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Synopsis

A necessary prerequisite for autonomous navigation of a mobile robot is the capability

of localization, which continually provides the robot with a reliable estimate of its pose

in a world coordinate system. If the spatial locations of the objects in the vicinity of

the robot are known, and the robot is able to perceive its distance from these objects

using, say, a Laser Range Finder (LRF), it is possible to make an estimate of its pose.

Thus, it is essential to have an accurate model of the spatial arrangement of objects in

the environment of the robot in the form of a map. But the process of automatically

building a map necessitates that the robot is well aware of its pose while it moves around

and perceives its environment. In the absence of map and exact pose information, the

robot is required to simultaneously estimate both the map and localize itself relative to

the (possibly partial) map built thus far—a problem known in the robotics community

as the problem of Simultaneous Localization and Mapping (SLAM).

In many real-life applications, a robot is required to navigate continuously in en-

vironments that remain practically invariant over long periods of time. For all these

applications, it is more appropriate to build a map of the working environment first

and then use it for localization, rather than operate the robot in SLAM mode, which is

complex, computation-intensive and less accurate. By decoupling mapping from local-

ization, the robot can also be absolved of the job of map building while it is performing

its assigned duty. These appliations require that a method is available for offline build-

ing of maps from range data collected by the robot during an initial phase when it is

manually driven or tele-operated in its environment. A robust and accurate method

for localization on maps built by such a method is also a prerequisite for the robot to

move around safely and efficiently in the environment.

With the objective of achieving robust and accurate localization of mobile robots

equipped with a LRF in (unmodified) indoor environments that practically remains

invariant over extended periods of time, in this thesis, we propose

• an offline method for building maps of indoor environments by merging line seg-

ments extracted from registered laser range scans; and

• a robust and accurate method for localization on such maps based on the Monte

Carlo framework.

Line segments are a natural choice in the representation of indoor environments.

Moreover, maps based on line segments are compact, provide floating-point resolution

and scale well with the environment size. The proposed method for map building

first extracts line segments from individual laser ranges scans, which have been pre-

registered. The extracted line segments are then organized in a tree-like hierarchy

using two steps of density-based clustering. Each of the leaf nodes in the tree hold line

iii



segments that generally arise from the same planar surface of the environment. All

such line segments are finally merged to yield a resulting line segment that captures the

attributes (viz., orientation, length and position) of the corresponding planar surface

of the environment. The collection of all such resulting line segments defines a line

segment-based map of the environment.

The proposed method has been successful in accurately building maps of large

environments from datasets available in the public domain as well as from simulated

and real-world data. Experimental results show that maps produced by the proposed

method are generally better than those produced by two other methods reported in

the literature in terms of the compactness of the maps and the lengths of the map

segments. We also propose simple ways of quantitatively assessing the goodness of a

line segment-based map produced in relation to the ground truth. To the best of our

knowledge no effort towards such assessments was made in the past.

Monte Carlo Localization (MCL) is a powerful and popular approach for mobile

robot localization. The benefits associated with the use of line segment-based maps

and the effectiveness of MCL are sufficient motivations for implementing MCL on such

maps. But Monte Carlo localization has seldom been studied in the context of line

segment-based maps. A key step of the approach—and one that can endow it with or

rob it of the attributes of accuracy, robustness and efficiency—is the computation of

the so called importance weight associated with each hypothesized pose or particle.

In this thesis, we also propose a novel, heuristic-driven approach for the computation

of importance weights in MCL on maps represented with line segments, and extensively

study its performance in pose tracking. We also compare our method with three other

methods reported in the literature. The comparative study, conducted using both

simulated and real data, on maps built from real data available in the public domain

clearly establish that the proposed method is more accurate, robust and efficient than

the other methods.

In the concluding part of the thesis, we point out several open issues for further

research. In the backdrop of what has been presented in the earlier part of the thesis,

we discuss on a probable way to achieve added robustness and accuracy in localization

so as to make the proposed methods of map building and localization more useful and

efficacious for deployment in real-life applications.

iv



List of Figures

1.1 Depending on the way the modules of sense, plan and act are organized,

different paradigms in navigation arise (a) Hierarchical Paradigm; (b)

Reactive Paradigm; and (c) Hybrid Deliberative/Reactive Paradigm . 5

1.2 Key steps in autonomous navigation . . . . . . . . . . . . . . . . . . . 7

1.3 An incrementally built point cloud-based map. (a) The range scans have

been integrated using odometry-estimated scan poses; (b) The range

scans have been registered before integration. . . . . . . . . . . . . . . 9

2.1 Organization of the scan line segments in a tree-like hierarchy. . . . . . 20

2.2 Pseudo-code for extraction of scan line segments from a given laser range

scan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 The kernel density estimate (in blue), computed with a bi-weight kernel,

for initial distribution of the sample points, is shown along with the

histogram (in red) constructed with (a) the initial distribution of the

sample points; and (b) the sample points after they have converged to

their nearest local maximum. It should be kept in mind that the density

function and the histograms wrap over at ± π. It may be noted that

the density estimate has not been normalized and does not necessarily

integrate to one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 The lateral separation and longitudinal overlap between the scan line

segments AB and CD are represented by d and p respectively. The

cluster orientation is aligned with the line XX ′. . . . . . . . . . . . . . 26

2.5 Pseudo-code for the formation of spatial clusters. . . . . . . . . . . . . 26

2.6 Preservation of the senses of orientation of the map segments simplify

localization. Moreover, closely-lying but oppositely oriented segments,

like QR and ST here, do not get merged and model two opposite faces

of an object distinctly. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 The biweight kernel of equation (2.13) for three different values of the

kernel viz., h = 0.005, h = 0.02 and h = 0.08. . . . . . . . . . . . . . . . 34

v



3.2 Figures (a), (c) and (e) on the left-hand side show laser scan points

as contained in the datasets after removal of redundant scans, while

Figures (b), (d) and (f) on the right-hand side show the corresponding

line segment maps extracted by the proposed method from datasets (a)—

Chosun University; dataset (b)—Department of DIIGA; and dataset

(c)—SRI AIC K wing, respectively. All dimensions are in mm. The

scans in dataset (a) had to be pre-aligned using the Lu-Milios [71] method. 37

3.3 The dependence of the different attributes of the maps produced by the

proposed method on the parameters of the method for dataset (a). In

each of the Figures (a)–(e), the left vertical axis represents the numbers

of map segments, whereas the right vertical axis represents the lengths

of the map segments in millimeters. The cross sign (×) is used for the

number of map segments whereas the hollow circle (◦), hollow triangle

(4) and filled square (�) indicate the length of the largest map segment,

length of the smallest map segment and the average length of the map

segments respectively. The vertical axis in Figure (f) represents the

processing time in seconds.The results quoted in this thesis correspond

to the following settings of the parameters: h = 0.02; dmax = 400mm;

pmin = −100mm; Lmin = 500mm; and Smin = 5. . . . . . . . . . . . . . 41

3.4 Mapping of a room of dimensions 11m×6m (a) Laser range data cap-

tured from odometry-estimated scan poses; (b) Line map containing 18

segments produced by the proposed method. The scans had to be pre-

aligned using the Lu-Milios method [71]. All dimensions are in mm. . . 42

3.5 (a) Scan data collected from 105 poses in the simulated environment;

(b) The generated map (in black) superimposed on the ground truth (in

red). All dimensions are in mm. . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Monte Carlo Localization algorithm for pose tracking. . . . . . . . . . . 56

4.2 The lateral offset and the longitudinal offset of AB from CD provide a

measure of their mismatch, where AB represents a scan segment and CD

a map segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Pseudo-code for computing the lateral and the longitudinal offsets of a

scan line segment from a map segment. . . . . . . . . . . . . . . . . . . 58

4.4 Pseudo-code for computing the mismatch between a set of scan line

segments and the map line segments. . . . . . . . . . . . . . . . . . . . 59

4.5 Pseudo-code for transforming an estimate of mismatch to importance

weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vi



4.6 (a) All map segments, a part or the entirety of which lies within the

semicircle of radius R(= ρmax) from a particle forms the set M ′ for the

particle; (b) The smaller square has dimensions 2a×2a, while the bigger

square has dimensions 2(R+a)×2(R+a). The squares are concentric and

map segments lying partly or in full within the larger square constitute

M ′′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 The blue trail shows the path along which the robot was actually driven,

while the trajectory reconstructed by adding Gaussian noise with pa-

rameters corresponding to Noise#3 is shown in red in (a) Env#1; (b)

Env#2; and (c) Env#3. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Comparison of the accuracy of pose estimation for different levels of

injected noise in Env#1: (a) the mean of the average position errors;

and (b) the mean of the average orientation errors. Both the errors are

plotted in log scale. The error bars indicate 95% confidence interval.

MCL-G has failed to track poses on 8 occasions out of 30 for Noise#3. 69

5.3 Comparison of the percentage of occasions when (a) the estimated posi-

tions differ from the corresponding true positions by less than 100mm;

(b) the estimated orientations differ from the corresponding true orienta-

tions by less than 5◦. The error bars represent 95% confidence intervals.

The results pertain to Env#1 where MCL–G failed on 8 occasions out

of 30 for Noise#3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Comparison of the accuracy of pose estimation for different levels of

injected noise in Env#2: (a) the mean of the average position errors;

and (b) the mean of the average orientation errors. Both the errors are

plotted in log scale. The error bars indicate 95% confidence interval.

MCL–G has failed to track poses on 12 occasions out of 30 for Noise#3. 71

5.5 Comparison of the percentage of occasions when (a) the estimated posi-

tions differ from the corresponding true positions by less than 100mm;

(b) the estimated orientations differ from the corresponding true orienta-

tions by less than 5◦. The error bars represent 95% confidence intervals.

The results pertain to Env#2 where MCL–G failed on 12 occasions out

of 30 for Noise#3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



5.6 Comparison of the accuracy of pose estimation for different levels of

injected noise in Env#3: (a) the mean of the average position errors;

and (b) the mean of the average orientation errors. Both the errors are

plotted in log scale. The error bars indicate 95% confidence interval.

MCL-G has failed to track poses on 4 occasions out of 30 for Noise#2

and all 30 occasions for Noise#3. Hence, the bars corresponding to

MCL–G for Noise#3 is missing. . . . . . . . . . . . . . . . . . . . . . 72

5.7 Comparison of the percentage of occasions when (a) the estimated posi-

tions differ from the corresponding true positions by less than 100mm;

(b) the estimated orientations differ from the corresponding true orienta-

tions by less than 5◦. The error bars represent 95% confidence intervals.

The results pertain to Env#3 where MCL–G failed to track poses on 4

occasions out of 30 for Noise#2 and all 30 occasions for Noise#3. Hence,

the bars corresponding to MCL–G for Noise#3 is missing. . . . . . . . 72

5.8 Comparison of the percentage of runs (out of 30) in which MCL–G and

MCL–S could complete tracking the robot pose using simulated scan

data for the entire trajectory. . . . . . . . . . . . . . . . . . . . . . . . 73

5.9 Comparison of the computation times (in ms) required to estimate a

single pose by the four methods using 200 particles in three different

environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.10 (a) Mean of the average position error (in mm) in log scale versus update

interval; and (b) Mean of the average orientation error (in degree) in log

scale versus update interval, for Noise#1 with 200 particles in Env#1.

The update intervals are denoted by a 2-tuple like < 500, 5 > with units

mm and degree respectively. The update intervals used are < 200, 2 >,

< 500, 5 > and < 1000, 10 >. The error bars indicate 95% confidence

interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.11 Mean of the (a) average position error (in mm) versus update interval;

and (b) average orientation error (in degree) versus update interval, for

Noise#3 in Env#1. The update intervals are denoted by a 2-tuple like

< 500, 5 > with units mm and degree respectively. The numbers of

particles used are 100, 200, 300, 500 and 1000 and the update intervals

are < 200, 2 >, < 500, 5 > and < 1000, 10 >. The error bars indicate

95% confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.12 (a) Position error (in mm) (in log scale); and (b) Orientation error (in

degree), versus pose instances along the length of travel incurred by

MCL–S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

viii



5.13 Comparison of the accuracy of pose estimation using real data (a) the

mean of the average position error; and (b) the mean of the average

orientation error. Both the errors are plotted in log scale. The error

bars indicate 95% confidence interval. MCL–G failed to track the pose

for the entire trajectory on 23 out of 30 occasions in Env#1. In Env#2,

MCL–G failed on 10 out of 30 runs, while MCL–E failed on 3 out of 30

runs. Only that many runs were used in computing the mean errors as

could be successfully completed. . . . . . . . . . . . . . . . . . . . . . 77

5.14 Comparison of the percentage of runs (out of 30) in which MCL–G and

MCL–S could complete tracking the robot pose using real scan data for

the entire trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.15 The trajectory estimated using real odometry data is shown in red, while

the trajectory estimated by the proposed MCL–S method using real

odometry and range data is shown in blue in (a) Env#1; (b) Env#2;

and (c) Env#3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix





List of Tables

3.1 Attributes of datasets after removal of redundant scans and that of the

scan line segments extracted from the scans. . . . . . . . . . . . . . . 36

3.2 Attributes of the maps produced by the proposed method. . . . . . . . 38

3.3 Attributes of the maps produced by Amigoni and Vailati [74] and Lakaem-

per [75]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Comparison of the lengths of the map segments with the dimensions of

the actual objects they represent. The actual dimensions were obtained

through manual measurements at centimeter level resolution. . . . . . . 43

3.5 Distance between the produced map and the ground truth computed

using HD and OSHD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Three different settings of the noise parameters used in our study . . . 67

xi





Chapter 1

Introduction

1.1 Robots and autonomy

The word “robot” was first introduced in and popularized by the play R.U.R. (Rossum’s

Universal Robots) [1]. The play, penned by Karel C̆apek, a Czech novelist, was first

performed in 1921. In the play, robots were assembled from biological parts in a factory

and served humans initially, but turned rebellious eventually. The notion of “robots”

was further popularized by film-makers and science fiction writers, notable among them

being Isaac Asimov, who introduced the term “robotics” [2].

Transending the domain of fiction and imagination, robots became a reality in the

1960s with their large-scale deployment for industrial automation. These robots took

the form of robot arms—often referred to as industrial manipulators—that could be

pre-programmed to perform repetitive tasks with precision and efficiency for extended

periods of time in structured environments. The inability of these robots to perceive

their environments and to act accordingly restricted their usage to well-defined tasks

in structured environments only. Soon after, mobile robots in the form of Automated

Guided Vehicles (AGVs) that followed pre-defined paths began to be used for efficient

and large-scale material handling in factory environments. These robots, too, were

deployed in structured settings because of their inability to contend with unanticipated

situations that arose in real-worlds.

With advances in sensor technology and availability of high processing power at

affordable costs, robots equipped with a suite of accurate and fast-acting sensors and

reasonable computing power became commonplace since the 1990s. Coupled with these,

advances in software technology [3] ensured that robots could now be endowed with

the wherewithal necessary to make reasonable and consistent decisions in complex

real-world environments based on uncertain and partially available information. This

opened up the possibility of designing autonomous robots [4] that are capable of operat-

ing in real and unstructured environments for sufficiently long periods of time without
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any external intervention. But, designing robots that could function in the desired

way in all conceivable real-world situations is a tall order. So, autonomous robots,

in common parlance, connote robots capable of autonomous operation in respect of a

predefined task and environment.

Autonomous operation of a team of robots playing soccer can be witnessed in the

RoboCup competitions [5]. Rovers with autonomous capabilities have been used to ex-

plore the surface of Mars by navigating on unknown and uncharacterized terrains [6].

The winning of the DARPA Grand Challenge [7] in 2005 by the robot Stanley [8]

and successful completion of the course by its other competitors was vindication that

autonomous driving in unstructured off-road environments had matured as a tech-

nology [9]. In 2007, the robot Boss won the DARPA Urban Challenge [10,11] proving

that it was capable of autonomous urban driving. Autonomous driverless cars on urban

roads became a reality with the Google driverless car.

Autonomous robots, which share space with humans, are fast becoming a reality

with their large scale deployment in homes, offices, hospitals and public places. A

majority of these robots are wheeled and rely on autonomous navigation for their op-

eration. Thus, it is useful and desirable to study issues and capabilities central to

autonomous navigation of wheeled mobile robots. In this thesis, we study the problem

of localization and map building insofar as they relate to autonomous navigation of mo-

bile robots in indoor environments that have not been tailored (through the placement

of reflectors or guidewires, for instance) to simplify the task of localization.

1.2 Mobile robots

Mobile robots are capable of moving around in their environments for performing their

assigned work. They find application whenever the need for inspection, material trans-

fer or object manipulation arise in hazardous and inhospitable areas where it is not

practicable to depute human beings. These include, for instance, emergency response

in nuclear disaster [12] and other nuclear-related services [13–16], inspecting and re-

pairing leakage in pipelines [17–19] and removal and disposal of ammunition boxes [20].

Advances in field robotics are gradually making way for deployment of mobile robots

in natural settings where the environments are dynamic and unstructured. For in-

stance, space robots are being used for exploring the surface of the moon and the

Mars [6,21–24]. Unmanned aerial vehicles are used as security robots for reconnaissance

and surveillance in battle fields [25,26] and detection of forest fire [27–29]. Underwater

robots are used for marine geological survey and repair of ships on sea [30, 31]. To

minimize the dependence on manual labor, agricultural robots are used for harvest-

ing, pruning and weeding [32–34]. Mobile robots are also used in forests for felling

and subsequent transportation of trees. They are used in factory floors for large scale
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transportation of materials [35–37], in hospitals for transportation of pharmaceuticals,

meals and medical records [38,39] and in offices for delivery of mails [40–42]. Domestic

robots are engaged in doing the daily chores at home like cleaning and assisting the

aged [43–49]. Mobile robots also take people on various rides and on tours in museums

for entertainment and amusement [50–53]. These are of course instances of only a hand-

ful of mobile robot applications; many other interesting and non-trivial applications

abound in the literature and on the Web.

The capability of ground locomotion in mobile robots commonly arises from the use

of wheeled mechanisms or articulated legs. Wheeled locomotion, though simple and

efficient, is more suited for flat and hard terrains. A variant of wheeled locomotion is the

tracked locomotion, which provides more surface contact and grip to the ground. They

have good maneuverability and efficiency on rough and loose terrain but extremely

inefficient otherwise. On soft and irregular terrains, legged locomotion is preferable

as it makes only point contacts with the ground, although coordinated control of leg

motions is in general fairly complex. Almost all indoor applications of mobile robots

employ wheeled locomotion as the terrains therein are engineered to be smooth and

hard.

A mobile robot must be able to perceive its environment if it is to navigate au-

tonomously. The process of perception involves extraction of meaningful information

from raw sensory data and subsequent formation of an effective internal representation

or model out of the data. The robot can then use the internal representation to infer

its relationship with the environment. A mobile robot is commonly equipped with a

suite of sensors [54]. For sensing the extent of free space around itself, a mobile robot

usually employs an ultrasonic range sensor. Typically operating at a frequency of 40

kHz and utilizing the principle of time-of-flight, ultrasonic sensors provide the range of

nearby objects lying within a fixed solid angle. Although it provides poor directional

information, it is useful in obstacle avoidance. It has a limited range (a few meters or

less) and poor range resolution (a few cm). A Laser Range Finder (LRF) utilizes a laser

beam to measure the range of the nearest object. Working on the principle of optical

phase-shift, an LRF provides accurate range data (of the order of cm) at a very good

angular resolution (half-a-degree or less). A mobile robot often employs a vision sensor

(camera) to perceive its environment. But, vision sensors are generally limited in range

and acuracy. In comparison, an LRF provides more accurate range data and is thus

well suited for building an accurate spatial model of the environment (called map) and

in locating the robot in the environment. An array of micro-switches, called bumpers,

is almost always put all around the periphery of a mobile robot to sense its physical

contact with any obstacle in the environment while on the move. The sensors referred

to above are categorized as exteroceptive sensors inasmuch as they acquire information

about the environment in which the robot is currently in. The proprioceptive sensors,
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on the contrary, acquire information internal to the robot. Of particular importance is

the odometer, which provides an estimate of the position and orientation of the robot

by the integration of wheel rotations. However, odometers do not provide accurate

estimates in the long run because of accumulation of errors with the length of travel.

Nevertheless, they are useful for providing estimates of incremental changes in position

and orientation. Accelerometers, gyroscopes and digital compasses are often used in

conjunction with odometers to reduce errors in the odometry estimate.

1.3 Autonomous navigation of mobile robots

The capability of autonomous navigation permits a mobile robot to reach its goal from

its current position, following a safe and reasonably efficient path, entirely on its own

with no external intervention. The goal is either set by a human or is determined

by the robot itself. The goal could be the ultimate destination of the robot or an

intermediate waypoint on the path to it. The capability of autonomous navigation

calls for cognitive ability on the part of the robot so that it is able to make “sensible”

decisions for reaching the goal efficiently and reliably, based on its perceptions of the

environment, which are more often partial, uncertain and noisy.

Before making a move, a robot must have with it a description of the path by

traversing which it will move closer to its goal, if not reach the goal. It is generally

possible to compute such a path (provided it exists) in advance, if the current position

of the robot and that of the goal is known in addition to having a complete description

of obstacles and free space (i.e., map) of the environment. The problem of computing

such paths is generally discussed under the rubric of path-planning [55].

In the Hierarchical Paradigm of robot control [56], a robot first senses it environ-

ment and then based on this perception plans a path towards its goal while avoiding

obstacles on the way. Subsequently, it acts so as to move along the planned path. After

it has moved a little, it senses the world again, plans a path afresh and moves along

it and the cycle of Sense–Plan–Act repeats (Figure 1.1a). Planning a path by tak-

ing into consideration the global arrangement of obstacles in the environment (called

global path planning) is a compute-intensive process. Thus, frequent invocation of the

Sense–Plan–Act cycle slows down navigation and is not practicable. But, inaccura-

cies in the robot actuators and the presence of dynamic obstacles in the environment

necessitate that the planned paths are checked for their validity at frequent intervals

and suitably modified, if required, so that the robot neither misses its goal nor hits an

obstacle on the way. Thus, for real-time navigation, the simple and computationally

efficient Reactive Paradigm is often adopted. This paradigm dispenses with the plan-

ning step altogether and directly associates an action with a perception (Figure 1.1b).

Remaining insensitive to the global arrangements of objects and considering only the
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Figure 1.1: Depending on the way the modules of sense, plan and act are organized, dif-
ferent paradigms in navigation arise (a) Hierarchical Paradigm; (b) Reactive Paradigm;
and (c) Hybrid Deliberative/Reactive Paradigm

goal position and obstacles in the immediate vicinity, it prescribes a reactive motion

to a perception. Lacking in global perspective and memory of its past actions, the

robot in this approach is susceptible to getting trapped into continued oscillations or

cycles. Well known methods for reactive navigation include [57,58]. A neural network,

trained with the back-propagation algorithm, is well-suited for reactive navigation as it

can directly output the desired robot motion based on the goal position and the input

sensor readings [59]. The limitation of a purely reactive navigation is overcome in the

Hybrid Deliberative/Reactive Paradigm, in which the robot reacts to its sensory input

(as in the Reactive Paradigm) but additionally also executes motions prescribed by a

higher level deliberative planner (Figure 1.1c). The planner receives its input from the

same set of sensors as the action module and is responsible for higher-level tasks like

map-building, localization and path-planning. Thus, the robot remains committed to

its long-term plan but is also quick enough to react to sudden changes in its vicin-

ity [60]. The planner is typically invoked after every 300–500 cycles (exact interval of

invocation depends on the speed of the robot and environment) of the sense–act step

and thereby ensures that navigation is not significantly slowed down by the compute-

intensive path-planning phase.

While the robot pursues the prescribed path, it usually strays from it because of

imperfections and noise in actuation. So, it is necessary to correct its course of travel

periodically to bring it back to the desired path. This is called trajectory tracking and

a simple method to achieve this is through the use of the Pure-pursuit algorithm [61].

Using an estimate of its current position, this algorithm computes the curvature of the

path along which the robot should move to arrive at the desired path at a given look

ahead distance.

While the robot moves in its environment, it is necessary that it continually esti-
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mates its position and heading direction (or orientation), collectively termed as pose.

Information on its pose allows the robot to determine whether it has reached its goal,

is on the prescribed path or has deviated from it and the like. This capability of the

robot to continually estimate its pose is called localization and is a key requirement

for autonomous navigation. It is usually not possible to accurately measure the pose

of a robot directly; it can only be inferred or estimated. Though, Global Positioning

Systems (GPSs) do provide reasonable estimates of robot position, they are not usable

in indoor or in GPS-denied environments. However, if a good model of its environment

is available with robot in the form of map, and the robot is able to sense its distance

from the objects in its immediate vicinity, it can make an estimate of its pose. In

order that the map faithfully models the environment, it is imperative that the spatial

locations of the objects are correctly known. This is possible only if the robot knows

its pose from where it perceived the objects during the process of map building. But

knowing the pose requires a map of the environment. This, in essence, implies that

map building and localization are inter-dependent processes. For localization, a map

must be available; conversely, for building a map, the robot must be well localized.

Thus, we are faced with a chicken-and-egg problem, to solve which the problems of

mapping and localization are generally adressed concurrently.

Figure 1.2 illustrates the key steps in autonomous navigation. A robot utilizes a

sensor like LRF to perceive its environment for building a map and localizing itself

with respect to the map. (It is important to note that localization and map building

are just two instances of robot perception; depending upon the task at hand, the

outcome of perception may differ.) The robot can also utilize the same map, or some

suitably modified form of it, to plan a path from its current state to its goal state.

The trajectory tracking mechanism ensures that the robot stays on the planned path.

The motion control system accordingly actuates the locomotion mechanism to take the

robot towards its goal.

1.4 Map building and localization

A mobile robot, if it is to be deployed for any meaningful purpose like radiation mon-

itoring or material transfer, must have the capability of navigating autonomously in

its environment. One of the necessary prerequisites for autonomous navigation is the

capability of localization [62], which continually provides the robot with an answer to

the question, Where am I? In other words, it enables the robot to reliably estimate its

location and orientation (heading direction) in its environment with respect to a world

coordinate system.

If the pose (location and orientation) of a robot is known at any instant, the sub-

sequent poses may be estimated through odometry. But, this estimate soon becomes
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Figure 1.2: Key steps in autonomous navigation

unreliable because of errors that accumulate over the length of travel. Nonetheless,

if the spatial locations of the objects in the vicinity of the robot are known, and the

robot is able to measure its distance from these objects using sensors like LRF, it is

possible to make an estimate of its pose. Thus arises the need of having a map of the

environment of the robot [63]. A map is essentially a spatial model, or an abstraction

of the environment, where (almost) all pertinent objects in the environment find a

representation in one form or the other, depending upon the type of the map. A map

is a representation of the environment that is used internally by the robot. The form

of representation used in a map is crucial as it has a bearing on how efficiently it can

be stored and how conveniently it can be put to the desired use. The sensor used to

build a map often guides the choice of a particular map representation.

Two different paradigms for indoor maps are common: metric maps and topological

maps. In a metric map (also called geometric map), locations of objects in the physical

environment are described in a world coordinate system, though the representations of

objects differ according to the type of map. In such maps, the distance between any two

points in the map corresponds to the distance between the corresponding two physical

points in the real world. This makes it possible for a mobile robot to figure out its

pose by consulting the map of the environment after it has sensed its distance from the

neighboring obstacles. Such maps are preferable when precise localization and accurate

path-planning are desired. Metric maps are of two types: grid maps and feature maps.

In a grid map, the environment is described by a two-dimensional grid, where each cell

of the grid is either filled (indicating presence of an object in the corresponding part

of the environment) or empty (indicating free space). Such a grid map is commonly
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referred to as occupancy grid map [64, 65]. In place of occupancy, values indicating

the amount the corresponding cell is covered by an obstacle is considered in [66]. A

major drawback of the grid-based representation is that a large amount of memory is

necessary to store the map. A feature map is a collection of features, where each feature

is an abstraction of a distinct entity of the mapped environment and has an associated

spatial location. Features are often described by geometric primitives like line-segments

and arcs or by more abstract representations like doors and tables. Such abstract

descriptions permit compact and scalable representation of the environment compared

to occupancy grid representations. Topological maps [67], capture the structure and

connectivity of the environment through the use of graphs. Nodes of the graph represent

distinct places, while arcs represent spatial relationships between places. The advantage

of the topological maps lies in their compactness and amenability to efficient planning.

To gain the best of both these paradigms, metric and topological maps are combined

in [68].

LRFs have become the sensor of choice for range finding in mobile robotics. These

sensors provide dense and accurate range data at a very high resolution and sampling

rate. A laser range scan may be thought of as giving a partial view of the environment.

By integrating many such views taken from different but known locations, a model

of the complete environment (which is commonly referred to as a global map) can be

obtained. Clearly, this entails that poses from which the scans are taken (called scan

poses) are accurately known. But this is possible only if the robot can localize itself

accurately, which again calls for the availability of an accurate map. In the absence

of both a map and an exact pose information, the robot is required to simultaneously

estimate both the map and localize itself relative to the (possibly partial) map built

thus far—a problem known in the robotics community as the problem of Simultaneous

Localization and Mapping (SLAM) [69,70].

For the purpose of map building, a robot collects laser range scans while exploring

its environment. A raw scan is usually filtered and processed for extraction of higher-

level features like line segments. In the incremental scheme of map building (typically

done online), the scans (or the features extracted from it, as the case may be) are

successively merged with a cumulatively built global model of the environment. Thus,

more and more information about the environment, acquired by the robot in steps, are

incrementally added to the map to get a progressively more complete description of the

environment. In an incrementally built map, the range scans/features acquired from

different places in the environment are often integrated into a common world coordinate

frame using odometry-estimates of the scan poses. Since these estimates are corrupted

by cumulative drift errors, the spatial relationships between the scan poses estimated

through odometry are inconsistent. Hence, the range scans/features integrated using

odometry estimates of the scan poses are grossly misaligned. Consequently, the result-
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ing map does not give a faithful representation of the actual environment (Figure 1.3a).

It is, thus, essential to register the scans/features (by obtaining improved estimates of

the scan poses) prior to their integration for building the map. A map built from

pre-registered scans models the environment rather closely (Figure 1.3b). (We shall

revisit this environment once again in Section 3.2.2 (page 40) for map building). Thus,

consistent registration of scans is a crucial issue in the process of map building. The

method proposed by Lu-Milios [71] takes in a set of odometry-estimated scan poses

and the laser range scans taken from those poses to provide improved estimates of the

scan poses for globally consistent range scan alignment.

(a) (b)

Figure 1.3: An incrementally built point cloud-based map. (a) The range scans have
been integrated using odometry-estimated scan poses; (b) The range scans have been
registered before integration.

If a map of the environment is available a priori, the task of localization becomes

comparatively straightforward. In that case, a scan (or features extracted from it)

obtained from an unknown pose may be rotated and translated so that it matches with

the map. The amount of translation and rotation required to achieve this matching

gives an estimate of the difference in position and orientation of the mobile robot

from the last known position and orientation. Using this approach, it is possible to

continuously track the pose of the robot and achieve what is commonly known as pose-

tracking or local localization. But it assumes that the initial position of the robot is

known. In this approach, if at any stage the estimated pose of the robot turns out to

be widely different from the actual, pose-tracking may fail in a subsequent step and

the robot may get lost. In instances, when the robot is not aware of its initial position

except that it is located somewhere on the map, the robot infers its pose by matching

the obtained scan with different regions of the map and identifying the object or region

with which the closest match is obtained. Pose estimation in such cases is known as

global localization. Global localization is, in general, difficult because different regions

of the same environment often look identical locally, a phenomenon generally known as
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perceptual aliasing. Solution to the global localization problem requires that multiple

hypotheses about the pose of the robot is maintained and the beliefs corresponding to

the hypotheses that they actually represent the true robot pose are updated with the

arrival of new information. Such problems are best solved in a probabilistic framework

in which the robot pose is modeled as a random variable with an associated probability

density. The problem of global localization degenerates to one of tracking, once the

robot is localized. A related problem is that of the robot kidnapped problem, in which

the robot believes that it knows its pose, while in reality, it does not.

1.5 Motivation, scope and organization of the

thesis

In many real-life applications, a robot is required to navigate continuously in envi-

ronments that remain practically invariant over long periods of time. For all these

applications, it is more appropriate to build a map of the working environment first

and then use it for localization, rather than operate the robot in an online SLAM

mode, which is complex, computation-intensive and less accurate. By decoupling map-

ping from localization, the robot can be absolved of the job of map building while it is

performing its assigned duty.

Applications of the above kind require that a method is available for offline building

of maps from range data collected by the robot during an initial phase when it is

manually driven or tele-operated in its environment. A robust and accurate method

for localization on maps built by such a method is also a prerequisite for the robot to

move around safely and efficiently in the environment for performing its intended task.

With the objective of achieving robust and accurate localization of mobile robots

equipped with LRFs in indoor environments that remain practically unchanged for

extended periods of time, in this thesis we propose

• an offline method for building maps of indoor environments by merging line seg-

ments extracted from registered laser range scans [72]; and

• a robust and accurate method for pose-tracking on such maps based on the Monte

Carlo framework [73].

Line segments are an obvious choice in the representation of indoor environments,

which predominantly comprise objects like walls, corridors and cupboards. These ob-

jects have planar external surfaces and thus naturally lend themselves to representation

by line segments in the 2D-plane. Moreover, maps based on line segments are compact,

provide floating-point resolution and scale well with the environment size. In simple

point landmarks-based maps, the landmarks are often not visible due to occlusion and
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are also difficult to uniquely identify as they lack distinguishing features like orientation

and length. Hence, in this thesis, we limit our scope to building line segment-based

maps of indoor environments only. We experimentally compare the maps produced by

our method with those produced by two other methods [74, 75] reported in the liter-

ature. We also propose simple ways of quantitatively assessing the goodness of a line

segment-based map produced in relation to the ground truth.

Monte Carlo Localization (MCL) is a popular and powerful approach for mobile

robot localization [76]. It uses a finite set of random samples with associated importance

weights to represent, in approximation, the posterior probability density function of

the robot pose, over the state space. The benefits associated with the use of line

segment-based maps and the effectiveness of MCL [77] are sufficient motivations for

implementing MCL on such maps. But MCL has seldom been studied in the context of

line segment-based maps. A key step of the approach—and one that can endow it with

or rob it of the attributes of accuracy, robustness and efficiency—is the computation

of the so called importance weights associated with each hypothesized pose. In this

thesis, we propose a formulation for MCL that uses a novel method for the computation

of importance weights on maps represented with line segments, and extensively study

its performance in pose-tracking. The proposed method does not require modification

of the environment, through the placement of reflectors or guidewires, for instance,

to simplify the task of localization. We also compare our method with three other

competing methods [78–80] in the literature and present the results and insights thus

gathered.

The remainder of this thesis is organized as follows: in Chapter 2 we review lit-

erature relating to different aspects of building maps from line segments, including

methods for extraction of line segments from laser range data, curve approximations,

line segment-based map building and line segment merging. Thereafter, we describe the

proposed method of map building in details after giving a brief overview of mean-shift

clustering.

Chapter 3 presents the details of the assessment and comparative study of the maps

produced by the proposed method and by two other methods [74,75] from the literature.

Two approaches for assessment of line segment-based maps are also presented in this

Chapter.

In Chapter 4 we review literature on different approaches to localization and then

discuss on the framework of particle filtering on which MCL is based. We then present

the details of the proposed method of weight computation for MCL and briefly de-

scribe the weight computation procedure of three competing methods [78–80] from the

literature.

In Chapter 5 we present the details of the procedures adopted to evaluate, and the

results of evaluation, of the performance of MCL incorporating the method of weight
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computation proposed in Chapter 4 as well as those incorporating the methods reported

in [78–80].

Chapter 6 summarizes the contribution of the thesis, the conclusions arrived at and

the possible themes for future research.
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Chapter 2

Building maps using line segments

2.1 Introduction

We have seen in the preceding Chapter that a key capability for autonomous navigation

of a mobile robot is that it is continuously able to localize itself in its environment. We

have also seen that a map of the environment should be available with the robot so

that it is able to localize itself by matching its perception of the environment with the

map. Since the process of map building and that of localization are closely intertwined,

they are commonly solved using SLAM methods [69,70].

In many real-life situations, the robot is required to navigate continuously in en-

vironments that remain practically invariant over long periods of time. One instance

of such situation is the requirement of 2D profiling of radiation inside the vault of

a cyclotron during its operation using a radiation monitor piggybacked on a mobile

robot [81]. Another instance could be the continuous transportation of materials by

automated guided vehicles in a factory floor [35]. In all these cases, it is more appro-

priate to build a map of the working environment first and then use it for localization,

rather than operate the robot in an online SLAM mode, which is complex, computation-

intensive and less accurate. To localize itself, the robot needs to search for a plausible

pose—a pose that best satisfies the sensor readings of the robot—in the space of all

possible poses. To build the map, it needs to ascertain whether or not it is in a part of

the environment visited previously and then update the map accordingly. If these two

tasks are decoupled, and the complete map is built independently in an initial offline

phase, the robot can be absolved of the computational burden of map building during

its operational phase. With this motivation in the backdrop, in this thesis, we propose

an offline method for building global maps of indoor environments using directed line

segments extracted from laser range data. The method is offline in the sense that pro-

cessing commences after all data are collected. This is in contrast to online methods

(typically SLAM) that process sensor data as and when they arrive and use them to
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incrementally update the map.

Line segments are an obvious choice in the representation of indoor features. Most

indoor environments predominantly comprise objects like walls, corridors and cup-

boards. These objects have planar external surfaces and thus naturally lend themselves

to representation by line segments in the 2D-plane. Unlike occupancy grids, maps based

on line segments are more compact, provide floating-point resolution, consume signifi-

cantly less memory and thus scale well with the environment size. Formally, we define

a line segment-based 2D map M as a set of N line segments such that M = {Li}Ni=1

where each segment Li has a specific orientation, defined by its start point and end

point. In this Chapter, our focus shall be on building line segment-based maps of

indoor environments in the 2D plane using laser range data.

Methods for building line segment-based maps typically include the following three

steps: (a) registration of range scan data; (b) extraction of line segments from the

range data; and (c) selective merging of the line segments so extracted. Even though,

we propose a new formulation for step (c) only and use pre-existing algorithms for

the first two steps, nonetheless, our method coherently combines all the three steps to

generate compact and accurate line segment-based maps starting from raw laser range

data.

In the proposed method, the robot is first manually driven (or tele-operated) through

the entire environment envisaged to be mapped. As the robot is driven, laser scan data

and the corresponding scan poses obtained through odometry are recorded at regular

intervals. The scan poses are then adjusted and optimized for consistent registration

of range scan data using the Lu-Milios algorithm [71] (see Section 3.2 (page 32) for a

more detailed discussion). Once the corrected scan poses are obtained, line segments

are extracted from the laser range data acquired from each of the poses. The entire

gamut of the line segments is then subjected to two successive steps of density-based

clustering. These two steps help delineate the line segments that are in close proximity

to each other. All line segments that are in close proximity, and hence represent the

same object, are finally merged together to yield a (resultant) line segment of the map.

2.2 Related work

In this Section, we glance through some work on the extraction of line segments from

laser range data and the related domain of approximation of digitized curves. There-

after, we review a few methods for line segment-based map building, focusing particu-

larly on the aspects of scan registration and line segment merging.

The domains of pattern recognition and computer vision have contributed most of

the early methods for extraction of line segments from laser range data. The method

of Iterative-End-Point-Fit [82] and its variant, the Split-and-Merge algorithm [83], re-
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cursively splits a line segment fitted to a set of points till the distance of the farthest

point from the fitted line falls below a threshold. Consecutive line segments are merged

if they are nearly collinear. Nguyen et al. [84] experimentally evaluated six different

classes of line extractions algorithms viz., the Split-and-Merge Algorithm [83, 85], the

Incremental Algorithm [86], the Hough Transform Algorithm [87], the Line Regression

Algorithm [88], the RANSAC (Random Sample Consensus) Algorithm [89] and the

EM (Expectation Maximization) Algorithm [90] as applied to mobile robotics using

2D laser range data acquired in indoor environments. The results of these algorithms

were compared with the ground truth to assess their efficacy. They concluded that

Split-and-Merge is superior to the other algorithms in terms of speed and correctness.

In more recent years, Harati and Siegwart [91] proposed a simple mechanism for line

extraction based on the thresholding of Bearing Angle, which is the angle between the

laser beam and the line passing through consecutive scan points. They also proposed

a framework for hierarchic representation of a 2D range scan at several levels-of-detail.

Fernández et al. [92] proposed two methods that are to be applied on laser range data in

succession—the first, Distance-based Convolution Clustering, to cluster the scan data

points; and the second, Reduced Hough Transform Line Tracker, to fit a line to each

cluster. The method proposed in [93] predicts the position of a scan point based on

the preceding points and uses it to detect the presence of discontinuities and turns in

the environment. Subsequently, it fits line segments and circles/arcs to the scan data

as appropriate to model the environment. Line fitting to a set of points is commonly

carried out using total-least-squares fitting [88,94].

Closely related to the problem of extraction of line segments from laser range data

is the problem of representing digitized curves through line segments and other higher-

order geometric primitives like circular arcs and splines. Unlike laser range data, the

points representing a digitized curve are always 8-connected and the end points of the

geometric primitives belong to the set of points defining the curve. When a closed curve

is approximated by a set of line segments, the problem is commonly referred to as that

of polygonal approximation. Over the years, many algorithms have been proposed for

polygonal approximation. The sequential methods for polygonal approximation contin-

uously evaluate a given approximation metric as they perform a linear scan along the

length of the curve to locate an approximation line segment e.g. [95–97]. The dominant

point detection-based methods compute the curvature of each point of the curve and

then designate the local curvature-maximum point within a given neighborhood as the

dominant point. The polygonal approximation is obtained by joining the dominant

points [98–101]. Methods for polygonal approximation based on metaheuristics [102]

have also been proposed. These include methods based on Genetic Algorithm [103–105],

Tabu Search [106], Ant Colony Optimization [107], Particle Swarm Optimization [108],

Differential Evolution [109] and Artificial Bee Colony Algorithm [110]. Methods for
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approximation using line segments and circular arcs include [111–113]. Curves have

also been represented using a hierarchical approach as in [114].

A plethora of methods, either online or offline, for map building from line segments

have been proposed over the years [115]. The online or incremental methods either

do not include any scan registration step [116] or register the scans as and when they

arrive with the so far accumulated scans [87, 117, 118]. For instance, the Consecutive

Clustering Algorithm [116] successively applies clustering methods, first on raw scan

data (K-means), then on the tentative line segments fitted to this data (K-means)

and subsequently for finding similar line segments for merging them to the map (Rank

Order Clustering). Relying on the assumption that no localization error accrues during

collection of the range data, the authors did not address the issue of scan registration.

In [119], a set of line segments extracted from the recent scan is registered with the

partial line segment-based map built so far, before subsuming the line segments into

the map. The offline methods, on the other hand, register all scans simultaneously

so that the scans are globally consistent. The method presented in [120] registers line

segments extracted from laser scan data, after elimination of redundant scans. Using

a measure of similarity between line segments, they are clustered and then merged.

In the final step, inconsistent line segments are eliminated using the notion of sight

triangles. A method for building global maps by integrating partial maps consisting of

line segments only, without taking recourse to pose information, is presented in [121].

In the more recent years, methods have been proposed that identify and merge

redundant line segments in maps with the aim that each planar surface is represented

by a single line segment. A comparison of some such methods is reported in [122].

They categorize the existing methods of map segment merging into one of three classes,

where: (i) consecutive/collinear line segments are merged; (ii) pairs of line segments are

merged; and (iii) sets of line segments are merged. They conclude that unlike methods

of the last class, redundant line segments are left in maps that employ merging methods

of the first two classes. The method proposed in [74] first identifies the longest line

segment and then defines a strip of width 2ε (where ε is a user-settable parameter of

the method) centered on the segment. All line segments whose end points lie within the

strip and whose projection on the longest segment form a continuous line segment chain

are merged to yield the resultant single segment. In the algorithm proposed in [75],

segments are clustered, using mean-shift clustering with a symmetric Gaussian kernel,

to segregate all spatially close segments that share a more-or-less common direction.

Segments from such clusters are further clustered, using mean-shift clustering but this

time with an anisotropic Gaussian kernel, to identify segments that are collinear or

roughly so. The resulting segments are then merged to yield the final line segment.
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2.3 Mean-shift clustering: An overview

Mean-shift clustering [123–126] is a density-based clustering technique. The modes of

the probability density function underlying the distribution of the given data points

are considered as the cluster centers. These modes are the points of local maxima of

the density function. The mean-shift clustering technique neither requires the number

of clusters to be known a priori nor does it impose any constraint on the shape of the

clusters.

Given N instances (or samples) s1, s2, ..., sN ,∈ S = Rd (d > 0), of the random

variable x, the probability density function, f̂k(x), can be estimated using the Parzen

window technique [82] with a kernel function K : S → R defined as

K(x) = ck,d k(‖x‖2) ≥ 0 (2.1)

where k : [0,∞]→ R is the kernel profile and ck,d is a normalization constant that

ensure∫
Rd

K(x) dx = 1 (2.2)

The kernel density estimate is then given as:

f̂K(x) =
ck,d
N · hd

N∑
j=1

k

(∥∥∥x− sj
h

∥∥∥2
)
· w(sj) (2.3)

where h > 0 is the window width, also called the bandwidth, and w(sj) is the

weight associated with the sample point sj. Assuming that the kernel profile k(x) is

differentiable, the gradient of the density function is given by

Of̂K(x) =
2 ck,d

N · hd+2

[
N∑
j=1

(x− sj) · k′
(∥∥∥x− sj

h

∥∥∥2
)
· w(sj)

]

=
2 ck,d

N · hd+2

[
N∑
j=1

g

(∥∥∥x− sj
h

∥∥∥2
)
· w(sj)

]
×∑N

j=1 g
(∥∥x−sj

h

∥∥2
)
· w(sj) · sj∑N

j=1 g
(∥∥x−sj

h

∥∥2
)
· w(sj)

− x

 (2.4)

where

g(·) = −k′(·) (2.5)
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With analogy from equation (2.3), equation (2.4) may be re-written as

Of̂K(x) = 2 f̂G(x) ·

∑N
j=1 g

(∥∥x−sj
h

∥∥2
)
· w(sj) · sj∑N

j=1 g
(∥∥x−sj

h

∥∥2
)
· w(sj)

− x

 (2.6)

where f̂G(x) is the probability density function estimated with the kernel function

G : S → R defined as

G(x) = cg,d g(‖x‖2) (2.7)

where g(·) is the kernel profile defined in equation (2.5) and cg,d is the normalization

constant that ensures that G integrates to one.

A closer look at equation (2.6) reveals that the quantity inside the square brackets

is a vector—called the mean-shift vector—that points in the direction of the gradient

of f̂K(x) at x. The magnitude of the vector is proportional to the ratio of the gradient

of f̂K(x) to the density estimated at x using kernel G. The mean-shift vector at x is

given as

mk(x) =

∑N
j=1 g

(∥∥x−sj
h

∥∥2
)
· w(sj) · sj∑N

j=1 g
(∥∥x−sj

h

∥∥2
)
· w(sj)

− x (2.8)

Thus, for some value xi of x, if we iterate through the following steps (t is the

iteration counter):

1. Compute the mean-shift vector mk(xi
(t)).

2. Shift the sample point xi
(t) by an amount mk(xi

(t)) so as to reach

x
(t+1)
i = x

(t)
i +mk(xi

(t)).

3. Increment t and go to (1) until x
(t+1)
i ≈ x

(t)
i .

xi eventually reaches a mode of the density function. The condition x
(t+1)
i ≈ x

(t)
i

in step (3) indicates that the algorithm has converged [125] to a mode of the density

function, since at the modes mk(xi) = 0. Thus, the mean-shift procedure is a hill-

climbing technique which takes xi to the nearest local maximum (or mode) of the

density surface in whose basin of attraction xi lies. Thus, when the above iterative

steps are performed on all the sample points one-after-another (or in parallel), they

all converge to one mode or the other depending upon their basin of attraction. All

sample points converging to the same mode belong to the same cluster.
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Weights associated with sample points influence the shape of the estimated proba-

bility density function. The greater is the weight, w(s), associated with a sample point,

s, the greater is the “pull” exerted by the sample point in bringing the local maxima,

in whose basin of attraction it lies, towards itself. In other words, it tries to bring the

centre of the cluster to which it belongs towards itself.

In the so-called blurring mean-shift, in iteration t, a sample value s
(t)
i is substituted

for x in equation (2.8). The sample value then gets updated as: s
(t+1)
i = s

(t)
i +mk(si

(t)).

This is done separately for all N -instances of the sample points i.e., i = 1, 2, . . . , N till

convergence. In this approach, the density function f̂K(x) changes in each iteration as

all sj s in equation (2.3) change.

In the non-blurring mean-shift, a sample value si is assigned to x only in the

initialization step as follows: x
(0)
i ← si, i = 1, 2, . . . , N . In subsequent iterations, the

point xi is updated as: x
(t+1)
i = x

(t)
i +mk(xi

(t)), i = 1, 2, . . . , N till convergence. The

sample points themselves hold on to their values. In this approach, the density function

f̂K(x) does not change from iteration to iteration.

It is important to note that the first term in the right-hand-side of equation (2.8),

and hence, the expression for the mean-shift vector being independent of the normaliza-

tion constant, for all practical purposes we work with the simplest possible expression

for the kernel function by relaxing the requirement that it integrates to one. In the

following, we list some of the commonly used kernel functions, in their simplest form,

having unit bandwidth.

Flat Kernel: F (x) =

1 if ‖x‖ ≤ 1,

0 if ‖x‖ > 1.
(2.9)

Gaussian Kernel: G(x) = e−‖x‖
2

(2.10)

Epanechnikov Kernel: E(x) =

1− ‖x‖2 if ‖x‖ ≤ 1,

0 if ‖x‖ > 1.
(2.11)

Bi-weight Kernel: B(x) =

(1− ‖x‖2)2 if ‖x‖ ≤ 1,

0 if ‖x‖ > 1.
(2.12)
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Angular Clusters

Spatial Clusters

Figure 2.1: Organization of the scan line segments in a tree-like hierarchy.

2.4 The proposed method

The proposed method starts off by extracting line segments from all individual laser

range scans. Each such line segment—which we call scan line segment (or scan segment,

in short)—may be thought of as a representative of that part of the linear feature of the

environment that is visible from the corresponding scan pose. We use the term linear

feature to refer to a planar (or a piecewise planar) surface of the environment that is

opaque to laser e.g., the front face of a closed rectangular cupboard or a continuous

corridor wall. Since a given linear feature is likely to be visible (either in whole or

in part) from multiple scan poses, it is likely to have multiple scan segments as its

representatives. Hence, the problem of line segment-based map building boils down

to one of identifying all the scan segments that represent a given linear feature of the

environment, and eliciting the geometric properties of the feature from the identified

scan segments by merging them. A line segment-based map results when the geometric

properties of all the relevant linear features of the environment are identified from the

corresponding set of scan segments.

The proposed method organizes the scan segments in a tree-like hierarchy (Fig-

ure 2.1). At the top of the hierarchy is a node that represents all scan segments ex-

tracted from all the range scans. In the next level, these scan segments are distributed

over one or more nodes, where each node holds closely oriented scan segments. For

convenience, we refer to all scan segments in a node at this level as belonging to an

angular cluster. At the next lower level, scan segments of each angular cluster are

distributed over one or more leaf nodes, where each leaf node holds scan segments

that lie close to each other in space. All scan line segments of a given leaf node are

considered as representatives of a distinct linear feature and are said to belong to the

same spatial cluster. The geometrical attributes (length, orientation and position) of

the linear feature represented by a spatial cluster may be obtained by suitably merging

the scan lines segments belonging to the cluster into one segment.
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1: extractLineSegments (scanPoints: r[ ], segmentIndex: start, segmentIndex: end)
2: if NOT( ( D(r[start], r[end]) >=100 ) AND (end - start >= 5 ) ) then
3: return (NULL, NULL)
4: else
5: maxIndex = index ∈ {start+1, end-1} | D⊥(r[ ], index, start, end)>= D⊥(r[ ],

i, start, end) ∀i ∈ [start+1, end-1]
6: maxDist = D⊥(r[ ], maxIndex, start, end)
7: if (maxDist > 50) then
8: extractLineSegments (r[ ], start, maxIndex)
9: extractLineSegments (r[ ], maxIndex, end)
10: else
11: L=total-least-square-fitting (r[ ], start, end)
12: segStart = project (r[start], L)
13: segEnd = project (r[end], L)
14: return (segStart, segEnd)
15: end if
16: end if

Figure 2.2: Pseudo-code for extraction of scan line segments from a given laser range
scan.

2.4.1 Extraction of line segments from individual scans

We assume that while the robot moves in its environment, it keeps collecting laser

range scan data in the counterclockwise sense, covering an angular range of 180◦,

centered on its heading direction. In each scan, whenever we come across a range

value that is greater than ρmax (= 8000mm) or is less than ρmin (= 50mm), we discard

the corresponding data from further processing. If we suppose that n number of range

points remain in a scan after discarding, the scan may be defined as a set of n points

given by {ri | ri = (ρi · cos ψi, ρi · sin ψi)}ni=1 where ρi (ρmin ≤ ρi ≤ ρmax) is the range

value acquired at an angle ψi during scanning. Before extraction of line segments

commences, starting from i = j (1 < j < n), the distance between two consecutive

scan points ri−1 and ri, denoted by δi−1,i , is computed successively till δi−1,i > 100mm

for some i = k where j ≤ k ≤ n or till i = n. The indices i = j − 1 and i = k − 1

(or i = j − 1 and i = n, if the second condition is true) define a closely-spaced ordered

subset of scan points within which line extraction is to be attempted. Search for the

next subset of closely-spaced points starts with j = k + 1(k < n), and so on.

In order to extract the so called scan line segments from a closely-spaced ordered

subset of scans points, we broadly follow the pseudo-code, derived from the Iterative

End Point Fitting algorithm [82] with worst case complexity O(n2), given in Figure 2.2

The function extractLineSegments( ) takes in as arguments, an ordered set of

range points r[ ] and the indices, start and end, of two points in the set, with

start < end. These indices define an ordered subset of closely-spaced scan points
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on the set r[ ] within which line segment extraction is attempted. The function D( )

computes the Euclidean distance between the two range points passed in as arguments

to it. If this distance is less than 100mm or the number of range points in the subset

under consideration is less than 5, we do not attempt extraction of line segments from

the corresponding subset. The entire subset is discarded as segments extracted from

it would be too short. Otherwise, we successively compute the distances—using the

function D⊥( )—of all the intermediate scan points from the line joining the points with

indices start and end, and note the point with the maximum absolute distance. If this

distance is greater than 50mm, line segments are extracted recursively from the two

subsets of scan points demarcated by the point with the maximum absolute deviation.

If the distance is not greater than 50mm, total-least-squares fitting [88, 94] is applied

on the corresponding subset of scan points to get the line L. Thereafter, the scan points

with indices start and end are projected on L, to determine the two end points of L

and to convert it into a line segment. The end points that define the line segment are

finally returned.

The scan line segments extracted from the individual scans, which are shorter than

100mm are discarded. The end points of the remaining segments are then transformed

to a (common) world coordinate frame. The transformation is carried out using the

scan pose of range scan data from which the segment in question has been extracted.

The scan poses are estimated through odometry and optimized by scan registration

algorithm. The entire gamut of all such extracted scan line segments is held in the root

node of Figure 2.1.

2.4.2 Orientation-based clustering of scan line segments

In trying to classify the scan segments that represent one or the other linear feature of

the environment, we first compute the angular orientations of the scan segments. The

orientation of each segment, denoted by θ, is computed in the range −π < θ ≤ π. It is

necessary to compute the orientations in the range 2π (rather than in the range π) to

preserve the sense in which the line segments were scanned by the LRF. As we shall

see later, this is a vital piece of information that we can ill-afford to discard.

All scan segments arising from the same linear feature should have identical orien-

tations. However, in practice, because of errors in the acquisition of scan points as well

as in the approximation of scan points by scan line segments, the orientations show a

spread or distribution, possibly skewed, around some central value. Thus, it becomes

necessary to elicit the true orientations of the linear features of the environment from

these distributions. We associate the true orientations of the linear features with the

local maxima of the probability density function estimated using the orientations of

the scan segments as samples. We take recourse to the mean-shift algorithm, discussed
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in Section 2.3, not only to locate the local maxima but also to cluster the scan lines

based on their orientations. We call the resultant clusters as angular clusters. All scan

line segments in an angular cluster have fairly close orientations and represent linear

features with similar orientations. For instance, all scan segments arising from the left

and right portions of a straight corridor wall, at the center of which lies a laterally

displaced door, will find themselves in the same angular cluster although they repre-

sent two different features (the left part and the right part of the wall). As a matter

of fact, scan segments arising from the door will also occupy the same angular cluster,

provided of course that the door is parallel to the wall. The orientation corresponding

to the cluster center is a measure of the central tendency of all scan segments in the

angular cluster and is regarded as the orientation of the angular cluster.

We invoke the mean-shift clustering algorithm on the orientation data using a bi-

weight kernel. It is important to note that orientation is a circular measure and hence

the distance between two orientations must be appropriately defined. We consider the

distance between the angles α and θ as 1 − cos(α − θ). The bi-weight kernel, with

bandwidth h, is defined accordingly as

B(θ) =


[
1− 1−cos(α−θ)

h

]2

if 1−cos(α−θ)
h

≤ 1,

0 if 1−cos(α−θ)
h

> 1.
(2.13)

If {θ1, θ2, ..., θN} be the orientation data resulting from N scan line segments and

w(θj) be the weight associated with each data point, θj, the underlying probability

density function f̂(α) may be estimated as

f̂(α) =
N∑
j=1

[
max

{(
1− 1− cos(α− θj)

h

)
, 0

}]2

· w(θj) (2.14)

The weight w(θj) of the data point θj is set equal to the length of the scan line

segment that the data point corresponds to. A data point corresponding to a scan line

segment with longer length thus drives the cluster centre more towards itself.

In the non-blurring mean-shift approach, which we adopt in the proposed method,

we assign each θj to α separately during initialization i.e., α
(0)
i ← θi, i = 1, 2, . . . , N .

Thereafter, each data point, α
(t)
i , in the t-th iteration moves to α

(t+1)
i according to the

update rule (see [127] for further details):

α
(t+1)
i = tan−1

∑N
j=1

[
max

{
h−

(
1− cos

(
α

(t)
i − θj

))
, 0
}]
· w(θj) · sin(θj)∑N

j=1

[
max

{
h−

(
1− cos

(
α

(t)
i − θj

))
, 0
}]
· w(θj) · cos(θj)

 (2.15)

The iterative process terminates when α
(t+1)
i ≈ α

(t)
i , i = 1, 2, ..., N . On termination,
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all the data points converge to one or the other local maximum (i.e., mode) of the

probability density function. The modes correspond to the cluster centres and provide

estimates of the true orientations of the predominant linear features in the environment.

So far we had tacitly assumed that when the iterations terminate, all the data points

migrating towards a particular mode coalesce into the corresponding local maximum.

However, in practice, after a finite number of iterations, the data points only manage to

reach the vicinity of the local maximum. Of all such points in the vicinity, we reckon

the one that yields the highest value of the probability density as the mode of the

probability density or the cluster center.

For the sake of illustration, let us consider the histogram (Figure 2.3a) constructed

with data points corresponding to the angular orientations of 8374 scan segments of

a given environment. The range of the histogram is (−π, π]. It is evident from the

histogram (in red) that the orientations of the scan line segments vary over a fairly wide

range. The smooth curve (in blue) in the same Figure is the kernel density estimate

of the same data computed with a bi-weight kernel with bandwidth h = 0.02. After

36 iterations using equation (2.15), the data points corresponding to the orientations

of the scan line segments converge to one or the other mode of the density function.

Figure 2.3b shows the original kernel density estimate as well as the histogram after

the data points have converged. From this Figure it is clear that almost all the data

points have converged to one of the four modes of the probability density function.

The four modes correspond to the four predominant directions along which the linear

features are oriented in the environment.

We have adopted a brute-force implementation of this step, which has a computa-

tional complexity of O(N2) where N is the total number of scan line segments.

2.4.3 Clustering of scan line segments based on spatial

proximity

Scan line segments in an angular cluster are subjected to clustering so that all line

segments in each resulting cluster are spatially close to one another. This step is

necessary to identify scan line segments that represent different linear features but are

of similar orientations. We refer to such clusters as spatial clusters. To decide if two

scan line segments in an angular cluster are spatially close, we consider the following

two measures:

1. Lateral separation, d: the lateral separation of two scan line segments in an

angular cluster is the distance between their mid-points measured in a direction

perpendicular to the orientation of the angular cluster to which they both belong.

2. Longitudinal overlap, p: the amount of overlap between two scan line segments
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(a) (b)

Figure 2.3: The kernel density estimate (in blue), computed with a bi-weight kernel,
for initial distribution of the sample points, is shown along with the histogram (in red)
constructed with (a) the initial distribution of the sample points; and (b) the sample
points after they have converged to their nearest local maximum. It should be kept in
mind that the density function and the histograms wrap over at ± π. It may be noted
that the density estimate has not been normalized and does not necessarily integrate
to one.

in an angular cluster measured along the direction of the cluster orientation.

Let AB and CD be two scan line segments, with mid-points M and N respectively,

that belong to the same angular cluster. Let us suppose that the orientation of the

cluster is aligned with the line XX ′ (Figure 2.4). The distance between M and N ,

measured along the perpendicular to XX ′, is defined as the lateral separation, d, be-

tween the segments AB and CD. The distance of D from A measured along the cluster

orientation XX ′, is defined as the longitudinal overlap, p, between the segments AB

and CD.

For any two scan line segments in a given angular cluster, if d < dmax and p > pmin,

where dmax and pmin are two pre-specified thresholds, we consider them to be spatially

close to each other. Two scan line segments which are spatially close to each other are

considered as neighbors and belong to the same spatial cluster. Recursive extension

of this premise leads to the following criteria for a scan line segment to belong to a

given spatial cluster: a scan line segment belongs to a given spatial cluster if it is a

neighbor of another scan line segment that already belongs to the same cluster or if it

is a neighbor of a scan line segment whose neighbor(s) already belong(s) to the same

cluster. The pseudo-code listed in Figure 2.5 explains the procedure underlying the

formation of a spatial cluster.

The function spatialCluster( ) responsible for the creation of spatial clusters

takes the scan line segments held by an angular cluster, say AC, as input. For each

scan line segment L in the angular cluster, which has not been considered before, the
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Figure 2.4: The lateral separation and longitudinal overlap between the scan line seg-
ments AB and CD are represented by d and p respectively. The cluster orientation is
aligned with the line XX ′.

1: spatialCluster(angularcluster: AC)
2: ID = 0
3: for (each line segment L in AC) do
4: if L is not visited then
5: mark L as visited
6: Neighbors = findNeighbours(L, AC)
7: ID = new Cluster ID
8: growCluster(L, Neighbors, ID, AC)
9: end if
10: end for
11:

12: growCluster(line segment: L, line segments: Neighbors, clusterID: ID, angularclus-
ter: AC)

13: add L to cluster ID
14: for (each line segment L′ in Neighbors) do
15: if L′ is not visited then
16: mark L′ as visited
17: add L′ to cluster ID
18: Neighbors′ = findNeighbours(L′, AC)
19: Neighbors = Union of Neighbors′ and Neighbors
20: end if
21: end for
22:

23: findNeighbours(line segment: L, angularcluster: AC)
24: return (all line segments in AC which are spatially close to L)

Figure 2.5: Pseudo-code for the formation of spatial clusters.
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neighbors of L are identified from amongst the remaining lines of AC by checking the

spatial closeness criteria with L. Thereafter, L and all its neighbors are assigned to a

new spatial cluster and a unique identity (ID) is assigned to the cluster. Subsequently,

this cluster is allowed to grow by including all neighbors of the neighbors of L, and

their neighbors and so on in turn, which are not already included in the cluster. It

is important to note that neighbor is a transitive relation and hence the formation of

spatial cluster is independent of the order in which the scan line segments are visited.

On conclusion of the formation of spatial clusters corresponding to each angular

cluster, scan line segments as representatives of different linear features get segregated

into different spatial clusters. We define the support of a spatial cluster as the number

of scan line segments that belong to that cluster.

The worst case complexity of this step is O(n2
A), where nA is the number of scan

line segments in the angular cluster under consideration.

2.4.4 Estimation of the attributes of the linear features

All scan line segments in a spatial cluster are finally merged to generate a resulting line

segment that captures the attributes (viz., orientation, length and position) of a distinct

linear feature of the environment. All line segments, resulting from the merging of scan

segments in all spatial clusters, when aggregated together produce a line segment-based

map of the environment. Each such resulting segment is an instance of a map segment.

Let us suppose that there are nS scan line segments in a given spatial cluster. The

line supporting such a scan line segment may be represented in the normal form as

(pi, φi) where

x · cos φi + y · sin φi = pi for i = 1, 2, ..., ns (2.16)

where pi is the perpendicular distance of the line from the origin and φi is the angle

that the perpendicular from the origin on the line makes with the positive direction

of the x-axis. Here, by line supporting a scan line segment, we refer to the underlying

line (of infinite length) of which the scan line segment is a part.

If (pres, φres) represent the line supporting the resultant line segment, we define

pres =

∑ns

i=1 pi · wi∑ns

i=1 wi
(2.17)

φres = atan∗
(∑ns

i=1wi · sin φi∑ns

i=1wi · cos φi

)
(2.18)
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where atan∗(. . .) is the quadrant-specific arc tangent function commonly available

as the library function atan2(...) in most high-level programming languages and

wi is the weight associated with each scan line segment that is set to the length of

the segment. Once the equation of the line supporting the resultant line segment has

been obtained, it needs to be converted to a map segment by determining its two end

points. The end points of the resultant map segment are obtained by projecting the

end points of the constituent scan line segments of the spatial cluster on the resultant

line of infinite length and choosing the end points that give the maximum length of the

resultant line segment.

The scan line segments in a given spatial cluster, which are representatives of a

particular linear feature, usually contain both redundant information as well as new

evidence. The process of estimating the resultant line segment by merging all scan

line segments in a spatial cluster is the way by which we combine all line segments

that represent the same linear feature into a single line segment. The computational

complexity of this step is O(ns)

2.5 Discussion

Our literature survey revealed that two methods—one proposed by Amigoni and Vailati

[74] and the other by Lakaemper [75]—come close to the one proposed in this Chapter.

But the method of Lakaemper [75] has some crucial differences with the one proposed

here. In Lakaemper’s method [75], line segments are extracted from pre-aligned scans

having orientation in the range [0, π]. This leads to loss of vital information concerning

the sense in which the LRF had scanned the corresponding obstacle surface. In the

proposed method, we extract scan line segments in the range (−π, π] and thereby retain

this information. The senses of orientation of the map segments simplifies implemen-

tation of localization algorithms, such as [128], that work by matching scans to map

segments, because the task of establishing correspondences becomes relatively straight-

forward then. To illustrate this point through a contrived example, let us suppose that

the robot is somewhere in the vicinity of a thin rectangular object QRST housed in a

rectangular room (Figure 2.6) and that it needs to update its pose. If the orientations

of the segments QR and ST are known—the two orientations are opposite—the robot

can easily match its laser range scan with the correct segment (either QR or ST) as

the direction of the scan and the orientation of the corresponding segment would be

identical. If the orientations of the scan line segments (and hence the directedness of

map segments) are sacrificed, establishing the correspondence would be tricky and not

so straightforward. Hence, it is crucial to retain the identity of the opposite faces of

even very thin objects that the robot may possibly see using map segments of opposite

orientations. Furthermore, extracting scan line segments in the (−π, π] range prevent
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Figure 2.6: Preservation of the senses of orientation of the map segments simplify
localization. Moreover, closely-lying but oppositely oriented segments, like QR and ST
here, do not get merged and model two opposite faces of an object distinctly.

closely spaced line segments like QR and ST in Figure 2.6 from getting merged because

the two line segments have opposite senses of orientations and hence will belong to two

different angular clusters. The issue of sense of orientation in the map segments has

also been considered in [116, 118]. We assert that the sense of orientation of the map

line segments is a vital piece of information that we can ill-afford to ignore and hence

advocate representing maps by directed line segments, as long as they are built from

range data acquired from LRFs.

In addition to the above, the method of Lakaemper [75] considers the distance

between line segments in the centre-direction joint space. To put the spatial difference

and angular difference on an equal footing, a spatial difference of 200mm is considered

equivalent to 10◦ and line segments exceeding a certain length are split into smaller

segments. This, in our opinion, is subjective and arbitrary. While we always strive

to extract long line segments and assign more weights to longer segments as they are

perceptually more significant, this method splits up long segments into shorter ones so

that all segments get similar importance. This appears counter-intuitive. However, the

advantage that accrues with this formulation is that it allows line segments belonging

to the same cluster to differ more widely in direction if they are spatially close and

vice-versa. In our method, in the first clustering step (using the mean-shift procedure)

we use only the orientations of the scan line segments and the distance between two

segments are computed using a circular measure since orientations are directional data.

In the second clustering step, we consider only the spatial attributes. At both the

stages, the data corresponding to the line segments are weighted by the lengths of the

segments.

Compared to the method of Amigoni and Vailati [74], which uses a hard-coded

threshold, ε, to bring together scan line segments for merging irrespective of their

orientations, our method uses a somewhat adaptive approach. Once our method has

identified closely oriented scan line segments, all “neighboring” scan line segments

are brought together for merging. By using a transitive relation for identifying the
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neighbors, the ambit of neighborhood is allowed to grow based upon the input data.

As we shall see in the following Chapter, experiments were performed with different

datasets (public, real and simulated) and the same setting of the parameter that defines

an initial tentative neighborhood, was found to give good results for all cases.
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Chapter 3

Assessment of line segment-based

maps

3.1 Introduction

In order to establish the efficacy of a given mapping method, it is imperative to assess

the goodness of the maps produced by the method. Unfortunately, maps generated by

most of the methods proposed in the literature have not been assessed. Only pictorial

depictions of the maps have been made available for visual inspection [74, 75, 87, 117–

121]. This lacuna on map assessment can possibly be attributed to the absence of

a general agreement in the robotics community as to what constitutes a reasonable

yardstick for map assessment. Formulation of such a yardstick is indeed a daunting

task as the desirable attributes of a map are often conflicting and are guided by the

application in which the map is to be used. For path-planning, it may be desirable

that even small objects in the environment like legs of tables are modeled in the map,

while for localization it may be desirable to have relatively long objects only, but their

positions must be known very accurately. Also, the difficulty in obtaining the ground

truth precludes the possibility of quantitatively determining how closely a map models

a given environment. In [129], wherein an on-line method for segment-based map

building from sonar data was proposed, the generated maps were compared with the

real maps using a mean absolute error criterion. Lakaemper [130] proposed a method

for evaluating line segment-based maps by defining a confidence measure that does

not take into account the ground truth. Unfortunately, the method fails to guarantee

that a map with a high confidence models the environment correctly. A framework for

benchmarking SLAM methods, which may differ in their sensing modalities as well as

in map representations, was proposed in [131].

Amigoni et al. [132] made a critical review of the commonly-adopted practices in the

experimental activities on line segment-based mapping before recommending a number

31



of issues to be followed for experimentally validating a mapping method. In their

view, adherence to these recommendations by researchers will open up the possibility

of evaluating and comparing different mapping methods by ensuring repeatability of

the experiments. Following their recommendations, in our experimental activity we

have: (i) applied our method on data available in the public domain; (ii) compared

our results with that of two other methods on public data; (iii) indicated the sizes of

mapped environments; (iv) indicated the number of line segments in each map; (v)

indicated the displacements between the scans; (vi) evaluated the maps against ground

truth (wherever available) both pictorially as well as quantitatively; (vii) mentioned the

values of the important parameters; (viii) used closed loop paths; and (ix) indicated the

processing time. Additionally, the line segments of the maps generated by our method

are directed and preserve the sense in which the corresponding linear surfaces have

been scanned by the LRF. We also (a) indicate the average displacements between two

consecutive poses as well as information related to the lengths of the map segments;

and (b) analyze how the results of our method change when the parameter settings of

our method are perturbed.

3.2 Experimental evaluation

Before proceeding to present the experimental results, it is important to point out that

the scan poses are generally estimated through odometery. Before long, such estimates

turn out to be unreliable because of cumulative drift errors. This leads to relationships

among the scan poses that are globally inconsistent. Hence, the need arises to obtain

improved estimates of the scan poses to make the relationships globally consistent so

that all scan data are consistently aligned. One way of achieving this is through the

use of a full SLAM method that estimates the entire trajectory traversed by the robot

along with the map. A popular paradigm for solving the full SLAM problem is based

on a graphical formulation of the problem and then solving it offline using nonlinear

least squares method. A seminal work that provided the first working solution in this

paradigm is attributable to Lu and Milios [71]. In later years, many refinements and

improvements to this work have been reported in literature e.g., [133–139]

In the Lu-Milios method [71], the poses of the robot are represented as nodes of

a graph [140], while the spatial relationships between poses resulting from pair-wise

matching of laser range scans or from odometry are represented by arcs. Once such

a graph is constructed, the problem reduces to one of finding the configuration of the

nodes that maximizes the likelihood of the measurements contained in the arcs. The

problem is then solved simultaneously for all the nodes, by minimizing the Mahalanobis

distance between the observed and derived relations over the entire graph. A major

drawback of this method is that as the number of scan poses S increases, the complexity
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of the algorithm grows as O(S3).

If we assume that the robot takes a laser range scan S0 at its initial pose X0 and for

each subsequent step of movement from pose Xi−1 to Xi, the robot takes a new laser

range scan Si at the new pose Xi, the broad steps of the Lu-Milios algorithm [71] can

be summarized as follows:

1. Each previous scan Sj, j = 0, 1, . . . , i− 1 is matched with the current scan Si to

estimate the pose relation between Xi and Xj as Dij = Xi−Xj. The observation

Dij is modeled as D̃ij = Dij + 4Dij, where 4Dij is a random Gaussian error

with zero mean and known covariance matrix Cij.

2. If we suppose that X represents the concatenation of optimal pose estimates

X0, X1, . . . , Xn, where X0 = [0, 0, 0]T , D the concatenation of all the relations

of the form Dij = Xi − Xj, and H the incidence matrix such that D = HX

then X = [HtC−1H]−1HtC−1D̃ and CX = [HtC−1H]
−1

where D̃ is the

concatenation of all observations D̃ij for the corresponding Dij and C is the

covariance of D̃ij.

In our experimental activities, whenever we confront input scan data in which the

scan poses are estimated through the error-prone odometry, we get the input data pre-

processed through the Lu-Milios algorithm [71] to obtain improved estimates of the

poses. If, however, corrected scan poses are already available with the input data, we

do not subject the data to preprocessing and instead feed it directly to our method.

It is important to note that we use the Lu-Milios method [71] only to perform a pre-

processing on the input dataset to obtain better estimates of the scan poses and thereby

align the scans. It is not intrinsic to the proposed method, and in principle, any full

SLAM algorithm that works using wheel odometry and laser range scan data could be

used in its place. However, the output generated by the proposed map building method

is affected by how well the scan registration method succeeds in obtaining a globally

consistent pose estimate.

From the standpoint of representing the ground truth both accurately as well as

with fewer line segments, it is important that the scan registration method is accurate.

If the estimates of the scan poses provided by the scan registration algorithm are

accurate, the line segments of the map would model the ground truth closely, provided

of course that the scan acquisition is accurate and the line merging process does not

introduce too large an error. To better understand the dependence of the number of

line segments in a map on the accuracy of the scan registration process, let us imagine

a situation where a given linear feature is observed in several scans, all collected from

different scan poses. Since the scan poses are estimated through odometry, the scans

will in general be grossly misaligned. An effective and accurate scan registration method

33



-30 -20 -10 0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

Angle in degrees

h=0.08

h=0.02

h=0.005

Figure 3.1: The biweight kernel of equation (2.13) for three different values of the
kernel viz., h = 0.005, h = 0.02 and h = 0.08.

would align the scans appropriately and would permit the use of a single line segment

to faithfully model the linear feature. An ineffective scan registration method would

fail to align the scans appropriately. Thus, we may end up with having several line

segments (improperly) representing the linear feature.

Our experimental activity can be broadly divided under three categories. First,

to show the efficacy of our method in mapping large indoor environments, we have

applied our method on three different datasets available publicly in the Robotics Data

Set Repository (Radish) [141]. Second, we assess the map of a medium-sized indoor

environment against ground truth data, where the data have been manually extracted.

Third, we test our method in a large simulated environment whose ground truth is

accurately known. However, before describing the experimental results, we shall digress

briefly to discuss on the important parameters of our method and their settings.

The parameter that regulates the formation of the angular clusters and has to be

set judiciously is the bandwidth, h, of the kernel function. A large bandwidth leads

to an over-smoothed probability density function with fewer modes, while too small a

bandwidth yields a noisy density function that elicits more modes than are actually

present in the data. Figure 3.1 shows the kernel function represented by equation (2.13)

for three different values of the bandwidth. In all the experimental results given in this

Chapter, the bandwidth was kept fixed at h = 0.02. This setting corresponds to a base

spread of around 11.5◦ on either side of the center (see Figure 3.1, blue curve).

Two parameters control the formation of the spatial clusters—the lateral separation,

dmax and the longitudinal overlap, pmin. If too large a value of dmax is chosen, a laterally

fat spatial cluster results. Such a cluster merges similarly oriented but distantly placed

distinct linear features and prevents them from standing out separately. Too small

a value of dmax results in more than one line segment representing the same linear

feature in the map because they could not be merged when they should have been. A
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linear feature often finds itself represented by two or more collinear (or nearly so) line

segments because of undesirable breaks in scan line segments resulting from spurious

occlusions or noise in the range data. A negative value of the parameter, pmin, helps

join all such breaks. In essence, the longitudinal overlap, pmin, regulates to what extent

a spatial cluster can elongate itself. In all the experiments described in this thesis, these

two parameters were set as: dmax = 400mm and pmin = −100mm.

The parameter that has a significant bearing on the processing time of the proposed

method is the convergence criterion of the mean-shift clustering procedure. In our

experiments, we had considered the procedure to have converged if the values of any

of the sample data points did not change by over 5◦ from one iteration to the next.

Setting this value to 1◦ did not change the final result in most of the cases, and only

in a minor way in the remaining of the cases, but increased the running time by 1.5–3

times by necessitating more number of iterations for the method to converge.

Two parameters that regulate the granularity of representation in the map and also

help eliminate spurious line segments arising from dynamic and irrelevant objects are

the minimum line length threshold, Lmin and the minimum support threshold, Smin, of

the spatial clusters. If a linear feature is not sufficiently long (say, smaller than Lmin),

it may not be worthwhile to retain the feature in the map as it adds only to the cost

of map storage without contributing much valuable information. If, too large a value

for Lmin is chosen, we may end up with dropping important features from the map. If

a linear feature is of transient nature, it will not be observed in too many scans at the

same place. Thus, it will be represented by several separate spatial clusters but none

of them will have too many scan line segments belonging to them. Thus, by discarding

all spatial clusters whose support does not exceed a chosen Smin, we eliminate dynamic

features from the final map. However, the choices of Lmin and Smin are somewhat

interrelated. In general, a linear feature, which is short in length, will be observed

from only a few scan poses while a long feature will be visible from many. Thus, the

support of the spatial cluster representing a short linear feature will naturally be small

as compared to that of a long feature. Thus, to be effective, Smin should be small when

Lmin is small and large when Lmin is large. The value of Smin is also dependent on

how closely range scan data have been collected. In our experiments, we have used the

following setting of these parameters: Lmin = 500mm; Smin = 5.

3.2.1 Mapping with data available in the public domain

In the first experimental exercise, we apply our method on the following three indoor

datasets obtained from Radish repository [141]:

(a) A 375m long corridor of the main building of Chosun University;

(b) Department of DIIGA, Engineering University, Ancona (∼size: 47m×47m); and
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(c) SRI AIC K wing (∼size: 83m×21m).

For the dataset (a), the scan poses were estimated through odometry; hence, the

Lu-Milios method [71] was applied on the dataset before invoking our method. For,

the remaining two datasets, this pre-processing step was not necessary as the scan data

were already pre-registered using scan matching techniques [141].

The dataset (a) contains 23,067 scans and 4,175,127 scan points. Among these,

as many as 9423 scans were taken from poses that were identical to their immediate

preceding poses. The dataset (b) contains 8540 scans and 1,539,349 scan points. Here,

there are as many as 7671 cases where the displacements between two consecutive

scan poses differ by less than 100mm and 5◦. These indicate that there are significant

amounts of redundant data in the two datasets. With a view to eliminating redundant

data, we processed only those scans for which two consecutive scan poses differed either

by at least 250mm or by at least 10◦. The displacement between two consecutive poses

in dataset (c)—which contained 1421 scans and 244,614 scan points—were much larger

and in only one case it was found to be less than 250mm and 10◦. Figure 3.2 shows

the scan points as contained in the dataset after removal of redundant data and the

line segment maps extracted by the proposed method. Figure 2.3 in page 25 pertains

to the mean-shift clustering step applied on dataset (c).

In Table 3.1 we enumerate a few attributes of the datasets. In column 2, the

numbers of scans that have been processed (left after removal of redundant scans)

for extraction of the line segment-based maps are shown. The average displacements

between two consecutive scan poses of these processed scans are indicated in columns 3

(translational displacement) and 4 (angular displacement). Column 5 lists the numbers

of scan line segments extracted from the datasets using the step detailed in Section 2.4.1

on page 21, while the next two columns indicate respectively the lengths of the smallest

and the largest scan line segments so extracted. Column 8 shows the average length of

the scan line segments.

Table 3.1: Attributes of datasets after removal of redundant scans and that of the scan
line segments extracted from the scans.

Dataset #Scans proc. Avg. ∆t(mm) Avg. ∆a #Segments Smallest(mm) Longest(mm) Avg. length(mm)
(1) (2) (3) (4) (5) (6) (7) (8)

Dataset (a) 1307 14 0.08◦ 6187 100 4213 952
Dataset (b) 1289 32 0.89◦ 7066 100 5571 849
Dataset (c) 1420 469 12.30◦ 8374 100 5524 713

Table 3.2 shows the attributes of the maps generated by the proposed method from

the datasets listed in column 1. Column 2 indicates the number of line segments in the

final map. Columns 3 and 4 indicate respectively the lengths of the smallest and the

largest line segment in the generated map and column 5 indicates the average length of

the map segments. The processing time required to compute the maps, starting from
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(c) (d)

(e) (f)

Figure 3.2: Figures (a), (c) and (e) on the left-hand side show laser scan points as
contained in the datasets after removal of redundant scans, while Figures (b), (d) and
(f) on the right-hand side show the corresponding line segment maps extracted by the
proposed method from datasets (a)—Chosun University; dataset (b)—Department of
DIIGA; and dataset (c)—SRI AIC K wing, respectively. All dimensions are in mm.
The scans in dataset (a) had to be pre-aligned using the Lu-Milios [71] method.

reading in the (registered) range scan data as input, to writing out the end points of

the constituent directed map segments, is listed in column 6.
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Table 3.2: Attributes of the maps produced by the proposed method.

Dataset #Map segments Smallest segment (mm) Largest segment (mm) Average length (mm) Proc. time (s)
(1) (2) (3) (4) (5) (6)

Dataset (a) 75 502 119,681 8502 107
Dataset (b) 143 502 22,483 2857 143
Dataset (c) 237 508 27,326 2594 340

In order to see how the maps produced by the proposed method compare with maps

generated by other methods proposed in the recent past, we enumerate in Table 3.3

the different attributes of the maps produced by the methods due to Amigoni and

Vailati [74] and to Lakaemper [75]. These methods are invoked on the scan line seg-

ments referred to in column 5 of Table 3.1. Thus all the three methods work with the

same sets of scan line segments and the differences in the final results are attributable

only to the intrinsic differences in the methods. Since all the three methods under con-

sideration have one or more parameter(s) on which the maps produced are dependent,

it is imperative to set them judiciously so that a fair comparison is possible. It has

already been pointed out in page 16 (Section 2.2) that the method [74] uses a param-

eter ε to determine which scan line segments would be brought together for possible

merging. Since there is no parameter in our method which directly relates to ε, we had

estimated an equivalent value of ε (we call it ε1) corresponding to the maps generated

by our method. Subsequently, we computed the maps by [74] for ε = ε1. To arrive at

a plausible value of ε1, the end point of the line segment in a spatial cluster, which is

at a maximum distance from the resultant map segment arising from the cluster (on

either side of the map segment), is identified. The two end points (one on each side of

the resultant map segment) define a strip around the resultant segment, on or inside

which all line segments of the spatial cluster which underwent merging, reside. The

widths of all such strips, corresponding to all spatial clusters, are computed. Of all

such strips, the one that has the maximum width is then identified and the maximum

width is considered equal to 2ε1. For example, for the map produced by our method

for dataset (a), the maximum width of the strip turned out to be 2816mm. Hence ε1

was set to 1408mm. We had also determined the value of ε (we call it ε2) through

trial and error using which value Amigoni and Vailati [74] produces the same number

of map segments as our method. As far as the method [75] is concerned, it has one

parameter σ that has to be set to the minimum size of significant detail [75]. Since

no parameter of our method had any direct bearing with this parameter, we generated

maps by this method for widely differing values of σ.

From Table 3.3, it is seen that with datasets (a) and (c), for the same strip width, the

maps produced by our method contain fewer segments, and are thus more compact,

than those produced by the method of Amigoni and Vailati [74]. Alternatively, for

the same number of map segments produced by the two methods, in our method,
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Table 3.3: Attributes of the maps produced by Amigoni and Vailati [74] and Lakaem-
per [75].

Method Dataset Parameter (mm) #Map segments Smallest segment (mm) Largest segment (mm) Average length (mm)
(1) (2) (3) (4) (5) (6) (7)

Amigoni and Vailati [74]

Dataset (a)
ε1 = 1408 135 117 75,076 4474
ε2 = 2495 75 102 87,052 5365

Dataset (b)
ε1 = 664 128 106 20,917 2944
ε2 = 500 143 108 20,917 2691

Dataset (c)
ε1 = 489 264 0 27,325 2038
ε2 = 550 237 0 27,325 2199

Lakaemper [75]

Dataset (a)

σ = 500 1643 101 1,812 749
σ = 1000 1239 101 2,723 1056
σ = 5000 1112 101 4,213 1335
σ = 10, 000 1162 101 4,213 1335

Dataset (b)

σ = 500 877 103 2,495 762
σ = 1000 868 103 3,144 980
σ = 5000 1038 103 4,598 1203
σ = 10, 000 1028 103 4,598 1147

Datatset (c)

σ = 500 1478 100 1,692 650
σ = 1000 1635 102 2,586 744
σ = 5000 1650 103 4,117 838
σ = 10, 000 1611 101 4,117 837

the scan line segments that give rise to the final map segment lie closer to the final

segment. For instance, for dataset (a), with a strip width of 1408mm, our method

produces 75 map segments while Amigoni and Vailati [74] produces 135 segments;

to produce 75 segments, Amigoni and Vailati [74] requires a strip width of 2495mm.

Thus, the maps produced by our method are more compact and accurate. Amigoni and

Vailati [74], however, outperforms the proposed method for dataset (b) on the above

considerations. As far as the lengths of the map segments are considered, the proposed

method generates maps with segments having lengths larger than (or similar to) the

lengths of map segments produced by Amigoni and Vailati [74]. For dataset (a), the

map produced by our method contains substantially fewer but longer segments than

the method of Amigoni and Vailati [74]. Close visual scrutiny revealed that the map

produced by method of Amigoni and Vailati [74] has quite a few map segments that

are collinear (or nearly so), with small gaps among them along their lengths. Since

our method has a mechanism—achieved through the use of a negative value of the

parameter pmin—to join all such gaps between collinear map segments, it produced

fewer and longer map segments.

If we augment the methods of Amigoni and Vailati [74] and Lakaemper [75] by

adding a step that discards from the maps produced by them those line segments whose

lengths do not exceed Lmin, we get fewer map segments than what is reported in column

4 of Table 3.3. Even after discarding, the number of map segments that remain for the

method of Lakaemper [75] is substantially higher than that of the proposed method

and that of Amigoni and Vailati [74]. With the method of Amigoni and Vailati [74],

after the line segments have been so discarded, maps contain fewer segments than those

produced by the proposed method for dataset (b) and (c). However, for dataset (c),

the scan line segments that give rise to the final map segment lie closer to the final

segment as in dataset (a) for the proposed method and thus the map produced by it
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can be considered to be more accurate.

The method of Lakaemper [75], however, produces maps with a substantially higher

number of segments with shorter lengths compared to the maps produced by Amigoni

and Vailati [74] and the proposed method. Visual inspection of the maps produced

by Lakaemper [75] revealed many closely lying line segments, the kind of which were

merged by Amigoni and Vailati [74] and the proposed method but not by Lakaem-

per [75].

To see the dependence of the attributes of the maps produced on the parameters of

our method, we plot in Figure 3.3 the variation in the different attributes of the maps

listed in Table 3.2 as the parameters are varied. The results for dataset (a) only are

shown; similar plots are obtained for the other datasets. In Figures 3.3a–3.3f, when

one parameter is varied, the other parameters are kept fixed at their stipulated values,

specified earlier. When h is small (Figure 3.3a), a large number of angular clusters

are formed. Since each of these clusters gets split into one or more spatial clusters,

a large number of map segments are obtained. When dmax is small (Figure 3.3b), a

large number of slender spatial clusters are formed. As dmax is increased, fewer spatial

clusters which are spatially fat result. Hence, the number of map segments decreases

with increasing dmax. With increase in dmax, the cluster support, and hence, the

cluster span increases. Thus, the lengths of the map segments increase with increasing

dmax. With the increase in the negative value of pmin (Figure 3.3c), more and more

collinear (or nearly so) map segments with wide gaps along their lengths start getting

merged, resulting in longer but fewer map segments. As Lmin is increased (Figure 3.3d),

smaller map segments get discarded from the map. Hence, the number of map segments

decreases and the length of the smallest map segment increases. As Smin increases

(Figure 3.3e), spatial clusters with smaller support get discarded; hence, the number of

map segments decreases. But with increase of Smin, the average support of the spatial

clusters increases. Hence, the average lengths of the map segments increase. As far as

the processing time is concerned, it varies significantly with h (Figures 3.3f) and only in

a minor way with dmax. It is by and large unaffected by the remaining three parameters.

For small values of h, the sample points lie on or very close to their corresponding local

maxima on the probability density curve and thus convergence takes place within a

few iterations. For larger values of h, a larger number of iterations become necessary

for convergence, leading to higher processing time.

3.2.2 Mapping of real environment

In this experimental exercise, we manually drove a Pioneer-3DX mobile robot in a rect-

angular room of approximate dimensions 11m× 6m while it acquired range data with

a SICK LMS 200 LRF mounted on it. The room contained a rectangular duct, two
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: The dependence of the different attributes of the maps produced by the
proposed method on the parameters of the method for dataset (a). In each of the Fig-
ures (a)–(e), the left vertical axis represents the numbers of map segments, whereas the
right vertical axis represents the lengths of the map segments in millimeters. The cross
sign (×) is used for the number of map segments whereas the hollow circle (◦), hollow
triangle (4) and filled square (�) indicate the length of the largest map segment, length
of the smallest map segment and the average length of the map segments respectively.
The vertical axis in Figure (f) represents the processing time in seconds.The results
quoted in this thesis correspond to the following settings of the parameters: h = 0.02;
dmax = 400mm; pmin = −100mm; Lmin = 500mm; and Smin = 5.

rectangular obstacles on the two sides of a closed door, a thin rectangular obstacle near

the center of the room, a few chairs, a table and a human being walking around. The
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consecutive scan poses differed by at least 250mm or 10◦ while the robot was capturing

range data. The average translation and angular displacement between two consecutive

poses were 200mm and 7.26◦ respectively. The proposed method was invoked on the

laser range data collected by the robot after registering the scans using the Lu-Milios

method [71]. Figure 3.4a shows the scans obtained from 154 poses, which were esti-

mated using odometry while Figure 3.4b shows the produced line segment map. The

CPU time consumed to extract the map was 1.30s.

(a) (b)

Figure 3.4: Mapping of a room of dimensions 11m×6m (a) Laser range data captured
from odometry-estimated scan poses; (b) Line map containing 18 segments produced by
the proposed method. The scans had to be pre-aligned using the Lu-Milios method [71].
All dimensions are in mm.

It is important to note that the proposed method succeeds in preventing scan points

arising from transient and small obstacles like human legs from contributing any line

segment in the final map. The two sides (left and right) of the obstacle lying near the

center of the room (represented as QRST in Figure 3.4b) also find no representation.

This is because the sides are 300mm wide and we had decided to retain segments in

the map which are more than 500mm in length.

The dimensions of the different linear features present in the map and indicated

by pairs of letters in Figure 3.4b are shown in Table 3.4. For instance, AB indicates

the lower wall of the room shown in Figure 3.4b. Against each such dimension (which

is essentially the length of the line segment representing the corresponding feature

in the map) is shown the actual dimension of the feature as measured from the real

environment. These measurements were done manually using a measuring tape and

are accurate to a centimeter.

In order to assess how closely the dimensions of the objects in the actual environ-

ment are reflected in the map, we introduce an error measure, called the dimensional
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Table 3.4: Comparison of the lengths of the map segments with the dimensions of the
actual objects they represent. The actual dimensions were obtained through manual
measurements at centimeter level resolution.

Feature
Map segment
length (cm)

Measured
length (cm)

Feature
Map segment
length (cm)

Measured
length (cm)

Feature
Map segment
length (cm)

Measured
length (cm)

AB 1111.8 1112 GH 169.2 162 MN 134.6 131
BC 585.9 581 HI 69.7 63 NO 114.7 110
CD 391.7 387 IJ 118.5 114 OP 137.1 131
DE 60.3 53 JK 62.0 55 PA 180.1 177
EF 58.3 53 KL 400.1 395 QR 111.4 107
FG 62.0 60 LM 301.1 297 ST 110.7 107

error, εD, in a map defined as

εD =
1

M

M∑
i=1

| L(m)
i − L(g)

i |
L

(g)
i

(3.1)

where L
(m)
i is the length of the ith map segment representing a linear feature whose

real length is L
(g)
i and M is the total number of line segments in the map.

The dimensional error of the map represented in Figure 3.4b, computed in accor-

dance with equation (3.1), is 0.047. This implies that, on an average, for every unit

length of a given dimension of an obstacle in the actual environment, the length of the

corresponding map segment departs from the true dimension, by about 4.7%. How-

ever, it must be kept in mind that the heights above the ground at which the manual

measurements were made were different from the height at which the LRF scanned the

environment. Since, one cannot assert that all object dimensions remain unchanged in

the vertical direction, one must also take this factor into account when considering the

dimensional error.

3.2.3 Mapping in simulated environment

We also applied our method on laser scan data collected from a simulated environment.

The environment had the shape of a regular octagon and had a square obstacle at

the center. All sides of the octagon and the square obstacle were 10m in length.

Laser range data were taken from 105 poses by driving a simulated robot around

the square obstacle. Consecutive poses differed by at least 1m or 10◦. (Since the

environment was fairly uniform, we decided to take scans after translations of 1m in

place of 250mm.) The average pose displacements between two consecutive poses were

631mm and 4.86◦. We mimicked odometry in the simulated environment by injecting

Gaussian noise to the true pose estimate obtained from the simulator. During the data

collection phase, the odometry estimate of a scan pose (x̂i, ŷi, α̂i) was obtained from its

preceding odometry-estimated scan pose (x̂i−1, ŷi−1, α̂i−1) by injecting Gaussian noise

to the difference between the two corresponding true poses obtained from the simulator,
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as shown below.

x̂i = x̂i−1 + d̂i · cos

(
α̂i−1 +

θ̂i
2

)
(3.2)

ŷi = ŷi−1 + d̂i · sin

(
α̂i−1 +

θ̂i
2

)
(3.3)

α̂i = α̂i−1 + θ̂i (3.4)

where

d̂i = di + di ·N (0, σ∆d,d) + θi ·N (0, σ∆d,θ) (3.5)

θ̂i = θi + θi ·N (0, σ∆θ,θ) + di ·N (0, σ∆θ,d) (3.6)

In the above equations, di and θi are the translation and the orientation change respec-

tively between the (i − 1)th and ith true pose obtained from the simulator. N(0, σ)

indicates zero-mean Gaussian noise with standard deviation σ. The Gaussian noise

parameter σ∆d,d is the standard deviation of the error in translation arising per unit of

translation and σ∆d,θ is the standard deviation of the error in the translation per unit

change in the orientation of the robot. The other two noise parameters σ∆θ,d and σ∆θ,θ

have analogous implications for orientation. The following values for these parameters

were chosen: σ∆d,d = 20mm/m, σ∆d,θ = 0.1mm/1◦, σ∆θ,θ = 4◦/360◦ and σ∆θ,d = 4◦/m

.

Figure 3.5a shows the laser scan data obtained from poses estimated using the

above procedure. The scans were then aligned using the Lu-Milios method [71] and

then the proposed method invoked on the data. Figure 3.5b shows the extracted map

(in black) superimposed on the ground truth (in red). Since, the difference between

the extracted map and the ground truth is very small compared to the dimensions of

the environment, the difference is hardly visible. The CPU time consumed to extract

the map was 0.10s. The shortest, longest and the average lengths of the extracted map

segments are 9921 mm, 10,051 mm and 9990 mm respectively. The dimensional error

of the map is 0.004.

The availability of precise dimensions and locations of the obstacles enabled us to

assess how far the generated map departed from the ground truth. The assessment
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(a) (b)

Figure 3.5: (a) Scan data collected from 105 poses in the simulated environment;
(b) The generated map (in black) superimposed on the ground truth (in red). All
dimensions are in mm.

was done separately through the use of Hausdorff Distance (HD) and the Oriented

Segment Hausdorff Distance (OSHD) [142]. This may be thought of as an alternative

error measure, where the correspondences of the map segments to the real objects

need not be known. In the first case, we assume that the end points of the line

segments representing the ground truth and the map belong to the two sets, Tp and

Mp, respectively. In the second case, two sets, designated as Ts and Ms respectively,

contain the segments representing the ground truth and the map.

The one-way HD distance between Tp and Mp is given as

h(Tp,Mp) = max
a∈Tp

(
min
b∈Mp

(d (a, b))

)
(3.7)

where d(a, b) is the Euclidean distance between the points a and b.

The one-way OSHD between two sets Ts and Ms consisting entirely of line segments

is defined as [142]

hOS(Ts,Ms) = max
u∈Ts

(
min
v ∈Ms

(max (d(us, vs), d(ue, ve)))

)
(3.8)

where the superscripts s and e associated with the line segments u and v indicate

their start and end points. The point from where the LRF starts scanning a linear

feature is the start point of the corresponding representative segment. The definitions

of h(Mp, Tp) and hOS(Ms, Ts) are analogous.

The OSHD [142] addresses the issue of correspondence when assessing the disparity

between two sets of line segments, whereas the (standard) HD computed between two
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Table 3.5: Distance between the produced map and the ground truth computed using
HD and OSHD.

Hausdorff Distance Oriented Segment Hausdorff Distance
h(Tp,Mp) h(Mp, Tp) hOS(Ts,Ms) hOS(Ts,Ms)
115.190 mm 125.156 mm 125.156 mm 125.156 mm

sets of line segments represented by their end points does not do so. That the Hausdorff

metric could be used for evaluating the distance of the produced map from the ground

truth was hinted at in [132]. It was also used for mobile robot localization [143].

Table 3.5 shows the values of the different measures of disparity between the map

produced by the proposed method and the ground truth.

The fact that both the HD and the OSHD are pretty small compared to the dimen-

sions of the environment indicates that the generated map models the ground truth

very closely. Also, the fact that hOS(Ts,Ms) = hOS(Ms, Ts) indicates that the segments

of the generated map correctly correspond to the segments of the true environment.

3.3 Discussion

Experimental results show that the maps produced by the proposed method are gener-

ally better than those produced by two other methods [74,75] reported in the literature

in terms of the compactness of the maps and the lengths of the map segments. An im-

portant novelty of the proposed algorithm is that, unlike the other algorithms [74, 75]

the same setting of the parameters of the proposed algorithm succeeded in building

maps of widely differing environments. This testifies to its robustness and efficacy.

The experimental activities were carried out mostly in line with the recommen-

dations made in [132]. This will enable researchers to compare the strengths and

weaknesses of our method vis-á-vis other methods [132,144].

The notion of dimensional error in map, as introduced in this Chapter, is not

without its share of shortcomings. It is often not practicable to manually measure

the dimensions of interest of all obstacles in an environment. Even if the dimensions

are known, associating the map segments to the corresponding planar surface in the

real environment can, more often than not, prove to be a non-trivial task. Our sec-

ond formulation for assessing the accuracy of maps based on HD, and its variant, the

OSHD [142] is largely free of these issues. We need not bother about manually mea-

suring the dimensions of the obstacles and figuring out the correspondences of the map

segments with the planar surfaces of the obstacles. However, here too, we need to know

the locations of the obstacles (or rather, the terminal points of a planar surface) in a

given world coordinate system to compute these metrics.
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Chapter 4

Monte Carlo localization on line

segment-based maps

4.1 Introduction

The capability of localization, which enables a mobile robot to continually estimate its

location and heading direction (collectively referred to as pose), is a key requirement

for autonomous navigation. In some cases, the robot may have absolutely no idea

about its pose, except that it is located somewhere in its working environment. More

often, it has a fair idea about its pose and all that is required is to keep a continuous

track of the pose as it moves around. Inferring the pose of the robot in the former

case is referred to as global localization, while in the latter case it is referred to as local

localization or pose tracking.

While odometers do provide incremental estimates of pose, such estimates cannot

be trusted upon for long periods of time because of integration of measurement errors

over the length of travel. Most modern mobile robots are equipped with LRFs, which

provide the robot with an accurate range estimate of the nearby objects. Thus, if a

spatial model of the environment is available in the form of a map with the robot, it is

possible to estimate the pose of the robot.

We have already discussed in Chapter 2 that line segments are a natural choice in

the representation of indoor environments and the advantages of such representations

over occupancy grid maps.

Monte Carlo Localization (MCL) [76] is a popular approach for mobile robot lo-

calization. It employs a Bayes’ filter to recursively estimate the posterior probability

density function of the robot pose, over the state space, given (noisy) measurements

that arrive sequentially in time and probabilistic models of robot motion and percep-

tion. It uses a finite set of random samples (also known as particles) with associated

importance weights (or simply, weights) to represent, in approximation, the posterior
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density. Each particle, representing a robot pose, is a hypothesis as to the true, but

unknown pose, while its associated weight provides a relative measure of the “impor-

tance” of the sample towards approximation of the target density function. Hereinafter,

we shall use the terms sample, particle and hypothesis synonymously.

MCL makes no restrictive assumption about the state space dynamics or the shape

of the density function. It is able to track multiple hypotheses about the robot pose

and can also trade-off the computational resources available with the accuracy of local-

ization. It has a modular structure and is simple to implement. The benefits associated

with the use of line segment-based maps (see page 14) and the effectiveness of MCL

as evident, for instance, from [77], are sufficient motivations for implementing MCL on

such maps. Unfortunately, studies on the performance of MCL on line segment-based

maps have not been extensively reported in the literature. To the best of our knowl-

edge, only [78] has reported it in some detail. A few other authors [145, 146] do talk

about MCL on such maps, but they are mentioned in different contexts.

The particle filtering framework, described later in this Chapter, on which MCL is

based, only lays down the broad sequence of steps to be followed. The choice of the

motion model and the measurement model is left to the programmer. The importance

weights, derived from the measurement model, play a key role in the pose estimation

process and thus it is imperative to compute the weights in a judicious and efficient

manner.

The main theme of this Chapter relates to a proposal on a new, heuristic-driven

approach for weight computation on such maps. Apart from being simple to implement

and efficient to compute, the novelty in the proposed approach lies in the fact that it

just takes into account how closely the actual perception of the robot fits in or is

consistent with the environment map when referred to a hypothesized pose. This

is in stark contrast to the approach that measures the disparity between the actual

perception of robot from its true, but unknown, pose and the predicted perception

from the hypothesized pose [78–80]. We shall see in the following Chapter that detailed

comparative study reveals our method to be more efficient, robust and accurate than

three other competing methods [78–80]. The studies were conducted in three different

environments whose maps were built from real data using the method described in

Chapter 2.

4.2 Related work

Mobile robot localization has been an area of active research for around three decades.

A myriad of localization methods, differing in approach as well as in the intended

domain of application has been proposed during these years. In this Section, we briefly

review a few approaches to localization before reviewing literature on MCL as applied
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to line segment-based maps and on methods of weight computation.

An early but seminal work on localization based on matching raw range scan data

with a line segment-based map given a priori is due to Cox [128]. Somewhat similar

approaches were reported in [147, 148]. Methods that extract features from the range

scan data for matching with the map include [149–151]. Another seminal work [152],

based on the principle of iterative dual correspondence, achieves localization by match-

ing two scans. A method that computes the cross-correlation between two scans to

achieve localization was proposed in [153]. A combined scan-matcher using elements

of three different methods was proposed in [154]. Localization methods that make use

of Hough Transform were reported in [150,155,156].

In the later years, localization was formulated as a probability density estimation

problem and solved using Bayes’ filter [157, 158]. The Kalman filter-based methods

postulate the robot pose as a unimodal Gaussian distribution and assume the state-

transition model and the measurement model to be linear in its arguments with added

Gaussian noise. However, in real-life applications, the Extended Kalman filter (EKF)

is often used to address deviation from linearity [143,155,156,159].

Methods based on Markov Localization (ML) maintain a discrete approximation of

the probability density function of the pose of the robot. If the state space is represented

as a grid array, as in [160], each cell of the grid holds the probability that the robot

is currently located in it. The method [161] extends [160] for fast position tracking

by maintaining a small search space of possible robot positions centered around the

current estimated position. The dynamic Markov localization approach [162] maintains

an octree-based hierarchical representation of the state space for dynamically changing

the resolution of the discretization based on how certain the robot is about its pose.

Experimental evidence suggests [163] that while grid-based ML is more robust, Kalman

filter-based methods are more efficient and accurate. To inherit the virtues of both, a

hybrid method named Markov-Kalman localization (ML-EKF) was proposed in [164].

MCL utilizes a particle filter-based framework [165] to overcome the computational

overhead and memory demands inherent in grid-based ML methods by using a sample-

based representation of the probability density [76,166]. By using two different ways of

generating samples, a more robust method that goes by the name of Mixture-MCL was

proposed in [167]. A method that improves upon the efficiency of MCL by constraining

the path of the robot such that it suffices to sample the pose space only in the vicinity

of the path is proposed in [168]. A method for Monte Carlo-based pose tracking is

proposed in [169]. To make the method robust against unmodeled objects in the map,

an approach called sampling from a noncorrupted window is proposed. A hybridization

of ML with MCL, wherein the former is used to zero in on a probable region of the

state space before the latter is used to precisely estimate the robot pose in that region,

is presented in [170]. In [171] the accuracy of MCL-estimated pose at pre-decided
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locations was improved by matching scans with previously stored reference scans taken

at those locations.

The efficacies of the Bayesian methods have often been augmented by combining

them with evolution-based methods [145, 172–174]. The evolutionary methods are

formulated as an optimization problem that progressively reduces the initial uncertainty

of the robot pose by generating new solutions in the promising regions of the state

space by using feedback information available during the evaluation of the solutions.

A method for localization based on the Monte Carlo filter augmented with a clustering

algorithm and a genetic algorithm is proposed in [145]. The method proposed in [172]

combines a genetic algorithm with an EKF for localization. In [173] an adaptive Monte

Carlo localization algorithm based on the coevolution mechanism of ecological species

is proposed. MCL was combined with Differential Evolution (DE) to achieve a greater

accuracy in pose tracking at the cost of increased computation time in [174].

Localization methods based solely on evolution-based metaheuristics have also been

proposed. DE-based algorithms for global localization are proposed in [175–178]. A

spatially structured genetic algorithm that exploits complex network theory for the

deployment of population has been proposed in [179]. The method proposed in [180]

is based on the model of species evolution. A localization method based on Harmony

Search was proposed in [181]. This method was further improved by hybridization

with DE. The suitability of the perturbation vectors in DE-based localization has been

studied in [182].

The method due to Espinace et al. [78] deals with MCL on line segment-based maps.

It extracts line segments from the current range scan of the robot. This set of segments

is called Observed Segments Group or OSG. Next, the portions of the line segments of

the map, as visible from a given sample pose (visible in full or in part) are brought

together to form a set of line segments, called the Map Segments Group or MSG. The

method then computes a modified form of the Hausdorff distance [183] between OSG

and MSG, followed by a nonlinear transformation of the distance to determine the

importance weight associated with the sample pose. A method is presented in [79] for

assigning weight to a particle by assessing the Euclidean distance between the laser

range scan actually acquired by the robot and the predicted scan obtained from the

particle. In the context of presenting an improved resampling technique of a particle

filter for tackling the global localization problem, Gasparri et al. [80] proposed a method

of weight computation that is similar in concept to the method of [79] but it uses an

additional nonlinear transformation to map the computed Euclidean distance values to

the corresponding weight values. The method in [78] was improved upon in a recent

work [184] by using a different distance measure [142] and using the same nonlinear

transformation as used in [80].

Ref. [185] presents a Monte Carlo localization algorithm that works with 3D laser
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range scans and a line segment-based map. The 3D point cloud is first reduced to a

virtual 2D scan, which is then used to compute the weights of the particles by comparing

the predicted scans with the virtual scan. Reference to MCL on line segment-based

maps without adequate details may also be found in [145,146].

4.3 The particle filter framework

In many real-life applications, it is required to estimate the (generally hidden) state of

a system using observations, possibly noisy, related to the state. If the observations

arrive sequentially in time and the estimation is to be performed online, a recursive

solution to the estimation problem is desirable. It obviates the need to store the

old observations and to reprocess them when new observations arrive. The Bayesian

approach to estimating the state is to construct its probability density function (PDF)

given the observations, and to recursively update it, whenever new observations arrive.

Let the observations obtained till time step t be the set of measurements denoted by

z1:t
def
= {z1, . . . ,zt} and let the corresponding states from which these observations are

obtained be denoted by x1:t
def
= {x1, . . . ,xt}. Let us assume that both the state xt and

the measurement zt are conditionally independent of other states and observations,

given the immediate preceding state xt−1 and the current state xt respectively.

The PDF of the state at time step t, given the measurement data z1:t and denoted

by p(xt|z1:t) is commonly referred to as the filtering distribution. It can be obtained

recursively from the PDF of the state in the preceding time step, p(xt−1|z1:t−1) using

a two stage procedure: prediction and update.

Prediction: p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (4.1)

Update: p(xt|z1:t) = ηp(zt|xt)p(xt|z1:t−1) (4.2)

where η is a normalization constant that ensures that the left-hand-side of equa-

tion (4.2) integrates to unity for all xt. The PDF p(xt|xt−1) describes how the states

stochastically evolve over time and is known as the state transition probability while

p(zt|xt) relates the noisy measurements with the state and is known as the measurement

probability. For cases, where these two probabilities are not linear Gaussian, the PDFs

cannot be computed in a closed form. For such cases, we use numerical techniques

to compute the PDFs by exploiting the duality that exists between a distribution and

the samples drawn from it. Samples originate from a distribution and the latter may

be used to approximate the former using techniques like kernel density estimate [82].
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The problem thus boils down to one of recursively computing at every time step t, the

samples that represent p(xt|z1:t) from the samples that represent p(xt−1|z1:t−1).

For convenience of formulation, samples are drawn from the joint space p(x1:t|z1:t)

instead of from the filtering distribution p(xt|z1:t). Finally, the samples corresponding

to the time step t are only considered for approximating the filtering distribution at

t while those from the previous steps are ignored. The distribution in the joint space

may be written as

p(x1:t|z1:t) = ηp(zt|xt)p(xt|xt−1)p(x1:t−1|z1:t−1) (4.3)

Since it is generally not possible to sample the target distribution p(x1:t|z1:t) di-

rectly, we take recourse to the method of Importance Sampling and draw samples from

an appropriate proposal distribution q(x1:t|z1:t), where each of the distributions are

possibly known only up to a normalizing constant. Let the samples at times 1, . . . , t

drawn over the joint space be denoted by x̃
(i)
1:t, i = 1, . . . , N . Each of these samples

is then assigned an importance weight (or simply weight) [186] as follows:

w̃
(i)
t ∝

p(x̃
(i)
1:t|z1:t)

q(x̃
(i)
1:t|z1:t)

, i = 1, . . . , N (4.4)

If we choose the proposal distribution in such a way as to factorize as

q(x1:t|z1:t) = q(xt|xt−1, zt)q(x1:t−1|z1:t−1) (4.5)

Equation (4.4) may be rewritten, using equation (4.3) and equation (4.5), as follows:

w̃
(i)
t ∝

p(zt|x̃t(i))p(x̃(i)
t |x̃

(i)
t−1)p(x̃

(i)
1:t−1|z1:t−1)

q(x̃
(i)
t |x̃

(i)
t−1, zt)q(x̃

(i)
1:t−1|z1:t−1)

∝
p(zt|x̃t(i))p(x̃(i)

t |x̃
(i)
t−1)

q(x̃
(i)
t |x̃

(i)
t−1, zt)

w̃
(i)
t−1 (4.6)

If we choose q(x̃
(i)
t |x̃

(i)
t−1, zt) = p(x̃

(i)
t |x̃

(i)
t−1), equation (4.6), reduces to

w̃
(i)
t ∝ p(zt|x̃t(i)) w̃(i)

t−1 (4.7)
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To ensure that the importance weights add up to unity, we normalize them as

w
(i)
t =

w̃
(i)
t∑N

k=1 w̃
(k)
t

(4.8)

where w
(i)
t is the normalized weight corresponding to w̃

(i)
t . The weighted samples{(

x̃
(i)
t , w

(i)
t

)}N
i=1

may be used to compute, for instance, the expectation of the distri-

bution p(x1:t|z1:t). The above scheme for recursively computing the weights is known

as the Sequential Importance Sampling (SIS).

Since
∑N

k=1w
(k)
t = 1 and 0 ≤ w

(k)
t ≤ 1, the weights associated with each sample

may be thought of as their corresponding probability masses. Thus, if we draw N

samples with replacement from the weighted set of samples
{(

x̃
(i)
t , w

(i)
t

)}N
i=1

such that

probability of drawing a sample is equal to its normalized weight, we get a new set of

samples that approximately represent the desired PDF p(xt|z1:t). After resampling,

the weights associated with each of the samples are assigned identical values of 1
N

. We

then proceed to compute the PDF for the next time step, p(xt+1|z1:t+1), using the new

observation zt+1 and the just derived PDF p(xt|z1:t). The above method for recur-

sive estimation of the posterior density is known as Sampling Importance Resampling

(SIR) [187,188].

It is important to note that since w̃
(i)
t = 1

N
and the weights are normalized in time

step t, the weight update equation as given in equation (4.7) may be written in a

simplified form as

w̃
(i)
t = p(zt|x̃t(i)) (4.9)

The samples with associated probability masses are also known as particles and since

these particles are used to approximate the filtering distribution, the above method is

also known as a Particle Filter.

In the context of mobile robot localization, the term belief is commonly used to

refer to the PDF of the robot pose xt at time t conditioned on all past measurements

z1:t and all past controls u1:t. Thus, the belief at time t over x1:t is given as

Bel(xt) = p(xt|z1:t,u1:t) (4.10)

where the measurements z1:t pertain to sensory data like laser range scans and the

controls u1:t pertain to information related to robot motion like odometry data. For

convenience, we shall assume that the perceptual data and the control data arrive in

an alternating sequence. Thus, if the belief at time step t before incorporation of the
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measurement zt is required, we shall use the expression

Bel(xt) = p(xt|z1:t−1,u1:t) (4.11)

The state transition probability in this case takes the form of p(xt|xt−1,ut) and is

derived from considerations of robot kinematics. Thus, it is also known as the robot

motion model. The measurement probability p(zt|xt) depends on the sensing modality

used and is also referred to as the sensor model. We assume that these models are

stationary and thus time-invariant.

We start off with a set of samples that represent the initial belief, Bel(x0), of the

robot. This represents our initial knowledge of the robot pose. If we are aware of the

initial pose, all the samples are taken concentrated in the corresponding part of the

pose space. If, however, we are totally ignorant of the robot pose, we distribute the

samples uniformly in the pose space.

Beginning with samples corresponding to Bel(x0), we first compute samples corre-

sponding to Bel(x1) for t = 1 by propagating the initial samples based on the motion

model under the action of the control u1. Thereafter, we compute the samples corre-

sponding to Bel(x1) using the methodology of SIR after incorporating the measurement

z1 obtained from the sensor model. The samples representing Bel(x1) form the initial

samples for time step t = 2 and the above steps keep repeating for t = 2, 3, 4, . . ..

Since the proposal distribution at time step t is given as

Bel(x1:t) = p(xt|xt−1,ut)Bel(x1:t−1) (4.12)

the weight computation step reduces to

w̃
(i)
t ∝

Bel(x̃
(i)
1:t)

Bel(x̃
(i)
1:t)

∝
p(zt|x̃t(i)) p(x̃t(i)|x̃(i)

t−1,ut)

p(x̃t
(i)|x̃(i)

t−1,ut)

Bel(x̃
(i)
1:t−1)

Bel(x̃
(i)
1:t−1)

∝ p(zt|x̃t(i)) (4.13)

Thus, computing the weight of a sample or particle, based on the pose of the particle
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and the perceptual data acquired by the robot at any instant t is essential to estimating

the PDF of the robot pose at that instant t. In the following Section, we propose a

heurictic-driven approach to computing the important weight w̃
(i)
t .

4.4 The proposed method

The MCL method incorporating the proposed approach for importance weight compu-

tation assumes that a line segment-based 2D map, M , of the environment is available

a priori. The map is built in an initial offline phase by merging line segments ex-

tracted from registered laser range scans collected from many different scan poses

(please see Chapter 2 for details). The map M is a set of | M | line segments,

M =
{
L1, L2, . . . , L|M |

}
, where each segment Li (1 ≤ i ≤|M |) has a specific orien-

tation, defined by its start point and end point. We further assume that while the

robot moves in its environment, it keeps collecting laser range data every half-a-degree

in the counterclockwise sense, covering an angular range of 180◦, centered on its head-

ing direction. Simultaneously, it also keeps recording the odometry-based estimate of

its scan pose. We also assume that the LRF of the robot can reliably sense objects

lying within the range ρmax(= 8000mm) and ρmin(= 50mm).

In the remainder of this Section, we first describe the general flow of an MCL

method based on the outline given in the preceding Section, and then describe the

proposed method of weight computation.

An MCL method (Figure 4.1) starts off with a set of N particles
{
x

(i)
0

}N
i=1

placed

on or around the initial pose, assuming the pose to be known (Step 1). This set of

particles is then propagated on the basis of the control action ut. The control action

is estimated using odometry and inflated with artificially added Gaussian noise. In

practice, the propagated samples at a given time index are obtained by sampling from

an appropriate motion model using the particles in the previous time index and the

control action (Step 2). The motion model for sampling that we adopt in our work has

been borrowed from Section 5.4 of [158]. In Step 3, the importance weight associated

with each propagated particle is computed using the proposed weight computation

method. Each of the computed weights is then normalized so that they sum up to

unity (Step 4). The pose of the robot is estimated in Step 5 by computing the sum of

the particles, where each particle is weighted by its associated (normalized) importance

weight. The particles are resampled in Step 6—where the probability of selection of a

particle is equal to its importance weight—using the method of Stochastic Universal

Sampling [189] so that the resulting distribution of particles represents, in approxima-

tion, the posterior probability density of the robot pose, given all observations till the

current time index [186–188]. This marks the end of one pass in the pose tracking cy-

cle. The time index is subsequently incremented and the cycle is repeated from Step 2
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1: Generate particles, x
(i)
0 , i = 1, ..., N , on or around the known initial pose and set

t← 1
2: For i = 1, ..., N , propagate the particles by sampling from the motion model

x̃
(i)
t = sample motion model(x

(i)
t−1,ut)

given the control action ut with added Gaussian noise.
3: For i = 1, ..., N compute the importance weight w̃

(i)
t associated with each particle

x̃
(i)
t

4: Normalize the importance weights as

w
(i)
t =

w̃
(i)
t∑N

k=1 w̃
(k)
t

for i = 1, ..., N
5: Compute the pose estimate µt as: µt =

∑N
i=1w

(i)
t x̃

(i)
t

6: Resample with replacement N particles {x(i)
t }Ni=1 from the set {x̃(i)

t }Ni=1 based on
their importance weights.

7: Set t← t+ 1 and go to Step 2.

Figure 4.1: Monte Carlo Localization algorithm for pose tracking.

onwards (Step 7).

The weight computation procedure, corresponding to Step 3 of Figure 4.1, com-

mences with the extraction of line segments from the laser range scan acquired by the

robot from a given scan pose. We use the same procedure for line segment extraction

as described in Section 2.4.1. As in Chapter 2, we refer to each line segment extracted

from a single range scan as a scan line segment, or a scan segment for short. It is

important to note that these segments are all directed, their sense being identical to

that in which the LRF obtained the range data from which these segments have been

extracted.

In every cycle of pose tracking, all the scan line segments extracted from the same

laser range scan are bracketed together first with one particle, then with a second and

so on, for all particles one after another. The scan line segments are then transformed

to the world coordinate system—in which the particles and the environment map are

defined—using the pose of the associated particle with which it has been bracketed.

Hereinafter, all references to scan segments shall imply scan segments in the world co-

ordinate system defined with respect to the associated particle. If the particle coincides

with the true (but unknown) pose of the robot, all the scan segments broadly match

with and overlap on the map segments. Otherwise, the degree of mismatch between

the scan segments and the corresponding map segments by and large depends on the

extent to which the pose of the particle differs from the true pose. The weight com-
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C D

A

B

X Y

Figure 4.2: The lateral offset and the longitudinal offset of AB from CD provide a mea-
sure of their mismatch, where AB represents a scan segment and CD a map segment.

puting method that we propose here is based on the above heuristic; by assessing the

extent of mismatch, we estimate the discrepancy between the corresponding particle

and the true pose.

The weight computation procedure consists of three steps. In the first step, we

establish the correspondence between a scan line segment and a map segment in the

sense that both refer to the same physical object in the environment [190,191]. In the

second step, we assess the mismatch between a set of scan segments and the set of

corresponding map segments. In the third step, we subject the estimate of mismatch

to a nonlinear transformation to arrive at the corresponding value of the importance

weight. These weights are then normalized in a subsequent step (Step 4 of Figure 4.1).

In the proposed method, the measure of mismatch, as well as the way to establish

the correspondence, rests on the notions of lateral offset and of longitudinal offset

between two directed line segments. The lateral offset, dlat, of segment AB from CD

is defined as the arithmetic mean of the (absolute) lengths of the perpendiculars from

A and B on the line supporting CD. Referring to Figure 4.2,

dlat =
AX +BY

2
(4.14)

where X and Y are the feet of the perpendiculars from A and B respectively on

the line supporting CD.

The longitudinal offset, dlong, of segment AB from CD is defined as the amount of

translation required on the projection XY of AB along the line supporting CD such

that XY is completely subsumed in CD. Referring to Figure 4.2, dlong (AB,CD) =

XC. If the position and orientation of AB were such that its projection totally over-

lapped with CD, the longitudinal offset would have been zero. Here, we tacitly assume

that the lengths and orientations of AB and CD are such that it is possible to totally

subsume XY in CD. We also assume that the points A and C are identical in the sense

that both of them are either the start points or the end points of their corresponding

segments. Here, it is important to note that these offset measures are not symmetric

with respect to their arguments. Even though both are line segments, a map segment
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1: /∗ Computes the distance of a given point from the line supporting a given line segment

∗/
2: d(point: p, line segment: l)
3: return (perpendicular distance of p from the line supporting l)
4:

5: /∗ Computes the lateral distance of a scan line segment from a map segment ∗/
6: dlat(scan segment: s, map segment: m)
7: return ( average( d(start(s),m), d(end(s),m) ) )
8:

9: /∗ Computes the longitudinal distance of a scan line segment from a map segment ∗/
10: dlong(scan segment: s, map segment: m)
11: s

′
=projection of s on the line supporting m

12: if (s
′

is totally contained in m) then
13: return (0)
14: else
15: return (amount of translation on s

′
required along the line supporting m so

that s
′

is totally contained in m)
16: end if

Figure 4.3: Pseudo-code for computing the lateral and the longitudinal offsets of a scan
line segment from a map segment.

(a representative of ground truth) is intrinsically different from a scan segment (a noisy

and partial view of the ground truth). Hence, the arguments to the above measures

cannot be interchanged.

Lateral offset implicitly captures the angular deviation as well as the lateral de-

viation between two segments while longitudinal offset estimates the amount of non-

overlap between two segments roughly along their lengths. Their sum gives a heuristic

measure of the mismatch between two segments and has no apparent geometrical in-

terpretation.

Let us denote the set of scan line segments associated with a given particle by S

and let sj (1 ≤ j ≤|S|) be an individual scan segment such that sj ∈ S. Similarly,

let mi (1 ≤ i ≤|M|) denote an individual map line segment and M the set of all map

segments, such that mi ∈ M . It is to be kept in mind that all sjs and mis above are

directed and have a specific sense of orientation. If sp ∈ S and mq ∈ M refer to the

same physical planar surface of the environment, then sp will, ideally, not be greater

than mq in length. This is so because in a specific scan only a part of, or at best the

entire, planar surface modeled by a map segment will be visible. To identify which

scan segment corresponds to which map segment, we first compute the lateral and the

longitudinal offsets between a given scan segment and each of the map segments. The

pseudo-codes for computing these offsets are given in Figure 4.3. We assume that the

function average(.) returns the arithmetic mean of the two arguments passed to it,
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1: AssessMismatch(scan segment set: S, map segment set: M)
2: 4 = 0
3: Len = 0
4: flag = FALSE
5: for j = 1, 2, ..., | S | do
6: D = δ = infinity
7: for i = 1, 2, ..., |M | do
8: if ((angle between sj ∈ S and mi ∈ M is less than π

6
) AND (sj is not

greater than mi in length)) then
9: flag = TRUE
10: lateral = dlat(sj,mi)
11: longitudinal = dlong(sj,mi)
12: D = lateral + longitudinal
13: if D < δ then
14: δ = D
15: end if
16: end if
17: end for
18: if (δ < infinity) then
19: ∆ = ∆ + δ∗length(sj)
20: Len = Len + length(sj)
21: end if
22: end for
23: if (flag = FALSE) then
24: return (-1)
25: end if
26: ∆ = ∆

Len

27: return (∆)

Figure 4.4: Pseudo-code for computing the mismatch between a set of scan line seg-
ments and the map line segments.

while start(.) and end(.) return the start point and the end point respectively of

the directed line segment passed on to them as argument.

At the heart of the weight computation method lies the function named AssessMismatch(·)
(Figure 4.4). It is invoked separately for each particle and takes in S and M as its

arguments and returns an estimate of mismatch between S and the corresponding el-

ements of M . Thus, the return value of AssessMismatch(·) gives us an idea of the

extent to which the particle is “away” from the true, but unknown, pose.

For each scan line segment sj ∈ S, j = 1, . . . , |S| we determine (i) whether a given

map segment mi ∈ M, i = 1, . . . , |M| lies within an angle of π
6

to sj; and (ii) whether

sj is less than or equal to mi in length (line 8). If these two conditions are satisfied, mi

is a possible candidate that corresponds to sj. The specific value of π
6

in (i) above is

empirically chosen and it ensures that if a given mi differs widely (π
6

or beyond) from
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1: ImportanceWeight(mismatch: ∆)
2: if (∆ = −1) then
3: weight = 0
4: else if (∆ < 1) then
5: weight = 1
6: else
7: weight = ∆−2

8: end if
9: return(weight)

Figure 4.5: Pseudo-code for transforming an estimate of mismatch to importance
weight.

sj in orientation, it is not to be considered for possible correspondence with that sj.

To determine the specific mi (let us call it m∗i ) from among the candidate segments

that we believe actually corresponds to sj, we compute the sum of the lateral offset

and the longitudinal offset between sj and all candidate mis one after another, and the

mi for which the sum is least is reckoned as the map segment, m∗i corresponding to

sj. In case the two conditions (in line 8) are not satisfied for a given scan segment, we

reckon that no corresponding map segment for it exists and proceed with the next scan

segment. If no scan segment from the set S corresponds to any map segment in M , the

boolean variable flag retains its initial value of false. This implies that if the current

pose of the robot is supposed identical to that of the particle under consideration, the

present perception of the robot is not consistent with the environment. This scenario

is signaled by returning a value of -1 (line 24). If the corresponding map segment could

be found for at least one scan segment—indicated by the value true of flag (set in line

9)—the total mismatch between the sets S and M is defined as the weighted average of

the offsets of each scan line segment from its corresponding map line segment weighted

by the length of the scan line segment (lines 19–20 and 26) and it is this mismatch that

is returned in line 27. We assume that length(·) returns the length of the segment

passed on to it as argument.

After the mismatch between a set S and M has been estimated, the particle asso-

ciated with S is assigned weight using the function ImportanceWeight(·) that takes

in the estimate as its argument (Figure 4.5). The weight corresponding to a mismatch

of ∆ is given by ∆−2 (line 7), provided of course that the mismatch is not -1 or is not

less than 1. In the former case, the weight is assigned a value of 0 (line 3) while in the

latter case, it is assigned a fixed value of 1 (line 5).
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4.5 Speeding up computation

We now propose a strategy which helps in speeding up the above weight computation

step. We may sort the map line segments in M according to their lengths in a decreasing

order in an initial offline phase. This will obviate the need to compare the length of sj

with every map segment mi in M (line 8 in Figure 4.4) for the simple reason that for

a given j (1 ≤ j ≤|S|) and i (1 ≤ i ≤|M |), if the length of sj turns out to be greater

than that of mi, the remaining map line segments mk where (i < k ≤|M|), will surely

be shorter than sj. The other strategy for speeding up computation stems from the

fact that, in general, only a handful of the objects in the environment will be “visible”

to a particle at any given instance. Thus, it will suffice to use only the corresponding

set of map segments (denoted by, say, M ′), instead of the entire set M . In general,

those map segments that lie partly or in full within a semicircle of radius R (= ρmax)

and centered on a particle will be visible from the corresponding pose. These line

segments thus constitute the set M ′ for that particle. Here, for simplicity, we ignore

the fact that ρmin is different from zero (Figure 4.6a). To avoid computing the set M ′

for each and every particle in a given time index, we compute the set M ′′ instead that

we believe contains the M ′s of all the particles in that time index. To determine the

set M ′′, we first make an approximate estimate of the robot pose at t by applying the

control action ut on the robot pose estimated in the preceding time index t − 1 (in

Step 5, Figure 4.1). Thereafter, we consider a square of dimensions 2a×2a centered on

the approximate pose and aligned with its heading direction (Figure 4.6b). We then

inflate the square on all sides by an amount R. This results in a larger square of side

2(R+a)×2(R+a). All map segments that lie partly or in full within the larger square,

are considered as belonging to the set M ′′. We invoke the AssessMismatch(·) with the

arguments S and M ′′ respectively, where M ′′ is a subset of M with its constituent line

segments sorted according to their lengths. We need not compute M ′′ every time we

invoke AssessMismatch(·) in a given time step as M ′′ is supposed to include all map

segments likely to be seen by all particles in that time step. In determining M ′′, we

make the simplifying assumption that all particles coming from Step 2 of Figure 4.1 in

time index t are contained within the square of size 2a× 2a. Thus, a should be chosen

considering the dynamics of particle propagation. In all the studies we conducted with

our method, the value of a was taken as 2000mm.

4.6 Competing methods for weight computation

In this Section, we briefly describe three other methods for weight computation that

compete with the proposed method. These methods are separately used to realize Step

3 of the MCL method given in Figure 4.1 and the results of pose estimate compared
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R

Particle

(a) (b)

Figure 4.6: (a) All map segments, a part or the entirety of which lies within the
semicircle of radius R(= ρmax) from a particle forms the set M ′ for the particle; (b)
The smaller square has dimensions 2a × 2a, while the bigger square has dimensions
2(R + a)× 2(R + a). The squares are concentric and map segments lying partly or in
full within the larger square constitute M ′′.

with that of our method.

The method of Yaqub and Katupitiya [79] computes the normalized weight of a

particle i (i = 1, 2, . . . , N) as follows:

wi =
1

N − 1

1−

∑n
j=1

(
ρj −R(i)

j

)2

∑N
k=1

{∑n
j=1

(
ρj −R(k)

j

)2
}
 (4.15)

where ρj is the actual range sensed by the jth beam of the LRF of the robot during

acquisition of the scan, while R
(k)
j is the (predicted) range obtained by the kth particle

in the corresponding direction. The predicted range value in a given direction from a

particle is computed by ray tracing. We assume that there are n range points in a scan

and a total of N particles.

In the method of Gasparri et al., [80] the weights are computed as follows:

wi =
β∑n

j=1

(
ρj −R(i)

j

)2 (4.16)

where β is a normalization constant, whose specific value is unimportant because of

subsequent normalization (Step 4 of Figure 4.1).

The method of Espinace et al. [78] first rotates a particle and its associated MSG

so that the MSG roughly aligns with OSG (please see page 50) and then computes
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the Modified Hausdorff Distance (MHD) [183] between OSG and the rotated MSG for

each of the rotated N particles. The weight associated with the ith particle is then

computed as

wi =
1− tanh

(
2 ((MHD(MSGi ,OSG))−Ip)

Ip

)
2

(4.17)

where MSGi is set of map segments likely to be perceived by the ith particle

(in entirety or in part), the function MHD(·) computes the MHD between the two

arguments passed on to it and Ip is a parameter that regulates how fast the values of the

weights decay with MHD. The MSG is computed by ray tracing. In our implementation,

we chose the value of Ip in such a way that a particle, which is away from the true pose

by half the distance of the particle farthest from the true pose, is assigned a weight

of 0.5. With other values e.g., Ip = 0.2, the performance of the method was found to

deteriorate as we shall see later.

4.7 Discussion

The first step towards computing the importance weight in each of the four methods

(Ref. [78–80] and the proposed method) consists in determining the incongruity or

mismatch between the actual perception of the robot from its true but unknown pose

and the computed perception from the hypothesized pose represented by a particle. In

Yaqub and Katupitiya [79] and Gasparri et al. [80], the range data acquired in a given

direction is implicitly assumed to correspond to the range data obtained from the map

in the same direction using ray tracing. The sum of the squared differences between

all such corresponding range data gives the measure of mismatch. The correspondence

holds only when the particle lies in the vicinity of the true pose. If the correspondences

are incorrect, the measure of mismatch will be erroneous. Espinace et al. [78], on the

other hand, does not make any explicit attempt to establish correspondence; it simply

takes the difference between two sets of line segments (the OSG and the MSG, with the

latter possibly rotated to roughly align with the former) as a measure of mismatch. The

proposed method, in contrast to the above methods, includes a procedure for explicitly

establishing the correspondence before assessing the mismatch.

The nonlinear transformation (applied on the estimate of the mismatch) governs

the extent to which particles are favored in terms of assignment of high weight values

vis-à-vis their mismatch values. In Gasparri et al. [80] and the proposed method, weight

assigned is the reciprocal of the square of the measure of mismatch. This makes the

weight values fall off sharply with increasing mismatch, when the values of mismatch

are fairly small. Such an inverse-square relationship exploits, to very high degree,
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the knowledge that a particle with a small measure of mismatch is close to the true

pose. Since such a particle is assigned a high weight value, it shepherds the remaining

particles in the state space and makes a dense cluster in its vicinity, leaving few particles

elsewhere. The dense accumulation of particles in the correct region of the state space

enables accurate estimation of the robot pose. However, if the measure of mismatch

turns out to be substantially in error in the sense that particles that have been assigned

small mismatch values are actually far away from the true pose, the particles converge

in the wrong region of the state space and the pose estimate becomes erroneous. In an

extreme situation, no particle may be present in the region of the state space where

the robot is actually present and thus pose tracking may fail completely. The results

of experimental and simulation studies reported in the following Chapter also validate

this.
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Chapter 5

Performance assessment of

localization methods

5.1 Introduction

In the preceding Chapter we have had a detailed look at the proposed method of weight

computation for Monte Carlo localization on line segment-based maps. We also had a

look at three other methods of weight computation from the literature [78–80] which

are functionally equivalent to the proposed method. Naturally, motivation arises not

only to see how each of these weights computation methods impacts the performances

of the localization methods that incorporate them, but also to see how the performances

compare against each other.

In this Chapter, we report on the results of localization obtained from simula-

tion [192] and experimental studies. For ease of reference, henceforth, we shall refer

to MCL incorporating a specific weight computation method by the first letter of the

surname of the first author proposing the method. Thus, MCL–E refers to MCL in-

corporating the weight computation method proposed in [78]. Similarly, MCL–Y and

MCL-G refers to MCL incorporating the methods [79] and [80] respectively. MCL–S

refers to MCL incorporating the proposed weight computation method.

The studies were specifically oriented to compare different aspects of the effective-

ness and efficiency of the proposed MCL–S method with the three competing methods

(MCL–E, MCL–Y and MCL–G) in pose tracking. The source codes that we developed

for the four methods were identical, except for the step of weight computation (Step 3

of Figure 4.1 in page 56). The difference in only this step ensured that the variation

in average performance among the four methods arose essentially due to the difference

in that step. The studies were conducted in the three different indoor environments,

hereinafter referred to as Env#1, Env#2 and Env#3. The maps of these environments

were built using the method described in Chapter 2 (Ref. [72]) based on the real-life
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datasets available in the public domain at Radish [141] and mentioned against each

environment given below.

• Env#1: SRI AIC K wing (∼size: 83m×21m);

• Env#2: Department of DIIGA, Engineering University, Ancona (∼size: 47m×47m);

• Env#3: A 375m long corridor of the main building of Chosun University.

5.2 Simulation and experimental results

The simulation and experimental studies that we conduct can be categorized under

two heads. We first assess the performances of the methods in real environments

using simulated data. In this, we compute and compare the errors in position and

in orientation estimate incurred by the fours methods on different trajectories and

environments. We also compare their computational overheads by juxtaposing the

average time required by each of the methods to compute a single pose estimate.

In addition, we investigate the dependence of the error in the pose estimate on the

closeness (in terms of translational and angular displacement) between two invocations

of the pose tracking method. For the proposed method, we examine the dependence

of the error in the pose estimate on the closeness between two invocations of the pose

tracking method and the number of particles used for pose estimation. We also see

how the instantaneous errors in position and orientation vary over a given trajectory.

In the second category, we compute and compare the errors in position and in

orientation estimate incurred by the fours methods on different trajectories in real

environments using real data.

5.2.1 Pose estimation using simulated data

The map of a given environment was loaded in a simulator, and a simulated robot

driven along a pre-specified path on the map. While the robot moved, laser range data

and the corresponding true scan poses (obtained from the simulator) were recorded.

The true scan poses were then perturbed by injecting Gaussian noise and the resulting

values reckoned as the corresponding odometry estimates of the poses. Hereinafter,

all references to odometry-estimated poses in the simulated environment shall imply

estimates of the poses obtained in the above way. Thereafter, only the odometry

estimates of the scan poses and the range data acquired from those poses were made

available to the robot for localization. The poses, as estimated by the localization

methods, were then compared with the corresponding true poses for determination of

the errors in the pose estimates.
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Table 5.1: Three different settings of the noise parameters used in our study

σ∆d,d

(mm/m)
σ∆θ,d

(degree/m)
σ∆θ,θ

(degree/360◦)
σ∆d,θ

(mm/360◦)
Noise #1 10 5 5 2
Noise #2 100 10 10 4
Noise #3 200 20 20 10

For injecting noise, the odometry motion model given in Section 5.4 of [158] was

used. The noise parameters (standard deviation of Gaussian distribution) are rep-

resented as σ∆d,d, σ∆θ,θ, σ∆θ,d and σ∆d,θ with units mm/m, deg/360◦, degree/m and

mm/360◦ respectively. Using a different seed every time, 30 different trajectories were

generated for each of the three sets of noise parameters (see Table 5.1 for values),

resulting in 90 different trajectories for each environment. The red trajectories in Fig-

ure 5.1 are instances of odometry-estimated trajectories obtained by injecting noise

(with parameters of set Noise#3) to the corresponding true trajectories, indicated in

blue, along which the robot was actually driven in the simulated environment. The

total lengths of paths travelled by the robot were around 500m, 165m, and 580m in

Env#1, Env#2 and Env#3 respectively.

For evaluation and comparison of their performances, MCL–E, MCL–Y, MCL–G

and MCL–S were separately run with 200 particles on each of the different trajectories.

A cycle of MCL (Steps 2–7 of Figure 4.1 in page 56) was invoked for pose estimation

only when the current pose of the robot differed from the pose on which the previous

cycle was invoked by at least 500mm or 5◦. The poses here refer to odometry estimates

of scan poses. The Euclidean distance between the true position of the robot and the

corresponding position as estimated by the localization method under evaluation was

computed for each scan pose. In a similar fashion, the angular distance between the true

orientation and the estimated orientation was also computed for each scan pose. We

refer to these distances as the position error and the orientation error incurred in the

estimation of each scan pose respectively by the localization method under evaluation.

When these errors are averaged over all scan poses in a given run along the entire

trajectory, we refer to the resulting quantities as the average position error and the

average orientation error respectively for the trajectory incurred by the corresponding

localization method. Since these average errors pertain to a single run of a localization

method on a particular trajectory, they are not suitable figures-of-merit on which to

compare the methods with. So, we consider the mean of the average errors of 30 runs,

where each run is taken on a different trajectory that is generated from the same set

of noise parameters of Table 5.1 using a different seed. We also consider the 95%

confidence interval of the mean computed using a t-distribution.

In Figure 5.2, we show how the mean of the average errors in position and in
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(a)

(b) (c)

Figure 5.1: The blue trail shows the path along which the robot was actually driven,
while the trajectory reconstructed by adding Gaussian noise with parameters corre-
sponding to Noise#3 is shown in red in (a) Env#1; (b) Env#2; and (c) Env#3.

orientation, as estimated by the four methods, compare against each other for different

levels of injected noise in Env#1. It is important to point out that on quite a few

occasions MCL–G failed to estimate the poses after a while (we discuss the reasons

for failure in Section 5.3). To be specific, MCL–G failed on eight occasions out of 30

attempts for Noise#3. Thus, the mean of the average position and of the orientation

errors and the confidence intervals were based on 22(= 30 − 8) runs for MCL–G for

Noise#3.

From Figure 5.2, it is evident that the proposed MCL–S and the MCL–G easily
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(a) (b)

Figure 5.2: Comparison of the accuracy of pose estimation for different levels of injected
noise in Env#1: (a) the mean of the average position errors; and (b) the mean of the
average orientation errors. Both the errors are plotted in log scale. The error bars
indicate 95% confidence interval. MCL-G has failed to track poses on 8 occasions out
of 30 for Noise#3.

outperform the other two methods insofar as accuracy of pose tracking is concerned.

These two methods are roughly at par, even though MCL–S makes a slightly better

estimate of the orientation for Noise#3. Though accurate, MCL–G is not adequately

robust as it lost track of the robot on eight occasions out of 30 attempts for Noise#3.

As stated in page 63 (Section 4.6), the above results (as also all other results reported

in this Chapter) for MCL–E were obtained with Ip = 0.5. For lower values of Ip,

e.g., Ip = 0.2, the estimates improved for Noise#1, but deteriorated for Noise#2 and

Noise#3 and MCL–E even failed to track poses on a couple of occasions.

In Figure 5.3, we show the mean of the number of occasions, expressed as a per-

centage, when the position errors and the orientation errors in the estimated scan poses

were less than 100mm and less than 5◦ respectively as the robot traversed its trajectory

in Env#1. As in Figure 5.2, for each set of noise parameters, every method was run

on 30 different trajectories and only those many runs were used in computing the final

results as could be successfully completed. The number of scan poses in each trajectory

ranged between 1200 and 1550.

From Figure 5.3 it is evident that in almost all cases the estimates of the poses

differ from the corresponding true poses by less than 100mm and 5◦ for MCL–G and

the proposed MCL–S for Noise#1. With an increase in the level of injected noise,

the number of occasions when the differences are so, drop. But even at Noise#3,

the number of such occasions was around 80% (for position estimate) and 96% (for

orientation estimate) for MCL–G and MCL–S, though MCL–S was marginally better

in both estimates. For the proposed MCL–S, we never encountered a situation when
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(a) (b)

Figure 5.3: Comparison of the percentage of occasions when (a) the estimated positions
differ from the corresponding true positions by less than 100mm; (b) the estimated
orientations differ from the corresponding true orientations by less than 5◦. The error
bars represent 95% confidence intervals. The results pertain to Env#1 where MCL–G
failed on 8 occasions out of 30 for Noise#3.

the estimated position differed from the true position by more than 1m. But, there

were a few such occasions for MCL–G with Noise#3. For Noise#1, MCL–E estimated

the orientations with less than 5◦ error in almost all cases. But, it performed poorly

for Noise#2 and Noise#3. Irrespective of the levels of injected noise, the performances

of MCL–Y were poor. The number of occasions when the position error was more than

1m was over 90% for MCL–Y for all the three injected noise levels. Thus Figure 5.3

serves to attest to the accuracy of both MCL–G and MCL–S from another standpoint.

As in Env#1, the four methods were also run in Env#2 and Env#3 for different

levels of injected noise. The results for Env#2 are graphed in Figures 5.4 and 5.5 while

those for Env#3 are graphed in Figures 5.6 and 5.7.

Scrutiny of Figures 5.4 through 5.7 reveals that the relative performances of the

methods in Env#2 and Env#3 are fairly similar to that in Env#1. MCL–Y performed

poorly all through. MCL–E performed poorly in Env#3 but was relatively better off

in Env#2. MCL–G was fragile, as usual, when odometry noise was moderate and high,

but MCL–S was robust and accurate all through. It is important to note that MCL–G

failed on all 30 occasions for Noise#3 in Env#3.

For convenience of comparison, in Figure 5.8 we plot the percentage of runs (out of

30) in which MCL–G and MCL–S could track the robot pose for the entire trajectory

in different environments and for different levels of injected noise. From the Figure it is

evident that while MCL–S could track the trajectories in all cases, MCL–G succeeded

in tracking complete trajectories in only a few cases. For Noise#3 in Env#3 it could

not completely track even a single trajectory. Thus, MCL–S has clearly outperformed
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(a) (b)

Figure 5.4: Comparison of the accuracy of pose estimation for different levels of injected
noise in Env#2: (a) the mean of the average position errors; and (b) the mean of the
average orientation errors. Both the errors are plotted in log scale. The error bars
indicate 95% confidence interval. MCL–G has failed to track poses on 12 occasions out
of 30 for Noise#3.

(a) (b)

Figure 5.5: Comparison of the percentage of occasions when (a) the estimated positions
differ from the corresponding true positions by less than 100mm; (b) the estimated
orientations differ from the corresponding true orientations by less than 5◦. The error
bars represent 95% confidence intervals. The results pertain to Env#2 where MCL–G
failed on 12 occasions out of 30 for Noise#3.

MCL–G insofar as robustness is concerned.

It may be noted that the performances of the methods are worse in Env#3 compared

to their performances in Env#1 and Env#2. This is attributable to the fact that Env#3

is a long corridor. As the robot moves down the corridor, it mainly sees parallel walls.

The robot can sense and ascertain its distance from these walls but is rather uncertain
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(a) (b)

Figure 5.6: Comparison of the accuracy of pose estimation for different levels of injected
noise in Env#3: (a) the mean of the average position errors; and (b) the mean of the
average orientation errors. Both the errors are plotted in log scale. The error bars
indicate 95% confidence interval. MCL-G has failed to track poses on 4 occasions out
of 30 for Noise#2 and all 30 occasions for Noise#3. Hence, the bars corresponding to
MCL–G for Noise#3 is missing.

(a) (b)

Figure 5.7: Comparison of the percentage of occasions when (a) the estimated positions
differ from the corresponding true positions by less than 100mm; (b) the estimated
orientations differ from the corresponding true orientations by less than 5◦. The error
bars represent 95% confidence intervals. The results pertain to Env#3 where MCL–G
failed to track poses on 4 occasions out of 30 for Noise#2 and all 30 occasions for
Noise#3. Hence, the bars corresponding to MCL–G for Noise#3 is missing.

about its position along the length of the corridor for most part of its travel. This leads

to relatively poor localization in Env#3.

In Figure 5.9 we juxtapose the computation time taken by the four methods to

estimate a single scan pose (i.e., to perform steps 2–7 of Figure 4.1 in page 56) using
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Figure 5.8: Comparison of the percentage of runs (out of 30) in which MCL–G and
MCL–S could complete tracking the robot pose using simulated scan data for the entire
trajectory.

200 particles. The methods were implemented in C++ and run on a PC with 2.8

GHz Intel Core 2 Duo processor and 4 GB RAM running Debian 5.0 Linux operating

system. This Figure reveals that the proposed MCL–S method is computationally

more efficient (by about an order of magnitude) than the other three methods. The

efficiency can be attributed to the fact that, unlike the other methods, the proposed

method does not perform any ray tracing, which is a very compute-intensive process.

In our implementation, we invoke AssessMismatch(·) with M ′′ instead of M as the

second argument (please see Section 4.5). By doing so, we succeeded in bringing down

the computation time by about 30%. Using a somewhat similar approach for the other

three methods, we have succeeded in bringing down their computation times as well by

over 80% without compromising on their performances. The differences in computation

time for the other three methods across different environments arise essentially due to

the difference in the numbers of line segments in their corresponding maps. Because of a

smaller computational overhead, MCL–S permits more frequent pose updates without

overburdening the onboard processor. Frequent pose updates abate inflow of large

odometry errors and thus help improve the accuracy of pose estimates.

We have already noted earlier that we choose the interval between two invocations

of the pose estimation cycle for updating the robot pose in such a way that the robot

has moved by at least 500mm or 5◦. This interval (hereinafter called update interval)

has important ramifications. If the chosen interval is large, more odometry error will

creep in and that will make accurate pose estimation more challenging. If this interval
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Figure 5.9: Comparison of the computation times (in ms) required to estimate a single
pose by the four methods using 200 particles in three different environments.

is too small, more frequent invocations of the cycle will be necessary. This will no

doubt make accurate pose estimation simpler, but will leave precious little time for

the CPU onboard the robot to perform other important tasks like path planning and

trajectory tracking. Thus, a desirable attribute of a good localization method is that

it should continue making accurate pose estimates even in the face of increased update

intervals. To see how the four methods perform when confronted with different update

intervals, in Figure 5.10 we graph the variations in their position estimation error and

orientation estimation error (mean of average position and average orientation error on

30 different trajectories) with three different update intervals using 200 particles and

with injected noise corresponding to Noise#1 for Env#1. The graphs show that as the

update interval increases, so does the error in position and in orientation estimate. This

is natural because with an increase in the distance, translational or angular, travelled

by the robot, more error gets introduced into its odometry estimate making it more

uncertain about its whereabouts. From the graphs, it is obvious that the performances

of MCL–G and MCL–S are much better than MCL–Y and MCL–E for all the three

update intervals. The performance of MCL–E deteriorates drastically with increasing

update interval. The performances of MCL–G and the MCL–S are roughly at par, but

while the proposed MCL–S could successfully track poses for the entire trajectory with

an update interval of 1000mm or 10◦ for all the three sets of noise parameters on all

30 occasions, MCL–G failed to keep track of the robot on 28 out of 30 occasions (for

Noise#2) and on all the 30 occasions (for Noise#3). This clearly brings out the fragile

nature of MCL-G in trying circumstances!

Now that we have compared our method with the three others, we take a closer

look into our method. First, continuing with the study on the dependence of the posi-
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(a) (b)

Figure 5.10: (a) Mean of the average position error (in mm) in log scale versus update
interval; and (b) Mean of the average orientation error (in degree) in log scale versus
update interval, for Noise#1 with 200 particles in Env#1. The update intervals are
denoted by a 2-tuple like < 500, 5 > with units mm and degree respectively. The
update intervals used are < 200, 2 >, < 500, 5 > and < 1000, 10 >. The error bars
indicate 95% confidence interval.

tion estimates on update intervals, we investigate into its performance using different

numbers of particles. Figure 5.11 shows that though a wider update interval introduces

more error into the pose estimation process, an increased number of particles can offset

the resulting increased uncertainty to some extent by sampling the state space more

densely. For a fixed update interval and number of particles, the error in position esti-

mate increases as the injected noise in the odometry estimate increases because it again

makes the robot more uncertain about its pose. The Figure corroborates the robust-

ness of the proposed MCL–S by making it abundantly clear that MCL–S can continue

to track the robot with fairly good accuracy even in the face of very high noise (viz.,

Noise#3) and large update interval (1000mm or 10◦). Though this Figure pertains to

Env#1 for Noise#3, similar graphs were obtained for Noise#1 and Noise#2, but the

magnitudes of the errors were correspondingly smaller in those cases.

In Figure 5.12, we show how the error in the estimate of each scan pose incurred

by the proposed MCL–S method varies over the entire path of travel for one particular

instance of the run on a trajectory generated with Noise#3 in Env#1. In Figure 5.12a,

the position errors have been plotted on log scale. While the graph in red shows the

error in the odometry estimate of the position, the one in blue shows the position error

incurred by MCL–S. Whereas the error in odometry grows without bound with the

length of travel and becomes as high as 100m, the error incurred by MCL–S remains

mostly within 100mm and between 100mm and 1m in a few cases. In Figure 5.12b, the

error in the orientation estimate by odometry is shown in red while that by MCL–S is
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(a) (b)

Figure 5.11: Mean of the (a) average position error (in mm) versus update interval;
and (b) average orientation error (in degree) versus update interval, for Noise#3 in
Env#1. The update intervals are denoted by a 2-tuple like < 500, 5 > with units mm
and degree respectively. The numbers of particles used are 100, 200, 300, 500 and 1000
and the update intervals are < 200, 2 >, < 500, 5 > and < 1000, 10 >. The error bars
indicate 95% confidence interval.

shown in blue. It is important to note that the orientation error cannot grow beyond

180◦. The orientation error of MCL–S is largely within 1◦ and only on a few occasions

it goes as high as 10◦ or beyond.

(a) (b)

Figure 5.12: (a) Position error (in mm) (in log scale); and (b) Orientation error (in
degree), versus pose instances along the length of travel incurred by MCL–S.

5.2.2 Pose estimation using real data

In this study, we used the same maps viz., Env#1, Env#2 and Env#3 but instead

of driving a simulated robot through it to generate data, we utilized the real data
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(consisting of odometry estimated scan poses and laser range scans) collected from the

real environment while a real robot moved along a specified trajectory of approximate

length 286m, 208m and 327m in Env#1, Env#2 and Env#3 respectively. Since, in a

real environment the true values of the scan poses are not directly available, we used

the estimates of the scan poses obtained through scan matching as reasonable estimates

of the corresponding true poses.

In this comparative study, we invoked each of the four methods using 200 particles

and update interval of < 250, 10 > i.e., 250mm or 10◦. The mean of the average

position and average orientation error of 30 runs incurred by the four methods are

shown in Figure 5.13. Even in the case of real data, the average from multiple runs

were taken to study the dependence of the methods on the distribution of particles since

the distribution was done with randomly injected noise in each cycle of pose tracking

(step 2 of Figure 4.1).

(a) (b)

Figure 5.13: Comparison of the accuracy of pose estimation using real data (a) the
mean of the average position error; and (b) the mean of the average orientation error.
Both the errors are plotted in log scale. The error bars indicate 95% confidence interval.
MCL–G failed to track the pose for the entire trajectory on 23 out of 30 occasions in
Env#1. In Env#2, MCL–G failed on 10 out of 30 runs, while MCL–E failed on 3 out
of 30 runs. Only that many runs were used in computing the mean errors as could be
successfully completed.

Figure 5.13 reveals that both MCL–G and MCL–S outperform the other two meth-

ods insofar as accuracy of pose tracking is concerned. But MCL–G is too fragile as it

failed to track the pose along the entire trajectory on 23 out of 30 occasions in Env#1

and on 10 out of 30 occasions in Env#2. (For a graphical comparison, please see Fig-

ure 5.14). MCL–E failed too, but only on 3 occasions out of 30 in Env#2. While

taking a note on the magnitudes of the mean errors, it must be kept in mind that

here, unlike in the previous study using simulated data, the true poses of the robot
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are not accurately known. For instance, many of the scan poses estimated through

scan matching (and reckoned as the true poses) did not appear plausible in Env#2 as

they were seen to be outside the map when plotted. Moreover, the robot was imparted

backward motion on some part of the trajectory in Env#2. These are attributable to

the relatively high error in pose estimate in Env#2. Moreover, in a real environment,

the map error (i.e., how closely the map models the actual environment) also introduces

error in the pose estimation.

Figure 5.14: Comparison of the percentage of runs (out of 30) in which MCL–G and
MCL–S could complete tracking the robot pose using real scan data for the entire
trajectory.

In Figure 5.15, we show the trajectory of the robot, estimated using odometry data

(in red) and the corresponding trajectory estimated by the proposed MCL–S method

(in blue). The odometry-estimated trajectory is too wayward and has moved outside

the map, while the trajectory estimated using MCL–S is generally nicely confined inside

the map. This study once again shows the accuracy and robustness of the proposed

MCL–S method.

5.3 Discussion

We have already seen in the preceding Chapter that the method for computation of

the importance weights consists in first making an estimate as to how distant a particle

is from the true, but unknown, pose of the robot. This estimate is then nonlinearly

transformed so that a particle which is supposedly close to the true pose appears closer

than it really is compared to another particle which is not so close. This transformation

facilitates making a dense cluster of samples in the supposed neighborhood of the robot
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(a)

(b) (c)

Figure 5.15: The trajectory estimated using real odometry data is shown in red, while
the trajectory estimated by the proposed MCL–S method using real odometry and
range data is shown in blue in (a) Env#1; (b) Env#2; and (c) Env#3.

pose by depriving other regions of them. A dense collection of samples in a small

region of the state space enables accurate estimation of the robot pose provided of

course the robot is actually present in the densely sampled region. In case a particle

that is actually far removed from the true pose, is erroneously estimated to be close

to the true pose, and the nonlinear transformation scales up its closeness in a very

pronounced way, almost all the samples would be drawn into an incorrect region of

the state space eventually leading to a failure in tracking the robot. A nonlinear

transformation that does not scale up the closeness estimate in such a pronounced way

could possibly save the day in such a situation by allowing samples to be present in

other regions of the state space for tracking of the robot in those regions. But such a

transformation will also not promote formation of a dense cluster of samples thereby

impairing accurate pose estimation. The choice of the transformation function, thus,

regulates the tradeoff between accuracy and robustness. We can, however, gain in
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accuracy without compromising much on robustness, if we can devise a method for

reliable estimation of the closeness of a particle to the true robot pose.

Since the procedure employed by MCL–G for assessing the mismatch depends on

the correctness of the correspondences, which is not very robust, and at the same

time uses an inverse-square transformation, the procedure is prone to failures. As seen

in Section 5.2, this is the reason behind the occasional failures of MCL–G though it

otherwise gave accurate pose estimates. MCL–Y employs an identical procedure for

mismatch assessment as MCL–G, but it does not use any transformation of the mis-

match values. It simply normalizes the mismatch values and reckons these values as the

corresponding weights. (Strictly speaking, therefore, step 4 of Figure 4.1 is superfluous

for this method). Since this method does not exploit, to an appreciable extent, the

information of the particles with high weights, particles do not densely cluster around

the region of the state space where the robot is possibly situated after the resampling

step. Thus, this method fails to give an accurate estimate of the pose. For the same

reason, it never fails as a few particles always remain scattered over the map. The

nonlinear transformation that MCL–E uses, does exploit the information associated

with particles with high weights, but not to the extent (which is regulated by Ip) that

MCL–G or the proposed method does. Moreover, its methodology for mismatch as-

sessment is also not very accurate. Thus, so far as pose tracking is concerned, it is less

accurate than both MCL–G and MCL–S, but somewhat more robust than MCL–G.

However, if a small value of Ip like Ip = 0.2 is used, the performance of MCL–E im-

proves for low noise and small update interval, but deteriorates substantially for high

noise and large update intervals. Moreover, if MCL–E is modified so as to use the same

nonlinear transformation that MCL–G and the proposed method use, its accuracy in

pose tracking improves but it becomes more fragile.

The above discussion, considered in the backdrop of the simulation and the exper-

imental results, makes it abundantly clear that the accuracy and robustness of a pose

tracking method depend both on the method adopted to assess the mismatch and the

nonlinear transformation used. Since our method uses a transformation function that

falls off sharply with the extent of mismatch and is buttressed by a robust and accurate

method of assessing the mismatch, we have been able to achieve accurate and robust

pose tracking all through.
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Chapter 6

Summary, conclusions and future

directions

6.1 Introduction

We recall that we had started off with the objective of achieving robust and accurate

localization of mobile robots equipped with LRFs in indoor environments that remained

practically unchanged for extended periods of time. Accordingly, we had set out to

devise

• an offline method for building maps of indoor environments by merging line seg-

ments extracted from registered laser range scans [72]; and

• a robust and accurate method for localization on such maps based on the Monte

Carlo framework [73].

Our objective was guided by the fact that in many real-life applications, a robot was

required to navigate continuously in environments that remained practically invariant

over long periods of time. For all those applications, it was more appropriate to build a

map of the working environment first and then use it for localization, rather than oper-

ate the robot in an online SLAM mode, which was complex, computation-intensive and

less accurate. By decoupling mapping from localization, the robot could be absolved

of the job of map building while it was performing its assigned duty.

In the following Section, we summarize the contribution of this thesis towards

achieving the above objectives and the conclusions arrived at. We segregate our com-

ments under the two heads of map building and localization. In the subsequent and

concluding Section of this thesis, we discuss on the avenues for future work that em-

anate from the present research.
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6.2 Summary and conclusions

6.2.1 Line segment-based map building

The recent trend of deploying mobile robots in large indoor environments has neces-

sitated the development of highly scalable mapping methods. The occupancy grid

representation puts a heavy, often infeasible, demand on the computer memory and

does not scale well with the environment size. Among other virtues, line-segments

based maps scale well with the environment size.

In this thesis, we have proposed an offline method for building global maps of indoor

environments based on line segments using laser range data. Central to this method

is a new formulation for identifying, and then merging into one, all line segments that

represent the same planar surface in the environment. The method has been successful

in accurately building maps of large environments from real data available in the public

domain as well as from simulated data. It has also succeeded in building a map of a

medium-sized room accurately. Experimental results show that the maps produced by

the proposed method are generally better than those produced by two other methods

reported in the literature in terms of the compactness of the maps and the lengths of the

map segments. An important novelty of the proposed algorithm is that, unlike the other

algorithms, the same setting of the parameters of the proposed algorithm succeeded

in building maps of widely differing environments. This testifies to its robustness and

efficacy. Maps built by this method could be used in such mobile robot applications

where the operational environment of the robot remains practically invariant over long

periods of time. In these applications, mapping can be decoupled from localization,

and the robot can be absolved of the job of map building while it is performing its

assigned duty. The experimental activities were carried out mostly in line with the

recommendations made in [132]. This will enable researchers to compare the strengths

and weaknesses of our method vis-à-vis other methods [132, 144]. We also advocated

the use of directed line segments in the representation of maps when the range data

have been acquired using LRF.

We have also proposed ways of assessing the goodness of maps. Making such

assessments is tricky, as the basis on which such assessments can be made is often

application-specific. Moreover, the unavailability of ground truth data makes an ob-

jective assessment of map accuracy extremely difficult. The shortcomings notwith-

standing, our formulations for assessment of the goodness of maps deserve attention as

they may be considered as initial results in map quality assessment over which more

elegant measures may be devised by researchers in future as such measures are mostly

unavailable.
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6.2.2 Monte Carlo localization on line segment-based maps

MCL is a preferred approach in localization as it makes no prior assumption on the

state space dynamics or the shape of the probability density function associated with

the random variable modeling the robot pose and can easily tradeoff the computa-

tional resources with the accuracy of localization. Line segment-based maps provide

a very scalable and compact representation of indoor environments. Thus, motivation

naturally arises to implement and study the performance of MCL on line segment-

based maps. Unfortunately, there is precious little literature on the use of MCL on

segment-based maps.

The particle filtering framework, on which MCL is based, keeps open before the

programmer the choice of strategy to be adopted for computing the importance weights

associated with the particles. And it is this strategy that, generally speaking, endows

a particular implementation of MCL with attributes like robustness, accuracy and

efficiency or robs it of them. In this thesis, we have proposed a heuristic-based method

for computing the importance weights of an MCL in the context of pose tracking on line

segment-based maps and have, through extensive studies using both simulated and real

data, corroborated that the method is both accurate and robust in addition to being

computationally efficient. Furthermore, the proposed method proved to be superior to

three other methods of weight computation [78–80] insofar as endowing MCL with all

the above attributes are concerned. For achieveing accurate localization, it was not

required for the environment to be modified in any particular way, for instance, by

mounting laser reflectors at vantage points.

The method for computation of the importance weights consists in first making an

estimate as to how distant a particle is from the true, but unknown, pose of the robot.

This estimate is then nonlinearly transformed so that a particle which is supposedly

close to the true pose appears closer than it really is compared to another particle which

is not so close. This transformation facilitates making a dense cluster of samples in the

supposed neighborhood of the robot pose by depriving other regions of them. A dense

collection of samples in a small region of the state space enables accurate estimation

of the robot pose provided of course that the robot is actually present in the densely

sampled region. In case a particle that is actually far removed from the true pose, is

erroneously estimated to be close to the true pose, and the nonlinear transformation

scales up its closeness in a very pronounced way, almost all the samples would be drawn

into an incorrect region of the state space eventually leading to a failure in tracking the

robot. A nonlinear transformation that does not scale up the closeness estimate in such

a pronounced way could possibly save the day in such a situation by allowing samples to

be present in other regions of the state space for tracking of the robot in those regions.

But such a transformation will also not promote formation of a dense cluster of samples
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thereby impairing accurate pose estimation. The choice of the transformation function,

thus, regulates the tradeoff between accuracy and robustness. We can, however, gain

in accuracy without compromising much on robustness if we can devise a method for

reliable estimation of the closeness of a particle to the true robot pose.

The method for weight computation that we propose uses a reliable way of assessing

the closeness of a particle to the true, but unknown, pose. The transformation func-

tion that we use is acutely nonlinear making pose estimates possible in an accurate

manner. The synergy resulting from the use of a reliable assessment method and the

acutely nonlinear transformation endows an MCL using the proposed method of weight

computation with the capability to continuously track the pose of a robot over fairly

long paths in an accurate, robust and computationally efficient manner. It is to be

specifically kept in mind that the proposed method has performed well on maps that

were not handcrafted or produced by CAD software and that were not free of “noisy”

features.

6.3 Future directions

The first step in our proposed method for map building consists in fitting line-segments

to a set of closely-spaced range measurements by an optimization process that min-

imizes the departure of the line-segment from the measurements in a least-squares

sense [94]. For ease of formulation, we ignored the noise associated with the range

measurement. In reality, there is uncertainty associated with each of the noisy range

sensor measurements, which introduces itself as uncertainty in the parameters of the fit-

ted line-segments. Moreover, the improved estimate of each of the scan poses provided

by the Lu-Milios method [71] is associated with an uncertainty. This uncertainty also

contributes to the uncertainty in the parameters of the extracted line-segments when

referred to the world coordinate system. The formulation of the proposed method could

be augmented by taking these sources of uncertainties into account and propagating

them into the estimates of the final map segments. Another interesting work could

be the formulation of a method for reconstruction of the entire robot trajectory—a

solution to the full SLAM problem like the Lu-Milios method [71]— but using line

segments extracted from the laser range scans instead of the raw scans themselves like

in [120].

The offline map building method that we propose uses laser range data collected by

a robot. The robot is manually driven or is teleoperated through the entire environment

envisaged to be mapped in an initial phase. To ensure completeness of the resulting

map, it is imperative that the robot has “seen” the entire environment and collected

range data from every nook-and-corner of the environment. It is desirable that the

robot explores its environment for data collection in a complete and time-efficient
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manner [193]. If the robot has not visited the entire environment, it will not have

range data of the unvisited areas and thus these areas will remain unmodeled in the

final map. If the robot visits the same area more than once, it will have redundant

data. This will not provide any new information about the environment and will

only add to the time required for data collection and subsequent processing. The

displacements between two consecutive scan poses from which range data are collected

have important ramifications in the map completeness versus computation-time trade-

off. If the displacement is large, there may not be sufficient overlap between the scans

taken from the corresponding poses. This will make scan registration challenging and

may also lead to features of the environment not getting modeled in the map, thereby

resulting in an incomplete map. If scans are taken from nearby poses, there will be

significant overlap between the scans resulting in redundant data. This will take away

a lot of CPU time for extracting the map from the laser scan data. Thus, it would be

interesting and worthwhile to work towards a strategy that will enable a mobile robot

to judiciously explore an environment and capture optimum laser range data for map

building.

In this thesis, we have proposed ways for quantitative assessment of the goodness of

maps produced and have also highlighted the shortcomings of the proposed methods.

We have noted that map assessment is a tricky proposition as the basis on which such

assessments can be made is often application-specific. It is important to investigate

this aspect further to come up with more practical, elegant and methodical approaches

for map quality assessment. It should be possible to precisely quantify the goodness of

a map when ground-truth data is available [194]. It may also be useful to investigate

the feasibility of assessing a map in absence of ground-truth data, possibly along the

lines of [130].

Preliminary studies revealed that the proposed method of weight computation for

Monte Carlo localization on line-segment based maps holds promise for global localiza-

tion as well. The particles, initially dispersed all over the map, were found to converge

in the vicinity of the robot within a few time steps and correctly track the robot pose

thereafter. However, extensive simulation and experimental studies will have to be car-

ried out before making any claim as to its usefulness for global localization. It would

also be worth investigating the extent to which the global localization method would

gain from the standpoint of efficiency, if it is augmented with a strategy for adaptively

varying the particle size [195] by eliminating redundant particles quickly during the

transition from global localization to pose tracking phase. The problem of premature

convergence that arises often in MCL will also have to be looked into [196]. Moreover,

a method for efficient generation of particles such that they are uniformly dispersed

but confined inside the map in the initial state also has to be formulated.

In the proposed method of importance weight computation, we extracted line-
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segments from laser range data (referred to as scan line segments) and assessed how

closely they fitted with the environment map. Like in the method of map-building,

here too, we did not consider the uncertainty associated with the range measurements

that would otherwise have enabled us to model the uncertainty in the parameters

of the extracted scan line segments. If uncertainties in the parameters of both scan

line segments and map segments are considered, it may be possible to estimate the

importance weights in a more reliable manner, provided of course that the weight com-

putation method is formulated accordingly. This would lead to added robustness and

accuracy of localization and would make the proposed map building and localization

methods more useful and efficacious for deployment in real-life applications.
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