Studies on Information Hiding Techniques in Word

Processor Documents

By

BALA KRISHNAN R

(Enrolment No: ENGG 02 2012 04 010)

Indira Gandhi Centre for Atomic Research, Kalpakkam

A Thesis Submitted to the
Board of Studies in Engineering Sciences
In partial fulfillment of requirements
For the Degree of

DOCTOR OF PHILOSOPHY

of
HOMI BHABHA NATIONAL INSTITUTE

August, 2017

Homi Bhabha National Institute

Recommendations of the Viva Voce Committee

As members of the Viva Voce Committee, we certify that we have read the dissertation
prepared by R. Bala Krishnan entitled Studies on Information Hiding Techniques in
Word Processor Documents and recommend that it may be accepted as fulfilling the thesis

requirement for the award of Degree of Doctor of Philosophy.

Chairman — Dr. U. Kamachi Mudali (Moyed ol) Date: 20 -0%. 20¢
/F gwb (_G » SASIKACA DPoona- ACQCF.QMM‘L)
Guide / Convener — Dr. M. Sai Baba Date:
M‘-fdb:.»é—r/(a-r—- 26‘-i‘"’8

Examiner ~Dr. gubhamo Maitra, ISI, Kolkata & Date: 20- q : 29, 8’

Member 1 Dr. B. K. l’anigrahT Date: 25
vara ’fL’ 943/ a / /5
7). =
Member 2 — Dr. Sharat Chan’ldra{w Date: 25/7/20/57
e

Technology Adviser — Dr. S. A. V., Satya Murty Date:

B b Fuards 201/ 2ok

Final approval and acceptance of this thesis is contingent upon the candidate’s
submission of the final copies of the thesis to HBNIL

I/We hereby certify that I/we have read this thesis prepared under my/our dircction
and recommend that it may be accepted as fulfilling the thesis requirement.

Date: Zo-7—I4 i fm,é-—«/(rr_.,

Place: 1GCAR, Kalpakkam Dr. M. Sai Baba
Guide

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the

Library to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission,
provided that accurate acknowledgement of source is made. Requests for permission
for extended quotation from or reproduction of this manuscript in whole or in part
may be granted by the Competent Authority of HBNI when in his or her judgment the
proposed use of the material is in the interests of scholarship. In all other instances,

however, permission must be obtained from the author.

eala BB

[R. Bala Krishnan]

DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by
me. The work is original and has not been submitted earlier as a whole or in part for a

degree / diploma at this or any other Institution / University.

(520l e

[R. Bala Krishnan] '

LIST OF PUBLICATIONS

Journal

a.

Published

Text steganography: A novel character-level embedding algorithm using font
attribute

R. Bala Krishnan, Prasanth Kumar Thandra, S. A. V. Satya Murty, Security
and Communication Networks, John Wiley & Sons, 9 (18), pp. 6066 — 6079,
Feb 2017.

Font Attributes based Text Steganographic algorithm (FATS) for
communicating images: A nuclear power plant perspective

R. Bala Krishnan, Prasanth Kumar Thandra, S. A. V. Satya Murty,
P. Thiyagarajan, Kerntechnik, Carl Hanser Verlag, 82 (1), pp. 98 — 111,
Mar 2017.

. In preparation

Exploring the font attributes of word processor documents: A steganographic
perspective

R. Bala Krishnan, Prasanth Kumar Thandra.
Text steganography: A novel mixed-type method with high embedding
capacity

R. Bala Krishnan, Prasanth Kumar Thandra.

Text steganography: A case study on embedding images in vector formats

R. Bala Krishnan, Prasanth Kumar Thandra, M. Sai Baba.

111

Conferences

a. Published

1. An overview of text steganography

R. Bala Krishnan, Prasanth Kumar Thandra, M. Sai Baba, Fourth
International Conference on Signal Processing, Communication and

Networking, Madras Institute of Technology, Chennai, Tamil Nadu, India,
Mar 2017.

2. Exploring the font attributes of Microsoft Word: A steganographic

perspective
R. Bala Krishnan, Prasanth Kumar Thandra, M. Sai Baba, International
Conference on Frontiers in Engineering, Applied Sciences and Technology,

National Institute of Technology Tiruchirappalli, Trichy, Tamil Nadu, India,
Mar 2017.

b. In preparation

|. Text steganography: A character-level embedding algorithm for

case-sensitive messages

R. Bala Krishnan, Prasanth Kumar Thandra, M. Sai Baba.

2Rl p Tl

[R. Bala Krishnan]

DEDICATED

To

MY FATHER

Acknowledgements

ACKNOWLEDGEMENTS

I would like to thank people who have played their part in shaping this thesis

and help me to evolve as a researcher.

First, I would like to express my gratitude to Mr. Prasanth Kumar Thandra,
who played a major role throughout the course of my PhD work. His support helped
me in all the time of research and writing of publications as well as this thesis. I am

profoundly indebted to him and I owe my deepest gratefulness and respect to him.

Next, I would like to thank my thesis advisor Dr. M. Sai Baba, for his advice
and constant support during the writing of this thesis as well as publications. His
motivation and guidance helped me to improve my research skills. I owe my deepest
respect to him for his support. I would like to thank the members of my doctoral
committee, Dr. U. Kamachi Mudali, Dr. B. K. Panigrahi, Dr. Sharat Chandra and
Dr. S. A. V. Satya Murty for their valuable suggestions, tough questions and
encouragement which helped me to gain deeper insights and intensify my quest to explore

the research in different perspective.

I would like to thank Homi Bhabha National Institute (HBNI) and Department of
Atomic Energy (DAE) for funding my research work. I would like to thank the former
Director of Indira Gandhi Centre for Atomic Research (IGCAR) Shri. S. C. Chetal, for
offering me the opportunity to carry out my research work at Electronics
& Instrumentation Group (EIG), IGCAR. I am deeply grateful to the subsequent Directors,
Dr. P. R. Vasudeva Rao and Dr. S. A. V. Satya Murty and also to the current Director,
Dr. A. K. Bhaduri for allowing me to carry forward my research work in this esteemed

institute (IGCAR).

I express my gratitude to Mr. J. Rajan for his constant motivation and

assistance during tough situations.

I am also grateful to Dr. P. Thiyagarajan, Dr. D. Karthickeyan, Mr. M. Naveen
Raj and Mr. D. Sanjay Kumar for providing valuable suggestions to improve my

publications as well as thesis.

vil

Acknowledgements

[would like to further thank all my colleagues from EIG group. Special thanks
to my lab mates Mrs. Tripura Sundari, Mr. Sai, Mr. Raghava Reddy, Mr. Mohit
Kumar Yadav, Mr. Prasanth Sharma, Mrs. Vijaya Lakshmi, Mr. Nambirajan, Mr. Siva
Shankar, Mrs. Shanmugapriya, Ms. S. Prema, Ms. Karthika, Mr. M. Harish,
Mr. J. Harish and Mr. Vikas Kumar for affording comfortable and joyful laboratory

environment.

| thank all my batch mates Mr. J. Abuthahir, Mr. K. Srinivasan,
Mr. K. G. Raghavendra, Mr. K. Yadagiri, Mr. Sivadasan, Mr. Chandan Kumar Bhagat,
Mr. Santhosh, Mr. Gopi, Mrs. Sumathi, Ms. Sravanthi Srikantam, Mrs. Preethi and

JRF enclavians for providing a pleasant and conducive environment during my stay in

JRF enclave.

| have to express my thankfulness as well to my friends Mr. Bala Sundaram,
Mr. Uday, Mr. Devidas, Mr. Vairavel, Mr. Zaibudeen, Mr. Lakshmanan,
Mr. Radhikesh, Mr. Irshad, Mr. Raghavendran, Mr. Barath, Mr. Sai Kumaran,
Mr. Thangam, Mr. Shiva Kumar, Mr. Santhosh, and Mr. Thirukumaran who had

accompanied me during these years of good and stressed moments.

[owe my gratitude to my mother S. Seetha Lakshmi whose innumerable
sacrifice, unconditional love and confidence has driven me this far. I thank my

brothers, sisters and friends for their affection and wishes.

5= @l el

- : /
[R. Bala Krlshnanr

viii

Contents

SYNOPSIS

LIST OF FIGURES
LIST OF TABLES
LIST OF ABBREVATIONS AND SYMBOLS
LIST OF TERMINOLOGIES

CHAPTER 1

CHAPTER 2

CONTENTS

INTRODUCTION

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

Introduction

Watermarking

Cryptography

Steganography

Need for steganography in the current scenario
Recent trends in steganography

Desired characteristics of digital steganography
Discussion

Motivation for the thesis

Objectives of the thesis

Contributions of the thesis

Organization of the thesis

LITERATURE SURVEY

2.1
2.2

23
24

Introduction
Classification of text steganography
2.2.1 Character-level embedding technique
(CLET)
2.2.2 Bit-level embedding technique
2.2.3 Mixed-type embedding technique
Comparison of the existing methods

Summary

1X

Page No.
Xiil
XXlii
XXViil
XXX1

XXX111

15

15
15

17

22
34
35
37

Contents

CHAPTER 3

CHAPTER 4

EXPLORING THE FONT ATTRIBUTES OF
WORD PROCESSOR DOCUMENTS

3.1 Introduction
3.2 Employing the font attributes for steganography
3.3 Classification of the font attributes
3.4 Comparison of the font attributes
3.5 Discussion
3.6 Summary
EMBEDDING TEXT
4.1 Introduction
4.2 Handling the non-uniform occurrence frequencies
of characters
4.3 Theoretical background of the development of
Method-A
4.4 Generation of Frequency Normalization Set
(FNS)
4.5 Character & String Mapping (CSM)
4.6 Embedding algorithm
4.7 Extraction algorithm
4.8 Evaluation parameters
4.8.1 Secrecy
4.8.2 Embedding capacity
4.8.3 Uniformity in embedding probability
4.8.4 Comparison with existing methods
4.9 Security aspect

4.9.1 Uniformity in embedding probability

4.9.2 Distribution in stego characters

4.9.3 Frequency distribution of stego
characters

4.9.4 Cryptographic aspect

4.10 Application to case-sensitive letters

39

39
43
61
64
68
69

71

71
72

74

76

77
78
80
82
82
83
84
86
87
87
87

88

91
92

Contents

4.11 Summary 94
CHAPTER 5 EMBEDDING BINARY DATA 97
5.1 Introduction 97
5.2 Binary to Character Converter (BCC) 98
5.3 Embedding algorithm 102
5.4 Extraction algorithm 104
5.5 Evaluation parameters 105
5.5.1 Embedding capacity and Bits per 105
distortion
5.5.2 Uniformity in embedding probability 106
5.5.3 Comparison with other methods 106
5.6 Security aspect 107
5.7 Case study on nuclear power plants 109
5.8 Summary 113
CHAPTER 6 EMBEDDING IMAGE 115
6.1 Introduction 115
6.2 Vector format 117
6.3 Custom format to represent an image 120
6.3.1 Elements of an image 123
6.3.2 Code representation of elements 125
6.3.3 Image to code conversion procedure 127
6.3.4 Code to image conversion procedure 129
6.4 Methodology adopted to develop Method-C 130
6.4.1 Image to code conversion algorithm 132
6.4.2 Embedding algorithm 132
6.4.3 Extraction algorithm 135
6.4.4 Image drawing algorithm 140
6.5 Evaluation and Security aspect 141
6.5.1 Size comparison 141
6.5.2 Embedding capacity 145
6.5.3 Bits per distortion 145

X1

Contents

6.5.4 Secrecy
6.5.5 Comparison of Method-B and Method-C
6.5.6 Transmission error

6.6 Summary

CHAPTER7 SUMMARY AND SCOPE FOR FUTURE
INVESTIGATIONS

7.1 Summary and conclusions

7.2 Scope for the future work
REFERENCES

APPENDIX — A

Procedure to generate Frequency Normalization Set (FNS)

APPENDIX —B
Ilustration of the imperceptibility level of Method-C

X1l

146
147
148
151

153

153
158

159

175
175

181
181

SYNOPSIS

Digital communication plays an important role in connecting geographically
distributed individuals as well as organizations. To assist the communication, the
information is generated (or converted) and shared in digital form. This, also, allows a
malicious intender to destroy, corrupt or steal the data at ease.

A malicious intender having the personal data, such as credit or debit card
details, can make fraudulent transactions. Similarly, an attacker possessing the data of
an organization, like the customer details or medical records, can threaten the
organization for ransom or sell them in darknet. Such attacks can result in the loss of
reputation and customers of the liable organization. Thereby, this kind of information
is senmsitive. Hence, securing such sensitive information, both during storage and
in-transit, is of serious concern to individuals as well as organizations.

In general, organizations take efforts to safeguard the sensitive information by
deploying access controls, security checks and periodic backups. However, these
mechanisms can safeguard only against specific internal threats, such as stealing
and/or destruction of information, by their own employees. But, securing the
information from cyber criminals is a challenging task.

To protect the sensitive information, security methodologies like
watermarking, cryptography and steganography are used. Watermarking prevents
from illicit claim of ownership of the information, by secretly hiding the ownership
details in it. However, it does not prevent the reproduction of the content.

On the other hand, cryptography prevents such reproduction by changing the
appearance of the content through encryption. Besides confidentiality, cryptography
also provides integrity, authentication and non-repudiation. But, it fails to provide

secrecy. Hence, during the exchange of information, any third party who is sniffing

Xiil

Synopsis

the communication channel can identify its presence. Once identified, attackers might
be able to use suitable state-of-the-art techniques to extract the encoded information
or save them for later use. This can be possible due to the various vulnerabilities such
as export grade encryption, man-in-the-middle attacks, default or weak passwords,
insecure configurations and advances in cryptanalysis.

Steganography averts this kind of detection by performing the communication
in a stealthy manner. It hides the secret information inside an innocent looking cover
medium, by making unnoticeable modifications or distortions, preventing it from
raising any suspicion. Due to this characteristic, lately security experts advice the use
of steganography and cryptography in combination. The idea, here, is to encrypt the
information first and, then, send it through steganographic means.

Digital steganography (hereafter referred to as steganography) can be
classified based on the type of cover medium used. The cover medium used can be a
text (plain text as well as word processor documents), image, audio, video, network
packet, etc. Of these various types, text steganography is least preferred as the:
(1) amount of redundant information present in a text document is less; (ii) structural
and visual appearance of a text document are directly related.

However, text steganography cannot be avoided completely. According to a
2009 report, nearly 80% of organizations use text documents
(Microsoft Word documents) for collaboration purpose. Hence in such environment,
depending on other media types, that are scarcely used, to perform the covert
communication is not preferable. This is because, the: (i) transmission of other media
types can make the communication suspicious and can lead to further analysis;
(i1) low voluminous traffic of other media types can make it practical for an adversary

to investigate them thoroughly. In addition, text documents require low bandwidth

Xiv

Synopsis

during communication, due to the involvement of smaller file sizes. Considering these
facts, this dissertation aims to analyze the existing text steganographic methods and
address their drawbacks through innovative solutions.

A detailed literature survey of the existing techniques concluded that the
embedding capacity and the number of bits embedded per distortion are inversely
proportional, except for the techniques that generate the stego-work directly.
Character-level embedding technique (CLET), a variant of text steganography,
directly marks the identical character in the cover medium, sequentially, to embed the
secret characters. It marks the character by altering the font, font style, position,
misspelling, etc., and thereby, embeds 8-bits per distortion. However, it can embed a
secret character only if the corresponding character is present in the cover medium.
As the occurrence frequency of English alphabets is not uniform in a typical
document, the overall embedding capacity of this technique is low.

On the other hand, the existing bit-level embedding technique, UniSpaCh,
with highest embedding capacity, embeds the secrets by injecting Unicode space
characters in the white spaces. On an average, it embeds 1.046-bits/cover-character
with approximately 2-bits/distortion. Hence a large number of distortions are required
to embed the secret. Apart from the methods that generate the stego-work directly,
from a given secret, no existing method was found to achieve both high number of
bits per distortion as well as a high embedding capacity.

In this study, an attempt has been made to address this shortcoming by
presenting three novel techniques. These techniques embeds text, image or binary
data inside the font attributes of word processor document. The present thesis is

organized into seven chapters and the contents of each chapter are summarized below.

XV

Synopsis

Chapter 1 — Introduction

Chapter 1 presents a brief introduction on the importance of data security. It discusses
the existing security methodologies in detail, and the need for steganography in the
current digital scenario. It, also, describes the desirable characteristics of a digital
steganographic algorithm and our motivation for the choice of text steganography

along with the challenges involved in it.

Chapter 2 — Literature Survey

Chapter 2 describes the existing text steganographic techniques, in detail, and
classifies them into three broad categories, namely character-level, bit-level and
mixed-type embedding, based on their nature of embedding. Character-level
embedding technique is further classified into two categories as
Cover Document Required (CDR) and Cover Document Not Required (CDNR).
CDR embeds a secret character by directly marking the respective character in the
cover medium. CDNR directly generates the stego work, based on the secret
characters, without using any cover medium. Bit-level embedding technique considers
the secret information as a binary string and the embedding is carried out accordingly.
Mixed-type embedding technique is a mixture of the above two techniques. It
considers the secret information as a binary string and splits them into groups of 2 or
4-bits each. Each group is, then, mapped to one or more alphabet(s) and consequently
the bits are embedded in the mapped alphabet(s) of the cover medium. This chapter
discusses the advantages and disadvantages of the above methods in detail. Also, it
compares them based on their embedding capacity and the number of bits embedded

per distortion.

Xvi

Synopsis

Chapter 3 — Exploring the Font Attributes of Word Processor Documents

Chapter 3 discusses the font attributes of various word processor documents
viz. Microsoft Word, LibreOffice Writer, OpenOffice Writer and WordPerfect. It
analyses the font attributes from a steganographic perspective, and categorizes them
based on their usability and imperceptibility. In addition, it presents the various ways
of embedding the secret using these attributes, viz. restricting their values within a
particular range or masking the effect of an attribute by the effect of another attribute.
A comparison of the selected attributes, based on their embedding capacity, usability
and complexity of the extraction process, revealed that the word processor Microsoft
Word suits best for steganographic purpose. Additionally, the comparison illustrated
that the attributes color, spacing and kerning stands best among the rest.

Color: This attribute specifies the color of a character and it is represented by a 24-bit
value using the format (R, G, B). The least significant 1 or 2-bits of each R, G and B
can be modified without creating any visual difference.

Spacing: This attribute alters the spacing (expand or condense) between two
characters. Since the spacing of characters are not uniform in a justified text,
modifying the document using this attribute will go unnoticed.

Kerning: This attribute alters the spacing between the overlapping character pairs
such as AV, WA, etc. It takes the size of the font as input, known as the kerning font
size, which can be between 1 and 1638 points. The effect is produced only when the
specified kerning font size is lesser than or equal to the font size of the character. Else,

applying kerning produces no effect and hence goes unnoticed.

Xvii

Synopsis

Chapter 4 — Embedding Text

Chapter 4 proposes a novel character-level embedding technique (Method-A) which
embeds secret text, that contains English alphabets, dot and space characters (ADS),
with higher number of bits per distortion as well as high embedding capacity. To
achieve this, the method generates a set of 28 strings, using the occurrence frequency
of ADS characters, known as Frequency Normalization Set (FNS). These strings have
the following properties: (i) Each string contains only ADS characters; (ii) The length
of a string, L, is seven with seven positions {0, 1, 2, 3, 4, 5, 6}; (iii)) A character
occurs only once in a string; (iv) A character occurs only once in a given position in
the whole FNS. That is, no column-wise repetitions; (v) The cumulative frequency of
characters of each string is =~ 25.

The generated FNS is then injective mapped to the 28 ADS characters. This
mapping is called as Character & String Mapping (CSM).

The secret characters are embedded, serially, at the first occurrence of a
character in the corresponding mapped string. This allows a low occurring character
to get embedded in several cover characters, and thereby boosts its embedding
probability in addition to achieving uniformity. A font attribute called spacing is used
to mark the seven respective positions of characters in a string. The distorted character
and the value of spacing represent the hidden character. An investigation on the
embedding capacity revealed that an average of 2.22-bits/cover-character with

8-bits/distortion was attained by the proposed method.

Chapter 5 — Embedding Binary Data

Chapter 5 extends the method explained in Chapter 4, Method-A, into a mixed-type

embedding technique (Method-B), to embed binary information. To achieve this, the

xviii

Synopsis

method first converts the secret information into a binary stream and segments it into
quadruples. It then maps the sixteen possible combinations of a quadruple to the 28
strings of FNS, using which it converts the binary stream into a character stream.
These characters are then embedded as explained in Chapter 4.

Though the conversion procedure affected the embedding capacity and
bits/distortion of the former method, it still attained an average embedding capacity of
approximately 1.71-bits/cover-character with 4-bits/distortion which is better than the
existing methods.

However, a case study on the nuclear power related images, like engineering
drawings, roadmaps, graphs, etc., revealed that, for certain images, the required
number of pages in the cover document are still larger than the average size of an
academic book. It is noted that this huge size requirement is due to embedding the
unnecessary information of images, like color, line thickness, etc., which is present in

the pixel representation.

Chapter 6 — Embedding Image

Chapter 6 explores the possibilities to reduce the size of above-mentioned images
without losing the necessary information. The various representations of images
namely Encapsulated PostScript (EPS), Scalable Vector Graphics (SVG) and
Compressed SVG (SVGZ) achieve the same goal. It was observed that, of the
available formats, SVGZ attained the least size of a given image. Hence, when the
same is embedded using the method proposed in Chapter 5 (Method-B), it
considerably reduced the number of pages required to embed them. However, the

method failed to extract the image in the case of any data corruption.

Xix

Synopsis

Hence, Chapter 6 proposes a novel bit-level embedding method (Method-C)
that embeds specific category of images, like engineering drawings, roadmaps,
graphs, etc., in a unique way reflecting the structure of the hidden image. The method,
first, converts the various elements of a given image into custom defined codes. This
is done with respect to the grid lines that are drawn over the image. The intersection
of two grid lines is called as a control point. Codes represent the layout of the image,
based on the way the layout traverses through the control points.

The conversion procedure begins by choosing a specific control point called
origin, to trace the layout. The angle of the tracing line drawn from the origin to the
next control point defines the code. The procedure repeats the process and traces the
entire image, to convert it into codes. Whenever the conversion procedure encounters
a text message, near a control point, it places an appropriate marker in the
corresponding code, and writes the encountered message into a separate file. Hence,
the size of the final codes depends only on the number of grid lines drawn but not on
the resolution of the image. Thereby, the procedure considerably reduces the number
of bits that are required to represent an image.

The proposed method (Method-C) uses the font attributes color, spacing and
kerning to embed the codes. The embedding procedure starts by choosing a cover
character, corresponding to the origin, and embeds the code. It selects the next
character, based on the last embedded code, in a manner similar to that of traversing
the image. This process achieves the original structure of image to be embedded
inside the text document. The details related to origin and resolutions of the grid are
communicated to the recipient. To extract the codes, the extraction algorithm starts
from the character, corresponding to origin, and traces the embedded characters

similarly. The extracted codes are then used to reproduce the original image.

XX

Synopsis

In the case of any transmission errors, the extraction algorithm searches the
potential characters to continue the traversal and thus, supports error handling
mechanisms. The text messages are embedded using UniSpaCh and are extracted
accordingly. From the experiments conducted, a high embedding capacity was

observed making it suitable for low bandwidth environments.

Chapter 7— Summary and Scope for Future Investigations

The highlights of this dissertation and the scope for future work are summarized in
Chapter 7. The highlights are: 1) The steganographic usage of word processor
documents was investigated thoroughly; 2) The best suitable font attributes to embed
the secrets were identified; 3) The possibility to normalize the embedding probability
of secret characters in CLET algorithms, irrespective of their occurrence, was
reported for the first time; 4) A CLET with high embedding capacity and
bits/distortion was successfully designed, developed and tested; 5) The requirement of
larger cover work to embed the secret information, like image, was reported with a
case study; 6) The custom defined format to represent an image with lesser number of
bits was illustrated; 7) For the first time, the procedure of embedding an image along
with its structure was demonstrated; and 8) The procedure of embedding an image
with error handling mechanisms was demonstrated. The future work can focus to
explore the ways to embed secrets inside other document formats like Portable

Document Format (PDF).

xx1

List of Figures

LIST OF FIGURES
Figure Figure Caption Page
No No.
1.1 Types of information security measures 3
1.2 Procedure of watermarking 4
1.3 Procedure of cryptography ensuring confidentiality 4
1.4 Procedure of steganography 5
1.5 Types of steganography 7
2.1 Classification of the existing text steganographic techniques 16
2.2 Sample input and output of missing letter puzzle technique 21
2.3 Sample input and output of hiding data in wordlist technique 22
2.4 Example for word shifting 26
2.5 [lustration of the white spacing’s in text document [66] 26

2.6 Example for end-of-line spacing [76]: (a) Ordinary text; 28
(b) White space encoded text

2.7 Example for UniSpaCh technique: (a) Unicode space 29
characters (color-coded for understanding purpose) [66];

(b) Size of Unicode and normal space characters [66]

2.8 Vertical displacement of Dot in the Persian character 30
Noon [105]
2.9 Exploiting the structure of characters: (a) Basic components of 31

Chinese, Japanese and Korean characters [84];
(b) Representation of characters using the basic

components [41]

xxiil

List of Figures

2.10

2.11

3.1

3.2

33

3.4

3.5

3.6

3.7

3.8

4.1

4.2

Exploitation of the Arabic or Urdu characters: (a) Diacritics of
Arabic language [107]; (b) Representation of Araabs;
(c) Usage of the regular and reverse Fatha [94]

Sample output of the “Change Tracking” technique [83]

WordPerfect revealing the formatting information

Exploitation of the Animation attribute

Exploitation of the EmphasisMark attribute

Exploitation of the Color attribute

Exploitation of the Emboss and Engrave attributes

Exploitation of the Shading attribute in WordPerfect. Middle
character of each word has a default shading value of 75%,
whereas the left and right characters have varying values which

are mentioned above each character (in %)

Exploitation of the StylisticSet attribute

Classification of the font attributes of word processors.
* — represents the case that the attribute is applied on space
character alone; T — represents the case that care has been taken
to separate an identical modified and unmodified character;
MS — Microsoft Word; LO — LibreOffice; OF — OpenOffice;
WP — WordPerfect

Sample output of Method-A
English secret in English cover document. CW1 — cover

document; Secl — secret message; Stego — stego document

XX1V

32

33

40

44

45

47

48

55

59

62

82

90

List of Figures

4.3

44

4.5

5.1

5.2

53

6.1

6.2

6.3

6.4

6.5

Random secret in English cover document. CW1 — cover

document; Sec2 — secret message; Stego — stego document

Random secret in random cover document. CW3 — cover

document; Sec2 — secret message; Stego — stego document

Method-A combined with Format Preserving Encryption

system

Schematic diagram of Method-B. The dotted lines represent
the modules that are introduced in Method-B and bold line

represents the modified module of Method-A

Sample Character & Bit Mapping using the Character & String
Mapping provided in Table 4.4. “0” — represents “Space” and
“.” — represents “Dot”; ADS — English alphabets, Dot and
Space

Sample tested images: (a) Road map from kalpakkam to
anupuram [135]; (b) Graph [136]; (c) Electronic circuit
diagram [137]; (d) Civil drawing of stairs [138]; (e) Boiling
water reactor [139]; (f) Schematic diagram of thermal power
plant [140]; (g) Nuclear power plant steam generation [141];
(h) Reactor flow sheet [142]; (i) Reactor core [143]

Vector image formats. * — represents the compressed version

of SVG format

Sample SVGZ file and corresponding image: (a) SVGZ file;
(b) Generated image

Sample SVGZ File (corrupted) and corresponding image:
(a) Corrupted SVGZ file; (b) Generated image

Sample image: (a) Without grid; (b) With grid

Picture depicting the various elements of an image

XXV

90

91

92

98

99

111

118

121

122

123

124

List of Figures

6.6

6.7

6.8

6.9

6.10 (A)

6.10 (B)

6.10 (C)

6.11 (A)

6.11 (B)

6.11 (C)

6.12

6.13 (A)

6.13 (B)

Picture depicting the three possible branches of an image

Sample image with additional grid line: (a) Without grid;
(b) With grid

Sample image along with the corresponding code: (a) Without

grid; (b) With grid

Modules of Method-C. Nygr, — Number of Horizontal Grid
Line; Nygr., — Number of Vertical Grid Line

Extraction algorithm: flowchart 1
Extraction algorithm: flowchart 2
Extraction algorithm: flowchart 3

Generated images of SVGZ and custom formats — part 1:
(a) Roadmap from kalpakkam to anupuram; (b) Graph;

(c) Electronic circuit diagram

Generated images of SVGZ and custom formats — part 2:
(d) Civil drawing of stairs; (e) Boiling water reactor;

(f) Schematic diagram of thermal power plant

Generated images of SVGZ and custom formats — part 3:
(g) Nuclear power plant steam generation; (h) Reactor flow

sheet; (i) Reactor core

Sample output of Method-C. *Stego characters are highlighted

for understanding purpose

Illustration of handling transmission error: (a) Original image;

(b) Transmitted image

[ustration of handling transmission error: (c) Stego characters

at sender side (highlighted for understanding purpose);

XXVi1

124

128

128

131

137

138

139

142

143

144

147

149

150

List of Figures

A.l

B.1

(d) Identified stego characters after the occurrence of error
(15% of stego characters have been distorted); (e) Applied
color patterns for the stego characters in Fig. 6.13 (B) (d)
during extraction; (f) Extracted image from Fig. 6.13 (B) (d)

Flowchart to generate Frequency Normalization Set (FNS) 176

Boiling water reactor [139] 181

XXVii

List of Tables

Table No.

1.1

2.1

2.2

23

24

2.5

2.6

3.1

3.2 (A)

3.2 (B)

3.3

3.4 (A)

3.4 (B)

4.1

4.2

4.3

LIST OF TABLES

Table Caption
Various cover types and their embedding strategies
Occurrence frequencies of alphabets in English text [38]
Sample words and the respective synonyms
Sample United States and United Kingdom spellings [97]
Number of bit and space character combinations

Reflection symmetry properties of English alphabets [86]

Comparison of the existing techniques

Details of word processors

List of attributes in word processors: part 1

List of attributes in word processors: part 2

Exploitation of the Spacing attribute

Comparison of the average and high imperceptible

attributes: part 1

Comparison of the average and high imperceptible

attributes: part 2

Occurrence frequencies of ADS characters in English text

Respective NCC and P values

Sample Frequency Normalization Set

XXViii

Page No.

19

23

24

28

34

36

40

41

42

57

65

66

73

75

77

List of Tables

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

53

54

5.5

5.6

5.7

6.1

6.2

6.3

6.4

6.5

Sample Character & String Mapping

Results of embedding the secrets in cover document

Uniformity in embedding probability
Comparison of Method-A with existing techniques
Spacing values of the identified stego characters

Sample Character & String Mapping for case-sensitive

messages

Mapping of ADS characters and the nibbles (Character &
Bit Mapping)

Results of embedding the secrets in cover document
Uniformity in embedding probability at nibble-level
Uniformity in embedding probability at character-level
Distribution of nibbles among the possible tuples
Details of images given in Fig. 5.3

Number of cover characters required by UniSpaCh and

Method-B
Software that generate vector file format
Sizes of generated vector images

Results of embedding raster and vector images by

Method-B

Used notations and their descriptions

Elements of an image and their respective codes

XX1X

78

84

85

86

89

93

100

106

107

108

110

112

112

118

119

119

124

126

List of Tables

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

Possible angles and their respective Hy

Kerning value

Flags and their respective spacing values

Selecting one character from eight neighbors based on Hy
Sizes of images in custom and SVGZ formats

Results of embedding the custom format

Comparison of Method-B and Method-C

Used color patters to color the currently selected character

XXX

126

132

133

133

141

146

148

149

List of Abbreviations and Symbols

PAN

U.S. or USA

JPG
PNG
TCP/IP
CLET
CDR
CDNR
EoL
UniSpaCh
CIK
L-R
U-D
ASCII
MS

LO

OF

WP

R, G, B or RGB

ADS

NCC

FNS

CSM

EoS

No.

LIST OF ABBREVIATIONS AND SYMBOLS

Permanent Account Number

United States of America

Joint Photographic Experts Group
Portable Network Graphics
Transmission Control Protocol/Internet Protocol
Character-level embedding technique
Cover Document Required

Cover Document Not Required
End-of-Line Spacing

Unicode Space Characters

Chinese, Japanese and Korean
Left-Right

Up-Down

American Standard Code for Information Interchange

Microsoft

LibreOftfice

OpenOftice

WordPerfect

Red, Green, Blue (color)

English alphabets, Dot and Space
Number of characters cumulated
Frequency Normalization Set
Character & String Mapping
End-of-Secret

Number

XXX1

List of Abbreviations and Symbols

FPE
BCC
CBM
KB
GIF
Al
EPS
PDF
SVG
SVGZ
DP
DCP
TP
SP
FPoB
LPoB

OPB

NhoL

Nvar

NoB

Hy

Format Preserving Encryption
Binary to Character Converter
Character & Bit Mapping
Kilebyte

Graphics Interchange Format
Adobe Illustrator
Encapsulated PostScript
Portable Document Format
Scalable Vector Graphics

Scalable Vector Graphics Compressed

Directional point

Direction changing point
Temporary point

Split point

First point of a branch

Last point of a branch

The only point of a branch
Number of horizontal grid line
Number of vertical grid line
Number of branch

Single page
Hexadecimal value (Nibble)

XXXii

List of Terminologies

Cover work/document
Cover character
Embedding

Embedding capacity

Embedding space
Distortion

Bits/distortion or bits

per distortion

Stego character
Non-stego character
Stego work/document

Extraction

List of Terminologies

Cover medium that is used to carry the secret
Character in a cover document
Process of hiding a secret

Maximum amount of information that can be embedded

inside a chosen cover document
Place in which the secret can be embedded
Modification performed to embed a secret

Number of bits that can be embedded in a distortion

Cover character that has undergone modification
Cover character that has not undergone modification
Cover medium (resultant file) after embedding the secret

Process of extracting the secret

XXX111

CHAPTER 1

INTRODUCTION

This chapter furnishes a detailed introduction on the importance of data
security both during storage and in-transit. A detailed discussion on existing security
methodologies and the need of steganography in the current digital scenario has been
provided. The desirable characteristics of digital steganographic algorithms and
motivation for the choice of text steganography along with the challenges involved in

it has, also, been described.

1.1 Introduction

In the modern era, predominant amount of information is generated, stored
and shared in the digital form [1]. This is mainly due to the ease with which it can be
handled and the flexibility it offers in terms of efficient storage, distribution [2],
retrieval [3], etc. Information in the digital form is also environment-friendly [3].

Information can be personal as well as organizational. Personal data can be
name, date of birth, marital status, medical history, passport details, permanent
account number (PAN), email ids, contact numbers, debit or credit card numbers,
income details, assets, finger prints, etc. [4-6]. Organizational data can be employee
details, medical records of customers, minutes of meetings, tender quotations,
architectural blueprints, engineering drawings, maps, graphs, financial records,
etc. [7]. Also, several organizations have technical notes and documents that need to

be shared among the colleagues associated with the activity.

Chapter 1: Introduction

These types of information are sensitive and the access of such information by
unauthorized persons can be harmful to individuals as well as organizations [8].
Malicious third parties can misuse them by:

e sclling the phone numbers or contact details to advertising agencies [9]

e filing false income returns, selling properties, applying loans, etc. [10,11]

e making fraudulent transactions using credit or debit card details [12]

e selling the medical records of patients to hospitals, health insurance and
pharmaceutical companies [13]

e selling the chemical composition of explosives or locations of army camps to
anti-social elements [14,15]

Hence, securing sensitive data is of utmost priority to organizations as well as
individuals [16]. Typically, organizations take extensive efforts to protect them from
both internal and external threats. Internal threats include destroying, stealing or
misusing of organization’s data by their own employees [17]. Organizations deploy
strict access controls [18], security checks and periodic backups to minimize the
internal threats.

However, most of the organizations are geographically distributed and are
forced to be inter-connected using public networks like the internet [19]. Hence,
securing information from the external threats (active or passive) of cyber criminals is
a complex task. Through regular patching and proper training, active threats like
firewall penetration, phishing [20], botnets [21], etc., can be mitigated to an extent.
But preventing the networks from passive threat, like sniffing [22], is a difficult task
even to organizations that use leased line or virtual private networks.

Regardless of the communication line used, cyber criminals sniff the network

and collect the sensitive information. This information can later be exploited due to

Chapter 1: Introduction

vulnerabilities such as export grade encryptions [23], man-in-the-middle attacks [24],
default or weak passwords [25,26], bad configurations and advances in
cryptanalysis [27,28]. A number of such incidents were reported in the past and are
growing in number [29-34]. Therefore, securing the digital information, in-transit, is
extremely important.
Security of data, in-transit, must ensure the prevention from:

(1) 1illicit copying and claim of ownership

(i1) 1llicit extraction and reproduction

(i11) detection of communication and the communicating parties
These goals are achieved through information security methodologies like
watermarking, cryptography and steganography respectively [35] (refer Fig. 1.1)

which are as follows.

Information security measures

A 4 A 4 v

Watermarking Cryptography Steganography
(Robustness) (Authentication, confidentiality, (Imperceptibility)
integrity and non-repudiation)

Figure 1.1 Types of information security measures

1.2 Watermarking

Watermarking is typically used to identify the owner of the information and
protect copyright [36]. It injects or hides the trademark or copyright symbol in the
information without compromising its quality (refer Fig. 1.2). Such injected
trademark must be robust against tampering and should not be able to be removed

without destroying a substantial quality of information [37].

3

Chapter 1: Introduction

Key Key
Digital Watermark
f r
information Watermark .ernbedd'ed Watermark > Embedded
E— . information . watermark
embedding extraction
| algorithm algorithm » Digital
Watermgrk information
or copyright
symbol

Figure 1.2 Procedure of watermarking

1.3 Cryptography

Cryptography means “secret writing” [38]. It hides the meaning of the
information by encoding it using secret key. Hence a party possessing the key, can
only extract the information (refer Fig. 1.3). This protects the information from the
illicit extraction and reproduction (confidentiality). Besides this, cryptography also
provides authentication (identify the sender), integrity (identify data modification) and

non-repudiation (denial of sending) [39].

lKey lKey

) Secret. Encrypted Secret

1nf0rmat10nl Encryption information Decryption | information
algorithm algorithm

Figure 1.3 Procedure of cryptography ensuring confidentiality

1.4 Steganography

Steganography means “covered writing” [40]. Steganography hides secret
information covertly inside an innocent looking cover medium by making
unnoticeable modifications in the cover medium [41] (refer Fig. 1.4). Therefore,

communicating using steganographic techniques hides the information and in certain

Chapter 1: Introduction

cases the transmission of information and communicating parties altogether

(explained later in Section 1.6).

Cover Key Cover medium Key
medium containing
E— . hidden secret) » Cover
Embe(iidmg Extraction medium
rocedure
I I procedure | Secret
Secret information
information

Figure 1.4 Procedure of steganography

1.5 Need for Steganography in the Current Scenario

Watermarking protects the information from illicit claim of ownership [42],
but does not prevent anyone from reproducing or using the content [43]. Only,
cryptographic and steganograpic techniques achieves this by changing the appearance
(encoding) or by hiding the existence (hidden communication) of information
respectively.

Cryptographic techniques succeed in providing confidentiality, integrity,
non-repudiation and authentication of the information [38]. But, it sends the
encrypted information in plain sight making it available to preying eyes [41,44].
Latest reports emphasis the sniffing of public networks by cyber criminals as well as
government agencies [45,46], for such encrypted information. In addition, in the past,
various law-enforcing authorities forced the product developers to reduce the strength
of cryptographic techniques (by incorporating export-grade encryption
techniques [23], backdoors [47], weak primes [46], elliptical curves, etc.), so that they
can decrypt the sniffed information at ease [48]. However, in some cases, the captured
information is just stored, till an efficient cryptanalysis method on the used algorithm

or advanced computation mechanisms like quantum computing [49,50] becomes

Chapter 1: Introduction

available. Hence, relying on encryption techniques alone to send sensitive information
is, clearly, not sufficient anymore. This makes the secrecy of information during
communication a necessity one.

Considering this, security experts suggest the incorporation of secrecy along
with security [45,51]. The idea here is to protect the information, first, by using
cryptographic techniques and communicate them by means of steganographic
techniques [52]. This brings steganography into the digital communication field, for

enhancing the security of information during transit.

1.6 Recent Trends in Steganography

Though cryptography is used by the mainstream, due to the Internet and
World Wide Web, steganography is still practiced by people who wish to circumvent
the spying activities [53]. After weeks of interviews with U.S. officials and experts,
Jack Kelley of USA Today wrote an article headlined ‘Terrorist instructions hidden
online’ [54]. Following this, the 9/11 attacks created awareness across nations that
terrorists may use steganography for secretly communicating their targets [55]. It is
believed that the target locations along with the relevant information are embedded in
images and posted in websites like eBay, Reddit, etc. [56]. Thereby, to a casual
observer, this post looks like a genuine user who is about to sell a product but only the
intended recipient(s) gets the original message. This method of communication not
only hides the message but also the intended recipient(s).

More recently, malicious code writers started to use steganography either to
collect sensitive information from a malware infected machine [57] or to deploy
malwares. Zeus or Zbot malware (first identified in 2007) appends its encrypted

configuration file to a JPG (Joint Photographic Experts Group) file [58].

Chapter 1: Introduction

Duqu malware (discovered in 2011) collects sensitive information from an infected
machine, encrypts and sends it by embedding it in a JPG file [59]. Stegoloader
malware (emerged in 2015) completely hides its malicious code within a PNG
(Portable Network Graphics) file [60].

On the positive side, steganography is used to prevent users from phishing
attacks in online banking scenario [61]. For this purpose, a browser plug-in that can
hide secret messages inside images (logos) and validate the same has been developed.
When the resultant stego image (image with hidden secret) is placed in the
corresponding bank’s website, the user’s browser can validate the website using the
developed plug-in [61]. These clearly show the growing use of steganography in the

digital communication, with a new paradigm.

1.7 Desired Characteristics of Digital Steganography

Digital steganography (hereafter referred as steganography) can be classified
based on the type of cover medium used [62] (refer Fig. 1.5). The cover medium used

can be a text message or document, image, audio, video, network packet, etc. [36].

Steganography
A 4 y \ 4 A 4 A 4
Text Image Audio Video Network
A A
Plain text Word processor
document document

Figure 1.5 Types of steganography

Chapter 1: Introduction

Choosing an appropriate cover medium in a given environment is the first
precautious measure that the designer of a stegnographic algorithm must look
into [63]. This is because an attacker can sniff the traffic flowing in the
communication channel and identify the communicating parties, first. Later, he/she
can qualify the association between them based on the contents of the message. Any
questionable or non-justifiable exchange can lead to the thorough inspection of
transmitted data. This is known as traffic analysis attack [62]. Hence, to counter the
attack, a steganographic algorithm must use a cover medium that is being exchanged
in abundance by the communicating parties. This makes the communication look
legitimate and also make the life of an adversary tougher as thorough inspection of
such exchange is computationally intensive.

Second, as the secrets are embedded by making modifications or distortions in
the cover medium, an algorithm must focus to make the modifications in an
unsuspicious manner [63,64]. To achieve this, modern techniques either rely on the
redundant information in cover medium or the properties of cover medium that human
perceptual system fails to identify. Details of some of the existing methods are given
in Table 1.1.

Third, a good steganographic algorithm must aim to minimize the number of
distortions that are required to embed a secret [63]. That is, the number of secret bits
embedded per distortion must be maximized.

Fourth, an algorithm must utilize the available embedding space efficiently
and try to reduce the size of cover medium required to embed the secret [65]. This
reduces the load on the network and also avoids suspicion.

Fifth, the embedding method should not be cover medium dependent. That is,

designing a steganographic method which is specific to a cover document restricts the

Chapter 1: Introduction

method to that particular environment. For example, designing a text steganographic
method that can be applied only to Chinese characters, make it to be non-usable in

other languages.

Table 1.1 Various cover types and their embedding strategies

Cover Embedding strategy Exploited Reference
type parameter
Text Embeds the secrets in white spaces Human visual [66]
Embeds the secrets by exploiting the structure system [41]
of characters
Image Embeds the secrets in the least significant bit of Redundant [67]
color information
Audio Embeds the secrets as noise or in frequencies Human [68]
beyond human audible range auditory system
Video Embeds the secrets using both image and audio =~ Both human [69,70]
steganographic techniques auditory and
visual systems
Network Embeds the secrets in the unused or Redundant [71]
insignificant bits of TCP/IP (Transmission information

Control Protocol/Internet Protocol) packet

Sixth, the method must generate a meaningful stego document that is suitable
to any given scenario [72,73]. For example, designing a steganographic method which
generates a puzzle or unconnected contents (words or sentences) as a stego document

makes it unsuitable for organizations.

1.8 Discussion

Amongst the various steganographic types, text steganography is hard to
manage [74,75]. This is because, the:
(i) amount of redundant information present is relatively less [73,76,77]. For

€690
T

example, when a character “r” is represented as text, the whole character has
only 24-bits to represent its color. Whereas in a 24-bit image, each pixel is

represented with 24-bits leaving a lot of redundant information

Chapter 1: Introduction

(i1) structural and visual appearance of text document is directly related [78]. For
example, altering the least significant bits of two neighbor pixels that has
similar values won’t draw any attraction. Whereas, altering the font size of
one of the two consecutive similar letters in a word, say balloon, will create
suspicion

(i11)) number of pages of a normal academic text document is = 250 (average
number of words per page is 300 [79] and average number of words in an
academic book is 70,000 [80]). Hence requiring a cover document that is
larger than the available size is not easy to accommodate and the usage of
which can, also, raise suspicion. This is not the case for the cover types like
image, audio and video

Due to the above-mentioned factors, text steganography is not a preferred method for

steganographers [77].

1.9 Motivation for the Thesis

Though employing text steganography involves complications, one cannot
completely avoid it. This is because many organizations are expected to exchange
documents more often than other media types such as image, audio, video, etc. Hence
in such environment depending on other media types, that are scarcely used, to
perform covert communication will not be beneficial. Besides, the involvement of
smaller file size makes text document to require low bandwidth during
communication [41,81].

Further exploration demonstrated that the existing techniques consider secret
message either as characters [78] or bits [66]. Techniques that consider the secret

message as characters have the advantage of embedding them directly and thereby

10

Chapter 1: Introduction

achieve 8-bits/distortion (each character in a file is represented by single byte [82]).
But these techniques suffer from either wasting the available embedding space or
generating meaningless stego documents. Whereas, techniques that consider the secret
message as bits manage to utilize the embedding space efficiently, but suffers from
low bits/distortion.

This shows that no existing method, that generates a meaningful stego
document, utilizes the available embedding space efficiently and achieves high
bits/distortion. As a result, embedding secrets in smaller size text document is a
challenging task.

Despite this limitation, the advantage of wusing text document for
steganography and the advantage associated in transmitting it motivated us to take up
the problem of developing newer text steganographic methods. This forms the basis

of work to be carried out in the thesis.

1.10 Objectives of the Thesis

Text stegnography is the focus of the present study and objective of the
thesis is:
= Identify the possibilities to achieve maximum number of bits per distortion
= Utilize the available embedding space in efficient manner
*= Design and develop a method that achieves both high embedding capacity
and bits/distortion, while maintaining meaningful stego document
® Design and develop a method that embeds larger message, like multimedia

data, in smaller size documents

11

Chapter 1: Introduction

1.11 Contributions of the Thesis

A summary of the contributions made, based on the work carried out, in the

thesis is given below:

(i)

(i)

(iii)

(iv)

(v)

A brief discussion on the font attributes of various word processors and the
possibilities to employ them for steganography are explained and
demonstrated

Novel techniques that embed text content and binary data, with high
embedding capacity and bits/distortion, are designed and developed

The requirement of larger cover document to embed multimedia data, like
image, audio, video, etc., 1s highlighted with a case study. The possibility to
reduce the size requirement through vector formats is demonstrated

A custom defined format to represent an image with lesser number of bits is
described and developed

A novel method that embeds images along with their structure, to support

error correction, is designed and developed

1.12 Organization of the Thesis

content

Remaining part of the thesis is organized into six chapters. The details of the
in each chapter are:

Chapter 2 presents a survey on existing text steganographic techniques
Chapter 3 presents a brief description on the font attributes of various word
processor documents and analyses them from a steganographic perspective
Chapter 4 presents a novel character-level embedding technique that was

developed to embed text content inside Microsoft Word documents

12

Chapter 1: Introduction

Chapter 5 presents the extension of the developed character-level technique
that embeds binary data like image, audio, video, etc.

Chapter 6 presents a novel method that was developed to represent images in
reduced size and embed them with in-built error handling capabilities

Chapter 7 provides a brief summary of the investigations and conclusion

made towards the thesis

13

CHAPTER 2

LITERATURE SURVEY

In this chapter, the text steganographic techniques that are available in the
literature are summarized. The methods are categorized based on the nature of
embedding. It also discusses the merits and demerits of each of the methods in some
detail. A comparison on the embedding capacity and number of bits embedded per

distortion, for each of the methods, is provided.

2.1 Introduction

As discussed in the introduction (Chapter 1), embedding secret information
inside text documents is considered to be harder, when compared with other cover
types [74,75]. Existing techniques mostly rely on the properties of cover
document [83], properties of characters [41,84], properties of languages [85], etc., to
embed the secrets. As a result, the embedding methodologies of these techniques are
not applicable to all the characters, words or languages. Hence, the overall embedding
capacity of such methods is relatively less and these aspects are discussed below in

some detail.

2.2 Classification of Text Steganography

Embedding strategy of the existing techniques can be broadly classified into
three categories as character-level, bit-level and mixed-type embedding techniques
(details are shown in Fig. 2.1). First category, character-level embedding technique
(CLET), considers the secret message as a string of characters and uses them

accordingly [78].

15

Chapter 2: Literature Survey

Text steganography

v

v

Character-level Bit-level Mixed-type
embedding embedding embedding
v l ¥ e QGenerating
summar
Cover Document Cover Document _ Y
_Required Not Required
e Character e Null cipher
marking e Missing letter
e Mistyping puzzle
e Hiding data in
wordlist
v v v v
Linguistic method Alignment White spacing Feature-based
e Semantic modification Inter-word embedding
method e Line spacing e Moving “The
* Synonym shifting Inter-sentence Dot” in
substitution e Word spacing characters
= Spelling of shifting End-of-line e Exploiting the
words spacing structure of
. characters
e Syntactic Inter-paragraph)
method spacing e Reversing/Re
. b moving the
UniSpaC diacritics
in/from
characters
e “Change
Tracking”
technique

Figure 2.1 Classification of the existing text steganographic techniques

Second category, bit-level embedding technique, considers the secret message
as a string of binary bits and consecutively embeds them inside the cover
document [66]. Third category, mixed-type embedding technique, is a mixture of the
character-level and bit-level embedding techniques. It considers the secret message as
a string of binary bits and converts them into a string of characters through mapping.

Subsequently, the method embeds the mapped characters inside the cover

16

Chapter 2: Literature Survey

document [86]. All these categories and their respective sub-categories are described

below in some detail.

2.2.1 Character-Level Embedding Technique (CLET)

Character-level embedding technique (CLET) directly uses the string of
characters and the embedding strategy of this technique can further be classified into
two categories as:

A. Cover Document Required (CDR)
B. Cover Document Not Required (CDNR)

These techniques are discussed below.

A.Cover_Document Required (CDR)

As the name implies, Cover Document Required (CDR) techniques need a
cover document. It embeds the string of secret characters, serially, by creating

distortions in the cover document. Character marking and mistyping are used for this

purpose.

Character Marking [62,87-89]

This technique searches for the occurrence of secret characters in the cover
document, serially, and marks the identical characters to embed them. It exploits the
properties of fonts, like bold, italic, underline, size, style, etc., to mark the characters
in the cover document. The receiver extracts the secret message by identifying and

grouping the marked characters together (see Example 2.1).

17

Chapter 2: Literature Survey

Example 2.1:

Cover work: Techniques like cryptography do not ensure the secrecy.

Generated stego work: Techniques like cryptography do not ensure the

secrecy.

Embedded secret: secret

Mistyping

This technique embeds the secret characters in the cover document, serially,
by intentionally creating spelling mistakes [62,90,91] or by creating changes in the
position of characters [87]. That is, placing the characters slightly over or under the
baseline (the imaginary line over which all the characters of a line are placed is called
baseline [92]). To extract the hidden message, the receiver has to identify and group
the original characters of the misspelled word or the misplaced characters

(see Example 2.2).

Example 2.2:

Cover work: He jumped off the boat.
Generated stego work: He dumped off the boat.

Embedded secret character: j

Discussion on CDR Techniques

As the embedding takes place at character-level, these methods embed
8-bits/distortion. This helps to reduce the number of distortions that are required to

embed the secret which is the advantage of these methods.

18

Chapter 2: Literature Survey

On the downside, these techniques are not case-sensitive. Also, they will
succeed, only, when all the characters in the secret message are present in the cover
document specifically in that order. But, the occurrence frequencies of characters in
English text are not uniform (refer Table 2.1). This makes the embedding probabilities
of characters non-uniform, and results in the wastage of cover characters (embedding

space) while embedding low occurring characters.

Table 2.1 Occurrence frequencies of alphabets in English text [38]

Letter’ E|T|A|O|I |N|S|H|R|D|L|C]|U
Frequency | 12.7 [9.1 | 82 | 75|70 (67|63 6.1 | 6.0 | 43 |40 |28 |28
Letter | M |W| F | G|Y |P|B|V | K/ J Q/X/Z
Frequency | 2.4 [23[22(2020(19]15]|1.0]0.08]0.02 0.01

* — not case-sensitive

In addition, making perceptible alterations for marking the characters or creating
several spelling mistakes can draw attention. Hence, these methods can be used,
stealthily, only when the amount of secret information to be embedded is very small
as compared with the size of cover document. This non-uniformity/
perceptible-alterations make/force the embedding capacity of these methods to be

low.

B. Cover Document Not Required (CDNR)

Cover Document Not Required (CDNR) techniques do not use a cover
document. They generate stego documents, directly, based on the secret. Null cipher,
missing letter puzzle and hiding data in wordlist are some of the CDNR techniques

which are described below.

19

Chapter 2: Literature Survey

Null Cipher [66,93]

This technique generates words or sentences, directly, based on the secret
characters. It generates them in such a way that the particular position of a letter from
each word (say second letter from each word) or sentence or paragraph represents the
secret character (see Example 2.3). This method is complicated because the generated
stego work should be meaningful and, also, inter-connect the sentences. Hence, it

involves manual intervention and requires an experienced person to perform the task.

Example 2.3:

Generated stego work (from [66]): Apparently neutral’s protest is
thoroughly discounted and ignored. Islam hard hit. Blockade issue affects

pretext for embargo on by-products, ejecting suets and vegetable oils.

Embedded secret (considering the second character from each word):

Pershing sails from NY June 1.

Missing Letter Puzzle [78]

This technique generates a list of words, of length between six and fifteen (not
including space), as a stego work. It uses the three-digit decimal value associated with
each secret character to generate a word. It uses the middle digit of the decimal value
to find the length of the word. Then, based on the last digit of the decimal value, it
replaces one or more character(s) of the generated word with question mark and
provides a hint. This makes the generated stego work to disguise like a puzzle
(refer Fig. 2.2).

The length of each word along with the presence of hint, position and number
of question marks together represent the embedded character. A drawback of this

method is that the communication of a list of words with special character, like

20

Chapter 2: Literature Survey

question mark, can attract attention. In addition, this method cannot be used in all

scenarios, like organizations, as it tries to disguise like a puzzle.

Secret message: Secretdata
Generated stego work:
La?ender

Cheiran?hus

Sunflowe?

ntirrhinum

Gillyflo?er

Schiz?nthus

Xeranthem?m

Helleb?re

?oneysuckle

Digita?is

Figure 2.2 Sample input and output of missing letter puzzle technique

Hiding Data in Wordlist [78]

Similar to missing letter puzzle, this technique also generates a list of words of
length between six and fifteen (refer Fig. 2.3). This method uses the three-digit
decimal value associated with each secret character to generate a word. It uses the
sum of digits in the decimal value to decide the first character and the middle digit of
the decimal value to find the length of each word. Though this method avoids the
usage of question mark and hint, it still generates a list of unrelated words which can

draw attention.

Discussion on CDNR Techniques

Similar to CDR techniques, these techniques also embed 8-bits/distortion. But

one advantage of these methods over CDR is that they achieve a higher embedding

21

Chapter 2: Literature Survey

capacity by generating the stego document directly. On the downside, the generation
of each word or sentence depends on each secret character. Hence, there is no

guarantee that the generated stego work would be related unless performed manually.

Secret message: Secretdata
Generated stego work:
Kumakani

Bellflower

Rudbeckia
Forgetmenot
Butterwort
Hippeastrum
Agapanthus

Portulaca
Honeysuckle

Pyrethrum

Figure 2.3 Sample input and output of hiding data in wordlist technique

2.2.2 Bit-Level Embedding Technique

This method considers secret message as a string of binary bits and embeds
them accordingly. Based on the type of embedding, it is further classified into four
categories as:

A. Linguistic method

B. Alignment modification
C. White spacing

D. Feature-based embedding

These techniques are discussed below.

22

Chapter 2: Literature Survey

A. Linguistic Method

This method embeds secrets by exploiting the flexibility of languages.

Semantic and syntactic are the methods used in linguistic method.

Semantic Method

Semantic method exploits the flexibility in the choice of words to embed one
bit at a time. That is, 1-bit/distortion. It embeds, a bit, by replacing one word with

another without altering the original meaning.

o Synonym Substitution [90,94,95]

This method embeds a bit by substituting a word with its synonym
(refer Table 2.2). Due to this, both the sender and receiver must have the complete list
of words and their respective synonyms for embedding and extraction process
respectively. It substitutes the first synonym to embed the bit “0” and the other to
embed the bit “1”. This method has two major drawbacks such as:
(1) the substituted synonym may not suit the sentence [90,96]

(i) the generated stego work may not match the author’s narration style

Table 2.2 Sample words and the respective synonyms

Words Synonyms
Bit 0 Bit 1
Leave Depart Go away
Subsequent Successive Later
Port Harbour Dock
Consequence Result Effect

23

Chapter 2: Literature Survey

o Spelling of Words [85]

Some words have different spellings in American and British English
(refer Table 2.3). This method exploits this variation to embed the bits secretly. It
represents a word with one spelling to embed the bit “0” and the other to embed the
bit “1”. Since this method can be applied only to a particular set of words, which have
different spellings, the embedding capacity of this method is low. In addition, it leaves
clues to a third party, as the generated stego work will contain a mixture of spelling

styles [96].

Table 2.3 Sample United States and United Kingdom spellings [97]

United Kingdom spelling United States spelling
Ageing Aging
Colour Color
Colonise Colonize
Computerise Computerize
Syntactic Method

This method exploits the syntax of sentences to embed the bits secretly. In
English, the occurrence of the punctuation mark, like comma, becomes optional in
some cases [94]. For example, the phrases, “Milk, bread, and butter”” and “Milk, bread
and butter” both convey the same [98]. This method explores this flexibility to embed
the secret bits. The presence of a comma embeds the bit ‘0’ and the vice-versa embeds
the bit ‘1°. However, this method requires utmost care as the improper use of such

punctuations can draw attention.

24

Chapter 2: Literature Survey

B. Alignment Modification

As the name implies, this method alters the alignment of text to embed one bit
at a time. That is, 1-bit/distortion. Line and word shifting are the techniques used in

alignment modification method.

Line Shifting [87,99]

This technique shifts a line up or down to embed the bit 0 or 1 respectively. It
considers three consecutive lines together as a group and marks a line only if all the
lines in the considered group are sufficiently long. In each group, it shifts the middle
line alone and leaves the other two neighbor lines undisturbed (see Example 2.4).
During the decoding process, it uses these neighbor lines to check whether the middle
line has been shifted or not. Hence, this method requires minimum three lines to

embed one bit of information.

Example 2.4:

Cover work (taken from [66]):
Apparently neutral’s protest is thoroughly discounted and ignored.
Islam hard hit. Blockade issue affects pretext for embargo on
by-products. Apparently neutral’s protest is thoroughly discounted.
Stego work (afier embedding the bit “1”):
Apparently neutral’s protest is thoroughly discounted and ignored.

Islam hard hit. Blockade issue affects pretext for embargo on

by-products. Apparently neutral’s protest is thoroughly discounted.

25

Chapter 2: Literature Survey

Word Shifting [87,99]

This method is similar to the line shifting technique mentioned above. The
only difference between these two techniques is that, instead of considering lines, this
method uses words to embed the bits. It partitions the words in each line into groups,
each consisting of three words. Keeping the first and last word in each group constant,
it shifts the middle word left to embed the bit “0” or right to embed the bit “1”
(refer Fig. 2.4). It should be noted that, the embedding capacity of this method is

better than the line shifting method as it can embed 1-bit/3-words.

|
How are you. Ii am fine.
How iare you. Ii am fine.
- l—

Figure 2.4 Example for word shifting

C. White Spacing

In a typical text document, white spaces are present in between words,

sentences, paragraphs and at the end of lines (refer Fig. 2.5). This method exploits

Apparently neutral’s protest is thoroughly discounted and ignored.

Islam hard hit. Blockade issue affects End-of-line spacing (EoL)

pretext for embargo on by-products, ejecting suets and vegetable oils.

Inter-paragraph spacing

Apparently neutral’s protest is thoroughly discounted and ignored.

Islam hard hit|Blockade issue affects pretext f(}lembargdlin EoL

by-products, ¢jecting suets and vegetable oils.

Inter-sentence spacing Inter-character spacing

Figure 2.5 lllustration of the white spacing’s in text document [66]

26

Chapter 2: Literature Survey

these spaces to embed the bits secretly. Inter-word spacing, inter-sentence spacing,
end-of-line spacing, inter-paragraph spacing and Unispach are the techniques used in

white spacing method.

Inter-Word Spacing [76,100,101]

This method uses the white space between words to embed a secret bit. It
injects an extra space character to embed the bit “1” or leaves undisturbed to represent
the bit “0” (see Example 2.5). The embedding capacity of this method is higher than

the word shifting method as the former can embed 1-bit/2-words.

Example 2.5:
Cover work': Hai-how-are-you.
Stego work : Hai-huw--are-wu.
Embedded secret: 010

"For understanding purpose, the white spaces in the text are

“ o

highlighted using the character “.”.
Inter-Sentence Spacing [76]

This method exploits the white space between two sentences to embed a secret
bit. It injects an extra space character to embed the bit “1” and leaves it undisturbed to
represent the bit “0”. Since the number of sentences in a typical paragraph is less
(average number of words in a sentence is between 15 and 20 [102] and average
number of words in a paragraph is 150 [103]), this method suffers from low
embedding capacity. However, this method performs better than the line shifting

method, as the latter requires minimum three lines to embed one bit of information.

27

Chapter 2: Literature Survey

End-of-Line Spacing [76]

In a non-justified text, the presence of white space at the end of a line is very
common. This method exploits this white space and injects space characters in it to
embed the bits secretly (refer Fig. 2.6). It injects characters in the power of two to
match the number of bit possibilities. That is, two characters to embed one bit (either

“0” or “17), four characters to embed two bits (00, 01, 10, 11), and so on

(refer Table 2.4).
c|lr|ly|p|T|O|G|R]|A H|1]|C ECHNIQUE|S|
DO oT E[N|[S|U|R|E SIE|[C[RIE[C]|Y

(@)
clrR|Y|P|T|O|G|R|A|P|H]|I]|C E|C|H|N|IT|Q|U|E]|S
DO N|[Oo|[T E[N|[S|U[R|E SIE[CIRIE[C]|Y

(b)
Figure 2.6 Example for end-of-line spacing [76]: (a) Ordinary text;

(b) White space encoded text

Table 2.4 Number of bit and space character combinations

Number of Number of Possible bits Number of space
bits possibilities characters to be injected

1 2 0 1

1 2

2 4 00 1

01 2

10 3

11 4

Inter-Paragraph Spacing [101,104]

This method exploits the white space between two paragraphs to embed the
bits. It injects space and tab characters in this white space to embed the bits “0” and

“1” respectively.

28

Chapter 2: Literature Survey

UniSpaCh [66]

This technique is an improved version of the white spacing techniques that are
mentioned above. It injects Unicode space characters like Punctuation, Thin,
Six-per-Em, and Hair in inter-sentence, inter-word, inter-paragraph and end-of-line
spacings’ to embed 2-bits at a time (refer Fig. 2.7 (a)). The advantage of these
characters over the ordinary space character is that the width of these characters is too
small (refer Fig. 2.7 (b)). Hence more characters can be injected which increases its

embedding capacity.

i z ;
The government®had"become ext remely corruptl onl alll mvels,l Symbol Characters
Hair

leading” to"widespread deterioratmr] ofl the[empire, ”‘ Hn UJIW ‘lHll‘l

MO0 A 0O 0O OO0 A0 : JEE

Punctuation

During” the“reign nfl thcj pcmx‘.timtcl Hnnl cmpc.ror,l Empcrurl I.inq,l | Thin

the"Yellow... Normal

(a) (b)

Figure 2.7 Example for UniSpaCh technique: (a) Unicode space characters
(color-coded for understanding purpose) [66]; (b) Size of Unicode
and normal space characters [66]

Discussion on White Spacing Methods

Though the methods are successful in injecting characters in white spaces,
unnoticeably, a simple matching analysis on the number of space and tab characters
with the number of words and paragraphs reveals the presence of secret message. In
addition, except UniSpaCh, all methods are vulnerable when “Show paragraph marks
and other hidden formatting symbols™ button is selected [66]. When this is done, the

ordinary space character is visible as “.” and tab character is visible as “—”, which

helps to identify the intentionally injected characters.

29

Chapter 2: Literature Survey

D. Feature-Based Embedding

This method explores the features of characters or document formats to embed
the secret bits. A drawback of these methods is that they are restricted either to a
particular language or document format. Moving “The Dot in characters, exploiting
the structure of characters, reversing/removing the diacritics in/from characters,

“Change Tracking” technique are the methods used in feature-based embedding.

Moving “The Dot” in Characters [105]

Similar to the lower-case letters of the English alphabets “i” and “j”, Arabic
and Persian alphabets also have dots. In Persian language, out of the 32 alphabets
eighteen have dots (three letters have two points each, five letters have three points
each and ten letters have one point each) and in Arabic language, out of the 28
alphabets fifteen have dots [105]. This method exploits these dots to embed the bits
secretly. It moves the dot upward to embed the bit “1” or leaves it undisturbed to

represent the bit “0” (refer Fig. 2.8).

Figure 2.8 Vertical displacement of Dot in the Persian character Noon [105]

Exploiting the Structure of Characters [41,84]

In CJK (Chinese, Japanese and Korean) characters, there are totally 20,902
characters [84]. Of these characters, nearly 14,571 characters have left-right (L-R)

structure [84] and nearly 4700 characters have up-down (U-D) structure [41]. It is

30

Chapter 2: Literature Survey

possible to generate most of these L-R and U-D characters by combining certain

characters from 580 basic components [41] (refer Figures 2.9 (a) and (b)).

i
-
E]

a3 il

b
=
o

d18

=
=4
=
=

WM G| 244 1159 4 = 444159
23330 J£:369 it = 330ud369

' T
—
o, =
L
—

:
IO N,
s 23
S

=
-4

A
=, Nrs

(=3

o, S
. S, OV,
T

iy |
LSRR I
AR R AL
EE ST EE LT
i
7

=
N

Figure 2.9 Exploiting the structure of characters: (a) Basic components of
Chinese, Japanese and Korean characters [84];
(b) Representation of characters using the basic components [41]

This method exploits this flexibility and partitions the available characters into
three-character sets namely L-R structured character set, U-D structured character set
and neither L-R nor U-D character set. To embed the secret bits, the method first
scans the document serially until it identifies any of the
L-R or U-D structured characters. If the bit to be embedded is “0”, then it leaves the
encountered character undisturbed. Else, it replaces the character with the two basic
components and alters the spacing between them. This will make it to disguise like a

single character and avoids attention (refer Fig. 2.9 (b)).

Reversing/Removing the Diacritics in/from Characters [94,100]

Arabic or Urdu language have many diacritics of which eight are most

common (refer Fig. 2.10 (a)). It uses these diacritics to alter the pronunciation of

31

Chapter 2: Literature Survey

words [106] and the usage of these diacritics in written text is optional
(refer Fig. 2.10 (b)). There exist two methods which exploits this flexibility to embed

the secret bits.

Fatha -1 Kasrah - —
= Fatha N
Dhammah 2 Sukkon : w Dhammah
Shaddah = | Tanween Fath z | &
Tanween Kasr . | Tanween Dham 2 || Kasra >
¥ 11\7 /
(a) (b)
A BT
Regular & ’ e
Fatha &
€,
(c)

Figure 2.10 Exploitation of the Arabic or Urdu characters: (a) Diacritics of Arabic
language [107]; (b) Representation of Araabs; (c) Usage of the

regular and reverse Fatha [94]

One method [106] uses the diacritic Fatha to represent the bit “1” and uses the
other seven diacritics to represent the bit “0”. Hence, to embed the bit “17, it scans the
cover document serially and removes all other diacritics till it encounters the diacritic
Fatha. Similarly to embed the bit “0”, it removes all the diacritic Fatha till it
encounters any one of the other seven diacritics.

Another method [94] reverses the diacritic Fatha to embed the bit “1” and
leaves it undisturbed to represent the bit “0” (refer Fig. 2.10 (¢)). In both the methods,
to extract the embedded secret, the receiver scans the document serially and identifies

the equivalent bits for the used diacritics.

32

Chapter 2: Literature Survey

“Change Tracking” Technique [83]

Some word processors like Microsoft Word facilitate the user to keep track of
the modifications that are performed in the document. This technique explores this
feature to embed the bits secretly. It first scans the chosen cover document and
identifies the possible degenerations, like misspelling, typos, synonym replacement,
etc., that can be performed in it. It then recognizes the typical occurrence probabilities
of each of the possible degeneration and creates a Huffman tree [108] using such
probabilities.

Next the sender purposefully degenerates the document, based on the secret
bit, by inserting the corresponding mistake from the Huffman tree. Then with the help
of the available commenting tools, the sender corrects the mistakes by himself and
sends it to the receiver. Thus, the generated stego work contains both the degenerated
and corrected texts.

Therefore, to a casual observer, the stego work will look like an experienced
person correcting the mistakes of a novice (refer Fig. 2.11). Using the
above-mentioned facility, the receiver extracts the hidden bits by recognizing the
deliberately created mistakes and the choice made from the Huffman tree. This
method embeds an average of 0.33-bits/word and the number of bits embedded per

distortion depends upon the generated Huffman tree of each of the degeneration.

In Table 2, the PSNR values of the images recovered with right
keys are all -1, whichthat mean that the MSER values are all zero. That is,
the recovered images and the original images are exactly the same. And the
PSNR values of the images recovered with ineerreetwrong keys are smaller
theathan 20dB, which displayshow that the recovery results are still very
difficult from the original ones dedue to the noise survivinginterferenee
hwing-in the watermark areas of the healedrecovered images.

Figure 2.11 Sample output of the “Change Tracking” technique [83]

33

Chapter 2: Literature Survey

2.2.3 Mixed-Type Embedding Technique

This method is a mixture of the character-level and bit-level embedding
techniques. Like bit-level embedding, it considers the secret message as a string of
binary bits. Tt then converts these bits to characters using mapping. Finally, like
character-level embedding, it embeds these mapped characters inside the cover
document. Generating summary is the method used in mixed-type embedding

technique.

Generating Summary [86]

This technique embeds 2-bits at a time. It chooses sentences from the cover
work, based on the secret bits, to generate the stego work. To do so, it first partitions
the 26 English alphabets into four groups using the reflection symmetry property

(refer Table 2.5). It then maps these four groups to the four possible bit pairs.

Table 2.5 Reflection symmetry properties of English alphabets [86]

Group no. Reflection property Alphabets Secret bits

1 Reflection property followed C,F,G,J,L,N,P,Q,R,Z 00
along neither axis

2 Reflection property followed B,D,E, K, S 01
along horizontal axis

3 Reflection property followed AMT UV, WY 10
along vertical axis

4 Reflection property followed H,LLO,X 11

along both axis

Depending on each bit pair, it selects sentences from the cover work whose
first alphabet (not an article) matches with any one of the alphabets of the respective
group. This makes the generated stego work to look like a summary of the used cover

work. To extract the embedded bits, the receiver has to identify the reflection

34

Chapter 2: Literature Survey

symmetry property of the first alphabet of each sentence. The major drawback of this

method is that it requires one complete sentence to embed 2-bits of information.

2.3 Comparison of the Existing Methods

The comparison of the existing methods is provided in Table 2.6. The methods
are compared based on their embedding capacity and the number of bits embedded
per distortion. For calculation purpose, it has been considered that the average length
of a word is 4.50 (not including space) [109], average number of characters in a line is
60 (including space) [110], average number of words in a sentence is 15 and average
number of sentences per paragraph (150 words per paragraph [103]) is 10 for English
language.

From Table 2.6 it can be seen that, CLET techniques (both CDR and CDNR
techniques) achieve the highest bits/distortion, followed by end-of-line spacing,
UniSpaCh and generating summary. Also, CDNR techniques achieve the highest
embedding capacity, followed by UniSpaCh. This shows that, only, CDNR techniques
achieve both high embedding capacity and bits/distortion. However, they cannot
guarantee a meaningful stego document. This drawback makes UniSpaCh the best
alternative available to general users. Hence the same has been considered as a
benchmark for comparing the methods that are developed and presented in upcoming

chapters.

35

Chapter 2: Literature Survey

Table 2.6 Comparison of the existing techniques

Technique Type of Bits/distortion Embedding capacity = Reference
embedding (approximate) (approximate)
Character Character- 8 Low (due to the non- [62,87-89]
marking level uniform occurrence
of characters)
Mistyping Character- 8 Low (due to the non- [62,87,90,91]
level uniform occurrence
of characters)
Null cipher Character- 8 8-bits/5.5-cc [66,93]
level
Missing letter Character- 8 8-bits/11.5-cc [78]
puzzle level
Hiding data in Character- 8 8-bits/11.5-cc [78]
wordlist level
Synonym Bit-level 1 1-bit/5.5-cc” [90,94,95]
substitution
Spelling of words Bit-level 1 1-bit/5.5-cc” [85]
Line shifting Bit-level 1 1-bit/180-cc [87,99]
Word shifting Bit-level 1 1-bit/16.5-cc [87,99]
Inter-word Bit-level 1 1-bit/5.5-cc [76,100,101]
spacing
Inter-sentence Bit-level 1 1-bit/83.5-cc [76]
spacing
End-of-line Bit-level 2 2-bits/56-cc [76]
spacing
UniSpaCh Bit-level 2 1.046-bits/cc [66]
Moving “The Bit-level 1 1-bit/cc’ [105]
Dot” in
characters
Exploiting the Bit-level 1 0.5-bits/cc [41,84]
structure of
characters
Reversing/Remo Bit-level 1 1-bit/cc’ [94,106]
ving the diacritics
in/from
characters
“Change Bit-level Variable due to 0.33-bits/5.5-cc [83]
Tracking” Huffman tree
technique
Generating Mixed-type 2 2-bits/83.5-cc [86]
summary

* — represents the assumption that any character or word can be exploited by the
method, cc — cover-character

36

Chapter 2: Literature Survey

2.4 Summary

Existing text steganographic methods are described briefly, and the merits and
demerits of each of the methods are discussed in some detail. The methods are
compared based on their embedding capacity and bits/distortion. It was noticed that,
apart from the methods that generate the stego document directly, no existing method
was found to achieve both high bits/distortion as well as high embedding capacity.

Due to this, embedding secret information inside text document is difficult as
the size of a typical cover document is limited. Situation gets worse, while embedding
multimedia information like image, audio, video, etc., as it is of typically in the order
of megabytes. Hence, there is a need for formulating a method with high embedding
capacity and bits/distortion.

The work carried out as part of this thesis aims to achieve the same. After
detailed analysis, it was understood that this can be achieved by designing a method
that:

(1) embeds maximum number of data bits in a distortion

(i1) utilizes the available embedding space in an efficient manner
Bearing this in mind, in the present work, various word processors were studied to
identify the suitable features that can carry a large number of bits per distortion. Three
novel methods that utilize the identified features and achieve high embedding

capacity have been developed and applied.

37

CHAPTER 3

EXPLORING THE FONT ATTRIBUTES OF WORD
PROCESSOR DOCUMENTS

This chapter discusses the font attributes of various word processor
documents and analyses them from a steganographic perspective. It, also, presents
the various ways of employing these attributes for steganography, and categorization
of them based on their usability and imperceptibility. A comparison of the selected
attributes is performed to identify the best word processor, suitable for

steganographic purpose.

3.1 Introduction

As mentioned in Chapter 1 (Fig. 1.5), text steganography considers both plain
text and word processor documents as text document. However, differences exist
between them. Plain text documents can contain only ASCII (American Standard
Code for Information Interchange) characters [82] (not graphics) and supports fewer
formatting features or attributes like font name, font style and font size. These make it
advantageous to be independent of computer architectures. As a result of the same, a
plain text document once created can be opened in any operating system
seamlessly [82]. However, less formatting features make the possibility to embed
secrets inside plain text document a complex task.

Word processors, on the other hand, can contain texts, images, tables, etc., and
provide advanced formatting attributes like underline, font color, etc. [111,112].
These attributes are often stored as metadata and are applied over the underlying plain

text content, to create visual effects. Hence these attributes expect the corresponding

39

Chapter 3: Exploring the Font Attributes of Word Processor Documents

document to be interpreted correctly [113]. This makes the document to be
compatible only with the corresponding program or operating system [114]
(refer Table 3.1).

Table 3.1 Details of word processors

Word processor Owned by Copyright Operating Initial Reference

status system release
Microsoft Word Microsoft Proprietary Windows 1983 [115]
LibreOffice The Document Open Linux, 2011 [116]
Foundation source Windows, Mac
OpenOffice Apache Open Linux, 2012 [117]
source Windows, Mac
WordPerfect Corel Proprietary Windows 1996 [118,119]

As mentioned, word processors have a rich set of font attributes, each
performing a particular task. A list of major attributes, that is present in word
processors like Microsoft (MS) Word (2007 and 2010), LibreOffice (LO), OpenOffice
(OF) and WordPerfect (WP) are presented in Tables 3.2 (A) and (B). The availability
of these attributes facilitates to embed secrets inside word processor documents in an
efficient manner.

In the case, however, of WP, any formatting related modifications performed
in a WP document can be viewed readily by selecting View > Reveal Codes
(refer Fig. 3.1). This single feature makes WP not suitable for steganography. But, as
features can be added or removed at later point of time, the present study considers
WP for further discussion with an expectation that this particular feature will be

removed in future versions.

Figure 3.1 WordPerfect revealing the formatting information

40

Table 3.2 (A) List of attributes in word processors: part 1

Font attributes MS Word WP LO & OF Font attributes MS Word WP LO & OF
2007 & 2010 2007 & 2010
AllCaps/Capitals v NA v Engrave v NA v
Animation v NA NA Hidden v v v
Blinking NA NA 4 Highlight & v 4
Bold/BoldBi v 4 v HighlightColor B v v
Bold StrikeThrough NA NA &I Italic/ItalicBi v v v
Border v v v Kerning 4 4 &
(Character) (Paragraph) (Character)
BorderColor v v v Ligatures v NA NA
(Character) (Paragraph) (Character)
(2010)
ColorIndex/ColorIndexBi/Fo 4 4 v LowerCase x x v
ntColor
DoubleStrikeThrough & NA &I Name/NameAscii/NameBi/NameFa v x v
rEast/NameOther
Duplicate/FormatPainter/Qui x x x NumberForms v NA NA
ckFormat/Formatpaintbrush (2010)
Emboss v NA v NumberSpacing v NA NA
(2010)
EmphasisMark v NA NA Outline v v v

MS — Microsoft; WP — WordPerfect; LO — LibreOffice; OF — OpenOffice; v~ — represents the presence of attribute and suitability for
steganography; X — represents the presence of attribute but not suitable for steganography (performs perceptible modifications);
X — represents the presence of attribute but cannot be exploited; NA — represents the absence of attribute

41

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Table 3.2 (B) List of attributes in word processors: part 2

Font Attributes MS Word WP LO &

2007 & 2010 OF
Overlining NA NA v
OverlineColor NA NA v
Position v v

RedLine NA v NA
Rotation NA NA
Scaling v NA v
Shading v v v
ShadingColor/BackgroundColor v x v
Shadow v v v
Size/SizeBi v v v
SmallCaps/SmallCapitals v v v
Spacing v v v
StrikeThrough/SingleStrikeThrough/StrikeOut
StrikeThrough with X NA NA v
StrikeThrough with / NA NA v

StylisticSet v NA NA

(2010)

Subscript 4 v
Superscript 4 v
Title/Capitalize each Word/Initial Capitals x x v
Underline 4 v v
UnderlineColor v v v
UpperCase x x x

MS — Microsoft;, WP — WordPerfect; LO — LibreOffice; OF — OpenOffice;
v’ — represents the presence of attribute and suitability for steganography;
— represents the presence of attribute but not suitable for steganography
(performs perceptible modifications);, % — represents the presence of attribute but
cannot be exploited; NA — represents the absence of attribute

From Tables 3.2 (A) and (B), it can be observed that most of the attributes are
common to all the processors. The details of these attributes and the various ways to
employ them for steganography are given in Section 3.2. For the convenience of

readers, hereafter, attributes having multiple names are represented using single name.

42

Chapter 3: Exploring the Font Attributes of Word Processor Documents

For example, attributes Duplicate/FormatPainter/QuickFormat/Formatpaintbrush are

represented using Duplicate.

3.2 Employing the Font Attributes for Steganography

Font attributes have a major role to play while displaying the characters. Each
attribute is responsible to produce certain visual effect. However, applying some
attributes on particular character(s) is ineffective. For example, applying the Bold
attribute on space character produces no visual effect. In addition, when the values of
certain attributes are varied between a certain range, it produces no noticeable effect.
For example, altering the least significant bits of the 24-bit Color attribute is
indistinguishable. In some cases, it is possible to replicate the effect of certain
attributes by carefully mixing the effects of other attributes. For example, making a
character superscript and lowering its position appropriately, will make it to appear
like a subscript character.

These characteristics are discussed below in detail.

AllCaps

AllCaps attribute is used to change the selected alphabets to uppercase.
However, applying this attribute on an already capitalized character or a non-alphabet
produces no effect. For example, HEEL99 — AllCaps attribute is set for the characters

first “E” and first “9”.

Animation

Animation attribute is used to produce visible animation effects on the selected
text. The various animation effects that could be produced are BlinkingBackground,
MarchingBlackAnts, MarchingRedAnts, LasVegasLights, Shimmer and SparkleText

43

Chapter 3: Exploring the Font Attributes of Word Processor Documents

(refer Fig. 3.2). However, when the Shimmer effect is applied on space character it

produces no visual effect.

MarchingBlackAnts
effectis applied on

BlinkingBackgound
effect is applied on
character “h™

SparkleText effect
is applied on
character “o”

space character

\°/

P e e e e e e R e O

W ¥y W ¥ el iV g
EEEE e e

+
2 -
a i
- -
b -
b -
ccccc

Shimmer effectis LasVegasLights MarchingRed Ants Shimmer effect is applied
applied on effect is applied effectis applied on on space character fno
character “H” on space character space character visual effect)
Figure 3.2 Exploitation of the Animation attribute
Blinking

Blinking attribute is used to create blinking effect on the selected text.

However, applying this attribute on space character produces no visual effect.

Bold, EmphasisMark, Italic, Outline, Position and Shadow

Bold attribute is used to make the selected text bold. For example, b.
EmphasisMark is used to represent stress on a particular character by using symbols
like Over Comma, Over Solid Circle, Over White Circle and Under Solid Circle
(refer Fig. 3.3). Italic attribute is used to make the selected text italic. For example, i.
Outline attribute is used to provide an outline to the selected text. For example, b.

Position attribute is used to lower or raise the selected text at point level (in

typography, a point is equivalent to 1/72 of an inch [120]). For example, b b { —

Represents the normal, raised and lowered characters. Shadow attribute is used to

44

Chapter 3: Exploring the Font Attributes of Word Processor Documents

create a shadow underneath the selected text. For example, g. Although, these
attributes create perceptible alterations on other characters, applying them on space

character produces no visible effect (see Example 3.1).

Example 3.1:
Bold attribute is applied || Outline attribute is applied Shadow attribute is
on space character (no on space character (no applied on space character
visual effect) visual effect) (no visual effect)

! o oo
Hai hell(; how are you. hereWWill you‘Come home tonight?

Italic attribute is applied on space Position of space character is raised
character (no visual effect) by 3 points (no visual effect)

Bold StrikeThrough, DoubeStrikeThrough and SingleStrikeThrough

Bold StrikeThrough strikes the selected text, boldly, once. DoubleStrike-
Through and SingleStrikeThrough attributes strikes the selected text twice and once
respectively. For example, Hai kew are yew. — DoubleStrikeThrough attribute is

applied to the word “how” and StrikeThrough attribute is applied to the word “you”.

Over Solid Over Over White White Circle attribute is
Circle Comma Circle applied on space character

DY P

HolTe
C O

AT RN

Over Solid Circle Over Comma Under Under Solid Circle

attribute is applied attribute is applied Solid attribute is applied on

on space character on space character Circle space character (no
(no visual effect) (no visual effect) visual effect)

Figure 3.3 Exploitation of the EmphasisMark attribute
45

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Border and BorderColor

Border attribute is used to highlight the selected text by setting a box around it.
Due to this, the spacing between the selected text and its neighbors gets altered. For
example, HHi — Border attribute is applied on the character “a”. BorderColor attribute
is used to specify the color in which the Border should be displayed. Setting the default
background color of the document to BorderColor, makes the Border invisible. When
this is done, altering the least significant (R, G, B) value of BorderColor attribute, also,
goes unnoticed on screen (but noticeable in hard copy). For example, Hai Hai — Border
attribute is applied on the second occurrence of “a” and the (R, G, B) value of

BorderColor attribute is set as (254, 254, 254).
Color

Color attribute is used to specify the color in which a particular character
should appear. It is represented by a 24-bit value using the format (R, G, B). The least
significant 1 or 2-bits of each R, G and B can be modified without creating any visual
difference (refer Fig. 3.4). Also, applying this attribute on space character produces no

visual effect.
Duplicate

Duplicate is used to copy the formatting of one text and apply it to another,

directly.

46

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Modified 2-bits of Modified 2-bits of
eachR, G and B eachR, G and B
(not recognizable) (not recognizable)

(AL aaa
YYX

Modified 3-bits of each Modified 3-bits of each R,
R, G and B (not G and B (recognizable in
recognizable) light colors)

Figure 3.4 Exploitation of the Color attribute

Emboss and Engrave

Emboss attribute is used to place the selected text slightly above the baseline
and apply shadow to the edges inward. For example, H. On the other hand, Engrave
attribute is used to place the selected text below the baseline and apply shadow to the
edges outwards. For example, B Though one cannot change the position of the
shadow (whether to fall inward or outward), it is possible to change the position of the
character up or down and make an embossed character to look like an engraved
character and vice versa. Finding such modified characters from a document
containing a large amount of such embossed or engraved characters is a difficult task

(refer Fig. 3.5). Also, applying these attributes on space character produces no effect.

47

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Engraved character made to
appear like Embossed character

Embossed Text: HOWeEVEr, However ba

enerved Tex: O the level legbl of

Embossed character made to
appear like Engraved character

Figure 3.5 Exploitation of the Emboss and Engrave attributes

Hidden

Hidden attribute is used to make the selected text invisible in a text document.
The hidden text can be made visible or printed by changing the settings. In MS Word,
hidden contents will be made visible by selecting Hidden text checkbox in Word
Options > Display > Always show these formatting marks on the screen
(see Example 3.2). In OF, it will be made visible by selecting View > Nonprinting

Characters. In WP, it will be made visible by selecting View > Hidden Text.

Example 3.2:

Text containing hidden contents:

Hai how are you. Where are you? Will you come home tonight?

Hidden contents made visible:

Hidden contents: My nameis Mr. X

Highlight and HighlightColor

Highlight attribute is used to highlight (mark) the selected text by changing the
background color. HighlightColor attribute is used to specify the color that should be

48

Chapter 3: Exploring the Font Attributes of Word Processor Documents

used for highlighting. Setting the default background color of the document to
HighlightColor, makes the highlighting invisible. When this is done, altering the least
significant (R, G, B) value of HighlightColor attribute, also, goes unnoticed on screen

(but noticeable in hard copy). The same is shown in Example 3.3.

Example 3.3:
Highlight attribute is applied and the (R, G, B) value Highlight attribute is
of HighlightColor attribute is set as (254,254,254) applied and the (R, G, B)
(no visible effect on screen) value Of HighlightColor
attribute is set as
(248,248,248)

<
Hello how are you

Highlight attribute is applied and the (R, G, B) value of
HighlightColor attribute is set as (252,252,252)

Kerning

Kerning attribute is used to alter the spacing between overlapping character
pairs like AV, WA, etc. In WP, this attribute allows to manually control the spacing
between characters by taking the kerning value as input. Hence, changing the value by
a 0.1 or 0.2 point does not produce noticeable effect.

Whereas in MS Word, this attribute automatically adjusts the space between
characters. But it allows to control whether the kerning effect should be produced or
not, even though the attribute is set. It does so, by taking the size of font as kerning
value, which can vary between 1 and 1638 points. The effect is produced only when
the specified value is lesser than or equal to the font size of the character. Hence,
setting a value greater than the character’s size will produce no effect. For example,
AV AV AV AV — The Kerning attribute is applied to the second and fourth pairs, and

the effect is made to produce for the second pair alone.

49

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Ligatures

Ligatures are letters that are merged together as one character and are mainly
used for calligraphic purpose [121,122]. There are four possible ligatures styles namely
Standard Only, Standard and Contextual, Historical and Discretionary, and All. These
styles produce visual effects only on a particular set of characters like fi, fl, ff, ffi, etc.
[122,123] (see Example 3.4). Applying this attribute on other character pairs produces
no effect. Also, applying this attribute on non-alphabets or non-neighbor characters

does not cause any visual difference.

Example 3.4:
DE:]CauIE : Di'ﬁ‘erent Difficult, Difﬁe—He“man.
Standard Dn[y 4 D{ﬂ%rmf. D{Jﬁcu“, Diﬂ:{e—He“man.

Standard and Contextual Diﬂ%rmh Di‘fﬁcu“, Dijﬁe—He“man.
Historical and Discreﬂonary: Dﬁerenf, Di_f_'ﬁcu.{[, Difﬁe—He“man.

All . Different, Difficult, Diffie-Hellman.

LowerCase

LowerCase attribute is used to change all the selected alphabets to lowercase.
But, applying this attribute on an already lowercase character or a non-alphabet

produces no effect (see Example 3.5).

50

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Example 3.5:
LowerCase attribute is applied LowerCase attribute is applied on characters
to the word “HELLO” “r” and “space” (no visual effect)

N [/\
Original text: Hai HELLO how are you.

Modified text: Hai hello how are you.

Name

Name attribute is used to specify font style, like Times New Roman, Calibri,
etc., that should be used to display the character. If the specified font style is not
present in the system, a default font style will be used to display that particular
character (in MS Word, the used default font style can be checked at Word options >
Advanced > Show document content > Font Substitutions). This attribute can take any
character as a font style. Hence, setting the secret characters itself as a font style will

go unnoticed.

NumberForms [124,125]

NumberForms attribute is used to alter the way the numbers are displayed in
text document. There are two possible styles namely Lining and Old-style. Lining style
numbers appear over the baseline with the tops and bottoms of each number line up
exactly. Old-style numbers look a little more uneven. That is, some letters fall below
the baseline, and some even change their shape (see Example 3.6). However, applying

this attribute on non-numerical characters produces no visual effect.

51

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Example 3.6:

Lining : 00112233445566778899

DH—S[}![E : 00112233445500778899

NumberSpacing [124,126]

NumberSpacing attribute is used to alter the way the numbers are displayed
inside a chart or table. There are two possible styles namely “Tabular” and
“Proportional”. Tabular numbers have exact width as one another and hence line up
perfectly in a vertical column of the table. Proportional numbers are more visually
pleasing, and work well for dates and phone numbers. However, applying this

attribute on non-numerical characters produces no visual effect.

Overlining and OverlineColor

Overlining attribute is used to insert a line (bar) over the selected text. There
are totally sixteen different styles of overline available. OverlineColor attribute is used
to specify the color that should be used to overline. Setting the default background
color of the document to OverlineColor, makes the overline invisible. When this is
done, altering the least significant (R, G, B) value of OverlineColor attribute, also,
goes unnoticed on screen (but noticeable in hard copy). The same is shown in

Example 3.7.

52

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Example 3.7:

Overlining attribute is applied and Overlining attribute is applied
the (R, G, B) value of OverlineColor and the (R, G, B) value of
attribute is set as (254, 254, 254) (no OverlineColor attribute is set

visible effect on screen) as (252, 252, 252)
N

Hello how are you.

Overlining attribute is applied and the
(R, G, B) value of OverlineColor
attribute is set as (248, 248, 248)

Redline

Redline attribute is used to change the font color of the selected text to red.

However, applying this attribute on space character produces no visual effect

(see Example 3.8).

Example 3.8:

Redline attribute is Redline attribute is applied on
applied to the word “how” space character (no visual effect)

~

Hai how are‘you.

Rotation

Rotation attribute is used to rotate the selected text by 90° or 270°

(see Example 3.9).

53

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Example 3.9:

Text rotated by 90° Text rotated by 270°

l

Hai helloh oware you.

Scaling

Scaling attribute is used to change the width of a character. The characters “O”
and “0” looks alike except their width. By using this attribute, it is possible to replace
“O” with “0” and vice versa. For example, 000000000 — The Scaling attribute is

applied to the fifth and sixth characters (from left).

Shading (WP)

Shading attribute in WP is used to alter the darkness of font color of the
selected text. The value of this attribute can be varied, at percentage level, between 1

and 100 (inclusive). Varying this value in a range of + 4 produces no observable

effects (refer Fig. 3.6).

Shading and ShadingColor (MS Word, LO & OF)

Shading attribute is used to change the background of each cell in a table.
ShadingColor attribute is used to specify the color that should be used for shading

(see Example 3.10).

Example 3.10:

Highlight attribute is applied on this
text

54

Chapter 3: Exploring the Font Attributes of Word Processor Documents

85 84 83 82 81 80
AAA AAA AAA
79 78 77 76 75 74
AAA AAA AAA
73 72 71 70 69 68
AAA AAA AAA
67 66 65 64 63 62
AAA AAA AAA

Figure 3.6 Exploitation of the Shading attribute in WordPerfect. Middle character
of each word has a default shading value of 75%, whereas the left and
right characters have varying values which are mentioned above each
character (in %)

However, when the Shading attribute is applied to texts, which are not in table,
it behaves like the attribute Highlight. For example, .i — Shading attribute is applied
on the character “H” and Highlight attribute is applied on the character “a”. Setting the
default background color of the document to ShadingColor, makes the shading
invisible. When this is done, altering the least significant (R, G, B) value of
ShadingColor attribute, also, goes unnoticed on screen (but noticeable in hard copy).

The same is shown in Example 3.11.

55

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Example 3.11:

Shading attribute is applied and the (R, G, Shading attribute is applied and the
B) value of ShadingColor is set as (254, (R, G, B) value of ShadingColor is
254, 254) (no visible effect on screen) set as (248, 248, 248)

p \ /
Hello how are you.

Shading attribute is applied and the (R, G, B)
value of ShadingColor is set as (252, 252, 252)

Size

Size attribute is used to specify the font size of a character. The character looks
alike even when the font size is altered by some points. For example, hello hello — The
character “h” in the second word is increased by 0.5 point. It should be mentioned that,
in MS Word the value can be altered at 0.5 point levels whereas in LO, OF and WP, it
can be varied at 0.1 point levels. This shows that LO, OF and WP facilitates more to

exploit this attribute, when compared with MS Word.

SmallCaps

SmallCaps attribute is used to change the selected alphabets to uppercase.
Hence, applying this attribute on non-alphabets produces no visual effect. Also, the
only difference between this attribute and AllCaps is that the font size of the former is
smaller than the latter. For example, H H — The first character is SmallCaps and the
second character is AllCaps. Hence, setting the SmallCaps attribute and increasing the

font size of a character will make it to appear like the effect of AllCaps. For example,
Yellow Yellow — The SmallCaps attribute of the second “Y™ is set and the font size is

increased by 2 points.

56

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Spacing

Similar to Kerning attribute, Spacing attribute is also used to alter the spacing
between two characters either by expanding or condensing (the difference between
them is that, in MS Word, Kerning attribute produces effect only on specific character
pairs). Since the spacing of characters are not uniform in a justified text, modifying the

document using this attribute will go unnoticed (refer Table 3.3).

Table 3.3 Exploitation of the Spacing attribute

Unmodified text Modified text Performed modification
string string (every third character in the modified text
string is altered)

PhD Guide PhD Guide Expanded by 0.05 point
Doctoral Doctoral Expanded by 0.1 point
Committee Committee Expanded by 0.15 point
Doctorate Doctorate Expanded by 0.2 point
Conference Conference Expanded by 0.25 point
Publication Publication Expanded by 0.3 point
Presentation Presentation Expanded by 0.35 point
Meeting Meeting Expanded by 0.4 point
Recommend Recommend Expanded by 0.45 point
PhD Guide PhD Guide Condensed by 0.05 point
Doctoral Doctoral Condensed by 0.1 point
Committee Committee Condensed by 0.15 point
Doctorate Doctorate Condensed by 0.2 point
Conference Conference Condensed by 0.25 point
Publication Publication Condensed by 0.3 point
Presentation Presentation Condensed by 0.35 point
Meeting Meeting Condensed by 0.4 point

StrikeThrough with X and StrikeThrough with /

StrikeThrough with X or / is used to strike the selected text with the character

“X” or “/” respectively. These attributes can be used to disguise as characters

57

Chapter 3: Exploring the Font Attributes of Word Processor Documents

“X” or “/”. To do so, empty white spaces are inserted and stroked out with the attribute

“StrikeThrough with X” or “StrikeThrough with /”* (see Example 3.12).

Example 3.12:
StrikeThrough with X attribute Character ““/” Bold StrikeThrough attribute
is applied on space character is applied to the word “you”

BXX XXX XX how 4471/ I/ ses.
™~ T~ /! 4

StrikeThrough with X Character || StrikeThrough with/ || StrikeThrough with/
attribute is applied to “X” attribute is applied attribute is applied
the word “hello” to the word “are” on space character
StylisticSet

StylisticSet attribute is used to create swashes on alphabets [124] (a swash is a
typographical flourish on a glyph [127]). Applying this attribute on other characters
produces no visual effect. MS Word has twenty different styles (refer Fig. 3.7). Of
these, only the first seven styles produce visual effect and applying the styles between

eight and twenty (inclusive) is ineffective.

Subscript and Superscript

Subscript and Superscript attributes are used to place a character below and
above the baseline respectively, in addition to decreasing its font size. For example, g &
¢ — Represents a normal, superscripted and subscripted “g” characters respectively.
Hence, lowering the position of a superscripted character to certain points will make it
to appear like a subscripted character and vice versa. However, in MS Word, altering
this attribute affects the inter-space between the adjacent lines. Hence, they can be

used only when the inter-space between the adjacent lines is sufficiently large. This

58

Chapter 3: Exploring the Font Attributes of Word Processor Documents

limitation is not present in LO and OF. In such case, altering the position and font size

appropriately can make it to appear like a normal character.

Dgﬁau[f: Hai how areyou. lam ﬁﬂﬁ. Dg%u[t: Hai how are you. lam ﬁne.

Styhﬂ: Hai how are you.l am ﬁn::, St"!.’r.ﬂ'l'l: Hat how areyou. lam ﬁm:.

S‘cy[& 2: Hai how are you. lam ﬁmz, 5@1&12: Hai how are you. lam ﬁnc.

Sty le 7 Hai how are yow.l am ﬁﬂ.ﬂ. St}r[e {5 Hai how are you. lam ﬁne.

Sty E 4 Hai how are you.l am ﬁm: Si}flﬂ 14 Hai how areyou. lam ﬁm:.

Sty E 50 Hai how are youlam fme. Sty[m 5: Hai how are you. lam ﬁne.

Sﬁ: 5\];[:1[ﬁcrw areyou. l am ine. Styles: Haihowareyou.lam fine.

) —

Sg:ﬁ,: @QL ﬁcﬂ;v arl%{gu,] m’g@ﬁ. Sf:"!.-{f: 17 Hai how areyou. | am ﬁne,

Sf_y[e 8: Hai how are you.] am ﬁnﬂ 5@-’[»:18: Hat how are you. lam ﬁm.
St}r[e q: Hai how are you. | am fms 5@*[&1 [} Hai how are you.lam ﬁne.
Sf_p[em: Hai how are you. lam ﬁne. St}{e 20: Hai how areyou. lam ﬁue.

Figure 3.7 Exploitation of the StylisticSet attribute

Title

Title is used to change the first character of every word of the selected
alphabets to uppercase. Hence, applying this attribute on a non-alphabet or an already
uppercase character produces no effect. Also, applying this attribute on any character,

other than the first, of each word produces no noticeable effect (see Example 3.13).

59

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Example 3.13:

Title attribute
is applied on
character “h”

Title attribute is applied on
characters “I”, “r”” and “space’
(no noticeable difference)

b

N

Original text: Hai hello how are you.
Modified text: Hai1 Hello how are you.

Underline and UnderlineColor

Underline attribute is used to underline the selected text. There are totally
sixteen different styles of underline available. UnderlineColor attribute is used to set
the color of line that should be used to underline. Setting the default background color
of the document to UnderlineColor makes the underline invisible, except for those
characters that have a descender (descender is the portion of a character that extends
below the baseline [128]. For example, g, j, p, q and y). When this is done, altering the

least significant (R, G, B) value of UnderlineColor attribute, also, goes unnoticed on

screen (but noticeable in hard copy). The same is shown in Example 3.14.

Example 3.14:

Underline attribute is applied to the
word “Hai” and the (R, G, B) value of
UnderlineColor attribute is set as (254,
254, 254) (no visible effect on screen)

Underline attribute is applied to the

word “fine” and the (R, G, B) value

of UnderlineColor attribute is set as
(252, 252, 252)

.
Hai hO}V are y

~

Ou.

Underline attribute is applied to the word “you” and the (R, G, B)
value of UnderlineColor attribute is set as (248, 248, 248)

60

Chapter 3: Exploring the Font Attributes of Word Processor Documents

UpperCase

Similar to AllCaps attribute, UpperCase attribute is used to change the selected

alphabets to uppercase.

3.3 Classification of the Font Attributes

From steganographic point of view, font attributes can be divided into two
broad categories as usable and unusable (see Fig. 3.8). Attribute Duplicate is used to
copy and apply the formatting of one text to another. This attribute cannot be altered.
Similarly, attribute UpperCase can be applied to texts but cannot be exploited. Hence,
they cannot be used in steganography and are considered as unusable attributes.

Based on the level of imperceptibility, the usable attributes can further be

divided into three categories as low, average and high imperceptible attributes.

Low Imperceptible Attributes

Attributes Bold StrikeThrough, DoubleStrikeThrough, Rotation and Single-
StrikeThrough make perceptible changes. The characters that are modified using these
attributes can easily be identified by a casual observer. Therefore, they are considered

as low imperceptible attributes.

Average Imperceptible Attributes

When the effect of the attribute Emboss is combined with the effect of the
attributes Spacing and Position, it appears identical to that of the attribute Engrave
(with minimal variation) and vice versa. Similarly, the attribute SmallCaps when

combined with the attribute Size (MS Word), they produce the effect of AllCaps

61

Chapter 3: Exploring the Font Attributes of Word Processor Documents

attribute (with minimal variation). Without careful inspection, an observer cannot

distinguish the effects produced by the corresponding attribute and by the combination.

Font attributes of word processors
|
Y v
Unusable by Usable by
steganography steganography
* Duplicate
* UpperCase
v v v
Low Average High imperceptible attributes
imperceptible/perceptibl imperceptible '
e attributes attributes * AllCaps * Redline
* Bold StrikeThrough Border ’ At?lmtatlon * Shading (WP)
* DoubleStrikeThrough BorderColor * Blinking * Shadow
. * Bold * Size (LO &
* Rotation Emboss OF)
* SingleStrikeThrough Engrave » Color . s
. * Emboss * Size (MYS)
Hidden) .
Highlight . Empha51*sMark . Smal'ICaps
HighlightColor) Engmve * Spacing
Name * Ttalic * StrikeThrough
. * Kerning with X
Overlining i
) * Ligatures * StrikeThrough
OverlineColor with /
. * LowerCase
Shading (MS, + StylisticSet
LO & OF) * NumberForms Y)
ShadingColor « NumberSpacing Subscr1p‘F
(MS, LO & OF) || * Outline * Superscript
* Scaling * Position * Title
* Size (MS)
* SmallCaps
* Underline
* UnderlineColor

Figure 3.8 Classification of the font attributes of word processors. * — represents the

case that the attribute is applied on space character alone;
7— represents the case that care has been taken to separate an identical
modified and unmodified character;, MS — Microsoft Word;

LO — LibreOffice; OF — OpenOffice; WP — WordPerfect

62

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Attribute Size (MS Word) create imperceptible alterations on characters.
However, when an identical modified and unmodified character appears nearby, they
can be distinguished. Attribute Scaling produces visible alterations on all characters.
But, when used in a string of O’s or 0’s, the alteration cannot be distinguished without
careful examination. Attribute Hidden completely hides the selected text without
producing any visual effect. Similarly, the effect produced by the attribute Name, due
to the non-existence of specified font style, becomes unnoticeable when the default
font style is used to write the whole text content. But, exploitation of these two
attributes can easily be identified using the available graphical user interface tools.

Also, though the attributes BorderColor, HighlightColor, OverlineColor,
ShadingColor (MS Word, LO & OF) and UnderlineColor succeed in masking the
effects of Border, Highlight, Overlining, Shading (MS Word, LO & OF) and Underline
respectively, on screen, the same is perceptible in hard copy. Therefore, these attributes

are considered as average imperceptible attributes.

High Imperceptible Attributes

Attributes AllCaps, Animation, Blinking, Bold, EmphasisMark, Italic, Outline,
Position, Redline, Shadow and Title create perceptible alterations on characters.
However, applying them on space character produces no visible effect. Similarly, the
attributes LowerCase, NumberForms and NumberSpacing create visible modifications
on uppercase characters and numbers. But, applying them on others does not produce
any change.

Attribute StrikeThrough (with X or /) make noticeable changes on characters.
But, when applied on space character, it produces effects indistinguishable from

characters “X” and “/”.

63

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Although attribute Ligatures produce visible alterations to specific character
pairs, applying this attribute on others produces no visual effect. Attributes Color,
Kerning, Shading (WP), Size (LO & OF), Spacing and StylisticSet when varied within
a specific range produces no visual change. For example, modification of the least
significant 1 or 2-bits of the Color attribute. Also, when the attributes Subscript and
Superscript are combined with the effect of the attribute Position, the changes
produced are indistinguishable by the human visual system. Hence, even after careful
inspection, the text that is modified using these attributes cannot be distinguished.
Therefore, these kinds of attributes are considered as high imperceptible attributes.

Similar imperceptibility level can be obtained by the attributes Size (MS Word)
and SmallCaps, if care has been taken to separate an identical modified and
unmodified characters. That is, the farther the characters are, the more imperceptible
they will be. Also, as mentioned earlier in Section 3.2, applying the attributes Emboss
and Engrave on space character produces no visible effect. Hence, in such cases, these

attributes can also be considered as high imperceptible attributes.

3.4 Comparison of the Font Attributes

The comparison of average and high imperceptible attributes (others are not
considered due to their low imperceptibility) is provided in Tables 3.4 (A) and (B).
The attributes are compared based on their embedding capacity. Embedding capacity is
the amount of information that can be hidden in the chosen cover medium [36]. It,
directly, depends upon two factors: (i) the number of bits that can be embedded in a
given attribute; (ii) the usability of that attribute in a typical text document. The

usability of an attribute further depends upon two factors: (i) the number of characters

64

Chapter 3: Exploring the Font Attributes of Word Processor Documents

in which the attribute can be applied; (ii) the occurrence frequencies of corresponding

characters in a typical document.

Table 3.4 (A) Comparison of the average and high imperceptible attributes: part 1

Attribute Usability in a Embedding capacity
typical text
(2007 & 2010)
AllCaps Moderate 1-bit/UC & 1- 1-bit/UC & 1- NA
bit/NaT bit/NaT
Animation Moderate 1-bit/SC NA NA
Blinking Moderate NA 1-bit/SC NA
Bold, Italic, Outline Moderate 1-bit/SC 1-bit/SC 1-bit/SC
and Shadow
Border and High 3-bits/AC 3-bits/AC 3-
BorderColor bits/paragraph
Color High 6-bits/AC & 6-bits/AC & 24- 6-bits/AC &
24-bits/SC bits/SC 24-bit/SC
Emboss Moderate 1-bit/EnC & 1- 1-bit/EnC & 1- NA
bit/SC bit/SC
EmphasisMark Moderate 2-bits/SC NA NA
Engrave Moderate 1-bit/EmC & 1- 1-bit/EmC & 1- NA
bit/SC bit/SC
Hidden High Highw Highw Highw
Highlight and High x 3-bits/ANBC 3-bits/AC
HighlightColor
Kerning High 10-bits/AC x 3-bits/AC
Ligatures High 2-bits/NNGC NA NA
& 2-bits/NaT
LowerCase High x 1-bit/LC & 1- x
bit/NaT
Name High 31- 65288- x
characters/AC characters/AC

MS — Microsoft; LO — LibreOffice; OF — OpenOffice; WP — WordPerfect,
NA — represents the absence of attribute; X — represents the presence of attribute but
cannot be exploited; AC — any character;, ANBC — any character that does not appear
on top and left borders of the page;, EmC — embossed character;, EnC — engraved
character; LC — lowercase character;, NaT — non-alphabet; NNGC — non-neighbor
character; SC — space character; UC — uppercase character; W — depends on the
number of visible characters in cover document

65

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Table 3.4 (B) Comparison of the average and high imperceptible attributes: part 2

Attribute Usability in a Embedding capacity
tgf)’;iﬁ:l te‘l’l"tt MS Word (2007 LO & OF WP
& 2010)
NumberForms High 1-bit/NNC NA NA
NumberSpacing High 1-bit/NNC NA NA
Overlining and High NA 7-bits/AC* NA
OverlineColor
Position Moderate 11-bits/SC 4-bits/SC X
Redline Moderate NA NA 1-bit/SC
Scaling Low 1-bit/ZC 1-bit/ZC NA
Shading and High 3-bits/AC 3-bits/ ANBC 3-bits/AC
ShadingColor
Size High IbitAC 3pity/ACT 3-bits/AC
SmallCaps Moderate 1-bit/UC & 1- 1-bit/UC & 1-bit/UC &
bit/NaT 1-bit/NaT 1-bit/NaT
Spacing High 3bits/AC. 3bits)AC 3-bits/AC
StrikeThrough with X Low NA 1-bit/XC NA
StrikeThrough with / Low NA 1-bit/SLC NA
StylisticSet High 3 bits/AC NA NA
Subscript and Low (MS 1-bit/SPC & 1- 1-bit/AC & x
Superscript Word) & High bit/SBC 4-bits/SC
(OF & LO)
Title High x 1-bit/UC & x
1-bit/NFCW
& 1-bit/NaT
Underline and High 7bits/ AND 7-bits/AND 7-bits/AND

UnderlineColor

MS — Microsoft;, LO — LibreOffice; OF —OpenOffice;

WP — WordPerfect;

NA — represents the absence of attribute; X — represents the presence of attribute but
cannot be exploited; AC — any character;, AND- any character that does not have
descender; ANBC — any character that does not appear on top and left borders of the
page;, NaT — non-alphabet; NFCW — non-first character in a word;
NNC — non-numeric character; SC — space character; SBC- subscripted character;
SLC — character “/”; SPC — superscripted character; UC — uppercase character,
XC — character “X’; ZC — character “O” or “07; XI — eight variations are
considered;, Y — 4-bits are embedded by Underline style and 3-bits by
UnderlineColor; Z - 4-bits are embedded by Overlining and 3-bits by OverlineColor

66

Chapter 3: Exploring the Font Attributes of Word Processor Documents

From Tables 3.4 (A) and (B), it can be seen that the attributes Scaling,
StrikeThrough (with X or /) can only be exploited by applying them as a substitute for
the characters O, 0, X and / respectively. Attributes Superscript and Subscript, of MS
Word, can be used interchangeably to produce the effect of each other. It is clear that
these attributes can be applied only on special characters whose occurrence frequencies
are low (refer Table 2.1) in a typical text document. Hence, the usability of these
attributes is limited, which in turn affects the overall embedding capacity.

Similarly, attributes like AllCaps, Animation, Blinking, Bold, Italic, Emboss,
EmphasisMark, Engrave, Outline, Position, Redline, SmallCaps and Shadow can be
applied on space character without creating any visual attention. Though these
attributes can be applied only on single character, space, it is the highest occurring
character in any document. Hence the usability of these attributes is considered as
moderate. Also, among these attributes, Position attribute of MS Word, stands best in
terms of embedding capacity as it can embed 11-bits/space-character.

Attributes like Border & BorderColor (MS Word, LO & OF), Color, Hidden,
Highlight & HighlightColor, Kerning, Name, Overlining & OverlineColor, Shading &
ShadingColor, Size, Spacing, StylisticSet, Subscript (LO & OF), Superscript
(LO & OF) and Title can be applied on every character without creating any attention
on screen. Attribute Ligatures can be applied on every non-neighbor character
(including space) and attribute LowerCase can be applied on every lowercase character
(including space) without causing any visual change. Also, attributes NumberForms
and NumberSpacing can be applied on every non-numerical character. Since these
attributes can be applied on majority of characters, their usability is considered as high.

Attributes Underline and UnderlineColor can be applied on every character

except the lowercase characters g, j, p, q and y. But, the occurrence probabilities of

67

Chapter 3: Exploring the Font Attributes of Word Processor Documents

these five characters in English document are low. Hence, the usability of these
attributes is also considered as high.

Among these highly usable attributes, Border & BorderColor, Color, Hidden,
Kerning, Name, Shading & ShadingColor, Spacing, StylisticSet and Underline &
UnderlineColor attributes of MS Word embeds minimum 3-bits/character. Similarly,
Border & BorderColor, Color, Hidden, Highlight & HighlightColor, Name,
Overlining & OverlineColor, Shading & ShadingColor, Size, Spacing, and Underline
& UnderlineColor attributes of LO & OF embeds minimum 3-bits/character. Also,
Color, Hidden, Highlight & HighlightColor, Kerning, Shading, Size, Spacing and
Underline & UnderlineColor attributes of WP embeds minimum 3-bits/character.

Hence the overall embedding capacity achievable by these attributes will also be high.

3.5 Discussion

From Section 3.4, it is observed that a large number of attributes of various
word processors achieve a high embedding capacity. But, attribute StylisticSet is
available only in MS Word 2010 and higher versions. Attributes Border &
BorderColor, Hidden, Highlight & HighlightColor, Name, Overlining &
OverlineColor, Shading & ShadingColor (MS Word, LO & OF) and Underline &
UnderlineColor have average imperceptibility level. Due to the above reasons, these
attributes are not considered for further discussion.

The following attributes:

(i) Color, Kerning and Spacing of MS Word
(i1) Color, Size and Spacing of LO & OF

(ii1) Color, Kerning, Shading, Size and Spacing of WP

68

Chapter 3: Exploring the Font Attributes of Word Processor Documents

are found to be more suitable for steganographic purpose. This further shows that MS
Word stands best as it can embed a maximum of 19-bits (6 + 10 +3), using only three
attributes, in any given character. Also, these attributes are available in all versions.
This makes the steganographic methods developed using these attributes compatible

across various organizations as a majority of them utilize MS Word [66].

3.6 Summary

A brief study on the font attributes of word processors, like MS Word, LO, OF
and WP, was presented in this chapter. Attributes were classified based on their
usability, for steganography, and imperceptibility level. Embedding capacity of these
attributes and the usability of the corresponding word processor, in organizations,
were considered to identify the best word processor along with the respective
attributes. MS Word was found to be having the best attributes namely, Color,
Kerning and Spacing.

In view of the above findings, Word document has been chosen as a cover
medium for further study. However, the methodologies developed in this work can be
adapted to other processors as well. Based on the work carried out in the present
study, three novel methods have been developed to secretly embed information like
text, image or binary data in any Word document. The first and second methods use
the attribute Spacing, and the third method uses the attributes Color, Kerning and

Spacing. These methods are described in detail in the subsequent chapters.

69

CHAPTER 4

EMBEDDING TEXT

This chapter describes the method devised to embed secret text
(containing English alphabets, dot and space characters) inside Microsoft (MS) word
documents. A novel character-level embedding technique, referred to as Method-A,
that marks the cover characters using the font attribute Spacing has been evolved and
the same is described. The method so developed addresses the non-uniform
embedding probabilities of secret characters and the overall low embedding capacity
of these techniques. Method-A is assessed for its embedding capacity and uniformity
in embedding probability. Various security features of Method-A have been discussed

and a comparison with other existing methods is, also, provided.

4.1 Introduction

A secret text can be embedded inside a text document in three different ways
namely character-level, bit-level and mixed-type embedding techniques
(described in Chapter 2). Bit-level and mixed-type embedding techniques consider
secret message as binary bits and subsequently embed them. Hence, even the best
existing technique, UniSpaCh, requires four distortions (= 2-bits/distortion) to embed
a character, which is of 8-bits. Character-level embedding techniques (CLET), on the
other hand, consider secret message as characters and embed them accordingly. This
enables CLET to embed a secret character, as a whole, in single distortion. This
nature of embedding attracts CLET techniques to embed text.

Among the two CLET techniques, Cover Document Required (CDR) and
Cover Document Not Required (CDNR), the latter methods are hard to manage.

71

Chapter 4: Embedding Text

This is because developing a generalized method which can generate a meaningful
stego document that suits all scenarios is not easy. Cover Document Required (CDR)
techniques can meet this purpose as they generate stego document from an existing
cover document that is meaningful by its own. However, proper handling of low
frequency characters and efficient utilization of available embedding space, to achieve
high embedding capacity, are still challenging tasks in CDR techniques.

Though one cannot control the occurrence frequencies of characters in a given
language (here English), it is still possible to change the way the low occurring
characters are handled during embedding. For example, embedding a low occurring
character in several other characters boosts its embedding probability and avoids
wastage of embedding space during the process. Besides, an optimal embedding
capacity is possible, only, by choosing an appropriate font attribute that can be
applied on every cover character. Such attributes enable each cover character potential
to carry a secret character.

Taking the above findings into consideration, a novel CDR method
(referred to as Method-A, in the rest of the thesis) is developed which can embed
secrets with high embedding capacity using the attribute Spacing. This attribute can
be replaced by any attribute that has been found most suitable, for steganography, in

Chapter 3. The development of Method-A is described below.

4.2 Handling the Non-Uniform Occurrence Frequencies of Characters

The standard occurrence frequencies of characters in English text, that are
available in the literature, does not consider the special characters “Dot” and “Space”
(refer Table 2.1). However, these characters are mandatory for making the meaning

out of a given text. Hence, a normal English text is considered and the occurrence

72

Chapter 4: Embedding Text

frequencies of English alphabets, dot and space (ADS) characters are identified and

presented in Table 4.1.

Table 4.1 Occurrence frequencies of ADS characters in English text

Occurrence Character Frequency | Occurrence Character Frequency
probability probability
(" Space 20.30% [G 1.69%
E 9.63% Y 1.55%
T 7.56% F 1.50%
High< A 6.84% Dot 1.39%
0) 6.31% B 1.36%
I 5.45% C 1.21%
. S 5.06% L0W< K 1.14%
 H 4.97% P 0.86%
N 4.84% \Y 0.78%
D 3.93% J 0.30%
Average*< R 3.57% z 0.08%
L 3.01% X 0.06%
U 2.27% \ Q 0.05%
W 2.21%
. M 2.08%

ADS — English alphabets, Dot and Space; * — Ideal occurrence probability =
100 / 28 = 3.57. For experimental purpose, any values between 2 and 5 are
considered as average occurrence probability

From the table, it can be inferred that a typical CDR technique will require
2000 (100 / 0.05 = 2000) cover characters to embed the character “Q”, and will
require only five cover characters to embed the “Space” character. The difference in
their embedding probabilities is due to the difference in their occurrence frequencies.
As a result of this, embedding space (1999 cover characters in the case of “Q”) gets
wasted while embedding low occurring characters.

To overcome the limitation and for attaining an optimal embedding capacity,

the following methodology is adapted:

73

Chapter 4: Embedding Text

(i)

(i)

Increase the embedding probability of low occurring secret characters by
embedding them across multiple cover characters

For example, embedding “Q”, in several different cover characters, say “S”,
“G”, “K”, “P”, “H”, “E” and “M” will boost its cumulative embedding
probability from 0.05% to 25.43%. This facilitates “Q” to require only four
(100 / 25.43 = 4) cover characters and get embedded even in its absence in
the cover document.

Make the embedding probability of all the secret characters uniform

This can be met by increasing the embedding probabilities of all the secret
characters equivalent to or greater than that of the “Space” character
(20.3%). Besides, a careful choice of characters into which a given secret

character should be embedded, must be identified.

To achieve the above, first, the number of characters that must be cumulated (NCC)

needs to be identified, and choices of characters must be recognized. The number is

derived mathematically, and choices of characters are defined by introducing a novel

idea called Frequency Normalization Set (FNS) and Character & String Mapping

(CSM). FNS defines the choices of characters that must be cumulated and CSM

describes the procedure of mapping these cumulated character strings to ADS

characters.

4.3 Theoretical Background of the Development of Method-A

Let “P* be the ideal cumulative probability of embedding a secret character

inside a cover character. Then, “P” can be defined as:

P= [Number of ADS characters X

100
] NCC (4.1

74

Chapter 4: Embedding Text

The respective “P” values of various NCC values are listed in Table 4.2. From the
table, it can be observed that a uniform embedding probability cannot be achieved
when NCC < 6. Because, the achievable cumulative embedding probability still falls

short of 20.3% (which is the embedding probability of “Space” character alone).

Table 4.2 Respective NCC and P values

Number of characters cumulated Ideal cumulative probability of embedding a secret

(NCC Value) character inside a cover character (P Value)
1 3.57
2 7.14
3 10.71
4 14.29
5 17.86
6 21.43
7 25.00
8 28.57
9 32.14
10 35.71

At NCC = 6, the value of “P” is 21.43%, which is higher than 20.3% with a
marginal increase of 1.13% (21.43 — 20.3%). This makes the choices of characters
difficult, whenever the cumulated character string involves a “Space” character.
Because the “Space” character itself contributes 20.3% to the “P” value, and leaves
the mere 1.13% for the rest of the five characters.

These limitations are not present when NCC > 6. From the available values, in
the present work, a value of seven is considered and substituting the value NCC = 7 in

equation 4.1 we get:

P—100X7—25 (4.2)
28 - .

75

Chapter 4: Embedding Text

which means that, on an average, out of four consecutive characters encountered in a
cover document, a secret character would be embedded. That is, an average of

2-bits/cover-character will be embedded.

4.4 Generation of Frequency Normalization Set (FNS)

The properties of Frequency Normalization Set (FNS), which decides the
choices of characters that must be cumulated to achieve the uniform embedding
probability, are defined and are as follows:

(1) FNS contains 28 strings (equivalent to the number of ADS characters)
(i1) Each string contains ADS characters
(i11)) Each string is of length seven, with seven positions or columns
{0,1,2,3, ..., 6}
(iv) A character occurs only once in a string
(v) A character occurs only once in a given position in the whole FNS. That is,
no column-wise repetitions
(vi) When the individual frequency of characters present in any string is summed
up, it converges and falls close to the value 25
An algorithm has been designed to generate such a FNS (a flowchart of the developed
algorithm and the necessary pseudo codes are provided in Appendix — A). The
algorithm takes the occurrence frequencies of ADS characters, minimum and
maximum allowed error (deviation from the value 25), etc., as inputs and generates a
FNS as output. A sample FNS along with the respective cumulative frequency values

are provided in Table 4.3.

76

Chapter 4: Embedding Text

Table 4.3 Sample Frequency Normalization Set

Frequency Normalization Cumulative | Frequency Normalization Cumulative
Set (FNS) frequency Set (FNS) frequency
WRZFOIN 23.96 MNSLAB. 24.58
FoCWQXP 26.19 TVIZM.A 24.18
IMFXYoZ 25.87 SGKPHEM 25.43
XAMNTU 25.04 HEUVIYJ 24.95
YCHIJOS 24.85 IYLNUAK 25.10
KUXozJC 25.36 OFJGCDE 24.57
0.BCPQX 25.23 VDEHKLY 25.01
BLOSWMI 25.48 LONQSUR 25.11
PJIGALHO 23.98 QPoKXRV 26.76

NSVOBGH 25.01 EZDYGPT 25.30
UWY.TSL 23.05 KQUVZno 26.01
DIREFCQ 25.34 AXMTRVD 24.82
GHTR.WB 22.75 RTWBDNF 24.97
ZBADEFG 25.03 CQPJoKW 26.07

“0” —represents “Space”; “.” — represents “Dot”

4.5 Character & String Mapping (CSM)

CSM maps the generated 28 strings of FNS to the 28 possible ADS characters,
which limit the secret message to have only ADS characters. The characters are
mapped in such a way that:

(1) The mapped character does not exist in the selected string

(i1)) Map a high frequency character to a string that contains at least 2-low,
l-average and 1-high frequency characters

(ii1) Map an average or a low frequency character to a string that contains at least
1-low, 1-average and 1-high frequency characters

(iv) The mapping should not make any cover character to carry more secret

characters. For example, mapping several high frequency characters to

77

Chapter 4: Embedding Text

strings containing “Space” will make the “Space” character to carry more
secret characters which must be avoided
Mapping the ADS characters in this manner will distribute the secret character across
all the seven possible characters of the mapped string. This avoids the possibility of a
particular cover character, say the highest frequency character, carrying more secret

characters. A sample mapping is provided in Table 4.4.

Table 4.4 Sample Character & String Mapping

Mapped Frequency Cumulative | Mapped Frequency Cumulative
charact Normalization frequency | character Normalization frequency

er Set (FNS) Set (FNS)

A WRZFOIN 23.96 O MNSLAB. 24.58

B FoCWQXP 26.19 P TVIZM.A 24.18

C IMFXYoZ 25.87 Q SGKPHEM 25.43

D XAMNTU 25.04 R HEUVIYJ 24.95

E YCHIJOS 24.85 S IYLNUAK 25.10

F KUXozJC 25.36 T OFJGCDE 24.57

G 0.BCPQX 25.23 U VDEHKLY 25.01

H BLOSWMI 25.48 v LONQSUR 25.11

I PJGALHO 23.98 W QPoKXRV 26.76

J NSVOBGH 25.01 X EZDYGPT 25.30

K UWY.TSL 23.05 Y KQUVZo 26.01

L DIREFCQ 25.34 Z AXMTRVD 24.82

M GHTR.WB 22.75 m RTWBDNF 24.97

N ZBADEFG 25.03 . CQPJoKW 26.07

““ ’

0" —represents “Space”;

[TEREl

—represents “Dot”

4.6 Embedding Algorithm

Embedding algorithm of Method-A takes a secret message, cover document
and CSM as input values. The cover document is checked for its size first, as the

method requires an average of four cover characters to embed a secret character.

78

Chapter 4: Embedding Text

Embedding begins by selecting the first character from the secret message.
The string that is mapped to the selected character, in the CSM, is identified.
Embedding algorithm searches, the cover document serially, for the first occurrence
of any of the characters of the mapped string. When a match is found, the position of
the encountered cover character in the mapped string is identified. Based on the
position, the cover character is marked by altering the value of its attribute Spacing.

As each string of CSM has seven positions, the attribute requires seven
different spacing values to mark a character. From a detailed analysis, it was observed
that the value of the attribute can be made to expand till 0.4 points (+0.4) or condense
till 0.3 points (-0.3), at an interval of 0.05 points, without creating any visual attention
(as discussed in Chapter 3 and shown in Table 3.3). For experimental purpose, the
spacing values of {-0.1, -0.2, -0.3, +0.1, +0.2, +0.3, +0.4} points are considered,

respectively, and a sample embedding is provided in Example 4.1.

Example 4.1:
Secret Mapped Cover Encountered | Position of the | Modification to
character | stringin | document character encountered be performed
CSM character in the
mapped string
Q SGKPHE | Cool Cool 6 Expand the
M morning @orning all. spacing value of
all. “m” by 0.4
points (+0.4)

After embedding a secret character, all the strings of CSM are circular left shifted by
one. This avoids the possibility of embedding the same secret character inside an
identical cover character with the same spacing value, frequently. The advantage of
doing this is explained later in Section 4.9.2.

The procedure is continued till all the secret characters are embedded. After
this, the method embeds End-of-Secret (EoS) characters. EoS can be anything that

79

Chapter 4: Embedding Text

does not appear in the secret message. For experimental purpose, it has been

2

considered as “. . .” — “Dot Space Dot Space Dot”. During extraction process, these
characters indicate the receiver that the end of the embedded secret is reached.

The pseudo code of the embedding procedure is as follows:

Pseudo code of embedding procedure

Input: Secret Message, Cover Work, CSM, EoS characters, character spacing and
their respective positions

Output: Modified Cover Work

Int count <1
Secret Message «<— Secret Message + EoS Characters
For each character “X;” in Secret Message do
String Sy < String that is mapped to X; in CSM
L: Y; < Read the character @ position “count” in Cover_Work
count++
IfY; € Sk
Int pos < Position of Yj in Sk
Change the character spacing of Y; based on pos
End if
Else Goto L

CSM <« Perform a Circular Left Shift on all the Strings in CSM
//makes the CSM dynamic

End for
Return Modified Cover Work

The modified cover document is the required stego document which has to be
communicated to the receiver. In addition, the used CSM and EoS characters should

be communicated.

4.7 Extraction Algorithm

The extraction process is the reverse of the embedding process. The method

takes the stego document, EoS and the CSM as input values. Extraction begins by

80

Chapter 4: Embedding Text

checking the spacing value of characters in the stego document. When the algorithm
encounters a character, whose spacing value is altered, it recognizes the position
equivalent to the spacing value. Then, the algorithm searches for the string, in CSM,
that contains the encountered character at the recognized position. The ADS character

that is mapped to the identified string is the embedded secret character

(see Example 4.2).
Example 4.2:
Stego Encountered Identified Position Mapped | Embedded
document character spacing value | equivalent to the | string in secret
spacing value CSM character
Cool Cool +0.4 6 SGKPHE Q
morning @orning all. (Expanded by M
all. 0.4 points)

After extracting a secret character, the CSM is circular left shifted by one, and
the procedure is continued till the algorithm extracts the EoS characters.

The pseudo code of the extraction procedure is given below:

Pseudo code of extraction procedure

Input: Stego Work, CSM, EoS characters, character spacing and their respective
positions

Output: Secret Message

Int count « 1
String Secret Message «—
Repeat
Char X; < Read the character (@ position “count” in Stego Work
count++
If character spacing of X; # 0.0
Int pos «<— Respective position, based on the character spacing of X;
String Sy «— String in CSM that has X; @ position pos

Secret Message <— Secret Message + Character that is mapped to Sk
in CSM

81

Chapter 4: Embedding Text

CSM <« Perform a Circular Left Shift on all the Strings in CSM
End if
Until ((count > Total no. of characters in Stego Work) || (EoS is read))

Return Secret Message

It should be mentioned that reaching the end of the stego document without
encountering the EoS characters indicates the receiver, that a corrupted stego

document has been received.

4.8 Evaluation Parameters

The method so developed, Method-A, is evaluated using the following three
parameters: secrecy, embedding capacity and uniformity in embedding probability.
Each of the parameter is discussed below in some detail. In addition to these, a

comparison with the existing methods is provided.

4.8.1 Secrecy

Secrecy represents the imperceptibility level of the embedded secret
[63,65,129,130]. To test the imperceptibility level, secret messages of various lengths

are experimented using Method-A. A sample output is provided in Fig. 4.1.

Cover document:

INTRODUCTION: Internet which is extensively used to share any kind of

information does not imply any strict rules for the security of data on its own.
Secret message: Come to my home tomorrow.

Stego document:

INTRODUCTION: Internet which is extensively used to share any kind of

information does not imply any strict rules for the security of data on its own.

Figure 4.1 Sample output of Method-A

82

Chapter 4: Embedding Text

By observing both the cover and stego documents of Fig. 4.1, it is evident that the

stego document does not create any attraction in its visual appearance.

4.8.2 Embedding Capacity

As explained earlier, embedding capacity is the measure of the maximum size
of secret that a chosen cover document can hide [36,65]. Hence, in general,
embedding capacity can be defined as in equation 4.3.

No. of bits in secret message

No. of characters required in
cover document

Embedding capacity per cover — character =

(4.3)

As Method-A considers the secret message as characters (instead of bits), equation 4.3

can be rewritten as:

No. of characters in secret
message (excluding EoS)
No. of characters required

in cover document

Embedding capacity per cover — character = X8 (4.4)

To evaluate the embedding capacity per cover-character exercise was carried
out by embedding secret messages, of various lengths, inside a given cover document.
Table 4.5 furnishes the number of characters present in the secret message and the
number of characters used in the cover document to embed the same.

From Table 4.5, it can be observed that Method-A achieves an average
embedding capacity of 2.22 + 0.05 bits/cover-character which is slightly higher than

the theoretically expected value of 2-bits/cover-character.

83

Chapter 4: Embedding Text

Table 4.5 Results of embedding the secrets in cover document

No. of No. of characters encountered while embedding Embedding

characters in secret + EoS characters capacity per

(Zicc:fltdlillllegS:‘ogSe) Alphabet Dot Space Other Total ch::‘;ecl;r*
500 1484 13 282 8 1787 2.24
1000 2842 27 556 12 3437 2.33
1500 4535 48 864 26 5473 2.19
2000 5999 63 1139 32 7233 221
2500 7612 85 1461 45 9203 2.17
3000 9238 104 1769 59 11170 2.15
3500 10459 116 2032 83 12690 221
4000 11736 130 2287 100 14253 2.25
4500 13403 146 2608 114 16271 2.21
5000 14848 164 2879 128 18019 2.22

* —using equation 4.4, EoS — End-of-Secret
4.8.3 Uniformity in Embedding Probability

A good CDR technique must handle the secret characters uniformly and
should maintain uniform embedding probability. Achieving such uniformity will
avoid the wastage of embedding space and will reduce the size of required cover
document.

Uniformity of a method can be tested by embedding a secret message that
contains all the possible characters, in large numbers, inside an English cover
document. Since the occurrence frequencies of characters are not uniform, creating
such a secret message and embedding it, is a tedious task. Hence, for experimental
purpose, a random string of ADS characters (of length 5000) that satisfies the above
requirement is generated, and considered as a secret message. It is, then, embedded

inside an English cover document.

84

Chapter 4: Embedding Text

The total number of occurrences of each character in the secret message, and

the average number of cover characters used to embed them are provided in Table 4.6.

Table 4.6 Uniformity in embedding probability

Characters Secret message (5000 + Characters Secret message (5000 +
End-of-Secret characters) End-of-Secret characters)
No. of Average no. of No. of Average no. of
times cover times cover characters
occurred characters occurred used to embed
used to embed one secret
one secret character
character

A 184 4.01 O 180 4.00
B 173 3.57 P 202 4.33
C 176 3.70 Q 172 3.19
D 159 3.87 R 174 3.18
E 155 3.14 S 173 4.02
F 205 3.62 T 192 3.01
G 184 3.55 U 192 3.94
H 196 3.67 A\ 173 3.31
I 164 4.24 \\Y% 179 3.16
J 172 3.62 X 171 342
K 166 4.27 Y 191 3.82
L 174 3.05 V4 160 3.82
M 194 4.36 Space 189 3.39
N 180 3.58 Dot 175 3.58

From the table, it can be observed that the average number of cover characters
required to embed any secret character uniformly falls within the range 3.66 + 0.4.
This shows that the developed method utilizes the available embedding space

efficiently.

85

Chapter 4: Embedding Text

4.8.4 Comparison with Existing Methods

A comparison of Method-A with the existing methods is provided in
Table 4.7 (calculations are done similar to Section 2.3). The comparison is carried out
in terms of number of distortions and number of cover characters that are required to

embed a secret character.

Table 4.7 Comparison of Method-A with existing techniques

Technique Requirement to embed a secret character
No. of No. of cover characters
distortions (approximate)
Character marking, 1 Variable
Misspelling
Null cipher 1 5.5
Missing letter puzzle 1 11.5
Hiding data in wordlist 1 11.5
Synonym substitution, 8 44
Spelling of words
Line shifting 8 1020
Word shifting 8 100
Inter-sentence spacing 8 668
Inter-word spacing 8 44
End-of-line spacing 4 224
UniSpach 4 7.65
Moving “The Dot” in 8 8
characters
Exploiting the structure of 8 16
characters
Reversing/Removing the 8 8
diacritics in/from characters
“Change Tracking” technique Variable 133
Generating summary 4 334
Method-A 1 3.6

From Table 4.7, it can be observed that Method-A records the least number of
cover characters required to embed a secret character. In addition, it stands best by

86

Chapter 4: Embedding Text

making only one distortion to embed a secret character. It is worth mentioning that

UniSpaCh, one of the best available methods requires four distortions.

4.9 Security Aspect

Method-A embeds an English secret text inside an English cover text. Due to
the non-uniform occurrence of characters, an attacker can try to break the system and
identify the characters by using the variation in their occurrence frequencies. This is
known as frequency analysis attacks [38,131]. Bearing this in mind, Method-A has
been developed with some in-built security features to resist such attacks. It, also,
facilitates the ways to enhance the security by combining it with other existing

methods which are discussed below.

4.9.1 Uniformity in Embedding Probability

As mentioned, the non-uniform occurrence of characters cannot be controlled.
Hence, a secret character having high embedding probability will get embedded in
fewer chances, whereas the other may require more cover characters to get embedded.
An attacker can break the method, using the frequency analysis attacks, which follows
such variation. Method-A avoids such attacks by maintaining the embedding

probabilities of all the characters uniform (refer Section 4.8.3).

4.9.2 Distribution in Stego Characters

Method-A embeds the secrets by altering the attribute Spacing. This makes the
secret characters to get distributed among the seven possible levels {-0.1, -0.2, -0.3,
+0.1, +0.2, +0.3, +0.4} of a cover character. An attacker can try to analyze the

distribution of characters among these levels. That is, the presence of high variations

87

Chapter 4: Embedding Text

among the levels of a particular stego character can represent the possibility of
carrying high frequency secret characters.

Method-A avoids such analysis by performing a circular left shift on the used
CSM (the embedding procedure is described in Section 4.6). Doing so distributes the
secret characters across the different levels of a cover character and thereby avoids the
occurrence of high values at any level of a stego character. This prevents the method
from producing such high variations.

The same has been verified by embedding an English secret message, of
length 5000 (excluding EoS), inside an English cover document. The distribution of
secret characters among the seven levels of each stego character is identified and
provided in Table 4.8.

From the table, it is evident that the method distributes the secret characters,
almost uniformly, across all the possible levels of a cover character. It should be noted
that the variation in distribution of characters in “P”, “Dot”, “K”, “V”, “X”, “Z”, “Q”
and “J” is due to their low occurrences in cover document. That is, the low occurrence
of these characters made them to carry less secret characters, which resulted in high

standard deviation values.

4.9.3 Frequency Distribution of Stego Characters

An attacker can try to gain knowledge, about the hidden secret, by performing
the frequency analysis on the stego characters. Suppose, if the frequency profile of
stego characters follow the frequency profile of secret characters, then the presence of

high peaks at both profiles represent the correlation between them.

88

Chapter 4: Embedding Text

Table 4.8 Spacing values of the identified stego characters

Possible No. of Identified spacing values at each level (in %) Standar
g0 M 01 02 03 H0 402 +03 04 O
rs d as n
stego
characte
r
E 625 15.68 13.76 13.12 13.60 14.56 12.96 16.32 1.29
N 616 14.61 14.45 13.15 1834 13.80 11.85 13.80 2.01
Space 564 1596 1436 1525 1330 13.83 14.00 13.30 1.00
O 539 11.88 13.73 13.17 16.88 15.77 15.03 13.54 1.70
T 537 13.59 1099 14.15 16.76 1434 1434 15.83 1.82
I 527 16.70 12.14 18.60 12.90 11.77 14.23 13.66 2.51
R 457 12.25 1532 16.41 1575 13.57 13.13 13.57 1.54
A 409 13.94 14.43 1198 15.89 1296 1638 14.42 1.54
S 339 1593 11.51 14.16 15.04 14.75 13.57 15.04 1.43
D 259 11.20 11.97 1583 13.90 14.28 15.83 16.99 2.13
H 237 13.93 16.03 16.03 11.82 15.61 13.50 13.08 1.64
C 179 20.11 1620 11.17 13.97 14.52 13.97 10.06 3.30
F 160 13.75 11.88 18.12 11.25 13.12 17.50 14.38 2.64
L 153 15.03 15.03 13.73 15.69 13.73 11.76 15.03 1.33
B 129 12.40 10.85 17.06 15.50 8.53 20.16 15.50 3.95
G 127 11.02 14.17 7.88 14.17 1654 1890 17.32 3.81
M 116 16.38 17.24 11.21 14.66 8.62 17.24 14.65 3.26
W 111 10.81 12.61 12.61 1622 1532 17.12 1531 2.29
U 95 13.69 20.00 12.63 10.53 13.68 12.63 16.84 3.15
Y 89 1573 13.49 1798 1348 13.48 13.48 12.36 1.92
P 52 9.62 9.62 1538 2692 9.62 1538 13.46 6.16
Dot 45 13.34 20.00 1333 2222 889 222 20.00 7.13
K 23 8.69 870 435 21.74 1739 21.74 17.39 6.97
v 17 11.77 5.88 2941 17.65 588 17.65 11.76 8.22
X 4 0 0 0 0 25.00 50.00 25.00 19.67
Z 2 0 50.00 50.00 0 0 0 0 24.40
Q 1 0 0 0 100 0 0 0 37.80
J 0 - - - - - - - -

The rules of CSM are designed to prevent Method-A from such attacks. It

does so, by distributing the secret characters across all the seven possibilities of the

89

Chapter 4: Embedding Text

mapped string. This avoids the occurrence of high peaks in the frequency profile of
stego characters (refer Fig. 4.2).

To study the correlation between the frequency profile of secret and stego
characters, English and random secret messages (of length 6407 and 5000
respectively) are embedded inside English and random cover documents.
Figures 4.2, 4.3 and 4.4 illustrate the occurrence frequencies of characters in the

secret message, cover document and stego characters.

= —B=CWt—
—*—Secl
2 —4— Stego

X
15 A

10

Percentage of occurrence

A T T T T B T S I S S R
N
Characters °

Figure 4.2 English secret in English cover document. CWI1 — cover document;
Secl — secret message; Stego — stego document

25

20

15

10

Percentage of occurrence

?’Q’OQ‘VQOQ\\\%Vé‘\\OQO—Q%’\\54$+~\N$&

R
Characters

Figure 4.3 Random secret in English cover document. CWI — cover document;
Sec2 — secret message; Stego — stego document

90

Chapter 4: Embedding Text

25

15

Percentage of occurrence

—4—CW3
1 Y
—*—Sec2
05 —Stego |
0
V%LQ%QQ;Q\\\%\QQOQO-%%‘\\BQ$+*’\,’D&QO&

N
Characters °

Figure 4.4 Random secret in random cover document. CW3 — cover document;
Sec2 — secret message,; Stego — stego document

From Figures 4.2, 4.3 and 4.4, it can be observed that the frequency profile of
stego character is predominantly due to the frequency profile of cover document but
not due to that of secret message. Hence, performing such attacks, on the stego

characters of Method-A, will not provide the expected information to an attacker.

4.9.4 Cryptographic Aspect

Though the aim of the present study is to develop best steganographic methods
with high embedding capacity and bits/distortion, it is worth mentioning that the
formulated method has some in-built security features comparable with the
cryptographic techniques. Also, it allows the method to be combined with existing
cryptographic techniques to increase the security further. This has been emphasized in
this section.

With the help of CSM, Method-A embeds a secret character in several cover
characters. Hence, when the used CSM is kept secret, a security level comparable
with that of a polyalphabetic substitution ciphers of cryptography [38] can be

expected.

91

Chapter 4: Embedding Text

Also, combining Method-A with Format Preserving Encryption (FPE)
system [132] can further enhance the confidentiality of the embedded secret. This
combination is feasible as FPE preserves the length and format of given input, unlike
other cryptographic techniques [133]. Thereby, the original secret text containing
ADS characters must be encrypted, using FPE, first. The generated cipher text which
is again a string of ADS characters of same length, can then be considered as secret

and embedded using Method-A (see Fig. 4.5).

Character & String Spacing
Mapping (CSM) values
Format English text v v
: Preserving with same
English text Encryption length and Method-A Stego
(secret) (FPE) format of work
system input ?
Chosen
cover work

Figure 4.5 Method-A combined with Format Preserving Encryption system

To break this type of dual security, first, an adversary has to identify the
presence of hidden message and extract it. After this, he/she has to break the FPE
security system in order to get the original secret message. Hence, the combined
system can provide a greater challenge to an adversary than when the FPE and

Method-A are individually applied.

4.10 Application to Case-Sensitive Letters

The method so developed, Method-A, is not case-sensitive. However, it can be
achieved by utilizing another attribute, to differentiate the case, or by following the
procedure mentioned below.

92

Chapter 4: Embedding Text

The number of characters in each string of CSM must be extended to fourteen

by representing them in both upper- and lowercase letters (refer Table 4.9). It is

well-known that the characters “Space™ and “Dot™ are not case-sensitive. However, to

make this method feasible, they are treated as case-sensitive.

Table 4.9 Sample Character & String Mapping for case-sensitive messages

Mapped Frequency Normalization Mapped Frequency Normalization
character Set (FNS)' character Set (FNS)'
Ala WwRrZzFfOoliNn Ol/o MmNnSsL1AaBbe.
B/b FfmoCcWwQqXxPp P/p TtVvliZzMme.Aa
Cle JIMmFfXxYymoZz Q/q SsGgKkPpHhEeMm
D/d XxAae. MMNnTtUu R/r HhEeUuVvliYylj
E/e YyCcHhliJjOoSs S/s IiYyLINnUuAaKk
F/tf KkUuXxmoZzJjCe T/t OoF1]jGgCcDdEe
G/g m0«.BbCcPpQgXx Ulu VvDdEeHhKkLIYy
H/h BbLIOoSsWwMmli Viv LIOoNnQqSsUuRr
Ii PpJjGgAaLIHhOo W/iw QqPpmoKkXxRrVv
J/j NnSsVvOoBbGgHh X/x EeZzDdYyGgPpTt
K/k UuWwYye. TtSsLI1 Yy « KkQqUuVvZzmo
LN DdIiRrEeFfCcQq Z/z AaXxMmTtRrVvDd
M/m GgHhTtRr.. WwBb m/O RrTtWwBbDdNnFf
N/n ZzBbAaDdEeFfGg of. CcQqPpJjmoKkWw

7 — uppercase “Space” and “Dot” are represented by “m” and “e®”, and

lowercase “Space” and “Dot” are represented by “0” and “.” respectively

The resulting fourteen different positions in CSM must be represented using

fourteen different spacing values {-0.05, -0.1, -0.15, -0.2, -0.25, -0.3, +0.05, +0.1,

+0.15, +0.2, +0.25, +0.3, +0.35, +0.4}.

Now, to embed a secret character, the cover document is searched for the

occurrence of any of the characters in the corresponding CSM string. When a match is

found, the case of the secret character along with the encountered cover character is

used to identify the corresponding spacing value (by default, the characters “Space”

Chapter 4: Embedding Text

and “Dot” are considered as lowercase). That is, if the secret character is in uppercase
then the spacing value corresponding to the uppercase of the encountered cover

character is marked and vice-versa. A sample embedding is shown below in

Example 4.3.
Example 4.3:
Secret | Mapped Cover Encountered | Case | Position of | Modification
character | string in | document character of the to be
CSM secret | encountered performed
charac | character in
ter the mapped
string”
Q SsGgKk | Cool Cool Upper 12 (*M”) Expand the
PpHhEe | morning @orning all. | case spacing value
Mm all. of “m” by
0.35 points
(+0.35)
q SsGgKk | Cool Cool Lower 13 (*m”) Expand the
PpHhEe | morning @orning all. | case spacing value
Mm all. of “m” by 0.4
points (+0.4)

* — based on the case of secret character

The extraction procedure is straight-forward and is the reverse of the
embedding process. The spacing value of the identified stego character defines the

secret character along with its case.

4.11 Summary

CDR techniques embed secret information directly inside cover documents by
marking them. This makes these methods an optimum choice for embedding text as it
embeds 8-bits/distortion. However, due to the non-uniform occurrence probabilities of
characters in cover document, the available embedding space gets wasted whenever a
low occurring character needs to be marked. This affects the overall embedding

capacity of these techniques.

94

Chapter 4: Embedding Text

With an aim to address this limitation, the necessary measures that need to be
taken are identified and a Frequency Normalization Set (FNS) in combination with
Character & String Mapping (CSM) are introduced. The combination efficiently
handled the low occurring characters, by embedding them in multiple cover
characters, and made the embedding probabilities of all the characters uniform. This
allowed the method (Method-A) to achieve an average embedding capacity of
2.22-bits/cover-character, with 8-bits/distortion, which is slightly higher than the
theoretically expected value of 2-bits/cover-character. Hence, the size of the required
cover document and the number of modifications that are performed in the document
gets reduced.

Method-A alters the attribute Spacing to mark the cover characters. The
imperceptible changes made in the cover document ensured high secrecy and hence
created no attraction in their visual appearance. As this attribute can be applied even
on non-English characters, Method-A is not restricted to any particular language.

A security level comparable with that of a polyalphabetic substitution cipher
of cryptography is expected when the used CSM is considered as a secret key. The
use of the Format Preserving Encryption system to further enhance the security has
also been described. In addition to these, various in-built security features that prevent
Method-A from well-known frequency analysis attacks have also been discussed.

Though Method-A has the above-mentioned advantages, it restricts the secret
message to contain only ADS characters. Due to this limitation, it cannot be used to
embed:

(i) messages that contain numbers and special characters viz. mobile, credit
card, debit card, etc.

(i) binary and multimedia data like image, audio, video, etc.

95

Chapter 4: Embedding Text

However, these limitations can be overcome by extending the method into a

mixed-type embedding technique which is discussed in the next chapter.

96

CHAPTER 5

EMBEDDING BINARY DATA

This chapter describes the method developed to embed binary data inside
Microsoft (MS) Word documents. It extends the method described in Chapter 4,
Method-A, into a mixed-type embedding technique, referred to as Method-B, that
embeds binary data (secret) using the attribute Spacing. Method-B is assessed for its
embedding capacity and uniformity in embedding probability. A comparison with one
of the best existing methods available in the literature is provided. Various security
aspects of Method-B have been discussed and a case study using images related to

nuclear power plants has, also, been conducted.

5.1 Introduction

The method (Method-A) developed in the present study is successful in
embedding the secret message and communicating the same efficiently using smaller
size cover documents. But, it restricts the messages to contain only English alphabets,
Dot and Space (ADS) characters. This limits the method from communicating other
kinds of message such as text with special characters and numbers. In addition, it is
not possible to embed messages such as multimedia data, compressed and encrypted
data, etc.

As these data types are also commonly used and important, there is a need for
communicating the same in a secure manner. Method-A is modified to accommodate
the above-said data types. This was achieved by extending the method to a
mixed-type embedding technique (referred to as Method-B, in the rest of the thesis)
which embeds binary data.

97

Chapter 5: Embedding Binary Data

For this purpose, a new module named “Binary to Character Converter”
(BCC) has been introduced. This module takes the secret, binary data, as input and
generates an equivalent character stream which can, then, be embedded by Method-A

(refer Fig. 5.1). The method is described below.

Character
Secret & String
message i S
g Mapping Character to |
loooomlo.... | cillsgtyer |
E Binary to i A 4 Stego v i :"C-Dk-l--"t""'i
\ Character ABZ.| Embedding |document ion |ABZ. i Character i
| Comverter 3 lgorithm | agorthm [&BIC
i : 11 Mapping !
EE Character Ei 1 hoseoeoeooo]
il &Bit | 00001010....1
'l Mapping 1!
S Cover End-of-Secret Extracted secret
bemmmmmmmeee- : document character(s) message

Figure 5.1 Schematic diagram of Method-B. The dotted lines represent the
modules that are introduced in Method-B and bold line represents

the modified module of Method-A

5.2 Binary to Character Converter (BCC)

As mentioned, the BCC module converts a binary secret into character stream
by using a mapping called Character & Bit Mapping (CBM). This process is similar
to Base 64 encoding (it partitions the binary bits into groups of 6-bits and maps the
64 possibilities to 64 characters [134]). But, unlike Base 64, CBM considers a nibble
as a group and the sixteen possible elements are mapped to the 28 ADS characters.
The difference in numbers (16 and 28) leads to a one-to-many mapping with %
elements mapped to two ADS characters, a 2-tuple. A sample mapping is provided in

Fig. 5.2.

98

Chapter 5: Embedding Binary Data

Mapped strings in Character
ADS characters & String Mapping
WRZFOIN \
FoCWQXP
IMFXYoZ
XA.MNTU
YCHIJOS

)

v

v

v

v

Nibbles KUXoZzJC

v

0.BCPQX
BLOSWMI
PIGALHO
NSVOBGH

0000 <€
0001
0010

T Q o o g Q @ >
v

v

7z

AN

p—
y

v

UWY.TSL
DIREFCQ
GHTR.WB
ZBADEFG
MNSLAB.

S
—_
S
S

v

=R -
4

(e}
—_
(e}
—_

=)
v

(e}
—_
—
(e}

Z
y

NN

(e)
—_
—
—
X7

-

4
o
v

1000
1001
1010
1011

» TVIZM.A
SGKPHEM
HEUVIY]J
IYLNUAK

v

v

A
)Y
>\,’\/\\

v

v

OFJGCDE
VDEHKLY
» LONQSUR
QPoKXRV
EZDYGPT
> KQUVZo
Wz » AXMTRVD

v

v

v

Yo » RTWBDNF
A} » CQPJoKW

7 N

v

Figure 5.2 Sample Character & Bit Mapping using the Character & String

Mapping provided in Table 4.4. “0” — represents “Space” and
“. " —represents “Dot”; ADS — English alphabets, Dot and Space

99

Chapter 5: Embedding Binary Data

It should be noted that these ADS characters are in turn mapped to the CSM
(Character & String Mapping) strings of length seven. This leads CBM to map an
element to distinct characters ranging between seven and fourteen (7 + 7) inclusive.

As discussed earlier (Section 4.3), the embedding capacity of Method-A is
directly influenced by the number of possible characters in which a secret character
can get embedded. Hence, avoiding the common characters between the two CSM
strings of a 2-tuple will facilitate Method-B to achieve an optimal embedding
capacity.

Table 5.1 provides a sample mapping, using the CSM provided in Table 4.4,

along with the respective cumulative probability values.

Table 5.1 Mapping of ADS characters and the nibbles (Character & Bit Mapping)

Nibble Mapped No. of common characters Cumulative probability to
character(s)+ between the two strings embed the corresponding nibble

0000 A/U 0 48.97
0001 B/P 0 50.37
0010 Cc/M 0 48.62
0011 D/T 0 49.61
0100 E/N 0 49.88
0101 F/o 0 50.33
0110 G/R 0 50.18
0111 H/X 0 50.78
1000 1A' 0 49.99
1001 J. 0 51.08
1010 K/'W 0 49.81
1011 L/O 0 49.92
1100 Q NA 25.43
1101 v NA 25.11
1110 S NA 25.10
1111 Z NA 24.82
ADS — English alphabets, Dot and Space; “0” — represents “Space’;

o

— represents “Dot”; 1 — elements of a 2-tuple are separated using the symbol “/”;
NA — Not applicable

100

Chapter 5: Embedding Binary Data

Using the mapping provided in Fig. 5.2, BCC module can convert a binary

secret into an equivalent character stream by following the procedure given below.

Procedure to Convert Binary to Character Stream

Input: Audio/video/compressed/encrypted binary string, CBM
Output: Character Stream

String binary_string < binary string
String Character Stream «— ¢
For each nibble in binary_string

Character_Stream «— Identify the character(s) equivalent to the nibble, using
CBM, and append it to the Character Stream

CBM <« Circular Left Shift the elements in CBM by 1 //makes the CBM
dynamic

End for

Return Character Stream

It should be noted that, after converting each nibble to its equivalent ADS
character(s), 1-tuple or 2-tuple, the elements in CBM are circular left shifted by one
by the BCC module. This allows a nibble to be mapped to different ADS character(s)

at different times and thus makes the CBM dynamic (see Example 5.1).

Example 5.1:

Secret message — 1237
Equivalent binary stream (ASCII) — 00110001 00110010 00110011 00111111
Binary stream (after grouping) — 0011 0001 0011 00100011 00110011 1111

Equivalent character stream — D/T A/U B/P Z Z S VvV 1Y

From Example 5.1, it is evident that the character stream generated by BCC
looks similar to the secret message used in Chapter 4. The only difference is the

presence of a 2-tuple, which represents the choice of characters that has to be

101

Chapter 5: Embedding Binary Data

embedded at a particular instance. That is, D/T represents the choice to embed either
“D” or “T” inside a cover document. Thus, the generated character string is the
required secret message which needs to be communicated, secretly, using a cover

document.

5.3 Embedding Algorithm

Embedding algorithm of Method-B is similar to the procedure explained in
Chapter 4 (Section 4.6). It takes a secret message, cover document and CSM as input
values. It uses the same attribute Spacing with the seven levels, {-0.1, -0.2, -0.3, +0.1,
+0.2, +0.3, +0.4}, to embed the secret character.

Embedding begins by identifying whether the first secret character is a 1-tuple
or 2-tuple. If it is a 1-tuple, then the embedding algorithm identifies the CSM string
that is mapped to the character. The algorithm searches, the cover document serially,
for the first occurrence of any of the characters of the mapped string. When a match is
found, the position of the encountered cover character in the mapped string is
identified. Based on the position, the cover character is marked by altering the value

of its attribute Spacing. A sample embedding is presented in Example 5.2.

Example 5.2:
Secret Mapped Cover Encountered | Position of the | Modification to be
character | string in | document character encountered performed
CSM character in
mapped string
Q SGKPH | Cool Cool 6 Expand the spacing
EM morning. @orning. value of “m” by 0.4
points (+0.4)

Suppose, if the character is a 2-tuple, then the embedding algorithm identifies
the strings corresponding to the two ADS characters. It, then, searches the cover
document serially, for the first occurrence of any of the characters of the two

102

Chapter 5: Embedding Binary Data

identified strings. When a match is found, the cover character is marked accordingly

(see Example 5.3).

Example 5.3:
Secret Mapped Cover Encountered | Position of the Modification
character strings in | document character encountered to be
CSM character in the performed
mapped string

K/W K« Cool Coo 6 Expand the
UWY.TSL | morning morning all. spacing value

W e all. of .“lt” bJ}:OO:f

QPoKXRV points (+0.4)

After embedding a secret character, all the strings of CSM are circular left
shifted by one. This avoids the possibility of embedding the same secret character
inside an identical cover character with the same spacing value, frequently. The
advantage of doing this was explained earlier in Section 4.9.2.

The procedure is repeated till all the secret characters are embedded. After
achieving this, the algorithm embeds End-of-Secret (EoS) characters. For

experimental purpose, it has been considered as . . .” — “Dot Space Dot Space Dot”.

The pseudo code of the embedding procedure is as follows:

Procedure of Embedding Algorithm

Input: Secret Message, Cover Work, CSM, EoS characters, character spacing and
their respective positions

Output: Modified Cover Work

Int count <1
String Si; «— ¢
String Sy, «— ¢
Secret Message «<— Secret Message + EoS Characters
For each character “X;” in Secret Message do
String Sk, «— String that is mapped to X; in CSM
If Xj+ 1s not empty and Xj; equals “/” then

103

Chapter 5: Embedding Binary Data

String Sy, «— String that is mapped to Xj, in CSM
1—1i+2
End if
L: Y; < Read the character @ position “count” in Cover_Work
count++
IfY; € Syi or Sio
Int pos < Position of Yj in Sy; or Si»
Change the character spacing of Y; based on pos
End if
Else Goto L

CSM <« Perform a Circular Left Shift on all the Strings in CSM
//makes the CSM dynamic

End for
Return Modified Cover Work

The modified cover document is the required stego document which has to be

communicated to the receiver along with the CBM, CSM and EoS characters.

5.4 Extraction Algorithm

The extraction algorithm is identical to that of the extraction procedure
employed and described in Chapter 4 (Section 4.7). It reads the characters in stego
document one by one, in a serial manner, and checks the Spacing of the read
character. If the value is altered, it identifies the embedded secret by using the read
character and the position equivalent to the spacing value. The procedure is repeated
until it reads the EoS. Once extracted, the receiver uses the Character to Binary
Converter, which is the reverse process of BCC, and converts the extracted character

stream into an equivalent binary stream.

104

Chapter 5: Embedding Binary Data

5.5 Evaluation Parameters

As Method-B uses the same attribute Spacing and the same seven levels to
embed the secret, it provides the same level of secrecy illustrated in Section 4.8.1.
But, the difference exists in embedding capacity, bits/distortion and uniformity in

embedding probability which are discussed below in some detail.
5.5.1 Embedding Capacity and Bits per Distortion

It can be seen from Table 5.1, that Method-B embeds a nibble at a time
viz. 4-bits/distortion. Also, out of the sixteen possible elements, % of the elements use
two CSM strings and the remaining 4 use one string to get embedded. From the
discussion provided in Section 4.3, this means that % of the elements have
50% probability to get embedded inside an encountered cover character, and the
remaining has 25% probability. Hence, the overall probability of embedding a nibble

inside an encountered cover character is:

. . 3 1
Embedding probability = (Z X 50) + (Z X 25) = 43.75% (4.1)
Now, the possible number of cover characters that are required to embed a nibble is:

0
=229 (4.2

Number of cover characters required to embed a nibble = 375

This shows that the extended method can embed an average of 1.75-bits/cover-
character.

To verify the same, audio files (in mp3 format) of various sizes were
considered as secret message and embedded inside a chosen text document. The

obtained results are listed in Table 5.2.

105

Chapter 5: Embedding Binary Data

Table 5.2 Results of embedding the secrets in cover document

File Size Sizein No. of characters encountered in cover Embedding
no. in bits document while embedding the secret + End- capacity per
KB of-Secret characters cover-
Alphabet Dot Space Other Total character
1 193 158128 74980 1060 16063 1149 93252 1.70
2 10.7 87856 41246 618 9172 342 51378 1.71
3 13.3 109744 51203 744 11526 463 63966 1.72
4 16.6 136240 63954 926 13954 793 79627 1.71
5 10.3 84400 39802 590 8795 342 49529 1.70

* — calculated using equation 4.3; KB — kilobyte

From Table 5.2, it can be seen that Method-B has achieved an average

embedding capacity of 1.71 & 0.01 bits/cover-character.

5.5.2 Uniformity in Embedding Probability

As discussed earlier, a good steganographic method must maintain uniformity
while embedding the secret inside a cover document. This avoids the wastage of
embedding space and facilitates to embed secrets in smaller size documents.

To evaluate the uniformity of Method-B, an audio file (in mp3 format) of size
13.3 KB is embedded inside a cover document and the result is provided in Table 5.3.

From the table, it can be seen that the average number of cover characters
required to embed a nibble uniformly falls within the range 2.33 £+ 0.07. This proves
that Method-B embeds the nibbles uniformly and thereby utilizes the available

embedding space efficiently.

5.5.3 Comparison with other Methods

As mentioned in Section 4.3, Method-A embeds an average of 2-bits/cover-
character (theoretical) with 8-bits/distortion. Whereas, Method-B embeds an average

of 1.75-bits/cover-character (theoretical) with 4-bits/distortion. Hence, even though

106

Chapter 5: Embedding Binary Data

the procedure of converting the binary secret to character stream has reduced the
bits/distortion by 50%, the attained embedding capacity falls short only by 12.5%.
However, Method-B outperforms UniSpaCh which can embed binary data with

~ 1.046-bits/cover-character and = 2-bits/distortion.

Table 5.3 Uniformity in embedding probability at nibble-level

Nibbles Secret message (109744 bits)
No. of times No. of times Average no. of cover characters
occurred occurred (in %) used to embed one nibble
0000 3588 13.08 2.30
0001 1045 3.81 2.46
0010 1329 4.84 2.37
0011 1400 5.10 2.40
0100 1586 5.78 2.19
0101 2700 9.84 2.42
0110 1192 4.34 2.29
0111 1259 4.59 2.39
1000 1035 3.77 2.31
1001 1239 4.52 2.31
1010 3021 11.01 2.36
1011 1291 4.71 2.33
1100 1033 3.77 2.30
1101 1396 5.09 2.39
1110 1459 5.32 221
1111 2863 10.44 2.29

5.6 Security Aspect

Frequency analysis is employed by the attackers to break systems that rely on
the occurrence frequencies of characters to embed secrets. Method-B provides the
same security features as Method-A, such as uniformity in distributing the stego
characters among the seven levels (refer Section 4.9.2) and non-correlation between

the frequency profile of secret and stego characters (refer Fig. 4.3). However, the

107

Chapter 5: Embedding Binary Data

discrepancy in mapping some nibbles to 1-tuple and others to 2-tuple, in CBM,
creates difference in their embedding probabilities (50 and 25%). This causes
variations in the intervals of marked cover characters (refer Table 5.4) and thereby

results in the leakage of information.

Table 5.4 Uniformity in embedding probability at character-level

Tuples Secret message after BCC (27436 characters)
No. of No. of times No. of cover characters used to embed one
times occurred (in character
occurred ") Minimum no. Maximum no. Average no.
A/U 1802 6.57 1 11 1.92
B/P 1856 6.76 1 8 1.88
C/M 1738 6.33 1 10 2.04
D/T 1724 6.28 1 9 1.89
E/N 2015 7.34 1 7 1.77
F/o 1491 5.43 1 9 1.88
G/R 1646 6.00 1 9 1.79
H/X 1765 6.43 1 7 1.73
Y 1706 6.22 1 13 2.07
1. 1642 5.98 1 8 1.93
K/'wW 1769 6.45 1 11 1.94
L/O 1715 6.25 1 10 1.85
Q 1586 5.78 1 25 3.77
\Y 1654 6.03 1 32 3.49
S 1675 6.11 1 28 4.03
Z 1652 6.02 1 22 3.65
“0” — represents “Space”; “.” — represents “Dot”; BCC — Binary to Character

Converter

But, Method-B secures such leakage of information by performing a circular
left shift operation after converting every nibble to its corresponding tuple
(refer Section 5.2). This distributes the nibbles across all the possible tuples and also
makes the output character stream wuniform. This can be inferred from
Tables 5.3 and 5.4 (the occurrences of nibbles in secret message are not uniform, in

108

Chapter 5: Embedding Binary Data

Table 5.3, and have standard deviation 3.01%. Whereas, the output character stream
generated by BCC is fairly uniform, in Table 5.4, and has standard deviation 0.43%).
Hence even though an attacker succeeds in identifying the intervals of marked
characters and attribute them to the characters, Q, V, S and Z, mapping them back to

the corresponding nibbles is not possible (refer Tables 5.4 and 5.5).

5.7 Case Study on Nuclear Power Plants

To understand the impact of Method-B while communicating images, a case
study using the images related to nuclear power plant has been conducted. For the
study, various categories of images like engineering drawings (civil drawing,
mechanical design, electronic circuit, etc.,), roadmaps, graphs, minimal line drawings,
etc., were considered. The reasons for considering these images are:

e Graphs can be used to represent the interconnectivity among geographically
distributed nuclear power plants

e Roadmaps can be used to represent the existing secret passages between
nuclear power plants or escape routes during disasters

e Application of engineering drawings in nuclear power plants is straight

forward

109

Table 5.5 Distribution of nibbles among the possible tuples

Nibbles No. of Tuples
times

occurred A/D B/P CM D/T EN Fo GR HX Y J. KW L/O Q v S V4

0000 3588 271 203 204 211 198 190 242 221 196 195 364 203 258 182 199 251

0001 1045 58 103 52 55 117 56 79 54 52 54 56 49 82 67 61 50
0010 1329 102 57 72 65 76 50 91 &3 162 87 76 59 53 82 119 95
0011 1400 104 107 58 67 145 82 51 93 69 84 54 136 46 166 73 65

0100 1586 61 168 135 83 215 63 114 91 136 56 119 64 71 81 56 73
0101 2700 155 150 158 156 217 155 133 158 162 177 161 194 196 174 216 138
0110 1192 72 89 64 71 149 55 55 87 71 53 78 70 65 66 78 69

0111 1259 99 60 88 71 96 72 66 75 66 90 82 82 68 &3 75 86
1000 1035 64 60 59 70 61 56 59 176 46 42 37 81 50 55 40 79
1001 1239 144 63 133 65 65 65 68 57 73 59 64 115 80 67 66 55
1010 3021 188 224 212 178 174 182 182 186 185 174 188 200 171 204 184 189
1011 1291 76 82 81 82 88 78 88 87 99 75 73 68 90 70 75 79
1100 1033 50 107 41 59 61 80 51 75 75 67 55 66 45 60 67 74
1101 1396 80 69 83 78 83 88 98 76 78 110 78 &7 75 79 139 95

1110 1459 72 77 72 181 88 79 118 90 69 134 106 67 77 68 62 99
1111 2863 206 237 226 232 182 140 151 156 167 185 178 174 159 150 165 155

“« o

O "—represents “Space”;".” —represents “Dot”

110

Chapter 5: Embedding Binary Data

Some of the images used for experimentation are depicted in Fig. 5.3. The

details of these images are provided in Table 5.6 and the average number of cover

characters used to embed them, both by Method-B and UniSpaCh, are listed in

Table 5.7.

B to 15

| |

1UF 1 15%
&

k

Speaker
uf Gohm, 0.5

c g
4
-1
a
i

I
o
e

Muclear Pump
reactor

47 FUEL SA
(2TMKI+13MK I1+6MOX)
+1 PFBR TEST SA

CONTROL ROD (6Nos)
NICKEL REFLECTOR

- TO FEED WATER
O eSS

()

cornnErass e

Figure 5.3

111

Sample tested images: (a) Road map from kalpakkam to anupuram
[135]; (b) Graph [136]; (c) Electronic circuit diagram [137]; (d) Civil
drawing of stairs [138], (e) Boiling water reactor [139]; (f) Schematic
diagram of thermal power plant [140]; (g) Nuclear power plant steam
generation [141]; (h) Reactor flow sheet [142]; (i) Reactor core [143]

Chapter 5: Embedding Binary Data

Table 5.6 Details of images given in Fig. 5.3

Figure no. Image size in Image Image format Bit depth
KB resolution
5.3 (a) 27.10 555 x 593 JPG 8
5.3 (b) 5.84 260 x 194 PNG 8
5.3 (c) 1.32 405 x 255 PNG 1
5.3 (d) 1.74 400 x 444 PNG 1
5.3 (e) 40.90 518 x 405 JPG 24
530 18.30 550 x 381 PNG 8
53 (g) 6.18 386 x 188 PNG 24
5.3 (h) 86.20 1091 x 635 JPG 24
53 (%) 19.10 744 x 726 PNG 1

KB — kilobyte; JPG — Joint Photographic Experts Group, PNG — Portable Network
Graphics

Table 5.7 Number of cover characters required by UniSpaCh and Method-B

Figure Requirement of Requirement of Efficiency of the
no. UniSpaCh Method-B Method-B
Average no. Average No. of Average c(?mpare? ‘,Nith
of cover no. of cover no. of UniSpaCh’ (in %)

characters’ pages® characters pages®

5.3 (a) 212240 127 133388 80 37.01

5.3 (b) 45737 28 28117 17 39.29

53 (c) 10337 7 6344 4 42.86

53(d) 13627 9 8751 6 33.33

5.3 (e) 320318 192 191459+ 115 40.10

53 () 143321 86 88955 54 37.21

53 (g) 48401 29 30139 18 37.93

5.3 (h) 675096 405 403514+ 242 40.25

5.3 (1) 149586 90 93173 56 37.78

T and L — represents the estimated value by considering the embedding capacity

per cover-character as 1.046-bits and 1.75-bits respectively,; 1 — Relative Efficiency
= 100 — ((Average no. of pages required by Method-B / Average no. of pages
required by UniSpaCh) * 100); £ - represents the estimated value by considering
the average length of a word as 5.5 (including space), average number of words in
a sentence as 15 and average number of words per page as 300 — Same page
calculation is followed for the rest of the thesis

112

Chapter 5: Embedding Binary Data

From Table 5.7, it can be seen that, Method-B stands best by embedding the
images in a 38.42% (on an average) smaller size cover document when compared
with UniSpaCh. However, the number of pages that are required to embed, even, an
image of size 40.9 KB crosses hundred. This shows that the page requirement is not
easy to be met when the size of the image is in the order of megabytes. For example,
one megabyte image will require a document with = 2950 pages.

This situation can be handled by reducing the size of images. One way of
achieving this is by using appropriate image formats that minimizes the redundant
information or does not store the information, such as color, line thickness, intensity,

transparency, etc., at all.

5.8 Summary

In this chapter the limitations of Method-A, such as the non-capability of
embedding messages containing numbers, special characters, multimedia data, etc.,
has been addressed. This was achieved by converting it into a mixed-type embedding
technique (Method-B) which is capable of embedding binary data. It is noticed that
this conversion procedure has reduced the embedding capacity by 12.5% and
bits/distortion by 50%, when compared to what was achieved by employing
Method-A. However, it is still better than the best existing method available in the
literature namely, UniSpaCh.

As Method-B embeds a single ADS (secret) character in multiple cover
characters, it is comparable with that of the poly-alphabetic substitution ciphers of
cryptography (similar to Method-A). However, the additional circular left shift
operation introduced in BCC module makes it superior when compared with the

latter.

113

Chapter 5: Embedding Binary Data

A case study on nuclear power plant related images concluded that Method-B
has reduced the size of required cover document by 38.42%, when compared with
UniSpaCh. But, it still requires more than hundred pages when the image size is
=~ 40 KB. Also, the situation gets worse when the file sizes are in the order of
megabytes. This limitation is not only applicable for images but, also, to any type of
binary data. However, handling such limitation differs from one data type to another.
In case of images, one can reduce their size by minimizing the redundant information.
This can be achieved by using vector formats which has been explored in the next

chapter.

114

CHAPTER 6

EMBEDDING IMAGE

In this chapter, the work carried out to embed image files inside smaller size
cover documents is described. Initially, the possible ways to reduce the size of images
by representing them in vector formats is discussed. Then, the procedure of
embedding them using the method described in Chapter 5, Method-B, is explained. As
Method-B failed to handle transmission errors, a novel method referred to as
Method-C is developed. Method-C converts an image into a custom format and then
embeds the same, along with the structure of image, using the attributes Color,
Kerning and Spacing. This method of embedding facilitated the extraction algorithm
to handle transmission errors and avoided retransmission. A comparison of the
custom format and best vector format is given. Method-C is, also, inspected for its

embedding capacity and error handling capabilities.

6.1 Introduction

The extended mixed-type embedding method, Method-B, successfully embeds
binary data inside text documents. However, when the size of the secret message
exceeds a certain limit, say one megabyte, the number of pages required to embed it,
1s not easy to be met.

Hence, there is a need to address the issue by developing a method for such
types of documents. This chapter focuses to address the shortcoming for the
categories of images mentioned in Section 5.7. The reasons for choosing these images

are that, they:

115

Chapter 6: Embedding Image

(1) are widely used in organizations
(i) do not require the complete information, like color, line thickness, etc., to
convey their meaning. Often, their structure or layout is sufficient
This offers the sender a choice to reduce their size by minimizing redundancy through
known methods such as compression or vector representation. Of these, the second
possibility has been explored in this chapter.

Various vector representations have been studied and experimented with the
above-mentioned images. The results indicated that the format SVGZ attains the
smallest file size. Hence embedding the resulting images, using Method-B, required a
cover document that are, considerably, smaller in size. However, the method failed to
recover a substantial portion of the image, even in case of single bit error. This shows
that the SVGZ format can be utilized, efficiently, in text steganography only when the
used communication line is free from error or the underlying method (both embedding
and extraction) can provide the necessary error correction mechanisms.

The latter requirement can be met by introducing error correcting codes, like
hamming code [144], as a part of embedding procedure. But, this increases the size of
message, that needs to be embedded, which is not preferable.

To address these issues, a novel method (referred to as Method-C, in the rest
of the thesis) is developed which includes:

(i) a custom format that represents images in smaller sizes along with error
handling capabilities
(i) an embedding algorithm that interprets the custom format and embed the
same accordingly
These are explained in the subsequent sections of this chapter. A short introduction to

vector formats, highlighting the above-mentioned difficulty, is also provided.

116

Chapter 6: Embedding Image

6.2 Vector Format

Image formats can be, broadly, classified into two categories namely raster
and vector [145]. Raster image formats, like Joint Photographic Experts Group
(JPEG), Portable Network Graphics (PNG), Graphics Interchange Format (GIF), etc.,
considers an image as a grid of pixels each with a depth in the powers of 2 [146].
That is, 1-bit, 2-bit, 4-bit, 8-bit or 24-bit. This makes them to compromise their
resolution during resizing [146]. For example, when the image is resized (stretched),
the additional pixels are filled using the existing values. This results in the distortion
(pixilation) of the image [146]. Also, during storage, these formats do not distinguish
the contents (object or element) that are present in the image [146] viz. an image that
contains a square or a circle is expressed using the same representation.

This makes these formats inefficient, in terms of memory space, while
representing certain types of images, specifically computer generated images, such as
line drawings, cartoons, maps, graphical images, etc. This is because these images
contain various elements that can be represented by means of simple geometric
primitives such as lines, splines, polygons, circles, ellipses, etc. [147]. These
primitives can be stored and manipulated more efficiently when they are stored as
mathematical expressions rather than as pixels [147]. For example, a triangle object
can be represented by defining three points and properties such as fill, color, edge
thickness, etc. This approach saves space and also facilitates geometric operations
such as scaling, sheering, etc., without losing quality.

Vector image formats (refer Fig. 6.1) achieve the same and some of the well-
known software that generates these formats are listed in Table 6.1. Further aspects of

these formats are not being discussed as they do not form scope of the present work.

117

Chapter 6: Embedding Image

Vector format

I

A 4 \ 4 A 4 A 4
Adobe Encapsulated Portable Document Scalable Vector
Ilustrator (AI) PostScript (EPS) Format (PDF) Graphics (SVGQG)
A\ 4
Scalable Vector
Graphics Compressed”
(SVGZ)

Figure 6.1 Vector image formats. * — represents the compressed version of SVG
format

Table 6.1 Software that generate vector file format

Software Developed by Copyright Operating Initial Reference
status system release

Adobe Adobe Systems Proprietary Mac, 1987 [148]
Mlustrator Microsoft
Windows

Corel Draw Corel Proprietary Microsoft 1989 [149]
Corporation Windows

Inkscape — Open Source Linux, Mac, 2003 [150]
Microsoft
Windows

Sketch Bohemian Proprietary Mac 2010 [151]

Coding

For experimental purpose, the images in Fig. 5.3 are converted to vector
formats using Adobe Illustrator and Inkscape. Table 6.2 provides a comparison of the
obtained results.

From the table, it can be noticed that the SVGZ image format, generated by
the Adobe Illustrator software, achieves the smallest size. Hence, the same has been
considered as the secret message and the number of pages required to embed them,

using Method-B, are estimated in Table 6.3.

118

Chapter 6: Embedding Image

Table 6.2 Sizes of generated vector images

Image Size Output file size (in KB)
no. in
KB Adobe Illustrator Inkscape
Al Illustrat Adobe SVG SVG | EPS PDF SVG SV
or EPS PDF V4 GZ
53 (@) 27.10 35.0 223 27.6 328 905 [1390 6.17 6.16 1.40
Bytes
53() 5.84 252 215 39.6 4.31 898 |2520 9.85 16.10 1.87
Bytes
53() 132 269 208 32.0 871 133 |22.00 10.20 14.70 2.24
53() 1.74 28.8 217 334 1190 1.63 | 10.80 5.06 15.50 2.65
53 () 4090 37.7 226 24.5 16.00 238 | 5.01 191 13.10 3.05
53 1830 282 221 32.8 14.10 225 | 17.10 7.27 20.10 3.66
53(g) 6.18 382 227 27.6 11.00 1.80 | 13.50 6.39 1990 3.39
53(h) 86.20 453 254 38.0 50.50 6.10 |25.80 10.20 50.30 7.99
533 19.10 47.1 263 449 4790 454 |2390 953 6580 7.97

Al — Adobe Illustrator;, EPS — Encapsulated Postscript; PDF — Portable Document
Format; SVG — Scalable Vector Graphics;, SVGZ — SVG Compressed,; KB — kilobyte

Table 6.3 Results of embedding raster and vector images by Method-B

Figure Image Requirement to SVG Requirement to embed Efficie
no. size in embed raster images Z file SVGZ images ncy+
(Rfsltger) No. of No. of s;lzle No. of cover No. of (in %)
cover pages KB Characters’ pages
characters (A) (B)
5.3 (a) 27.10 133388 80 905 4137 3 96.25
Bytes
5.3 (b) 5.84 28117 17 898 4105 3 82 35
Bytes
5.3(c) 1.32 6344 4 1.33 6226 4 0
5.3(d) 1.74 8751 6 1.63 7630 5 16.67
5.3 (e) 40.90 1914597 115 2.38 11141 7 9391
5.3 (f) 18.30 88955 54 2.25 10533 7 87.04
5.3(g) 6.18 30139 18 1.80 8426 5 72.22
53(h) 86.20 4035147 242 6.10 28555 18 92.56
5.3 (1) 19.10 93173 56 4.54 21253 13 76.79

T — represents the estimated value by considering the embedding capacity per
cover-character as 1.75-bits; ¥ — Relative Efficiency = 100 — ((B / A) * 100);
SVGZ — Scalable Vector Graphics Compressed; KB — kilobyte

119

Chapter 6: Embedding Image

From Table 6.3, it can be noticed that the communication of images using the
SVGZ format has, considerably, reduced the size of required cover document.
However, one drawback noticed while communicating images in this format is that
the embedded image cannot be extracted completely in the case of transmission
errors. That is, even for single bit error a substantial portion of the image cannot be
retrieved. This can be inferred from Figures 6.2 and 6.3.
This motivated to develop:
(1) a custom format that encompasses the structure or layout of image in the
form of codes
(i1) a text steganographic algorithm that interprets these codes and embeds them
using the attributes Color, Kerning and Spacing
The combination embeds the original structure of an image, as it is, inside a cover
document. Hence, in the case of transmission errors, extraction algorithm searches the
potential cover characters and continues extracting the codes, accordingly. This
provides the required error handling capabilities and, thereby, reduces loss of
information in addition to avoiding retransmission. The details are given in the

subsequent sections.

6.3 Custom Format to Represent an Image

The format defines various elements of an image and represents them as
codes. The procedure to convert an image into codes and vice versa is described

below.

120

Chapter 6: Embedding Image

U G ML OGN G-t

4] S £ ¥ 0k [At

de¥, 1 O

£ 316°0) IMEFlq. 07" TVsh) *OmoRl: RV 1 o loZcshs: EACTan »ostil oBZA? 1P BT847 17 2 OMSDUDID-T /| OO/ 300 EApuLORAD)

EejdpTp 16k TSN Ozjony* LR NUNUBISHL O Sch <RRY CogTl U5, | -0 L)y MMVEONEEQ eyl UM+
{Fu-RY0F i g3 3-415jom; VA0 UBM AT [yce0 iG]] pa- ™ 2| Gy FewCh X0, Beenl
w8, o NI 00 _ SN, 13 GAOS NG, Bl DN GO) b e o gl A
NACHNODRY 751 PGB 1SRa-os0mMar el -5 CURGMMDO0 VAR Ot HOSEHL WD T3R80 EEcHDbo—> ('A7)U0M<*0, ([T
AT 1.7 e LY L - unuwéw ;AT

QTR0 ARt €] ECH Y] S00NAR00 L7768 - <G r 2V 5 bR A W 3 U3 HBEET L)
W« 0X1-gnl0x_), (4 ﬂ(WlummD “qﬂlﬂr”EuﬁNalﬂlO?AL”\ﬁ G| FE0e T EPHY -G eVl €501, JNDMF e

. INEDEC™z | € SOG4, W09 oMANTD; TR WO OGN o5CY 400, ZUEEH], - OB Al
900 AN 0 A A

A1 €1t 08 GCHs OAZAIA Oz KET - - GOETKACy 71 e MBSt DN SO 2 T 417
mmnuuamzwm Hmtl. ECl 163 URL. « U T 2Ac 04X 0| g3 £oc\0B08 oy ORMSRD (o)~ O3ESF* G
afi- Erigl At a0, 5% e <Ak

(T ‘xJ 0 {zEM!EBlREf Y- U <G5 DR OGN D o+ TN 6 90" Tl LTAT o i 4724 <
N LW ng lEIH!onw’lﬂm e 6V | 4 E-CORD 073, i BSOS RS Y- Gk

| 8 dHRuY
o)

L
(304cko Do) “aw 3IM@]GKDKP{MIMI”‘WK&P'xZIﬂH\ & Ohs TR P W.a) 1773l M3 e, 1|>|m0& d
[E0" - ResSeaasaln ™ e W Lwlﬂﬁﬂxw ¢ e ZH]UIYeAUQKU‘(IM[II!]!XEQU[EI!I!%LMZE\JMEMPM'Gﬂ k{"-qEr-m$
0 T A ™ A 2 Y G G- & JEIRI OIS CR @Ix’"wilwgmﬂl uan FAPe D3 A Bt
13 - ARRE, oG- Aes T KB0MT e Y W0t mtdad™elARR, ~p Ao BT (46660030) 1]
DR 3 X5 oy DDBM0R GONTE ™h-FGa5461A] 0L BB T £ ATOINGR 0z T)-L ESA AR 561 - /40
A0 RSO CORNNRSGE 71 (M QERAEN MR SR D-~ B0 D1 AN, P VA< gl tii”aelia,,ﬁ\ by 15682
0" 473 L TR AP B3 " 07 AN) CSRRENDYS 70T BT b
20006 A0, -5 00 D0R2] T BEOENDE G- YPT O¥M-e T e FFnED 0409 3 -upLiCai=TIAMIEE:
1" NAA Y LES - NN UMD DO ™ RPRYNA00 NE LIPS S ieS UDMAEY, T T 00
T, 1404 8-, AOBNT - a2 AL 72 A Ebd" (NN E) RN U™, X6t GRMEA” - lS3P b FNET ERSE" 24! AT FALANEY
6% FRT 0.\ oA 16 ALY o AIMIN

o o3¢ 78T CSOP OERRY 7 <98-H - Q- 887 801> D ATL i,

(a)
] > 1]
P = > ==
[ot]
A AN
hd Y
€3 I
| A o
A | A A
L e=—
~
(b)

Figure 6.2 Sample SVGZ file and corresponding image: (a) SVGZ file;
(b) Generated image

121

Chapter 6: Embedding Image

L LML GO ¢

1 ENHNE 575 T L) v ok - a2

e, U e

5 810°0) ey 03" Vgl *OtoRl=A¥ xalloZoshhss EACTn-vo=tl w747 080 <0 U844 11 2 WOIMD- | IEH) 080034 EAUOERD)
Fo_yonTn (IS EV RN Ozyoxy® ; bOuR ;T RIKNENS0T G858 <6RRRY tocTel 15k, | a0 L) gy | WMVENAEEOUca 4 élices (0N~ =
(PR B E e CaBg-S 2-412] o ¥ 1400 Q) CADF) [ycblTaddehlamliD o ™ 1. | GB8TBaye 12w K0 fend (T8
il A S0 00t SNO 0 IS MONIA -~z | ‘(5 Gyt 0SB NN o IS bt " e o SUDRY) S
DEMCHOBEYT 7500 FUMIER-S04MMne0 AF-ESOUEQMOG0'VAUAEHOeatt YOS WO-S 10410 Ao A/ om0, (AT
A0 17t 0 MDD 01 IR YT 51 (8% Wl

AT T AR €] DN OISR, L7762 |- el T 20 M AE 0 DA 7 LS 07) v
e " 0XT-GnT0x (41, A0 10 - LA Nl AL | A; S CRpomiT P2 X0 EPOHI K-G0 Todu -1, GBgP e
R0 EDECz) € AURDRIDG 4, I 0)E 5 oD i OR; AOMGH) C) D oY 0, ZAD], B8 DEAL SN,
0 MO 071

0116 S0 09 GREDAATON at ODOAZAUIN 023 KE1E B et - CAIOGTRACY K 11 e 5+ AAE08 ol A" O A LASMUANY' 3~ ‘617
7 1 k-5 e L. N 1050, 80D 77 00004 EOE | g £ IRy MR (el O5ES" oSt
aFi-_(rabe | T pSGsL<Ermliiflt a0 s 0DRke =0k

(T 1420 {26 AR EOE- 1 coRN) ¥ OG0 0 b 2 " R sy TN 4 (A9 02 QT o L 4 2244 <
fediiancoes. i, 1 _ LLANURIN v 0 095 -l s ()AL AMBLAMT NGOG V-G L6k)

(i BT WP ILARY L A0 0 - 87RO R 0 ABKEY D,

' fﬁ\m@jebeﬁWm“‘cIBH&P!xilﬂl—ﬁ...é:L’Jﬁ&:ﬂmlhu[w...aj TjfTiogreuaTam, 1 |>e0s 4
- asosan D,) oo 7001640 N D P 5 (-1t
TV RO Y - BRI 1 A T T LM gD 0, P D8P, Azt
130~ o R -y | 7 KBLOYHamiito Pkt | RO 2™ AR, - 1 e o ODMATT (18 S 08 A 13
BP0 S ubplEjxSeka” by WAHOR* QENTY -+ G8881AT DL olEECT 40 "t TUINSS 0n5 7) -L GHRNEAISH 160, ' - £ /-
e N TR 71 (¥ LAE o CROSODAD~ CHB0" T DYl e sl mtan... A A by 1572
012" DA 746 NG A (R AP D S5 R "o Ao N A GRSRNIRNIOK'e 7 a7 acZHRK
1 FUZR-gFL) R L&' 00N, -SoskPAr: O QIO0R2] T DRSO (MGT M- Y ;B VinE 20440 b Lzt WmEEE
o4 A ES - 0 T BN\ A DT RPRUNAA00 €4 LF S e SleagY 0TI
T, T4 8-, N7 iy) a0 GALZ0-FUC A () p RN T, AEA” g8 bNETEPSE 1 A(TSFALANEYD
P 6 FRT0A.| A G D G RUIAAIH

(@)

R —_—

S

||\ O//:
_ ’: Hiin
\L ||~

(b)

Figure 6.3 Sample SVGZ File (corrupted) and corresponding image: (a) Corrupted
SVGZ file,; (b) Generated image

122

Chapter 6: Embedding Image

6.3.1 Elements of an Image

Elements of an image are defined with respect to a grid, of equally spaced
horizontal and vertical lines, whose intersection points are called grid points. These
elements define the way the structure of the image traverses with respect to the grid
viz. from one grid point to another, and the text content that appeared in the image.
For example, in Fig. 6.4 (a), black lines form the structure of the image and “5 cm” is

the text content.

\ Structure
Grid | | ||
. . 5 cm
3 e B Text
Content
(a) (b)

Figure 6.4 Sample image: (a) Without grid; (b) With grid

The classification and definition of various elements are discussed below, in
detail, using Figures 6.5 and 6.6. Various notations mentioned in these figures and the
rest of this chapter, are summarized in Table 6.4.

= Label: Text content of the image

= DP: It is the point of the image that coincides with the grid point. It
represents the direction to move to reach the next point where the structure of
the image traverses (exceptions are mentioned below)

= DCP: It is the point at which the structure changes its direction from one to

another

123

Chapter 6: Embedding Image

Table 6.4 Used notations and their descriptions

Notation Description Notation Description
DP Directional point OPB The only point of a branch
DCP Direction changing point NhuoL Number of horizontal grid line
TP Temporary point Nvar Number of vertical grid line
SP Split point H, Hexadecimal value (Nibble)
FPoB First point of a branch NoB Number of branch
LPoB Last point of a branch Sy Single page

Direction in
+---+-» which the
[] image is

ltraversed

LPoB, ' — g
Starting | o A
point ’

| ol DB Podth?| | Begpch

FPoB
-SP(Branch E-{};.‘:DI= 2). DP for
Branch 1 and TP for Branch 2

Figure 6.5 Picture depicting the various elements of an image

- Branch with more . & —>»Non-D)D
than two points ;
‘;I':I _ Branch with
e —_—— | - rorB
on-
Y BN YS G . sk
LPoB DP FPoB , ¢ Branchwith

F} | one point
{] 1
SP (Branch Stavting
count =3} “m !
| point

Figure 6.6 Picture depicting the three possible branches of an image

124

Chapter 6: Embedding Image

= TP: The disconnected objects of the image are connected using temporary
lines. There is no restriction in the direction or the point at which the
temporary line is drawn (but maintain the length of temporary line small).
The point at which the temporary line is drawn is the TP
= SP: It is a branching point where the structure splits (branches) in more than
one direction
® Branch or Path: It is nothing but a path after a SP. The branches of a SP are
traversed in the anti-clockwise direction starting from degree zero. The
number tagged with the branch represents the order in which they will be
traversed from the corresponding SP, while converting them to codes
= FPoB: The point of a branch, after a SP, which falls on the grid point
= LPoB: Except the last point (non-DP), all other points of a branch can be a
DP, DCP or SP (exception is OPB). The previous point of such non-DP is the
LPoB
= OPB: ltis the only point of a branch
It should be noted that for a branch with only one or two points, the FPoB and LPoB
will be the same. Also, based on the starting point and the direction of the movement

chosen, the terminologies marked in Figures 6.5 and 6.6 will vary.

6.3.2 Code Representation of Elements

Table 6.5 provides the code representation of various elements of an image.
DP and DCP are represented by a nibble, Ha, representing the direction to reach the
next grid point on the structure, from the current grid point. To find the direction, the
angle of the line obtained by connecting these grid points is used. All the possible

angles and their respective Hy values are given in Table 6.6.

125

Chapter 6: Embedding Image

Table 6.5 Elements of an image and their respective codes

Element Respective code Element Respective code
Label SII#| $# FPoB' (Hy) || (Y, Hy) and DP || DCP ||
TP || SP || OPB || LPoB
DP or DCP ('Hy) OPB (Y, 0000, X)
TP (Y, Hy) LPoB (‘Hs, X)
SP ("X, Hy)

“*” and “+7 represents the Label, which can be “$ || # || $# || NULL” and
“8$ || NULL” respectively; 1 — represents that (Y, Hy) and OPB cannot occur

Table 6.6 Possible angles and their respective Hy

H,y Original angle of Consolidated Hy Original angle Consolidated

line angle of line angle
0000 01]>350 & <360 0 1000 >157.5 & <=180 180.0
0001 >0 & <=22.5 225 1001 >180 & <=202.5 202.5
0010 >22.5 & <=45 45.0 1010 >202.5 & <=225 225.0
0011 >45 & <=67.5 67.5 1011 >225 & <=247.5 247.5
0100 >67.5 & <=90 90.0 1100 >247.5 & <=270 270.0
0101 >90 & <=112.5 112.5 1101 >270 & <=292.5 292.5
0110 >112.5 & <=135 135.0 1110 >292.5 & <=315 315.0
0111 >135 & <=157.5 157.5 1111 >315 & <=350 337.5

TP is represented as (Y, Hy) where “Y” represents the TP and H, represents the
direction.

SP is represented as (X, Hy4) where “X” represents that the structure moves in
more than one direction from this point onward. H4 (exceptional for SP) represents the
NoB existing at this SP (exclude the path through which it reached this SP,
see Fig. 6.5). This makes the code to support a maximum of fifteen branches at a SP.

The FPoB is represented by two codes. The First code is the direction, from
the corresponding SP to the FPoB, which can either be (H4) or (Y, H4). The Second

code depends on the type of the second point of that branch which can be any code

126

Chapter 6: Embedding Image

other than the FPoB. It should be mentioned that the FPoB cannot have codes
(Y, Hy)("Y, 0000, X), where, “+” represents the Label “$ || NULL”, as they represent
a temporary line.

The OPB is represented as (Y, 0000, X) where “Y” represents that the value
“0000” has no significance (dummy) and “X represents the end of the branch.

The LPoB is represented as (Hs, X). Hy represents the direction and “X”
represents the end of the branch.

It should be noted that the Label is represented as a Flag in the code of other
elements, through which the structure traverses. It is inserted in the grid point that is
closer to the first character of the Label. The Flag “$”, “#” and “S#” represents that a
Label is attached to the current, next and both (current and next) grid points
respectively. It should be mentioned that, whenever a non-DP has a Label attached to
it, the previous grid point that has a DP or DCP or FPoB will carry the Flag “#”, as
the non-DP does not have a code (exception is OPB).

The Labels are written separately, with a delimiter, in the same order as the

Flags are inserted.

6.3.3 Image to Code Conversion Procedure

The procedure to convert a given image into custom defined codes is given
below. The disconnected objects in the image are connected using temporary lines
and the elements of the image like SP and DCP are identified (identification of such
elements is possible even in the absence of grid). A grid is chosen in such a way that
the maximum number of SP and DCP falls on grid points. Additional lines are drawn
to accommodate the points that do not fall on grid points (refer Fig. 6.7 (b)) and the

newly drawn lines are considered as normal grid lines.

127

Chapter 6: Embedding Image

DCP
or SP |

Additionally
drawn line

(@ Y

Figure 6.7 Sample image with additional grid line: (a) Without grid; (b) With
grid

A random point on the grid, which coincides with the structure, is selected as
the origin (refer Fig. 6.8 (b)).

If the selected point is a DP, DCP, FPoB or TP, then the respective code is

written and the procedure is continued by selecting the next point of the structure.

Branch 2 7 XN i w(:lr;;
| N mein
* ! Branch 1
: t
LPcB in \ }
Branch 1 | ‘Branch2 FPoBin
. | Branch2 |t
4 .
_ 3 em, t
S [R —
Origin Label
(a) (b)
CODE:
(0000)(0000)(0000)($0000)(0000)(0000)(0100)(0100)(0100)(0100)(1000)(1000)
(0110)(1010)(1010)(1100)(1100)(1100)(1100,X) (1000,X)
LABEL: 5 cm&
Delimiter: &

Figure 6.8 Sample image along with the corresponding code: (a) Without grid;
(b) With grid

128

Chapter 6: Embedding Image

If the selected point is a SP, then the respective code is written and the location
(x, y) of the SP (with respect to the grid) is stored repeatedly in a stack, corresponding
to the number of branches (for Hy-1 times) at the SP. After this, each branch is
traversed separately in anti-clockwise direction, starting from zero degree, and
converted into codes.

Whenever the OPB or LPoB is encountered, the respective code is written and
the stack is checked for emptiness. If the stack is not empty, then an element is
popped from it and the procedure is continued from the popped (x, y) location
viz. traversing the other non-traversed branches. When the stack is empty, it
represents that the whole structure has been converted into codes successfully, which
ends the procedure.

Whenever a Label is encountered in the image, respective Flag is inserted in
the corresponding code and the encountered Label is stored separately.

This facilitates the custom format to represent the structure of an image in the
form of codes. Also, the number of codes does not depend on the resolution of the
image but depends, only, on that of the grid and the number of SP present in it. This
property makes the custom format to considerably reduce the number of bits that are
required to represent an image (details are provided later in Section 6.5.1).

A sample traversal of an image along with its corresponding codes is depicted
in Fig. 6.8. Following the arrows, the complete image is converted to its respective

code by employing the details given in Tables 6.5 and 6.6.

6.3.4 Code to Image Conversion Procedure

The procedure to convert the, custom defined, codes into an image is

described below. To draw the image, the procedure uses line drawing application like

129

Chapter 6: Embedding Image

Microsoft (MS) Word, that allows drawing lines of predefined length (base length is
considered as 0.5 cm and the length of the line, to be drawn, is determined using its
angle and trigonometric equations [152]).

First, a stack is declared. The point corresponding to the origin is chosen and
the codes are read one by one. Based on the read code, a line is drawn in the direction
of the consolidated angle as specified in Table 6.6. Whenever a TP is encountered, the
cursor is moved in the specified direction without drawing any line. Whenever a SP is
encountered, the location of the current point, say (X, y), is stored for (H4-1) times in
the stack. After this, the codes are read sequentially and the lines are drawn
accordingly.

Whenever a LPoB is encountered, a line is drawn and an element is popped
from the stack. Now the cursor is moved to the respective location in the application.
After this, the codes are read sequentially and the lines are drawn as explained.
Whenever an OPoB is encountered, an element is popped from the stack and the same
procedure explained for LPoB is followed.

Whenever a Flag is encountered, during the process, corresponding Label is
retrieved and inserted in the image accordingly. The procedure ends once all the codes

are converted into corresponding lines.

6.4 Methodology Adopted to Develop Method-C

Method-C has been developed as four modules (see Fig. 6.9). The first
module, image to code conversion algorithm, converts an image into codes. The
output of this module and the cover document are fed as input to the, second module,

embedding algorithm.

130

Chapter 6: Embedding Image

Image to code
conversion algorithm

Extraction algorithm

Cover Nigr & Nygr, Position of the Origin,
work CODE and LABEL (Text files)
NhoL & CODE & Position LABEL
NVGL of the Ol"lgll’l
i 4 4 E
N v !
: Formatted Modified Undo :
') cover Code cover formatting Label i
;| Formatting work ~ work without embedding | !
. .| embedding g . . |
1| process > » disturbing [® process i
! process : |
: the font (UniSpaCh) |
! attributes |
E Embedding algorithm |
Position of the Origin, Formatting
information, Location of the first
Label, & Stego work
\ 4
Stegq work & Formatting Position of the
Location of the information Origin
first Label &
E ---------------- A ; -------------------- V.V ------------------------ V-------------_E
: Stego Formatted i
: Label work Formatting stego work Code !
E extraction > process » extraction i
! process process !

Position of the Origin,
LABEL and CODE

Image drawing
algorithm

Embedded image

Figure 6.9 Modules of Method-C. Nygi, — Number of Horizontal Grid Line;
Ny — Number of Vertical Grid Line

131

Chapter 6: Embedding Image

The embedding algorithm formats the cover document and then embeds the codes
inside it by modifying the font attributes. In addition, it embeds the Labels using
UniSpaCh (the reason for choosing UniSpaCh over Method-B is explained later in
Section 6.5.5). The third module, extraction algorithm, extracts the embedded codes
and Labels, and stores them in separate files. The fourth module, image drawing
algorithm, draws the embedded image using the extracted codes and inserts the

Labels, accordingly. All these algorithms are explained below in detail.

6.4.1 Image to Code Conversion Algorithm

As mentioned in Section 6.3.3, the algorithm converts image into codes. It
generates two text files, called CODE (contains codes) and LABEL (contains Labels),

and information such as Nygr, Nvgr, position of the Origin, as output.

6.4.2 Embedding Algorithm

Embedding algorithm considers CODE and LABEL as the secret message and
embeds them inside the cover document using the attributes Color, Kerning and
Spacing. The information related to FPoB and TP are embedded in the least
significant bit of Color (RGB), indicated as A, B and C respectively.

FPoB, LPoB, SP and H,4 values are embedded in Kerning, indicated by D to M
as shown in Table 6.7. After modifying the corresponding bits, they are converted to
their equivalent decimal value, which is then added to a default value (say 100). The

resultant is the required kerning value of the character.

Table 6.7 Kerning value
Bit position 9 8 7 6 54 3 2 1 0 Kerning value
Indication M L K J I HGVFE D 100 + Decimal value of D to M

132

Chapter 6: Embedding Image

Flags are embedded in the Spacing as specified in Table 6.8. Although, the
algorithm supports the codes to be embedded in multiple pages (for bigger images),

we restrict our discussion to a single page, S,.

Table 6.8 Flags and their respective spacing values

Flag Spacing
$ 0.1
-0.2
$# +0.1
NULL Default

To begin with, the embedding algorithm formats S, into a monospaced font
(every letter is the same width [153]), like Courier New, with equal number of
characters in each line. The number of characters per line should be > Ny and the
number of lines should be > Nygy (this can be achieved by varying the font size and
line spacing). The number of characters per line and the number of lines in S, are the
Formatting information. Except the characters on edges, all others have eight
neighbors (Right, Top-Right, Top, Top-Left, Left, Bottom-Left, Bottom and
Bottom-Right). These eight neighbors are used to accommodate the sixteen possible
directions (refer Table 6.6), as shown in Table 6.9. This limits the algorithm to

support a maximum of seven branches at a SP.

Table 6.9 Selecting one character from eight neighbors based on Hy4

H, Selected H, Selected
neighbor neighbor
0000 Right 1000 Left
0001, 0010, 0011 Top-Right 1001, 1010, 1011 Bottom-Left
0100 Top 1100 Bottom
0101, 0110, 0111 Top-Left 1101, 1110, 1111 Bottom-Right

133

Chapter 6: Embedding Image

Now, a stack is declared and the character corresponding to the origin is

selected to embed the first code. The codes are embedded based on the type of Form,

which is discussed below in detail. After embedding a code, the H4 value of the

embedded code 1s used to select the next character to embed the next code.

Form 1: (*H4) — The Hy value is embedded at position “F G H I If Hy = 0,
then “D” is set. By referring Table 6.9, the next character is selected using Hy
Form 2: (X, H,) — The H, value is embedded at position “F G H I”” and “X”
is embedded at position “D”. The location of the character (line no., char no.),
where this code is embedded, is stored in the stack for (H4-1) times. By
default, Form 2 is followed by Form 3

Form 3: The two (First and Second) codes that immediately follow Form 2 —
The code of this Form represents the FPoB corresponding to a SP. The Hy4
value of the First code is used to choose one of the neighboring characters to
embed Form 3. The Hy value of the First code is embedded at position
“J K L M” and the Hy4 value of the Second code is embedded at position
“F G HTI”. The alphabet “Y™ of the First code, if any, is embedded at position
“A”. In addition, if the Hy value of the First code is all 0 then “B” is set.
Based on the Form of Second code, it is embedded in the appropriate position
and corresponding action is taken based on its Form

Form 4: (*Y, H,) — The Hy value is embedded at position “F G H I” and Y™
is embedded at position “C”. By referring Table 6.9, the next character is
selected using Hy

Form 5: (*H4, X) — The Hy value is embedded at position “F G H I and “X”

is embedded at position “E”. By default, Form 5 is followed by Form 7

134

Chapter 6: Embedding Image

e Form 6: ('Y, 0000, X) — The H, value is embedded at position “F G H I”” and
“X” is embedded at position “B”. “Y” is embedded by setting “C”. By
default, Form 6 is followed by Form 7
o Form 7: The two (First and Second) codes that immediately follow Form 5 or
Form 6 — The code of this Form represents the FPoB corresponding to a SP.
When Form 7 is encountered, an element is popped from the stack. The
character at the popped location is selected and the procedure is continued
further. Form 7 is embedded in the same manner as explained in Form 3.
After embedding the codes, appropriate action is taken based on the Form of
Second code
In all the above Forms, “*” and “+” represent the respective Labels (refer Table 6.5).
These are embedded by setting the corresponding spacing values as specified in
Table 6.8.
After embedding the codes, all format related modifications are reverted without
disturbing the font attributes. Now, a character is selected and the Labels that are
present in LABEL are embedded using UniSpaCh.
After embedding all the Labels, the embedding procedure ends. The generated
stego work is communicated to the receiver. Also, information such as the position of
the origin, Formatting information, Label separator and position of the first Label are

communicated.

6.4.3 Extraction Algorithm

Extraction procedure is the reverse of the embedding process. To start with,
the Labels are extracted from the received document using UniSpaCh and stored in a

file called LABEL. Now, the formatting process identical to that of the embedding

135

Chapter 6: Embedding Image

algorithm is performed. Locations (line no., char no.) of all the stego characters are
identified and stored in an ArrayList “SC”. Also, a stack is declared and a file called
CODE is used to write the extracted codes. Now, the character corresponding to the
origin is selected and the procedure followed is shown in
Figures 6.10 (A), (B) and (C).

The extraction algorithm identifies the Form of code embedded in the selected
character. When either a Form I or Form 4 is identified, the code is written in the file
and the next character is selected (using Hy4) to proceed further.

When a Form 2 is identified, the neighbors that carry the associated Form 3
are recognized in the clockwise direction starting from the Bottom-Right neighbor.
Location(s) of the recognized neighbor(s) are stored in that order in the stack, and the
code (X, no. of neighbors recognized) is written in file. Doing so, automatically
handles the errors that are caused in Form 2, and in the First code of Form 3 and
Form 7. Now, the topmost element from the stack is popped and the extraction
process continues from that location.

Suppose, when a Form 2 is identified and no neighbors carry an associated
Form 3, then the value of Hy is checked. If it is “0”, then the procedure of Form 1 is
followed. Else, a tag “, X is appended to the most recently written code and the other
branches are traversed by popping an element from the stack.

When either a Form 3 or Form 7 is identified, the First code is written in the
file. If the Second code is present, then appropriate action is taken based on the Form
of Second code. Else, the code (Y, 0000, X) is written in the file to handle the error
that is caused in the Second code. After this, the other branches are traversed, if any,

as explained above.

136

Chapter 6: Embedding Image

Note:
* SC— ArrayList

* Whenever a code is extracted from a character or ACTION Z is executed, remove
the currently Selected Character’s location from SC

* FA,— Font attribute is unmodified
¢ FA,, — Font attribute is modified
» Select_next — Select next character using Table 6.9

* ACTION Z — If the Selected Character has Form 3 || 7, then write (Y, 0000, X). Else,
append the tag “, X to the most recently written code

[Select the origin character]

(—4

Isitin Execute
SC? ACTION Z

“Yes” & FA,,
|| “No” & FA,

Identify the Form (if FA,,)

“No” & FA,

Form 1 || 4 Form 2 FA, Form3 |7 [Form 56
\4 v v v
Write the Add (x,y) of Write the Write
code and < the Selected First code the code
Select next Character in SC
v

©
Is Second
code

identified?

Yes

Execute Act according

ACTION Z to the Form of
Second code

Figure 6.10 (A) Extraction algorithm: flowchart 1

137

Chapter 6: Embedding Image

Whether any neighbor
carries FPoB
corresponding to the

Yes Selected Character?

Identify the
neighbors

Is the
Selected
Character has
Form 2?

Is any
neighbor
in SC?

At least one
neighbor is present

None
present

y

Execute 1) Location of identified Alé);f:[cou]tf 7
ACTION Z neighbors, which are in
SC, is stored in the
stack Write
Oam ORI Select next
v identified neighbors —
that are in SC)
Is the Pop the topmost e
stack No | element from the stack
empty? & select the character
in that location

Yes

,, ()
(®)

Figure 6.10 (B) Extraction algorithm: flowchart 2

138

Chapter 6: Embedding Image

Is ACTION Z
executed at any
point?

Yes

Report error | No Is SC
empty? Yes
Stop the
Is SC algorithm with
Ne empty”? Yes success message
4
Stop the algorithm
with error message
Is there any
character
having a Form
1 ||Form 4,
which is not Is there any
pointed by any character having
other character, a Form 2, which
present in SC? Y is pointed only
by a character
having a Form 3 No

|| Form 7, present
in SC?

@—> Yes

\4
Select one such Yes

Is there any
character,

character v having a
¢ @ Form 3 ||
Form 7,
Select a new line in file [* present in Yes
¢ SC?

Write the location of the
Selected Character in file Select a

character

from SC
Figure 6.10 (C) Extraction algorithm: flowchart 3

139

Chapter 6: Embedding Image

When ecither a Form 5 or Form 6 is identified, the code is written in the file

and the other branches are traversed, if any.

Error Handling

It should be noted that, whenever a code is extracted from a character, the
location of that character is removed from “SC”. Hence, trying to pop from an empty
stack, with some elements left in “SC”, indicates the occurrence of error in Form I,
Form 3 or Form 7. These errors are handled by picking an element from “SC” and
begin extracting codes from that location (refer Fig. 6.10 (C)).

Also, whenever an unmodified character is encountered, during the extraction
process, it first checks whether any of its neighbors carry Form 3 corresponding to the
selected character (refer Figures 6.10 (A) and (B)). If any, then it considers that the
selected character has carried Form 2 and proceeds further with the procedure of
Form 2. If no such Form 3 is present, then the tag “, X” is appended to the most
recently written code. After this, an element is popped from the stack
and the same procedure is followed as explained above. This shows that the errors
caused during transmission will affect only that particular code but not the complete
image. This is achieved due to the structural embedding nature of the embedding
algorithm which facilitated the extraction algorithm to handle the above-mentioned

€ITors.

6.4.4 Image Drawing Algorithm

The image drawing algorithm follows the same procedure explained in
Section 6.3.4. During the process, any code with a tag is considered as a normal code

and the procedure is followed accordingly. Also, whenever a new line is encountered

140

Chapter 6: Embedding Image

in CODE, the cursor is moved to the corresponding location in the line drawing

application and the procedure is continued as explained.

6.5 Evaluation and Security Aspect

This section discusses the various parameters that are used to evaluate

Method-C and the security aspects in some detail.

6.5.1 Size Comparison

An image is converted into custom defined format and then embedded inside a
cover document. Hence to find the efficiency of the custom format, it is compared
with the vector format (SVGZ file of Adobe Illustrator). The results are listed in
Table 6.10, and the generated images of both formats are shown in

Figures 6.11 (A), (B) and (C).

Table 6.10 Sizes of images in custom and SVGZ formats

Figure SVGZ file in Custom format (in bits) Efficiency'
" P T opEt LasEL Total (B) (in %)
5.3 (a) 7240 765 848 1613 77.72
5.3 (b) 7184 765 1176 1941 72.98
5.3 (c) 10895 1611 784 2395 78.02
5.3 (d) 13353 3312 728 4040 69.74
53 (e) 19497 5517 NA 5517 71.70
53() 18432 5913 1224 7137 61.28
53(g) 14746 5346 760 6106 58.59
5.3 (h) 49971 16101 2208 18309 63.36
53 () 37192 7272 7216 14488 61.05

L — each code can be represented as a 9-bit binary string using the structure
“SHXYH,X; T — each character in LABEL is represented by an 8-bit ASCII value;,

T — Relative Efficiency = 100 — (B / A) * 100); SVGZ — Scalable Vector Graphics
Compressed; NA — not applicable

141

Chapter 6: Embedding Image

SVGZ format images

Custom format images

nupuram, Tamil Nadu

Poonthahdalam

Solaikyppam

Kalpakkam

(@

nupuram, Tamil Nadu

East Coast Road

‘engapakkam

Natthamedu

Kalpakkam

(@)

Amsterdam Berlin

690

Amsterdam 690

Florence Grenoble Florence
(b) (b)
NVto15V Vtol5V
= Switch
4 Switch §
10K 1
10K T 7
i 1uF / 15V
1WF/ 15V | A
NE555 A Sséiﬁ T
—
3 (6 2
b 5
i 1 5% L Speaker 8ohm, 0.5W
0.014F l Spealer 0.01pF]
_|_0.01|.1F Sohm, 05W 0.01uF
(c) (c)

Figure 6.11 (A) Generated images of SVGZ and custom formats — part 1:
(a) Road map from kalpakkam to anupuram; (b) Graph;

(c) Electronic circuit diagram

142

Chapter 6: Embedding Image

SVGZ format images Custom format images
uiw 0(9[1}00
1 1 s
54000, 2.2000 - N .
“‘ |
|—4—1.sum—>—|l o << 1.5000 =>|
Plan -

12mm dla bars
@160mm c/fc

12mim dla bars @
160mm cfc

8mm dla bars @
270mm c/c

8mm dia bars @
270mm ofc

LT N
Section L Section

() (d)

[IS EY N I
4 > > > 4 > =
- a ®oa 1 X *a
v vj
@ Ik ¥
A AL A A
4 (Al &) v
@ \\ g 4@;
L/ Y
(e) (e)
& ’—;f
f\{_“l BC!IIH 5 T)
\ Sam — -
f l 1 7| T - 2t
] ¥ \ | = — Lol e o
A — - S| MG
\I ¥ \ f Tutine || Attemator \ L — : -
/ |y T g I] » -
| | | Feed Water / \ e _— — L ¢
l | =3 -=| L
M ety %Fuma:: :_6_ f - .. - ——
= = o |5 Los
Dust Collctor Prehesed A é—'}“ [-
or Precipitator C | ebdee
Feed Water Pump
% "

Figure 6.11 (B) Generated images of SVGZ and custom formats — part 2:
(d) Civil drawing of stairs; (e) Boiling water reactor;
(f) Schematic diagram of thermal power plant

143

Chapter 6: Embedding Image

SVGZ format images Custom format images
BWR PWR TN /T\
. \ o -\
Steam genetor | Staam b =1
\ | |‘| 1 ’\AN
] I D \|J R B
\ I B -
. |
G Noclear R e e L'\,_/ME _|
reactor _% reactor _W_r,zr Feesater Lﬂm

e ey el [s

1 A

(h) (Custom format image)

Generated images of SVGZ and custom formats — part 3:
(g¢) Nuclear power plant steam generation, (h) Reactor flow

sheet; (i) Reactor core

Figure 6.11 (C)

144

Chapter 6: Embedding Image

From Table 6.10, it is evident that the custom format efficiently represents

images in smaller sizes, when compared with the SVGZ file format.
6.5.2 Embedding Capacity

Embedding capacity is the maximum amount of information that can be
hidden in a given cover medium. Since an image is embedded, in the form of codes,
its embedding capacity can be defined in two different ways: one is based on the size
of the image (equation 6.1) and the other is based on the total size of its CODE and

LABEL (equation 6.2).

Embedding capacity per cover — character _ Size of image in bits

(Image Space) ~ Total no. of cover 6.1)
characters required
Total size of CODE and
Embedding Capacity per cover — character _ LABEL in bits 62)
(Code Space) Total no. of cover '

characters required

To verify the embedding capacity, the custom format of the images
(mentioned in Table 6.10) is embedded inside a cover document and the results are
listed in Table 6.11.

From Table 6.11, it is noticed that the embedding capacity of Method-C varies
from one image to another and is not uniform, unlike the methods Method-A and

Method-B. This is due to the structure of the respective images.

6.5.3 Bits per Distortion

The custom format first identifies the various elements of an image and
represents them as codes. These codes are then embedded inside the cover document.

Hence, bits/distortion of the method, also, varies from code to code and is not

145

Chapter 6: Embedding Image

uniform. That is, different stego characters carry different number of secret bits. For
example, the cover character which embeds a DP or DCP, represented by
(H4) — without considering Labels, embeds 4-bits/distortion whereas a SP, TP and
LPoB, represented by (X, Hi), (Y, Hs) and (Hs, X) respectively, embeds

5-bits/distortion.

Table 6.11 Results of embedding the custom format

Figure No. of cover characters encountered Embedding capacity
no. while embedding

CODE" [ABEL’ CODE + Image Code

LABEL Space Space

53 (a) 1787 811 2598 2.79 0.62
53 (b) 764 1124 1888 3.81 1.03
5.3 (c) 557 750 1307 8.34 1.83
5.3 (d) 821 696 1517 8.80 2.66
53 (e) 3667 NA 3667 5.32 1.50
53 () 6057 1170 7227 2.55 0.99
5.3 (g) 1188 727 1915 7.70 3.19
53 (h) 6996 2111 9107 5.49 2.01
53 () 2695 6899 9594 3.88 1.51

* — includes the space characters that was removed during the formatting

process; T — embedding capacity of UniSpaCh is considered as
1.046-bits/cover-character; NA — not applicable

Further analysis concluded that the method embeds a minimum number of bits
(4-bits/distortion), when a cover character carries a DP or DCP, and a maximum
number of bits (12-bits/distortion), when a cover character carries a FPoB with codes

(Ya H4)($#H4, X) or (Ya H4)($#Y, H4)

6.5.4 Secrecy

As three attributes Color, Kerning and Spacing are utilized to embed the

secrets, the imperceptibility level of the method is tested with different images. For

146

Chapter 6: Embedding Image

example, the code given in Fig. 6.8 is considered and its working is illustrated in

Fig. 6.12 by taking the origin as (7, 1).

Cover: Stego;

Interne Interne
twhichi twhichi
sextens gextens
ivelyus ivelyus
edtosha edtosha
reanvki reanyki
ndofinf ndofinf

Figure 6.12 Sample output of Method-C. *Stego characters are highlighted for
understanding purpose

By looking at both the cover and stego work of Fig. 6.12, it can be verified that the
embedding procedure has not created any visual difference between them. This

validates that the developed method achieves high imperceptibility.

6.5.5 Comparison of Method-B and Method-C

In Section 5.7 of Chapter 5, it was shown that Method-B outperforms the best
existing method, UniSpaCh. Hence, Method-B has been considered as a benchmark
and compared with Method-C based on the number of stego characters (cover
characters whose font attributes are modified) and page requirements. The results are
provided in Table 6.12.

From Table 6.12, it can be noticed that Method-C uses UniSpaCh to embed
the Labels, and still it embeds the images in smaller size cover document with less
number of modifications. This shows that the results can further be improved by using

Method-B to embed the Labels.

147

Chapter 6: Embedding Image

6.5.6 Transmission Error

During communication between sender and recipient, transmission errors can
occur which can corrupt some of the stego characters. As the developed method
embeds the structure of an image, as it is, corruption of an embedded secret in a stego
character will affect only that code but not the complete image. This property paves a
way for the receiver to handle transmission errors to some extent and extract the

embedded image.

Table 6.12 Comparison of Method-B and Method-C

Figure Method-C Method-B Efficiency based
no. embedding SVGZ on no. of
No. of stego characters No. of images
to embed pages
COD LAB CODE + (B) No. of No. of Stego Pages
E EL LABEL stego pages charact *
(A) characters (D) erst
©

5.3 (a) 80 424 504 2 1810 3 72.15 33.33
5.3 (b) 76 588 664 2 1796 3 63.03 33.33
53() 144 392 536 1 2724 4 80.32 75.00
53() 280 364 644 1 3338 5 80.71 80.00
53() 613 0 613 3 4874 7 87.42 57.14
53 657 612 1269 5 4608 7 72.46 28.57
53(g) 490 380 870 2 3687 5 76.40 60.00
53(h) 1420 1104 2524 6 12493 18 79.80 66.67
533 591 3608 4199 6 9298 13 54.84 53.85

L — Relative Efficiency = 100 — ((A / C) * 100); ¥ — Relative Efficiency =
100— ((B/D) * 100); SVGZ — Scalable Vector Graphics Compressed

To illustrate this, the color patterns given in Table 6.13 were used while
executing the procedure shown in Figures 6.10 (A), (B) and (C). Based on the
correctness of extracted code and the execution status of extraction algorithm, an

appropriate color is applied to the currently selected character for the primary

148

Chapter 6: Embedding Image

identification of transmitted image. As the process of distorting a non-stego character
does not affect the method developed in the present work, an illustration is provided
in Figures 6.13 (A) and (B), by distorting 15% of the stego characters in a stego work.
It should be noted that the extraction algorithm can extract the embedded image, with
ease, even when 15% of the embedded secrets were distorted. In addition to applying
the color patterns, the image drawing algorithm draws the embedded image as

explained in Section 6.4.4.

Table 6.13 Used color patters to color the currently selected character

Execution Correctness of extracted code Color
status pattern
(R,G,B)
Non-error (0,255,0)
Before

H,4 mismatch with the number of identified neighbors (for a (255,0,0)

reporting SP) or a non-stego character is selected whose neighbors
crror carry the corresponding FPoB
Appended tag ©“, X” or written (Y, 0000, X) in file (155,74.,7)
Non-error (0,0,255)
After H,4 mismatch with the number of identified neighbors (fora ~ (117,117,5)
reporting SP) or a non-stego character is selected whose neighbors
error

carry the corresponding FPoB
Appended tag “, X” or written (Y, 0000, X) in file (121,13,108)

H,— Hexadecimal value; FPoB — first point of a branch; SP — split point

'_
v
e

Figure 6.13 (A) Illustration of handling transmission error: (a) Original image;
(b) Transmitted image

149

Chapter 6: Embedding Image

i i cesnotimplyanystrictrulesforth u=sdrosh ykindo £1 i 1 ictrules=forch-
dp:nu:‘:ndne:vesdrnpp inthe: work.Henceduringtran=miss=ion, dparcie=todo=a - 3 k- H R T T P |
£: 1 finformationwillleads wganisati th i11leads

raphy, WaserMarkinganddsegan

lycla==ifiedintothres =a=Cr raphy, WaterMarkingand3tegan lyclassifiedintothres
imsatachievingapeci fiffiask Cryprogliaphyaimsatprevensinganyehiz 3 imvi sphyaimsatpreventinganythiz.
i i B idi ' and3d atocon ingaimsatprovidingCofvri i dﬁt—eg:nngz:phya:uns arcon
wedifferentizsues, tBeyean iththeas dds weds entizsues, < 3 izhch

ol B e ytheother .D.

seq

q yptography :Theword@ryptography =
ritvingmentioni: asfecretWriting. ThemBinaimof Cryptographyista ritingmentioninglivasSecretAriting.T.

sheseere tmessagfics yproge aphy=nppor tool-coysh rough Pnerypt iona
heEncrypti 1 hmwhich akeytoe iphe h yPEi 1 ith

lainTextbackfrofehe CipherText. Basedon umberofkeysused, Cryps dainTexcbackfr

4R ymmetricKeyCrjipt ography. Symmetric 1e A= ymmes ricKeyCrgps ography. Symmet s chel

graphyhighlyre 1;I= ool
romthecrher.Oftentheya:

graphyhighlyreli]
romtheother.Ofce;
=Fe ?.Onavillbeus rwillbeussdfordecryes
is=ibleWaterMarkingand3c
j=creclybyhid :i.n.g:'\.t.i.nt.hgl:
ipdetail=insh
p&:blynr:.mp:r::pt:.bly n

jecretlybyhid ingitinthec
3 tail=inthecow-
p‘::.bl;ur:unpernep\::\bly u

haringadigitalmed 1 ENigtesa
of thedocumen chyeitherps thyeitherpr.
11theduplicasecopies R e 7

oitandupl oadivasadif oitanduploaditazadif
113 cumen = or=poilingrhedooumen-
ion,etc.Asfarasta z Emation, erc.Asfarasto-

h ivelyu=e 1 fhichiszextensizelyuse.
irdpa B =forthird

1 iviveOrga orrole forSensitiveOrga:
i isbroadlye curitySystemizbroadlyc
1 ificat cnedclassificaticonaims

hemes=age, ¥aterMarking

age, WatezMazking
i=zosolved
ubzeq

y. BzymmetrickByCr
s

pricn. Wal
ztinqansuqang:la?pl:
ngiza

flyulaum:nune
FazezMarkingas

ngivinthecoverworkwhe:

g
lsinthecoverwork. Cover¥ ingbutaninnocentdigitalmediain l=inthec PR
() (d)
kindofi i implyanystrictrules forsh
dparticstodocavesdroppingi k. H ingtransmizsion,
. 1 1 5 illleade
lyclom=sfimds Cryprtography, WaterMarkingandScegan
i Bt S i fictazk.Cryptog- aphyaimsatpreventinganythiz
ingaimsastprovidingl i i cnand3 im=atecon \
redifferenti=s=ues, they g htheas
T, thewes eos1 yth her.D
==qu=nr.panqnph= Cryptogzaphy: I'hg-(u.zd Sryptographyisderivedfro
£Cz hyisto
g= . Cz ypEogs aphy= upps: =crecythroughEnczyptiona A]
reEncrypticnalgorithmwhichuse=akeytoenc-yprtandproducestheCiphe
lainTextbackfromthe Cipher Text . Based h ofkeysuzed, Crypt B -
i%= ymmet rickeyCryptography. Symmetziche ccogziphyusesaszingle |
= ¥ E oththe
ighlyrels TheoryConceptafori su—uz;r.y A= ymmert
her.OE al =
=Fey.Onewillbeusedforencs ypes dehecthezwillk aE
dInvisikbleNaterMarks wisikleNaterMarkingandSt
arkings sagesec zeslybynid :\nq:u'.:\ ntheo
Erhed L : ipdetai T A
2 2 = sptiklyczs tibly N K
[womajori=sus=whi ile=haringadigitalmedizenl
stecsicntriessokeeptsacke ftheles al ith - —
symakingsheows crshirdeva: 1stck ddedinalltheduplicatecopics

ientoitanduploaditasadif
=rt, orspoilingrhedoocumen /
sfc:mation,etc.hsfarasto
nesvhichizextensivelyuse
iscthersarswaysforthirdpa
=vaiorroleforSensizivedrga

yzimszteoncealingthess
wtcaddadditionallayes
thecther Deta:lzabouteact
deri-ediromtheGrestw

aeryprion:
ssthe’ pherTexs.As:

orypriontechn
de

== _PlainT-xtisgivenasinputcocheE A
ypziosnside, sk izussdiorssoversheSlal

imed, Cryprographyisdividediztorwocat 3 ¥
sesas--glekeyforbot yprs ypesonase =age.

3 3 prhekeysafely &= =eetricKey ryptogra \
by. A= ckeyCry ifferentke- ysoned-rivedfrom \

ichoneis mnum.—ed“th:?ublrxg yandtheotheriskestast '.:E'::.vaheK:

ypTiom. - ¥F

ki dFe lo=elyzela B .:[xnu;h |
agiei VisibleWasezMarkingai ingsh N L o

izinth k. C ki i i igitalmediain

(e) 0]

Figure 6.13 (B) Illustration of handling transmission error: (c) Stego characters at
sender side (highlighted for understanding purpose);
(d) Identified stego characters after the occurrence of error
(15% of stego characters have been distorted),; (e) Applied color
patterns for the stego characters in Fig. 6.13 (B) (d)
during extraction; (f) Extracted image from Fig. 6.13 (B) (d)

150

Chapter 6: Embedding Image

6.6 Summary

In this chapter, the large cover document requirement of Method-B is
addressed for a specific category of images. First, the size of the image is reduced to
the extent possible through vector formats and then embedded them using Method-B.
It is seen that the best vector format, SVGZ, considerably reduced the page
requirement. However, even for single bit error, the method failed to extract a
substantial portion of the image. To account for the same, error correcting codes has
to be introduced as a part of embedding procedure, which increases the size of
message that needs to be embedded. This is not an encouraging one. Hence, it is
identified that an embedding algorithm that provides the necessary error handling
capabilities to extraction algorithm, without adding redundancy, is a necessary one.

To achieve the same, a novel method (Method-C) has been developed to
convert images into a custom format and embed the same along with the structure of
image. This structural embedding nature facilitated the extraction algorithm to handle
transmission errors. The error handling capabilities of the developed method are
inspected and an illustration is, also, provided. The output file sizes of the custom and
SVGZ formats are compared to verify the efficiency of the former format. Further
evaluation led to the conclusion that the method has non-uniform embedding capacity

and bits/distortion.

151

CHAPTER 7

SUMMARY AND SCOPE FOR FUTURE
INVESTIGATIONS

This chapter gives the summary of the work carried out, methods developed

and conclusions arrived at, and future work that can be pursued.

7.1 Summary and Conclusions

Digital communication plays an important role in connecting the
geographically distributed individuals as well as organizations. Today, even sensitive
information is being communicated employing internet. As information security is of
utmost priority for the organizations, achieving the same is a challenging task while
using the public network. Though cryptography could be used to enhance the
information security, it cannot hide its own presence from the attackers.

Alternatively, steganography, an information security measure, averts such
attention by performing the communication in a stealthy manner. It hides the secret
information in the redundant information of an innocent looking cover medium by
making unnoticeable modifications. This characteristic attracted and narrowed down
the research interest of the work, to be carried out as a part of the dissertation, to
steganography.

Of the various cover types, documents containing texts are widely used by the
organizations and are communicated using public networks. Also, text documents
require low bandwidth during communication. Due to these advantages, the work
carried out in the present study involves the development of efficient text

stegnographic techniques for a safer and stealthier communication.

153

Chapter 7: Summary and Scope for Future Investigations

A brief study on existing text steganographic methods was carried out and
discussed in Chapter 2. A detailed comparison of the methods was presented and it
led to the conclusion that UniSpaCh stands best among the rest. It was also noticed
that, apart from the methods that generate the stego document directly, embedding
capacity and bits/distortion of the existing methods are inversely proportional. As a
result of this, embedding secret messages that are larger in size is not easy to be met
by text steganographic techniques. This necessitated the development of novel
methods, with high embedding capacity and bits/distortion, in the current scenario.

Based on a detailed analysis, it was understood that this limitation can be
addressed by designing a method that: (i) embeds maximum number of data bits in a
distortion; (i1) utilizes the available embedding space in an efficient manner. Bearing
this in mind, features of various word processors were studied to identify the best
word processor that supports steganography, along with the best feature that can carry
a large number of bits per distortion. The possible ways to exploit the available font
attributes was demonstrated in Chapter 3. The results led to the conclusion that the
word processor Microsoft (MS) Word stands best with the attributes Color, Kerning
and Spacing providing excellent opportunities to hide data.

After identifying the possible way to achieve high bits per distortion in
Chapter 3, the potential techniques to improve the utilization of the available
embedding space were explored and discussed in Chapter 4. Of the presented
steganographic techniques, Cover Document Required (CDR) techniques consider
the secret message as characters and embed them directly inside cover documents.
This makes these methods an optimum choice for embedding text as they embed
8-bits/distortion. However, due to the non-uniform occurrence probabilities of

characters in the cover document, the available embedding space gets wasted

154

Chapter 7: Summary and Scope for Future Investigations

whenever a low occurring character needs to be marked. This affected the overall
embedding capacity of these techniques.

The necessary measures to handle this limitation were identified and reported,
in Chapter 4, along with a novel method (Method-A) that uses the attribute Spacing to
embed the secrets. The method introduced two new techniques Frequency
Normalization Set (FNS) and Character & String Mapping (CSM). The combination
(FNS and CSM) allowed single secret character to get embedded in multiple cover
characters. This boosted the embedding probabilities of low and average occurring
characters, and made the embedding probabilities of all the characters uniform. As a
result, the method achieved an average embedding capacity of 2.22-bits/
cover-character with 8-bits/distortion. This facilitated to, considerably, reduce the size
of cover document and number of modifications that are required to embed the
secrets. However, the method restricted the secret message to contain only English
alphabets, Dot and Space (ADS) characters. This drawback limited the method from
embedding messages that contains numbers and special characters viz. mobile, credit
card, debit card, etc.

This limitation was addressed, in Chapter 5, by extending Method-A into a
mixed-type embedding technique (Method-B) that embeds binary data. This was
possible by converting the binary data into ADS characters, using a one-to-many
mapping module called Binary to Character Converter (BCC). As the converted
message looked almost identical to the secret message used in Chapter 4, the
embedding and extraction procedures of Method-A successfully utilized them with
ease. Experiments were conducted using various secret messages. The results depicted
that the conversion procedure of Method-B has reduced the earlier attained

embedding capacity and bits/distortion of Method-A by 12.5% and 50% respectively.

155

Chapter 7: Summary and Scope for Future Investigations

A case study on nuclear power plant related images concluded that Method-B
has reduced the size of required cover document by 38.42%, when compared with
UniSpaCh. But, it still requires more than hundred pages of cover document when the
image size is = 40 KB. This limitation is applicable to any type of binary data and
handling such limitation differs from one data type to another.

In Chapter 6, this drawback was addressed for a specific category of images
such as engineering drawings, roadmaps, graphs, etc. At first, an attempt was made to
reduce the size of images through vector formats and then embedded them using the
method explained in Chapter 5, Method-B. The vector format, SVGZ, considerably
reduced the page requirement. However, even for single bit error, the method failed to
extract a substantial portion of the image. It was observed that no existing method can
provide the required error handling capabilities without increasing the size of secret
message.

In Chapter 6, this issue was addressed by developing a novel method
(Method-C) that represents an image in a custom format, with reduced size, and then
embeds the same along with the structure of image. This structural embedding nature
provided the extraction algorithm the expected error handling capabilities. The same
has been inspected and an illustration is, also, provided in this chapter. Further
evaluation concluded that, the method has non-uniform embedding capacity and
bits/distortion.

The work carried out as part of the thesis has resulted in three novel methods
that achieve high embedding capacity and bits/distortion:

(i) Method-A embeds secret text, that contains ADS characters, using the
attribute Spacing

(i1) Method-B embeds binary data using the attribute Spacing

156

Chapter 7: Summary and Scope for Future Investigations

(ii1)) Method-C embeds a specific category of images, along with their structure,

using the attributes Color, Kerning and Spacing

Key findings of the thesis are summarized below:

Character-level embedding techniques stand best, in terms of bits/distortion,
by embedding 8-bits at a time

Amongst the available methods, UniSpaCh stands best with an average
embedding capacity of 1.046-bits/cover-character and ~ 2-bits/distortion
(this is based on the literature survey)

Except those methods that generate the stego document directly, no existing
method was found to achieve both high embedding capacity and
bits/distortion

MS Word stands best for steganographic usage when compared with other
word processors like OpenOffice, LibreOffice and WordPerfect

Font attributes Color, Kerning and Spacing of MS Word achieves high
imperceptibility level and embedding capacity

Irrespective of the non-uniform occurrence probabilities of secret characters
in cover documents, uniformity in embedding probability is possible in CDR
techniques

Size of cover document, required to embed images, can be reduced through
vector formats

Embedding images with error handling capabilities is achievable in text

steganography

157

Chapter 7: Summary and Scope for Future Investigations

7.2 Scope for the Future Work

The work carried out in the present study suggests that the following
investigations could be taken up in future:

e A method to embed chemical equations and mathematical expressions could
be developed

e Other possible objects of text documents such as table, graph, chart, equation,
etc., could be explored

e The developed methods, Method-A and Method-B, could be extended to
employ randomization in the embedding procedure by using a secret key and
pseudo-random number generator

e Other document formats, like Portable Document Format (PDF), electronic
publication (ePub), PostScript (PS), etc., could be explored to embed the

secrets

158

REFERENCES

[1] Rob Kitchin, The data revolution: Big data, open data, data infrastructures and

their consequences.: Sage, 2014.

[2] Sarah Genner, ON/OFF': Risks and rewards of the anytime-anywhere internet.:

vdf Hochschulverlag AG, 2017.

[3] Lucy A. Tedd and J. A. Large, Digital libraries: Principles and practice in a

global environment.: Walter de Gruyter, 2005.

[4] Bhadoria et al., Exploring enterprise service bus in the service-oriented

architecture paradigm.: 1GI Global, 2017.

[5] Miranda Walker, Cambridge national level 1/2 child development.: Hachette

UK, 2017.

[6] Constantine Photopoulos, Managing catastrophic loss of sensitive data: A guide

for IT and security professionals.. Syngress, 2011.

[7] Anne Rooney, Computer science and IT: Investigating a cyber attack.: Raintree,

2014.

[8] Sean G. Lowther, An employee's guide to safeguarding sensitive information

properly: 12 keys every employee should know.: BookBaby, 2012.

[9] [Online]. http://money.cnn.com/2017/09/01/technology/business/instagram-hac

k/index.html /Last accessed on 27.8.2017].

[10] [Online]. https://www.cnbc.com/2016/05/13/a-surprising-source-of-hackers-and

-costly-data-breaches.html [Last accessed on 27.8.2017].

159

References

[11] [Online]. http://www.13newsnow.com/news/local/employee-data-breach-report
ed-at-tcc/102256781 [Last accessed on 27.8.2017].

[12] [Online]. https://economictimes.indiatimes.com/small-biz/security-tech/security
/the-worst-cyber-attacks-of-2016/articleshow/56212448.cms [Last accessed on
27.8.2017].

[13] [Online]. http://www.computerworld.com/article/3088907/security/hacker-sellin
g-655-000-patient-records-from-3-hacked-healthcare-organizations.html /Last
accessed on 27.8.2017].

[14] [Online]. http://www.encyclopedia.com/history/energy-government-and-defens
e-magazines/chemical-terrorism-threats /Last accessed on 27.8.2017].

[15] [Online]. http://www.dailymail.co.uk/news/article-2524082/All-US-Armys-secr
et-bases-mapped-Google-maps.html /[Last accessed on 27.8.2017].

[16] Sudhi R. Sinha and Youngchoon Park, Building an effective loT ecosystem for

your business.: Springer, 2017.

[17] [Online]. https://academlib.com/26640/computer_science/security threats [Last

accessed on 27.8.2017].

[18] James M. Stewart, Mike Chapple, and Darril Gibson, CISSP: Certified
information systems security professional study guide.: John Wiley & Sons,

2012.

[19] P. Thiyagarajan, Prasanth Kumar Thandra, J. Rajan, S.A.V. Satyamurthy, and
G. Aghila, "Shamir Secret Sharing Scheme with Dynamic Access Structure
(SSSDAS): Case study on nuclear power plant," Kerntechnik, pp. 150-160, May

2015.

[20] Rachael Lininger and Russell Dean Vines, Phishing: Cutting the identity theft

160

References

line.: John Wiley & Sons, 2005.

[21] Wenke Lee, Cliff Wang, and David Dagon, Botnet detection: Countering the

largest security threat.. Springer Science & Business Media, 2007.

[22] Karen Scarfone, Technical guide to information security testing and assessment:
Recommendations of the national institute of standards and technology.: Diane

Publishing, 2009.

[23] Mauricio Arregoces and Maurizio Portolani, Data center fundamentals.: Cisco

Press, 2003.

[24] Charles P. Pfleeger and Shari Lawrence Pfleeger, Security in computing.:

Prentice Hall Professional, 2003.

[25] Information security and privacy in network environments.: Diane Publishing,

1994.

[26] Kevin Beaver and Peter T. Davis, Hacking wireless networks For dummies.:
John Wiley & Sons, 2011.

[27] [Online]. https://www.technologyreview.com/s/600715/nsa-says-it-must-act-no
w-against-the-quantum-computing-threat/ [Last accessed on 27.8.2017].

[28] [Online]. https://ercim-news.ercim.eu/en90/special/advances-in-hash-function-c
ryptanalysis [Last accessed on 27.8.2017].

[29] [Online]. https://www.scmagazineuk.com/freak-ssl-flaw-affects-mobile-browser

s-thousands-of-websites/article/537461/ [Last accessed on 27.8.2017].

[30] [Online]. https://www.csoonline.com/article/3040534/security/latest-attack-agai
nst-tls-shows-the-pitfalls-of-intentionally-weakening-encryption.html /Last acc-

essed on 27.8.2017].

161

References

[31] [Online]. https://www.helpnetsecurity.com/2017/09/27/atm-network-based-attac

ks/ [Last accessed on 27.8.2017].

[32] [Online]. https://www.helpnetsecurity.com/2015/02/16/carbanak-cyber-gang-sto

le-hundreds-of-millions-from-banks/ [Last accessed on 27.8.2017].

[33] [Online]. https://www.helpnetsecurity.com/2016/11/22/cobalt-hackers-synchron

ized-atm-heists/ [Last accessed on 27.8.2017].

[34] [Online]. https://documents.trendmicro.com/assets/white papers/wp-cashing-in-
on-atm-malware.pdf [Last accessed on 27.8.2017].

[35] Nighat Mir, "Zero watermarking for text on WWW using semantic approach,"

in Second International conference on software engineering and computer

systems, 2011, pp. 306-316.

[36] Esra Satir and Hakan Isik, "A compression-based text steganography method,"

The journal of systems and software, pp. 2385-2394, 2012.

[37] Joachim Eggers and Bernd Girod, Informed watermarking.: Springer Science &

Business Media, 2012.

[38] Behrouz A Forouzan and Debdeep Mukhopadhyay, Cryptography and network

security.: Tata McGraw-Hill Education, 2011.

[39] Dale Liu, Next generation SSH2 implementation: Securing data in motion.:

Syngress, 2011.

[40] Stefan Katzenbeisser and Fabien A. P. Petitcolas, Information hiding techniques
for steganography and digital watermarking.. Artech House, 2000.

[41] Zhi-Hui Wang, Chin-Chen Chang, Chia-Chen Lin, and Ming-Chu Li, "A
reversible information hiding scheme using left-right and up—down chinese

character representation," The journal of systems and software, pp. 1362—1369,

162

References

2009.

[42] H. Berghel and L. O'Gorman, "Protecting ownership rights through digital

watermarking," Computer, vol. 29, no. 7, pp. 101-103, 1996.
[43] Laura Millar, Archives. Principles and practices.: Facet Publishing, 2010.

[44] Chin-Chen Chang and The Duc Kieu, "A reversible data hiding scheme using
complementary embedding strategy," Information sciences, pp. 3045-3058,

2010.

[45] [Online]. http://searchsecurity.techtarget.com/video/How-to-use-OpenPuff-steg

anography-to-send-sensitive-info-securely [Last accessed on 27.8.2017].

[46] [Online]. https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-

breaking-crypto/115069/ [Last accessed on 27.8.2017].

[47] [Online]. https://www.wired.com/2013/09/nsa-backdoor/ [Last accessed on

27.8.2017].

[48] [Online]. https://www.safaribooksonline.com/library/view/web-security-privacy

/0596000456/ch04s04.html [Last accessed on 27.8.2017].

[49] [Online]. https://motherboard.vice.com/en_us/article/3dabbw/NIST-quantum-co

mputers-can-crack-its-encryption-RSA [Last accessed on 27.8.2017].

[50] [Online]. https://futurism.com/1-evergreen-how-quantum-computers-would-dest

roy-todays-encryption-methods/ [Last accessed on 27.8.2017].

[51] Pratiksha Sethi and V. Kapoor, "A proposed novel architecture for information
hiding in image steganography by using genetic algorithm and cryptography," in
International conference on computational science, vol. 87, 2016, pp. 61-66.

[52] Shouchao Song, Jie Zhang, Xin Liao, Jiao Du, and Qiaoyan Wen, "A novel

163

References

secure communication protocol combining steganography and cryptography,"

Procedia engineering, vol. 15, pp. 2767-2772, 2011.
[53] Gregory Kipper, Investigator's guide to steganography.. CRC Press, 2003.

[54] [Online]. https://usatoday30.usatoday.com/life/cyber/tech/2001-02-05-binladen.
htm#more [Last accessed on 27.8.2017].

[55] [Online]. http://edition.cnn.com/2001/US/09/20/inv .terrorist.search/ [Last acce-
ssed on 27.8.2017].

[56] [Online]. https://www.oneindia.com/feature/steganography-and-terrorism-why-i
sis-relies-on-it-so-much-1670728.html [Last accessed on 27.8.2017].

[57] [Online]. https://www.atlasobscura.com/articles/how-a-kitten-video-can-transmi
t-secret-instructions-to-criminals /Last accessed on 27.8.2017].

[58] [Online]. https://www.scmagazine.com/new-variant-of-zeus-banking-trojan-con
cealed-in-jpg-images/article/538677/ [Last accessed on 27.8.2017].

[59] [Online]. http://www.hackmageddon.com/2011/10/21/stuxnet-duqu-stars-and-g
alaxies/ [Last accessed on 27.8.2017].

[60] [Online]. https://www.virusbulletin.com/virusbulletin/2016/04/how-it-works-ste

ganography-hides-malware-image-files/ /Last accessed on 27.8.2017].

[61] P. Thiyagarajan, G. Aghila, and V. Prasanna Venkatesan, "Pixastic:

"

Steganography based anti-phishing browser plug-in," Journal of internet
banking and commerce, vol. 17, no. 1, pp. 1-19, 2012.

[62] Abdelrahman Desoky and Mohamed Younis, "Chestega: Chess steganography

methodology," Security and Communication Networks, pp. 555-566, 2009.

[63] Jianhong Sun, Yingjiang Li, Xiaohui Zhong, and Junsheng Li, "A scheme of

164

References

LSB steganography based on concept of finding optimization pixels selection,"
in Software engineering and knowledge engineering: Theory and practice,

2012, pp. 155-160.

[64] Neil F. Johnson, Zoran Duric, and Sushil Jajodia, Information hiding:
Steganography and watermarking-Attacks and countermeasures.: Springer
Science & Business Media, 2012.

[65] Lekha S. Nair and Lakshmi M. Joshy, "An improved image steganography
method with SPIHT and arithmetic coding," in 3rd International conference on

frontiers of intelligent computing: Theory and applications, vol. 2, 2014,

pp. 97-104.

[66] Lip Yee Por, KosSheik Wong, and Kok Onn Chee, "UniSpaCh: A text-based
data hiding method using unicode space characters," The journal of systems and

software, pp. 1075-1082, 2012.

[67] Chi-Kwong Chan and L.M. Cheng, "Hiding data in images by simple LSB

substitution," Pattern recognition, vol. 37, no. 3, pp. 469-474, March 2004.

[68] David Wheeler, Daryl Johnson, Bo Yuan, and Peter Lutz, "Audio steganography

using high frequency noise introduction," , 2012.

[69] Ravneet Kaur and Tanupreet Singh, "Hiding data in video sequences using LSB
with elliptic curve cryptography," [International journal of computer

applications, vol. 117, no. 18, pp. 36-40, 2015.

[70] Yugeshwari Kakde, Priyanka Gonnade, and Prashant Dahiwale, "Audio-video
steganography," in [International conference on innovations in information,

embedded and communication systems, 2015.

[71] Sandip Bobade and Rajeshawari Goudar, "Secure data communication using

165

References

protocol steganography in IPv6," in International conference on computing
communication control and automation, 2015, pp. 275-279.

[72] Yuling Liu, Xingming Sun, Yongping Liu, and Chang-Tsun Li, "MIMIC-PPT:
Mimicking-based steganography for Microsoft Power Point document,"”

Information technology journal, vol. 7, no. 4, pp. 654-660, 2008.

[73] Information Resources Management Association, Big Data: Concepts,
methodologies, tools, and applications.: 1GI Global, 2016.

[74] Aliya Tabassum Abbasi, Syeda N. S. Naqvi, Aihab Khan, and Basheer Ahmad,
"Urdu text steganography: Utilizing isolated letters," in [3th Australian
information security management conference, 2015, pp. 37-46.

[75] Sunita Chaudhary, Meenu Dave, and Amit Sanghi, "Aggrandize text security
and hiding data through text steganography," in International conference on
power india, 2016.

[76] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, "Techniques for data hiding,"
IBM Systems Journal, vol. 35, no. 384, pp. 313-336, 1996.

[77] Zhangjie Fu, Xingming Sun, Yuling Liu, and Bo Li, "Text split-based
steganography in OOXML format documents for covert communication,"
Security and Communication Networks, 2011.

[78] M Agarwal, "Text steganographic approaches: A comparison," International
journal of network security & its applications, vol. 5, pp. 91-106, January 2013.

[79] Geoffrey Samuelsson-Brown, A practical guide for translators, 5th ed.:
Multilingual Matters, 2010.

[80] Patrick Dunleavy, Authoring a PhD: How to plan, draft, write and finish a

Doctoral thesis or dissertation.: Palgrave Macmillan, 2003.

166

References

[81]Li and Chang-Tsun , Crime prevention technologies and applications for

advancing criminal investigation.: 1GI Global, 2012.

[82] John Sinard, Practical pathology informatics: Demystifying informatics for the

practicing anatomic pathologist.: Springer Science & Business Media, 2006.

[83] Tsung-Yuan Liu and Wen-Hsiang Tsai, "A new steganographic method for data
hiding in microsoft word documents by a change tracking technique," IEEE
transactions on information forensics and security, vol. 2, pp. 24-30, March

2007.

[84] Xingming Sun, Gang Luo, and Huajun Huang, "Component-based digital
watermarking of Chinese texts," in 3rd International conference on information

security, 2004, pp. 76-81.

[85] Mohammad Shirali-Shahreza, "Text steganography by changing words
spelling," in [0th International conference on advanced communication
technology, 2008.

[86] A. Majumder and S. Changder, "A novel approach for text steganography:
generating text summary using reflection symmetry," in [International
conference on computational intelligence: Modeling techniques and
application, 2013, pp. 112-120.

[87] Jack T. Brassil, Steven Low, and Nicholas maxemchuk F., "Copyright
protection for the electronic distribution of text documents," Proceedings of the

IEEE, vol. 87, no. 7, pp. 1181-1196, July 1999.

[88] Sabu M. Thampi, "Information hiding techniques: A tutorial review," in

ISTE-STTP on Network Security & Cryptography, LBSCE, 2004.

[89] Fabien A. P. Petitcolas, Ross J. Anderson, and Markus G. Kuhn, "Information

167

References

hiding—A survey," Proceedings of the IEEE, pp. 1062—1078, 1999.

[90] Krista Bennett, "Linguistic steganography: Survey, analysis, and robustness
concerns for hiding information in text," Purdue University, Technical 2004-13.

[91] Mercan Topkara, Umut Topkara, and Mikhail J. Atallah, "Information hiding
through errors: A confusing approach," in SPIE International conference on
security, steganography and watermarking of multimedia contents IX, vol. 6505,
2007.

[92] Jason Cranford Teague, Fluid web typography.: New Riders, 2009.

[93] David Kahn, The Code-Breakers: The comprehensive history of secret

communication from ancient times to the internet, 2nd ed.: Scribner, 1996.

[94] Jibran Ahmed Memon, Kamran Khowaja, and Hameedullah Kazi, "Evaluation
of steganography for Urdu/Arabic text," Journal of theoretical and applied
information technology, pp. 232-237, 2005.

[95] Cao Qi, Sun Xingming, and Xiang Lingyun, "A secure text steganography based
on synonym substitution," in /3th IEEE joint International computer science
and information technology conference, 2013.

[96] Russell Ogilvie and George R. S. Weir, "Genre-based information hiding," in
Global security, safety and sustainability, vol. 99, 2012, pp. 104-111.

[97] [Online]. http://www.tysto.com/uk-us-spelling-list.html [Last accessed on
27.8.2017].

[98] Rajesh Kumar Tiwari and G. Sahoo, "Microsoft excel file: A steganographic
carrier file," International journal of digital crime and forensics, vol. 3, no. 1,

pp. 37-52, 2011.

[99] Jack T. Brassil, Steven Low, and Nicholas F. Maxemchuk, "Electronic marking

168

References

and identification techniques to discourage document copying," IEEE journal

on selected areas in communications, vol. 13, no. 8, pp. 1495-1504, 1995.

[100] Prem Singh, Rajat Chaudhary, and Ambika Agarwal, "A novel approach of text
steganography based on null spaces," IOSR journal of computer engineering,
vol. 3, no. 4, pp. 11-17, 2014.

[101] L. Y. Por, T. F. Ang, and B. Delina, "WhiteSteg: A new scheme in information

hiding using text steganography," WSEAS transactions on computers, vol. 7,

no. 6, pp. 735-745, 2008.
[102] Martin Cutts, Oxford guide to plain English.: Oxford University Press, 2013.
[103] Janice R. Matthews, John M. Bowen, and Robert W. Matthews, Successful

scientific writing full Canadian binding: A step-by-step guide for the biological

and medical sciences.. Cambridge University Press, 2000.

[104]L. Y. Por and B. Delina, "Information hiding: A new approach in text
steganography," in 7th WSEAS International conference on applied computer &

applied computational science, 2008, pp. 689-695.

[105] M. Hassan Shirali-Shahreza and Mohammad Shirali-Shahreza, "A new
approach to Persian/Arabic text steganography," in 5th IEEE/ACIS International
conference on computer and information science, 2000.

[106] Mohammed A. Aabed, Sameh M. Awaideh, and Abdul-Rahman M. Elshafei,
"Arabic diacritics based steganography," in International conference on signal
processing and communications, 2007.

[107] Reem Alotaibi Ahmed and Lamiaa A. Elrefaei, "Arabic text watermarking: A

review," International journal of artificial intelligence & applications, vol. 6,

no. 4, pp. 1-16, 2015.

169

References

[108] V. V. Muniswamy, Design And analysis Of algorithms.: 1. K. International Pvt

Ltd, 20009.

[109] John R. Pierce, An introduction to information theory: Symbols, signals and

noise, 2nd ed.: Dover Publications, 1980.

[110] Isabelle de Ridder, Reading from the screen in a second language: Empirical
studies on the effect of marked hyperlinks on incidental vocabulary learning,

text comprehension and the reading process.. Garant, 2003.

[111] David W. Beskeen, Carol Cram, Jennifer Duffy, Lisa Friedrichsen, and
Elizabeth Eisner Reding, Microsoft Office 2007-Illustrated introductory,

windows XP edition.: Cengage Learning, 2007.

[112] ITL , Kamthane , and Rajkamal , Computer programming and IT: For RTU.:

Pearson Education India, 2011.

[113] Arne Mikalsen and Per Borgesen, Local area networks: Includes data comm.

network.: John Wiley & Sons, 2002.

[114] John C. Dean and Li Li, "Issues in developing security wrapper technology for
COTS software products," in International conference on COTS-Based software

systems, 2002, pp. 76-85.

[115] Jesse Russell and Ronald Cohn, History of Microsoft Word.: Book on Demand,

2012.

[116] LibreOffice Documentation Team, Getting started with LibreOffice 5.0.:

Lulu.com, 2016.

[117] Jean Hollis Weber, Taming Apache OpenOffice: Getting started.: Lulu.com,

2013.

[118] Alegis Leon and Mathews Leon, Introduction to computers.: Vikas Publishing

170

References

House Pvt. Ltd., 1999.

[119] "The independent guide to personal computing," PC Magazine, vol. 15, no. 20,

p. 410, 1996.

[120] Roger Hersch, Visual and technical aspects of type.: Cambridge University

Press, 1993.

[121] [Online]. http://mediamilitia.com/taking-type-to-the-next-level-with-alternate-c

haracters/ [Last accessed on 27.8.2017].

[122] [Online]. http://www.will-harris.com/ligatures.htm [Last accessed on

27.8.2017].

[123] [Online]. https://msdn.microsoft.com/en-us/library/microsoft.office.interop.wor

d. font.ligatures(v=office.14).aspx [Last accessed on 27.8.2017].

[124] [Online]. http://www.magpiepaperworks.com/blog/using-opentype-fonts-in-mic

rosoft-word/ [Last accessed on 27.8.2017].

[125] [Online]. https://msdn.microsoft.com/en-us/library/microsoft.office.interop.wor

d. font.numberform(v=office.14).aspx [Last accessed on 27.8.2017].

[126] [Online]. https://msdn.microsoft.com/en-us/library/microsoft.office.interop.wor

d. font.numberspacing(v=office.14).aspx [Last accessed on 27.8.2017].

[127] Alex Fowkes, Drawing type: An introduction to illustrating letterforms.:

Rockport Publishers, 2014.
[128] Tova Rabinowitz, Exploring typography, 2nd ed.: Cengage Learning, 2015.

[129] Muhammed N Kabir, Omar Tayan, and Yasser M Alginahi, "Evaluation of
watermarking approaches for Arabic text documents," International journal of

computer science and information security, pp. 49-54, 2013.

171

References

[130] Xinpeng Zhang and Shuozhong Wang, "Vulnerability of pixel-value
differencing steganography to histogram analysis and modification for enhanced
security," Pattern recognition letters, vol. 25, no. 3, pp. 331-339, February

2004.

[131] Nihad Ahmad Hassan and Rami Hijazi, Data hiding techniques in Windows OS:

A practical approach to investigation and defense.: Syngress, 2016.

[132] Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers, "Format-
Preserving Encryption," Selected areas in cryptography, vol. 5867, pp. 295-312,

2009.

[133] Harold F. Tipton and Micki Krause Nozaki, Information security management

handbook.: CRC Press, 2012.

[134] David Gourley and Brian Totty, HTTP: The definitive guide.: O'Reilly Media,

Inc., 2002.

[135] [Online]. https://www.google.com/maps/dir/Kalpakkam,+Tamil+Nadu/Anupura
m,+Tamil+Nadu+603127/@12.5470251,80.126821,14z/data=!3m1!4b1!4m13!4
ml12!Tm5!1m1!1s0x3a53a9650ee8fa55:0xaa8d1b9a8895b182!12m2!1d80.15681
3412d12.5238119!Im5!1m1!1s0x3a53aa45aee3716d:0xcdc32fe9008 [Last acc-

essed on 27.8.2017].

[136] [Online]. http://cordis.europa.eu/tmr/src/res970302.htm [Last accessed on

27.8.2017].

[137] [Online]. http://www.electronic-circuits-diagrams.com/a-simple-electronic-buzz

er-circuit/ [Last accessed on 27.8.2017].

[138] [Online]. http://www.dailycivil.com/types-of-stairs/ [Last accessed on

27.8.2017].

172

References

[139] [Online]. http://www.world-nuclear.org/gallery/reactor-diagrams/boiling-water-

reactor.aspx [Last accessed on 27.8.2017].

[140] [Online]. https://sosteneslekule.blogspot.in/2015/03/thermal-power-generation-p

lant-or.html /Last accessed on 27.8.2017].

[141] Bahman Zohuri, Jirgen K. Grunwald, and Takayuki Nakamura, Nuclear
energy: Perspectives, challenges and future directions, Denver Morris, Ed.:

Nova Science Publishers, 2017.

[142] V. M. Mente et al., "Experimental studies in water for safety grade decay heat
removal of prototype fast breeder reactor," Annals of nuclear energy, vol. 65,

pp. 114-121, 2014.
[143] [Online]. http://www.dogdrip.net/84405179 [Last accessed on 27.8.2017].

[144] Frederic P. Miller, Agnes F. Vandome, and John McBrewster, Hamming code.:

Alphascript Publishing, 2009.
[145] Matt Doyle, Beginning PHP 5.3.: John Wiley & Sons, 2011.

[146] Ray-I Chang, Yachik Yen, and Ting-Yu Hsu, "An XML-based comic image

compression," in 9th Pacific Rim conference on multimedia, 2008, pp. 563-572.

[147] V. Solachidis, N. Nikolaidis, and 1. Pitas, "Fourier descriptors watermarking of
vector graphics images," in International conference on image processing,

2000, pp. 9-12.

[148] [Online]. https://www.vecteezy.com/blog/2015/5/24/the-history-of-adobe-illustr

ator [Last accessed on 27.8.2017].
[149] "A short history of CoreIDRAW," 2009.

[150] [Online]. https://inkscape.org/en/about/ [Last accessed on 27.8.2017].

173

References

[151] Daniel Schwarz, Jump start Sketch: Master the tool made for Ul designers.:

SitePoint, 2016.

[152] [Online]. https://www.khanacademy.org/math/trigonometry/trigonometry-right-
triangles/trig-solve-for-a-side/a/unknown-side-in-right-triangle-w-trig [Last ac-

cessed on 27.8.2017].

[153] Patricia Law Hatcher, Producing a quality family history.: Ancestry Publishing,

1996.

174

APPENDIX — A

Procedure to generate Frequency Normalization Set (FNS)

Method-A described in Chapter 4, allows single secret character to get
embedded in multiple cover characters. This facilitated to boost the embedding
probability of secret characters and also made it uniform. It achieved the same
through the construction of a Frequency Normalization Set (FNS) — refer Section 4.4
in page 76. The flowchart to generate such a set is provided below, in Fig. A.1, along
with the necessary pseudo codes.

The procedure takes the occurrence frequencies of ADS characters, minimum and
maximum allowed error (deviation from the value 25), etc., as inputs and generate a

FNS.

175

Appendix — A

Declarations:
e char individualchar[28] = {*A’, ‘B’, ‘C’, VAN
e double individualfreq[28] = {} // respective frequencies of characters in
individualchar([]
e int occurred first[28] = {0, 0,0, 0, ,0,0}
// ' Each position of this array represent the respective characters of individualchar|]
e double minfreq // can be between 24 and 26
¢ double maxfreq // can be between 24 and 26 (atleast 0.1 > minfreq)
e double minerror // can be between -1 and -4
e double maxerror // can be between +1 and +4
e ArrayList alreadyselected
e ArrayList chkduplicate // it can accommodate a maximum of 28 strings

/ 28 Sets °

Choose the Set with highest cardinality
IS
Testl () : Selecting a string from S

¢Str

Test2 () : Replacing highly occurred characters
(in “chkduplicate™) of “str” with alternates

v(Str, SUCCESS) || (str, FAIL)

Excluding the first character, permute “str” & minimize the
column-wise repetition between “str”” and “chkduplicate”

Whether all column-wise
Yes & repetitions are removed?

SUCCESS

(Yes & FAIL) ||
(No & FAIL) ||
(No & SUCCESS)

1. Add “str” to “chkduplicate”

2. Set “occurred_first[]” as 1 for the Test3 () : Replacing all
first character of “str” problematic characters of
“str”” with alternates

A

3. Remove “S” from the available Sets

4. Clear “alreadyselected”

Exchange the characters

in each column & make
the frequency of all
strings in “chkduplicate”
close to 25

Whether cardinality
of chkduplicate is
287

Note: Problematic characters are the ones that were FAILED to be replaced by Test2
() or the ones that have column-wise repetitions with “chkduplicate”

Figure A.1 Flowchart to generate Frequency Normalization Set (FNS)

176

Appendix — A

Pseudo code of Test 1:

//Test 1 (): Chooses a string “str” from a Set of available strings.

Input: Set S, ArrayList chkduplicate
Output: string str

Int sim_count2 <« 100
Int value2 < 100
String str «

For each string “str1” in “S” do

Int sim_count[cardinality of chkduplicate] «<— No. of similar characters between
“str1” and each String in “chkduplicate™ respectively

Int max_count «— Largest value in sim_count[]
If max_count < sim_count2

Int value[7] <« No. of times each character of “strl” appeared in
“chkduplicate” respectively

Int max_value «<— Largest value in value[]

If max_value < value2
str < strl
sim_count2 <« max_count
value2 <« max_value

End if

End if
End for

Return str

Pseudo code of sub-module: Count

Input: char ch, ArrayList chkduplicate
Output: int no

2

Return Number of times “ch” has occurred in “chkduplicate

177

Appendix — A

Pseudo code of Test 2:

//Test2 (): Tries to replace the characters of “str”, when its number of occurrences in
“chkduplicate” crosses certain limit.

Input: string str, int occurred_first[], char individualchar[], double individualfreq[],
double minerror, double maxerror, ArrayList chkduplicate

Output: string str
String result «— “SUCCESS”

For each character “ch” in “str” do

Int pos «—Position of “ch” in “str”

If (Count(ch)==7) || (Count(ch)==6 && occurred_first of “ch”==0 && str[0] !=
ch)

Search for a character “ch1” in “individualchar[]” such that chl & str && chl
¢ chkduplicate @ position “pos” && Frequency[chl]-Frequency[ch] is between
“minerror” and “maxerror” exclusive

If Search == SUCCESSFUL then str[pos] <« chl
Else result <—FAIL”
End if
End for

Return (str, result)

Pseudo code of Test 3:

//Test3 (): Handles the problematic characters of “str”.

Input: string str, ArrayList chkduplicate, ArrayList alreayselected
Output: string str

For each problematic character “ch1” in “str” do
Int pos «<— Position of “ch1” in “str”
L: Char ch < Test 3a ()
If ch € str then str[pos] < ch
Else
String strl «<Test 3b ()
If strl 1=
str[pos] «— strl[pos]
chkduplicate «<— Remove “str1” from “chkduplicate”
strl[pos] < ch
chkduplicate < Add “str1” in “chkduplicate”

End if

178

Appendix — A

Else Add “ch” in “alreadyselected” & Goto L
End else
End for

Return str

Pseudo code of Test 3a:

//Chooses a character from “individualchar” that satisfies certain properties

Input: char individualchar[], double individualfreq[], ArrayList chkduplicate, int pos,
char chl, ArrayList alreadyselected, string str

Output: char ch
Char ch « *°

Int dupe < 0
Int max < 0
L: for each character “ch2” in “individualchar[]” do

If dupe==0 && ch2 ¢ alreadyselected && Count(ch2) < 7 && ch2 €&
chkduplicate @ position “pos” && Frequency[ch2] <= Frequency[chl] &&
Frequency[ch2] > max

ch <« ch2
max «— Frequency[ch2]
End if
If ch=="" && Last element of “individualchar[]” == ch2
dupe «— 1
Goto L
End if

If dupe==1 && (ch2 & alreadyselected && Count(ch2) < 7 && ch2 ¢
chkduplicate @ position “pos”) && ((Frequency[ch2] > Frequency[chl]) || (ch2 € str
&& Count(ch2) <=5))

ch < ch2
Break
End if
End for

Return ch

179

Appendix — A

Pseudo code of Test 3b:

//Chooses a string from “chkduplicate™ that satisfies certain properties

Input: ArrayList chkduplicate, double individualfreq[], char chl, int pos, char ch,
string str

Output: string str2

(135

String str2 «
Int dupe < 0
Int min < 100
L: For each string “str1” in “chkduplicate” do
If dupe==0 && chl € strl @ position “pos” && ch & strl
str2 «— strl
End if
If str2=="" && Last element of “chkduplicate[]” == strl
dupe < 1
Goto L
End if

If dupe == 1 && ch & strl && strl[pos] € str && Frequency([strl[pos]]-
Frequency[ch] < min && <4.5

str2 « strl
min < Frequency|[strl[pos]]-Frequency|[ch]
End if
End for

Return str2

180

APPENDIX —B

Hllustration of the imperceptibility level of Method-C

Method-C described in Chapter 6, converts an image into a custom format and
then embeds the same using the attributes Color, Kerning and Spacing. The
imperceptibility level of the method was illustrated in Fig. 6.12 of Chapter 6
(see page 147). To verify the same, an additional illustration is provided below

using Fig. B.1.

Figure B.1 Boiling water reactor [139]

181

Appendix — B

Cover work (after formatting):

Internetwhichizextensivelyusedtoshareanykindofinformationdoesnotimplyanystrictruleaforthesecuritynfdataonitsown
andalaotherearewaysforthirdpartiestodoeaveadroppinginthenetwork.Henceduringtransmiasion, securitytoinfomationpl
aysamajorroleforSensitive(rganizationavheretheleakageofsmallamountofinformationwillleadtocriticalproblem, Inform
ationSecuritySystemisbroadlyclazsifiedintothrestypesasCryptography, WaterMarkingandSteganography.Eachoneoftheabo
vementionedclassificationaimsatachievingspecifictask.Cryptographyaimsatpreventinganythirdpartyfronreadingthecon
tentofthemezsage, NaterMarkingaimsatprovidingCopyrightProtectionandSteganographyaimaateoncealingthesecretmessage
.Eventhoughtheirainistosolvedifferentizsues, theycanbecombinedtogetherwiththeaimtoaddadditionallayerofsecurity. I
tisbelievedthatwhentheyareusedtogether, theweaknezsofonemethodcouldbeovercomebytheother,Detailzabouteacheclagsifi
cationareexplainedinthesubsequentparagraphs. Cryptography: ThewordCryptographyisderivediromtheGreekwordCryptomean
ingSecretandgrafiameaningWritingmentioningitasSecretWriting. ThemainaimofCryptographyistopreventanythirdpartyfro
mreadingtheactualcontentofthesecretmezsage. CryptographysupportasecrecythroughEncryptionandDecryptiontechniques.
PlainTextisgivenaszinputtotheEncryptionalgorithmehichusesakeytoencryptandproducestheCipherText.Atthedecryptionsi
de,akeyisusedtorecoverthePlainTextbackfromtheCipherText,Basedonthenumberofkeysused, Cryptographyizdividedintotwo
categoriesasSymmetricKeyandAsymetricKeyCryptography.SymmetricKeyCryptographyusesasinglekeyforbothencryptionand
decryptionofthesecretmessage.Hencethekeymuatbesharedinagecuremannerandboththesenderandthereceivermuatkespthekey
zafely.AsymmetricReyCryptographyhighlyreliesonumberTheoryConceptaforitasecurity.AsymmetrickeyCryptographyusest
vodifferentkeyaonederivedfromtheother.OftentheyarecalledtogetheraskeyPairsofwhichoneisannouncedasthePublicKeyan
dtheotheriskeptasthePrivateRey.Cnewillheuzedforencryptionandtheotherwillbeusedfordecryption. WateMarking: Therea
retwotypesofWaterMarkingnamelyVisibleandInvisibleWaterMarking, InvisibleWaterMarkingandSteganographyarebothclose
lyrelatedtooneanother, InvisibleWaterMarkingisusedtoshareamessagesecretlybyhidingitinthecoverworkwhereasViziblel
aterMarkingaimsatpreservingthecwnershipofthedocumenthytaggingtheownershipdetailsinthecoverwork.CoverWorkisnothi
nghutaninnocentdigitalmediainwhichthemessagelsembeddedeitherperceptiblyorimperceptibly.Normallyusedcoverworksar
eText, Audin, VidepandImage, Twomajorissueawhichmustbeconcernedwhilesharingadigitalmediaonl inearsCopyProtectionand
ContentModification.Copyprotectiontriestokeeptrackoftheleqalownerofthedocumentbyeitherpreventingfrommakingcopie
sfromtheoriginaldocumentorbymakingtheownershipdetailstobeenbeddedinal ltheduplicatecopies.Contentmodificationpre
ventsugerfromdownloadingthedocumentonline makesomeminormodificationtoitanduploaditasadifferentuserinanotherweha
ite.Modificationofdocumentincludesremovingthetaggedtextframdocument, orapoilingthedocumentandnakingthetagunrecov
erable,SomeoftheattacksonVaterMarkeddocumentincludeCropping, Transiormation,etc.Asfarastoday’ stechnologyVisiblel
aterMarkingisusedasatechniquetoovercomethesstwomajorizsues, Internetwhichizextensivelyusedtoshareanykindofinform
ationdoesnotimplyanystrictrulesforthesecurityofdataonitsownandalzotherearewaysforthirdpartiestodoeavesdroppingd
nthenetwork.Henceduringtransmiszion, securitytoinformationplaysamajorroleforSenaitive0rganizationswheratheleakag
eofsmallampuntofinformationwillleadtocriticalproblem.InformationSecuritySystenishroadlyclassifiedintothrestypes
aaCryptography, WaterMarkingandSteganography.Eachoneoftheabovementionedelassificationaimsatachievingapecifictask
Cryptographvaimsatpreventinganythirdpartyfromreadingthecontentofthemessage, WaterMarkingaimsatprovidingCopyrigh
tProtectionandSteganngraphyaimsatconcealingthesecretmessage. Eventhoughtheiraimistoanlvedifferentizaues, theyeanb
ecombinedtogetherwiththeaimtoaddadditionallayerofzecurity.Itishelievedthatvhentheyareusedtogether, theweakneasol
onemethodeouldbeovercomebytheother . Detailaabouteachelassificationaresxplainedinthesubsegquentparagraphe.Cryptogr
aphy:ThewordCryptographyisderivedframtheGreekwordCryptomeaningSecretandgrafiameaningWritingmentioningitasSecret
Writing.ThemainaimofCryptographyistopreventanythirdpartyfromreadingtheactualcontentofthesecretmessage.Cryptogra
physupportasecrecythroughEncryptionandlecryptiontechniques,PlainTextisgivenasinputtotheEncryptionalgorithowhich
nsezakeytoencryptandproducestheCipherText . Atthedecryptionzide, akeyisusedtorecoverthePlainTexthackiromtheCipherT
ext.Bazedonthenumberofkeysused, CryptographyizdividedintotwocategoriesasiymmetrickeyandAsymmet rickeyCryptography
JSymmetricReyCryptographynzesasinglekeyiorbothencryptionanddecryptionofthesecretmessage. Hencetheksymuatheshared
inasecuremannerandboththesenderandthereceivermustkeepthekeysafely, AsymetricReyCryptographyhighlyrelisaoniunber
TheoryConceptaforitasecurity. AsymmetrickeyCryptographyusestwodifferentkeysonederivedfromthecther.0ftentheyareca
lledtogetheraskeyPairsofwhichoneisamouncedasthePublicKeyandtheotheriskeptasthePrivateRey, Onewillbeuzedforencry
ptionandtheotherwillbeusediordecryption. WaterMarking:TherearetwotypesofWaterMarkingnamelyVizibleandInvisiblefat
erMarking. InvizsibleWaterMarkingandSteganographyarebothcloselyrelatedtooneanother, InvisibleWaterMarkingisuzedtos
hareamezsagesecretlybyhidingitinthecoverworkwhereasVisibleWaterMarkingaimsatpreservingtheownershipofthedocument
bytaggingtheownershipdetailsinthecoverwork.CoverfWorkisnothingbutaninnocentdigitalmediainwhichthemeasageizenbedd
edeitherperceptiblyorimperceptibly.NornallyusedcoverworksareText, Audio, VidepandImage, Twomajorissueawhichmuathec

182

Appendix — B

Stego work (with formatting):

Internetwhichisextensivelyusedtoshareanykindofinformationdoesnotimplyanystrictrulesforthesecuritynfdataonitsown
andalaotherearewaysforthirdpartiestodoeavesdroppinginthenstwork. Henceduringtransmission, securitytoinfomationpl
gysamajorroleforSensitivelrganizationswheretheleakageofsmallamountofinformationwillleadtocriticalproblem. Inform
ationSecuritySystemisbroadlyclassifiedintothreetypesasCryptography, WaterMarkingandSteganography.Eachonenftheabo
vementionedclazsificationaimsatachievingspecifictask.Cryptographyaimsatpreventinganythirdpartyfranreadingthecon
tentofthemessage, WaterMarkingaimsatprovidingCopyrightProtectionandSteganographyaimsatconcealingthesecretmessage
Eventhoughtheiraimistogolvedifferentisaues, theycanbecombinedtogetherwiththeaintoaddadditionallayerafaecurity. I
tisbelievedthatwhentheyarsusedtogether, theweaknessofonemethodcouldbeovercomebytheother, Detailzabouteachclassifi
cationareexplainedinthesubsequentparagraphs. Cryptography: ThewordCryptographyisderivedfromtheGreekwordCryptonean
ingSecretandgrafiameaningW¥ritingmentioningitasSecretiriting. ThemainaimofCryptographyistopreventanythirdpartyfro
nreadingtheactualcontentofthesecretmessage. CryptographysupportasecrecythroughEncryptionandDecryptiontechnigues.
PlainTextisgivenasinputtotheEncryptionalgorithmwhichuzesakeytoencryptandproducesthelCipherText.Atthedecryptionsi
de, akeyisusedtorecoverthePlainTextbackfromtheCipherText Bazedonthenumberofkeysuzed, Cryptographyisdividedintotwo
categoriesasSymmetricKeyandiaymetricKeyCryptography. SymmetricKeyCryptographyusesasinglekeyforbothencryptionand
decryptionofthesecretmessage. Hencethekeymustbesharedinasecuremannerandooththesenderandthereceivemustkespthekey
safely.AsymmetricKeyCryptographyhighlyreliezonNumberTheoryConceptsforitssecurity AsymmetrickeyCryptographyusest
wodifferentkeysonederivedfromtheother.OftentheyarecalledtogetherasKeyPairanfwhichoneizannouncedasthePublicKeyan
dtheotheriskeptaathePrivateKey.Onewillbeusedforencryptionandtheotherwillbeusedfordecryption. WatetMarking:Therea
retwotypesoffaterMarkingnamelyVisibleandInvisibleWaterMarking, InvizibleWaterMarkingandSteganographyarebothcloze
lyrelatedtooneancther.InvizibleWNaterMarkingisusedtoshareameszagesecretlybyhidingitinthecoverworkwhereasVisibleW
aterMarkingaimsatpreservingtheownershipofthedocumentbytaggingtheownershipdetailsinthecoverwork. Coverorkisnothi
ngbutaninnocentdigitalmedizinwhichthemessageisembeddedeitherperceptiblyorimperceptibly. Normallyusedcoverworksar
eText, Audio,VidecandImage. Twoma)jorissueswhichmustbeconcernedwhilesharingadigitalmediaonl ineareCopyProtectionand
ContentModification.Copyprotectiontriestokeeptrackofthelegalownerofthedocumentbyeitherpreventingfrommakingcopie
sfromtheoriginaldocumentorbymakingtheownershipdetailstobeembeddedinalltheduplicatecopies, Contentmodificationpre
ventsuserfromdownloadingthedocumentonline, makesomeninormodificationtoitanduploaditasadifferentuserinanatherwebs
ite. Modificationofdocumentincludesremovingthetaggedtext framdocument, orspoilingthedocumentandmakingthetagunrecov
erable, SomeoftheattacksonWaterMarkeddocumentinciudeCropping, Tranaformation,etc.Asfarastoday’ stechnologyViaihleW
aterMarkingisusedasatechniquetoovercomethesetwomajorissues. Internetwhichizextenzivelyusedtoshareanykindofinforn
ationdoesnotimplyanystrictrulesforthesecurityofdataonitsownandalsotherearewayaforthirdpartiestodoeaveadroppingl
nthenetwork.Henceduringtransmission,securitytoinformationplaysamajorroleforiensitivelrganizationavheretheleakag
eofamallamountofinformationwillleadtocriticalproblen. InformationSecuritySystemishroadlyclazsifiedintothrestypes
asCryptography, WaterMarkingandSteganography. Eachoneoftheabovementionedelaszificationaimeatachievingapecifictask
.Cryptographyaimsatpreventinganythirdpartyfromreadingthecontentofthemessage, WaterMarkingaimzatprovidingCopyrigh
tProtectionandSteganographyaimsatconcealingthesecretmessage. Eventhoughtheiraimistosolvedifferentissues, theycanb
ecombinedtogetherwiththeaintoaddadditionallayerofsecurity.Itishelisvedthatwhentheyarauzedtogether, theweakneasof
onemethodeouldbeovercomebytheother. Detailaabouteachclassificationareexplainedinthesubsequentparagraphs.Cryptogr
aphy:ThewordCryptographyizderivedframtheGreekwordCryptomeaningSecretandgrafiameaningWritingmentioningitagSecrat
Writing.ThemainaimofCryptographyistopreventanythirdpartyfromreadingtheactualcontentofthesecretmessage.Cryptogra
physupportssecrecythroughEncryptionandbecryptiontechniques. PlainTextisgivenasinputtotheEncryptionalgorithmwhich
uzezakeytoencryptandproducestheCipherText Atthedecryptionside, akeyisusedtorecoverthaPlainTexthackiromtheCipherT
ext.Basedonthenumberofkeyzused, CryptographyisdividedintotwocategoriesasSymmetricKeyandhsymmetricKeyCryptography
SymmetricKeyCryptographyusezasinglekeyforbothencryptionanddecryptionofthesecretmessage. Hencethekeymustbeshared
inasecuremannerandboththezsenderandthereceivernustkeepthekeysafely. AaymetricKeyCryptographyhighlyreliesonNunber
TheoryConceptaforitsaecurity.AsymmetrickeyCryptographyusestwodifferentkeyamederivedfromtheother .0ftentheyareca
1ledtogetherasBeyPairsofwhichoneisannouncedasthePublicKeyandtheotheriskeptasthePrivateRey.Onewillbeusedforencry
ptionandtheotherwillbensedfordecryption. WaterMarking:TherearetwotypesofWaterMarkingnamel yVisibleandInvisibleWNat
erMarking. InvisibleWaterMerkingandSteganographyarebothcloselyrelatedtooneanother.InvisibleWaterMarkingisusedtos
hareamegaagesecretlybyhidingitinthecoverworkwhereasVisibleWaterMarkingaimsatpreservingtheownershipofthedocument
bytaggingtheownershipdetailsinthecoverwork.CoverWorkisnothingbutaninnocentdigitalmediainwhichthemeszageizenbedd
edeitherperceptiblyorimperceptibly.NormallyusedcoverworksareText, Audio, VideoandImage . Twomajorissueswhichmustbec

183

Appendix — B

Stego work with formatting (stego characters highlighted for understanding purpose):

Internetwhichisextensivelyusedtoshareanykindofinfor doesnotimplyanyatrictrulesforthesecurityofdataonitsown
andalsotherearewaysforthirdpartiestodoeavesdroppin@inthengtwork. Henceduringtransmiasion, securitytoinfomationpl
aysamajorroleforSengitive0rganizationawheretheleafiageofsmaliamountofinformationwillleadtocriticalproblen. Inform
ationSecuritySystemisbroadlyclazsifiedintothreetfpesasCrypt@oraphy, WaterMarkingandSteganography. Eachoneoftheabo
vementionedclassificationaimsatachievingspecifiBtask.Cryptog@aphyaimsatpreventinganythirdpartyfromreadingthecon
tentofthemeasage, WaterMarkingaimsatprovidingCoBvrightProtectifinandSteganographyaimsateoncealingthesecretuessage
.Eventhoughtheiraimistosolvedifferentissues, theycanbecombinedt@getherwiththeaimtoaddadditionallayerofaecurity. I
tisbelievedthatwhentheyareusedtogether, theweBknessofonemethodcofldbeovercomebytheother, Detailaabouteachclazsifi
cationareexplainedinthesubsequentparagraphs@Cryptography: ThewordiryptographyisderivedfromtheGreekwordCryptomean
ingSecretandgrafiameaningWritingmentioning#tazSecretiriting. Them@inaimofCryptographyistopreventanythirdpartyfro
mreadingtheactualcontentofthesecretmessag@iCryptographysupportssg@recythroughincryptionandlecryptiontechniques.
PlainTextizgivenazinputtotheEncryptionalg@ei thmwhichusesakeytoeng@yptandproducestheCipherText, Atthedecryptionsi
de,akeyizuzedtorecoverthePlainTextbackfromBheCipherText, Bagedonti@numberofkeysused, Cryptographyisdividedintotwo
categoriesasSymmetricKeyandisymetricKeyCryiptography. SymmetricKeyCEypt finglekeyiorbothencryptionand
decryptionofthesecretmeszage. HencethakeymuBtheshareding@scuremannerand@oththesendsrandtherecei vermuatsspthekey
gafely.AsymmetricReyCryptographyhighlyreli8zonNumb@r TheoryCom@eptaforit8security@AsymmetrickeyCryptographyusest
wodiiferentkeyaonederivedfromtheother. Citefitheyar@call@dtogeBheoragk isannouncedasthePublicKeyan
dtheotherizkeptasthePrivateKey.Onewil lbeusgdf o EENEEVRE ofherwillbeusedfordecryption.WatemMarking: Therea
retwotypesofWaterMarkingnamely dInvisi igibleWaterMarkingandSteganographyarebothclose
lyrelatedtooneanother.InviziblefWaterfarkingisusedtoshareancasagegecretlybyhidingitinthecoverworkwhereasvVisiblel
aterMarkingaimsatpreservingthBowner8nipofthedocumenthbytaggingtheg@wnershipdetailsinthecovervork, CoveriWorkisnothi
ngbutaninnocentdigitalmediainfihi sageizembeddedeitherpercBptiblyorimperceptibly. Normallyusedeoverworksar
eText,Audio, VideoandImage. Twollaj@rizsuegwhichmustbeBoncernedwhil@sharingadigitalmediaonlineareCopyProtectionand
ContentModification.Copyprotegrti irsBokeeptEack@ithelefalownegofthedocumentbyeitherpreventingfrommakingcopie
afromtheoriginaldocmentorbymdlel rahifdetall stob@embadd 11theduplicatecopies. Contentmodificationpre
ventsuserfrondownloadingthedogu i fAegmak§zone@inorngdi fic@E¥@nEoitanduploaditazadifierentuserinanotherwebs
ite.Modificationofdocument incliid ng] r GG i tyorapoilingthedocumentandmakingthetagunrecov
: 380
EH

e e

erable.SomecftheattacksonWatefMa il mation,etc.Asfarastoday’stechnologyVisiblel
aterMarkingisusedazatechniquegon hel
ationdoesnotimplyanystrictrulest

hichizextensivelyusedtoshareanykindofinform

E s@tBerearewayaforthirdpartiestodoeavesdroppingd

I g8alajoEroleforSensitivelrganizationawheretheleakaq
0 0
e

clritySystemisbroadlyclagaifiedintothrestypes
t@oBedclazsificationaimsatachievingapecifictask
t@fEhBnessage, WateMarkingainsatprovidingCopyrigh

R 1 I T = =

i
c

tHollohtheiraimistosolvedifferentissues, theycanb
1808] #e§edthatwhentheyareusedtogether, theweaknessof

i é n@rgexplainedinthesubsequentparagraphs.Cryptogr
aphy: ThewordCryptographyisderige 8201 andgrafiameaningWritingmentioningitasSecret
Writing.ThemainaimefCryptograp G iBgBheactuali@ontentofthesecretmessage. Cryptogra
physupportssecrecythroughfncryp a8 c rypio .PlaifTEx§isgivefasgnput totheEncryptionalgorithmwhich
uzezakeytoencryptandproducesthefpherText At iofai = sedt@recofferthePlainTextbackfromtheCipherT
i 3a35fnfietri ReyandhsymmetricKeyCryptography

SymmetricReyCryptographyusesas pCIet] Hencethekeymustheshared
inasecuremannerandboththesende ; E E e graphyhighlyreliesonNumber
TheoryConceptaforitasecurity.Asymnetrick@vCryptéar E nedBrivedfromtheother .Oftentheyareca
1ledtogetheraskeyPairanfwhichoneisamnouncgdasthe@Pulll i@Kefan theotheriske athePrivatekey.Onewillbeusedforencry
ptionandtheotherwillbeusedfordecryption.WaBerMagking Bhege@retwotypesofFaBBrflarkingnanel yVisibleandInvisiblefat
erMarking. InvizibleWaterMarkingandSteganogr@phyagiebothclofelyrelatedtooneaf@ther . InvisibleNaterMarkingisusedios
hareamessagesecretlybyhidingitinthecoverwork@herefsVizibfleWaterMarkingaimsatpreservingtheownershipofthedocument
bytaggingtheownershipdetailainthecoverwork. Coveriio thingbutaninnocentdigitalmediainwhichthemessageisembedd
edeitherperceptiblyorimperceptibly.NormallyusedecoverworksareText, Audio, VideoandImage . Twoma]orissueswhichmusthec

184

	01_title
	02_certificate
	03_prelim_pages
	04_contents
	05_abstract
	06_tabfigist
	07_chapter_1
	08_chapter_2
	09_chapter_3
	10_chapter_4
	11_chapter_5
	12_chapter_6
	13_chapter_7
	14_misc

