

Studies on Information Hiding Techniques in Word

Processor Documents

By

BALA KRISHNAN R

(Enrolment No: ENGG 02 2012 04 010)

Indira Gandhi Centre for Atomic Research, Kalpakkam

A Thesis Submitted to the

Board of Studies in Engineering Sciences

In partial fulfillment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

August, 2017

iii

LIST OF PUBLICATIONS

Journal

a. Published

1. Text steganography: A novel character-level embedding algorithm using font

attribute

R. Bala Krishnan, Prasanth Kumar Thandra, S. A. V. Satya Murty, Security

and Communication Networks, John Wiley & Sons, 9 (18), pp. 6066 6079,

Feb 2017.

2. Font Attributes based Text Steganographic algorithm (FATS) for

communicating images: A nuclear power plant perspective

R. Bala Krishnan, Prasanth Kumar Thandra, S. A. V. Satya Murty,

P. Thiyagarajan, Kerntechnik, Carl Hanser Verlag, 82 (1), pp. 98 111,

Mar 2017.

b. In preparation

1. Exploring the font attributes of word processor documents: A steganographic

perspective

R. Bala Krishnan, Prasanth Kumar Thandra.

2. Text steganography: A novel mixed-type method with high embedding

capacity

R. Bala Krishnan, Prasanth Kumar Thandra.

3. Text steganography: A case study on embedding images in vector formats

R. Bala Krishnan, Prasanth Kumar Thandra, M. Sai Baba.

v

DEDICATED

To

MY FATHER

Acknowledgements

vii

ACKNOWLEDGEMENTS

I would like to thank people who have played their part in shaping this thesis

and help me to evolve as a researcher.

First, I would like to express my gratitude to Mr. Prasanth Kumar Thandra,

who played a major role throughout the course of my PhD work. His support helped

me in all the time of research and writing of publications as well as this thesis. I am

profoundly indebted to him and I owe my deepest gratefulness and respect to him.

Next, I would like to thank my thesis advisor Dr. M. Sai Baba, for his advice

and constant support during the writing of this thesis as well as publications. His

motivation and guidance helped me to improve my research skills. I owe my deepest

respect to him for his support. I would like to thank the members of my doctoral

committee, Dr. U. Kamachi Mudali, Dr. B. K. Panigrahi, Dr. Sharat Chandra and

Dr. S. A. V. Satya Murty for their valuable suggestions, tough questions and

encouragement which helped me to gain deeper insights and intensify my quest to explore

the research in different perspective.

I would like to thank Homi Bhabha National Institute (HBNI) and Department of

Atomic Energy (DAE) for funding my research work. I would like to thank the former

Director of Indira Gandhi Centre for Atomic Research (IGCAR) Shri. S. C. Chetal, for

offering me the opportunity to carry out my research work at Electronics

& Instrumentation Group (EIG), IGCAR. I am deeply grateful to the subsequent Directors,

Dr. P. R. Vasudeva Rao and Dr. S. A. V. Satya Murty and also to the current Director,

Dr. A. K. Bhaduri for allowing me to carry forward my research work in this esteemed

institute (IGCAR).

I express my gratitude to Mr. J. Rajan for his constant motivation and

assistance during tough situations.

I am also grateful to Dr. P. Thiyagarajan, Dr. D. Karthickeyan, Mr. M. Naveen

Raj and Mr. D. Sanjay Kumar for providing valuable suggestions to improve my

publications as well as thesis.

Contents

ix

CONTENTS

 Page No.

SYNOPSIS xiii

LIST OF FIGURES xxiii

LIST OF TABLES xxviii

LIST OF ABBREVATIONS AND SYMBOLS xxxi

LIST OF TERMINOLOGIES xxxiii

CHAPTER 1 INTRODUCTION 1

 1.1 Introduction 1

 1.2 Watermarking 3

 1.3 Cryptography 4

 1.4 Steganography 4

 1.5 Need for steganography in the current scenario 5

 1.6 Recent trends in steganography 6

 1.7 Desired characteristics of digital steganography 7

 1.8 Discussion 9

 1.9 Motivation for the thesis 10

 1.10 Objectives of the thesis 11

 1.11 Contributions of the thesis 12

 1.12 Organization of the thesis 12

CHAPTER 2 LITERATURE SURVEY 15

 2.1 Introduction 15

 2.2 Classification of text steganography 15

 2.2.1 Character-level embedding technique

(CLET)

17

 2.2.2 Bit-level embedding technique 22

 2.2.3 Mixed-type embedding technique 34

 2.3 Comparison of the existing methods 35

 2.4 Summary 37

Contents

x

CHAPTER 3 EXPLORING THE FONT ATTRIBUTES OF

WORD PROCESSOR DOCUMENTS

39

 3.1 Introduction 39

 3.2 Employing the font attributes for steganography 43

 3.3 Classification of the font attributes 61

 3.4 Comparison of the font attributes 64

 3.5 Discussion 68

 3.6 Summary 69

CHAPTER 4 EMBEDDING TEXT 71

 4.1 Introduction 71

 4.2 Handling the non-uniform occurrence frequencies

of characters

72

 4.3 Theoretical background of the development of

Method-A

74

 4.4 Generation of Frequency Normalization Set

(FNS)
76

 4.5 Character & String Mapping (CSM) 77

 4.6 Embedding algorithm 78

 4.7 Extraction algorithm 80

 4.8 Evaluation parameters 82

 4.8.1 Secrecy 82

 4.8.2 Embedding capacity 83

 4.8.3 Uniformity in embedding probability 84

 4.8.4 Comparison with existing methods 86

 4.9 Security aspect 87

 4.9.1 Uniformity in embedding probability 87

 4.9.2 Distribution in stego characters 87

 4.9.3 Frequency distribution of stego

characters
88

 4.9.4 Cryptographic aspect 91

 4.10 Application to case-sensitive letters 92

Contents

xi

 4.11 Summary 94

CHAPTER 5 EMBEDDING BINARY DATA 97

 5.1 Introduction 97

 5.2 Binary to Character Converter (BCC) 98

 5.3 Embedding algorithm 102

 5.4 Extraction algorithm 104

 5.5 Evaluation parameters 105

 5.5.1 Embedding capacity and Bits per

distortion
105

 5.5.2 Uniformity in embedding probability 106

 5.5.3 Comparison with other methods 106

 5.6 Security aspect 107

 5.7 Case study on nuclear power plants 109

 5.8 Summary 113

CHAPTER 6 EMBEDDING IMAGE 115

 6.1 Introduction 115

 6.2 Vector format 117

 6.3 Custom format to represent an image 120

 6.3.1 Elements of an image 123

 6.3.2 Code representation of elements 125

 6.3.3 Image to code conversion procedure 127

 6.3.4 Code to image conversion procedure 129

 6.4 Methodology adopted to develop Method-C 130

 6.4.1 Image to code conversion algorithm 132

 6.4.2 Embedding algorithm 132

 6.4.3 Extraction algorithm 135

 6.4.4 Image drawing algorithm 140

 6.5 Evaluation and Security aspect 141

 6.5.1 Size comparison 141

 6.5.2 Embedding capacity 145

 6.5.3 Bits per distortion 145

Contents

xii

 6.5.4 Secrecy 146

 6.5.5 Comparison of Method-B and Method-C 147

 6.5.6 Transmission error 148

 6.6 Summary 151

CHAPTER 7 SUMMARY AND SCOPE FOR FUTURE

INVESTIGATIONS

153

 7.1 Summary and conclusions 153

 7.2 Scope for the future work 158

REFERENCES 159

APPENDIX A 175

Procedure to generate Frequency Normalization Set (FNS) 175

APPENDIX B 181

Illustration of the imperceptibility level of Method-C 181

xiii

SYNOPSIS

Digital communication plays an important role in connecting geographically

distributed individuals as well as organizations. To assist the communication, the

information is generated (or converted) and shared in digital form. This, also, allows a

malicious intender to destroy, corrupt or steal the data at ease.

A malicious intender having the personal data, such as credit or debit card

details, can make fraudulent transactions. Similarly, an attacker possessing the data of

an organization, like the customer details or medical records, can threaten the

organization for ransom or sell them in darknet. Such attacks can result in the loss of

reputation and customers of the liable organization. Thereby, this kind of information

is sensitive. Hence, securing such sensitive information, both during storage and

in-transit, is of serious concern to individuals as well as organizations.

In general, organizations take efforts to safeguard the sensitive information by

deploying access controls, security checks and periodic backups. However, these

mechanisms can safeguard only against specific internal threats, such as stealing

and/or destruction of information, by their own employees. But, securing the

information from cyber criminals is a challenging task.

To protect the sensitive information, security methodologies like

watermarking, cryptography and steganography are used. Watermarking prevents

from illicit claim of ownership of the information, by secretly hiding the ownership

details in it. However, it does not prevent the reproduction of the content.

On the other hand, cryptography prevents such reproduction by changing the

appearance of the content through encryption. Besides confidentiality, cryptography

also provides integrity, authentication and non-repudiation. But, it fails to provide

secrecy. Hence, during the exchange of information, any third party who is sniffing

Synopsis

xiv

the communication channel can identify its presence. Once identified, attackers might

be able to use suitable state-of-the-art techniques to extract the encoded information

or save them for later use. This can be possible due to the various vulnerabilities such

as export grade encryption, man-in-the-middle attacks, default or weak passwords,

insecure configurations and advances in cryptanalysis.

Steganography averts this kind of detection by performing the communication

in a stealthy manner. It hides the secret information inside an innocent looking cover

medium, by making unnoticeable modifications or distortions, preventing it from

raising any suspicion. Due to this characteristic, lately security experts advice the use

of steganography and cryptography in combination. The idea, here, is to encrypt the

information first and, then, send it through steganographic means.

Digital steganography (hereafter referred to as steganography) can be

classified based on the type of cover medium used. The cover medium used can be a

text (plain text as well as word processor documents), image, audio, video, network

packet, etc. Of these various types, text steganography is least preferred as the:

(i) amount of redundant information present in a text document is less; (ii) structural

and visual appearance of a text document are directly related.

However, text steganography cannot be avoided completely. According to a

2009 report, nearly 80% of organizations use text documents

(Microsoft Word documents) for collaboration purpose. Hence in such environment,

depending on other media types, that are scarcely used, to perform the covert

communication is not preferable. This is because, the: (i) transmission of other media

types can make the communication suspicious and can lead to further analysis;

(ii) low voluminous traffic of other media types can make it practical for an adversary

to investigate them thoroughly. In addition, text documents require low bandwidth

Synopsis

xv

during communication, due to the involvement of smaller file sizes. Considering these

facts, this dissertation aims to analyze the existing text steganographic methods and

address their drawbacks through innovative solutions.

A detailed literature survey of the existing techniques concluded that the

embedding capacity and the number of bits embedded per distortion are inversely

proportional, except for the techniques that generate the stego-work directly.

Character-level embedding technique (CLET), a variant of text steganography,

directly marks the identical character in the cover medium, sequentially, to embed the

secret characters. It marks the character by altering the font, font style, position,

misspelling, etc., and thereby, embeds 8-bits per distortion. However, it can embed a

secret character only if the corresponding character is present in the cover medium.

As the occurrence frequency of English alphabets is not uniform in a typical

document, the overall embedding capacity of this technique is low.

On the other hand, the existing bit-level embedding technique, UniSpaCh,

with highest embedding capacity, embeds the secrets by injecting Unicode space

characters in the white spaces. On an average, it embeds 1.046-bits/cover-character

with approximately 2-bits/distortion. Hence a large number of distortions are required

to embed the secret. Apart from the methods that generate the stego-work directly,

from a given secret, no existing method was found to achieve both high number of

bits per distortion as well as a high embedding capacity.

In this study, an attempt has been made to address this shortcoming by

presenting three novel techniques. These techniques embeds text, image or binary

data inside the font attributes of word processor document. The present thesis is

organized into seven chapters and the contents of each chapter are summarized below.

Synopsis

xvi

Chapter 1 Introduction

Chapter 1 presents a brief introduction on the importance of data security. It discusses

the existing security methodologies in detail, and the need for steganography in the

current digital scenario. It, also, describes the desirable characteristics of a digital

steganographic algorithm and our motivation for the choice of text steganography

along with the challenges involved in it.

Chapter 2 Literature Survey

Chapter 2 describes the existing text steganographic techniques, in detail, and

classifies them into three broad categories, namely character-level, bit-level and

mixed-type embedding, based on their nature of embedding. Character-level

embedding technique is further classified into two categories as

Cover_Document_Required (CDR) and Cover_Document_Not_Required (CDNR).

CDR embeds a secret character by directly marking the respective character in the

cover medium. CDNR directly generates the stego work, based on the secret

characters, without using any cover medium. Bit-level embedding technique considers

the secret information as a binary string and the embedding is carried out accordingly.

Mixed-type embedding technique is a mixture of the above two techniques. It

considers the secret information as a binary string and splits them into groups of 2 or

4-bits each. Each group is, then, mapped to one or more alphabet(s) and consequently

the bits are embedded in the mapped alphabet(s) of the cover medium. This chapter

discusses the advantages and disadvantages of the above methods in detail. Also, it

compares them based on their embedding capacity and the number of bits embedded

per distortion.

Synopsis

xvii

Chapter 3 Exploring the Font Attributes of Word Processor Documents

Chapter 3 discusses the font attributes of various word processor documents

viz. Microsoft Word, LibreOffice Writer, OpenOffice Writer and WordPerfect. It

analyses the font attributes from a steganographic perspective, and categorizes them

based on their usability and imperceptibility. In addition, it presents the various ways

of embedding the secret using these attributes, viz. restricting their values within a

particular range or masking the effect of an attribute by the effect of another attribute.

A comparison of the selected attributes, based on their embedding capacity, usability

and complexity of the extraction process, revealed that the word processor Microsoft

Word suits best for steganographic purpose. Additionally, the comparison illustrated

that the attributes color, spacing and kerning stands best among the rest.

Color: This attribute specifies the color of a character and it is represented by a 24-bit

value using the format (R, G, B). The least significant 1 or 2-bits of each R, G and B

can be modified without creating any visual difference.

Spacing: This attribute alters the spacing (expand or condense) between two

characters. Since the spacing of characters are not uniform in a justified text,

modifying the document using this attribute will go unnoticed.

Kerning: This attribute alters the spacing between the overlapping character pairs

such as AV, WA, etc. It takes the size of the font as input, known as the kerning font

size, which can be between 1 and 1638 points. The effect is produced only when the

specified kerning font size is lesser than or equal to the font size of the character. Else,

applying kerning produces no effect and hence goes unnoticed.

Synopsis

xviii

Chapter 4 Embedding Text

Chapter 4 proposes a novel character-level embedding technique (Method-A) which

embeds secret text, that contains English alphabets, dot and space characters (ADS),

with higher number of bits per distortion as well as high embedding capacity. To

achieve this, the method generates a set of 28 strings, using the occurrence frequency

of ADS characters, known as Frequency Normalization Set (FNS). These strings have

the following properties: (i) Each string contains only ADS characters; (ii) The length

of a string, L, is seven with seven positions {0, 1, 2, 3, 4, 5, 6}; (iii) A character

occurs only once in a string; (iv) A character occurs only once in a given position in

the whole FNS. That is, no column-wise repetitions; (v) The cumulative frequency of

characters of each string is 25.

The generated FNS is then injective mapped to the 28 ADS characters. This

mapping is called as Character & String Mapping (CSM).

The secret characters are embedded, serially, at the first occurrence of a

character in the corresponding mapped string. This allows a low occurring character

to get embedded in several cover characters, and thereby boosts its embedding

probability in addition to achieving uniformity. A font attribute called spacing is used

to mark the seven respective positions of characters in a string. The distorted character

and the value of spacing represent the hidden character. An investigation on the

embedding capacity revealed that an average of 2.22-bits/cover-character with

8-bits/distortion was attained by the proposed method.

Chapter 5 Embedding Binary Data

Chapter 5 extends the method explained in Chapter 4, Method-A, into a mixed-type

embedding technique (Method-B), to embed binary information. To achieve this, the

Synopsis

xix

method first converts the secret information into a binary stream and segments it into

quadruples. It then maps the sixteen possible combinations of a quadruple to the 28

strings of FNS, using which it converts the binary stream into a character stream.

These characters are then embedded as explained in Chapter 4.

Though the conversion procedure affected the embedding capacity and

bits/distortion of the former method, it still attained an average embedding capacity of

approximately 1.71-bits/cover-character with 4-bits/distortion which is better than the

existing methods.

However, a case study on the nuclear power related images, like engineering

drawings, roadmaps, graphs, etc., revealed that, for certain images, the required

number of pages in the cover document are still larger than the average size of an

academic book. It is noted that this huge size requirement is due to embedding the

unnecessary information of images, like color, line thickness, etc., which is present in

the pixel representation.

Chapter 6 Embedding Image

Chapter 6 explores the possibilities to reduce the size of above-mentioned images

without losing the necessary information. The various representations of images

namely Encapsulated PostScript (EPS), Scalable Vector Graphics (SVG) and

Compressed SVG (SVGZ) achieve the same goal. It was observed that, of the

available formats, SVGZ attained the least size of a given image. Hence, when the

same is embedded using the method proposed in Chapter 5 (Method-B), it

considerably reduced the number of pages required to embed them. However, the

method failed to extract the image in the case of any data corruption.

Synopsis

xx

Hence, Chapter 6 proposes a novel bit-level embedding method (Method-C)

that embeds specific category of images, like engineering drawings, roadmaps,

graphs, etc., in a unique way reflecting the structure of the hidden image. The method,

first, converts the various elements of a given image into custom defined codes. This

is done with respect to the grid lines that are drawn over the image. The intersection

of two grid lines is called as a control point. Codes represent the layout of the image,

based on the way the layout traverses through the control points.

The conversion procedure begins by choosing a specific control point called

origin, to trace the layout. The angle of the tracing line drawn from the origin to the

next control point defines the code. The procedure repeats the process and traces the

entire image, to convert it into codes. Whenever the conversion procedure encounters

a text message, near a control point, it places an appropriate marker in the

corresponding code, and writes the encountered message into a separate file. Hence,

the size of the final codes depends only on the number of grid lines drawn but not on

the resolution of the image. Thereby, the procedure considerably reduces the number

of bits that are required to represent an image.

The proposed method (Method-C) uses the font attributes color, spacing and

kerning to embed the codes. The embedding procedure starts by choosing a cover

character, corresponding to the origin, and embeds the code. It selects the next

character, based on the last embedded code, in a manner similar to that of traversing

the image. This process achieves the original structure of image to be embedded

inside the text document. The details related to origin and resolutions of the grid are

communicated to the recipient. To extract the codes, the extraction algorithm starts

from the character, corresponding to origin, and traces the embedded characters

similarly. The extracted codes are then used to reproduce the original image.

Synopsis

xxi

In the case of any transmission errors, the extraction algorithm searches the

potential characters to continue the traversal and thus, supports error handling

mechanisms. The text messages are embedded using UniSpaCh and are extracted

accordingly. From the experiments conducted, a high embedding capacity was

observed making it suitable for low bandwidth environments.

Chapter 7 Summary and Scope for Future Investigations

The highlights of this dissertation and the scope for future work are summarized in

Chapter 7. The highlights are: 1) The steganographic usage of word processor

documents was investigated thoroughly; 2) The best suitable font attributes to embed

the secrets were identified; 3) The possibility to normalize the embedding probability

of secret characters in CLET algorithms, irrespective of their occurrence, was

reported for the first time; 4) A CLET with high embedding capacity and

bits/distortion was successfully designed, developed and tested; 5) The requirement of

larger cover work to embed the secret information, like image, was reported with a

case study; 6) The custom defined format to represent an image with lesser number of

bits was illustrated; 7) For the first time, the procedure of embedding an image along

with its structure was demonstrated; and 8) The procedure of embedding an image

with error handling mechanisms was demonstrated. The future work can focus to

explore the ways to embed secrets inside other document formats like Portable

Document Format (PDF).

List of Figures

xxiii

LIST OF FIGURES

Figure

No.

Figure Caption Page

No.

1.1 Types of information security measures 3

1.2 Procedure of watermarking 4

1.3 Procedure of cryptography ensuring confidentiality 4

1.4 Procedure of steganography 5

1.5 Types of steganography 7

2.1 Classification of the existing text steganographic techniques 16

2.2 Sample input and output of missing letter puzzle technique 21

2.3 Sample input and output of hiding data in wordlist technique 22

2.4 Example for word shifting 26

2.5 Illustration of the white [66] 26

2.6 Example for end-of-line spacing [76]: (a) Ordinary text;

(b) White space encoded text

28

2.7 Example for UniSpaCh technique: (a) Unicode space

characters (color-coded for understanding purpose) [66];

(b) Size of Unicode and normal space characters [66]

29

2.8 Vertical displacement of Dot in the Persian character

Noon [105]

30

2.9 Exploiting the structure of characters: (a) Basic components of

Chinese, Japanese and Korean characters [84];

(b) Representation of characters using the basic

components [41]

31

List of Figures

xxiv

2.10 Exploitation of the Arabic or Urdu characters: (a) Diacritics of

Arabic language [107]; (b) Representation of Araabs;

(c) Usage of the regular and reverse Fatha [94]

32

2.11 [83] 33

3.1 WordPerfect revealing the formatting information 40

3.2 Exploitation of the Animation attribute 44

3.3 Exploitation of the EmphasisMark attribute 45

3.4 Exploitation of the Color attribute 47

3.5 Exploitation of the Emboss and Engrave attributes 48

3.6 Exploitation of the Shading attribute in WordPerfect. Middle

character of each word has a default shading value of 75%,

whereas the left and right characters have varying values which

are mentioned above each character (in %)

55

3.7 Exploitation of the StylisticSet attribute 59

3.8 Classification of the font attributes of word processors.

* represents the case that the attribute is applied on space

character alone; represents the case that care has been taken

to separate an identical modified and unmodified character;

MS Microsoft Word; LO LibreOffice; OF OpenOffice;

WP WordPerfect

62

4.1 Sample output of Method-A 82

4.2 English secret in English cover document. CW1 cover

document; Sec1 secret message; Stego stego document

90

List of Figures

xxv

4.3 Random secret in English cover document. CW1 cover

document; Sec2 secret message; Stego stego document

90

4.4 Random secret in random cover document. CW3 cover

document; Sec2 secret message; Stego stego document

91

4.5 Method-A combined with Format Preserving Encryption

system

92

5.1 Schematic diagram of Method-B. The dotted lines represent

the modules that are introduced in Method-B and bold line

represents the modified module of Method-A

98

5.2 Sample Character & Bit Mapping using the Character & String

Mapping provided in Table 4.4.

 English alphabets, Dot and

Space

99

5.3 Sample tested images: (a) Road map from kalpakkam to

anupuram [135]; (b) Graph [136]; (c) Electronic circuit

diagram [137]; (d) Civil drawing of stairs [138]; (e) Boiling

water reactor [139]; (f) Schematic diagram of thermal power

plant [140]; (g) Nuclear power plant steam generation [141];

(h) Reactor flow sheet [142]; (i) Reactor core [143]

111

6.1 Vector image formats. * represents the compressed version

of SVG format

118

6.2 Sample SVGZ file and corresponding image: (a) SVGZ file;

(b) Generated image

121

6.3 Sample SVGZ File (corrupted) and corresponding image:

(a) Corrupted SVGZ file; (b) Generated image

122

6.4 Sample image: (a) Without grid; (b) With grid 123

6.5 Picture depicting the various elements of an image 124

List of Figures

xxvi

6.6 Picture depicting the three possible branches of an image 124

6.7 Sample image with additional grid line: (a) Without grid;

(b) With grid

128

6.8 Sample image along with the corresponding code: (a) Without

grid; (b) With grid

128

6.9 Modules of Method-C. NHGL Number of Horizontal Grid

Line; NVGL Number of Vertical Grid Line

131

6.10 (A) Extraction algorithm: flowchart 1 137

6.10 (B) Extraction algorithm: flowchart 2 138

6.10 (C) Extraction algorithm: flowchart 3 139

6.11 (A) Generated images of SVGZ and custom formats

(a) Roadmap from kalpakkam to anupuram; (b) Graph;

(c) Electronic circuit diagram

142

6.11 (B) Generated images of SVGZ and custom formats

(d) Civil drawing of stairs; (e) Boiling water reactor;

(f) Schematic diagram of thermal power plant

143

6.11 (C) Generated images of SVGZ and custom formats

(g) Nuclear power plant steam generation; (h) Reactor flow

sheet; (i) Reactor core

144

6.12 Sample output of Method-C. *Stego characters are highlighted

for understanding purpose

147

6.13 (A) Illustration of handling transmission error: (a) Original image;

(b) Transmitted image

149

6.13 (B) Illustration of handling transmission error: (c) Stego characters

at sender side (highlighted for understanding purpose);

150

List of Figures

xxvii

(d) Identified stego characters after the occurrence of error

(15% of stego characters have been distorted); (e) Applied

color patterns for the stego characters in Fig. 6.13 (B) (d)

during extraction; (f) Extracted image from Fig. 6.13 (B) (d)

A.1 Flowchart to generate Frequency Normalization Set (FNS) 176

B.1 Boiling water reactor [139] 181

List of Tables

xxviii

LIST OF TABLES

Table No. Table Caption Page No.

1.1 Various cover types and their embedding strategies 9

2.1 Occurrence frequencies of alphabets in English text [38] 19

2.2 Sample words and the respective synonyms 23

2.3 Sample United States and United Kingdom spellings [97] 24

2.4 Number of bit and space character combinations 28

2.5 Reflection symmetry properties of English alphabets [86] 34

2.6 Comparison of the existing techniques 36

3.1 Details of word processors 40

3.2 (A) List of attributes in word processors: part 1 41

3.2 (B) List of attributes in word processors: part 2 42

3.3 Exploitation of the Spacing attribute 57

3.4 (A) Comparison of the average and high imperceptible

attributes: part 1

65

3.4 (B) Comparison of the average and high imperceptible

attributes: part 2

66

4.1 Occurrence frequencies of ADS characters in English text 73

4.2 Respective NCC and P values 75

4.3 Sample Frequency Normalization Set 77

List of Tables

xxix

4.4 Sample Character & String Mapping 78

4.5 Results of embedding the secrets in cover document 84

4.6 Uniformity in embedding probability 85

4.7 Comparison of Method-A with existing techniques 86

4.8 Spacing values of the identified stego characters 89

4.9 Sample Character & String Mapping for case-sensitive

messages

93

5.1 Mapping of ADS characters and the nibbles (Character &

Bit Mapping)

100

5.2 Results of embedding the secrets in cover document 106

5.3 Uniformity in embedding probability at nibble-level 107

5.4 Uniformity in embedding probability at character-level 108

5.5 Distribution of nibbles among the possible tuples 110

5.6 Details of images given in Fig. 5.3 112

5.7 Number of cover characters required by UniSpaCh and

Method-B

112

6.1 Software that generate vector file format 118

6.2 Sizes of generated vector images 119

6.3 Results of embedding raster and vector images by

Method-B

119

6.4 Used notations and their descriptions 124

6.5 Elements of an image and their respective codes 126

List of Tables

xxx

6.6 Possible angles and their respective H4 126

6.7 Kerning value 132

6.8 Flags and their respective spacing values 133

6.9 Selecting one character from eight neighbors based on H4 133

6.10 Sizes of images in custom and SVGZ formats 141

6.11 Results of embedding the custom format 146

6.12 Comparison of Method-B and Method-C 148

6.13 Used color patters to color the currently selected character 149

List of Abbreviations and Symbols

xxxi

LIST OF ABBREVIATIONS AND SYMBOLS

PAN Permanent Account Number

U.S. or USA United States of America

JPG Joint Photographic Experts Group

PNG Portable Network Graphics

TCP/IP Transmission Control Protocol/Internet Protocol

CLET Character-level embedding technique

CDR Cover_Document_Required

CDNR Cover_Document_Not_Required

EoL End-of-Line Spacing

UniSpaCh Unicode Space Characters

CJK Chinese, Japanese and Korean

L-R Left-Right

U-D Up-Down

ASCII American Standard Code for Information Interchange

MS Microsoft

LO LibreOffice

OF OpenOffice

WP WordPerfect

R, G, B or RGB Red, Green, Blue (color)

ADS English alphabets, Dot and Space

NCC Number of characters cumulated

FNS Frequency Normalization Set

CSM Character & String Mapping

EoS End-of-Secret

No. Number

List of Abbreviations and Symbols

xxxii

FPE Format Preserving Encryption

BCC Binary to Character Converter

CBM Character & Bit Mapping

KB Kilebyte

GIF Graphics Interchange Format

AI Adobe Illustrator

EPS Encapsulated PostScript

PDF Portable Document Format

SVG Scalable Vector Graphics

SVGZ Scalable Vector Graphics Compressed

DP Directional point

DCP Direction changing point

TP Temporary point

SP Split point

FPoB First point of a branch

LPoB Last point of a branch

OPB The only point of a branch

NHGL Number of horizontal grid line

NVGL Number of vertical grid line

NoB Number of branch

Sp Single page

H4 Hexadecimal value (Nibble)

List of Terminologies

xxxiii

List of Terminologies

Cover work/document Cover medium that is used to carry the secret

Cover character Character in a cover document

Embedding Process of hiding a secret

Embedding capacity Maximum amount of information that can be embedded

inside a chosen cover document

Embedding space Place in which the secret can be embedded

Distortion Modification performed to embed a secret

Bits/distortion or bits

per distortion

Number of bits that can be embedded in a distortion

Stego character Cover character that has undergone modification

Non-stego character Cover character that has not undergone modification

Stego work/document Cover medium (resultant file) after embedding the secret

Extraction Process of extracting the secret

CHAPTER 1

INTRODUCTION

 This chapter furnishes a detailed introduction on the importance of data

security both during storage and in-transit. A detailed discussion on existing security

methodologies and the need of steganography in the current digital scenario has been

provided. The desirable characteristics of digital steganographic algorithms and

motivation for the choice of text steganography along with the challenges involved in

it has, also, been described.

1.1 Introduction

In the modern era, predominant amount of information is generated, stored

and shared in the digital form [1]. This is mainly due to the ease with which it can be

handled and the flexibility it offers in terms of efficient storage, distribution [2],

retrieval [3], etc. Information in the digital form is also environment-friendly [3].

Information can be personal as well as organizational. Personal data can be

name, date of birth, marital status, medical history, passport details, permanent

account number (PAN), email ids, contact numbers, debit or credit card numbers,

income details, assets, finger prints, etc. [4-6]. Organizational data can be employee

details, medical records of customers, minutes of meetings, tender quotations,

architectural blueprints, engineering drawings, maps, graphs, financial records,

etc. [7]. Also, several organizations have technical notes and documents that need to

be shared among the colleagues associated with the activity.

Chapter 1: Introduction

These types of information are sensitive and the access of such information by

unauthorized persons can be harmful to individuals as well as organizations [8].

Malicious third parties can misuse them by:

 selling the phone numbers or contact details to advertising agencies [9]

 filing false income returns, selling properties, applying loans, etc. [10,11]

 making fraudulent transactions using credit or debit card details [12]

 selling the medical records of patients to hospitals, health insurance and

pharmaceutical companies [13]

 selling the chemical composition of explosives or locations of army camps to

anti-social elements [14,15]

Hence, securing sensitive data is of utmost priority to organizations as well as

individuals [16]. Typically, organizations take extensive efforts to protect them from

both internal and external threats. Internal threats include destroying, stealing or

 by their own employees [17]. Organizations deploy

strict access controls [18], security checks and periodic backups to minimize the

internal threats.

However, most of the organizations are geographically distributed and are

forced to be inter-connected using public networks like the internet [19]. Hence,

securing information from the external threats (active or passive) of cyber criminals is

a complex task. Through regular patching and proper training, active threats like

firewall penetration, phishing [20], botnets [21], etc., can be mitigated to an extent.

But preventing the networks from passive threat, like sniffing [22], is a difficult task

even to organizations that use leased line or virtual private networks.

Regardless of the communication line used, cyber criminals sniff the network

and collect the sensitive information. This information can later be exploited due to

Chapter 1: Introduction

vulnerabilities such as export grade encryptions [23], man-in-the-middle attacks [24],

default or weak passwords [25,26], bad configurations and advances in

cryptanalysis [27,28]. A number of such incidents were reported in the past and are

growing in number [29-34]. Therefore, securing the digital information, in-transit, is

extremely important.

Security of data, in-transit, must ensure the prevention from:

(i) illicit copying and claim of ownership

(ii) illicit extraction and reproduction

(iii) detection of communication and the communicating parties

These goals are achieved through information security methodologies like

watermarking, cryptography and steganography respectively [35] (refer Fig. 1.1)

which are as follows.

1.2 Watermarking

 Watermarking is typically used to identify the owner of the information and

protect copyright [36]. It injects or hides the trademark or copyright symbol in the

information without compromising its quality (refer Fig. 1.2). Such injected

trademark must be robust against tampering and should not be able to be removed

without destroying a substantial quality of information [37].

Figure 1.1 Types of information security measures

Information security measures

Cryptography

(Authentication, confidentiality,
integrity and non-repudiation)

Steganography

(Imperceptibility)

Watermarking

(Robustness)

Chapter 1: Introduction

Figure 1.2 Procedure of watermarking

1.3 Cryptography

 Cryptography means [38]. It hides the meaning of the

information by encoding it using secret key. Hence a party possessing the key, can

only extract the information (refer Fig. 1.3). This protects the information from the

illicit extraction and reproduction (confidentiality). Besides this, cryptography also

provides authentication (identify the sender), integrity (identify data modification) and

non-repudiation (denial of sending) [39].

1.4 Steganography

Steganography means [40]. Steganography hides secret

information covertly inside an innocent looking cover medium by making

unnoticeable modifications in the cover medium [41] (refer Fig. 1.4). Therefore,

communicating using steganographic techniques hides the information and in certain

Figure 1.3 Procedure of cryptography ensuring confidentiality

Encryption
algorithm

Secret
information

Encrypted
information Decryption

algorithm

Key Key

Secret
information

Watermark
embedding
algorithm

Digital
information

Watermark
or copyright

symbol

Watermark
embedded

information
Watermark
extraction
algorithm

Key Key

Embedded
watermark

Digital
information

Chapter 1: Introduction

cases the transmission of information and communicating parties altogether

(explained later in Section 1.6).

1.5 Need for Steganography in the Current Scenario

Watermarking protects the information from illicit claim of ownership [42],

but does not prevent anyone from reproducing or using the content [43]. Only,

cryptographic and steganograpic techniques achieves this by changing the appearance

(encoding) or by hiding the existence (hidden communication) of information

respectively.

Cryptographic techniques succeed in providing confidentiality, integrity,

non-repudiation and authentication of the information [38]. But, it sends the

encrypted information in plain sight making it available to preying eyes [41,44].

Latest reports emphasis the sniffing of public networks by cyber criminals as well as

government agencies [45,46], for such encrypted information. In addition, in the past,

various law-enforcing authorities forced the product developers to reduce the strength

of cryptographic techniques (by incorporating export-grade encryption

techniques [23], backdoors [47], weak primes [46], elliptical curves, etc.), so that they

can decrypt the sniffed information at ease [48]. However, in some cases, the captured

information is just stored, till an efficient cryptanalysis method on the used algorithm

or advanced computation mechanisms like quantum computing [49,50] becomes

Figure 1.4 Procedure of steganography

Embedding
procedure

Cover
medium

Secret
information

Cover medium
containing

hidden secret
Extraction
procedure Secret

information

Cover
medium

Key Key

Chapter 1: Introduction

available. Hence, relying on encryption techniques alone to send sensitive information

is, clearly, not sufficient anymore. This makes the secrecy of information during

communication a necessity one.

Considering this, security experts suggest the incorporation of secrecy along

with security [45,51]. The idea here is to protect the information, first, by using

cryptographic techniques and communicate them by means of steganographic

techniques [52]. This brings steganography into the digital communication field, for

enhancing the security of information during transit.

1.6 Recent Trends in Steganography

Though cryptography is used by the mainstream, due to the Internet and

World Wide Web, steganography is still practiced by people who wish to circumvent

the spying activities [53]. After weeks of interviews with U.S. officials and experts,

Jack Kelley of USA Today wrote

 [54]. Following this, the 9/11 attacks created awareness across nations that

terrorists may use steganography for secretly communicating their targets [55]. It is

believed that the target locations along with the relevant information are embedded in

images and posted in websites like eBay, Reddit, etc. [56]. Thereby, to a casual

observer, this post looks like a genuine user who is about to sell a product but only the

intended recipient(s) gets the original message. This method of communication not

only hides the message but also the intended recipient(s).

More recently, malicious code writers started to use steganography either to

collect sensitive information from a malware infected machine [57] or to deploy

malwares. Zeus or Zbot malware (first identified in 2007) appends its encrypted

configuration file to a JPG (Joint Photographic Experts Group) file [58].

Chapter 1: Introduction

Duqu malware (discovered in 2011) collects sensitive information from an infected

machine, encrypts and sends it by embedding it in a JPG file [59]. Stegoloader

malware (emerged in 2015) completely hides its malicious code within a PNG

(Portable Network Graphics) file [60].

On the positive side, steganography is used to prevent users from phishing

attacks in online banking scenario [61]. For this purpose, a browser plug-in that can

hide secret messages inside images (logos) and validate the same has been developed.

When the resultant stego image (image with hidden secret) is placed in the

validate the website using the

developed plug-in [61]. These clearly show the growing use of steganography in the

digital communication, with a new paradigm.

1.7 Desired Characteristics of Digital Steganography

Digital steganography (hereafter referred as steganography) can be classified

based on the type of cover medium used [62] (refer Fig. 1.5). The cover medium used

can be a text message or document, image, audio, video, network packet, etc. [36].

Figure 1.5 Types of steganography

Steganography

Text Image Audio Video Network

Plain text
document

Word processor
document

Chapter 1: Introduction

Choosing an appropriate cover medium in a given environment is the first

precautious measure that the designer of a stegnographic algorithm must look

into [63]. This is because an attacker can sniff the traffic flowing in the

communication channel and identify the communicating parties, first. Later, he/she

can qualify the association between them based on the contents of the message. Any

questionable or non-justifiable exchange can lead to the thorough inspection of

transmitted data. This is known as traffic analysis attack [62]. Hence, to counter the

attack, a steganographic algorithm must use a cover medium that is being exchanged

in abundance by the communicating parties. This makes the communication look

legitimate and also make the life of an adversary tougher as thorough inspection of

such exchange is computationally intensive.

Second, as the secrets are embedded by making modifications or distortions in

the cover medium, an algorithm must focus to make the modifications in an

unsuspicious manner [63,64]. To achieve this, modern techniques either rely on the

redundant information in cover medium or the properties of cover medium that human

perceptual system fails to identify. Details of some of the existing methods are given

in Table 1.1.

Third, a good steganographic algorithm must aim to minimize the number of

distortions that are required to embed a secret [63]. That is, the number of secret bits

embedded per distortion must be maximized.

Fourth, an algorithm must utilize the available embedding space efficiently

and try to reduce the size of cover medium required to embed the secret [65]. This

reduces the load on the network and also avoids suspicion.

Fifth, the embedding method should not be cover medium dependent. That is,

designing a steganographic method which is specific to a cover document restricts the

Chapter 1: Introduction

method to that particular environment. For example, designing a text steganographic

method that can be applied only to Chinese characters, make it to be non-usable in

other languages.

Table 1.1 Various cover types and their embedding strategies

Cover
type

Embedding strategy Exploited
parameter

Reference

Text Embeds the secrets in white spaces Human visual
system

[66]

Embeds the secrets by exploiting the structure
of characters

[41]

Image Embeds the secrets in the least significant bit of
color

Redundant
information

[67]

Audio Embeds the secrets as noise or in frequencies
beyond human audible range

Human
auditory system

[68]

Video Embeds the secrets using both image and audio
steganographic techniques

Both human
auditory and
visual systems

[69,70]

Network Embeds the secrets in the unused or
insignificant bits of TCP/IP (Transmission
Control Protocol/Internet Protocol) packet

Redundant
information

[71]

Sixth, the method must generate a meaningful stego document that is suitable

to any given scenario [72,73]. For example, designing a steganographic method which

generates a puzzle or unconnected contents (words or sentences) as a stego document

makes it unsuitable for organizations.

1.8 Discussion

Amongst the various steganographic types, text steganography is hard to

manage [74,75]. This is because, the:

(i) amount of redundant information present is relatively less [73,76,77]. For

, the whole character has

only 24-bits to represent its color. Whereas in a 24-bit image, each pixel is

represented with 24-bits leaving a lot of redundant information

Chapter 1: Introduction

(ii) structural and visual appearance of text document is directly related [78]. For

example, altering the least significant bits of two neighbor pixels that has

. Whereas, altering the font size of

one of the two consecutive similar letters in a word, say balloon, will create

suspicion

(iii) number of pages of a normal academic text document is 250 (average

number of words per page is 300 [79] and average number of words in an

academic book is 70,000 [80]). Hence requiring a cover document that is

larger than the available size is not easy to accommodate and the usage of

which can, also, raise suspicion. This is not the case for the cover types like

image, audio and video

Due to the above-mentioned factors, text steganography is not a preferred method for

steganographers [77].

1.9 Motivation for the Thesis

Though employing text steganography involves complications, one cannot

completely avoid it. This is because many organizations are expected to exchange

documents more often than other media types such as image, audio, video, etc. Hence

in such environment depending on other media types, that are scarcely used, to

perform covert communication will not be beneficial. Besides, the involvement of

smaller file size makes text document to require low bandwidth during

communication [41,81].

Further exploration demonstrated that the existing techniques consider secret

message either as characters [78] or bits [66]. Techniques that consider the secret

message as characters have the advantage of embedding them directly and thereby

Chapter 1: Introduction

achieve 8-bits/distortion (each character in a file is represented by single byte [82]).

But these techniques suffer from either wasting the available embedding space or

generating meaningless stego documents. Whereas, techniques that consider the secret

message as bits manage to utilize the embedding space efficiently, but suffers from

low bits/distortion.

This shows that no existing method, that generates a meaningful stego

document, utilizes the available embedding space efficiently and achieves high

bits/distortion. As a result, embedding secrets in smaller size text document is a

challenging task.

Despite this limitation, the advantage of using text document for

steganography and the advantage associated in transmitting it motivated us to take up

the problem of developing newer text steganographic methods. This forms the basis

of work to be carried out in the thesis.

1.10 Objectives of the Thesis

Text stegnography is the focus of the present study and objective of the

thesis is:

 Identify the possibilities to achieve maximum number of bits per distortion

 Utilize the available embedding space in efficient manner

 Design and develop a method that achieves both high embedding capacity

and bits/distortion, while maintaining meaningful stego document

 Design and develop a method that embeds larger message, like multimedia

data, in smaller size documents

Chapter 1: Introduction

1.11 Contributions of the Thesis

A summary of the contributions made, based on the work carried out, in the

thesis is given below:

(i) A brief discussion on the font attributes of various word processors and the

possibilities to employ them for steganography are explained and

demonstrated

(ii) Novel techniques that embed text content and binary data, with high

embedding capacity and bits/distortion, are designed and developed

(iii) The requirement of larger cover document to embed multimedia data, like

image, audio, video, etc., is highlighted with a case study. The possibility to

reduce the size requirement through vector formats is demonstrated

(iv) A custom defined format to represent an image with lesser number of bits is

described and developed

(v) A novel method that embeds images along with their structure, to support

error correction, is designed and developed

1.12 Organization of the Thesis

Remaining part of the thesis is organized into six chapters. The details of the

content in each chapter are:

 Chapter 2 presents a survey on existing text steganographic techniques

 Chapter 3 presents a brief description on the font attributes of various word

processor documents and analyses them from a steganographic perspective

 Chapter 4 presents a novel character-level embedding technique that was

developed to embed text content inside Microsoft Word documents

Chapter 1: Introduction

 Chapter 5 presents the extension of the developed character-level technique

that embeds binary data like image, audio, video, etc.

 Chapter 6 presents a novel method that was developed to represent images in

reduced size and embed them with in-built error handling capabilities

 Chapter 7 provides a brief summary of the investigations and conclusion

made towards the thesis

CHAPTER 2

LITERATURE SURVEY

In this chapter, the text steganographic techniques that are available in the

literature are summarized. The methods are categorized based on the nature of

embedding. It also discusses the merits and demerits of each of the methods in some

detail. A comparison on the embedding capacity and number of bits embedded per

distortion, for each of the methods, is provided.

2.1 Introduction

As discussed in the introduction (Chapter 1), embedding secret information

inside text documents is considered to be harder, when compared with other cover

types [74,75]. Existing techniques mostly rely on the properties of cover

document [83], properties of characters [41,84], properties of languages [85], etc., to

embed the secrets. As a result, the embedding methodologies of these techniques are

not applicable to all the characters, words or languages. Hence, the overall embedding

capacity of such methods is relatively less and these aspects are discussed below in

some detail.

2.2 Classification of Text Steganography

Embedding strategy of the existing techniques can be broadly classified into

three categories as character-level, bit-level and mixed-type embedding techniques

(details are shown in Fig. 2.1). First category, character-level embedding technique

(CLET), considers the secret message as a string of characters and uses them

accordingly [78].

Chapter 2: Literature Survey

Second category, bit-level embedding technique, considers the secret message

as a string of binary bits and consecutively embeds them inside the cover

document [66]. Third category, mixed-type embedding technique, is a mixture of the

character-level and bit-level embedding techniques. It considers the secret message as

a string of binary bits and converts them into a string of characters through mapping.

Subsequently, the method embeds the mapped characters inside the cover

Figure 2.1 Classification of the existing text steganographic techniques

Text steganography

Character-level
embedding

Bit-level
embedding

Mixed-type
embedding

 Generating
summary

Cover_Document
_Required

 Character
marking

 Mistyping

Cover_Document_
Not_Required

 Null cipher

 Missing letter
puzzle

 Hiding data in
wordlist

Linguistic method

 Semantic
method

 Synonym
substitution

 Spelling of
words

 Syntactic
method

Alignment
modification

 Line
shifting

 Word
shifting

White spacing

 Inter-word
spacing

 Inter-sentence
spacing

 End-of-line
spacing

 Inter-paragraph
spacing

 UniSpaCh

Feature-based
embedding

characters

 Exploiting the
structure of
characters

 Reversing/Re
moving the
diacritics
in/from
characters

technique

Chapter 2: Literature Survey

document [86]. All these categories and their respective sub-categories are described

below in some detail.

2.2.1 Character-Level Embedding Technique (CLET)

Character-level embedding technique (CLET) directly uses the string of

characters and the embedding strategy of this technique can further be classified into

two categories as:

A. Cover_Document_Required (CDR)

B. Cover_Document_Not_Required (CDNR)

These techniques are discussed below.

A. Cover_Document_Required (CDR)

As the name implies, Cover_Document_Required (CDR) techniques need a

cover document. It embeds the string of secret characters, serially, by creating

distortions in the cover document. Character marking and mistyping are used for this

purpose.

Character Marking [62,87-89]

This technique searches for the occurrence of secret characters in the cover

document, serially, and marks the identical characters to embed them. It exploits the

properties of fonts, like bold, italic, underline, size, style, etc., to mark the characters

in the cover document. The receiver extracts the secret message by identifying and

grouping the marked characters together (see Example 2.1).

Chapter 2: Literature Survey

Example 2.1:

Cover work: Techniques like cryptography do not ensure the secrecy.

Generated stego work: Techniques like cryptography do not ensure the

secrecy.

Embedded secret: secret

Mistyping

This technique embeds the secret characters in the cover document, serially,

by intentionally creating spelling mistakes [62,90,91] or by creating changes in the

position of characters [87]. That is, placing the characters slightly over or under the

baseline (the imaginary line over which all the characters of a line are placed is called

baseline [92]). To extract the hidden message, the receiver has to identify and group

the original characters of the misspelled word or the misplaced characters

(see Example 2.2).

Example 2.2:

Cover work: He jumped off the boat.

Generated stego work: He dumped off the boat.

Embedded secret character: j

Discussion on CDR Techniques

 As the embedding takes place at character-level, these methods embed

8-bits/distortion. This helps to reduce the number of distortions that are required to

embed the secret which is the advantage of these methods.

Chapter 2: Literature Survey

 On the downside, these techniques are not case-sensitive. Also, they will

succeed, only, when all the characters in the secret message are present in the cover

document specifically in that order. But, the occurrence frequencies of characters in

English text are not uniform (refer Table 2.1). This makes the embedding probabilities

of characters non-uniform, and results in the wastage of cover characters (embedding

space) while embedding low occurring characters.

Table 2.1 Occurrence frequencies of alphabets in English text [38]

Letter* E T A O I N S H R D L C U

Frequency 12.7 9.1 8.2 7.5 7.0 6.7 6.3 6.1 6.0 4.3 4.0 2.8 2.8

Letter* M W F G Y P B V K J Q / X / Z

Frequency 2.4 2.3 2.2 2.0 2.0 1.9 1.5 1.0 0.08 0.02 0.01

* not case-sensitive

 In addition, making perceptible alterations for marking the characters or creating

several spelling mistakes can draw attention. Hence, these methods can be used,

stealthily, only when the amount of secret information to be embedded is very small

as compared with the size of cover document. This non-uniformity/

perceptible-alterations make/force the embedding capacity of these methods to be

low.

B. Cover_Document_Not_Required (CDNR)

Cover_Document_Not_Required (CDNR) techniques do not use a cover

document. They generate stego documents, directly, based on the secret. Null cipher,

missing letter puzzle and hiding data in wordlist are some of the CDNR techniques

which are described below.

Chapter 2: Literature Survey

Null Cipher [66,93]

This technique generates words or sentences, directly, based on the secret

characters. It generates them in such a way that the particular position of a letter from

each word (say second letter from each word) or sentence or paragraph represents the

secret character (see Example 2.3). This method is complicated because the generated

stego work should be meaningful and, also, inter-connect the sentences. Hence, it

involves manual intervention and requires an experienced person to perform the task.

Example 2.3:

Generated stego work (from [66]):

thoroughly discounted and ignored. Islam hard hit. Blockade issue affects

pretext for embargo on by-products, ejecting suets and vegetable oils.

Embedded secret (considering the second character from each word):

Pershing sails from NY June 1.

Missing Letter Puzzle [78]

This technique generates a list of words, of length between six and fifteen (not

including space), as a stego work. It uses the three-digit decimal value associated with

each secret character to generate a word. It uses the middle digit of the decimal value

to find the length of the word. Then, based on the last digit of the decimal value, it

replaces one or more character(s) of the generated word with question mark and

provides a hint. This makes the generated stego work to disguise like a puzzle

(refer Fig. 2.2).

The length of each word along with the presence of hint, position and number

of question marks together represent the embedded character. A drawback of this

method is that the communication of a list of words with special character, like

Chapter 2: Literature Survey

question mark, can attract attention. In addition, this method cannot be used in all

scenarios, like organizations, as it tries to disguise like a puzzle.

Secret message: Secretdata

Generated stego work:

La?ender

Cheiran?hus

Sunflowe?

?ntirrhinum

Gillyflo?er

Schiz?nthus

Xeranthem?m

Helleb?re

?oneysuckle

Digita?is

Figure 2.2 Sample input and output of missing letter puzzle technique

Hiding Data in Wordlist [78]

Similar to missing letter puzzle, this technique also generates a list of words of

length between six and fifteen (refer Fig. 2.3). This method uses the three-digit

decimal value associated with each secret character to generate a word. It uses the

sum of digits in the decimal value to decide the first character and the middle digit of

the decimal value to find the length of each word. Though this method avoids the

usage of question mark and hint, it still generates a list of unrelated words which can

draw attention.

Discussion on CDNR Techniques

Similar to CDR techniques, these techniques also embed 8-bits/distortion. But

one advantage of these methods over CDR is that they achieve a higher embedding

Chapter 2: Literature Survey

capacity by generating the stego document directly. On the downside, the generation

of each word or sentence depends on each secret character. Hence, there is no

guarantee that the generated stego work would be related unless performed manually.

Secret message: Secretdata

Generated stego work:

Kumakani

Bellflower

Rudbeckia

Forgetmenot

Butterwort

Hippeastrum

Agapanthus

Portulaca

Honeysuckle

Pyrethrum

Figure 2.3 Sample input and output of hiding data in wordlist technique

2.2.2 Bit-Level Embedding Technique

This method considers secret message as a string of binary bits and embeds

them accordingly. Based on the type of embedding, it is further classified into four

categories as:

A. Linguistic method

B. Alignment modification

C. White spacing

D. Feature-based embedding

These techniques are discussed below.

Chapter 2: Literature Survey

A. Linguistic Method

This method embeds secrets by exploiting the flexibility of languages.

Semantic and syntactic are the methods used in linguistic method.

Semantic Method

Semantic method exploits the flexibility in the choice of words to embed one

bit at a time. That is, 1-bit/distortion. It embeds, a bit, by replacing one word with

another without altering the original meaning.

 Synonym Substitution [90,94,95]

This method embeds a bit by substituting a word with its synonym

(refer Table 2.2). Due to this, both the sender and receiver must have the complete list

of words and their respective synonyms for embedding and extraction process

respectively. It substitutes the first synonym to embed the bit and the other to

embed the bit This method has two major drawbacks such as:

(i) the substituted synonym may not suit the sentence [90,96]

(ii) the generated stego work may not match the ration style

Table 2.2 Sample words and the respective synonyms

Words Synonyms

Bit 0 Bit 1

Leave Depart Go away

Subsequent Successive Later

Port Harbour Dock

Consequence Result Effect

Chapter 2: Literature Survey

 Spelling of Words [85]

Some words have different spellings in American and British English

(refer Table 2.3). This method exploits this variation to embed the bits secretly. It

represents a word with one spelling to embed the bit and the other to embed the

bit Since this method can be applied only to a particular set of words, which have

different spellings, the embedding capacity of this method is low. In addition, it leaves

clues to a third party, as the generated stego work will contain a mixture of spelling

styles [96].

Table 2.3 Sample United States and United Kingdom spellings [97]

United Kingdom spelling United States spelling

Ageing Aging

Colour Color

Colonise Colonize

Computerise Computerize

Syntactic Method

This method exploits the syntax of sentences to embed the bits secretly. In

English, the occurrence of the punctuation mark, like comma, becomes optional in

some cases [94]. For example,

and b [98]. This method explores this flexibility to embed

the secret bits. The presence of a comma embeds the bit -versa embeds

the bit However, this method requires utmost care as the improper use of such

punctuations can draw attention.

Chapter 2: Literature Survey

B. Alignment Modification

As the name implies, this method alters the alignment of text to embed one bit

at a time. That is, 1-bit/distortion. Line and word shifting are the techniques used in

alignment modification method.

Line Shifting [87,99]

This technique shifts a line up or down to embed the bit 0 or 1 respectively. It

considers three consecutive lines together as a group and marks a line only if all the

lines in the considered group are sufficiently long. In each group, it shifts the middle

line alone and leaves the other two neighbor lines undisturbed (see Example 2.4).

During the decoding process, it uses these neighbor lines to check whether the middle

line has been shifted or not. Hence, this method requires minimum three lines to

embed one bit of information.

Example 2.4:

Cover work (taken from [66]):

Islam hard hit. Blockade issue affects pretext for embargo on

by-products. thoroughly discounted.

Stego work (a):

Islam hard hit. Blockade issue affects pretext for embargo on

by-products. discounted.

Chapter 2: Literature Survey

Word Shifting [87,99]

This method is similar to the line shifting technique mentioned above. The

only difference between these two techniques is that, instead of considering lines, this

method uses words to embed the bits. It partitions the words in each line into groups,

each consisting of three words. Keeping the first and last word in each group constant,

it shifts the middle word left to embed embed

(refer Fig. 2.4). It should be noted that, the embedding capacity of this method is

better than the line shifting method as it can embed 1-bit/3-words.

C. White Spacing

In a typical text document, white spaces are present in between words,

sentences, paragraphs and at the end of lines (refer Fig. 2.5). This method exploits

How are you. I am fine.
How are you. I am fine.

Figure 2.4 Example for word shifting

Islam hard hit. Blockade issue affects

 pretext for embargo on by-products, ejecting suets and vegetable oils.

Islam hard hit. Blockade issue affects pretext for embargo on

by-products, ejecting suets and vegetable oils.

Figure 2.5 [66]

End-of-line spacing (EoL)

Inter-paragraph spacing

Inter-sentence spacing Inter-character spacing

EoL

Chapter 2: Literature Survey

these spaces to embed the bits secretly. Inter-word spacing, inter-sentence spacing,

end-of-line spacing, inter-paragraph spacing and Unispach are the techniques used in

white spacing method.

Inter-Word Spacing [76,100,101]

This method uses the white space between words to embed a secret bit. It

injects an extra space character to embed the bit or leaves undisturbed to represent

the bit (see Example 2.5). The embedding capacity of this method is higher than

the word shifting method as the former can embed 1-bit/2-words.

Example 2.5:

Cover work*:

Stego work*:

Embedded secret: 010

*For understanding purpose, the white spaces in the text are
.

Inter-Sentence Spacing [76]

This method exploits the white space between two sentences to embed a secret

bit. It injects an extra space character to embed the bit and leaves it undisturbed to

represent the bit Since the number of sentences in a typical paragraph is less

(average number of words in a sentence is between 15 and 20 [102] and average

number of words in a paragraph is 150 [103]), this method suffers from low

embedding capacity. However, this method performs better than the line shifting

method, as the latter requires minimum three lines to embed one bit of information.

Chapter 2: Literature Survey

End-of-Line Spacing [76]

In a non-justified text, the presence of white space at the end of a line is very

common. This method exploits this white space and injects space characters in it to

embed the bits secretly (refer Fig. 2.6). It injects characters in the power of two to

match the number of bit possibilities. That is, two characters to embed one bit (either

four characters to embed two bits (00, 01, 10, 11), and so on

(refer Table 2.4).

Table 2.4 Number of bit and space character combinations

Number of
bits

Number of
possibilities

Possible bits Number of space
characters to be injected

1 2 0 1

1 2

2 4 00 1

01 2

10 3

11 4

Inter-Paragraph Spacing [101,104]

This method exploits the white space between two paragraphs to embed the

bits. It injects space and tab characters in this white space to embed the bits 0 and

1 respectively.

C R Y P T O G R A P H I C T E C H N I Q U E S

D O N O T E N S U R E S E C R E C Y .

(a)

C R Y P T O G R A P H I C T E C H N I Q U E S

D O N O T E N S U R E S E C R E C Y .

(b)

Figure 2.6 Example for end-of-line spacing [76]: (a) Ordinary text;
(b) White space encoded text

Chapter 2: Literature Survey

UniSpaCh [66]

This technique is an improved version of the white spacing techniques that are

mentioned above. It injects Unicode space characters like Punctuation, Thin,

Six-per-Em, and Hair in inter-sentence, inter-word, inter-paragraph and end-of-line

spacings to embed 2-bits at a time (refer Fig. 2.7 (a)). The advantage of these

characters over the ordinary space character is that the width of these characters is too

small (refer Fig. 2.7 (b)). Hence more characters can be injected which increases its

embedding capacity.

(a)

(b)

Figure 2.7 Example for UniSpaCh technique: (a) Unicode space characters
(color-coded for understanding purpose) [66]; (b) Size of Unicode
and normal space characters [66]

Discussion on White Spacing Methods

 Though the methods are successful in injecting characters in white spaces,

unnoticeably, a simple matching analysis on the number of space and tab characters

with the number of words and paragraphs reveals the presence of secret message. In

addition, except UniSpaCh, all

[66]. When this is done, the

ordinary space character is visible as

helps to identify the intentionally injected characters.

Chapter 2: Literature Survey

D. Feature-Based Embedding

This method explores the features of characters or document formats to embed

the secret bits. A drawback of these methods is that they are restricted either to a

particular language or document format.

the structure of characters, reversing/removing the diacritics in/from characters,

ique are the methods used in feature-based embedding.

he Dot in Characters [105]

Similar to the lower-

and Persian alphabets also have dots. In Persian language, out of the 32 alphabets

eighteen have dots (three letters have two points each, five letters have three points

each and ten letters have one point each) and in Arabic language, out of the 28

alphabets fifteen have dots [105]. This method exploits these dots to embed the bits

secretly. It moves the dot up or leaves it undisturbed to

represent the bit (refer Fig. 2.8).

Exploiting the Structure of Characters [41,84]

In CJK (Chinese, Japanese and Korean) characters, there are totally 20,902

characters [84]. Of these characters, nearly 14,571 characters have left-right (L-R)

structure [84] and nearly 4700 characters have up-down (U-D) structure [41]. It is

Figure 2.8 Vertical displacement of Dot in the Persian character Noon [105]

Chapter 2: Literature Survey

possible to generate most of these L-R and U-D characters by combining certain

characters from 580 basic components [41] (refer Figures 2.9 (a) and (b)).

(a)

(b)

Figure 2.9 Exploiting the structure of characters: (a) Basic components of
Chinese, Japanese and Korean characters [84];
(b) Representation of characters using the basic components [41]

 This method exploits this flexibility and partitions the available characters into

three-character sets namely L-R structured character set, U-D structured character set

and neither L-R nor U-D character set. To embed the secret bits, the method first

scans the document serially until it identifies any of the

L-R or U-D structured characters.

encountered character undisturbed. Else, it replaces the character with the two basic

components and alters the spacing between them. This will make it to disguise like a

single character and avoids attention (refer Fig. 2.9 (b)).

Reversing/Removing the Diacritics in/from Characters [94,106]

Arabic or Urdu language have many diacritics of which eight are most

common (refer Fig. 2.10 (a)). It uses these diacritics to alter the pronunciation of

Chapter 2: Literature Survey

words [106] and the usage of these diacritics in written text is optional

(refer Fig. 2.10 (b)). There exist two methods which exploits this flexibility to embed

the secret bits.

Figure 2.10 Exploitation of the Arabic or Urdu characters: (a) Diacritics of Arabic

language [107]; (b) Representation of Araabs; (c) Usage of the

regular and reverse Fatha [94]

 One method [106]

cover document serially and removes all other diacritics till it encounters the diacritic

Fatha. Simi

encounters any one of the other seven diacritics.

 Another method [94] reverses the diacritic Fatha to embed the bit

leaves). In both the methods,

to extract the embedded secret, the receiver scans the document serially and identifies

the equivalent bits for the used diacritics.

(c)

(b)

(a)

Regular
Fatha

Reverse
Fatha

Dhammah

Kasrah

Fatha

Chapter 2: Literature Survey

Change Tracking Technique [83]

Some word processors like Microsoft Word facilitate the user to keep track of

the modifications that are performed in the document. This technique explores this

feature to embed the bits secretly. It first scans the chosen cover document and

identifies the possible degenerations, like misspelling, typos, synonym replacement,

etc., that can be performed in it. It then recognizes the typical occurrence probabilities

of each of the possible degeneration and creates a Huffman tree [108] using such

probabilities.

Next the sender purposefully degenerates the document, based on the secret

bit, by inserting the corresponding mistake from the Huffman tree. Then with the help

of the available commenting tools, the sender corrects the mistakes by himself and

sends it to the receiver. Thus, the generated stego work contains both the degenerated

and corrected texts.

Therefore, to a casual observer, the stego work will look like an experienced

person correcting the mistakes of a novice (refer Fig. 2.11). Using the

above-mentioned facility, the receiver extracts the hidden bits by recognizing the

deliberately created mistakes and the choice made from the Huffman tree. This

method embeds an average of 0.33-bits/word and the number of bits embedded per

distortion depends upon the generated Huffman tree of each of the degeneration.

Figure 2.11 Sample output of the technique [83]

In Table 2, the PSNR values of the images recovered with right
keys are all -1, whichthat mean that the MSER values are all zero. That is,
the recovered images and the original images are exactly the same. And the
PSNR values of the images recovered with incorrectwrong keys are smaller
thenthan 20dB, which displayshow that the recovery results are still very
difficult from the original ones dodue to the noise survivinginterference
living in the watermark areas of the healedrecovered images.

Chapter 2: Literature Survey

2.2.3 Mixed-Type Embedding Technique

This method is a mixture of the character-level and bit-level embedding

techniques. Like bit-level embedding, it considers the secret message as a string of

binary bits. It then converts these bits to characters using mapping. Finally, like

character-level embedding, it embeds these mapped characters inside the cover

document. Generating summary is the method used in mixed-type embedding

technique.

Generating Summary [86]

This technique embeds 2-bits at a time. It chooses sentences from the cover

work, based on the secret bits, to generate the stego work. To do so, it first partitions

the 26 English alphabets into four groups using the reflection symmetry property

(refer Table 2.5). It then maps these four groups to the four possible bit pairs.

Table 2.5 Reflection symmetry properties of English alphabets [86]

Group no. Reflection property Alphabets Secret bits

1 Reflection property followed
along neither axis

C, F, G, J, L, N, P, Q, R, Z 00

2 Reflection property followed
along horizontal axis

B, D, E, K, S 01

3 Reflection property followed
along vertical axis

A, M, T, U, V, W, Y 10

4 Reflection property followed
along both axis

H, I, O, X 11

 Depending on each bit pair, it selects sentences from the cover work whose

first alphabet (not an article) matches with any one of the alphabets of the respective

group. This makes the generated stego work to look like a summary of the used cover

work. To extract the embedded bits, the receiver has to identify the reflection

Chapter 2: Literature Survey

symmetry property of the first alphabet of each sentence. The major drawback of this

method is that it requires one complete sentence to embed 2-bits of information.

2.3 Comparison of the Existing Methods

The comparison of the existing methods is provided in Table 2.6. The methods

are compared based on their embedding capacity and the number of bits embedded

per distortion. For calculation purpose, it has been considered that the average length

of a word is 4.50 (not including space) [109], average number of characters in a line is

60 (including space) [110], average number of words in a sentence is 15 and average

number of sentences per paragraph (150 words per paragraph [103]) is 10 for English

language.

From Table 2.6 it can be seen that, CLET techniques (both CDR and CDNR

techniques) achieve the highest bits/distortion, followed by end-of-line spacing,

UniSpaCh and generating summary. Also, CDNR techniques achieve the highest

embedding capacity, followed by UniSpaCh. This shows that, only, CDNR techniques

achieve both high embedding capacity and bits/distortion. However, they cannot

guarantee a meaningful stego document. This drawback makes UniSpaCh the best

alternative available to general users. Hence the same has been considered as a

benchmark for comparing the methods that are developed and presented in upcoming

chapters.

Chapter 2: Literature Survey

Table 2.6 Comparison of the existing techniques

Technique Type of
embedding

Bits/distortion
(approximate)

Embedding capacity
(approximate)

Reference

Character
marking

Character-
level

8 Low (due to the non-
uniform occurrence

of characters)

[62,87-89]

Mistyping Character-
level

8 Low (due to the non-
uniform occurrence

of characters)

[62,87,90,91]

Null cipher Character-
level

8 8-bits/5.5-cc [66,93]

Missing letter
puzzle

Character-
level

8 8-bits/11.5-cc [78]

Hiding data in
wordlist

Character-
level

8 8-bits/11.5-cc [78]

Synonym
substitution

Bit-level 1 1-bit/5.5-cc* [90,94,95]

Spelling of words Bit-level 1 1-bit/5.5-cc* [85]

Line shifting Bit-level 1 1-bit/180-cc [87,99]

Word shifting Bit-level 1 1-bit/16.5-cc [87,99]

Inter-word
spacing

Bit-level 1 1-bit/5.5-cc [76,100,101]

Inter-sentence
spacing

Bit-level 1 1-bit/83.5-cc [76]

End-of-line
spacing

Bit-level 2 2-bits/56-cc [76]

UniSpaCh Bit-level 2 1.046-bits/cc [66]

characters

Bit-level 1 1-bit/cc* [105]

Exploiting the
structure of
characters

Bit-level 1 0.5-bits/cc [41,84]

Reversing/Remo
ving the diacritics

in/from
characters

Bit-level 1 1-bit/cc* [94,106]

technique

Bit-level Variable due to
Huffman tree

0.33-bits/5.5-cc [83]

Generating
summary

Mixed-type 2 2-bits/83.5-cc [86]

* represents the assumption that any character or word can be exploited by the
method; cc cover-character

Chapter 2: Literature Survey

2.4 Summary

Existing text steganographic methods are described briefly, and the merits and

demerits of each of the methods are discussed in some detail. The methods are

compared based on their embedding capacity and bits/distortion. It was noticed that,

apart from the methods that generate the stego document directly, no existing method

was found to achieve both high bits/distortion as well as high embedding capacity.

Due to this, embedding secret information inside text document is difficult as

the size of a typical cover document is limited. Situation gets worse, while embedding

multimedia information like image, audio, video, etc., as it is of typically in the order

of megabytes. Hence, there is a need for formulating a method with high embedding

capacity and bits/distortion.

The work carried out as part of this thesis aims to achieve the same. After

detailed analysis, it was understood that this can be achieved by designing a method

that:

(i) embeds maximum number of data bits in a distortion

(ii) utilizes the available embedding space in an efficient manner

Bearing this in mind, in the present work, various word processors were studied to

identify the suitable features that can carry a large number of bits per distortion. Three

novel methods that utilize the identified features and achieve high embedding

capacity have been developed and applied.

CHAPTER 3

EXPLORING THE FONT ATTRIBUTES OF WORD

PROCESSOR DOCUMENTS

This chapter discusses the font attributes of various word processor

documents and analyses them from a steganographic perspective. It, also, presents

the various ways of employing these attributes for steganography, and categorization

of them based on their usability and imperceptibility. A comparison of the selected

attributes is performed to identify the best word processor, suitable for

steganographic purpose.

3.1 Introduction

 As mentioned in Chapter 1 (Fig. 1.5), text steganography considers both plain

text and word processor documents as text document. However, differences exist

between them. Plain text documents can contain only ASCII (American Standard

Code for Information Interchange) characters [82] (not graphics) and supports fewer

formatting features or attributes like font name, font style and font size. These make it

advantageous to be independent of computer architectures. As a result of the same, a

plain text document once created can be opened in any operating system

seamlessly [82]. However, less formatting features make the possibility to embed

secrets inside plain text document a complex task.

Word processors, on the other hand, can contain texts, images, tables, etc., and

provide advanced formatting attributes like underline, font color, etc. [111,112].

These attributes are often stored as metadata and are applied over the underlying plain

text content, to create visual effects. Hence these attributes expect the corresponding

Chapter 3: Exploring the Font Attributes of Word Processor Documents

document to be interpreted correctly [113]. This makes the document to be

compatible only with the corresponding program or operating system [114]

(refer Table 3.1).

Table 3.1 Details of word processors

Word processor Owned by Copyright
status

Operating
system

Initial
release

Reference

Microsoft Word Microsoft Proprietary Windows 1983 [115]

LibreOffice The Document
Foundation

Open
source

Linux,
Windows, Mac

2011 [116]

OpenOffice Apache Open
source

Linux,
Windows, Mac

2012 [117]

WordPerfect Corel Proprietary Windows 1996 [118,119]

As mentioned, word processors have a rich set of font attributes, each

performing a particular task. A list of major attributes, that is present in word

processors like Microsoft (MS) Word (2007 and 2010), LibreOffice (LO), OpenOffice

(OF) and WordPerfect (WP) are presented in Tables 3.2 (A) and (B). The availability

of these attributes facilitates to embed secrets inside word processor documents in an

efficient manner.

In the case, however, of WP, any formatting related modifications performed

in a WP document can be viewed readily by selecting View > Reveal Codes

(refer Fig. 3.1). This single feature makes WP not suitable for steganography. But, as

features can be added or removed at later point of time, the present study considers

WP for further discussion with an expectation that this particular feature will be

removed in future versions.

Figure 3.1 WordPerfect revealing the formatting information

T
ab

le 3.2 (A
) L

ist of attributes in w
ord processors: part 1

F
ont attrib

utes
M

S W
ord

2007 &
 2010

W
P

L

O
 &

 O
F

F

ont attrib
utes

M
S W

ord
2007 &

 2010
W

P

L
O

 &
 O

F

A
llC

aps/C
apitals

N

A

E

ngrave

N
A

A
nim

ation

N
A

N

A

H
idden

B
linking

N
A

N

A

H

ighlight

B
old/B

oldB
i

H

ighlightC
olor

B
old StrikeT

hrough
N

A

N
A

Italic/ItalicB
i

B
order

(C

haracter)

(Paragraph)

(C
haracter)

K
erning

B
orderC

olor

(C
haracter)

(Paragraph)

(C

haracter)
L

igatures

(2010)
N

A

N
A

C
olorIndex/C

olorIndexB
i/Fo

ntC
olor

L

ow
erC

ase

D
oubleStrikeT

hrough

N
A

N
am

e/N
am

eA
scii/N

am
eB

i/N
am

eFa
rE

ast/N
am

eO
ther

D
uplicate/F

orm
atP

ainter/Q
ui

ckF
orm

at/Form
atpaintbrush

N

um
berForm

s

(2010)
N

A

N
A

E
m

boss

N
A

N
um

berSpacing

(2010)
N

A

N
A

E
m

phasisM
ark

N

A

N
A

O

utline

 M
S

 M
icrosoft; W

P

 W
ordP

erfect; L
O

 L

ibreO
ffice; O

F

 O
penO

ffice;

 represents the presence of attribute and suitability for
steganography;

represents
the

presence
of

attribute
but

not
suitable

for
steganography

(perform
s

perceptible
m

odifications);

 represents the presence of attribute but cannot be exploited; N
A

 represents the absence of attribute

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Table 3.2 (B) List of attributes in word processors: part 2

Font Attributes MS Word
2007 & 2010

WP LO &
OF

Overlining NA NA

OverlineColor NA NA

Position

RedLine NA NA

Rotation NA NA

Scaling NA

Shading

ShadingColor/BackgroundColor

Shadow

Size/SizeBi

SmallCaps/SmallCapitals

Spacing

StrikeThrough/SingleStrikeThrough/StrikeOut

StrikeThrough with X NA NA

StrikeThrough with / NA NA

StylisticSet

(2010)
NA NA

Subscript

Superscript

Title/Capitalize each Word/Initial Capitals

Underline

UnderlineColor

UpperCase

 MS Microsoft; WP WordPerfect; LO LibreOffice; OF OpenOffice;
 represents the presence of attribute and suitability for steganography;
 represents the presence of attribute but not suitable for steganography

(performs perceptible modifications); represents the presence of attribute but
cannot be exploited; NA represents the absence of attribute

From Tables 3.2 (A) and (B), it can be observed that most of the attributes are

common to all the processors. The details of these attributes and the various ways to

employ them for steganography are given in Section 3.2. For the convenience of

readers, hereafter, attributes having multiple names are represented using single name.

Chapter 3: Exploring the Font Attributes of Word Processor Documents

For example, attributes Duplicate/FormatPainter/QuickFormat/Formatpaintbrush are

represented using Duplicate.

3.2 Employing the Font Attributes for Steganography

Font attributes have a major role to play while displaying the characters. Each

attribute is responsible to produce certain visual effect. However, applying some

attributes on particular character(s) is ineffective. For example, applying the Bold

attribute on space character produces no visual effect. In addition, when the values of

certain attributes are varied between a certain range, it produces no noticeable effect.

For example, altering the least significant bits of the 24-bit Color attribute is

indistinguishable. In some cases, it is possible to replicate the effect of certain

attributes by carefully mixing the effects of other attributes. For example, making a

character superscript and lowering its position appropriately, will make it to appear

like a subscript character.

These characteristics are discussed below in detail.

AllCaps

AllCaps attribute is used to change the selected alphabets to uppercase.

However, applying this attribute on an already capitalized character or a non-alphabet

produces no effect. For example, HEEL99 AllCaps attribute is set for the characters

 .

Animation

Animation attribute is used to produce visible animation effects on the selected

text. The various animation effects that could be produced are BlinkingBackground,

MarchingBlackAnts, MarchingRedAnts, LasVegasLights, Shimmer and SparkleText

Chapter 3: Exploring the Font Attributes of Word Processor Documents

(refer Fig. 3.2). However, when the Shimmer effect is applied on space character it

produces no visual effect.

Figure 3.2 Exploitation of the Animation attribute

Blinking

Blinking attribute is used to create blinking effect on the selected text.

However, applying this attribute on space character produces no visual effect.

Bold, EmphasisMark, Italic, Outline, Position and Shadow

 Bold attribute is used to make the selected text bold. For example, b.

EmphasisMark is used to represent stress on a particular character by using symbols

like Over Comma, Over Solid Circle, Over White Circle and Under Solid Circle

(refer Fig. 3.3). Italic attribute is used to make the selected text italic. For example, i.

Outline attribute is used to provide an outline to the selected text. For example, .

 Position attribute is used to lower or raise the selected text at point level (in

typography, a point is equivalent to 1/72 of an inch [120]). For example, b b b

Represents the normal, raised and lowered characters. Shadow attribute is used to

Chapter 3: Exploring the Font Attributes of Word Processor Documents

create a shadow underneath the selected text. For example, gg. Although, these

attributes create perceptible alterations on other characters, applying them on space

character produces no visible effect (see Example 3.1).

Example 3.1:

Hai hello how are you. Where are you now? Will you come home tonight?

Bold StrikeThrough, DoubeStrikeThrough and SingleStrikeThrough

Bold StrikeThrough strikes the selected text, boldly, once. DoubleStrike-

Through and SingleStrikeThrough attributes strikes the selected text twice and once

respectively. For example, Hai how are you. DoubleStrikeThrough attribute is

applied to t attribute is applied to

Bold attribute is applied
on space character (no

visual effect)

Italic attribute is applied on space
character (no visual effect)

Outline attribute is applied
on space character (no

visual effect)

Position of space character is raised
by 3 points (no visual effect)

Shadow attribute is
applied on space character

(no visual effect)

H e l l o

Figure 3.3 Exploitation of the EmphasisMark attribute

Over Solid
Circle

Over
Comma

Over White
Circle

Over Solid Circle
attribute is applied
on space character
(no visual effect)

Over Comma
attribute is applied
on space character
(no visual effect)

White Circle attribute is
applied on space character

(no visual effect)

Under
Solid
Circle

Under Solid Circle
attribute is applied on
space character (no

visual effect)

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Border and BorderColor

Border attribute is used to highlight the selected text by setting a box around it.

Due to this, the spacing between the selected text and its neighbors gets altered. For

example, Hai Border attribute is applied on BorderColor attribute

is used to specify the color in which the Border should be displayed. Setting the default

background color of the document to BorderColor, makes the Border invisible. When

this is done, altering the least significant (R, G, B) value of BorderColor attribute, also,

goes unnoticed on screen (but noticeable in hard copy). For example, Hai Hai Border

attribute is applied on (R, G, B) value of

BorderColor attribute is set as (254, 254, 254).

Color

Color attribute is used to specify the color in which a particular character

should appear. It is represented by a 24-bit value using the format (R, G, B). The least

significant 1 or 2-bits of each R, G and B can be modified without creating any visual

difference (refer Fig. 3.4). Also, applying this attribute on space character produces no

visual effect.

Duplicate

Duplicate is used to copy the formatting of one text and apply it to another,

directly.

Chapter 3: Exploring the Font Attributes of Word Processor Documents

 HHH hhh aaa
 yyy bbb ccc

Figure 3.4 Exploitation of the Color attribute

Emboss and Engrave

Emboss attribute is used to place the selected text slightly above the baseline

and apply shadow to the edges inward. For example, HHH. On the other hand, Engrave

attribute is used to place the selected text below the baseline and apply shadow to the

edges outwards. For example, HHH. Though one cannot change the position of the

shadow (whether to fall inward or outward), it is possible to change the position of the

character up or down and make an embossed character to look like an engraved

character and vice versa. Finding such modified characters from a document

containing a large amount of such embossed or engraved characters is a difficult task

(refer Fig. 3.5). Also, applying these attributes on space character produces no effect.

Modified 2-bits of
each R, G and B

(not recognizable)

Modified 3-bits of each R,
G and B (recognizable in

light colors)

Modified 2-bits of
each R, G and B

(not recognizable)

Modified 3-bits of each
R, G and B (not
recognizable)

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Hidden

Hidden attribute is used to make the selected text invisible in a text document.

The hidden text can be made visible or printed by changing the settings. In MS Word,

hidden contents will be made visible by selecting Hidden text checkbox in Word

Options > Display > Always show these formatting marks on the screen

(see Example 3.2). In OF, it will be made visible by selecting View > Nonprinting

Characters. In WP, it will be made visible by selecting View > Hidden Text.

Example 3.2:

Text containing hidden contents:

Hai how are you. Where are you? Will you come home tonight?

Highlight and HighlightColor

Highlight attribute is used to highlight (mark) the selected text by changing the

background color. HighlightColor attribute is used to specify the color that should be

Embossed Text: HHHooowwweeevvveeerrr, HHHooowwweeevvveeerrr bbbaaassseeeddd bbbaaassseeeddd

Engraved Text: ooonnn ttthhheee llleeevvveeelll llleeevvveeelll ooofff

Figure 3.5 Exploitation of the Emboss and Engrave attributes

Engraved character made to
appear like Embossed character

Embossed character made to
appear like Engraved character

Chapter 3: Exploring the Font Attributes of Word Processor Documents

used for highlighting. Setting the default background color of the document to

HighlightColor, makes the highlighting invisible. When this is done, altering the least

significant (R, G, B) value of HighlightColor attribute, also, goes unnoticed on screen

(but noticeable in hard copy). The same is shown in Example 3.3.

Example 3.3:

Kerning

Kerning attribute is used to alter the spacing between overlapping character

pairs like AV, WA, etc. In WP, this attribute allows to manually control the spacing

between characters by taking the kerning value as input. Hence, changing the value by

a 0.1 or 0.2 point does not produce noticeable effect.

Whereas in MS Word, this attribute automatically adjusts the space between

characters. But it allows to control whether the kerning effect should be produced or

not, even though the attribute is set. It does so, by taking the size of font as kerning

value, which can vary between 1 and 1638 points. The effect is produced only when

the specified value is lesser than or equal to the font size of the character. Hence,

setting a value greater than the character produce no effect. For example,

AV AV AV AV The Kerning attribute is applied to the second and fourth pairs, and

the effect is made to produce for the second pair alone.

Highlight attribute is applied and the (R, G, B) value
of HighlightColor attribute is set as (254,254,254)

(no visible effect on screen)

Highlight attribute is applied and the (R, G, B) value of
HighlightColor attribute is set as (252,252,252)

Highlight attribute is
applied and the (R, G, B)
value of HighlightColor

attribute is set as
(248,248,248)

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Ligatures

Ligatures are letters that are merged together as one character and are mainly

used for calligraphic purpose [121,122]. There are four possible ligatures styles namely

Standard Only, Standard and Contextual, Historical and Discretionary, and All. These

styles produce visual effects only on a particular set of characters like fi, fl, ff, ffi, etc.

[122,123] (see Example 3.4). Applying this attribute on other character pairs produces

no effect. Also, applying this attribute on non-alphabets or non-neighbor characters

does not cause any visual difference.

Example 3.4:

LowerCase

LowerCase attribute is used to change all the selected alphabets to lowercase.

But, applying this attribute on an already lowercase character or a non-alphabet

produces no effect (see Example 3.5).

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Example 3.5:

Name

Name attribute is used to specify font style, like Times New Roman, Calibri,

etc., that should be used to display the character. If the specified font style is not

present in the system, a default font style will be used to display that particular

character (in MS Word, the used default font style can be checked at Word options >

Advanced > Show document content > Font Substitutions). This attribute can take any

character as a font style. Hence, setting the secret characters itself as a font style will

go unnoticed.

NumberForms [124,125]

NumberForms attribute is used to alter the way the numbers are displayed in

text document. There are two possible styles namely Lining and Old-style. Lining style

numbers appear over the baseline with the tops and bottoms of each number line up

exactly. Old-style numbers look a little more uneven. That is, some letters fall below

the baseline, and some even change their shape (see Example 3.6). However, applying

this attribute on non-numerical characters produces no visual effect.

LowerCase attribute is applied
to

LowerCase attribute is applied on characters
 (no visual effect)

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Example 3.6:

NumberSpacing [124,126]

NumberSpacing attribute is used to alter the way the numbers are displayed

Tabular numbers have exact width as one another and hence line up

perfectly in a vertical column of the table. Proportional numbers are more visually

pleasing, and work well for dates and phone numbers. However, applying this

attribute on non-numerical characters produces no visual effect.

Overlining and OverlineColor

Overlining attribute is used to insert a line (bar) over the selected text. There

are totally sixteen different styles of overline available. OverlineColor attribute is used

to specify the color that should be used to overline. Setting the default background

color of the document to OverlineColor, makes the overline invisible. When this is

done, altering the least significant (R, G, B) value of OverlineColor attribute, also,

goes unnoticed on screen (but noticeable in hard copy). The same is shown in

Example 3.7.

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Example 3.7:

Redline

Redline attribute is used to change the font color of the selected text to red.

However, applying this attribute on space character produces no visual effect

(see Example 3.8).

Example 3.8:

Rotation

Rotation attribute is used to rotate the selected text by 90° or 270°

(see Example 3.9).

Redline attribute is
applied to the word

Redline attribute is applied on
space character (no visual effect)

Overlining attribute is applied and
the (R, G, B) value of OverlineColor
attribute is set as (254, 254, 254) (no

visible effect on screen)

Overlining attribute is applied
and the (R, G, B) value of

OverlineColor attribute is set
as (252, 252, 252)

Overlining attribute is applied and the
(R, G, B) value of OverlineColor
attribute is set as (248, 248, 248)

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Example 3.9:

Scaling

Scaling attribute is used to

their width. By using this attribute, it is possible to replace

with For example, 0000O0000 The Scaling attribute is

applied to the fifth and sixth characters (from left).

Shading (WP)

Shading attribute in WP is used to alter the darkness of font color of the

selected text. The value of this attribute can be varied, at percentage level, between 1

and 100 (inclusive). Varying this value in a range of ± 4 produces no observable

effects (refer Fig. 3.6).

Shading and ShadingColor (MS Word, LO & OF)

Shading attribute is used to change the background of each cell in a table.

ShadingColor attribute is used to specify the color that should be used for shading

(see Example 3.10).

Example 3.10:

Shading attribute is applied to this
cell

Highlight attribute is applied on this
text

Highlight attribute is applied on
this text

Shading attribute is applied to this
cell

Text rotated by 90° Text rotated by 270°

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Figure 3.6 Exploitation of the Shading attribute in WordPerfect. Middle character
of each word has a default shading value of 75%, whereas the left and
right characters have varying values which are mentioned above each
character (in %)

However, when the Shading attribute is applied to texts, which are not in table,

it behaves like the attribute Highlight. For example, Hai Shading attribute is applied

default background color of the document to ShadingColor, makes the shading

invisible. When this is done, altering the least significant (R, G, B) value of

ShadingColor attribute, also, goes unnoticed on screen (but noticeable in hard copy).

The same is shown in Example 3.11.

85 84 83 82 81 80

79 78 77 76 75 74

73 72 71 70 69 68

67 66 65 64 63 62

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Example 3.11:

Hello how are you.

Size

Size attribute is used to specify the font size of a character. The character looks

alike even when the font size is altered by some points. For example, hello hello The

 in the second word is increased by 0.5 point. It should be mentioned that,

in MS Word the value can be altered at 0.5 point levels whereas in LO, OF and WP, it

can be varied at 0.1 point levels. This shows that LO, OF and WP facilitates more to

exploit this attribute, when compared with MS Word.

SmallCaps

SmallCaps attribute is used to change the selected alphabets to uppercase.

Hence, applying this attribute on non-alphabets produces no visual effect. Also, the

only difference between this attribute and AllCaps is that the font size of the former is

smaller than the latter. For example, H H The first character is SmallCaps and the

second character is AllCaps. Hence, setting the SmallCaps attribute and increasing the

font size of a character will make it to appear like the effect of AllCaps. For example,

Yellow Yellow The SmallCaps attribute of the second

increased by 2 points.

Shading attribute is applied and the (R, G,
B) value of ShadingColor is set as (254,
254, 254) (no visible effect on screen)

Shading attribute is applied and the (R, G, B)
value of ShadingColor is set as (252, 252, 252)

Shading attribute is applied and the
(R, G, B) value of ShadingColor is

set as (248, 248, 248)

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Spacing

Similar to Kerning attribute, Spacing attribute is also used to alter the spacing

between two characters either by expanding or condensing (the difference between

them is that, in MS Word, Kerning attribute produces effect only on specific character

pairs). Since the spacing of characters are not uniform in a justified text, modifying the

document using this attribute will go unnoticed (refer Table 3.3).

Table 3.3 Exploitation of the Spacing attribute

Unmodified text
string

Modified text
string

Performed modification

(every third character in the modified text
string is altered)

PhD Guide PhD Guide Expanded by 0.05 point

Doctoral Doctoral Expanded by 0.1 point

Committee Committee Expanded by 0.15 point

Doctorate Doctorate Expanded by 0.2 point

Conference Conference Expanded by 0.25 point

Publication Publication Expanded by 0.3 point

Presentation Presentation Expanded by 0.35 point

Meeting Meeting Expanded by 0.4 point

Recommend Recommend Expanded by 0.45 point

PhD Guide PhD Guide Condensed by 0.05 point

Doctoral Doctoral Condensed by 0.1 point

Committee Committee Condensed by 0.15 point

Doctorate Doctorate Condensed by 0.2 point

Conference Conference Condensed by 0.25 point

Publication Publication Condensed by 0.3 point

Presentation Presentation Condensed by 0.35 point

Meeting Meeting Condensed by 0.4 point

StrikeThrough with X and StrikeThrough with /

StrikeThrough with X or / is used to strike the selected text with the character

ese attributes can be used to disguise as characters

Chapter 3: Exploring the Font Attributes of Word Processor Documents

 (see Example 3.12).

Example 3.12:

StylisticSet

StylisticSet attribute is used to create swashes on alphabets [124] (a swash is a

typographical flourish on a glyph [127]). Applying this attribute on other characters

produces no visual effect. MS Word has twenty different styles (refer Fig. 3.7). Of

these, only the first seven styles produce visual effect and applying the styles between

eight and twenty (inclusive) is ineffective.

Subscript and Superscript

Subscript and Superscript attributes are used to place a character below and

above the baseline respectively, in addition to decreasing its font size. For example, g g

g s respectively.

Hence, lowering the position of a superscripted character to certain points will make it

to appear like a subscripted character and vice versa. However, in MS Word, altering

this attribute affects the inter-space between the adjacent lines. Hence, they can be

used only when the inter-space between the adjacent lines is sufficiently large. This

StrikeThrough with X
attribute is applied to

Character

StrikeThrough with X attribute
is applied on space character

StrikeThrough with /
attribute is applied

Character

StrikeThrough with /
attribute is applied
on space character

Bold StrikeThrough attribute

Chapter 3: Exploring the Font Attributes of Word Processor Documents

limitation is not present in LO and OF. In such case, altering the position and font size

appropriately can make it to appear like a normal character.

Figure 3.7 Exploitation of the StylisticSet attribute

Title

 Title is used to change the first character of every word of the selected

alphabets to uppercase. Hence, applying this attribute on a non-alphabet or an already

uppercase character produces no effect. Also, applying this attribute on any character,

other than the first, of each word produces no noticeable effect (see Example 3.13).

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Example 3.13:

Underline and UnderlineColor

Underline attribute is used to underline the selected text. There are totally

sixteen different styles of underline available. UnderlineColor attribute is used to set

the color of line that should be used to underline. Setting the default background color

of the document to UnderlineColor makes the underline invisible, except for those

characters that have a descender (descender is the portion of a character that extends

below the baseline [128]. For example, g, j, p, q and y). When this is done, altering the

least significant (R, G, B) value of UnderlineColor attribute, also, goes unnoticed on

screen (but noticeable in hard copy). The same is shown in Example 3.14.

Example 3.14:

Hai how are you.

Title attribute
is applied on

Title attribute is applied on

(no noticeable difference)

Underline attribute is applied to the

UnderlineColor attribute is set as (254,
254, 254) (no visible effect on screen)

Underline attribute is applied to the

of UnderlineColor attribute is set as
(252, 252, 252)

Underline attribute is applied to the
value of UnderlineColor attribute is set as (248, 248, 248)

Chapter 3: Exploring the Font Attributes of Word Processor Documents

UpperCase

Similar to AllCaps attribute, UpperCase attribute is used to change the selected

alphabets to uppercase.

3.3 Classification of the Font Attributes

From steganographic point of view, font attributes can be divided into two

broad categories as usable and unusable (see Fig. 3.8). Attribute Duplicate is used to

copy and apply the formatting of one text to another. This attribute cannot be altered.

Similarly, attribute UpperCase can be applied to texts but cannot be exploited. Hence,

they cannot be used in steganography and are considered as unusable attributes.

Based on the level of imperceptibility, the usable attributes can further be

divided into three categories as low, average and high imperceptible attributes.

Low Imperceptible Attributes

Attributes Bold StrikeThrough, DoubleStrikeThrough, Rotation and Single-

StrikeThrough make perceptible changes. The characters that are modified using these

attributes can easily be identified by a casual observer. Therefore, they are considered

as low imperceptible attributes.

Average Imperceptible Attributes

When the effect of the attribute Emboss is combined with the effect of the

attributes Spacing and Position, it appears identical to that of the attribute Engrave

(with minimal variation) and vice versa. Similarly, the attribute SmallCaps when

combined with the attribute Size (MS Word), they produce the effect of AllCaps

Chapter 3: Exploring the Font Attributes of Word Processor Documents

attribute (with minimal variation). Without careful inspection, an observer cannot

distinguish the effects produced by the corresponding attribute and by the combination.

Figure 3.8 Classification of the font attributes of word processors. * represents the
case that the attribute is applied on space character alone;

 represents the case that care has been taken to separate an identical
modified and unmodified character; MS Microsoft Word;
LO LibreOffice; OF OpenOffice; WP WordPerfect

Font attributes of word processors

Usable by
steganography

Unusable by
steganography

 Duplicate
 UpperCase

Low
imperceptible/perceptibl

e attributes

 Bold StrikeThrough

 DoubleStrikeThrough

 Rotation

 SingleStrikeThrough

Average
imperceptible

attributes

 Border

 BorderColor

 Emboss

 Engrave

 Hidden

 Highlight

 HighlightColor

 Name

 Overlining

 OverlineColor

 Shading (MS,
LO & OF)

 ShadingColor
(MS, LO & OF)

 Scaling

 Size (MS)

 SmallCaps

 Underline

 UnderlineColor

High imperceptible attributes

 AllCaps

 Animation

 Blinking

 Bold

 Color

 Emboss*

 EmphasisMark

 Engrave*

 Italic

 Kerning

 Ligatures

 LowerCase

 NumberForms

 NumberSpacing

 Outline

 Position

 Redline

 Shading (WP)

 Shadow

 Size (LO &
OF)

 Size (MS)

 SmallCaps

 Spacing

 StrikeThrough
with X

 StrikeThrough
with /

 StylisticSet

 Subscript

 Superscript

 Title

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Attribute Size (MS Word) create imperceptible alterations on characters.

However, when an identical modified and unmodified character appears nearby, they

can be distinguished. Attribute Scaling produces visible alterations on all characters.

careful examination. Attribute Hidden completely hides the selected text without

producing any visual effect. Similarly, the effect produced by the attribute Name, due

to the non-existence of specified font style, becomes unnoticeable when the default

font style is used to write the whole text content. But, exploitation of these two

attributes can easily be identified using the available graphical user interface tools.

Also, though the attributes BorderColor, HighlightColor, OverlineColor,

ShadingColor (MS Word, LO & OF) and UnderlineColor succeed in masking the

effects of Border, Highlight, Overlining, Shading (MS Word, LO & OF) and Underline

respectively, on screen, the same is perceptible in hard copy. Therefore, these attributes

are considered as average imperceptible attributes.

High Imperceptible Attributes

Attributes AllCaps, Animation, Blinking, Bold, EmphasisMark, Italic, Outline,

Position, Redline, Shadow and Title create perceptible alterations on characters.

However, applying them on space character produces no visible effect. Similarly, the

attributes LowerCase, NumberForms and NumberSpacing create visible modifications

on uppercase characters and numbers. But, applying them on others does not produce

any change.

Attribute StrikeThrough (with X or /) make noticeable changes on characters.

But, when applied on space character, it produces effects indistinguishable from

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Although attribute Ligatures produce visible alterations to specific character

pairs, applying this attribute on others produces no visual effect. Attributes Color,

Kerning, Shading (WP), Size (LO & OF), Spacing and StylisticSet when varied within

a specific range produces no visual change. For example, modification of the least

significant 1 or 2-bits of the Color attribute. Also, when the attributes Subscript and

Superscript are combined with the effect of the attribute Position, the changes

produced are indistinguishable by the human visual system. Hence, even after careful

inspection, the text that is modified using these attributes cannot be distinguished.

Therefore, these kinds of attributes are considered as high imperceptible attributes.

Similar imperceptibility level can be obtained by the attributes Size (MS Word)

and SmallCaps, if care has been taken to separate an identical modified and

unmodified characters. That is, the farther the characters are, the more imperceptible

they will be. Also, as mentioned earlier in Section 3.2, applying the attributes Emboss

and Engrave on space character produces no visible effect. Hence, in such cases, these

attributes can also be considered as high imperceptible attributes.

3.4 Comparison of the Font Attributes

The comparison of average and high imperceptible attributes (others are not

considered due to their low imperceptibility) is provided in Tables 3.4 (A) and (B).

The attributes are compared based on their embedding capacity. Embedding capacity is

the amount of information that can be hidden in the chosen cover medium [36]. It,

directly, depends upon two factors: (i) the number of bits that can be embedded in a

given attribute; (ii) the usability of that attribute in a typical text document. The

usability of an attribute further depends upon two factors: (i) the number of characters

Chapter 3: Exploring the Font Attributes of Word Processor Documents

in which the attribute can be applied; (ii) the occurrence frequencies of corresponding

characters in a typical document.

Table 3.4 (A) Comparison of the average and high imperceptible attributes: part 1

Attribute Usability in a
typical text
document

Embedding capacity

MS Word
(2007 & 2010)

LO & OF WP

AllCaps Moderate 1-bit/UC & 1-
bit/NaT

1-bit/UC & 1-
bit/NaT

NA

Animation Moderate 1-bit/SC NA NA

Blinking Moderate NA 1-bit/SC NA

Bold, Italic, Outline
and Shadow

Moderate 1-bit/SC 1-bit/SC 1-bit/SC

Border and
BorderColor

High 3-bits/AC 3-bits/AC 3-
bits/paragraph

Color High 6-bits/AC &
24-bits/SC

6-bits/AC & 24-
bits/SC

6-bits/AC &
24-bit/SC

Emboss Moderate 1-bit/EnC & 1-
bit/SC

1-bit/EnC & 1-
bit/SC

NA

EmphasisMark Moderate 2-bits/SC NA NA

Engrave Moderate 1-bit/EmC & 1-
bit/SC

1-bit/EmC & 1-
bit/SC

NA

Hidden High High
W

 High
W

 High
W

Highlight and
HighlightColor

High 3-bits/ANBC 3-bits/AC

Kerning High 10-bits/AC 3-bits/AC

Ligatures High 2-bits/NNGC
& 2-bits/NaT

NA NA

LowerCase High 1-bit/LC & 1-
bit/NaT

Name High 31-
characters/AC

65288-
characters/AC

MS Microsoft; LO LibreOffice; OF OpenOffice; WP WordPerfect;
NA represents the absence of attribute; represents the presence of attribute but
cannot be exploited; AC any character; ANBC any character that does not appear
on top and left borders of the page; EmC embossed character; EnC engraved
character; LC lowercase character; NaT non-alphabet; NNGC non-neighbor
character; SC space character; UC uppercase character; W depends on the
number of visible characters in cover document

Chapter 3: Exploring the Font Attributes of Word Processor Documents

Table 3.4 (B) Comparison of the average and high imperceptible attributes: part 2

Attribute Usability in a
typical text
document

Embedding capacity

MS Word (2007
& 2010)

LO & OF WP

NumberForms High 1-bit/NNC NA NA

NumberSpacing High 1-bit/NNC NA NA

Overlining and
OverlineColor

High NA 7-bits/ACZ
 NA

Position Moderate 11-bits/SC 4-bits/SC

Redline Moderate NA NA 1-bit/SC

Scaling Low 1-bit/ZC 1-bit/ZC NA

Shading and
ShadingColor

High 3-bits/AC 3-bits/ANBC 3-bits/AC

Size High 1-bit/AC 3-bits/AC
 X1

 3-bits/AC
 X1

SmallCaps Moderate 1-bit/UC & 1-
bit/NaT

1-bit/UC &
1-bit/NaT

1-bit/UC &
1-bit/NaT

Spacing High 3-bits/AC
X1

 3-bits/AC
X1

 3-bits/AC
X1

StrikeThrough with X Low NA 1-bit/XC NA

StrikeThrough with / Low NA 1-bit/SLC NA

StylisticSet High 3-bits/AC
X1

 NA NA

Subscript and
Superscript

Low (MS
Word) & High

(OF & LO)

1-bit/SPC & 1-
bit/SBC

1-bit/AC &
4-bits/SC

Title High 1-bit/UC &
1-bit/NFCW
& 1-bit/NaT

Underline and
UnderlineColor

High 7-bits/AND
Y

 7-bits/AND
Y

 7-bits/AND
Y

MS Microsoft; LO LibreOffice; OF OpenOffice; WP WordPerfect;
NA represents the absence of attribute; represents the presence of attribute but
cannot be exploited; AC any character; AND- any character that does not have
descender; ANBC any character that does not appear on top and left borders of the
page; NaT non-alphabet; NFCW non-first character in a word;
NNC non-numeric character; SC space character; SBC- subscripted character;
SLC superscripted character; UC uppercase character;
XC eight variations are
considered; Y 4-bits are embedded by Underline style and 3-bits by
UnderlineColor; Z - 4-bits are embedded by Overlining and 3-bits by OverlineColor

Chapter 3: Exploring the Font Attributes of Word Processor Documents

From Tables 3.4 (A) and (B), it can be seen that the attributes Scaling,

StrikeThrough (with X or /) can only be exploited by applying them as a substitute for

the characters O, 0, X and / respectively. Attributes Superscript and Subscript, of MS

Word, can be used interchangeably to produce the effect of each other. It is clear that

these attributes can be applied only on special characters whose occurrence frequencies

are low (refer Table 2.1) in a typical text document. Hence, the usability of these

attributes is limited, which in turn affects the overall embedding capacity.

Similarly, attributes like AllCaps, Animation, Blinking, Bold, Italic, Emboss,

EmphasisMark, Engrave, Outline, Position, Redline, SmallCaps and Shadow can be

applied on space character without creating any visual attention. Though these

attributes can be applied only on single character, space, it is the highest occurring

character in any document. Hence the usability of these attributes is considered as

moderate. Also, among these attributes, Position attribute of MS Word, stands best in

terms of embedding capacity as it can embed 11-bits/space-character.

Attributes like Border & BorderColor (MS Word, LO & OF), Color, Hidden,

Highlight & HighlightColor, Kerning, Name, Overlining & OverlineColor, Shading &

ShadingColor, Size, Spacing, StylisticSet, Subscript (LO & OF), Superscript

(LO & OF) and Title can be applied on every character without creating any attention

on screen. Attribute Ligatures can be applied on every non-neighbor character

(including space) and attribute LowerCase can be applied on every lowercase character

(including space) without causing any visual change. Also, attributes NumberForms

and NumberSpacing can be applied on every non-numerical character. Since these

attributes can be applied on majority of characters, their usability is considered as high.

Attributes Underline and UnderlineColor can be applied on every character

except the lowercase characters g, j, p, q and y. But, the occurrence probabilities of

Chapter 3: Exploring the Font Attributes of Word Processor Documents

these five characters in English document are low. Hence, the usability of these

attributes is also considered as high.

 Among these highly usable attributes, Border & BorderColor, Color, Hidden,

Kerning, Name, Shading & ShadingColor, Spacing, StylisticSet and Underline &

UnderlineColor attributes of MS Word embeds minimum 3-bits/character. Similarly,

Border & BorderColor, Color, Hidden, Highlight & HighlightColor, Name,

Overlining & OverlineColor, Shading & ShadingColor, Size, Spacing, and Underline

& UnderlineColor attributes of LO & OF embeds minimum 3-bits/character. Also,

Color, Hidden, Highlight & HighlightColor, Kerning, Shading, Size, Spacing and

Underline & UnderlineColor attributes of WP embeds minimum 3-bits/character.

Hence the overall embedding capacity achievable by these attributes will also be high.

3.5 Discussion

From Section 3.4, it is observed that a large number of attributes of various

word processors achieve a high embedding capacity. But, attribute StylisticSet is

available only in MS Word 2010 and higher versions. Attributes Border &

BorderColor, Hidden, Highlight & HighlightColor, Name, Overlining &

OverlineColor, Shading & ShadingColor (MS Word, LO & OF) and Underline &

UnderlineColor have average imperceptibility level. Due to the above reasons, these

attributes are not considered for further discussion.

The following attributes:

(i) Color, Kerning and Spacing of MS Word

(ii) Color, Size and Spacing of LO & OF

(iii) Color, Kerning, Shading, Size and Spacing of WP

Chapter 3: Exploring the Font Attributes of Word Processor Documents

are found to be more suitable for steganographic purpose. This further shows that MS

Word stands best as it can embed a maximum of 19-bits (6 + 10 +3), using only three

attributes, in any given character. Also, these attributes are available in all versions.

This makes the steganographic methods developed using these attributes compatible

across various organizations as a majority of them utilize MS Word [66].

3.6 Summary

A brief study on the font attributes of word processors, like MS Word, LO, OF

and WP, was presented in this chapter. Attributes were classified based on their

usability, for steganography, and imperceptibility level. Embedding capacity of these

attributes and the usability of the corresponding word processor, in organizations,

were considered to identify the best word processor along with the respective

attributes. MS Word was found to be having the best attributes namely, Color,

Kerning and Spacing.

In view of the above findings, Word document has been chosen as a cover

medium for further study. However, the methodologies developed in this work can be

adapted to other processors as well. Based on the work carried out in the present

study, three novel methods have been developed to secretly embed information like

text, image or binary data in any Word document. The first and second methods use

the attribute Spacing, and the third method uses the attributes Color, Kerning and

Spacing. These methods are described in detail in the subsequent chapters.

CHAPTER 4

EMBEDDING TEXT

This chapter describes the method devised to embed secret text

(containing English alphabets, dot and space characters) inside Microsoft (MS) word

documents. A novel character-level embedding technique, referred to as Method-A,

that marks the cover characters using the font attribute Spacing has been evolved and

the same is described. The method so developed addresses the non-uniform

embedding probabilities of secret characters and the overall low embedding capacity

of these techniques. Method-A is assessed for its embedding capacity and uniformity

in embedding probability. Various security features of Method-A have been discussed

and a comparison with other existing methods is, also, provided.

4.1 Introduction

A secret text can be embedded inside a text document in three different ways

namely character-level, bit-level and mixed-type embedding techniques

(described in Chapter 2). Bit-level and mixed-type embedding techniques consider

secret message as binary bits and subsequently embed them. Hence, even the best

existing technique, UniSpaCh, requires four distortions (2-bits/distortion) to embed

a character, which is of 8-bits. Character-level embedding techniques (CLET), on the

other hand, consider secret message as characters and embed them accordingly. This

enables CLET to embed a secret character, as a whole, in single distortion. This

nature of embedding attracts CLET techniques to embed text.

Among the two CLET techniques, Cover_Document_Required (CDR) and

Cover_Document_Not_Required (CDNR), the latter methods are hard to manage.

Chapter 4: Embedding Text

This is because developing a generalized method which can generate a meaningful

stego document that suits all scenarios is not easy. Cover_Document_Required (CDR)

techniques can meet this purpose as they generate stego document from an existing

cover document that is meaningful by its own. However, proper handling of low

frequency characters and efficient utilization of available embedding space, to achieve

high embedding capacity, are still challenging tasks in CDR techniques.

Though one cannot control the occurrence frequencies of characters in a given

language (here English), it is still possible to change the way the low occurring

characters are handled during embedding. For example, embedding a low occurring

character in several other characters boosts its embedding probability and avoids

wastage of embedding space during the process. Besides, an optimal embedding

capacity is possible, only, by choosing an appropriate font attribute that can be

applied on every cover character. Such attributes enable each cover character potential

to carry a secret character.

Taking the above findings into consideration, a novel CDR method

(referred to as Method-A, in the rest of the thesis) is developed which can embed

secrets with high embedding capacity using the attribute Spacing. This attribute can

be replaced by any attribute that has been found most suitable, for steganography, in

Chapter 3. The development of Method-A is described below.

4.2 Handling the Non-Uniform Occurrence Frequencies of Characters

The standard occurrence frequencies of characters in English text, that are

available in the literature, does not consider the special characters

(refer Table 2.1). However, these characters are mandatory for making the meaning

out of a given text. Hence, a normal English text is considered and the occurrence

Chapter 4: Embedding Text

frequencies of English alphabets, dot and space (ADS) characters are identified and

presented in Table 4.1.

Table 4.1 Occurrence frequencies of ADS characters in English text

Occurrence
probability

Character Frequency Occurrence
probability

Character Frequency

 Space 20.30% G 1.69%

E 9.63% Y 1.55%

T 7.56% F 1.50%

A 6.84% Dot 1.39%

O 6.31% B 1.36%

I 5.45% C 1.21%

S 5.06% K 1.14%

 Average*

H 4.97% P 0.86%

N 4.84% V 0.78%

D 3.93% J 0.30%

R 3.57% Z 0.08%

L 3.01% X 0.06%

U 2.27% Q 0.05%

W 2.21%

M 2.08%

ADS English alphabets, Dot and Space; * Ideal occurrence probability =
100 / 28 = 3.57. For experimental purpose, any values between 2 and 5 are
considered as average occurrence probability

From the table, it can be inferred that a typical CDR technique will require

2000 (100 / 0.05 = 2000) cover characters will

require only five cover characters . The difference in

their embedding probabilities is due to the difference in their occurrence frequencies.

As a result of this, embedding space (1999

wasted while embedding low occurring characters.

To overcome the limitation and for attaining an optimal embedding capacity,

the following methodology is adapted:

High

Low

Chapter 4: Embedding Text

(i) Increase the embedding probability of low occurring secret characters by

embedding them across multiple cover characters

For example, embedding

 embedding

probability from 0.05 four

(100 /) cover characters and get embedded even in its absence in

the cover document.

(ii) Make the embedding probability of all the secret characters uniform

This can be met by increasing the embedding probabilities of all the secret

characters equivalent to or great

(20.3%). Besides, a careful choice of characters into which a given secret

character should be embedded, must be identified.

To achieve the above, first, the number of characters that must be cumulated (NCC)

needs to be identified, and choices of characters must be recognized. The number is

derived mathematically, and choices of characters are defined by introducing a novel

idea called Frequency Normalization Set (FNS) and Character & String Mapping

(CSM). FNS defines the choices of characters that must be cumulated and CSM

describes the procedure of mapping these cumulated character strings to ADS

characters.

4.3 Theoretical Background of the Development of Method-A

Let ideal cumulative probability of embedding a secret character

inside a cover charact

Chapter 4: Embedding Text

of various NCC values are listed in Table 4.2. From the

table, it can be observed that a uniform embedding probability cannot be achieved

Because, the achievable cumulative embedding probability still falls

short of 20.3% (which is the embeddin alone).

Table 4.2 Respective NCC and P values

Number of characters cumulated
(NCC Value)

Ideal cumulative probability of embedding a secret
character inside a cover character (P Value)

1 3.57

2 7.14

3 10.71

4 14.29

5 17.86

6 21.43

7 25.00

8 28.57

9 32.14

10 35.71

At NCC = 6, the value of is 21.43%, which is higher than 20.3% with a

marginal increase of 1.13% (21.43 20.3%). This makes the choices of characters

difficult, whenever the cumulated character string involves a Space character.

Because the Space character itself contributes 20.3% to the , and leaves

the mere 1.13% for the rest of the five characters.

These limitations are not present when NCC > 6. From the available values, in

the present work, a value of seven is considered and substituting the value NCC = 7 in

equation 4.1 we get:

Chapter 4: Embedding Text

which means that, on an average, out of four consecutive characters encountered in a

cover document, a secret character would be embedded. That is, an average of

2-bits/cover-character will be embedded.

4.4 Generation of Frequency Normalization Set (FNS)

The properties of Frequency Normalization Set (FNS), which decides the

choices of characters that must be cumulated to achieve the uniform embedding

probability, are defined and are as follows:

(i) FNS contains 28 strings (equivalent to the number of ADS characters)

(ii) Each string contains ADS characters

(iii) Each string is of length seven, with seven positions or columns

{0, 1, 2, 3,, 6}

(iv) A character occurs only once in a string

(v) A character occurs only once in a given position in the whole FNS. That is,

no column-wise repetitions

(vi) When the individual frequency of characters present in any string is summed

up, it converges and falls close to the value 25

An algorithm has been designed to generate such a FNS (a flowchart of the developed

algorithm and the necessary pseudo codes are provided in Appendix A). The

algorithm takes the occurrence frequencies of ADS characters, minimum and

maximum allowed error (deviation from the value 25), etc., as inputs and generates a

FNS as output. A sample FNS along with the respective cumulative frequency values

are provided in Table 4.3.

Chapter 4: Embedding Text

Table 4.3 Sample Frequency Normalization Set

Frequency Normalization
Set (FNS)

Cumulative
frequency

Frequency Normalization
Set (FNS)

Cumulative
frequency

WRZFOIN 23.96 MNSLAB. 24.58

 26.19 TVIZM.A 24.18

 25.87 SGKPHEM 25.43

XA.MNTU 25.04 HEUVIYJ 24.95

YCHIJOS 24.85 IYLNUAK 25.10

 25.36 OFJGCDE 24.57

 25.23 VDEHKLY 25.01

BLOSWMI 25.48 LONQSUR 25.11

PJGALHO 23.98 26.76

NSVOBGH 25.01 EZDYGPT 25.30

UWY.TSL 23.05 26.01

DIREFCQ 25.34 AXMTRVD 24.82

GHTR.WB 22.75 RTWBDNF 24.97

ZBADEFG 25.03 26.07

 ;

4.5 Character & String Mapping (CSM)

CSM maps the generated 28 strings of FNS to the 28 possible ADS characters,

which limit the secret message to have only ADS characters. The characters are

mapped in such a way that:

(i) The mapped character does not exist in the selected string

(ii) Map a high frequency character to a string that contains at least 2-low,

1-average and 1-high frequency characters

(iii) Map an average or a low frequency character to a string that contains at least

1-low, 1-average and 1-high frequency characters

(iv) The mapping should not make any cover character to carry more secret

characters. For example, mapping several high frequency characters to

Chapter 4: Embedding Text

to carry more

secret characters which must be avoided

Mapping the ADS characters in this manner will distribute the secret character across

all the seven possible characters of the mapped string. This avoids the possibility of a

particular cover character, say the highest frequency character, carrying more secret

characters. A sample mapping is provided in Table 4.4.

Table 4.4 Sample Character & String Mapping

Mapped
charact

er

Frequency
Normalization

Set (FNS)

Cumulative
frequency

Mapped
character

Frequency
Normalization

Set (FNS)

Cumulative
frequency

A WRZFOIN 23.96 O MNSLAB. 24.58

B 26.19 P TVIZM.A 24.18

C 25.87 Q SGKPHEM 25.43

D XA.MNTU 25.04 R HEUVIYJ 24.95

E YCHIJOS 24.85 S IYLNUAK 25.10

F 25.36 T OFJGCDE 24.57

G 25.23 U VDEHKLY 25.01

H BLOSWMI 25.48 V LONQSUR 25.11

I PJGALHO 23.98 W 26.76

J NSVOBGH 25.01 X EZDYGPT 25.30

K UWY.TSL 23.05 Y 26.01

L DIREFCQ 25.34 Z AXMTRVD 24.82

M GHTR.WB 22.75 RTWBDNF 24.97

N ZBADEFG 25.03 . 26.07

 ;

4.6 Embedding Algorithm

Embedding algorithm of Method-A takes a secret message, cover document

and CSM as input values. The cover document is checked for its size first, as the

method requires an average of four cover characters to embed a secret character.

Chapter 4: Embedding Text

Embedding begins by selecting the first character from the secret message.

The string that is mapped to the selected character, in the CSM, is identified.

Embedding algorithm searches, the cover document serially, for the first occurrence

of any of the characters of the mapped string. When a match is found, the position of

the encountered cover character in the mapped string is identified. Based on the

position, the cover character is marked by altering the value of its attribute Spacing.

As each string of CSM has seven positions, the attribute requires seven

different spacing values to mark a character. From a detailed analysis, it was observed

that the value of the attribute can be made to expand till 0.4 points (+0.4) or condense

till 0.3 points (-0.3), at an interval of 0.05 points, without creating any visual attention

(as discussed in Chapter 3 and shown in Table 3.3). For experimental purpose, the

spacing values of {-0.1, -0.2, -0.3, +0.1, +0.2, +0.3, +0.4} points are considered,

respectively, and a sample embedding is provided in Example 4.1.

Example 4.1:

Secret
character

Mapped
string in

CSM

Cover
document

Encountered
character

Position of the
encountered

character in the
mapped string

Modification to
be performed

Q SGKPHE
M

Cool
morning
all.

Cool
morning all.

6 Expand the
spacing value of

points (+0.4)

After embedding a secret character, all the strings of CSM are circular left shifted by

one. This avoids the possibility of embedding the same secret character inside an

identical cover character with the same spacing value, frequently. The advantage of

doing this is explained later in Section 4.9.2.

The procedure is continued till all the secret characters are embedded. After

this, the method embeds End-of-Secret (EoS) characters. EoS can be anything that

Chapter 4: Embedding Text

does not appear in the secret message. For experimental purpose, it has been

During extraction process, these

characters indicate the receiver that the end of the embedded secret is reached.

The pseudo code of the embedding procedure is as follows:

Pseudo code of embedding procedure

Input: Secret_Message, Cover_Work, CSM, EoS characters, character spacing and
their respective positions

Output: Modified_Cover_Work

Secret_Message + EoS Characters

i

 String Sk i in CSM

L: Yj

count++

If Yj Sk

 j in Sk

 Change the character spacing of Yj based on pos

End if

Else Goto L

//makes the CSM dynamic

End for

Return Modified_Cover_Work

The modified cover document is the required stego document which has to be

communicated to the receiver. In addition, the used CSM and EoS characters should

be communicated.

4.7 Extraction Algorithm

The extraction process is the reverse of the embedding process. The method

takes the stego document, EoS and the CSM as input values. Extraction begins by

Chapter 4: Embedding Text

checking the spacing value of characters in the stego document. When the algorithm

encounters a character, whose spacing value is altered, it recognizes the position

equivalent to the spacing value. Then, the algorithm searches for the string, in CSM,

that contains the encountered character at the recognized position. The ADS character

that is mapped to the identified string is the embedded secret character

(see Example 4.2).

Example 4.2:

Stego
document

Encountered
character

Identified
spacing value

Position
equivalent to the

spacing value

Mapped
string in

CSM

Embedded
secret

character

Cool
morning
all.

Cool
morning all.

+0.4
(Expanded by

0.4 points)

6 SGKPHE
M

Q

After extracting a secret character, the CSM is circular left shifted by one, and

the procedure is continued till the algorithm extracts the EoS characters.

The pseudo code of the extraction procedure is given below:

Pseudo code of extraction procedure

Input: Stego_Work, CSM, EoS characters, character spacing and their respective
positions

Output: Secret_Message

Repeat

 Char Xi

 count++

 If character spacing of Xi

 i

 String Sk i @ position pos

 k

in CSM

Chapter 4: Embedding Text

 he Strings in CSM

 End if

Until ((count > Total no. of characters in Stego_Work) || (EoS is read))

Return Secret_Message

It should be mentioned that reaching the end of the stego document without

encountering the EoS characters indicates the receiver, that a corrupted stego

document has been received.

4.8 Evaluation Parameters

 The method so developed, Method-A, is evaluated using the following three

parameters: secrecy, embedding capacity and uniformity in embedding probability.

Each of the parameter is discussed below in some detail. In addition to these, a

comparison with the existing methods is provided.

4.8.1 Secrecy

 Secrecy represents the imperceptibility level of the embedded secret

[63,65,129,130]. To test the imperceptibility level, secret messages of various lengths

are experimented using Method-A. A sample output is provided in Fig. 4.1.

Cover document:

INTRODUCTION: Internet which is extensively used to share any kind of

information does not imply any strict rules for the security of data on its own.

Secret message: Come to my home tomorrow.

Stego document:

INTRODUCTION: Internet which is extensively used to share any kind of

information does not imply any strict rules for the security of data on its own.

Figure 4.1 Sample output of Method-A

Chapter 4: Embedding Text

By observing both the cover and stego documents of Fig. 4.1, it is evident that the

stego document does not create any attraction in its visual appearance.

4.8.2 Embedding Capacity

As explained earlier, embedding capacity is the measure of the maximum size

of secret that a chosen cover document can hide [36,65]. Hence, in general,

embedding capacity can be defined as in equation 4.3.

As Method-A considers the secret message as characters (instead of bits), equation 4.3

can be rewritten as:

 To evaluate the embedding capacity per cover-character exercise was carried

out by embedding secret messages, of various lengths, inside a given cover document.

Table 4.5 furnishes the number of characters present in the secret message and the

number of characters used in the cover document to embed the same.

 From Table 4.5, it can be observed that Method-A achieves an average

embedding capacity of 2.22 ± 0.05 bits/cover-character which is slightly higher than

the theoretically expected value of 2-bits/cover-character.

Chapter 4: Embedding Text

Table 4.5 Results of embedding the secrets in cover document

No. of
characters in

secret message

(excluding EoS)

No. of characters encountered while embedding
secret + EoS characters

Embedding
capacity per

cover-
character*

Alphabet Dot Space Other Total

500 1484 13 282 8 1787 2.24

1000 2842 27 556 12 3437 2.33

1500 4535 48 864 26 5473 2.19

2000 5999 63 1139 32 7233 2.21

2500 7612 85 1461 45 9203 2.17

3000 9238 104 1769 59 11170 2.15

3500 10459 116 2032 83 12690 2.21

4000 11736 130 2287 100 14253 2.25

4500 13403 146 2608 114 16271 2.21

5000 14848 164 2879 128 18019 2.22

* using equation 4.4; EoS End-of-Secret

4.8.3 Uniformity in Embedding Probability

 A good CDR technique must handle the secret characters uniformly and

should maintain uniform embedding probability. Achieving such uniformity will

avoid the wastage of embedding space and will reduce the size of required cover

document.

 Uniformity of a method can be tested by embedding a secret message that

contains all the possible characters, in large numbers, inside an English cover

document. Since the occurrence frequencies of characters are not uniform, creating

such a secret message and embedding it, is a tedious task. Hence, for experimental

purpose, a random string of ADS characters (of length 5000) that satisfies the above

requirement is generated, and considered as a secret message. It is, then, embedded

inside an English cover document.

Chapter 4: Embedding Text

 The total number of occurrences of each character in the secret message, and

the average number of cover characters used to embed them are provided in Table 4.6.

Table 4.6 Uniformity in embedding probability

Characters Secret message (5000 +
End-of-Secret characters)

Characters Secret message (5000 +
End-of-Secret characters)

No. of
times

occurred

Average no. of
cover

characters
used to embed

one secret
character

No. of
times

occurred

Average no. of
cover characters
used to embed

one secret
character

A 184 4.01 O 180 4.00

B 173 3.57 P 202 4.33

C 176 3.70 Q 172 3.19

D 159 3.87 R 174 3.18

E 155 3.14 S 173 4.02

F 205 3.62 T 192 3.01

G 184 3.55 U 192 3.94

H 196 3.67 V 173 3.31

I 164 4.24 W 179 3.16

J 172 3.62 X 171 3.42

K 166 4.27 Y 191 3.82

L 174 3.05 Z 160 3.82

M 194 4.36 Space 189 3.39

N 180 3.58 Dot 175 3.58

From the table, it can be observed that the average number of cover characters

required to embed any secret character uniformly falls within the range 3.66 ± 0.4.

This shows that the developed method utilizes the available embedding space

efficiently.

Chapter 4: Embedding Text

4.8.4 Comparison with Existing Methods

A comparison of Method-A with the existing methods is provided in

Table 4.7 (calculations are done similar to Section 2.3). The comparison is carried out

in terms of number of distortions and number of cover characters that are required to

embed a secret character.

Table 4.7 Comparison of Method-A with existing techniques

Technique Requirement to embed a secret character

No. of
distortions

No. of cover characters
(approximate)

Character marking,
Misspelling

1 Variable

Null cipher 1 5.5

Missing letter puzzle 1 11.5

Hiding data in wordlist 1 11.5

Synonym substitution,
Spelling of words

8 44

Line shifting 8 1020

Word shifting 8 100

Inter-sentence spacing 8 668

Inter-word spacing 8 44

End-of-line spacing 4 224

UniSpach 4 7.65

characters
8 8

Exploiting the structure of
characters

8 16

Reversing/Removing the
diacritics in/from characters

8 8

Change Tracking technique Variable 133

Generating summary 4 334

Method-A 1 3.6

From Table 4.7, it can be observed that Method-A records the least number of

cover characters required to embed a secret character. In addition, it stands best by

Chapter 4: Embedding Text

making only one distortion to embed a secret character. It is worth mentioning that

UniSpaCh, one of the best available methods requires four distortions.

4.9 Security Aspect

 Method-A embeds an English secret text inside an English cover text. Due to

the non-uniform occurrence of characters, an attacker can try to break the system and

identify the characters by using the variation in their occurrence frequencies. This is

known as frequency analysis attacks [38,131]. Bearing this in mind, Method-A has

been developed with some in-built security features to resist such attacks. It, also,

facilitates the ways to enhance the security by combining it with other existing

methods which are discussed below.

4.9.1 Uniformity in Embedding Probability

 As mentioned, the non-uniform occurrence of characters cannot be controlled.

Hence, a secret character having high embedding probability will get embedded in

fewer chances, whereas the other may require more cover characters to get embedded.

An attacker can break the method, using the frequency analysis attacks, which follows

such variation. Method-A avoids such attacks by maintaining the embedding

probabilities of all the characters uniform (refer Section 4.8.3).

4.9.2 Distribution in Stego Characters

Method-A embeds the secrets by altering the attribute Spacing. This makes the

secret characters to get distributed among the seven possible levels {-0.1, -0.2, -0.3,

+0.1, +0.2, +0.3, +0.4} of a cover character. An attacker can try to analyze the

distribution of characters among these levels. That is, the presence of high variations

Chapter 4: Embedding Text

among the levels of a particular stego character can represent the possibility of

carrying high frequency secret characters.

Method-A avoids such analysis by performing a circular left shift on the used

CSM (the embedding procedure is described in Section 4.6). Doing so distributes the

secret characters across the different levels of a cover character and thereby avoids the

occurrence of high values at any level of a stego character. This prevents the method

from producing such high variations.

 The same has been verified by embedding an English secret message, of

length 5000 (excluding EoS), inside an English cover document. The distribution of

secret characters among the seven levels of each stego character is identified and

provided in Table 4.8.

From the table, it is evident that the method distributes the secret characters,

almost uniformly, across all the possible levels of a cover character. It should be noted

is due to their low occurrences in cover document. That is, the low occurrence

of these characters made them to carry less secret characters, which resulted in high

standard deviation values.

4.9.3 Frequency Distribution of Stego Characters

An attacker can try to gain knowledge, about the hidden secret, by performing

the frequency analysis on the stego characters. Suppose, if the frequency profile of

stego characters follow the frequency profile of secret characters, then the presence of

high peaks at both profiles represent the correlation between them.

Chapter 4: Embedding Text

Table 4.8 Spacing values of the identified stego characters

Possible
stego

characte
rs

No. of
times

identifie
d as
stego

characte
r

Identified spacing values at each level (in %) Standar
d

deviatio
n

-0.1 -0.2 -0.3 +0.1 +0.2 +0.3 +0.4

E 625 15.68 13.76 13.12 13.60 14.56 12.96 16.32 1.29

N 616 14.61 14.45 13.15 18.34 13.80 11.85 13.80 2.01

Space 564 15.96 14.36 15.25 13.30 13.83 14.00 13.30 1.00

O 539 11.88 13.73 13.17 16.88 15.77 15.03 13.54 1.70

T 537 13.59 10.99 14.15 16.76 14.34 14.34 15.83 1.82

I 527 16.70 12.14 18.60 12.90 11.77 14.23 13.66 2.51

R 457 12.25 15.32 16.41 15.75 13.57 13.13 13.57 1.54

A 409 13.94 14.43 11.98 15.89 12.96 16.38 14.42 1.54

S 339 15.93 11.51 14.16 15.04 14.75 13.57 15.04 1.43

D 259 11.20 11.97 15.83 13.90 14.28 15.83 16.99 2.13

H 237 13.93 16.03 16.03 11.82 15.61 13.50 13.08 1.64

C 179 20.11 16.20 11.17 13.97 14.52 13.97 10.06 3.30

F 160 13.75 11.88 18.12 11.25 13.12 17.50 14.38 2.64

L 153 15.03 15.03 13.73 15.69 13.73 11.76 15.03 1.33

B 129 12.40 10.85 17.06 15.50 8.53 20.16 15.50 3.95

G 127 11.02 14.17 7.88 14.17 16.54 18.90 17.32 3.81

M 116 16.38 17.24 11.21 14.66 8.62 17.24 14.65 3.26

W 111 10.81 12.61 12.61 16.22 15.32 17.12 15.31 2.29

U 95 13.69 20.00 12.63 10.53 13.68 12.63 16.84 3.15

Y 89 15.73 13.49 17.98 13.48 13.48 13.48 12.36 1.92

P 52 9.62 9.62 15.38 26.92 9.62 15.38 13.46 6.16

Dot 45 13.34 20.00 13.33 22.22 8.89 2.22 20.00 7.13

K 23 8.69 8.70 4.35 21.74 17.39 21.74 17.39 6.97

V 17 11.77 5.88 29.41 17.65 5.88 17.65 11.76 8.22

X 4 0 0 0 0 25.00 50.00 25.00 19.67

Z 2 0 50.00 50.00 0 0 0 0 24.40

Q 1 0 0 0 100 0 0 0 37.80

J 0 - - - - - - - -

The rules of CSM are designed to prevent Method-A from such attacks. It

does so, by distributing the secret characters across all the seven possibilities of the

Chapter 4: Embedding Text

mapped string. This avoids the occurrence of high peaks in the frequency profile of

stego characters (refer Fig. 4.2).

To study the correlation between the frequency profile of secret and stego

characters, English and random secret messages (of length 6407 and 5000

respectively) are embedded inside English and random cover documents.

Figures 4.2, 4.3 and 4.4 illustrate the occurrence frequencies of characters in the

secret message, cover document and stego characters.

 Figure 4.2 English secret in English cover document. CW1 cover document;
Sec1 secret message; Stego stego document

 Figure 4.3 Random secret in English cover document. CW1 cover document;
Sec2 secret message; Stego stego document

Pe
rc

en
ta

ge
 o

f
oc

cu
rr

en
ce

Characters

CW1
Sec1
Stego

Pe
rc

en
ta

ge
 o

f
oc

cu
rr

en
ce

Characters

CW1
Sec2
Stego

Chapter 4: Embedding Text

 Figure 4.4 Random secret in random cover document. CW3 cover document;
Sec2 secret message; Stego stego document

From Figures 4.2, 4.3 and 4.4, it can be observed that the frequency profile of

stego character is predominantly due to the frequency profile of cover document but

not due to that of secret message. Hence, performing such attacks, on the stego

characters of Method-A, will not provide the expected information to an attacker.

4.9.4 Cryptographic Aspect

Though the aim of the present study is to develop best steganographic methods

with high embedding capacity and bits/distortion, it is worth mentioning that the

formulated method has some in-built security features comparable with the

cryptographic techniques. Also, it allows the method to be combined with existing

cryptographic techniques to increase the security further. This has been emphasized in

this section.

With the help of CSM, Method-A embeds a secret character in several cover

characters. Hence, when the used CSM is kept secret, a security level comparable

with that of a polyalphabetic substitution ciphers of cryptography [38] can be

expected.

Pe
rc

en
ta

ge
 o

f
oc

cu
rr

en
ce

Characters

CW3
Sec2
Stego

Chapter 4: Embedding Text

Also, combining Method-A with Format Preserving Encryption (FPE)

system [132] can further enhance the confidentiality of the embedded secret. This

combination is feasible as FPE preserves the length and format of given input, unlike

other cryptographic techniques [133]. Thereby, the original secret text containing

ADS characters must be encrypted, using FPE, first. The generated cipher text which

is again a string of ADS characters of same length, can then be considered as secret

and embedded using Method-A (see Fig. 4.5).

Figure 4.5 Method-A combined with Format Preserving Encryption system

To break this type of dual security, first, an adversary has to identify the

presence of hidden message and extract it. After this, he/she has to break the FPE

security system in order to get the original secret message. Hence, the combined

system can provide a greater challenge to an adversary than when the FPE and

Method-A are individually applied.

4.10 Application to Case-Sensitive Letters

The method so developed, Method-A, is not case-sensitive. However, it can be

achieved by utilizing another attribute, to differentiate the case, or by following the

procedure mentioned below.

English text
(secret)

Format
Preserving
Encryption

(FPE)
system

English text
with same
length and
format of

input

Method-A

Character & String
Mapping (CSM)

Spacing
values

Chosen
cover work

Stego
work

Chapter 4: Embedding Text

The number of characters in each string of CSM must be extended to fourteen

by representing them in both upper- and lowercase letters (refer Table 4.9). It is

well- -sensitive. However, to

make this method feasible, they are treated as case-sensitive.

Table 4.9 Sample Character & String Mapping for case-sensitive messages

Mapped
character

Frequency Normalization
Set (FNS)

Mapped
character

Frequency Normalization
Set (FNS)

A/a WwRrZzFfOoIiNn O/o MmNnSsLlAaBb .

B/b Ff CcWwQqXxPp P/p TtVvIiZzMm .Aa

C/c JjMmFfXxYy Q/q SsGgKkPpHhEeMm

D/d XxAa .MmNnTtUu R/r HhEeUuVvIiYyJj

E/e YyCcHhIiJjOoSs S/s IiYyLlNnUuAaKk

F/f KkUuXx T/t OoFfJjGgCcDdEe

G/g .BbCcPpQqXx U/u VvDdEeHhKkLlYy

H/h BbLlOoSsWwMmIi V/v LlOoNnQqSsUuRr

I/i PpJjGgAaLlHhOo W/w QqPp

J/j NnSsVvOoBbGgHh X/x EeZzDdYyGgPpTt

K/k UuWwYy .TtSsLl Y/y .KkQqUuVvZz

L/l DdIiRrEeFfCcQq Z/z AaXxMmTtRrVvDd

M/m GgHhTtRr .WwBb RrTtWwBbDdNnFf

N/n ZzBbAaDdEeFfGg /. CcQqPpJj

 upper
lower respectively

The resulting fourteen different positions in CSM must be represented using

fourteen different spacing values {-0.05, -0.1, -0.15, -0.2, -0.25, -0.3, +0.05, +0.1,

+0.15, +0.2, +0.25, +0.3, +0.35, +0.4}.

Now, to embed a secret character, the cover document is searched for the

occurrence of any of the characters in the corresponding CSM string. When a match is

found, the case of the secret character along with the encountered cover character is

used to identify the corresponding spacing value (by default, the

Chapter 4: Embedding Text

are considered as lowercase). That is, if the secret character is in uppercase

then the spacing value corresponding to the uppercase of the encountered cover

character is marked and vice-versa. A sample embedding is shown below in

Example 4.3.

Example 4.3:

Secret
character

Mapped
string in

CSM

Cover
document

Encountered
character

Case
of

secret
charac

ter

Position of
the

encountered
character in
the mapped

string*

Modification
to be

performed

Q SsGgKk
PpHhEe

Mm

Cool
morning
all.

Cool
morning all.

Upper
case

 Expand the
spacing value

0.35 points
(+0.35)

q SsGgKk
PpHhEe

Mm

Cool
morning
all.

Cool
morning all.

Lower
case

 Expand the
spacing value

points (+0.4)

* based on the case of secret character

The extraction procedure is straight-forward and is the reverse of the

embedding process. The spacing value of the identified stego character defines the

secret character along with its case.

4.11 Summary

CDR techniques embed secret information directly inside cover documents by

marking them. This makes these methods an optimum choice for embedding text as it

embeds 8-bits/distortion. However, due to the non-uniform occurrence probabilities of

characters in cover document, the available embedding space gets wasted whenever a

low occurring character needs to be marked. This affects the overall embedding

capacity of these techniques.

Chapter 4: Embedding Text

With an aim to address this limitation, the necessary measures that need to be

taken are identified and a Frequency Normalization Set (FNS) in combination with

Character & String Mapping (CSM) are introduced. The combination efficiently

handled the low occurring characters, by embedding them in multiple cover

characters, and made the embedding probabilities of all the characters uniform. This

allowed the method (Method-A) to achieve an average embedding capacity of

2.22-bits/cover-character, with 8-bits/distortion, which is slightly higher than the

theoretically expected value of 2-bits/cover-character. Hence, the size of the required

cover document and the number of modifications that are performed in the document

gets reduced.

Method-A alters the attribute Spacing to mark the cover characters. The

imperceptible changes made in the cover document ensured high secrecy and hence

created no attraction in their visual appearance. As this attribute can be applied even

on non-English characters, Method-A is not restricted to any particular language.

A security level comparable with that of a polyalphabetic substitution cipher

of cryptography is expected when the used CSM is considered as a secret key. The

use of the Format Preserving Encryption system to further enhance the security has

also been described. In addition to these, various in-built security features that prevent

Method-A from well-known frequency analysis attacks have also been discussed.

Though Method-A has the above-mentioned advantages, it restricts the secret

message to contain only ADS characters. Due to this limitation, it cannot be used to

embed:

(i) messages that contain numbers and special characters viz. mobile, credit

card, debit card, etc.

(ii) binary and multimedia data like image, audio, video, etc.

Chapter 4: Embedding Text

However, these limitations can be overcome by extending the method into a

mixed-type embedding technique which is discussed in the next chapter.

CHAPTER 5

EMBEDDING BINARY DATA

This chapter describes the method developed to embed binary data inside

Microsoft (MS) Word documents. It extends the method described in Chapter 4,

Method-A, into a mixed-type embedding technique, referred to as Method-B, that

embeds binary data (secret) using the attribute Spacing. Method-B is assessed for its

embedding capacity and uniformity in embedding probability. A comparison with one

of the best existing methods available in the literature is provided. Various security

aspects of Method-B have been discussed and a case study using images related to

nuclear power plants has, also, been conducted.

5.1 Introduction

The method (Method-A) developed in the present study is successful in

embedding the secret message and communicating the same efficiently using smaller

size cover documents. But, it restricts the messages to contain only English alphabets,

Dot and Space (ADS) characters. This limits the method from communicating other

kinds of message such as text with special characters and numbers. In addition, it is

not possible to embed messages such as multimedia data, compressed and encrypted

data, etc.

As these data types are also commonly used and important, there is a need for

communicating the same in a secure manner. Method-A is modified to accommodate

the above-said data types. This was achieved by extending the method to a

mixed-type embedding technique (referred to as Method-B, in the rest of the thesis)

which embeds binary data.

Chapter 5: Embedding Binary Data

For this purpose, a new module named Converter

(BCC) has been introduced. This module takes the secret, binary data, as input and

generates an equivalent character stream which can, then, be embedded by Method-A

(refer Fig. 5.1). The method is described below.

Figure 5.1 Schematic diagram of Method-B. The dotted lines represent the
modules that are introduced in Method-B and bold line represents
the modified module of Method-A

5.2 Binary to Character Converter (BCC)

As mentioned, the BCC module converts a binary secret into character stream

by using a mapping called Character & Bit Mapping (CBM). This process is similar

to Base 64 encoding (it partitions the binary bits into groups of 6-bits and maps the

64 possibilities to 64 characters [134]). But, unlike Base 64, CBM considers a nibble

as a group and the sixteen possible elements are mapped to the 28 ADS characters.

The difference in numbers (16 and 28) leads to a one-to-many mapping with ¾

elements mapped to two ADS characters, a 2-tuple. A sample mapping is provided in

Fig. 5.2.

Extracted secret
message

Secret
message

Binary to
Character
Converter

Embedding
algorithm

Character
& String
Mapping

Cover
document

End-of-Secret
character(s)

Extraction
algorithm

Character to
Binary

Converter

AB Z.. AB Z..

Stego
document

Character

& Bit
Mapping

Character
& Bit

Mapping

Chapter 5: Embedding Binary Data

 Figure 5.2 Sample Character & Bit Mapping using the Character & String
Mapping provided in Table 4.4. and

 ; ADS English alphabets, Dot and Space

Mapped strings in Character
& String Mapping

Nibbles

ADS characters

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

.

WRZFOIN

XA.MNTU

YCHIJOS

BLOSWMI

PJGALHO

NSVOBGH

UWY.TSL

DIREFCQ

GHTR.WB

ZBADEFG

MNSLAB.

TVIZM.A

SGKPHEM

HEUVIYJ

IYLNUAK

OFJGCDE

VDEHKLY

LONQSUR

EZDYGPT

AXMTRVD

RTWBDNF

Chapter 5: Embedding Binary Data

It should be noted that these ADS characters are in turn mapped to the CSM

(Character & String Mapping) strings of length seven. This leads CBM to map an

element to distinct characters ranging between seven and fourteen (7 + 7) inclusive.

As discussed earlier (Section 4.3), the embedding capacity of Method-A is

directly influenced by the number of possible characters in which a secret character

can get embedded. Hence, avoiding the common characters between the two CSM

strings of a 2-tuple will facilitate Method-B to achieve an optimal embedding

capacity.

Table 5.1 provides a sample mapping, using the CSM provided in Table 4.4,

along with the respective cumulative probability values.

Table 5.1 Mapping of ADS characters and the nibbles (Character & Bit Mapping)

Nibble Mapped
character(s)

No. of common characters
between the two strings

Cumulative probability to
embed the corresponding nibble

0000 A/U 0 48.97

0001 B/P 0 50.37

0010 C/M 0 48.62

0011 D/T 0 49.61

0100 E/N 0 49.88

0101 0 50.33

0110 G/R 0 50.18

0111 H/X 0 50.78

1000 I/Y 0 49.99

1001 J/. 0 51.08

1010 K/W 0 49.81

1011 L/O 0 49.92

1100 Q NA 25.43

1101 V NA 25.11

1110 S NA 25.10

1111 Z NA 24.82

ADS English alphabets
 elements of a 2- ;

NA Not applicable

Chapter 5: Embedding Binary Data

Using the mapping provided in Fig. 5.2, BCC module can convert a binary

secret into an equivalent character stream by following the procedure given below.

Procedure to Convert Binary to Character Stream

Input: Audio/video/compressed/encrypted binary_string, CBM

Output: Character_Stream

binary string

For each nibble in binary_string

 Identify the character(s) equivalent to the nibble, using
CBM, and append it to the Character_Stream

 CBM Circular Left Shift the elements in CBM by 1 //makes the CBM
dynamic

End for

Return Character_Stream

It should be noted that, after converting each nibble to its equivalent ADS

character(s), 1-tuple or 2-tuple, the elements in CBM are circular left shifted by one

by the BCC module. This allows a nibble to be mapped to different ADS character(s)

at different times and thus makes the CBM dynamic (see Example 5.1).

Example 5.1:

Secret message 123?

Equivalent bi 00110011 00111111

Binary stream (after grouping) 0011 0001 0011 0010 0011 0011 0011 1111

Equivalent character stream D/T A/U B/P Z Z S V I/Y

From Example 5.1, it is evident that the character stream generated by BCC

looks similar to the secret message used in Chapter 4. The only difference is the

presence of a 2-tuple, which represents the choice of characters that has to be

Chapter 5: Embedding Binary Data

embedded at a particular instance. That is, D/T represents the choice to embed either

D T inside a cover document. Thus, the generated character string is the

required secret message which needs to be communicated, secretly, using a cover

document.

5.3 Embedding Algorithm

Embedding algorithm of Method-B is similar to the procedure explained in

Chapter 4 (Section 4.6). It takes a secret message, cover document and CSM as input

values. It uses the same attribute Spacing with the seven levels, {-0.1, -0.2, -0.3, +0.1,

+0.2, +0.3, +0.4}, to embed the secret character.

Embedding begins by identifying whether the first secret character is a 1-tuple

or 2-tuple. If it is a 1-tuple, then the embedding algorithm identifies the CSM string

that is mapped to the character. The algorithm searches, the cover document serially,

for the first occurrence of any of the characters of the mapped string. When a match is

found, the position of the encountered cover character in the mapped string is

identified. Based on the position, the cover character is marked by altering the value

of its attribute Spacing. A sample embedding is presented in Example 5.2.

Example 5.2:

Secret
character

Mapped
string in

CSM

Cover
document

Encountered
character

Position of the
encountered
character in

mapped string

Modification to be
performed

Q SGKPH
EM

Cool
morning.

Cool
morning.

6 Expand the spacing

points (+0.4)

Suppose, if the character is a 2-tuple, then the embedding algorithm identifies

the strings corresponding to the two ADS characters. It, then, searches the cover

document serially, for the first occurrence of any of the characters of the two

Chapter 5: Embedding Binary Data

identified strings. When a match is found, the cover character is marked accordingly

(see Example 5.3).

Example 5.3:

Secret
character

Mapped
strings in

CSM

Cover
document

Encountered
character

Position of the
encountered

character in the
mapped string

Modification
to be

performed

K/W
UWY.TSL

Cool
morning
all.

Cool
morning all.

6 Expand the
spacing value

l 4
points (+0.4)

After embedding a secret character, all the strings of CSM are circular left

shifted by one. This avoids the possibility of embedding the same secret character

inside an identical cover character with the same spacing value, frequently. The

advantage of doing this was explained earlier in Section 4.9.2.

The procedure is repeated till all the secret characters are embedded. After

achieving this, the algorithm embeds End-of-Secret (EoS) characters. For

experimental purpose, it has been considered

The pseudo code of the embedding procedure is as follows:

Procedure of Embedding Algorithm

Input: Secret_Message, Cover_Work, CSM, EoS characters, character spacing and
their respective positions

Output: Modified_Cover_Work

String Sk1

String Sk2

For each character i

 String Sk1 i in CSM

 If Xi+1 is not empty and Xi+1 equals then

Chapter 5: Embedding Binary Data

 String Sk2 i+2 in CSM

 i + 2

 End if

 L: Yj

 count++

 If Yj Sk1 or Sk2

 j in Sk1 or Sk2

 Change the character spacing of Yj based on pos

 End if

 Else Goto L

//makes the CSM dynamic

End for

Return Modified_Cover_Work

The modified cover document is the required stego document which has to be

communicated to the receiver along with the CBM, CSM and EoS characters.

5.4 Extraction Algorithm

The extraction algorithm is identical to that of the extraction procedure

employed and described in Chapter 4 (Section 4.7). It reads the characters in stego

document one by one, in a serial manner, and checks the Spacing of the read

character. If the value is altered, it identifies the embedded secret by using the read

character and the position equivalent to the spacing value. The procedure is repeated

until it reads the EoS. Once extracted, the receiver uses the Character to Binary

Converter, which is the reverse process of BCC, and converts the extracted character

stream into an equivalent binary stream.

Chapter 5: Embedding Binary Data

5.5 Evaluation Parameters

As Method-B uses the same attribute Spacing and the same seven levels to

embed the secret, it provides the same level of secrecy illustrated in Section 4.8.1.

But, the difference exists in embedding capacity, bits/distortion and uniformity in

embedding probability which are discussed below in some detail.

5.5.1 Embedding Capacity and Bits per Distortion

It can be seen from Table 5.1, that Method-B embeds a nibble at a time

viz. 4-bits/distortion. Also, out of the sixteen possible elements, ¾ of the elements use

two CSM strings and the remaining ¼ use one string to get embedded. From the

discussion provided in Section 4.3, this means that ¾ of the elements have

50% probability to get embedded inside an encountered cover character, and the

remaining has 25% probability. Hence, the overall probability of embedding a nibble

inside an encountered cover character is:

Now, the possible number of cover characters that are required to embed a nibble is:

This shows that the extended method can embed an average of 1.75-bits/cover-

character.

To verify the same, audio files (in mp3 format) of various sizes were

considered as secret message and embedded inside a chosen text document. The

obtained results are listed in Table 5.2.

Chapter 5: Embedding Binary Data

Table 5.2 Results of embedding the secrets in cover document

File
no.

Size
in

KB

Size in
bits

No. of characters encountered in cover
document while embedding the secret + End-

of-Secret characters

Embedding
capacity per

cover-
character*

Alphabet Dot Space Other Total

1 19.3 158128 74980 1060 16063 1149 93252 1.70

2 10.7 87856 41246 618 9172 342 51378 1.71

3 13.3 109744 51203 744 11526 463 63966 1.72

4 16.6 136240 63954 926 13954 793 79627 1.71

5 10.3 84400 39802 590 8795 342 49529 1.70

* calculated using equation 4.3; KB kilobyte

From Table 5.2, it can be seen that Method-B has achieved an average

embedding capacity of 1.71 ± 0.01 bits/cover-character.

5.5.2 Uniformity in Embedding Probability

 As discussed earlier, a good steganographic method must maintain uniformity

while embedding the secret inside a cover document. This avoids the wastage of

embedding space and facilitates to embed secrets in smaller size documents.

 To evaluate the uniformity of Method-B, an audio file (in mp3 format) of size

13.3 KB is embedded inside a cover document and the result is provided in Table 5.3.

 From the table, it can be seen that the average number of cover characters

required to embed a nibble uniformly falls within the range 2.33 ± 0.07. This proves

that Method-B embeds the nibbles uniformly and thereby utilizes the available

embedding space efficiently.

5.5.3 Comparison with other Methods

As mentioned in Section 4.3, Method-A embeds an average of 2-bits/cover-

character (theoretical) with 8-bits/distortion. Whereas, Method-B embeds an average

of 1.75-bits/cover-character (theoretical) with 4-bits/distortion. Hence, even though

Chapter 5: Embedding Binary Data

the procedure of converting the binary secret to character stream has reduced the

bits/distortion by 50%, the attained embedding capacity falls short only by 12.5%.

However, Method-B outperforms UniSpaCh which can embed binary data with

-bits/cover- -bits/distortion.

Table 5.3 Uniformity in embedding probability at nibble-level

Nibbles Secret message (109744 bits)

No. of times
occurred

No. of times
occurred (in %)

Average no. of cover characters
used to embed one nibble

0000 3588 13.08 2.30

0001 1045 3.81 2.46

0010 1329 4.84 2.37

0011 1400 5.10 2.40

0100 1586 5.78 2.19

0101 2700 9.84 2.42

0110 1192 4.34 2.29

0111 1259 4.59 2.39

1000 1035 3.77 2.31

1001 1239 4.52 2.31

1010 3021 11.01 2.36

1011 1291 4.71 2.33

1100 1033 3.77 2.30

1101 1396 5.09 2.39

1110 1459 5.32 2.21

1111 2863 10.44 2.29

5.6 Security Aspect

Frequency analysis is employed by the attackers to break systems that rely on

the occurrence frequencies of characters to embed secrets. Method-B provides the

same security features as Method-A, such as uniformity in distributing the stego

characters among the seven levels (refer Section 4.9.2) and non-correlation between

the frequency profile of secret and stego characters (refer Fig. 4.3). However, the

Chapter 5: Embedding Binary Data

discrepancy in mapping some nibbles to 1-tuple and others to 2-tuple, in CBM,

creates difference in their embedding probabilities (50 and 25%). This causes

variations in the intervals of marked cover characters (refer Table 5.4) and thereby

results in the leakage of information.

Table 5.4 Uniformity in embedding probability at character-level

Tuples Secret message after BCC (27436 characters)

No. of
times

occurred

No. of times
occurred (in

%)

No. of cover characters used to embed one
character

Minimum no. Maximum no. Average no.

A/U 1802 6.57 1 11 1.92

B/P 1856 6.76 1 8 1.88

C/M 1738 6.33 1 10 2.04

D/T 1724 6.28 1 9 1.89

E/N 2015 7.34 1 7 1.77

 1491 5.43 1 9 1.88

G/R 1646 6.00 1 9 1.79

H/X 1765 6.43 1 7 1.73

I/Y 1706 6.22 1 13 2.07

J/. 1642 5.98 1 8 1.93

K/W 1769 6.45 1 11 1.94

L/O 1715 6.25 1 10 1.85

Q 1586 5.78 1 25 3.77

V 1654 6.03 1 32 3.49

S 1675 6.11 1 28 4.03

Z 1652 6.02 1 22 3.65

 ; ; BCC Binary to Character
Converter

But, Method-B secures such leakage of information by performing a circular

left shift operation after converting every nibble to its corresponding tuple

(refer Section 5.2). This distributes the nibbles across all the possible tuples and also

makes the output character stream uniform. This can be inferred from

Tables 5.3 and 5.4 (the occurrences of nibbles in secret message are not uniform, in

Chapter 5: Embedding Binary Data

Table 5.3, and have standard deviation 3.01%. Whereas, the output character stream

generated by BCC is fairly uniform, in Table 5.4, and has standard deviation 0.43%).

Hence even though an attacker succeeds in identifying the intervals of marked

characters and attribute them to the characters, Q, V, S and Z, mapping them back to

the corresponding nibbles is not possible (refer Tables 5.4 and 5.5).

5.7 Case Study on Nuclear Power Plants

To understand the impact of Method-B while communicating images, a case

study using the images related to nuclear power plant has been conducted. For the

study, various categories of images like engineering drawings (civil drawing,

mechanical design, electronic circuit, etc.,), roadmaps, graphs, minimal line drawings,

etc., were considered. The reasons for considering these images are:

 Graphs can be used to represent the interconnectivity among geographically

distributed nuclear power plants

 Roadmaps can be used to represent the existing secret passages between

nuclear power plants or escape routes during disasters

 Application of engineering drawings in nuclear power plants is straight

forward

T
ab

le 5.5 D
istribution of nibbles am

ong the possible tuples

N
ibb

les
N

o. of
tim

es
occu

rred

T
u

ples

A
/D

B

/P

C
/M

D

/T

E
/N

F

/

G
/R

H

/X

I/Y

J/.
K

/W

L
/O

Q

V

S

Z

0000
3588

271
203

204
211

198
190

242
221

196
195

364
203

258
182

199
251

0001
1045

58
103

52
55

117
56

79
54

52
54

56
49

82
67

61
50

0010
1329

102
57

72
65

76
50

91
83

162
87

76
59

53
82

119
95

0011
1400

104
107

58
67

145
82

51
93

69
84

54
136

46
166

73
65

0100
1586

61
168

135
83

215
63

114
91

136
56

119
64

71
81

56
73

0101
2700

155
150

158
156

217
155

133
158

162
177

161
194

196
174

216
138

0110
1192

72
89

64
71

149
55

55
87

71
53

78
70

65
66

78
69

0111
1259

99
60

88
71

96
72

66
75

66
90

82
82

68
83

75
86

1000
1035

64
60

59
70

61
56

59
176

46
42

37
81

50
55

40
79

1001
1239

144
63

133
65

65
65

68
57

73
59

64
115

80
67

66
55

1010
3021

188
224

212
178

174
182

182
186

185
174

188
200

171
204

184
189

1011
1291

76
82

81
82

88
78

88
87

99
75

73
68

90
70

75
79

1100
1033

50
107

41
59

61
80

51
75

75
67

55
66

45
60

67
74

1101
1396

80
69

83
78

83
88

98
76

78
110

78
87

75
79

139
95

1110
1459

72
77

72
181

88
79

118
90

69
134

106
67

77
68

62
99

1111
2863

206
237

226
232

182
140

151
156

167
185

178
174

159
150

165
155

;

Chapter 5: Embedding Binary Data

Some of the images used for experimentation are depicted in Fig. 5.3. The

details of these images are provided in Table 5.6 and the average number of cover

characters used to embed them, both by Method-B and UniSpaCh, are listed in

Table 5.7.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(i)

(h)

Figure 5.3 Sample tested images: (a) Road map from kalpakkam to anupuram
[135]; (b) Graph [136]; (c) Electronic circuit diagram [137]; (d) Civil
drawing of stairs [138]; (e) Boiling water reactor [139]; (f) Schematic
diagram of thermal power plant [140]; (g) Nuclear power plant steam
generation [141]; (h) Reactor flow sheet [142]; (i) Reactor core [143]

Chapter 5: Embedding Binary Data

Table 5.6 Details of images given in Fig. 5.3

Figure no. Image size in
KB

Image
resolution

Image format Bit depth

5.3 (a) 27.10 555 x 593 JPG 8

5.3 (b) 5.84 260 x 194 PNG 8

5.3 (c) 1.32 405 x 255 PNG 1

5.3 (d) 1.74 400 x 444 PNG 1

5.3 (e) 40.90 518 x 405 JPG 24

5.3 (f) 18.30 550 x 381 PNG 8

5.3 (g) 6.18 386 x 188 PNG 24

5.3 (h) 86.20 1091 x 635 JPG 24

5.3 (i) 19.10 744 x 726 PNG 1

KB kilobyte; JPG Joint Photographic Experts Group; PNG Portable Network
Graphics

Table 5.7 Number of cover characters required by UniSpaCh and Method-B

Figure
no.

Requirement of
UniSpaCh

Requirement of
Method-B

Efficiency of the
Method-B

compared with
UniSpaCh (in %)

Average no.
of cover

characters

Average
no. of
pages

No. of
cover

characters

Average
no. of
pages

5.3 (a) 212240 127 133388 80 37.01

5.3 (b) 45737 28 28117 17 39.29

5.3 (c) 10337 7 6344 4 42.86

5.3 (d) 13627 9 8751 6 33.33

5.3 (e) 320318 192 191459 115 40.10

5.3 (f) 143321 86 88955 54 37.21

5.3 (g) 48401 29 30139 18 37.93

5.3 (h) 675096 405 403514 242 40.25

5.3 (i) 149586 90 93173 56 37.78

 and represents the estimated value by considering the embedding capacity
per cover-character as 1.046-bits and 1.75-bits respectively; Relative Efficiency
= 100 ((Average no. of pages required by Method-B / Average no. of pages

required by UniSpaCh) * 100); - represents the estimated value by considering
the average length of a word as 5.5 (including space), average number of words in
a sentence as 15 and average number of words per page as 300 Same page
calculation is followed for the rest of the thesis

Chapter 5: Embedding Binary Data

From Table 5.7, it can be seen that, Method-B stands best by embedding the

images in a 38.42% (on an average) smaller size cover document when compared

with UniSpaCh. However, the number of pages that are required to embed, even, an

image of size 40.9 KB crosses hundred. This shows that the page requirement is not

easy to be met when the size of the image is in the order of megabytes. For example,

one megabyte 50 pages.

This situation can be handled by reducing the size of images. One way of

achieving this is by using appropriate image formats that minimizes the redundant

information or does not store the information, such as color, line thickness, intensity,

transparency, etc., at all.

5.8 Summary

 In this chapter the limitations of Method-A, such as the non-capability of

embedding messages containing numbers, special characters, multimedia data, etc.,

has been addressed. This was achieved by converting it into a mixed-type embedding

technique (Method-B) which is capable of embedding binary data. It is noticed that

this conversion procedure has reduced the embedding capacity by 12.5% and

bits/distortion by 50%, when compared to what was achieved by employing

Method-A. However, it is still better than the best existing method available in the

literature namely, UniSpaCh.

As Method-B embeds a single ADS (secret) character in multiple cover

characters, it is comparable with that of the poly-alphabetic substitution ciphers of

cryptography (similar to Method-A). However, the additional circular left shift

operation introduced in BCC module makes it superior when compared with the

latter.

Chapter 5: Embedding Binary Data

A case study on nuclear power plant related images concluded that Method-B

has reduced the size of required cover document by 38.42%, when compared with

UniSpaCh. But, it still requires more than hundred pages when the image size is

. Also, the situation gets worse when the file sizes are in the order of

megabytes. This limitation is not only applicable for images but, also, to any type of

binary data. However, handling such limitation differs from one data type to another.

In case of images, one can reduce their size by minimizing the redundant information.

This can be achieved by using vector formats which has been explored in the next

chapter.

CHAPTER 6

EMBEDDING IMAGE

In this chapter, the work carried out to embed image files inside smaller size

cover documents is described. Initially, the possible ways to reduce the size of images

by representing them in vector formats is discussed. Then, the procedure of

embedding them using the method described in Chapter 5, Method-B, is explained. As

Method-B failed to handle transmission errors, a novel method referred to as

Method-C is developed. Method-C converts an image into a custom format and then

embeds the same, along with the structure of image, using the attributes Color,

Kerning and Spacing. This method of embedding facilitated the extraction algorithm

to handle transmission errors and avoided retransmission. A comparison of the

custom format and best vector format is given. Method-C is, also, inspected for its

embedding capacity and error handling capabilities.

6.1 Introduction

 The extended mixed-type embedding method, Method-B, successfully embeds

binary data inside text documents. However, when the size of the secret message

exceeds a certain limit, say one megabyte, the number of pages required to embed it,

is not easy to be met.

 Hence, there is a need to address the issue by developing a method for such

types of documents. This chapter focuses to address the shortcoming for the

categories of images mentioned in Section 5.7. The reasons for choosing these images

are that, they:

Chapter 6: Embedding Image

(i) are widely used in organizations

(ii) do not require the complete information, like color, line thickness, etc., to

convey their meaning. Often, their structure or layout is sufficient

This offers the sender a choice to reduce their size by minimizing redundancy through

known methods such as compression or vector representation. Of these, the second

possibility has been explored in this chapter.

 Various vector representations have been studied and experimented with the

above-mentioned images. The results indicated that the format SVGZ attains the

smallest file size. Hence embedding the resulting images, using Method-B, required a

cover document that are, considerably, smaller in size. However, the method failed to

recover a substantial portion of the image, even in case of single bit error. This shows

that the SVGZ format can be utilized, efficiently, in text steganography only when the

used communication line is free from error or the underlying method (both embedding

and extraction) can provide the necessary error correction mechanisms.

 The latter requirement can be met by introducing error correcting codes, like

hamming code [144], as a part of embedding procedure. But, this increases the size of

message, that needs to be embedded, which is not preferable.

 To address these issues, a novel method (referred to as Method-C, in the rest

of the thesis) is developed which includes:

(i) a custom format that represents images in smaller sizes along with error

handling capabilities

(ii) an embedding algorithm that interprets the custom format and embed the

same accordingly

These are explained in the subsequent sections of this chapter. A short introduction to

vector formats, highlighting the above-mentioned difficulty, is also provided.

Chapter 6: Embedding Image

6.2 Vector Format

Image formats can be, broadly, classified into two categories namely raster

and vector [145]. Raster image formats, like Joint Photographic Experts Group

(JPEG), Portable Network Graphics (PNG), Graphics Interchange Format (GIF), etc.,

considers an image as a grid of pixels each with a depth in the powers of 2 [146].

That is, 1-bit, 2-bit, 4-bit, 8-bit or 24-bit. This makes them to compromise their

resolution during resizing [146]. For example, when the image is resized (stretched),

the additional pixels are filled using the existing values. This results in the distortion

(pixilation) of the image [146]. Also, during storage, these formats do not distinguish

the contents (object or element) that are present in the image [146] viz. an image that

contains a square or a circle is expressed using the same representation.

This makes these formats inefficient, in terms of memory space, while

representing certain types of images, specifically computer generated images, such as

line drawings, cartoons, maps, graphical images, etc. This is because these images

contain various elements that can be represented by means of simple geometric

primitives such as lines, splines, polygons, circles, ellipses, etc. [147]. These

primitives can be stored and manipulated more efficiently when they are stored as

mathematical expressions rather than as pixels [147]. For example, a triangle object

can be represented by defining three points and properties such as fill, color, edge

thickness, etc. This approach saves space and also facilitates geometric operations

such as scaling, sheering, etc., without losing quality.

Vector image formats (refer Fig. 6.1) achieve the same and some of the well-

known software that generates these formats are listed in Table 6.1. Further aspects of

these formats are not being discussed as they do not form scope of the present work.

Chapter 6: Embedding Image

Figure 6.1 Vector image formats. * represents the compressed version of SVG
format

Table 6.1 Software that generate vector file format

Software Developed by Copyright
status

Operating
system

Initial
release

Reference

Adobe
Illustrator

Adobe Systems Proprietary Mac,
Microsoft
Windows

1987 [148]

Corel Draw Corel
Corporation

Proprietary Microsoft
Windows

1989 [149]

Inkscape Open Source Linux, Mac,
Microsoft
Windows

2003 [150]

Sketch Bohemian
Coding

Proprietary Mac 2010 [151]

For experimental purpose, the images in Fig. 5.3 are converted to vector

formats using Adobe Illustrator and Inkscape. Table 6.2 provides a comparison of the

obtained results.

From the table, it can be noticed that the SVGZ image format, generated by

the Adobe Illustrator software, achieves the smallest size. Hence, the same has been

considered as the secret message and the number of pages required to embed them,

using Method-B, are estimated in Table 6.3.

Vector format

Adobe
Illustrator (AI)

Encapsulated
PostScript (EPS)

Portable Document
Format (PDF)

Scalable Vector
Graphics (SVG)

Scalable Vector
Graphics Compressed*

(SVGZ)

Chapter 6: Embedding Image

Table 6.2 Sizes of generated vector images

Image
no.

Size
in

KB

Output file size (in KB)

Adobe Illustrator Inkscape

AI Illustrat
or EPS

Adobe
PDF

SVG SVG
Z

EPS PDF SVG SV
GZ

5.3 (a) 27.10 35.0 223 27.6 3.28 905
Bytes

13.90 6.17 6.16 1.40

5.3 (b) 5.84 25.2 215 39.6 4.31 898
Bytes

25.20 9.85 16.10 1.87

5.3 (c) 1.32 26.9 208 32.0 8.71 1.33 22.00 10.20 14.70 2.24

5.3 (d) 1.74 28.8 217 33.4 11.90 1.63 10.80 5.06 15.50 2.65

5.3 (e) 40.90 37.7 226 24.5 16.00 2.38 5.01 1.91 13.10 3.05

5.3 (f) 18.30 28.2 221 32.8 14.10 2.25 17.10 7.27 20.10 3.66

5.3 (g) 6.18 38.2 227 27.6 11.00 1.80 13.50 6.39 19.90 3.39

5.3 (h) 86.20 45.3 254 38.0 50.50 6.10 25.80 10.20 50.30 7.99

5.3 (i) 19.10 47.1 263 44.9 47.90 4.54 23.90 9.53 65.80 7.97

AI Adobe Illustrator; EPS Encapsulated Postscript; PDF Portable Document
Format; SVG Scalable Vector Graphics; SVGZ SVG Compressed; KB kilobyte

Table 6.3 Results of embedding raster and vector images by Method-B

Figure
no.

Image
size in

KB
(Raster)

Requirement to
embed raster images

SVG
Z file
size
in

KB

Requirement to embed
SVGZ images

Efficie
ncy

(in %) No. of
cover

characters

No. of
pages

(A)

No. of cover
characters

No. of
pages

(B)

5.3 (a) 27.10 133388 80 905
Bytes

4137 3 96.25

5.3 (b) 5.84 28117 17 898
Bytes

4105 3 82.35

5.3 (c) 1.32 6344 4 1.33 6226 4 0

5.3 (d) 1.74 8751 6 1.63 7630 5 16.67

5.3 (e) 40.90 191459 115 2.38 11141 7 93.91

5.3 (f) 18.30 88955 54 2.25 10533 7 87.04

5.3 (g) 6.18 30139 18 1.80 8426 5 72.22

5.3 (h) 86.20 403514 242 6.10 28555 18 92.56

5.3 (i) 19.10 93173 56 4.54 21253 13 76.79

 represents the estimated value by considering the embedding capacity per
cover-character as 1.75-bits; Relative Efficiency = 100 ((B / A) * 100);
SVGZ Scalable Vector Graphics Compressed; KB kilobyte

Chapter 6: Embedding Image

From Table 6.3, it can be noticed that the communication of images using the

SVGZ format has, considerably, reduced the size of required cover document.

However, one drawback noticed while communicating images in this format is that

the embedded image cannot be extracted completely in the case of transmission

errors. That is, even for single bit error a substantial portion of the image cannot be

retrieved. This can be inferred from Figures 6.2 and 6.3.

 This motivated to develop:

(i) a custom format that encompasses the structure or layout of image in the

form of codes

(ii) a text steganographic algorithm that interprets these codes and embeds them

using the attributes Color, Kerning and Spacing

The combination embeds the original structure of an image, as it is, inside a cover

document. Hence, in the case of transmission errors, extraction algorithm searches the

potential cover characters and continues extracting the codes, accordingly. This

provides the required error handling capabilities and, thereby, reduces loss of

information in addition to avoiding retransmission. The details are given in the

subsequent sections.

6.3 Custom Format to Represent an Image

The format defines various elements of an image and represents them as

codes. The procedure to convert an image into codes and vice versa is described

below.

Chapter 6: Embedding Image

(a)

(b)

Figure 6.2 Sample SVGZ file and corresponding image: (a) SVGZ file;
(b) Generated image

Chapter 6: Embedding Image

(a)

(b)

Figure 6.3 Sample SVGZ File (corrupted) and corresponding image: (a) Corrupted
SVGZ file; (b) Generated image

Chapter 6: Embedding Image

6.3.1 Elements of an Image

 Elements of an image are defined with respect to a grid, of equally spaced

horizontal and vertical lines, whose intersection points are called grid points. These

elements define the way the structure of the image traverses with respect to the grid

viz. from one grid point to another, and the text content that appeared in the image.

For example, in Fig. 6.4 (a), black lines form the structure of the image and is

the text content.

 (a) (b)

Figure 6.4 Sample image: (a) Without grid; (b) With grid

The classification and definition of various elements are discussed below, in

detail, using Figures 6.5 and 6.6. Various notations mentioned in these figures and the

rest of this chapter, are summarized in Table 6.4.

 Label: Text content of the image

 DP: It is the point of the image that coincides with the grid point. It

represents the direction to move to reach the next point where the structure of

the image traverses (exceptions are mentioned below)

 DCP: It is the point at which the structure changes its direction from one to

another

Structure

Text
Content

Grid
Point

Chapter 6: Embedding Image

Table 6.4 Used notations and their descriptions

Notation Description Notation Description

DP Directional point OPB The only point of a branch

DCP Direction changing point NHGL Number of horizontal grid line

TP Temporary point NVGL Number of vertical grid line

SP Split point H4 Hexadecimal value (Nibble)

FPoB First point of a branch NoB Number of branch

LPoB Last point of a branch Sp Single page

Figure 6.5 Picture depicting the various elements of an image

Figure 6.6 Picture depicting the three possible branches of an image

Chapter 6: Embedding Image

 TP: The disconnected objects of the image are connected using temporary

lines. There is no restriction in the direction or the point at which the

temporary line is drawn (but maintain the length of temporary line small).

The point at which the temporary line is drawn is the TP

 SP: It is a branching point where the structure splits (branches) in more than

one direction

 Branch or Path: It is nothing but a path after a SP. The branches of a SP are

traversed in the anti-clockwise direction starting from degree zero. The

number tagged with the branch represents the order in which they will be

traversed from the corresponding SP, while converting them to codes

 FPoB: The point of a branch, after a SP, which falls on the grid point

 LPoB: Except the last point (non-DP), all other points of a branch can be a

DP, DCP or SP (exception is OPB). The previous point of such non-DP is the

LPoB

 OPB: It is the only point of a branch

It should be noted that for a branch with only one or two points, the FPoB and LPoB

will be the same. Also, based on the starting point and the direction of the movement

chosen, the terminologies marked in Figures 6.5 and 6.6 will vary.

6.3.2 Code Representation of Elements

Table 6.5 provides the code representation of various elements of an image.

DP and DCP are represented by a nibble, H4, representing the direction to reach the

next grid point on the structure, from the current grid point. To find the direction, the

angle of the line obtained by connecting these grid points is used. All the possible

angles and their respective H4 values are given in Table 6.6.

Chapter 6: Embedding Image

Table 6.5 Elements of an image and their respective codes

Element Respective code Element Respective code

Label $ || # || $# FPoB (H4) || (Y, H4) and DP || DCP ||
TP || SP || OPB || LPoB

DP or DCP (*H4) OPB (+Y, 0000, X)

TP (*Y, H4) LPoB (*H4, X)

SP (+X, H4)

; represents that (Y, H4) and OPB cannot occur

Table 6.6 Possible angles and their respective H4

H4 Original angle of
line

Consolidated
angle

H4 Original angle
of line

Consolidated
angle

0000 0 || >350 & <360 0 1000 >157.5 & <=180 180.0

0001 >0 & <=22.5 22.5 1001 >180 & <=202.5 202.5

0010 >22.5 & <=45 45.0 1010 >202.5 & <=225 225.0

0011 >45 & <=67.5 67.5 1011 >225 & <=247.5 247.5

0100 >67.5 & <=90 90.0 1100 >247.5 & <=270 270.0

0101 >90 & <=112.5 112.5 1101 >270 & <=292.5 292.5

0110 >112.5 & <=135 135.0 1110 >292.5 & <=315 315.0

0111 >135 & <=157.5 157.5 1111 >315 & <=350 337.5

TP is represented as (Y, H4 4 represents the

direction.

SP is represented as (X, H4 the structure moves in

more than one direction from this point onward. H4 (exceptional for SP) represents the

NoB existing at this SP (exclude the path through which it reached this SP,

see Fig. 6.5). This makes the code to support a maximum of fifteen branches at a SP.

The FPoB is represented by two codes. The First code is the direction, from

the corresponding SP to the FPoB, which can either be (H4) or (Y, H4). The Second

code depends on the type of the second point of that branch which can be any code

Chapter 6: Embedding Image

other than the FPoB. It should be mentioned that the FPoB cannot have codes

(Y, H4)(
+Y, 0000, X), where, + the Label $ || NULL , as they represent

a temporary line.

dummy)

The LPoB is represented as (H4, X). H4

represents the end of the branch.

It should be noted that the Label is represented as a Flag in the code of other

elements, through which the structure traverses. It is inserted in the grid point that is

closer to the first character of the Label. The Flag nts that a

Label is attached to the current, next and both (current and next) grid points

respectively. It should be mentioned that, whenever a non-DP has a Label attached to

it, the previous grid point that has a DP or DCP or FPoB will carry the Flag as

the non-DP does not have a code (exception is OPB).

The Labels are written separately, with a delimiter, in the same order as the

Flags are inserted.

6.3.3 Image to Code Conversion Procedure

The procedure to convert a given image into custom defined codes is given

below. The disconnected objects in the image are connected using temporary lines

and the elements of the image like SP and DCP are identified (identification of such

elements is possible even in the absence of grid). A grid is chosen in such a way that

the maximum number of SP and DCP falls on grid points. Additional lines are drawn

to accommodate the points that do not fall on grid points (refer Fig. 6.7 (b)) and the

newly drawn lines are considered as normal grid lines.

Chapter 6: Embedding Image

 (a) (b)

Figure 6.7 Sample image with additional grid line: (a) Without grid; (b) With
grid

A random point on the grid, which coincides with the structure, is selected as

the origin (refer Fig. 6.8 (b)).

If the selected point is a DP, DCP, FPoB or TP, then the respective code is

written and the procedure is continued by selecting the next point of the structure.

 (a) (b)

CODE:
(0000)(0000)(0000)($0000)(0000)(0000)(0100)(0100)(0100)(0100)(1000)(1000)(X,001
0)(0110)(0110)(1010)(1010)(1100)(1100)(1100)(1100,X)(1000)(1000)(1000)(1000,X)

LABEL: 5 cm&

Delimiter: &

Figure 6.8 Sample image along with the corresponding code: (a) Without grid;
(b) With grid

Additionally
drawn line

DCP
or SP

Chapter 6: Embedding Image

If the selected point is a SP, then the respective code is written and the location

(x, y) of the SP (with respect to the grid) is stored repeatedly in a stack, corresponding

to the number of branches (for H4-1 times) at the SP. After this, each branch is

traversed separately in anti-clockwise direction, starting from zero degree, and

converted into codes.

Whenever the OPB or LPoB is encountered, the respective code is written and

the stack is checked for emptiness. If the stack is not empty, then an element is

popped from it and the procedure is continued from the popped (x, y) location

viz. traversing the other non-traversed branches. When the stack is empty, it

represents that the whole structure has been converted into codes successfully, which

ends the procedure.

Whenever a Label is encountered in the image, respective Flag is inserted in

the corresponding code and the encountered Label is stored separately.

This facilitates the custom format to represent the structure of an image in the

form of codes. Also, the number of codes does not depend on the resolution of the

image but depends, only, on that of the grid and the number of SP present in it. This

property makes the custom format to considerably reduce the number of bits that are

required to represent an image (details are provided later in Section 6.5.1).

A sample traversal of an image along with its corresponding codes is depicted

in Fig. 6.8. Following the arrows, the complete image is converted to its respective

code by employing the details given in Tables 6.5 and 6.6.

6.3.4 Code to Image Conversion Procedure

The procedure to convert the, custom defined, codes into an image is

described below. To draw the image, the procedure uses line drawing application like

Chapter 6: Embedding Image

Microsoft (MS) Word, that allows drawing lines of predefined length (base length is

considered as 0.5 cm and the length of the line, to be drawn, is determined using its

angle and trigonometric equations [152]).

First, a stack is declared. The point corresponding to the origin is chosen and

the codes are read one by one. Based on the read code, a line is drawn in the direction

of the consolidated angle as specified in Table 6.6. Whenever a TP is encountered, the

cursor is moved in the specified direction without drawing any line. Whenever a SP is

encountered, the location of the current point, say (x, y), is stored for (H4-1) times in

the stack. After this, the codes are read sequentially and the lines are drawn

accordingly.

Whenever a LPoB is encountered, a line is drawn and an element is popped

from the stack. Now the cursor is moved to the respective location in the application.

After this, the codes are read sequentially and the lines are drawn as explained.

Whenever an OPoB is encountered, an element is popped from the stack and the same

procedure explained for LPoB is followed.

Whenever a Flag is encountered, during the process, corresponding Label is

retrieved and inserted in the image accordingly. The procedure ends once all the codes

are converted into corresponding lines.

6.4 Methodology Adopted to Develop Method-C

Method-C has been developed as four modules (see Fig. 6.9). The first

module, image to code conversion algorithm, converts an image into codes. The

output of this module and the cover document are fed as input to the, second module,

embedding algorithm.

Chapter 6: Embedding Image

Figure 6.9 Modules of Method-C. NHGL Number of Horizontal Grid Line;
NVGL Number of Vertical Grid Line

Embedding algorithm

Position of the Origin, Formatting
information, Location of the first

Label, & Stego work

Stego work &
Location of the

first Label

Extraction algorithm

Formatted
stego work

Formatting
process

Code
extraction
process

Position of the
Origin

Formatting
information

CODE & Position
of the Origin

Position of the Origin,
LABEL and CODE

Image to code
conversion algorithm

LABEL

NHGL & NVGL, Position of the Origin,
CODE and LABEL (Text files)

Image (Secret message)

Cover
work

NHGL &
NVGL

Code
embedding

process

Label
embedding

process
(UniSpaCh)

Undo
formatting

without
disturbing
the font

attributes

Formatting
process

Formatted
cover
work

Modified
cover
work

Label
extraction

process

Image drawing
algorithm

Embedded image

Stego
work

Chapter 6: Embedding Image

The embedding algorithm formats the cover document and then embeds the codes

inside it by modifying the font attributes. In addition, it embeds the Labels using

UniSpaCh (the reason for choosing UniSpaCh over Method-B is explained later in

Section 6.5.5). The third module, extraction algorithm, extracts the embedded codes

and Labels, and stores them in separate files. The fourth module, image drawing

algorithm, draws the embedded image using the extracted codes and inserts the

Labels, accordingly. All these algorithms are explained below in detail.

6.4.1 Image to Code Conversion Algorithm

As mentioned in Section 6.3.3, the algorithm converts image into codes. It

generates two text files, called CODE (contains codes) and LABEL (contains Labels),

and information such as NHGL, NVGL, position of the Origin, as output.

6.4.2 Embedding Algorithm

Embedding algorithm considers CODE and LABEL as the secret message and

embeds them inside the cover document using the attributes Color, Kerning and

Spacing. The information related to FPoB and TP are embedded in the least

significant bit of Color (RGB), indicated as A, B and C respectively.

FPoB, LPoB, SP and H4 values are embedded in Kerning, indicated by D to M

as shown in Table 6.7. After modifying the corresponding bits, they are converted to

their equivalent decimal value, which is then added to a default value (say 100). The

resultant is the required kerning value of the character.

Table 6.7 Kerning value

Bit position 9 8 7 6 5 4 3 2 1 0 Kerning value

Indication M L K J I H G F E D 100 + Decimal value of D to M

Chapter 6: Embedding Image

Flags are embedded in the Spacing as specified in Table 6.8. Although, the

algorithm supports the codes to be embedded in multiple pages (for bigger images),

we restrict our discussion to a single page, Sp.

Table 6.8 Flags and their respective spacing values

Flag Spacing

$ -0.1

-0.2

$# +0.1

NULL Default

To begin with, the embedding algorithm formats Sp into a monospaced font

(every letter is the same width [153]), like Courier New, with equal number of

VGL and the

HGL (this can be achieved by varying the font size and

line spacing). The number of characters per line and the number of lines in Sp are the

Formatting information. Except the characters on edges, all others have eight

neighbors (Right, Top-Right, Top, Top-Left, Left, Bottom-Left, Bottom and

Bottom-Right). These eight neighbors are used to accommodate the sixteen possible

directions (refer Table 6.6), as shown in Table 6.9. This limits the algorithm to

support a maximum of seven branches at a SP.

Table 6.9 Selecting one character from eight neighbors based on H4

H4 Selected

neighbor

H4 Selected

neighbor

0000 Right 1000 Left

0001, 0010, 0011 Top-Right 1001, 1010, 1011 Bottom-Left

0100 Top 1100 Bottom

0101, 0110, 0111 Top-Left 1101, 1110, 1111 Bottom-Right

Chapter 6: Embedding Image

Now, a stack is declared and the character corresponding to the origin is

selected to embed the first code. The codes are embedded based on the type of Form,

which is discussed below in detail. After embedding a code, the H4 value of the

embedded code is used to select the next character to embed the next code.

 Form 1: (*H4) The H4 4 = 0,

4

 Form 2: (+X, H4) The H4

no., char no.),

where this code is embedded, is stored in the stack for (H4-1) times. By

default, Form 2 is followed by Form 3

 Form 3: The two (First and Second) codes that immediately follow Form 2

The code of this Form represents the FPoB corresponding to a SP. The H4

value of the First code is used to choose one of the neighboring characters to

embed Form 3. The H4 value of the First code is embedded at position

4 value of the Second code is embedded at position

First code, if any, is embedded at position

4 value of the First code

Based on the Form of Second code, it is embedded in the appropriate position

and corresponding action is taken based on its Form

 Form 4: (*Y, H4) The H4

6.9, the next character is

selected using H4

 Form 5: (*H4, X) The H4

default, Form 5 is followed by Form 7

Chapter 6: Embedding Image

 Form 6: (+Y, 0000, X) The H4

default, Form 6 is followed by Form 7

 Form 7: The two (First and Second) codes that immediately follow Form 5 or

Form 6 The code of this Form represents the FPoB corresponding to a SP.

When Form 7 is encountered, an element is popped from the stack. The

character at the popped location is selected and the procedure is continued

further. Form 7 is embedded in the same manner as explained in Form 3.

After embedding the codes, appropriate action is taken based on the Form of

Second code

In all the a + (refer Table 6.5).

These are embedded by setting the corresponding spacing values as specified in

Table 6.8.

After embedding the codes, all format related modifications are reverted without

disturbing the font attributes. Now, a character is selected and the Labels that are

present in LABEL are embedded using UniSpaCh.

After embedding all the Labels, the embedding procedure ends. The generated

stego work is communicated to the receiver. Also, information such as the position of

the origin, Formatting information, Label separator and position of the first Label are

communicated.

6.4.3 Extraction Algorithm

Extraction procedure is the reverse of the embedding process. To start with,

the Labels are extracted from the received document using UniSpaCh and stored in a

file called LABEL. Now, the formatting process identical to that of the embedding

Chapter 6: Embedding Image

algorithm is performed. Locations (line no., char no.) of all the stego characters are

identified and stored in an Also, a stack is declared and a file called

CODE is used to write the extracted codes. Now, the character corresponding to the

origin is selected and the procedure followed is shown in

Figures 6.10 (A), (B) and (C).

The extraction algorithm identifies the Form of code embedded in the selected

character. When either a Form 1 or Form 4 is identified, the code is written in the file

and the next character is selected (using H4) to proceed further.

When a Form 2 is identified, the neighbors that carry the associated Form 3

are recognized in the clockwise direction starting from the Bottom-Right neighbor.

Location(s) of the recognized neighbor(s) are stored in that order in the stack, and the

code (X, no. of neighbors recognized) is written in file. Doing so, automatically

handles the errors that are caused in Form 2, and in the First code of Form 3 and

Form 7. Now, the topmost element from the stack is popped and the extraction

process continues from that location.

Suppose, when a Form 2 is identified and no neighbors carry an associated

Form 3, then the value of H4 Form 1 is

followed. Else, a tag

branches are traversed by popping an element from the stack.

When either a Form 3 or Form 7 is identified, the First code is written in the

file. If the Second code is present, then appropriate action is taken based on the Form

of Second code. Else, the code (Y, 0000, X) is written in the file to handle the error

that is caused in the Second code. After this, the other branches are traversed, if any,

as explained above.

Chapter 6: Embedding Image

Figure 6.10 (A) Extraction algorithm: flowchart 1

Is it in
SC?

Add (x, y) of
the Selected

Character in SC

Execute
ACTION Z

Identify the Form (if FAm)

m
u

Select the origin character

B

Execute
ACTION Z

m

A

Write
the code

Form 5 || 6 Form 2 FAu

Write the
code and

Select_next

Write the
First code

Is Second
code

identified?

Act according
to the Form of
Second code

A

Form 3 || 7

No Yes

B C
D

Note:

 SC ArrayList

 Whenever a code is extracted from a character or ACTION Z is executed, remove
the currently Selected C from SC

 FAu Font attribute is unmodified

 FAm Font attribute is modified

 Select_next Select next character using Table 6.9

 ACTION Z If the Selected Character has Form 3 || 7, then write (Y, 0000, X). Else,
append the tag the most recently written code

Form 1 || 4

Chapter 6: Embedding Image

Figure 6.10 (B) Extraction algorithm: flowchart 2

Yes
1) Location of identified

neighbors, which are in
SC, is stored in the
stack

2) Write (X, no. of
identified neighbors
that are in SC)

Yes

Identify the
neighbors

Whether any neighbor
carries FPoB

corresponding to the
Selected Character?

Yes

Is the
stack

empty?

Pop the topmost
element from the stack
& select the character

in that location

E

B

Is the
Selected

Character has
Form 2?

Is H4

= 0?

Execute
ACTION Z

Write
(0000) and
Select_next

No

No
No

C

Yes

Is any
neighbor
in SC?

Execute
ACTION Z

None
present

At least one
neighbor is present

A D

B

A

No

Chapter 6: Embedding Image

Figure 6.10 (C) Extraction algorithm: flowchart 3

Is there any
character having
a Form 2, which
is pointed only
by a character

having a Form 3
|| Form 7, present

in SC?

Stop the algorithm
with error message

No

Is there any
character

having a Form
1 || Form 4,
which is not

pointed by any
other character,
present in SC?

Is SC
empty?

Is SC
empty?

No Report error

Yes

Yes

Yes

Is ACTION Z
executed at any

point?

Stop the
algorithm with

success message

Yes

E

No

Yes

Select one such
character

Is there any
character,
having a
Form 3 ||
Form 7,

present in
SC?

Select a new line in file

Write the location of the
Selected Character in file

B

No

No

F

Yes

Select a
character
from SC

F

F

No

Chapter 6: Embedding Image

When either a Form 5 or Form 6 is identified, the code is written in the file

and the other branches are traversed, if any.

Error Handling

It should be noted that, whenever a code is extracted from a character, the

location of that character is removed from Hence, trying to pop from an empty

stack, with some elements left in , indicates the occurrence of error in Form 1,

Form 3 or Form 7. These errors are handled by picking an element from and

begin extracting codes from that location (refer Fig. 6.10 (C)).

Also, whenever an unmodified character is encountered, during the extraction

process, it first checks whether any of its neighbors carry Form 3 corresponding to the

selected character (refer Figures 6.10 (A) and (B)). If any, then it considers that the

selected character has carried Form 2 and proceeds further with the procedure of

Form 2. If no such Form 3 is present, then the tag

recently written code. After this, an element is popped from the stack

and the same procedure is followed as explained above. This shows that the errors

caused during transmission will affect only that particular code but not the complete

image. This is achieved due to the structural embedding nature of the embedding

algorithm which facilitated the extraction algorithm to handle the above-mentioned

errors.

6.4.4 Image Drawing Algorithm

The image drawing algorithm follows the same procedure explained in

Section 6.3.4. During the process, any code with a tag is considered as a normal code

and the procedure is followed accordingly. Also, whenever a new line is encountered

Chapter 6: Embedding Image

in CODE, the cursor is moved to the corresponding location in the line drawing

application and the procedure is continued as explained.

6.5 Evaluation and Security Aspect

This section discusses the various parameters that are used to evaluate

Method-C and the security aspects in some detail.

6.5.1 Size Comparison

An image is converted into custom defined format and then embedded inside a

cover document. Hence to find the efficiency of the custom format, it is compared

with the vector format (SVGZ file of Adobe Illustrator). The results are listed in

Table 6.10, and the generated images of both formats are shown in

Figures 6.11 (A), (B) and (C).

Table 6.10 Sizes of images in custom and SVGZ formats

Figure
no.

SVGZ file in
bits (A)

Custom format (in bits) Efficiency
(in %)

CODE LABEL Total (B)

5.3 (a) 7240 765 848 1613 77.72

5.3 (b) 7184 765 1176 1941 72.98

5.3 (c) 10895 1611 784 2395 78.02

5.3 (d) 13353 3312 728 4040 69.74

5.3 (e) 19497 5517 NA 5517 71.70

5.3 (f) 18432 5913 1224 7137 61.28

5.3 (g) 14746 5346 760 6106 58.59

5.3 (h) 49971 16101 2208 18309 63.36

5.3 (i) 37192 7272 7216 14488 61.05

 each code can be represented as a 9-bit binary string using the structure

4 each character in LABEL is represented by an 8-bit ASCII value;

 Relative Efficiency = 100 ((B / A) * 100); SVGZ Scalable Vector Graphics
Compressed; NA not applicable

Chapter 6: Embedding Image

SVGZ format images Custom format images

(a)

(a)

(b)

(b)

(c)

(c)

Figure 6.11 (A) Generated images of SVGZ and custom formats part 1:
(a) Road map from kalpakkam to anupuram; (b) Graph;
(c) Electronic circuit diagram

Chapter 6: Embedding Image

SVGZ format images Custom format images

(d)

(d)

(e)

(e)

(f)

(f)

Figure 6.11 (B) Generated images of SVGZ and custom formats part 2:
(d) Civil drawing of stairs; (e) Boiling water reactor;
(f) Schematic diagram of thermal power plant

Chapter 6: Embedding Image

SVGZ format images Custom format images

(g)

(g)

(i)

(i)

(h) (SVGZ format image)

(h) (Custom format image)

Figure 6.11 (C) Generated images of SVGZ and custom formats part 3:
(g) Nuclear power plant steam generation; (h) Reactor flow

sheet; (i) Reactor core

Chapter 6: Embedding Image

From Table 6.10, it is evident that the custom format efficiently represents

images in smaller sizes, when compared with the SVGZ file format.

6.5.2 Embedding Capacity

Embedding capacity is the maximum amount of information that can be

hidden in a given cover medium. Since an image is embedded, in the form of codes,

its embedding capacity can be defined in two different ways: one is based on the size

of the image (equation 6.1) and the other is based on the total size of its CODE and

LABEL (equation 6.2).

To verify the embedding capacity, the custom format of the images

(mentioned in Table 6.10) is embedded inside a cover document and the results are

listed in Table 6.11.

From Table 6.11, it is noticed that the embedding capacity of Method-C varies

from one image to another and is not uniform, unlike the methods Method-A and

Method-B. This is due to the structure of the respective images.

6.5.3 Bits per Distortion

The custom format first identifies the various elements of an image and

represents them as codes. These codes are then embedded inside the cover document.

Hence, bits/distortion of the method, also, varies from code to code and is not

Chapter 6: Embedding Image

uniform. That is, different stego characters carry different number of secret bits. For

example, the cover character which embeds a DP or DCP, represented by

(H4 Labels, embeds 4-bits/distortion whereas a SP, TP and

LPoB, represented by (X, H4), (Y, H4) and (H4, X) respectively, embeds

5-bits/distortion.

Table 6.11 Results of embedding the custom format

Figure
no.

No. of cover characters encountered
while embedding

Embedding capacity

CODE* LABEL CODE +
LABEL

Image
Space

Code
Space

5.3 (a) 1787 811 2598 2.79 0.62

5.3 (b) 764 1124 1888 3.81 1.03

5.3 (c) 557 750 1307 8.34 1.83

5.3 (d) 821 696 1517 8.80 2.66

5.3 (e) 3667 NA 3667 5.32 1.50

5.3 (f) 6057 1170 7227 2.55 0.99

5.3 (g) 1188 727 1915 7.70 3.19

5.3 (h) 6996 2111 9107 5.49 2.01

5.3 (i) 2695 6899 9594 3.88 1.51

* includes the space characters that was removed during the formatting

process; embedding capacity of UniSpaCh is considered as
1.046-bits/cover-character; NA not applicable

Further analysis concluded that the method embeds a minimum number of bits

(4-bits/distortion), when a cover character carries a DP or DCP, and a maximum

number of bits (12-bits/distortion), when a cover character carries a FPoB with codes

(Y, H4)($#H4, X) or (Y, H4)($#Y, H4).

6.5.4 Secrecy

As three attributes Color, Kerning and Spacing are utilized to embed the

secrets, the imperceptibility level of the method is tested with different images. For

Chapter 6: Embedding Image

example, the code given in Fig. 6.8 is considered and its working is illustrated in

Fig. 6.12 by taking the origin as (7, 1).

Figure 6.12 Sample output of Method-C. *Stego characters are highlighted for
understanding purpose

By looking at both the cover and stego work of Fig. 6.12, it can be verified that the

embedding procedure has not created any visual difference between them. This

validates that the developed method achieves high imperceptibility.

6.5.5 Comparison of Method-B and Method-C

In Section 5.7 of Chapter 5, it was shown that Method-B outperforms the best

existing method, UniSpaCh. Hence, Method-B has been considered as a benchmark

and compared with Method-C based on the number of stego characters (cover

characters whose font attributes are modified) and page requirements. The results are

provided in Table 6.12.

From Table 6.12, it can be noticed that Method-C uses UniSpaCh to embed

the Labels, and still it embeds the images in smaller size cover document with less

number of modifications. This shows that the results can further be improved by using

Method-B to embed the Labels.

Chapter 6: Embedding Image

6.5.6 Transmission Error

During communication between sender and recipient, transmission errors can

occur which can corrupt some of the stego characters. As the developed method

embeds the structure of an image, as it is, corruption of an embedded secret in a stego

character will affect only that code but not the complete image. This property paves a

way for the receiver to handle transmission errors to some extent and extract the

embedded image.

Table 6.12 Comparison of Method-B and Method-C

Figure
no.

Method-C Method-B
embedding SVGZ

images

Efficiency based
on no. of

No. of stego characters
to embed

No. of
pages

(B)
COD

E
LAB
EL

CODE +
LABEL

(A)

No. of
stego

characters
(C)

No. of
pages

(D)

Stego
charact

ers

Pages

5.3 (a) 80 424 504 2 1810 3 72.15 33.33

5.3 (b) 76 588 664 2 1796 3 63.03 33.33

5.3 (c) 144 392 536 1 2724 4 80.32 75.00

5.3 (d) 280 364 644 1 3338 5 80.71 80.00

5.3 (e) 613 0 613 3 4874 7 87.42 57.14

5.3 (f) 657 612 1269 5 4608 7 72.46 28.57

5.3 (g) 490 380 870 2 3687 5 76.40 60.00

5.3 (h) 1420 1104 2524 6 12493 18 79.80 66.67

5.3 (i) 591 3608 4199 6 9298 13 54.84 53.85

 Relative Efficiency = 100 ((A / C) * 100) Relative Efficiency =
100 ((B / D) * 100); SVGZ Scalable Vector Graphics Compressed

To illustrate this, the color patterns given in Table 6.13 were used while

executing the procedure shown in Figures 6.10 (A), (B) and (C). Based on the

correctness of extracted code and the execution status of extraction algorithm, an

appropriate color is applied to the currently selected character for the primary

Chapter 6: Embedding Image

identification of transmitted image. As the process of distorting a non-stego character

does not affect the method developed in the present work, an illustration is provided

in Figures 6.13 (A) and (B), by distorting 15% of the stego characters in a stego work.

It should be noted that the extraction algorithm can extract the embedded image, with

ease, even when 15% of the embedded secrets were distorted. In addition to applying

the color patterns, the image drawing algorithm draws the embedded image as

explained in Section 6.4.4.

Table 6.13 Used color patters to color the currently selected character

Execution
status

Correctness of extracted code Color
pattern

(R,G,B)

Before
reporting

error

Non-error (0,255,0)

H4 mismatch with the number of identified neighbors (for a
SP) or a non-stego character is selected whose neighbors

carry the corresponding FPoB

(255,0,0)

Appended tag ile (155,74,7)

After
reporting

error

Non-error (0,0,255)

H4 mismatch with the number of identified neighbors (for a
SP) or a non-stego character is selected whose neighbors

carry the corresponding FPoB

(117,117,5)

Appended tag ile (121,13,108)

H4 Hexadecimal value; FPoB first point of a branch; SP split point

(a)

(b)

Figure 6.13 (A) Illustration of handling transmission error: (a) Original image;
(b) Transmitted image

Chapter 6: Embedding Image

(c)

(d)

(e)

(f)

Figure 6.13 (B) Illustration of handling transmission error: (c) Stego characters at
sender side (highlighted for understanding purpose);
(d) Identified stego characters after the occurrence of error
(15% of stego characters have been distorted); (e) Applied color
patterns for the stego characters in Fig. 6.13 (B) (d)
during extraction; (f) Extracted image from Fig. 6.13 (B) (d)

Chapter 6: Embedding Image

6.6 Summary

In this chapter, the large cover document requirement of Method-B is

addressed for a specific category of images. First, the size of the image is reduced to

the extent possible through vector formats and then embedded them using Method-B.

It is seen that the best vector format, SVGZ, considerably reduced the page

requirement. However, even for single bit error, the method failed to extract a

substantial portion of the image. To account for the same, error correcting codes has

to be introduced as a part of embedding procedure, which increases the size of

message that needs to be embedded. This is not an encouraging one. Hence, it is

identified that an embedding algorithm that provides the necessary error handling

capabilities to extraction algorithm, without adding redundancy, is a necessary one.

To achieve the same, a novel method (Method-C) has been developed to

convert images into a custom format and embed the same along with the structure of

image. This structural embedding nature facilitated the extraction algorithm to handle

transmission errors. The error handling capabilities of the developed method are

inspected and an illustration is, also, provided. The output file sizes of the custom and

SVGZ formats are compared to verify the efficiency of the former format. Further

evaluation led to the conclusion that the method has non-uniform embedding capacity

and bits/distortion.

CHAPTER 7

SUMMARY AND SCOPE FOR FUTURE

INVESTIGATIONS

This chapter gives the summary of the work carried out, methods developed

and conclusions arrived at, and future work that can be pursued.

7.1 Summary and Conclusions

Digital communication plays an important role in connecting the

geographically distributed individuals as well as organizations. Today, even sensitive

information is being communicated employing internet. As information security is of

utmost priority for the organizations, achieving the same is a challenging task while

using the public network. Though cryptography could be used to enhance the

information security, it cannot hide its own presence from the attackers.

Alternatively, steganography, an information security measure, averts such

attention by performing the communication in a stealthy manner. It hides the secret

information in the redundant information of an innocent looking cover medium by

making unnoticeable modifications. This characteristic attracted and narrowed down

the research interest of the work, to be carried out as a part of the dissertation, to

steganography.

Of the various cover types, documents containing texts are widely used by the

organizations and are communicated using public networks. Also, text documents

require low bandwidth during communication. Due to these advantages, the work

carried out in the present study involves the development of efficient text

stegnographic techniques for a safer and stealthier communication.

Chapter 7: Summary and Scope for Future Investigations

A brief study on existing text steganographic methods was carried out and

discussed in Chapter 2. A detailed comparison of the methods was presented and it

led to the conclusion that UniSpaCh stands best among the rest. It was also noticed

that, apart from the methods that generate the stego document directly, embedding

capacity and bits/distortion of the existing methods are inversely proportional. As a

result of this, embedding secret messages that are larger in size is not easy to be met

by text steganographic techniques. This necessitated the development of novel

methods, with high embedding capacity and bits/distortion, in the current scenario.

Based on a detailed analysis, it was understood that this limitation can be

addressed by designing a method that: (i) embeds maximum number of data bits in a

distortion; (ii) utilizes the available embedding space in an efficient manner. Bearing

this in mind, features of various word processors were studied to identify the best

word processor that supports steganography, along with the best feature that can carry

a large number of bits per distortion. The possible ways to exploit the available font

attributes was demonstrated in Chapter 3. The results led to the conclusion that the

word processor Microsoft (MS) Word stands best with the attributes Color, Kerning

and Spacing providing excellent opportunities to hide data.

After identifying the possible way to achieve high bits per distortion in

Chapter 3, the potential techniques to improve the utilization of the available

embedding space were explored and discussed in Chapter 4. Of the presented

steganographic techniques, Cover_Document_Required (CDR) techniques consider

the secret message as characters and embed them directly inside cover documents.

This makes these methods an optimum choice for embedding text as they embed

8-bits/distortion. However, due to the non-uniform occurrence probabilities of

characters in the cover document, the available embedding space gets wasted

Chapter 7: Summary and Scope for Future Investigations

whenever a low occurring character needs to be marked. This affected the overall

embedding capacity of these techniques.

The necessary measures to handle this limitation were identified and reported,

in Chapter 4, along with a novel method (Method-A) that uses the attribute Spacing to

embed the secrets. The method introduced two new techniques Frequency

Normalization Set (FNS) and Character & String Mapping (CSM). The combination

(FNS and CSM) allowed single secret character to get embedded in multiple cover

characters. This boosted the embedding probabilities of low and average occurring

characters, and made the embedding probabilities of all the characters uniform. As a

result, the method achieved an average embedding capacity of 2.22-bits/

cover-character with 8-bits/distortion. This facilitated to, considerably, reduce the size

of cover document and number of modifications that are required to embed the

secrets. However the method restricted the secret message to contain only English

alphabets, Dot and Space (ADS) characters. This drawback limited the method from

embedding messages that contains numbers and special characters viz. mobile, credit

card, debit card, etc.

This limitation was addressed, in Chapter 5, by extending Method-A into a

mixed-type embedding technique (Method-B) that embeds binary data. This was

possible by converting the binary data into ADS characters, using a one-to-many

mapping module called Binary to Character Converter (BCC). As the converted

message looked almost identical to the secret message used in Chapter 4, the

embedding and extraction procedures of Method-A successfully utilized them with

ease. Experiments were conducted using various secret messages. The results depicted

that the conversion procedure of Method-B has reduced the earlier attained

embedding capacity and bits/distortion of Method-A by 12.5% and 50% respectively.

Chapter 7: Summary and Scope for Future Investigations

A case study on nuclear power plant related images concluded that Method-B

has reduced the size of required cover document by 38.42%, when compared with

UniSpaCh. But, it still requires more than hundred pages of cover document when the

KB. This limitation is applicable to any type of binary data and

handling such limitation differs from one data type to another.

In Chapter 6, this drawback was addressed for a specific category of images

such as engineering drawings, roadmaps, graphs, etc. At first, an attempt was made to

reduce the size of images through vector formats and then embedded them using the

method explained in Chapter 5, Method-B. The vector format, SVGZ, considerably

reduced the page requirement. However, even for single bit error, the method failed to

extract a substantial portion of the image. It was observed that no existing method can

provide the required error handling capabilities without increasing the size of secret

message.

In Chapter 6, this issue was addressed by developing a novel method

(Method-C) that represents an image in a custom format, with reduced size, and then

embeds the same along with the structure of image. This structural embedding nature

provided the extraction algorithm the expected error handling capabilities. The same

has been inspected and an illustration is, also, provided in this chapter. Further

evaluation concluded that, the method has non-uniform embedding capacity and

bits/distortion.

The work carried out as part of the thesis has resulted in three novel methods

that achieve high embedding capacity and bits/distortion:

(i) Method-A embeds secret text, that contains ADS characters, using the

attribute Spacing

(ii) Method-B embeds binary data using the attribute Spacing

Chapter 7: Summary and Scope for Future Investigations

(iii) Method-C embeds a specific category of images, along with their structure,

using the attributes Color, Kerning and Spacing

Key findings of the thesis are summarized below:

 Character-level embedding techniques stand best, in terms of bits/distortion,

by embedding 8-bits at a time

 Amongst the available methods, UniSpaCh stands best with an average

embedding capacity of 1.046-bits/cover-character -bits/distortion

(this is based on the literature survey)

 Except those methods that generate the stego document directly, no existing

method was found to achieve both high embedding capacity and

bits/distortion

 MS Word stands best for steganographic usage when compared with other

word processors like OpenOffice, LibreOffice and WordPerfect

 Font attributes Color, Kerning and Spacing of MS Word achieves high

imperceptibility level and embedding capacity

 Irrespective of the non-uniform occurrence probabilities of secret characters

in cover documents, uniformity in embedding probability is possible in CDR

techniques

 Size of cover document, required to embed images, can be reduced through

vector formats

 Embedding images with error handling capabilities is achievable in text

steganography

Chapter 7: Summary and Scope for Future Investigations

7.2 Scope for the Future Work

The work carried out in the present study suggests that the following

investigations could be taken up in future:

 A method to embed chemical equations and mathematical expressions could

be developed

 Other possible objects of text documents such as table, graph, chart, equation,

etc., could be explored

 The developed methods, Method-A and Method-B, could be extended to

employ randomization in the embedding procedure by using a secret key and

pseudo-random number generator

 Other document formats, like Portable Document Format (PDF), electronic

publication (ePub), PostScript (PS), etc., could be explored to embed the

secrets

REFERENCES

[1] Rob Kitchin, The data revolution: Big data, open data, data infrastructures and

their consequences.: Sage, 2014.

[2] Sarah Genner, ON/OFF: Risks and rewards of the anytime-anywhere internet.:

vdf Hochschulverlag AG, 2017.

[3] Lucy A. Tedd and J. A. Large, Digital libraries: Principles and practice in a

global environment.: Walter de Gruyter, 2005.

[4] Bhadoria et al., Exploring enterprise service bus in the service-oriented

architecture paradigm.: IGI Global, 2017.

[5] Miranda Walker, Cambridge national level 1/2 child development.: Hachette

UK, 2017.

[6] Constantine Photopoulos, Managing catastrophic loss of sensitive data: A guide

for IT and security professionals.: Syngress, 2011.

[7] Anne Rooney, Computer science and IT: Investigating a cyber attack.: Raintree,

2014.

[8] Sean G. Lowther, An employee's guide to safeguarding sensitive information

properly: 12 keys every employee should know.: BookBaby, 2012.

[9] [Online]. http://money.cnn.com/2017/09/01/technology/business/instagram-hac

k/index.html [Last accessed on 27.8.2017].

[10] [Online]. https://www.cnbc.com/2016/05/13/a-surprising-source-of-hackers-and

-costly-data-breaches.html [Last accessed on 27.8.2017].

References

[11] [Online]. http://www.13newsnow.com/news/local/employee-data-breach-report

ed-at-tcc/102256781 [Last accessed on 27.8.2017].

[12] [Online]. https://economictimes.indiatimes.com/small-biz/security-tech/security

/the-worst-cyber-attacks-of-2016/articleshow/56212448.cms [Last accessed on

27.8.2017].

[13] [Online]. http://www.computerworld.com/article/3088907/security/hacker-sellin

g-655-000-patient-records-from-3-hacked-healthcare-organizations.html [Last

accessed on 27.8.2017].

[14] [Online]. http://www.encyclopedia.com/history/energy-government-and-defens

e-magazines/chemical-terrorism-threats [Last accessed on 27.8.2017].

[15] [Online]. http://www.dailymail.co.uk/news/article-2524082/All-US-Armys-secr

et-bases-mapped-Google-maps.html [Last accessed on 27.8.2017].

[16] Sudhi R. Sinha and Youngchoon Park, Building an effective IoT ecosystem for

your business.: Springer, 2017.

[17] [Online]. https://academlib.com/26640/computer_science/security_threats [Last

accessed on 27.8.2017].

[18] James M. Stewart, Mike Chapple, and Darril Gibson, CISSP: Certified

information systems security professional study guide.: John Wiley & Sons,

2012.

[19] P. Thiyagarajan, Prasanth Kumar Thandra, J. Rajan, S.A.V. Satyamurthy, and

G. Aghila, "Shamir Secret Sharing Scheme with Dynamic Access Structure

(SSSDAS): Case study on nuclear power plant," Kerntechnik, pp. 150-160, May

2015.

[20] Rachael Lininger and Russell Dean Vines, Phishing: Cutting the identity theft

 References

line.: John Wiley & Sons, 2005.

[21] Wenke Lee, Cliff Wang, and David Dagon, Botnet detection: Countering the

largest security threat.: Springer Science & Business Media, 2007.

[22] Karen Scarfone, Technical guide to information security testing and assessment:

Recommendations of the national institute of standards and technology.: Diane

Publishing, 2009.

[23] Mauricio Arregoces and Maurizio Portolani, Data center fundamentals.: Cisco

Press, 2003.

[24] Charles P. Pfleeger and Shari Lawrence Pfleeger, Security in computing.:

Prentice Hall Professional, 2003.

[25] Information security and privacy in network environments.: Diane Publishing,

1994.

[26] Kevin Beaver and Peter T. Davis, Hacking wireless networks For dummies.:

John Wiley & Sons, 2011.

[27] [Online]. https://www.technologyreview.com/s/600715/nsa-says-it-must-act-no

w-against-the-quantum-computing-threat/ [Last accessed on 27.8.2017].

[28] [Online]. https://ercim-news.ercim.eu/en90/special/advances-in-hash-function-c

ryptanalysis [Last accessed on 27.8.2017].

[29] [Online]. https://www.scmagazineuk.com/freak-ssl-flaw-affects-mobile-browser

s-thousands-of-websites/article/537461/ [Last accessed on 27.8.2017].

[30] [Online]. https://www.csoonline.com/article/3040534/security/latest-attack-agai

nst-tls-shows-the-pitfalls-of-intentionally-weakening-encryption.html [Last acc-

essed on 27.8.2017].

References

[31] [Online]. https://www.helpnetsecurity.com/2017/09/27/atm-network-based-attac

ks/ [Last accessed on 27.8.2017].

[32] [Online]. https://www.helpnetsecurity.com/2015/02/16/carbanak-cyber-gang-sto

le-hundreds-of-millions-from-banks/ [Last accessed on 27.8.2017].

[33] [Online]. https://www.helpnetsecurity.com/2016/11/22/cobalt-hackers-synchron

ized-atm-heists/ [Last accessed on 27.8.2017].

[34] [Online]. https://documents.trendmicro.com/assets/white_papers/wp-cashing-in-

on-atm-malware.pdf [Last accessed on 27.8.2017].

[35] Nighat Mir, "Zero watermarking for text on WWW using semantic approach,"

in Second International conference on software engineering and computer

systems, 2011, pp. 306-316.

[36] Esra Satir and Hakan Isik, "A compression-based text steganography method,"

The journal of systems and software, pp. 2385 2394, 2012.

[37] Joachim Eggers and Bernd Girod, Informed watermarking.: Springer Science &

Business Media, 2012.

[38] Behrouz A Forouzan and Debdeep Mukhopadhyay, Cryptography and network

security.: Tata McGraw-Hill Education, 2011.

[39] Dale Liu, Next generation SSH2 implementation: Securing data in motion.:

Syngress, 2011.

[40] Stefan Katzenbeisser and Fabien A. P. Petitcolas, Information hiding techniques

for steganography and digital watermarking.: Artech House, 2000.

[41] Zhi-Hui Wang, Chin-Chen Chang, Chia-Chen Lin, and Ming-Chu Li, "A

reversible information hiding scheme using left right and up down chinese

character representation," The journal of systems and software, pp. 1362 1369,

 References

2009.

[42] H. Berghel and L. O'Gorman, "Protecting ownership rights through digital

watermarking," Computer, vol. 29, no. 7, pp. 101-103, 1996.

[43] Laura Millar, Archives: Principles and practices.: Facet Publishing, 2010.

[44] Chin-Chen Chang and The Duc Kieu, "A reversible data hiding scheme using

complementary embedding strategy," Information sciences, pp. 3045 3058,

2010.

[45] [Online]. http://searchsecurity.techtarget.com/video/How-to-use-OpenPuff-steg

anography-to-send-sensitive-info-securely [Last accessed on 27.8.2017].

[46] [Online]. https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-

breaking-crypto/115069/ [Last accessed on 27.8.2017].

[47] [Online]. https://www.wired.com/2013/09/nsa-backdoor/ [Last accessed on

27.8.2017].

[48] [Online]. https://www.safaribooksonline.com/library/view/web-security-privacy

/0596000456/ch04s04.html [Last accessed on 27.8.2017].

[49] [Online]. https://motherboard.vice.com/en_us/article/3dabbw/NIST-quantum-co

mputers-can-crack-its-encryption-RSA [Last accessed on 27.8.2017].

[50] [Online]. https://futurism.com/1-evergreen-how-quantum-computers-would-dest

roy-todays-encryption-methods/ [Last accessed on 27.8.2017].

[51] Pratiksha Sethi and V. Kapoor, "A proposed novel architecture for information

hiding in image steganography by using genetic algorithm and cryptography," in

International conference on computational science, vol. 87, 2016, pp. 61-66.

[52] Shouchao Song, Jie Zhang, Xin Liao, Jiao Du, and Qiaoyan Wen, "A novel

References

secure communication protocol combining steganography and cryptography,"

Procedia engineering, vol. 15, pp. 2767-2772, 2011.

[53] Gregory Kipper, Investigator's guide to steganography.: CRC Press, 2003.

[54] [Online]. https://usatoday30.usatoday.com/life/cyber/tech/2001-02-05-binladen.

htm#more [Last accessed on 27.8.2017].

[55] [Online]. http://edition.cnn.com/2001/US/09/20/inv.terrorist.search/ [Last acce-

ssed on 27.8.2017].

[56] [Online]. https://www.oneindia.com/feature/steganography-and-terrorism-why-i

sis-relies-on-it-so-much-1670728.html [Last accessed on 27.8.2017].

[57] [Online]. https://www.atlasobscura.com/articles/how-a-kitten-video-can-transmi

t-secret-instructions-to-criminals [Last accessed on 27.8.2017].

[58] [Online]. https://www.scmagazine.com/new-variant-of-zeus-banking-trojan-con

cealed-in-jpg-images/article/538677/ [Last accessed on 27.8.2017].

[59] [Online]. http://www.hackmageddon.com/2011/10/21/stuxnet-duqu-stars-and-g

alaxies/ [Last accessed on 27.8.2017].

[60] [Online]. https://www.virusbulletin.com/virusbulletin/2016/04/how-it-works-ste

ganography-hides-malware-image-files/ [Last accessed on 27.8.2017].

[61] P. Thiyagarajan, G. Aghila, and V. Prasanna Venkatesan, "Pixastic:

Steganography based anti-phishing browser plug-in," Journal of internet

banking and commerce, vol. 17, no. 1, pp. 1-19, 2012.

[62] Abdelrahman Desoky and Mohamed Younis, "Chestega: Chess steganography

methodology," Security and Communication Networks, pp. 555-566, 2009.

[63] Jianhong Sun, Yingjiang Li, Xiaohui Zhong, and Junsheng Li, "A scheme of

 References

LSB steganography based on concept of finding optimization pixels selection,"

in Software engineering and knowledge engineering: Theory and practice,

2012, pp. 155-160.

[64] Neil F. Johnson, Zoran Duric, and Sushil Jajodia, Information hiding:

Steganography and watermarking-Attacks and countermeasures.: Springer

Science & Business Media, 2012.

[65] Lekha S. Nair and Lakshmi M. Joshy, "An improved image steganography

method with SPIHT and arithmetic coding," in 3rd International conference on

frontiers of intelligent computing: Theory and applications, vol. 2, 2014,

pp. 97-104.

[66] Lip Yee Por, KosSheik Wong, and Kok Onn Chee, "UniSpaCh: A text-based

data hiding method using unicode space characters," The journal of systems and

software, pp. 1075-1082, 2012.

[67] Chi-Kwong Chan and L.M. Cheng, "Hiding data in images by simple LSB

substitution," Pattern recognition, vol. 37, no. 3, pp. 469-474, March 2004.

[68] David Wheeler, Daryl Johnson, Bo Yuan, and Peter Lutz, "Audio steganography

using high frequency noise introduction," , 2012.

[69] Ravneet Kaur and Tanupreet Singh, "Hiding data in video sequences using LSB

with elliptic curve cryptography," International journal of computer

applications, vol. 117, no. 18, pp. 36-40, 2015.

[70] Yugeshwari Kakde, Priyanka Gonnade, and Prashant Dahiwale, "Audio-video

steganography," in International conference on innovations in information,

embedded and communication systems, 2015.

[71] Sandip Bobade and Rajeshawari Goudar, "Secure data communication using

References

protocol steganography in IPv6," in International conference on computing

communication control and automation, 2015, pp. 275-279.

[72] Yuling Liu, Xingming Sun, Yongping Liu, and Chang-Tsun Li, "MIMIC-PPT:

Mimicking-based steganography for Microsoft Power Point document,"

Information technology journal, vol. 7, no. 4, pp. 654-660, 2008.

[73] Information Resources Management Association, Big Data: Concepts,

methodologies, tools, and applications.: IGI Global, 2016.

[74] Aliya Tabassum Abbasi, Syeda N. S. Naqvi, Aihab Khan, and Basheer Ahmad,

"Urdu text steganography: Utilizing isolated letters," in 13th Australian

information security management conference, 2015, pp. 37-46.

[75] Sunita Chaudhary, Meenu Dave, and Amit Sanghi, "Aggrandize text security

and hiding data through text steganography," in International conference on

power india, 2016.

[76] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, "Techniques for data hiding,"

IBM Systems Journal, vol. 35, no. 384, pp. 313-336, 1996.

[77] Zhangjie Fu, Xingming Sun, Yuling Liu, and Bo Li, "Text split-based

steganography in OOXML format documents for covert communication,"

Security and Communication Networks, 2011.

[78] M Agarwal, "Text steganographic approaches: A comparison," International

journal of network security & its applications, vol. 5, pp. 91-106, January 2013.

[79] Geoffrey Samuelsson-Brown, A practical guide for translators, 5th ed.:

Multilingual Matters, 2010.

[80] Patrick Dunleavy, Authoring a PhD: How to plan, draft, write and finish a

Doctoral thesis or dissertation.: Palgrave Macmillan, 2003.

 References

[81] Li and Chang-Tsun , Crime prevention technologies and applications for

advancing criminal investigation.: IGI Global, 2012.

[82] John Sinard, Practical pathology informatics: Demystifying informatics for the

practicing anatomic pathologist.: Springer Science & Business Media, 2006.

[83] Tsung-Yuan Liu and Wen-Hsiang Tsai, "A new steganographic method for data

hiding in microsoft word documents by a change tracking technique," IEEE

transactions on information forensics and security, vol. 2, pp. 24-30, March

2007.

[84] Xingming Sun, Gang Luo, and Huajun Huang, "Component-based digital

watermarking of Chinese texts," in 3rd International conference on information

security, 2004, pp. 76 81.

[85] Mohammad Shirali-Shahreza, "Text steganography by changing words

spelling," in 10th International conference on advanced communication

technology, 2008.

[86] A. Majumder and S. Changder, "A novel approach for text steganography:

generating text summary using reflection symmetry," in International

conference on computational intelligence: Modeling techniques and

application, 2013, pp. 112-120.

[87] Jack T. Brassil, Steven Low, and Nicholas maxemchuk F., "Copyright

protection for the electronic distribution of text documents," Proceedings of the

IEEE, vol. 87, no. 7, pp. 1181-1196, July 1999.

[88] Sabu M. Thampi, "Information hiding techniques: A tutorial review," in

ISTE-STTP on Network Security & Cryptography, LBSCE, 2004.

[89] Fabien A. P. Petitcolas, Ross J. Anderson, and Markus G. Kuhn, "Information

References

hiding A survey," Proceedings of the IEEE, pp. 1062 1078, 1999.

[90] Krista Bennett, "Linguistic steganography: Survey, analysis, and robustness

concerns for hiding information in text," Purdue University, Technical 2004-13.

[91] Mercan Topkara, Umut Topkara, and Mikhail J. Atallah, "Information hiding

through errors: A confusing approach," in SPIE International conference on

security, steganography and watermarking of multimedia contents IX, vol. 6505,

2007.

[92] Jason Cranford Teague, Fluid web typography.: New Riders, 2009.

[93] David Kahn, The Code-Breakers: The comprehensive history of secret

communication from ancient times to the internet, 2nd ed.: Scribner, 1996.

[94] Jibran Ahmed Memon, Kamran Khowaja, and Hameedullah Kazi, "Evaluation

of steganography for Urdu/Arabic text," Journal of theoretical and applied

information technology, pp. 232-237, 2005.

[95] Cao Qi, Sun Xingming, and Xiang Lingyun, "A secure text steganography based

on synonym substitution," in 13th IEEE joint International computer science

and information technology conference, 2013.

[96] Russell Ogilvie and George R. S. Weir, "Genre-based information hiding," in

Global security, safety and sustainability, vol. 99, 2012, pp. 104-111.

[97] [Online]. http://www.tysto.com/uk-us-spelling-list.html [Last accessed on

27.8.2017].

[98] Rajesh Kumar Tiwari and G. Sahoo, "Microsoft excel file: A steganographic

carrier file," International journal of digital crime and forensics, vol. 3, no. 1,

pp. 37-52, 2011.

[99] Jack T. Brassil, Steven Low, and Nicholas F. Maxemchuk, "Electronic marking

 References

and identification techniques to discourage document copying," IEEE journal

on selected areas in communications, vol. 13, no. 8, pp. 1495-1504, 1995.

[100] Prem Singh, Rajat Chaudhary, and Ambika Agarwal, "A novel approach of text

steganography based on null spaces," IOSR journal of computer engineering,

vol. 3, no. 4, pp. 11-17, 2014.

[101] L. Y. Por, T. F. Ang, and B. Delina, "WhiteSteg: A new scheme in information

hiding using text steganography," WSEAS transactions on computers, vol. 7,

no. 6, pp. 735-745, 2008.

[102] Martin Cutts, Oxford guide to plain English.: Oxford University Press, 2013.

[103] Janice R. Matthews, John M. Bowen, and Robert W. Matthews, Successful

scientific writing full Canadian binding: A step-by-step guide for the biological

and medical sciences.: Cambridge University Press, 2000.

[104] L. Y. Por and B. Delina, "Information hiding: A new approach in text

steganography," in 7th WSEAS International conference on applied computer &

applied computational science, 2008, pp. 689-695.

[105] M. Hassan Shirali-Shahreza and Mohammad Shirali-Shahreza, "A new

approach to Persian/Arabic text steganography," in 5th IEEE/ACIS International

conference on computer and information science, 2006.

[106] Mohammed A. Aabed, Sameh M. Awaideh, and Abdul-Rahman M. Elshafei,

"Arabic diacritics based steganography," in International conference on signal

processing and communications, 2007.

[107] Reem Alotaibi Ahmed and Lamiaa A. Elrefaei, "Arabic text watermarking: A

review," International journal of artificial intelligence & applications, vol. 6,

no. 4, pp. 1-16, 2015.

References

[108] V. V. Muniswamy, Design And analysis Of algorithms.: I. K. International Pvt

Ltd, 2009.

[109] John R. Pierce, An introduction to information theory: Symbols, signals and

noise, 2nd ed.: Dover Publications, 1980.

[110] Isabelle de Ridder, Reading from the screen in a second language: Empirical

studies on the effect of marked hyperlinks on incidental vocabulary learning,

text comprehension and the reading process.: Garant, 2003.

[111] David W. Beskeen, Carol Cram, Jennifer Duffy, Lisa Friedrichsen, and

Elizabeth Eisner Reding, Microsoft Office 2007-Illustrated introductory,

windows XP edition.: Cengage Learning, 2007.

[112] ITL , Kamthane , and Rajkamal , Computer programming and IT: For RTU.:

Pearson Education India, 2011.

[113] Arne Mikalsen and Per Borgesen, Local area networks: Includes data comm.

network.: John Wiley & Sons, 2002.

[114] John C. Dean and Li Li, "Issues in developing security wrapper technology for

COTS software products," in International conference on COTS-Based software

systems, 2002, pp. 76-85.

[115] Jesse Russell and Ronald Cohn, History of Microsoft Word.: Book on Demand,

2012.

[116] LibreOffice Documentation Team, Getting started with LibreOffice 5.0.:

Lulu.com, 2016.

[117] Jean Hollis Weber, Taming Apache OpenOffice: Getting started.: Lulu.com,

2013.

[118] Alegis Leon and Mathews Leon, Introduction to computers.: Vikas Publishing

 References

House Pvt. Ltd., 1999.

[119] "The independent guide to personal computing," PC Magazine, vol. 15, no. 20,

p. 410, 1996.

[120] Roger Hersch, Visual and technical aspects of type.: Cambridge University

Press, 1993.

[121] [Online]. http://mediamilitia.com/taking-type-to-the-next-level-with-alternate-c

haracters/ [Last accessed on 27.8.2017].

[122] [Online]. http://www.will-harris.com/ligatures.htm [Last accessed on

27.8.2017].

[123] [Online]. https://msdn.microsoft.com/en-us/library/microsoft.office.interop.wor

d._font.ligatures(v=office.14).aspx [Last accessed on 27.8.2017].

[124] [Online]. http://www.magpiepaperworks.com/blog/using-opentype-fonts-in-mic

rosoft-word/ [Last accessed on 27.8.2017].

[125] [Online]. https://msdn.microsoft.com/en-us/library/microsoft.office.interop.wor

d._font.numberform(v=office.14).aspx [Last accessed on 27.8.2017].

[126] [Online]. https://msdn.microsoft.com/en-us/library/microsoft.office.interop.wor

d._font.numberspacing(v=office.14).aspx [Last accessed on 27.8.2017].

[127] Alex Fowkes, Drawing type: An introduction to illustrating letterforms.:

Rockport Publishers, 2014.

[128] Tova Rabinowitz, Exploring typography, 2nd ed.: Cengage Learning, 2015.

[129] Muhammed N Kabir, Omar Tayan, and Yasser M Alginahi, "Evaluation of

watermarking approaches for Arabic text documents," International journal of

computer science and information security, pp. 49-54, 2013.

References

[130] Xinpeng Zhang and Shuozhong Wang, "Vulnerability of pixel-value

differencing steganography to histogram analysis and modification for enhanced

security," Pattern recognition letters, vol. 25, no. 3, pp. 331 339, February

2004.

[131] Nihad Ahmad Hassan and Rami Hijazi, Data hiding techniques in Windows OS:

A practical approach to investigation and defense.: Syngress, 2016.

[132] Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers, "Format-

Preserving Encryption," Selected areas in cryptography, vol. 5867, pp. 295-312,

2009.

[133] Harold F. Tipton and Micki Krause Nozaki, Information security management

handbook.: CRC Press, 2012.

[134] David Gourley and Brian Totty, HTTP: The definitive guide.: O'Reilly Media,

Inc., 2002.

[135] [Online]. https://www.google.com/maps/dir/Kalpakkam,+Tamil+Nadu/Anupura

m,+Tamil+Nadu+603127/@12.5470251,80.126821,14z/data=!3m1!4b1!4m13!4

m12!1m5!1m1!1s0x3a53a9650ee8fa55:0xaa8d1b9a8895b182!2m2!1d80.15681

34!2d12.5238119!1m5!1m1!1s0x3a53aa45aee3716d:0xcdc32fe9008 [Last acc-

essed on 27.8.2017].

[136] [Online]. http://cordis.europa.eu/tmr/src/res970302.htm [Last accessed on

27.8.2017].

[137] [Online]. http://www.electronic-circuits-diagrams.com/a-simple-electronic-buzz

er-circuit/ [Last accessed on 27.8.2017].

[138] [Online]. http://www.dailycivil.com/types-of-stairs/ [Last accessed on

27.8.2017].

 References

[139] [Online]. http://www.world-nuclear.org/gallery/reactor-diagrams/boiling-water-

reactor.aspx [Last accessed on 27.8.2017].

[140] [Online]. https://sosteneslekule.blogspot.in/2015/03/thermal-power-generation-p

lant-or.html [Last accessed on 27.8.2017].

[141] Bahman Zohuri, Jürgen K. Grunwald, and Takayuki Nakamura, Nuclear

energy: Perspectives, challenges and future directions, Denver Morris, Ed.:

Nova Science Publishers, 2017.

[142] V. M. Mente et al., "Experimental studies in water for safety grade decay heat

removal of prototype fast breeder reactor," Annals of nuclear energy, vol. 65,

pp. 114-121, 2014.

[143] [Online]. http://www.dogdrip.net/84405179 [Last accessed on 27.8.2017].

[144] Frederic P. Miller, Agnes F. Vandome, and John McBrewster, Hamming code.:

Alphascript Publishing, 2009.

[145] Matt Doyle, Beginning PHP 5.3.: John Wiley & Sons, 2011.

[146] Ray-I Chang, Yachik Yen, and Ting-Yu Hsu, "An XML-based comic image

compression," in 9th Pacific Rim conference on multimedia, 2008, pp. 563-572.

[147] V. Solachidis, N. Nikolaidis, and I. Pitas, "Fourier descriptors watermarking of

vector graphics images," in International conference on image processing,

2000, pp. 9-12.

[148] [Online]. https://www.vecteezy.com/blog/2015/5/24/the-history-of-adobe-illustr

ator [Last accessed on 27.8.2017].

[149] "A short history of CorelDRAW," 2009.

[150] [Online]. https://inkscape.org/en/about/ [Last accessed on 27.8.2017].

References

[151] Daniel Schwarz, Jump start Sketch: Master the tool made for UI designers.:

SitePoint, 2016.

[152] [Online]. https://www.khanacademy.org/math/trigonometry/trigonometry-right-

triangles/trig-solve-for-a-side/a/unknown-side-in-right-triangle-w-trig [Last ac-

cessed on 27.8.2017].

[153] Patricia Law Hatcher, Producing a quality family history.: Ancestry Publishing,

1996.

APPENDIX A

Procedure to generate Frequency Normalization Set (FNS)

Method-A described in Chapter 4, allows single secret character to get

embedded in multiple cover characters. This facilitated to boost the embedding

probability of secret characters and also made it uniform. It achieved the same

through the construction of a Frequency Normalization Set (FNS) ection 4.4

in page 76. The flowchart to generate such a set is provided below, in Fig. A.1, along

with the necessary pseudo codes.

The procedure takes the occurrence frequencies of ADS characters, minimum and

maximum allowed error (deviation from the value 25), etc., as inputs and generate a

FNS.

Figure A.1 Flowchart to generate Frequency Normalization Set (FNS)

No

(Str, SUCCESS) || (str, FAIL)

Whether cardinality
of chkduplicate is

28?

Yes &
SUCCESS

1.

2.
f

3.

4.

Yes

A

Declarations:

 double individualfreq[28] = {} // respective frequencies of characters in

 individualchar[]
 int occurred_first[28] = {0, 0, 0, 0,, 0, 0}

 // Each position of this array represent the respective characters of individualchar[]
 double minfreq // can be between 24 and 26
 double maxfreq // can be between 24 and 26 (atleast 0.1 > minfreq)
 double minerror // can be between -1 and -4
 double maxerror // can be between +1 and +4
 ArrayList alreadyselected
 ArrayList chkduplicate // it can accommodate a maximum of 28 strings

A 28 Sets

Note: Problematic characters are the ones that were FAILED to be replaced by Test2
() or the ones that have column-

S

Start

Choose the Set with highest cardinality

Test1 () : Selecting a string from S

Test2 () : Replacing highly occurred characters

column-

Whether all column-wise
repetitions are removed?

Test3 () : Replacing all
problematic characters of

Exchange the characters
in each column & make

the frequency of all
s

close to 25

(Yes & FAIL) ||
(No & FAIL) ||

(No & SUCCESS)

Stop

Str

Str

Pseudo code of Test 1:

//Test 1 (): Chooses a string trings.

Input: Set S, ArrayList chkduplicate

Output: string str

 Largest value in sim_count[]

 If max_count < sim_count2

 If max_value < value2

 End if

 End if

End for

Return str

Pseudo code of sub-module: Count

Input: char ch, ArrayList chkduplicate

Output: int no

Pseudo code of Test 2:

//Test2 (): Tries to

Input: string str, int occurred_first[], char individualchar[], double individualfreq[],
double minerror, double maxerror, ArrayList chkduplicate

Output: string str

ch)

 hat ch1 str && ch1
 -Frequency[ch] is between

 End if

End for

Return (str, result)

Pseudo code of Test 3:

Input: string str, ArrayList chkduplicate, ArrayList alreayselected

Output: string str

 L:

 If ch

 Else

 End if

 El

 End else

End for

Return str

Pseudo code of Test _3a:

Input: char individualchar[], double individualfreq[], ArrayList chkduplicate, int pos,
char ch1, ArrayList alreadyselected, string str

Output: char ch

L:

 If dupe==0 && ch2 alreadyselected && Count(ch2) < 7 && ch2

Frequency[ch2] > max

 End if

 Goto L

 End if

 If dupe==1 && (ch2 alreadyselected && Count(ch2) < 7 && ch2
 str

&& Count(ch2) <= 5))

 Break

 End if

End for

Return ch

Pseudo code of Test_3b:

satisfies certain properties

Input: ArrayList chkduplicate, double individualfreq[], char ch1, int pos, char ch,
string str

Output: string str2

 If dupe==0 && ch1 str1

 End if

 Goto L

 End if

 If dupe == 1 && ch str1 && str1[pos] str && Frequency[str1[pos]]-
Frequency[ch] < min && < 4.5

 r1

 -Frequency[ch]

 End if

End for

Return str2

APPENDIX B

Illustration of the imperceptibility level of Method-C

Method-C described in Chapter 6, converts an image into a custom format and

then embeds the same using the attributes Color, Kerning and Spacing. The

imperceptibility level of the method was illustrated in Fig. 6.12 of Chapter 6

(see page 147). To verify the same, an additional illustration is provided below

using Fig. B.1.

Figure B.1 Boiling water reactor [139]

Cover work (after formatting):

Stego work (with formatting):

Stego work with formatting (stego characters highlighted for understanding purpose):

	01_title
	02_certificate
	03_prelim_pages
	04_contents
	05_abstract
	06_tabfigist
	07_chapter_1
	08_chapter_2
	09_chapter_3
	10_chapter_4
	11_chapter_5
	12_chapter_6
	13_chapter_7
	14_misc

