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Synopsis
The Proportional-Integral-Derivative (PID) controller is one of the favorite and 

widely used controllers in the field of control engineering covering the simple temperature 

controller to the complicated reactor and accelerator control systems. It is popular due to its 

simple design and structure, satisfactory control effort and acceptable robustness. Design of 

the controller is simple because it can be made using a single operational amplifier, 

resistances and capacitances. The combination of resistances and capacitances gives three 

tuning parameters proportional (Kp), integral (Ki) and derivative (Kd

The design of PID controller for a given system involves tuning of three 

parameters K

) in the analog domain. 

In digital domain the PID controller can be easily implemented with the use of fast 

processor such as Field programmable gate array (FPGA), Digital signal processor (DSP)

etc. The satisfactory performance represents the desired closed loop time response such as 

rise time, settling time, overshoot and steady-state error whereas robustness represents the 

stability of the closed loop system under the perturbation in parameters.

p, Ki and Kd. The tuning of PID controller as first proposed by Ziegler-

Nichols and is still widely used in many process industries. The Ziegler-Nichols PID tuning 

method is based on an empirical formula that covers most of the plants in the process 

industries. In the process industries, there are different systems such as stable first order 

system with time delay, unstable first order system with time delay, stable and unstable 

second order system with time delay, integrating process etc. In order to achieve better 

output response, the controller of different type of systems needs to be tuned differently. 

Ziegler-Nichols tuning method being based on empirical formula sometimes fails to 

provide proper tuning of controller parameters. The requirement of high performance from 
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the controller and due to availability of fast computers in the present days, various tuning 

method based on optimization have been developed. A few popular methods among them 

are PID tuning using nonlinear optimization, particle swarm algorithm, genetic algorithm 

based optimization etc.

Among the various methods used for tuning of PID controller, the dominant pole 

placement is a very common technique in the state space design where a pair of conjugate 

poles is chosen to meet the required closed loop time response. This method is widely used 

for systems with no time delay. However, for the single input single output systems with 

time delay, the dominant pole placement leads to a characteristic quasi-polynomial with 

infinite number of roots in the characteristics equation of the closed loop transfer function. 

The presence of time delay reduces the phase margin of the control system and therefore, is 

a major source of instability and performance deterioration. An arbitrary placement of 

dominant poles leads to the sluggish response and poor robustness. In the controller design, 

attempts have been made for the pole placement by reducing infinite number of poles with 

poles near the origin in the complex s-plane. For the systems with time delay, the tuning of 

PID controller using dominant pole placement is tricky but provide better results and 

therefore needs special attention to achieve the desired closed loop performance measures. 

In the present thesis, three analytical methods will be presented for the tuning of 

PID controller using dominant pole placement for plants with time delay. The first one is 

based on a graphical tuning method. In the formulation no approximation has been used to 

the exponential term that arises in the characteristics equation due to the time delay. This 

method provides the scope of choosing PID parameters in the parameters plane with 

desired closed loop performance measures. The second PID tuning method, applicable for 
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the standard second order systems with time delay, is based on utilizing dominant pole 

placement and Linear Quadratic Regulator (LQR) approach. This method provides the 

optimum setting of PID parameters with user defined damping ratio and settling time with 

very less control efforts. The third methodology focuses on developing of two degree of 

freedom (2-DOF) PID controller tuning method utilizing LQR and dominant pole 

placement approach especially for integrating plus time delay plants. This method gives 

lots of flexibility in choosing PID parameters considering the trade-off between 

performances and robustness. The main goal and motivation of the present thesis is to 

develop an analytical formulation for PID controller that gives desired closed loop response 

with specified robustness with less control effort for time delay systems. The thesis will 

consist of five chapters and main features are described below.

In Chapter 1 the introduction about the PID controller and its important parameters 

and motivation for the present research work together with detailed literature survey on the 

subject will be discussed.

The Chapter 2 of the thesis will present a graphical tuning method of PI/PID 

controller for time delay systems using dominant pole placement with specified gain 

margin (GM) and phase margin (PM). In this approach no approximation has been taken to 

the exponential term in the characteristic equation which arises due to the delay term. GM 

and PM are related with the robustness and performance measures of a closed loop system. 

A choice of large GM and PM provides comparatively better stability but leads to the 

sluggish time response. On the other hand, a choice of small GM and PM gives faster time 

response but provides relatively less stability. For an appropriate design there is a trade off 

between speed of response and stability for time delay systems. A graphical stability 
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criterion applicable to the time-delay systems has been used to identify the stabilizing 

regions in the proportional-integral plane. This helps to choose all feasible sets of PI/PID 

controller parameters in the vicinity of the dominant poles with pre-specified GM and PM. 

In order to achieve these stability margins to maintain the robustness, a Gain Phase Margin 

Tester (GPMT) has been inserted in the forward part of the closed-loop control system. The 

range of PI parameters has been obtained for first order plus time delay (FOPTD) system 

by sweeping the closed loop natural frequency ( cl) for a fixed closed loop damping ratio 

( cl). In order to obtain the PID parameters for second order plus time delay (SOPTD) 

system, first the derivative gain is fixed and then the range of PI parameters are obtained 

using dominant poles that satisfy the specified GM and PM.  

In order to illustrate the utility and confirm the validity of the proposed technique, 

three different examples have been considered and results of simulation performed in 

MATLAB are presented. It is observed from the simulation that sets of Kp and Ki which 

are on the constant cl curve in the Kp-Ki plane, on the part of the curve that is straight with 

positive slope, are more appropriate and produce closed loop time response performance 

measures very close to the specified values. On the other hand, the sets of Kp and Ki which 

are on the part of the curve with negative slope, give poor closed loop time response 

measure. In the case of FOPTD system, simulation results indicate that the choice of 

controller parameters corresponding to comparatively lower value of cl is more suitable 

for the robust controller design under the perturbation of system parameters. For SOPTD

system, the sets of Kp and Ki depend on the pre-defined choice of Kd in addition to certain 

other parameters.
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The main focus in Chapter 3 of the thesis will be on the development of optimal 

tuning of PID controller for the standard SOPTD systems. It is well known that the SOPTD 

model of the plant more closely resembles the higher order plant than does the FOPTD 

model. Standard SOPTD models are very rich in dynamics and include under damped, 

critically damped and over damped systems.  An analytical optimum PID controller tuning

method has been developed for the SOPTD plants using LQR technique and dominant pole 

placement approach.  It is well known that by tuning the controller using LQR an infinite 

gain margin and at least 60° phase margin for single input and single output processes 

without time delay is guaranteed. However for the time delay systems this cannot be 

guaranteed and needs further evaluation.  

The tuning of PID controller for SOPTD system using LQR is based on rewriting 

the state equations in two parts; one for t < L and other for t L, where L is the time delay. 

The initial value of PID controller settings for t < L are generally large and time varying. 

They need large controller action and most of the times cause saturation of the actuator.  It 

is also difficult to implement them practically, particularly in analog domain. It is obvious 

that a choice of constant parameters of PID controller throughout eases the practical 

implementation, needs low control effort and maintains the state optimality for all values of 

t L. Thus, constant parameters of PID controller obtained for t L have been used in the 

simulation. The effectiveness of the proposed methodology has been demonstrated via 

simulation of stable open loop oscillatory, over damped, critical damped and unstable open 

loop systems. Results show improved closed loop time response (around 50% reduction in 

overshoot and around 30% reduction in settling time) with less control effort over the 

recently developed LQR based PI/PID controller tuning methods.  A comparison of 
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simulation results with other time domain performance indices such as Integral of Absolute 

Error (IAE), Integral of Square Error (ISE), Integral of Time Absolute Error (ITAE), 

Integral of Time Squared Error (ITSE), is also obtained.  It is observed that the present 

method gives an overall better closed loop time response with comparatively less control 

effort. The effect of location of non-dominant pole has also been studied. It affects the rise 

time however reduces the overshoot considerably. This behavior is completely opposite to 

the cases of delay free processes. 

In Chapter 4 of the thesis, the development of a method for finding the optimum 

tuning of PID controller for the integrating processes with time delay will be discussed. 

Integrating processes contain at least one pole at the origin. Open loop integrating 

processes are difficult to manipulate because a small load disturbance can easily destroy 

the balance between the input and output resulting in increasing or decreasing output 

without limit. The formulations of Chapter 3 cannot be used for integrating plants as they 

cannot be represented in the form of standard second order transfer function with time 

delay. The method developed here is an extension of the formulations discussed in Chapter 

3 for integrating processes with time delay. The tuning of PID controller for integrating 

processes with time delay needs special attention in terms of output performance, 

robustness, noise sensitivity, analytical tunability and applicability over a wide range of 

processes. It is difficult to develop a One Degree of Freedom (1-DOF) PID controller for 

integrating processes as one can either achieve a good load disturbance rejection or a good 

set point response. An effective solution to the above problem is the use of a 2-DOF

control system. A 2-DOF PID control system separately tunes the servo response using a 

set point filter, without affecting the regulatory response tuned by main PID controller in 
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the loop. The set point filter of 2-DOF control system is also used to avoid actuator 

saturation problem during the initial start up. 

In this chapter PID controller parameters for integrating process with time delay are 

obtained analytically using LQR and dominant pole placement approach to meet the closed 

loop design criteria.  The method is also based on rewriting the state equations in two parts; 

one for t < L and other for t L. PID parameters obtained for t L are used for regulatory 

control and used throughout. The initial servo control is handled by using a set point filter  

which is  uniquely designed in terms of the PID controller parameters obtained for t L

and a single filter time constant . The transfer function of set point filter is designed to 

make the closed loop response of the whole system equal to the output response of a first 

order system with same time delay. The initial control effort of the controller depends on 

parameter . The value of can be suitably tuned to optimize the servo response so that the 

actuator saturation problem can be avoided during transient. 

In order to demonstrate the effectiveness of the proposed tuning methodology, four 

categories of integrating systems have been considered. These are: First Order Integrator 

Plus Time Delay (FOIPTD), Double Integrator Plus Time Delay (DIPTD), Pure Integrator 

Plus Time Delay (PIPTD) and Unstable First Order Integrator Plus Time Delay 

(UFOIPTD). The whole range of positive PID parameters has been obtained for all 

categories of plants in terms of regulatory response measured in terms of IAE criteria and 

robustness measured in terms of maximum sensitivity Ms. In addition, the entire range of 

PID settings obtained using the present approach is also evaluated in terms of smoothness 

of the controller measured by Total Variation (TV). Simulation results indicate that both 

good robustness and load regulation cannot be achieved simultaneously. Better robustness 
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occurs at lower value of cl and at higher value of cl, whereas better load regulation can 

be achieved at higher cl and lower cl

Finally in Chapter 5 some general conclusions on the present research work 

together with the perspective of future work will be outlined.

. Thus a proper design needs a tradeoff between 

robustness and load regulation. It is observed that tuning of set point filter constant plays 

a crucial role in reducing the overshoot and initial control effort. On average the proposed

tuning method of 2-DOF PID controller gives a reasonably good closed loop performance 

measures for most of the integrating plants. The main advantage of the proposed method is 

the flexibility of choosing the PID parameters depending on the requirement of a given 

system. 
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CHAPTER 1

Introduction

1.1 Background and motivation

Proportional-Integral-Derivative (PID) controllers have been in use for control of 

industrial processes for over seven decades and now are considered as the second most 

important control decision and communication instrument of the 20th century, after the 

microprocessor [1-4]. A  PID controller is easier to understand for control engineers due to 

the intuitive simplicity of the algorithm and simple meaning of its three tuning parameters 

viz. the proportional term Kp, integral term K i and the derivative term Kd. These 

parameters of a PID controller are required to be tuned individually to match the process 

dynamics in order to provide a good closed loop time response and robust performance. 

Improper setting of the controller parameters results in sluggish, oscillatory closed loop 

time response and poor robustness [5-11] accompanied by poor disturbance and noise 

rejection characteristics. Historically, the first tuning rule for setting up controller 

parameters was defined in 1934 for the design of a proportional-derivative (PD) controller 

for a process exactly modeled as an Integrator Plus Delay (IPD) system [12]. Subsequently, 

tuning rules were defined for PI and PID controllers, assuming that the process can be  

exactly modeled by a First Order Lag Plus Delay (FOLPD) model [13] or a pure delay 

model [13,14]. Until about 20 years ago, in process control applications, more than 95% of 

the controllers were of PI or PID type [15-22]. 



Chapter 1:1.1 Background and motivation

16

1.1.1 Methods for tuning, design and synthesis of PID controllers

A considerable number of tuning rules for PID controllers have been developed in 

the last few decades [4, 23-26]. It has been reported that around 154 tuning rules were 

developed for PI and more than 258 for PID controller [26]. Numerous PID tuning 

algorithms have been studied. PID tuning methods can be broadly classified as

(i) Method based on a process reaction curve [27-28]: This is an experimental 

open-loop tuning method and is only applicable to open-loop stable plants.  

In this method the plant parameters are obtained graphically from the open 

loop step response [1-2, 27] due to a step input variation. The PID rules for 

selecting the controller gains using this method aim to provide quarter 

decay of first overshoot after one oscillation. Examples of these are the 

Ziegler –Nichols [27].

(ii) Methods based on ultimate cycle or ultimate frequency [2, 5, 29-31]: The 

ultimate frequency can be obtained by increasing proportional gain (putting 

integral and derivative gain to zero) up to a limit, so that plant shows 

constant frequency sustained oscillations in a closed loop. The procedure to 

obtain ultimate frequency many times leads the system towards instability 

condition and damages the plant. These methods are popularly known as 

the Z-N closed-loop methods. Astrom and Hagglund [31] proposed an 

alternate method based on relay auto tuning that induce a self sustaining 

oscillation in the loop. This method provides good set point response but 

poor stability margin. 
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(iii) Methods based on minimizing an appropriate performance criterion [32-

35]: In this approach the performance criteria are chosen based on the 

specific requirement. Minimization of a chosen performance criterion such 

as Integral of Squared Error (ISE), Integral of Time Squared Error (ITSE), 

Integral of Absolute Error (IAE), Integral of Time Absolute Error (ITAE) 

and Linear Quadratic Regulator (LQR) are some of the popular methods 

which derive the controller gains either analytically or numerically. In the 

frequency domain, these methods can be designed to meet specific gain and 

phase margin criteria as well as sensitivity and complementary sensitivity 

requirements [34-35].

(iv) Methods based on dominant pole placement [36-38]: The specified closed 

loop response is achieved through a choice of dominant closed-loop poles. 

The dominant pole placement technique is a very common technique where 

a pair of conjugate poles is chosen to meet the required closed loop time 

response [38]. A pair of complex-conjugate poles of the closed loop system 

cl) and a natural 

cl). However, the technique cannot always guarantee the 

dominance of chosen poles and thus sometimes results in a poor control 

performance. The Cohen-Coon PID method is a dominant pole design 

method based on First Order Plus Time Delay (FOPTD) model of the plant. 

Like Z-N [27] method this method also attempts to locate three dominant 

poles, a pair of complex poles and one real pole, such that the amplitude 
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decay ratio for load disturbance response is one quarter and the integrated 

error is minimized.  

(v) Robust control methods [39-43]: In these methods, the controller is design 

considering wide range of uncertainty in the process model. PID controller 

design based on H optimization and Internal Model Control (IMC) 

methods belong to this genre.  The principal idea in robust control is to 

specify suitable weighting functions to reflect the desired performance and 

stability, and then perform controller optimization over all possible 

perturbations of the process to achieve robustness. PID controller based on 

H optimization is generally based on H

These methods have been applied for a variety of processes ranging from delay-free to   

processes with time delay with varying performance in terms of time-response and control 

effort.

loop shaping [41-43].  PID 

controller based on IMC is a two step process and provides a suitable 

tradeoff between performance and robustness. In step 1 a stable controller is 

obtained that is optimal with respect to some performance criteria; the 

second step augments the controller from Step 1 with a filter to insure that 

the IMC controller is proper [39-40].

1.1.2 Time Delay

The time delay or dead time is an integral part of many industrial processes. The 

time delay in a process plant may be traced to various reasons such as (a) time needed for 

transport of information (b) buildup of delay  due to the presence of low-order systems 



Chapter 1:1.1 Background and motivation

19

connected in series (c) processing time of sensors and controllers etc. Thus, a common 

approach is to model a process plant as a transfer function with time delay [2, 44-50]. The 

common templates are:

(i) First Order Plus Time Delay (FOPTD) system defined as

( )
1

LsKe
G s

Ts
(1.1)

(ii) Integrator Plus Time Delay (IPTD) system defined as

( )
LsKe

G s
Ts

(1.2)

(iii) First Order Integrator Plus Delay (FOIPTD) system defined as

( )
(1 )

LsKe
G s

s Ts
(1.3)

(iv) Second Order Plus Time Delay (SOPTD) system defined as

2
( )

LsKe
G s

s as b
(1.4)

or 
1 2

( )
(1 )(1 )

LsKe
G s

T s T s
(1.5)

The delay can be random or constant and an estimate of it is not free from 

parametric uncertainties. The presence of time delay in the transfer function of a plant 

deteriorates its phase margin and many times leads to instability of the closed-loop system. 

[51] presents a detailed treatment of a tuning methodologies for PID controllers used for 

controlling systems with time delay. In [51] a methodology based on a generalization of the 

Hermite-Biehler theorem to derive the set of all stabilizing PI or PID controllers for delay-
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free systems is first presented. A suitable subset of   controller gains may then be chosen to 

meet certain closed-loop performance specifications from this set. 

An approximate method for handling systems with time delay for a PID controller 

design is the Pade’s approximation where the delay term Lse is often approximated as

),(

),(

sLQ

sLP
e Ls (1.6)
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Though it might seem intuitive to extend the approach for delay-free systems presented in 

[51]  to systems with time delay, however an approximate system with Pade’s 

approximation might not always lead to a stable closed-loop system by extending the 

methodology for delay-free systems to cover systems with time delay. The alternate 

approach is to use Pontryagin’s quasi polynomials to find the set of all stabilizing PID 

controllers, which has been developed for systems with delay in the measurement channel 

i.e. in the feedback path only as presented in [51]. A PID controller design approach based 

on the LQR methodology as presented in [52] gives the PID parameters for a FOPTD 

system with desired closed loop performance measures with certain constraints. The 

method works well for FOPTD systems but fails to provide optimal response in case of 

SOPTD plants; this is because one of the controller parameters is determined by the largest 

system poles in the left half of the complex plane. In another approach e.g. as presented in 

Ref [53-54] the set of stabilizing PID controller gains are obtained utilizing Kharitonov 

theorem for the SOPTD systems with uncertain delays. 
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Of the methods discussed above, the PID controller design method based on 

dominant pole placement achieves a given control performance specifications by

developing a simple analytical formulation using dominant pole placement technique for 

tuning a PID controller for a plant with time-delay and obtaining a desired closed loop 

response with a specified robustness and less control effort. To handle the time delay the 

quasi polynomial representing characteristics equation is first broken into real and 

imaginary parts and then these are equated with the real and imaginary parts of the 

dominant poles in order to satisfy desired time domain specifications. To bring the desired 

closed loop performance with minimum control effort, the LQR approach is used together 

with dominant pole placement for the case of SOPTD systems. The method is extended to 

cover the various categories of IPTD systems that bring the widest range of PID controller 

parameters in a trade-off between sensitivity and performance.  

In the present thesis, three analytical methods are presented for tuning a PID 

controller for controlling plants with time delay using dominant pole placement. The first is 

based on a graphical tuning method where no approximation in formulation has been used 

to deal with the exponential term in the system’s transfer function. This method helps in 

choosing the PID parameters in the parameters plane with desired closed loop performance 

measures. The second PID tuning method presented in this thesis blends the dominant pole 

placement and Linear Quadratic Regulator (LQR) approaches. In Ref. [52] author’s have 

developed this approach for a FOPTD system and also extended for SOPDT systems by 

cancelling the largest process pole by suitably choosing derivative gain of the PID 

controller. Hence for SOPTD systems, the method proposed by [52] is not optimal and fails 

in case of complex system poles. The methodology presented in this thesis extended the
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approach of [52] to a standard SOPTD system and provides optimum setting of PID 

parameters with user defined damping ratio and settling time. PID controller developed 

using the second method presented in this thesis is further extended as a third method to 

cover wide range of integrating systems. In this method the tradeoff between sensitivities 

and performance is rigorously addressed for a wide range of industrial integrating systems. 

This method provides a two degree of freedom control design. First, the load regulation 

PID controller is designed utilizing dominant pole placement and LQR approach; second 

using these PID parameters and single tuning parameters lambda a set point filter is 

designed for reference tracking irrespective of disturbance. The corresponds to the time 

constant of the assumed FOPTD model. Finally a range of PID parameters is provided that 

is optimum with respect to load regulation, sensitivity and controller energy. The presented 

PID tuning algorithm has been verified by numerical simulation covering wide ranges of 

industrial processes.   

1.2 Problem statement and primitives

Constructing a PID controller is simple because it can be made using a single 

operational amplifier, resistances and capacitances. The combination of resistances and 

capacitances gives three tuning parameters proportional (Kp), integral (Ki) and derivative 

(Kd

Fig. 1-1

) in the analog domain. In digital domain the PID can be easily implemented with the 

use of fast processor such as FPGA, DSP etc. The satisfactory performance represents the 

desired closed loop time response such as rise time, settling time and overshoot, whereas 

robustness represents the stability of the closed loop system under the perturbation in the

parameters. For single-input single-output (SISO) feedback system the closed loop as 

shown in is taken throughout this thesis both for the design of PID controller an
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for analysis. Set point filter F(s), also known as servo controller, is generally used for the 

input tracking. Proper tuning of servo controller reduces the initial overshoot irrespective 

of the main controller C(s). C(s) is known as the main controller or controller of the

regulatory response.  The load disturbance D(s) in Fig. 1-1 represents the disturbances that 

drive the process away from its desired behaviour.  Noise source N(s) is generally used in 

the simulation in order to realize the actual response of the closed loop system before it can 

be applied to the real world. In order to reduce the effect of noise in the control signal 

generally noise filters are used in the measurement device [55-59].  

Figure 1-1: Typical closed loop feedback system with set point R(s), load disturbance 

D(s), noise N(s), act on the set point filter F(s), PID controller C(s) and plant G(s).

1.2.1 PID controller

Though very old design, PID controller is still one of the favorite and most widely 

used controllers in the industries. It is simple to understand due to simple meaning of its 

three tuning parameters defined mathematically as follows.
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Proportional gain (Kp): The proportional term produces an output which is proportional to 

the current error value. The proportional gain Kp

)()( teKtu p

of the PID controller is defined as

(1.9)

where, e(t) is the error value and u(t) is the controller output. A Proportional controller 

alone cannot guarantee zero static control errors except for the case of integrating systems 

with unit step response. The magnitude of the static error depends on Kp. The speed and

noise sensitivity of the closed-loop system increase with an increase in Kp however, at the 

same time the robustness decreases.

Integral gain (Ki): The contribution from the integral term in controller output is 

proportional to both the magnitude of the error and the duration of the error. The integral 

part of a PID controller is the sum of the instantaneous error over time and gives the 

accumulated offset that should have been corrected previously. The accumulated error is 

then multiplied by the integral gain (K i

deKtu
t

i

0

)()(

) and added to the controller output i.e.

(1.10)

The integral term accelerates the movement of the process towards set point and eliminates 

the residual steady-state error that occurs with a pure proportional controller. Since the 

integral term responds to accumulated errors from the past, it can cause the present value to 

overshoot

Derivative gain (K

the set point value.

d): The derivative of the process error is calculated by determining the 

slope of the error over time and multiplying this rate of change by the derivative gain Kd.



Chapter 1:1.2 Problem statement and primitives

25

The magnitude of the contribution of the derivative term to the overall control action is 

given as:

dt

tde
Ktu d

)(
)( (1.11)

Derivative action predicts system behavior and thus helps in improving settling time and 

stability of the system. A major disadvantage of the derivative part is that the 

differentiation of the control error makes it very noise sensitive. Noise filters are generally 

used either in the derivative part or in the measurement part in order to minimize the effect 

of measurement noise [20 (pp. 99), 60 (pp. 171-172)].

1.2.2 Linear Quadratic Regulator

The LQR reduces the amount of work done by the controller and helps control 

systems engineer to optimize the controller. In the case of PID controller u(t) is related with 

the work done. Chapters 3 and 4 of the thesis are focused on obtaining desired closed loop 

response with minimum control effort u(t). LQR controller works on state space equation. 

State space equation can be continuous in time or discrete. The Present thesis uses 

continuous state space. To get minimum u(t) one needs to minimize the quadratic cost 

function given by

,)()()()(
0

dtttttJ TT uRuXQX (1.12)

where Q is the semi positive definite state weighting matrix and R is the positive definite 

control weighting matrix. The LQR solution gives the optimal control vector u(t) as [61]

,)()( tt PXBRu T1 (1.13)
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where X is the state vector, B is the control matrix and P is the symmetric positive definite 

Riccati coefficient matrix which can be obtained by solving continuous Algebraic Riccati 

Equation (ARE)

.0PBPBRQPAPA T1T
(1.14)

A is the system matrix. PID controller parameters are arranged in state weighting matrix, 

while system parameters are contained inside state transition and control matrix. Chapter 3 

and 4 will highlight how user defined cl and cl

1.2.3 Simulation software

will be used in the ARE in order to find 

the optimum setting of PID controller that will give desired closed loop with minimum 

control effort for second order and integrating systems with time delay. 

The optimal PID tuning method that is developed in this thesis is simulated using 

MATLAB and SIMULINK software trademark of Mathworks corporation [62]. Control 

system analysis is performed using the readymade command set available in MATLAB e.g. 

bode(), margin(), fsolve() etc. The tuning procedure of PID controller is written as a 

subroutine in m-file of the MATLAB text editor. The closed loop simulations are

performed using SIMULINK toolbox of the MATLAB.
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1.3 Contribution of the thesis

As mention before, the present thesis discusses three analytical methods to design 

PID controller covering most of the transfer functions of plants of real world process 

industries. These include FOPTD systems, various dynamics of SOPTD systems such as 

over damped, critically damped, highly oscillatory and unstable processes as well as 

integrating systems.

First method is based on graphical tuning method of PI/PID controller for the 

industrial processes represented by first order and second order plus time delay systems. 

The stability equation method and gain phase margin tester have been used to portray 

constant gain margin and phase margin boundaries. The novelty of this method is that the 

range of parameters of PID controller can be determined with user specified closed loop 

specification i.e. percentage overshoot, settling time and required gain and phase margin 

without taking any approximation to the exponential term that arises due to time delay part 

in the characteristic equation. The method uses dominant pole placement approach for 

achieving desired closed loop time responses. 

In the second method a linear quadratic regulator is used together with dominant 

pole placement approach to obtain optimal setting of PID parameters to get desired closed 

loop response with minimum control effort for standard second order plus time delay 

systems. It is observed that placing the third non-dominant pole far away from the 

dominant poles, results in more robust controller in the case of mismatch between the 

process delay time and the delay time at which the controller is designed. However, the 

penalty one has to pay is the increase in the rise time.  The present method gives an overall 

better closed loop time response with comparatively less control effort. The third method is 
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fully focused on the design of 2-DOF PID controller using LQR and pole placement 

approach for various categories of integrating systems such as pure integrator with time 

delay, double integrator with time delay etc. This method is an extension of the second 

method and gives flexibility in choosing PID parameters in a tradeoff between the 

performance and robustness. The entire range of PID settings obtained using the present 

approach is found reasonably well when smoothness of the controller is evaluated. On 

average, the proposed 2-DOF PID controller tuning method gives a reasonably good closed 

loop performance measures for most of the integrating plants.

1.4 Outline of the thesis

The organization of thesis is as follows: At first the introduction and motivation for 

the research is discussed in the present Chapter 1. 

The Chapter 2 of the thesis presents a graphical tuning method of PI/PID controller 

for time delay system using dominant pole placement with specified GM and PM. A

graphical stability criterion applicable to the time-delay systems has been used to identify 

the stabilizing regions in the proportional-integral plane. This helps to choose all feasible 

sets of PI/PID controller parameters in the vicinity of the dominant poles with pre-specified 

GM and PM. In order to illustrate the utility and confirm the validity of the proposed 

technique, three different examples have been considered and results of simulation 

performed in MATLAB are presented. This contribution is published in Journal of Process 

Control [63].

Chapter 3 of the thesis focuses on the development of an analytical method for 

optimal tuning of PID controller for the standard SOPTD systems using LQR and dominant 
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pole placement. The effectiveness of the proposed methodology has been demonstrated via 

simulation of stable open loop oscillatory, over damped, critical damped and unstable open 

loop systems. Results show improved closed loop time response with less control effort 

over the recently developed LQR based PI/PID controller tuning methods. Results of this 

work have been published in ISA Transaction [64]. 

In Chapter 4 of the thesis, the optimal tuning of a 2-DOF PID controller for the 

integrating processes has been discussed.  The PID controller parameters are obtained 

analytically using LQR and dominant pole placement approach to meet the closed loop 

design criteria. The initial transient response is handled by using a set point filter which is 

uniquely designed in terms of the PID controller parameters and a single filter time 

constant. The effectiveness of the proposed tuning methodology has been demonstrated by 

performing simulations on four categories of integrating systems. Results of this work have 

been published in ISA Transaction [65].

Finally in Chapter 5 some general conclusions on the present research work 

together with the perspective of future work have been discussed.
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CHAPTER 2

PI/PID controller for time delay systems 
fulfilling desired closed loop response with 
guaranteed gain and phase margin

2.1 Introduction

As discussed in Chapter 1, the presence of the time-delay in a control loop reduces 

the phase margin of the control system and therefore, is a major source of instability and 

performance deterioration [65-70] and needs special attention. Designing a PI or a PID 

controller that will fulfill user defined closed loop performance measures such as settling 

time and percentage overshoot with appropriate robustness is always a subject of interest. 

Robustness of the closed loop system is another important design issue for a controller and 

this is generally measured either by maximum sensitivity function in Nyquist plane or via 

gain and phase margin specifications. 

The dominant pole placement, [38, 71-72] is a very common technique in the state 

space design where a pair of conjugate poles is chosen in terms of user defined cl and cl

to meet the required closed loop time response. However, for the single input single output 

systems (SISO) with time delay, the pole placement leads to a characteristic quasi-

polynomial with infinite number of roots for the closed-loop. In Ref. [72], controller design 

based on quasi-direct pole placement has been attempted for the time delay system by 

shaping the frequency response of the closed loop system.  For a system with time-delay, a 

popular approach is Pade approximation and techniques exist to define a set of controller 
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gains which ensure stability [51, 73] known as the approximate sets. While Pade 

approximation works well for small delays, approximate sets converge to true sets only 

with higher order approximations, as lower order approximations do not guarantee reliable 

results [51]. So, larger delay makes the controller design difficult by analytical means. It is 

also not possible to predict a priori the order of approximation for a time delay system for 

the true and approximate sets for the controller design. In the controller design, attempts 

have been made for the pole placement by reducing infinite numbers of poles with poles 

near the origin in the complex s-plane [49, 66-67].As the time delay systems are infinite 

dimensional, the design of the controller is more complex than the delay free case. 

In recent years, considerable attention has been paid for finding the set of 

stabilizing PID parameters for time delay systems [53-54]. In [54] the admissible range of 

stabilizing proportional gain (Kp) is first derived by a version of Hermite–Biehler 

Theorem. Then, the stabilizing region in integral-derivative plane (Ki- Kd), for a fixed 

proportional-gain, is drawn and identified directly in terms of a graphical stability criterion 

applicable to time-delay systems. Ref [74] discussed the sets of obtaining PID values using, 

Pade approximation and using Hermite-Biehler theorem. Ref [75] discussed the use of 

Smith predictor for handling the systems with time delay. Use of Smith predictor is 

generally applicable to the nominal model of the plant and is constructed digitally along 

with the PID controller.  In Ref [76], a method is discussed to obtain the ranges of

stabilizing PID parameters within the GM and PM boundaries drawn in the parameters 

plane using the stability equation and Gain-Phase Margin Tester (GPMT) [54]. The well 

known D-Decomposition method is applied in [77-79] to draw the stability boundary 

graphically in the parameters space. A computationally efficient method is described in 
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Ref. [73] which helps to characterize all the stabilizing parameters of the PID controller for 

any given plant. Several methods for the selection of controller parameters based on GM 

and PM specifications for the robustness considerations have been developed in [80, 81]. 

The design of a discrete controller using LQR approach by placing the poles within 

the unit circle in a predefined location has been discussed in Ref. [82], but only for delay 

free systems. An analytical method to tune the PI/PID parameters in an optimal way using 

LQR techniques with user specified cl and cl is presented in [52] for the first order plus 

time delay (FOPTD) model. This approach also works for some specific second order plus 

time delay (SOPTD) models, where the system poles have real roots. Although the 

resultant LQR system for a SISO process provides at least a PM of 600 

This Chapter presents a graphical method to tune PI/PID controller for time delay 

systems using dominant pole placement with specified GM and PM without taking any 

approximation to the exponential term in the characteristic equation. A graphical stability 

criterion applicable to the time-delay systems has been used to identify the stabilizing 

regions in the proportional-integral plane. This helps to choose all feasible sets of PI/PID 

controller parameters in the vicinity of the dominant poles with pre-specified GM and PM.

In order to assess these stability margins and robustness, a GPMT has been inserted in the 

forward part of the closed-loop control system. The range of parameters of PI controller for

and GM of infinity, 

however, in general this property cannot be carried over to the case of a system with time 

delay [52]. In Ref [83] authors have worked on the design of a PID controller using 

nonlinear optimization technique and maximized the bandwidth with constraints on both 

GM, PM and sensitivity so that criteria on robustness and closed loop performance are both 

satisfied simultaneously.
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FOPTD system is obtained by sweeping the closed loop natural frequency for a fixed 

closed loop damping ratio. To obtain the PID parameters for SOPTD system, first a fixed 

value for the derivative gain is chosen and then the range of PI parameters is calculated 

using dominant poles that satisfy the specified GM and PM.

2.2 Kp-Ki

In this section, first the region of K

sets for FOPTD systems 

p-Ki in the controller parameters plane that 

stabilizes the given first order system with time delay is obtained. After that, region inside 

the stabilization region is ascertained that gives guaranteed gain and phase margin.  Finally,

a method is discussed to obtain the sets of Kp-Ki

2.2.1 Stabilizing region of  K

that gives desired closed loop time 

response measures with pre specified GM and PM.  In order to draw the stability boundary 

in the parameter space the D-Decomposition method [77, 78] has been utilized. This 

method essentially maps the boundary of instability from the root plane to the parameters 

plane. In other words, it establishes a direct correlation between the variable parameters of 

the closed-loop characteristic equation and the stability region of the controller. By 

mapping the boundaries of the asymptotic stability domain onto the parameter space, 

boundaries can be constructed in the parameter space and then the stable regions of the 

controller can be confirmed [78, 79].

p-Ki

Consider a linear feedback control system as shown in Fig. 2-1. Plant G(s) is an 

FOPTD system characterized by three parameters model in the frequency domain as 

sLe
as

K
sG )( , (2.1)
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Figure 2-1: Block diagram of a general feedback control system with GPMT.

Where K/a, 1/a and L are the static gain, time constant and time delay respectively. An 

FOPTD system is generally tuned with PI controller; it can also be tuned with a PID 

controller. The PI controller is preferred over PID controller because the noise sensitivity 

introduced by derivative part can give undesirable control signal variations which leads to 

the expensive wear and tear of actuator. The general form of a PI controller in terms of 

proportional term Kp and integral term K i

s

K
KsC i

p)(

, is 

. (2.2)

Now, our objective is to find the stabilizing sets of PI controller parameters in Kp-Ki

Fig. 2-1

plane 

using the graphical stability criteria. Following , the closed loop characteristic 

quasi-polynomial without GPMT can be expressed as

sL
ip eKKsKKasss 2)( (2.3)

Multiplying both sides of Eq. (2.3) by sLe and using js ,

ip
Lj KKKKjeajj 2# )( (2.4)

Let us assume that

)()()( ###
ir jj (2.5)
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where, )(#
r and )(#

i are real and imaginary parts of the characteristics quasi-

polynomial respectively. Comparing real and imaginary parts in Eqs. (2.4) and (2.5), one

get

)cos()sin()( 2# LLaKKir (2.6)

)sin()cos()( 2# LLaKK pi (2.7)

Let us consider that there is a point ),,( 00
ip KK in ip KK plane such that real 

and imaginary parts of the characteristics quasi-polynomial are equal to zero. Under such 

condition, if the Jacobian J defined by

),,(

##

##

00

)()(

)()(

ip KKi

i

p

i

i

r

p

r

KK

KK
J (2.8)

is nonsingular, then according to implicit function theorem [54], Eqs. (2.6) and (2.7) have a 

unique local solution curve (Kp( ), Ki( )) and the sets of Kp and Ki which make Eqs. (2.6) 

and (2.7) equal to zero provide a marginal stability curve with increasing . The controller 

points on the marginal stability curve will neither give asymptotically stable nor unstable 

time response. In fact marginal stability curve divides the parameter plane between stable 

and unstable zones. Furthermore, following proposition holds [54, 84 (pp. 250)]:

In the parameter space of Kp and Ki the critical roots which lead to instability will 

lie towards the left side of the curve (Kp( ), Ki( )) for det J < 0 and to the right side of the 

curve for det



Chapter 2:2.2 Kp - Ki sets for FOPTD systems 

36

The marginal stable boundary curve in ip KK plane can be obtained by solving 

Eqs. (2.6) and (2.7) after putting )(#
i =0 and )(#

r =0. For positive value of , one

have,

)cos()sin(
1 2 LaL

K
K p

)sin()cos(
1 2 LaL
K

Ki (2.9)

Using Eq. (2.8), one can easily evaluate 2det KJ which is < 0, > 0. This implies 

that the stabilizing sets of Kp and Ki

ip KK

will lie on the right side of the marginal stable 

boundary curve in plane with increasing .

2.2.2 Region of  Kp - Ki 

In order to find the suitable parameters in the controller parameters plane that provide 

the guaranteed GM and PM one has to introduce GPMT in the forward part of the feedback 

system. GPMT is a computational aid often used in the simulation to define the GM and 

PM boundaries. The term 

with guaranteed GM and PM 

jAe in the forward path of the control system in Fig. 2-1 is 

known as GPMT. Here A represents the gain margin and represents the phase margin of 

the closed loop system. By putting A=1 for finding PM because PM is the amount of phase 

required to reach 180 degree when gain is 0dB (i.e. A=1). Similarly by putting = 0 (i.e. 

phase is kept 180degree) for finding GM. As the value of is changes the ranges of Kp-Ki

The closed loop characteristics quasi polynomial in the presence of GPMT can be 

expressed as

gives the boundary of controller parameters that give desired GM and PM. The detail 

description is mention in Ref [85].
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jsL
ip AeeKKsKKasss 2)( (2.10)

Following the procedure outlined in subsection 2.2.1, expressions for Kp and Ki

)cos()sin(
1 2 LaL

AK
K p

for 

positive in the presence of GPMT, can be obtained as

)sin()cos(
1 2 LaL

AK
Ki . (2.11)

22det KAJ ,which is < 0, > 0, implies that the sets of Kp and Ki that will provide 

GM or PM either greater than or equal will lie on the right side of the GM or PM marginal 

boundary curve in Kp-Ki plane with increasing . It is clear from Eq. (2.11) that a higher 

value of GM reduces the available region for Kp and Ki

2.2.3 Sets of K

in the parameters plane.

p-Ki 

In this subsection a method is discussed that provides the sets of K

with guaranteed GM , PM and desired closed loop time 

response

p and Ki for 

desired closed loop time response using closed loop damping ratio cl and natural 

frequency cl within the specified GM and PM. The ranges of Kp and Ki parameters can be 

obtained for different dominant poles by sweeping cl for a fixed cl

21 clclclcl js

.

Let the desired dominant poles are = . If such poles 

exist for a particular FOPTD system, then they must be roots of Eq. (2.3). Multiplying both 

sides of Eq. (2.3) with sLe , putting  and rearranging the terms one get,

ip
Lj KKKKjejajj )()()()( )(2# (2.12)
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Using ),(),()( ###
ir jj and comparing real and imaginary parts of Eq. 

(2.12),

ip
L

r KKKKeLxLx ))sin()cos((),( 21
# (2.13)

p
L

i KKeLxLx ))cos()sin((),( 21
# (2.14)

where, ax 22
1 ; ax 22 .

Putting ,0),(#
r 0),(#

i in Eqs. (2.13) and (2.14), one can easily evaluate Kp and 

Ki

)cos()sin(
1

21 LexLex
K

K LL
p

as,

(2.15)

p
LL

i KKLexLex
K

K )cos()sin(
1

12 . (2.16)

By choosing different cl and cl clcland hence and using relations = - and =

21 clcl ,the possible sets of Kp and Ki can be obtained. The values of Kp and Ki within 

the boundaries of GM and PM, give the required set of controller parameters with 

guaranteed GM and PM. As these controller parameters are obtained with chosen CL and 

CL

2.3 PID parameters for SOPTD systems 

, it is expected that the controller will provide desired response time.

Dynamics of a real plant can be more closely approximated using SOPTD model 

than FOPTD model. The SOPTD processes are very rich in dynamics as they include under 

damped, critically damped and over damped systems. For SOPTD model the PID controller 

is found to be more effective as compare to the PI controller. This is due to the availability
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of an extra tuning parameters i.e. derivative part which helps to control any overshoot in 

the response. In the following subsections a procedure to obtain PID parameters for 

SOPTD system to get desired closed loop time response with specified GM and PM is 

discussed.

2.3.1 Stabilizing region of PID parameters

The transfer function of the standard second order system with delay can be written 

as:

sLe
bass

K
sG

2
)( . (2.17)

The transfer function C(s) of PID controller is 

sK
s

K
KsC d

i
p)( . (2.18)

The closed loop characteristic quasi-polynomial in this case is given by

sL
ipd eKKsKKsKKbsasss 223)( (2.19)

Following the procedure outlined in subsection 2.2.1, real and imaginary parts of Eq. (2.19) 

are given by 

232# )sin()()cos()( dir KKLbLaKK (2.20)

)cos()()sin()( 32# LbLaKK pi (2.21)

Notice that the imaginary part )(#
i contains only the proportional term, whereas 

the real part )(#
r is a function of both integral and derivative terms. In order to find the 

full stabilizing sets of PID controller parameters from Eqs. (2.20) and (2.21) consisting of 
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three unknowns Kp, Ki and Kd, it is necessary to fix the value of either Ki or Kd.

Considering a predefined value for Kd ip KK, the marginal stable boundary curve in 

plane can be obtained by setting 0)(,0)( ##
ir in Eqs. (2.20) and (2.21). The 

expressions for Kp and Ki

)cos()sin()cos(
1 23 LbLaL

K
K p

for positive can be obtained as 

(2.22)

)sin()cos()sin(
1 322 LLaLbKK
K

K di (2.23)

The stabilizing sets of Kp and Ki

ip KK

in this case will also lie on the right side of the marginal 

stable boundary curve in plane with increasing as 2det KJ , which is < 0, 

> 0. There are various methods such as Ziegler-Nichols (Z-N) stability criteria, Integral 

of Square Error (ISE), Integral of Time Square Error (ITSE), Integral of Absolute Error 

(IAE) etc. by which one can choose the derivative gain Kd 

2.3.2 Region of PID

[2,27,70,33].

Following the procedure outlined in section 2.2.2, the expressions for K

parameters with guaranteed GM and PM

p and Ki,

with a given Kd

)cos()sin()cos(
1 23 LbLaL

AK
K p

,  after introducing GPMT, can be obtained as

(2.24)

)sin()cos()sin(
1 322 LLaLbAKK

AK
K di (2.25)

As 22det KAJ ,the stabilizing sets of Kp and Ki will lie on the right side of the 

marginal stable boundary curve in (Kp, Ki)  plane with increasing .
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2.3.3 PID parameters

The mathematical steps in this case are similar as outlined in subsection 2.3 for PI 

controller. With little bit of algebra the real and imaginary parts of the characteristics quasi-

polynomial of the closed loop system can be obtained as

with guaranteed GM, PM and desired closed loop time 

response 

)()sin()cos(),( 22
21

#
dip

LL
r KKKKKKLeXLeX (2.26)

dp
LL

i KKKKLeXLeX 2)sin()cos(),( 12
# (2.27)

where,

baaX 2223
1 3

baX 23 32
2

Predefining the value of Kd 0),(,0),( ##
irand setting in Eqs. (2.26) and 

(2.27), it is easy to obtain expressions for Kp and Ki

d
LL

p KKLeXLeX
K

K 2)cos()sin(
1

21

as

(2.28)

)()cos()sin(
1 22

12 dp
LL

i KKKKLeXLeX
K

K (2.29)

By sweeping cl and cl clclin Eqs.(2.28) and (2.29) using relations = - and =

21 clcl , one can obtain the range of Kp and Ki in the parameter plane which are within 

the intersection region of the GM and PM boundaries. These values of Kp and Ki will 

satisfy the requirement of the closed loop time response with guaranteed GM and PM, 

although, the real results should be checked with the simulation results.
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2.4 Illustrative examples with Simulation

In order to demonstrate the application of present method three different types of 

process are chosen and performed simulations using MATLAB and SIMULINK. We will 

first consider a FOPTD process and obtain the appropriate range of Kp and Ki that satisfy 

both the GM and PM specifications as well as the user defined closed loop time response 

specifications i.e. percentage overshoot (controlled by cl) and settling time (controlled by 

cl and cl

2.4.1 Example 1: FOPTD process

) [70]. It is to be noted here that a choice of large GM and PM provides 

comparatively better stability but leads to sluggish time response. On the other hand, a 

choice of small GM and PM gives fast time response but provides relatively less stability. 

For an appropriate design there is a trade-off between the time response performance 

measures and stability. Designer is, therefore required to choose suitable GM and PM 

specifications before applying the proposed method.

Let the FOPTD process [86] is given by

Lse
as

K
1P (2.30)

where K = 1, a = 1, and L = 0.3s. The objective here is to find the sets of Kp and Ki of the 

PI controller to get the closed loop time response specifications with guaranteed GM and 

PM. First find the stability region in the parameter plane of Kp and Ki using Eq. (2.9) and 

then draw the GM and PM boundaries using Eq. (2.11). Finally, the set of Kp and Ki within 

the specified GM and PM is obtained by sweeping cl for different cl .
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Figure 2-2: Stabilizing region, GM and PM boundaries and the range of Kp and Ki

Figure 2-2

obtained via dominant pole placement.

shows the stabilizing region and the range of Kp and Ki. Boundaries of 

constant GM of 6 dB and constant PM of 45 deg are indicated by curves GM and PM 

respectively. Any point (Kp , Ki) within the intersection region of these curves, provides 

guaranteed GM and PM. For illustration purpose, two curves one with cl = 0.5 and other 

with cl = 0.7 are shown. The range of Kp and Ki is obtained by sweeping cl. In order to 

check the behavior of time response seven points a, b, c, d, e, f and g are selected covering 

different regions in the parameters plane. For example, point a (Kp=2, Ki =9) is outside the 

stability region while point b (Kp=2, Ki

Fig. 2-3

=7.5) is inside. The time response with controller 

parameters corresponding to point b is found to be stable whereas that corresponding to 

point a shows an unstable and oscillatory behavior as shown in .
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Figure 2-3:Closed loop time response of the process P1

The time responses of process 

corresponding to points a and b.

1P for controller settings corresponding to points c, 

d, e, f and g are shown in Fig. 2-4. In all cases a load disturbance of 20% is introduced at     

t = 10s. PI parameters and closed loop performance measures such as percentage overshoot 

(% OS), settling time (Ts) and rise time (Tr

Table 2-1

) obtained from the simulation are presented in 

. It can be readily seen that the performance measures obtained from the 

simulations are very close to the values chosen for the design of controllers. For example, 

simulation with controller parameters corresponding to point c which is chosen outside the 

PM specification, gives lower value (PM=38.32 deg, specified PM=45 deg) as expected. 

Simulation results indicate that controller parameters corresponding to smaller cl not only 

satisfy the required closed loop response but also need small control efforts on the same cl

curve. From the simulation results it is observed that points which are on the positive slope 

of the curve cl = 0.7 i.e. points d, e and f show the performance measures very close to the 

specified values. Controller parameters corresponding to the points on the curve with 
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negative slope do not meet the desired specifications. For example, in the case of point g,

the settling time Ts = 5.3s, obtained from the simulation is much larger than the designed 

specification of 1.42s this is because it has large PM (76.75). Simulation results indicate 

that suitable values of Kp and Ki

Table 2-1

belong to the region on the linear part of the curve with 

positive slope. Note that the GM and PM obtained from the simulation (see ) are 

within the specified values.

Figure 2-4: Time responses and control efforts of process  1P with controller parameters 

corresponding to pointsc, d, e, f and g.  Load disturbance of 20% is introduced at t = 10s.
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Table 2-1: Time response performance measures of process 1P .

Points

Specified GM=6dBPM=45
Simulated Results

o

K Kp i cl
cl(ra

d/s

GM 

) (dB

PM 

) (deg

%

OS)

Tr T(s) s

c

(s)

1.5 3.0 0.5 2.5 9.13 38.32 36 0.5 3.7

d 0.75 1.0 0.7 1.25 16.4 66.62 3.0 1.6 4.2

e 1.0 1.5 0.7 1.5 13.62 57.41 10 1.1 4.1

f 1.5 2.4 0.7 2.0 9.92 47 20 0.6 2.6

g 1.6 1.0 0.7 4.0 10.74 76.75 0.0 1.7 5.3

In order to see the effect of Pade approximation, the first order Pade approximation is 

implemented on time delay part. The PI value is obtained by equating real and imaginary 

parts of characteristics equations with real and imaginary parts of dominant poles 

corresponding to cl = 1.5 and cl = 0.7 (equivalent to controller parameters corresponds 

to point e). The PI value obtained are Kp = -2.6853 and Ki = 1.2763, while in present 

approach where no approximation is taken in time delay parts positive values of PI were 

obtained i.e. Kp = 1 and Ki

2.4.2 Robustness analysis

= 1.5.

Simulations have been also performed by varying parameters K, a and L of the 

process 1P by 50% from the original values and the behavior of time response using the  

same controller parameters corresponding to points c, d, e, f and g (Fig. 2-2) is studied. 

Results are summarized in Table 2-2. Fig. 2-5(a) shows the time responses when values of

K, a and L are increased by 50% i.e. K=1.5, a=1.5, and L=0.45s. It is to be noted that 

points f and g do not meet the desired GM and PM specifications. Point c, which was 
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within the GM boundary earlier, is now outside the GM specification as a result of the 

perturbation in system parameters. Fig. 2-5 (b) shows the time responses when values of K,

a and L are decreased by 50% (K=0.5, a=0.5, and L=0.15s). 

Figure 2-5:Time responses of process 1P for the controller parameters of points c, d, e, f 

and g obtained with (a) 50% increase in the value of parameters (K=1.5, a=1.5, and

L=0.45s.) (b) 50% decrease in the value of parameters (K=0.5, a=0.5, and L=0.15s).

It is easy to observe from Fig. 2-5 that for the same set of controller parameters, an 

increase in the value of system parameters leads to more oscillations in the time response 
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as compared to the case when the system parameters are decreased from the original 

values. 

Table 2-2: Time response performance measures of process 1P when the process 

parameters are changed by 50% from the original values. (A) K=1.5, a=1.5, and

L=0.45s. (B) K=0.5, a=0.5, and L=0.15s.

Points

Specified 

GM=6dBPM=45
Simulated Resultso

K Kp i cl cl(rad/s) GM (dB) PM (deg) %OS Tr T(s) s

c

(s)

1.5 3 0.5 2.5 A 2.56 18.48 75 0.5 10.5

B 21.8 42.9 29 0.8 7

d 0.75 1 0.7 1.25 A 10.19 66.34 0 1.2 2

B 28.34 57.6 12 2.4 8.2

e 1 1.5 0.7 1.5 A 7.335 51.32 20 0.6 2.8

B 25.75 52.56 19 1.8 8.4

f 1.5 2.4 0.7 2 A 3.58 29.09 55 0.5 8

B 25.75 52.56 19 1.8 8.4

g 1.6 1 0.7 4 A 3.58 29.08 18 0.6 8

B 22.26 76.8 0 2 4.2

A comparison of results presented in Table 2-2, indicates that the controllers 

corresponding to parameters defined by points d and e (at comparatively lower value of

cl

Fig. 

) are more robust under the perturbation of system parameters. The simulation is also 

performed keeping the value of K constant and varying the parameters aL. Parameters aL is 

known as laggardness [87-88] of the system. Results of simulation are shown in 
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2-6.The closed loop performance measures are given in Table 2-3. In the first case the 

value of aL is varied by 50% by changing only L and keeping a fixed. In the second case 

the value of aL is varied by changing only a. The time response is found to be less sensitive 

in the case of controller parameters d and e for the change in aL (either due to a or L) when 

the value of L is increased (K, a fixed) and when a is decreased (K, L fixed) when 

compared to controller parameters corresponding to other points.

Figure 2-6: Time responses of process 1P for the controller parameters of points c, d, e, f

and g obtained at constant ‘aL = 0.45 (increased by 50% with the original value)’ and 

changing a and L(a) ( K=1, a=1, and L=0.45 s.) (b) (K=1, a=1.5, and L=0.3s).
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Simulations are also performed with controller parameters corresponding to point d by 

varying the values of both a and L by 20% and keeping aL constant (aL = 0.3). It is found 

that by changing a or L within 20% does not affect time response drastically and all the 

performance measures remain within specified value. A decrease in the value of a produces 

overshoot whereas an increase in a produces slow response.

Table 2-3: Time response performance measures of process 1P at constant ‘aL = 

0.45(increased by 50% with the original value)’ and changing a and L (A) K = 1, a = 1,

and L = 0.45s. (B) K = 1, a = 1, and L = 0.15s.

Points

Specified GM=6dBPM=45 Simulated Results
o

K Kp i cl
cl(rad/s) GM (dB) PM (deg) %OS Tr T(s

)

s

c

(s)

1.5 3 0.5 2.5 A 10.28 21.8 65 0.4 10

B 23.17 52.01 10 0.4 2

d 0.75 1 0.7 1.25 A 28.93 58.9 5 1.4 5.3

B 39.38 80.92 0 3.6 6

e 1 1.5 0.7 1.5 A 22.13 46.88 20 0.9 4.5

B 33.11 72.81 0 2 3

f 1.5 2.4 0.7 2 A 13.34 31.9 45 0.4 6.4

B 24.66 61.522 5 4.2 2.2

g 1.6 1 0.7 4 A 17.21 64.45 3 0.6 5

B 26.05 95.62 0 6.2 8
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2.4.3 Example 2: SOPTD process

Consider a non-minimum phase process defined by the transfer function [52]

)2()1(

1
)(

2 ss

s
sG . (2.31)

The corresponding over damped SOPTD model of the above process is 

se
ss

64.1
22 23

1
P . (2.32) 

Following the formulations developed in section 2.3, the stabilizing sets of PID parameters 

are obtained to draw the stability boundary and constant GM and PM boundaries. 

Figure 2-7: Stabilizing region, GM and PM boundaries and the range of Kp and Ki for 

process P2 using dominant pole placement with Kd = 0.2452.
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Figure 2-7 shows the stabilizing regions and the range of controller parameters in 

(Kp, Ki) plane obtained via dominant pole placement with specified GM of 4 dB and PM of 

60 deg. The sets of Kp and Ki are obtained using Eqs. (2.28) and (2.29). The value of Kd

2P

used in the calculation is obtained from Z-N stability criteria. These PID parameters are 

used for simulation of the actual process given by Eq. (2.31). Any another appropriate 

value of Kd can be chosen provided solution gives positive Kp and Ki

Figure 2-8

with an improved 

time response. (a) shows the time responses of process 2P where Kd is chosen 

utilizing the different methods to obtain Kp and Ki at cl= 0.8and cl

Fig. 2-8

= 0.3rad/s. It can be 

readily seen that time responses are almost similar in all the cases except for Z-N criteria. 

For comparison, (b) shows time responses with controller parameters obtained 

using Z-N, ISE, IAE, ITSE and ITAE methods. Table 2-4 summarizes various performance 

measures.  A close inspection indicates that the controllers designed by other methods do 

not fulfill the desired PM and also produce comparatively large percentage overshoot. 

However, the rise and settling times are better as compared to the present method. In the 

present method there is a flexibility to tune the controller for desired performance measures 

within the set robustness by appropriately choosing cl and cl

Figure 2-9

(provided solution exits). 

This feature is not available with other methods discussed above.  

presents time response and control effort of process 2P for controllers 

indicated by points a, b and c in the (Kp, Ki Fig. 2-7) plane (see ) for cl = 0.8 and at three 

values 0.3, 0.4 and 0.5 of cl Table 2-5. lists the Kp and Ki obtained using the present 

method with Kd = 0.2452 (Z-N method). Notice that controller parameters corresponding to 

point c are within the specified PM boundary; but simulation gives a lower value ~56.8 

deg. This may be due to the fact that the simulation is performed with actual process given 
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by Eq. (2.31) whereas GM and PM boundaries are drawn using the model of non-minimum 

phase process given by Eq. (2.32). The performance measures with other points are very 

close to the values specified by cl and cl.

Figure 2-8:Closed loop time responses of process P2 : (a) using present method at different 

value of Kd, (b) using ISE, IAE, ITSE, ITAE and Z-N methods. In both cases a load 

disturbance of 20 % is applied at t = 40 s.
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Table 2-4: Comparison of performance measures of process 2P obtained with present 

method and ISE, IAE, ITSE, ITAE and Z-N methods.

Methods

Specified 

GM=4dB and PM=60
Simulated Resultso

K Kp Ki d cl
cl GM 

(dB)

(ra

d/s)

PM 

(deg.)

%

OS
Tr T(s) s

Present

(s)

0.8497 0.4378

1.815

0.8 0.3 4.86 79.2 4 8 24

ISE 1.834 0.9521 --- --- 4.99 59.32 15 1 11

Present 0.8305 0.4342

1.775

0.8 0.3 5.06 78.8 4 8 24

IAE 2.217 1.035 --- --- 4.44 55.56 20 1 11

Present 0.8924 0.4458

1.904

0.8 0.3 4.42 79.9 4 8 24

ITSE 2.133 1.048 --- --- 4.26 56.9 15 1 11

Present 0.6548 0.4013

1.409

0.8 0.3 7.20 75.9 4 8 24

ITAE 2.01 0.909 --- --- 5.78 57.28 15 1 11

Present 0.0962 0.2965

0.245

0.8 0.3 15.5 64 4 9 24

Z-N 0.499 0.699 --- --- 7.91 40.32 32 3 29

Table 2-5:Time response performance measures of process 2P with Kd

Points

= 0.2452.

Specified 

GM=4dB and PM=60
Simulated Resultso

K Kp i cl

cl GM  

(dB)

(rad

/s)

PM 

(deg)

%

OS
Tr T(s) s

a

(s)

0.0962 0.2965 0.8 0.3 15.5 64 4 9 24

b 0.4335 0.4097 0.8 0.4 15.95 62.6 5 5 18

c 0.6468 0.5333 0.8 0.5 11.92 56.8 10 4 14
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Figure 2-9: Time response and control effort of process 2P corresponding to controller 

parameters indicated by points a, b and c with a load disturbance of 20% at t = 40s.

2.4.4 Example 3: SOPTD process of highly oscillatory behavior

Consider a highly oscillatory process [38] defined by

se
ss

1.0
23 5

1
P (2.33)

Let us design a PID controller with following requirements: the overshoot should 

not be more than 10%, the settling time should be below 15s, and the closed loop system 

should have at least 4 dB GM and 40 deg PM. The former two requirements demand cl

0.6 and cl Kp

and Ki using Kd Fig. 2-10= 8.8654(Z-N method) are shown in .



Chapter 2:2.4  Illustrative examples with simulation 

56

Table 2-6: Performance measures of process 3P with Kd

Points

= 8.8654.

Specified GM= 4dB PM= 40 Simulated Resultso

K Kp i cl

cl GM  

(dB)

(ra

d/s)

PM 

(deg)

%

OS
Tr T(s) s

a

(s)

1.087 2.426 0.6 0.5 5.13 42.3 10 4.2 12.5

b 2.271 3.446 0.6 0.6 5.086 41.5 10 3.2 10.5

c 3.442 4.628 0.6 0.7 5.045 40.8 11 2.5 9

d 4.6 5.962 0.6 0.8 5.003 40.05 12 2 8

Figure 2-10: Stabilizing region, GM and PM boundaries and the range of Kp and Ki

obtained for process P3 via dominant pole placement with Kd = 8.8654.
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Figure 2-11: Zoomed view of the encircled region in the Kp-Ki

Figure 2-11

plane.

shows the enlarged view of the encircled portion of Fig. 2-10. The marked 

points a, b, c and d on the curve cl

3P

= 0.6 are within the specified GM and PM boundaries. 

From the time responses of process shown in Fig. 2-12, it is easy to observe that 

controller parameters corresponding to these points reasonably satisfy the desired design 

criteria (see Table 2-6). Although the value of cl is same in all the cases, controller 

designed with higher value of cl, gives comparatively more percentage overshoot. This 

may be due to the less phase margin available with higher value of cl in the parameters 

plane.
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Figure 2-12:Time response and  control effort of process of process P3

2.5 Summary

for the controller 

parameters corresponding to  points a, b, c and d with 20% load disturbance at t = 20 s.

A new methodology is developed in this chapter to obtain the set of PI/PID 

parameters graphically for the specified closed loop time response measures using 

dominant pole placement with guaranteed GM and PM. 

A graphical stability criterion has been utilized to get the stabilizing regions in the 

proportional-integral plane to choose sets of PI/PID controller parameters that would result 

in a closed loop system with of the dominant poles with pre-specified GM and PM. The 

range of parameters of PI controller for FOPTD system has been obtained by sweeping the 
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cl for a fixed cl. To obtain the PID parameters for SOPTD system, first a predefined 

value of Kd is used and then the range of PI parameters is obtained.  Simulations performed 

with one FOPTD system and two SOPTD systems demonstrated the effectiveness and 

confirmed the validity of the proposed methodology.

In the case of FOPTD system it is observed from the simulation that sets of Kp and 

Ki which are on the positive slope and linear part of fixed cl curve with increasing cl in 

the parameter plane, are more appropriate and produce closed loop time response 

performance measures very close to the specified values. On the other hand, the sets of Kp

and Ki

A non minimum phase process and a highly oscillatory process have been 

considered for numerical simulation in the case of SOPTD system. The value of K

which are on the negative slope of the above mentioned curve, give poor closed 

loop time response measure. At this point we would like to point out that the observed 

simulation results needs to be studied analytically. This opens the direction of future 

research in the design of PID controllers.

d is 

chosen by Z-N rules. Simulation results indicate a high value of all the PID parameters in 

the case of highly oscillatory process as compared to that of the non minimum phase 

process. The choice of controller parameters corresponding to comparatively lower value 

of cl is found more suitable for the robust controller design under the perturbation of 

system parameters. The main advantage of the present method is the flexibility to tune the 

controller for desired performance measures within set robustness by appropriately 

choosing the closed loop damping ratio and natural frequency.
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CHAPTER 3

Optimal PID controller design using LQR 
and pole placement technique for standard 
SOPTD systems

3.1 Introduction

The design techniques based LQR are well known in modern control theory and 

have been widely used in many applications [61, 71, 52]. In a recent article Saha et al. [71]

have obtained the PID controller parameters for second order systems via LQR using the 

dominant pole placement technique. However, their approach is applicable only for 

systems having no time delay. Most of the real industrial plants have time delay in their 

transfer function. Since the presence of time delay in a control loop is a source of 

instability and performance degradation [10, 60], it is therefore, necessary to design the 

PID controller optimally to achieve good stability. Many researchers have worked on the 

tuning of controller for the systems having time-delay [89-91] with pole placement and 

mentioned the challenges due to the presence of exponential term in the characteristics 

equation which leads to the infinite roots. They have used different approaches to design 

the controller with some limitations. He et al. [52] have proposed an analytical method to 

tune the PI/PID controller parameters in an optimal way using LQR techniques with user 

specified closed loop damping ratio and natural frequency for the FOPTD model. His 

method is based on the decomposition of state equation in two parts one for  t < L and 

another for t L in such a way that the state equation for t L becomes
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independent of L and then applied the usual LQR approach for obtaining the PI parameters 

for FOPTD. They have compared simulation results of their method with the gain-phase 

margin method [92] and presented much improved results. 

Most of the real plants can be more closely approximated using SOPTD model as 

compared to FOPTD model. The SOPTD processes are very rich in dynamics as they 

include under damped, critically damped and over damped systems. Very few tuning rules 

are available for such processes. He et al. [52] have also extended their approach for 

SOPTD systems by equating the larger process pole with the derivative term of the PID 

controller and then applied the PI tuning approach using LQR to obtain other two 

parameters. This approach works satisfactory for SOPTD model if the system poles are 

real, but does not provide the optimum parameters of the PID controller as one of the 

parameters is prefixed. This technique cannot be applied for SOPTD systems with complex 

poles (such as highly oscillatory processes) of the system as they are always in pairs and 

cannot be eliminated with single complex zero of the controller.  

In the present work we have combined the concept of LQR based PI/PID controller

tuning method together with the dominant pole placement approach to derive the PID 

controller parameters analytically for SOPTD systems. It is shown that the present 

technique gives a good closed loop time response for various processes as compared with 

the existing PI/PID controller tuning methods using LQR. In order to illustrate the utility of 

the present technique, simulations performed in MATLAB [62] have been presented for 

different types of SOPTD models. These include critically damped and over-damped 

processes as well as processes having complex poles. The effect of non-dominant pole on 

the control signal and on the stability of the closed loop system has also discussed.
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3.2 LQR based PID parameters for standard SOPTD systems

In this section the conventional pole placement method and technique of LQR have

been ingeniously used for SOPTD systems where the time delay part is handled in the 

controller output equation instead of characteristic equation. This approach eases the use of 

pole placement for time delay systems without involving the exponential term in the 

characteristics equation as discussed in Chapter 2.

3.2.1 Converting delay based LQR problem to delay free

Consider a linear plant with time delay represented in state space as

)()()( Lttt BuAXX (3.1)

where A, B, X and L are the system matrix, input matrix, state vector and the time delay 

term respectively. For Lt , no control signal will be effective and thus one has Eq. (3.1) 

as control free equation. Control signal will be effective only for Lt . So by decomposing 

Eq. (3.1) into two components, one for Lt and other for Lt , we have 

,)()( tt AXX ,0 Lt (3.2)

,)()()( ttt mBuAXX ,Lt (3.3)

where, )()( Lttm uu . Since Eqs. (3.2) and (3.3) are now delay free, one can easily apply 

the standard LQR approach [61] used for delay free processes to find the optimum control 

vector )(tmu subjected to the minimization of the cost function defined by

,)()()()(
0

dtttttJ mTmT uRuXQX (3.4) 
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where Q is the semi positive definite state weighting matrix and R is the positive definite 

control weighting matrix. The LQR solution gives the optimal control vector )(tmu as

,)()( ttm PXBRu T1 (3.5)

where P is the symmetric positive definite Riccati coefficient matrix. It can be obtained by 

solving continuous time algebraic Riccati equation

.0PBPBRQPAPA T1T (3.6)

Putting the value of t = t + L, in Eq. (3.5) we can write 

.)()()( 1 LtLtt Tm PXBRuu (3.7)

Here one can see that )(tu gives the control signal in the whole time horizon of 0t ,

however X(t+L) is not directly known at time t. With the use of Eqs. (3.2), (3.3) and (3.5), 

X(t+L) can be expressed in terms of transmission of X(t) as

)()(
1

teeLt tLtT

XX APBBRA for Lt0

and 

)()(
1

teLt LT

XX PBBRA for Lt .

The optimal control vector )(tu for the present case, thus can be written as

,)()( )()( teet tLt XPBRu AAT1 c ,0 Lt (3.8)

,)()( )( tet Lc XPBRu AT1 ,Lt (3.9)

where , .PBBRAA T1
c (3.10)

The beauty of the above mathematical formulation lies in the fact that the optimal control

vector u(t) handles the delay part as given by Eqs. (3.8) and (3.9). As the system matrix Ac
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given by Eq. (3.10) does not contain any time delay for Lt , one can easily apply the 

approach of direct pole placement to get `the desired closed loop time performance 

measures.

3.2.2 Optimal control using pole placement and LQR

In order to obtain the optimal feedback gain )(u t we need to calculate te )( cA and 

)( tLeA . By substituting )(tmu from Eq. (3.5) into Eq. (3.3) we have for Lt ,

.)()( tt XAX c (3.11)

The matrix Ac

cAIss)(

can be determined by setting the characteristic equation of the closed loop 

system equal to the desired closed loop equation. For example, in the case 

of FOPTD process, where the matrix Ac

,)2())(()( 22
21 clclcl sspspsss cAI

is a 2×2 matrix, we have 

(3.12)

where, ,1 2
1 clclclcl ip ,1 2

2 clclclcl ip

with cl and cl as the desired closed loop damping ratio and natural frequency. 

For the SOPTD process the dimension of matrix Ac will be 3×3. Utilizing the help of 

dominant pole placement technique, matrix Ac can be evaluated in terms of known 

parameters cl and  cl

.)2)((

))()((
22

321

clclclclcl

c

ssms

pspspss AI

from the equation

(3.13)
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The location of non-dominant pole clclmp3 is placed m times away from the real part 

of the dominant poles of the closed loop system. Let’s call this m as the relative dominance 

and as per the literature its value should be chosen around 3 or more [50].

3.2.3 Determination of matrices A, B, X, Q, R and P for SOPTD systems and 

its relation with optimal PID parameters

In the case of second order process, matrices Q, R and P are generally taken as 

3

2

1

00

00

00

q

q

q

Q , rR , .

332313

232212

131211

ppp

ppp

ppp

P (3.14)

In the optimal control it is a standard practice to design regulator by varying Q and keeping 

R fixed [52, 71]. A schematic of closed loop system with PID controller for SOPTD 

process is shown in Fig. 3-1.  The state variables for the present case are

,)]()()([)( 321
TtxtxtxtX (3.15)

where, dttetx )()(1 , )()(2 tetx , ,
)(

)(3 dt

tde
tx (3.16)

with error )()()( tytrte . Here r(t) and y(t) are the reference and output signals 

respectively. The control signal can be expressed in terms of the state variable as

.)()()()( 312 txKtxKtxKtu dip (3.17)

The transfer function of the PID controller can be express in s domain as

.)( sK
s

K
KsC d

i
p (3.18)
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Figure 3-1: Schematic of closed loop system with PID controller.

In the case of unity output feedback system such as shown in Fig. 3-1, if we put the 

reference signal ,0)(tr we have .)()( tyte with this condition, the second order 

transfer function with time delay can be written as

,
)(

)(

)(

)(
)(

2 su

se

bass

eK

su

sy
sG

sL

(3.19)

Here, olola 2 and 2
olb , where ol and ol

.)()()()( 233 LtKutbxtaxtx

are the damping ratio and natural 

frequency of the open loop plant respectively. Using Eq. (3.16) one can express Eq. (3.19) 

in terms of state variables as 

In terms of state-space formulation the derivative of the state variables can be 

written as

.)(0

0

)(

)(

)(

0

100

010

)(

)(

)(

3

2

1

3

2

1

Ltu

Ktx

tx

tx

abtx

tx

tx

(3.20)

Comparing Eq. (3.20) with Eq. (3.1), it is straightforward to obtain matrices A and B as
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ab0

100

010

A , .0

0

K

B (3.21)

Using Eqs. (3.10), (3.14) and (3.21)  

.10

01

332313 paspbp

s

s

s cAI (3.22)

where  .21Kr Now  from Eqs. (3.22) and (3.13) 

.)2())2((

)()(
322223

1323
2

33
3

clclclclclclcl msmsms

pspbspas
(3.23)                                                                                        

By comparing the coefficients of powers of s from both sides of Eq. (3.23), the elements

13p , 23p and 33p can be obtained as

,
3

13
clclm

p

,
2 222

23

bm
p clclcl

.
)2(

33

am
p clcl (3.24)

The remaining three elements of the matrix P and three elements of the matrix Q can be 

obtained by solving Riccati equation Eq. (3.6), which gives six equations for six variables 

in terms of known parameters. With some algebraic manipulations, one can obtain

,
)21( 25

11
clclcl mm

p
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,
)2( 42

12
clclmm

p

,
)2(2 3233

22

abmm
p clclclcl

,
622

1
clclm

q

,
)241( 222424

2

bmm
q clclcl

22222

3

2)24( abm
q clclcl (3.25)

3.2.4 Evaluation of matrix 
)( tLeA

The value of )( tLeA can be evaluated as follows.

tLt
tL se 1)( )(inverseLaplace AIA

))(())((
0

))((

1

))((
0

))((

1

))((

)(1

02010201

02010201

02010201

1

psps

s

psps

b
pspspsps

as
pspsspspss

as

s

.

)()()(

)()()(

)()()(

333231

232221

131211

tLt
tftftf

tftftf

tftftf

(3.26)

Here 01p and 02p are the poles of the open loop system (see Eq. (3.19)) given by

,
2

42

01

baa
p ,

2

42

02

baa
p (3.27)

Using partial fraction approach 11f , 12f , 13f , 21f , 22f , 23f , 31f , 32f and 33f can be evaluated as
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,1)(11 tLf

,
)()(

)(
020102

)(
01

020101

)(
02

12

0201

b

a

ppp

ep

ppp

ep
tLf

tLptLp

,
1

)()(
)(

020102

)(

020101

)(

13

0201

bppp

e

ppp

e
tLf

tLptLp

,0)(21 tLf

,
)()(

)(
0201

)(
01

0201

)(
02

22

0201

pp

ep

pp

ep
tLf

tLptLp

,
)()(

)(
0201

)(

0201

)(

23

0201

pp

e

pp

e
tLf

tLptLp

,0)(31 tLf

,
)()(

)(
0201

)(

0201

)(

32

0201

pp

be

pp

be
tLf

tLptLp

.
)()(

)(
0201

)(
02

0201

)(
01

33

0201

pp

ep

pp

ep
tLf

tLptLp

(3.28)

3.2.5 Evaluation of matrix
tce )(A

Using Eqs. (3.10), (3.14) and (3.21) have

100

010

)( PBBRAA T1
c .

where, 13p , 33pa and 23pb .

Now,

11)( )( c
t se c AIA
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2

2

2

1

1
1

sss

sss

sss

s cAI

.

)()()(

)()()(

)()()(

333231

232221

131211

tftftf

tftftf

tftftf

(3.29)

Using Eq. (3.13) in Eq. (3.29) and with some algebraic manipulations, it is straightforward 

to get  f11,   f12, f13,  f21,  f22,  f23,  f31,  f32 and f33

,)(
3

1

2

11
tp

i i

ii ie
D

pp
tf

as

,)(
3

1
12

i

tp

i

i ie
D

p
tf

,
1

)(
3

1
13

i

tp

i

ie
D

tf

,)(
3

1
21

i

tp

i

ie
D

tf

,)(
3

1

2

22
i

tp

i

ii ie
D

pp
tf

,)(
3

1
23

i

tp

i

i ie
D

p
tf

,)(
3

1
31

i

tp

i

i ie
D

p
tf

,)(
3

1
32

i

tp

i

i ie
D

p
tf

,)(
3

1

2

33
i

tp

i

i ie
D

p
tf (3.30)
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where, D1 = - (p1 - p2) (p3 - p1), D2 = - (p1 - p2) (p2 - p3) and D3 = - (p3 - p1) (p2 - p3

3.2.6 Evaluation of PID parameters for 

) .

,0 Lt

Using Eqs. (3.28) and (3.30) in Eq. (3.8), the optimal value of control u(t) for 

,0 Lt can be expressed as

,)()( )( teet tLtc XPBRu AAT1

.

)(

)(

)(

)()()(

)()()(

)()()(

)()()(

)()()(

)()()(

3

2

1

333231

232221

131211

333231

232221

131211

33

23

13
1

tx

tx

tx

tLftLftLf

tLftLftLf

tLftLftLf

tftftf

tftftf

tftftf

p

p

p

Kr

T

(3.31)

Comparing the coefficients of )(1 tx , )(2 tx and )(3 tx in Eqs. (3.17) and (3.31), one can 

easily obtain the PID parameters for ,0 Lt as

,))()()()()()(()(
3

1
1333

3

1
1223

3

1
1113

1

i
ii

i
ii

i
iii tLftfptLftfptLftfpKrtK

,))()()()()()(()(
3

1
2333

3

1
2223

3

1
2113

1

i
ii

i
ii

i
iip tLftfptLftfptLftfpKrtK

.))()()()()()(()(
3

1
3333

3

1
3223

3

1
3113

1

i
ii

i
ii

i
iid tLftfptLftfptLftfpKrtK

(3.32)

3.2.7 Evaluation of PID parameters for Lt

Using Eqs. (3.9) and (3.30) the optimal control u(t) for Lt can be evaluated as  

,)()( tet Lc XPBRu AT1
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.

)(

)(

)(

)()()(

)()()(

)()()(

3

2

1

333231

232221

131211

33

23

13
1

tx

tx

tx

LfLfLf

LfLfLf

LfLfLf

p

p

p

Kr

T

(3.33)

Comparison of coefficients of )(1 tx , )(2 tx and )(3 tx in Eqs. (3.33) and (3.17) gives the 

PID parameters for Lt as

,)()()( 313321231113
1 LfpLfpLfpKrKi

,)()()( 323322231213
1 LfpLfpLfpKrK p

.)()()( 333323231313
1 LfpLfpLfpKrK d (3.34)

Note that for L=0, the matrix elements fij = 1 when i = j and fij

3.3 Simulation results and discussion

= 0 for i j and Eq. (3.34) 

leads to the optimal PID parameters for systems having no time delay.

In order to demonstrate the application of the PID tuning methodology proposed in 

this Chapter, simulation results for different processes performed using MATLAB will be 

presented. The examples considered are under damped, critically damped and over damped

SOPTD processes. Plants with unstable open loop response and highly oscillatory behavior 

are also discussed using present approach considering the challenge of present day’s 

requirement in the control industries.

3.3.1 Example 1: Non Minimum Phase Process with delay

Let consider an over damped SOPTD model of a non minimum phase process. The 

closed loop time response is compared with the previously developed LQR-based PI/PID 

tuning method [52], where the derivative term of the PID controller for SOPTD process is

set equal to one of the process pole and thus is not obtained in an optimum way. For fair 
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comparison, similar values of cl = 0.8 and cl 

)2()1(

1
P1

2 ss

s

= 0.793 rad/s are taken in the simulation. 

The non-dominant pole is placed 6 times away from the desired dominant real poles i.e. m

= 6. 

The transfer function of the non minimum phase process considered here is

, (3.35)

and its corresponding over damped SOPTD model is

se
ss

64.1
2 23

1
P1 . (3.36)

Matrices A and B can be obtained from Eqs. (3.36) and (3.21) as

320

100

010

A and .

1

0

0

B (3.37)

Using Eqs. (3.24) and (3.25), matrices P and Q with R = [1] can be evaluated as

8290.900

04889.10

007158.5

Q , .

0732.24540.33908.2

4540.32785.191288.12

3908.21288.120394.13

P (3.38)

The eigen values of matrices P and Q are

3282.29

6579.3

4050.1

Peig and .

8290.9

4889.1

7158.5

Qeig (3.39)

The positive eigen values of matrices P and Q indicate that the positive definite condition 

of LQR is satisfied. Finally, the PID parameters for st 64.10 can be obtain using Eq. 
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(3.32). The time varying PID parameters are plotted in Fig. 3-2.  The PID parameters for 

st 64.1 can be calculated using Eq. (3.34) as

.1543.04602.06984.0][ dip KKK (3.40)

Figure 3-2: PID parameters Kp, Ki and Kd

Figure 3-2

as a function of time.

shows the variation of PID parameters used in the simulation at 6m .

For comparison, PID parameters evaluated at 3m and 10m are also shown. It is clear 

that values of all the PID parameters are very high at the beginning (t = 0s), followed by a 

decrease with t up to st 64.1 and then remain constant thereafter. Note that design of PID 

controller at higher value of m leads to lower values for all the PID parameters for 

st 64.1 whereas the situation is completely reverse in the case of st 64.1 .
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The time response of the time varying PID controller parameters with step input for 

process P1 with 20% disturbance at st 40 is shown in Fig. 3-3 by solid black line.  It can 

be noted that controller with time varying parameters needs higher control effort than any 

other constant parameters. The observed behavior of the closed loop time response during 

the initial period is due to the high values of initial controller parameters, which are 

responsible for the decrease in the system rise time and hence enhancement in the 

overshoot. Note that PID controller parameters between Lt0 are time varying and 

large initially. This leads to a comparatively larger control efforts and may cause the 

actuator saturation in some cases. It is also difficult to implement them practically, 

particularly in analog domain. It is obvious that a choice of constant PID controller 

parameters throughout eases the practical implementation, needs low control effort and 

maintains the state optimality for all values of Lt . The plots of time response using only 

constant PID parameters throughout (i.e. for 0t ) obtained for st 64.1 using Eq. (3.34) 

for various values of relative dominance m are also shown in Fig. 3-3 for comparison. In 

the simulation all other parameters have been kept constant. It can be seen from Fig. 3-3

that as the value of m is decreased from 6 to 3; the PID controller based on constant

parameters tries to cope with the actual time varying PID controller and produces 

overshoot with improved rise time.

An increase in the value of m reduces the overshoot but at the same time increases 

the rise time. At higher values of m, say around m = 50, this effect saturates and further 

increase in m has no significant effect on the time response. Thus the choice of m depends 

upon a particular requirement whether one needs fast rise time or less overshoot. In our 

experience a good choice for m is between 3 to10. 
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Figure 3-3:Comparison of (a) time responses and (b) control efforts of time varying PID 

with constant PID parameters for process P1 at different m.

It is interesting to point out here that increase in the rise time with m in the delayed 

processes is just opposite to the LQR based PID tuning with no delay [71], where an 

increase in m decreases the rise time of the closed loop time response. For a given process, 

our simulation results indicate that an increase in the value of m results in the lower values 

of PID controller parameters as shown in Fig. 3-2 and thus a reduction in the control effort. 

This fact can also be explained using Eqs. (3.9), (3.24) and (3.25) where an increase in m

increases the value of matrix elements of P. This finally causes reduction in the control 

effort u(t) due to the presence of the term Lce )(AP which decreases with increase in  the 
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value of elements of matrix P. Note that in the case of delay free process 1)( Lce A and 

u(t) is proportional to matrix P.

Observing the simulation results shown in Fig. 3-3, it appears that the time varying 

part of PID parameters though, improves the rise time of the closed loop time response, but 

at the same time it produces substantial overshoot as compared to the cases where only 

constant PID parameters are used. As it will be easy to implement practically, therefore, in 

subsequent examples consider only constant value of PID parameters evaluated for Lt

using Eq. (3.34).

Figure 3-4: Time response and controller response for process P1 with 20% disturbance at 

st 40 .
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To shows the effectiveness of the present method, we now compare our results with 

those of the previously developed LQR based PI/PID tuning method at same values of 

closed loop damping ratio and natural frequency. The optimal PID controller for process P1 

with ,8.0cl
rad/s793.0cl and 6m obtained for st 64.1 is

,1543.0
4602.0

6984.0]present[1 s
s

C

and the PID controller used in Ref. [52] is given by

.0.1
5561.0

0.6138]15[1 s
s

C

Figure 3-4(a) compares the step responses with 20% disturbance at st 40 . It is 

easy to observe that the present method gives very less overshoot, only 4% as compared to 

the 14% of the earlier method. Note that the value of derivative gain in controller ].15[1C is 

larger than the controller ]present[1C . From the simulation it is clear that a choice of larger 

derivative gain does not necessarily reduce the overshoot. The main reason for the 

reduction in overshoot is the optimal tuning of derivative parameter Kd

Figure 3-4

in the present case 

is taken as one of the real pole of the open loop system in earlier case and thus, is not 

optimum one. Due to the optimal design of all the three parameters in the present method, 

there is almost 46% reduction in the settling time together with a substantial reduction in 

the overshoot.  (b) compares the control energy required to achieve good closed 

loop time response. Since the cost function is optimized properly in the present method, the 

required control energy is also less. PID controller parameters and closed loop performance 

measures such as percentage overshoot (%OS), settling time (Ts) and rise time (Tr

Table 3-1

) are 

presented in for comparison.
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3.3.2 Example 2: Higher order process with delay

Consider a higher order process [31] given by

.
)1(

1
P2

8s
(3.41)

The corresponding over damped SOPTD model of this process is

.
3360.03878.1

3360.0
P2 3.4

2
se

ss
(3.42)

The controller parameters for this model calculated using the method presented by [52]

where one of the pole is taken equal to the Kd  Table 3-1are given in .

Figure 3-5: Time response and controller response for higher order process P2 with 

20% disturbance at t = 70s.
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The optimal PID controller for st 3.4 for the above process using present method with

4m is

.2834.0
0912.0

3919.02 s
s

C (3.43)

In both the cases same value for ,9.0cl
rad/s3.0cl is used. The eigen values of 

matrices P and Q in this case are also positive and therefore satisfying the condition of 

LQR. Figure 3-5(a) compares the step response with 20% disturbance at st 70 . Due to 

optimal design of all the three parameters, overshoot is almost negligible with an 

improvement in the rise time and disturbance rejection. The control effort required for 

desired time response, plotted in Figure 3-5(b), is also slightly less in the present 

optimization method. 

In order to test the present method with large time delay, we have varied the time 

delay of process P2 from 4.3s to 44.3s in steps of 10s and performed simulations. In all the 

cases fixed value of 3.1Lcl is used. Simulation results indicate a satisfactory closed 

loop time response. As usual, the response time to become slow with increase in the time 

delay L.

3.3.3 Example 3: Critically damped process with delay

Consider a critically damped SOPTD process [93] given by 

.
)1(

P3
2

2.0

s

e s

(3.44)

The optimal PID controller designed for ,98.0cl
rad/s2cl and 4m is

.6867.1
9858.1

7238.33 s
s

C (3.45)
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Figure 3-6: Time response and controller response for process P3 with 20% disturbance at 

st 20 .

Figure 3-6(a) shows the comparison of step responses of the critically damped 

SOPTD process with 20% disturbance at st 20 . Clearly, the present method gives an 

improved performance. Both the overshoot and settling time are improved by considerable 

amount (see Table 3-1) with slight improvement in the rise time and disturbance rejection 

time. Although the present tuning method takes slightly more control signal initially (Fig. 

3-6(b)), but one can easily verify that the total control cost is almost identical in both the 

cases using trapz() function in MATLAB.
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Table 3-1: Comparison of closed loop performance measures

Processes K Kp Ki d cl cl mL %OS Tr T(s) s

P1 (He et al.)

P1(Present)

(s)

0.6138 0.5561 1 0.8 1.3 -- 14 4.5 15

0.6984 0.4602 0.1543 0.8 1.3 6 4 4.5 8

P2 (He et al.)

P2(Present)

0.2873 0.0851 1.0753 0.9 1.3 -- 4 16 23

0.3919 0.0912 0.2834 0.9 1.3 4 0 12 20

P3 (He et al.)

P3(Present)

1.7342 2.1759 1 0.98 0.4 -- 35 1.2 8

3.7238 1.9858 1.6867 0.98 0.4 4 15 1.1 5

3.3.4 Example 4: Unstable SOPTD process

Now we consider an unstable plant [94] given by 

.
)1)(15.0(

5.1
P4 3.0 se

ss
(3.46)

With some algebraic manipulation one can easily write Eq. (3.46) in standard second order 

TF as given in Fig. 3-1 and get the value of a = 1, b = -2 and K = 3. The optimal LQR 

based PID controller obtained with ,9.0cl rad/s8.0cl and 4m is

.5682.0
1688.0

2153.1]present[4 s
s

C (3.47)

The controller designed by adopting the method of He et.al. [52] taking 2dK , the 

larger real system pole with same cl and cl is given by 
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.0.2
0824.0

0.5619]al.etHe[4 s
s

C (3.48)

The time response plotted in Fig. 3-7 clearly shows the advantage of the proposed method 

for control of unstable plant dynamics. Expect for slightly higher percentage overshoot all 

other closed loop performance measures are quite reasonable ( sTr 8.1 , 150%OS and

sTs 5 ). Simulation results indicate that the range of cl

)5.1,0.1(Lcl

L is limited. In the case of stable 

system the appropriate range is and for the case of unstable systems it is 

)4.0,1.0(Lcl .

Figure 3-7: Time response and controller response for process P4 with 20% disturbance at 

st 30 .
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3.3.5 Example 5: Highly Oscillatory SOPTD Process

Here we consider a SOPTD process with highly oscillatory open loop response [38]

with transfer function given by  

.
5

1
P5 1.0

2
se

ss
(3.49)

Figure 3-8: Time response and controller response for process P5 with 20% disturbance at 

t = 30 s

Our aim is to design a controller with very small percentage overshoot and settling 

time. Since the roots of the process are complex, the method used by He et al. [52] for 

SOPTD process cannot be applied here. The controller with ,9.0cl rad/s5.1cl and  

4m is  .6339.3
8325.5

9434.35 s
s

C Simulation result presented in Fig. 3-8 shows

a remarkable time response ( sTr 5.1 , 2%OS and sTs 3.3 )  for process P5.
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3.3.6 Comparison with other time domain tuning methods

In order to check the relative merits and demerits of the present method, simulations 

have been performed for processes P1, P2, P3 and P5 using other time domain tuning 

methods [31-33].

Figure 3-9: Time response and controller response for processes P1, P2, P3 and P5 

obtained using methods based on different time domain performance measures.
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These tuning methods are Integral of Square Error (ISE), Integral of Time Square 

Error (ITSE), Integral of Absolute Error (IAE), Integral of Time Absolute Error (ITAE). 

We have used the fmincon() function of the MATLAB optimization toolbox for finding the

sets of optimized PID controller parameters subjected to a given time domain performance 

index based cost function. In all the cases the optimization started with same initial value of 

PID parameters equal to 0.3. i.e. Kp = 0.3, Ki = 0.3, Kd Fig. 

3-9

= 0.3. Results are compared in 

. It is easy to observe that present method gives overall satisfactory closed loop time 

response. In other cases the response time is fast but with substantial overshoot and 

oscillations. We have also calculated the control energy using the square of the MATLAB 

function norm(u(t),2). Except for process P3, where ITAE and ITSE require slightly less 

control energy, controllers designed with present method need comparatively less control 

energy for all other cases. 

3.3.7 Robustness Analysis

Most of the real plants operate in a wide range of operating conditions and it is 

required that the controller must be able to stabilize the system with slight change in the 

operating conditions. In such situation, the robustness of the closed loop system is an 

important feature. The purpose of this study is to check the robustness property of the 

optimal LQR-PID controller when there is a mismatch between the delay time of the 

process and the delay time for which the PID controller is designed. Consider an under 

damped SOPTD process given by

.
92.1

9
P6 2

2
se

ss
(3.50)      
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It is easy to observe that the open loop system poles are complex. We have 

designed the PID controller with closed loop parametric demand of ,98.0cl

rad/s2cl . The optimal LQR based PID controller obtained with 3m is

.0111.0
1913.0

0979.06 s
s

C (3.51)

Figure 3-10(a) shows the closed loop step response of the under damped SOPTD process 

P4 with 20% disturbance at st 30 and the corresponding control effort is plotted in Fig. 

3-10(b). It can be readily seen that the stabilization of load disturbance by present 

controller is quite satisfactory. We have also studied the robustness of the present controller 

by varying the mismatched delay time Lm

sL 2

from 0.5 s to 4 s covering both sides of the actual 

delay for which the controller is designed. Results of simulation are presented in 

Fig. 3-10 for comparison. The time response with designed parameters is shown by black 

solid line. It can be readily seen that an increase in the value of time Lm

sL 2

from the designed 

value of , causes an overshoot in the time response and finally leads to the 

oscillation if the value of Lm becomes larger. In contrast, the mismatched value of Lm

10m

less 

than L is responsible for the increase in the rise time as well as in the settling time and thus 

making the response sluggish. In the present LQR based PID method, one have an extra 

tuning factor that is the value of relative dominance m which one can utilized to improve 

the robustness of the controller in the case of a mismatch in the delay time. To explain the 

effect of m on robustness of the controller we have designed another optimal LQR-PID 

controller keeping all the parameter same except the value of m. The optimal PID 

controller for is
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.0029.0
1586.0

0658.010 s
s

Cm (3.52)

Figure 3-10: The plots of (a) time response and (b) controller response for under damped 

SOPTD process P6 with 20% disturbance at st 30 and under mismatched delay time Lm

sLm 4

.

A comparison of time response curves for cases , 3m and sLm 4 ,

10m clearly indicates that a controller designed at higher m shows less overshoot and 

thus will be more robust in the case of mismatch between the process delay time and the 

delay time at which the controller is designed. However, the penalty one has to pay is the 

increase in the rise time. 
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3.4 Summary

An improved design methodology of PID controller for standard SOPTD system 

has been developed in this chapter combining the optimal approach of LQR and the 

dominant pole placement technique. The proposed tuning method allows more flexible pole 

placement, which results in better time response. The PID parameters have been calculated 

analytically using user defined closed loop damping ratio and natural frequency. It is 

demonstrated by simulation that present tuning methodology gives improved closed loop 

time response with less control effort as compared to the earlier developed LQR based 

PI/PID tuning method. Simulation results indicate that present method works well for most 

of the SOPTD models such as under-damped, critically-damped, over-damped, unstable 

and highly oscillatory processes. It is observed from the simulation that most appropriate 

range of Lcl for stable SOPTD processes is )5.1,0.1(Lcl and for the unstable SOPTD 

process is )4.0,1.0(Lcl . A comparison of simulations results with other time domain 

performance indices indicates that the present methods gives an overall better closed loop 

time response with comparatively less control effort.

It is observed that the location of non-dominant pole (value of m) affects the closed 

loop time response provided all others parameters are kept constant. An increase in the 

value of m, increases the rise time with a substantial control on the overshoot. This 

observed behavior of the closed loop time response with m in the case of processes with 

time delay is completely opposite to the cases of delay free processes. A slightly higher 

value of m adds an extra robustness to the closed loop time response in the case of 

mismatch between the process delay time and the delay time at which the controller is 
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designed. The proposed analytical tuning method to obtain optimum PID parameters for 

SOPTD process will be helpful for the online applications. We would like to point out here 

that the present approach cannot be applied to integrating processes because they cannot be 

represented in the form of standard second order transfer function.
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CHAPTER 4

Design of a two degree of freedom LQR 
based optimal PID controller for integrating 
processes with time delay 

4.1 Introduction

Open loop integrating processes, which contain at least one pole at the origin, are 

difficult to manipulate. A small load disturbance can easily destroy the balance between the 

input and output which can cause increasing or decreasing output without limit.  Building 

controller for such systems needs special attention and is always a challenging task. There 

are several real world industrial processes whose transfer functions exhibit pure integrator 

plus time delay. Some typical examples of integrating systems are: distillation column level 

control in chemical processes [95], a jacketed continuous stirred tank reactor carrying out 

an exothermic reaction [96], vertical take-off of airplanes [97], high pressure steam flowing 

to a steam turbine generator in a power plant [98] etc. 

The tuning of PID controller for integrating processes needs special attention in 

terms of output performance, robustness, noise sensitivity, analytical tunability and 

applicability over a wide range of processes. It is difficult to develop a PID controller for 

integrating systems which can tune both regulatory response (load disturbance regulation) 

and servo response (set point tracking) simultaneously using a single PID controller, 

known as One Degree of Freedom (1-DOF) PID controller. With a 1-DOF PID controller,

one can either achieve a good load disturbance or a good set point response [99]. In control 
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engineering most of the controllers are designed to keep good regulation of load 

disturbance as the primary concern [100-102]. In the cases, where the set point changes 

frequently, the 1-DOF controller may lead to very high undesirable overshoot. An effective 

solution to this problem, where one can obtain both good regulatory response and servo 

response, is the use of a 2-DOF control system [103-104]. A 2-DOF PID control system 

separately tunes the servo response using a set point filter, without affecting the regulatory 

response tuned by main PID controller in the loop. The set point filter of 2-DOF control 

system is also used to avoid actuator saturation problem during the initial start up. 

Disturbance observer based design of controller is also very popular in 2-DOF control 

systems [105-108]. It allows independent tuning of disturbance rejection characteristics, 

which is particularly helpful in situations in which gains need to be tuned on-line. 

There are several methods documented in the literature for the tuning of integrating 

systems with time delay using PID controllers. Some popular methods among them are: 

Integral Model Control (IMC) method [109-110], coefficient equating method [111], 

optimization method [112-113], direct synthesis method [114-115] etc. Designers have also 

proposed more than one controller in the main control loop for controlling integrating 

processes [116]. Survey of literature indicates that there is still scope to improve the 

performance and robustness of the PID controller for integrating systems. In the latest IMC 

based PID controller [109] authors have presented empirical formula obtained by curve 

fitting and tuning IMC filter constant to get PID parameters at fixed value of Ms = 2 for a 

limited range of time delay.  For other values of Ms one needs to retune and repeat the 

entire lengthy task of curve fitting.  Jin and Liu [110] have also proposed IMC based PID 
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in terms of performance and robustness tradeoff. Performance is evaluated in terms of 

minimum IAE criteria while robustness is measured by Ms.

In this chapter, a 2-DOF LQR based PID controller together with uniquely designed 

set point filter for integrating systems is presented. The PID parameters are obtained

analytically using LQR and dominant pole placement approach to meet the design criteria 

based on the closed loop natural frequency and closed loop damping ratio. The method is 

based on rewriting the state equations in two parts; one for t < L and other for t L

[64,117], where L is the time delay. As mentioned in Chapter 3, the initial value of PID 

settings for t < L are generally large and time varying. In such cases a large controller 

action is needed and most of the time it causes saturation of the actuator. To handle this 

difficulty, a set point filter is used which is uniquely designed in terms of the PID 

parameters obtained for t L and a single filter time constant . The transfer function of the 

set point filter is designed to make the closed loop response of the whole system equal to 

the output response of a first order system with same time delay. The initial response of the 

controller depends on , which can be suitably tuned to control the transient response so 

that the actuator saturation problem can be avoided. In order to find the optimum settings 

with respect to the load disturbance and robustness, the whole range of positive PID 

parameters has been obtained for all categories of plants in terms of regulatory response,

measured in terms of IAE criteria, and robustness, measured in terms of maximum

sensitivity Ms.



Chapter 4: 4.2 Classification of integrating systems with time delay 

94

4.2 Classification of integrating systems with time delay

In order to demonstrate the effectiveness of the proposed tuning methodology, four 

categories of integrating systems have been considered. The transfer function of these 

integrating processes is listed below

4.2.1 First Order Integrator Plus Time Delay (FOIPTD)

The transfer function of the plant in general form can be written as

ass

eK
sG

sL

)( . (4.1)

examples of frequently encountered FOIPTD processes in real time applications are liquid 

storage tank [118], continuous stirred tank reactor [96], paper drum dryer cans [119] etc. 

unstable first order integrator plus time delay (UFOIPTD) [120] processes also fall under 

this category with ‘a’ lies on the right side of complex s-plane. 

4.2.2 Double Integrator Plus Time Delay (DIPTD)

The transfer function of the plants under this category can be represented as

2
)(

s

eK
sG

sL

. (4.2)

Oxygen control in feed batch fermentation reactors [121] , DC motors with high-speed disk 

drives [116] , vertical take-off of airplanes [97] etc. are examples of DIPTD type 

integrating systems. The DIPTD process is one degree higher in the unstable category 

when compared with the FOIPTD process. The presence of two poles at the origin, gives 

the parabolic response to a small disturbance and thus the amplitude saturation reaches 

more quickly as compared to that of FOIPTD process.  
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4.2.3 Pure Integrator Plus Time Delay (PIPTD)

Transfer function of the model has the following form

s

eK
sG

sL

)( . (4.3)

High-pressure steam flowing to a steam turbine generator in a power plant [98], totally heat 

integrated distillation columns [122] etc. are few examples of PIPTD type integrating 

processes. 

4.2.4 General transfer function of integrating processes with delay

As the main aim of the present chapter is to find out the optimal PID controller 

parameter analytically for the above mentioned models, it will be convenient to represent 

the transfer function of all the models in a single unified form as

ass

eK
sG

sL

)1(
)( . (4.4)

With = 0 and a = a one have FOIPTD process, = 0 and a = 0 correspond to 

DIPTD process and = 1 and a = 1 result in PIPTD process.

4.3 2-DOF LQR based PID tuning for the integrating systems

In most of the industrial control applications the primary concern is to achieve a good 

load regulation against disturbance. However, in the case of integrating processes the 

operating conditions change frequently and thus a good set point tracking is also necessary. 

To fulfill the both requirements an effective solution is to use a 2-DOF PID control system.
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4.3.1 2- DOF control system

Consider the conventional 2-DOF control system block diagram as shown in Fig. 

4-1(a) which is also known as feed forward type control systems. Here d(t) is the load 

disturbance. The closed loop transfer function of 2-DOF control system from set-point 

variable r(t) to the output y(t) and  that from the disturbance d(t) to y(t) are given by

)()(1

)()(

)()(1

)()(

)(

)(

sGsC

sGsC

sGsC

sGsC

sR

sY f (4.5)

)()(1

)(

)(

)(

sGsC

sG

sD

sY
(4.6)

Figure 4-1: (a) Feed forward type 2-DOF control system (b) Set point filter based 2-DOF

control system
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From the feed forward type 2-DOF control system it is very clear from Eqs. (4.5) and (4.6) 

that controller Cf

Fig. 4-1

(s) plays only in the tuning of set point response while the load 

disturbance is control by the main controller C(s) only. (b) is identical to Fig. 

4-1(a), only the configuration is different. Eq. (4.5) can also be written as 

)()(1

)()()(

)(

)(

sGsC

sGsCsF

sR

sY
where 

)(

)(
1)(

sC

sC
sF f . The reason of showing two different 

configurations is to simplify the problem statements and to show how the 2-DOF control 

system can be used to regulate load regulation and set point change separately. In the 

present chapter the configuration of Fig. 4-1(b) is followed to represent the 2-DOF control 

systems.

4.3.2 LQR based PID controller parameters for integrating systems with time 

delay

The procedure to obtain LQR based PID parameters for standard SOPTD a system 

has been already discussed in Chapter 3. Here we will outline only relevant points for 

continuity. Linear plant with time delay is given by 

)()()( Lttt BuAXX (4.7)

Eq. (4.7) can be  decomposed into two components, one for Lt and other for Lt , as

,)()( tt AXX ,0 Lt (4.8)

,)()()( ttt mBuAXX ,Lt                                                                (4.9)

where A, B, X and L are the state transition matrix, control matrix, state matrix and the 

time delay term respectively as defined earlier.  Here )()( Lttm uu . As Eqs. (4.8) and 
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(4.9) are now delay free, the application of standard LQR approach [60] subjected to the 

minimization of the cost function gives the optimum control vector )(tmu

,)()( ttm PXBRu T1 (4.10)

where P is the symmetric positive definite Riccati coefficient matrix. It can be obtained by 

solving continuous algebraic Riccati equation

.0PBPBRQPAPA T1T (4.11)

where Q is the semi positive definite state weighting matrix and R is the positive definite 

control weighting matrix. With some algebraic manipulations, the optimal control vector 

)(tu for the present case, thus can be written as 

,)()( )()( teet tLt XPBRu AAT1 c       ,0 Lt

(4.12)

,)()( )( tet Lc XPBRu AT1 ,Lt (4.13)

where , .PBBRAA T1
c (4.14)

4.3.3 Determination of matrices A, B, Q and P for integrating systems and its 

relation with optimal PID parameters

In the case of unity output feedback system (Fig. 4-1(b)), by putting ,0)(tr we 

have e(t) = -y(t). With this condition, we have,

)(

)(

1)(

)(
)(

su

se

ass

eK

su

sy
sG

sL

,

which can be used to obtain the derivative of state variable )(3 tx as
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)(
1

)(
1

)( 33 Ltu
K

tx
a

tx . (4.15)

As defined earlier here, )()( 21 txtx and )()( 32 txtx , where dttetx )()(1 .

)()(2 tetx ,
dt

tde
tx

)(
)(3 . The state variables X(t) can be represented in matrix form as

)(

1

0

0

)(

)(

)(

1
00

100

010

)(

)(

)(

3

2

1

3

2

1

Ltu
K

tx

tx

tx

a
tx

tx

tx

(4.16)

Comparing Eqs. (4.16) and (4.7) matrices A and B can be obtained for integrating systems 

as

1
00

100

010

a
A ,

1

0

0

K
B .

In this case also we use Q as the same diagonal matrix, R = [1], and P as symmetric semi 

definite matrix as defined in Eq. (3.14) in Chapter 3.

Putting um

0)( 1 PBBRAI Tss

(t) from Eq. (4.10) into Eq. (4.9), it is straightforward to obtain the characteristic 

equation of the system for t L as

,

or,

0
1111 132

2

232

2

332

2
23 p

K
p

K
sp

Ka
ss (4.17)
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At this point let us assume that the closed loop of the system under consideration can be 

represented as a user defined standard second order transfer function with the closed loop 

characteristics equation given by

0)2)(( 22
clclclclcl ssms (4.18)

The third non dominant pole  clclm , is chosen m times away from the real part clcl of 

the dominant pole.  Equating the coefficients of similar power of s in Eqs. (4.17) and 

(4.18), the three elements of matrix P can be obtained as 

2

23

13

)1(

K

m
p clcl ,

2

2222

23

)1(2

K

m
p clclcl ,

2

2

33

11)2(

K

am
p clcl . (4.19)

The remaining elements of matrix P and elements of matrix Q can be obtained by solving 

the algebraic Riccati equation given by Eq. (4.11) as

23132

2

11
1

pp
K

p ,

33132

2

1312
11

pp
K

p
a

p ,

1333232

2

2322
11

ppp
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a

p ,

2
132
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11
1

p
K

q ,
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12
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K

q ,

3323
2
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2

33 1
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1
p

a
pp

K
q . (4.20)

4.3.4 PID controller parameters for Lt

To get the PID controller parameters for t L using Eq. (4.13), it is needed to 

evaluate the elements of matrix LT

e )( 1 PBBRA . These matrix elements can be obtained using 

the inverse Laplace transform as:

Lt

T

Lt

t se
T 111)( )(

1

PBBRAIPBBRA

=

)()()(

)()()(

)()()(

333231

232221

131211

tftftf

tftftf

tftftf

, (4.21)

where,
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Here 2
1 1 clclclcl ip , 2

2 1 clclclcl ip and clclmp3 are the 

desired roots of Eq. (4.18) and

))(( 13211 pppp ,

))(( 32212 pppp ,

))(( 32133 pppp .

Using the values of P, Q, R and LT

e )( 1 PBBRA in Eq. (4.13) the PID controller parameters for 

t L can be written as

)()()(
1 313321231113 LfpLfpLfp

K
Ki ,

)()()(
1 323322231213 LfpLfpLfp

K
K p ,

)()()(
1 333323231313 LfpLfpLfp

K
Kd . (4.22)

Equations (4.22) give the PID parameters for t L. In the simulation these setting were 

used for the entire time domain. It should be noted that in this chapter we have not obtained 
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the PID parameters for Lt0 as mentioned earlier. The reason is that PID parameters 

for this region are generally large in value and time varying and thus need more control 

effort which is difficult to implement in analog domain. Problems associated with the 

startup i.e. for the time horizon of Lt0 will be minimized using the set point filter 

F(s) which make the overall closed loop system 2-DOF control system as discussed in the 

following subsection.

4.3.5 Set point filter F(s)

As discussed earlier (page 23), the set point filter is used to improve the servo 

performance of the closed loop system independently from the employed main load 

disturbance controller. In this chapter the set point filter )(sF is designed uniquely which 

contains the PID parameters obtained using Eq. (4.22) and a single tuning parameter in 

such a way that the overall servo performance represents the response of a first order 

system with time delay L.

From Fig. 4-1(b) the relation between output variable )(ty and input variable )(tr can 

be represented as

)()(1

)()()(

)(

)(

sGsC

sGsCsF

sR

sY
, (4.23)

If one wants the desired output to be equal to the first order system with time delay, then 

Eq. (4.23) must be equal to

Lse
ssR

sY

1

1

)(

)(
. (4.24)

From Eqs. (4.23) and (4.24) F(s) can be obtained as
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Lse
sGsCs

sGsC
sF

)()(1
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)( . (4.25)

Putting the value of G(s) from Eq. (4.4), C(s) = sK
s

K
K d

i
p and keeping only the first 

order term in the expansion of Lse i.e. Lse Ls 1 . F(s) can be obtained as

ipidpd

iipdpd

KKKsKKsKs

KKKsKLK
K

a
sLK

K
s

sF
23

23 1

)( . (4.26)

4.4 Results and discussion

In order to highlight the effectiveness of the proposed 2-DOF LQR based PID 

control system for the integrating processes, we now present results of simulation using 

MATLAB for all the integrating models discussed in section 2 and compare the results

with some latest reported tuning methods of Kumar & Sree [109] and Jin and Liu [110] for 

integrating systems.  In addition, we also discuss the response of an unstable integrating 

system. Eqs. (4.22) give the values of PID parameters in terms of closed loop design 

parameters cl , cl , m and process parameters. A choice of an arbitrary cl or cl

sometimes may lead to the negative value of PID parameters. In the simulation, only those 

cl and cl are considered for which the PID parameters are positive.
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Figure 4-2: Graphical interpretation of maximum sensitivity function

The performance of the proposed controller is measured in terms of minimum IAE 

criteria and maximum sensitivity Ms. The gain margin Am mand phase margin obtained 

from the simulation are used to calculate the maximum sensitivity Ms

)1M/(M ssmA

using the relations 

and )M2/(1sin2 s
1

m as shown in Fig. 4-2 [123]. Higher value of 

Ms is quoted in the paper obtained from gain and phase margin relations to ensure that the 

available maximum sensitivity cannot be more than this value. Note that for a stable 

system, generally a value of Ms less than 2 is preferred for controllers to be robust. For a 

given process model, cl is swept with different cl

0
1TV ii uu

and m to obtain the range of feasible 

PID parameters. At the same time the controller smoothness is evaluated which is 

measured in terms of total variation (TV) defined as i.e. sum of the 

differences between the present output and the previous output of the controller. The Total 
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Energy (TE) of the controller is also estimated using the square of the L-2 norm using 

MATLAB function norm(u(t),2).

In order to evaluate the performance of each tuning method on same footage 

considering different performance indexes (Ms, IAEld, IAEsp, TVld, TVsp

4.4.1 Example 1: FOIPTD process

), a global 

performance index (GPI) has been computed [124]. To compute GPI first normaliz each 

performance index against its highest value ranging over the set of tuning methods. Then, 

the normalized indexes are summed up and the result is divided by the number of measured 

performance indexes. In the present case the total number of performance index is five. 

Tuning method with lowest GPI is considered as the more balanced and optimum tuning 

method. The range of GPI is between 0 and 1. 

Consider an FOIPTD process model [110] with transfer function as

se
ss 14

2.0
P1 . (4.27)

A comparison of the present FOIPTD model with the unified model of Eq. (4.4) gives =

0, a = 1/4 , L = 1 and K = 0.2/4. Fig. 4-3(a) shows the variation of robustness and load 

regulation level of process P1 covering all the positive values of PID parameters as a 

function of closed loop natural frequency cl obtained at a fixed value of m = 2 and at three 

values of damping ratio cl

PID controller parameters are obtained using Eqs. (4.22). The load regulation is 

obtained by measuring IAE

equal to 0.7, 0.8 and 0.9. 

ld Fig.

4-3

, where subscript ‘ld’ denotes the load disturbance. From 

(a) it can be observed that at low cl, controller parameters obtained at cl = 0.9 show
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better sensitivity (low Ms ) and poor load regulation (high IAEld). Notice that controller

parameters for a fixed cl provide better sensitivity at lower values of cl whereas better 

load regulation occurs at comparatively higher values of cl. Simulation performed with 

different models of FOIPTD system choosing different ‘a’, ‘K’ and ‘L’ shows almost 

similar behavior with different Ms and IAEld.

Figure 4-3: Variation of (a) robustness and load regulation level of process P1 covering all 

the positive values of controller parameters at m = 2, (b) Ms and IAEld with m for fixed cl

= 0.4, (c) TVld and TEld of PID controller with cl at fixed value of m = 2.  
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Figure 4-3(b) shows the robustness and load regulation at different values of m at a 

fixed cl Fig. 4-3= 0.4 where both sensitivity and load regulations ( (a)) are better i.e. 

sensitivity Ms is within 1.8 and load regulation IAEld is within 0.6. It is to be noted that for 

the case of integrating systems Ms less than 2 and IAEld less than 1 are considered good. It 

can be easily seen that the choice of positive PID parameters are not available at higher m

with increasing cl .

Figure 4-4: Closed loop time response and control effort of process P1 at different set point 

filter parameter with cl = 0.7, cl

Figure 4-3

= 0.5 and m = 2.

(c) shows the variation of controller smoothness TVld and total controller 

energy TEld. Note that there is very little change in TVld and TEld in the entire range of 
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controller parameters obtained using the proposed tuning method. The closed loop time 

response and control effort of process P1 with and without set point filter F(s) are shown in 

Fig. 4-4. The PID controller parameters are obtained using cl = 0.7, cl

16700

004.230

0025.12

1PQ

= 0.5 and m = 2. 

The corresponding Riccati coefficient and state weighting matrices are,

,

46029670

2964.34498

70988.51

1PP (4.28)

The eigen values of these matrices are positive, thus satisfying the positive definite 

condition of LQR. As shown in Fig. 4-4, the closed loop response curve without F(s)

shows very high overshoot and controller needs comparatively large initial control effort. 

Both overshoot and initial control effort are found to decrease as the value of increases. 

The zoomed view of initial control effort is also shown in Fig. 4-4(b). The regulation 

response to the load disturbance with different F(s) is found to be almost same as expected 

in a 2-DOF control system.
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Figure 4-5: Comparison of (a) Time response (b) Control effort of the proposed 2-DOF

control system for process P1 with some latest PID tuning methods for integrating 

processes.

Figure 4-5 compares the closed time response and control effort of the proposed 

method with latest IMC based 2-DOF tuning methods of Kumar & Sree [109], Jin & Liu 

[110] and well known Skogestad IMC (SIMC) [69]. The closed loop performance 

measures are listed in Table 4-1. For fair comparison, we have chosen the PID parameters 

for which Ms

Table 4-1

is 1.75 (the maximum value in our case). Observing the results shown in 

, it is clear that the present controller (proposed-1) gives reasonable value of the 

robustness and performance measures; better Ms and TVsp as compared to Kumar & Sree 
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and SIMC and almost comparable to Jin & Liu. Though IAEsp is slightly poor than that of 

Kumar & Sree method but it is much better that the other two methods. As far as the load 

disturbance is concerned the proposed method gives better IAEld

Fig. 4-5

than Jin & Liu and SIMC 

and very close to Kumar & Sree as can be seen from (a) (zoom view). Note that the 

proposed method provides a better settling time (Ts) and almost negligible overshoot 

(%OS) i.e. Ts ~ 5s and %OS~ 0 than the other methods (Kumar & Sree: Ts ~ 9s, %OS~ 8; 

Jin & Liu: Ts ~ 20s, %OS~ 10). TV obtained in present case is less than that obtained with 

Kumar & Sree’s method but at the cost of compromise in the performance as observed in 

IAE values. 
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Table 4-1: Performance measures of process P1 obtained with different tuning methods.

PID controller C(s) and set point filter F(s) for process P1 Performance and robustness 

measures
GPI

C(s) & F(s) M IAEs TVld IAEld TVsp

Proposed-
1

(

sp

cl = 0.7,

cl

s
s

sC 1078.10
7224.0

979.4)(

= 0.5

m = 2)
7224.0868.702.3043.40

7224.0257.413.10892.9
)(

23

23

sss

sss
sF

4 1.75 0.28 0.46 2.30 5.44 0.523

Kumar & 
Sree

11863.0

15.0
9487.1

8.7

1
1415.7)(

s

s
s

s
sC

18.3

17.0
)(

s

s
sF

- 1.98 0.23 0.54 1.96 30.8 0.714

SIMC
s

s
sC 667.2

12

1
175.3)(

- 2.1 0.64 0.34 7.24 6.19 0.766

Jin & Liu 12473.0

473.2

392.10

1
1686.3)(

s

s

s
sC

1392.107.25

1266.679.9
)(

2

2

ss

ss
sF

- 1.99 0.56 0.35 3.88 5.34 0.635

Proposed-
2

( cl = 0.8,

cl

s
s

sC 7075.9
5668.0

52.4)(

= 0.4,

m = 2)
5668.0787.679.2783.38

5668.0954.319.1029.10
)(

23

23

sss

sss
sF

4 1.57 0.34 0.42 2.7 5.03 0.518

The present method provides a more balanced controller where total variation and 

load regulation are quite reasonable with much better servo response. The most important 

feature of the proposed method is the flexibility of choosing the PID controller parameters. 

To show this fact we have chosen another controller Proposed-2 and performed simulation. 
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This choice is based on the close inspection of Fig. 4-3(a). It is clear that a choice of cl =

0.8 (keeping other terms fixed i.e. cl = 0.5 and m = 2) gives better sensitivity Ms ~ 1.57 

with reasonable IAEld

Table 4-1

~0.34. The performance measures of this controller are also listed in 

for comparison. It is interesting to note that the GPI of the controller’s proposed-

1 and proposed-2 designed by the present method are much lower than the GPI of the other 

methods.  

4.4.2 Robustness against perturbation

Robustness of the present controller (Proposed-1) under the perturbation of system 

parameters is performed via simulation by varying parameters K, a and L and observing the 

behavior of overshoot and settling time. First, the time delay L is varied by ± 50% keeping 

K and a fixed. Simulation results shown in Fig. 4-6 indicate a 10% hike in the overshoot 

with small oscillations and 30% increase in the settling time when the time delay is 

increased by 50%. There is very little effect on the system performance when the time 

delay is decreased by 50%. It is observed that the present system remains stable for a 

process time delay within the region 0 < L < 2.07s. The variation of parameter a by ± 50% 

(keeping K and L constant) shows a hike in overshoot by ~ 5% when a is increased and 

only  2% when a is decreased. There is almost negligible effect of the variation of a on the 

settling time. In the simulation, a significant effect can be observed on the system 

performance, 20% hike in overshoot and 80% increased in settling time when the 

parameter K (keeping a and L constant) is decreased by 50%. There is almost negligible 

effect on the system performance when K is increased by 50%.
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Figure 4-6: Comparison of the time response and control effort of the perturbed system P1 

when the time delay L = 1 is varied by ± 50% i.e. L = 1.5 and L = 0.5.

4.4.3 Robustness against noise in measurement device

Integrating systems which are a part of unstable systems lead to infinite amplitude 

response with a small disturbance in open loop. These are more prone to noise disturbances 

as compared to that of FOPTD and SOPTD systems as discussed in Chapter 2 and 3. In this 

sub-section we have examine the effect of noise on robustness by introducing white noise 

in the measurement device of the present controller and other controllers. White noise, with 

a power spectrum of 0.00029 and a sample period of 0.01s in the measurement device is 

2) of 0.029 i.e. 5% of the 

variance of control effort. 
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Figure 4-7: Time response and control effort of process P1 with added white noise with a 

power spectrum of 0.00029 and a sample period of 0.01s.

Figure 4-8: Reduction in the control effort with first order and second order noise filters in 

the proposed-1 controller for process P1.
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Results shown in Fig. 4-7 indicate acceptable closed loop response but the increased value 

2

Fig. 4-8

= 29861) seems to be unacceptable. In order to reduce the effect of 

noise in the control signal generally noise filters are used in the measurement device [124-

127]. We have also performed simulation using first order and second order noise filters 

using the methodology discussed in Ref [127]. Results are shown in . It is found 

that there is a 2 = 1.001) with the second 

order noise filter.

Figure 4-9: Comparison of time response and controller effort with proposed-1 PID and 

Kumar & Sree PID with same noise power.

Since the sensitivity of the present controller is better than those obtained with other 

methods (see Table 4-1), the effect of noise on the system output and manipulated variable 

should be expected to be less. This fact is also observed when simulation has been 
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performed by other methods after introducing noise in the measurement device. Simulation

performed by adding same noise power spectrum of 0.00029 and a sample period of 0.01s

in the measurement device shows that control effort of present tuning method 2 = 29861) 

is much less than tha 2 Fig. 4-9= 896956) as shown in .

4.4.4 Example 2: DIPTD process

Figure 4-10: Variation of (a) robustness and load regulation of process P2 with cl

covering all the positive values of PID at m = 2, (b) Ms and IAEld with m for fixed cl =

0.4, (c) TVld and TEld of PID controller with cl at fixed value of m = 2.  
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Consider a DIPTD process model [109] whose transfer function is

se
s 2

1
P2 (4.29)

Here = 0, a = 0 and L = 1. Fig. 4-10 shows the variation of Ms , IAEld , TVld and TEld

covering the all positive PID parameters obtained using Eq. (4.14) by varying the tuning 

parameters cl , cl and m. The variation of Ms and IAEld with cl for the process P2 shows 

almost identical behavior as that of process P1 i.e. PID parameters that are obtained at 

fixed cl and m provide better robustness and poor load regulation at lower cl whereas 

poor robustness and better load regulation at higher cl.

Figure 4-11: Comparison of time response and control effort of the proposed method for 

process P2 with some latest PID tuning methods of integrating processes.
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Table 4-2: Performance measures of process P2 obtained with different tuning methods.

PID controller C(s) and set point filter F(s) for process P2
Performance and robustness 

measures

GPIC(s) & F(s) M IAEs TVld IAEld TVsp

Proposed-
1

(

sp

cl = 0.8,

cl

s
s

sC 5141.0
0152.0

1368.0)(

= 0.4

m = 2)
0152.01975.0061.1056.2

0152.01216.03773.04859.0
)(

23

23

sss

sss
sF

4 1.92 1.31 0.56 3.1 0.21 0.58

Kumar & 
Sree

12199.0

15.0
4489.3

4.9

1
11883.0)(

s

s
s

s
sC

14.942.32

16.584.7
)(

2

2

ss

ss
sF

- 2.01 1.08 0.59 2.98 0.65 0.73

Zin & Liu 17255.0

255.7

38.21

1
1046.0)(

s

s

s
sC

138.211.155

158.1323.46
)(

2

2

ss

ss
sF

- 2.0 9.25 0.49 5.12 0.19 0.81

Proposed-
2

( cl = 0.7,

cl

s
s

sC 5240.0
0185.0

147.0)(

= 0.4,

m = 2)
0185.02213.0113.1096.2

0185.01288.03767.0476.0
)(

23

23

sss

sss
sF

4 2.0 1.11 0.61 2.44 0.24 0.59

Notice that positive PID parameters are not possible at higher values of cl and m.

The range of positive PID reduces as the value of cl Fig. 4-10is increased. As shown in (c), 

there is very little change in the TVld and TEld over the entire range of cl Figure 

4-11

at m = 2.

(a) and (b) compare the time response and controller response of the proposed method 

with Kumar & Sree [109] and Jin & Liu [110] tuning methods. It can be readily seen 
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that present method gives almost same transient response as compared with Kumar and 

Sree method (Proposed-1: Ts ~ 18s, %OS~ 8; Kumar & Sree: Ts ~ 18s, %OS~ 8; Jin & 

Liu: Ts

The present method needs very less initial control effort, the load regulation is 

slightly poor but it is better than Jin & Liu. 

~ 50s, %OS~ 5) and better settling time than that of Jin & Liu.  

Table 4-2 shows the closed loop performance 

measures.  The present controller is obtained at cl = 0.8, cl = 0.4 and m = 2 (Proposed-1). 

In order to demonstrate the flexibility of the present method, the controller parameters 

obtained with cl = 0.7, cl

Table 4-2

= 0.4 and m = 2 (Proposed-2) together with performance 

measures are also presented in for comparison. It is very easy to see that all the 

performance measures of this controller are quite reasonable and some of them are better 

than those obtained with other methods. The evaluated GPI of the controllers proposed-1

and proposed-2 obtained by the present method, are much lower than the GPI of other 

methods.    

4.4.5 Example 3: PIPTD process

Consider a PIPTD process model [109] with transfer function as

se
s

4.72.0
P3 . (4.30)

In this case, if we use = 1 in the unified process model given in Eq. (4.4), all the 

coefficients in Eqs. (4.19) and (4.20) will be either zero or infinite which is not desired. 

Here, we have use = 0.999 which is much closer to 1 and this replacement makes the 

estimated model to appear like 

se
ss

4.7
estimated 1001.0

2.0
P3 . (4.31)
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Figure 4-12: Variation of (a) robustness and load regulation of process P3 with cl

covering all the positive values of PID at m = 2, (b) Ms and IAEld with m for fixed cl =

0.15, (c) TVld and TEld of PID controller with cl

It can be easily checked that the frequency response of the original and estimated 

transfer function are almost similar within the frequency range of 0 to 10

at m = 2.  

7 Figure 

4-12

rad/s.

shows the variation of performance measures for a wide range of controller design 

parameters. In the simulation, the controller parameters are obtained using the estimated 

transfer function given by Eq. (4.31), whereas the performance measures are obtained 
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using the actual transfer function given by Eq. (4.30). From Fig. 4-12(a) it is easy to notice 

that the range of cl is limited for positive PID parameters in a small zone between 0.1 to

0.24. At higher value of cl the sensitivity Ms improves whereas the load regulation IAEld 

deteriorates. 

Figure 4-13: Comparison of the time response and control effort of the proposed method 

for process P3 with some latest PID tuning methods of integrating processes.

Notice from Fig. 4-12(b) that the higher value of m improves sensitivity at the 

expense of load regulation. At higher cl both TVld and TEld show the improving behavior. 

Observing the simulation results, it is clear that the choice of PID controller parameters is 

available at higher value of cl where all the performance measures show improving 

behavior except the load regulation. 
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Table 4-3: Performance measures of process P3 obtained with different tuning methods.

PID controller C(s) and set point filter F(s) for process P3 Performance and robustness 
measures

GPIC(s) & F(s) M IAEs TVld IAEld TVsp

Proposed-
1

(

sp

cl = 0.7,

cl

s
s

sC 1782.1
0214.0

5827.0)(

= 0.2,

m = 2)
0214.0011.183.1256.23

0214.05613.0866.1714.8
)(

23

23

sss

sss
sF

20 1.91 0.97 0.042 9.74 0.45 0.70

Kumar & 
Sree 14836.1

1
2985.3

1.34

1
15169.0)(

s
s

s
sC

14.30

125.17
)(

s

s
sF - 2 1.4 0.035 17.5 0.72 0.88

Jin & Liu

s
sC

788.35

1
1384.0)(

1788.35

121.14
)(

s

s
sF

- 2 2.13 0.039 15.3 0.38 0.85

Proposed-
2

( cl = 0.7,

cl

s
s

sC 0885.1
0247.0

5743.0)(

= 0.15,

m = 3)
0247.0018.143.1159.19

0247.05496.0839.105.8
)(

23

23

sss

sss
sF

18 1.90 0.847 0.045 10.16 0.51 0.72

Proposed-
3

( cl = 0.8,

cl

s
s

sC 9791.0
0203.0

5342.0)(

= 0.15,

m = 3)

0203.08993.059.1062.17

0203.05139.00.224.7
)(

23

23

sss

sss
sF

18 1.79 1.018 0.041 10.98 0.47 0.71

One can always make a tradeoff between load regulation and sensitivity according 

to the requirement of a given system. Figure 4-13(a) and (b) show the closed loop time 

response and controller response of the present PID controller obtained using cl = 0.7, cl

= 0.2 and m = 2 (Proposed-1) together with those obtained by Kumar & Sree and Jin & Liu 
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methods.  The value of is chosen 20 to reduce the overshoot which also affects the rise 

time. The proposed controller gives better load regulation and sensitivity as can be seen 

from Table 4-3. The closed loop performance measures are (Proposed-1: Ts ~ 25s, %OS~ 

0; Kumar & Sree: Ts ~ 70s, %OS~ 10; Jin & Liu: Ts

Table 4-3

~ 25s, %OS~ 0) same as that of Jin & 

Liu and much better than that of Kumar & Sree. The initial control effort is much less than 

that of Kumar & Sree [109]. compares the closed loop performance measures of 

the controller designed by proposed method with that of Kumar & sree and Jin & Liu 

methods.  To demonstrate the flexibility of the present method we have also listed 

parameters and performance measures of two more controllers indicated by Proposed-2 and

Proposed-3. Here it can be seen that all the performance measures are quite reasonable and 

some of them are better than those of the controllers designed by other method. A

comparison of the GPI of different controllers listed in Table 4-3 clearly indicates that the 

controllers Proposed-1, Proposed-2 and Proposed-3 are better and more balanced 

controllers.  

4.4.6 Example 4: UFOIPTD process

Consider a challenging unstable integrating process [128] with transfer function as

1
4

2.0

ss

e
P

s

. (4.32)

Here = 0 , a = -1 and L = 0.2. Figure 4-14 shows the performance measures of process P4 

obtained by varying tuning parameters cl cl and m. As discussed earlier, in this case also 

the regulatory performance is better at the lower value of cl and at higher value of cl,

whereas the sensitivity shows the opposite behavior. 
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Figure 4-14: Variation of (a) robustness and load regulation of process P4 with cl

covering all the positive values of PID at m = 2, (b) Ms and IAEld with m for fixed cl =

1.4, (c) TVld and TEld of PID controller with cl at m = 2.  
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Table 4-4: Performance measures of process P4 obtained with different tuning methods.

PID controller C(s) and set point filter F(s) for process P4 Performance and robustness 

measures

GPIC(s) & F(s) M IAEs TVld IAEld TVsp

Proposed-1

(

sp

cl = 0.7,

cl

s
s

sC 1425.2
2108.0

7275.0)(

= 0.67

m = 2) 2108.0854.0579.2285.1

2108.05167.0997.0572.0
)(

23

23

sss

sss
sF

1.0 1.94 0.98 0.81 1.68 0.85 0.81

Kumar & 
Sree

10488.0

11.0
5459.1

9.2

1
19421.1)(

s

s
s

s
sC

19.24832.4

18.181.0
)(

2

2

ss

ss
sF

- 1.94 0.29 0.81 0.72 1.72 0.67

Chao et. al.
s

s
sC 7.2

4.4

1
18594.0)(

14.488.11

18.293.1
)(

2

2

ss

ss
sF

- 1.94 1.08 0.79 1.48 1.01 0.82

Proposed-2

( cl = 0.7,

cl

s
s

sC 761.2
0515.1

0215.2)(

= 1.5,

m = 2) 0515.1652.2974.3657.1

0515.197.0357.14478.0
)(

23

23

sss

sss
sF

0.6 2.5 0.20 0.92 0.67 1.37 0.68

Proposed-3

( cl = 0.8,

cl

s
s

sC 6857.2
780.0

7748.1)(

= 1.4,

m = 3) 78.0243.2751.3611.1

78.09949.0331.14629.0
)(

23

23

sss

sss
sF

0.6 2.4 0.25 0.87 0.74 1.33 0.67



Chapter 4: 4.4 Results and discussion

127

Figure 4-15: Comparison of process P4 with some latest PID tuning method for integrating 

processes (a) Time response (b) Control effort.

Figure 4-15(a) and 4-15(b) compare the time response and controller response of the 

process P4 with other reported tuning methods for integrating systems respectively. Table 

4-4 lists the closed loop performance measures. It is readily observed from Fig. 4-14 that 

with same Ms (Ms = 1.94), the present controller (Proposed-1) gives a reasonable value of 

performance measures. The load regulation is better than Chao et. al. [128] only, the 

controller smoothness is almost identical and the initial control effort is much better than 

the both methods. In this case the estimated closed loop performance measures are much 

better than the other two methods (Proposed-1: Ts ~ 5s, %OS~ 3; Kumar & Sree: Ts ~ 7s,
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%OS~ 5; Chao et. al.: Ts

Fig. 4-14

~ 9s, %OS~ 5). The main feature of the proposed tuning method 

is the flexibility to choose PID controller parameters in a tradeoff between robustness and 

load regulation. A comparison of GPI of the controllers listed in Table 4-4 indicates that 

global performance indexes of controller’s Proposed-2 and Proposed-3 are comparable to 

that of Kumar & Sree method. Observing (a) and 4-14(b), it is clear that if 

robustness is compromise, then much better load regulation can be achieved. To 

demonstrate this fact simulations are performed with controllers Proposed-2 and Proposed-

3. Results are also listed in Table 4-4. Here one can see that all the performance measures 

are improved considerably.

4.5 Summary

The design of a 2-DOF LQR based PID controller for integrating systems 

considering the tradeoff between regulatory performance and sensitivity has been presented 

in this chapter. The PID tuning is based on LQR using dominant pole placement approach. 

The three design parameters, closed loop damping ratio cl , natural frequency cl

The simulation has been performed covering a series of integrating plants such as 

FOIPTD, DIPTD, PIPTD and UFOIPTD. Simulation results indicate that both good 

robustness and load regulation cannot be achieved simultaneously. Better sensitivity occurs 

and 

relative dominance m are used to obtain the whole range of positive PID parameters for a 

given model. In the proposed method the transient response can be precisely tuned using a 

unique design of a set point filter based on single parameter and PID parameters obtained 

using the LQR method. The tuning rule of the proposed method is analytical for PID 

controller as well as for the set point filter and is applicable for a wide range of integrating 

processes. 
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at lower value of cl and at higher value of cl, whereas better load regulation can be 

achieved at higher cl and lower cl. Thus a proper design needs a tradeoff between 

sensitivity and load regulation. It is observed that tuning of set point filter constant plays 

a crucial role in reducing the overshoot and initial control effort. Based on the simulation 

results of different types of integrating systems discussed in the present work, a guideline 

for choosing the range of suitable cl and cl

8.07.0 cl

and can be summarized as follows. For  

FOIPTD system the range is and 6.04.0 cl , for  DIPTD system 

8.07.0 cl and  45.03.0 cl , for  PIPTD system 9.07.0 cl and  

18.013.0 cl , for  UFOIPTD system 9.07.0 cl and  75.125.1 cl .  The value 

of can be taken around 3 to 5 for most of the integrating systems except for PIPTD 

system where it should be between18 to 22. On average, the proposed 2-DOF PID 

controller tuning method gives a reasonably good closed loop performance measures for 

most of the integrating plants. In order to get the positive PID parameters for a given 

system one needs to sweep the three tuning parameters cl , cl and . Since the method is

analytical, it takes very little time. Once the variation of the robustness and load regulation 

plot is obtained, it gives lots of flexibility to the designer for choosing the suitable PID 

controller parameters based on tradeoff between the robustness and performance. The 

controller designed by this method also requires minimum control effort as the method is 

based on LQR. 
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CHAPTER 5

Conclusion and future works

5.1 Conclusion

The present thesis has studied and developed tuning methods of PID controller 

parameters for variety of processes with time delay. This time delay can appear by various 

means. These delays can be random or constant. The delay arises from the measurement 

sensor during processing of the output data, from the reference signal due to remote 

operation of plants etc. Presence of time delay deteriorates the system performance and 

many times causes unwanted response. PID controller which is second most widely used 

controller in the process industry needs to be designed optimally to handle such time delay 

in the control systems.

Three analytical PID tuning methods have been developed in order to cover most 

categories of industrial plants which include first order systems with time delay, second 

order systems with time delay and integrating systems with time delay. Sub categories of 

second order system and integrating systems have also been studied. Systems studied in 

second order categories are systems with highly oscillatory behaviour, critically damped 

system, under damped systems and over damped systems. Systems studied in integrating 

categories are first order integrating systems, pure integrating systems and double 

integrating systems. In the all three tuning methods proposed in this thesis, the dominant 

pole placement approach is common. 
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The first tuning method discussed in Chapter 2 is a general one and can be applied 

to varieties of plants. This method is based on D decomposition method in which the range 

of PID parameters have been obtained graphically for pre-specified closed loop 

performance measures. The second tuning method, discussed in Chapter 3, is specific to the 

standard second order systems with time delay. This method uses LQR approach together 

with pole placement technique to tune PID controller for desired closed loop response with 

minimum control effort. The third tuning method for 2-DOF control system discussed in 

Chapter 4 applies to wide varieties of integrating systems. PID tuning rules in this case are

also developed using LQR approach and pole placement technique to control both servo 

and regulatory responses simultaneously.

The salient points of the studies performed in this thesis can be summarized as follows:

The graphical tuning rule for PID controller developed in Chapter 2 is applicable to 

variety of first and second order systems with time delay. It is observed from the simulation 

that sets of proportional and integral gains which are on the linear part with positive slope 

on fixed damping ratio curve with increasing natural frequency in the parameter plane, are 

more appropriate and produce closed loop time response performance measures very close 

to the specified values. It is also observed that controller designed for small closed loop 

natural frequency requires very less control effort. On the other hand, the sets of 

proportional and integral gains which are on the negative slope of the above mentioned 

curve, give poor closed loop time response measure. 

In the case of FOPTD system, the choice of controller parameters corresponding to 

comparatively lower value of natural frequency is more suitable for the robust controller 

design under the perturbation of system parameters.   
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The PID controller designed using LQR technique and dominant pole placement,

discussed in Chapter 3, is shown to give a good closed loop time response for various 

second order processes with time delay as compared with the existing PID tuning methods 

using LQR. 

The present tuning method is also found to work well to control the performance of 

an unstable second order plants. In this case the choice of closed loop natural frequencies is

found to be much less for designing PID controller when compared with other stable 

second order systems. 

A comparison of simulations results with other time domain performance indices

such as ISE, ITSE and IAE indicates that the present method gives an overall better closed 

loop time response with comparatively less control effort. 

Simulation results indicate that change in the location of non-dominant pole 

towards left hand side in complex s-plane increases the robustness of controller in the case 

of mismatch between the process delay time and the delay time at which the controller is 

designed. However this action increases the rise time which is completely opposite to the 

cases of systems with no time delay. 

The third methodology discussed in Chapter 4 focuses on developing of 2-DOF PID 

controller tuning method utilizing LQR and dominant pole placement approach especially 

for integrating plants. The advantage of this method is the flexibility in choosing PID 

parameters considering the trade-off between performances and robustness. 

Simulation results performed on different kinds of integrating plants indicate that 

better sensitivity occurs at the lower value of natural frequency and at higher value of

damping ratio and vice versa. 
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The set point filter designed with PID parameters and system parameters consists of  

only one variable parameter to control the servo response and it plays a crucial role in 

reducing the overshoot and initial control effort. An increase in the value of causes 

slowing down in the transient response and reduces overshoot as well as initial control 

effort.  

The present method gives lots of flexibility to the designer for choosing the suitable 

PID controller parameters based on tradeoff between the robustness and performance. 

Controller tuned using this also needs minimum control effort as the method is based on 

LQR.

Studies carried out on the introduction of noise in the measurement device indicate 

that the controller designed by present method gives better noise sensitivity than reported 

controllers. However, designed by other method better response first order or second order 

noise filter should be used after the measurement device.

5.2 Future works

Tuning of PID controller parameters is a research area with much opportunity for 

contribution. It needs special attention for different category of plants. In the present thesis,

only few goals have been address in developing PID controller parameters tuning for the 

plants with time delay. The theoretical work presented in the thesis on the design of PID 

controller is developed for single input and single output system, disturbance observer etc.

This can be extended in developing algorithm to control multiple input and multiple output 

systems which are more common in the present regime. 
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The present theoretical work on the design of PID controller, developed for 

analogue domain, can be further extended to develop same type of algorithm in digital 

domain. In developing digital PID controller proper care needs to be taken in choosing 

suitable sampling time as its results in quantization effect, frequency warping etc. The 

conversion of present s-domain PID controller setting to z-domain will be more 

advantageous for the industrial practitioner due to the availability of fast and less costly 

processors. 

The graphical tuning procedures presented for obtaining PI controller parameters 

for fixed time delay systems, could be further extended for the case of network delay where 

the delay is random and changes frequently. 

Finally the present analysis is fully focused on the integer order PID controller 

design. Introduction of fractional order PID would certainly open doors of new research in 

the design of optimum controller with respect to control efforts, robustness and desired

closed loop time response.
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