix multiplication, and stencil computations.

59

4.2. Auto-parallelization of PolyBench

4.1.2 Experimental configuration
In this chapter, the empirical analysis are carried out on an Intel Xeon E5-2650 v2

machine with 32 cores clocked at 2.6 GHz with 100 GB RAM, 32KB of L1 data cache,

256KB of L2 cache and 20MB of L3 cache. The machine runs CentOS 6.5 and 2.6.32-431

kernel, with GCC version 4.4.7, ICC version 15.0.0, and OpenMP version 4.0.

For empirical analysis, the number of threads are varied as 16, 32 and 64, and compared

the speedup against that of the sequential version. The achieved speedup depends upon

several factors such as the amount of total work, load imbalance across threads, overhead

of thread creation, and synchronization. It is often smaller than the ideal speedup (K× with

K threads). To have uniformity in the configuration across other frameworks, the default

behavior of all the frameworks was retained during evaluation.

4.2 Auto-parallelization of PolyBench
The PolyBench/C 4.2 benchmarks are executed using the five frameworks namely, Ce-

tus, Par4all, Rose, ICC, and Pluto. Various command-line parameters used to invoke the

parallelization frameworks are shown in Table 2.3 referred in Chapter 2. It is observed that

out of the 30 benchmarks, the sequential execution times of two benchmarks (gesummv

and deriche) are negligible; hence, the remaining 28 compute-intensive programs is

considered for this experimentation.

Table 4.1 shows static characteristics of the benchmarks, such as the application do-

main, the number of potentially parallelizable statements (Stmts), and also the number of

static dependences (Dep) of the type Read-After-Write (RAW), Write-After-Write (WAW),

and Write-After-Read (WAR). The chunky analyzer for dependences in loops (CANDL)

tool [56], is used to obtain these characteristics. The eighth and the ninth columns of the

table also list the problem size used for executing the benchmark and the sequential ex-

ecution time in seconds for each benchmark. The benchmarks were grouped based on

loop-independent and loop-carried dependences. It can be seen that 12 out of 28 bench-

marks have loop-independent () computations and are likely to scale well with the number

of threads . On the other hand, the remaining 16 benchmarks exhibit loop-carried () de-

pendence which affects their scalability.

60

4.2. Auto-parallelization of PolyBench

Table 4.1: Characteristics of PolyBench benchmarks and the parallelization results
by various frameworks

Benchmarks Domain Stmts Dep RAW WAW WAR Problem
Size

Seq. Exec.
Time TS (s) Cetus Par4all Rose ICC Pluto

correlation DM 22 77 42 18 17 1E4 4219.65 7b 3 3 3 3

covariance DM 15 34 16 11 7 1E4 4220.66 7b 3 3 3 3

gemm LA 5 6 2 2 2 1E4 3620.39 3 3 3 3 3

gemver LA 7 13 7 3 3 1E5 403.94 7b 3 3 3 3

syr2k LA 5 6 2 2 2 1E4 6482.79 3 3 3 3 3

syrk LA 5 6 2 2 2 1E4 4060.29 3 3 3 3 3

2mm LA 10 13 6 4 3 1E4 20081.44 7b 3 3 3 3

3mm LA 15 19 10 6 3 1E4 24170.55 7b 3 3 3 3

atax LA 6 12 6 4 2 1E5 64.49 3 3 3 3 3

bicg LA 6 10 4 4 2 1E5 57.93 3 3 3 7c d 3

doitgen LA 10 30 10 10 10 1E3 4204.52 7b 3 3 7c d 3

mvt LA 4 6 2 2 2 1E5 307.31 7b 3 3 3 3

symm LA 10 33 11 11 11 1E4 6338.77 7b 3 3 3 7e

durbin LA 10 55 27 13 15 1E6 4205.76 3 3 3 7c d 7e

gramschmidt LA 14 34 17 8 9 1E4 7476.37 3 3 3 3 3

ludcmp LA 22 181 66 56 59 1E4 1839.32 3 3 3 7c d 7e

trmm LA 5 8 2 2 4 1E4 4194.12 7b 3 3 3 3

adi Stencils 34 140 68 22 50 1E4 43285.76 7b 3 3 3 3

fdtd-2d Stencils 11 28 12 4 12 1E4 14255.44 7b 3 3 3 3

heat-3d Stencils 8 42 20 2 20 1E4 27887.57 7b 3 3 3 3

jacobi-1d Stencils 4 14 6 2 6 1E6 7052.42 7b 3 3 3 3

jacobi-2d Stencils 6 22 10 2 10 1E4 14871.71 7b 3 3 3 3

cholesky LA 8 22 14 4 4 1E4 571.44 7a 7a 7a 7c d 3

lu LA 8 16 10 3 3 1E4 2603.65 7a 7a 7a 7c d 3

trisolv LA 4 13 7 4 2 1E5 15.61 7a b 7a 7a 7c d 3

floyd-warshall Medley 3 21 10 1 10 1E4 3484.39 7a 7a 7a 7d 3

nussinov Medley 11 52 19 9 24 1E4 1157.45 7a 7a 7a 7d 3

seidel-2d Stencils 3 27 13 1 13 1E4 13019.95 7a 7a 7a 7d 3

28 codes – 271 940 421 212 307 – 224153.69 8 22 22 18 25

Loop-independent dependence problems
Loop-carried dependence problems
a Loop-carried dependence problems
b If applying inlining+parallelization, these benchmarks can be parallelized (lack of inter-procedural

optimization).
c Insufficient computational work
d Existence of parallel dependence
e Pluto fails in parallelizing loops comprising of scalar variables.

(Stmts = The number of potentially parallelizable statements, Dep = The number of static dependences,
RAW = Read-After-Write, WAW = Write-After-Write, WAR = Write-After-Read, DM = Data Mining,
LA = Linear Algebra, 3Parallelized, 7Not Parallelized)

61

4.2. Auto-parallelization of PolyBench

4.2.1 Differences in parallelization
The support matrix indicating which benchmark is successfully parallelized by each

framework is presented. Table 4.1 lists the successful and unsuccessful transformation of

individual benchmark. Overall, it is observed that none of the frameworks parallelized

all 28 programs. Pluto could parallelize the largest number (25) of benchmarks. Par4all

and Rose could successfully parallelize the same set of 22 benchmarks each, whereas ICC

parallelized 18 of them.

The scenarios which forbid the frameworks from parallelizing certain benchmarks were

carefully analyzed. In order to elucidate the difference between the frameworks, the bench-

marks were categorized into two groups namely, (i) Benchmarks with loop-independent

problem () (ii) Benchmarks with loop-carried problems () which is highlighted in Ta-

ble 4.1.

Pluto could parallelize all the benchmarks with loop-carried dependence due to vec-

tor. Other frameworks could support a subset of loop dependent problems, but they do

not work when complex dependences are present. Cetus, Par4all, and Rose failed to paral-

lelize some benchmarks with loop-carried dependences. Cetus relies on function inlining

for improving the scope for intra-procedural optimizations [7]. However, Cetus does not

inline functions by default. Hence, it failed in parallelizing some of the loop-independent

dependence problems. Clearly, this is a serious limitation of the frameworks (with default

behavior). ICC reported existence of parallel dependence but insufficient computational

work.

Pluto worked with vectors but did not parallelize for-loops when the `-value of the

statement is a scalar variable. It failed to parallelize the benchmarks with loop-carried

dependence due to scalar. This indicates that the constructs and the dependences appearing

in PolyBench benchmarks are well-covered across the auto-parallelization frameworks.i

iSome implementation issues was encountered, which can be fixed by the framework developers. For
instance, Cetus does not support multiple ‘\’ (line continuation character) in a single preprocessor macro
definition. As a fix, such definitions were split into multiple macro definitions with single ‘\’. Similarly, in
Rose, conditional preprocessor macros are not correctly interpreted.

62

4.3. Result analysis

4.3 Result analysis
This section discusses the quantitative effect of individual parallelizer on various Poly-

Bench benchmarks. Three benchmarks results are plotted to illustrate the scalability factor,

gemm, syr2k, and syrk . The criteria for choosing these applications for scalability study

is because these benchmarks have (i) loop-independent dependence and (ii) best speedup

plot. Figure 4.1 shows the effect of number of threads on speedup. The results shows that

the speedup scale well with increase in thread size (2, 4, 8, 16, 32, and 64). Hence for

evaluation purpose, we examine the results across 16, 32, and 64 threads.

The parallelization results are discussed in more detail subsequently. Figures 4.2 and 4.3

shows speedup obtained by the frameworks on each benchmark. The performance is dis-

cussed by categorizing benchmarks based on the absence or presence of loop-carried de-

pendence, which is discussed next.

4.3.1 Benchmarks with loop-independent dependence
Table 4.1 shows the benchmarks grouped under loop-independent dependence prob-

lems. It is observed from the support matrix that all frameworks support benchmarks with

loop-independent dependence using privatization. At the same time, Cetus and ICC fail

on several of these benchmarks. This happens because Cetus requires function inlining for

improving the scope for intra-procedural optimizations (Section 2.3.1 in Chapter 2), while

ICC reports the existence of parallel dependence. ICC also reports insufficient computa-

tional work for two of the benchmarks (bicg and doitgen).

63

4.3. Result analysis

Figure 4.1: Effect of number of threads on speedup for benchmarks; syrk, syr2k, and
gemm

64

4.3. Result analysis

This section also discusses the performance impact of frameworks in parallelizing the

loop-independent dependence problems shown in Figure 4.2.ii

Overall, Pluto and ICC exhibit relatively better speedups compared to others. ICC

achieves the best overall speedup (with 32 threads: gemm 33.0×, syr2k 22.0×, and

syrk 26.8×; with 1 threadiii: gemm 5.1×, syr2k 2.3×, and syrk 2.8×). This is pri-

marily due to vectorization and privatization. Pluto performs quite well (with 32 threads:

correlation 22.4×, covariance 23.5×, gemver 20.2×, 2mm 19.4×, 3mm 13.1×,

atax 4.6×, bicg 2.4×). The best speedup is achieved for Pluto due to the effect of poly-

hedral optimization and privatization. However, atax and bicg exhibit limited speedup

as the parallel coverage is less compute-intensive. Also, Pluto achieves lesser speedup for

4 benchmarks (gemm, syr2k, syrk, mvt).

Among Cetus, Par4all and Rose, it is observed that Par4all performs better than Rose

(with 32 threads: correlation and covariance 9.7×, gemm 10.9×, syr2k 8.9×,

syrk 8.2×, 2mm 14.6×, 3mm 10.6×). Besides, Rose exhibits good results (with 32

threads: gemver 11.5×, doitgen 10.3×, mvt 10.7×). Cetus fares overall inferior to

other frameworks obtaining average performance equivalent to the sequential run.

The effectiveness of the frameworks depends upon their techniques and methodologies.

For instance, all the five frameworks apply array privatization. However, Cetus, Par4all and

Rose do not perform any additional optimization. On the other hand, ICC relies heavily

on vectorization while Pluto exploits polyhedral optimization. Although ICC and Pluto

perform overall better than others, the performance improvements by Par4all and Rose

suggest that array privatization provides considerable performance benefits.

iiBenchmarks with 0 speedup indicate a timeout of three hour.
iiiSince ICC’s baseline involves default optimization (-O2), we also provide single-thread results. This is

to show that ICC exploits better overall parallelism.

65

4.3. Result analysis

The speedup plots show the performance impact of the auto-parallelizers in parallelizing
the loop-independent dependence problems.

Figure 4.2: Quantitative analysis of PolyBench benchmark with loop-independent
dependences (correlation,covariance, gemm, gemver, syr2k, and syrk),
(continued in next page)

66

4.3. Result analysis

The speedup plots show the performance impact of the auto-parallelizers in parallelizing
the loop-independent dependence problems. Benchmarks with 0 speedup indicate a
timeout of three hours.

Figure 4.2: Quantitative analysis of PolyBench benchmark with loop-independent
dependences (2mm, 3mm, atax, bicg, doitgen, and mvt) (Contd.)

67

4.3. Result analysis

4.3.2 Benchmarks with loop-carried dependences
The benchmarks shown in Table 4.1 exhibit three types of loop-carried dependence:

• Case 1: Loop-carried dependence due to scalar variable(s). Such benchmarks are

potentially amenable to hierarchical reduction. This is exhibited by four benchmarks

– symm, durbin, gramschmidt, ludcmp.

• Case 2: Loop-carried dependence due to vector variable(s) in the inner/outer loop

of a nested for. Such benchmarks are potentially amenable to simple loop trans-

formations and array privatization. This is exhibited by nine benchmarks – symm,

durbin, ludcmp, trmm, adi, fdtd-2d, heat-3d, jacobi-1d,

jacobi-2d. Note that a benchmark may have multiple kinds of loop-carried de-

pendence, based on different variables. Out of these nine, only adi contains depen-

dence in the inner loop; all others contain dependence in the outer loop.

• Case 3: Complex loop-carried dependence. Such benchmarks are potentially amenable

to sophisticated loop analysis such as polyhedral loop transformations. Due to com-

plex dependence pattern, such benchmarks require considerable loop transforma-

tions or manual code changes for achieving parallelization. This is exhibited by

totally six benchmarks, namely, cholesky, trisolv, floyd-warshall,

nussinov, lu, and seidel-2d.

Table 4.1 shows the support matrix of benchmarks comprising loop-carried dependence

problems for the above three cases. Investigation of the benchmarks in Case 1 reveals

that all the frameworks except Pluto apply reduction variable recognition optimization [81]

besides parallelization and array privatization. Since Pluto is a polyhedral tool and performs

the affine transformation based on array-index expressions [21], it does not parallelize loops

when the `-value of a statement is a scalar.

For Case 2, the frameworks parallelize the dependence-free loop (inner/outer) of the

nested for-loop as described in Section 3.2.2 in Chapter 3 via the micro-benchmarks, the

following observations are made. Par4all and Rose parallelize all the benchmarks. How-

ever, ICC reports the existence of parallel dependence and also insufficient computational

68

4.3. Result analysis

work for two of the benchmarks (durbin and ludcmp). Cetus supported the least num-

ber of benchmarks in our setup (durbin, gramschmidt, and ludcmp) as it does not,

by default, support inter-procedural optimizationiv.

For Case 3, i.e., the benchmarks with complex loop-carried dependence are parallelized

only by Pluto. These benchmarks do not have dependence-free loops; hence the scope for

parallelization is less. It requires additional loop analysis and transformation to remove the

dependences. Pluto applies loop peeling in addition to parallelization, privatization, and

polyhedral optimization to achieve this. ICC reports existence of parallel dependence and

also insufficient computational work for all the Case 3 benchmarks; and therefore, does not

parallelize these loops.

The performance of the five frameworks in parallelizing the loop-carried dependence

problems depicted in Figure 4.3 is discussed now. Overall, for Case 2 benchmarks, ICC per-

forms better than all the other frameworks (with 32 threads: symm 9.8×, gramschmidt

13.1×, trmm 15.1×, heat-3d 15.4×, and jacobi-1d 18.4×; with 1 thread: symm

2.0×, gramschmidt 1.8×, trmm 2.0×, heat-3d 5.5×, and jacobi-1d 3.9×). This

performance stems from ICC applying additional transformations such as loop peeling

along with array privatization, parallelization, and vectorization. Note that the single-

threaded performance of ICC also achieves good speedup over the sequential baseline as

ICC enables -O2 optimizations by default. Among Cetus, Par4all, Rose, and Pluto frame-

works, Par4all and Rose provide better benefits (Par4all with 32 threads: gramschmidt

11.0×, adi 4.7×, heat-3d 12.3×, jacobi-1d 11.3×; Rose with 32 threads: symm

5.0×, durbin 8.3×, trmm 10.0×, fdtd-2d 8.5×; Par4all and Rose with 32 threads:

jacobi-2d 10.7×). This indicates that compared to polyhedral transformations, array

privatization provides better performance improvement on PolyBench. Parallelization of

adi shows that additional optimization (loop fission) by ICC affects the scalability.

For Case 3 benchmarks with complex dependences, only Pluto could parallelize the

codes but the performance is relatively lower (with 32 threads: cholesky 5.6×, lu 8.8×,

trisolv 2.3×, floyd-warshall 1.8×, nussinov 8.6×, and seidel-2d 9.1×).
ivUsing function inlining, Cetus can improve its parallelization effect (Section 2.3.1). However, to have

uniformity in the configuration concerning other frameworks, the default behavior of Cetus is retained and
did not explicitly enable function inlining.

69

4.3. Result analysis

The speedup plots depict the performance of the auto-parallelizers in parallelizing the
loop-carried dependence problems

Figure 4.3: Quantitative analysis of PolyBench benchmark with loop-carried dependences
due to scalar/vector, (symm, durbin, gramschmidt, ludcmp, trmm, adi, fdtd-2d,
heat-3d) (continued in next page)

70

4.3. Result analysis

Figure 4.3: Quantitative analysis of PolyBench benchmark with loop-carried depen-
dences due to scalar/vector (jacobi-1d, jacobi-2d, cholesky, lu, trisolv,
floyd-warshall, nussinov, seidel-2d) (Contd.)

71

4.4. Effect of static dependences

4.4 Effect of static dependences
The fourth column of Table 4.1 (named Dep) shows the number of static dependences

present in each benchmark. To assess how it affects performance, we bucketize the range of

Dep values: 0-10, 11-20, 21-30, 31-40 and >40, and study the performance of benchmarks

falling into a range. The high-level expectation is that more the dependence, smaller is the

parallelization benefit (however, note that the overall speedup gets affected by other factors

also). Columns Stmts and RAW in Table 4.1 are also indicative. However, Stmts and RAW

follow the same trend as Dep, and hence the below discussion applies also to these two

parameters.

Figure 4.4 depicts the variation in speedup between individual Dep range of all the

five frameworks. It is observed that for a large number of dependences, the speedup is

usually relatively smaller. However, as expected, the speedup does not always reduce with

increasing number of static dependences. Therefore, the number of static dependences

alone cannot be conclusively used to predict the parallel performance.

Second, the maximum speedup is achieved by ICC (up to 34.5× for Dep between 0 and

10). Besides, on an average, the best speedup is achieved by ICC (average 11.1×). Pluto

shows a considerable difference in performance across static dependence ranges. On the

other hand, Cetus, Par4all, and Rose are relatively less sensitive to this value. This clearly

indicates that the dependences are modeled more prominently in ICC and Pluto transfor-

mations. Among Cetus, Par4all and Rose frameworks, Cetus neither transforms many

benchmarks nor achieves good parallelism on the ones which it successfully transforms.

The performance benefits of Par4all and Rose are overall comparable but are significantly

lesser than those of ICC and Pluto.

72

4.4. Effect of static dependences

(a) ICC

(b) Pluto

The variation in speedup (Y-axis) between individual Dep range (X-axis) of all the five frameworks
is shown. Note that Y-axes use different scales across plots.

Figure 4.4: Effect of static dependences on PolyBench benchmark: A speedup analysis
(a) ICC (b) Pluto, (continued in next page)

73

4.4. Effect of static dependences

(c) Par4all

(d) Rose

The variation in speedup (Y-axis) between individual Dep range (X-axis) of all the five frameworks
is shown. Note that Y-axes use different scales across plots.

Figure 4.4: Effect of static dependences on PolyBench benchmark: A speedup analysis
(c) Par4all (d)Rose, (continued in next page)

74

4.5. Effect of individual techniques on parallelizers parallelized code

(e) Cetus

The variation in speedup (Y-axis) between individual Dep range (X-axis) of all the five
frameworks is shown. Note that Y-axes use different scales across plots.

Figure 4.4: Effect of static dependences on PolyBench benchmark: A speedup analysis
(e) Cetus (Contd.)

4.5 Effect of individual techniques on parallelizers parallelized code
Hitherto, in the present study, auto-parallelizers with its default techniques had shown

considerable performance benefits on PolyBench codes. This section describes the effect

of individual techniques listed in Table 3.1 in Chapter 3 on the five frameworks. From

Table 3.1, four different loop transformation techniques viz. (T1 - Privatization, T4 - Re-

duction, T6 - Tiling, T7 - Unrolling)v are chosen to study the performance that can be

attributed when used across different frameworks. This examination is carried out to un-

derstand that additional tuning techniques applied to the default parallelization may lead to

better speedup.

vThe selection criteria is these techniques are supported by maximum parallelizers

75

4.5. Effect of individual techniques on parallelizers parallelized code

4.5.1 Effect of Tiling and Unrolling loop transformation techniques
Figure 4.5 shows the performance variation of T1, T4, T6, and T7 techniques on dif-

ferent parallelizers. T1 and T4 are performed by default when parallel flag is enabled.

Throughout this section, effects of T1 and T4 are termed as Parallelization. T6 and T7

are supported by Rose, ICC, and Pluto. Although literature quotes T6 and T7 are sup-

ported by Par4all (Table 3.1), enabling Unrolling did not perform any transformation on

the PolyBench suite. Also, to the best of our knowledge, documentation to enable Tiling

is unavailable. Hence, for this study, effects of Par4all on T6 and T7 are excluded. Cetus

does not perform Tiling and Unrolling.

The performance result shows that Tiling applied on Pluto has shown good speedup

for syr2k 21.38×, and trmm 24.67× when compared to Parallelization and Unrolling.

Similarly, ICC has shown good Tiling results for gemm 70.54×, and syrk 28.16×. Rose

compiler has shown best Tiling results on two benchmarks on syr2k 9.00×, and syrk

8.78×), but however lesser than ICC and Pluto. Overall Tiling performs good in ICC and

Pluto.

It was observed that Unrolling performed on Rose has shown considerable performance

syr2k 9.00×, and syrk 9.86×. For ICC, there was no performance difference observed

when Unrolling is performed. Unrolling performed on Pluto showed poor speedup than

parallelized and tiled code.

Since Tiling and Unrolling are performed well on ICC and Pluto, we have applied these

two techniques on 21 PolyBench benchmarks to analyze their efficacy.

76

4.5. Effect of individual techniques on parallelizers parallelized code

Parallelization (T1, T4) - This is the default option where either privatization/reduction
performs automatically when parallel flag is enabled.
Tiling (T6) - Loop Tiling is enabled along with parallel flag (Tile size: 32)
Unrolling (T7)- Loop Unrolling is enabled along with parallel flag (Unroll factor: 8)

Figure 4.5: Effect of loop transformation techniques across different parallelizers :
Speedup measured with 32 threads on PolyBench codes (gemm, syr2k, syrk, symm,
and trmm)

Effect of Tiling over Parallelization Figure 4.6 depicts that ICC Tiling has shown per-

formance improvement in 11 out of 18 codes than ICC Parallelization. ICC Tiling outper-

forms (50% more performance improvement than ICC Parallelization) for 4 benchmarks

(speedup with 32 threads: gemm 70.54×, 2mm 15.91×, 3mm 13.47×, and mvt 13.03×).

77

4.5. Effect of individual techniques on parallelizers parallelized code

Figure 4.6 also shows that the usage of Tiling is well implemented in Pluto as the tool

shows good speedup for 17 out of 25 benchmarks than Pluto Parallelization. Some of the

good speedup results when executed with 32 threads are: gemver 30.79×, trmm 24.67×,

3mm 22.21×, mvt 28.80×. Pluto Tiling outperforms ICC over 18 number of benchmarks,

except the gemm, where ICC shows 70.54× speedup.

Effect of Unrolling over Parallelization Figure 4.7 shows that ICC gets benefited using

Unrolling, whereas Pluto performs poorer due to this flag. ICC Unrolling has shown per-

formance improvement for 10 out of 18 benchmarks (some of the speedup with 32 threads:

gemm 36.09×, atax 5.02×, and mvt 12.38×). Pluto Unrolling is supported only for

9 out of 25 benchmarks. Some of the cases exhibited erroneous transformation and rea-

sons could not be faithfully deduced, while several other cases do not perform Unrolling.

Pluto Unrolling has degraded the performance than Pluto Parallelization, except for two

benchmarks (speedup with 32 threads: 3mm 14.47× and doitgen 4.57 ×).

ICC Parallelization / Pluto Parallelization- Only parallel flag enabled
ICC Tiling / Pluto Tiling - Loop Tiling + parallel flag enabled

Figure 4.6: Effect of Tiling on Pluto and ICC on PolyBench codes: Speedup measured with
32 threads

78

4.6. Summary of performance

ICC Parallelization / Pluto Parallelization- Only parallel flag enabled
ICC Unrolling / Pluto Unrolling - Loop Unrolling + parallel flag enabled

Figure 4.7: Effect of Unrolling on ICC and Pluto on PolyBench codes: Speedup measured
with 32 threads

4.6 Summary of performance
PolyBench codes were used to carry out the empirical analyses on five different auto-

parallelizers. The benchmarks inherently possess various dependence structures. It was

observed that there were no PolyBench benchmarks that could not be parallelized using any

of these frameworks. The benchmarks were categorized based on two dependence types

namely, (i) loop-independent dependence, and (ii) loop-carried dependence. Following

were the observations made:

1. All five auto-parallelizers considered for the study were functionally supporting par-

allelization of loop-independent dependence problems.

2. Although differences occurred in the support matrix of the PolyBench codes by dis-

tinct auto-parallelizers, Pluto could parallelize more number of benchmarks.

3. Exclusively, Pluto successfully parallelized applications with complex loop-carried

dependence using loop peeling. The limitation of Pluto is that it failed in parallelizing

79

4.6. Summary of performance

loops with a scalar.

Table 4.2 summarizes the overall results of 16, 32, and 64 threads from Figures 4.2

and 4.3. It lists the average speedup achieved by all the auto-parallelization frameworks

under study on PolyBench benchmark. The average speedup is calculated using the geo-

metric mean equation (eqn. 4.1) for all five parallelizers. The geometric mean is calculated

for individual parallelizers by taking the nth root of the product of n numbers i.e. x1,

x2,...xn (speedup of individual benchmark); n denotes the total number of benchmarks

parallelized by each parallelizer.

(n∏
i=1

xi
)(1/n)

= n
√
x1x2...xn (4.1)

Table 4.2: Performance summary of auto-parallelizers on PolyBench codes (with 16,
32 and 64 threads)

No. of threads Cetus Par4all Rose ICC Pluto

16 0.98 5.48 5.01 12.47 5.94

32 0.97 7.00 6.37 11.09 7.82

64* 0.96 5.70 5.02 10.22 5.18

The table denotes the geometric mean calculated for parallelized benchmarks across five different
parallelizers. The execution times of the benchmarks resulting in a timeout were excluded.
*Though there are 32 physical cores, we experiment with 64 threads as sometimes context
switching becomes beneficial for applications that are memory intensive and are I/O bound.

80

4.6. Summary of performance

Performance analysis shows that among the five frameworks, ICC stands out as it does

vectorization besides parallelization and additional optimization. Pluto and Par4all resulted

in significant performance improvement. It showed that polyhedral optimization exhibited

by Pluto, and array privatization evinced by Par4all showed considerable benefits.

Cetus supported the least number of benchmarks due to dependence issues and lack of

support for intra-procedural optimization. It performs inferior to all other frameworks.

4.6.1 Discussion
This section discusses the effect of inlining on Cetus performance. To understand and

analyze the Cetus parallelization, function inlining was enabled. In total, 8 benchmarks

were used to bring out the differences. The benchmarks that were not parallelized with

default option of Cetus are parallelized after inlining is enabled. Figure 4.8 shows that

all the 8 benchmarks had shown good performance improvement. This examination was

performed to complement Cetus as the literature revealed that in most cases the tool had

performed well. However, to have uniformity in our analysis, default options of the paral-

lelizing compilers were used for this study.

Figure 4.8: Effect of function inlining on Cetus: Speedup measured with 32 threads

81

CHAPTER 5

Quantitative Analysis of Parallelization

Frameworks using

NAS Parallel Benchmarks

This chapter explains the effectiveness of frameworks in parallelizing NAS Parallel bench-

marks (NPB). The successful, semi-successful and unsuccessful parallelization of bench-

marks are studied in detail. It discusses the pre- and post-transformation problems encoun-

tered by the frameworks during parallelization. A detailed analysis on the NPB results is

carried out.

5.1 Background
Empirical analysis of five different auto-parallelizers namely Cetus, Par4all, Rose, Intel

C compiler (ICC), and Pluto are carried out using NAS parallel benchmarks (NPB) [105,

106, 107, 108]. In this chapter, the frameworks are examined for the performance of their

transformed codes. Popular benchmark suite NPB was used as a workload to carry out the

experiments.

NPB is a suite of ten programs, and the benchmarks are primarily derived from the

domain of computational fluid dynamics (CFD). It is a widely-used suite for assessing the

effectiveness of large-scale parallel executions and in literature for evaluation of paralleliza-

tion proposals. It includes applications dealing with unstructured adaptive mesh, parallel

I/O, multi-zone applications, and computational grids. Drozdov et al. [109] tested differ-

ent optimization techniques in low level virtual machine (LLVM) compiler using NPB and

also compared the performance of different compilers. Griebler et al. [108] provided an

efficient C++ version of NPB benchmark kernels by replacing the Fortran code.

83

5.2. Auto-parallelization of NAS parallel benchmarks (NPB)

This chapter focuses on the parallelization of NPB-C benchmark suite using auto-

parallelizers. Unlike PolyBench, each NPB benchmark comprises of different dependence

structures including loop-independent and loop-carried due to a scalar/vector. Also, it

has several functions involving computationally intensive loops with complex coding style

(which matters for source-to-source translators).

5.1.1 Experimental configuration
The experimental configuration is illustrated in Chapter 4. For empirical analysis, the

number of threads are varied as 64, 32 and 16, and compared the speedup against that of the

sequential version. The achieved speedup depends upon several factors such as the amount

of total work, load imbalance across threads, overhead of thread creation, synchronization,

etc. It is often smaller than the ideal speedup (K× with K threads). To have uniformity in

the configuration concerning other frameworks, the default behavior of all the frameworks

was retained during evaluation.

5.2 Auto-parallelization of NAS parallel benchmarks (NPB)
The NAS parallel benchmarks (NPB3.3-SER-C) are executed through the five frame-

works under study. All ten NPB benchmarks are used for the study.

5.2.1 Differences in parallelization
Table 5.1 presents the effectiveness of the frameworks in auto-parallelizing the bench-

marks. Description of individual benchmark is shown in Table 5.2. It illustrates the differ-

ences in parallelization by frameworks.

Successful parallelization symbolizes two aspects: (i) code transformation happened,

and (ii) the transformed code is equivalent to the serial version in terms of its output. The

correctness check is programmatically performed by the test case of the individual bench-

mark. It is observed that most of the benchmarks were successfully parallelized (3).

Semi-successful parallelization indicates that either the code transformation or the se-

mantic equivalence was not achieved. The former occurs due to pre-transformation issues

(α) such as timeout or syntactical errors during conversion. The latter is due to post-

transformation issues (β) which result in erroneous code transformation. The issues in

84

5.2. Auto-parallelization of NAS parallel benchmarks (NPB)

Table 5.1: Complexity measurement of NPB using chunky analyzer for dependences
in loops (CANDL) and the parallelization results by various frameworks

Bm. Stmts Dep RAW WAW WAR Seq. Exec.
Time TS (S) Cetus Par4all Rose ICC Pluto

BT 419 2412 - - - 2591.08 7h 3 βdV 3 αaβg V

CG 11 47 18 18 11 387.17 3 3 3 3 3

DC 5 3 2 1 0 911.11 3 αbβcV αjβcV 7i βcV

EP 13 58 26 20 12 616.47 3 3 βf V 3 βcV

FT 9 5 2 2 1 668.01 � a 3 �j 3 βgV

IS 4 12 4 4 4 20.17 3 3 � a 3 3

LU 1282 15708 - - - 2931.64 3 3 αjβcV 3 αaβgV

MG 11 47 18 18 11 256.44 3 3 3 3 βgV

SP 230 884 305 263 316 2568.85 3 3 βdV 3 βgV

UA 19 20 8 6 6 2081.15 3 βcV � e,g 3 � e,g

10 2003 19196 383 332 370 13032.09 8 10 7 9 9

* Problem size CLASS C is used for all benchmarks except DC. For DC, CLASS B is used

Bm. Benchmark, 7 non-parallelized, Stmts = The number of potentially parallelizable statements,
Dep = The number of static dependences, RAW = Read-After-Write, WAW = Write-After-Write,
WAR = Write-After-Read, � Unsuccessful, 3 Successful, V Successful after subjecting to changes,
α Changes for pre-transformation issues, β Changes for post-transformation issues; for BT and LU,
Candl invoked by Pluto timed out and hence some statistics are not displayed

a Timeout after an hour
b Due to recursion
c Erroneous code transformation
d Privatization error
e Parallelized code output is not equivalent to serial code
f Reduction error
g Error after code transformation and the Source of the error could not be deduced
h Lack of support for inter-procedural optimizations
i Loops are not parallelization candidates, there exists dependence across iterations, and also insuf-

ficient computational work
j Error during code transformation and the source of error could not be deduced

85

5.2. Auto-parallelization of NAS parallel benchmarks (NPB)

Table 5.2: Description of NAS parallel benchmarks (NPB)

Benchmark Description

BT Block Tri-diagonal solver

CG Conjugate Gradient, irregular memory access and communication

DC Data Cube

EP Embarrassingly Parallel

FT Discrete 3D fast Fourier Transform, all-to-all communication

IS Integer Sort, random memory access

LU Lower-Upper Gauss-Seidel solver

MG Multi-Grid on a sequence of meshes, long and short distance
communication, memory intensive

SP Scalar Penta-diagonal solver

UA Unstructured Adaptive mesh, dynamic and irregular memory access

the semi-successful codes were manually rectified. The codes that were addressed using

the pre-transformation (α) and the post-transformation (α) changes are marked as Vin the

Table 5.1. A few semi-successful benchmarks could be successfully parallelized using

Par4all, Rose and Pluto after this manual intervention (e.g., DC by Par4all), denoted as α

for pre-transformation and β for post-transformation (discussed more later in this section).

After applying all the changes, Par4all could parallelize all ten NPB benchmarks. ICC and

Pluto were a close second parallelizing 9 of them. Cetus could successfully parallelize

eight, whereas Rose parallelized seven of them.

Despite the manual fixes, few of the benchmarks under study were unsuccessful and

are represented in the table using symbol �. Pluto and Rose produced semantically in-

correct output for UA, but the source of the error is not deduced. Cetus and Rose failed

to parallelize FT and IS respectively due to timeouti. Rose could not parallelize FT due

to an error during code transformation. There are non-parallelized benchmarks exhibited

by a few of the tools and are shown in the table using symbol 7. ICC did not parallelize

iTimeout indicates codes taking more than an hour for program transformation.

86

5.2. Auto-parallelization of NAS parallel benchmarks (NPB)

DC and reported that some of the loops are not parallelization candidates either because

there exists dependence across iterations, or insufficient computational work. On the other

hand, Cetus failed to parallelize BT due to lack of support for inter-procedural analysis (see

Section 2.3.1 in Chapter 2). Interestingly, CG is the only benchmark which is successfully

transformed by all the frameworks without any changes. The above discussed observation

poses a serious question-mark over the expressivity and generality of auto-parallelization

frameworks, which is one of the takeaways of this study.

5.2.2 Details of the transformation errors: manual changes on

pre-transformation (α) and post-transformation (β) issues
This section first discusses about two pre-transformation issues (α) namely, (i) timeout,

and (ii) error during code transformation in Table 5.1, and the manual changes to fix those

issues.

(i) Timeout: For BT, Pluto timed outii for the files x_solve, y_solve, and z_solve. Sim-

ilarly, Pluto timed out in transforming file erhs of LU. This is due to more number of

statements within the parallelizable region. Files that caused timeout were excluded from

further evaluation.

(ii) Error during code transformation: For DC, auto-parallelization of files jobcntl

and adc by Rose was unsuccessful, and the source of the error could not be deduced. Like-

wise, Rose produced error during transformation of file ssor of LU. So for the timeout and

the error cases, the original sequential code was used for the evaluation. For DC, Par4all

fails to transform due to recursive functions WriteViewToDisk(), WriteViewToDiskCS(),

computeChecksum(), and WriteChunkToDisk(). Hence, the recursive functions was elim-

inated during transformation. Figure 5.1(a) shows the snippet of the recursive code from

DC which forbid parallelization.

This section next illustrate the applied changes to the post-transformation problems

(β), namely, (i) illegal transformation, (ii) incorrect transformation, and (iii) unrecognized

problems. These are listed in the last five columns of Table 5.1.

iiTimeout indicates codes taking more than an hour for program transformation.

87

5.2. Auto-parallelization of NAS parallel benchmarks (NPB)

(a) Par4all fails to parallelize DC due to recursive WriteViewToDisk()

1 i n t 3 2 WriteViewToDisk (ADC_VIEW_CNTL *avp , t r e e N o d e * t) {
2 i f (! t) r e t u r n ADC_OK;
3 i f (WriteViewToDisk (avp , t−> l e f t)) r e t u r n ADC_WRITE_FAILED ;
4 f o r (i =0 ; i <avp−>nm ; i ++)
5 avp−>mSums [i] += t−>nodeMemPool [i] ;
6 W r i t e T o F i l e (t−>nodeMemPool , avp−> ou tRecS ize , 1 , avp−> v i e w F i l e , avp−> l o g f) ;
7 i f (WriteViewToDisk (avp , t−> r i g h t)) r e t u r n ADC_WRITE_FAILED ;
8 r e t u r n ADC_OK;
9 }

(b) Invalid privatization + reduction transformation by Rose (left) and valid manual transformation
(right): EP benchmark

1 # pragma omp p a r a l l e l f o r p r i v a t e
(gc , i) r e d u c t i o n (+ : gc)

2 f o r (i = 0 ; i <= 9 ; i += 1)
3 gc = gc + q [i] ;

1 # pragma omp p a r a l l e l f o r p r i v a t e
(i) r e d u c t i o n (+ : gc)

2 f o r (i = 0 ; i <= 9 ; i += 1)
3 gc = gc + q [i] ;

Rose Manual

(c) Rose produces illegal transformation (return within parallel pragma): DC benchmark

1 # pragma omp p a r a l l e l f o r p r i v a t e (i)
2 f o r (i = 0 ; i <= n − 1 ; i += 1)
3 i f (a [i] < b [i]) r e t u r n − 1 ;
4 e l s e i f (a [i] > b [i]) r e t u r n 1 ;

(d) Serial DC code and incorrect for loop initialization by Par4all

1 f o r (pn= 0 , g b i = 0 , i i =nViews−1 ; i i >=0
; i i−−)

2

1 f o r (i i = i i ; i i >= 0 ; i i += −1)
2

Serial Par4all

Figure 5.1: Pre- and post-transformation issues (a) Par4all fails to parallelize DC due to
recursive WriteViewToDisk() (b) Invalid privatization + reduction transformation by Rose
(left) and valid manual transformation (right) (c) Rose produces illegal transformation
(return within parallel pragma) (d) Serial DC code and incorrect for loop initialization by
Par4all, (continued in next page)

88

5.2. Auto-parallelization of NAS parallel benchmarks (NPB)

(e) Erroneous code transformation by Pluto (left) and correct manual transformation (right): DC
benchmark

1 i f (numDims >= 1)
2 {
3 l b p =0 ;
4 ubp=numDims−1 ;
5 # pragma omp p a r a l l e l f o r

p r i v a t e (lbv , ubv)
6 f o r (t 1 = l b p ; t 1 <=ubp ; t 1 ++)
7 Se tOneBi t (b inRepTuple , s e l T u p l e

[t 1]−1) ;
8 }
9 vo id Se tOneBi t (u i n t 6 4 *s , i n t 3 2

pos)
10 {
11 u i n t 6 4 ob = MLB;
12 ob >>= pos ;
13 * s | = ob ;
14 }

1 i f (numDims >= 1)
2 {
3 l b p =0 ;
4 ubp=numDims−1 ;
5 # pragma omp p a r a l l e l f o r p r i v a t e

(lbv , ubv)
6 f o r (t 1 = l b p ; t 1 <=ubp ; t 1 ++)
7 {
8 u i n t 6 4 ob = MLB;
9 ob >>= s e l T u p l e [t 1]−1 ;

10 # pragma omp a to mi c
11 * binRepTuple | = ob ;
12 }
13 }

Pluto Manual

(f) Serial EP code (left) and incorrect code transformation by Pluto

1 t 1 = A;
2 f o r (i = 0 ; i < MK + 1 ; i ++)
3 t 2 = r a n d l c (& t1 , t 1) ;
4 an = t 1 ;

1 t t 1 = A; ;
2 an = t t 1 ; ;
3 i f (MK >= 0)
4 f o r (t 2 =0 ; t 2 <=MK; t 2 ++)
5 t t 2 = r a n d l c (& t t 1 , t t 1) ; ;

Serial Par4all

Figure 5.1: Pre- and post-transformation issues (d) Erroneous code transformation by
Pluto (left) and correct manual transformation (right) (e) Serial EP code (left) and incor-
rect code transformation by Pluto (Contd.)

89

5.2. Auto-parallelization of NAS parallel benchmarks (NPB)

(i) Illegal transformation: For BT and SP, Rose-transformed code resulted in syntax

error in function compute_rhs() as the tool applies privatization twice to the same index

variable. For evaluation, the duplicate privatization was removed. Similarly, for EP, the

converted code from Rose encountered syntax error as the framework performs reduction

and privatization to the same variable gc. Once again, for correct output, the duplicate

conversion was removed. Figure 5.1(b) demonstrates the valid and invalid transformations

respectively.

For DC, Rose produced illegal parallelization in function KeyComp() as depicted in

Figure 5.1(c). Having a return statement within parallel pragma is not allowed. Hence,

OpenMP reports invalid branch to/from an OpenMP structured block. For DC, Pluto applied

incorrect parallelization by inserting parallel directive to a for-loop comprising of a function

call with dependence.

(ii) Incorrect syntactical/logical transformation: For DC, Par4all exhibited two in-

correct transformations in functions PrefixedAggregate() and MultiFileProcJobs(). In Pre-

fixedAggregate(), Par4all by default converts switch-case to if-else statements. During

this process, it creates a flag variable suffixed and prefixed as ‘−’ which results in incorrect

identifier syntax. During the manual intervention, the ‘−’ symbols was removed from the

variable name. In MultiFileProcJobs(), Par4all modified the for-loop initialization incor-

rectly, so the serial version was retained as depicted in Figure 5.1(d).

Figure 5.1(e) illustrates Pluto’s transformation in CreateBinTuple(), where the shared

variable *s must be atomically updated. Pluto could not correctly identify this scalar de-

pendence across function call and resulted in incorrect transformation. In the manually

transformed code, inlining of function was applied and then atomically updated the vari-

able *s. However, for evaluation purpose, the OpenMP pragma was removed to produce

the correct output.

For EP, Pluto failed to preserve a dependence while applying data locality optimization,

resulting in incorrect output. Hence, the dependence was fixed manually. Figure 5.1(f)

shows the original and the incorrectly transformed codes. In case of LU benchmark,

Rose performed incorrect transformation in l2norm() by replacing one of its arguments,

(double v[][ldy/2*2+1][ldx/2*2+1][5] as double v[][][][5]). This

90

5.3. Experimental results: NPB result analysis

led to syntax error due to the array having incomplete element type. Hence it was replaced

with the original array definition. For UA, the parallelized code by Par4all resulted in a

segmentation fault. The investigation revealed that closing braces were wrongly inserted at

multiple places in file mason, which retained a valid C syntax, but changed the control-flow.

So, reverted to the original file for evaluation.

(iii) Unrecognized problems: For few of the incorrect transformations by Pluto, though

the source of the error is not deduced, the function which led to such a pitfall could be iden-

tified. For BT, the incorrect output is due to the code segment in function initialize(). Simi-

larly, for benchmarks FT and MG, the problematic region is compute_initial_conditions() of

FT and zran3() of MG. For LU, the incorrect transformation was due to error(), setbv() be-

fore parallelization. For SP, rhs_norm() results in incorrect output. The problematic func-

tions was excluded from further parallelization and replaced them with the corresponding

serial versions. While such a replacement would reduce performance, it ensures correct

output.

5.3 Experimental results: NPB result analysis
This section discusses the quantitative effectiveness of various parallelization frame-

works on NPB benchmarks. Table 5.1 shows the description and the static characteristics

of the benchmarks, obtained using the chunky analyzer for dependences in loops (CANDL).

The problem size of Class C was used for all the benchmarks except for DC, for which

Class B was used as inputiii. The classes mainly differ in the sizes of the arrays and, in turn,

the number of iterations [110]. Column 8 lists the sequential run time in seconds for each

benchmark.

Table 5.3 lists the average speedup achieved by various frameworks on NPB. The aver-

age speedup is calculated using the equation 4.1 (illustrated in Chapter 4). It was observed

that relative to PolyBench, NPB benchmarks are less amenable to parallelization with these

frameworks, and ICC produces the best overall speedup.

iiiThe problem size for DC benchmark was predefined up to Class B.

91

5.3. Experimental results: NPB result analysis

Table 5.3: Performance summary of auto-parallelizers on NPB codes (with 16, 32 and
64 threads)

No. of threads Cetus Par4all Rose ICC Pluto

16 0.9 1.4 1.3 2.7 0.8

32 0.9 1.2 1.1 2.0 0.7

64 0.9 1.1 1.4 2.6 0.8

The execution times of the benchmarks resulting in a timeout were excluded

Figure 5.2 shows the speedup achieved by the frameworks on each benchmark.

The results indicate that the performance delivered by the frameworks in parallelizing

the NPB benchmarks was largely abysmal, except that by ICC. ICC could achieve small

but better performance improvement in most of the benchmarks. To analyze the

reasons behind this behavior of the frameworks, the number of loops parallelized by each

framework is compared against the base version of NPB which is manually parallelized;

and is called as Original. The reasons help us deduce the problems in the non-parallelized

loops listed in Table 5.4.

Since the amount of parallelism achieved depends upon the number of compute-intensive

portions of the program, an analysis is carried out in Table 5.5 that reveals the number of

loops parallelized in the compute-intensive functions. GNU profiler (Gprof) was used to

find the most time-consuming functions for each benchmark. The third column in Table 5.5

lists the percentage of total running time of the program used by the compute-intensive

functions. The loop counts of the serial code parcount was calculated from Original code

and the frameworks’ transformed codes. Categorized parcount into four cases to under-

stand the complexity of loop parallelization: (i) single loop (S), (ii) perfectly nested loop

(N), (iii) single loop within complex nested loop (CS), and (iv) complex nested loop (CN)

which includes nested loops comprising one or multiple single/nested loops as well as im-

perfectly nested loops. Listed these counts in Table 5.5 for Serial (non-transformed), for

Original (manually parallelized NPB), and for the auto-parallelized codes output by the five

92

5.3. Experimental results: NPB result analysis

The speedup plots depict the performance of the auto-parallelizers in parallelizing the NPB

benchmarks. Note different scales for y-axes

Figure 5.2: Quantitative analysis of NAS parallel benchmarks (NPB) (BT, CG, DC, EP, FT,
IS), (continued in next page)

93

5.3. Experimental results: NPB result analysis

The speedup plots depict the performance of the auto-parallelizers in parallelizing the NPB

benchmarks. Note different scales for y-axes

Figure 5.2: Quantitative analysis of NAS parallel benchmarks (NPB) (LU, MG, SP, UA)
(Contd.)

94

5.3.
E

xperim
entalresults:N

PB
resultanalysis

Table 5.4: Problems identified in non-parallelized loops of NPB codes for individual parallelizers

Bm Cetus Par4all Rose ICC Pluto
BT Complex, FC MS, FC, MO FC, MO NPC, ICW, PDEP, NOP, MI NAL, SL, MS

CG MO, LC, IF, EXIT MO, LC, IF, EXIT MO, LC, IF, EXIT NPC, ICW, PDEP, NOP LC, NAL, SL, IF, EXIT

DC
MO IF, EXIT, FC, while,
FILE, DECL

MO, IF, EXIT, FC, while,
FILE, DECL

MO, IF, EXIT, FC, while,
FILE, DECL

NPC, ICW, PDEP
MO, IF, EXIT, while,
FILE, DECL NAS, NAL, SL

EP IF, FC, EXIT, ICW, LC IF, FC, EXIT, LC IF, FC, EXIT, LC ICW, PDEP IF, EXIT, SL

FT Complex, MS, FC, LC IF, FC, LC ERR NPC, ICW, PDEP IF, SL

IS
ICW, IF, FC, LC, AU,
LS, RS, switch-case

IF, FC, AU, LS, RS LC Timeout ICW, PDEP
LC, IF, switch-case, LS, RS,
NAS, SL, SI

LU Complex, ICW, UL MO MO NPC, ICW, PDEP, NOP, MI IF, MS, SL, MO

MG Complex, IF, FC, UL, LC, MO IF, FC, UL, LC, MO IF, FC, UL, LC, MO ICW, PDEP, NOP, MI IF, UL, MO, SL

SP Complex, MO, ICW, UL MO, UL MO, UL NPC, ICW, PDEP, NOP, MI MO, UL, NAL, SL

UA Complex, ICW, IF, FC MO, IF, FC MO, IF, FC NPC, ICW, PDEP, NOP, MI IF, SL

(Small loops, Nested parallelism problem, Scalar and non-affine issues, Trivial parallelization issues, Dependence problems, Error and Timeout
cases)

Complex - Complex loops, FC - Function call, MS - More number of statements, MO - Missed outer-loop parallelism, MI - Missed inner-loop
parallelism, IF - if constructs in parallel region, NPC - Not a parallelization candidate, ICW - Insufficient computational work, PDEP - Existence
of parallel dependence, NOP - No optimization reported, LC - Loop-carried dependence, NAL - Non-affine loop bound, NAS - Non-affine array
subscript, SL - Scalar variable in `-value of a statement, EXIT- exits and returns, DECL - Declarations within for-loop, while - while statement,
FILE - File I/O operations, AU - Array updation, LS/RS - Left-/Right-shift operator, ERR - Error during auto-parallelization, Timeout - Timeout
during auto-parallelization, UL - Upper-to-lower bound, SI - Scalar increment

95

5.3. Experimental results: NPB result analysis

frameworks. The speedups are computed relative to Serial, and expects the frameworks to

approach the performance of Original (The speedup with 32 threads is listed below each

benchmark in a separate row).

ICC shows the best performance improvement among all the frameworks for these

benchmarks. During parallelization, ICC targets only a few loops for parallelization (see

Table 5.5), yet achieves good speedup. To understand this, further analysis was carried

out. Eighth column of Table 5.5, titled ICC, also shows values: P32 (speedup with 32

threads) and P1 (single-threaded speedup). The performance of P32 is same as P1 i.e.

speedup does not improve with increasing threads. ICC does not exploit parallelism and

hence it is similar to other frameworks. Due to the inherent optimization (ICC baseline

uses optimized level -O2) apart from parallelization, nominal speedup were observed for

benchmarks (with 32 threads: BT 3.4×, EP 2.0×, FT 2.6×, LU 4.6×, MG 5.5×, and

SP 5.8×). Note that ICC works at the IR level, while the other frameworks are source-to-

source translators.

Among the other four frameworks, Par4all shows performance improvement in two

of the benchmarks (with 32 threads: CG 11.9× and SP 1.7×). It was noted that Par4all

performs better for CG when compared to ICC. This indicates that array privatization

can lead to significant performance improvement.

Although the value of parcount for most of the frameworks equals that of Original,

the speedup is poor due to the non-trivial issues, which is discussed next in the subsections

below.

5.3.1 Execution overhead problems
Three common scenarios was observed that caused overhead in execution time of the

auto-parallelized codes: (i) shortcomings in the usage of implicit barriers (Figure 5.3(a)),

(ii) parallelization of insignificant loops (Figure 5.3(b)), and (iii) inefficient parallelization

(Figure 5.3(c)).

96

5.3.
E

xperim
entalresults:N

PB
resultanalysis

Table 5.5: Performance measurement based on parallelism achieved in the
compute-intensive functions

Bm Functions
Time
%

Serial Cetus Par4all Rose ICC Pluto Original

SL N CS CN Sp Np CSp CNp Sp Np CSp CNp Sp Np CSp CNp Sp Np CSp CNp Sp Np CSp CNp Sp Np CSp CNp

BT

binvcrhs 20.34 No loops No loops No loops No loops No loops No loops No loops
compute_rhs 17.12 - 30 4 22 - 0 0 0 - 30 4 22 - 30 4 22 - 8 0 2 - 7 4 6 - 30 4 22
z_solve 16.52 - - 3 5 - - 0 0 - - 0 2 - - 2 2 - - 0 0 T - - 3 5
y_solve 16.24 - - 3 5 - - 0 0 - - 0 2 - - 2 2 - - 0 0 T - - 3 5
x_solve 15.02 - - 3 5 - - 0 0 - - 0 2 - - 2 2 - - 0 0 T - - 3 5
matmul_sub 10.76 No loops No loops No loops No loops No loops No loops No loops

Speedup with 32 threads - 0.00 0.00 P32-3.41; P1-3.33 0.00 9.94

CG
conj_grad 93.36 3 - 4 5 1 - 1 3 3 - 4 4 3 - 4 4 0 - 0 0 0 - 2 0 3 - 4 4
sparse 6.59 4 2 - 8 1 0 - 0 2 0 - 1 2 0 - 1 0 0 - 0 2 0 - 0 1 0 - 2

Speedup with 32 threads 0.69 11.89 2.53 P32-0.78; P1-0.78 0.97 12.41

DC
KeyComp 62.98 1 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - -
TreeInsert 29.69 No loops No loops No loops No loops No loops No loops No loops
SelectToView 5.70 1 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - -

Speedup with 32 threads 0.95 1.00 - P32-1.76; P1-1.76 1.00 14.99

EP
vranlc 75.44 1 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - -
main 24.71 4 - 2 1 1 - 0 0 3 - 0 0 3 - 0 0 1 - 0 0 2 - 0 0 3 - 2 1

Speedup with 32 threads 0.99 1.00 1.00 P32-2.04; P1-2.03 0.99 21.29
Continued on next page

97

5.3.
E

xperim
entalresults:N

PB
resultanalysis

Table 5.5 – Continued from previous page

Bm Functions
Time
%

Serial Cetus Par4all Rose ICC Pluto Original

SL N CS CN Sp Np CSp CNp Sp Np CSp CNp Sp Np CSp CNp Sp Np CSp CNp Sp Np CSp CNp Sp Np CSp CNp

FT
Swarztrauber 81.94 - - - 9 T - - - 2 ERR - - - 0 - - - 2 NA
fftXYZ 9.86 - - 2 12 T - - 0 4 ERR - - 0 0 - - 0 0 NA
evolve 4.92 - 3 - - - 0 - - - 3 - - ERR - 0 - - - 3 - - NA

Speedup with 32 threads 0.98 0.58 - P32-2.56; P1-2.76 0.58 13.89

IS
rank 49.65 9 - - - 1 - - - 3 - - - T 0 - - - 1 - - - NA
randlc 41.90 2 - - - 0 - - - 2 - - - T 0 - - - 0 - - - NA
fully_verify 4.92 3 - - - 1 - - - 1 - - - T 1 - - - 1 - - - NA

Speedup with 32 threads 1.00 1.00 - P32-1.40; P1-1.34 0.99 11.23

LU

rhs 22.39 - - 14 25 - - 0 0 - - 14 21 - - 14 21 - - 0 4 - - opt opt - - 14 25
buts 22.00 - 3 2 2 - 0 0 0 - 3 0 2 - 3 0 2 - 0 0 0 - 3 0 2 - 0 0 0
blts 18.68 - 3 2 2 - 0 0 0 - 3 0 2 - 3 0 2 - 0 0 0 - 3 0 2 - 0 0 0
jacld 17.57 - 2 - - - 0 - - - 2 - - - 2 - - - 1 - - - 0 - - - 0 - -
jacu 17.37 - 2 - - - 0 - - - 2 - - - 2 - - - 1 - - - 0 - - - 0 - -
ssor 1.67 2 4 9 2 0 0 0 0 2 4 9 2 ERR 0 1 0 2 4 0 6 0 2 4 9 2

Speedup with 32 threads 0.99 0.00 0.00 P32-4.58; P1-3.99 0.00 12.30

MG

resid 50.34 - - 2 2 - - 0 0 - - 2 0 - - 2 0 - - 0 0 - - 2 0 - - 2 2
psinv 28.58 - - 2 2 - - 0 0 - - 2 0 - - 2 0 - - 0 0 - - 2 0 - - 2 2
interp 7.73 - - 13 8 - - 0 0 - - 13 6 - - 12 7 - - 0 0 - - opt opt - - 13 8
rprj3 5.96 - - 2 2 - - 0 0 - - 2 0 - - 1 0 - - 0 0 - - 0 0 - - 2 2
vranlc 3.73 1 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - -
norm2u3 1.67 - 3 - - - 0 - - - 0 - - - 0 - - - 1 - - - 0 - - - 3 0 0

Speedup with 32 threads 0.99 0.39 0.50 P32-5.52; P1-5.05 0.28 6.38
Continued on next page

98

5.3.
E

xperim
entalresults:N

PB
resultanalysis

Table 5.5 – Continued from previous page

Bm Functions
Time
%

Serial Cetus Par4all Rose ICC Pluto Original

SL N CS CN Sp Np CSp CNp Sp Np CSp CNp Sp Np CSp CNp Sp Np CSp CNp Sp Np CSp CNp Sp Np CSp CNp

SP

compute_rhs 37.39 - 30 4 22 - 0 0 0 - 30 4 22 - 27 4 22 - 7 0 3 - 21 3 14 - 30 4 22
z_solve 18.13 - - 11 16 - - 0 1 - - 11 11 - - 11 11 - - 0 3 - - 7 8 - - 11 16
y_solve 18.03 - - 11 16 - - 0 1 - - 11 11 - - 11 11 - - 0 3 - - 6 2 - - 11 16
x_solve 17.44 - - 11 16 - - 0 1 - - 11 11 - - 11 11 - - 0 4 - - 6 2 - - 11 16

Speedup with 32 threads 0.93 1.65 0.00 P32-5.83; P1-5.03 0.00 9.31

UA

laplacian 51.30 - 15 - - - 0 - - - 14 - - - 14 - - - 5 - - - 15 - - - 0 - -
convect 14.05 2 - 16 16 0 - 0 0 0 - 0 0 2 - 16 0 0 - 0 2 2 - 0 3 1 - 16 16
diffusion 9.93 1 4 3 11 0 0 0 0 0 0 0 0 1 4 3 10 0 2 0 1 2 4 0 0 1 4 3 10
transf 6.83 - - 4 29 - - 0 0 - - 0 0 - - 0 5 - - 0 1 ERR - - 4 29
transfb 6.28 - - 4 29 - - 0 0 - - 0 0 - - 1 10 - - 0 0 ERR - - 4 29

Speedup with 32 threads 0.94 0.00 - P32-0.15; P1-4.96 - 11.3

Bm Benchmark, Function Name of the compute-intensive function, Time % Percentage of the total running time of the program used by
the function, Original Original parallel version of NPB code, S Single loop count, N Perfect Nested loop count, CS Single loop in a Complex
Nested loop count, CN Complex Nested loop count, ERR Error during auto-parallelization, NA Not Applicable since the original code is different
from serial, T Timeout during auto-parallelization, opt more optimized code P32 Speedup using -parallel with 32 threads, P1 Speedup using
-parallel with 1 thread)

Non-parallelized code

Parallelized code is not equivalent to the Serial code

Not Applicable due to Error and Timeout cases

99

5.3. Experimental results: NPB result analysis

Shortcomings in the usage of implicit barriers

In Table 5.5, parcount values of Par4all and Rose are approximately equal to that of Origi-

nal for BT, LU and SP. This indicates that the two frameworks were able to identify almost

the same number of loops as those that are manually parallelized. Also, Pluto’s parcount

is minimum when compared to Par4all and Rose but is non-zero. However, Original (BT

9.9×, LU 12.3×, SP 9.3×) outperforms other frameworks. The auto-parallelizers caused

timeout execution for BT, LU, and SP. These benchmarks contain multiple, independent,

consecutive loops within the parallel region. To these loops, Original uses the synchroniza-

tion qualifier nowait at the appropriate places, thereby removing barrier synchronization

and improving the load balancing. Auto-parallelizers lack such a sophistication which

requires high-level understanding about the use of implicit barriers or needs to identify de-

pendences across codes beyond the loop body. A code fragment that depicts the usage of

nowait clause is shown in Figure 5.3(a).

Parallelization of insignificant loops:

Parallelization of small loops may lead to performance drop or execution overhead. One

such scenario is depicted in Figure 5.3(b). For EP, Par4all (1.00×), Rose (1.00×) and Pluto

(0.99×) insert parallel pragma to shorter loops, which results in performance overhead

(for instance, the result of Pluto that causes overhead is shown). Cetus applies conditional

parallelism (model-based profitability test as mentioned earlier in previous Section 2.3.1 in

Chapter 2) which eliminates the parallel execution of shorter loops. However, the speedup

of Cetus (0.99×) proves inferior compared to all the other frameworks. It is obvious from

the study that its parcount is minimum across all the benchmarks, reducing opportunities

for parallelism. ICC inherently avoids parallelization of computationally less intensive

loops and reports insufficient computational work.

Inefficient parallelization:

A significant improvement is been observed from Par4all in the parallelization of CG. Al-

though the numbers of loops parallelized by Par4all and Rose are comparable to Original

100

5.3. Experimental results: NPB result analysis

(Table 5.5), Par4all speedup (11.89×) is significantly better than Rose (2.53×). Rose in-

serts parallel pragma naïvely for all the loops of the nested-for which eventually

leads to execution overhead as observed in Figure 5.3(c). This example outlines that since

the tool targets the loops in the compute-intensive function (conj_grad() taking 93.4% of

the execution time) for parallelization, a good speedup is achieved by Par4all. Pluto does

several transformations for LU and MG which lead to timeout and poor speedup.

5.3.2 Nested parallelism problems
Referring at the counts of Serial in Table 5.5, there are several perfectly nested loops

(N), as well as several imperfectly or Complex nested loops (CN). With the exception of

Cetus, all the frameworks support parallelization of both N and CN types. However, the

way in which each framework applies the parallelism is distinct. Cetus does not support

nested parallelism in many instances due to its complexity (Section 2.3.1 in Chapter 2).

In case of the nested parallelism perfectly nested loops (N), and imperfectly or Complex

nested loops (CN), it is noticed that ICC parallelizes only the outer loop, and Pluto paral-

lelizes only the inner loop. Par4all and Rose miss outer loop parallelism while handling

CN. Figure 5.3(d) illustrates how Original handles the CN in resid() of MG when compared

to Rose. Performance of Original (6.38×) is better than that achieved by Rose (0.50×).

5.3.3 Scalar and non-affine issues in Pluto
As previously illustrated in Chapter 4, Pluto does not parallelize the code when the

`-value of the statement is a scalar variable. Most of the compute-intensive loops in the

NPB encompass scalar reduction, which is not handled by Pluto. Also non-affine expres-

sions are not parallelized by this polyhedral framework. In NPB, there occur more chal-

lenges such as non-affine loop bounds, non-affine array subscripts, and scalar variables as

shown in

Table 5.4. In particular, Pluto could not parallelize the compute intensive function conj_grad()

which takes 93.4% of CG’s execution time. This is due to the presence of scalar variable

sum, and non-affine loop bound k = rowstr[j]; k<=rowstr[j+1]-1 in the inner loop, as

shown in Figure 5.3(c).

101

5.3. Experimental results: NPB result analysis

(a) Parallelization of BT: code snippet from compute_rhs(). Original uses nowait clause, which
improves concurrent processing

1 # pragma omp p a r a l l e l f o r p r i v a t e (j
, i , r h o _ i n v)

2 f o r (k=0 ; k<= g r i d _ p o i n t s [2]−1 ; k+= 1)
3 f o r (j =0 ; j <= g r i d _ p o i n t s [1]−1 ; j += 1)
4 f o r (i =0 ; i <= g r i d _ p o i n t s [0]−1 ; i += 1)

{
5 r h o _ i n v = 1 . 0 / u [k] [j] [i] [0] ;
6
7 }
8 # pragma omp p a r a l l e l f o r p r i v a t e (j

, i ,m)
9 f o r (k=0 ; k<= g r i d _ p o i n t s [2]−1 ; k+= 1)

10 f o r (j =0 ; j <= g r i d _ p o i n t s [1]−1 ; j += 1)
11 f o r (i =0 ; i <= g r i d _ p o i n t s [0]−1 ; i += 1)
12 f o r (m=0 ; m<=4 ; m+= 1)
13 r h s [k] [j] [i] [m] = f o r c i n g [k] [j] [i

] [m] ;
14 # pragma omp p a r a l l e l f o r p r i v a t e (j

, i , u i j k)
15 f o r (k=1 ; k<= g r i d _ p o i n t s [2]−2 ; k+= 1)

{
16 f o r (j =1 ; j <= g r i d _ p o i n t s [1]−2 ; j += 1)
17 f o r (i =1 ; i <= g r i d _ p o i n t s [0]−2 ; i += 1)

{
18 u i j k = us [k] [j] [i] ;
19 }
20
21 }

1 # pragma omp p a r a l l e l d e f a u l t (
s h a r e d) p r i v a t e (i , j , k ,m, rho_ inv
, u i j k)

2 {
3 # pragma omp f o r s c h e d u l e (s t a t i c)

nowait
4 f o r (k=0 ; k<= g r i d _ p o i n t s [2]−1 ; k++)
5 f o r (j =0 ; j <= g r i d _ p o i n t s [1]−1 ; j ++)
6 f o r (i =0 ; i <= g r i d _ p o i n t s [0]−1 ; i ++) {
7 r h o _ i n v = 1 . 0 / u [k] [j] [i] [0] ;
8
9 }

10 # pragma omp f o r s c h e d u l e (s t a t i c)
11 f o r (k=0 ; k<= g r i d _ p o i n t s [2]−1 ; k++)
12 f o r (j =0 ; j <= g r i d _ p o i n t s [1]−1 ; j ++)
13 f o r (i =0 ; i <= g r i d _ p o i n t s [0]−1 ; i ++)
14 f o r (m=0 ; m<5 ; m++)
15 r h s [k] [j] [i] [m] = f o r c i n g [k] [j] [i

] [m] ;
16 # pragma omp f o r s c h e d u l e (s t a t i c)

nowait
17 f o r (k=1 ; k<= g r i d _ p o i n t s [2]−2 ; k++) {
18 f o r (j =1 ; j <= g r i d _ p o i n t s [1]−2 ; j ++)
19 f o r (i =1 ; i <= g r i d _ p o i n t s [0]−2 ; i ++) {
20 u i j k = us [k] [j] [i] ;
21 }
22
23 }
24 }

Par4all Original

(b) Parallelization of EP: code snippet from main() - Parallelization of insignificant loop by Pluto

1 %D i s a b l e d due t o low
p r o f i t a b i l i t y :#
pragma omp
p a r a l l e l f o r

2 f o r (i =0 ; i <10 ; i ++)
3 {
4 q [i] = 0 . 0 ;
5 }

1 i f (NQ >= 1) {
2 l b p =0 ; ubp=NQ−1 ;
3 # pragma omp p a r a l l e l

f o r p r i v a t e (lbv ,
ubv , t 3)

4 f o r (t 2 = l b p ; t 2 <=ubp ; t 2 +
+) {

5 q [t 2] = 0 . 0 ; ;
6 }

1 f o r (i =0 ; i <NQ; i ++)
2 {
3 q [i] = 0 . 0 ;
4 }

Cetus Pluto Original

Figure 5.3: NPB result analysis (a) Parallelization of BT: code snippet from compute_rhs().
Original uses nowait clause, which improves concurrent processing (b) Parallelization of
EP: code snippet from main() - Parallelization of insignificant loop by Pluto, (continued in
next page)

102

5.3. Experimental results: NPB result analysis

(c) Parallelization of CG: code snippet from conj_grad(). Rose naïvely targets all the loops, while
Par4all judiciously chooses loops for parallelization

1
2 # pragma omp p a r a l l e l

f o r p r i v a t e (sum , k
)

3 f o r (j = 0 ; j <=
l a s t r o w− f i r s t r o w +1
−1 ; j += 1) {

4 sum = 0 . 0 ;
5 f o r (k = r o w s t r [j] ; k <

= r o w s t r [j + 1]−1 ; k
+= 1)

6 sum = sum+a [k] *p [
c o l i d x [k]] ;

7 q [j] = sum ;
8 }
9

1
2 # pragma omp p a r a l l e l

f o r p r i v a t e (sum , j
, k)

3 f o r (j =0 ; j <= l a s t r o w −
f i r s t r o w +1−1 ; j += 1)
{

4 sum = 0 . 0 ;
5 # pragma omp p a r a l l e l

f o r p r i v a t e (k)
r e d u c t i o n (+ : sum)

6 f o r (k= r o w s t r [j] ; k<=
r o w s t r [j + 1]−1 ; k+=
1) {

7 sum = sum+a [k] *p [
c o l i d x [k]] ;

8 }
9 q [j] = sum ;

10 }
11

1 # pragma omp p a r a l l e l
d e f a u l t (s h a r e d)
p r i v a t e (j , k , suml)

2 {
3
4 # pragma omp f o r
5 f o r (j =0 ; j < l a s t r o w−

f i r s t r o w +1 ; j ++) {
6 suml = 0 . 0 ;
7 f o r (k= r o w s t r [j] ; k<

r o w s t r [j + 1] ; k++)
{

8 suml=suml+a [k] *p [
c o l i d x [k]] ;

9 }
10 q [j] = suml ;
11 }
12
13 }

Par4all Rose Original

(d) Parallelization of MG: code snippet from resid() - parallelization of complex nested (CN) loop
(missed outer-loop parallelism)

1 f o r (i 3 =1 ; i 3 <=n3−1−1 ; i 3 += 1) {
2 f o r (i 2 =1 ; i 2 <=n2−1−1 ; i 2 += 1) {
3 # pragma omp p a r a l l e l f o r p r i v a t e

(i 1)
4 f o r (i 1 =0 ; i 1 <=n1−1 ; i 1 += 1) {
5 u1 [i 1] = u [i 3] [i 2 − 1] [i 1] +

. ;
6 u2 [i 1] = u [i 3 − 1] [i 2 − 1] [i 1] +

. ;
7 }
8 # pragma omp p a r a l l e l f o r p r i v a t e

(i 1)
9 f o r (i 1 =1 ; i 1 <=n1−1−1 ; i 1 += 1) {

10 r [i 3] [i 2] [i 1] = v [i 3] [i 2] [i 1] −
.) ;

11 }}}

1 # pragma omp p a r a l l e l f o r d e f a u l t (
s h a r e d) p r i v a t e (i1 , i2 , i3 , u1 , u2
)

2 f o r (i 3 = 1 ; i 3 < n3−1 ; i 3 ++) {
3 f o r (i 2 = 1 ; i 2 < n2−1 ; i 2 ++) {
4 f o r (i 1 = 0 ; i 1 < n1 ; i 1 ++) {
5 u1 [i 1] = u [i 3] [i 2−1] [i 1] + ;
6 u2 [i 1] = u [i 3−1] [i 2−1] [i 1] +

. ;
7 }
8 f o r (i 1 = 1 ; i 1 < n1−1 ; i 1 ++) {
9 r [i 3] [i 2] [i 1] = v [i 3] [i 2] [i 1] −

. ;
10 }}}

Rose Original

Figure 5.3: NPB result analysis (c) Parallelization of CG: code snippet from conj_grad().
Rose naïvely targets all the loops, while Par4all judiciously chooses loops for paralleliza-
tion (d) Parallelization of MG: code snippet from resid() - Parallelization of CN loop (missed
outer-loop parallelism), (continued in next page)

103

5.3. Experimental results: NPB result analysis

(e) Parallelization of EP: code snippet from main() - Par4all prohibit parallelization due to non-
supported programming construct in complex nested (CN) loop

1 f o r (k = 1 ; k <= np ; k += 1)
2 {
3 kk = k _ o f f s e t +k ;
4
5 i f (! (i <= 100))
6 go to _break_5 ;
7 i k = kk / 2 ;
8 i f (2 * i k ! =kk)
9 t 3 = r a n d l c (& t1 , t 2) ;

10 i f (i k == 0)
11 go to _break_5 ;
12
13 f o r (i = 0 ; i <= (1 << 16)−1 ; i +=

1)
14 {
15
16 sx = sx+ t 3 ;
17 sy = sy+ t 4 ;
18
19 }
20 }

1 # pragma omp p a r a l l e l d e f a u l t (
s h a r e d) p r i v a t e (k , kk , t1 , t2 , t3 ,
i , i k)

2 {
3 # pragma omp f o r r e d u c t i o n (+ : sx ,

sy) nowait
4 f o r (k=1 ; k<=np ; k++)
5 {
6 kk = k _ o f f s e t + k ;
7
8 f o r (i =1 ; i <=100 ; i ++)
9 {

10 i k = kk / 2 ;
11 i f ((2 * i k) ! = kk)
12 t 3 = r a n d l c (& t1 , t 2) ;
13 i f (i k == 0)
14 b r e a k ;
15
16 }
17
18 f o r (i =0 ; i <NK; i ++)
19 {
20
21 sx = sx + t 3 ;
22 sy = sy + t 4 ;
23
24 }
25 }
26 }

Par4all Original

Figure 5.3: NPB result analysis (e) Parallelization of EP: code snippet from main() - Paral-
lelization of non-supported programming construct in complex nested (CN) loop (Contd.)

104

5.3. Experimental results: NPB result analysis

Another significant problem that prevents frameworks from parallelization is loop-

carried dependence (LC) which is studied in-detail in Sections 3.2 in Chapter 3 and Sec-

tion 4.3 in Chapter 4. Table 5.4 shows that NPB benchmarks comprise of loop-carried

dependence (LC) problems. This could be handled only by Pluto by applying loop peel-

ing and loop distribution optimization. But due to some of the non-affine issues, scalar

problems, and other non-trivial issues, Pluto perform inferior to Original.

Apart from the non-trivial parallelization problems above, there are several other is-

sues that prevent the frameworks from successful and correct transformation which are

discussed below.

5.3.4 Other parallelization issues
Table 5.4 depicts the problems that terminate the frameworks in parallelizing some of

the loops. Most common problems prevailing in the frameworks are if construct (IF), exit

and return statements (EXIT) that hinder the tool to perform loop parallelization. Fig-

ure 5.3(e) illustrates how the non-supported programming constructs if and break in EP

affect the parallelization by Par4all (1.00×). Automatic parallelization of irregular scien-

tific application have been carried out in the earlier works [111]. Original (21.29×) per-

forms better than all the other frameworks. It applies the implicit barrier nowait and scalar

reduction besides parallelization. Cetus, Par4all, and Rose do not support inter-procedural

transformation via a function call (FC). Though ICC discloses details about its unsuccessful

behavior, these are generic reasons. For further investigation, the auto-parallelized loops

are examined and it was found that ICC could support IF construct, and function call (FC).

Furthermore, usage of few of the programming constructs (highlighted in Table 5.4 as triv-

ial parallelization issues) inhibit the parallelization of several compute-intensive parts of

the code segment that, in turn, deteriorates performance. These challenges hint at sup-

port for more high-level constructs, sophisticated analyses, and user-driven parallelization.

Earlier work by Chatarasi et al. [80] addressed the problem of explicit parallelism and

unanalyzable data accesses that prohibit parallelism.

105

5.4. Effect of static dependences

5.4 Effect of static dependences
In Table 5.1, the third column (named Dep) shows the number of static dependences

in each NPB benchmark. Since dependences affect parallel performance, the analyses is

carried out for each framework. In particular, bucketized the range of Dep values: 0-30,

31-60, and >60, and observe the speedup of benchmarks within each range. As described

in the PolyBench study, the study expect the speedup to be smaller when the dependence is

more.

Figure 5.4 summarizes the impact of Dep range affecting the speedup for all the five

frameworks. The frameworks show a varied behavior for the same set of benchmarks.

Cetus performs almost the same across various Dep values, and in several cases, results in

increased time compared to the single-threaded version (speedup less than unity). Par4all

has a similar behavior except for CG where the speedup is the largest of all the frameworks.

This occurs as most of the loops are dependence-free and Par4all parallelizes the maximum

number of loops in CG compared to other frameworks.

Rose could only parallelize half of the benchmarks, so a conclusive remark could not

be made. However, it is observed that its parallelization improvement of NPB is limited to

CG alone. Similar to other frameworks, Pluto also is not effective on NPB and results in

performance degradation on various benchmarks. On the other hand, ICC shows consistent

improvement on most of the benchmarks. Surprisingly, the only benchmark for which ICC

results in less-than-one speedup is CG. This occurs due to ICC’s cost model which marks

most of the loops to be not parallelization candidates due to insufficient computational

work predicted. But more surprisingly, the speedup ICC achieves is more for larger values

of Dep. This is a clear indicator that in case of NPB, the number of static dependences or

the number of RAW dependences cannot faithfully capture the parallelization effect, and

other parameters (such as the dynamic dependences, opportunities for loop transformations,

etc.) dominate performance.

106

5.4. Effect of static dependences

(a) Cetus

(b) Par4all

(c) Rose

Figure 5.4: Effect of static dependences on NPB Benchmarks: A speedup analysis (a) Cetus
(b) Par4all (c) Rose, (continued in next page)

107

5.4. Effect of static dependences

(d) ICC

(e) Pluto

Figure 5.4: Effect of static dependences on NPB benchmarks: A speedup analysis (d) ICC
(e) Pluto (Contd.)

108

5.5. Summary

5.5 Summary
The performance behavior of NPB codes parallelized by different frameworks was stud-

ied. For affine codes such as PolyBench suite, the parallelizers mainly, ICC and Pluto

exhibited better speedup. However, in the case of NPB suite which has irregular and non-

affine patterns with complex coding structures, all the frameworks face issues during par-

allelization. Some of the significant issues are listed below:

1. Excluding ICC and Cetus, all the other frameworks produce erroneous code transfor-

mation that leads to incorrect output or syntactical error.

2. ICC does not exploit parallelism for NAS parallel benchmarks (NPB) codes, and the

performance improvement was observed due to its inherent baseline optimization

(-O2).

3. Rose is the only framework that causes an error during transformation.

4. Par4all, Rose, and Pluto perform inefficient parallelization which causes overhead in

the execution time.

5. Imperfectly or complex nested loops are not handled well by the frameworks.

6. Scalar and non-affine issues lead to ineffective parallelization by Pluto.

The above-mentioned issues are quite serious and forbid the widespread acceptance

of tools. Several of the compute-intensive functions in the NPB are dependence-free, yet

the complex code structure prohibits the frameworks from achieving parallelization. Al-

though Pluto and ICC perform optimization besides parallelization for regular codes with

an analyzable pattern, these tools do not fetch benefit and become ineffective for the codes

comprising irregular coding style. In the forthcoming chapters (Chapter 6 and 7), two ap-

proaches have been proposed to improve parallelization by overcoming several of these

irregular coding styles in Pluto, an open-source tool.

109

CHAPTER 6

Elimination of Auto-parallelization

Issues in Irregular and General-purpose

Programs in Pluto

Parallelizer based on the polyhedral model namely, Pluto, is found to be efficient in per-

forming loop optimizations and parallelizing loop with dependences. This chapter explores

the non-affine issues and general limitations in irregular and general-purpose programs

that forbid parallelization using Pluto. It presents analyses of three distinct real-world

problems namely, Green-Marl, Rodinia, and NAS parallel benchmarks (NPB) and their

issues. This chapter introduces a method to eliminate the auto-parallelization issues and

makes the code amenable to parallelization.

6.1 Background
In this section, a brief introduction on polyhedral model is illustrated.

6.1.1 Polyhedral model
Polyhedral model is a framework used for performing loop transformations. It is based

on three main concepts, viz. iteration domain, scattering function, and access function [83].

A program part that can be represented using the polyhedral model is called a static control

part (SCoP) [112, 113].

Iteration domain

The key aspect of the polyhedral model is to consider statement instances. The outer loop

counters, i.e., iterators are the instance of a statement which is enclosed inside a loop. The

ordered list of iterators (ordered from the outermost iterator to the innermost iterator) is

called the iteration vector. For instance, in Figure 6.1(a) the iteration vector for S3 is (i, j).

111

6.1. Background

(a) An example illustration 1

1 f o r (i = 2 ; i <= N; i ++)
2 f o r (j = 2 ; j <= N; j ++)
3 S3 : A[i] = p i ;

(b) 2D Iteration Space

j >=2

j <=N

i <=N

1 2 N

1

2

N

i >=2

i

j

Figure 6.1: Iteration domain: (a) An example illustration-1 (b) 2D Iteration space

It is difficult to know at compile time how many time S3 will be executed. Such a loop is

said to be parametric and the parameter here is N.

Iteration domain is the set of all possible values of iteration vector which is a compact

way to represent all the instances of a given statement. Equation 6.1 shows the set of

iteration vector (i, j). Figure 6.1(b) shows the iteration domain is a part of 2-dimension

space Z2 which is specified to a set of constraints. If the constraints are affine, the set of

constraints then defines a polyhedral model.

DS3 =
{(
i, j
)
∈ Z2|2 ≤ i ≤ N ∧ 2 ≤ j ≤ N

}
(6.1)

To analyze the loops are affine, a matrix representation is used. For instance, for the

statement S3 in Figure 6.1(a), the set of constraints is below:

i− 2 ≥ 0

−i+N ≥ 0

j − 2 ≥ 0

−j+N ≥ 0

112

6.1. Background

1 f o r (i = 2 ; i <= 4 ; i ++)
2 f o r (j = 2 ; j <= 4 ; j ++)
3 S4 : P [i + j] += A[i] + B[j] ;

Figure 6.2: Scattering function: An example illustration-2

Lastly, the constraint system is translated to the form (domain matrix * iteration vector

≥ 0) and the matrix representation is:

1 0 0 −2

−1 0 1 0

0 1 0 −2

0 −1 1 0

i

j

N

1

≥

0

0

0

0

Scattering function

Iteration domain does not provide ordering information. Such information in the polyhe-

dral model is called scattering. There exist many kinds of ordering, such as allocation,

scheduling, chunking, etc. All these types are expressed using logical stamps. However,

they differ in semantics.

Scattering functions are affine functions of the outer loop counter and the global param-

eters. The iteration domain for the statement S4 (Figure 6.2) is shown in equation 6.2

DS4 =
{(
i, j
)
∈ Z2|2 ≤ i ≤ 4 ∧ 2 ≤ j ≤ 4

}
(6.2)

In order to schedule the instances of the statement S4, the following scheduling function

(Equation 6.3) is used to find the logical dates of each instance:

ΘS4

(
i, j
)

=
(
j + 2, 3 ∗ i+ j

)
(6.3)

It is to be noted that in the polyhedral model, users do not have to take care of the

generation of target code. The chunky loop generator (CLooG) tool generates the target

code using scattering function.

113

6.1. Background

The matrix form of scattering function of any statement S is of the form:

ΘS

(
iterationvector

)
= scatteringmatrix ∗ iterationvector (6.4)

For instance, for equation 6.3 the matrix form is:

ΘS4 =

i

j

1

=

0 0 2

3 1 0

i

j

1

Access functions

It is necessary to analyze the correctness of the transformation such that the semantics of

the original code is maintained. This is achieved in the polyhedral model when all the

memory accesses are made through arrays.

For instance, there are three dimensions in the array access A[2*i+j][j][i+N].

Each subscript dimension is an affine form of some outer loop iterators (i and j) and global

parameter (N). Hence it corresponds to an acceptable array access to be analyzed in the

polyhedral model. Access functions are used depending on the iteration vector to describe

an array access. The access function for the statement A[2*i+j][j][i+N] is:

FA(i, j) = (2 * i + j, j, i + N).

The matrix representation is of the form FA(iteration vector) = access matrix * iteration

vector which is shown below

FA

i

j

N

1

=

2 1 0 0

0 1 0 0

1 0 1 0

i

j

N

1

114

6.2. Limitations of polyhedral model

6.2 Limitations of polyhedral model
In general, the polyhedral model is powerful and helps in performing various optimiza-

tions and transformations for improved performance. However, the tools developed using

the polyhedral model expects the loop to meet certain requirements for parallelization [32].

Consequently, if it fails to meet any one of the conditions, then the parallelizing tool stops

by throwing an error or warning. Polyhedral frameworks transform selected regions in the

input program into static control part (SCoP) and capture precise dependence information

among statement instances in the form of dependence polyhedron over the iterators and

global parameters [56]. If there are any unanalyzable or non-affine constructs in the SCoP,

then there may be hurdles in constructing the dependence polyhedron.

The positive report is that decades of research has led to a great expansion of pro-

grams that can be considered analyzable by polyhedral frameworks, thereby reducing the

impact of these limitations [32, 114]. The main remaining constraints include restrictions

on pointer usage, recursion, and unstructured control flow [115]. One of the primary down-

sides of the current polyhedral frameworks is that there are still many unanalyzed reasons

leading to SCoP rejection.

Based on the following study on three real-world benchmark suites, namely Green-

Marl, Rodinia and NPB using Pluto [20, 21], we have identified 9 non-affine patterns within

the SCoP that may be considered unanalyzable by some polyhedral frameworks:

1. Scalar variables in `-value of a statement (SL)

2. Constructor calls (CC)

3. Function calls (FC)

4. Declaration statements (DECL)

5. Non-affine loop bound (NAL)

6. Non-affine IF construct (NIF)

7. Scope resolution operator (SR)

8. Non-affine array subscripts (NAS)

9. FILE I/O operations (FILE)

115

6.3. Summary of the proposed approach

1 for(col=0; col<public_cols; col++)
2 {
3 for(row=0; row<public_rows; row++)
4 {
5 ori_row = row + in2_rowlow − 1; // SL
6 diff_prv = diff_prv + std::abs((val − G_pg_rank[row])); // SR
7 private.d_in2[col*public_rows+row] = temp; // NAS
8 }
9 }

10
11 for (node_t n = 0; n<G.num_nodes(); n ++) // NAL
12 {
13 int32_t __S1 = 0 ; // DECL
14 __S1 = 0 ;
15 gm_common_neighbor_iter n_I(__S1); // CC/FC
16 if (G_age[n] > K) // NIF
17 {
18 __S2_prv = __S2_prv + G_teen_cnt[n] ;
19 }
20 }
21
22 for(i=0; i < edge_list_size ; i++)
23 fscanf(...); // FILE

Highlighted are the non-affine constructs (NAC). Acronyms of individual problems are
described earlier in Section 6.2

Figure 6.3: An example illustrating all nine non-affine constructs (NAC) faced by Pluto
(code snippets from Rodinia suite)

Figure 6.3 depicts an example that discuss all the nine auto-parallelization prob-

lem. Note: The abbreviations defined above are used in this figure to depict the non-affine

patterns.

6.3 Summary of the proposed approach
Potentially parallelizable code with presence of any one of the aforementioned nine

non-affine construct (NAC) prohibits parallelizaton by Pluto. To overcome the issue, in this

chapter, an elimination based approach is proposed to make the non-affine code amenable

to Pluto parallization. The contributions to the proposed approach are as follows:

• Identified the occurrence of the nine non-affine constructs (NAC) in three set of

benchmarks suite namely, Green-Marl, Rodinia, and NAS parallel benchmarks (NPB)

(refer Table 6.1, 6.2, and 6.3). The summary of the NAC in individual benchmark

116

6.4. Analysis on general-purpose and irregular programs

suite that prohibit pluto parallelization is shown in Table 6.4.

• Proposed a technique to eliminate the identified NAC from benchmarks and make

them analyzable by Pluto (Section 6.5). The elimination part is decomposed into

three categories viz. Pre-elimination, In-elimination, and Post-elimination (refer Fig-

ure 6.4). The high-level idea is to remove the minimum amount of NAC from the

original sequential source such that the parallelizer is able to transform the modified

program (Pre- and In-elimiantion). Obviously, after removing the NACs, the code is

functionally not equivalent to the original. Therefore, we re-add the removed NAC

code judiciously to the parallelizer parallelized code (Post-elimination), to obtain se-

mantically equivalent parallel code. This set of transformations were done carefully

to not compromise correctness. To the best of our knowledge, no other framework

improves the effectiveness of parallelizing compilers using such a method.

• Finally, after ensuring the correctness, the Pluto parallelized codes are evaluated for

performance (Section 6.6).

6.4 Analysis on general-purpose and irregular programs
The general limitations and the non-affine issues discussed above were identified by

analyzing three general-purpose and irregular set of benchmarks namely, Green-Marl, Ro-

dinia, and NAS parallel benchmarks (NPB). This section explains the study of these bench-

marks. Throughout this chapter non-affine constructs (NAC) is referred as the combi-

nation of general limitations and non-affine issues.

6.4.1 Green-Marl analysis
Green-Marl is a domain-specific language that is specially designed for graph data anal-

ysis [116]. The compiler gm_comp produces an equivalent, efficient and parallelized C++

function for Green-Marl procedure. This package is comprised of classical graph algo-

rithms implemented in Green-Marl (*.gm) as well the generated C++ implementation

117

6.4. Analysis on general-purpose and irregular programs

(*.cc). There are totally 21 different C++ graph algorithms, out of which we use 14

benchmarks for our analysis (Table 6.1 lists the benchmarks and their non-affine issues).

The reason for eliminating the remaining seven benchmarks from the analysis are: (i)

The benchmark random_walk_sampling_with_random_jump has no loop to par-

allelize (ii) (bc and bc_random) show segmentation fault during serial execution and

the source of the error could not be deduced (iii) The usage of input argument vector for

bc_adj, birdir_dijkstra, sssp_dijkstra, and sssp_path_adj is miss-

ing during execution and hence the output is not reproduced.

The remaining 14 benchmarks were subjected on Pluto for parallelization. Surpris-

ingly, none of these benchmarks were parallelized by Pluto as the benchmarks have

too many NAC. In total, six non-affine constructs (NAC) were identified in the Green-Marl

benchmark that forbid the auto-parallelization using Pluto. Table 6.1 shows the existence

(3) and non-existence (7) of these issues in each benchmark.

6.4.2 Rodinia analysis
Rodinia benchmark suite [117] [118] is a collection of parallel applications and kernels

with unique characteristics which target heterogeneous computing, viz. multi-core CPUs

and GPUs. It cover a wide range of application domains, parallel communication patterns,

synchronization techniques and power consumption. Rodinia have been implemented for

GPUs, multi-core CPUs, and accelerators using CUDA, OpenMP, and OpenCL respec-

tively. The benchmarks exhibit various types of parallelism, data access patterns, and data

sharing characteristics.

There are in total 19 different real-world OpenMP implemented applications that cover

data mining, physics simulation, pattern recognition, graph algorithms, image processing,

etc. We used all the 19 OpenMP implementations for our analysis and were subjected

to parallelization using Pluto. After the investigation, in total, seven frequently occurring

NAC were identified within the SCoP that prohibit Pluto parallelization and are listed in

Table 6.2.

118

6.4. Analysis on general-purpose and irregular programs

Table 6.1: Non-affine constructs (NAC) that prohibit Pluto parallelization in
Green-Marl

Bm.
Non-affine Constructs

SL CC DECL NAL NIF SR

adamicAdar 3 3 3 3 7 7

avg_teen_cnt 7 7 3 3 3 7

communities 7 7 3 3 3 7

hop_dist 3 7 3 3 3 7

kosaraju 7 7 3 3 7 7

pagerank 3 7 3 3 7 3

potential_friends 7 7 7 3 3 7

random_degree_node_sampling 3 7 3 3 3 7

random_node_sampling 3 7 3 3 3 7

sssp 3 7 3 3 3 7

sssp_path 3 7 3 3 3 7

triangle_counting 7 7 7 3 3 7

v_cover 7 7 3 3 3 7

conduct 7 7 3 3 3 7

14 7 1 12 14 11 1

Bm. Benchmark, 7 Absence of NAC, 3 Existence of NAC, SL = Scalar Variable in the `-value of

a statement, CC = Constructor Call, DECL = Declaration Statements, NAL = Non-affine Loop

bound, NIF = Non-affine IF construct, SR = Scope Resolution Operator

119

6.4. Analysis on general-purpose and irregular programs

Table 6.2: Non-affine constructs (NAC) that prohibit Pluto parallelization in Rodinia

Bm.
Non-affine constructs identified using Pluto

SL DECL NAL NIF NAS FILE

backprop 3 7 7 7 7 7

b+tree 3 3 3 3 3 7

bfs 7 7 3 3 7 3

cfd 3 3 7 3 3 3

hotspot 3 3 3 3 3 3

hotspot3D 3 7 7 3 3 3

heartwall 3 3 3 7 3 7

lavaMD 3 7 3 3 3 3

lud 3 3 3 3 3 3

kmeans 3 7 7 3 7 7

nn 3 3 7 3 7 3

nw 7 3 3 3 3 7

srad 3 7 7 3 3 7

mummergpu 7 3 7 3 3 7

streamcluster 3 3 3 3 3 3

pathfinder 7 7 7 3 7 7

particlefilter 3 3 7 3 3 7

myocyte 7 7 7 3 3 3

leukocyte 3 3 3 3 7 7

19 14 11 9 17 13 9

Bm. Benchmark, 7 Absence of NAC, 3 Existence of NAC, SL = Scalar variable in the `-value of

a statement, DECL = Declaration statements, NAL = Non-affine Loop bound, NIF = Non-affine IF

construct, IRR = Irregular loops, NAS = Non-affine Array Subscript, FILE = FILE I/O operations

120

6.4. Analysis on general-purpose and irregular programs

Table 6.3: Non-affine constructs (NAC) that prohibit Pluto parallelization in NAS
parallel benchmarks (NPB)

Bm.
NAC identified using Pluto

SL FC NAL NIF NAS FILE

BT 3 7 3 3 3 7

CG 3 7 3 3 3 7

DC 3 7 7 3 3 3

EP 3 7 7 3 7 3

FT 3 3 7 3 3 7

IS 3 7 7 3 3 7

LU 3 7 7 7 3 7

MG 3 7 7 3 3 3

SP 3 3 3 7 3 7

UA 3 3 3 3 3 3

10 10 3 4 8 8 4

Bm. Benchmark, 7 Absence of NAC, 3 Existence of NAC, SL = Scalar variable in the `-value of

a statement, NAL = Non-affine Loop bound, NIF = Non-affine IF construct, FC = Function Call,

NAS = Non-affine Array Subscript, FILE = FILE I/O operations

6.4.3 NAS parallel benchmarks (NPB) analysis
As previously discussed in Chapter 5, NPB are derived from computational fluid dy-

namics (CFD) applications and consists of ten kernels. Each of these benchmarks com-

prises of complex coding style and too many non-affine constructs (NACs) that affect the

parallelization process. In total, six common NACs were identified during parallelization

using Pluto and are listed is in Table 6.3.

6.4.4 Overall auto-parallelization issues in Pluto
In total, nine auto-parallelization issues in Pluto have been identified by examining

three benchmark suites namely, Green-Marl, Rodinia and NAS parallel benchmarks (NPB),

which are listed in Table 6.4. Among which SL, DECL, NIF, and NAL are frequently

121

6.5. Method to eliminate Non-affine constructs (NAC) in Pluto

Table 6.4: Overall auto-parallelization issues in Pluto

Benchmarks Tested SL CC FC DECL NAL NAS NIF SR FILE

Green-Marl 14 7 1 - 12 14 - 11 1 -

Rodinia 19 14 - - 11 9 8 17 - 9

NPB 10 10 3 3 - 4 8 8 - 4

43 21 4 3 23 27 16 36 1 13

Bm. Benchmark, SL = Scalar variable in the `-value of a statement, CC = Constructor Call, FC =

Function Call, DECL = Declaration statements, NAL = Non-affine Loop bound, NIF = Non-affine

IF construct, SR = Scope Resolution Operator, FILE = FILE I/O Operations

occurring problems. Each benchmark has at least one non-affine constructs (NAC) that

forbids parallelization in Pluto.

The codes with these NAC are made amenable to parallelization using elimination

method which will be a pre-parser and post-parser to the Pluto tool. The elimination method

is illustrated next.

6.5 Method to eliminate Non-affine constructs (NAC) in Pluto
In this section, the proposed approach in making the input code analyzable by polyhe-

dral frameworks is illustrated. For such an evaluation, we use polyhedra-based parallelizer,

Pluto. From our earlier studies, the two frameworks that performed well are ICC and

Pluto. ICC is a commercial compiler while Pluto is open-source tool. Therefore, we focus

on Pluto in this chapter.

122

6.5. Method to eliminate Non-affine constructs (NAC) in Pluto

Serial code
with NAC (S)

Serial code
with residual

NAC (S1)

T1 Incorrect Serial
code without

NAC (S2)

T2 Incorrect
Parallel
code (P)

T3
Semantically

equivalent
parallel code

(P1)

T4

T1 Pre-elimination, T2 In-elimination, T3 Parallelize S2 using Pluto, T4 Post-elimination

Figure 6.4: Method to eliminate non-affine constructs (NAC)

Table 6.5: Classification of identified non-affine constructs (NAC) and proposed
solution

Problems Descriptions Solutions Classification

P1 Scalar variables in `-value Scalar expansion

Pre-elimination
P2 Declaration statements

Loop-invariant code motion
P3 Non-affine loop bound

P4 Function Calls

Remove NAC from SCoP In-elimination

P5 Constructor Calls

P6 Non-affine IF construct

P7 Non-affine array subscript

P8 Scope resolution operator

P9 FILE I/O operations Remove parallel pragma Post-elimination

Figure 6.4 illustrates the method to eliminate NAC in the input code and make them

amenable to parallelization by preserving the semantics of the code. The elimination

part is decomposed into three categories viz. Pre-elimination, In-elimination, and Post-

elimination. Table 6.5 lists the problems that are solved in this chapter. Currently, the

method is manually applied, but it can be automated. Our goal here is to check if tempo-

rary removal of NAC improves effectiveness of auto-parallelizers.

Algorithm 1 illustrates the 3-stage elimination process (manual method) which is per-

formed to input code INP. The transformed code under each phase is stored in variable T1.

After eliminating NAC, the parallelized code is checked for correctness with respect to the

original sequential code. After retaining the semantics of the code, the final T1 is targeted

for evaluation. The 3-stage elimination process is explained subsequently in this section.

123

6.5. Method to eliminate Non-affine constructs (NAC) in Pluto

Algorithm 1: Elimination of NAC from SCoP
Input: INP := FOR loops with NAC
Output: Semantically correct parallel code T1 for evaluation

1 begin
/* Pre-elimination */

2 if Scalar in `-value then
3 T1 := Scalar_Expansion(INP);

/* Pre-elimination */
4 if DECL within T1 || NAL within T1 then
5 T1 := Loop_Invariant(T1);

/* In-elimination */
6 if FC || CC || NIF || NAS || SR then
7 T1 := Remove_NAC(T1, Stmt);

/* Incorrect Parallelization */
8 T1 := Pluto_Parallelize(T1);

/* Post-elimination */
9 Stmt := Renaming_Index(Stmt);

10 T1 := Re_add(T1, Stmt);
11 if FILEIO within SCoP then
12 T1 := Remove_Pragma(T1);

6.5.1 Pre-elimination
Three NAC within the SCoP are addressed in this stage namely, scalar variables in the

`-value of statement (P1), declaration statement (P2), and non-affine loop bound (P3) (Ta-

ble 6.5). In this stage two non-trivial sub-tasks are performed as part of elimination process

(scalar expansion and loop-invariant code motion). However, during such transformation

the semantics of the code is preserved.

Scalar expansion

Pluto worked with vectors but did not parallelize for-loops when the `-value of the state-

ment is a scalar variable. Hence, we convert the scalar to vector variable. However, we

need to preserve the semantics of the code, (i) by checking the loop-carried data depen-

dence due to scalar and preserving it (iii) by looking into if the scalar variables are used

in function call/constructor call. A valid scalar expansion is illustrated in Figure 6.5(a) for

single and nested for-loop.

124

6.5. Method to eliminate Non-affine constructs (NAC) in Pluto

Two major issues should be taken into account during scalar expansion:

• During such transformation, it is obvious that the vector size may dynamically grow

which can lead to memory bandwidth bottlenecks. To avoid such scenario, we allo-

cate and deallocate the array variable using malloc() within the scope as illustrated

in Figure 6.5(b)

• Scalar expansion cannot be performed to a reduction variable in a single for-loop

since it comprises loop-carried dependence, if vectorized then it would lead to false

output. Figure 6.5(c) shows that scalar expansion is not feasible in case of single loop

(T_1) when there is a reduction. The code snippets of (T_2) reveals that it is invalid

to perform vectorization in a nested loop, when the reduction variable is globally

defined. In case of nested loop, vectorization can be applied to the reduction variable

in the inner loop, iff the value is updated within the outer loop.

Figure 6.6(a) shows the parallelization of adamicAdar, where scalar expansion (SV)

is performed (shown in code fragments in T_2) i.e. scalar _S0 is replaced as vector vari-

able outer loop counter e as _S0[e] (transformation is highlighted in red). Similarly, the

variables from and to are replaced as from[e] and to[e] respectively. The transfor-

mation is performed even within the function call. All the scalar variables within the SCoP

are replaced with vector variable only if there is no loop-carried data dependence due to

scalar variable.

Loop-invariant code motion

Pluto does not allow declaration of variables with user-defined/derived/primitive data types

within the static control part (SCoP). Hence, these declarations are moved outside the SCoP

by performing loop-invariant code motion (LI) without affecting the semantics of the orig-

inal code. In Figure 6.6(a), lines 2-3 of T_1 is brought outside the SCoP by performing

loop-invariant code motion (LI). However, this mechanism is performed by preserving the

semantics of the code, hence initialization of variable _S0 is retained within the SCoP.

125

6.5. Method to eliminate Non-affine constructs (NAC) in Pluto

(a) Valid Scalar expansion

1 {
2 f o r (x=0 ; . . .)
3 {
4 temp = 0 ;
5 f o r (. . .)
6 {
7 temp = temp + . . . ;
8 }
9 }

10 }

1 {
2 f o r (x=0 ; . . .)
3 {
4 temp [x] = 0 ;
5 f o r (. . .)
6 {
7 temp [x] = temp [x] + . . . ;
8 }
9 }

10 }

Original code (T_1) Modified code (T_2)

(b) Eliminating the memory bandwidth bottleneck

1 {
2 i n t * a r r = (i n t *) ma l l oc (n * s i z e o f (i n t)) ;
3 f o r (. . .) {
4 . . .
5 }
6 f r e e (a r r) ;
7 }

(c) Two cases where scalar expansion is invalid

1 {
2 f o r (. . .)
3 {
4 temp = temp + . . . ;
5 }
6 }

1 {
2 temp = 0 ;
3 f o r (. . .)
4 {
5 f o r (. . .)
6 {
7 temp = temp + . . . ;
8 }
9 }

10 }

Original code (T_1) Modified code (T_2)

Figure 6.5: Scalar expansion issues and solution (a) Valid scalar expansion (b) Eliminating
the memory bandwidth bottleneck (c) Two cases where scalar expansion is invalid

126

6.5. Method to eliminate Non-affine constructs (NAC) in Pluto

(a) Parallelization of adamicAdar

1 for(edge_t e = 0; e < G.
num_edges(); e ++) {

2 node_t from; node_t to;
3 double _S0 = 0.0 ;
4 from = G.node_idx_src[e] ;
5 to = G.node_idx[e] ;
6 _S0 = ((float)(0.000000)) ;
7 gm_common_neighbor_iter n_I

(G, from, to);
8 for(node_t n = n_I.get_next(); n

!= gm_graph::
NIL_NODE ; n = n_I.
get_next()) {

9 _S0 = _S0+1/log((G.begin[n+1]
−G.begin[n]));

10 }
11 G_aa[e] = _S0 ;
12 }

1 edge_t e;
2 auto X1 = G.num_edges();
3 double _S0[X1];
4 node_t from[X1];
5 node_t to[X1];
6 node_t n;
7 for (e = 0; e < X1; e ++) {
8 _S0[e] = 0.0 ;
9 from[e]=G.node_idx_src[e] ;

10 to[e] = G.node_idx[e] ;
11 gm_common_neighbor_iter n_I

(G, from[e], to[e]);
12 for(n = n_I.get_next(); n !=

gm_graph::NIL_NODE ; n
= n_I.get_next()) {

13 _S0[e]=_S0[e]+1/log((G.begin[
n+1]−G.begin[n])) ;

14 }
15 G_aa[e] = _S0[e] ;
16 }

1 if (X1 >= 1) {
2 lbp=0; ubp=X1−1;
3 #pragma omp parallel for private(

lbv,ubv,t2)
4 for (t1=lbp;t1<=ubp;t1++) {
5 _S0[t1] = 0.0 ;
6 from[t1]=G.node_idx_src[t1];
7 to[t1] = G.node_idx[t1] ;
8 gm_common_neighbor_iter n_I(G,

from[t1], to[t1]);
9 for(node_t n = n_I.get_next(); n !=

gm_graph::NIL_NODE ; n =
n_I.get_next()) {

10 _S0[t1]=_S0[t1]+1/log((G.begin[n
+1]−G.begin[n]));

11 }
12 G_aa[t1] = _S0[t1] ;
13 }
14 }

T_1 (Original Code) T_2 (Pre- and In-elimination) T_3 (Post-elimination)

Pre-elimination = SV (highlighted in red) and LI performed in lines 1-6 of T_2

In-elimination = remove NAC: CC, NAL

Post-elimination = RI (highlighted in violet), append NAC

(b) Parallelization of b+tree

1 for(i = 0; i < count; i++){
2 start[i]=(rand()/(float)RAND_MAX)*size;
3 end[i] = start[i]+rSize;
4 if(end[i] >= size){
5 start[i] = start[i] − (end[i] − size);
6 end[i]= size−1;
7 }
8 }

1 if (count >= 1) {
2 lbp=0; ubp=count−1;
3 #pragma omp parallel for private(lbv,ubv,t2)
4 for (t1=lbp;t1<=ubp;t1++) {
5 start[t1]=(rand()/(float)RAND_MAX)*size;
6 end[t1] = start[t1]+rSize;
7 if(end[t1] >= size){
8 start[t1] = start[t1]−(end[t1]−size);
9 end[t1]= size−1;

10 }
11 }
12 }

T_1 (In-elimination) T_2 (Post-elimination)

In-elimination = remove NAC: NIF , Post-elimination= append NAC

Figure 6.6: Making codes amenable to parallelization to port via Pluto (a) Parallelization
of adamicAdar (b) Parallelization of b+tree, (continued in next page)

127

6.5. Method to eliminate Non-affine constructs (NAC) in Pluto

All upper and lower loop bounds in the SCoP need to be affine expressions. Assum-

ing if the loop bounds are non-affine, then the code becomes unanalyzable by the frame-

works. Such cases were observed in the tested program. One such scenario is shown in

Figure 6.6(a). In the code snippets of T_1, the key issue is with the conditional part of for-

loop ‘e < G.num_edges()’, where the r-value is a function call which is non-affine. Hence,

we eliminate the non-affine issues, by applying loop-invariant code motion (LI) method,

where the declaration is moved outside the SCoP. Also, the r-value is assigned to a new

temporary variable X1 defined outside the SCoP and the r-value of for-loop condition is

replaced with variable X1 (line 2 and 7 in T_2 of Figure 6.6(a)).

The key issue to be noted before applying loop-invariant code motion in case of solving

non-affine loop bound are as follows:

• In case the for-loop is not a canonical loop i.e. when there are multiple initialization

or conditional statements, and when the condition of the for-loop (!=, ==) is invalid,

then loop-invariant code motion is not performed. Such cases prevail in Green-Marl

and Rodinia suites namely, adamicAdar, b+tree, nw, sradd, and mummergpu.

• In the nested for-loop, if the r-value of the initialization/conditional statement de-

pends on the outer loop counter, then the loop-invariant code motion is avoided. This

scenario exists in Green-Marl benchmarks namely, avg_teen_cnt, pagerank,

communities, potential_friends, sssp, and sssp_path.

6.5.2 In-elimination
In total, five non-affine issues are elucidated and addressed in this stage namely, func-

tion calls (P4), constructor calls (P5), non-affine IF construct (P6), non-affine array sub-

script (P7), and scope resolution operator (P8) (problem illustrated in Table 6.5). This pro-

cess involves the elimination of the above-discussed five NAC from the input code which

forces the code to be incorrect. Following are the illustrations on each non-affine issues.

128

6.5. Method to eliminate Non-affine constructs (NAC) in Pluto

Function call (FC)/Constructor call (CC) Constructor call within SCoP made the code

not amenable for parallelization. Hence, the constructor call was removed before porting

to parallelization. For instance in Figure 6.6(a), T_2 shows the constructor call in line 11

removed from the benchmark adamicAdar of Green-Marl (highlighted in).

Non-affine IF construct (NIF) Non-affine IF constructs inside the SCoP stop the poly-

hedral framework to perform parallelization and hence is removed before sending the code

to parallelizer. In Figure 6.6(b), T_1 reveals that the non-affine IF (NIF) construct (high-

lighted in) is removed from the input code and after obtaining the parallelized code the

removed code is appended. The results of avg_teen_cnt shows the code snippets in

T_2, where the removed IF construct has been appended to the parallelized code (high-

lighted in).

Non-affine array subscript (NAS) On parallelization of heartwall benchmark of

Rodinia, the system found that due to presence of non-affine array subscript (NAS), the

code was not amenable to parallelization. Hence, the problematic code segment was re-

moved from further parallelization. After this the code was feasible for parallelization.

Figure 6.6(c) shows that presence of NAS in lines 5-7 of T_1 forbids parallelization, and

hence after our elimination method the code was parallelizable. However, the incorrect

code was appended with the removed statements (lines 10-12 in T_2) and the semantics of

the code was preserved.

Scope resolution operator (SR) Presence of scope resolution operator (::) was found

in Green-Marl applications. For instance, in the pagerank benchmark, the statement

with scope resolution operator was removed and then appended back after obtaining the

parallelized code.

6.5.3 Post-elimination
After obtaining the incorrect/correct parallelized code from Pluto, two significant checks

are performed to validate the correctness of the program. Assuming that the parallelized

129

6.5. Method to eliminate Non-affine constructs (NAC) in Pluto

(c) Parallelization of heartwall

1 for(col=0; col<public.in2_cols; col++){
2 for(row=0; row<public.in2_rows; row++){
3 ori_row = row + in2_rowlow − 1;
4 ori_col = col + in2_collow − 1;
5 temp = public.d_frame[ori_col*public.frame_rows+

ori_row];
6 private.d_in2[col*public.in2_rows+row] = temp;
7 private.d_in2_sqr[col*public.in2_rows+row] = temp

*temp;
8 }
9 }

1 auto X1 = public.in2_cols;
2 auto X2 = public.in2_rows;
3 if ((X1 >= 1) && (X2 >= 1)) {
4 for (t1=0;t1<=X1+X2−2;t1++) {
5 lbp=max(0,t1−X1+1); ubp=min(t1,X2−1);
6 #pragma omp parallel for private(lbv,ubv)
7 for (t2=lbp;t2<=ubp;t2++) {
8 ori_row[t2] = t2 + in2_rowlow − 1;
9 ori_col[t2] = (t1−t2) + in2_collow − 1;

10 temp = public.d_frame[ori_col[t2]*public.
frame_rows+ori_row[t2]];

11 private.d_in2[(t1−t2)*public.in2_rows+t2] = temp;
12 private.d_in2_sqr[(t1−t2)*public.in2_rows+t2] =

temp*temp;
13 }
14 }
15 }

T_1 (In-elimination) T_2 (Post-elimination)

In-elimination = remove NAC : NAS , Post-elimination = append NAC

Figure 6.6: Making codes amenable to parallelization by elimination method to port via
Pluto (c) Parallelization of heartwall (Contd.)

code is incorrect due to two issues namely, (i) parallelization of loops with File I/O op-

erations (ii) index variable mismatch during scalar expansion. Following are the ways in

which the two issues are solved.

• Pluto inserts parallel directive to loops with File I/O operations. In general, reading

and writing from a file needs to follow sequential semantics. Hence to maintain

correctness, before evaluation, we remove the ‘parallel pragma’ from the loop.

• The scalar expansion applied to non-affine issues (such as function call (FC), non-

affine array subscript (NAS), etc.) which are then removed during parallelization

causes mismatch in the index variable. This is because Pluto performs polyhedral

transformation in which it creates temporary variable and replaces the old variable.

To overcome this, after appending the removed non-affine issues to the parallelized

130

6.6. Result analysis

code, we apply renaming of index variable (RI) to make a behavior preserving trans-

formation. Figure 6.6(a) shows the usage of renaming of index variable (RI) in T_3

code snippets (lines 8 and 10, highlighted in violet), where the variables from[e]

and to[e] is replaced as from[t1] and to[t1].

6.6 Result analysis
Figures 6.7, 6.8 and 6.9 show the speedup results of three benchmark suites namely,

Green-Marl, Rodinia and NAS parallel benchmarks (NPB) compared against Original,

Pluto, and Pluto_M (Original is the speedup of the manually parallelized individual bench-

mark, Pluto is the speedup of the parallelized code before applying the elimination method,

Pluto_M is the speedup of the parallelized code obtained after applying the elimination

method). In the case of Green-Marl and Rodinia, the correctness of Pluto_M transforma-

tion was evaluated by comparing the output of the parallelized version with the sequential

version. In the case of NPB, the correctness check is programmatically performed by the

test case of the individual benchmark.

6.6.1 Experimental configuration
The experimental configuration is illustrated in Chapter 4. For empirical analysis, the

number of threads is varied as 64, 32 and 16, and the speedup was compared against that

of the sequential version.

6.6.2 Performance impact of elimination method on Green-Marl
Out of 14 benchmarks listed in Table 6.1, in total 12 benchmarks were amenable to par-

allelization using Pluto_M . The unresolved two problems were potential_friends

and triangle_counting, since after undergoing the elimination process, there were

no parallelization candidate within the for-loop.

Figure 6.7 depicts the speedup results of Green-Marl codes. Pluto was not able to

parallelize Green-Marl applications, as there were too many NAC which forbid paralleliza-

tion. Hence, for evaluation purpose, the speedup of Pluto was assumed as unity, same as

the sequential version. Pluto_M outperforms Pluto for 5 benchmarks (with 32 threads:

131

6.6. Result analysis

adamicAdar 11.58×, avg_teen_cnt 9.54×, communities 1.57×, pagerank

9.07×, and sssp_path 1.05×).

Interestingly, Pluto_M showed performance improvement than Original for

adamicAdar and avg_teen_cnt. However, Pluto_M exhibits speedup less than the

sequential version for few of the codes due to lack of usage of implicit barriers besides

parallelization.

6.6.3 Performance impact of elimination method on Rodinia
In Rodinia, out of 19 listed in Table 6.2, on the whole 8 benchmarks were acquiescent

to parallelization by Pluto_M. In the remaining 11 benchmarks, 9 codes were not feasi-

ble for parallelization as there were no parallelization candidate within the for-loop after

undergoing the elimination process; 2 of the benchmarks showed semantically incorrect

output and had left clueless of the source of the transformation error.

Figure 6.8 depicts the speedup results of eight of the benchmarks across Original, Pluto,

and Pluto_M. The results reveal that Pluto_M performs better than Pluto for three of the ap-

plications (with 32 threads: heartwall 10.27×; kmeans 48.61×; particlefilter

1.11×; Pluto and Pluto_M show similar speedup results for b+tree). However, Pluto_M

showed lesser speedup than Pluto for one of the benchmarks myocyte due to additional

optimization.

Pluto_M outperforms Original for kmeans. The speedup of Pluto_M for few of the

benchmarks is less when compared to Original due to some of the unresolved problems

such as several other non-affine constructs; nonfeasible parallelization as there were no

parallelization candidates after elimination process; lack of usage of implicit barriers and

synchronization constructs.

132

6.6. Result analysis

Original = Parallelized Green-Marl version, Pluto = Before applying elimination method,

Pluto_M = After applying elimination method

Figure 6.7: Speedup analysis of Green-Marl (adamicAdar, avg_teen_cnt,
communities, pagerank, sssp_path, rn_sampling, rdn_sampling,
kosaraju), (continued in next page)

133

6.6. Result analysis

Original = Parallelized Green-Marl version, Pluto = Before applying elimination method,

Pluto_M = After applying elimination method

Figure 6.7: Speedup analysis of Green-Marl (sssp, hop_dist, v_cover, conduct)
(Contd.)

6.6.4 Performance impact of elimination method on NPB
Figure 6.9 shows the speedup results of Original, Pluto, and Pluto_M. Among 10 NPB

codes listed in Table 6.3, nine applications were amenable to parallelization by subjecting

to Pluto_M. For the remaining one benchmark, there were no parallelization candidate after

the elimination process. The results illustrate that the parallelized NPB codes obtained after

subjecting to the elimination process, Pluto_M does not show performance improvement

when compared to Pluto and is less than the sequential version. The degradation happened

as the removal of NAC leads to a no parallelization candidate case.

134

6.6. Result analysis

Original = Parallelized Green-Marl version, Pluto = Before applying elimination method,

Pluto_M = After applying elimination method

Figure 6.8: Speedup analysis of Rodinia (heartwall, kmeans, particlefilter,
b+tree, backprop, lavaMD, myocyte, leukocyte)

135

6.6. Result analysis

Original = Parallelized Green-Marl version, Pluto = Before applying elimination method,

Pluto_M = After applying elimination method

Figure 6.9: Speedup analysis of NPB (BT, CG, DC, EP), (continued in next page)

It is also evident from Chapter 5 that the NPB benchmarks were less amenable to par-

allelization by auto-parallelizing frameworks due to inherent complex style. Further, it was

reported in Chapter 5 that Pluto has performed inefficient parallelization in many instances

viz. parallelization of the insignificant loop and too many optimizations. Also, present-day

parallelizing compilers lag in the usage of implicit barriers and synchronization constructs.

The poorer results of Pluto tool on NPB show that modern parallelizing compilers

should be tuned to parallelize real-world problems by making the code more amenable

to parallelization. Besides the percentage of acceptance of code for parallelization, the

frameworks should be modeled to perform efficient parallelization and inherently apply

synchronization constructs wherever necessary.

136

6.6. Result analysis

Original = Parallelized Green-Marl version, Pluto = Before applying elimination method,

Pluto_M = After applying elimination method

Figure 6.9: Speedup analysis of NPB (FT, LU, MG, SP, UA) (Contd.)

137

6.7. Summary

6.7 Summary
In total nine non-affine constructs (NAC) were identified by exploring three set of ir-

regular and general-purpose programs namely Green-Marl, Rodinia, and NPB on paral-

lelization with Pluto. A manual method, named Pluto_M, was introduced to eliminate the

NAC from the codes, and several of them were acquiescent to parallelization. The manual

elimination process comprised of three phases namely pre-elimination, in-elimination, and

post-elimination.

The correctness of the transformed code was ensured. The resulting analysis reveals

that several of the Green-Marl and Rodinia codes of Pluto_M showed performance im-

provement over Pluto and about 67% of the codes were amenable to parallelization. Pluto_M

had shown better results over Original for few of the benchmarks. The elimination method’s

poorer outcomes on NPB codes portray the significance of manual intervention in case of

real-world problems.

138

CHAPTER 7

Solution-focused Auto-parallelization

Mechanism of Sequential Codes

This chapter introduces a new method to address the complications in the polyhedral par-

allelizer. Overall, five pitfalls are explored and resolved in this chapter. It explains the

solution-focused mechanism that analyzes the compute-intensive function, determines the

problems and provides an automated solution for parallelization. It discusses three phases

of the proposed method namely, Profiling, Analysis and Code Transformation (ACT), and

Parallelization. It also presents the validation results of the mechanism using PolyBench

benchmarks.

7.1 Background
In Chapter 6 the limitations of polyhedral auto-parallelizer, Pluto, an open-source tool,

were discussed and addressed using the elimination method. In this chapter, a solution is

devised that focuses towards addressing various drawbacks in Pluto. The solution mecha-

nisms are fully automatic. To effectively use the tool, a solution-focused automatic paral-

lelization mechanism has been developed which utilizes profiling and code transformation

to make the code more amenable to parallelization.

The three essential frameworks that contribute to the automated solutions are namely,

GNU profiler (Gprof) [119], Rose [9] [60] , and Pluto [20].

Gprof [119] is a performance analysis tool for LINUX applications to keep track of the

execution times of functions in the program.

Rose [9] [60] is also an open-source compiler framework to build source-to-source

transformation and analysis tools for large-scale applicationi to improve its performance.

It helps to perform the code transformations, analyses, and optimizations . Rose uses two

iApplication that is developed in C (C89 and C98), C++ (C++98 and C++11), UPC, Fortran
(77/95/2003), OpenMP [11], Java, Python, and PHP

139

7.2. Proposed method

IR = Intermediate Representation, AST = Abstract Syntax Tree

Figure 7.1: Schematic representation of Rose compiler framework

methodologies namely abstract syntax tree (AST) query, and AST traversal mechanism for

code conversion. Figure 7.1 depicts the schematic representation of Rose and its compo-

nents. The front-end, ‘Edison Design Group (EDG)’ [120] addresses the language spe-

cific parsers/front-end issues. The mid-end, ‘analysis and transformation phase’ is used

to perform the analysis and code transformation by processing the AST information. The

backend, ‘unparser’ handles the code generation part and generates the converted code by

unparsing the source code.

Pluto as discussed earlier is implemented based on the polyhedral model which per-

forms automatic optimization and parallelization. It is a mathematical framework for loop

optimization in program optimization [83].

7.2 Proposed method
In this section, a solution-focused automatic parallelization mechanism is proposed as

a pre-parser to Pluto which alleviates the parallelization pitfalls. It combines the profiler,

Gprof [119] along with AST [121] based analysis and code transformation (using Rose

compiler framework [9] [60]) and polyhedral parallelizer (Pluto). Based on the studies,

problems are identified pertaining to the Pluto tool and are listed in Table 7.1. Problems P1

and P2 were discussed in Chapter 3 and in-depth analysis on P1 problem was discussed in

Chapter 6. Figure 7.2 illustrates the problems P3-P5. Solutions are derived for these issues

and are automated.

In this manner, the proposed method includes the following three phases; Profiling,

Analysis and Code Transformation (ACT), and Parallelization. The Profiling phase utilizes

140

7.2. Proposed method

Table 7.1: Problems and suggested solutions for static control part (SCoP) rejection
in Pluto

No. Problems Suggested Solutions

P1 while loop Convert the while-loop to for-loop

P2 Scalar Variables in the
`-value of a statement

Scalar expansion

P3 Reverse for-loop Convert the upper bound to lower bound

P4 Updation of for-loop by
more than one time step

Convert the increment step to one

P5 Irregular loopa Transform to a regular loop

a In this chapter, Irregular loop* refers to the code fragments comprising
incrementing/Decrementing of loop index variable such as i++, i–, i=i+n,
i=i-n, i+=n, and i-=n with the for-loop.

the Gprof to extract the function name and execution time of hotspotii.

The ACT phase takes the output from the Profiling, and with the aid of the abstract

syntax tree (AST) query mechanism, identifies the parallelizable region of the hotspots

comprising of the pitfalls. Once the problems are determined, to make the code amenable

to parallelization, automatic code transformation is applied. ACT modifies the intermediate

representation (IRiii) of the code and makes it acquiescent to parallelization.

The key contribution is in finding the presence of non-affine codes in benchmark pro-

grams using Profiling and applying the code transformation using ACT to make the code

amenable to parallelization using Pluto. Hence, the phases, Profiling and ACT are a pre-

pass for Pluto (refer Figure 7.3(a)).

Finally, the polyhedral parallelizer, Pluto, parses the translated code and generates the

paralleized code.

iiCompute-intensive functions of input C code
iiiIR is modified using the Rose compiler framework

141

7.2. Proposed method

(a) Reverse for-loop

1 f o r (i = n ; i >= 0 ; i−−)
2 a [i] = b [i] + c [i] ;

1 f o r (i = 0 ; i < n ; i ++)
2 a [n− i] = b [n− i] + c [n− i] ;

Original code Reformed code

(b) Updation of for-loop by more than one time step

1 f o r (i = 0 ; i < n ; i += 3)
2 a [i] = b [i] + c [i] ;

1 f o r (i = 0 ; i < n ; i ++)
2 {
3 a [i] = b [i] + c [i] ;
4 i += 2 ;
5 }

Original code Reformed code

(c) Irregular loop*

1 f o r (i = 0 ; i < n ; i ++)
2 {
3 a [i] = b [i] + c [i] ;
4 i += 2 ;
5 }

1 i f (n % (1 + 2) == 0)
2 _zB = n / (1 + 2) ;
3 i f (n % (1 + 2) ! = 0)
4 _zB = n / (1 + 2) +1 ;
5 f o r (i = 0 ; i < n ; i ++)
6 {
7 a [(i + 1) * 0 + i * (2 + 1)] = b [(i +

1) * 0 + i * (2 + 1)] + c [(i + 1)
* 0 + i * (2 + 1)] ;

8 }

Original code Reformed code

In this chapter, Irregular loop* refers to the code fragments comprising
incrementing/Decrementing of loop index variable such as i+ +, i−−, i = i+ n,
i = i− n, i+ = n, and i− = n with the for-loop. This example has i+ = 2 within
for-loop which is unsupported by Pluto.

Figure 7.2: Suggested solution for the static control part (SCoP) rejection problems in
Pluto (a) Reverse for-loop (b) Updation of for-loop by more than one time step (c) Irregular
loop

142

7.3. Implementation

(a) Solution-focused automatic
parallelization mechanism

Profiling

ACT-1

ACT-2

Parallelization
using Pluto

Input Code

Parallelized code

Functions exceeding 𝛕

FOR loops

Transformed code

Input Code

Parallelized
code

 ACT

 Pre-pass

(b) Profiling

Compiling & Linking
with GProf

Get functions and
execution time

Filter the functions
exceeding ᵬ

Input Code

Functions
exceeding ᵬ are sent

to ACT

Flat Profile

Function name, Time

The symbol τ is the threshold time. The execution time of a function that exceeds τ are
termed as compute-intensive.

Figure 7.3: Proposed method for alleviating pitfalls in Pluto (a) Solution-focused auto-
matic parallelization mechanism (b) Profiling

7.3 Implementation
As discussed earlier, the phase-by-phase approach of the proposed method includes

Profiling, Analysis and Code Transformation (ACT), and Parallelization. Gprof is used to

implement the Profiling stage. Rose compiler framework is used to perform the ACT. Pluto,

a polyhedral parallelizer is used for parallelization of the transformed code.

Figure 7.3(a) depicts the schematic representation of the proposed solution-focused

automatic parallelization mechanism to alleviate pitfalls faced by Pluto. Following sections

provide a detailed description of the proposed method.

7.3.1 Profiling
Code profiling is one of the most critical aspects of the software development as it lets

you identify the bottlenecks, dead codes, bugs, and regions that take more execution time.

143

7.3. Implementation

Hence this phase of the proposed method is dedicated to finding the compute-intensive

functions (hotspots) so that the transformation is avoided in trivial applications. Fig-

ure 7.3(b) depicts the processes involved in Profiling. The input code was first compiled

and linked with Gprof iv. Gprof helps to determine the execution time of a function in the

program. The flat profile is extracted from the Gprof which is used to extract the function

name and execution time. The threshold timing is set as τ i.e. the name of the function

whose execution time is exceeding τ are termed as compute-intensive and is sent to the

ACT phase to identify the pitfalls (Table 7.1) in the parallelizable region of hotspots and is

subjected to further coding changes.

7.3.2 Analysis and code transformation (ACT)
The hotspots obtained from the Profiling phase is fed to the ACT phase. In this stage,

the pitfalls that forbid parallelism are identified and resolved. Table 7.1 lists the problems

that cause the rejection of loops while parallelizing static control part (SCoP) along with

the proposed solutions. Analysis and Code Transformation contains two phases: the first

phase, Analysis and Code Transformation Phase-1 (ACT-1) involves identifying the while-

loop (P1) within hotspots and converting to for-loop. The second phase, Analysis and Code

Transformation Phase-2 (ACT-2) includes detecting the pitfalls (P2, P3, P4, and P5) in the

for-loop within the hotspot and resolving it for further parallelization. The identified pitfalls

are solved by modifying the AST. It is implemented using the AST query mechanism by

changing the intermediate representation (IR) of the Rose compiler using the SageInterface

and SageBuilder APIs of Rose. It primarily converts one AST to another version of AST.

The process comprises of addition, deletion, and modification of the information stored in

the AST. The code transformation implemented has the following steps:

• Search for the AST nodes to be transformed.

• Perform the transformation action on the obtained AST nodes.

• Update the existing AST nodes.

• After rewriting the AST, the code is unparsed to get the transformed code which can
be subjected to parallelization.

ivusing ‘-pg’ flag along with the GNU compiler

144

7.4. Analysis and code transformation phase-1 (ACT-1)

The sections 7.4 and 7.5 briefly describe the ACT-1 and ACT-2 which illustrate the

mechanism of addressing the problems listed in Table 7.1.

7.3.3 Parallelization
The transformed code from ACT-1 and ACT-2 is subjected to Pluto, since the identified

predicaments are related to polyhedral parallelizer. Based on our earlier study on different

auto-parallelizers, Pluto is a good parallelizer which parallelizes SCoPs with loop-carried

dependences. The polyhedral parallelizer, Pluto is very efficient in performing optimization

and parallelization. It supports C with OpenMP parallelization. Hence this mechanism

aims at improving Pluto parallelization.

7.4 Analysis and code transformation phase-1 (ACT-1)
ACT-1 helps to detect and transform the while-loop (P1 in Table 7.1). Pluto does not

support while-loop parallelization and hence, it is converted to for-loop by rewriting the

AST using AST query mechanism.

Figure 7.4(a) and 7.4(b) portrays the AST representation of while and for-loop for the

example illustrated in Figure 7.6(a). The control flow of while-loop is different from that

of for-loop. Four essential components for such a transformation are: (i) initialization (ii)

condition (iii) updation (iv) basic block.

Figure 7.5 depicts the implementation of analysis and code transformation phase-1

(ACT-1) for transforming while-loop to for-loop.

7.4.1 Auto-conversion of while-loop to for-loop
Algorithm 1 shows the algorithm of transforming while fragment to for. The example

depicted in Figure 7.6(a) illustrates the algorithm. For each Wj the initialization (INIT,

i = 0); condition (α, i < n); updation (UPD, i++) and basic block B1, i.e. statements S1

and S2 are obtained to build the for-loop.

The more challenging aspects are getting INIT and UPD of Wj . Note that finding

INIT is hard for a particular Wj as the initialization of variable i is unknown before the

loop begins. A mechanism is found to retain the semantics of the code by assigning (αL)

to a temporary variable (VAR, _Cy), which forms the INIT portion _Cy = i. Algorithm 2

145

7.4. Analysis and code transformation phase-1 (ACT-1)

(a) while-loop

Initialization

while

Condition Basic
Block

S1 S2

(b) for-loop

Initialization

for

Condition Basic Block

S1

Increment

Figure 7.4: Abstract syntax tree (AST) graph of (a) while-loop (b) for-loop

146

7.4. Analysis and code transformation phase-1 (ACT-1)

FNset : List of
Functions Exceeding τ
FNsize : Size of FNset

i <= FNsize

j : Beginning of Wset

i : Beginning of FNset

Convert WHILE (Wj)
to FOR

TRUE

Increment 'j'

j <= Wsize

Increment 'i'

TRUE

FALSE

EXIT

FALSE

Wset : List of WHILE
loop within FNi

Wsize : Size of Wset

Figure 7.5: Flowchart representation of the implementation of analysis and code transfor-
mation phase-1 (ACT-1)

147

7.4. Analysis and code transformation phase-1 (ACT-1)

1 i n t i ;
2 i = 0 ;
3 w h i l e (i < n)
4 {
5 S1 : c [i] =a [i] +b [i] ;
6 S2 : i ++ ;
7 }

1 i n t i ;
2 i = 0 ;
3 i n t _Cy = 0 ;
4 _Cy = i ;
5 f o r (i =_Cy ; i <n ; i ++)
6 {
7 c [i] = a [i] + b [i] ;
8 }

1 i f (_Cy <= n−1)
2 {
3 l b p =_Cy ;
4 ubp=n−1 ;
5 # pragma omp p a r a l l e l f o r

p r i v a t e (lbv , ubv)
6 f o r (t 1 = l b p ; t 1 <=

ubp ; t 1 ++)
7 {
8 c [t 1] =a [t 1] + b [t 1] ; ;
9 }

10 }

Original Code Reformed Code Parallelization of Reformed Code

(a) Updation at end of the basic block of while-loop

1 i n t i ;
2 i = 0 ;
3 w h i l e (i < n)
4 {
5 a [i] = i ;
6 b [i] = i + 2 ;
7 c [i] = a [i] + b [i] ;
8 i ++ ;
9 d [i] = c [i−1] + 5 ;

10 }

1 i n t i ;
2 i = 0 ;
3 i n t _Bp = 0 ;
4 _Bp = i ;
5 f o r (i =_Bp ; i <n ; i ++)
6 {
7 a [i] = i ;
8 b [i] = i + 2 ;
9 c [i] = a [i] + b [i] ;

10 d [i + 1] = c [i +1−1] +5 ;
11 }

1 i f (_GC <= n−1)
2 {
3 l b p =_GC ;
4 ubp=n−1 ;
5 # pragma omp p a r a l l e l f o r

p r i v a t e (lbv , ubv , t2 ,
t 3)

6 f o r (t 1 = l b p ; t 1 <= ubp
; t 1 ++)

7 {
8 a [t 1] = t 1 ; ;
9 b [t 1] = t 1 + 2 ; ;

10 c [t 1] = a [t 1] +b [t 1] ; ;
11 d [t 1 + 1] = c [t 1 +1−1] 5 ; ;
12 }
13 }

Original Code Reformed Code Parallelization of Reformed Code

(b) Updation at middle of the basic block of while-loop

Figure 7.6: Auto-conversion of while-loop to for-loop (a)Updation at end of the basic block
of while (b) Updation at middle of the basic block of while

148

7.4. Analysis and code transformation phase-1 (ACT-1)

Algorithm 1: Conversion of while to for : whileToFor
Input: Wset : Set of while-loop
Output: Fset : Set of for-loop

1 begin
2 for each Wj do

/* Get the Conditional Part */
3 α := Conditional Statement of Wj ;
4 αL := LHS variable of α;

/* Get the Initialization Part */
5 T := Data type of αL;
6 Vset := Set of Variables of Wj ;
7 for each Vi do
8 Insert Vi in set X;

9 VAR := createTemp(X);
10 DECL := Declaring the Variable VAR of datatype T;
11 STMT := Building a statement by assigning αL to VAR;
12 INIT := Building a statement by assigning VAR to αL;
13 Insert DECL, STMT before Wj ;

/* Get the Updation Part */
14 Sset := Set of Statements from bottom of Basic Block B;
15 COUNT := 0;

/* isUnaryOperator returns TRUE if Sk contains unary
operator */

16 for each Sk do
17 Sk+1 := Get the next statement of Sk;
18 if isUnaryOperator(Sk) then
19 β := Get the Operand;
20 else
21 β := Get the LHS Operand;

22 if β == αL then
23 COUNT := COUNT +1;
24 if COUNT == 1 and Sk+1 == NULL then
25 UPD := Sk;
26 Delete(Sk);

27 else if COUNT == 1 and Sk+1 6= NULL then
28 UPD := Sk;
29 EXP := Build expression using Sk;
30 modifyStmt(Sk,EXP,α);

31 B1 := Get the Basic Block after modification of Statements;
32 Build the FOR using INIT,α,UPD,B1;

149

7.4. Analysis and code transformation phase-1 (ACT-1)

illustrates the creation and validation of VAR.

Algorithm 2: Creation of temporary variable : createTemp
Input: X : Set of variables of Wj

Output: VAR : Temporary variable is created
1 begin
2 Temp := Create a temporary variable using random function;
3 if ∃(TEMP) /∈ X then
4 Insert TEMP in X;
5 VAR := TEMP;

6 else
7 createTemp(X);

Algorithm 3: Modify basic block of for-loop : modifyStmt
Input: Sk : Statement,
EXP : New expression,
α : Condition
Output: Sset : Set of Statements within B are modified

1 begin
2 INDEX := 0;
3 while Sk+1 6= NULL do
4 αL := LHS of α;
5 Sk(L) := LHS of Sk;
6 if αL 6= Sk(L) then
7 Vset := Set of Variable of Sk;
8 for each Vi do
9 if Vi == αL then

10 replace variable Vi with EXP;

11 if INDEX == 0 then
12 Delete(Sk);

13 INDEX := INDEX+1;

14 Sk+1 := Get the next statement of Sk;

Two different scenarios of while to for transformations are discussed here. If Sk is found

to be an update part, then there can exist two possible cases (explained in Algorithm 3):

• Case (i): If Sk+1 is equal to NULL, Sk gets copied to UPD, and the node is deleted.

For instance in Figure 7.6(a), updation i++ of the index variable i occurs at the end

of the basic block.

150

7.5. Analysis and code transformation phase-2 (ACT-2)

• Case (ii): IfSk+1 is not equal to NULL, Sk gets copied to UPD, and further modifica-

tions are done to basic block B. For instance in Figure 7.6(b), i++ occur in the middle

of the basic block.

After conversion of all while-loop to for, the Fset (set of for-loop in compute-intensive

function) is sent to ACT-2 for identifying and solving the remaining pitfalls.

Constraints in while to for-loop transformation: This transformation is performed

only if:

(i) the for-loop conditional operator is <, >, <=, and >=.

(ii) the increment/decrement statement is of the form i++, i–, i=i+n, i=i-n, i+=n, and i-=n,

where i is the loop index variable.

(iii) there is no nested while loop.

7.5 Analysis and code transformation phase-2 (ACT-2)
The static control part (SCoP) should be an affine expression to be supported by poly-

hedral parallelizer [122] [123]. ACT-2 addresses the non-affine issues (P2, P3, P4, and P5)

listed in Table 7.1. Figure 7.7 illustrates the ACT-2 mechanism. After resolving the pitfalls,

the transformed code is obtained which is ready for parallelization.

7.5.1 Automatic scalar expansion
As discussed in the previous chapters, scalar variable in the `-value of a statement has

been a serious issue prohibiting parallelization by Pluto for many real-world problems.

Hence, automatic scalar expansion [112] is performed.

Let us consider the code snippet from Figure 7.8(a). The scalar w of the statement S1

within the SCoP forbids parallelization. Hence, a mechanism is introduced to convert all

the scalar w to a vector w[i]. The essential region to be modified is only the statements

within the basic block of for.

Algorithm 4 emphasizes the approach before performing scalar expansion. Algorithm 5

illustrates retrieving the block information of Fi i.e., basic block B, LHS (αL) and RHS (αR)

151

7.5. Analysis and code transformation phase-2 (ACT-2)

Fset : FOR loops of FNset
Fsize : Size of Fset

i : Beginning of Fset

FALSE

TRUE

Convert Scalar to
Array Variables

Increment 'i'

EXIT

i <= Fsize

i : Beginning of Fset

i <= Fsize

Convert Upper to
Lower Bound

Increment 'i'

FALSE

TRUE

i <= Fsize
FALSE

TRUE

Convert the
increment step to one

Increment 'i'

i : Beginning of Fset

i <= Fsize
FALSE

TRUE

Transform Irregular
loop to a regular loop

Increment 'i'

i : Beginning of Fset

C1

C1

Figure 7.7: Flowchart representation of the implementation of analysis and code transfor-
mation phase-2 (ACT-2)

152

7.5. Analysis and code transformation phase-2 (ACT-2)

(a) Data dependence

1 i n t w;
2 f o r (i =0 ; i <n ; i ++) {
3 S1 :w = i + 1 ;
4 S2 : a [i] = w * 2 ;
5 S3 : b [i] = i + 2 ;
6 S4 : c [i] =w+a [i] +b [i] ;
7 }

1 i n t w[n] ;
2 f o r (i =0 ; i <n ; i ++) {
3 w[i] = i + 1 ;
4 a [i] = w[i] * 2 ;
5 b [i] = i + 2 ;
6 c [i] =w[i] +a [i] +b [i] ;
7 }

1 i n t w[n] ;
2 i f (n >= 1) {
3 l b p =0 ; ubp=n−1 ;
4 # pragma omp p a r a l l e l f o r

p r i v a t e (lbv , ubv , t 2)
5 f o r (t 1 = l b p ; t 1 <=ubp ; t 1 ++)
6 {
7 w[t 1] = t 1 + 1 ; ;
8 b [t 1] = t 1 + 2 ; ;
9 a [t 1] =w[t 1] * 2 ; ;

10 c [t 1] =w[t 1] +a [t 1] +b [t 1] ;
11 }
12 }

Original Code Reformed Code Parallelization of Reformed Code

(b) Illustration for unsupported scalar variables: Loop-carried dependence

1 f o r (i = 0 ; i < n ; i ++) {
2 w = w + 1 ;
3 a [i] = w * 2 ;
4 b [i] = i + 2 ;
5 c [i] = w + a [i] + b [i] ;
6 }

1 i n t w = 0 ;
2 f o r (i = 0 ; i < n ; i ++) {
3 f o r (j = 0 ; j < n ; j ++) {
4 w = w + 1 ;
5 A[i] [j] = w * 2 ;
6 }
7 }

Single loop Nested loop

(c) Anti dependence

1 i n t w;
2 f o r (i =1 ; i <n ; i ++) {
3 S1 : a [i] = w;
4 S2 : c [i] = w+a [i] ;
5 S3 : w = i + 2 ;
6 }

1 i n t w[n] ;
2 f o r (i =1 ; i <n ; i ++) {
3 a [i] = w[i−1] ;
4 c [i] = w[i−1] +a [i] ;
5 w[i] = i + 2 ;
6 }

1 i n t w[n] ;
2 i f (n >= 2) {
3 a [1] = w[1 − 1] ; ;
4 c [1] = w[1 − 1] +a [1] ; ;
5 l b p =2 ; ubp=n−1 ;
6 # pragma omp p a r a l l e l f o r

p r i v a t e (lbv , ubv , t2 ,
t 3)

7 f o r (t 1 = l b p ; t 1 <=ubp ; t 1 ++)
{

8 w[t 1−1] = t 1−1 + 2 ; ;
9 a [t 1] = w[t 1 − 1] ; ;

10 c [t 1] =w[t 1 −1] +a [t 1] ; ;
11 w[n−1] = n−1 + 2 ; ;
12 }
13 }

Original Code Reformed Code Parallelization of Reformed Code

Figure 7.8: Example illustration of automatic scalar expansion(a) Data dependence (b)
Illustration for unsupported scalar variables: Loop-carried dependence (c) Anti depen-
dence, (continued in next page)

153

7.5. Analysis and code transformation phase-2 (ACT-2)

(d) Output dependence

1 i n t w[n] ;
2 f o r (i =0 ; i <n ; i ++) {
3 w[i] = i ;
4 a [i] = w[i] ;
5 b [i] = i * 2 ;
6 w[i] = i + 4 ;
7 c [i] =a [i] +b [i] +w[i] ;
8 }

1 i n t w[n] ;
2 f o r (i =0 ; i <n ; i ++) {
3 w[i] = i ;
4 a [i] = w[i] ;
5 b [i] = i * 2 ;
6 w[i] = i + 4 ;
7 c [i] =a [i] +b [i] +w[i] ;
8 }

1 i n t w[n] ;
2 i f (n >= 1) {
3 l b p =0 ;
4 ubp=n−1 ;
5 # pragma omp p a r a l l e l f o r

p r i v a t e (lbv , ubv , t2 ,
t3 , t 4)

6 f o r (t 1 = l b p ; t 1 <=ubp ; t 1 ++)
{

7 w[t 1] = t 1 ; ;
8 b [t 1] = t 1 * 2 ; ;
9 a [t 1] = w[t 1] ; ;

10 w[t 1] = t 1 + 4 ; ;
11 c [t 1] = a [t 1] + b [t 1] +

w[t 1] ; ;
12 }
13 }

Original Code Reformed Code Parallelization of Reformed Code

(e) Nested loop with scalar variable in LHS of S1

1 i n t w;
2 f o r (i =0 ; i <n ; i ++)
3 {
4 S1

i : w = 0 ;
5 f o r (j =0 ; j <n ; j ++)
6 {
7 S1

j : w = i + 1 ;
8 S2

j : A[i] [j] = w*2 ;
9 }

10 }

1 i n t w[n] ;
2 f o r (i = 0 ; i < n ; i

++)
3 {
4 w[i] = 0 ;
5 f o r (j = 0 ; j < n ;

j ++)
6 {
7 w[i] = i + 1 ;
8 A[i] [j] = w[i] * 2 ;
9 }

10 }

1 i n t w[n] ;
2 i f (n >= 1)
3 {
4 l b p =0 ;
5 ubp=n−1 ;
6 # pragma omp p a r a l l e l f o r

p r i v a t e (lbv , ubv , t3 ,
t 4)

7 f o r (t 2 = l b p ; t 2 <=ubp ; t 2 ++)
8 w[t 2] = 0 ; ;
9 l b p =0 ;

10 ubp=n−1 ;
11 # pragma omp p a r a l l e l f o r

p r i v a t e (lbv , ubv , t3 ,
t 4)

12 f o r (t 2 = l b p ; t 2 <=ubp ; t 2 ++)
13 {
14 f o r (t 3 =0 ; t 3 <=n−1 ; t 3 ++)
15 {
16 w[t 2] = t 2 + 1 ; ;
17 A[t 2] [t 3] = w[t 2] *2 ; ;
18 }
19 }
20 }

Original Code Reformed Code Parallelization of Reformed Code

Figure 7.8: Example illustration of automatic scalar expansion (d) Output dependence (e)
Nested loop with scalar variable in LHS of S1 (Contd.)

154

7.5. Analysis and code transformation phase-2 (ACT-2)

of condition (α).

Algorithm 4: Scalar expansion : scalarToArray
Input: Fset : Set of for-loop with scalar in `-value of statement
Output: Fset : Set of for-loop after performing scalar expansion

1 begin
2 B,αL,αR := NULL;

/* Hash table is created to identify the valid scalar to be
modified */

3 FLAG := 0;
4 for each Fi do
5 DEPTH := 0;
6 blockInfo(Fi,B,αL,αR);
7 Fi = singleNested(B, FLAG);

/* Scalar expansion is applied here */
8 FLAG := 1;
9 for each Fi do

10 Execute line 5 to 7

Algorithm 5: Retrieving for block attribute : blockInfo
Input: Fi : for-loop
Output: All information about block Fi

1 begin
2 B := Basic Block of Fi;
3 α := Conditional statement of Fi;
4 α(L) := LHS variable of α;
5 α(R) := RHS variable of α;

In order to preserve the semantics of the code during scalar expansion, the code is

subjected to undergo two passes:

1. The first pass reveals if there are any problematic statements contradicting the con-

version (see Algorithm 6). For instance, in Figure 7.8(b) (single loop), the scalar

variable w is not feasible for conversion since the code fragment comprises loop-

carried dependence w = w + 1.

2. The second pass contributes to the transformation if there exists no dependence.

155

7.5. Analysis and code transformation phase-2 (ACT-2)

Algorithm 6: Finding the type (Single/Nested) of loop : singleNested
Input: B : Basic Block of Fi
Output: Forming the HashTable HT with scalar variables and its boolean value

1 begin
2 Sset := Set of Statements of B; Create an empty HashTable HT[string,bool];

/* isForStatement returns TRUE if Sj is a FOR */

/* isStatement returns TRUE if Sj is a statement */

/* isPntrArrRefExp returns TRUE if Sj(L) is an array variable */

/* isPlusAssignOp/isMinusAssignOp is TRUE if Sj has +=/−= */

/* isAssignInitializer returns TRUE for an assign initializer */

3 for each Sj do
4 if isForStatement(Sj) then
5 DEPTH := DEPTH + 1; B := Basic Block of Sj ; Fi := singleNested(B);

6 else if isStatement(Sj) then
7 Sj(L) := LHS of Sj ;
8 if !isPntrArrRefExp(Sj(L)) then
9 Sj(R) := RHS of Sj ; Vset := Set of variables of Sj(R);

10 for each Vk do
11 if FLAG == 0 and DEPTH < 1 then
12 if Sj(L) 6= α(L) then
13 HT[Sj(L)] := TRUE;
14 if Sj(L) == Vk or isPlusAssignOp(Sj) or isMinusAssignOp(Sj)

then
15 HT[Sj(L)] := FALSE;

16 else if FLAG == 0 and DEPTH > 0 then
17 if Sj(L) 6= α(L) then
18 if Sj(L) == Vk or isPlusAssignOp(Sj) or isMinusAssignOp(Sj)

then
19 P := Get previous statement of Fi;
20 if isStatement(P) then
21 P(L) := LHS of P;

22 V 1set : Set of Variables of SRC;
23 for each V 1l do
24 if V 1l == P(L) then
25 INITOR := Get the Initializer of V 1l;

26 if isAssignInitializer(INITOR) or Vk == P(L) then
27 HT[P(L)] = FALSE;

28 if FLAG == 1 and DEPTH < 1 then
29 modifyScalToArr(Sj(L), Sj(R), HT);

30 else if FLAG == 1 and DEPTH > 0 then
31 modifyScalToArr_1(Sj(L), Sj(R), HT);

156

7.5. Analysis and code transformation phase-2 (ACT-2)

The implementation of the transformation algorithm is different for single/nested loops.

Figure 7.9 depicts the abstract syntax tree (AST) graph of nested for-loop for the test case

referred in Figure 7.8(e). Algorithm 6 shows the algorithm to find the type (single/nested)

of loops and creation of hash table HT to verify the valid scalar variable for conversion.

There may occur two scenarios during scalar expansion:

1. If Sj is a for, then the loop is nested. Hence DEPTH is incremented, and the scalar

expansion is recursively called until Sj is a statement (see Algorithm 6).

2. If Sj is a statement, then HT is created comprising scalar Vk and the boolean value

TRUE/FALSE is associated. If HT[Vk] is TRUE, then scalar to vector is valid. If

HT[Vk] is FALSE, then the conversion is not feasible.

The scalar expansion is performed on synthetic codes with different dependences. Fig-

ures 7.8(a), 7.8(c), 7.8(d) illustrates the transformation mechanism for single for-loop com-

prising data dependence, anti-dependence and output dependence [101] respectively. Fig-

ure 7.8(e) shows the nested loop transformation.

Algorithm 7 depicts the scalar expansion process for single/nested loop for the example

code shown in Figure 7.8(e). Following is the description of the algorithm:

1. When DEPTH > 0 (nested loop) and HT[Vk] is TRUE (scalar expansion is valid),

then array variable PTR is formed with (Vk), w and (αL) i and replace Vk with PTR

w[i].

2. When DEPTH < 1 (single loop) and HT[Vk] is TRUE (scalar expansion is valid),

then it is checked if (Vk) w exists in the set X (Figure 7.8(a) and Figure 7.8(d)). If it

is present, then w is transformed to w[i]. If the variable Vk w does not exist in set X

(Figure 7.8(c)) then the array variable PTR is built with (Vk) w and (αL − 1) i − 1

and replaced Vk with PTR ‘w[i-1]’.

157

7.5. Analysis and code transformation phase-2 (ACT-2)

Algorithm 7: Modifying the basic block of single/nested loop : modifyScalToArr
Input: Sj(L) : LHS of Sj ,

Sj(R) : RHS of Sj .
HT : Hash table with scalar variables and its boolean value

Output: Transformed scalar variable to array variable and modified basic block B
1 begin
2 Create an empty set X;
3 if HT[Sj(L)] == TRUE then
4 if ∃Sj(L) /∈ X then
5 insert Sj(L) to X;
6 T := Datatype of Sj(L);
7 Get and remove the variable declaration of Sj(L);
8 ARRDECL := Declaring the variable Sj(L) of type T of array size αR;
9 Insert ARRDECL before Fi;

10 PTR := Build array variable with Sj(L) and αL;
11 Replace Sj(L) with PTR;

12 Vk := Set of variables of Sj(R);
13 for each Vk do
14 if HT[Vk] == TRUE and DEPTH < 1 then
15 if ∃Vk /∈ X then
16 PTR := Build array variable with Vk and (αL - 1);
17 Replace Vk with PTR;
18 else
19 PTR := Build array variable with Vk and αL;
20 Replace Vk with PTR;

21 if HT[Vk] == TRUE and DEPTH > 0 then
22 PTR := Build array variable with Vk and αL;
23 Replace Vk with PTR;

158

7.5. Analysis and code transformation phase-2 (ACT-2)

Initializationi

fori

Conditioni Basic Blocki

Si
1

Incrementi

Si
2

Initializationj

forj

Conditionj Basic Blockj

Sj
1

Incrementj

Sj
2

Basic Blocki

Si
1

Figure 7.9: Abstract syntax tree (AST) graph of nested for-loop

Constraints in scalar to vector transformation This transformation is performed only

if:

(i) there is no loop-carried dependence in loop. (ii) there is no function call or if-constructs

within for-loop.

159

7.5. Analysis and code transformation phase-2 (ACT-2)

7.5.2 Automatic conversion of upper to lower bound
This section briefs about solving the reverse for-loop by transforming the loop bound

from upper to lower bound. Figure 7.10(a) and 7.10(b) illustrates the transformation mech-

anism.

Algorithm 8 depicts the process before applying the transformation to the reverse for-

loop. It involves two steps,

1. At first, the for-loop is checked for the presence of reversed for-loop using function

canonicalCheck (Algorithm 9).

2. If reverse for exists, then the second step involves applying modUpperToLower to

find the type (single/nested) of the loop to apply code transformation (Algorithm 10).

Algorithm 8: Upper to Lower Bound Conversion : upperToLower
Input: Fset : Set of FOR loop

1 begin
2 for each Fi do
3 canonicalCheck(Fi,B);
4 Fi = modUpperToLower(B);

Output: Fset : Set of FOR loop after modification of reversed FOR loops

Consider the illustration in Figure 7.10(a) used to explain the Algorithm 10 involving

the process of basic block modification if there exists a reversed for. The essential part

required for verification is the initialization part (INIT, i = n); condition part (α, i > 0);

and update part (UPD, i − −). The canonicalCheck proves that the loop is reversed for;

hence the LHS of (α) and RHS of INIT are stored in hashtable HT. A new FOR structure

‘for(i = 0; i < n; i++)’ is built with modified INIT, (α), and UPD.

Further the basic block modification is performed by iterating variables Vk of statement

Sj and is cross-validated with HT (see Algorithm 9). If the Vk matches with variables in

HT, the transformation happens. For instance, the variable i is replaced as n − i i.e. the

variable Vk is replaced with the newly created expression EXP. Figure 7.10(b) illustrates

transformation of reversed FOR loop structure in a nested innermost loop.

160

7.5. Analysis and code transformation phase-2 (ACT-2)

(a) Nested upper bound

1 f o r (i =n ; i >0 ; i−−)
2 f o r (j =0 ; j <n ; j ++)
3 A[i] [j] = i + j ;

1 f o r (i =0 ; i <n ; ++ i)
2 f o r (j =0 ; j <n ; j ++)
3 A[n− i] [j] = n− i + j ;

1 i f (n >= 1)
2 {
3 l b p =0 ;
4 ubp=n−1 ;
5 # pragma omp p a r a l l e l f o r

p r i v a t e (lbv , ubv , t2 ,
t 3)

6 f o r (t 1 = l b p ; t 1 <=ubp ; t 1 ++)
7 f o r (t 2 =0 ; t 2 <=n−1 ; t 2 ++)
8 A[n − t 1] [t 2] = n − t 1

+ t 2 ; ;
9 }

Original Code Reformed Code Parallelization of Reformed Code

(b) Nested inner replacement

1 f o r (i =0 ; i <n ; i ++)
2 f o r (j =n ; j >0 ; j−−)
3 A[i] [j] = i + j ;

1 f o r (i =0 ; i <n ; i ++)
2 f o r (j =0 ; j <n ; ++ j)
3 A[i] [n− j] = i + (n

− j) ;

1 i f (n >= 1)
2 {
3 l b p =0 ;
4 ubp=n−1 ;
5 # pragma omp p a r a l l e l f o r

p r i v a t e (lbv , ubv , t2 ,
t 3)

6 f o r (t 1 = l b p ; t 1 <= ubp ;
t 1 ++)

7 f o r (t 2 =0 ; t 2 <=n−1 ; t 2 ++)
8 A[t 1] [n−t 2] = t 1 + (n−

t 2) ; ;
9 }

Original Code Reformed Code Parallelization of Reformed Code

Figure 7.10: Example illustration for automatic conversion of upper to lower bound
(a) Nested upper bound (b) Nested inner replacement

161

7.5. Analysis and code transformation phase-2 (ACT-2)

Algorithm 9: Checking for Reversed for : canonicalCheck
Input: Fi : FOR loop

1 begin
2 B : Basic Block of Fi;
3 α, αL, αR := NULL;
4 blockInfo(Fi,B,αL,αR);
5 INIT := Initialization part of Fi;
6 INITR := RHS of INIT;
7 UPD := Updation part of Fi ;
8 Vset := Set of Variables of INITR;
9 Create a Hash Table HT[string,string];

10 for each Vj do
11 Var := Search Vj in HT;
12 if ∃(Var) ∈ HT then
13 Exp := Build subtract expression with Var→first and Var→second;
14 replace Vj with Exp;

15 Vset := Set of Variable of αR;
16 for each Vk do
17 Var := Search Vk in HT;
18 if ∃(Var) ∈ HT then
19 Exp := Build subtract expression with Var→first and Var→second;
20 replace Vk with Exp;

/* isGreaterThanOp returns TRUE if α contains greater than
operator */
/* isGreaterOrEqualOp returns TRUE if α contains
greaterorequal operator */
/* isMinusMinusOp returns TRUE if α contains decrement
operator */

21 if isGreaterThanOp(α) or isGreaterOrEqualOp(α) and isMinusMinusOp(UPD) then
22 HT[αL] = INITR;
23 α := Build conditional statement with less than operator using α and INITR;
24 UPD := Build PlusPlusOp updation statement using α;
25 INIT := BUILD INIT statement using αL and αR;
26 B := Get basic block from Fi;
27 Build New FOR loop using INIT, α, UPD and B;

Output: Fi : Modified FOR initialization, condition and updation

162

7.5. Analysis and code transformation phase-2 (ACT-2)

Algorithm 10: Modifying the basic block of Single/Nested loop: modUpperToLower
Input: B : Basic Block of Fi

1 begin
2 Sset : Set of Statements of B;
3 for each Sj do
4 if isForStatement(Sj) then
5 Fi ++;
6 canonicalCheck(Fi,B);
7 Fi := modUpperToLower(B);

8 else if isStatement(Sj) then
9 Vset := Set of Variables of Sj ;

10 for each Vk do
11 Var := Search Vk in HT;
12 if ∃(Var) ∈ HT then
13 Exp := Build subtract expression with Var→first and Var→second;
14 replace Vk with Exp;

15 return Fi;
Output: Fi : Modified FOR loop feasible for parallelization

Constraints in conversion of upper to lower bound This transformation is performed

only if:

(i) the loop is a canonical loop (ii) inner loop index variable is not dependant on the outer

loop index variable in case of nested loop. (iii) there is no if construct and function call.

163

7.5. Analysis and code transformation phase-2 (ACT-2)

1 f o r (i =0 ; i <n ; i += 2) {
2 a [i] = i ;
3 b [i] = i + 2 ;
4 c [i] = a [i] + b [i] ;
5 }

1 f o r (i =0 ; i <n ; ++ i) {
2 a [i] = i ;
3 b [i] = i + 2 ;
4 c [i] = a [i] + b [i] ;
5 i += 1 ;
6 }

Original Code Transformed Code

Figure 7.11: Converting updation by time step one

7.5.3 Automatic conversion of loop increment with step size one
Polyhedral transformation requires the update part UPD in the for to be incremented by

step size one. Hence if step size > 1, code transformation is applied to make it to unity.

The transformation are confined to for-loop increment/decrement viz. i=i+n, i=i-n, i+=n,

and i-=n.

Let us consider the example in Figure 7.11 that shows UPD i+=2 violates the above

rule. The procedure in Algorithm 11 and 12 illustrates the transformation process for such

a scenario. The UPD is obtained, and its RHS contains VALUE 2. Hence, if VALUE > 1,

then it is decremented by one and expression (EXP, i+ = 1) is created, and the UPD is

replaced with EXP. Now, there is a small modification to the end of the basic block. The

decremented value is then used to form expression NEWEXP with LHS of UPD, i.e., i+ = 1.

The new expression is appended next to the last statement STMT of the basic block B. The

transformed code in Figure 7.11 is still not feasible for parallelization since it forms an

irregular loop.

164

7.5. Analysis and code transformation phase-2 (ACT-2)

Algorithm 11: Converting the increment step to one : StepToOne
Input: Fset : Set of for-loop
Output: Fset: Modified for-loop with increment step size as unity

1 begin
2 for each Fi do
3 blockInfo(Fi,B,αL,αR);
4 UPD := Updation part of Fi;

/* isPlusPlusOp returns TRUE if UPD contains increment
operator */
/* isMinusMinusOp returns TRUE if UPD contains
minusminus operator */

5 if isPlusPlusOp(UPD) or isMinusMinusOp(UPD) then
6 UPDL := Get Operand of UPD;

7 else if isBinaryOp(UPD) then
8 UPDL := Get LHS Operand of UPD;

9 if αL == UPDL then
10 if ((isGreaterThanOp(α) or isGreaterOrEqualOp(α) and isBinaryOp(UPD))

then
11 if isMinusAssignOp(UPD) or isAssignOp(UPD) then
12 VALUE := RHS of UPD;
13 if VALUE > 1 then
14 EXP := Build expression with αL;
15 modifyIncr(EXP,UPD);

16 else if isPlusAssignOp(UPD) or isAssignOp(UPD) then
17 Execute line 12 to 15;

Algorithm 12: Modify increment part : modifyIncr
Input: EXP : Expression built for replacement in UPD,

UPD : Updation part of Fi
1 begin
2 VALUE1 = VALUE - 1;
3 B : = Basic block of Fi;
4 SCOPE := Scope of B;
5 STMT := Last statement of SCOPE;
6 if isMinusAssignOp(UPD) or isSubtractOp(UPD) then
7 NEWEXP := Build Expression with αL and VALUE1;

8 if isPlusAssignOp(UPD) or isAddOp(UPD) then
9 NEWEXP := Build Expression with αL and VALUE1;

10 replace the expression of UPD with NEWEXP;
11 Insert Statement NEWEXP after STMT;

Output: Fout : Reformed Output FOR block

165

7.5. Analysis and code transformation phase-2 (ACT-2)

7.5.4 Automatic conversion of irregular loop to regular loop
Figure 7.11 in the previous section portrays the transformation of the update part UPD,

where the step size was more than one. The reformed code is considered as an irregular

loop and not amenable to parallelization since the updation of index variable occurs within

the basic block of for-loop.

In this section, irregular loop refers to the code fragments comprising incrementing/Decre-

menting of loop index variable such as i++, i–, i=i+n, i=i-n, i+=n, and i-=n with the

for-loop. The irregular loop transformation are confined to the aforementioned statements.

This example has i+=1 within for-loop which is unsupported by Pluto. Algorithm 13 ad-

dresses the irregular loop and the transformation is shown in Figure 7.12. The statements

Sj within for-loop Fj is iterated to detect if UPD exists. The value of UPD is obtained

and the COUNT is incremented by 1 and the statement Sj is removed. The iteration of Sj

continues until it reaches the end of the basic block and the UPD value is obtained. The

COUNT is incremented/decremented and the final value is stored in variable Y. The total

update part is calculated in Y1. An expression EXP is created using the value Y and Y1

and the variable i is replaced with the same.

166

7.5. Analysis and code transformation phase-2 (ACT-2)

Algorithm 13: Solving Irregular Loop : solveIrregularLoop
Input: SRC : Source Code,

Fset : Set of FOR loops
1 begin
2 α, B, αL, αR = NULL;
3 FLAG := 1;
4 for each Fi do
5 blockInfo(Fi,B,αL,αR);
6 Sset := Set of Statements of Fi;
7 for each Sj do
8 if isPlusPlusOp(Sj) or isMinusMinusOp(Sj) or isBinaryOp(Sj) then
9 OPL := LHS operand of Sj ;

10 if αL == OPL then
11 Calculate COUNT;
12 remove Sj ;
13 continue;

14 FLAG := 0;
15 if isBinaryOp(Sj) and FLAG == 0 then
16 X := COUNT;
17 NEXT := Next statement of Sj ;

/* Y1 : Calculation of total updation part where
αL is equal to OPL */

18 repeat
19 if isPlusPlusOp(Sj) or isMinusMinusOp(Sj) or isBinaryOp(Sj) then
20 Calculate Y;
21 NEXT1 := Next statement of NEXT;
22 else
23 NEXT1 := Next statement of NEXT;

24 until NEXT ! = NULL;
25 Y1 := Y + X;
26 if Y1 ! = 0 or X ! = 0 then
27 if αL ! = OPL then
28 EXP := Build new expression to replace all αL;
29 Vset := Set of Variables of Sj ;
30 for each Vk do
31 if αL == Vk then
32 Replace Vk with EXP;

33 else if FLAG == 0 then
34 Y2 = Y1 - COUNT;
35 Execute line 27 to 32;

167

7.5. Analysis and code transformation phase-2 (ACT-2)

1 f o r (i =0 ; i <n ; ++ i)
2 {
3 a [i] = i ;
4 b [i] = i + 2 ;
5 c [i] = a [i] + b [i] ;
6 i += 1 ;
7 }

1 i n t _zB = 0 ;
2 i f (n % (1 + 1) == 0)
3 _zB = n / (1 + 1) ;
4 i f (n % (1 + 1) ! = 0)
5 _zB = n / (1 + 1) +1 ;
6 f o r (i = 0 ; i < _zB ; +

+ i)
7 {
8 a [(i + 1) * 0 + i * (1

+ 1)] = (i + 1) * 0
+ i * (1 + 1) ;

9 b [(i + 1) * 0 + i *
(1 + 1)] = (i +
1) * 0 + i * (1 +

1) + 2 ;
10 c [(i + 1) * 0 + i *

(1 + 1)] = a [(i +
1) * 0 + i * (1

+ 1)] + b [(i + 1)
* 0 + i * (1 +

1)] ;
11 }

1 i n t _zB = 0 ;
2 i f (n % (1 + 1) == 0)
3 _zB = n / (1 + 1) ;
4 i f (n % (1 + 1) ! = 0)
5 _zB = n / (1 + 1) + 1 ;
6 i f (_zB >= 1)
7 {
8 l b p =0 ;
9 ubp=_zB−1 ;

10 # pragma omp p a r a l l e l f o r
p r i v a t e (lbv , ubv , t2 , t 3
)

11 f o r (t 1 = l b p ; t 1 <= ubp ; t 1
++)

12 {
13 a [(t 1 + 1) * 0 + t 1 * (1 +

1)] = (t 1 + 1) * 0 +
t 1 * (1 + 1) ; ;

14 b [(t 1 + 1) * 0 + t 1 * (1 +
1)] = (t 1 + 1) * 0 +
t 1 * (1 + 1) + 2 ; ;

15 c [(t 1 + 1) * 0 + t 1 * (1 +
1)] = a [(t 1 + 1) * 0 +

t 1 * (1 + 1)] + b [(t 1
+ 1) * 0 + t 1 * (1 + 1)
] ; ;

16 }
17 }

Original Code* Reformed Code Parallelization of Reformed Code

*Irregular loop is incrementing/decrementing loop variable inside for-loop

Figure 7.12: Example illustration for automatic conversion of irregular loop to regular
loop

168

7.6. Application exploration

7.6 Application exploration
Three application programs of PolyBench suite namely, symm, ludcmp, and adiwere

transformed using solution-focused automatic parallelization mechanism. In this chapter,

the analysis is restricted to three PolyBench codes which comprise specific problems dis-

cussed. Pluto was not effective in parallelizing these codes. The key aspect is to analyze

the performance improvement after applying the transformation.

The Profiling phase identifies that all three benchmarks are compute-intensive. There

exists no while-loop in the codes. Hence, the codes are sent to analysis and code transfor-

mation phase-2 (ACT-2), and found that symm and ludcmp have scalar in the `-value of

statement. It was then subjected to scalar expansion. The benchmarks ludcmp and adi

comprise reverse for-loop, and the transformation is applied to convert them into normal

for-loops. After the code is modified, it became amenable to parallelization. The modified

code is then subjected to Pluto to obtain the parallelized version. The semantic equivalence

of the code is verified by testing their output with the serial output.

The experimental configuration is described in Chapter 6. The parallelized codes are

executed for problem size N=1.0E4 on different number of cores (16, 32, and 64).

7.6.1 Result analysis
This section illustrates the performance of Pluto_A on the three PolyBench bench-

marks (symm, ludcmp, and adi). Pluto_A is the parallelized code after applying to the

solution-focused automatic parallelization mechanism. Pluto parallelizer did not parallelize

the codes, hence we exclude it from the speedup graph. This section illustrates the auto-

matic code transformation applied to individual benchmarks and its performance impact.

Figure 7.13 illustrates the transformation applied to symm. Here the scalar expansion is per-

formed on scalar temp2 and replaced as vector temp2[i]. Usage of temp2[i] over temp2[j]

reduces latency due to locality of reference i.e. temporal locality. The transformed code

was then amenable to parallelization. Figure 7.16(a) depicts the parallelization of symm by

Pluto that showed better performance (with 32 threads: 7.1×).

169

7.6. Application exploration

1 f o r (i = 0 ; i < _PB_M ; i ++)
2 {
3 f o r (j = 0 ; j < _PB_N ; j ++)
4 {
5 temp2 = 0 ;
6 f o r (k = 0 ; k < i ; k++)
7 {
8 C[k] [j] += a l p h a *B[i] [j] *A[i] [k] ;
9 temp2 += B[k] [j] * A[i] [k] ;

10 }
11 C[i] [j] = b e t a * C[i] [j] + a l p h a

*B[i] [j] * A[i] [i] + a l p h a *
temp2 ;

12 }
13 }

1 f o r (i = 0 ; i < m; i ++)
2 {
3 f o r (j = 0 ; j < n ; j ++)
4 {
5 temp2 [i] = 0 ;
6 f o r (k = 0 ; k < i ; k++)
7 {
8 C[k] [j] += a l p h a *B[i] [j] *A[i] [k] ;
9 temp2 [i] += B[k] [j] * A[i] [k] ;

10 }
11 C[i] [j] = b e t a * C[i] [j] + a l p h a

* B[i] [j] * A[i] [i] + a l p h a
* temp2 [i] ;

12 }
13 }

Original Code Reformed Code

Figure 7.13: Automatic code transformation applied to symm benchmark

The benchmark ludcmp failed in parallelizing the loop due to two problems namely

(i) scalar variable in the `-value (ii) reverse for-loop. Figure 7.14 illustrates the transforma-

tions applied to ludcmp. The ACT-2 converted the scalar variable w to an array variable

w[i] and replaced the loop bound from lower to upper. Automatic transformation of lud-

cmp benchmark leads to automatic parallelization with Pluto. The experimental result in

Figure 7.16(b) shows that ludcmp showed good speedup using Pluto (speedup with 32

threads: 4.6×).

Figure 7.15 depicts the code transformation of adi. It was found that the benchmark

failed to apply parallelization due to the presence of reverse for-loop for(j = _PB_N −

2; j >= 1; j −−). After applying code transformation, adi showed lesser speedup due to

additional optimization (Figure 7.16(c)).

170

7.6. Application exploration

1 f o r (i = 0 ; i < _PB_N ; i ++)
2 {
3 f o r (j = 0 ; j < i ; j ++)
4 {
5 w = A[i] [j] ;
6 f o r (k = 0 ; k < j ; k++)
7 {
8 w −= A[i] [k] * A[k] [j] ;
9 }

10 A[i] [j] = w / A[j] [j] ;
11 }
12 f o r (j = i ; j < _PB_N ; j ++)
13 {
14 w = A[i] [j] ;
15 f o r (k = 0 ; k < i ; k++)
16 {
17 w −= A[i] [k] * A[k] [j] ;
18 }
19 A[i] [j] = w;
20 }
21 }
22 f o r (i = 0 ; i < _PB_N ; i ++)
23 {
24 w = b [i] ;
25 f o r (j = 0 ; j < i ; j ++)
26 w −= A[i] [j] * y [j] ;
27 y [i] = w;
28 }
29 f o r (i = _PB_N−1 ; i >=0 ; i−−)
30 {
31 w = y [i] ;
32 f o r (j = i +1 ; j < _PB_N ; j ++)
33 w −= A[i] [j] * x [j] ;
34 x [i] = w / A[i] [i] ;
35 }

1 f o r (i = 0 ; i < n ; i ++)
2 {
3 f o r (j = 0 ; j < i ; j ++)
4 {
5 w[i] = A[i] [j] ;
6 f o r (k = 0 ; k < j ; k++)
7 {
8 w[i] −= A[i] [k] * A[k] [j] ;
9 }

10 A[i] [j] = w[i] / A[j] [j] ;
11 }
12 f o r (j = i ; j < n ; j ++)
13 {
14 w[i] = A[i] [j] ;
15 f o r (k = 0 ; k < i ; k++)
16 {
17 w[i] −= A[i] [k] * A[k] [j] ;
18 }
19 A[i] [j] = w[i] ;
20 }
21 }
22 f o r (i = 0 ; i < n ; i ++)
23 {
24 w[i] = b [i] ;
25 f o r (j = 0 ; j < i ; j ++)
26 {
27 w[i] −= A[i] [j] * y [j] ;
28 }
29 y [i] = w[i] ;
30 }
31 f o r (i = 0 ; i <= n − 1 ; ++ i)
32 {
33 w[n−1− i] = y [n−1− i] ;
34 f o r (j = n−1− i +1 ; j < n ; j ++)
35 {
36 w[n−1− i] −= A[n−1− i] [j] * x [j] ;
37 }
38 x [n−1− i] = w[n−1− i] / A[n−1− i] [n−

1− i] ;
39 }

Original Code Reformed Code

Figure 7.14: Automatic code transformation applied to ludcmp benchmark

171

7.6. Application exploration

1 f o r (t =1 ; t <=_PB_TSTEPS ; t ++)
2 {
3 f o r (i =1 ; i <_PB_N−1 ; i ++)
4 {
5 v [0] [i] = SCALAR_VAL (1 . 0) ;
6 p [i] [0] = SCALAR_VAL (0 . 0) ;
7 q [i] [0] = v [0] [i] ;
8 f o r (j =1 ; j <_PB_N−1 ; j ++)
9 {

10 p [i] [j] = −c / (a *p [i] [j−1] +b) ;
11 q [i] [j] = (−d*u [j] [i−1] + (

SCALAR_VAL (1 . 0) +SCALAR_VAL
(2 . 0) *d) *u [j] [i] − f *u [j] [i +
1]−a *q [i] [j−1]) / (a *p [i] [j−1]
+b) ;

12 }
13 v [_PB_N−1] [i] = SCALAR_VAL (1 . 0) ;
14 f o r (j =_PB_N−2 ; j >=1 ; j−−)
15 {
16 v [j] [i] = p [i] [j] * v [j + 1] [i] +

q [i] [j] ;
17 }
18 }
19 f o r (i =1 ; i <_PB_N−1 ; i ++)
20 {
21 u [i] [0] = SCALAR_VAL (1 . 0) ;
22 p [i] [0] = SCALAR_VAL (0 . 0) ;
23 q [i] [0] = u [i] [0] ;
24 f o r (j =1 ; j <_PB_N−1 ; j ++)
25 {
26 p [i] [j] = −f / (d*p [i] [j−1] +e) ;
27 q [i] [j] = (−a *v [i−1] [j] + (

SCALAR_VAL (1 . 0) +SCALAR_VAL
(2 . 0) * a) *v [i] [j] − c *v [i + 1] [
j]−d*q [i] [j−1]) / (d*p [i] [j−1]
+e) ;

28 }
29 u [i] [_PB_N−1] = SCALAR_VAL (1 . 0) ;
30 f o r (j =_PB_N−2 ; j >=1 ; j−−)
31 {
32 u [i] [j] = p [i] [j] * u [i] [j + 1] +

q [i] [j] ;
33 }
34 }
35 }

1 f o r (t =1 ; t <=_PB_TSTEPS ; t ++)
2 {
3 f o r (i =1 ; i <_PB_N−1 ; i ++)
4 {
5 v [0] [i] = SCALAR_VAL (1 . 0) ;
6 p [i] [0] = SCALAR_VAL (0 . 0) ;
7 q [i] [0] = v [0] [i] ;
8 f o r (j =1 ; j <_PB_N−1 ; j ++)
9 {

10 p [i] [j] = −c / (a *p [i] [j−1] +b) ;
11 q [i] [j] = (−d*u [j] [i−1] + (

SCALAR_VAL (1 . 0) +SCALAR_VAL
(2 . 0) *d) *u [j] [i] − f *u [j] [i +
1]−a *q [i] [j−1]) / (a *p [i] [j−1]
+b) ;

12 }
13 v [_PB_N−1] [i] = SCALAR_VAL (1 . 0) ;
14 f o r (j = 0 ; j < _PB_N − 2 ; ++ j)
15 {
16 v [_PB_N − 2 − j] [i] = p [i] [

_PB_N − 2 − j] * v [_PB_N − 2
− j + 1] [i] + q [i] [_PB_N −

2 − j] ;
17 }
18 }
19 f o r (i =1 ; i <_PB_N−1 ; i ++)
20 {
21 u [i] [0] = SCALAR_VAL (1 . 0) ;
22 p [i] [0] = SCALAR_VAL (0 . 0) ;
23 q [i] [0] = u [i] [0] ;
24 f o r (j =1 ; j <_PB_N−1 ; j ++)
25 {
26 p [i] [j] = −f / (d*p [i] [j−1] +e) ;
27 q [i] [j] = (−a *v [i−1] [j] + (

SCALAR_VAL (1 . 0) +SCALAR_VAL
(2 . 0) * a) *v [i] [j] − c *v [i + 1] [
j]−d*q [i] [j−1]) / (d*p [i] [j−1]
+e) ;

28 }
29 u [i] [_PB_N−1] = SCALAR_VAL (1 . 0) ;
30 f o r (j = 0 ; j < _PB_N − 2 ; ++ j)
31 {
32 u [i] [_PB_N − 2 − j] = p [i] [

_PB_N − 2 − j] * u [i] [_PB_N
− 2 − j + 1] + q [i] [_PB_N −
2 − j] ;

33 }
34 }
35 }

Original Code Reformed Code

Figure 7.15: Automatic code transformation applied to adi benchmark

172

7.6. Application exploration

(a) symm

(b) ludcmp

(c) adi

Pluto parallelizer did not parallelize the codes, hence we exclude it from the speedup
graph. Pluto_A is the parallelized code after applying to the solution-focused automatic
parallelization mechanism

Figure 7.16: Parallelization speedup of PolyBench benchmarks after applying to solution-
focused automatic parallelization mechanism (a) symm (b) ludcmp (c) adi

173

7.7. Summary

7.7 Summary
Totally five pitfalls were identified and addressed in this chapter. An automated solution-

focused mechanism was developed comprising three phases namely, Profiling, Analysis

and Code Transformation (ACT), and Parallelization. Profiling was performed using Gprof.

The code transformation was performed to remove the Pluto problems using AST query

mechanism with the aid of Rose compiler framework. After that the transformed code was

amenable to parallelization by Pluto tool.

Three PolyBench benchmarks (symm, ludcmp, and adi) were used for the analysis,

and the investigation shows that applying the benchmarks directly to Pluto did not paral-

lelize these codes due to irregular coding patterns. However, after subjecting to solution-

focused automatic parallelization mechanism (Pluto_A), the codes were successfully par-

allelized using Pluto. The automatic method (Pluto_A) was tested using PolyBench bench-

marks, and it was observed that the transformation was successful. The result analysis has

proven better speedup (symm 7.1×), (ludcmp 5.6 ×) adding merits to the proposed ap-

proach. Partially this transformation helps the real-world problem. However, the remaining

non-affine issues have to be addressed manually to make the code amenable to paralleliza-

tion. The future work can focus on performing the solution-focused mechanism for many

trivial non-affine issues to make utilization of Pluto’s powerful polyhedral and additional

optimization.

174

CHAPTER 8

Conclusion and Scope for Future

Investigations

The present chapter summarizes the research work carried out, qualitative analysis, empir-

ical study, methods developed, conclusions arrived at, and future work that can be pursued.

8.1 Summary and conclusion

Automatic parallelization has been the topic of research for several decades. Although,

manual parallelization have always been useful and usually had performed better. Re-

searchers in the present era focus on developing a fully automated tools. The key con-

tribution of automatic parallelization aims to enhance the hand-optimized code. Earlier

studies on parallelizing compilers have shown several merits and demerits in achieving the

ideal speedup. Some of the cons were related to parallelization issues such as dependences

across iterations. Apart from dependence issues, parallelizers does not support codes with

complex coding style. Studies on modern auto-parallelizers, their capabilities and limita-

tions have been sorely missing. This thesis has focused on alleviating the pitfalls faced by

widely-used popular parallelizers and had brought out interesting findings.

8.1.1 Conclusion derived from qualitative capabilities of

auto-parallelizers

The modern auto-parallelizing frameworks namely, Cetus, Par4all, Rose, Intel C com-

piler (ICC), and Pluto and their methodologies were critically analyzed in Chapter 2. A

qualitative analysis of the five frameworks was carried out in Chapter 3. The study re-

vealed the following capabilities of auto-parallelizers:

175

8.1. Summary and conclusion

1. All the frameworks inherently support loop parallelization but differ in the techniques

they perform transformation in the parallelizable region.

2. Cetus performs a profitability test that eliminates parallelization of insignificant loops.

This compensates for the thread-creation overhead. Similarly, ICC reported few of

the non-parallelized loops having insufficient computational work. Hence, Cetus and

ICC forbid parallelization of smaller loops which is a positive aspect.

The effect of loop transformation techniques employed by various tools on different

types of dependences were examined using synthetic codes in Chapter 3, and the key find-

ings are:

1. All frameworks under study parallelized loops with loop-independent dependence by

OpenMP private clause.

2. Pluto does not parallelize loop with loop-carried dependence due to scalar. This is

because Pluto is a polyhedral parallelizer that supports the transformation of array

accesses. All other frameworks parallelize such cases using reduction clause.

3. Only Pluto and ICC perform parallelization on loops with loop-carried dependence

due to vector. Parallelization of code with inter-iteration dependence is supported

by Pluto with the aid of loop peeling, and ICC with the help of loop peeling or loop

fission.

Besides dependence issues, auto-parallelizers forbid parallelization of loops with com-

plex coding style. Different programming constructs (in total 76) were tested, and the

support matrix of these features by individual framework was evaluated (acceptance ratio

before applying solutions in %: Cetus 63.2, Par4all 67.1, Rose 26.3, Parallware 72.4, ICC

71.1, and Pluto 65.8). Based on the solutions, through minimal coding changes, the codes

176

8.1. Summary and conclusion

were acceptable for parallelization. It was found that the parallelizers effectiveness was

improved on the whole by 10% (acceptance ratio after applying solutions in %: Cetus 76.3,

Par4all 78.9, Rose 39.5, Parallware 82.9, ICC 80.3, and Pluto 77.6). Overall, commer-

cial compilers viz. Parallware and ICC have the maximum acceptance ratio. This study

showed that the effectiveness of the open-source tools namely, Cetus, Par4all, Rose, and

Pluto could be improved by applying manual coding changes.

8.1.2 Conclusion derived from quantitative analysis of auto-parallelizers

using PolyBench benchmarks

Empirical analysis of different frameworks using PolyBench suite was emphasized in

Chapter 4. The benchmarks were categorized based on the presence and absence of loop-

carried dependence. Following are the observed results after performance analysis:

1. All five frameworks parallelize benchmarks with loop-independent dependence. In

addition, these tools support loop-carried dependence due to vector occurring in

either inner or outer loop of nested for. Except Pluto, all other tools parallelize

benchmarks with loop-carried dependence due to scalar. The reason for Pluto’s

poor support for scalar variables is because it is primarily targeted towards polyhe-

dral transformations of array accesses, rather than individual shared items. However,

Pluto parallelized benchmarks with complex loop-carried dependence due to vector.

2. In terms of speedup, Pluto and ICC outperform all other frameworks (Pluto average

best speedup with 32 threads: 10.9×) (ICC average best speedup with 32 threads:

19.2×). This is because ICC performs privatization and vectorization, and Pluto

performs polyhedral optimization besides parallelization.

3. Par4all and Rose perform better for most of the cases due to array privatization

(Par4all average best speedup with 32 threads: 10.2 ×) (Rose average best speedup

with 32 threads: 9.4 ×).

177

8.1. Summary and conclusion

4. All 28 codes which are part of PolyBench suite could be parallelized at least by any

one of the frameworks.

8.1.3 Conclusion derived from quantitative analysis of auto-parallelizers

using NAS parallel benchmarks (NPB)

Quantitative analysis of various frameworks using NAS parallel benchmarks (NPB) was

analyzed, and the observations were reported in Chapter 5. NPB benchmarks were less

amenable to parallelization by auto-parallelizers. Auto-parallelizers faced pre- and post-

transformation difficulties during parallelization of NPB codes which was fixed by manual

intervention. When examining the speedup, ICC outperforms all other frameworks due

to its inherent optimization (with 32 threads: BT 3.4×, EP 2.0×, FT 2.6×, LU 4.6×,

MG 5.5×, and SP 5.8×). However, poorer speedup was noted for all other tools. The

reasons for such behavior was dug out by comparing the parcount (number of loops

parallelized) of Original (manually parallelized NPB) with parcount of all other frame-

works. Although the parcount for several of the benchmarks were approximately equal,

the speedup was observed to be less. Further observations were made by examining the

parallelized loops that could explain the following findings.

1. Par4all, Rose, and Pluto perform inefficient parallelization and parallelize insignifi-

cant loops which cause overhead in execution.

2. Parallelizers lag in the usage of implicit barriers for multiple, independent and con-

secutive loops which reported execution overhead problems.

3. The auto-parallelizers did not handle Imperfectly or complex nested loops. Paral-

lelizers namely, Par4all, Rose, and Pluto missed outer loop parallelism.

4. There were several non-affine issues observed by Pluto such as non-affine loop bound

(NAL), non-affine subscript (NAS), if construct (IF) and general trivial parallelization

178

8.1. Summary and conclusion

limitations such as the use of function call (FC), switch-case, recursive function, that

became the non-parallelizable part for auto-parallelizers.

8.1.4 Overall conclusions derived from qualitative and quantitative anal-

yses of auto-parallelizers

The qualitative and quantitative studies in Chapters 3, 4, and 5 emphasized that ICC

and Pluto outperformed all other frameworks. However, the examined results over real-

world problems such as NPB codes elucidated the importance of handling complex coding

to improve the effectiveness of tools. The observations revealed that Pluto works well on

affine codes but lag in support of non-affine codes and several trivial limitations. As ICC

is a closed-source compiler, the thesis focused towards enhancing the efficacy of Pluto

tool by two distinct methods.

8.1.5 Conclusions derived from elimination of auto-parallelization

issues in irregular and general-purpose programs

The first new approach was a manual elimination method which acts as a pre-parser

and post-parser to Pluto. Following illustrates the key points of this approach: Three real-

world benchmarks suites were explored namely, Green-Marl, Rodinia, and NPB. In to-

tal, nine non-affine constructs (NAC) including non-affine issues and general trivial issues

were identified in Chapter ??. The non-affine constructs were removed using the elimi-

nation method, and the codes were amenable to parallelization. This approach has three

different stages namely, pre-, in-, and post-elimination. The parallelized code was vali-

dated for the semantics of the code. Elimination of non-affine constructs (NAC) helped

the Pluto parallelizer in parallelizing most of the Green-Marl and Rodinia benchmarks

with good amount of speedup improvement (best speedup results of Green-Marl with

32 threads: adamicAdar 11.58×, avg_teen_cnt 9.54×, communities 1.57×,

pagerank 9.07×, and sssp path 1.05×) (best speedup results of Rodinia with 32

179

8.1. Summary and conclusion

threads: heartwall 10.27×; particlefilter 1.11×; and kmeans 48.61×).

However, NPB was not benefited using this approach due to its inherent complexity which

requires several optimizations and explicit parallelism.

8.1.6 Conclusions derived from solution-focused auto-parallelization

mechanism of sequential codes

The second new method was an automated solution-focused mechanism (discussed in

Chapter 7) to alleviate a few of the problems faced by Pluto. In total, five pitfalls are

explored, and automated solutions were derived. The proposed method involves three pro-

cesses namely, Profiling, Analysis and Code Transformation (ACT), and Parallelization.

Profiling benefited in filtering the compute-intensive functions for transformation. AST

query mechanism using Rose compiler framework helped in achieving code transforma-

tion. Finally, the transformed code is amenable to parallelization. The correctness of the

code was assured by comparing the parallel output with the sequential output. Perfor-

mance improvement was observed on symm (with 32 threads: 7.1×) and ludcmp (with

32 threads: 4.6×) benchmarks.

8.1.7 New techniques to enhance auto-parallelization of open-source

tool: Pluto

Auto-parallelization of real-world problems using polyhedral parallelizer, Pluto re-

vealed several non-affine constructs (NAC) that forbid parallelization. Following are the

key points of the two techniques T1 (discussed in Chapter 6) and T2 (disucssed in Chap-

ter 7) introduced to improve the Pluto parallelization by alleviating several of its limitations

(two approaches are depicted in Figure 8.1).

1. T1: A method was introduced to eliminate the NAC in Chapter 6. The elimination

is performed before and after applying Pluto transformation (the method works as a

pre-parser and post-parser to Pluto tool). It was found that 67% of the codes were fea-

sible for parallelization after the removal of NAC and achieved reasonable speedup

180

8.2. Scope for the future work

Pluto

Input Code Parallelized Code

T2

Performance

Pluto

T1T1

Figure 8.1: Two new approaches to enhance auto-parallelization of Pluto

for several of the benchmarks.

2. T2: A solution-focused mechanism is developed to improve the efficacy of Pluto

in Chapter 7. This automatic method performs code transformation to remove the

pitfalls faced by Pluto. It was observed that the applications were amenable to par-

allelization after applying this automatic method and have shown significant perfor-

mance improvement.

The pitfalls resolved by techniques T1 and T2 are distinct except Pluto’s scalar issue.

Hence, the two approaches proposed in Chapter 6 and Chapter 7 can be combined to deliver

more effective result.

8.2 Scope for the future work
1. Cetus performs a profitability test that helps in avoiding the execution of loops with

smaller iterations which eventually eliminates the thread creation cost. Par4all in

many instances (observed in Chapter 4) inserts parallel directives at appropriate

places which had lead to better speedup. Pluto’s ability to parallelize codes com-

prising loop-carried dependence using optimization techniques has shown a major

benefit. Hence, further work can focus towards building a meta auto-parallelizer that

provides combined benefits of these frameworks.

181

8.2. Scope for the future work

2. Although NAS parallel benchmarks (NPB) do not work well with implicit paral-

lelism, they give a clear understanding that explicit parallelism plays a significant

role and is highly necessary for performance improvement of real-world problems

(discussed in Chapter 5). Hence, a profile-driven approach with manual intervention

has to be developed to overcome such predicament.

3. NPB codes are more complex comprising multiple, independent, and consecutive

loops. Parallelizing these loops requires a high-level understanding of the usage of

implicit barriers and various synchronization constructs. Auto-parallelizers can be

incorporated with a sophisticated provision to deal with more real-world problems

like NPB.

4. The elimination of non-affine constructs described in Chapter 6 is a manual method.

The results of Green-Marl and Rodinia benchmarks showed considerable benefits

which pave the way for automation of this approach.

5. With the aim of making full-fledged automation, some more solutions have to be

worked out for addressing the problems like switch-case, recursive functions,

non-affine array subscripts and much more. Pluto’s optimization created several

unused temporary variables which are assumed to incur some cost. Necessary steps

should be taken to remove these variables. Yet another way to take care of complex

syntactic constructs is to work at the intermediate representation (IR) level (similar

to ICC) or even at the assembly code level.

182

REFERENCES

[1] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, Jul. 2008. [Online]. Available:
http://dx.doi.org/10.1109/MC.2008.209 [Cited on pages 1 and 31.]

[2] S. P. Midkiff, Automatic Parallelization: An Overview of Fundamental
Compiler Techniques, ser. Synthesis Lectures on Computer Architecture. Morgan
& Claypool Publishers, 2012. [Online]. Available: http://dx.doi.org/10.2200/
S00340ED1V01Y201201CAC019 [Cited on pages 1 and 3.]

[3] W.-T. Lin and C.-P. Chu, “A fast and parallel algorithm for frequent pattern mining
from big data in many-task environments,” International Journal of High Perfor-
mance Computing and Networking, vol. 10, no. 3, pp. 157–167, 2017. [Cited on
page 1.]

[4] K. S. Hasan, J. K. Antonio, and S. Radhakrishnan, “A model-driven approach for
predicting and analysing the execution efficiency of multi-core processing,” Int. J.
Comput. Sci. Eng., vol. 14, no. 2, pp. 105–125, Jan. 2017. [Online]. Available:
https://doi.org/10.1504/IJCSE.2017.082877 [Cited on page 1.]

[5] R. Eigenmann, J. Hoeflinger, and D. Padua, “On the automatic parallelization of
the perfect benchmarks(r),” IEEE Transactions on Parallel and Distributed Systems,
vol. 9, no. 1, pp. 5–23, Jan 1998. [Cited on pages 3 and 10.]

[6] W. Schulte and N. Tillmann, “Automatic parallelization of programming languages:
Past, present and future,” in Proceedings of the 3rd International Workshop on
Multicore Software Engineering, ser. IWMSE ’10. New York, NY, USA: ACM,
2010, pp. 1–1. [Online]. Available: http://doi.acm.org/10.1145/1808954.1808956
[Cited on page 3.]

[7] C. Dave, H. Bae, S. J. Min, S. Lee, R. Eigenmann, and S. Midkiff, “Cetus: A source-
to-source compiler infrastructure for multicores,” Computer, vol. 42, no. 12, pp. 36–
42, Dec 2009. [Cited on pages 3, 5, 14, 15, 16, and 62.]

[8] M. Amini, B. Creusillet, S. Even, R. Keryell, O. Goubier, S. Guelton,
J. O. Mcmahon, F.-X. Pasquier, G. Péan, and P. Villalon, “Par4All: From

183

http://dx.doi.org/10.1109/MC.2008.209
http://dx.doi.org/10.2200/S00340ED1V01Y201201CAC019
http://dx.doi.org/10.2200/S00340ED1V01Y201201CAC019
https://doi.org/10.1504/IJCSE.2017.082877
http://doi.acm.org/10.1145/1808954.1808956

Convex Array Regions to Heterogeneous Computing,” in IMPACT 2012
: Second International Workshop on Polyhedral Compilation Techniques
HiPEAC 2012, Paris, France, Jan. 2012, 2 pages. [Online]. Available:
https://hal-mines-paristech.archives-ouvertes.fr/hal-00744733 [Cited on pages 3, 5,
14, and 17.]

[9] D. Quinlan and C. Liao, “The rose source-to-source compiler infrastructure,” in Ce-
tus users and compiler infrastructure workshop, in conjunction with PACT, 2011,
p. 1. [Cited on pages 3, 5, 14, 17, 139, and 140.]

[10] W. Blume and R. Eigenmann, “Performance analysis of parallelizing compilers on
the perfect benchmarks programs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 3, no. 6, pp. 643–656, Nov 1992. [Cited on pages 4 and 9.]

[11] B. Chapman, G. Jost, and R. v. d. Pas, Using OpenMP: Portable Shared Memory
Parallel Programming (Scientific and Engineering Computation). The MIT Press,
2007. [Cited on pages 4, 32, and 139.]

[12] R. Eigenmann and W. Blume, “An effectiveness study of parallelizing compiler,” in
Proceedings 20th International Conference Parallel Processing 1991, vol. 2. CRC
Press, 1991, p. 17. [Cited on pages 4 and 9.]

[13] D. Hisley, G. Agrawal, and L. L. Pollock, “Evaluating the effectiveness of a
parallelizing compiler,” in Selected Papers from the 4th International Workshop on
Languages, Compilers, and Run-Time Systems for Scalable Computers, ser. LCR
’98. London, UK, UK: Springer-Verlag, 1998, pp. 195–204. [Online]. Available:
http://dl.acm.org/citation.cfm?id=648048.745865 [Cited on pages 4 and 10.]

[14] H. Nobayashi and C. Eoyang, “A comparison study of automatically vectorizing
fortran compilers,” in Proceedings of the 1989 ACM/IEEE Conference on Super-
computing (Supercomputing ’89), Nov 1989, pp. 820–825. [Cited on pages 4 and 9.]

[15] Z. Shen, Z. Li, and P. C. Yew, “An empirical study of fortran programs for paral-
lelizing compilers,” IEEE Transactions on Parallel and Distributed Systems, vol. 1,
no. 3, pp. 356–364, Jul 1990. [Cited on pages 4 and 9.]

[16] T. Imai, “Detecting more independent loops across hierarchical structures,” in Pro-
ceedings ICCI ‘92: Fourth International Conference on Computing and Information,
May 1992, pp. 168–172. [Cited on pages 4 and 11.]

[17] C. Dave and R. Eigenmann, “Automatically tuning parallel and parallelized
programs,” in Proceedings of the 22Nd International Conference on Languages
and Compilers for Parallel Computing, ser. LCPC’09. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 126–139. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-13374-9_9 [Cited on pages 4 and 12.]

[18] D. Mustafa, A. Aurangzeb, and R. Eigenmann, “Performance analysis and tuning
of automatically parallelized openmp applications,” in Proceedings of the 7th

184

https://hal-mines-paristech.archives-ouvertes.fr/hal-00744733
http://dl.acm.org/citation.cfm?id=648048.745865
http://dx.doi.org/10.1007/978-3-642-13374-9_9
http://dx.doi.org/10.1007/978-3-642-13374-9_9

International Conference on OpenMP in the Petascale Era, ser. IWOMP’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 151–164. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2023025.2023041 [Cited on pages 4 and 11.]

[19] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth, “A scalable auto-
tuning framework for compiler optimization,” in 2009 IEEE International Sympo-
sium on Parallel Distributed Processing, May 2009, pp. 1–12. [Cited on pages 4
and 11.]

[20] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev,
and P. Sadayappan, “Automatic transformations for communication-minimized
parallelization and locality optimization in the polyhedral model,” in Proceedings
of the Joint European Conferences on Theory and Practice of Software 17th
International Conference on Compiler Construction, ser. CC’08/ETAPS’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 132–146. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1788374.1788386 [Cited on pages 4, 5, 14, 18, 115,
and 139.]

[21] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A practical
automatic polyhedral parallelizer and locality optimizer,” SIGPLAN Not., vol. 43,
no. 6, pp. 101–113, Jun. 2008. [Online]. Available: http://doi.acm.org/10.1145/
1379022.1375595 [Cited on pages 4, 12, 14, 18, 68, and 115.]

[22] P. Banerjee, J. A. Chandy, M. Gupta, E. W. Hodges, J. G. Holm, A. Lain, D. J.
Palermo, S. Ramaswamy, and E. Su, “The paradigm compiler for distributed-
memory multicomputers,” Computer, vol. 28, no. 10, pp. 37–47, Oct 1995. [Cited on
page 4.]

[23] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,
B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford, “Polaris: The next genera-
tion in parallelizing compilers,” in PROCEEDINGS OF THE WORKSHOP ON LAN-
GUAGES AND COMPILERS FOR PARALLEL COMPUTING. Springer-Verlag,
Berlin/Heidelberg, 1994, pp. 10–1. [Cited on pages 4 and 14.]

[24] S. Hiranandani, K. Kennedy, and C.-W. Tseng, “Compiling fortran d for mimd
distributed-memory machines,” Commun. ACM, vol. 35, no. 8, pp. 66–80, Aug.
1992. [Online]. Available: http://doi.acm.org/10.1145/135226.135230 [Cited on
page 4.]

[25] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,
E. Bugnion, and M. S. Lam, “Maximizing multiprocessor performance with the suif
compiler,” Computer, vol. 29, no. 12, pp. 84–89, Dec 1996. [Cited on pages 4 and 14.]

[26] S. Benkner, B. M. Chapman, and H. P. Zima, “Vienna fortran 90,” in Proceedings
Scalable High Performance Computing Conference SHPCC-92., April 1992, pp.
51–59. [Cited on page 4.]

185

http://dl.acm.org/citation.cfm?id=2023025.2023041
http://dl.acm.org/citation.cfm?id=1788374.1788386
http://doi.acm.org/10.1145/1379022.1375595
http://doi.acm.org/10.1145/1379022.1375595
http://doi.acm.org/10.1145/135226.135230

[27] D. Mustafa and R. Eigenmann, “Petra: Performance evaluation tool for modern
parallelizing compilers,” International Journal of Parallel Programming, vol. 43,
no. 4, pp. 549–571, Aug. 2015. [Online]. Available: http://dx.doi.org/10.1007/
s10766-014-0307-8 [Cited on pages 5, 10, and 12.]

[28] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and D. Brooks,
“Helix: Automatic parallelization of irregular programs for chip multiprocessing,”
in Proceedings of the Tenth International Symposium on Code Generation and
Optimization, ser. CGO ’12. New York, NY, USA: ACM, 2012, pp. 84–93.
[Online]. Available: http://doi.acm.org/10.1145/2259016.2259028 [Cited on pages 5
and 11.]

[29] X. Tian, A. Bik, M. Girkar, P. Grey, H. Saito, and E. Su, “Intel® openmp c++/fortran
compiler for hyper-threading technology: Implementation and performance.” Intel
Technology Journal, vol. 6, no. 1, 2002. [Cited on pages 5, 14, and 18.]

[30] R. Eigenmann, J. Hoeflinger, Z. Li, and D. A. Padua, “Experience in the
automatic parallelization of four perfect-benchmark programs,” in Proceedings
of the Fourth International Workshop on Languages and Compilers for Parallel
Computing. London, UK, UK: Springer-Verlag, 1992, pp. 65–83. [Online].
Available: http://dl.acm.org/citation.cfm?id=645669.665205 [Cited on page 9.]

[31] R. Eigenmann, “Toward a methodology of optimizing programs for high-
performance computers,” in Proceedings of the 7th International Conference on
Supercomputing, ser. ICS ’93. New York, NY, USA: ACM, 1993, pp. 27–36.
[Online]. Available: http://doi.acm.org/10.1145/165939.165948 [Cited on page 9.]

[32] D. Göhringer and J. Tepelmann, “An interactive tool based on polly for detection
and parallelization of loops,” in Proceedings of Workshop on Parallel Programming
and Run-Time Management Techniques for Many-core Architectures and Design
Tools and Architectures for Multicore Embedded Computing Platforms, ser.
PARMA-DITAM ’14. New York, NY, USA: ACM, 2014, pp. 1:1–1:6. [Online].
Available: http://doi.acm.org/10.1145/2556863.2556869 [Cited on pages 10 and 115.]

[33] W. Blume and R. Eigenmann, “The range test: A dependence test for
symbolic, non-linear expressions,” in Proceedings of the 1994 ACM/IEEE
Conference on Supercomputing, ser. Supercomputing ’94. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1994, pp. 528–537. [Online]. Available:
http://dl.acm.org/citation.cfm?id=602770.602858 [Cited on page 10.]

[34] ——, “Nonlinear and symbolic data dependence testing,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 9, no. 12, pp. 1180–1194, Dec 1998. [Cited on
page 10.]

[35] K. Psarris and K. Kyriakopoulos, “Nonlinear symbolic analysis for advanced pro-
gram parallelization,” IEEE Transactions on Parallel and Distributed Systems,
vol. 20, pp. 623–640, 2008. [Cited on page 10.]

186

http://dx.doi.org/10.1007/s10766-014-0307-8
http://dx.doi.org/10.1007/s10766-014-0307-8
http://doi.acm.org/10.1145/2259016.2259028
http://dl.acm.org/citation.cfm?id=645669.665205
http://doi.acm.org/10.1145/165939.165948
http://doi.acm.org/10.1145/2556863.2556869
http://dl.acm.org/citation.cfm?id=602770.602858

[36] K. Kyriakopoulos and K. Psarris, “Efficient techniques for advanced data depen-
dence analysis,” in 14th International Conference on Parallel Architectures and
Compilation Techniques (PACT’05), Sept 2005, pp. 143–153. [Cited on page 10.]

[37] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua, “Automatic program
parallelization,” Proceedings of the IEEE, vol. 81, no. 2, pp. 211–243, Feb 1993.
[Cited on page 11.]

[38] H. Kim, N. P. Johnson, J. W. Lee, S. A. Mahlke, and D. I. August,
“Automatic speculative doall for clusters,” in Proceedings of the Tenth
International Symposium on Code Generation and Optimization, ser. CGO
’12. New York, NY, USA: ACM, 2012, pp. 94–103. [Online]. Available:
http://doi.acm.org/10.1145/2259016.2259029 [Cited on page 11.]

[39] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August, “Speculative
parallelization using software multi-threaded transactions,” SIGARCH Comput.
Archit. News, vol. 38, no. 1, pp. 65–76, Mar. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1735970.1736030 [Cited on page 11.]

[40] H. Vandierendonck, S. Rul, and K. De Bosschere, “The paralax infrastructure: auto-
matic parallelization with a helping hand,” in Parallel Architectures and Compilation
Techniques, 19th International Conference, Proceedings. Association for Comput-
ing Machinery (ACM), 2010, pp. 389–400. [Cited on page 11.]

[41] L. Rauchwerger, “Run-time parallelization: Its time has come,” Parallel
Comput., vol. 24, no. 3-4, pp. 527–556, May 1998. [Online]. Available:
http://dx.doi.org/10.1016/S0167-8191(98)00024-6 [Cited on page 11.]

[42] Z. Liu, B. Chapman, T.-H. Weng, and O. Hernandez, “Improving the performance
of openmp by array privatization,” in Proceedings of the OpenMP Applications
and Tools 2003 International Conference on OpenMP Shared Memory Parallel
Programming, ser. WOMPAT’03. Berlin, Heidelberg: Springer-Verlag, 2003, pp.
244–259. [Online]. Available: http://dl.acm.org/citation.cfm?id=1761900.1761925
[Cited on pages 11 and 16.]

[43] Z. Li, “Array privatization for parallel execution of loops,” in Proceedings
of the 6th International Conference on Supercomputing, ser. ICS ’92. New
York, NY, USA: ACM, 1992, pp. 313–322. [Online]. Available: http:
//doi.acm.org/10.1145/143369.143426 [Cited on pages 11 and 16.]

[44] P. Tu and D. Padua, “Automatic array privatization,” in Languages and Compil-
ers for Parallel Computing, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 500–521. [Cited on
page 11.]

[45] S. W. Kim, M. Voss, and R. Eigenmann, “Performance analysis of compiler-
parallelized programs on shared-memory multiprocessors,” Proceedings of
CPC2000 Compilers for Parallel Computers, p. 305, 2000. [Cited on page 11.]

187

http://doi.acm.org/10.1145/2259016.2259029
http://doi.acm.org/10.1145/1735970.1736030
http://dx.doi.org/10.1016/S0167-8191(98)00024-6
http://dl.acm.org/citation.cfm?id=1761900.1761925
http://doi.acm.org/10.1145/143369.143426
http://doi.acm.org/10.1145/143369.143426

[46] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations for
high-performance computing,” ACM Comput. Surv., vol. 26, no. 4, pp. 345–420,
Dec. 1994. [Online]. Available: http://doi.acm.org/10.1145/197405.197406 [Cited
on pages 11, 26, and 31.]

[47] B. Blainey, C. Barton, and J. N. Amaral, “Removing impediments to loop
fusion through code transformations,” in Proceedings of the 15th International
Conference on Languages and Compilers for Parallel Computing, ser. LCPC’02.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 309–328. [Online]. Available:
http://dx.doi.org/10.1007/11596110_21 [Cited on page 11.]

[48] A. Fraboulet, K. Kodary, and A. Mignotte, “Loop fusion for memory space
optimization,” in Proceedings of the 14th International Symposium on Systems
Synthesis, ser. ISSS ’01. New York, NY, USA: ACM, 2001, pp. 95–100. [Online].
Available: http://doi.acm.org/10.1145/500001.500025 [Cited on page 11.]

[49] N. Manjikian and T. S. Abdelrahman, “Fusion of loops for parallelism and locality,”
IEEE Trans. Parallel Distrib. Syst., vol. 8, no. 2, pp. 193–209, Feb. 1997. [Online].
Available: http://dx.doi.org/10.1109/71.577265 [Cited on page 11.]

[50] K. Kennedy and K. S. McKinley, “Maximizing loop parallelism and improving data
locality via loop fusion and distribution,” in Languages and Compilers for Parallel
Computing: 6th International Workshop Portland, Oregon, USA, August 12–14,
1993 Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp.
301–320. [Online]. Available: https://doi.org/10.1007/3-540-57659-2_18 [Cited on
page 11.]

[51] J. W. Davidson and S. Jinturkar, “Improving instruction-level parallelism by loop
unrolling and dynamic memory disambiguation,” in Proceedings of the 28th Annual
International Symposium on Microarchitecture, ser. MICRO 28. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1995, pp. 125–132. [Online]. Available:
http://dl.acm.org/citation.cfm?id=225160.225184 [Cited on page 12.]

[52] V. Sarkar, “Optimized unrolling of nested loops,” Int. J. Parallel Program., vol. 29,
no. 5, pp. 545–581, Oct. 2001. [Online]. Available: http://dx.doi.org/10.1023/A:
1012246031671 [Cited on page 12.]

[53] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil computations to
maximize parallelism,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC ’12. Los
Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 40:1–40:11. [Online].
Available: http://dl.acm.org/citation.cfm?id=2388996.2389051 [Cited on page 12.]

[54] L. Song, R. Glück, and Y. Futamura, “Loop peeling based on quasi-
invariance/induction variables,” Wuhan University Journal of Natural Sciences,
vol. 6, no. 1, pp. 362–367, Mar 2001. [Online]. Available: https://doi.org/10.1007/
BF03160270 [Cited on page 12.]

188

http://doi.acm.org/10.1145/197405.197406
http://dx.doi.org/10.1007/11596110_21
http://doi.acm.org/10.1145/500001.500025
http://dx.doi.org/10.1109/71.577265
https://doi.org/10.1007/3-540-57659-2_18
http://dl.acm.org/citation.cfm?id=225160.225184
http://dx.doi.org/10.1023/A:1012246031671
http://dx.doi.org/10.1023/A:1012246031671
http://dl.acm.org/citation.cfm?id=2388996.2389051
https://doi.org/10.1007/BF03160270
https://doi.org/10.1007/BF03160270

[55] L. Song and K. M. Kavi, “A technique for variable dependence driven loop peel-
ing,” in Fifth International Conference on Algorithms and Architectures for Parallel
Processing, 2002. Proceedings., Oct 2002, pp. 390–395. [Cited on page 12.]

[56] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul, “The
polyhedral model is more widely applicable than you think,” in Proceedings
of the 19th Joint European Conference on Theory and Practice of Software,
International Conference on Compiler Construction, ser. CC’10/ETAPS’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 283–303. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-11970-5_16 [Cited on pages 12, 19, 60, and 115.]

[57] A. Simbürger, S. Apel, A. Grösslinger, and C. Lengauer, “The potential of
polyhedral optimization: An empirical study,” in Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering, ser.
ASE’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 508–518. [Online].
Available: https://doi.org/10.1109/ASE.2013.6693108 [Cited on page 12.]

[58] A. Bhattacharyya and J. N. Amaral, “Automatic speculative parallelization of loops
using polyhedral dependence analysis,” in Proceedings of the First International
Workshop on Code OptimiSation for MultI and Many Cores, ser. COSMIC
’13. New York, NY, USA: ACM, 2013, pp. 1:1–1:9. [Online]. Available:
http://doi.acm.org/10.1145/2446920.2446921 [Cited on page 12.]

[59] T. Grosser, H. Zheng, R. A, A. Simbürger, A. Grösslinger, and L.-N. Pouchet, “Polly
- polyhedral optimization in llvm,” in First International Workshop on Polyhedral
Compilation Techniques (IMPACT’11), Chamonix, France, Apr. 2011. [Cited on
page 14.]

[60] D. QUINLAN, “Rose: Compiler support for object-oriented frameworks,”
Parallel Processing Letters, vol. 10, no. 02n03, pp. 215–226, 2000. [Online].
Available: http://www.worldscientific.com/doi/abs/10.1142/S0129626400000214
[Cited on pages 14, 15, 17, 139, and 140.]

[61] H. Gómez-Sousa, M. Arenaz, Ó. Rubiños-López, and J. Á. Martínez-Lorenzo,
“Novel source-to-source compiler approach for the automatic parallelization of
codes based on the method of moments,” in 2015 9th European Conference on An-
tennas and Propagation (EuCAP), May 2015, pp. 1–6. [Cited on pages 14 and 42.]

[62] J. Lobeiras, M. Arenaz, and O. Hernández, “Experiences in extending
parallware to support openacc,” in Proceedings of the Second Workshop
on Accelerator Programming Using Directives, ser. WACCPD ’15. New
York, NY, USA: ACM, 2015, pp. 4:1–4:12. [Online]. Available: http:
//doi.acm.org/10.1145/2832105.2832112 [Cited on page 14.]

[63] H. Bae, D. Mustafa, J.-W. Lee, Aurangzeb, H. Lin, C. Dave, R. Eigenmann, and
S. P. Midkiff, “The cetus source-to-source compiler infrastructure: Overview and
evaluation,” Int. J. Parallel Program., vol. 41, no. 6, pp. 753–767, Dec. 2013.

189

http://dx.doi.org/10.1007/978-3-642-11970-5_16
https://doi.org/10.1109/ASE.2013.6693108
http://doi.acm.org/10.1145/2446920.2446921
http://www.worldscientific.com/doi/abs/10.1142/S0129626400000214
http://doi.acm.org/10.1145/2832105.2832112
http://doi.acm.org/10.1145/2832105.2832112

[Online]. Available: http://dx.doi.org/10.1007/s10766-012-0211-z [Cited on pages
14 and 16.]

[64] T. A. Johnson, S.-I. Lee, L. Fei, A. Basumallik, G. Upadhyaya, R. Eigenmann, and
S. P. Midkiff, “Experiences in using cetus for source-to-source transformations,” in
Proceedings of the 17th International Conference on Languages and Compilers for
High Performance Computing, ser. LCPC’04. Berlin, Heidelberg: Springer-Verlag,
2005, pp. 1–14. [Online]. Available: http://dx.doi.org/10.1007/11532378_1 [Cited
on page 14.]

[65] S.-I. Lee, T. A. Johnson, and R. Eigenmann, “Cetus – an extensible compiler in-
frastructure for source-to-source transformation,” in Languages and Compilers for
Parallel Computing, L. Rauchwerger, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 539–553. [Cited on pages 14, 15, and 16.]

[66] C. Ierotheou, H. Jin, G. Matthews, S. Johnson, and R. Hood, “Generating
openmp code using an interactive parallelization environment,” Parallel Computing,
vol. 31, no. 10, pp. 999 – 1012, 2005, openMP. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167819105001080 [Cited on page 14.]

[67] N. Ventroux, T. Sassolas, A. Guerre, B. Creusillet, and R. Keryell, “Sesam/par4all:
A tool for joint exploration of mpsoc architectures and dynamic dataflow code
generation,” in Proceedings of the 2012 Workshop on Rapid Simulation and
Performance Evaluation: Methods and Tools, ser. RAPIDO ’12. New York,
NY, USA: ACM, 2012, pp. 9–16. [Online]. Available: http://doi.acm.org/10.1145/
2162131.2162133 [Cited on pages 14, 15, and 17.]

[68] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, and N. Vasilache, “Graphite:
Loop optimizations based on the polyhedral model for gcc,” in Proc. of the 4þ
GCC Developper’s Summit, Ottawa, Ontario, Unknown or Invalid Region, 2006,
https://hal.archives-ouvertes.fr/hal-01257284 [Cited on page 14.]

[69] I. Bluemke and J. Fugas, “A tool supporting c code parallelization,” in
Innovations in Computing Sciences and Software Engineering. Dordrecht:
Springer Netherlands, 2010, pp. 259–264. [Online]. Available: https://doi.org/10.
1007/978-90-481-9112-3_44 [Cited on page 14.]

[70] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee,
D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu, “Parallel programming
with polaris,” Computer, vol. 29, no. 12, pp. 78–82, Dec. 1996. [Online]. Available:
http://dx.doi.org/10.1109/2.546612 [Cited on page 14.]

[71] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S. Liao,
C. Tseng, M. Hall, M. Lam, and J. Hennessy, “The suif compiler system: A paral-
lelizing and optimizing research compiler,” Stanford University, Stanford, CA, USA,
Tech. Rep., 1994. [Cited on page 14.]

190

http://dx.doi.org/10.1007/s10766-012-0211-z
http://dx.doi.org/10.1007/11532378_1
http://www.sciencedirect.com/science/article/pii/S0167819105001080
http://www.sciencedirect.com/science/article/pii/S0167819105001080
http://doi.acm.org/10.1145/2162131.2162133
http://doi.acm.org/10.1145/2162131.2162133
https://hal.archives-ouvertes.fr/hal-01257284
https://doi.org/10.1007/978-90-481-9112-3_44
https://doi.org/10.1007/978-90-481-9112-3_44
http://dx.doi.org/10.1109/2.546612

[72] D. Kwon, S. Han, and H. Kim, “Mpi backend for an automatic parallelizing com-
piler,” in Fourth InternationalSymposium on Parallel Architectures, Algorithms, and
Networks, 1999. (I-SPAN ’99) Proceedings., 1999, pp. 152–157. [Cited on page 14.]

[73] W. Gropp, E. Lusk, and A. Skjellum, Using MPI (2Nd Ed.): Portable Parallel Pro-
gramming with the Message-passing Interface. Cambridge, MA, USA: MIT Press,
1999. [Cited on page 13.]

[74] P. T. J. and Q. R. W., “Antlr: A predicated ll(k) parser generator,” Software:
Practice and Experience, vol. 25, no. 7, pp. 789–810. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380250705 [Cited on page 15.]

[75] S. C. Johnson, “Yet another compiler-compiler,” in in Unix Programmer’s Manual,
Seventh Edition. Citeseer, 1979. [Cited on page 15.]

[76] A. A. Aaby, “Compiler construction using flex and bison,” Podręcznik dostępny pod
http://cs. wwc. edu/˜ aabyan/464/Book, vol. 5, 2005. [Cited on page 15.]

[77] R. Keryell, R. K. (presenting, C. Ancourt, B. Creusillet, F. Coelho, P. Jouvelot, and
F. Irigoin, “Pips: a workbench for building interprocedural parallelizers, comilers
and optimizers,” PIPS4U, Tech. Rep., 1996. [Cited on pages 15 and 17.]

[78] M. Kim, H. Kim, and C.-K. Luk, “Prospector: A dynamic data-dependence profiler
to help parallel programming,” in HotPar’10: Proceedings of the USENIX workshop
on Hot Topics in parallelism, 2010. [Cited on page 15.]

[79] S. Verdoolaege, “Isl: An integer set library for the polyhedral model,” in
Proceedings of the Third International Congress Conference on Mathematical
Software, ser. ICMS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 299–302.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1888390.1888455 [Cited on
pages 15 and 19.]

[80] P. Chatarasi, J. Shirako, and V. Sarkar, “Polyhedral optimizations of explicitly paral-
lel programs,” in 2015 International Conference on Parallel Architecture and Com-
pilation (PACT), Oct 2015, pp. 213–226. [Cited on pages 15 and 105.]

[81] C. Bastoul, “Code generation in the polyhedral model is easier than you think,”
in Proceedings of the 13th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 7–16. [Online]. Available: https://doi.org/10.1109/PACT.2004.11
[Cited on pages 15, 19, and 68.]

[82] C. Lattner, “Llvm and clang: Next generation compiler technology,” in The BSD
Conference, 2008, pp. 1–2. [Cited on page 15.]

[83] C. Bastoul, “Openscop: A specification and a library for data exchange in polyhedral
compilation tools,” tech. rep., Paris-Sud University, France, Tech. Rep., 2011. [Cited
on pages 15, 19, 111, and 140.]

191

https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380250705
http://dl.acm.org/citation.cfm?id=1888390.1888455
https://doi.org/10.1109/PACT.2004.11

[84] K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2002. [Cited on pages 16, 27, 28, and 34.]

[85] M. J. Wolfe, Optimizing Supercompilers for Supercomputers. Cambridge, MA,
USA: MIT Press, 1990. [Cited on pages 16 and 26.]

[86] W. Blume, R. Eigenmann, J. Hoeflinger, D. Padua, P. Petersen, L. Rauchwerger, and
P. Tu, “Automatic detection of parallelism: A grand challenge for high-performance
computing,” IEEE Parallel Distrib. Technol., vol. 2, no. 3, pp. 37–47, Sep. 1994.
[Online]. Available: http://dx.doi.org/10.1109/M-PDT.1994.329796 [Cited on pages
16 and 32.]

[87] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs, 1st ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2013.
[Cited on page 17.]

[88] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming standard
for heterogeneous computing systems,” Computing in Science Engineering, vol. 12,
no. 3, pp. 66–73, May 2010. [Cited on page 17.]

[89] M. Amini, C. Ancourt, F. Coelho, B. Creusillet, S. Guelton, F. Irigoin,
P. p.-p. Jouvelot, R. Keryell, and P. Villalon, “Pips is not (just) polyhedral
software adding gpu code generation in pips,” in First International Workshop
on Polyhedral Compilation Techniques (IMPACT 2011) in conjonction with
CGO 2011, Chamonix, France, Apr. 2011, 6 pages. [Online]. Available:
https://hal-mines-paristech.archives-ouvertes.fr/hal-00744312 [Cited on page 17.]

[90] F. Irigoin, P. Jouvelot, and R. Triolet, “Semantical interprocedural parallelization:
An overview of the pips project,” in Proceedings of the 5th International Conference
on Supercomputing, ser. ICS ’91. New York, NY, USA: ACM, 1991, pp. 244–251.
[Online]. Available: http://doi.acm.org/10.1145/109025.109086 [Cited on page 17.]

[91] B. Creusillet and F. Irigoin, “Interprocedural array region analyses,” Int. J.
Parallel Program., vol. 24, no. 6, pp. 513–546, Dec. 1996. [Online]. Available:
http://dx.doi.org/10.1007/BF03356758 [Cited on page 17.]

[92] L.-N. Pouchet, “Pocc: the polyhedral compiler collection,” 2013. [Cited on page 17.]

[93] P. Di, D. Ye, Y. Su, Y. Sui, and J. Xue, “Automatic parallelization of tiled loop
nests with enhanced fine-grained parallelism on gpus,” in 2012 41st International
Conference on Parallel Processing, Sept 2012, pp. 350–359. [Cited on page 17.]

[94] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam, “Putting polyhedral
loop transformations to work,” in Languages and Compilers for Parallel Computing:
16th International Workshop, LCPC 2003, College Station, TX, USA, October 2-4,
2003. Revised Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 209–225. [Online]. Available: https://doi.org/10.1007/978-3-540-24644-2_14
[Cited on pages 18 and 19.]

192

http://dx.doi.org/10.1109/M-PDT.1994.329796
https://hal-mines-paristech.archives-ouvertes.fr/hal-00744312
http://doi.acm.org/10.1145/109025.109086
http://dx.doi.org/10.1007/BF03356758
https://doi.org/10.1007/978-3-540-24644-2_14

[95] C. Bastoul, “Clan-a polyhedral representation extractor for high level programs,”
Tech. Rep., 2008. [Cited on page 19.]

[96] N. Ahmed, N. Mateev, and K. Pingali, “Synthesizing transformations for
locality enhancement of imperfectly-nested loop nests,” in Proceedings of
the 14th International Conference on Supercomputing, ser. ICS ’00. New
York, NY, USA: ACM, 2000, pp. 141–152. [Online]. Available: http:
//doi.acm.org/10.1145/335231.335245 [Cited on page 19.]

[97] R. Strzodka, M. Shaheen, D. Pajak, and H. P. Seidel, “Cache accurate time skew-
ing in iterative stencil computations,” in 2011 International Conference on Parallel
Processing, Sept 2011, pp. 571–581. [Cited on page 19.]

[98] Y. Solihin, Fundamentals of Parallel Multicore Architecture, 1st ed. Chapman &
Hall/CRC, 2015. [Cited on pages 26, 29, and 32.]

[99] D. A. Padua and M. J. Wolfe, “Advanced compiler optimizations for
supercomputers,” Commun. ACM, vol. 29, no. 12, pp. 1184–1201, Dec.
1986. [Online]. Available: http://doi.acm.org/10.1145/7902.7904 [Cited on page 26.]

[100] J. Xue, Loop Tiling for Parallelism. Norwell, MA, USA: Kluwer Academic Pub-
lishers, 2000. [Cited on page 29.]

[101] U. Banerjee, Dependence Analysis. Springer Publishing Company, Incorporated,
2013. [Cited on pages 31 and 157.]

[102] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition: A Quan-
titative Approach, 5th ed. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2011. [Cited on page 32.]

[103] L. N. Pouchet, “PolyBench: The Polyhedral Benchmark suite.” [Cited on page 59.]

[104] L.-N. Pouchet and T. Yuki, “Polybench/c 3.2,” 2012. [Cited on page 59.]

[105] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and
S. Weeratunga, “The nas parallel benchmarks,” The International Journal of
Supercomputing Applications, vol. 5, no. 3, pp. 63–73, 1991. [Online]. Available:
https://doi.org/10.1177/109434209100500306 [Cited on page 83.]

[106] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga, “The
nas parallel benchmarks—summary and preliminary results,” in Proceedings
of the 1991 ACM/IEEE Conference on Supercomputing, ser. Supercomputing
’91. New York, NY, USA: ACM, 1991, pp. 158–165. [Online]. Available:
http://doi.acm.org/10.1145/125826.125925 [Cited on page 83.]

193

http://doi.acm.org/10.1145/335231.335245
http://doi.acm.org/10.1145/335231.335245
http://doi.acm.org/10.1145/7902.7904
https://doi.org/10.1177/109434209100500306
http://doi.acm.org/10.1145/125826.125925

[107] S. Seo, J. Kim, G. Jo, J. Lee, J. Nah, and J. Lee, “Snu npb suite,” 2016. [Cited on
page 83.]

[108] D. Griebler, J. Loff, L. G. Fernandes, G. Mencagli, and M. Danelutto, “Efficient
nas benchmark kernels with c++ parallel programming,” in Proceedings of the 26th
Euromicro International Conference on Parallel, Distributed and Network-Based
Processing, Cambridge, United Kingdom, Jan 2018. [Cited on page 83.]

[109] A. Y. Drozdov, S. V. Novikov, V. E. Vladislavlev, E. L. Kochetkov, and
P. V. Il’in, “Program auto parallelizer and vectorizer implemented on the
basis of the universal translation library and llvm technology,” Program.
Comput. Softw., vol. 40, no. 3, pp. 128–138, May 2014. [Online]. Available:
http://dx.doi.org/10.1134/S0361768814030037 [Cited on page 83.]

[110] P. Wong and R. Der Wijngaart, “Nas parallel benchmarks i/o version 2.4,” NASA
Ames Research Center, Moffet Field, CA, Tech. Rep. NAS-03-002, 2003. [Cited on
page 91.]

[111] M. Guo, “Automatic parallelization and optimization for irregular scientific applica-
tions,” in 18th International Parallel and Distributed Processing Symposium, 2004.
Proceedings., April 2004, pp. 228–. [Cited on page 105.]

[112] P. Feautrier, “Dataflow analysis of array and scalar references,” International
Journal of Parallel Programming, vol. 20, no. 1, pp. 23–53, Feb 1991. [Online].
Available: https://doi.org/10.1007/BF01407931 [Cited on pages 111 and 151.]

[113] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and O. Temam,
“Semi-automatic composition of loop transformations for deep parallelism and
memory hierarchies,” International Journal of Parallel Programming, vol. 34, pp.
261–317, 2006. [Cited on page 111.]

[114] J. Shirako, L.-N. Pouchet, and V. Sarkar, “Oil and water can mix: An integration
of polyhedral and ast-based transformations,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 287–298. [Online].
Available: https://doi.org/10.1109/SC.2014.29 [Cited on page 115.]

[115] R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse, C. Reddy, S. Ver-
doolaege, A. Betts, A. F. Donaldson, J. Ketema, J. Absar, S. v. Haastregt, A. Kravets,
A. Lokhmotov, R. David, and E. Hajiyev, “Pencil: A platform-neutral compute inter-
mediate language for accelerator programming,” in 2015 International Conference
on Parallel Architecture and Compilation (PACT), Oct 2015, pp. 138–149. [Cited on
page 115.]

[116] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-marl: A dsl for easy
and efficient graph analysis,” in Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operating

194

http://dx.doi.org/10.1134/S0361768814030037
https://doi.org/10.1007/BF01407931
https://doi.org/10.1109/SC.2014.29

Systems, ser. ASPLOS XVII. New York, NY, USA: ACM, 2012, pp. 349–
362. [Online]. Available: http://doi.acm.org/10.1145/2150976.2151013 [Cited on
page 117.]

[117] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in 2009 IEEE Inter-
national Symposium on Workload Characterization (IISWC), Oct 2009, pp. 44–54.
[Cited on page 118.]

[118] K. Skadron, “Rodinia benchmark suite,” http://lava.cs.virginia.edu/Rodinia/
download_links.htm, 2018 (accessed May 31, 2018). [Cited on page 118.]

[119] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph execution
profiler,” SIGPLAN Not., vol. 17, no. 6, pp. 120–126, Jun. 1982. [Online]. Available:
http://doi.acm.org/10.1145/872726.806987 [Cited on pages 139 and 140.]

[120] M. Schordan and D. Quinlan, “A source-to-source architecture for user-defined op-
timizations,” in Modular Programming Languages, L. Böszörményi and P. Schojer,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 214–223. [Cited on
page 140.]

[121] A. V. Aho and J. D. Ullman, Principles of Compiler Design (Addison-Wesley Series
in Computer Science and Information Processing). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1977. [Cited on page 140.]

[122] S. Verdoolaege and T. Grosser, “Polyhedral extraction tool,” in Second International
Workshop on Polyhedral Compilation Techniques (IMPACT’12), Paris, France,
2012. [Cited on page 151.]

[123] A. Kumar and S. Pop, “Scop detection: A fast algorithm for industrial compilers,”
in 6th International Workshop on Polyhedral Compilation Techniques on IMPACT,
2016. [Cited on page 151.]

195

http://doi.acm.org/10.1145/2150976.2151013
http://lava.cs.virginia.edu/Rodinia/download_links.htm
http://lava.cs.virginia.edu/Rodinia/download_links.htm
http://doi.acm.org/10.1145/872726.806987

	SYNOPSIS
	LIST OF ABBREVIATIONS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Automatic parallelization
	Motivation
	Objectives
	Organization of the thesis

	Survey on Existing Parallelizing Compilers and their Primary Techniques
	Related works
	Earlier studies on the performance evaluation of auto-parallelizers
	Automatic parallelization techniques on irregular and general-purpose programs
	Loop transformation and its significance

	Auto-parallelizers from past two decades
	Overview of the modern auto-parallelizers and their characteristics
	Cetus
	Par4all
	Rose
	ICC
	Pluto

	Qualitative study of auto-parallelization frameworks
	Summary

	Qualitative Capabilities of Auto-parallelizers
	Parallelization mechanisms
	Loop transformation techniques
	Dependence analysis

	Effect of loop transformations on dependences
	Effect of loop transformations on loop-independent (scalar and vector) and loop-carried scalar dependence
	Effect of loop transformations on loop-carried vector dependence

	Limitations faced by auto-parallelizers
	Auto-parallelizer behavior on complex coding style
	Support for loops and loop conditions
	Support of auto-parallelizers for statements, data types and storage classes
	Support of auto-parallelizers for functions
	Limitations due to OpenMP programming model

	Evaluation of auto-parallelizers
	Pre-evaluation
	Post-evaluation

	Summary

	Quantitative Analysis of Parallelization Frameworks using PolyBench Benchmarks
	Background
	PolyBench
	Experimental configuration

	Auto-parallelization of PolyBench
	Differences in parallelization

	Result analysis
	Benchmarks with loop-independent dependence
	Benchmarks with loop-carried dependences

	Effect of static dependences
	Effect of individual techniques on parallelizers parallelized code
	Effect of Tiling and Unrolling loop transformation techniques

	Summary of performance
	Discussion

	Quantitative Analysis of Parallelization Frameworks using NAS Parallel Benchmarks
	Background
	Experimental configuration

	Auto-parallelization of NAS parallel benchmarks (NPB)
	Differences in parallelization
	Details of the transformation errors: manual changes on pre-transformation () and post-transformation () issues

	Experimental results: NPB result analysis
	Execution overhead problems
	Nested parallelism problems
	Scalar and non-affine issues in Pluto
	Other parallelization issues

	Effect of static dependences
	Summary

	Elimination of Auto-parallelization Issues in Irregular and General-purpose Programs in Pluto
	Background
	Polyhedral model

	Limitations of polyhedral model
	Summary of the proposed approach
	Analysis on general-purpose and irregular programs
	Green-Marl analysis
	Rodinia analysis
	NAS parallel benchmarks (NPB) analysis
	Overall auto-parallelization issues in Pluto

	Method to eliminate Non-affine constructs (NAC) in Pluto
	Pre-elimination
	In-elimination
	Post-elimination

	Result analysis
	Experimental configuration
	Performance impact of elimination method on Green-Marl
	Performance impact of elimination method on Rodinia
	Performance impact of elimination method on NPB

	Summary

	Solution-focused Auto-parallelization Mechanism of Sequential Codes
	Background
	Proposed method
	Implementation
	Profiling
	Analysis and code transformation (ACT)
	Parallelization

	Analysis and code transformation phase-1 (ACT-1)
	Auto-conversion of while-loop to for-loop

	Analysis and code transformation phase-2 (ACT-2)
	Automatic scalar expansion
	Automatic conversion of upper to lower bound
	Automatic conversion of loop increment with step size one
	Automatic conversion of irregular loop to regular loop

	Application exploration
	Result analysis

	Summary

	Conclusion and Scope for Future Investigations
	Summary and conclusion
	Conclusion derived from qualitative capabilities of auto-parallelizers
	Conclusion derived from quantitative analysis of auto-parallelizers using PolyBench benchmarks
	Conclusion derived from quantitative analysis of auto-parallelizers using NAS parallel benchmarks (NPB)
	Overall conclusions derived from qualitative and quantitative analyses of auto-parallelizers
	Conclusions derived from elimination of auto-parallelization issues in irregular and general-purpose programs
	Conclusions derived from solution-focused auto-parallelization mechanism of sequential codes
	New techniques to enhance auto-parallelization of open-source tool: Pluto

	Scope for the future work

	References

