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Chapter 7

Conclusions

The key points and major outcomes of the thesis are summarized in this chapter. The

design of a high temperature motor of ISI application, its experimental validation,

and optimization is studied. This suggestion for future work is also included in this

chapter.

7.1 Summary

In this thesis, a 1HP surface mounted permanent magnet motor capable of deliever-

ing rated torque of 2Nm at rated speed of 3500 rpm under high ambient temperature

of 150➸C was designed. Strict operational and spatial constraints of ISI application

demand super compact motors with a torque density of 20KNm/ m3. A review has

been conducted between permanent magnet and switched reluctance machines. Spe-

cial care has been taken in the selection of materials used for each motor component.

Stator and rotor laminations were built from iron cobalt vanadium alloys having high

saturation flux density and low iron loss at high temperatures. This helps in scal-

ing down the size of the motor. Samarium cobalt magnets, which can operate upto

temperatures of 350➸C were used in the motor to make them more resistant to pos-

sible demagnetization caused by high temperature. Polyimide insulation which can

withstand a temperature of 240➸C was used as winding insulation. Design of motor
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is validated by coupled electromagnetic-thermal analysis run iteratively until a con-

vergence is reached. The design satisfies the major goal of the research delievering

rated torque of 2Nm and efficiency of 85% at an ambient temperature of 150➸C and

at the rated speed of 3500rpm. The performance of the motor has been validated

experimentally using indigeniously designed high temperature motor test bench. Pro-

totpe motor was experimentally tested by keeping the oven temperature at 150➸C and

performance parameters such as speed, torque,winding temperatures were noted. It

was found that experimental results were agreeing well with experimenal results.

After verifying the initial design, an attempt was made to improve the performance

of high temperature motor adopting an efficient optimization strategy. A novel opti-

mization algorithm namely Memory based Hybrid optimization was proposed. It is

a hybridized version of Dragonfly algorithm and PSO algorithm with an additional

feature of memory concept. Due to its excellent balance between exploration and

exploitation capabilities, MHDA proves to be an effective optimization algorithm in

locating near global optimal solution. The efficiency of algorithm is proved in stan-

dard test functions and engineering benchmark problems. It is also found that perfor-

mance of MHDA is better compared to conventional algorithm in terms of accuracy,

convergence and consistency and is recommended for optimization in design of high

temperature motor.

The main aim of optimization process is to minimize the winding temperature of motor

satisfying the constraints of torque,saturation flux density and efficiency. Inorder to

save the computational time on optimization using coupled electromagnetic -thermal

model, an Artificial Neural Network (ANN) based surrogate model is proposed. This

ANN model is trained by MHDA with the set of intelligently chosen data points using

Latin hypercube sampling technique. MHDA trained ANN based model is designed

and is compared with Kriging based model and found to be more accurate. Further,

MHDA is used in optimizing the design parameters of the ANN based model with
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winding temperature as the objective function to be minimized and torque, efficiency

and flux density as constraints. The optimization results are successfully validated

using coupled EM-Thermal analysis. The temperature rise in optimized design is

7➸C lesser than the original design which approximately corresponds to 20,000 hours

increase in life time of insulation. The surrogate based optimization in the design of

high temperature motor helps in arriving at fast and accurate optimized model. The

main contributions of this thesis are summarised as follows:

1. From the work explained in this thesis, it evident that the high temperature

motor design is having high reliability and thereby saving the operating life of

motor in the absence of any cooling mechanism. Though the thesis is focused on

the application of ISI of Fast breeder reactor, the design methodology adopted

in design of motors can be extended to any critical applications. Hence, this

work has contributed an in-house designed methodology in the area of high

temperature motor design. If there is a relaxation in the space constraints,

peek and ceramic insulation having high temperature capabiliy of 500➸C can be

considered.

2. Most commercial testbenches for motor available today, are designed for oper-

ation only under normal temperature. Hence an innovative test bench suitable

for testing different types of motors at elevated temperature is presented. The

proposed system is capable of evaluation of steady state and dynamic perfor-

mance of system. Test bench can be used to test latest technology in control

algorithms for electrical machine drives and analyze their transient behavior.

Test bench can be also used for accelerated life test where the motor is operated

at high temperature, thereby subjecting to severe thermo-mechanical stress.

This on-line monitoring/data analysis gives valuable information regarding the

calculation of reliability and possible failure modes. It is designed to enable a

wide variety of electric machine configurations and applications, as it provides

125



a platform for testing of innumerous projects especially at high temperature.

3. MHDA proposed in the thesis can be applied to any real world optimization

problem. Presently it has been applied to Vertical Electrical Sounding (VES)

Data[169], power flow analysis[170] etc.

4. The proposed methodology of surrogate modelling combined with optimization

algorithm can be helpful in various multiphysics applications since computa-

tional cost and effort is reduced.

7.2 Future work

The work explained in the thesis opens up a few areas for further investigation and

exploration:

❼ Manufacture of optimized high temperature motor and validating the optimiza-

tion strategy with hardware results.

❼ Studies on MHDA in different levels of applications and other practical problems

of different dimensionality.

❼ The accuracy of thermal analysis can be improved by incorporating Computa-

tional Fluid Dynamics (CFD) techniques to estimate the temperature rise.

❼ Further investigation of multi-objective and multi variate optima to solve com-

plex problems such as efficiency improvement and cost reduction can be consid-

ered.

❼ Study of alternative design topologies for harsh environmental conditions and

their performance enhancement are some of the topics that can be considered

for further enhancement.

❼ Application of ANN surrogate model in condition monitoring and fault diagnosis

of high temperature motors.
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SUMMARY

The demand for compact, high torque density motors capable of operation under high

ambient temperature conditions has increased over past few decades. High ambient

temperature alters the physical properties of the materials used in motor thereby af-

fecting its performance characteristics. In-Service Inspection (ISI) of Fast Breeder Re-

actor using semi-automated device is such an application characterized by an ambient

temperature of 150➦C. The main objective of the research is to develop a high temper-

ature motor for traction of ISI device and to propose methods for design optimization.

Special care has been taken in the selection of motor configuration, materials and also

in design equations to account for operation at high ambient temperature. A coupled

electromagnetic-thermal analysis is done to examine the performance and a 12/10

slot/pole surface mounted permanent magnet motor is selected for development. In

order to experimentally validate the design of motor, an automated high tempera-

ture test facility is fabricated. The proposed design is validated experimentally in

this test set up. For minimizing winding temperature and to improve future design

of high temperature motors, a surrogate assisted optimization technique is proposed.

Artificial Neural Networks based surrogate model was proposed for approximating

the non-linear relationship between the design variables and objective function. A

novel hybrid optimization algorithm - Memory based Hybrid Dragonfly Algorithm

(MHDA) is proposed and its potential benefits compared to other reported method-

ologies is demonstrated. MHDA was also used to train ANN based model. Optimized

model gave temperature reduction of 7➦C satisfying all the design constraints thereby

increasing the life time of insulation and reliability of high temperature motor.
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Chapter 1

Introduction

This doctoral thesis focuses on researching a novel approach to the design, development

and optimization of high temperature motor for In-Service Inspection(ISI) device of

Fast Breeder Reactor. This chapter gives an overview of the research background and

motivations drawn for research work. The objective of research and thesis organization

is also explained.

1.1 Background

With increasing demands of per capita energy due to industrialization and urbaniza-

tion of world’s increasing population, nuclear power plants are poised to augment the

conventional energy sources by being safe, environmentally benign and economically

viable[1]. In order to assess the integrity of the structures and components while the

plants are in service, continuous monitoring and inspection of critical components is

necessary. Extremely hostile and hard to reach environmental conditions make man-

ual inspection of plant impossible. In this context, robotics and automation plays

a significant role in in-service inspection, maintenance and repair of plant facilities

more frequently with higher accuracy. Semi -automated devices, where actions are

performed by robots but cognitive decisions are still taken by skilled operator, are

excellent choice for ISI of nuclear power plant [2]. In traditional industrial robots,
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electrical motors of a few hundred to a few thousand watts are most common. How-

ever, for newer developments e.g. in service or humanoid robotics, smaller and more

lightweight motors with high power density and high functional density are needed.

The weight of the complete drive system is required to be low because it is moved along

with the robot. This can be achieved by appropriate dimensioning and the choice of

high performance motors. In certain safety critical applications apart from opera-

tional and spatial constraints, environmental factors also play a major role in design

and performance of motor. The demand for electro mechanical actuators operating

under harsh environmental conditions has increased with the increasing applications

in high performance actuation systems of aerospace and nuclear industries.

High temperature is one of the harsh environmental constraint that influences the op-

eration and lifetime of electrical machine. Electrical and magnetic loading of electrical

machine is greatly affected by temperature. Electrical loading is mainly determined

by the property of winding insulation to withstand the prescribed temperature rise

over an ambient temperature whereas magnetic loading depends upon the magnetic

flux density that can be produced by magnets without irreversible demagnetization,

which again is a function of temperature. Every electrical motor is characterized by

a specific ambient temperature and allowable temperature rise. Most manufacturers

do not recommend the operation of motor beyond the specified temperature as it ad-

versely affect the performance of machine and reduces its life time. Motors for typical

industrial application are rated for 40➦C and any operation beyond this temperature

requires either special considerations in design or additional cooling methodologies or

both.

In Service Inspection (ISI) of Fast Breeder Reactor (FBR) using semi-automated de-

vice is a typical application characterized by an ambient temperature of 150➦C. Strict

spatial and environmental constraints limit the use of any advanced cooling mecha-

nism. Hence the only method of thermal management in motor can be realized with
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the use of high temperature materials. With the use of high temperature materials, the

overall performance is compromised due to the overall poorer electrical and magnetic

properties. Hence an effective optimization methodology is essential to make a proper

trade off between all the properties in the design stage. This thesis focuses on the

design, analysis, development, experimental validation and optimization methodology

of high temperature motor working at an ambient temperature of 150➦C.

1.2 In-Service Inspection

ISI plays an important role in maintaining the safety of equipments in nuclear power

plant. In this thesis, ISI of nuclear reactor specifically, a FBR is considered. FBRs

utilize natural uranium fuel very effectively (∼75%) through breeding and thus provide

a rapid energy growth potential (300GWe for about 30 years) [3]. They constitute a

clean source of power unlike fossil fuel power stations.

Figure 1.1 – Critical areas of FBR requiring ISI[1]
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One of the main objectives of ISI is to monitor the external boundary of main reactor

vessel for liquid sodium leakage. ISI is usually carried out in a narrow space between

the Main Vessel (MV) and Safety Vessel (SV) of FBR which is filled with nitrogen.

Figure 1.1 shows the critical areas of a typical FBR requiring ISI [1]. ISI is usually

carried out under offline conditions and the effect of radiation is considered to be

minimum. High ambient temperature of 150➦C makes manual inspection of the plant

infeasible. Thus, any inspection under these circumstances can only be carried out

by customized remote inspection techniques coupled with semi-automated vehicles.

A typical four wheeled semi-automated device driven by compact, high temperature

traction motor is proposed for ISI application. Figure 1.2 shows the CAD model of

ISI device.

Figure 1.2 – CAD model of ISI device[1]

After inserting the device in interspace for testing, it has to positioned against gravity,

pressing continuously on the walls of vessels. Collapsing/expanding mechanism in the

ISI vehicle helps in adjusting the real time variations of the interspace which is in

the order of ±50 mm. The mechanical assembly as well as the actuators for steering

and traction for the device must withstand temperature of 150➦C in the interspace.

The controller and associated drive electronics are housed in a modular-sealed-airlock
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chamber kept at room temperature approximately at a height of 6.5m above the

reactor vault[3]. Figure 1.3 shows the block diagram of the servo mechanism for

traction motor of the device.

Due to limited spatial conditions, a compact, high torque density traction motor with

high temperature operating capability and low weight is required to drive the semi-

automated device. Operating conventional motors at this high ambient temperature

can result in partial or complete demagnetization of permanent magnets and deteri-

oration of insulation which further leads to thermal runaway and stalling of motor.

Stalling of motor can cause the risk of device getting jammed in the annular space,

which is highly undesirable. Hence it is very necessary that the traction motor must

be capable of withstanding high temperatures and providing required torque, meeting

the space constraints of the device.

Figure 1.3 – Block Diagram of the servo mechanism for traction motor

Apart from application in ISI device, high temperature motors are also used in jet

engines or deep-sea drilling equipment. The possible applications of high temperature

motors also includes pumps and valves for liquid metal cooling systems[4], material

lifting from oil and geothermal wells[5], gimbals for expendable launch vehicle engines

and components of spacecraft that operate near extremely hot sources such as the sun,

gas turbine starters/generators for aircraft engines[6], robotic exploration vehicle sys-
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tems that operate in and around terrestrial volcanoes[7] and deep ocean hydrothermal

vents[8].

1.3 Motivation and Objectives

Literature review shows that there have been considerable efforts in the design of

electrical machines operating under harsh environmental conditions. A short duty

permanent magnet motor operating at an ambient temperature of 80➦C was proposed

for aviation industry [9]. Japan Atomic Power Company has proposed a design of high

temperature servomotor operating at a temperature of 220➦C [10]. A high temperature

motor capable of operating at high temperature of 460➦C was proposed for Venus

drilling mission [7]. However, these design of high temperature motors fails to meet

the stringent operational as well as spatial requirements of ISI device and an attempt

has been made to design and develop a compact high temperature motor with high

torque density and high efficiency without any cooling method.

The market availability of high temperature motors matching the specifications is also

rare which demands an indigenous technology development of these motors. Moreover

the knowledge gained from the design and development of high temperature motors

can be further extended for different other applications in nuclear reactor such as ac-

tuation of control rods[11], under sodium scanners[12], submersible linear pumps[13].

High temperature motor for ISI application is realized with the proper selection and

utilization of high temperature materials in the design. But these high temperature

materials have poorer electrical and magnetic properties which necessitates an efficient

optimization strategy with fast computational capability to make a proper trade-off

between electrical, thermal and other material properties in the design stage [14]. The

proposed research is also aimed to develop a fast and efficient method for the design

and optimization of high temperature motor operating at temperature of 150➦C. In

this way, an advanced methodology, replacing outdated design practices, that would
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allow designers to optimize electromagnetic devices that meet the needs of any given

specific application is developed. The objectives of research can be summarized as

follows.

1. To understand the application requirements and to design an extended tempera-

ture permanent magnet motor operating at a temperature of 150➦C for In-Service

Inspection device of Fast Breeder Reactors. The motor is expected to meet the

operational and spatial constraints in the absence of any cooling mechanism.

2. To compare permanent magnet and permanent magnet free motor topologies

for extended temperature applications.

3. To analyze the design of motor using coupled electromagnetic-thermal analysis

and accurately predict the temperature rise in different parts of motor.

4. To validate the initial design with experimental results.

5. To optimize the design using an appropriate optimization algorithm.

6. To develop a surrogate assisted evolutionary optimization technique for mini-

mizing the winding temperature by optimal selection of design parameters.

7. To validate the optimal results with coupled FEA-thermal simulations.

1.4 Structure of thesis

This thesis presents the research work conducted for the design, analysis, development

and optimization of high temperature permanent magnet motor working at an ambient

temperature of 150➦C. Thesis is divided into 7 chapters. The description of following

chapters are given below.

Chapter 2 details on the basic necessity and general applications of high temperature

motors. A broad literature review of current developments in high temperature motors
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is also explained. The challenges in the design of high temperature motors is reviewed

along with the relevance of optimization strategy in the design of such motors.

Chapter 3 focus on application specifications of high temperature motor for traction

of ISI device used in Fast Breeder Reactors. First of all, the selection of materials

compatible with high temperature is carried out and verified the performance with

a coupled electromagnetic -thermal analysis. A detailed survey of motor topologies

suitable for high temperature applications is also explained. The chapter explains

the detailed design of SMPM motor for high temperature applications. Following the

design, a coupled electromagnetic-thermal analysis for estimating the electromagnetic

and thermal performance of the motor is explained.

Chapter 4 describes the development of prototype high temperature motor and its

experimental validation using automated test bench. The performance of prototype

is validated by testing the motor characteristics in this test bench under different

temperatures.

Chapter 5 details on the design of novel hybrid optimization algorithm known as

MHDA developed for solving numerical optimization problems such as motor design.

The chapter gives a detailed survey on reported optimization algorithm and the need

of developing a hybridized algorithm. The chapter describes operating mechanism of

MHDA and also analyses the relation between the algorithm parameters, search space

boundaries and the variables in the optimization problem and their impact on the

overall search performance. The efficiency of MHDA in solving engineering problems

is also demonstrated by standard design problems which proves its credibility for

applying it to multiphysics design optimization task of electric motor design.

Chapter 6 proposes a novel method of constructing a surrogate model based on Ar-

tificial Neural Networks(ANN) for high temperature motor. MHDA is used in ANN

training for finding the optimal set of weight and biases. The performance of ANN

trained by MHDA is also compared with kriging based surrogate model. Followed by
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the performance analysis, ANN based surrogate model is used for sensitivity analysis

and optimized for minimum hot spot temperature. The performance of optimized

high temperature motor is also validated by finite element analysis.

Chapter 7 summarizes the key points and major conclusions drawn from the research

work towards the design and development of high temperature motor. The suggestion

for future scope of the research is also explained.
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Chapter 2

Literature Survey

This chapter gives a comprehensive literature review of main topics treated in this

thesis. An overview of applications characterized by harsh operating conditions is

provided in the beginning. An up-to-date survey of high temperature motors is pre-

sented along with their design challenges followed by an overview of traditional design

analysis methods and the latest progress in optimization of electric machines design.

2.1 Robotics for harsh environmental conditions

Harsh environment is any environment that is hazardous or challenging to agents

within it. It can be characterized by high levels of radiation, high explosive risk,

extreme temperature or pressure[15]. In such conditions, Robotics and Autonomous

Systems (RAS) play a significant role to avoid human exposure to hazardous environ-

ment and tasks ranging from scrutiny and general maintenance to decontamination

and post accidental activities. Rapid decrease in cost, flexibility and integration of

artificial intelligence have enabled robots to be successfully deployed in many critical

applications. There are different forms of robotic system with different functional-

ities and intended for different applications. Wheeled mobile vehicles, unmanned

aerial vehicles, humanoid robots, serial-link manipulators, snake robots and legged

robots are some of them. Based on control, robotic systems are divided into manual,
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semi-automated and fully automated system. For critical systems, semi-automated

systems where the human operator is in loop for providing cognitive assistance for

safe execution of operation is recommended. Some of the applications deploying these

systems are automation industries, oil and gas industry, nuclear power plants, space

exploration system, and pipeline inspection system. In nuclear power plants, robotic

systems are used for radioactive material handling, inspection of reactor assemblies,

pressure vessels, pipelines and also assistance in examination. Deploying robots at

nuclear power plants can reduce the risk of human exposure to hazardous radiation

and temperature; at the same time helps to execute specific task with more precision

and without interruption [16].

In this thesis, robotic system used for ISI of Fast Breeder Reactor is considered. A

free roving four-wheeled semi-automated device is used for the inspection of Main

Vessel (MV) and Safety Vessel (SV) of FBR for any possible sodium leakage. The

four-wheeled remote-controlled robotic device is designed to carry non destructive

testing equipment into the inter-space (which is the gap between MV and SV) for

enabling volumetric examination of welds and visual examination of external surface

and internal surface of the MV and SV respectively. The temperature of inter-space

is expected to be in the range of 150➦C at the time of inspection [17]. The semi-

automated device will be maneuvered by means of four independently driven wheels

with steering capability, two resting on each vessel. Each wheel will have traction

and steering motors with encoders for position feedback. ISI is usually carried out

under shut down conditions and effect of radiation is considered negligible [1]. Since

the ambient temperature is characterized by 150➦C, traction and steering motors or

actuators must be able to withstand this high temperature and provide necessary

torque for the movement of the device.

Over the years, there has been considerable research in the design and development of

electrical machines operating at adverse environmental conditions. However, all these
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known solutions generally lead to an increase of the overall weight and volume, which

could then have a significant impact on the machine’s suitability for the application.

2.2 Electrical machines for high ambient temper-

atures

Electrical machines that can survive harsh environmental conditions have been an

interesting research topic in recent years due to increasing applications in aerospace,

mining and nuclear industries. For high performance applications, reliability, high

torque density, high efficiency and lower weight are of high importance. Electrical

machines generate torque either electromagnetically or by reluctance principle[18]. In

the first category, motion is produced by the interaction of two magnetic fields, one

generated by the stator and the other by the rotor. Two magnetic fields, mutually

coupled, produce an electromagnetic torque tending to bring the fields into align-

ment. The same phenomenon causes opposite poles of bar magnets to attract and

like poles to repel. The vast majority of motors in commercial use today operate on

this principle. Some of the familiar ways of generating these fields are through en-

ergized windings, with permanent magnets, and through induced electrical currents.

In the second category, motion is produced as a result of the variable reluctance in

the air gap between the rotor and the stator. When a stator winding is energized,

producing a single magnetic field, reluctance torque is produced by the tendency of

the rotor to move to its minimum reluctance position. This phenomenon is analogous

to the force that attracts iron or steel to permanent magnets. In those cases, reluc-

tance is minimized when the magnet and metal come into physical contact. Switched

reluctance motor and synchronous reluctance motor falls into this class of machines.

Synchronous reluctance motor require variable frequency drive and construction is

more complex than switched reluctance motor. Hence, only Switched Reluctance(SR)

motor is considered for comparison with Permanent Magnet(PM) motor.
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2.2.1 Switched Reluctance (SR) Machines

The concept of SR machines has been already known for more than 150 years, and

with availability and improvement of cost effective high power fast semi-conductor

switches and extensive use of microcontrollers and integrated circuits, SR machines

have become popular. SR motors consist of doubly salient structure having stator with

excitation windings and rotor without any windings. Absence of permanent magnets

makes SR motors a simple, mechanically robust and cost-effective solution for high

temperature applications provided appropriate stator winding insulation materials are

used. Another advantage is their phase independent operation making them a fault

tolerant solution for critical applications[19]. There are number of works reported

regarding high ambient temperature operation of SR motors. High temperature light

weight switched reluctance motors and generators were designed for aircraft engine

application and lunar exploration light rover. However operation under extreme tem-

peratures were not fully tested. A four phase 8/6 SR motor, with a frame size of

NEMA 23 was designed and developed for Venus drill application where the ambient

is filled with carbon dioxide and characterized by a temperature of 460➦C and atmo-

spheric pressure greater than 90 bars[20]. But it’s torque output was in th range of

mNm. A high temperature SR motor operating at 280➦C was designed for hybrid elec-

tric vehicles [21]. Size was not a constraint for this application, hence higher electrical

loading was done to achieve higher power density.

2.2.2 Permanent Magnet (PM) Machines

PM brushless motors have dominated the motion control applications which demand

high positional accuracy. They have the advantages of high torque density, high

efficiency and compact size as demanded by most of robotic applications. The pres-

ence of permanent magnets imparts a strong and independent excitation system but

their performance at high temperatures needs to be investigated. Permanent mag-
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net brushless machines based on their mode of excitation are divided into brushless

dc motor and brushless ac motor. Based on position of permanent magnets, PM

machines are divided into Surface Mounted PM (SMPM) machines and Interior PM

(IPM) machines. SMPM configurations can achieve higher torque density than IPM

machines with low weight and mass density. Due to sinusoidal flux distribution, they

have low rotor losses and high efficiency. IPM machines have higher inductance and

high saliency ratio that makes them suitable for field weakening applications. There

have been reported works in literature regarding the design of PM machines for harsh

operating conditions. This is realized either by effective cooling system or by using

high temperature materials. A high temperature IPM motor was designed for am-

bient temperature of 150➦C through effective oil cooling system for hybrid electric

vehicle[22]. The design of PM motor with wide operating temperature ranging from

-60➦C to 300➦C using high temperature materials was discussed in [23]. Design of

high temperature brushless dc motor for oil well detecting system where the ambi-

ent temperature is 175➦C was explained in [24]. However fabricated prototype was

not tested under high temperature conditions. A high-temperature BLDC fan rated

for 250➦C was designed for forced air-cooling of advanced automotive power electron-

ics [25]. Special focus was put on the design of the integrated BLDC machine for an

ambient temperature of 250➦C, including magnetic material selection and winding ma-

terial selection. Wang [26] proposed a high temperature version of PM synchronous

motor using phase change materials applied in the actuator systems of aircraft. A

short duty PM brushless dc motor was designed for ambient temperature of 70➦C for

aerospace application was proposed by Sciascera in [9]. A PM machine was selected

and designed adopting integrated electromagnetic and thermal models within a GA

optimization tool.
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2.3 Electromagnetic and Thermal Modelling Tech-

niques

2.3.1 Electromagnetic field models and Finite Element Anal-

ysis

Classical analytical design equations are useful for initial design and sizing of electrical

machines as they provide very fast and rapid solutions. However, flux leakage effects

and change in the permeability of materials cannot be accounted as the magnetic cir-

cuit is considered to be linear[27]. Hence for accurately predicting the performance,

the initial design by analytical equations is verified using set of magnetostatic simula-

tions which correspond to different time instances, rotor positions and stator current

distributions. These magnetostatic simulations are governed by Maxwell’s equations

which includes:

∇×H = J (2.1)

∇× E = 0 (2.2)

∇.B = 0 (2.3)

where H is the magnetic field intensity, J is the current density, E is the electric field

intensity, B is the magnetic flux density.

The magnetic non-linearity of materials is expressed as

B = Br + µH (2.4)

where Br is the remanent flux density and µ is the permeability of the material.

15



Since magnetic field are solenoidal, they can be studied using Magnetic Vector Poten-

tial (MVP) equation[28] defined as

∇.(∇× A) = 0 (2.5)

where Ais the magnetic vector potential.

Equation 2.5 can be rewritten into Poisson’s vectorial equation as

∇(
1

µ
∇× A) = J + (

1

µ
∇× Br) (2.6)

In the case of non-linear magnetostatic field and isotrophic materials, equation 2.6

can be rewritten as

∂

∂x
(
1

µ

∂A

∂x
) +

∂

∂x
(
1

µ

∂A

∂x
) = −J − [

∂

∂x
(
Br,y

µ
) +

∂

∂y
(
Br,x

µ
)] (2.7)

By applying anti-periodic or periodic boundary conditions, cross-sectional area for

field analysis is reduced and the study of the flux distribution is by dividing the

circuit into smaller pieces including the surrounding air into very small bits such as

triangles and solving for MVP. Correct material properties must be used in the field

equation solutions to achieve accurate results[29].

Based on the magnetic vector potential solution, the x and y components of the

magnetic flux density are derived from the previous equations and the radial and

tangential components can be calculated as

Br(r, θ) = Bxcosθ +Bysinθ (2.8)

Bt(r, θ) = −Bxsinθ + Bycosθ (2.9)
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The energy, Wm and co-energy, W ∗

m per unit of axial length is calculated as

Wm =

∫
s

∫ B

0

(HdB)ds (2.10)

W ∗

m =

∫
s

∫ H

0

(BdH)ds (2.11)

The electromagnetic torque per unit axial length, Te can be calculated with Maxwell

stress tensor as

Te =
Dg

2µ0

∫ ΠDg

0

BrBθ (2.12)

or by differentiating energy with respect to angular co-ordinate at constant flux linkage

Te = −
∂w

∂θ
(2.13)

2.3.2 Thermal Modelling using equivalent circuits

Thermal modeling of electrical machines is generally divided into two methods- nu-

merical methods and lumped parameter equivalent circuits. Numerical method of

analysis can estimate temperature distribution in any part of electrical machine lead-

ing to prediction of hot spot temperatures. Numerical method involves combination

of thermal Finite Element Analysis (FEA) in solid components and Computational

Fluid Dynamics (CFD) to determine flow in complex parts such as air gap or motor

end windings.

Method of analysis using thermal circuits is very fast to calculate and simple to

model. This method gives only lumped distribution of temperature and does not

give detailed estimation of hot spot temperatures in complex parts of machine[30].

Due to easy implementation and fastness in calculation, it is usually incorporated in

optimization routine in industry. MOTORCAD is a commercially available software
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that incorporates detailed analytical thermal model for thermal analysis of electrical

machine. Figure 2.1 shows the example for steady state heat transfer network of

brushless motor as given by MOTORCAD software.

Figure 2.1 – Steady state heat transfer network of MOTORCAD

The analysis using MOTORCAD was found to be computationally effective as well

as fairly accurate for estimation of temperature and have been widely used[31]. It in-

volves heat transfer analysis and flow network analysis for estimation of temperature[32].

Thermal circuits of different parts of motor have been combined to obtain a complete

thermal model of motor. Heat transfer analysis is analogous to electric circuit analysis

where nodal temperature differences corresponds to voltages, power losses corresponds

to current sources, power flow through resistances corresponds to current, and ther-

mal resistance corresponds to electric resistance. Only thermal resistances are used to

model heat transfer path for steady state analysis. Heat transfer occurs by conduction

within solid and laminated components, where as it occurs by convection within air

or any other cooling fluids. For thermal modelling, stator and rotor of electric motors

are considered as hollow cylinders, whereas stator teeth and rotor teeth are considered

as partial hollow cylinders. Axial shaft is modelled as long beam and heat transfer is

taken along axial direction. Conductive heat transfer in a hollow cylinder containing

heat sources can be solved using Fourier’s law[33].
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∂T
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(2.14)

where q represents the heat source represented by losses, (kr, kθ,kz) represents the

thermal conductivity in cylindrical co-ordinate system(r, θ, z), ρ represents density, cp

denotes specific heat capacity and T represents temperature.

There exist a number of conductive paths inside machine such as from winding copper

to stator tooth and back iron, from stator back iron nodes to stator bore. Conductive

thermal resistance, Rcond is calculated as

Rcond = L/KA (2.15)

where L(m) and A(m2) denotes length and path area from geometry andK(W/m/➦C)

denotes thermal conductivity of material.

Convection heat transfer is realized through natural convection and forced convection.

Natural convection arises due to buoyancy forces arising from density changes caused

by fluid motion in the vicinity of surface where as forced convection is caused due to

fluid motion produced by fan or pump[29]. Convective thermal resistance is calculated

as

Rconv =
Tsurface − Tambient

q
= 1/(hc.A) (2.16)

where Tsurface(➦C) denotes surface temperature, Tambient(➦C) denotes ambient tem-

perature, hc(W/m2/➦C) denotes convection heat transfer coefficient and A denotes

surface area.

Convection coefficient, hc is usually made dimensionless and is derived from equation

2.17

Nu =
hcL

kf
= f(Ra, Pr) (2.17)
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in case of natural convection and in the case of forced convection, from equation 2.18

Nu =
hcL

kf
= f(Re, Pr) (2.18)

where L is the characteristic length, Nu is Nusselt number, Re is the Reynold’s number,

Ra is Rayleigh’s number and Pr is the Prandtl ’s number[33].

Radiation heat transfer is realized through energy transfer by electromagnetic waves.

Radiation resistance, Rrad value is calculated as

Rrad = 1/(hr.A) (2.19)

hr(W/m2/➦C) denotes radiation heat transfer coefficient and A(m2) denotes surface

area. Radiation heat transfer coefficient is calculated using the formula:

hr = σεF1−2

T 4

1
− T 4

2

T1 − T2

(2.20)

where σ is the Stefan- Boltzmann’s constant, ε is the emissivity of the radiating

surface, T1(K) is the absolute temperature of radiating surface, T2(K) is the absolute

temperature of surface radiated to (ambient) and F1−2 is the view factor for dissipating

surface 1 to the absorbing surface 2.

Thermal resistance values are automatically calculated from motor dimensions and

material data.

Flow network analysis is used to predict the flow velocity for fluid through the machine

which is a function of forced convection heat transfer from the surface. Fluid mechan-

ics counterpart is analogous to electric circuit analysis with pressure drop corresponds

to voltage, volume flow rate corresponds to current, and fluid-dynamic resistance cor-

responds to electrical resistance. The fluid-dynamic resistance is governed by the

equation 2.21
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R =
kρ

2A2
(2.21)

where, ρ is the air density, A is the flow area, and k is the dimensionless coefficient of

local fluid resistance.

2.3.3 Coupled electromagnetic-thermal analysis

Figure 2.2 – Coupled EM-Thermal analysis

Electromagnetic and thermal simulations are directly linked due to the temperature

dependent properties of the materials including copper, lamination steels, and coolant.

With increase in temperature remanent flux density of permanent magnet reduces

where as resistivity of copper increases. A coupled electromagnetic thermal simu-

lation can accurately predict the electromagnetic and thermal performance of the

electrical machine[34]. Electromagnetic analysis predicts the performance parameters

of motor such as flux density distribution, saturation, and torque. It also predicts

the amount of losses in the machine which acts as heat sources to the thermal model.

Thermal model then predicts the temperature rise in different parts of motor. This

procedure is iteratively continued until difference of losses computed from thermal

and electromagnetic model is converged to less than 5% error[35]. Figure 2.2 shows

the multiphysics coupled analysis.
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2.4 Design Optimization of Electrical Machines

Electrical machine design is a comprehensive multiphysics phenomenon comprising

electromagnetic, insulation, mechanical design. In critical applications such as aerospace,

mining and nuclear industries, stringent requirement specifications such as torque,

power density, volume and weight have to be met in addition to sustaining harsh

environmental conditions. Energy efficiency of electrical machines is another crucial

parameter for energy conservation, environment protection, and global sustainable

development. Consequently, improving motor performance is of great significance

to both the environment protection and the energy sustainability[36]. The design

methodology of electrical machines has undergone different design changes with the

recent developments in power electronics, new magnetic materials, manufacturing

process and computational algorithms. Traditional design methods based on rules of

thumb and empirical formulas have slowly become outdated and has often not made

use of progress to improve machine performance. Therefore, there is an absolute re-

quirement for a modern design method that is flexible, reliable and reflects up-to-date

improvements in modern science and technologies [9].

In any optimization process, there are three important features to be considered.

They are models, strategies and optimization algorithms [36]. Based on number of

objectives to be optimized, there are single objective optimization model and multi-

objective model. Strategies or methods correspond to the methods of execution of

optimization. Some of the popular methods are direct, indirect, sequential, multi-

level and space mapping. Direct optimization method involves optimization using

analytical models. In-direct optimization uses surrogate models for optimization pur-

pose. Surrogate model or metamodel is a black box model that reflects a complex

model outputs in a limited context. There are several types of surrogate models,

such as Response Surface Methodology (RSM), Kriging model, Radial Basis Function

(RBF) model, Support Vector Machine (SVM) model, and Artificial Neural Network
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(ANN) model[37]. Electric machine design optimization is a non-linear process in-

volving large number of parameters, data, material properties and different domains.

In order to reduce the computational complexity of optimization process, surrogate

based optimization is becoming very popular. Sequential level optimization process

is another method of optimization that reduces initial design space to interested sub-

space containing optimal solution. Multi-level optimization, which divides the initial

high dimensional space into several subspaces by using sensitivity analysis methods is

also very effective. The parameters with higher sensitivities will be optimized before

those with lower sensitivities thereby reducing computational complexity and improv-

ing efficiency of the optimization process. Space Mapping (SM) method of electrical

machines involves fine and coarse model spaces[38]. For electrical machines, the fine

analysis model can be a FEA model or an analytical model; the coarse model can be

a magnetic circuit model or a surrogate model. The optimization is conducted in the

coarse model space only. However, the optimization solution is not good due to the

less accuracy of the coarse model [36]. Therefore, several optimization loops may be

required in the implementation of SM method.

Optimization algorithms play a very important role in finding global optimal solu-

tions. Multiphysics and non-linear of objective function make optimization process

complex. Therefore, an efficient optimization tool is necessary to make trade off be-

tween design objectives and search for optimal design parameters. With advancement

in computational intelligence and optimization algorithm, there has been several re-

ported works in the design optimization of electrical machines. As per No-Free Lunch

theorem[39], there is no single algorithm that outperform other algorithms on all op-

timization problems. However, in practice, certain algorithms are more effective in

solving certain problems and it is important to identify them. The search space of a

problem is defined by the type of response, number and range of design variables.

Optimization algorithms are classified into conjugate gradient algorithms and intelli-
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gent algorithms. Now a days, electric machine design optimization is based on finite

element analysis rather than analytical or mathematical models, which involves large

data samples hence intelligent algorithms are used in the design optimization of elec-

trical machines[36]. Among intelligent algorithms, swarm based algorithms have been

widely used in solving engineering constrained problems. A swarm is characterized

by a group of self-organized and decentralized system of non- complex individuals or

agents interacting among themselves and with their environment for survival, hunt-

ing, navigation or foraging. It can be school of fish, flock of birds,colonies of ants

etc. Swarm Intelligence models the collective behavior of these individuals to solve

complex optimization process. Even though as individuals, these agents have lim-

ited operational capability, they tend to outperform in accomplishing the desired task

by interacting among themselves and with the environment using their own specific

behavioral patterns. Bat algorithm[40], Firefly algorithm[41], Krill Herd[42], Whale

optimization algorithm[43], Grey wolf optimization[44], Competitive optimization al-

gorithm [45], Dragonfly algorithm[46] are some of the recently developed swarm based

meta heuristic algorithms.

2.5 Recent studies on design optimization of elec-

trical machines

There have been many reported works in the design optimization of electrical ma-

chines using analytical methods. An analytical model of fractional slot brushless PM

machines was developed and optimized using Particle Swarm Optimization (PSO) in

[47]. An axial flux PM synchronous machine was designed using analytical method

and optimized using Evolutionary Computation in [48]. Metamodel or surrogate based

optimization have great potential in reducing computational complexity of optimiza-

tion process and has been gaining popularity in engineering design problems[49]. Line

start permanent magnet motor was optimized using neural network and Imperialistic
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Competitive Algorithm[50]. A switched reluctance generator was optimally designed

using Kriging based surrogate model and genetic algorithm [51]. Zheng Tan [52] pro-

posed a surrogate based optimization for maximizing the power output of doubly fed

induction generator. A permanent magnet flux switching generator was optimally

designed using Artificial Neural Network and multi-objective PSO [53]. A number

of design optimization works based on sequential optimization methodology has been

reported in the literature [54][55]. A multiobjective sequential design optimization of

PM-SMC motors for six sigma quality manufacturing was discussed in [55]. Tech-

niques for multilevel design optimization of permanent magnet motors are presented

in [56]. Space mapping optimization of the magnetic circuit of electrical machines

including local material degradation was explained in [57] and Kriging output space

mapping technique for electromagnetic design optimization was explained in [58].

Relevance of considering multiple domains in the design optimization of electrical

machines has been discussed in [59]. A multiphysics modelling of permanent magnet

synchronous machine was carried out using lumped models of magnetic, electrical,

electronic, thermal whereas vibro-acoustic and mechanical parts are represented by

analytical models [60]. A new technique for coupling the electromagnetic, thermal,

and airflow analysis is proposed particularly for electric machines that exhibit reduced

dependence of core losses with temperature and load and have low rotor losses [61].

An implicit constrained multiphysics system for motor wheels of electric vehicle was

modelled and optimized using stochastic optimization algorithm in [62]. Multi-physics

analytical model for a saturated permanent magnet assisted synchronous reluctance

motor consisting of electromagnetic model, electrical model, loss model, and thermal

model was discussed in [63]. A multiphysics design methodology combining electro-

magnetic and thermal models was applied to a high force density short duty linear ac-

tuator [64]. The design of high-speed permanent-magnet (PM) electrical machine for

centrifugal air blower application with consideration of the multiphysics constraints,
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including the mechanical strength, rotor dynamics, mechanical losses, and thermal

field was explained in [65].

2.6 Inspiration for the present work

The literature review reveals that there are worldwide developmental activities car-

ried out for the design and development of high temperature electrical motors. It has

been found that high temperature motors reported in the literature have certain dis-

advantages for application to ISI, either due to the additional cooling system or due

to inadequate torque to weight ratio. The overall objective of this project is to theo-

retically and practically investigate an improved permanent magnet brushless motor

for an ISI application with the specific aim to operate at high ambient temperature

of 150➦C without any cooling mechanism. This involves basic design, development

and experimental validation of high ambient temperature motor in a high tempera-

ture test facility. Since the characteristics of these type of applications are exploited

by employing high current densities for the stator windings, the windings’ electrical

insulation system will experience critical temperature cycles during operations which

can adversely affect the lifetime of the insulation[9]. Hence it is required to mini-

mize winding temperatures. A coupled electromagnetic thermal analysis, which can

be computationally expensive, is necessary to accurately estimate the rise in tem-

perature. Taking account of this, a structured design methodology based on a novel

optimization algorithm and an efficient surrogate model is proposed to minimize the

winding temperature meeting the requirements of torque, efficiency and flux density.

This research will be of interest to aerospace, automotive, geothermal and mining in-

dustries which requires motors operating under harsh environmental conditions. The

proposal of novel optimization technique using surrogate model and novel hybrid opti-

mization algorithm can be highly useful for industries for reducing the computational

cost and speeding up the large scale optimization process.
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2.7 Conclusion

❼ In this chapter, a literature review of the main topics concerning the design of

high temperature motors for ISI devices is presented.

❼ A review of robotic applications for harsh environmental conditions is discussed.

❼ A survey of electrical machines, with special focus on permanent magnet ma-

chines and switched reluctance machines is carried out. Clearly, each machine

technology has distinct advantages and depending on considerations of cost, eco-

friendliness, and utilization, the selected machine technology can be optimized

to meet the required specifications.

❼ A brief review of the design optimization methods for electrical machines, in-

cluding design analysis methods and models, optimization models, algorithms

and methods/strategies is presented.

❼ Recent design optimization studies of electrical machines is reviewed and objec-

tives of present work are summarized.
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Chapter 3

Design and Performance Analysis

of High Temperature Motor for ISI

Application

This chapter deals with details of application specifications and selection of appro-

priate motor configuration for traction of semi-automated device used for In-Service

Inspection (ISI) of Fast Breeder Reactors. A comparative performance analysis of

permanent magnet and permanent magnet free configuration for high temperature en-

vironment is carried out. Choice of design is made based on analysis results taking all

the critical factors into consideration and making the required trade off. The design

of selected motor configuration is completed using conventional analytical equations.

And finally, the performance of the machine is predicted with coupled FEA- thermal

analysis.

3.1 Introduction

The demand of electrical machines operating at a high ambient temperature (i.e.

100➸C and above) is gaining significance with increased applications in automotive,

mining, aerospace and nuclear industries [7]. At this high temperature environment,

the performance of electrical machines gets degraded predominantly due to failure of

insulation and demagnetization of permanent magnets (as in the case of permanent
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magnet motors). Hence, to ensure the safe operation as well as intended performance

of electrical machines, several factors must be considered in the initial design stage.

One amoung the globally used techniques to address the issues at high temperature

is an effective design of cooling system. The cooling system can be either natural or

forced convection with gaseous or liquid coolant. But, in aerospace and nuclear appli-

cations, having strict restrictions on the operational and spatial constraints, provision

of cooling system in most cases seems to be an infeasible option. In such cases, use

of materials that can sustain higher temperatures is a plausible option. In-Service

Inspection (ISI) of Fast Breeder Reactor (FBR) using semi-automated vehicle is such

an application characterized by an ambient temperature of 150➸C[1]. This chapter de-

tails on the application requirement specification of traction motor, selection of motor

configuration, design by analytical equations and performance analysis using coupled

electromagnetic-thermal simulation.

3.2 Application specifications

The specifications of traction motor of ISI device is framed based on (i) torque (ii)

temperature and (iii) weight of the application.

3.2.1 Torque

The torque required for drive motor of robotic device, can be derived by applying

principles of vehicle dynamics[66]. According to vehicle dynamics, the total tractive

effort is equal to the sum of forces due to Grade Resistance (GR), Rolling Resistance

(RR), and Force required for Acceleration (FA). The free body diagram of vehicle

moving up an inclined plane is shown in Figure 3.1. Following are the inputs provided

by the mechanical designers of the ISI device which are considered for determining

the torque of traction motor[1][67].

1. Weight of robotic vehicle is 70 kg
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2. Maximum slope at which the vehicle is expected to climb is 45➸.

3. Coefficient of rolling friction between vessel steel and wheel is 0.3

4. Radius of the wheel is 40mm

5. Friction loss factor is 1.

6. Maximum acceleration of vehicle is 0.2 m/s2

7. Gear Ratio is 50:1

Figure 3.1 – Free Body Diagram of vehicle moving up an inclined plane

Grade Resistance(GR) is the force necessary to move a vehicle and it is given by

GR = 70 kg × 9 · 8
m

s2
× sin 45 = 485 · 5N (3.1)

Rolling Resistance (RR) is the opposing force that the vehicle has to overcome during

rolling motion. In case of ISI vehicle, force on wheels was found to be 3300N[1] and

rolling resistance can be calculated as

RR= Force exerted on the wheels x coefficient of rolling friction

RR = 3300N × 0 · 3 = 990N (3.2)

Force required for acceleration (FA) is given by

FA=Mass x Acceleration
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FA = 70kg × 0 · 2
m

s2
= 14N (3.3)

According to vehicle dynamics, the torque required by the motor is given by

Tm = Rf × (GR +RR + FA)× rwheel (3.4)

whereRf denotes the friction loss factor and rwheel denotes the radius of the wheel.

Assuming the outer radius of the traction motor as 40mm, torque can be calculated

as

Tm = 1 (485 · 57N + 990N + 14N)× 0 · 04 = 59 · 58Nm (3.5)

Torque required by the motor considering gear ratio is given by

Tm = 59 · 58/50 = 1 · 2Nm (3.6)

A de-rating of 60% is considered for safe operation of vehicle and the Torque required

by the motor,Tm is be set to 2Nm.

3.2.2 Ambient conditions

In service inspection is a procedure which is performed during the shut down of reactor.

Though the temperature during operation is higher than 500➸C, during the inspection

the maximum expected temperature is 150➸C. Hence, the machine has to withstand

a temperature of 150➸C, delivering the rated torque. The effect of radiation during

inspection is also considered to be negligible. The space for inspection is filled with

gaseous Nitrogen to provide an inert atmosphere.
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3.2.3 Size and Weight

The robotic vehicle is designed to be compact so that it can be positioned and moved

in the limited space of about 300mm. The volume of the motor is decided by the space

allocation in the vehicle.The maximum outer diameter and length of the motor can

be 100 mm and 100 mm respectively. The weight of motor must be kept as minimum

as possible to increase the payload capacity of vehicle. Based on the above factors,

the specifications of drive motor are derived and summarized in Table 3.1[1].

Table 3.1 – Application requirements

Parameter Value

DC bus voltage 310V
Rated Torque 2Nm
Rated Speed 3500rpm
Maximum Outer Diameter 100mm
Maximum Length 100mm
Ambient Temperature 150◦C
Efficiency at ambient temperature >75%
Weight Minimum
Excitation Sinusoidal
Atmospheric medium Nitrogen

3.3 Selection of High temperature materials

The major concerns in high temperature motor design is the selection of stator core

laminations, permanent magnets and proper insulating materials for windings.

3.3.1 Stator Lamination

The selection of lamination steels in motors is based on the factors such as core

loss, cost, saturation flux density and permeability. Most commonly used materials

for stator laminations in electric motors are nickel steel, iron cobalt vanadium alloy

and silicon steel [68]. For motion control applications, popular choice is M19 silicon

steel which has lowest core losses with smaller cost impact. But it tends to saturate

at higher temperatures. Iron cobalt vanadium (FeCoV) alloys offer high saturation

density and lower core losses and are considered to be best materials for compact
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design of motor working at high temperatures. Hiperco-50, a commercially available

iron cobalt vanadium alloy, has high saturation flux density of 2.3T at normal room

temperature and Curie temperature of 940◦C. Due to its superior performance under

high ambient temperatures, laminations of Hiperco-50 of 0.15mm thick have been

selected for this analysis.

There are a variety of materials that are used for lamination coating like Nomex

paper, Mica, Ceramic, Epoxy etc. Nomex paper can withstand a temperature of

180 ➸C. Mica insulation can withstand higher temperatures of 500 ➸C. Due to size

constraints Nomex paper and mica insulation were not used. Ceramic coating can

withstand higher temperatures of 500 ➸C, but it can considerably increase in the size

of machine and it is difficult to get a uniform coating. Hence, Ceramic coating is not

preffered. High temperature Epoxy (of Jotatemp make) is used in prototype motor

which can withstand continuous temperatures up to 250➦C and peak temperatures as

high as 300➦C.

3.3.2 Permanent Magnet

High remenant flux density and coercivity are desired characteristics of permanent

magnets operating at high temperatures. Neodymium Iron Boron (NdFeB) and

Samarium Cobalt (SmCo) are two suitable choices. Alnico has better thermal proper-

ties, but its energy product is small making size of magnet as well as the motor bulky.

NdFeB magnets are brittle and have poor thermal performance compared to SmCo

magnets[68]. Fig 3 shows the temperature dependent remanence of SmCo and NdFeB

magnets[69]. SmCo has lower magnetic remanence than NdFeB at room tempera-

ture, but possesses much higher Curie temperature than NdFeB which makes them

appropriate for high temperature applications. It also offers high thermal stability

and magnetic output at elevated temperatures of even 550◦C. The remanence loss at

temperature of 150◦C of bulk magnets can be calculated from the approach used in

[70]as follows

33



Br(150➦C) = Br(20➦C) [1 + αPM(150➦C − 20➦C)] (3.7)

where Br(150➦C) and Br(20➦C)represents the residual flux density of magnet at 150◦C

and 20◦C respectively, and αPM is the linear coefficient of temperature dependence

of permanent magnet. The typical values of αPM is -0.016 to -0.035%/➸C. The tem-

perature coefficient of remanence of commercially available SmCo magnet, Vacoflux

240HR is-0.035%/➸C. Magnets are retented to the surface of rotor using magnet bond-

ing adhesives which have high temperature resistance, high impact and shear strength

and high thermal conductivity in order to keep pace with high temperature working

condition and vibration. Cyanoacrylate adhesives that can withstand temperature

of 250➦C is used to hold the magnet. Metallic sleeve or non-metallic sleeve was not

used since mass of the magnets was small and can be sufficiently retained by high

temperature adhesive. Ceramic ball bearings having high temperature withstanding

capability is used.

Figure 3.2 – Temperature dependent remanence of SmCo and NdFeB magnets

3.3.3 Winding

As the motor operates continuously temperature increases in the coil due to Joule

losses. So the temperature of winding can rise up to 240◦C depending upon the op-

erating speed and losses. Oxygen Free High Thermal Conductivity (OFHC) copper

conductors with organic insulation may fail at these temperatures. Hence, inorganic
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insulation such as polyimide, amide-imide or ceramic have to be used. Ceramic wind-

ings and Nickel clad copper windings can withstand a temperature of 500 ➸C but they

have small bending radius due to which number of conductors that can be accom-

modated in slot decreases thereby decreasing the output of the machine. Moreover

they require special bobbin to wind. Ceramic windings if wound like regular motors,

fiber coating will detach leading to break down of coil. Hence polyimide insulation,

that can withstand temperatures of 240◦C is used for the design. Impregnation with

high performance epoxy can further enhance the heat dissipation from windings. The

following equation describes the change in resistance of the windings with respect to

temperature

R(150➦C) = R(20➦C)(1 + α(150◦ − 20◦C)) (3.8)

where R(150➦C) and R(20➦C) represents the resistance of the winding at 150◦C and 20◦C

respectively, and α is the coefficient of temperature dependence of stator coils. The

bearings also have to function at high temperatures. Special types of greases are

available that can withstand temperatures up to 250 ➸C [25].

The details of material selected in the construction of the prototype motor is tabulated

in Table 3.2

Table 3.2 – Materials used in components of prototype motor

Component Materials
Shaft Nickel chromium alloy

Rotor Laminations Iron cobalt vanadium alloy
Magnet grade Samarium Cobalt Sm2Co17

Stator Laminations Iron cobalt vanadium alloy
Wire winding & insulation Polyimide insulated Cu

Magnet Retention High temperature Cyanoacrylate glue
Ground wall insulation High temperature Nomex insulation
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3.4 Comparison of machine configuration: PM Vs

SR motors

Brushless Permanent Magnet (PM) motor is widely used for high ambient temperature

applications. Switched Reluctance (SR) motor, that works on reluctance principle for

torque generation can be considered as an alternative candidate for brushless PM

motors. Absence of permanent magnets, robust structure and phase independent

operation makes SR motor more attractive than PM motor. This section aims to

compare SR motor with PM motor for ISI application in terms of output torque,

losses, efficiency, weight, material cost and average temperature. The design of SR

motor having torque, power, speed range and efficiency values competitive to those

of PM motor has been investigated for hybrid electric vehicles in [71]. Comparison

studies for SR and PM motors have also been carried for electric bicycles[72] and

electric brakes[73]. However, the feasibility of replacing PM motor with SR motor

for high temperature, compact, high torque density application is not reported and

demands a thorough investigation of electromagnetic and thermal performances. A

standard PM benchmark design was taken as reference and SR motor was designed to

meet the same torque requirements of PM motor using the same material for stator,

rotor, magnet and armature winding. The detailed dimensions of SR motor designed

for high temperature using standard equations/software is shown in Table 3.3. The

flux density of designed SR motor is shown in Figure 3.3.

Table 3.3 – Dimensions of SR motor

Parameter Value

Outer radius (mm) 60
Shaft radius (mm) 15
Rotor outer radius(mm) 32.5
Rotor pole arc 23➸
Stator pole arc 21➸
Number of turns 50
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Figure 3.3 – Flux density of SR motor

3.4.1 Torque comparison

Figure 3.4 – Torque waveform of SR and PM motor

To meet the output torque requirements, the outer diameter and stack length of SR

motor was increased to 120mm and 88mm respectively. SR motor requires a greater

dimensions when compared to brushless permanent magnet motor for producing the

required torque.This can ultimately increase the envelope size of traction motor in the

inspection vehicle. The torque characteristics of SR motor and PM motor is shown in

the Figure 3.4 respectively. It is found that, at rated speed of operation, the torque

ripple is high for SR motor compared to brushless motors.

3.4.2 Efficiency comparison

In permanent magnet motors, permanent magnets act as a source of excitation in

addition to the stator windings. Hence torque generation is contributed partly by

permanent magnets and partly by stator excitation current. SRM on other hand,
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require greater amount of stator windings to generate equivalent torque. Moreover,

high ambient temperature can also cause an increase in resistance of windings which

further add to copper losses. Copper loss contributes major part to the total losses

thus reducing the efficiency of SR motor to about 73.5% at 150◦C while that of

permanent magnet motor is about 85.84% . Figure 3.5 shows the comparison in

terms of losses of SR and PM motor.

Figure 3.5 – Loss comparison of SR and PM Motor

3.4.3 Weight and cost comparison

Due to its increased weight of iron and windings, net weight of SR motor is on higher

side when compared to permanent magnet motor. Table 3.4 shows the weight of

active parts of PM motor and SR motor (excluding weight of shaft and housing). The

difference in weight is about 0.6 kg which is insignificant as compared with the weight

of ISI vehicle, which is around 70 kg

Table 3.4 – Weight comparison between SR and PM motors

Active parts SRM PM
Iron(Kg) 2.5 1.9
Magnet(Kg) - 0.2
Copper(Kg) 0.7 0.5
Total(Kg) 3.2 2.7
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3.4.4 Temperature rise

Table 3.5 – Temperature comparison between SR and PM motors

Motor Part
natural
cooling

forced
cooling

natural
cooling

SRM(◦C) SRM(◦C) PM(◦C)
Winding 216.77 141 185.1
Housing 214.24 134 190
Rotor 215.27 89 182
Stator 203.53 134 181
Shaft 191.94 134 177

Bearing 213.09 125 174

To determine the temperature rise in various parts of motor, thermal analysis of SR

motor is performed and compared with that of PM motor. For the sake of completion,

the analysis is inclusive of both natural and forced cooling in SR motor. Without

cooling, temperature in various parts of SR motor is found to be higher than PM

motor as shown in Table 3.5. A forced cooling system with Nitrogen as coolant, can

reduce the temperatures of SR motor. The winding temperature of SR motor with

cooling is found to be 44.1➸C lesser than PM motor. But this provision of additional

cooling system can also increase the cost of SR motor up to 30%.

To summarize, the designed SR motor is attractive in terms of cost and simplicity

but it has disadvantages of high torque ripple and increased dimensions. SR motor

is slightly heavier than PM motors; however difference in weight is insignificant in

the context of ISI application. Efficiency of SR motor is less than PM motors due

to increased copper losses. Temperature rise in different parts of SR motor is on

higher side compared to PM motor, but this can be improved by with forced cooling.

SR motor is a potential candidate for this application if proper cooling is provided.

Though SR motor is inferior to PMmotor in terms of size, efficiency and torque ripples,

it has key advantages such as no risk of demagnetization at high temperature, low

cost and easy availability. PM motor is recommended for high efficiency, lower weight

and good thermal performance, in lieu of high cost and uncertainty in availability
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of magnets. Considering all the factors above, PM motor is selected for the present

application.

3.5 Design equations for Permanent Magnet (PM)

motor

Permanent magnet motors are the fastest growing machine/drive market share, even

in the increasing prices of rare earth materials and magnets. PM motors are broadly

divided into brushless AC motors and brushless DC motors. They share the same

configuration except that they are excited by different nature of voltages. Brushless

DC motor is fed with a trapezoidal waveform and synchronized with the rotor angular

position, allowing only two phases to conduct. Brushless AC motors on the other

hand, is fed with sinusoidal waveform and synchronized with rotor angular position,

allowing three phases to conduct. The main advantage of brushless AC motors over

DC is its robustness and ability to produce smooth torque.

The sizing constraints of motor have been arbitrated by the space that it has to

occupy in the robotic vehicle. For enhanced performance of servo drives, the Torque

per Rotor Volume (TRV) falls in the range of 14 KNm/m3-50 KNm/ m3[69]. The

torque of the motor is directly related with the air gap flux density. Increasing the

air gap flux density demands an increased length of permanent magnets or reduced

air gap length. However too small air gap length is hard to realize and it increases

the amount of cogging torque.
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Figure 3.6 – Geometric cross-section of PM motor

The magnetic circuit of motor is built from the analytical equations explained in [74].

Figure 3.6 shows the geometric cross-section of PM motor. Some of the major design

and sizing equations are explained below.

Permeance coefficient (PC) is computed from the length of magnet lm, flux concen-

tration factor CΦand air gap length g [74].

PC =
lm
gCΦ

(3.9)

The average air gap flux density, Bg is calculated as[74]

Bg =
CΦBr

(1 + ➭RKcKml/PC)
(3.10)

where ➭Ris the permeability of the magnet, Kc is the Carter’s Coefficient, Br is rema-

nent flux density of magnet and Kml is the magnet leakage factor.

Back iron width, wbiis given by

wbi =
φg

(2BmKstL)
(3.11)
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where φgis air gap flux, Kst is stacking factor and L is the motor axial length.

Assuming frame size of Rso other geometrical parameters are calculated as[74]

Rsb = Rso–wbi (3.12)

Rsi = Rro + g (3.13)

Rri = Rro − lm − wbi (3.14)

where Rsb, Rsi, Rri, Rro represents back iron radius, stator inner radius, rotor inner

radius and rotor outer radius respectively.

Total slot depth ,ds is given by

ds = Rsb −Rro − g (3.15)

Given the desired torque total slot current,

IS = nsi (3.16)

where ns is the number of slots and I is the current per slot.

Is =
T

(NmKdKpKsBgNsppRroL)
(3.17)

where Nm represent number of poles, Kd, Kp represent winding factors, Nspp represent

number of slots per pole and L represent motor length. Increase in the number of

phases always increases the fault tolerance and reliability of the entire drive system.

After finalizing the dimensions, power losses which include copper loss and core loss

are computed neglecting mechanical losses. In this paper, standard Jordan model of
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iron losses as shown in the equation below is used for analysis.

PFe = KhfB
2
pk +KecB

2
pkf

2 +KexB
1.5
pk f

1.5 (3.18)

where Kh is hysteresis coefficient, Ke is eddy current coefficient, Kex is excess loss

coefficient, Bpk is peak flux density and f is frequency.

The copper power loss, Pcu in SR motor is calculated as

Pcu = mI2rmsRr(Tref )(1 + αr(T ➦C − Tref ➦C)) (3.19)

where Irms denotes rms current, T denotes operating temperature, Rr(Tref ) denotes

the resistance at temperature Tref and αr denotes the linear coefficient of temperature

dependence of resistance.

Due to high ambient temperature and number of phases, copper loss is prominent

and contributes to major part of the total losses. Once the losses are estimated from

electromagnetic model, values are exported to thermal model for finding temperature

rise.

The efficiency of motor producing rated torque, T at rated speed wm is given by

η =
(Twm)

(Twm + Pr + Pcl + PS)
∗ 100 (3.20)

where Pr is the ohmic motor loss, Pcl is the core loss and Ps is the stray load loss.

3.5.1 Choice of SMPM vs IPM

Based on the position of permanent magnet on rotor, PM machines are classified as

Surface Mounted Permanent Magnet (SMPM) motor and Interior Permanent Magnet

(IPM) motor. Surface mounted machines are characterized by presence of magnets

on the surface of the rotor whereas interior mounted machines have permanent mag-

nets embedded within the rotor. SMPM motors have the advantage of high torque

density, low torque ripple, reduced weight and volume[75]. IPM motors on the other
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hand are recommended for high speed applications where field weakening operation

is required[76]. Considering the application of ISI vehicle, SMPM motors are more

suitable in terms of higher torque density and lower weight. Hence SMPM motors are

only considered in the rest of the analysis.

3.5.2 Choice of number of phases, slots and poles

Three phase motors have better conductor utilization factor, reduced torque ripple

without any starting problems. However, they require three pair of power semicon-

ductor switches which increases the total cost. Basically, the number of slots is chosen

based on fundamental winding factor and Lowest Common Multiple (LCM) between

number of poles and slots. Winding factor determines torque constant and LCM gives

number of cogging periods per mechanical revolution[77].

Figure 3.7 – Typical Cross-section of 12/8, 12/10 and 24/16 configuration

Single layer concentrated windings is a common choice due to its simple manufac-

turing process and reduced copper loss. Fractional-slot non overlapping winding is

widely used in high performance applications because of high torque density, high

efficiency, and low cogging torque[29]. Three widely used configurations of surface

mounted brushless motor with slot /pole of 12/8, 12/10, 24/16 satisfying the applica-

tion requirements, are studied and compared. The cross-section of 12/8, 12/10, and

24/16 are shown in Figure 3.7.
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Table 3.6 – Performance metrics of three configurations

Parameter 12/8 12/10 24/16

Stack Length(mm) 55.3
Outer Diameter(mm) 80
Shaft diameter(mm) 10
Air-gap (mm) 0.5
Slot Fill factor 0.40
Ambient temperature (➸C) 150
Current density(A/mm2) 5
Slot Depth (mm) 12
Torque (Nm) 1.8 2.35 2.12
TRV(KNm/m3) 18.8 20 19
Kw1 0.866 0.933 0.866
LCM 24 60 48
Cogging Torque(Nm) 1.14 0.18 0.62
Weight(Kg) 3.81 2.35 1.99
Efficiency at 3500 rpm (%) 84.42 84.78 83.98
Average Winding Temperature (➸C) 188.8 188.1 186.6

For each solution, a preliminary design has been carried out using the procedure

proposed in previous section. Three machine configurations are designed against

specifications mentioned in the Table 3.6. For a fair comparison, stack length, slot fill

factor, current density, air gap diameter and outer diameter are kept constant for all

three cases. The electromagnetic and thermal behaviour are closely interrelated with

each other due to temperature dependent properties of copper, lamination steel and

magnet. The coupled analysis is carried out taking the effect of ambient temperature

into consideration.
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Figure 3.8 – Flux distribution of 12/10 configuration

Losses from the electromagnetic model are passed on, as heat sources to the ther-

mal model. Thermal model predicts the temperature rise in various parts of motor.

Increase in temperature again leads to increase in losses and the process is itera-

tively repeated until the solution is converged. A coupled electromagnetic-thermal

simulation using MOTORCAD software is carried out to determine the performance

characteristics of three configurations. Structural variation of motor with temperature

is neglected in the analysis. In this study, a fixed supply voltage of 310V and current

density of 5A/mm2 is applied to determine the electromagnetic performance charac-

teristics such as torque, weight and efficiency. The key characteristics of machine are

tabulated in Table 3.6. Since all the three configurations have same diameter, total

length, air gap and current density, comparison between the designs can be made

directly looking at performance parameters.

The back emf and torque waveform are shown in Figure 3.9and Figure 3.10 respec-

tively.
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Figure 3.9 – Back emf waveform of 12/10 configuration

Efficiency of 12/10 was found to be better than 12/8 and 24/16. The configuration of

12/10 also has slightly better Torque per Unit Rotor volume compared to 12/8 and

24/16. 12/10 configuration was found to be lighter than 12/8 but heavier than 24/16

by 0.36 Kg. Thermal performance is one of critical parameters in the selection of

motor configuration. It can be inferred from Table 3.6, the average temperature in all

configuration was below the limit imposed by insulation. However, 12/10 exhibited

improved thermal performance over 24/16 and more or less same performance as

12/8. The comparison among the proposed designs points out that all the solutions

can satisfy the application requirements as shown in Table 3.1. Nevertheless, good

thermal performance and lower losses were primary concerns; amount of torque ripple,

cogging torque and weight must be also considered while making the final selection

of topology. Hence 12/10 having lowest torque ripple, low cogging torque and lowest

temperature among three is considered for application. Total iron losses in 12/10

machine was computed as 12W and Copper losses were found to be 58W.
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a

Figure 3.10 – Torque waveform of 12/10 configuration

The temperature distribution is shown in Figure 3.11

Figure 3.11 – Temperature distribution of 12/10 configuraation

The contents of this work are published in [78], [79] and [80].

Therefore surface mounted permanent magnet configuration was selected as final con-

figuration. The design and winding details from simulation are tabulated in Table

3.7
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Table 3.7 – Basic design parameters of 12/10 surface mounted permanent magnet
motor

Parameter Value

Outer rotor diameter 48mm
Rated Speed 3500rpm

Continuous torque 2Nm
Number of slot/pole 12/10

Stack length 90mm
Stator phase resistance 1.55ohms
Stator outer diameter 80mm

Stator slot depth 12mm
Stator back iron thickness 3.8mm

Coil winding gauge 21AWG
Air gap flux density 0.85T

Continuous Power Rating 746W
Air gap length 1mm

Ambient temperature 150➸C
Slot fill factor 40%
Current density 5A/mm➨
Magnet angle 140degrees

Magnet thickness 4mm
Shaft diameter 12.5mm

Rotor back iron thickness 14.5mm
No of turns/coil 36
No of strands 1

3.6 Conclusion

Following inferences can be made from this chapter.

❼ Application specifications for traction motor of ISI vehicle are framed following

rules of vehicle dynamics.

❼ Materials capable of withstanding high temperature are selected for motor parts.

❼ A feasibility study of switched reluctance motor replacing permanent magnet

brushless motor for high temperature application is explained. It is found that

the designed SR motor is attractive in terms of cost and simplicity but it has

disadvantages of high torque ripple and increased dimensions. Considering the

above factors PM motor has been selected.
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❼ A comparative study of widely used slot/pole configurations is studied and

slot/pole of 12/10 is recommended for current application based on torque,

cogging torque and efficiency requirements.

❼ Performance is further analyzed by coupled electromagnetic -thermal simulation

and it is found with a frame size of 80mm and current density of 5A/mm2

the designed motor could achieve a torque of 2.35Nm which is satisfying the

requirements of ISI vehicle.

❼ The maximum flux density found from magnetic analysis was 2.25 T which was

below the saturation flux density of stator material and winding temperature was

recorded to be 188.6➸C which was below the temperature limit of the insulation

used in the design.

❼ The simulation results of basic design were found to be promising for the applica-

tion. However in order to experimentally validate the results, a high temperature

motor based on initial design needs to be built and tested.
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Chapter 4

Development of High Temperature
Motor and its Experimental
Validation

This chapter deals with the development of prototype high temperature motor and its

experimental validation using indigenous built automated test facility. The aim of the

tests is to experimentally evaluate the performance of initial design of high temperature

motor, as well as to compare the experimental results with the simulation results. All

the attributes and purposes of test facility are explained in detail. Before testing the

actual prototype, performance of the test facility is verified with commercially available

high temperature stepper motor.

4.1 Introduction

The results produced by software simulations are usually optimistic and must be

backed up by experimental results for confirmation, before their use for real time

applications. A high temperature motor based on initial design and materials as

explained in chapter 3 was developed and its performance characteristics at high

temperature were tested in motor test bench. Electric motor test bench is an off site

test facility used for evaluating the performance of motor. Most of these test bench

as available in the market do not have a facility to test the performance of the motor
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under different ambient temperatures[81][82][83]. Hence a novel high temperature test

bench suited for testing different types of motors at elevated temperature is considered.

4.2 Development of Initial Prototype of High Tem-

perature Motor

Figure 4.1 – Prototype high temperature motor

A surface mounted permanent magnet motor is developed based on initial design.

The developed machine has a rated speed of 3500 rpm and rated power of 1HP. The

stator and rotor laminations are made from Hiperco 50 alloys. The stator has 12 slots

with fractional distributed windings. Polyimide coated magnet wire having high heat

absorption capability is used as the winding material. The rotor design consists of

surface mounted permanent magnets with a pole arc of 140➦ using SmCo magnets

having remanent flux density of 1.12T.

Figure 4.1shows the developed prototype of high temperature motor.The performance

of the motor is verified in an indegeniously designed motor test bench.
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4.3 Structure of motor test bench

The design of test bench is carried out keeping special attention on individual modules

to withstand high temperature conditions. The developed test bench consists of a high

temperature oven with stainless steel frame, fixtures for holding the motor under test,

torque sensor and a braking mechanism. A work table with provisions for holding

the drives, power supplies, accessories like panel meters for the measurement, and

personal computer (PC) with control software and graphical user interface (GUI) for

display of the motor parameters are also provided. Figure 4.2 shows the block diagram

of the high temperature test set up.

Figure 4.2 – Block diagram of test bench

The main components of test bench include

1. High temperature oven

2. Torque Sensor

3. Braking System

4. Control Panel

5. Software

4.3.1 High temperature oven

A programmable, temperature-controlled oven for carrying the characteristic tests of

motor at high temperatures up to 250 C is the main component of this test bench.
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High temperature oven has a capacity of 216 litres. Inner dimensions of oven is 600 x

600 x 600mm and outer dimensions is 900 x 900 x 900mm Inner chamber is made of

stainless steel while outer chamber is made of mild steel. A ceramic blanket insulation

is placed between the walls, covering top, sides and bottom. This insulation helps in

preventing the loss of heat and thus increasing the efficiency of oven. Heating elements

are located on sides of oven and a fan is provided on the top of oven. Fan circulates

air through air-guides located over the heating elements and around the chamber.

This ensures uniform temperature distribution inside the oven. The temperature

settings of oven are adjusted externally by a microprocessor based PID controller.

The accuracy of oven is ➧ 1➦C. Suitable penetrations (˜100mm diameter) with leak

tight high temperature mineral insulation are provided for motor and sensor cables.

An insulated door is provided for oven with safety latch and 180 degree opening hinges

for easy mounting of the motors inside the oven. The front panel door is provided

is provided with double layer glass window and lighting for viewing the motor under

test.

4.3.2 Torque Sensor

Torque sensor is a very important component in the measurement system. For ISI

application, torque-speed characteristics is a major parameter that need to be mea-

sured at different temperatures. A commercially available dual range Kistler make

torque sensor shown in Figure 4.3 is used for torque and speed measurement in the

test bench. Torque sensor has two ranges for torque measurement, 0-2 Nm and 0-20

Nm, which can be selected based on the torque of the motor under test. The mea-

surement is based on strain gauge technology. The torque and speed measurement

accuracy are in the range of 0.25% and 0.01% of true value respectively. Torque sen-

sor is attached to the shaft of motor using two flexible (RADEX make) couplings,

one inside the oven that can withstand temperatures up to 350C, another outside the

oven that can operate up to 280C. Since these couplings are provided on the motor

output shaft, conductive heat reaching the torque sensor is fully attenuated. They

can accommodate 10 of angular as well as radial misalignment and its homokinetic

nature helps in delivering the same speed at input and output making it ideal for the
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purpose. Moreover, the system is laser aligned to minimize the alignment errors.

Figure 4.3 – Torque Sensor

4.3.3 Braking system

A disc-type braking system of Kateel make, model KA-H-180 is intended for applying

load torque. Braking system is attached to the motor through high temperature

bearings, torque sensor and flexible coupling. As the shaft rotates, heat generated

is dissipated through high temperature bearings, and flexible couplings attached to

both ends of torque sensor hence special thermal insulation is not required for braking

system. Brake pads are electrically actuated by a stepper motor and screw and nut

mechanism. Actuation and release of brake is implemented with help of software.

4.3.4 Control Panel

Figure 4.4 shows the components of control panel. The motion controller has sufficient

digital inputs and outputs to interface emergency inputs, and other control inputs and

outputs. The digital I/Os of the motion controller are optically isolated for better

noise immunity from the field. The motion controller generates control signals for

operating different types of motors such as stepper, brushless DC, permanent magnet

DC and brushless AC motors and also have quadrature encoder inputs for receiving the

encoder signal. Motion controller receives the commands from motor testing software

pre-loaded in industrial PC for various mode of operation. The motion controller

also controls the operation of disc brakes actuated by stepper motor system. The

specifications of motion controller are tabulated in Table 4.1.

55



Figure 4.4 – Control Panel

The motion controller in the control panel is 4 axis controller suitable for DC, BLDC,

Stepper and BLAC motors. The motion axis can be configured for any control tech-

nique. For each motor under test, drive of the corresponding motor is interfaced with

the motion controller to perform the test. Power supply and isolation transformers

are provided for powering the drives, which are to be used for motor under test. For

testing different types of motor, suitable commercial drives are used. The speed and

torque output from torque sensor is in digital format and represents real values of

torque and speed. Hence no signal conditioning unit is required for processing the

sensor output. This output can be interfaced to the data acquisition software for dis-

play of torque and speed component. However, thermocouple needs a separate signal

conditioning module to convert the temperature data in digital format. A 8 channel

isolated thermocouple signal conditioner with 16 bit resolution and 0.1% accuracy is

used to acquire temperature data.

Additionally, each input channels of the signal conditioner can be individually config-
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ured to handle multiple sensor types. Therefore the temperature of different parts of

motors can be acquired by the data acquisition system effectively without any addi-

tional modules. An emergency stop push button is provided in the control panel to

activate safety relay.

Table 4.1 – Specifications of motion controller

No of axis 4,User selectable
Serial interface USB/RS485/Ethernet
Motor type DC, BLDC, Stepper and

BLAC
Feedback type Analog, Encoder
Absolute position
range

➧231 counts

Velocity range 1 to 20,000,000 counts/sec
(servo)

Velocity range 1 to 4,00,000 counts /sec
(stepper)

Servo control loop
modes

PID, PIV

PID gains 0 to 32767
PID update rate less than 80us (single axis)
Stepper output
rate

4MHz (Full, half, micro
stepping)

Stepper output
mode

Step / direction or
CW/CCW

Velocity profile Trapezoidal or S curve
Coordinated
motion support

Yes

Analog output ➧10V(16 bit)
Programmable
torque limit

➧10V

Encoder Input rate 20MHz
Encoder Incremental, Differential,

Quadrature
Forward, reverse,
home inputs

12 (4*3 per axis)

Trigger inputs 4(1 per axis
Output enable 4 (1 per axis)
Digital I/O 4port,8 bit, bit configurable
PWM output 4 channel, 50KHz
Power supply 12-36VDC

4.3.5 Software

A software based GUI is developed in C# and loaded in the industrial PC which
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communicates with the motion controller via Ethernet interface. The software is-

sues various commands initiated by user and communicates with motion controller to

drive the motor. During the testing, real time values of torque, speed, position, and

temperature are acquired by the data acquisition system and read by the software at

sampling rate of 300 data samples/second, displayed and printed in tabular formats

at the user interface.

Figure 4.5 – Graphical User Interface

Software also has the ability to test variety of motors in different configurations and to

modify PID controller setting during various tests. Soft controls for enabling/disabling

drive, start, homing, stop, speed selection, jogging and directions for each motor

are also provided in the software. Stepper control tab in the software also has the

option to select the type of stepping sequence. The status of operation and healthy

communication between PC and motion controller is indicated in the GUI for an error

free operation. Figure 4.5 shows the snapshot of GUI.

Figure 4.6 shows the complete experimental set up of high temperature motor test

facility.
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Figure 4.6 – High temperature motor test bench

4.4 Verification of test bench using high tempera-

ture stepper motor

In order to verify the performance of test bench, two phase, 1.8 Arun Microelectronics

Limited (AML) make high temperature stepper motor shown in Figure 4.7 was tested.

Figure 4.7 – AML D42.3 Stepper Motor

Torque-speed characteristics is one of the major criteria that needs to be verified for

high temperature motor. The performance of motor at high temperature without

drastic decrease in torque is a necessary condition to be met. This test basically
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verifies the accuracy of torque sensor, temperature feedback and encoder, operation

of different modules of control panel, functionality of software and overall integrity of

the test facility. The name plate details of stepper motor are shown in Table 4.2

Table 4.2 – Characteristics of Stepper Motor

Holding Torque (mNm) 450
Detent Torque (mNm) 20
Rotor Inertia(gcm2) 102
Mass(g) 610
Current/phase(A) 1
Resistance/phase at 20➦C(Ω) 8.5
Phase Inductance(mH) 19.5

4.4.1 Testing sequence

Testing procedure is enumerated as follows.

1. The motor is mounted inside the oven with the help of suitable bracket size.

2. Over temperature control and ambient temperature of oven is set to 40➦C and the

set up is left undisturbed for 1 hour until the temperature builds uniformly.The

ambient temperature of oven is also verified with thermocouple reading from

the oven.

3. A DC voltage of 25V and rated current of 1A is provided for testing of motor.

The values of torque,speed and winding temperature are noted.

4. Experiment is repeated for temperatures of 70➦C, 100➦C, 130➦C, 160➦C under

different speeds in the range of 40-90 rpm.
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Figure 4.8 – Torque speed characteristics of stepper motor

Torque as function of speed and temperature is obtained. It is found that with increase

in temperature from 40➦C to 160➦C , there is a decrease of 2.22% in torque output of

the machine at speed of 20-50 rpm where as there is a decrease of 7% in torque at

higher speed of 50-90 rpm which is in accordance with the information provided in

the datasheets. Thus the experimental results validates the performance of motor test

bench.Figure 4.8 shows the torque speed characteristics of AML make stepper motor

61



4.5 Experimental Validation of Prototype Motor

Table 4.3 – Characteristics of Brushless ac drive

Power output 2kW, 3F PWM
Maximum current 20A
Serial interface RS232/Ethernet- user

selectable
Feedback devices Resolver, Encoder
Position output Simulated encoder

output for resolver,
differential
quadrature output

Commutation Sinusoidal,
Trapezoidal
commutation

Digital Input 4 Programmable
inputs

Digital output 4 Programmable
outputs

Command inputs Pulse + direction,
analogue velocity and
torque input (➧ 10V)

Power supply 1F 230VAC

Subsequent to the verification of test bench using commercially available stepper mo-

tor, the test bench is used to validate the performance of prototype motor. In this

section, results collected from test performed on high temperature surface mounted

permanent motor is presented. The developed motor is tested on high tempera-

ture test bench shown in Figure 4.6. Experimental validation is necessary to verify

the performance of initial design and to compare the simulated as well as measured

performance characteristics. The oven temperature is set to 150➦ C and the torque

performance is noted for different speeds ranging from no-load to 6000rpm. Testing

was carried out using standard brushless ac drive. The specification of drive is tabu-

lated in Table 4.3. Winding temperature was taken from end windings. Leads from

stator end winding were connected to thermocouple for temperature measurement.

Rotor temperature was not measured due to practical difficulty of attaching thermo-
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couple over the magnet. The phase resistance was measured using digital multimeter

( Model:8808 Fluke) and found to be 2.1Ω against predicted value of 1.55Ω. It was

found that simulated values were agreeing well with measured results.

4.5.1 Torque Speed Characteristics

Figure 4.9 – Torque Speed Characteristics

The simulated results have been obtained from coupled electromagnetic-thermal sim-

ulation of 12/10 motor at different rated speeds ranging from 0 to 6000 rpm under

constant temperature of 150➦C and rated current of 4.5A. The machine has been

tested under different conditions of speed ranging from 0 to 6000 rpm under the same

conditions of temperature and current. At speed of 3500rpm the value of torque was

found to be 2Nm. Over temperature control and ambient temperature of oven is set

to 150➦C and the set up is left undisturbed for 1 hour until the temperature builds

uniformly. The ambient temperature of oven is also verified with thermocouple read-

ing from the oven. The simulated and measured torque-speed characteristics of high

temperature motor is shown in the Figure 4.9. It was found that the reduction in
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torque at higher speed is attributed to increased losses corresponding to temperature

and eddy current losses in iron laminations, stator windings, and PMs corresponding

to the higher supply frequencies.

4.5.2 Winding temperature

Figure 4.10 – Average winding temperature rise

The average winding temperature was obtained from the coupled electromagnetic

thermal simulation using Finite Element Analysis (FEA) and lumped parameter ther-

mal software, carried out under ambient temperature setting of 150➦ C. The developed

motor was run at a rated speed of 3500 rpm with a constant current of 4.5A. The

temperature of the oven was set to 150➦C and temperature rise in the winding was

noted for 1000 sec using ’K-type’ thermocouple connected to stator end winding. The

experiment was repeated and average value of readings were noted. It was found that

average temperature rise at the end of 1000 seconds was converging to 188.6➦ C. The

simulated and experimental results is shown in Figure 4.10.
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4.6 Conclusions

❼ A high temperature surface mounted permanent magnet motor based on initial

design and high temperature withstanding materials is developed.

❼ The design of a novel automated test facility for testing the performance of

motor at different temperatures is discussed and realized.

❼ The performance of automated test facility is verified by testing the performance

of the test bench using a standard commercially available motor.

❼ After verification of the functionality of test bench, torque-speed characteris-

tics and average winding temperature of prototype high temperature motor is

experimentally evaluated and compared with simulation results.

❼ It was found that experimental results were agreeing well with simulation results.

The torque was found to be 2Nm at a rated speed of 3500 rpm and average

winding temperature after 1000 seconds of operation was found to be 188.6➦C.

❼ Though the winding temperature of designed motor is within the requirement

specifications, it is an important factor which decides the lifetime of insulation

and in turn the reliability of the entire system. Further reduction in winding

temperature is possible by optimizing the dimensions and current density. Hence

in continuation with design, development and experimental validation of high

temperature, an attempt is made for developing a optimization methodology

by incorporating novel optimization algorithms and surrogate model which is

explained in following chapters.
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Chapter 5

A Novel Optimization Algorithm-
Memory based Hybrid Dragonfly
Algorithm

This chapter details the survey of reported optimization algorithms, their advantages,

disadvantages and application in design optimization of high temperature motor. The

need for developing a hybridized algorithm combining advantages of two or more algo-

rithms for application is explained. A novel hybridization algorithm known as “Mem-

ory based Hybrid Dragonfly Algorithm” inspired by Dragonfly Algorithm (DA) and

Particle Swarm Optimization (PSO) algorithm is proposed. It combines the explo-

ration capability of DA and exploitation capability of PSO to achieve global optimal

solutions. The operating mechanism of the proposed method is explained with the help

of flowchart and pseudocode. The superior performance of algorithm is verified using

standard benchmark functions and the comparison of results with other algorithms

have been proved statistically. The analysis and computational complexity of MHDA

in carrying out optimization tasks is also explained.

5.1 Introduction

Optimization process has become an integral part of engineering and business prob-

lems. The purpose of the optimization can be for the maximization of efficiency,

66



performance, productivity or social welfare. Many real world engineering problems

are highly non-linear and complex involving many design variables and complex con-

straints. Potentialities offered by modern optimization techniques are of interest for

industry year after year, giving the reason for their massive penetration into design

chain[84]. The electric machine design optimization problem is one such problem

characterized by the complex relationships between different domains such as electro-

magnetic, thermal and structural. The non- linearity often results in a multimodal

search space making the problem difficult to solve. Gradient based algorithms fail

in this context due to the presence of multiple local optimal solutions. Hence for

the global optimization of such problems, the selection of proper optimization rou-

tine plays a significant role. In recent years stochastic algorithms have been gaining

significance in producing fast, low cost and robust solution to complex optimization

problems [85]. Compared to conventional deterministic approach, they do not require

any gradient information and are simple and easy to implement [86]. Among the

stochastic optimization algorithms, swarm intelligence (SI) based optimization tech-

niques have attracted the attention of researchers worldwide. A swarm is characterized

by a group of self-organized and decentralized system of non-complex individuals or

agents interacting among themselves and with their environment for survival, hunt-

ing, navigation or foraging. It can be a school of fish, flock of birds, colonies of ants

etc. SI based algorithms models the collective behaviour of these individuals to solve

complex optimization process. Even though as individuals, these agents have limited

operational capability, they tend to outperform in accomplishing the desired task by

interacting among themselves and with the environment using their own specific be-

havioural patterns. Literature review on the SI based optimization algorithm reveals

their effectiveness in solving complex optimization problems in different fields of study.

Ant colony optimization inspired by the foraging behaviour of the ants was found to be

very effective in solving structural optimization problems [87], traffic area control prob-

lems [88] and also in the field of genomics[89]. Particle swarm algorithm (PSO) is well
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known optimization algorithm mimicking the social behaviour of bird flocking or fish

schooling [90].The effectiveness of PSO in solving bi-level programming problems[91],

electric power systems[92], offshore heavy oil reservoir[93], and image processing [94]

is clearly explained in the literature. Bat algorithm[40], Firefly algorithm[41], Krill

Herd[42], Whale optimization algorithm[43], Grey wolf optimization[95], Ageist Spider

Monkey optimization[96], Moth Search optimization[97], Competitive optimization

algorithm[45]are some of the popular swarm based meta heuristic algorithms.

5.2 Importance of hybrid algorithm development

With the development of numerous optimization algorithms, it is difficult to test

and determine which algorithm is most suitable for solving a particular optimiza-

tion problem. This is because most of the algorithms work on a generalized concept

and do not have domain knowledge specific to each problem. Also as per “No Free

Lunch” theorem, there is no superior heuristic that can solve all types of optimization

problems[39]. Considering all these, there has been an increased trend towards the

development of hybrid algorithms that show remarkable improved performance due

to the synergy of parent algorithms. Lesser computation, improvement of solution

accuracy, enhancement of algorithm stability and the handling of searching conver-

gence can be considered as targets of hybridization and improvement process. In

continuation, this chapter introduces a novel hybrid version of Dragonfly algorithm

(DA) known as Memory based Hybrid Dragonfly Algorithm (MHDA) for numerical

constrained engineering problems. MHDA is hybrid optimization algorithm based

on swarming behavior of dragonflies and memory concept of PSO. In this chapter,

basic operation of MHDA along with the preliminary concept of DA and PSO are

explained. The performance of the algorithm is validated using two test suites with

standard benchmark functions.
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5.3 Dragonfly Algorithm (DA)

Dragonfly algorithm is inspired by the unique and superior swarming behaviour of

dragonflies. The dragonfly swarms for hunting and migration. Hunting swarm be-

haviour which is otherwise known as static swarm behaviour is characterized by the

formation of small group of dragonflies moving locally and abruptly changing the

steps. Migratory swarm behaviour which is otherwise know as dynamic swarm is

characterized by a massive number of dragonflies flying in one direction over long

distances. Static Swarm and dynamic swarms represent exploitation and exploration

capabilities of DA. The behaviour of dragonfly follows the principles of separation,

alignment, cohesion, distraction from the enemies and attraction towards the food.

Each dragon fly in the swarm corresponds to the solution in the search space. Swarm

movement of dragonfly is determined by five different operators such as Separation,

Alignment, Cohesion, Attraction towards food sources and distraction towards enemy

sources [98]. Separation (Si) which refers to the static collision avoidance of individu-

als from other individuals in the neighbourhood. Alignment (Ai) refers to the velocity

matching of individuals to other individuals in neighbourhood. Cohesion (Ci) refers

to the tendency of individuals towards the center of the mass of the neighbourhood.

Suitable weights are assigned to each operator and they are adaptively tuned to en-

sure the convergence of dragonflies towards the optimal solution. The neighbouring

radius of the dragonflies also increases as the process of optimization progresses.The

mathematical implementation of DA can be explained as follows.

Consider population of dragonflies of size N. The position of ith dragonfly is given by

equation (5.1)

Xi = (x1
i , ..x

d
i ...., x

N
i ) (5.1)

where i= 1,2,3....N, xd
i correspond to the position of the ith dragon fly in dth dimension
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of the search space and N is the number of search agents.

The fitness function is evaluated based on the initial position values which are ran-

domly generated between the lower and upper bounds of the variables. The weights

for separation (s), alignment (a), cohesion(c), food (f) and enemy (e) factors for each

dragonfly is initialized randomly. For updating the position and velocity of dragon-

flies separation, alignment and cohesion coefficients are calculated using equations

(5.2)-(5.4)

Si = −

N∑
j=1

X −Xi (5.2)

Ai =

∑N
i=1 Vi

N
(5.3)

Ci =

∑N

i=1 Xi

N
−X (5.4)

where Xi and Vi corresponds to the position and velocity of the ith individual. X

corresponds to the position of the current individual and N denotes the number of

neighbouring individuals.

Attraction towards food source,Fi and distraction from enemies Ei is calculated using

equations (5.5) and (5.6)

Fi = X+
−X (5.5)

Ei = X− + X (5.6)

where X is the position of the current individual and X+denotes the food source and

X−denotes the enemy source.

The distance of the neighbourhood is calculated by calculating the Euclidean distance

between all the dragonflies and selecting N of them. The distance, rij is calculated by

70



the equation (5.7)

rij =

√√√√ d∑
k=1

(xi,k − xj,k)2 (5.7)

If dragon fly has at least one dragonfly in the neighbourhood the velocity of the

dragonfly will be updated as per equation (5.8) analogous to velocity equation of

PSO and the position of the dragonfly will be updated as per equation (5.9) which is

analogous to position equation of PSO.

△Xt+1 = (sSi + aAi + cCi + fFi + eEi) + w△Xt (5.8)

Xt+1 = Xt +△Xt+1 (5.9)

If there is no dragonfly in the neighbourhood radius the position of the dragonfly will

be updated using Levy Flight equation[99] as given in equation (5.10). The relevant

information of Levy Flight equation, its strength and use are added in Appendix-

A. This improves the randomness, chaotic behaviour and global search capability of

dragonflies.

Xt+1 = Xt + Levy(d)Xt (5.10)

The fitness function is then evaluated based on the updated position and velocities.The

position updating process is continued till the stop condition is met.

5.4 Particle Swarm Optimization (PSO)

PSO is a swarm intelligence optimization technique based on the social behaviour of

organisms living in swarms [90]. Each individual in swarm is called as a particle which

can move freely to explore the problem hyperspace. Each particle is associated with
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position, velocity and fitness function. The velocity of the particle is updated based

on its own history of best solution (pbest) as well as from the history of best solution

so far found by all the particles in the population (gbest). The information obtained

by the particle is shared with other particles in the population and finally the particle

is guided towards the optimal solution. PSO is simple, easy to implement and have

few parameters to be adjusted.

Consider N dimensional search space. Let the position and velocity of the ith particle

in kth iteration be xi
kand velocity vik respectively. The velocity and position of the

particle in (k+1)th iteration are updated as per equation (5.11) and (5.12) respectively.

V i
k+1 = wV i

k + C1r1(P
i
k −X i

k) + C2r2(P
g
k −X i

k) (5.11)

X i
k+1 = X i

k + V i
k+1 (5.12)

where w is the inertial weight , C1and C2 represents the cognitive and social param-

eters, P i
kand P g

k represents the pbest of the ith particle and gbest of the swarm up

to kth iteration respectively.φ1 and φ2 represents random numbers generated in the

range [0 1].

5.5 Memory Based Dragonfly Algorithm (MHDA)

For any optimization algorithm, proper balance between exploration and exploita-

tion of the search space is necessary to achieve a global optimal solution. Explo-

ration otherwise known as diversification involves global search in the search space

and exploitation otherwise known as intensification involves search in a local region

depending upon the current best solution. Too much of exploration and exploitation

harmfully affects the performance of the algorithm by increasing the convergence time

and increasing the chances to fall into local optima[100]. The conventional DA, op-
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erates on a randomly generated initial population of search agents or dragonflies and

dragon flies explore the search space using Levy flight. This random initialization and

levy flight search process increases solution diversity and strengthens the exploration

capability of algorithm. Further, DA has only few parameters to adjust and adaptive

tuning of these swarming factors helps in balancing local and global search capabil-

ities. However, DA lacks an internal memory which can keep track of previously

obtained potential solutions. During the process, DA discards all the fitness values

exceeding the global best and never keeps track on possible set of solutions which has

a potential to converge to global optima. This weakens the exploitation capability of

the DA tending to converge very slowly and sometimes stagnate at local optima. To

avoid this, a novel hybrid algorithm based on DA and PSO is proposed. Two features

are added to conventional DA algorithm to improvise its performance, they are (i) an

internal memory to keep track of possible solutions which has a potential to converge

to global optima (ii) iteration level hybridization with PSO which runs on this set of

saved solutions.

5.5.1 Implementation of internal memory

With the addition of internal memory, each dragonfly is allowed to keep track of its

co-ordinates in the problem hyperspace which are associated with fitness value. This

is similar to the pbest concept in PSO. During each iteration, the fitness value of

search agents in current population is compared with the best fitness value in that

iteration. Better solutions are saved and a DA-pbest matrix is framed. Dragonflies are

also made to track best value obtained so far by any dragon fly in the neighbourhood

which is same as the gbest concept of PSO and is stored as DA-gbest. The concept

of pbest and gbest in DA is novel and enhances the exploitation capability of DA.

This feature of internal memory provides capability to escape from local optima and

provides greater performance than conventional algorithm [101].
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5.5.2 Iterative level hybridization with PSO

Iteration level hybridization is a straightforward approach of iteratively executing two

algorithms in sequence to enhance the optimization performance[102]. Here DA with

internal memory is used to converge the search space to more promising areas and

PSO is then allowed to exploit the previously limited area to find better solutions.

Due to balance between exploration offered by DA and exploitation capabilities offered

by PSO, hybrid algorithm-MHDA performs better than the parent algorithms. PSO

is then initialized with DA-pbest matrix and DA-gbest is set as the gbest of PSO

(PSO-gbest). The position and velocity equations of PSO gets modified as

V i
k+1 = wV i

k + C1r1(DA− pbestik −X i
k) + C2r2(DA− gbestgk −X i

k) (5.13)

X i
k+1 = X i

k + V i
k+1 (5.14)

where DA − pbestik is the pbest for ith particle of PSO and DA − gbestgk is gbest of

the swarm up to kth iteration for PSO.

Thus the MHDA combines the exploration features of DA in initial stage and ex-

ploitation capabilities of PSO in the final stage to achieve global optimal solutions.

The flowchart and pseudo-code of the proposed optimization algorithm are given in

Figure 5.1 and Algorithm 5.1 respectively.
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Figure 5.1 – Flowchart of MHDA
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Algorithm 5.1 Pseudocode of MHDA
Initialization set of parameters Maximum iteration(Maxiter), maximum number of search
agents (Nmax)number of search agents (N), number of dimensions (d), upper bound and
lower bound of variables

Initialize the dragonflies populations (X) - Initialize the step vectors (∆X)
while maximum iterations not done
For each dragonfly
Calculate fitness value
if

Fitness Value < DA-pbest in this iteration
move the current value to DA-pbest matrix
end if

if

fitness value < DA-gbest

set current value as DA-gbest
end if

end
For each dragonfly
Update the food source and enemy
Update w, s, a, c, f, and e

Calculate S, A, C, F, and E using equation (5.2)-(5.6)
Update neighbouring radius
if a dragonfly has at least one neighbouring dragonfly
Update velocity vector using equation (5.8)
Update position vector using equation. (5.9)
else

Update position vector using equation (5.10)
end if

Check and correct the new positions based on the boundaries of variables
end

-------------------------End of DA and Start of PSO------------------
For each particle
Initialize particle with DA-pbest matrix
Set PSO-gbest as DA-gbest
end

while maximum iterations or minimum error criteria is not attained
For each particle
Calculate fitness value if fitness value < PSO-pbest in history
set current value as the new PSO-pbest

end if

end
Choose the particle with the best fitness value of all the particles as the PSO-gbest

For each particle
Calculate particle velocity according equation (5.13)
Update particle position according equation (5.14)
end

end while

------------------------------------End of PSO------------------------------------------
best-fitness = PSO-gbest

end while
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5.6 Performance Evaluation on Benchmark Func-

tions

The efficiency of MHDA is proved by testing on standard benchmark functions and

comparing its performance with other powerful optimization algorithms. The bench-

mark function suite used for analysis is explained in the section 5.1. The experi-

mental results and comparison with other algorithms are explained in section 5.6.1.

Section 5.6.2 presents the statistical test results and the analysis of MHDA algorithm

is explained in section 5.6.3. Section 5.6.4 explains the computational complexity of

MHDA.

5.6.1 Benchmark function suite

To test the performance of MHDA, two test suites are considered. Suite I includes

the function set used by the authors of conventional DA and recently proposed swarm

based optimization techniques. This avoids studying the best parameter setting of

each algorithm separately and to conduct a fair comparison. In Suite-I, the perfor-

mance of MHDA is compared with classical DA, PSO and recently proposed swarm

based optimization algorithms such as Ant Lion Optimizer(ALO)[103], Grey Wolf

Optimizer(GWO)[95], Whale Optimization Algorithm (WOA)[43]. We also intend to

prove that MHDA is capable of giving competitive results when compared to recently

developed high performance algorithms from different families, hence suite II is con-

sidered. In Suite-II, the performance of MHDA is compared with most powerful and

standard algorithms such as Cuckoo Search (CS)[104], Mean-Variance Mapping Op-

timization (MVMO)[105], Backtracking Search Optimization Algorithm (BSA)[106]

self adaptive variants of Differential Evolution (DE) such as JADE[107], SaDE[108]

and jDE[109].
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5.6.1.1 Suite-I - Basic unconstrained benchmark functions

Suite-I consist of 19 benchmark functions, out of which 16 are classical benchmark

functions found in the literature[103] and other 6 test problems are taken from the

novel composite functions proposed in IEEE Swarm Intelligence Symposium 2005[110].

The description of functions (F14 − F19) is sown in the Appendix-A. The classical

benchmark set is classified into two sets- unimodal functions (F1 − F7) and multi-

modal functions (F8 − F13). The details of unimodal and multimodal benchmark

functions, range, and dimension is shown in Table 5.1. Unimodal test functions have

one global optima and performance of algorithm on these test function reveals its

exploitation and convergence capability. Multimodal functions have more than one

global optimum in the presence of many local optima. The performance of algorithm

on these test function reveals its exploration and local optima avoidance capabil-

ity. The last set of functions called as composite functions(F14 − F19) comprises of

combined, shifted, rotated, biased versions of algorithms and represents the complex

search space by providing large number of local minima and changing the shape of

search space domain. The details of composite functions (F14 − F19) are given in the

Appendix-A.
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Table 5.1 – Description of Unimodal Functions

Function Dim Range fmin

Unimodal Functions

F1(x) =
∑n

i=1
x2
i 30 [-100 100] 0

F2(x) = Σn
i=1

| xi | +Πn
i=1

| xi | 30 [-100 100] 0

F3(x) = Σn
i=1

(Σi
j−1

Xj)
2 30 [-100 100] 0

F4(x) =max{| xi |, 1 ≤ i ≤ n} 30 [-100 100] 0

F5(x) = Σn−1

i=1
[100(xi+1 − x2

i )
2 + (xi − 1)2] 30 [-30 -30] 0

F6(x)=Σn
i=1

[(xi + 0.5)]2 30 [-100 100] 0

F7(x) = Σn
i=1

x4
i + random(0 1) 30 [-1.28 1.28] 0

Multimodal Functions

F8(x) = Σn
i=1

− xisin(
√

| xi |) 30 [-500 500] −418.9D

F9(x) = Σn
i=1

[x2
i − 10cos(2Πxi) + 10] 30 [-5.12 5.12] 0

F10(x) = −20exp(−0.2
√

1

n
Σn

i=1
x2
i − exp

(

1

n
Σn

i=1
cos(2Πxi)

)

+ 20 + e 30 [-32 32] 0

F11(X) = 1

4000
Σn

i=1
x2
i −Πn

i=1
cos( xi

√

i
) + 1 30 [-600 600] 0

F12(x) =

Π

n
{10 sin(Πy1)+Σn−1

i=1
(yi−1)2[1+10 sin2(Πyi+1)]+(yn−1)2}+Σn

i=1
u(xi, 10, 100, 4)

30 [-50 50] 0

F13(x) = 0.1{sin2(3Πx1) + Σn
i=1

(xi − 1)2[1 + sin2(3Πxi + 1) + (xn − 1)2[1 +

sin2(2Πxn)]}+Σn
i=1

u(xi, 5, 100, 4)]

30 [-1.28 1.28] 0

5.6.1.2 Suite-II-CEC 2014 unconstrained benchmark functions

Suite-II comprises 30 CEC 2014 functions with 30 dimensions (30D). The detailed

explanation of different functions can be found in the technical report[111]. CEC 2014

test functions can be categorized into four types-unimodal(F1−F3), multimodal (F4−

F16), hybrid functions(F17 − F22) and composition functions (F23 − F30). Unimodal

functions in this set are non-separable and rotated where as multimodal functions

are either separable or non-separable but are shifted or rotated. Hybrid functions

are created by randomly dividing the variables into different sub components and

then different basic components are used for different sub components. Composite

functions in this set are created by the combination of two or more hybrid functions.

5.6.2 Experimental Results

All the experiments were executed on personal computer (Core i7, 3.4GHz, 32GB

RAM) using MATLAB. The performance of MHDA was compared with other al-

gorithms in terms of mean and standard deviation of objective function value and

objective function error value on Suite-I and on Suite II respectively.
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5.6.2.1 On Suite-I

In this section the performance of MHDA on benchmark function Suite-I is explained.

For a fair comparison among the algorithms, maximum number of iteration and search

agents was set to 1000 and 30 respectively as followed in the literature[103]. The levy

flight constant and inertial weights of MHDA[wmax, wmin] was set to 1.5 and [0.9, 0.2]

respectively. Each function was run independently for 30 runs and mean and standard

deviation (std) for unimodal, multimodal and composite functions are reported in the

Table 5.2. The stopping criterion was set to maximum number of iterations. The

results of other algorithms have been taken from the reference[43][103].

Table 5.2 – Comparison between MHDA and other algorithms on optimizing Suite-I
benchmark functions in terms of mean and std

F Meas. MHDA DA ALO GWO WOA PSO

F1

Mean 4.07E-42 5.15E-07 2.59E❂10 6.59E-28 1.41E-30 2.70E❂09

Std 2.22E-41 2.82E-06 1.65E❂10 6.34E-05 4.91E-30 1.00E❂09

F2
Mean 6.62E-15 4.82E-06 1.842E❂06 7.18E-17 1.06E-21 7.15E❂05

F2
Std 3.61E-14 2.50E-05 6.58E❂07 2.91E-02 2.39E-21 2.26E❂05

F3

Mean 2.55E-50 5.37E-07 6.068E❂10 3.29E+06 5.39E-07 4.71E❂06

Std 1.3E-49 2.94E-06 6.34E❂10 79.14958 2.93E-06 1.49E❂06

F4

Mean 4.989E-05 1.349E-04 1.361E❂08 5.61E-07 7.26E-02 3.25E❂07

Std 2.73E-04 4.57E-04 1.81E❂09 1.315E+00 3.98E-11 1.02E❂08

F5

Mean 3.34E-22 6.71E-01 3.46E-01 2.65E+01 27.87E+00 1.23E-01

Std 5.67E-22 3.66E+00 0.109584 69.90499 7.636E-01 2.16E-01

F6

Mean 0.00E+00 9.05E-06 2.562E❂10 8.166E-01 3.116E+00 5.23E❂07

Std 0.00E+00 3.31E-05 1.09E❂10 1.26E-04 5.324E-01 2.74E❂06

F7

Mean 5.25E-05 4.5E-04 4.29E-03 2.22E-02 1.425E-03 1.39E+00
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Std 5.02E-05 5.71E-04 5.08E-03 1.003E-01 1.15E-03 0.001269

F8

Mean -2957.34 -3932.76 -2247.86 -6123.1 -5080.76 ❂4841.29

Std 3.86E+02 2.18E+02 5.29E+03 4.08E+04 6.95E+00 1.15E+03

F9

Mean 5.91E-07 3.36E-02 7.71E❂06 3.12E-01 0.00E+00 2.78E-01

Std 3.23E-06 1.81E-01 8.45E❂06 4.74E+01 0.00E+00 2.18E-01

F10

Mean 6.34E-15 2.66E-04 3.71E❂15 1.06E-13 7.40E+00 1.11E❂09

Std 2.72E-14 8.59E-04 1.5E❂15 7.78E-02 9.90E+00 2.39E❂11

F11

Mean 2.40E-04 3.83E-03 1.86E-02 4.49E-03 2.89E-04 2.73E-01

Std 2.25E-02 7.154E-02 9.54E-03 6.66E-03 1.59E-03 2.04E-01

F12

Mean 2.34E-31 7.48E-04 9.75E❂12 5.34E-02 3.40E-01 9.42E❂09

Std 4.45E-47 3.75E-04 9.33E❂12 2.07E-02 2.15E-01 2.31E❂10

F13

Mean 1.39E-32 1.06E-03 2.01E❂11 6.54E-01 1.88E+00 1.35E❂07

Std 5.57E-48 3.99E-04 1.13E❂11 4.47E-03 2.66E-01 2.88E❂08

F14

Mean 5.75E-15 1.04E+02 1.51E-04 4.38E+01 5.68E-01 100

Std 2.85E-04 9.12E+01 3.82E-04 6.98E+01 5.05E-01 8.16E+01

F15
Mean 1.40E+02 2.13E+02 1.45E+01 9.18E+01 7.53E+01 1.55E+02

F15
Std 2.43E+01 1.27E+05 3.22E+01 9.55E+01 4.31E+01 1.13E+01

F16

Mean 1.00E+01 5.58E+02 1.75E+02 6.14E+01 5.56E+01 1.72E+01

Std 3.44E+01 1.65E+02 4.65E+01 6.86E+01 2.18E+01 3.27E+01

F17

Mean 1.00E+02 2.20E-03 3.16E+02 1.23E+01 5.38E+01 3.14E+02

Std 5.63E-03 4.63E-03 1.30E+01 1.63E+02 2.16E+01 2.00E+01

F18

Mean 3.03E+02 2.50E+02 4.41E+01 1.02E+01 7.78E+01 8.34E+01

Std 8.88E+00 1.85E+02 1.66E+00 8.12E+01 5.22E+01 1.01E+02

F19

Mean 5.00E+02 6.79E+02 5.003E+02 4.31E+01 5.78E+01 8.61E+02

Std 1.36E-03 1.99E+02 2.06E-01 8.44E+01 3.44E+01 1.25E+02
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5.6.2.2 On Suite-II

The experiments are done on 30 CEC 2014 benchmark functions with 30 dimen-

sions.The parameter setting of MHDA was kept same as in Suite-I. The parame-

ter setting and results of other algorithms were taken from the reference[112][104].

The population size was set to 50 and maximum number of function evaluation

(MaxFE = D ∗ 103) is set as stopping criteria where D is the number of dimen-

sions. The algorithm was run independently 51 times. The mean and standard

deviation(std) of function error values between the best fitness value and true optimal

value in each independent runs are reported in Table 5.3

Table 5.3 – Comparison between MHDA and other algorithms on optimizing Suite-II
benchmark functions in terms of mean and std

F Meas. MHDA CS MVMO BSA JADE SaDE jDE

F1

Mean 3.20E+03 3.50E+07 1.07E-03 2.04E+01 6.09E+02 3.73E+03 6.12E+04

Std 3.02E+03 2.49E+07 1.09E-03 1.56E-02 1.18E+03 3.26E+03 7.64E+04

F2

Mean 0.00E+00 1.95E+07 2.38E-05 1.62E+01 0.00E+00 0.00E+00 2.27E-15

Std 0.00E+00 5.49E+07 1.19E-05 9.69E-01 0.00E+00 0.00E+00 7.87E-15

F3

Mean 0.00E+00 3.10E+04 1.11E-03 4.19E-03 9.86E-04 0.00E+00 4.09E-14

Std 0.00E+00 1.36E+04 1.03E-03 1.32E-02 5.95E-03 0.00E+00 2.60E-14

F4

Mean 0.00E+00 2.03E+02 0.00E+00 2.93E+00 0.00E+00 0.00E+00 8.53E+00

Std 0.00E+00 6.69E+01 0.00E+00 1.46E+00 0.00E+00 0.00E+00 2.16E+01

F5

Mean 2.00E+01 2.00E+01 2.00E+01 5.95E+01 2.03E+01 2.03E+01 2.03E+01

Std 1.57E-02 2.28E-03 2.00E+01 7.94E+00 3.23E-02 4.03E-02 3.26E-02

F6

Mean 1.76E+00 3.23E+01 3.62E+00 3.22E+01 9.15E+00 1.49E+01 5.31E+00

Std 2.87E+00 3.27E+00 3.04E+00 6.57E+00 2.21E+00 9.42E-01 4.04E+00

F7

Mean 0.00E+00 1.79E+00 2.99E-03 2.56E+03 0.00E+00 0.00E+00 2.96E-04
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Std 0.00E+00 2.19E+00 0.00E+00 2.56E+02 0.00E+00 0.00E+00 1.48E-03

F8

Mean 0.00E+00 1.71E+02 8.58E-01 4.37E-01 0.00E+00 0.00E+00 1.19E-01

Std 0.00E+00 3.46E+01 9.95E-01 7.85E-02 0.00E+00 0.00E+00 3.30E-01

F9

Mean 3.00E+01 2.80E+02 2.51E+01 2.84E-01 2.62E+01 3.58E+01 3.81E+01

Std 1.82E+01 5.16E+01 2.39E+01 4.68E-02 4.96E+00 7.01E+00 5.71E+00

F10

Mean 1.10E+03 2.66E+03 1.79E+01 2.45E-01 8.16E-03 1.11E+00 3.17E+00

Std 8.24E+02 5.34E+02 9.76E+00 4.02E-02 1.18E-02 2.02E+00 3.18E+00

F11

Mean 1.41E+02 4.13E+03 1.54E+03 7.06E+00 1.67E+03 2.28E+03 2.71E+03

Std 4.35E+02 5.35E+02 1.59E+03 1.07E+00 2.13E+02 3.45E+02 2.75E+02

F12

Mean 1.44E-01 5.11E-01 7.21E-02 1.07E+01 2.67E-01 4.59E-01 4.77E-01

Std 7.19E-02 2.56E-01 6.24E-02 2.71E-01 3.57E-02 5.23E-02 5.41E-02

F13

Mean 4.59E-01 4.81E-01 1.57E-01 1.54E+05 2.20E-01 3.02E-01 2.84E-01

Std 1.23E-01 1.17E-01 1.62E-01 8.75E+04 3.25E-02 3.69E-02 3.55E-02

F14

Mean 2.04E-01 3.08E-01 1.99E-01 9.10E+02 2.41E-01 2.68E-01 3.02E-01

Std 3.33E-01 5.64E-02 1.99E-01 1.05E+03 3.18E-02 1.40E-01 4.15E-02

F15

Mean 2.33E+00 9.80E+01 2.86E+00 6.91E+00 3.20E+00 4.86E+00 5.36E+00

Std 7.67E-01 3.02E+01 2.69E+00 6.25E-01 4.55E-01 4.17E-01 7.43E-01

F16

Mean 9.50E+00 1.27E+01 1.02E+01 1.68E+02 9.30E+00 1.03E+01 1.03E+01

Std 1.18E+00 5.01E-01 9.84E+00 1.91E+02 4.61E-01 3.42E-01 3.23E-01

F17

Mean 4.81E+02 1.48E+06 9.01E+02 6.20E+03 1.91E+04 8.55E+02 1.62E+03

Std 5.32E+02 1.21E+06 1.03E+03 3.02E+03 1.08E+05 2.80E+02 1.49E+03

F18

Mean 3.74E+01 7.67E+03 2.89E+01 1.79E+02 1.14E+02 4.92E+01 1.86E+01

Std 2.08E+01 6.70E+03 2.08E+01 8.11E+01 1.97E+02 2.57E+01 1.04E+01

F19

Mean 1.12E+01 5.33E+01 3.08E+00 3.15E+02 4.48E+00 5.26E+00 4.97E+00

Std 1.87E+01 3.63E+01 3.02E+00 2.92E-07 7.56E-01 1.15E+00 9.61E-01
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F20

Mean 3.67E+02 3.93E+04 1.09E+02 2.27E+02 3.11E+03 1.85E+01 1.36E+01

Std 4.08E+02 2.20E+04 5.69E+01 2.42E+00 3.01E+03 4.14E+00 6.64E+00

F21

Mean 7.06E+02 3.54E+05 4.67E+02 2.07E+02 1.33E+04 4.31E+02 2.98E+02

Std 1.05E+03 3.48E+05 4.89E+02 6.48E-01 4.12E+04 1.32E+02 2.25E+02

F22

Mean 2.70E+02 9.47E+02 1.45E+02 1.00E+02 1.44E+02 1.65E+02 1.38E+02

Std 1.80E+02 3.31E+02 1.46E+02 5.83E-02 7.74E+01 7.11E+01 5.38E+01

F23

Mean 3.10E+02 3.29E+02 3.15E+02 4.09E+02 3.15E+02 3.15E+02 3.15E+02

Std 4.00E+01 7.51E+00 3.15E+02 3.71E+00 4.01E-13 0.00E+00 0.00E+00

F24

Mean 2.24E+02 2.78E+02 2.25E+02 8.77E+02 2.25E+02 2.25E+02 2.26E+02

Std 1.80E+01 3.11E+01 2.25E+02 1.66E+01 3.60E+00 4.31E+00 3.34E+00

F25

Mean 2.10E+02 2.23E+02 2.03E+02 1.41E+03 2.03E+02 2.03E+02 2.04E+02

Std 6.91E+00 9.39E+00 2.03E+02 1.89E+02 1.13E+00 5.52E-01 8.81E-01

F26

Mean 1.000E+02 1.00E+02 1.00E+02 2.55E+03 1.02E+02 1.00E+02 1.00E+02

Std 4.720E-02 1.63E-01 1.00E+02 7.49E+02 1.39E+01 3.55E-02 5.05E-02

F27

Mean 4.01E+02 4.27E+02 4.01E+02 5.12E+06 3.35E+02 5.46E+02 4.01E+02

Std 4.01E+02 1.96E+01 4.01E+02 4.10E+06 4.68E+01 1.11E+02 5.44E+01

F28

Mean 1.52E+03 3.49E+03 8.77E+02 8.34E-01 7.96E+02 8.08E+02 8.38E+02

Std 5.77E+02 5.48E+02 8.78E+02 1.48E+00 4.63E+01 3.78E+01 2.99E+01

F29

Mean 7.78E+02 5.44E+05 7.36E+02 5.74E-04 8.28E+02 8.41E+05 8.66E+02

std 7..5E+02 2.61E+06 7.42E+02 9.44E-04 3.27E+02 2.66E+06 1.62E+02

F30

Mean 2.37E+03 2.49E+04 2.00E+03 9.83E+01 1.66E+03 2.34E+03 2.79E+03

Std 2.80E+03 2.26E+04 2.08E+03 2.96E+01 7.61E+02 1.38E+03 1.22E+03
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5.6.3 Statistical Results

Mean and standard deviation of results give general idea about the performance of

the algorithm. In order to prove that results are generated not by chance, statistical

tests must be also carried out. The statistical significance of experimental results on

Suite-I and Suite-II is obtained by performing Friedman’s test and Wilcoxon ranksum

test. Friedman test is a commonly used non parametric statistical method to rank the

performance of the algorithms. Friedman’s test aims to find whether any significant

difference exist between the results of different algorithms. It is based on null hy-

pothesis that there is no variation in the performance of all algorithms[113]. The best

performing algorithm gets lowest rank while the worst performing algorithm gets the

highest rank . The average rank obtained by each algorithm on all test functions is

calculated for determining Friedman’s statistic [114]. Friedman statistic is then com-

pared with χ2 (chi-square) distribution values with k − 1 degrees of freedom, where

k is the number of algorithms compared. If the p value returned by this compari-

son test is found to be less than or equal to level of significance, null hypothesis is

rejected indicating the there exist significant differences between the performance of

algorithms. Friedman’s test is then followed by post-hoc analysis to test the pair wise

comparison of algorithms using Wilcoxon’s ranksum test[115] . The lowest ranked

algorithm by Friedman’s test is used as the control method for post-hoc analysis .The

summary of statistical results on Suite-I and Suite-II benchmark functions is shown in

Table 5.4 and 5.5 respectively.+ indicates significantly better, − indicates significantly

worse and Not Sgn indicates non-significant results produced by given algorithm than

MHDA.
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Table 5.4 – Summary of statistical results on Suite-I

Friedman’s Test

Algorithm Rank

MHDA 2.263

DA 4.578

ALO 3.632

GWO 4.842

WOA 3.563

PSO 4.210

Wilcoxon ranksum test

MHDA Vs + - Not Sgn

DA 2 16 1

ALO 4 15 0

GWO 7 12 0

WOA 8 11 0

PSO 3 16 0

Table 5.5 – Summary of statistical results on Suite-II

Friedman’s Test

Algorithm Rank

MHDA 2.230

CS 5.400

JADE 2.933

MVMO 2.700

SaDE 3.226

jDE 3.833

BSA 4.800

Wilcoxon ranksum test

MHDA Vs + − Not Sgn

CS - 24 6

JADE 8 16 4

MVMO 11 13 6

SaDE 7 16 7

jDE 8 20 2

BSA 11 19 0

From the summary of statistical results of Suite-I and Suite-II, MHDA was the best

performing algorithm among all the compared algorithms. Considering 5% level of

significance MHDA received lowest rank of 2.263 in Suite-I test functions and 2.23

in Suite-II test functions.WOA was the second best performing algorithm on Suite-

I outperforming MHDA in 11 cases . MVMO, which was one of the best qualified

algorithms in CEC competition 2014 was a major competitor of MHDA in Suite-II

and . Its performances were better than MHDA in 16 cases, worse than MHDA in

9 cases and gave non-significant results in 5 cases. Therefore, MHDA is proved to

be a highly competitive optimization algorithm and can be used for solving hardest

optimization problems.

5.6.4 Analysis of MHDA

The following observations can be made from the experimental results of Suite-I:

❼ Unimodal functions(F1-F7) - The proposed algorithm outperforms other algo-
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rithms in five out of seven benchmark problems. In function F2 MHDA becomes

third best and in F4 MHDA becomes fourth best out of the six algorithms com-

pared.

❼ Multimodal Functions (F8-F13) - The proposed algorithm outperforms other

algorithms in five out of six cases. In function F8 MHDA becomes the second

best performing algorithm.

❼ Composite Functions (F14-F19) - MHDA outperforms other algorithms in four

out of six cases.

The following observations can be made from the experimental results of Suite-II:

❼ Unimodal functions (F1–F3)- For this group functions the proposed MHDA gives

best performance in F2and F3

❼ Multimodal functions (F4–F16)-The proposed MHDA performs better on six

functions namelyF4,F5, F6, F7, F8and F15 while it becomes the second performing

algorithm for functions F11,F12, F14, F16.

❼ Hybrid functions(F17–F22) - For this group function the proposed MHDA gives

best results in F17and for other functions it is marginally worse than the best

performing algorithm.

❼ Composition functions (F23–F30) - In this group the proposed MHDA performs

better than all other algorithms on three functions namely F23,F24, F26 . It is

second best in functions F27and F29.

Performance of MHDA on unimodal functions shows the exploitation capability of

MHDA which helps to converge rapidly and exploit accurately. Integrated internal

memory and iterative level hybridization with PSO improves the exploitation capa-

bility of MHDA.The superior performance of MHDA on multimodal functions owes
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to the random initialization and levy flight search process followed in DA. From the

results of composite functions, it is evident that MHDA succeeds in avoiding local

optima by properly balancing the exploration and exploitation capabilities. MHDA

outperformed most of functions in Suite-I while giving competent results in Suite-II.

The mechanism behind the exploration and exploitation of MHDA is graphically rep-

resented by tracking the path of search agents in the search space. The Unimodal

function F1, multimodal function F9 and composite function F14 from Suite-I are

solved by 10 search agents for 100 iterations to explain the search process and con-

vergence behaviour of MHDA.

Figure 5.2 – Search process of MHDA

It has been found that search agents in MHDA tends to explore the search space

very widely and then gradually converges to a point. This is because of exploration

capability of DA provided in the first phase of MHDA and subsequent exploitation

provided by iterative level hybridization of PSO working on DA− pbest matrix. The

position of potential search agents nearer to the food are saved in this memory. This

helps in attracting other search agents when exploring the search space. When the

search agents approach near global optimal solution they exploit very slowly on the

promising area of search solution with embedded PSO operators in MHDA. This is

clearly shown in figure 5.2 where the ’+’ indicates the search agents for DA and green

dots indicates the search agents for PSO.

The convergence curves of MHDA is compared with the other six algorithms of Suite-I

and is provided in Fig 2.3. All the algorithms were executed from the same initial
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population. It is observed that the convergence accelerates with increase in iterations.

MHDA exhibits a rapid convergence in all three cases, which is due to its powerful

global search mechanism in the initial stage and local search on best saved positions

in the search space. From Figure 5.3 it has been found that MHDA outperforms other

algorithms and converges very quickly with respect to number of iterations to global

minima or near global minima.

Figure 5.3 – Convergence plot of MHDA
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5.6.5 Computational complexity of MHDA

MHDA is realized by combining conventional DA and PSO algorithm. Computa-

tional complexity depends on the structure and implementation of algorithm. The

overall complexity can be estimated as follows. MHDA consist of four major steps

(i) Fitness calculation of dragonflies (ii) Updation of dragonflies (iii) Fitness Cal-

culation of particle (iv) Updation of particle. Assuming N as the number of search

agents,t as the number of iterations the complexity of first two steps can be esti-

mated as O (N2t). Considering K as the number of search-agents qualified for being

in DA − pbest matrix, the complexity of (iii) and (iv) together can be estimated as

O (K2t) where K < N . Therefore the overall complexity of MHDA can be estimated

as O (N2t+K2t) .Usually number of search agents required for optimizing problem is

small (N = 20 or 40), and t is large (1000 or 2000), the computation cost is relatively

inexpensive because the algorithm complexity is linear in terms of t. Even though

the complexity of MHDA is more than conventional DA at the same maximum itera-

tion, MHDA can find optimal solutions in lesser number of iterations before it reaches

maximum iteration and with greater accuracy. So, effectively the actual computation

time will be reduced relative to conventional DA.

5.7 Application of MHDA in Engineering design

problems

The competence of MHDA in solving real world problems especially non- linear con-

strained problems is demonstrated by testing on standard engineering design problems

and comparing the results with other optimization algorithms. Three well known, en-

gineering problems such as welded beam design, pressure vessel and motor design

benchmark study are considered for testing MHDA algorithm.The constraints are

usually handled by penalty functions. The idea of penalty functions is to transform a

constrained optimization problem into an unconstrained one by adding (or subtract-
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ing) a certain value to/from the objective function based on the amount of constraint

violation present in a certain solution[116]. In this paper death penalty is used for

discarding infeasible solutions during optimization.

5.7.1 Welded beam design

The welded beam design problem, a standard benchmark study, aims at minimizing

the fabrication cost of the welded beam by finding feasible set of four structural param-

eters of the beam: the thickness of the weld (h), length of the clamped bar(l), height

of the bar (t) and thickness of bar(b). The related constraints are shear stress(τ),

bending stress in the beam (θ), buckling load (Pc), and end deflection of the beam

(δ). The variable vector (in inches ) can be written as ~X = [ ~x1, ~x2, ~x3, ~x4] where ~x1,

~x2, ~x3 and ~x4 represents h ,l ,t and b respectively. The welded beam structure shown

in Figure 5.4 is taken from [117].

Figure 5.4 – Welded beam design problem

The mathematical formulation of the objective function along with the constraints is

given below.

Minimize

f(
−→
X ) = 1.10471x2x

2
1 + 0.04811x3x4(14 + x2) (5.15)
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subject to constraints,

g1( ~X) = τ( ~X)− τmax ≤ 0 (5.16)

g2(
−→
X ) = σ( ~X)− σmax ≤ 0 (5.17)

g3(
−→
X ) = δ( ~X)− δmax ≤ 0 (5.18)

g4( ~X) = x1 − x4 ≤ 0 (5.19)

g5( ~X) = P − Pc( ~X) ≤ 0 (5.20)

g6( ~X) = 0.125− x1 ≤ 0 (5.21)

g7( ~X) = 1.1047x2
1 + 0.04811x3x4(14 + x2)− 5 ≤ 0 (5.22)

where τ( ~X) =
√

(τ ′)2 + 2τ ′τ” x2

2R
+ (τ”)2

τ ′ = P
√

2x1x2

,τ” = MR
J
,M = P (L+ x2)

2

R =

√
x2
2

4
+ (x1+x3

2
)2,

J = 2
{√

2x1x2

[
x2
2

4
+
(
x1+x3

2

)2]}
,

σ( ~X) = 6PL
x4x

2
3

, δ( ~X) = 6PL3

Ex2
3
x4

Pc( ~X) =
4.013E

√

x2
3
x6
4

36

L2

(
1− x3

2L

√
E
4G

)

P = 6000lb, L = 14in, δmax = 0.25in,

E = 30E6 psi, G = 12E6 psi, τmax = 13, 600 psi, σmax = 30, 000 psi

0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2 (5.23)

92



This optimization problem is solved by using different evolutionary algorithms such

as GA with self adaptive penalty[118], Evolution Strategy[119], PSO[120], Gravita-

tional Search Algorithm (GSA)[121], Simulated Annealing(SA)[122], Co-evolutionary

Particle Swarm Optimization(PSO)[123], Differential Evolution (DE)[124], Harmony-

Search (HS)[125], Ant Colony Optimization(ACO)[126], Simple constrained PSO[127],

Improved harmony search algorithm (IHS)[128], Cuckoo Search(CS)[129], Artificial

Bee Colony Algorithm(ABC)[130], Simplex Search Method[131], Whale optimization

algorithm (WO)[46], Ray optimization algorithm (RO)[132]. The maximum itera-

tion and search agents in MHDA is set to 1500 and 50 respectively.The results of

welded beam design problem using different algorithms is shown in Table 5.6. From

the results it is clear that the proposed MHDA produced lowest cost of 1.6952471

and outperformed all other algorithms. The Statistical results after 30 independent

runs in terms of best score, worst score ,mean and standard deviation for different

algorithms is shown in Table 5.7, out of which standard deviation of MHDA was the

lowest( about 5.83118E-16 ). This proves the reliability of MHDA in solving this

optimization problem

Table 5.6 – Comparison of optimization results for welded beam design problem by
different algorithms

Algorithm

Optimum variables Optimum

Costh l t b

MHDA 0.2057 3.2531 9.0366 0.2057 1.6952

DA 0.1943 3.4668 9.0454 0.2057 1.7081

GA with Selfadaptive penalty

approach

0.2088 3.4205 8.9975 0.2100 1.7483

Evolution Strategy 0.1997 3.6121 9.0375 0.2068 1.7373

SA 0.2056 3.4726 9.0366 0.2057 1.7250

Co-evolutionary PSO 0.2057 3.4705 9.0366 0.2057 1.7249
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GSA 0.1822 3.8570 10.0000 0.2024 1.8800

RO 0.2037 3.5285 9.0024 0.2072 1.7353

WOA 0.2054 3.4843 9.0374 0.2063 1.7305

Simple constrained PSO 0.2057 3.4705 9.0366 0.2057 1.7249

PSO 0.2057 3.4705 9.0366 0.2057 1.7249

Improved HS 0.2057 3.4705 9.0366 0.2057 1.7248

DE 0.2057 3.4705 9.0337 0.2057 1.7249

Cuckoo Search 0.2015 3.5620 9.0414 0.2057 1.7312

ABC 0.2057 3.4705 9.0366 0.2057 1.7249

ACO 0.2057 3.4711 9.0367 0.2057 1.7249

Simplex Search Method 0.2057 3.4705 9.0366 0.2057 1.7249

.

Table 5.7 – Statistical results of different optimization algorithms for solving welded
beam design problem

Algorithm Best Score Worst Score Mean Std. Dev

MHDA 1.6952 1.6952 1.6952 0.0000

DA 1.7081 2.5211 1.9408 0.2502

GA with Self adaptive penalty

approach

1.7483 1.7720 1.7858 0.0112

Evolution Strategy 1.7282 1.9934 1.7927 0.0747

SA 1.7250 1.8844 1.7564 NA

Co-evolutionary PSO 1.7280 1.7821 1.7488 0.0129

Cuckoo Search 1.7312 2.3456 1.8787 0.2678

Simple constrained PSO 1.7249 NA 2.0574 0.2154

DE 1.7249 NA 1.7250 0.0000
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Cuckoo Search 1.7312 2.3456 1.8787 0.2678

ABC 1.7249 NA 1.7419 0.0310

ACO 1.7292 1.7760 1.7298 0.0092

5.7.2 Pressure vessel design

Figure 5.5 – Pressure vessel design problem

The pressure vessel design is one of the widely used structural design benchmark

problem. The objective of this mixed integer optimization problem is to minimize

the total cost of materials, forming and welding. The thickness of the shell (Ts),

the thickness of the head (Th),the inner radius (R) , the length of cylindrical section

without considering the head (L) are the design variables involved in the optimization.

Figure 5.5 showing the cross-section of pressure vessel is taken fromthe reference [133].

The variable vector (in inches ) can be written as ~X = [ ~x1, ~x2, ~x3, ~x4] where ~x1, ~x2,

~x3 and ~x4 represents Ts ,Th ,R and L .The mathematical formulation of the objective

function along with the constraints is given below.

Minimize

f( ~X) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (5.24)

subject to

g1( ~X) = −x1 + 0.0193x3 ≤ 0 (5.25)
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g2(
−→
X ) = −x3 + 0.00954x3 (5.26)

g3(
−→
X ) = −Πx2

3x4 −
4

3
Πx3

3 + 1296000 ≤ 0 (5.27)

g4(
−→
X ) = x4 − 240 ≤ 0 (5.28)

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200 (5.29)

This optimization problem is solved by many researchers using different algorithms

like non linear and discrete programming[134], Simulated Annealing[135], Harmony

Search(HS) [125], Augmented Lagrange multiplier[133], GeneAS[136], GA with self

adaptive penalty approach [137], Guassian QPSO[138], Co-evolutionary PSO [123],GA

with dominance based tournament selection[118], Evolution Strategy [119], GA with

self-adaptive penalty approach [137], Cuckoo search algorithm[129], Artificial Bee

Colony algorithm (ABC) [139], Simple constrained PSO [127], Improved PSO[140],

Differential Evolution (DE), Improved Ant Colony Optimization (ACO)[126], Hybrid

PSO[141], PSO[120], Whale Optimization (WO) [46], Penalty guided ABC [142].

Table 5.8 – Comparison of optimization results for Pressure vessel design problem by
different algorithms

Algorithm

Optimum variables

Optimum Cost

Ts Th R L

MHDA 0.7782 0.3846 40.3196 200.0000 5885.3350

DA 0.7828 0.3846 40.3196 200.0000 5923.1100

Non-linear and discrete programming 1.1250 0.6250 47.7000 117.7010 8129.1036

SA 1.1250 0.6250 58.2900 43.6930 7197.7000

HS 1.1250 0.6250 58.2789 43.7549 7198.4330

Augmented Lagrange multiplier 1.1250 0.6250 58.2910 43.6900 7198.0428
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GeneAS 0.9375 0.5000 48.3290 112.6790 6410.3811

GA with Self adaptive penalty

approach

0.8125 0.4375 40.3239 200.0000 6288.7445

Co-evolutionary PSO 0.8125 0.4375 42.0913 176.7465 6061.0770

GA with dominance based

tournament selection

0.8125 0.4375 42.0974 176.6541 6059.9460

Evolution Strategy 0.8125 0.4375 42.0981 176.6405 6059.7456

Guassian QPSO 0.8125 0.4375 42.0984 176.6372 6059.7208

Cuckoo Search 0.8125 0.4375 42.0984 176.6364 6059.7143

Simple Constrained PSO 0.8125 0.4375 42.0984 176.6364 6059.7143

ABC 0.8125 0.4375 42.0984 176.6366 6059.7143

Improved PSO 0.8125 0.4375 42.0984 176.6366 6059.7143

DE 0.8125 0.4375 42.0984 176.6360 6059.7017

PSO 0.8125 0.4375 42.0985 176.6366 6059.1313

Hybrid PSO 0.8125 0.4375 42.1036 176.5732 6059.0925

WO 0.7828 0.3848 40.3403 200.0000 5923.1100

Penalty guided ABC 0.7782 0.3846 40.3211 199.9802 5885.4032

Hybrid PSO-GA 0.7782 0.3846 40.3196 200.0000 5885.3328

The best solutions of pressure vessel design problem found by different algorithms is

shown in Table 5.8. The maximum iteration and population size is set to1500 and 50

respectively. The statistical results of different algorithms after 30 independent runs

are shown in Table 5.9. From the results it is clear that the result obtained by the

performance of the proposed optimization algorithm was better than other algorithms

in the literature.
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Table 5.9 – Statistical results of different optimization algorithms for solving pressure
vessel design

Algorithm Best Score Worst Score Mean Std. Dev

MHDA 5885.3353 5885.3353 5885.3353 0.0000

DA 5923.1100 222536.0000 21342.2000 47044.2000

Non-linear and discrete programming 8129.1036 NA NA NA

Augmented Legrange based method 7198.0428 NA NA NA

GeneAS 6410.3811 NA NA NA

GA with self adaptive penalty

approach

6288.7445 6308.1497 6293.8432 NA

GA with dominance based

tournament selection

6059.9463 6469.3220 6177.2533 130.9297

Co-evolutionary PSO 6061.0770 6363.8041 6147.1332 86.4545

Evolution Strategy 6059.7456 7332.8798 6850.0049 426.0000

Cuckoo Search 6059.7140 6495.3470 6447.7360 502.6930

Improved PSO 6059.7143 NA 6289.9288 305.7800

ABC 6059.7143 NA 6245.3081 205.0000

Penalty guided ABC 5885.4033 5895.1268 5887.5570 2.7453

However considering the statistical results the performance of MHDA is superior. The

standard deviation of the results after 30 independent runs is zero which indicates that

the proposed hybrid optimization algorithm is very effective and reliable in solving

this optimization problem.

5.7.3 Brushless DC Motor Optimization Benchmark

Brushless DC Motor (BLDC) wheel problem is well known optimization problem in

electromagnetism. The objective functions and constraints for design optimization of

typical brushless DC motor are available online[143].This problem aims to maximize
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the efficiency of the motor,η with five optimization parameters: bore stator diameter

(Ds), flux density in the airgap (Bd), current density in the conductors (δ),teeth flux

density (Be)and back iron flux density (Bcs). The total mass (Mtot) , inner diameter

(Dint), external diameter (Dext) ,Maximum current (Imax), and temperature(Ta) and

determinant used in the slot height calculation (Discr) which depend upon design

variables are the constraints in this problem. The decision variable is represented as

X = (Ds, Be,δ,Bd,Bcs) = (x1,x2,x3,x4) . The problem can be expressed mathemati-

cally as follows.

Minimize

f(x) = 1− η (5.30)

subject to

Mtot ≤ 15Kg (5.31)

Dext ≤ 0.340m (5.32)

Dint ≥ 0.076m (5.33)

Imax ≥ 125A (5.34)

Ta < 125A (5.35)

discr(Ds, δ, Bd, Be) ≥ 0 (5.36)

Table 5.10 – Comparison of optimization results for BLDC optimization benchmark
problem by different algorithms

Algorithm x1(mm) x2(T ) x3(A/mm2) x4(T ) x5(T ) η(%
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MHDA 201.5000 0.6479 2.0000 1.8000 0.8950 95.3200

DA 201.2000 0.6481 2.0438 1.8000 0.8964 95.3100

PSO 202.1000 0.6476 2.0417 1.8000 0.9298 95.3200

ACO 201.2000 0.6481 2.0437 1.8000 0.8959 95.3200

GA 201.5000 0.6480 2.0602 1.7990 0.8817 95.3100

GA&SQP 201.2000 0.6481 2.0615 1.8000 0.8700 95.3100

BA 202.2000 0.6535 2.0514 1.8000 0.9792 95.3100

MSSO 201.2000 0.6481 2.0437 1.8000 0.8959 95.3200

The optimization results using different evolutionary algorithms are shown in the

Table 5.10. It is observed that MHDA gave an efficiency of 95.32% which is probably

the global optimal solution of the problem. Ant Colony Optimization(ACO) [143],

Sequential Quadratic Programming(SQP) algorithm [143], PSO[143] and Modified

Social Spider Optimization algorithm (MSSO) [144] was equally efficient in producing

the same efficiency. The statistical results of different algorithms for this problem

is shown in the Table 5.10. The average value and standard deviation, as shown in

Table 5.11 for 30 independent runs and with maximum iteration of 1000 was 0.0469729

and 0.00045512 respectively. The standard deviation of MHDA was much lower than

other algorithms which gave the same efficiency. This highlights the reliable nature

of MHDA in optimizing this problem. The contents of this work is published in [145]

Table 5.11 – Statistical results of different optimization algorithms for solving BLDC
optimization benchmark problem

Algorithm Best Score Worst Score Mean Std. Dev

MHDA 95.32 95.32 95.32 2.18762E-07

DA 95.31 95.06 95.18 8.5713E-04
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BAT NA NA 95.23 0.056

SSO 94.98 94.81 94.88 0.08

5.8 Conclusion

This chapter summarizes the operating mechanism and performance of MHDA. Fol-

lowing inferences can be made from this chapter.

❼ Evolutionary optimization techniques are gaining significance since gradient

based algorithms fails to provide global optimal solutions especially in the case

of complex non-linear engineering optimization problems.

❼ Hybrid algorithms are more effective in finding global optimal solutions as they

combines the advantages of other optimization algorithms

❼ A novel optimization algorithm, Memory based Dragonfly Algorithm, integrat-

ing the benefits of dragonfly algorithm and particle swarm optimization tech-

nique is proposed.

❼ Dragonfly algorithm operates in the direction of finding global optimum solution

by exploring the search space, whereas internal memory concept and iteratively

level hybridization with PSO helps to narrow down the search space with pos-

sible optimal solutions and thereby resulting in faster convergence with respect

to number of iterations.

❼ The performance of algorithm is verified with standard unimodal,mulimodal,

IEEE CEC2005 composite functions and IEEE CEC 2014 test functions.

❼ The performance of algorithm has been compared with other swarm algorithms
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such as DA, ALO, GWO, WOA, CS, PSO and other high performance algo-

rithms such as JADE, MVMO, SaDE, jDE, BSA.

❼ Statistical results further confirms that the results are not generated by chance

and encourage the use of MHDA in solving optimization problems.

❼ MHDA is a computationally complex optimization algorithm since it operates

on iterative level.However due to excellent synergy between diversification and

intensification properties in search process, bear global solutions are reached in

less number of iterations. The convergence analysis also proves that MHDA can

find global optimal solutions in significantly lesser number of iterations compared

to other optimization techniques.

❼ The efficiency and robustness of MHDA in solving engineering design problem

is explored.

❼ Three engineering constrained problems such as welded beam design, pressure

vessel design and brushless DC motor benchmark problem are solved using

MHDA.

❼ The comparison results with other evolutionary algorithms proves that MHDA

can be extremely effective in locating global optimal solutions.

❼ Statistical approach also confirms that the proposed method is reliable to solve

engineering problems.
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Chapter 6

Application of Surrogate Assisted
Optimization in Design of High
Temperature Motors

This chapter deals with surrogate assisted optimization in the design of high tem-

perature motor. A novel surrogate model based on Artificial Neural Networks (ANN)

and Memory based Hybrid Dragonfly Algorithm(MHDA) is built for approximating the

complex relationship between the input variables and objective function. The number

and locations of sampling points used for coupled electromagnetic thermal simulation

is determined according to the Latin Hypercube sampling. The performance of ANN

based surrogate model is then compared with conventional kriging based model. This

surrogate model is used for optimization studies. The results of optimization process

by ANN and MHDA provide with optimal set of design variables satisfying multiple

constraints.

6.1 Introduction

The advances in mathematical modelling and computer simulation together with the

availability of sophisticated optimization techniques have opened a new research field

for motor design optimization. Considering the current competitive markets and ap-

plication areas, it is of prime importance to reduce the “research laboratory to market
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time ” of new and innovative optimized products. In this regard, high accuracy finite

element models are used to take care of complexity of machine’s structure. In the case

of high temperature motors, due to the complex correlation between electromagnetic

and thermal models, a coupled electromagnetic thermal model is used to give more

accurate prediction of its performance. Despite advances in computing power in the

recent past, this computationally intensive analysis methods can be impractical to use

with optimization directly. For evaluation of every objective function, several cycles

of coupled simulation needs to be run for each variation of geometrical parameter.

The cost of performing optimization for complex designs becomes rather expensive

with the possibilities of multiple local optima[146]. This can be effectively tackled if

computationally expensive high fidelity simulations are replaced by their inexpensive

approximations. Such approximations are known as meta-models or surrogate models.

They are statistical regression methods that estimate the response of simulation to a

limited number of intelligently chosen sample points by design of experiment. Surro-

gate based optimization is an effective tool for engineering optimization and can be

applied to optimization of high temperature motor. This chapter propose a novel sur-

rogate based model based on Artificial Neural Networks (ANN) and Memory based

Hybrid Dragonfly Algorithm (MHDA) for design optimization of high temperature

motor.

6.2 Problem Formulation

To optimize the design of motor there are three necessary things to be decided before

hand[50] . They are

1. The performance criterion of motor which is to be optimized

2. Design variables and their range affecting the performance criterion

3. Accurate modelling of the relationship between design variables and performance
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criterion

In the present work, minimization of winding temperature is taken as the objective

function. As mentioned in the literature, windings and permanent magnets are most

sensitive to temperature and their performance is adversely affected by rise in tem-

perature. To ensure reliable operation under high ambient temperature conditions,

materials that can sustain high temperature are used. Samarium cobalt permanent

magnets can operate up to a temperature of 350➦C and polyimide insulated wire can

sustain a temperature of 220➦C. Temperature tolerance of magnets is higher than the

windings[147]. Moreover as the temperature of winding increases, the lifetime of insu-

lation decreases there by affecting the performance of motor. Since cooling provisions

are not available for motor considered for current application, the winding insulation

must withstand the ambient temperature as well as temperature rise due to losses.

Therefore to increase the reliability of high temperature motor, winding temperature

needs to be optimized to minimum.

In the case of ISI vehicle, with no cooling provisions available the winding temperature

of the motor can be minimized by the optimal design of motor. The optimization

problem can be generalized as

Minimize Winding temperature,

Twinding (6.1)

subjected to constraints Torque, T ≥ 2Nm

Efficiency, η≥85

Maximum flux density, Bmax≤2.25T

The lower and upper bound of design variables are tabulated in Table 6.1
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Table 6.1 – Design variables

Symbol Parameter Range
lg Air gap(mm) 0.5-1
SD Slot depth(mm) 8-12
δ Current Density (A/mm2) 1-5

TW Tooth width (mm) 5-8
SO Slot opening(mm) 2-3
lm Magnet Thickness(mm) 4-6
βm Magnet Arc(➸) 120➸-160➸

Once the problem is framed, next step is modelling the relationship between design

variables and objective function. The relationship between design variables and ob-

jective function is found by coupled electromagnetic thermal simulations which runs

in loop until a convergence is reached between two. For optimization, there are two

important issues using such computationally expensive simulations. Firstly, evaluat-

ing the objective function for every possible combination of all design variable value

can become a very expensive undertaking. Secondly, number of design variables has a

massive impact on the number of experiments required. It is therefore imperative that

we minimize this at the outset by screening out the design variables that significantly

affect the outcome[148]. This can be achieved by creating a computationally cheap

model which mimic the behaviour of simulation model as accurately as possible over

the complete design space of interest using fewer simulation points. Once such model

is built, it can be used for other task of computational analysis such as optimization

process[149].

6.3 Overview of Surrogate Modelling

Surrogate models, or metamodels, are compact scalable analytic models that approx-

imate the multivariate input/output behavior of complex systems, based on sampled

data built from limited set of computational expensive simulations [150]. Surrogate

doesn’t gives any idea of internal behavior of system but rather approximates the

input - output response of system. It is a technique that makes use of the sampled
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data (observed by running the computer code) to build surrogate models, which are

sufficient to predict the output of an expensive computer code at untried points in the

design space[151]. There are several reported works available in literature regarding

construction and implementation of surrogate models like Kriging[64], Response Sur-

face Model (RSM)[152], Radial Basis Function (RBF)[153], Artificial Neural Networks

(ANN)[154]. Surrogate based optimization have been widely used in electric machine

design optimization. RSM was used by Zwe-Lee Gaing[155] for rigorous design and

optimization of brushless motors. Kriging assisted surrogate model for multi-objective

design of permanent magnet motor by Min Li et al. [156] . Melo et al., used Artificial

Neural Network model for approximating the relationship between design variables

and design objectives of flux switching permanent magnet generator[157]. Apart from

electric machine design optimization, surrogate models also find several applications in

the field of welding[158], fuel engine systems[159] and mechatronic systems[160]. The

main considerations in the building surrogate model are selection of sample points,

selection of type of model and evaluating the accuracy of model.

6.4 Design of Experiment (DoE)

The design of computer experiments allocates samples in the design space to estab-

lish combinational relationships of input design variables involved in the optimization

problem so that maximum information can be retrieved with minimum bias error.

Computationally extensive simulations will be carried out in the allocated samples

to acquire the training set that can be used to construct surrogate model. With the

increase in number of samples, the accuracy of surrogate model also increases. But, as

number of samples increases the cost of computation increases. Hence a trade off must

be made between number of samples and amount of information that can be retrieved

must be done. The main objective of DoE for surrogate modelling is to minimize error

between the constructed surrogate model and actual model with minimum number of
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samples[161]. There are several DoE techniques reported in the literature[162]. Full

factorial, fractional factorial, central composite and Box Behnken design are consid-

ered as conventional DoE methods. Full factorial design is characterized by all possible

combinations of input factors. Fractional factorial designs are used if the simulations

are computationally expensive and number of design variables are very large. Central

composite design starts with a full factorial or fractional factorial design (with center

points) and add ”star” points to estimate curvature. Box Behnken designs is an alter-

nate choice for fitting quadratic models that requires 3 levels of each factor. All these

methods are applied to discrete design variables to explore larger design space. In

cases where prior information about objective function is not known, there are other

modern techniques for DoE[146]. They are Orthogonal Array and Latin Hypercube

sampling. Orthogonal array method uses multiple orthogonal arrays to screen the

experimental conditions and means. The advantage of this method is that it uses the

least experimental data based on the number of factors and levels in factor parameter

space to achieve the best combination of parameter design and optimal results. The

major disadvantage associated with this method is the lack of flexibility and point

replication. Lack of flexibility arises from the fact that orthogonal array, in some

cases, does not exist even when the design variables are provided. Point replication

occur when the orthogonal array span the same points in the design variable sub-

space. Alternate method is Latin Hypercube Sampling in which the domain of each

random variable decomposed into interval and same probability is assigned to all the

intervals. The number of intervals depends on how many samples would be generated

for each variable. One value from each interval is selected at random with respect to

the probability density in the interval[163]. In practice the range of every parameter

for n design variables is separated as p bins, so that the total number of pn bins will

be generated in the design space. The samples are randomly selected in the design

space, and each will be located randomly in one of the whole bins providing a non-

uniform sampling. There is exactly one sample in each bin for all one-dimensional
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projections of the p samples and bins hence the problem of replication does not exists.

Considering these advantages over Orthogonal array[161], Latin hypercube sampling

method is adopted here. Based on Latin hypercube sampling, number of computer

experiments were specified. As an empirical rule, number of data collection points in

a sampling plan should be around ten times the number of design variables[50]. A

few literature state that the number of sample points must be at least equal to or

greater than the number of model parameters to be estimated. Following the above

recommendation, in this work a plan of 100 data samples is used.

6.5 Surrogate Construction

After selection of DoE approach, coupled electromagnetic thermal analysis is carried

out at the sampling points to create surrogate model. The next step involves selecting

an approximating functional form, ˆyi(x)to use as a surrogate of complex computer

simulations yi(x). The general form for the metamodel can be expressed as

ˆyi(x) = yi(x) + ε (6.2)

where ε is the error in approximation. Among numerous techniques to create surrogate

models, polynomial regression model, radial basis function, artificial neural networks

and kriging model are widely used for engineering problems. The choice of right

surrogate model depends on essence of the problem. Due to the suitability of Artificial

Neural Networks (ANN) for approximating non-linear characteristics, we focus on

ANN based surrogate model for optimization.

6.5.1 Artificial Neural Network

Artificial neural networks(ANNs) are statistical models directly inspired by, and par-

tially modeled on biological neural networks [164]. Among different types of neural

networks, Feedforward Neural Network (FNN) are most widely used. FNN is charac-

terized by the flow of information from input nodes to output nodes through hidden
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nodes in a forward manner without any loops. Multi Layer Perceptrons (MLP) are

FNN with multiple perceptions which makes it capable of solving non- linear prob-

lems. It has been proven that MLPs with one hidden layer are able to approximate

any continuous or discontinuous function[165]. ANN yield better approximations com-

pared to the classical response surface methods, in cases, if the nature of the problem

is unknown, involves large number of design parameters, or not completely bounded

design spaces[166]. A simple ANN model with input nodes (U1, U2...Un) single hidden

layer with nodes (H1, H2..Hm) and output node O is shown in Figure 6.1

Figure 6.1 – ANN with one hidden layer

Regardless of types of ANN, the development of accurate model depends on sev-

eral factors like quality of data, network architecture, model size, complexity, and

training algorithm [167]. Training process, that provides learning for ANN, is an

optimization process with aim of finding the optimal set of weights and biases to min-

imize an error, and fit within given data. Gradient based algorithms such as Back

Propagation (BP) algorithm are very popular in training ANN due to its simplicity,

higher speed, fine tuning and easy implementation. However, they suffer from the

problems of entrapment in local optima, low convergence speed and sensitiveness to

initialization[165][168]. These issues of gradient based algorithms led to the increased
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use of metaheuristic algorithms for training ANN[165]. Metaheuristic algorithms al-

ways starts with randomized population of points rather than a single point hence

search space is effectively explored and chances of convergence to global optimum is

enhanced. They don’t require any gradient information as demanded by deterministic

training algorithms. Moreover, metaheuristic algorithms can be applied for learning

of any type of ANN with any activation function. They are also very suitable for

dealing large complex problem with large number of local optima. These features

make them more attractive alternative in training ANN. The efficiency of MHDA is

proven in multiple test functions and engineering design problems, hence it is used in

training neural networks to optimize the set of weight and biases.

6.5.2 A Novel Surrogate Model based on ANN and MHDA

In this section, the novel training algorithm known as MHDA, is used to train ANN.

Two important considerations are taken into account while using this approach. They

are encoding weight and biases, and defining fitness function.There are several meth-

ods of encoding the weights and biases such as vector, matrix and binary. In this

context, vector representation is followed since ANNs with complex structures are not

considered. In vector method, each search agent is encoded as a vector containing set

of weights connecting input layer with hidden layer, set of weights connecting hidden

layer with output layer and biases. The individual length of each search agent is

calculated as Eq. 6.3 .

length = (n×m) + (2×m) + 1 (6.3)

where n is the number of input variables, m is the number of neurons in the hidden

layer. The search agent vector,
−→
SA generated by MHDA can be represented as

−→
SA = {b1, b2, ...bm+1, w11, w12, ..wnm, θ1,θ2,...,θm} (6.4)
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In MHDA, every search agent is evaluated based on fitness function. Fitness function

is usually considered as Mean Square Error(MSE) which is calculated based on dif-

ference between the predicted value and actual value generated by search agents on

training set[165]. MSE is calculated as per equation

MSE =
(
∑n

i=1
(oki − ôi

k)2)

s
(6.5)

where s is the number of training samples, n is the number of inputs, oki is the actual

value of ith input when kth training sample appears in the input, ôi
kis the predicted

value by MHDA trained ANN when ith input of kth training sample is applied.

MHDA is a hybrid algorithm combining conventional Dragonfly Algorithm (DA) and

Particle Swarm Optimization (PSO). The procedure for training of ANNs with MHDA

is explained in steps.

1. Initialization of DA: Dragonfly Algorithm is the first phase of MHDA. In this

step, search agents, each having vector of weight and biases are randomly gen-

erated. Each search agent represents an ANN model.

2. Objective Function Evaluation: In this step, set of weights and biases that form

the generated search agents are first assigned to ANN. The objective function

in this case is chosen as MSE, as mentioned earlier. Based on training datasets,

MHDA iteratively changes weights and biases to minimize the objective function

3. Saving in internal memory: The set of search agents that can give the possible

minimum solution to objective function are saved in DA− pbest memory. The

search agent with global minimum MSE is saved as DA− gbest . Velocity and

position are updated using Eq 6.6 and Eq 6.7

△Xt+1 = (sSi + aAi + cCi + fFi + eEi) + w△Xt (6.6)

Xt+1 = Xt + Levy(d)Xt (6.7)
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where Xt and Xt+1denotes the position of dragonfly at time t and t+ 1 respec-

tively , △Xt and △Xt+1 denotes step vector at time t and t+ 1 respectively, s,

a, c, f , e denotes the swarming operators of DA and S, A, C, F , E denote the

separation, alignment, cohesion, attraction towards food source and repulsion

from enemy source which are basic swarming mechanism of dragonflies.

4. Initialization of PSO: PSO algorithm is the second phase of MHDA. PSO is

initialized on on DA− pbest and DA− gbest

5. Position and velocity are updated using Eq 6.8 and Eq 6.9

V i
k+1 = wV i

k + C2r2(DA− gbestgk −X i
k) + C1r1(DA− pbestik −X i

k) (6.8)

X i
k+1 = X i

k + V i
k+1 (6.9)

where V i
k+1and V i

k denotes velocity of the particle in k + 1th iteration and kth

iteration respectively, X i
k+1and X i

k denotes position of the particle in k + 1th

iteration and kth iteration respectively, w is the inertial weight ,C1and C2 rep-

resents the cognitive and social parameters, DA − pbestik is the pbest for ith

particle of PSO, DA− gbestgk is gbest of the swarm up to kth iteration for PSO

6. Repeat the steps 2-5 until maximum iteration is reached. The flowchart of

training process is shown in Figure 6.2
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Figure 6.2 – General steps of MHDA trained ANN

The performance of MHDA trained neural network is compared with other training

algorithms on standard benchmark approximation and classification functions which

is detailed in the Appendix-B. The convergence curves also proves that ANN training

process using MHDA is faster than other conventional algorithms such as Dragonfly

Algorithm (DA), Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO),

Genetic Algorithm (GA), Ant Colony Optimizer (ACO), Evolutionary Strategy (ES).

This gives the confidence in applying MHDA for training ANN in the present study.
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Figure 6.3 – Convergence curves for different algorithms

6.5.3 Formation of MHDA trained ANN for high tempera-

ture motor

As stated in section 6.2 the primary objective of optimization is to reduce the winding

temperature of high temperature by optimal selection of design variables. MHDA

trained ANN is used to find the relationship between design variables with the range

mentioned in Table 6.1.The process of formation of MHDA trained ANN surrogate

model based on coupled electromagnetic - thermal simulation is shown in Figure

6.4. 100 sample points are chosen as per Latin Hypercube Sampling (LHS) method

with the help of statistical software. Coupled electromagnetic thermal simulation is

carried out at these data points obtaining torque, winding temperature, efficiency and

saturation flux density. The results obtained by the means of coupled analysis with

corresponding values of design variables properly scaled are classified into training

data set and validation data set. Training data set is used for training ANN and

validation dataset is used for testing the performance of trained ANN.
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Figure 6.4 – Coupled electromagnetic thermal based MHDA trained ANN surrogate
model

The applied neural network with input, hidden and output layer is shown in Figure

6.5.

Figure 6.5 – ANN representation

where xλ denotes number of inputs, Nh denotes number of hidden layers, Yj denotes

number of outputs. Four ANNs are considered for forming the mathematical relation-

ship between design variables and four target functions. MHDA adjusts the weight of

all interconnection to minimize the error between reference output and actual output.

The training of ANN is carried out by MHDA with Mean Square Error (MSE) as the

modelling error. After four ANN have been trained, following mathematical model of

the form[53]
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yj = [1 + exp{−

Nh∑
σ=1

Wj,σ[1 + exp{−

Ni∑
λ=1

Wσ,λXλ − υσ}]
−1

− υj}]
−1 (6.10)

representing the relationship between the design variables and target function can be

built where j = 1, 2, 3, 4 , Nh denotes number of hidden layers, Wσ,λ denotes weight

from input nodes to hidden nodes, Wσ,λ denotes weight from hidden nodes to output

node, υσ denotes bias at input node and υj denotes bias at output node.

6.5.4 Assessment and Validation of Surrogate model

Once the model is framed it is necessary to check the effectiveness of the model.

This is verified using statistical indexes such as Root Mean Square Error (RMSE),

Relative Root Mean Square Error (rRMSE), and determination coefficient (R2). The

mathematical expression for MSE, RMSE and R2 are given by

MSE =
(
∑n

i=1
(o− ô)2)

n
(6.11)

RMSE =

√
(
∑n

i=1
(o− ô)2)

n
(6.12)

R2 = (

∑n

i=1
(ô− ¯̂o)2 ×

∑n

i=1
(o− ō)2√∑n

i=1
(ô− ¯̂o)2 ×

√
×
∑n

i=1
(o− ō)2

(6.13)

where ô ,o are estimated value and measured value respectively,¯̂o and ō are the average

of estimated and measured value respectively, n is the number of training samples, and

n̄ is the average of training samples. Good models have low RMSE and rRMSE. The

value of R2 ranges from 0 to 1. Higher values of R2 indicates better fit to model[148].

The performance of ANN surrogate model is also compared with popular kriging

surrogate model which is tabulated in Table 6.2 Kriging model is implemented with

the help of SUMO toolbox in MATLAB. From the literature it was found that the

the values of a normalized RMSE < 0.1 and RMSE < 0.02 implies surrogates with

reasonably and excellent predictive capabilities, respectively. It is found that both

surrogate models perform well in approximating the non-linear relationship between

design variables and objectives. However, the performance of ANN surrogate model
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was relatively better when compared to kriging based model.

Table 6.2 – Comparison of surrogate models

Surrogate Model Parameter RMSE R2

ANN
Winding temperature(➸C)

0.0015 96.83
Kriging 0.06 89.63
ANN

Torque (Nm)
0.000000061 99.29

Kriging 0.002 96.78
ANN

Efficiency(%)
0.00000008 96.86

Kriging 0.0026 94.38
ANN

Maximum flux density (T)
0.00043 99.53

Kriging 0.08 96.43

6.6 Surrogate Based Optimization (SBO)

After framing the surrogate model, it is used to obtain an optimal solution subjected

to a series of constraints. As mentioned earlier, minimization of winding temperature

is taken as the target of the optimization process satisfying the constraints of torque,

flux density and efficiency. Optimization was carried out under same torque and

power. Since the efficiency of MHDA in locating global optimal solutions is already

proved, same algorithm is applied here. The search agents in MHDA is set to 50

and maximum number of iterations is set to 200. MHDA is allowed to act directly

on four mathematical models represented by trained neural networks. A number of

machine configurations can be analyzed in this way. In order to prove the goodness

of method, result obtained by ANN and MHDA is compared with results obtained

by conventional algorithms such as GA and PSO. The convergence characteristics

of the proposed method is compared with other algorithms such as GA and PSO.

From Figure 6.6, it is found that MHDA reaches optimal solution in less number

of iteration when compared to GA and PSO. The optimization results have been

tabulated in Table 6.3
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Figure 6.6 – Convergence characteristics

Table 6.3 – Comparison of optimization results by different algorithms

Objective
Design Variable GA PSO MHDA

Winding Temperature ( C) 185.2 182.1 181.6

Constraints
Torque(Nm) 2 2 2.1

Saturation Flux Density(T) 2.1 1.99 1.98
Efficiency(%) 76 84 85.39

The temperature rise in the winding in the optimized and prototype model is shown

in Figure 6.7

Figure 6.7 – Comparison between optimized and prototype model
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Table 6.4. shows value of design variables and performance parameters for initial and

optimized design.

Table 6.4 – Optimized values of design variables

Design Variable/Parameters Basic Model Optimal Model
lg(mm) 0.5 0.75
SD(mm) 12 11.2
δ(A/mm2) 5 4.2
TW(mm) 5 6
SO(mm) 2.5 2.1
lm(mm) 4 3.5
βm(➸) 140 137.5
Winding Temperature(➸C) 188.6 181.6

It was found that temperature of optimized model was reduced by 7➸C which increases

the life time of insulation by more than 20,000 hours, thereby saving the operating

life of high temperature motor in the absence of any cooling mechanism. The con-

straints of torque, saturation flux density and efficiency was also satisfied.The results

of optimization have been successfully proved by coupled electromagnetic thermal

simulation. Figure 6.8 shows the temperature distribution of optimal design

Figure 6.8 – Temperature distribution of optimized design
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6.7 Conclusion

In this chapter surrogate based analysis and optimization was carried out for mini-

mization of winding temperature of high temperature motor with Torque, Efficiency

and Maximum Flux density as constraints. Following are the main points that can

be concluded from the chapter.

❼ The process and three important steps for optimization were detailed.

❼ Design of experiments were presented and Latin Hypercube sampling was used

to allocate the sampling points.

❼ Methods for construction of surrogate model were explained. Two surrogate

models were considered -one based on ANN and other based on Kriging.

❼ MHDA was found to be an effective training algorithm for ANN when compared

with other conventional algorithms.

❼ It was found that MHDA trained ANN surrogate model has higher precision

when compared to Kriging based model

❼ Four ANNs are considered for forming the mathematical relationship between

design variables and four target functions. MHDA algorithm is used as well to

find global optimal solutions in the search space based on surrogate model.

❼ The temperature rise in optimized design is 7➸C lesser than the original design

which corresponds to 20,000 hours increase in life time of insulation thereby

saving the operating life of high temperature motor in the absence of any cooling

mechanism.

❼ The results of optimization have been successfully verified using coupled elec-

tromagnetic - thermal analysis.
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❼ Thus surrogate based optimization model accomplishes optimization process

quickly and accurately.
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APPENDIX-A

Levy Flight Function

Lévy flights, also referred to as Lévy motion, stand for a class of non-Gaussian random

processes whose stationary increments are distributed according to a Lévy stable

distribution. Levy flight is a statistical description of motion that extend beyond the

more traditional Brownian motion discovered over one hundred years earlier. Gaussian

distributions, Levy distributions do not fall off as rapidly at long distances. Levy

flight laws has been used for a broad class of processes such as in physical, chemical,

biological, statistical and also in financial.

The Levy flight equation is calculated as follows:

Levy(x) = 0.01× r1×σ

|r2|
1
β

where r1 and r2 are two random numbers in [0,1], β is a constant (equal to 1.5 in this

work) and α is calculated as follows:

α =

(
Γ(1+β)×sin(πβ

2 )

Γ( 1+β

2 )×β×2(
β−1
2 )

)1/β

where Γ(x) = (x-1)!.

Composite Test Functions

In this section we give the details of composite test functions(F14−F19) used in Suite-

I. The basic functions for each composite function and controlling factors σ , λ for

different functions are given below.

❼ F14

f1, f2...f10 = Sphere Function

[σ1,σ2.....σ10] = [1, 1, 1, ...1]

[λ1,λ2, ...λ10] =

[

5

100
,

5

100
...

5

100

]
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❼ F15

f1, f2...f10 = Griewank′s Function

[σ1,σ2.....σ10] = [1, 1, 1, ...1]

[λ1,λ2, ...λ10] =

[

5

100
,

5

100
...

5

100

]

❼ F16

f1, f2...f10 = Griewank′s Function

[σ1,σ2.....σ10] = [1, 1, 1, ...1]

[λ1,λ2, ...λ10] = [1, 1, 1, ...1]

❼ F17

f1, f2 = Ackley′s Function, f3, f4 = Rastrigin′s Functionf5, f6 = Weierstrass Function

, f7, f8 = Griewank′s Functionf9, f10 = Sphere Function

[σ1,σ2.....σ10] = [1, 1, 1, ...1]

[λ1,λ2, ...λ10] =

[

5

32
,
5

32
, 1, 1,

5

0.5
,

5

0.5
,

5

100
,

5

100
,
5

32
,
5

32
,

5

100
,

5

100

]

❼ F18

f1, f2 = Rastrigin′s Function, f3, f4 = Weierstrass Functionf5, f6 = Griewank′s Function

f7, f8 = Ackley′s Functionf9, f10 = Sphere Function

[σ1,σ2.....σ10] = [1, 1, 1, ...1]

[λ1,λ2, ...λ10] =

[

1

5
,
1

5
,

5

0.5
,

5

0.5
,

5

100
,

5

100
,
5

32
,
5

32
,

5

100
,

5

100

]

❼ F19
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f1, f2 = Rastrigin′s Function, f3, f4 = Weierstrass Functionf5, f6 = Griewank′s Function

f7, f8 = Ackley′s Functionf9, f10 = Sphere Function

[σ1,σ2.....σ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

[λ1,λ2, ...λ10] = [0.1 ∗

1

5
, 0.2 ∗

1

5
, 0.3 ∗

5

0.5
, 0.4 ∗

5

0.5
, 0.5 ∗

5

100
,

0.6 ∗

5

100
, 0.7 ∗

5

32
, 0.8 ∗

5

32
0.9 ∗

5

100
, 1 ∗

5

100
]

The mathematical formulation of basic functions used in the creation of composite
functions are given below.

❼ Sphere Function

f(x) =
∑

d

i=1
x2

i
, x∈ [−100, 100]d

❼ Rastrigin’s Function

f(x) = n ∗ 10 +
∑

d

i=1
(xi − 10cos(2Πxi))x∈ [−5, 5]d

❼ Griewank’s Function

f(x) = 1

4000

∑

d

i=1
x2

i
−

∏

d

i=1
cos( x

√

1
) + 1, x∈ [−100, 100]d

❼ Ackley’s Function

f(x) = −20exp[− 1

5

√

1

d

∑

d

i=1
cos(2Πxi)] + 20 + e, x∈ [−32, 32]d

❼ Weierstrass Function

f(x) =
∑

d

i=1

∑k=kmax

k=0

[

akcos(2Πbk(xi + 0.5))
]

− D
∑k=kmax

k=0

[

akcos(2Πbk0.5)
]
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APPENDIX-B

Experimental Set up for training ANN

In this section, the performance of the proposed approach is verified using standard

datasets. This involves eight classification datasets and three approximation func-

tions.The classification dataset includes XOR, Balloon, Iris Heart, and Cancer, dataset

taken from UCI machine learning repositoryand approximation dataset includes a one-

dimensional sigmoid, one-dimensional cosine with one peak and one-dimensional sine

with four peaks.The performance of MHDA is compared with recently proposed meta-

heuristic algorithms such as Grey Wolf Optimizer (GWO), Dragonfly Algorithm (DA)

and classical optimization algorithms such as Genetic algorithm (GA), Ant Colony

Optimization(ACO) algorithms, Particle Swarm Optimization (PSO), Evolutionary

Strategy (ES) and gradient based algorithm such as Back Propagation (BP) algo-

rithm. The performance of MHDA trained ANN is also compared with well known

Extreme Learning Machine (ELM) algorithm. All the experiments are executed on a

personal computer (Core i7, 3.4GHz, 32GB RAM) using MATLAB and run 10 dif-

ferent times, each with 250 iterations. The number of neurons in the hidden layers is

selected based on the method followed in literature. Prior to training, preprocessing

of data is highly essential, as training algorithm works best when all the data are

selected in the same range. As per min-max technique normalized value, p′ in the

range of [minA,maxA]can be written as

p′ =
p−minA

maxA −minA

(7.1)

Classification dataset

Table 1 shows the specification of classification dataset. The number of attributes,

training samples, test samples and classes for five different classification problems are
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explained. 3 bit XOR dataset is a standard non-linear classification problem and

simplest among the dataset. ANN structure of 3-7-1 is used to solve this problem.

Balloon dataset is based on different conditions of an experiment in blowing up a

balloon. ANNs with a structure of 4-9-1 is used to classify this dataset. Iris dataset

consists of 3 classes with 150 training or test samples. Each sample consist of 4

attributes. ANN of 4-9-3 is used to solve this problem. The purpose of cancer dataset

is to classify whether a tumor is benign or malignant. It has 9 integer attributes and

ANN of 9-19-1 is used to solve this dataset. Heart dataset consists of 22 attributes

with 80 training samples and 187 test samples. ANN of 22-45-1 is used to classify this

problem.

Table 1: Specification of classification dataset
Classification

dataset

No: of

at-

tributes

No: of

training

samples

No: of

test

samples

No: of

classes

3 bits XOR 3 8 8 2

Balloon 4 16 16 2

Iris 4 150 150 2

Cancer 9 599 100 2

Heart 22 80 187 2

Approximation Functions

ANNs with structure 1-15-1are trained using MHDA for approximating test functions

such as sigmoid, cosine and sine. The number of training and test samples of different

functions are explained in Table 2. The sigmoid dataset is in the range of [-3 3] with

an interval of 0.1, whereas cosine dataset is in the range of [1.25 2.75] with an interval

of 0.05. Sine dataset is a complicated dataset with the range of [−2Π,2Π] and with

an interval of 0.1.

Table 2: Specification of functionapproximation dataset
Function Approximation Dataset No: of training

samples

No: of test

samples

Sigmoid y = 1/1 + e−x 61 : x in[−3 : 0.1 :

3]

121 : xin[−3 : 0.05 :

3]

Cosine y = (cos(xπ/2))7 31 : x in[1.25 :

0.05 : 2.75]

38 : xin[1.25 : 0.04 :

2.75]

Sine y = sin(2x) 126 : x in[−2π :

0.1 : 2π]

252 : xin[−2π :

0.05 : 2π]

144



Results and Discussions

Table 3: Performance of MHDA trained ANN
3(a)Classification dataset

Algorithm Measure XOR Balloon Iris Cancer Heart

BP

Mean 1.17E-03 3.50E-06 1.70E-02 7.26E-02 5.37E-02

Std.Dev 4.12E+04 1.44E-06 1.70E-03 5.61E-03 8.78E+03

Accuracy 100% 100% 78.66% 94% 72.5%

PSO

Mean 8.41E-02 5.80E-04 2.29E-01 3.49E-02 1.89E-01

Std.Dev 3.60E-02 7.00E-04 5.72E-02 2.50E-03 8.90E-03

Accuracy 37.5% 100% 37.33% 11% 68.75%

GA

Mean 1.00E-04 5.08E-24 8.99E-02 3.10E-03 9.30E-02

Std.Dev 1.00E-04 1.06E-23 1.24E-01 1.50E-03 2.25E-02

Accuracy 100% 100% 89.33% 98% 58.75%

ACO

Mean 1.80E-01 4.85E-03 4.06E-01 1.35E-02 2.28E-01

Std.Dev 2.53E-02 7.80E-03 5.38E-02 2.10E-03 5.00E-03

Accuracy 62.5% 100% 32.66% 40% 00%

ES

Mean 1.19E-01 1.91E-02 3.14E-01 4.03E-02 4.32E-02

Std.Dev 1.16E-02 1.70E-01 5.21E-02 2.50E-03 2.00E-04

Accuracy 62.5% 100% 46.66% 6% 71.25%

GWO

Mean 9.40E-03 9.38E-15 2.29E-02 1.20E-03 1.23E-01

Std.Dev 2.95E-02 2.81E-14 3.20E-03 7.45E-05 7.70E-03

Accuracy 100% 100% 91.333% 99% 75%

DA

Mean 8.89E-05 1.62E-09 1.23E-03 1.78E-02 1.60E-01

Std.Dev 0.00E+00 0.00E+00 8.10E-08 1.00E-04 7.00E-04

Accuracy 100% 100% 90.89 % 28% 70.32%

MHDA

Mean 1.92E-06 8.94E-19 2.887E-04 1.10E-03 4.95E-02

Std.Dev 0.00E+00 0.00E+00 2.1E-09 0.00E+00 5.50E-02

Accuracy 100% 100% 92.22% 99% 77.36%

The experimental results of proposed approach on classification and approximation

datasets are shown in Table 3 (a) and 3 (b) respectively. It can be seen that classifi-

cation rate of ANNs trained by GA,GWO,DA and MHDA on XOR dataset is 100%;

however considering MSE values, the performance of MHDA is better. Due to the

simplicity of dataset, all algorithms could give a classification rate of 100% on balloon

dataset. GA outperformed all algorithms in terms of mean and standard deviation,

and performance of MHDA was found second best to GA. The classification accuracy

of MHDA was higher in the cancer dataset and iris dataset.

The breast cancer dataset has the highest difficulty compared to the previously dis-

cussed datasets in terms of the number of weights, biases, and training samples.
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3(b)Approximation
function

Algorithm Measure Sigmoid Cosine Sine

BP

Mean 3.70E-04 7.90E-03 2.03E-02

Std.Dev 1.26E-04 3.80E-03 7.50E-03

Test Error 1.3894 2.5663 23.3423

PSO

Mean 2.30E-02 5.90E-02 5.27E-01

Std.Dev 9.40E-03 2.10E-02 7.29E-02

Test Error 3.3563 2.009 124.89

GA

Mean 1.10E-03 1.09E-02 4.21E-01

Std.Dev 1.00E-03 6.30E-03 6.12E-02

Test Error 0.44969 0.7105 111.25

ACO

Mean 2.35E-02 5.09E-02 5.30E-01

Std.Dev 1.00E-02 1.08E-02 5.33E-02

Test Error 3.9974 2.4498 117.71

ES

Mean 7.56E-02 8.67E-02 7.07E-01

Std.Dev 1.64E-02 2.22E-02 7.74E-02

Test Error 8.8015 3.1461 142.31

GWO

Mean 1.00E-04 3.20E-03 2.62E-01

Std.Dev 1.20E-03 2.16E-03 1.15E-01

Test Error 0.27134 0.6692 149.6

DA

Mean 1.37E-09 4.18E-05 2.29E-01

Std.Dev 3.60E-03 5.60E-03 3.00E-03

Test Error 0.20864 2.2713 37.8121

MHDA

Mean 2.91E-12 1.14E-07 1.89E-01

Std.Dev 2.51E-12 9.97E-07 5.00E-08

Test Error 0.0661 0.6635 34.7

3(c)Statistical
analysis

Algorithm Mean

Rank

MHDA 1.375

DA 3.25

GWO 3.625

GA 3.875

BP 4

PSO 6.25

ES 6.75

ACO 6.875

MHDA trained ANN has highest classification accuracy in this dataset, which strongly

support the superiority of MHDA.The results of other algorithms have been taken

from the reference. The above results confirm the superior performance of MHDA in

avoiding local optima and reaching global optimal solutions. In case of approximation

functions, best error rate belongs to MHDA training algorithm which proves the ac-

curacy of the proposed method. The low value of mean and standard deviation shows

the local optimal avoidance of MHDA.
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In-Service Inspection (ISI) of Fast Breeder Reactor (FBR) using semi-automated device is a typical application 
characterized by an ambient temperature of 150°C. High ambient temperature makes manual inspection 
of the plant infeasible. Any inspection under these circumstances can only be carried out by customized 
remote inspection techniques coupled with semi-automated devices. A compact, high temperature traction 
motor withstanding high temperatures and providing required torque, meeting the space constraints of the 
device is required to drive the device in the limited 
space.  

 Based on the application specifications, a 
comparative study of permanent magnet and 
permanent magnet free motors was  done. It was 
found that permanent magnet motors were more 
suitable for the application in terms of torque 
density, higher efficiency and thermal performance. 
Special care has been taken in the selection of 
materials used for the design.  A 12/10 slot/pole 
permanent magnet motor was designed and 
analyzed and the performance was verified with 
coupled electromagnetic-thermal analysis. The 
performance of the motor was verified 
experimentally using indigenously built  high 
temperature motor test facility. Minimizing the 
winding temperature increases the lifetime of 
insulation thereby ensuring high reliability of motor. 
Hence the  design of motor was optimized for  reduced winding temperature keeping the constraints of 
torque, saturation flux density and efficiency. For this an efficient optimization strategy including a 
surrogate model and a novel  hybrid optimization algorithm- Memory based Hybrid Dragonfly Algorithm 
(MHDA) has been proposed. A surrogate model is built based on neural networks and MHDA to save the 
computational cost of coupled simulation. The optimized design is then validated by coupled Finite Element 
Analysis-thermal analysis. In summary, a high temperature motor was designed, developed and tested. An 
efficient optimization strategy was proposed for optimization purpose. This can be incorporated in any of 
modern motor design software in order to ease the optimization process and accurately find the optimal 
solution. 
 

Figure 1. Methodology adopted in the design and 
development of an optimized model of high temperature 
motor. 
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