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power production and strategic purposes etc is becoming more popular and hence the chances of 

accidental or occupational exposure have also increased. Presently, our unpreparedness to 

provide concrete medical countermeasure and inability to cover risk of bulk damage to 

population has severely compromised risk/benefit ratio for use of IR [1]. IR is known to alter the 

functions of cellular macro-molecules leading to tissue damage. The deleterious effects of 

ionizing radiation (IR) are mediated both through the direct deposition of energy to critical 

biomolecules, and indirectly through the generation of highly reactive free radicals. 

Approximately 75% of the damage to cells is accounted through indirect effect by low LET 

ionizing radiations. This cellular damage is manifested through system specific syndromes 

categorized based on the dose range of exposure.  

Immune system is vulnerable to IR mediated damage leading to subsequent fatal consequences. 

Protection or reconstitution of the hematopoietic system is a critical area of research in the 

development of radioprotectors and therapeutic agents. Exposure of animals to radiation doses 

above 1 Gy leads to hematopoietic syndrome resulting in leucopenia. Hematopoietic recovery 

after radiation exposure is dependent on the presence of spared hematopoietic stem and 

progenitor cells in the bone marrow. 

Currently there are no radioprotectors or mitigators available that are approved by Food and 

Drug Administration (FDA) for general use in humans for the prevention or treatment of IR 

induced hematological toxicity. Amifostine (EthyolR) is the only drug approved by the FDA to 

reduce the toxicity of radiation therapy for limited clinical indications [2].  

Recent reports on several phytochemicals have demonstrated their radiomodulatory activity in 

experimental animal systems. Some of them viz. genestein and gamma tocotrienol analog are at 

advanced stages of drug development as radioprotector [3, 4]. Some of these potential 

radioprotective phytochemicals are plant secondary metabolites synthesized by phenylpropanoid 

pathway that include a variety of plant polyphenols viz., alkaloids, terpenoids, quinones, 

flavonoids etc. They primarily serve to protect plants against variety of biotic and abiotic stresses 

such as UV irradiation, ozone, pollutants, wound, oxidative stress, infection and herbivores.  

Baicalein, 5,6,7-trihydroxyflavone isolated from dried roots of Chinese herbal medicinal plant 

Scutellaria baicalensis has been shown to inhibit 12-lipoxygenase and it induces apoptosis in 
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several cancer cells such as breast carcinoma cells, colon carcinoma cells, and leukemia cells [5-

7]. Baicalein exhibits free radical-scavenging activity and attenuates oxidative stress [8].  

Previous studies from our laboratory have demonstrated anti-oxidant and radioprotective 

properties of baicalein in cell free system. Structurally, it is similar to soy isoflavone geneistein 

(4, 5, 7-trihydroxyflavone) which is being tested as a radioprotector [9]. In the present study, 

efficacy of baicalein as a radioprotector and immunomodulator was investigated using mouse 

model.  

AIMS OF THE PRESENT STUDIES: 

 To investigate the potential of baicalein to offer protection to murine splenic lymphocytes in 

vitro against ionizing radiation induced damage and elucidate underlying molecular mechanism. 

 To examine in vivo radioprotective ability of baicalein monitored in terms of changes in bone 

marrow cell viability, functionality of splenic lymphocytes, survival and body weight changes in 

mice. 

 To study the effect of baicalein on T cell responses in vitro and in vivo 

 To examine the effect of baicalein on murine T cell lymphoma EL4 cells in vitro and in vivo. 

ORGANIZATION OF THE THESIS: 

The work embodied in this thesis is divided into five chapters:  

(1) Introduction  

(2) In vitro and in vivo radioprotective effects of baicalein 

(3) In vitro and in vivo anti-inflammatory effects of baicalein  

(4) Anti-tumor effects of baicalein  

(5) Summary and Conclusions 

 

CHAPTER 1: Introduction  

This chapter describes about the present developments in the field of radioprotection and 

highlights the overall need for continued pursuit in this area. This chapter provides reasonable 

information about current findings and approaches used to deal with the challenges posed in this 

field. It encompasses a list of drugs currently undergoing clinical or pre-clinical trials, their mode 

of action, potency and window of protection and type of tissue being protected against IR 

induced damage.  
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In light of the current research findings in this area, it is perceived that overall requirements of an 

ideal radioprotector may not be completely fulfilled by a single agent. Hence, researchers are 

exploring an alternative approach of combining two or more radioprotectors of different class 

and potency depending upon the need to enhance efficacy and reduced toxicity [10].  

Researchers are employing target based design of small molecule inhibitors or activators of 

critical proteins in cells. In this class, critical targets inside cells are identified that regulate cell 

survival in stress and subsequently small molecules are designed for acting on these targets. 

Inhibitors of p53 namely pifithrin-alpha [11], flagellin derived activator of NF-kB [12], CDK4/6 

inhibitor PD [13], Nrf2 activators [14] are some of the examples based on this approach. Other 

approach includes screening of phytochemicals and repurposing of certain FDA approved drugs 

to test their radioprotective ability. Several drugs have been tested with this approach and have 

been shown to possess radioprotective potential with low or moderate efficacy.  

 

In this chapter, existing information about current literature on phytochemicals being used as 

radioprotector is provided to get bird‟s eye view about intense investigations in this field. Still 

continued search for newer plant derived radioprotector is in progress to overcome the 

drawbacks of currently available phytochemical radioprotectors.  

Cells of the hematopoietic system are susceptible to radiation induced damage due to their high 

proliferation index. Sublethal doses of radiation kill a majority of cycling hematopoietic 

progenitor cells. Literature reports and previous studies from our laboratory indicated potential 

of baicalein to offer protection against IR induced death of cells from hematopoietic origin. This 

chapter describes rationale behind choosing baicalein to test for its radioprotective ability in light 

of current radioprotectors. 

Radiation is a known immune suppressor and inducer of inflammation. Inflammatory response 

initiated post-radiation injury further complicates management of human health. Several findings 

have reported baicalein as a bonafide anti-inflammatory agent. This chapter takes an account of 

current studies pertaining to management of inflammation by baicalein and its probable 

relevance in the context of this thesis.  

The very first requirement of a radioprotector is not to offer survival advantage to tumor cells 

when used during radiotherapy. This section summarizes current knowledge about anti-tumor 

activity of baicalein and study plan designed for this thesis. 
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CHAPTER 2: In vitro and in vivo radioprotective effects of baicalein 

This chapter describes radioprotective potential of baicalein using murine splenic lymphocytes 

and mouse model. Baicalein scavenged IR induced free radicals in murine splenic lymphocytes 

at 5µM but significant prevention of radiation induced apoptosis was evident at 50µM indicating 

that antioxidant activity of baicalein may not be solely responsible for radioprotection. 

Interestingly, pharmacological inhibitors of ERK or Nrf2 abrogated baicalein mediated 

radioprotection. Baicalein induced phosphorylation of ERK via inhibition of corresponding dual 

specificity phosphatase MKP3 leading to activation of Ets1 which is involved in regulation of 

cell survival under oxidative stress. 

Baicalein induced nuclear translocation of redox sensitive transcription factors Nrf-2 and NF-kB 

that was abolished upon treatment with ERK inhibitor. Nrf-2 is involved in regulating redox 

homeostasis under conditions of oxidative stress. There was a time dependent increase in Nrf-2 

dependent genes viz. catalase, Mn-SOD, GCLC, GCLM, and hemoxygenase-I (HO-1). 

Administration of baicalein (10mg/kg bw i.p) to Swiss albino male mice for three consecutive 

days offered up to ~70% protection against whole body irradiation (WBI 7.5Gy dose) induced 

mortality. It was observed that baicalein administration modified LD50/30 of mice exposed to 

radiation from 6.5Gy to 7.5Gy resulting in DMF of 1.153.  

BM-MNC isolated from mice administered with baicalein and exposed to WBI (4Gy or 7.5Gy) 

exhibited significantly higher recovery as compared to WBI group.  Interestingly, owing to its 

antioxidant ability baicalein administration led to suppression of cellular ROS levels in BM-

MNC induced by WBI exposure. Stimulation of splenic lymphocytes with Con A after isolation 

from baicalein administered mice exposed to WBI (4Gy) exhibited significantly higher 

proliferation as compared to that in lymphocytes isolated from WBI exposed group. 

It was observed that baicalein administration led to significant increase in hematopoietic stem / 

progenitor cells (HSPC) as evinced from Hoechst side population assay at 24h and day 5. To 

confirm these results, the frequency of lin
-
CD244-CD150+ cells (phenotype of HSPC using 

signaling lymphocyte activation marker analysis) in bone marrow of mice administered with 

baicalein was enumerated and observed a significant increase on day 5. Further, baicalein 

administration led to augmented levels of pNrf-2 in lin
-
BM-MNC. Whereas, survival of mice 
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exposed to WBI was significantly reduced when they were given with all-trans retinoic acid 

(ATRA) (an inhibitor of Nrf-2) prior to baicalein. These results confirmed the role of Nrf-2 in 

baicalein mediated radioprotection.  

CHAPTER 3: Baicalein suppressed mitogen induced T cell responses in vitro and in vivo: 

Results from previous chapter on in vivo experiments have shown suppressive effect of baicalein 

on Con A induced proliferation in splenic lymphocytes. In vitro studies have shown that, 

baicalein activates ERK/NF-κB in murine splenic lymphocytes. Since, Con A stimulation also 

leads to activation of ERK/NF-κB in lymphocytes, it was interesting to see how lymphocytes 

respond to Con A stimulation in presence of baicalein.  

It was observed that, baicalein treatment suppressed Con A induced T cell proliferation as well as 

cytokine secretion. Lymphocyte activation is controlled by the ubiquitous transcription factor 

NF-κB and its DNA binding is regulated by a dithiol disulfide, thioredoxin. Thioredoxin reduces 

critical cysteine residue (Cys 62) in p65 subunit o NF-κB thereby allowing its DNA binding.  

After Con A stimulation, binding of transcription factor to DNA requires increased thioredoxin 

(Trx) activity in nuclear compartment. Hence, effect of baicalein treatment on thioredoxin 

activity in nuclear compartment in presence and absence of Con A was studied. Interestingly, 

baicalein per se did not influence thioredoxin activity but it suppressed Con A induced increase 

in thioredoxin activity in the nuclear compartment. It was observed that, baicalein treatment did 

not suppress Con A induced DNA binding of NF-κB.  

This raised another question that, whether suppression of thioredoxin activity has really any role 

to play in observed anti-inflammatory effect of baicalein. To address this question, cells were 

treated with sodium selenite, an activator of thioedoxin reductase (TrxR), prior to baicalein and 

Con A treatment. It was observed that, sodium selenite treatment could significantly reverse 

baicalein mediated suppression of Con A induced proliferation and thioredoxin activity. This 

suggested that, Trx inhibition may be the mechanism of anti-inflammatory activity of baicalein.  

In order to ascertain the in vivo anti-inflammatory activity of baicalein, purified CD4+ T cells 

were treated with baicalein and transferred to autologus lymphopenic host. Transient exposure of 

purified CD4+ T cells to baicalein did not inhibit the homeostatic proliferation of these cells in 

mice. These findings suggested that baicalein treatment did not pose any interference to 
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homeostatic proliferation of T cells and its anti-inflammatory effects are limited to only mitogen 

induced proliferation. To study the in vivo anti-inflammatory efficacy of baicalein, splenic 

lymphocytes from C57BL/6 mice (allogeneic donor) were incubated with baicalein in vitro and 

adoptively transferred to immunocompromised Balb/c mice. The mice that received untreated 

control cells developed graft-versus-host disease (GVHD) that led to 80% death within 10 days. 

However, in mice that received baicalein treated cells showed 40% mortality and lower 

morbidity with better health for 30 days of experimental period. On day 5 post allo-

transplantation, the levels of pro-inflammatory cytokines (IL-6, IFN-γ and IL-2) were 

significantly higher in the serum of mice which received vehicle treated allogenic lymphocytes 

as compared to that in serum of mice which received baicalein treated allogenic lymphocytes. 

This observation clearly shows potent anti-inflammatory activity of baicalein in vivo. 

CHAPTER 4: Differential effect of baicalein on lymphocytes and lymphoma cells is due to 

differential modulation of thioredoxin reductase:  

It was found that baicalein induced concentration dependent death in T cell lymphoma EL4 cells. 

Studies on anti-inflammatory effects of baicalein showed that it suppressed mitogen induced 

increase in Trx activity in lymphocytes. Actively dividing cells and many tumor cells 

overexpress TrxR. TrxR functions as oxidoreductase and serve the function of reducing critical 

cysteine residues in some key proteins inside cells that include ribonucleotide reductase, 

methionine sulfurtransferase and several transcription factors. Oxidation of Trx1 facilitates its 

dissociation from ASK1 (apoptosis signaling kinase) that subsequently leads to activation of 

apoptotic machinery. Further, inhibitors of TrxR are being explored as potential anti-tumor drugs 

because of their critical role in cell survival. Using specific inhibitors and shRNA based 

knockdown approach, it was deduced that thioredoxin system is critical for survival of mouse as 

well human lymphoma cells. It was observed that impairment of thioredoxin system lead to 

enhancement of tumor radiosensitivity. 

Since baicalein suppressed mitogen induced increase in Trx activity in lymphocytes, levels and 

activity of Trx and TrxR in EL4 cells treated with baicalein was measured. It was observed that, 

baicalein treatment led to significant suppression in Trx and TrxR activity suggesting it may be 

responsible for its anti-tumor activity. Treatment of EL-4 cells with baicalein altered the activity 

of redox regulatory enzyme thioredoxin reductase. Baicalein significantly suppressed the activity 
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of TrxR which may be responsible for the observed anti-tumor activity of baicalein. Baicalein 

treatment led to increase in phosphorylation of ASK1 and activity of caspase-3.  

Baicalein induced cell death in EL4 cells was significantly reduced, when Trx over expressing 

EL4 cells were used. These findings suggest involvement of thioredoxin system in mediating 

observed anti-tumor effects of baicalein.  

CHAPTER 5: Summary and conclusions 

This chapter describes about the implications of the studies carried out in the current thesis. In 

the present study, promising radioprotective properties exhibited by baicalein have been 

elucidated. A novel mechanism of radioprotection via inhibition of phosphatase and augmenting 

hematopoietic stem cell abundance is demonstrated. Baicalein has been shown to activate pro-

survival transcription factors NF-kB, Ets-1 and Nrf-2. This study has outlined pleiotropic targets 

of baicalein in murine splenic lymphocytes as well as in other hematopoietic cells in mice. This 

study has generated novel insights and improved understanding about strategies for manipulation 

of cellular response IR to achieve better survival of cells and animals.  

Further, another very important aspect about regulation of inflammatory response is also 

highlighted. This data provides novel mechanistic details about anti-inflammatory activity of 

baicalein independent of NF-kB-DNA binding. In vitro and in vivo studies on models of 

inflammation have underscored the fact that, baicalein suppressed mitogen and alloantigen 

induced activation / proliferation of T cells without affecting their homeostasis driven 

proliferation in lymphopenic environment.  

One of the important attributes of a radioprotector is not to offer survival advantage to tumor 

cells during IR induced oxidative stress. This thesis has identified that thioredoxin system plays 

an important role in regulating tumor response to IR exposure. Our study has also provided 

inputs about anti-tumor activity of baicalein on EL4 cells which are tumor counterpart of normal 

murine T cells. This study highlights inhibition of thioredoxin system as an important strategy to 

curb inflammation as well as cancer.  

The major conclusions drawn from this study are:   

1. Baicalein protected murine splenic lymphocytes but not lymphoma cells against radiation 
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induced cell death 

2. Baicalein activated ERK through inhibition of MKP3 activity  

3. Baicalein activated pro-survival transcription factors NF-κB and Nrf-2 via ERK 

4. Administration of baicalein exhibited protection against WBI induced mortality in Swiss 

and C57BL6 mice  

5. Baicalein administration enhanced hematopoietic stem cell abundance 

6. Administration of ATRA, a pharmacological inhibitor of Nrf-2 abrogated baicalein 

mediated in vivo radioprotection 

7. Baicalein did not suppress Con A induced NF-κB activation but inhibited activation of 

murine splenic lymphocytes in vitro 

8. Baicalein mediated suppression of T cell responses is via inhibition of mitogen induced 

thioredoxin activity  

9. Pharmacological activator of thioredoxin reductase partly abolished baicalein mediated 

suppression of T cell responses 

10. Baicalein induced cell death in EL4 and Jurkat cells in a dose and time dependent manner 

11. Trx is a vital regulator of cellular radiosensitivity in EL-4 lymphoma tumor cells. 

12. Baicalein treatment led to significant suppression in Trx and TrxR activity and over-

expression of Trx in EL4 cells prevented baicalein induced cell death 
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1.1 Ionizing Radiation (IR) 

Ionizing radiations (X-rays and gamma rays) belong to right end of the electromagnetic spectrum 

that possesses enough energy to dislodge an electron from atoms or molecules Fig. 1.1. They can 

be in the form of wave or particulate matter (photons). Apart from this, there are charged (beta, 

alpha and protons) or neutral sub-atomic particles (neutrons) which are capable of causing 

excitations and ionizations in the medium. Environmental radiation is mostly non-ionizing type, 

including ultraviolet (UV) rays, visible light, radiowaves and microwaves. 

 

 

 

 

 

 

 

 

 

 

  Fig. 1.1 Electromagnetic Spectrum (Hall, E., 2005) 

 

Living organisms are constantly exposed to background ionizing radiation (IR) from both natural 

sources and also from human activities. Natural sources e.g. cosmic rays, and terrestrial sources 

that come from radionuclides in the earth‟s crust, air, food and water and the human body itself 

contribute to ~90% of background IR exposure [15] . Whereas man-made sources include 

medical uses of radiation and radioisotopes in health care, generation of electricity from nuclear 

power reactors, industrial uses of nuclear energy and so on.  
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1.1.1 Energy deposition by IR 

IR loses energy while travelling through matter along the length of the path which is called as 

Linear Energy Transfer (LET). It is defined as the average energy deposited per unit length of 

track and the unit is keV/μm [16]. LET is used as a measure to indicate the quality of different 

types of IR. Biological effect of IR is directly proportional to LET. Energy deposition along the 

track is function of charge, mass and nature of radiation [17]. Based on the energy deposition, IR 

are categorized into low and high LET radiations and γ rays are considered as low LET 

radiations because photons are mass less and charge less and they cause sparse ionizations. 

However, high LET radiations like α, β and protons deposit most of the energy in very short 

distances due to charge and mass [18]. Radiation is mostly measured as absorbed dose that is 

amount of energy deposited per unit mass with S.I. unit of gray (1 Gy = 1 J/ kg).  

1.1.2 Direct and indirect action of IR 

IR can lose energy in the biological material by directly causing ionizations to the cellular 

macromolecules like DNA, proteins and lipids resulting in damage. IR can also lose energy by 

causing indirect damage through water radiolysis as it is the most abundant chemical in 

biological systems. Radiolysis of water generates different free radicals such as hydroxyl radical, 

eaq, superoxide radicals, hydrogen peroxide etc. Hydroxyl radical is a highly reactive and 

oxidizing in nature with biological half-life in the range of nano seconds. It can diffuse very short 

distances before reacting with the cellular substrates. In oxygenated solutions, hydrogen atoms 

can react with oxygen to give hydroperoxyl free radicals (HO2
•
). Different products of water 

radiolysis are shown in Fig. 1.2. The relative yields of the water radiolysis products depend on 

the pH and LET of the radiation. These free radicals are highly reactive and react with critical 

biomolecules like lipids, proteins and DNA in cells thereby influencing cellular metabolism, cell  
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Fig. 1.2 Radiolysis of water [18] 

cycle and survival. The component of indirect action is more predominant with low LET 

radiation mediated damage as against high LET radiation Fig. 1.3.
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Fig. 1.3 Direct and indirect action of IR on DNA (Hall, E., 2005) 

 

1.1.3 ROS as mediators of IR induced damage 

Reactive oxygen species (ROS) consist of free radicals and prooxidants that are generated as a 

result of water radiolysis. Free radicals are chemical species having one or more unpaired 

electrons. ROS are also generated as byproducts of cellular metabolism [19]. Fig. 1.4 shows four 

electron reduction of molecular oxygen leading to generation of water and intermediate free 

radicals. Table 1.1 lists different free radicals and their half-life, whereas Fig. 1.5 shows 

endogenous sources of ROS generation and Fig. 1.6 shows role of ROS as signaling mediators. 

Fig. 1.7 shows effect of level of oxidative stress on cellular functions whereas Table 1.2 shows 

apoptotic pathways activated by ROS. 
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Fig. 1.4 Four electron reduction of water 

Table 1.1. Different reactive oxygen species and their half-life[20] 

Radical Half-life 

H2O2, ROOH ~minutes 

peroxyl radicals, nitric oxide ~seconds 

peroxynitrite ~milliseconds 

superoxide anion, singlet oxygen, alkoxyl radical ~microseconds 

hydroxyl radical ~nanoseconds 

 

 

 

 

 

 

 

 

 

Fig. 1.5. Endogenous sources of ROS 
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Fig. 1.6 Cellular signaling pathways regulated by ROS [21]  

 

 

Fig. 1.7 Extent of oxidative stress and consequences on cells 
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Table 1.2. Appoptotic signaling pathways activated by ROS  

Event Modification 

Caspase activation H2O2 inactivation of caspases [22] 

denitrosylation of caspases [23] 

Mitochondrial function  

 

Induction of permeability transition pore, loss of 

membrane potential, 

 Cytochrome c release [24] 

Aalteration of critical thiol groups on ANT and 

Peroxidation of cardiolipin [25] 

Phosphatidylserine exposure  Alteration of critical thiol residue on phospholipid 

translocase [26] 

 

1.2. Antioxidants couter the effects of ROS 

Cells are equipped with  substances that can take care of cellular load of oxidants called as anti-

oxidants. They are capable of inhibiting or delaying oxidation of other subtrates by neutralizing 

the free radicals.Antioxidants are classified based on their mechanism of action:  

Prevention of pro-oxidant formation: Inhibitors of nitric oxide synthase, NADPH oxidase, 

xanthine oxidase and metal chelators such as metallothionein, transferrin, lactoferrin act at the 

source of ROS generation. They block ROS generating machinery and hence prevent oxidant 

generation. 

Interception of pro-oxidants: This class of agents include classical antioxidants. Cells contain 

pool of enzymatic (catalase, superoxide dismutase, peroxidase) and non-enzymatic antioxidants 

(glutathione, cysteine) that can neutralize free radicals.  

Chainbreaking antioxidants: Fat soluble antioxidants like tocopherols can act as chain 

breaking antioxidants in the lipids thereby preventing the propogation radical mediated reactions. 

Repair of damage caused by pro-oxidants: DNA repair proteins, cell cycle regulatory 

molecules, protein disulfide reductase (thioredoxin) etc. can account for restoration of loss of 

functionality of proteins.  All these pathways are operative to curb oxidant stress in cells. Out of 
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all these strategies enzymatic anti-oxidants are more specific in action and also higly coordinated 

inside cells (Table 1.3). They play pivotal role in regulating cellular redox homeostasis.  

Table 1.3. Enzymatic antioxidants and their functions 

Enzyme Function Location 

Catalase Reduces hydrogen peroxide to 

water and oxygen [27] 

Peroxisomes 

Superoxide 

Dismutase 

Dismutates superoxide anion to 

hydrogen peroxide and O2 [28] 

Mitochondria and 

cytosol 

Glutathione 

Peroxidase 

Reduces hydrogen peroxide and 

lipid hydroperoxidesusing GSH as 

a substrate [29] 

Cytosol 

Glutathione 

Reductase 

Reduces oxidized form of 

glutathione[30] 

Cytosol 

Peroxiredoxin Reduces peroxides to 

corresponding alcohol [31] 

Mitochondria and 

cytosol 

Thioredoxin 

(Trx) 

Reduces protein disulfides using 

NADPH [32] 

Cytosol, 

mitochondria and 

nucleus 

Thioredoxin 

Reductase 

(TrxR) 

Reduces oxidized thioredoxin [33] Cytosol, 

mitochondria and 

nucleus 

Glutathione S 

transferase 

Transfers glutathione to protein or 

non-protein moiety [34] 

ER, cytosol 

Glutaredoxin Controls deglutathionylation of 

proteins [35] 

Cytosol, 

mitochondria and 

nucleus 

 

1.3. Biological effects of IR  

Systemic effects after radiation exposure are seen at wide temporal scale (Fig. 1.8). Biological 

effects of IR exposure are attributed to chemical changes in critical biomolecules that originate 

after energy absorption. There is a latent period between energy absorption and manifestation of 

biological effects which may vary from days to years depending upon confounding factors [36]. 

Even at low doses there is sufficient chance of modification in critical biomolecule like DNA 

leading  
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Time scale Events Type of

(sec) Intervention
Radioprotectors

10-17 10-13 Energy Deposition

Radioprotector

10-10 Excitation, Ionization Thiols, Nitroxides

OH radicals near target DNA

10-6 Secondary radicals & DNA radicals Chemical Repair

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-__-_-_-_-_-_-_-_-_-_-_

Seconds to hours DNA oxidized

Enzymatic Repair

DNA breaks

Hours to years Proliferation/degeneration Mitigator/therapeutics

Cell death Cell survival

Modulation of Signal 

Transduction

Mutation

_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-__-_-_-_-_-_-_-_-_-_-_

Weeks to years Late Effects

(Fibrosis, scarring, Antifibrotics Therapeutics

vascular damage, organ

damage)

          Fig. 1.8 Timescale of effects of IR on cell [37] 

to mutagenic lesions that are apparent after few years of radiation exposure [37].   

Such effects are termed as “stochastic effects”. At high doses severity of radiation damage is 

visible in very short time leading to death or irreparable damage in exposed cells. Such effects 

are termed as “deterministic effects”. 

1.3.1 Molecular targets of radiation damage in cells  

As discussed above, ROS are principal mediators of low LET IR induced damage to DNA, 

proteins and lipids.  
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DNA as primary target of IR injury 

The important characteristic of IR is energy dissipated per ionizing event which is about ~33eV 

that is more than enough to break a covalent bond [15]. IR can induce DNA damage by single 

strand breaks, double strand breaks, base damage, sugar damage, apurinic/apyrimidinic sites, 

intra-molecular cross links, DNA-protein cross links, hydrogen bond breakage etc. [38, 39]. The 

presence of histones and DNA in a 1:1 weight ratio makes histones prime candidates for 

crosslinks. Table 1.4 shows damage in cells exposed to 1Gy of low-LET IR. 

Table 1.4. Damage in mammalian cell nucleus [40] 

Event Frequency 

Ionizations directly in DNA ~2000 

Single strand breaks ~1000 

8-OH-dA ~700 

DNA-protein cross links ~150 

Double strand breaks ~40 

This damage if unrepaired or mis-repaired causes significant toxicity at the tissue and organ 

level. Alteration in DNA structure results in loss of viability and hereditary changes [40]. Apart 

from these damages, exposure to IR also leads to induction of chromosomal aberrations [41] 

wherein broken chromosomes tend to rejoin and in the process incorrect reunions give rise to 

lethal chromosomal alterations [42]. Although many different types of aberrations are possible 

but out of these incorrect reunions like dicentrics, ring formation and anaphase bridge formation 

are potentially lethal [43]. Other than these, translocations and interstitial deletions are two non-

lethal chromosomal aberrations that lead to development of malignancies. 
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Chromosomal aberrations scored in peripheral blood lymphocytes obtained from exposed 

individuals serve as biomarkers to estimate the dose received by these individuals [18]. 

Lipid peroxidation of biological membranes 

Membrane lipids are highly susceptible to radiation induced damage primarily due to presence of 

poly-unsaturated fatty acids. Peroxidative decomposition of membrane lipids and oxidation of 

proteins results in loss of membrane bound enzyme activity. Oxidation of lipids leads to 

structural changes in cellular membranes like altering fluidity and channels, altered membrane-

bound signaling proteins, increased ion permeability and disruption in membrane dependent 

signaling [44].  

1.3.2 Effect of IR on cell cycle 

Cells can repair radiation induced damage to critical biomolecules. However, if the repair is 

incomplete cells can undergo apoptosis or necrosis or mitotic catastrophe or senescence. The 

accepted gold standard for measuring the radiosensitivity of a dividing cell population is their 

ability to retain the reproductive integrity. Survival curves are best shown as a semi-log plot of 

survival against radiation dose, generally in the dose range of 1–10 Gy for single cells. Renewing 

cells in a growing population (e.g. skin, gut, bone marrow, tumor cells or cells in culture) 

participate in the cell cycle. Replication of the genome occurs in S-phase and mitotic propagation 

to daughter generations occurs in G2/M phases. There are checkpoints at the G1/S and G2/M 

boundaries that monitor the fidelity of genomic processing. Radio sensitivity differs throughout 

the cell cycle, late S-phase being most radio-resistant, G2/M being most radiosensitive and G1 

phase taking an intermediate position. Following table describes radio sensitivity profile of cells 

in different phases Table 1.5. 
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Table 1.5. Radio sensitivity of cells in different phases of cell cycle [45]  

Cell Cycle 

Phase 

Sensitivity Reason 

Late S Most Radio resistant Greater proportion of repair by HR pathway 

G1 Intermediate Open chromatin, accessibility for repair 

proteins 

G2/M Highly radiosensitive Chromatin compaction, poor repair  

competence 

1.3.3 Acute effects of IR 

Acute Radiation Syndrome (ARS) is an acute illness caused by irradiation of the whole body by 

a high dose of IR in a very short period of time. Depending on the anatomic site treated acute 

effects may include: nausea and vomiting, tiredness, fatigue, diarrhea, headache, as well as 

normal tissue swelling, skin erythema, cough, difficulty in swallowing and difficulty in breathing 

[46-48]. Both direct and indirect effects influence the magnitude and duration of acute side 

effects. In cells that repair irradiation damage and survive, release of inflammatory cytokines can 

induce cell killing [49, 50]. Inflammatory cytokine released act on sub-lethally irradiated or 

unirradiated cells leading to cell death through the apoptosis, autophagy and necrosis [51, 52].  

1.3.4 Late effects of IR 

Chronic effects are delayed toxic effects of IR exposure. Besides the organ exposed, dose and 

volume of irradiation also determine the severity of chronic effects [53]. Some of the chronic 

effects are hair graying, skin thinning and dryness, formation of cataracts, early myocardial 

fibrosis, myocardial infarction, neurodegeneration etc. [54, 55]. IR exposure hampers endocrine 

function by inducing cell death [56]. One of the most prominent chronic effects of ionizing 

irradiation is induction of cancer [57]. Prolonged production of ROS even months and years after 

irradiation can potentially induce genetic change in cells [58, 59]. Migration of stem cells into an 

irradiated environment can expose them to oxidative stress due to ROS released from stromal 
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cells causing mutations [60]. These mutations may lead to malignant transformation in stem or 

non-stem cell population resulting in radiation induced secondary cancers [61-63]. 

1.3.5 Systemic effects of IR 

Systemic effects are response to partial body or local irradiation such as a thoracic, abdominal or 

pelvic region as well as whole body irradiation (WBI) [64-66].  A collection of health effects that 

appear within 24 hours of exposure to high amounts of IR is called as acute radiation syndrome 

[47, 67]. Acute effects of radiation are predominantly due to death of the dividing cells in the 

body present in bonemarrow, gut cells, skin and hair roots [68, 69]. Table 1.6 describes various 

syndromes and its medical management. 

Table 1.6. Acute radiation syndromes [70] 

Dose 

(Gy) 

Radiation 

syndrome 

Symptoms & 

Consequences 
 

Medical Management 

1 - 2 

Nausea, 

vomiting, 

diarrhea (NVD) 

syndrome 

Nausea, vomiting, diarrhea, anorexia, 

giddiness, and loss of appetite 

Symptomatic treatment, 

antacid, sucralfate, anti-emetics 

2 - 6 
Hematopoietic 

syndrome 

Loss of cellularity in bone marrow, spleen 

and thymus. The individual may die 

between 10-30 days without medical 

intervention. 

Antibiotics, cytokines, bone 

marrow transplant, stem cell 

therapy 

8 - 15 
Gastrointestinal 

(GI) syndrome 

Damage to intestinal crypt cells, loss of 

absorption of nutrients, dehydration, loss of 

weight, severe electrolyte imbalance and low 

blood pressure. Death occurs usually within 

3–5 days without medical intervention. 

Antibiotics, anti-emetics, 

replacement of fluids and 

electrolytes, stem cell therapy,  

bone marrow transplant 

> 25 
Central Nervous 

System (CNS) 

syndrome 

Irritability, hyper excitability response, 

epileptic type fits and coma. Symptoms are 

irreversible. Death usually occurs within      

48 h. 

No treatment available 
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1.3.6 Hematopoietic syndrome 

The signs and symptoms of radiation sickness after an acute total body exposure are 

predominantly the consequences of radiation injury to the hematopoietic cells in the bonemarrow 

[71, 72]. Bone marrow progenitor cells and stem cells decrease their proliferative activity after 

radiation exposure [73]. Consequently, fewer cells are available for differentiation and 

maturation to white blood cells, red blood cells and platelets. Thus, the kinetics of cell 

production and migration from bonemarrow is disturbed thereby depleting the peripheral pool of 

immune cells [74].  

Since mature granulocytes have a life span of only one day, the radiation-induced decrease of 

supply of granulocytes occurs followed by decrease in the number of platelets [75]. Then further 

development of the hematopoietic radiation syndrome depends on the number of bone marrow 

stem cells that have survived radiation exposure [76]. The surviving stem cells can reconstitute 

the bonemarrow compartment [77]. If the number of surviving bone marrow stem cells is 

insufficient for regeneration of hematopoietic system, fatal consequences of leukopenia and 

thrombopenia are observed [78]. Individuals experience tiredness associated with anemia (low 

red cell count), propensity for bleeding (associated with low platelets), and inability to fight 

infections [72, 79]. The production of inflammatory cytokines including TNFα, TGFβ1 and IL-1 

correlates with the severity of suppression of hematopoiesis [80]. 

The severity of the hematopoietic damage increases with increasing dose of radiation [81, 82]. 

Death occurs at the time of the nadir of granulocyte depletion in the blood, i.e. in the third week 

after acute radiation exposure [47, 74]. Bacterial contamination of gut, oropharynx, depletion in 

platelets and infection with multiple pathogens such as fungal, herpes and septic infections lead 

to death of the exposed individual [73, 83-85].  
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Past efforts to stimulate hematopoiesis in myelosuppressed animals have involved administration 

of components of microbial cell walls or their synthetic analogs [86, 87] and natural factors such 

as cytokines, prostaglandins, and peptides or their synthetic analogs. Many cytokines including 

vascular endothelial growth factor I (VEGF-1), hepatocyte growth factor (HGF), fibroblast 

growth factor (FGF) and epidermal growth factor (EGF) facilitate the repair and replenishment 

of irradiated tissue [88]. It would be advantageous to develop a small-molecule that would 

ameliorate hematopoietic radiation injury with least toxicity.  

1.4 Radiation exposure scenarios 

1.4.1 Planned exposures Since the discovery of X-rays in the early 1900s, radiation therapy has 

been used for treating various skin conditions along with cancers of the head, neck, and lymph 

nodes. Reports as early as 1902–1904 document the application of radium in treating pharyngeal 

carcinomas and delivering radiation through glass tubes placed in close vicinity of the tumors 

through interstitial brachytherapy. Different types of radiation therapies (e.g., external beam 

radiation therapy, brachytherapy, and systemic radioisotope therapy) and fractionation regimens 

(e.g., hypofractionation, hyperfractionation, andaccelerated fractionation) are currently tested in 

a variety ofcancers under small and large clinical settings [89]. It is estimated that radiotherapy is 

main line treatment for ~40% of the cancers [63, 90]. It is often used along with chemotherapy to 

reduce tumor burden [91]. For patients with incurable cancers it is one of the preferred treatment 

options to control the symptoms. It can be used before the surgery to reduce the tumor size so 

that it is easier to remove (neoadjuvant therapy) or after surgery to eradicate small mass of tumor 

cells that may be remaining after surgery (adjuvant therapy) depending on the type of cancer [90, 

92, 93].  
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Limitations of radiotherapy IR cannot discriminate between normal and tumor cells thereby 

exerting its harmful effects on normal cells surrounding the tumor tissue. This limits the amount 

of dose that can be delivered to tumor cells thereby compromising the therapeutic output of 

radiotherapy. Since tumor cells proliferate rapidly, they overgrow and create anoxic and hypoxic 

zones thereby reducing efficacy of radiotherapy [94]. To achieve similar therapeutic index, 

higher radiation doses are needed but vulnerability of normal tissue seated next to the tumor 

(owing to well perfused, vascularised and oxygenated environment) [57] makes it infeasible. 

Under these circumstances, to obtain optimum therapeutic output a judicial balance between total 

dose that can be delivered and threshold tolerance limit of surrounding normal tissue needs to be 

considered. However, reduction in total dose or dose per fraction during radiotherapy enhances 

the risk of induction of radio-resistance in tumors and also increases the relapse. Improvements 

in targeted radiotherapy treatments with better technological control and high precision analytical 

modeling or antibody therapy have resulted in achieving better tumor control. But the use of such 

techniques or treatment options is limited due to unclear margins between normal and tumor 

tissue and also because of high cost of the treatment. An alternate approach to increase the total 

dose or dose per fraction is to employ agents that can differentially modulate the responses of 

normal and tumor tissues to radiation. These are called as radiomodulatory agents that can 

protect normal cells against radiation induced cell death without compromising the tumor tissue 

toxicity. 

The other known planned exposure scenarios is astronauts getting exposed to high energy 

protons, α-rays, heavy ions and cosmic rays during space flight. These high LET radiations can 

cause clustered damage because of direct effect. Radiation workers in the nuclear industry may 
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have to undertake emergency operations in power plants also fall under planned exposure 

category.  

1.4.2 Unplanned exposures Radiation accidents such as those that occurred in Fukushima, 

Japan (2011), Tokaimura, Japan (1999), Goiânia, Brazil (1988), Chernobyl, Russia (1988), and 

Three Mile Island nuclear power station, United States (1979), all serve as warning signs of the 

potential hazards associated with catastrophic nuclear/radiological events [95-99]. In addition, 

threats from exposure to high doses of radiation due to terrorist attacks have become serious risk 

factor in recent years [100, 101]. 

1.5 Radioprotectors To counter both planned and unplanned exposures there is a need for 

radioprotective agents that can prevent or reverse the damage caused by IR. Radioprotector is 

defined as “any medicinal agent or device applied prior to or during radiation exposure that 

actively prevents or limits injury, whether that injury may be at molecular, cellular, tissue, organ 

or system level” (Seed 2005) [102]. Radioprotectors can be classified into three categories based 

on their time of administration. i) prophylactic agents that need to be administered prior to 

irradiation ii) mitigators are the agents that need to be administered during exposure or 

immediately after the exposure iii) therapeutics agents are administered post IR exposure. 

1.5.1 Prophylactic agent Prophylactic agents will find multiple applications in planned 

exposure scenarios like radiotherapy of cancers and protection of astronauts during spaceflight 

against protons and high-energy particles. The radioprotector can be administered to the 

individual prior to the exposure depending on its time window of protection so that it can protect 

normal tissues but not tumors, during radiotherapy. These prophylactic agents may also find use 

during radiological accidents to select groups, such as military personnel and first responders, 
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who need appropriate protective agents to be administered prophylactically prior to entry into 

contaminated areas. 

1.5.2 Mitigators These can be used in emergency conditions like soon after exposure to IR or 

ingestion/ inhalation of radionuclides. 

1.5.3 Therapeutic agents  

Therapeutic agents that are effective even after several hours of radiation exposure are required 

to treat victims of radiological accidents or incidents. The clinical scenarios like radiotherapy, 

radiological accidents and credible risks warrant the need for developing radiation 

countermeasures for protecting against exposure-related morbidity and/or mortality [103]. 

Extremely limited numbers of safe and effective medical countermeasures have been approved 

by the United States Food and Drug Administration (USFDA). None of these drugs have been 

approved to counter specifically “acute radiation syndrome” (ARS) or as a general 

radioprotector. This situation has intensified the research on identifying a new generation 

radiation countermeasure. The success in the development of radiation countermeasures will 

mainly depend on the understanding of the damage resulting from radiation exposure. 

Attributes of Ideal Radioprotector 

 Globally effective 

 Protects against early and late effects  

 Efficacious in protecting radiosensitive tissues 

 Nontoxic 

 Performance should be non-decrementing with time 

 Safe with repeated doses 

 Self-administered pill, inhaler, swab, skin patch 

 Broad time window of protection 

 Rapidly effective 
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 Chemically stable, long shelf life 

 Simple to produce / manufacture 

 Inexpensive 

The mechanistic/biological basis for development of a radioprotective strategy necessitates an 

understanding of the molecular biology underlying the cellular, tissue and organ specific 

radiation damage. Some of the events that occur in an irradiated cell are generation of primary 

and secondary ROS, DNA strand breaks, communication of nuclear stress responses through the 

cytoplasm to mitochondria, mitochondrial response to nuclear signaling, and mitochondrial 

initiation of apoptosis [104-106]. Several strategies have been adapted by targeting these cellular 

processes that follow radiation exposure which are enlisted below and representative examples 

are provided in Table 1.7 whereas list of radioprotectors given different types of approval by 

USFDA is provided in Table 1.8. 

1.6 Strategies used for design and development of putative radioprotectors  

1. Suppression of formation of ROS / free radicals (sulfhydryl compounds)  

2. Induction of intracellular anti-oxidants e.g. SOD mimics, glutathione, Mn-SOD liposomes  

3. Enhancement of DNA repair and DNA binding agents (Selenium, Hoechst 33342)  

4. Delay in cell division (p53/p21 inhibitors)  

5. Cytokines and growth factors (IL3, GCSF, VEGF, FGF)  

6. Activation of pro-survival/anti-apoptotic pathways (NF-κB, Nrf-2, Bcl-2)  

7.   Inhibitors of pro-apoptotic molecules (p53, PUMA, Bax)  

8.   Management of post irradiation inflammation (NSAIDS)  

9.   Immune and hematopoiesis stimulators (stem cells, antibiotics)  

10. Chelating agents (KI, DTPA)  
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Table 1.7. Representative examples of radioprotective agents 

Radioprotector

/Mitigators/ 

Therapeutics 

Representative Proposed Mechanism of Action/Use 

Sulfhydryl 

compounds 

cysteine, cysteamine, glutathione, 

amifostine  [2, 107] 

Free radical scavenging, induction of 

hypoxia and DNA repair 

Selenium 

compounds 

selenomethionine, sodium selenite  

[108] [109] 
Antioxidant upregulation 

Nitroxides 
tempol, tempol-H, tempace  [110] 

[111] 
Free radical scavenging 

Natural 

antioxidants 

vitamin A, C, E, phytochemicals, 

melatonin [112-114] 
Free radical scavenging, anti-mutagenic 

Immuno-

modulators 

cytokines (IL3, GCSF), LPS, 

steroids (5-androstenediol, 

oxymetholone) [115-117] 

Increased cytokine production, immune 

stimulation, myelopoiesis 

NF-κB 

activators 

LPS, CBLB502, CBLB613, DMA 

[12, 118, 119] 

Induction of anti-oxidant and anti-

apoptotic genes 

Nrf-2 

activators 

synthetic triterpenoids,  trolox, 

caffeic acid phenethyl ester,  [120-

122] 

Free Radical Scavenging enzymes, 

augmentation of hematopoiesis and 

cytoprotective genes 

Non-steroidal 

anti-

inflammatory 

drugs  

indomethacin, diclonefac, 

flurbiprofen  [123, 124] 

Enhanced hematopoiesis, increased 

GCSF 

HIF-1α 

activator 
dimethyloxalylglycine  [125, 126] 

Induction of DNA damage response, 

HSC quiescence 

Cell cycle 

regulators 

CDK4/6 inhibitor 

(PD0332991),VRX0466617 (Chk2 

inhibitor) [127, 128] 

Protection of HSC 

mTOR 

inhibitor 
rapamycin [129, 130] Suppression of p53 and PUMA 
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Inhibitor of 

CD47 
thrombospondin-1 [131, 132] Increased NO signaling 

Molecular 

hydrogen 
Hydrogen gas [133, 134] 

Selective reduction of hydrogen, 

hydroxyl radical and peroxynitrite 

p53 inhibitors pifithrin-α, pifithrin-μ [135-137] 
Blockade of apoptotic pathways; 

inhibition of caspases 

PUMA 

inhibitors 
[106, 138] 

Protection of HSCs and HPCs, 

protection against GI syndrome 

GSK3β 

inhibitors 
SB216763, SB415286 [139, 140] Inhibition of p53, activation of Nrf-2 

HMG-CoA 

reductase 

inhibitor 

statins (lovastatin, simvastatin, 

pravastatin) [141, 142] 

Protection against radiotherapy induced 

inflammation and fibrosis 

Stem cell based 

therapy 

mesenchymal stem cells, cord 

blood stem cells, myeloid 

progenitor cells, [143, 144] 

Release of pro-survival factors 

Antibiotics 
tetracyclines, fluoroquinolones, 

ciprofloxacine [145, 146] 

Increase in histone acetyl transferase 

activity and increase in DNA repair 

DNA binding 

ligands 

hoechst 33342, proamine, 

methylproamine and netropsin  

[147] [148] 

Electron/hydrogen donation to 

damaged DNA 

ACE 

inhibitors/ 

receptor 

agonists 

captopril, enalapril, rampril, 

penicillamine, pentoxyfylline [149]  

[150] 

Suppression of chronic oxidative stress 

Ca- antagonists 

and Zn salts 

nifedipine, nimodipine, Zn 

aspartate  [151] 
Inhibition of calcium influx 

TGF-β 

signaling 

inhibitors 

ID11, SM16  [36] [152]  [153] Antifibrotic 
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Table 1.8. List of currently FDA approved radiation countermeasures [1, 102] 

USFDA Approved 

Countermeasures 

Trade Name Mode of Action Use 

Amifostine (WR-

2721) 

Cytoprotectant, free 

radical trap 

Mitigation of radiation induced 

xerostomia in head & neck cancer 

patients  

Potassium Iodide Blocking agent Blocking uptake of radioactive 

Iodine by thyroid 

Ca/Zn DTPA Chelation and 

elimination 

Reduction of body burden of 

plutonium, americium, curium etc 

Ferric III 

hexacyanoferrate II 

(Radiogardse) 

Chelation and 

elimination 

Reduction of body burden of cesium 

and thallium 

Granisetron Anti-emetic; 5-HT3 

inhibitor 
Control of GI disturbances 

Countermeasures 

approved for 

other Indications: 

Off Label 

G-CSF, Filgrastim 

(Neupogen) 

Stimulates 

hematopoiesis 

Alleviates neutropenia in immune-

compromised patients 

Pegylated G-CSF, 

Pegfilgrastim 

Stimulation of 

neutrophil production 

Highly effective in alleviating 

severe neutropenia 

GM-CSF, 

Sargramostim 

(Leukine) 

Stimulate 

granulopoiesis by bone 

marrow  

Alleviates granulocytopenia 

Countermeasures 

that are given 

USFDA 

Investigational 

New Drug (IND) 

status  

5-AED   

BIO300 (Genistein) Improves survival and 

organ system protection 

Protection against system specific 

side effects 

CBLB502 

(Entolimod) 

Activates NF-κB, 

immunomodulator 
Minimized marrow and gut damage 

ON01210 (Ex-Rad) Kinase inhibitor 
Orally and parenterally effective 

against LD50 dose of radiation 

HemaMax 

Recombinant 

Human IL-12 

Enhances survival and 

systemic protection 
Minimized gut injury 

OrbeShield (BDP)   

Countermeasures 

without USFDA 

IND 

Myeloid progenitors 

(MPC/CLT-008) 

Partial marrow 

reconstitution 
Significant mitigation of ARS 

-tocotrienol 3  

AEAOL 10150 Free radical quencher, 

mesoporphyrin mimic 
Mitigates acute lung injury 
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1.6.1 Current radioprotective drug development initiatives 

Weapons of Mass Destruction Medical Countermeasures Subcommittee was constituted in 2003 

with the mission of „„identification, coordination and prioritization of research, development and 

acquisition of medical countermeasures for radiological threat agents‟‟.  In their report areas 

listed in Table 1.9 were identified to encourage researchers to address these critical issues.  

Table 1.9. Priority research areas for radiological nuclear threat countermeasures 

Top Radioprotector: Pre-exposure agents 

Top Therapeutic agents: Post-exposure treatment 

Top Antimicrobial agents 

Top Cytokines and growth factors 

Top Better understanding of mechanisms of radiation-induced injury 

Top Bio-dosimetry assay automation 

     [154] 

Despite several efforts by different investigators none of the agents (plant based or synthetic 

compounds developed based on rational drug design) received FDA approval as general 

radioprotector to be employed to patients undergoing radiotherapy or to victims of accidental 

exposures. Although moderate success is achieved in identifying prophylactic radioprotectors, 

developing a therapeutic agent is still a challenge to the human kind. However, prophylactic 

agents that have shown good promise in animal models also suffer from several drawbacks 

starting from toxicity, bio-availability and efficacy. Presently, post-irradiation exposure cases are 

given appropriate supportive measures like infusion of fluids, electrolytes, blood products, 

antibiotics, antivirals, antifungals, analgesics, antiemetics, antidiarrheals, reverse isolation and 

topical treatment of radiation burns depending on the absorbed dose of radiation [155]. 
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Based on the current knowledge of development of radioprotectors, FDA has laid down 

following guidelines to streamline the research efforts  

1.6.2 Basic R&D strategies employed for development of radioprotector [102]  

1. Large scale screening of newly identified chemical classes or natural products 

2. Reformulation of old radioprotectors of good potency but unwanted toxicity 

3. Using nutraceuticals with moderate radioprotective efficacy with less toxicity  

4. Employing combinatorial approach  

5. Accepting lower level of drug efficacy in lieu of reduced toxicity 

1.6.3 Relative efficacy of radioprotection 

Comparison of different radiation protective agents can best be made when a standard 

quantifiable method of a biological response is used in preclinical studies. The magnitude of 

protection against radiation damage is commonly expressed as the dose reduction factor (DRF) 

[156]. The DRF is calculated by dividing the radiation dose at which 50% of the animals die in 

presence of the radioprotector with the radiation dose at which 50% of the animals die in absence 

of the radioprotector. The DRF for 30-day survival (LD50/30) in the mouse quantifies protection 

of the hematopoietic system and probably is the most useful measure for comparative screening 

of agents for protection against ARS. With the loss of hematopoietic stem cells (HSC), death 

follows due to infection, hemorrhage and anemia. In an early study of the radioprotective effect 

of WR-2721, Yuhas and Storer (1969) administered the compound to mice at 500 mg/kg 

intraperitoneally (IP) before irradiation and obtained a DRF of 2.7 for hematopoietic death and 

1.8 for GI death and no protection against central nervous system death [157]. However, the 

effective drug dose used was very close to LD50 dose of WR-2721 (704mg/kg) [157]. While 

comparing the DRF between the drugs, one must also take into consideration the toxicity of the 
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dose used. The therapeutic index of a drug classically is defined as the ratio of effective dose of 

the drug to LD50 dose of the drug [158]. The time of administration of the radioprotector relative 

to radiation exposure is critical and the efficacy of the drug is dependent on radiation quality, 

route of administration and pharmacokinetic considerations [159]. 

1.7 Antioxidant radioprotectors 

Acute and chronic effects of IR are mediated via generation of ROS and reactive nitrogen species 

(RNS), depletion of antioxidant stores, induction of apoptosis and depletion of stem cells [160]. 

Therefore, over past five decades maximum efforts have gone into identifying free radical 

scavengers from plant sources. Antioxidants interfere with membrane lipid peroxidation and 

induction of apoptosis by ROS after IR exposure [161, 162]. First study demonstrating role of 

antioxidants in radiation injury was carried out by Patt et al in 1949 showing protection to rats 

from lethal doses of  IR by thiol amino acid cysteine [163]. Thereafter, a major program was 

initiated by Walter Reed Army Research Institute (WRARI) and screened thousands of 

molecules including N-acetyl cysteine, glutathione and β-mercaptoethylamine (cysteamine, 

MEA) and identified amifostine as the most effective mitigator of radiation induced toxicity. 

Several natural compounds from edible and medicinal plants were also screened to protect mice 

against lethal doses of IR [164-167]. 

Anti-apoptotic properties of exogenous and endogenous antioxidants make them suitable 

candidate for radioprotection. Exogenous administration of antioxidants such as glutathione, 

superoxide dismutase (SOD), antioxidant vitamins (A, C, and E), the disulfide lipoic acid, as 

well as substances that mimic or induce activity of endogenous antioxidant systems (e.g., 

selenium, zinc and copper salts and metal complexes) have shown protection against radiation 

induced hematopoietic injury [168-171]. 
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1.7.1 Dietary and plant derived antioxidants 

Apart from cellular antioxidants another class of antioxidants that are part of our diet is referred 

to as dietary antioxidants. They are defined as „„a substance in foods that significantly decreases 

the adverse effects of reactive species, such as reactive oxygen and nitrogen species, on normal 

physiological function in humans” (Food & Nutrition Board). Vitamin C, E & A are the most 

widely consumed dietary antioxidants. Presence of antioxidants prior to or at the time of 

exposure to high or low-LET radiation at adequate levels may offer protection against injury 

caused by radiation Vitamin E, vitamin A and β-carotene[168-170, 172], selenium and 

superoxide dismutase [109, 173]. 

Apart from these dietary antioxidants, several plant derived antioxidants including green tea 

(polyphenols), Chinese herbal medicines, Ayurvedic preparations, cruciferous vegetables (e.g., 

cabbage and broccoli), dithiolthiones, Panax ginseng, Shigoka extract, Gingko biloba extract 

(flavone glycosides and terpene lactones)[174, 175], milk thistle (silymarin), curcumin, orientin, 

vicenin, garlic (allicin), lycopene,caffeine [176], pentoxyfylline [177], dipyridamole [178], 

flavonoids such as genistein [179]  luteolin and other tea components [180], vicenin-2 [181] had 

been investigated in different model systems in different scenario of radiation exposure for 

protection against specific syndromes or overall side effects of radiation[182]. 

1.7.2 Pros and cons of phytochemical radioprotector 

In general, naturally occurring antioxidant radioprotectors offer protection at lower doses of 

radiation exposure when compared with amifostine (WR2721). DRF values of phytochemical 

radioprotectors are in the range of 1.1 to 1.3 in 30-day survival experiment [183]. However, 

natural antioxidants may provide benefits of low toxicity and chemoprevention [169, 170]. They 

exhibit a long window of protection, including post-irradiation protection against lethality and 
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chronic effects of radiation exposure. Organ-specific late radiation injury such as pulmonary 

fibrosis, renal failure, hepatic fibrosis and central nervous system damage resulting in neuro-

cognitive impairment has been shown to be ameliorated by antioxidant therapy [184]. Apart from 

their low DRF values, other important question that needs to be addressed before employing 

them as radioprotectors is their ability to differentially protect normal and tumor cells. If it is 

possible to achieve therapeutic gain by differential protection to normal and tumor cells then 

antioxidants provide lot of promise to be developed as radioprotector. 

1.7.3 Flavonoids as radioprotectors 

Flavonoids are one of the main classes of compounds that have been examined for 

radioprotection from plant sources. A number of flavonoids (genistein, quercitin, luteolin) reduce 

the frequency of micronucleated reticulocytes in the peripheral blood of irradiated mice [185]. 

Procyanadins (flavan-3-ols) from grape seed extract, including rutin were radioprotective as 

measured by a decrease in the frequency of micronucleated erythrocytes from bonemarrow of 

irradiated mice [186]. Thirty-day survival of mice exposed to X-rays did not improve by rutin or 

other flavonoids quercitin, naringin, or morin [187]. Detailed studies have been reported by Uma 

Devi and coworkers on the flavonoids orientin and vicenin isolated from Ocimum sanctum 

(Indian holy basil, tulasi), which demonstrated significant protection from radiation injury when 

administered before irradiation. DRF for 30-day survival in mice treated 30 min before 

irradiation with low doses (50 mg/kg) IP were 1.30 for orientin and 1.37 for vicenin. The drugs 

were not very effective when administered after irradiation [188]. Genistein, a soy isoflavone, 

increased 30-day survival, when administered subcutaneously (SC) 24h before irradiation [189]. 

It was also effective when administered orally for four to seven days before irradiation. A DRF of 

1.16 was obtained at a genistein dose of 200 mg/kg given SC [190]. This radioprotective dose of 
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genistein did not induce any adverse pathology or behavioural toxicity [189]. Protection to the 

bonemarrow by genistein was attributed to the transient cell cycle arrest in HSC [179]. Based on 

these studies, we have chosen structural analogue of genistein i.e. baicalein to explore the 

radioprotective potential in murine splenic lymphocytes. The difference between baicalein 

and genistein is the position of the hydroxyl group i.e. baicalein is 5,6,7-trihydroxy flavone 

whereas genistein is 4’,5,7-trihydroxy isoflavone.  

1.7.4 Pleitropic effects of antioxidant radioprotectors 

Many of the antioxidant radioprotectors have been shown to elicit their action not only by free 

radical scavenging but also by activating multiple pro-survival transcription factors leading to 

changes in gene expression and antioxidant enzyme activities [191]. Exposure to thiol 

compounds such as WR-1065 and N-acetyl-L-cysteine (NAC), which are known to scavenge 

free radicals have also been shown to elevate manganese superoxide dismutase (Sod2) 

expression levels resulting in increased radiation resistance [37, 38]. WR-2721 given at high 

doses not only offered radioprotection to normal tissues but also inhibited radiation-induced 

malignancies in mice when injected before radiation exposure [36]. Most of the antioxidant 

radioprotectors are known to suppress inflammation [192] which could be an additional benefit 

because IR induces systemic inflammation. This IR induced inflammation further amplifies 

radiation injury caused by ROS. Therefore, an agent which can scavenge ROS and also exhibit 

anti-inflammatory activity may offer better protection against IR induced primary and secondary 

damage. 

1.8 IR and inflammation 

Radiation-induced late effects are caused by systemic inflammation leading to continuous 

production of ROS [193-195]. This chronic oxidative stress leads to further increase in lipid 
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peroxidation, oxidation of DNA and proteins, as well as activation of pro-inflammatory 

transcription factors nuclear factor kappa B (NF-kB) and signal transducers and activators of 

transcription (STATs) [196, 197]. IR induced DNA double strand breaks can activate NF-kB via 

the Ataxia Telangiectasia mutated protein (ATM) or DNA-PK [198].  

NF-kB has a central role in immune and inflammatory responses as it can regulate the expression 

of many pro-inflammatory cytokines and chemokines such as tumour necrosis factor alpha 

(TNF-α), IL2, IL1, IL6 [199]. STAT3 also up-regulates many pro-inflammatory genes such as 

cyclooxygenase COX-2, IL-1, IL-6, and IL-8 [200-202]. These cytokines are mediators of IR 

induced inflammation.  

1.8.1 Advantages of anti-inflammatory radioprotector 

RT has been extensively employed as a curative or palliative intervention against cancer. 

Targeting IR induced inflammatory pathways may improve the radiation therapy clinical 

outcomes by enhancing radiosensitivity [203]. The anti-inflammatory effect of radioprotective 

molecule is an addendum to the long list of desirous attributes that a radioprotector is supposed 

to possess. An anti-inflammatory radioprotector would not only protect cells against IR induced 

immediate damage but it is also expected to prevent radiation induced secondary tissue injury. 

Such molecule can offer double layered protection to cells against IR induced primary as well as 

secondary tissue injury. In cancer patients undergoing radiotherapy, such compounds have 

significant implications as they reduce the risk of IR induced abscopal effects and may also 

improve quality of health by suppressing tumor associated inflammation. It is reported that 

antioxidant radioprotectors curb inflammation through activation of an anti-inflammatory 

transcription factor Nrf-2. 
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1.8.2 Nrf-2 in oxidative stress and inflammation 

Nuclear factor erythroid-2–related factor 2 (Nrf-2) is encoded within a 2.2-kb transcript and 

codes for a 66-kDa protein with a basic leucine zipper DNA binding domain. It was first isolated 

from hypersensitive site 2 located in the beta-globin locus control region [204]. Nrf-2 regulates 

cytoprotective response to counteract the deleterious effects of ROS and confers protection 

against oxidants [205, 206]. Nrf-2 dissociates from its inhibitor Kelch-like ECH-associated 

protein 1 (KEAP1) and binds to antioxidant response element (ARE) in mediating transcriptional 

activation of its target genes that include multiple antioxidant enzymes and electrophile 

detoxification enzymes [207]. Some synthetic as well as natural antioxidants are known to 

activate Nrf-2 by oxidative stress dependent or kinase dependent mechanism [208].  

Nrf-2 also exerts a protective role toward several inflammatory disorders induced in murine 

models [209]. Nrf-2 knockout mice are susceptible to the development of inflammation-related 

diseases, such as sepsis [210], atherosclerosis [211], chronic obstructive pulmonary diseases 

[205], asthma [212]  and autoimmunity [213]. 

Augmentation of Nrf-2 in T cells is essential to mitigate oxidative stress during IR-induced acute 

kidney inflammation (AKI) [214]. Adoptive transfer of Nrf-2 activated T cells into wild type 

mice improved the outcome from AKI. T cell activation, proliferation and immunological 

responses are regulated by NF-B. Hence, regulation of inflammatory response largely relies on 

suppression of NF-κB and its dependent gene expression. Nrf-2 and NF-B are known to 

antagonize each other although they share common effectors and regulatory points [215]. Several 

anti-inflammatory or anti-carcinogenic phytochemicals suppress NF-κB signaling and activate 

the Nrf-2-ARE pathway [216, 217]. Recently, it was reported from our laboratory that 

schisandrin B (SB), a dibenzocyclooctadiene derivative isolated from Schisandra chinensis, 
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increased the expression and nuclear translocation of Nrf-2 and its downstream target genes such 

as HO-1. SB inhibited the activation and nuclear accumulation of NF-κB by preventing IκBα 

degradation. Furthermore, a causal role of the Nrf-2/HO-1 pathway in the observed anti-

inflammatory effects of SB was demonstrated by inhibiting Nrf-2 and HO-1 [218]. In the 

nucleus, p65 promotes recruitment of the co-repressor HDAC3 to ARE, facilitating the 

interaction of HDAC3 with either CBP or Maf leading to local histone hypo-acetylation, 

blocking chromatin decondensation and suppressing Nrf-2/ARE gene expression [219, 220]. Lee 

et al., has reported that Keap-1 dissociated from Nrf-2 ubiquitinates IKK-β leading to its 

degradation [221]. IKK-β is the upstream kinase that phosphorylates p65 thereby degrading the 

IBα [220] resulting in nuclear translocation of NF-B [222]. 

As discussed above, curbing inflammation could lead to radioprotective environment, we 

have investigated the anti-inflammatory activity of baicalein in terms of suppression of T 

cell responses. 

1.8.3 Anti-tumor effects of radioprotector 

An ideal radioprotector should only ameliorate damage to the normal cells but should not protect 

tumor cells. If the radioprotector can elicit anti-tumor activity, it would further enhance its 

applicability in clinic. Since antioxidant radioprotectors exhibit anti-inflammatory activity, it is 

possible that they may also show anti-tumor activity because inflammation and cancer are very 

closely linked [223]. There are number of reports showing direct and indirect evidences that 

inflammation precedes cancer induction [224]. Inflammatory responses can favor cancer cells 

invasion, providing a favorable environment for tumor promotion and metastasis [225, 226]. IR 

induced IL-1β expression can favor cancer cell invasion [227]. Both IL-8 and IL-6 are involved 
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in IR induced inflammatory response, enhancing cancer cell invasiveness [228]. Another key 

pro-inflammatory enzyme COX-2 which converts arachidonic acid to prostaglandins, has been 

shown to be overexpressed in patients with various types of cancers [229-231]. 

IR can activate NF-κB and many tumor cells usually express high levels of constitutive NF-kB 

[232-234]. NF-κB provides a mechanistic link between inflammation, carcinogenesis, and tumor 

radioresistance. All of these mediators act together in perpetuating and amplifying the 

inflammatory cascade. They suppress DNA repair mechanisms leading to an increase in genetic 

instability [235]. These inflammatory mediators induce DNA double-strand breaks, affect 

function of cell cycle checkpoints and homologous recombination repair [203]. Recently 

inhibitors of NF-κB by synthetic and natural compounds have shown good promise as tumor 

radiosensitizers [236]. 

The present thesis embodies the anti-tumor activity of baicalein using T cell lymphoma 

model. 

1.9 Baicalein 

 

 

 

Fig. 1.9 Baicalein 

Baicalein Fig. 1.9 is highly cell permeable and poorly water soluble, which is classified as a class 

II compound according to Biopharmaceutical Classification System (BCS) [237]. After oral 

administration of baicalein, it is subjected to the extensive first pass metabolism in liver and 
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small intestine [238] and therefore, glucuronides/sulfates of baicalein including baicalin are 

found in the plasma [239]. Therefore, the conjugated metabolites may be responsible for the in 

vivo effects. Various formulations have been developed to improve the oral bioavailability of 

baicalin and baicalein. Baicalein nanocrystal [240], baicalein-hydroxypropyl-β-cyclodextrin 

inclusion complex [241], baicalein self-microemulsifying drug delivery system [242], and 

baicalein solid dispersion [243] have been developed to improve dissolution and oral 

bioavailability of baicalein. Besides this, changing the administration route of baicalein may be 

employed to avoid the first-pass metabolism of the gastrointestinal tract or liver and enhance its 

bioavailability. For example, pulmonary administration of baicalein nanocrystal form can obtain 

similar pharmacokinetic parameters as that of intravenous injection of baicalein solution [244]. 

Several studies regarding the pharmacokinetic profiles of baicalein have been reported. In order 

to calculate the absolute bioavailability, intravenous pharmacokinetic study was also carried out 

after administration of 10 mg/kg baicalein. The absolute bioavailability of baicalein in different 

doses was ranged from 13.1% to 23.0%. Extensive glucuronidation of baicalein occurs in the 

intestinal wall and liver catalyzed by UDP-glucuronosyltransferase (UGT) in rat and human 

[245]. 

The detailed biological effects reported in the literature are listed in Table 1.10. Based on these 

findings, it was proposed that baicalein may protect cells of hematopoietic system against IR 

induced cell death and thereby enhancing the survival of mice. Hence, we have explored detailed 

radioprotective properties of baicalein and presented in Chapter 2 along with the experimental 

design and discussion. Baicalein is a well-known anti-inflammatory agent owing to inhibition of 

12-lipoxygenase [246]. Further, it can induce Nrf-2/HO-1 axis in some cell types [247, 248] 

thereby suppressing inflammatory responses. 
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Table.1.10. Protective effects of baicalein against oxidative stress injury 

Stress Cell type  Consequence Effect of baicalein 

H2O2 Rat glioma C6 Reduced 

viability 

Inhibition of apoptosis by 

induction of HO-1 [249] 

Prion 

proteins 

Neuronal cells Aggregation 

and cell death 

Protection by inhibiting 

ROS [250] 

H2O2 NG108-15 

neuroblastom

a 

Apoptosis Protection by up-regulation 

of Nrf-2 and inhibition of 

12-LOX [251] 

H2O2 H9c2&cardio

myocytes 

Apoptosis Protection by up-regulation 

of Nrf-2 pathway [252] 

6-OHDA PC-12 

(adrenal) 

Oxidative 

damage 

Protection by up-regulating 

Nrf-2/HO-1[248] 

IR Hippocampal 

neurogenesis 

Necrotic cell 

death 

Protection by scavenging 

ROS 

aggregati

on of 

alpha-

synuclein 

Neuronal cells Parkinson‟s 

disease 

Prevents fibrillation and 

promotes disaggregation 

[253] 

IR Kidney Inflammatory 

response 

Prevented IR induced 

inflammation by modulation 

of NF-κB [254] 

UV-B Skin Increased 

skin 

thickness, 

MMP9 & 

VEGF 

Inhibited skin damage by 

inhibiting NF-κB expression 

[255] 

In the context of its radioprotective properties on lymphocytes, study on modulation of T cell 

responses by baicalein becomes essential. In the present thesis, murine splenic lymphocytes have 

been employed as a model system to test the efficacy of baicalein as an anti-inflammatory and 

immune-modulatory agent. Experimental details and results of anti-inflammatory activity of 

baicalein have been presented in Chapter 3. 

One of the most prime attributes of radioprotector includes no survival advantage to tumors in 

presence of IR. In fact, anti-tumor potential of radio-protective molecules qualifies them as ideal 

agents to be employed during radiotherapy. The results of anti-tumor activity of baicalein in 

lymphoma model are presented in Chapter 4 along with the experimental design and discussion. 
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1.10 Scope of the Thesis 

In the present thesis, attempt has been made to carry out detailed investigation about radio-

protective, anti-inflammatory and anti-tumor properties of plant derived flavonoid baicalein 

using murine model in vitro and in vivo. Investigation of radio-modulatory properties of 

baicalein has been the major focus of this study and studies pertaining to its effect on 

inflammation and cancer have been carried out to further strengthen observed radioprotective 

effects. These studies have provided valuable insights about other molecular targets influenced 

by baicalein and its possible implication towards development of a radioprotector. Our study plan 

includes following: 

A) Investigation of radioprotective properties of baicalein 

i) Evaluation of in vitro radioprotective properties of baicalein using murine splenic lymphocytes      

   as model system 

ii) Validation of results by performing multiple assays for cell viability 

iii) Investigation of molecular mechanism responsible for observed radioprotective action in 

terms of changes in cellular redox parameters and pro-survival signaling molecules 

iv) Analysis of changes in pro-survival factors in a dose and time dependent manner after 

baicalein treatment  

v) Investigation of in vivo radioprotective properties of baicalein monitored in terms of 30 days 

survival, changes in hematological parameters, abundance, functionality and viability of cells of 

hematopoietic system 

vii) Identification of DRF for modification of LD50/30 in presence of baicalein 

vi) Analysis of hematopoietic cells for changes in pro-survival/anti-apoptotic molecules in a time 

dependent manner 
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vii) Administration of inhibitor of key pro-survival molecule in mice to pinpoint most prominent  

      pathway 

B) Investigation of anti-inflammatory properties of baicalein 

i) Evaluation of in vitro anti-inflammatory properties of baicalein using murine splenic  

    lymphocytes as model system in terms of proliferation, cytokine secretion and surface marker     

    expression 

ii) Investigation of molecules regulating suppression of T cell responses 

iii) Validation of proposed signaling pathway operative for observed anti-inflammatory effects 

iv) Analysis of anti-inflammatory potential using in vivo model systems 

C) Evaluation of anti-tumor potential and mechanism of action of baicalein 

i) Investigation of changes in pro-survival molecules in regulating radio-sensitivity of  

    corresponding lymphoma cells 

ii) Evaluation of anti-tumor potential of baicalein in murine T cell lymphoma (EL4 cells) using      

    different assay systems 

iii) Investigation of molecular mechanism responsible for anti-tumor action of baicalein in EL4  

     cells 

Experiments performed to unravel potential of baicalein as a radioprotector in the present thesis 

unfolds very novel and significant mechanistic aspects about radio-modulatory, immune-

modulatory and anti-tumor properties. 
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2.1. Introduction 

 

Exposure to IR can cause damage to various cells, organs and vasculature system in the human 

body depending on type, dose, dose rate and radiosensitivity of tissue being exposed [45]. 

Radiation induced biochemical changes in the tissue are responsible for associated acute and/or 

chronic effects of IR exposure. Depending on the dose range of exposure, the response of human 

body is categorized into different syndromes. Besides the effects of radiation on the exposed 

cells and organs, bystander effects and delayed effects also contribute to the overall outcome of 

radiation exposure [256, 257]. Exposure to IR can lead to development of different pathological 

conditions due to cell death and malfunctioning in some critical organ systems in the body [46].  

2.1.1 Effect of radiation on different systems in the body 

Pathologic changes seen in human tissues after radiation exposure can be divided into  

i) Epithelial (parenchymal) 

ii) Stromal (mesenchymal) and 

iii) Vascular 

Fig. 2.1 summarizes common ways of radiation injury. These changes are associated with certain 

characteristic features and depending on the tissue exposed the respective organs are also 

affected (Table 2.1 and Table 2.2).  
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Table 2.1 Effect of radiation on different systems in the body 

Changes after 

radiation 

exposure 

Atrophy Necrosis & 

Ulceration 

Atypia Dysplasia 

Epithelial 

Characteristics 

Progressive loss of 

number and volume 

of epithelial cells 

Sharply 

demarcated 

mucosal ulcers, 

denudation of 

the epithelium 

with an ulcer 

base consisting 

of mixed 

inflammatory 

cells, necrotic 

debris, and 

granulation 

tissue 

Cytologic atypia, 

significantly enlarged 

nuclei with dense 

“smudgy” appearance 

Premalignant 

alteration, 

increased 

nucleus-to-

cytoplasm ratio 

Organs affected Skin, gastro-

intestinal system, 

genitourinary tract, 

respiratory tract, 

breast, salivary 

glands 

Prostate, breast, 

bladder, lungs, 

salivary glands, and 

squamous mucosa of 

the head & neck 

Occurs in 

squamous 

linings 

Stromal 

Changes 

Characteristics 

 

Fibrosis Atypical 

Fibroblasts 

Stromal Necrosis 

Delayed radiation 

injury, acellular 

acidophilic collagen 

Angulated 

basophilic 

cytoplasm, 

enlarged and 

hyperchromatic 

nuclei with no 

mitotic activity, 

cytomegaly 

Rare, delayed, can occur in any organ 

where stroma is present, fat necrosis of 

breast 

Organs affected Skin, head & neck, 

breast, GI tract 

GI, Respiratory tract, Urinary, Skin, Soft tissue, Breast 

Vascular 

Changes 

Characteristics 

Capillaries Arterioles Small and 

medium sized 

arteries 

Large arteries and 

veins 

Endothelial cells are 

the most radiation-

sensitive in vascular 

structure, thrombosis 

obstruction, capillary 

destruction,telangiect

asia, hematuria 

Swollen 

endothelial cells 

in GI, skin and 

brain 

Nuclear 

enlargement, 

random medial 

wall necrosis, 

mural 

thickening with 

hyalinization 

Intimal fibrosis, 

transmural healed 

necrosis, intimal 

plaque formation 

with foamy 

macrophages 
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Blood Blood barrier Parenchymal cell loss Recovery 

Dysregulated 
interaction 

Inflammatory 
cytokines, 
IL1β, TNFα, IL6
growth factor
milieu
VEGF, FGF

Endothelial 
Cell function, 
cell loss, recovery

Stromal cell
infiltration

Extracellullar matrix,
fibrosis

Radiation

Table 2.2 Pathological findings in specific organ [258] 

Organ Pathologies 

Heart and great 

vessels 

Pericarditis, pericardial effusion, myocardial fibrosis 

Lung Acute 

Radiation 

pneumonitis 

(ARP) 

Increased number of macrophages in alveolar spaces 

Mixed chronic inflammatory infiltration 

Fibroblasts in the alveolar septa 

Hyaline membranes (homogenous, acellular, and eosinophilic material) 

Pulmonary 

fibrosis (PF) 

Months or years after the development of ARP, Alveolar septa fibrosis 

Diffuse fibrotic areas, or scarred tissue replacing alveolar spaces, 

bronchiolitis obliterans, unlike ARP, PF is observed as a sharply 

demarcated fibrous lesion within the previously irradiated site. 

Liver 

Venoocclusive disease (VOD), involves the central veins and afferent 

sinusoids of the lobules in the irradiated parenchyma.    VOD is sharply 

limited to the exposed area. 

Kidneys Radiation-induced nephropathy: tubular atrophy, tromal fibrosis, diffuse 

glomerular sclerosis, vascular intimal proliferation, foamy cells  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Common ways of radiation injury [46] 
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Hematopoetic
stem cell (HSC) CFUs CMP

CLP

Pre-T cell

Pre-B cell

T lymphocyte

B lymphocyte

Blast-colony 
forming cell

MEP

BFU-E

MEG-CFCs

Erythrocytes

Megacaryocytes/
platelates

GMP

Eo-CFC

GM-CFCs

G-CFC

M-CFC

Neutrophil

Monocyte/
macrophages

Eocinophil

Mast-CFC

Mast cell

2.1.2 Hematopoietic system 

Fig. 2.2 Cells of hematopoietic system   

(BFU-E, burst-forming units–erythroid; CFU-S, colony-forming units–spleen; CLP, common 

lymphoid progenitors; CMP, common myeloidprogenitors; Eo-CFC, eosinophil–colony-forming 

cells; G-CFC, granulocyte–colony-forming cells; GM-CFC, granulocyte macrophage–colony-

forming cells; GMP, granulocyte-macrophage progenitors; HSC, hematopoietic stem cell; M-

CFC, macrophage–colony-forming cells; Mast-CFC,mast–colony-forming cells; Meg-CFC, 

megakaryocyte–colony-forming cells; MEP, megakaryocyte-erythroid progenitors [259]). 

2.1.3 Hematopoiesis 

A lifelong process of supplying mature blood cells to the whole organism defines hematopoiesis 

which occurs in the bonemarrow (BM). It is estimated that approximately 10
12

 blood cells are 

generated every day in order to balance the loss of aging blood cells [260]. In addition external 

agents like infection, hemorrhage, hypoxia, foreign antigen can induce increased production of 

blood cells to immediately meet the demands. In order to support this high turnover, the 
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hematopoietic system has several feedback and intrinsic regulatory mechanisms that regulate the 

self-renewal, asymmetric division and differentiation of a relatively small number of HSCs and 

progenitor cells (1 HSC in 10
4
 BM cells) residing mainly in the adult BM [261]. These rare cells 

that undergo proliferation and differentiation into different lineages of mature blood cells 

(erythroid, myeloid, lymphoid cells and platelets) and maintain  HSC pool through self-renewal 

throughout the life [262] (Fig. 2.2). 

2.3.4 Regulation of hematopoiesis 

HSCs can undergo several fates during the lifetime of an individual viz self-renewal, 

differentiation and migration, quiescence and cell death [263]. In response to various types of 

stress (bleeding, infections), HSCs are rapidly activated to meet the increased demand of 

specialized blood cell production. Self-renewal is the most essential process of the HSCs as it is 

required to sustain hematopoiesis [264]. Stem cells can either generate an identical copy through 

symmetrical division or give rise to cell destined to an alternative fate via asymmetrical cell 

division (Fig. 2.3). Thus, by regulating the balance of symmetrical and asymmetrical divisions 

through intrinsic and/or extrinsic factors, the number of HSCs is maintained at steady state level 

[262]. Differentiation is defined as the sequence of events through which primitive stem cells 

gradually lose their self-renewal ability while undergoing a stepwise commitment process 

generating more mature and lineage restricted progenitors [265]. Fate decision can be mediated 

through extrinsic factors (cytokines, microenvironment of the BM niche) (Fig. 2.4) or intrinsic 

factors (pre-programmed in the cell genome) [266]. 
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Quiescence Apoptosis

HSC

symmetrical symmetrical

asymmetrical

Self renewal Differentiation

Two distinct subsets of hematopoietic progenitors, common lymphoid progenitor (CLP) [267] 

and the common myeloid progenitor (CMP) [268] have been identified in adult bone marrow. 

CLP differentiates into cells of the lymphoid lineage- T, B and NK cells, while the CMP 

generates myeloid precursors of the megakaryocyte / erythroid, granulocyte and monocyte / 

macrophage lineages (Fig. 2.2).  

Fig. 2.3 HSC fate decisions             Fig. 2.4 Hematopoietic stem cell niche 

        [269] 

Maintaining quiescence is another highly important characteristic of the HSCs which is believed 

to serve two purposes: i) prevent exhaustion of HSCs by maintaining steady state hematopoiesis 

and ii) protect HSCs from DNA alterations (and thus cancerous transformation) more likely to 

occur in an activated state [270].  

2.1.5 Hematopoietic stem cells 

The search for HSC began when it was first recognized that animals given lethal doses of 

irradiation suffered bone marrow aplasia which could be reversed by injection of unirradiated 

bone marrow cells [271][272]. Operationally, HSC can be defined as that single cell which can 

generate entire hematopoietic system of a lethally irradiated animal [262]. HSCs are 

distinguished from other hematopoietic progenitors in the bone marrow by their unique ability to 
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undergo multilineage differentiation and self-renewal. Bone marrow stromal cells make up the 

microenvironment for hematopoiesis. The fate of the HSC is determined largely by the 

microenvironment (niche) [273]. The small population of  HSC in the bone marrow consists of 

short-term reconstituting cells (STRCs) and long-term reconstituting cells (LTRCs), based on 

how quickly the transplanted cells can produce progeny in an irradiated recipient [274]. They can 

be “purified” using a combination of cell size, density, fluorescent dye uptake, resistance to 

cytotoxic chemicals and cell-surface markers.  

Physiological characteristics 

Using counterflow centrifugal elutriation (CCE), which sort cells on the basis of size and density, 

Jones et al. (1990) separated a bone-marrow subset (CCE25) of small, dense cells, showing 

delayed, but long-term repopulating ability [275]. 

Metabolic characteristics 

The level of up-take of Rhodamine 123 by cells can be used as a means to isolate HSCs. 

Rhodamine 123 binds to the mitochondrial DNA, and a low level of Rhodamine 123 suggests an 

active outflow pump that has been shown to be highly active in HSCs. With split spectrum 

analysis, Goodell et al. (1996) discovered side population cells (SP cells) and demonstrated their 

LTRC properties [276]. Hoechst 33342, has also been used in HSC identification [277]. It 

appears that a low level of Hoechst 33342 results from a more activated multi drug- resistant 

gene product, as evidenced by the fact that verapamil will block Hoechst efflux from SP cells.  

Cell surface markers 

HSCs are a population of low abundance and morphologically indistinguishable cells, 

interspersed in the BM among large numbers of differentiated blood cells at various stages of 

maturation. The development of flow cytometry, fluorescence-activated cell sorting (FACS) and 
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wide availability of fluorochrome-conjugated monoclonal antibodies against cell surface markers 

account for the breakthrough in identification of HSCs [272][278][279]. 

A more commonly used method is to identify cells via recognition of surface-specific expressed 

proteins. Spangrude et al. (1988) showed that HSCs in murine bone marrow can be enriched 

1000- to 2000-fold in a population of cells that express low levels of Thy-1.1(Tlo), high levels of 

Sca-1 (Shi), and absence of (or low) lineage markers [280]. Murine HSCs are characterized by a 

unique pattern of surface markers known as Signaling Lymphocyte Activation Markers (SLAM) 

expressed on bone marrow cells [281].  

CD150 is the founding member of the SLAM family of cell surface receptors. CD150+ cells 

exhibit long-term multilineage cells [281]. CD244 is expressed by transiently reconstituting 

MPPs but not by HSCs. CD48 is expressed by restricted progenitors but not by HSCs or MPPs. 

SLAM family members are differentially expressed among hematopoietic progenitors in a way 

that correlates with primitiveness. SLAM family members are so precisely differentially 

expressed that HSCs are very highly enriched within the CD150+CD244-CD48- cell population 

[282]. HSCs can thus be characterized by CD150+CD244-CD48- cells while MPPs as 

CD244+CD150-CD48- and lineage restricted progenitors as CD48+CD244+CD150-. 

2.1.6 Essentials and significance of hematopoietic system 

The hematopoietic system plays an important part in maintaining the vitality of mammals. 

Functional cells of this system transport oxygen in the blood provide specific and nonspecific 

immune protection to the organism against foreign substances (viruses, bacteria, and so on), 

ensure the blood coagulates, and sustain intact blood vessels.  
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2.1.7 Radiation induced alterations in hematopoietic system 

Actively dividing cells are highly sensitive to IR induced cell death. Cells of the hematopoietic 

system are continuously proliferating and hence are most radiosensitive among all the 

mammalian systems [283, 284]. Radiation induced injury to hematopoietic system can lead to 

hemorrhage, increased susceptibility to internal and external infections and anemia. Exposure to 

IR and certain chemotherapeutic agents not only cause acute BM suppression but also leads to 

long-term residual hematopoietic injury. It has been well established that acute myelo-

suppression induced by IR and / or chemotherapy is the result of induction of apoptosis in the 

rapidly proliferating hematopoietic progenitor cells (HPCs) and to a lesser degree in the 

relatively quiescent HSCs [285, 286]. Management of acute myelosuppression can be 

significantly improved by the use of growth factors such as granulocyte-colony stimulating 

factor, granulocyte/macrophage-colony stimulating factor, or erythropoietin [287]. 

The severity of lymphopenia and thrombocytopenia generally correlate with cumulative radiation 

dose and dose rate [288, 289]. The primary causes of hematopoietic syndrome (HS) are 

radiation-induced suppression of mitosis in hematopoietic stem/progenitor cells and their 

progeny, resulting in hypo-cellularity and aplasia of the bone marrow and apoptosis in 

lymphocytes and other hematopoietic cells [290]. Hematopoietic stem / progenitor cells of the 

bone marrow undergo mitotic death after exposure to IR [291]. This particular in vitro measure 

of sensitivity to radiation correlates with the appearance of the HS that occurs in individuals 

whose partial-body or whole-body radiation exposure exceeds approximately 1 Gy [292] leading 

to significantly diminished capacity of hematopoietic stem / progenitor cells to proliferate in 

vivo. Depending on the dose, dose rate, and radiation quality factor, various degrees of 

pancytopenia develop over several weeks after whole-body or significant partial-body exposure 
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[293]. Factors that may exacerbate the effects of radiation include a patient‟s age, underlying 

state of health, and overall nutritional status. Table 2.3 summarizes some of the radiation 

induced alterations in hematopoietic system. 

Table 2.3 Radiation induced alterations in hematopoietic system   

Target Effect 

Spleen 

 Reduced size 

 Decreased cell count 

 Apoptosis in lymphocytes 

 Decreased responsiveness to mitogenic stimuli 

 Increased oxidative stress in cells 

Bone 

Marrow 

 Aplasia 

 Decreased cell count of BM-MNC 

 Apoptosis in BM-MNC 

 Cell cycle arrest 

 Mobilization of stem cells 

 Alteration in bone marrow niche (stromal cells, fibroblasts) 

 Increased oxidative stress 

Blood 

 Decline in lymphocyte count 

 Decreased platelet count 

 Chromosomal aberrations in lymphocytes 

 Decreased enzyme activity and accelerated ageing in cells 

 Increased damage to erythrocyte membranes 

  

2.1.8 Screening of radioprotectors       

A clear understanding of the research methods is essential for screening any compound for 

ability to offer radioprotection. These methods include cell free systems, cellular systems, animal 

systems, and human clinical trials. When cells are irradiated, damage is produced primarily by 

free radicals and a candidate radioprotector may exhibit the ability to scavenge free radicals 

formed during irradiation and thereby inhibit the chain propagation steps of free radicals. There 

are several assays for assessment of free radical scavenging, membrane damage, protein 
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oxidation, cytogenetic damage, DNA repair and apoptosis which are employed to test the 

radioprotective efficacy. Below presented is the list are some of these assays. 

Antioxidant activity 

 DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity 

 Hydroxyl radical scavenging 

 Superoxide anion scavenging 

 Plasmid relaxation assay 

 Metal chelation activity 

 Nitric oxide scavenging activity 

 Reducing potential 

 Total Antioxidant capacity 

 Lipid peroxidation 

 Protein oxidation 

Cell death, cytogenetic damage, DNA repair and other parameters 

 Apoptosis 

 Comet assay 

 Estimation of micronuclei and dicentric frequency 

 Measurement of endogenous antioxidant enzymes (catalase, superoxide dismutase, 

glutathione s transferase) 

In vivo screening 

The drug development process is a time consuming activity and needs a systematic and focused 

approach to achieve the goal. The preliminary in vitro assays provide an idea about basic 

properties and mechanism of action of the candidate radioprotector. However, it is possible that 
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the data obtained from in vitro assays may not necessarily corroborate with in vivo observations. 

The most promising radioprotectors obtained based on testing in rodents (mice, rats and rabbits) 

are taken to higher animals (dogs and monkeys). 

(i) Survival (30 days) 

Radioprotective efficacy of compounds is evaluated in the rodents by their administration via 

different routes like intra-peritoneal, subcutaneous, intra-venous or oral followed by exposure to 

lethal dose (≥7.0Gy) of WBI. Different doses and different formulations of the drug are tested at 

single or multiple doses to achieve maximum efficacy. Survival and health of animals is 

observed up to 30 days. The change in the average weights of the animals at different time 

intervals is also compared to that of untreated control animals.  

(ii) Dose reduction factor (DRF) 

DRF serves as a standard criterion for grading radioprotectors and assessing their relative 

efficacy of test radioprotector as compared to established radioprotector. Magnitude of 

modification of LD50/30 by compound of interest is a parameter of the ability of radioprotector 

to protect animals against lethal doses of irradiation. DRF is calculated as a ratio of LD50/30 

dose of radiation in the presence of radioprotector to that of LD50/30 dose of radiation in 

absence of radioprotector. 

(iii) Hematologic parameters        

Radiation affects number (frequency and abundance), viability and functionality of cells of 

hematopoietic systems and induces distinct molecular changes characteristic of radiation 

damage. Those can be monitored by different assays like: 

 Total leukocyte count 

 Differential leukocyte count 
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 Erythrocyte count 

 Hemoglobin content 

 Spleen colony forming units 

 Lymphocyte viability 

 Lymphocyte proliferation and cytokine secretion 

 Spleen phenotyping 

 BM-MNC Count 

 BM-MNC viability 

 Colony forming cell assay 

 Abundance of HSC 

(iv) Toxicity testing 

It is of utmost importance that beneficial effect of a radioprotector should outweigh its side 

effects. The maximum dose of drug which is well tolerated without significant toxicity or death 

in the experimental animals is considered as maximum tolerated dose (MTD). Whereas the dose 

that induces 50% killing is referred to as LD50 of the drug which is an important measure of 

drug toxicity. Dose that needs to be given to obtain optimum desired effects is called as effective 

dose (ED). Therpauetic index of a drug is the ratio of LD50 dose of drug (radioprotector) to its 

effective dose. Drugs with high therapeutic index i.e. low effective dose and/or high LD50 dose 

are preferable. The effective dose of radioprotector should ideally be much lower than LD50 

dose (less than 1/4).  
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Cell Free System

•Plasmid DNA 

•Mitochondria

•Membrane

•Proeins

Cellular System
•Lymphocytes

•Tumor Cells

Animal Models

•Hematopoietic

parameters

•Survival (30 days)

•DRF

(v) Pharmacokinetics and pharmacodynamics 

The understanding of absorption, tissue distribution, serum concentration, pharmacokinetics, 

metabolism and excretion of any externally administered substance is an essential requirement 

for understanding the efficacy and toxicity of the formulation.  

The general strategy for screening of radioprotectors is outlined in Fig. 2.5. 

 

    

  

  

  

    

Fig. 2.5 Strategy for screening radioprotector 

In vivo models are especially important as a proof-of principle in establishing the preclinical 

safety and efficacy data required for translating to human clinical trials. Plant products are 

extensively used in alternative medicines like Ayurveda and provide promising alternative of 

synthetic chemical agents. Large numbers of plants products have been reported for their 

radioprotective properties, albeit with limited success in clinic. However, considering the vast 

variety of metabolites found in the plants, systematic investigation using the purified active 
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Apoptosis 

parameters

ROS 

measurement

ROS/GSH 

measurement

Pro-survival/cytoprotective

signaling molecules

Kinase/phosphatase

activity

4h

4Gy

24h

pharmacological agents (and not crude extracts) may provide a highly potential and non-toxic 

radioprotector drug for human use. The study plan and experimental layout employed in current 

study is outlined in Fig. 2.6 & Fig. 2.7.  

Fig. 2.6. Study plan for evaluating in vitro radioprotective potential of baicalein
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Baicalein 10mg/kg b.w. (i.p.)

3 injections at interval of 24h

Ionizing Radiation

Day 0
ROS Levels

Splenic lymphocytes BM-MNC

Propidium Iodide Staining

Cell death analysis

Con A

CFSE Staining

Cytokines Proliferation

BM-MNC

Propidium Iodide 
Staining

Cell death analysisIL3, GM-CSF,
IL2, IL4, IL6, IFN-γ

Methylcellulose 
Media

10
 D

ay
s

Colony Counting

4Gy 7.5Gy

                Fig. 2.7 Study plan for evaluating in vivo radioprotective ability of baicalein
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2.2. Materials and Methods 

2.2.1 Chemicals 

Baicalein, Hoechst 33342, H2DCFDA, HEPES, EDTA, EGTA, glycerol, DTT, NaCl, trizol 

reagent, JC-1 dye, DABCO reagent, tris, glycine, DMSO, para-nitro-phenylphosphate (PNPP), 

immunoprecipitation kit, verapamil, triton X-100, bovine serum albumin, trypan blue and 

Iscove‟s Modified Dulbecco‟s Medium (IMDM) were purchased from Sigma Co. USA. RPMI, 

fetal bovine serum (FBS), 10X PBS and sterile water were purchased from (Himedia, Mumbai, 

India). Homogenous caspase assay kit, in situ cell death detection kit, poly dI:dC and SYBR 

green PCR mix were purchased from Roche chemical Co (Indianapolis, USA). Carboxy 

fluoresceindiacetate succinimidyl ester (CFSE) was purchased from Invitrogen (USA). 

Concanavalin A (Con A) and pharmacological inhibitors of MEK, p38, m-TOR, ERK and Nrf-2 

(all-trans retinoic acid or ATRA) were purchased from Calbiochem (CA, USA). ELISA sets for 

detection of cytokines (IL2, IL4, IL6, IFN-γ, IL-3 & GM-CSF) and monoclonal antibodies 

against HO-1 and pERK labeled with PE, CD244 labeled with PE, CD150 APC-Cy7, lineage 

cocktail antibodies labeled with FITC and respective isotype controls were procured from BD 

Pharmingen (CA, USA) and pNrf-2 antibody labeled with PE was purchased from Bioss 

(Woburn, MA). Polynucleotide kinase, kinase buffer and cDNA synthesis kit were purchased 

from New England Biolabs (Ipswich, MA). ERK kinase activity kit and antibodies against tERK, 

pERK, MEK, MKP3, p65, caspase 3, HO-1 and β-actin were obtained from Cell Signaling 

Technologies (CA, USA). Oligonucleotide probe for Nrf-2 was purchased from Santacruz 

Biotechnology (Indianapolis, USA). All other chemicals used were obtained from reputed 

manufacturers and were of analytical grade.  
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2.2.2 Animal maintenance 

Six to eight week old inbred Swiss and C57BL/6 male mice, weighing approximately 20-25g, 

reared in the animal house of Bhabha Atomic Research Centre were used. They were housed at 

constant temperature (23 
0
C) with a 12 / 12 hour light / dark cycle and were given mouse chow 

and water ad libitum. The guidelines issued by the Institutional Animal Ethics Committee of 

Bhabha Atomic Research Centre, Government of India, regarding the maintenance and 

dissections of small animals were strictly followed.  

2.2.3 Irradiation schedule 

Swiss albino male mice, C57BL6 mice, splenic lymphocytes and EL-4 cells suspended in 

medium were exposed to IR using a 
60

Co γ-irradiator at a dose rate of 2.19Gy/min (Gamma Cell 

220; AECL, Canada).  

2.2.4 Cell culture 

EL-4 (Murine T cell lymphoma) cells were cultured in RPMI 1640 supplemented with 10% fetal 

bovine serum, 100 U/ml penicillin and 100µg/ml streptomycin. Cells were incubated at 37°C in a 

5% CO2 humidified atmosphere, maintained in exponentially growing conditions and passaged 

thrice in a week.  

2.2.5 Estimation of cell death 

The percent cell death was estimated using propidium iodide (PI) staining followed by flow-

cytometry (Cyflow, Partec) or DNA fragmentation assay as described earlier [218]. The pre G1 

population represents cell death. DNA ladder was visualized by UV-absorbance in Gel Doc 

(DNR Biosystem). Trypan blue exclusion test was also performed to enumerate viable cells. 

 

 



CHAPTER 2                                                                                              Page 80 

 

RR..  SS..  PPAATTWWAARRDDHHAANN                                                                                                     Ph.D. Thesis 
 
 

2.2.6 Homogenous caspase activity assay 

Homogenous caspase activity was measured in lymphocytes exposed to radiation in presence or 

absence of baicalein using homogenous caspase activity kit as per manufacturer‟s instructions. 

2.2.7 Measurement of mitochondrial membrane potential  

Mitochondrial membrane potential (MMP) was assessed using the mitochondria specific 

fluorescent probe JC-1 (5μM) by spectroflourimetric method as described previously [294].  

2.2.8 Confocal microscopy  

Baicalein treated lymphocytes were harvested at various time intervals on a glass coverslip. 

These cells were washed once with 1X PBS, fixed with 4% paraformaldehyde, permeabilized 

with PBS containing triton X 100 and stained with PE-pERK antibody as described previously 

[120]. Further, these cells were stained with Hoechst. Slides were examined using an LSM510 

confocal microscope (Carl Zeiss, Jena, Germany) with a krypton–argon laser coupled to an 

Orthoplan Zeiss photomicroscope using a 488-nm laser line and a 530-nm band-pass filter. 

2.2.9 RNA isolation, cDNA synthesis and quantitative real time PCR 

Gene specific primers Table 2.4 were used to quantify the mRNA levels in the samples by 

quantitative real-time polymerase chain reaction (qPCR) as described previously [295].  The 

threshold cycle (the cycle at which the amplification enters into exponential phase) values 

obtained from above runs were used for calculating the expression levels of genes by REST-384 

version 2 software [296]. The expressions of genes were normalized against that of a 

housekeeping gene, β-actin, and plotted as relative change in the expression with respect to 

control.  
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Table 2.4. Primer sequence 

 

 

 

 

 

 

 

 

 

2.2.10 Intracellular antibody staining by flow cytometry  

Detection of proteins by intracellular antibody staining was performed as described earlier [297]. 

Briefly, 2.5 x 10
6
 lymphocytes were blocked with medium containing 10% serum on ice, fixed 

with paraformaldehyde at 4
0
C and permeabilized with 1X PBS containing 0.05% triton X100. 

Antibody staining solution (medium with 5% serum) containing 0.3g antibody was added 

(20l) to cells and incubated at RT for 30min. Cells were washed with 1X PBS and resuspended 

in 1ml 1X PBS. Nuclei were stained with Hoechst 33342 (10g/ml). Unstained cells and isotype 

antibody stained cells were used. Cells were acquired on flow cytometer. 

2.2.11 Immunoprecipitation and Western blot analysis  

Lymphocytes (40 x 10
6
/group) were treated with baicalein and harvested at different time 

intervals. Cytosolic, whole cell or nuclear extract was prepared as described earlier [298]. 

Vehicle treated cells served as a control. Whole cell lysates were equally loaded onto SDS-

PAGE and electrophoresed at 100V. Proteins were transferred onto nitrocellulose membrane by 

Gene Sequence 

HO-1 Forward: AGGTACACATCCAAGCCGAGA  

Reverse :CCATCACCAGCTTAAAGCCTT 

TrxR1 Forward: GGGTCCTATGACTTCGACCTG  

Reverse: AGTCGGTGTGACAAAATCCAAG 

GCLC Forward: CTACCACGCAGTCAAGGACC 

Reverse: CCTCCATTCAGTAACAACTGGAC   

GCLM Forward:AGGAGCTTCGGGACTGTATCC 

Reverse:GGAAACTCCCTGACTAAATCGG  

Catalase   Forward: AGCGACCAGATGAAGCAGTG 

Reverse: AGGACATCAGGTCTCTGCGA 

Mn-SOD Forward: CAGACCTGCCTTACGACTATGG 

Reverse: CTCGGTGGCGTTGAGATTGTT 

β-actin Forward: GCGGGAAATCGTGCGTGACATT 

Reverse: GATGGAGTTGAAGGTAGTTTCGTG 
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semi-dry transfer at 45mA. Presence of proteins on nitrocellulose membrane was confirmed by 

Ponceau S staining. Membranes were blocked with 5% milk in 1X tris buffer containing 0.05% 

triton X100 and probed with pERK, pMEK, ERK, MKP3, HO-1 and β-actin. Nuclear extracts 

were probed with Nrf-2 and PARP. MKP3 was immunoprecipitated using protein-G IP kit from 

Sigma and extracts were probed for phosphatase activity. 

2.2.12 Electrophoretic mobility-shift assay (EMSA)  

Lymphocytes were treated with baicalein (100µM) for different time intervals, cells were 

harvested and nuclear pellets were prepared as described earlier [299]. EMSA was performed by 

incubating 10 μg of nuclear protein with 16fmol of 
32

P-end-labeled, Nrf-2 oligonucleotide (5‟-

TGGGGAACCTGTGCTGATCACTGGAG-3‟) in the presence of 0.5 μg of poly (2′-

deoxyinosinic–2′-deoxycytidylic acid) in binding buffer (25 mM Hepes, pH 7.9, 0.5 mM EDTA, 

0.5 mM DTT, 1% NP-40, 5% glycerol, and 50 mM NaCl) for 30 min at 37 °C. The DNA–

protein complex formed was separated from free oligonucleotide on 6.6% native polyacrylamide 

gels using buffer containing 50 mM Tris, 200 mM glycine, and 1 mM EDTA, pH 8.5. The dried 

gel was exposed to a phosphorimage plate and the radioactive bands were visualized using a 

phosphorimage plate scanner (Fuji). 

2.2.13 Measurement of proliferation and cytokine secretion  

Lymphocytes were isolated from mice 11 days after administration of baicalein or DMSO and 

WBI 4Gy treatment. The cells were stained with CFSE and stimulated with Con A. After 72h of 

culture they were monitored for proliferation by dye dilution on a flow cytometer. The 

concentration of IL-2, IL-4, IL-6, IFN-γ, IL-3 and GM-CSF in the supernatant of cells derived 

from these mice 24h post Con A stimulation was estimated using cytokine ELISA sets [300].  
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2.2.14 Side population and HSC analysis  

The femur bones were dissected, and the marrow was flushed into cold IMDM, 2% FBS using a 

21-gauge needle. Nucleated cells were counted using hemocytometer and trypan blue dye 

exclusion. Three million cells from each mouse were resuspended in pre-warmed 37
0
C DMEM 

without phenol red. Verapamil (100µM) was added to a set of pooled cells and incubated for 10 

min at 37
0
C. Hoechst 33342 (5µg/ml) was added and cells were incubated at 37

0
C for 90 min. At 

the end of incubation, cells were washed with DMEM without phenol red and acquired on flow 

cytometer within 2h. Cells incubated with verapamil and then stained with Hoechst 33342 were 

used to define side population [301]. For HSC analysis, BM-MNC were washed with 1X PBS 

and resuspended in IMDM with 2% serum and stained with antibody cocktail containing lineage-

FITC, CD244-PE, CD150-APC-Cy7 in complete medium and 0.3µg antibody per sample was 

added. Single stained, unstained and FMO (fluorescence minus one) controls were used for 

compensation analysis. Surface staining was performed on ice as described earlier [302]. Cells 

were acquired on partec cyflow flow cytometer and analyzed using FlowJo 7.6.5 (Treestar, Inc. 

Ashland) software.  

2.2.15 In vivo radioprotection studies 

Mice (ten per group) were administered baicalein (10 mg/kg body wt) or vehicle (DMSO) 

intraperitoneally for 3 consecutive days with time interval of 24h. Ten minutes after last injection 

of baicalein, mice were exposed to WBI (4Gy/7.5Gy) and sacrificed at different time intervals or 

monitored for 30 days survival. BM-MNC and lymphocytes were isolated and cultured for 24 or 

72h at 37°C. The cells were processed for CFSE staining, PI staining or ROS measurement 

[303]. Another group of mice was administered with ATRA (5mg/kg body wt) twice in a week 

following baicalein and WBI treatment. To determine the DRF, mice were exposed to WBI 
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doses between 5.5 and 10.5 Gy. Group of 10 animals each were pretreated with three consecutive 

i.p. injections of baicalein (10 mg/kg body wt) and 10 min after last injection they were 

irradiated with 5.5, 6.5, 7, 7.5, 8.5, 9.5 and 10.5Gy. Animals were monitored for 30 days after 

WBI for body weight changes and mortality.  

2.2.16 Statistical analysis Data are presented as mean ± SEM. Statistical analysis was done 

using ANOVA by microcal origin 6.0 software. Statistical significance for survival studies was 

calculated from log-rank test using Graphpad Prism 5.0 software. *refers to p<0.05, as compared 

to control, # refers to p<0.05, as compared to irradiated or Con A stimulated group and $ refers 

to p<0.05 as compared to compound treated and irradiated or Con A stimulated group  

2.3. Results 
 

2.3.1 Baicalein protected murine splenic lymphocytes against IR induced cell death 

 Lymphocytes were incubated with different concentrations of baicalein (5, 10, 25, 50 & 100μM) 

for 4h and then exposed to radiation dose of 4Gy. Cells were harvested at 24 h, stained with PI 

and acquired on a flow cytometer. Representative flow cytometric histograms of (PI) stained 

cells (A) and bar chart (B) show that radiation induced cell death in ~80% cells over control. 

Incubation of lymphocytes with baicalein (100μM) per se did not induce any cell death. 

Baicalein treatment led to a concentration dependent reduction in radiation induced cell death as 

evinced from decrease in pre-G1 population. At 100μM, it offered complete protection against 

radiation induced cell death (Fig. 2.8A & B). Caspase activation is a hallmark of IR induced 

apoptosis. Activated caspases further activate DNases that cleave genomic DNA at the intervals 

of ~180bp or its multiples which is monitored by DNA fragmentation on agarose gel. To confirm 

radioprotective action of baicalein, DNA fragmentation assay was also performed which 

corroborated with results of PI staining and revealed dose dependent protection of murine splenic 
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lymphocytes (Fig. 2.8C). Viability of lymphocytes exposed to radiation in presence or absence of 

baicalein and cultured for 24h was assessed by performing trypan blue staining. Non-viable cells 

take up this dye owing to their compromised membrane permeability. It was observed that cells 

treated with baicalein and exposed to 4Gy dose of IR were viable (Fig. 2.8D).  
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Fig.2.8 Baicalein protected murine splenic lymphocytes against IR induced cell death in vitro 

Lymphocytes were incubated with different concentrations of baicalein (5, 10, 25, 50 & 100µM) 

for 4h and then exposed to 4Gy IR and cultured for 24h at 37
0
C in CO2 incubator. (A) Cells were 

stained with PI and acquired on a flow cytometer. Overlaid flow cytometric histograms show cell 

death. (B) Percentage cell death is shown in graph. (C) DNA fragmentation in cells treated with 

baicalein and exposed to IR. DNA ladder indicates cells undergoing apoptosis. (D) Viability of 

lymphocytes was measured using trypan blue dye exclusion assay. Bar graph represents per cent 

viability. *p<0.05, as compared to control, #p<0.05, as compared to IR. 
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2.3.2 Baicalein protected lymphocytes but not lymphoma against IR induced apoptosis 

During apoptosis, activity of executioner caspases increases significantly leading to cleavage of 

proteins and ultimately cell death. Hence, homogenous caspase activity was monitored in 

lymphocytes in the presence and absence of baicalein. Exposure to 4Gy significantly enhanced 

homogenous caspase activity in lymphocytes, but radioprotective concentration of baicalein 

reduced it to control level suggesting that caspases are no more active in baicalein treated cells 

exposed to 4Gy (Fig. 2.9A). Exposure to IR leads to cleavage of caspase-3. Baicalein prevented 

radiation induced cleavage of caspase-3 (Fig. 2.9B). Baicalein treatment significantly prevented 

late events of IR induced apoptosis such as DNA fragmentation, homogenous caspase activity 

and viability. Exposure to IR leads to loss of mitochondrial membrane potential (MMP) as an 

early event which is also used as a measure of cell viability. Effect of baicalein on this early 

event of apoptosis was monitored by JC1 staining and it was observed that baicalein significantly 

prevented IR induced loss of mitiochondrial membrane potential (Fig. 2.9C).  

An ideal radioprotector should not offer survival advantage to tumor cells. Hence, effect of 

baicalein on radiosensitivity of EL4 (murine T cell lymphoma) was monitored. Incubation of 

EL4 cells with radioprotective concentration of baicalein alone led to significant increase in cell 

death. Exposure of EL4 cells to radiation showed marginal increase in cell death over control and 

addition of baicalein prior to irradiation did not offer protection to these cells (Fig. 2.9D).  
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Fig. 2.9 Baicalein protected lymphocytes but not lymphoma against IR induced apoptosis (A) 

Homogenous caspase activity was measured spectro-fluorimetrically. Bar graph represents homogenous 

caspase activity (A.U.). (B) Incubation of lymphocytes with baicalein prevented radiation induced caspase-

3 cleavage. (C)Change in mitochondrial membrane potential was measured spectro-fluorimetrically. Bar 

graph represents ratio of red to green fluorescence. (D) Murine T cell lymphoma cells (EL4) cells were 

incubated with 100µM baicalein for 4h prior to irradiation and cultured for 48h.. Cells were acquired on 

flow cytometer after PI staining. Vehicle treated cells served as control. Percentage cell death is shown in 

bar graph. *p<0.05, as compared to control, #p<0.05, as compared to IR 
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Fig. 2.10 Baicalein scavenged ROS but did not affect GSH levels in lymphocytes (A) Cells were stained 

with H2DCF-DA, incubated with different concentrations of baicalein and then exposed to 4Gy IR. ROS 

levels were estimated spectro-fluorimetrically. Bar graph represents arbitrary units of DCF fluorescence 

indicative of cellular ROS levels.  (B) Cells incubated with radioprotective concentration of baicalein for 

different time intervals and ratio of GSH to GSSG was determined spectrophotometrically. Bar graph 

represents GSH/GSSG ratio. *p<0.05, as compared to control, #p<0.05, as compared to IR. 
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2.3.3 Baicalein scavenged ROS and did not affect GSH/GSSG ratio 

Since baicalein is reported to be a potent anti-oxidant, experiments were performed to examine 

whether baicalein mediated radioprotection is through scavenging of free radicals. Baicalein 

scavenged radiation induced ROS at 5μM (Fig. 2.10A) as measured by H2DCF-DA. 

Interestingly, baicalein did not offer any radioprotection at this concentration indicating that 

antioxidant action may not be playing a key role in baicalein mediated radioprotection.  

 

 

 

 

 

 

 

 

GSH/GSSG ratio is another important measure of cellular redox status. Hence, effect of baicalein 

treatment on changes in GSH and GSSG was monitored. It was observed that, baicalein 

treatment did not lead to any change in cellular GSH or GSSG content (Fig. 2.10B). 
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Fig. 2.11 ERK and Nrf-2 inhibitor abolished baicalein mediated radioprotection to lymphocytes Cells 

were treated with pharmacological inhibitors of ERK or MEK or Nrf-2 prior and then incubated with 

baicalein followed by irradiation at 4Gy. Cells were cultured for 24h, stained with PI and acquired on a 

flow cytometer. Pre-G1 peak represents apoptotic population (A). Bar graph represents per cent 

apoptotic cells (B). *p<0.05, as compared to control, #p<0.05, as compared to IR and $p<0.05, as 

compared to baicalein treated and irradiated group. 
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2.3.4 ERK and Nrf-2 inhibitor abolished baicalein mediated radioprotection  

Thus, it was observed that radioprotective action of baicalein is independent of its antioxidant 

effect. To investigate mechanism of action of baicalein mediated radioprotection lymphocytes 

were incubated with pharmacological inhibitors of ERK (ERKi) or MEK (PD98059) or Nrf-2 

(ATRA) prior to incubation with baicalein. It was observed that, inhibitors of ERK and Nrf-2 

completely abrogated baicalein mediated radioprotection suggesting the involvement of these 

two pro-survival molecules in baicalein mediated radioprotection (Fig. 2.11A & B). 
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2.3.5 Baicalein induced phosphorylation of ERK  

Since baicalein mediated radioprotection was abrogated by ERK inhibitor, the effect of baicalein 

on levels of phosphorylated form of ERK in lymphocytes was studied using flow cytometry and 

confocal microscopy. These experiments established that baicalein treatment induced ERK 

phosphorylation in lymphocytes (Fig. 2.12A-C).  

2.3.6 Baicalein suppressed phosphatase activity 

Further, experiments were performed to investigate the mechanism of activation of ERK by 

baicalein. Treatment of cells with baicalein led to phosphorylation of upstream kinase of ERK 

i.e. MEK1/2 (Fig. 2.13A). Inactivation of phosphatases is one of the mechanisms of activation of 

kinases. To address how baicalein activated ERK, total cellular phosphatase activity in 

lymphocytes after baicalein treatment was monitored. It was observed that baicalein reduced 

total cellular phosphatase activity. Since, baicalein treatment led to increased phosphorylation of 

ERK, total cellular phosphatase activity was monitored after baicalein treatment. Baicalein 

suppressed total phosphatase activity (Fig. 2.13B). MKP3 is ERK specific dual specificity 

phosphatase which is involved in dephosphorylation of ERK. Interestingly, baicalein inhibited 

MKP3 levels in a cyclic manner which was inversely related to levels of pERK (Fig. 2.13C). To 

measure the activity of MKP3, cell lysates from cells treated with baicalein or vehicle were 

immunoprecipitated using anti-MKP3 antibody, MKP3 was released from agarose beads and 

phosphatase activity was measured by para-nitro phenylphosphate method. It was observed that, 

baicalein treatment led to significant decrease in MKP3 activity (Fig. 2.13D). These experiments 

revealed that baicalein activated ERK pathway via inhibition of its corresponding phosphatase.
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Fig. 2.12 Baicalein induced phosphorylation of ERK Cells were incubated with baicalein (100µM) for 

different time intervals (30, 60 & 180 min), stained with PE-labeled pERK antibody and acquired on a flow 

cytometer. pERK positive cells are shown in overlaid flow cytometric histograms (A) and their percentage 

is shown in (B). Cells were treated with baicalein 100µM for 1h and stained with PE-labeled pERK 

antibody and cells were visualized by confocal microscopy (C). Hoechst staining was used to label nuclei. 

*p<0.05, as compared to control. 
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Fig. 2.13 Baicalein suppressed phosphatase activity Cells were treated with baicalein 100µM or vehicle 

for different time intervals (30, 60 & 180 min) cell lysates were prepared and probed for pMEK & pERK. 

Western blot images are shown in (A). Whole cell extracts from baicalein or vehicle treated lymphocytes 

were probed for total cellular tyrosine phosphatase activity. Bar graph represents nmol/min/mg activity 

of phosphatase (B). Cell lysates from baicalein or vehicle treated cells (30, 60, 120, 180 &/or 360) were 

probed with pERK & MKP3, Western blot images are shown (C). Cell lysates from baicalein or vehicle 

treated cells were immunoprecipitated with anti-MKP3 antibody. MKP3 was released from agarose 

beads and MKP3 phosphatase activity was measured using PNPP. Bar graph represents MKP3 

phosphatase activity nmoles/min/mg protein (D). *p<0.05, as compared to control. 
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2.3.7 Baicalein induced phosphorylation and DNA binding of Nrf-2 Since Nrf-2 (nuclear 

factor erythroid 2 related factor 2) inhibitor abrogated baicalein mediated radioprotection to 

lymphocytes, further investigations were carried out to establish a causal role of this transcription 

factor in baicalein mediated radioprotection. Keap1, an inhibitor of Nrf-2 is dissociated from 

Nrf-2 after induction of oxidative stress. Nrf-2 is phosphorylated at Ser 40 by ERK or PKC and 

subsequently it translocates to nucleus and binds to ARE (antioxidant response element). Hence, 

phospho-Nrf-2 levels in vehicle and baicalein treated cells were monitored by 

immunofluorescence. It was observed that, baicalein treatment significantly increased phospho-

Ser40-Nrf-2 levels at 6h as shown in flow cytometric histograms (Fig. 2.14A & B). 

Phosphorylation of Nrf-2 leads to its nuclear translocation and subsequent DNA binding. Since, 

Nrf-2 is a transcription factor its functional activity was determined by DNA binding and 

transcriptional activity. It was observed that baicalein treatment lead to significant increase in 

DNA binding of Nrf-2 at 6h in lymphocytes as revealed by EMSA (Fig. 2.14C). Interestingly, 

ERK inhibitor abolished baicalein induced nuclear translocation of Nrf-2 suggesting that ERK 

activation may be necessary upstream signaling event for its activation in lymphocytes (2.14D). 
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Fig. 2.14 Baicalein activated Nrf-2 Baicalein treated cells were stained with PE-phospho-Nrf-2 antibody 

and analyzed by flow cytometry. Overlaid flow cytometric histograms show pNrf-2 positive cells (A). Per 

cent pNrf-2+ cells are shown in (B). Nuclear translocation and DNA binding activity of Nrf-2 was 

assessed by electrophoretic mobility shift assay using nuclear extracts from lymphocytes at different time 

intervals after baicalein treatment (C). Nuclear extracts prepared from cells treated with baicalein or 

vehicle were probed with Nrf-2 and PARP. Western blot images are shown in (D).  *p<0.05, as compared 

to control. 
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2.3.8 Baicalein activated Nrf-2 dependent antioxidant defense machinery  

Gene expression analysis was carried out to monitor Nrf-2 dependent genes in lymphocytes after 

baicalein treatment. This analysis revealed that there was a progressive increase in Nrf-2 

dependent genes involved in antioxidant defense viz. catalase & Mn-SOD, genes involved in 

synthesis of most abundant intracellular antioxidant GSH viz. GCLC & GCLM, gene for TrxR 

which is involved in reducing Trx (oxidized) and cytoprotective gene hemoxygenase-I (HO-1) 

(Fig. 2.15A). Corroborating with mRNA expression, there was a time dependent increase in HO-

1 protein levels after baicalein treatment (Fig. 2.15B & C). Thus, it can be inferred that, baicalein 

treatment leads to ERK activation in lymphocytes which is upstream regulator of Nrf-2 

activation and nuclear translocation, which further leads to upregulation of antioxidant defense 

response. 
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2.3.9 Baicalein protected BM-MNC against WBI induced loss of viability and functionality 

More importantly, the observed in vitro radioprotection by baicalein was demonstrated in in vivo 

model system. The number of BM-MNC in mice administered with baicalein and exposed to 

WBI (4Gy / 7.5Gy) was significantly higher as compared to that in WBI group on day 11 (Fig. 

2.16A). Interestingly, owing to its antioxidant ability, baicalein administration lead to 

suppression of cellular ROS levels in BM-MNC induced by WBI exposure (Fig. 2.16B). 

Survival of BM-MNC isolated from baicalein treated mice exposed to radiation (4Gy) was 

significantly more as compared to WBI group (Fig. 2.16C).  

2.3.10 Baicalein protected splenic lymphocytes against WBI induced loss of viability and 

functionality 

Baicalein administration protected against WBI induced apoptosis in lymphocytes (Fig. 2.17A & 

B), loss of mitochondrial membrane potential (Fig. 2.17C) and increase in homogenous caspase 

activity (Fig. 2.17D). Functionality of viable lymphocytes was determined by their 

responsiveness to mitogenic stimulation in terms of proliferation and cytokine secretion. 

Stimulation of splenic lymphocytes with Con A (T cell mitogen) after isolation from baicalein 

administered mice exposed to WBI (4Gy) exhibited significantly higher proliferating ability (Fig. 

2.18A & B) and secretion of cytokines as compared to WBI group (Fig. 2.18C & D). 
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Fig. 2.16 Baicalein administration improved survival and recovery of BM-MNC Mice were 

administered vehicle or baicalein (10mg/kg b.wt.) and were exposed to 4Gy or 7.5Gy IR and sacrificed 

11 days after irradiation. BM-MNCs were isolated & viable counting was performed using trypan blue 

dye exclusion. Bar graph represents viable cell count. (A). BM-MNC from baicalein treated and control 

or irradiated (4Gy) mice were isolated on day 0 and processed for ROS estimation (B) or isolated on 

day 11 and cultured for 24h. Cell death was estimated by PI staining and flow cytometery. Bar graph 

represents per cent cell death (C). *p<0.05, as compared to control and #p<0.05, as compared to IR 

group. 
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Fig. 2.17 Baicalein protected lymphocytes against WBI induced cell death (A) Lymphocytes were isolated 

from mice 11 days after administration of baicalein and exposure to radiation and cultured for 24h. Cells 

were stained with PI and acquired on flow cytometer. Representative histograms are shown. Bar graph 

represents per cent daughter cells (B). Lymphocytes isolated as above were cultured for 6h and analyzed for 

changes in miotochondrial membrane potential (C) or these cells were cultured for 24h and analyzed for 

homogenous caspase activity(D). *p<0.05, as compared to control, #p<0.05, as compared to IR group. 
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Fig. 2.18 Lymphocytes recovered from WBI induced injury were functional (A)) Lymphocytes were isolated 

from mice 11 days after administration of baicalein and exposure to radiation, stained with CFSE, stimulated 

with Con A and cultured for 72h or 24h. Cells were acquired on flow cytometer. Representative histograms 

are shown. Bar graph represents per cent daughter cells (B). Supernatant harvested at 24h was analyzed for 

cytokines and bar graph represents cytokine concentration (pg/ml) (C & D). *p<0.05, as compared to 

control, #p<0.05, as compared to Con A stimulated and $p<0.05, as compared to baicalein treated and Con 
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2.3.11 Baicalein augmented abundance of hematopoietic progenitors 

Recovery in the number of viable BM-MNC is determined by the proliferation of hematopoietic 

progenitors that give rise to different subpopulations of hematopoietic system. Effect of baicalein 

administration on the frequency and proliferation potential of hematopoietic progenitors from 

colony forming ability of bone marrow cells after exposure to sub-lethal or lethal doses of WBI 

was monitored. Baicalein administration led to significant increase in the recovery of colony 

forming cells. WBI exposure at 4Gy or 7.5Gy significantly decreased number of colony forming 

cells (Fig. 2.19 A-D) but baicalein administration protected the bone marrow cells from WBI 

induced decrease in proliferative potential of hematopoietic progenitors (Fig. 2.19 A-D). 

2.3.12 Baicalein administration increased HSC abundance and increased phosphorylation 

of Nrf-2 in lineage negative BM-MNC 

Increased HSC frequency or protection of HSCs against IR induced cell death is important 

mechanism for radioprotection. Experiments were carried out to study the effect of baicalein 

administration on HSC frequency as one of the mechanisms of radioprotection. Baicalein 

administration lead to significant increase in Hoechst side population at 24h (Fig. 2.20A & B) 

and day 5 (Fig. 2.20C). To confirm these results, the frequency of lin
-
CD244-CD150+ cells 

(which represent HSC) in bone marrow of mice administered with baicalein was enumerated and 

a significant increase in HSC population was observed on day 5 (Fig. 2.21A & B). Nrf-2 plays a 

vital role in HSC survival under normal as well as oxidative stress conditions. Baicalein 

administration increased the levels of pNrf-2 in lin
-
 BM-MNC (Fig. 2. 21C & D). 
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Fig. 2.19 Baicalein prevented WBI induced decrease in proliferation potential of hematopoietic progenitors 

BM-MNC from mice administered with vehicle or baicalein and exposed to WBI 4Gy or 7.5Gy were isolated 9 

days after exposure. Cells were seeded in mouse complete methylcellulose medium and cultured for nine days 

in CO2 incubator for colony formation. At the end of incubation number of colonies were counted and their 

morphology was scored using microscope. Bar graph represents number of colonies and table shows 

differential colony count after exposure to WBI 4Gy (A) or 7.5Gy (C) in presence or absence of baicalein. 

Table (B) and (D) shows differential counts of colonies after respective treatments. *p<0.05, as compared to 

control and #p<0.05 as compared to WBI group. 
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Fig. 2.20 Baicalein enhanced hematopoietic stem cell abundance BM-MNC were isolated from mice 

24h or day 5 after administration of baicalein or vehicle were isolated and were analyzed for side 

population using Hoechst 33342 dye. Flow cytometric histograms show characteristic side population 

in live cells (A). Bar graph represents percentage of side population within live cells at 24h (B) and day 

5 (C). Bar graph represents percentage of side population cells within live cells (B&C). *p<0.05, as 

compared to control. 
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Fig. 2.21 Baicalein enhanced HSC abundance and increased phosphorylation of Nrf-2 in lin-BM-

MNC BM-MNC were isolated 5 days after baicalein administration and were immuno-phenotyped for 

lin-CD244-CD150+ population  by flow cytometry. Bar graph represents per cent live-lin
-
CD244

-

CD150
+
 cells (A&B). BM-MNC were isolated 6h after baicalein administration and stained with 

antibodies against FITC labeled lineage markers and pNrf-2-PE. Histograms (C) and bar graph (D) 

show pNrf-2+ cells within lineage – population of BM-MNC. *p<0.05, as compared to control. 
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Fig. 2.22 Baicalein administration upregulated levels of pERK and HO-1 in BM-MNC Nuclear 

extracts from BM-MNC isolated at different time intervals were probed for NF-B (A). Whole cell 

extracts from BM-MNC isolated at different time intervals from mice administered with baicalein or 

vehicle were probed for pERK, MKP3 and HO-1 by Western blotting (B). 

2.3.13 Baicalein administration induced DNA binding of NF-κB and phosphorylation of 

ERK in BM-MNC via suppression of MKP3  

To investigate the mechanism of action of baicalein for the observed in vivo radioprotection, 

BM-MNC from baicalein administered mice were isolated at different time intervals and 

examined for activation of NF-B & ERK. Baicalein administration induced nuclear 

translocation of p65 and DNA binding of NF-B (Fig. 2.22A). It also induced phosphorylation 

of ERK while decreased MKP3 levels and increased HO-1 levels (Fig. 2.22B).  
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2.3.14 Baicalein administration significantly enhanced survival of mice exposed to WBI 

 Mortality of mice exposed to WBI doses between 6Gy to 10Gy is primarily because of 

hematopoietic syndrome. Since cells of hematopoietic system were rescued from IR induced cell 

death by baicalein, its ability to reduce WBI induced mortality in mice was investigated. Mice 

were administered baicalein (10mg/kg bw; i.p.) dissolved in DMSO or DMSO alone for three 

consecutive days and were exposed to 7.5Gy dose of γ-radiation 10 min after last injection. They 

were monitored for 30 days for changes in survival and body weight. It was observed that 

baicalein administration improved the survival of irradiated mice by 60% as compared to WBI 

(Fig. 2.23A & B). Further, experiment was performed to calculate the DRF for baicalein using 

survival as an end point. Mice were grouped according to dose of radiation (5.5, 6.5, 7.0, 7.5, 

8.5, 9.5 & 10.5 Gy) by fixing the dose of baicalein at 10 mg/kg bw. LD50/30 was calculated 

after monitoring the survival of mice for 30 days after radiation exposure. It was observed that 

LD50/30 of mice exposed to radiation alone was 6.5Gy and baicalein administration increased it 

to 7.5Gy resulting in DRF of 1.153 (Fig. 2.23C & D). To rule out the strain specific differences 

in radioprotection offered by baicalein, survival studies were carried out in C57BL/6 mice using 

same dose regimen. It was observed that, baicalein offered 90% protection against WBI induced 

mortality (Fig. 2.23E & F). 
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Fig. 2.23 Baicalein significantly reduced radiation induced mortality in mice Graph represents per cent 

survival of Swiss mice administered with vehicle or baicalein (10mg/kg b.wt.) for three consecutive days 
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and exposed to a dose of 7.5Gy IR 10 min after last injection. Mice were monitored for 30 days survival 

(A) and change in body weight (B). (C&D) Mice were exposed to different doses of irradiation 5.5, 6.5, 

7.0, 7.5, 8.5, 9.5 or 10.5Gy with or without baicalein administration and monitored for 30 days for 

survival. Changes in the weight were monitored till 30 days in all the groups and representative data of 

one experiment is shown. This data was used for calculation of DRF. Graph represents per cent survival. 

(E&F) C57BL6 mice administered with vehicle or baicalein (10mg/kg b.wt.) for three consecutive days 

and exposed to a dose of 7.5Gy WBI 10 min after last injection. Mice were monitored for 30 days survival 

and changes in body weight. Significance for survival calculated by Mantel-Cox log rank test using 

Graphpad prism. 

2.3.15 Administration of ATRA abolished baicalein mediated radioprotection 

Further, mice were administered with inhibitor of Nrf-2, all-trans retinoic acid (ATRA) prior to 

baicalein treatment bi-weekly till 30 days after WBI (7.5Gy). Survival of mice was monitored for 

30 days. Baicalein protected ~70% mice against WBI induced mortality, while ATRA 

administration reduced survival of baicalein treated mice to ~10% (Fig. 2.24A & B). These 

results confirmed the role of Nrf-2 in baicalein mediated radioprotection. 

Fig 2.24 Nrf-2 inhibitor abolished baicalein mediated radioprotection in vivo Mice were administered 

with baicalein and / or ATRA (5mg/kg i.p. twice in a week till day 30) or vehicle and exposed to 7.5Gy 

A B 
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WBI. Mice were monitored for 30 days survival and body weight changes. Graph represents per cent 

survival of mice (A) & body weight changes (B).  

2.4. Discussion 
 

IR is known to suppress immune system thereby leading to increased susceptibility to fatal 

infections resulting in mortality. Exposures above 2 Gy induce hematopoietic syndrome. 

Lymphocytes serve as a good experimental model to study the effects of radiation and to screen 

the molecules for protection against hematopoietic injury. Aim of the present study is to 

investigate radioprotective potential of baicalein in vitro using splenic lymphocytes and in vivo 

using mouse model.  

Exposure to IR 4Gy induces apoptosis in lymphocytes. Pre-treatment of lymphocytes with 

flavonoid anti-oxidant baicalein could rescue these cells against radiation induced loss in 

viability. This suggested that baicalein could further be explored for its radio-protective ability. 

Before it can be taken further as a radioprotector, it was essential to investigate its effect on 

tumor cells. One of the most important attributes of radioprotector before it can be employed in 

clinical settings is that it should not offer survival advantage to tumor cells in presence of 

radiation. Hence, effect of baicalein on murine T cell lymphoma EL-4 cells which are tumor 

counterpart of normal lymphocytes was monitored in presence of radiation. Baicalein did not 

protect EL-4 cells against IR induced cell death, rather radioprotective concentration of baicalein 

per se induced cell death in EL-4 cells. This revealed anti-tumor potential of baicalein which was 

further explored and the results are presented in Chapter 4. 

Since baicalein has been reported to be a potent antioxidant in different model systems, it was 

investigated whether the free radical scavenging ability is responsible for radioprotection. 

Baicalein could scavenge radiation induced ROS at 5µM, but it could not offer any protection to 
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lymphocytes at this concentration. These findings suggested that radioprotective potential of 

baicalein may be independent of its ROS scavenging ability. The levels of ROS and GSH 

determine the intracellular redox environment. Since baicalein scavenged basal ROS levels, the 

effect on GSH/GSSG ratio was examined and found that it did not perturb the ratio even up to 

24h.  

Since the possibility of radical scavenging by baicalein as a mechanism for radioprotection was 

ruled out, experiments were undertaken to unravel the role of some of the well-known pro-

survival signaling molecules[304]. Cells are equipped with several key signaling mediators that 

can regulate cell survival under conditions of oxidative stress. The involvement of MEK, ERK, 

P38, PI3K, m-TOR and Nrf-2 was investigated by using pharmacological inhibitors. The 

inhibitors of P38, PI3K and m-TOR failed to abrogate the radioprotection elicited by baicalein 

(data not shown). Inhibitors of ERK or Nrf-2 could completely inhibit baicalein mediated 

radioprotection to lymphocytes suggesting their involvement.  

ERK is a pro-survival signaling molecule in MAPK pathway [305], whereas Nrf-2 is a redox 

sensitive transcription factor required for coordinated up-regulation of antioxidant and 

cytoprotective genes in response to oxidative stress [306]. Baicalein treatment resulted in 

activation of ERK pathway in terms of increase in phosphorylation of ERK and its upstream 

kinase MEK in lymphocytes. These results were in agreement with the results obtained using 

pharmacological inhibitors. Phosphorylation of kinases is finely regulated in cells by specific 

phosphatases [307]. Therefore, baicalein induced phosphorylation of ERK could be through 

suppression of phosphatase activity. Lee et al., had shown that baicalein could inhibit a dual 

specific phosphatase activity in cell free system [308]. Baicalein suppressed total cellular 

phosphatase activity and also inhibited the levels and activity of dual specificity phosphatase 
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MKP3. Although there are multiple reports demonstrating the ability of baicalein to activate 

ERK [249, 309], these results for the first time show the molecular mechanism leading to 

activation of ERK.  

Previous reports have shown that ERK can activate Nrf-2 [219, 310-312]. Therefore, it was 

investigated that whether baicalein can activate this transcription factor in lymphocytes. Addition 

of baicalein to lymphocytes indeed increased the nuclear levels of Nrf-2 [310-312]. Nrf-2 can be 

activated by oxidative stress dependent or oxidative stress independent manner. In later, 

phosphorylation of serine 40 residue on Nrf-2 signals its dissociation from inhibitory protein 

Keap1 thereby inducing nuclear translocation. Baicalein induced phosphorylation of Nrf-2 and 

increased protein levels of HO-1, an important anti-inflammatory molecule [313] in a time 

dependent manner. Thus, this study for the first time demonstrates that there is a co-ordinated 

and temporal activation of pro-survival transcription factor Nrf-2 by baicalein in lymphocytes 

leading to radioprotection.  

It is clear from above discussion that baicalein induced ERK phosphorylation is the primary 

event in lymphocytes which may be regulating activation of other important pro-survival 

molecules. In agreement with this hypothesis, when cells were incubated with ERK inhibitor 

prior to baicalein treatment it could abolish activation of redox regulatory transcription factor 

Nrf-2.  

Many phytochemicals show promising results as radioprotectors in cell free and cellular systems 

but when extended to in vivo models they are ineffective. Viability and functional integrity of 

hematopoietic cells post radiation exposure to sub-lethal or lethal doses serve as an important 

indicator for radioprotection. Sustained oxidative stress post radiation exposure causes decline in 

cell count, viability, survival and proliferation potential of BM-MNC as well as splenic 
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lymphocytes. Exposure to IR induces apoptosis and senescence in bone marrow cells thereby 

leading to rapid depletion of cells of hematopoietic system [314-317]. Baicalein protected 

against loss of functionality of BM-MNC and splenic lymhocytes induced by WBI. It also 

reduced WBI induced ROS levels in BM-MNC indicating that antioxidant role of baicalein could 

not be ruled out in radioprotection.  

The cytoprotective and anti-apoptotic effects of baicalein were seen systemically as revealed by 

reduced apoptosis in splenic lymphocytes as compared to vehicle treated mice receiving WBI. 

Multiple assays for assessing apoptosis further validated the fact that baicalein protected 

lymphocytes against WBI induced damage. Many lymphocytes that survive oxidative stress 

become immunologically un-responsive [318]. The lymphocytes recovered from baicalein and 

WBI treated mice responded better to mitogenic stimulus (Con A) in terms of proliferation and 

cytokine secretion as compared vehicle treated mice receiving WBI. 

Exposure to IR above LD50/30 dose leads to mortality due to hematopoietic syndrome. Since 

baicalein offered protection to hematopoietic cells, it is imperative to assume that it can protect 

mice against WBI induced mortality. Administration of baicalein exhibited significant protection 

against WBI induced mortality over WBI alone group. Better survival results were obtained 

when baicalein was administered to C57BL6 mice. DRF is the magnitude by which a 

radioprotector can elevate the dose required to kill 50% population exposed to IR when 

administered prior to such exposure [156]. It is used to compare the efficacy and potency of 

radioprotectors across different classes as a standard criterion [156]. Baicalein exhibited a DRF 

of 1.153 which is very close to genestein (1.16) [189].  

In vitro studies revealed the role of MKP3/ERK/Nrf-2/HO-1 axis in baicalein mediated 

radioprotection. To investigate whether similar mechanism is operative in vivo, BM-MNC 
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isolated from baicalein administered mice was probed for MKP3, pERK, NF-κB & HO-1 levels. 

Consistent with the in vitro findings, these cells exhibited decreased levels of MKP3, higher 

phosphorylation status of ERK, increased DNA binding of NF-κB and increased levels of HO1.  

Although baicalein administration recovered against IR induced loss in cell count of 

bonemarrow, it could not offer immediate protection to BM-MNC or lymphocytes (day 0 and 

day 5; data not shown). Rather, it helped in the process of hematopoiesis thereby generating 

differentiated cells. Similar to genistein [190], results from colony forming cells assay revealed 

that baicalein administration offered significant protection against WBI induced loss in the 

number of hematopoietic progenitors. It could maintain the proliferative potential of 

hematopoietic progenitors thereby leading to recovery of BM-MNC and lymphocytes (day 9 and 

day 11).  

HSCs play a key role in protecting against IR induced hematopoietic injury. Many studies 

have shown manipulation of HSC frequency and/or survival as principal mechanism of 

radioprotection [13, 319, 320]. Survival and recovery of cells of hematopoietic system by 

baicalein may be the outcome of increased HSC frequency or survival. Hence, HSC frequency 

was enumerated after baicalein administration. Interestingly, mice administered with baicalein 

exhibited increased abundance of HSC at 24h as well as 5 days post administration.  

There are reports showing the role of Nrf-2 in HSC survival and maintenance under oxidative 

stress conditions [321-323]. Baicalein treatment lead to increased phospho-Nrf-2 levels in 

lineage negative BM-MNC. Role of Nrf-2 in baicalein mediated radioprotection was further 

probed using pharmacological inhibitor of Nrf-2. Mice were administered with Nrf-2 inhibitor 

[324, 325], ATRA, twice in a week after exposure to WBI 7.5Gy and monitored for 30 days 
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survival in presence or absence of baicalein. It was observed that, ATRA administration 

abolished baicalein mediated in vivo radioprotection.  

Baicalein, an antioxidant molecule activated ERK by reducing MKP-3 levels thereby triggering 

Nrf-2 pathway. This resulted in upregulation of cellular pro-survival factors leading protection 

against IR induced hematopoietic syndrome. The overall mechanism of action of baicalein is 

summarized in Fig. 2.25. 

Conclusions  

1. Baicalein protected murine splenic lymphocytes against IR induced cell death as assessed 

by propidium iodide staining, DNA fragmentation, caspase 3 cleavage, homogenous 

caspase activity, loss in mitochondrial membrane potential and trypan blue viable 

counting.  

2. Baicalein scavenged ROS and did not alter cellular GSH content. 

3. Baicalein induced phosphorylation of ERK via suppression of corresponding dual 

specificity phosphatase MKP3. 

4. Baicalein induced nuclear translocation and DNA binding of oxidative stress regulatory 

pro-survival transcription factor Nrf-2. 

5. Baicalein protected BM-MNC, lymphocytes and hematopoietic progenitors against WBI 

induced loss in count and viability. 

6. Baicalein maintained functionality of splenic lymphocytes and retained proliferative 

potential of progenitors after WBI exposure.  

7. Baicalein administration enhanced abundance of HSC in bone marrow. 
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8. Baicalein offered ~60% protection against WBI induced mortality in mice over radiation 

control and exhibited a DRF of 1.153. 

9. Administration of Nrf-2 inhibitor to mice abolished in vivo radio-protection offered by 

baicalein.  

 

 

   

 

 

 

 

 

 

 

   Fig. 2.25 Mechanism of radioprotection of baicalein 
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3.1. Introduction 
 

3.1.1 Inflammation 

Inflammation is a protective immune response characterized by a series of events mounted in  

response to harmful stimuli like physical, chemical, mechanical injury or invasion of biological 

agent [326]. It is a complex and dynamic process that involves interplay of cellular and secreted 

components. The purpose of inflammation is to eliminate the initial cause of cell injury, clear out 

necrotic cells and initiate tissue repair [327]. Under normal condition a well-regulated 

inflammation resolves after removal of harmful stimuli and recovery from the tissue injury. In 

response to the injury, inflammatory mediators recruit cellular components like neutrophils and 

macrophages at the site of inflammation which engulf damaged cells or infected cells [328]. 

Inflammation is necessary to recover from injury or infection for removal of pathogenic agent 

and maintain healthy state of an individual.  

Depending on the duration, inflammation is categorized into acute or chronic. Acute 

inflammation is a short-term process that begins to cease after removal of the injurious stimulus. 

It is characterized by five cardinal signs heat, pain, redness, swelling and loss of function [329]. 

Acute inflammation is initiated at site of injury by resident macrophages which recognize 

generic molecules called pathogen associated molecular patterns (PAMPs) that are broadly 

shared by pathogens and distinguishable from host cells (Kumar, Collins (1998) leading to 

release of soluble mediators of inflammation Table 3.1 [330].  
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Table 3.1 Mediators of acute inflammation. 

Persistent acute inflammation due to non-degradable antigens, viral infection, persistent foreign 

bodies or autoimmune reaction leads to chronic inflammation [329]. One of the most important 

attributes of inflammation is that inflammatory response must be acutely terminated. Failing 

which unresolved or improperly resolved inflammation can cause bystander damage to 

surrounding tissue. Table 3.2 lists the differences between acute and chronic inflammation.  

Although, inflammation is tightly regulated, often dysregulated and chronic inflammation is 

responsible for several disorders including diabetes, arthritis, atherosclerosis, neurodegenerative 

disorders, cancer, and cardiac problems [329]. A large number of diverse proteins are involved in 

Mediator  Vasodilation  Immediate Sustained  Chemotaxis  Opsonin  Pain  

Histamine  +  +++  –  –  –  –  

Serotonin      

(5–HT)  

+  +  –  –  –  –  

Bradykinin  +  +  –  –  –  ++  

Complement 

3a  

–  +  –  –  –  –  

Complement 

3b  

–  –  –  –  +++  –  

Complement 

5a  

–  +  –  +++  –  –  

Prostaglandi

ns  

+++  +  +?  –  –     

Leukotrienes  –  +++  +?  +++  –  –  

Lysosomal 

proteases  
–  –  ++ 

   
–  –  –  

Oxygen 

radicals  
–  –  ++ 

   
–  –  –  
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Inflammation

CancerCardio-vascular 

disease

Pulmonary 

disease

Arthritis

Auto-immune

Disease

Diabetes

Alzheimer

the process of inflammation and mutation in any of these may cause malfunctioning or impaired 

expression. It is considered as an important risk factor in cancer initiation and progression Fig. 

3.1 [224]. During inflammation, NFB is activated in different immune cells and is responsible 

for release of these pro-inflammatory mediators and cytokines, activation and migration of cells 

and induction of oxidative stress [233] [331].  

 

 

 

 

 

 

 

 

 

 

                       

 

Fig. 3.1 Inflammation 
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Table 3.2 Differences between Acute and Chronic Inflammation 

   Acute Chronic 

Duration Short (days) Long (weeks to months) 

Onset Acute Insidious 

Specificity Nonspecific Specific (where immune 

response is activated) 

Inflammatory 

cells 

Neutrophils, macrophages Lymphocytes, plasma cells, 

macrophages, fibroblasts 

Vascular 

changes 

Active vasodilation, increased permeability New vessel formation 

(granulation tissue) 

Fluid 

exudation and 

edema 

 Present  Absent 

Cardinal 

clinical signs 

Present Absent 

Tissue 

necrosis 

Generally absent 

If present (Suppurative and 

necrotizing inflammation) 

Continuous 

Fibrosis 

(collagen 

deposition) 

Present Absent 

Operative host 

responses 

Plasma factors: complement, 

immunoglobulins, properdin, etc; 

neutrophils, nonimmune phagocytosis 

Immune response, 

phagocytosis, repair 

Systemic 

manifestations 

Fever, often high Low–grade fever, weight loss, 

anemia 

Changes in 

peripheral 

blood 

Neutrophil leukocytosis; lymphocytosis (in 

viral infections) 

Frequently none; variable 

leukocyte changes, increased 

plasma immunoglobulin 
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3.1.2 NF-κB 

The transcription factor NF-κB was discovered in 1986 as a nuclear factor that binds to the 

enhancer element of the immunoglobulin kappa light-chain of activated B cells hence called as 

NF-κB [332]. In total, five members of this transcription factor family have been identified. All 

five members of this protein family form homo or heterodimers and share some structural 

features including a Rel homology domain (RHD), which is essential for dimerization as well as 

binding to cognate DNA elements designated as p65 (RelA), RelB, c-Rel, NF-κB1 and NF-κB2 

[333]. RelA, c-Rel, and RelB each possess a transcriptional activation domain (TAD) Fig. 3.2. 

Out of 15 theoretically possible NF-κB dimers, some function as transcriptional activators 

(ubiquitous RelA:p50 heterodimer), but others (p50:p50 homodimer) need to recruit specific co-

activator proteins, whereas some dimers are not known to bind DNA Table 3.3.  

These dimers are bound to inhibitory molecules of the IκB family of proteins Fig. 3.3. Binding 

of NF-κB dimers to IκB molecules does not only prevent binding to DNA, but also shifts the 

steady-state localization of the complex into the cytosol [233]. p105 and p100 are the precursors 

of p50 and p52 containing ankyrin repeats which are cleaved during maturation [334]. In contrast 

to the other members of the NF-κB family these two proteins do not contain a trans-activation 

domain [335]. When p50 or p52 are bound to a member containing a transactivation domain, 

such as p65 or Rel B, they constitute a transcriptional activator. Different NF-κB dimers have 

differential preferences for variations of the DNA-binding sequence [336]. 
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IκBα 

IKK 

Table 3.3 Potential NF-κB dimers [337] 

 p50 p52 Rel B c Rel Rel A 

Rel A ++ ++ -- ++ ++ 

c Rel ++ ++ -- ++  

Rel B ++ ++ --   

p52 +- +-    

p50 +-     

++ Binds DNA and activates transcription             

+- Binds DNA but do not activate transcription  

-- Do not bind DNA    

 

                                  Fig. 3.2 NF-κB family members [337] 

 

Table 3.4 IκB protein family members and signals that induce degradation [337]  

Inhibitory Protein Stimuli that induce degradation 

IκBα, IκBβ, IκBε TNF, LPS, IL-1, TCR, BCR 

p105 LPS (B Cells) 

p100 LTβ, CD40, BAFF, RANKL, OX40 

 

 

     Fig. 3.3 IκB Kinase complex members Adapted from [233] 

 

RHD TAD
 

RHD
 

Rel A, c Rel, Rel B 

p50, p52 
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3.1.3 NF-kB upstream signaling 

Activation of NF-κB occurs by release of the inhibitory IκB subunit following its 

phosphorylation, ubiquitination and degradation or by cleavage of the inhibitory ankyrin repeat 

domains of p100 and p105 by various stimuli Table 3.4. NF-kB can be activated by i) canonical 

or classical pathway ii) alternative or non-canonical pathway or iii) atypical pathway [338, 339] 

[340]. Each pathway is triggered by specific stimulus and upstream signaling includes release of 

NF-kB from its inhibitory protein. Endogenous inflammatory stimuli (e.g., cytokines, TNFα, 

IL−1β) or pathogen-derived substances (e.g., lipopolysaccharide (LPS) or CpG activate the 

ubiquitous RelA:p50 dimer through the „canonical‟ or „classical‟ NF-κB pathway [337]. 

Engagement of the TNF receptor (TNFR), interleukin−1β receptor (IL−1βR), or TLR causes 

phosphorylation-dependent activation of the IκB kinase (IKK) complex, composed of the two 

catalytic subunits, IKKα and IKKβ and the scaffolding protein, IKKγ /NF-κB essential 

modulator (NEMO). Once activated, the canonical IKK complex phosphorylates IκBα. 

Degradation of IκBα releases RelA:p50, allowing it to localize to the nucleus to bind DNA and 

activate gene expression [341] Fig. 3.4. 

A group of non-inflammatory signals have been shown to activate NF-κB through the (non-

canonical) NF-κB signaling pathway [342]. These developmental signals of the TNF-receptor 

superfamily, such as B-cell activation factor (BAFF) critical for B-cell survival, lymphotoxin β 

(LTβ) involved in lymph node development, and receptor activator of NF-κB ligand (RANKL) 

essential for osteoclast differentiation, have been shown to activate NF-κB at a low level for a 

sustained period of hours to days [340]. The non-canonical pathway is not transduced by a 

NEMO/IKKβ containing kinase complex, but rather by an IKKα containing kinase complex, 

whose activation requires NF-κB-inducing kinase (NIK). In addition to the non-canonical IKK-
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dependent NF-κB degradation, these signals may also, in certain cellular conditions and contexts, 

activate the canonical IKK dependent NF-κB activation pathway [340] Fig. 3.4. 

                          Fig. 3.4 NF-κB signaling pathways [233]  

Further, DNA damage induced by irradiation or chemotherapeutic drugs can induce IKK 

activation. Until recently, it was unclear how a nuclear signal could relay back to the inhibited 

NF-κB in the cytoplasm to trigger its activation. It was found that DNA damage not only initiates 

the activation of the nuclear kinase ataxia telangiectasia mutated (ATM), the primary regulator of 

the tumor suppressor and transcription factor p53, but also initiates the sumoylation of NEMO by 

the sumo ligase PIASy, promoting the nuclear localization of NEMO [343, 344]. Activated ATM 

is required for NF-κB activation in response to DNA damage through IKK activation. Wu et al. 

showed that nuclear sumoylated NEMO associates with and is phosphorylated by the activated 

ATM, promoting mono-ubiquitination of NEMO, which triggers its export to the cytoplasm. The 

cytoplasmic ATM–NEMO complex associates with the IKK complex, facilitating ATM-
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dependent activation of the canonical IKK complex, leading to IκBα degradation and NF-κB 

activation Fig. 3.4 [345]. 

3.1.4 NF-B inhibition and inflammation 

Persistent and deregulated NF-κB activation with sustained transcriptional activity is implicated 

in several inflammatory disorders [346]. NF-κB regulates the expression of a large number of 

genes involved in inflammation. It plays important roles in initiation as well as resolution phase 

of inflammation.   

Chronic inflammatory diseases associated with NF-kB activation [337] [347] 

i. Rheumatoid arthritis 

ii. Atherosclerosis 

iii. Chronic obstructive pulmonary disease (COPD) 

iv. Asthma 

v. Multiple sclerosis 

vi. Inflammatory bowel disease (IBD) 

vii. Ulcerative colitis 

Given the central role of NF-κB in inflammation, there is a great interest for pharmacological 

intervention of this pathway using specific inhibitors. Identification of specific and potent 

inhibitors of NF-κB has been the goal of many researchers and pharmaceutical companies [348, 

349]. Finer understanding of the molecular cascade of signaling events has highlighted several 

steps for specific inhibition of NF-κB activity.  

Inhibition of NF-κB can be achieved by one of the following three mechanisms: i) blockage of 

the stimulating signal resulting in complete abrogation of the signal‟s effect ii) interference with 

a cytoplasmic step in the NF-κB activation pathway by blockage of a specific component of the 

cascade or iii) blockage of the NF-κB nuclear activity [350].  
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The inhibitors can interfere with one of the following steps: i) signaling upstream of IKK ii) 

directly at IKK complex iii) ubiquitination or proteasomal degradation of IκBα iv) nuclear 

translocation of NF-κB v) NF-κB DNA binding or vi) NF-κB gene transactivation [351]. 

Among these molecules that specifically interfere with DNA binding or trans-activation function 

are discussed in detail here.  

3.1.5 Inhibition of NF-κB DNA binding 

Inhibition of NF-κB DNA binding can be achieved by multiple ways including covalent modification 

of cysteine residues on p65. Many target molecules directly interact with Cys-38 in DNA binding loop 

of p65 (Rel A). This interaction disrupts ability of p65 to bind to DNA. Another approach includes use 

of kB-site decoy oligonucleotides that can compete with NF-κB and specifically block its DNA binding 

[352-354]. Generally these oligonucleotides have modifications to improve their stability and affinity 

for NF-kB [355, 356]. DNA binding of transcription factors is a redox dependent process and for NF-

κB DNA binding Cys-62 in p65 has to be maintained in a reduced state. This reduction is carried out by 

Trx 1 and Ref 1 proteins inside the nucleus. Inhibition of Trx or TrxR leads to retaining of cysteine 

residues of p65 in oxidized state thereby inactivating its ability to bind with target DNA [357, 358].  

3.1.6 Inhibitors of NF-κB trans-activation 

 Different NF-κB dimers target different promoters/enhancers in a tissue specific, stimulus-dependent 

and promoter-specific manner. Covalent modification of NF-κB subunit in terms of serine 

phosphorylation, acetylation or histone modification in the target locus in the genome can influence 

gene trans-activation potential. Agents that specifically block RelA phosphorylation have been shown 

to block tans-activation [359] [360]. LY294002 is a PI3Kinase inhibitor and it does not inhibit IκBα 

degradation or NF-κB DNA binding, but it blocks IL-1-stimulated phosphorylation of NF-κB, 

especially the Rel A subunit [361] [362]. .Recently, a relatively new mechanism has been described 
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wherein NF-κB trans-activation can be blocked through inhibition of TrxR [358]. Earlier, Hirota et. al, 

have shown that intra-nuclear over-expression of Trx leads to increased NF-κB luciferase activity 

whereas specific inhibition of Trx by use of shRNA approach blocked NF-κB dependent gene 

transcription [363].  

3.1.7 NF-kB inhibitor drugs as anti-inflammatory agents 

Several nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin (sodium salicylate), ibuprofen, 

sulindac and indomethacin can inhibit activation of NF-κB in cultured cells [364] [365] [366]. Aspirin 

acts pharmacologically via inhibition of prostaglandin synthesis, however, at higher concentrations it 

has been shown to block NF-κB by directly inhibiting IKKβ [364]. Glucocorticoids such as 

dexametasone, prednisone and methylprednisolone are used for their anti-inflammatory properties and 

also to prevent allograft rejection [367]. Their physiological effects appear to be at least partially 

mediated through inhibition of NF-κB. 
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                    Fig. 3.5 Sites of intervention of NF-kB inhibitors Adapted from[351] 

Several well-known immuno-suppressants target NF-κB [368]. Cyclosporin A (CsA) inhibits B-

cell and T-cell proliferation by blocking the activity of calcineurin, a calcium and calmodulin-

dependent serine/threonine phosphatase [369]. Several reports have shown that CsA can also 

inhibit NF-κB induction by blocking LPS-induced IκB degradation and p105 processing in vivo 

[370]. PG490 (pure triptolide, a diterpenetriepoxide) is an immunosuppressant molecule that can 

synergize with CsA to inhibit transcriptional activation by NF-κB [371]. Table 3.5 lists major 

targets for developing anti-inflammatory drugs. 
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    Table 3.5 Major targets for developing anti-inflammatory drugs [372]  

Enzymes COX-1, COX-2, IMP dehydrogenase, PGE2, leukotrienes, iNOS, 

phospholipase, lipoxygenase, matrix metalloproteinase 

Cytokines and cytokine 

receptors 

TNF-α, TNF-RII, IL-1β, IL-1RA, IL-2, IL-2R, interferon, G-

protein-coupled receptors, histamine 1 and cysteinyl leukotriene 1, 

Adhesion molecules Leukocyte function associated antigen 1 (LFA 1), CD11a, CD2, 

CTLA4, VLA4 

Proteins NF-kB, MAPKs, 

 

3.1.8 Anti-inflammatory effects of natural products 

Long term use of anti-inflammatory drugs by the patients has been shown to cause several side 

effects. Many of the inflammatory diseases are becoming common throughout the world owing 

to changing life styles. Corticosteroids have long been used for the management of rheumatoid 

arthritis, but they suffer from some serious side effects, such as Cushing‟s habitus (appearance 

with rounded face, narrow mouth, supraclavicular hump, obesity of the trunk with relatively thin 

limbs), hypertension, hyperglycemia, muscular weakness, increased susceptibility to infection, 

osteoporosis, glaucoma, psychiatric disturbances, growth arrest, etc. [373]. Different chemical 

classes such as alkaloids, steroids, terpenoids, polyphenolics, phenylpropanoids, fatty acids and 

lipids, and various miscellaneous compounds have been shown to possess anti-inflammatory 

properties [373]. Among them, flavonoids constitute a class of compounds that are found in 

human diet and have been shown to possess promising anti-inflammatory effects.  

3.1.9 Anti-inflammatory effects of Baicalein 

Baicalein is a 5,6,7 trihydroxy flavone isolated from dried roots of Scutellaria baicalensis 

Baicalein belongs to class of polyphenolic compounds called as flavonoids which are 

ubiquitously present in plants and they also constitute components of functional foods Table 3.6.  
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   Table 3.6 Main groups of flavonoids and food sources  [374] 

Flavonols Quercetin, Kaempferol, 

Myricetin, Isorhamnetin etc 

Onion, tomato, cherry, apple, 

green & black tea, 

grapes 

Flavones Chrysin, Apigenin, Luteolin, 

Tricetin, Disometin 

Parsley, capsicum pepper 

Flavonones Naringenin, Hesperidin, 

Dihydroquercetin 

Orange juice, grape fruit, 

lemon peel & juice 

Flavonols (Catechins) Silymarin, Silibinin, Taxifolin, 

(+)- Catechin, (-) Epicatechin 

Cocoa, chocolates, cocoa 

beverages, beans, cherry, 

grapes, red wine, cider, 

blackberry 

Isoflavonols Genistein, Glycitein, 

Daidzein,  

Soy cheese, soy flour, soy 

bean,  

Anthocyanins Cyanidin, Malvidin, Peonidin, 

Petunidin 

Blue berry, black grapes, 

cherry, rhubarb, strawberry, 

red wine 

 

It has been reported to possess anti-inflammatory property owing to its ability to inhibit 

lipoxygenase [246]. Baicalein has also been reported to attenuate endothelium intimal 

hyperplasia by inhibiting inflammatory signaling molecules including extracellular signal-

regulated kinase, protein kinase B or Akt and NF-κB in vascular smooth muscle cells [375]. 

Baicalein attenuated the radiation-induced inflammatory process in mouse kidney by modulation 

of NF-κB and Forkhead family of transcription factors [254]. 
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Table 3.7 Anti-inflammatory effects of baicalein in literature 

Model Effect Mechanism 

Mastitis (LPS induced) 

in mice 

Suppressed MPO, TNFα, 

IL-1β 

Blocked degradation of 

IκBα [376] 

Acute lung injury (LPS 

induced) in mice 

Increased lung weight, 

improved lung histology, 

reduced pro-

inflammatory cytokines 

Blocked degradation of 

IκBα[377] 

Renal fibrosis in mice 
Decreased expression of 

TNFα, IL-1β, MCP1 

Inhibition of NF-κB and 

MAPK[378] 

Liver 

ischemia/reperfusion 

injury in mice 

Decreased 

aminotransferase levels, 

leukocyte infiltration and 

histopathologic 

abnormalities 

Inhibition of NF-κB and 

pro-inflammatory 

cytokines[379] 

Angiotensin II-induced 

cardiac remodeling 

Restored cardiac 

contractile function, 

decreased 

malondialdehyde 

production 

Inhibition of AKT/mTOR 

pathway[378] 

Con A induced hepatitis 

Suppressed serum levels 

of TNFα, IL-1β and 

abnormalities in liver 

histopathology 

Induction of apoptosis in 

activated liver 

mononuclear cells[380] 

LPS stimulated RAW 

264.7 cells 

Inhibited iNOS, COX-2 

and TNFα mRNA levels 

Suppressed estrogen 

receptor, JAK/STAT 

signaling, Inhibition of 

ROS[381] 

6-hydroxydopamine 

induced neurotoxicity 
Inhibited cell death 

Activated Nrf-2/ARE 

pathway[248] [382] 

Diabetic Retinopathy 

Inhibited microglial 

activation, reduced 

VEGF expression 

Suppressed IL-18, IL-1β 

and TNF-α[383] 

TNF-induced 

inflammation inhuman  

mast cells 

Significantly inhibited 

IL-6, IL-8, and MCP-1 in 

TNF-alpha- 

Inhibition of IκBα 

phosphorylation[384] 

Dextran sodium sulfate 

induced colitis 

Prevention of body 

weight loss, blood 

haemoglobin content and 

rectal bleeding 

Suppression of IFN and 

IL-4[385] 
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Baicalein inhibited NF-κB mediated inflammatory responses by upregulation of the nuclear 

factor erythroid 2-related factor-2/heme oxygenase-1 pathway [386]. In the murine macrophage 

RAW 264.7 cell line, baicalein inhibited LPS-induced inflammation via upregulation of estrogen 

receptor and inhibited NF-κB-dependent signaling[381]. Baicalein attenuated inflammatory 

responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced 

mastitis in mice[377]. Table 3.7 lists the reported anti-inflammatory effects of baicalein in 

different model systems and its mode of action. However, there were no reports describing anti-

inflammatory activity of baicalein on T cell responses. 

Although plethora of reports describing anti-inflammatory effects of baicalein are present in the 

literature, a systematic study on effect of baicalein on T cell responses has not been carried out. 

Further, in connection with our primary interest of investigating radioprotective properties of 

baicalein in mouse model, it becomes imperative to study influence of baicalein on inflammatory 

responses exhibited by T cells. Baicalein is a well-known anti-oxidant and thereby it may be 

expected to inhibit NF-κB signaling considering that antioxidants are known to suppress this 

pathway. Contrary to this, our findings from chapter 2 have demonstrated that baicalein 

treatment induced nuclear translocation and DNA binding of pro-inflammatory transcription 

factor NF-κB in BM-MNC Fig. 2.22. But baicalein suppressed mitogen induced T cell 

proliferation and cytokine secretion Fig. 2.18. This raised an important question that how an 

agent can activate NF-κB and still suppress its dependent gene expression. Subsequent to nuclear 

translocation of NF-κB, reducing environment is required for its DNA binding. Critical cysteine 

residues in p65 need to be reduced before it can bind to DNA [357]. This process is facilitated by 

Trx with the help of Ref-1. Trx is a small dithiol disulfide oxido-reductase which is reduced to its 
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native state by TrxR with the help of NADPH. It has been reported that Trx system regulates 

redox state of different transcription factors [387, 388] [389]. 

3.1.10 NF-κB and thioredoxin system   

Fig. 3.6 Thioredoxin system as a general disulfide reductase [389] 

Trx is a 12 kDa dithiol protein and it is conserved from bacteria to humans as it maintains the 

protein dithiol/disulfide homeostasis [389] [389]. Along with Trx reductase (TrxR), Trx can 

provide electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to a very large 

number of critical cellular proteins during a wide range of cellular responses Fig. 3.6. 

Both cytosolic Trx1 and mitochondrial Trx2 in mammalian cells contain an active site Trp-Cys-

Gly-Pro-Cys- in a Trx fold structure. Human Trx1 with 105 amino acid residues 
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SH    SH     SH   SH    SH

32   35       62    69   73

Trx1

Trx2

 has three structural Cys residues at positions 62, 69 and 73, apart from Cys32 and Cys35 in the 

active site. Cys62 and Cys69 in Trx-S2 can form a second disulfide bond under oxidative stress 

conditions Fig. 3.7. 

     Fig. 3.7 Structure of thioredoxin   [389] 

Trx1 is a central redox regulator and facilitates the activation of many transcription factors 

involved in cell growth, apoptosis, and inflammation such as NF-κB, activator protein 1 (AP-1), 

p53, hypoxia-inducible factor 1, and redox factor 1 (Ref-1) [390]. The redox status of some Cys 

residues in the DNA binding site of the transcription factors, for example, Cys62 of NF-κB, is 

critical for the DNA binding. Under oxidative stress conditions, Trx1 is translocated from the 

cytosol to the nucleus [391]. The presence of Trx can maintain the cysteine in its reduced state 

and hence promote the DNA binding activity of NF-κB. Moreover, Ref-1 can also translocate 

from the cytosol to the nucleus and it interacts with Trx1 physically. The association of Ref-1 

with Trx1 can increase the DNA binding activity of transcription factors [392].  

Apart from this, it has also been shown that, Cys-246 and Cys-266 residues of MKK4 are 

reduced by Trx 1 and MKK4 activates NF-κB for its binding to Mn-SOD promoter [393]. 

Interestingly, Heilman et al. have shown that NF-κB-mediated gene expression was markedly 

inhibited in cells lacking TrxR activity suggesting that the trans-activation potential of NF-κB 

may depend on TrxR activity [358]. Further, selective oxidative stress in the nucleus was shown 
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to hamper NF-κB reporter activity [394] whereas targeted nuclear over-expression of Trx1 

resulted in increased NF-κB luciferase activity [363].  

3.1.11 Baicalein and thioredoxin system 

Recent study carried out using flavonoids of different class has identified their potential to inhibit 

TrxR in cell free system [395]. Since our findings revealed that baicalein did not interfere with 

any of the upstream events in NF-κB signaling but still suppressed its dependent gene 

expression, the possibility of Trx inhibition as a probable mechanism for its anti-inflammatory 

effects via suppression of trans-activation functions of NF-κB by baicalein was examined. 

3.1.12 Scope of the present study 

In the present study, murine splenic lymphocytes are used as model system to investigate anti-

inflammatory effects of baicalein. Effect of baicalein on Con A as well as anti-CD3/CD28 mAb 

induced T cell activation, proliferation and cytokine secretion is studied and the effect of 

baicalein on mitogen induced NF-κB activation in T cells was investigated. Effect on NF-κB 

dependent gene expression is evaluated. Molecular mechanism of action of baicalein in 

suppressing NF-κB dependent signaling is demonstrated. Finally, in vivo and ex vivo anti-

inflammatory potential of baicalein is evaluated using graft versus host disease and homeostasis 

driven proliferation models.  

3.2. Materials and methods 
 

3.2.1 Chemicals 

Baicalein, sodium selenite (Na2SeO3 abbreviated as NaSe), insulin, NADPH, 1,4-

dithiobisnitrobenzoic acid (DTNB) and 1-chloro, 2,4-dinitrobenzene (CDNB) were purchased 

from Sigma Chemical Co. (MO, USA). RPMI 1640, fetal bovine serum (FBS) was obtained 
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from HiMedia (Mumbai, India). Hoechst 33342, Carboxy fluoresceindiacetate succinimidyl ester 

(CFSE) was procured from Molecular Probes (NY, USA). ELISA sets for detection of cytokines 

(IL-2, IL-4, IL-6, and IFN-), fluorochrome labelled antibodies against CD25, CD69 and CD54 

were procured from BD Pharmingen (CA, USA). HiPure RNA isolation kit, cDNA synthesis kit 

and Light Cycler SYBR green RT-PCR kit was purchased from Roche (Basel, Switzerland). 

Oligonucleotide probe of NF-B and Trx inhibitor PX12 were purchased from Santacruz 

Biotechnology (Dallas, Texas, USA). T4 polynucleotide kinase and kinase buffers were 

purchased from New England Biolabs (Ipswich, MA). Over-expression plasmid for Trx1 was 

purchased from Origene (Rockville MD, USA). All other chemicals used in our studies were 

obtained from reputed manufacturers and were of analytical grade. 

3.2.2 Animal maintenance 

Eight to ten weeks old BALB/C or C57BL6 male mice weighing approximately 20-25g, reared 

in the animal house of the Bhabha Atomic Research Centre were used. Guidelines issued by the 

Institutional Animal Ethics Committee of Bhabha Atomic Research Centre, Government of 

India, regarding maintenance and dissection of animals were strictly followed. 

3.2.3 Cell line and culture 

EL-4 (murine T cell lymphoma) was purchased from Health Protection Agency Culture 

Collections (Salisbury, UK) and cultured in RPMI containing 10% fetal bovine serum and 

antibiotics (100U/ml penicillin and 100μg/ml streptomycin) at 37°C in an atmosphere of 5% 

CO2. Cells were maintained in exponentially growing conditions with doubling time little less 

than 24h and sub-cultured thrice in a week. 
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3.3.4 Proliferation assay  

Spleen was aseptically removed from the mice, placed in a sterile petri dish containing RPMI 

1640 medium. Single cell suspension of lymphocytes was prepared and stained with CFSE 

(5μM) as described earlier [396]. CFSE labelled lymphocytes (2 x 10
6
) were treated with 

baicalein (5 to 25μM, 2h) or CDNB (0.5 to 2.5μM) or PX12 (0.5 to 5μM) with or without the 

pre-treatment with sodium selenite for 24h wherever mentioned and stimulated with Con A 

(5μg/ml) for 72h at 37°C with 10% FBS in a 95% air/5% CO2 atmosphere. Vehicle treated cells 

served as a control. Cell proliferation was measured by dye dilution in a flow cytometer (Partec 

CyFlow). Cells that showed a decrease in CFSE fluorescence intensity were calculated using 

FlowJo software and were expressed as percent daughter cells. 

3.2.5 Surface staining  

Analysis of surface markers on lymphocytes was carried out by surface staining with PE or FITC 

labelled mAbs as described earlier [302]. Briefly, lymphocytes (3 x 10
6
) were treated with 

baicalein (25μM, 2h) and were stimulated with Con A (5μg/ml) for 24h at 37°C in a 95% air/5% 

CO2 atmosphere. Lymphocytes were stained with FITC conjugated CD25 or PE conjugated 

CD69 or CD54 antibodies. Cells were acquired using Partec Cyflowspace flow cytometer and 

analyzed using FlowJo software (TreestarInc, Ashland, USA). 

3.2.6 Measurement of cytokine secretion  

Lymphocytes (2 x 10
6
) were treated with baicalein (5 to 25µM, 2h) with or without pre-treatment 

of Na2SeO3 (2μM, 24h) and stimulated with Con A (5μg/ml) for 24h at 37
0
C. EL4 cells 

transfected with Trx over-expression plasmid were treated with baicalein (25µM, 2h) and 

stimulated with Con A (5μg/ml) for 16h. Cytokine concentration (IL-2) was measured in the 

culture supernatant using cytokine ELISA sets (BD Pharmingen, USA). 
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3.2.7 Electrophoretic Mobility Shift Assay 

Murine splenic lymphocytes (10 x 10
6
/ml) were treated with indicated concentrations of 

baicalein or PX12 or CDNB or Con A (5μg/ml) for 1h or 4h respectively. Cells were harvested 

and nuclear extracts were probed for EMSA by incubating with 
32

P-end-labeled 45-mer double 

stranded NF-κB oligonucleotides from the human immunodeficiency virus long terminal repeat 

(5′-TTGTTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGTGG-3′; bold face 

indicates NF-κB binding sites. Identity of NF-B band was confirmed by performing super-shift 

assay and excess mutant oligonucleotide. The dried gel was exposed to phosphorimage plate and 

the radioactive bands were visualized using a PhosphorImage plate scanner (Amersham 

Biosciences, USA). 

3.2.8 Estimation of enzyme activities 

Trx activity was determined by the micromethod of insulin reduction. All assay tubes contained 

0.26M HEPES, pH 7.6, 10mM EDTA, 2mM NADPH, 1mM insulin and 100nM purified E. coli 

TrxR and cell extract in final volume of 100μl. After incubating at 37
0
C for 20min reaction was 

stopped by adding 500µl stopping solution containing 0.2M Tris-HCl, 6M guanidine-HCl, 1mM 

DTNB and absorbance was measured at 412nm against reagent blank. Reagent blanks were 

included to determine the background content of SH groups in samples.  

3.2.9 Induction of lymphopenia and adoptive transfer for homeostatic proliferation in vivo 

Balb/c mice were exposed to 6 Gy whole-body γ-radiation at a dose of 1Gy/min in a Blood 

irradiator (BRIT, Vashi, India). Lymphopenia induction was confirmed by counting the number 

of total splenic lymphocytes 48h post-irradiation. Purified CD4+ T cells from Balb/c mice were 

stained with CFSE and treated with baicalein (25μM) for 2h at 37°C in 5% CO2. These cells 

were washed and five million cells were injected intravenously into lymphopenic syngeneic 
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Balb/c mice. Four mice were used in each group. Splenic lymphocytes were isolated from 

reconstituted mice 72h after injection and analyzed by flow cytometry to enumerate the 

frequency of donor cells and to quantify cell proliferation by CFSE dye dilution. 

3.2.10 Graft versus host disease (GVHD) 

Balb/c mice were exposed to 6Gy dose of WBI. To induce GVHD in immune-compromised 

Balb/c mice, 8 x 10
6
 splenic lymphocytes from C57BL/6 donors were injected i.v. 48 h after 

irradiation. Each mice in control group received vehicle treated splenic lymphocytes, whereas 

each mice in the treated group received splenic lymphocytes treated with 25 µM baicalein for 2h. 

The recipient mice were monitored daily to assess the signs of GVHD. A total of 13 mice were 

used per group. GVHD became evident from rapid and sustained weight loss as well as from 

features such as hunchback, diarrhoea, hair loss and death. Serum was separated from the blood 

collected on day 5 from recipient mice (Balb/c) injected with vehicle treated lymphocytes or 

baicalein treated lymphocytes taken from C57BL/6 mice and levels of different cytokines were 

estimated using sandwich ELISA.  

3.2.11 ELISA & RT-PCR 

Lymphocytes (10 x 10
6
/ml) were treated with baicalein (25μM, 2h), stimulated with Con A 

(5μg/ml) and nuclear extracts were probed for levels of Trx1 by ELISA. In another experiment, 

cells given same treatment were harvested and processed for RNA isolation, cDNA preparation 

and RT-PCR for IL-2, IL-6 and β actin as described previously [295, 397]. Table 3.8 shows 

primer sequences of IL-2, IL-6 and β actin. 
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Table 3.8 Primer sequence 

Gene Sequence 

IL-2 Forward: 5‟TGAGCAGGATGGAGAATTACAGG3‟     

Reverse: 5‟GTCCAAGTTCATCTTCTAGGCAC 3‟ 

IL-6 Forward: 5‟CTGCAAGAGACTTCCATCCAG 3‟ 

Reverse: 5‟AGTGGTATAGACAGGTCTGTTGG3‟ 

β actin Forward: 5‟GTGACGTTGACATCCGTAAAGA3‟ 

Reverse: 5‟GCCGGACTCATCGTACTCC3‟ 

 

3.2.12 Statistical analysis 

The statistical analysis was done using ANOVA by Microcal OriginPro 8.0 software. Data are 

presented as mean ± SEM. *refers to p<0.05, as compared to control, # refers to p<0.05, as 

compared to stimulated cells or irradiated group and $ refers to p<0.05, as compared to baicalein 

treated cells stimulated with mitogen. 
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3.3. Results 

3.3.1 Baicalein suppressed mitogen induced proliferation and cytokine secretion in splenic 

lymphocytes in vitro 

To investigate the anti-inflammatory potential of baicalein, its effect on proliferation of T cells 

was tested. CFSE stained lymphocytes were pre-treated with different concentrations of baicalein 

for 2h and stimulated with Con A or anti-CD3/CD28 mAb and proliferation was assessed by 

CFSE dye dilution using a flow cytometer. Culture supernatants were used for ELISA. 

Con A 
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B10+Con A 
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Baicalein treatment suppressed Con A as well as CD3/CD28 mAb induced proliferation (Fig. 

3A-D) and cytokine secretion at 25µM (Fig. 3.8 E & F).  

3.3.2 Baicalein treatment suppressed up-regulation of T-cell activation markers. 

Mitogenic stimulus leads to upregulation of membrane proteins on T cells that serve as co-

stimulatory molecules. Hence, the effect of baicalein on Con A induced T-cell activation markers 

(CD54, CD69 and CD25) was studied. Baicalein treatment significantly suppressed Con A  

Baicalein treatment suppressed Con A as well as CD3/CD28 mAb induced proliferation (Fig. 3.8 

A-D) and cytokine secretion at 25µM (Fig. 3.8E & F) 

3.3.2 Baicalein treatment suppressed up-regulation of T-cell activation markers 

Mitogenic stimulus leads to upregulation of membrane proteins on T cells that serve as co-

stimulatory molecules. Hence, the effect of baicalein on Con A induced T-cell activation markers 

(CD54, CD69 and CD25) was studied. Baicalein treatment significantly suppressed Con A 

Fig. 3.8 Baicalein suppressed Con A and anti-CD3/CD28 mAb induced proliferation and cytokine 

secretion in a dose dependent manner Murine splenic lymphocytes were stained with CFSE, treated 

with different concentrations of baicalein (5, 10 or 25μM) for 2h, simulated with Con A (5μg/ml) or 

anti-CD3/CD28 mAb and cultured for 72h or 24h at 37
0
C. Cells were acquired on a partec Cyflow 

flow cytometer and representative histograms are shown (A & C). Bar graph represents percentage of 

daughter cells calculated by CFSE dye dilution using Flowjo software (B & D). Culture supernatants 

from cells cultured for 24h were harvested and analyzed for IL-2, IL-4, IL-6 and IFN-γ. Bar graph 

represents cytokine concentration pg/ml (E & F). *p<0.05, as compared to control and #p<0.05 as 

compared to Con A treated group. 

 



CHAPTER 3                                                                                              Page 144 

 

RR..  SS..  PPAATTWWAARRDDHHAANN                                                                                                     Ph.D. Thesis 
 
 

induced up-regulation of CD69 (Fig. 3.9A & B) and CD25 (Fig. 3.9C & D) (IL2Rα) but not 

CD54 (ICAM-1) expression (Fig. 3.9E & F). 

3.3.3 Baicalein suppressed NF-κB dependent gene expression via inhibition of thioredoxin 

Baicalein treatment led to activation of NF-κB (Fig. 3.10A) and it did not suppress Con A 

induced DNA binding of NF-κB (Fig. 3.10B). Identity of NF-B band on EMSA gel was 

confirmed by performing super-shift and cold competition assay (Fig. 3.10C). But, baicalein 

treatment led to suppression of NF-κB dependent T cell responses. DNA binding and trans-

activation of transcription factor NF-κB is regulated by Trx system. Hence, effect of baicalein on 

thioredoxin system in terms of levels and activity of Trx in nuclear compartment after mitogenic 

stimulus was investigated. It was observed that baicalein treatment suppressed mitogen induced 

increase in Trx activity in the nuclear compartment (Fig. 3.10D) but did not affect its nuclear 

levels (Fig. 3.10E). Treatment with low concentration of sodium selenite is known to increase 

the levels and activity of TrxR [398]. Activated TrxR can help to trans-activate NF-κB 

dependent genes after stimulation with Con A. Hence, NF-κB dependent gene expression was 

studied after treating cells with sodium selenite prior to baicalein treatment followed by 

mitogenic stimulus. It was observed that, pre-treatment with sodium selenite significantly 

abrogated suppressive effects of baicalein on NF-κB dependent gene expression (Fig. 3.10F). 

Since, observed anti-inflammatory effect of baicalein is thought to be mediated via inhibition of 

Trx, EL4 (murine T cell lymphoma) cells over-expressing Trx were employed and levels of IL2 

post Con A stimulation were monitored in presence and absence of baicalein. It was observed 

that, baicalein treatment significantly suppressed Con A induced IL2 secretion in EL4 cells. 

However, in Trx over-expressing EL4 cells baicalein did not inhibit Con A induced IL2 

production (Fig. 3.10G). 
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Fig. 3.9 Baicalein suppressed expression of T cell activation markers. Lymphocytes (2X10
6
) were treated 

with baicalein (25μM) and were stimulated with Con A (5μg/ml) and cultured for 24h at 37
0
C. Cells were 

harvested, stained with anti-CD69-PE (A & B), anti-CD25-FITC (C & D) or anti-CD54-PE (E & F) 

antibodies. Cells were acquired on a flow cytometer and representative histograms are shown (A, C & E). 

Bar graph represents percent positive cells (B, D & F). *p<0.05 as compared to control. 
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Fig. 3.10 Baicalein did not suppress Con A induced DNA binding of NF-κB but suppressed its 

dependent gene expression via Trx inhibition: Nuclear translocation and DNA binding activity of NF-κB 

was assessed by electrophoretic mobility shift assay. Nuclear extracts from cells treated with baicalein (A) 

or Con A (5μg/ml, 4h) or both (baicalein 25μM, 2h and Con A 5μg/ml, 4h) (B) were analyzed for presence 

of NF-κB by EMSA. (C) Band was confirmed by super-shift assay. Nuclear extracts from cells treated with 

Na2SeO3 (2μM, 24h) prior to baicalein treatment (25μM, 2h) and stimulated with Con A (5μg/ml, 4h) were 

analyzed for Trx activity (D) or Trx 1 levels (E). Bar graph represents Trx activity nmol/mg protein (D) 

and Trx1 levels (pg/ml) (E). Total RNA was extracted from cells treated with Na2SeO3 (2μM, 24h) or 

baicalein (25μM, 2h) or both, stimulated with Con A (5μg/ml) and cultured for 24h at 37
0
C. Relative mRNA 

expression was estimated by quantitative real time PCR for IL-2 and IL-6 genes. Bar graph represents fold 

change in gene expression over control (F). EL4 cells were transfected with Trx over-expression plasmid 

and 24h post transfection cells were treated with baicalein or vehicle for 2h, stimulated with Con A 

(5μg/ml) and cultured for 16h at 37
0
C. Culture supernatants were analyzed for IL-2 levels. Bar graph 

represents IL-2 concentration (pg/ml) (G). *p<0.05, as compared to control, #p<0.05, as compared to Con 

A and $p<0.05, as compared to baicalein treated and Con A stimulated cells.   
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Fig. 3.11 Inhibitors of thioredoxin system inhibited Con A induced T cell proliferation independent of 

NF-κB suppression. Murine splenic lymphocytes were stained with CFSE and treated with indicated 

concentrations of PX12 or CDNB for 4h, stimulated with Con A (5µg/ml) for 72h. Cells were stained 

with Hoechst 33342 and acquired on partec cyflow flowcytometer. Percent daughter cells are shown. 

Flow cytometric histograms are shown (A). Bar graph represents percent daughter cells (B). Nuclear 

extracts from cells treated with anti-inflammatory concentration of PX12 or CDNB for 1h and 

subsequently exposed to Con A (5μg/ml) for 4h were probed for NF-κB DNA binding by EMSA (C & D). 

*p<0.05, as compared to control, #p<0.05, as compared to Con A stimulated cells. 
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3.3.4 Inhibitors of Trx system suppressed T cell proliferation without suppressing NF-B 

To ascertain whether suppression of NF-κB DNA binding is dispensable for manifestation of 

anti-inflammatory effects in the absence of Trx system, pharmacological inhibitors of Trx 

(PX12) and TrxR (CDNB) were used. It was observed that pre-treatment of cells with either of 

these inhibitors almost completely suppressed Con A induced T cell proliferation (Fig. 3.11A & 

B). To examine the effect of anti-inflammatory concentration of these compounds on NF-kB 

DNA binding EMSA was and it was observed that inhibitors of both Trx as well as TrxR could 

not abrogate Con A induced NF-κB DNA binding in murine splenic lymphocytes (Fig. 3.11C & 

D). These experiments suggested a role of Trx system in regulating inflammatory responses 

without affecting NF-kB DNA binding.  

3.3.5 Sodium selenite treatment partially abrogated anti-inflammatory effects of baicalein 

It was observed that baicalein mediated inhibition of Trx lead to suppression of NF-κB 

dependent gene expression. Treatment of lymphocytes with sodium selenite prior to baicalein 

treatment significantly abrogated baicalein mediated suppression of NF-κB dependent gene 

expression. Hence, effect of sodium selenite on baicalein mediated suppression of mitogen 

induced T cell proliferation and cytokine secretion was monitored. It was observed that sodium 

selenite pre-treatment led to significant abrogation in baicalein mediated suppression of Con A 

(Fig. 3.12A & B) as well as CD3/28 (Fig. 3.12C & D) induced T cell proliferation and cytokine 

secretion (Fig. 3.12E & F). Sodium selenite pre-treatment partially abrogated baicalein mediated 

suppression in Con A induced secretion of IL-2 and IL-6 (Fig. 3.12E), whereas it could 

moderately abrogate suppression in anti-CD3/28 induced secretion of IL-2 and IFN-γ (Fig. 

3.12F). These results indicate involvement of Trx system in regulation of T cell responses 
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Fig. 3.12 Baicalein mediated suppression of Con A or anti-CD3/CD28 mAb induced proliferation 

and cytokine secretion was partially abrogated by sodium selenite pre-treatment. Lymphocytes were 

stained with CFSE and were treated with sodium selenite (2μM, 24h) prior to baicalein treatment 

(25μM, 2h), stimulated with Con A (2.5μg/ml) or anti-CD3/CD28 mAb and cultured for 72h or 24h at 

37
0
C. Cells were acquired on flow cytometer and representative histograms are shown (A & C). Bar 

graph represents percentage of daughter cells calculated by CFSE dye dilution using Flowjo software 

(B & D). Culture supernatants from cells stimulated with Con A (5µg/ml) or anti-CD3/CD28 mAb, 

cultured for 24h were harvested and analyzed for IL-2, IL-4, IL-6 and IFN-γ. Bar graph represents 

cytokine concentration (pg/ml) (E & F). *p<0.05, as compared to control, #p<0.05, as compared to 

Con A & $p<0.05 as compared to baicalein treated and Con A stimulated cells. 

  

3.3.6 Baicalein did not inhibit homeostasis driven proliferation of T-cells in mice but 

suppressed graft versus host disease associated morbidity and mortality 

To study the effect of baicalein on homeostasis driven proliferation (HDP), purified CD4+ T 

cells were treated with baicalein and transferred to syngenic lymphopenic host. Transient 

exposure of purified CD4+ T cells to baicalein did not inhibit the homeostatic proliferation of 

these cells in mice (Fig. 3.13A). These findings suggested that baicalein treatment did not 

interfere with homeostatic proliferation of T cells and its inhibitory effects are limited to only 

mitogen induced proliferation. 

To study the in vivo anti-inflammatory efficacy of baicalein, its ability to inhibit graft-versus-

host disease (GVHD) was studied. Splenic lymphocytes from C57BL/6 mice were incubated 

with baicalein in vitro (25 µM, 4 h) and adoptively transferred to immunocompromised Balb/c 

mice. The MHC mismatched recipient mice which received untreated control cells developed 

GVHD that led to ~80% mortality within 10 days (Fig. 3.13B) and demonstrated typical 

symptoms of GVHD, including alopecia, scleroderma, hunched posture, diarrhea, and 

progressive weight loss. However, the mice which received baicalein treated cells showed ~40% 
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mortality and the survivors exhibited better health for up to 30 days. Further, it was observed that 

mice receiving baicalein treated lymphocytes experienced inconspicuous weight loss as 

compared to control group (Fig. 3.13C). It was observed that on day 5 post allo-transplantation, 

the levels of proinflammatory cytokines (IL-6, IFN-γ and IL-2) were significantly higher in the 

serum collected from mice receiving vehicle treated allogenic lymphocytes as compared to those 

in mice which received baicalein treated allogenic lymphocytes (Fig. 3.13D). This observation 

clearly shows potent anti-inflammatory activity of baicalein in vivo. 
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3.4. Discussion 

Sustained and dysregulated NF-κB activation leads to uncontrolled inflammation [399]. 

Systematic and regulated inflammatory response is central to body‟s defense system. Several 

anti-inflammatory molecules used in clinic act through modulation of NF-κB signaling [400]. 

Many molecules that can inhibit other mediators of inflammation such as cyclooxygenase, 

lipoxygenase, prostaglandins, mTOR etc. also possess promising anti-inflammatory potential 

[401]. But, suppression of NF-κB remains by far one of the most attractive and preferred strategy 

for development of anti-inflammatory molecules [402] [351].  

It is contradictory to believe that an activator of NF-κB can function as an anti-inflammatory 

molecule. However, in the present study it is demonstrated that baicalein treatment per se 

activated NF-κB while still suppressed its dependent gene expression and functions in murine T 

lymphocytes.    

 T cells are central players of the adaptive immune response, which help protect the host against 

different pathogens ranging from bacteria to fungi and viruses [403]. In order to perform their 

Fig. 3.13 Baicalein treatment did not inhibit homeostasis driven proliferation but suppressed GVHD 

associated mortality and morbidity: CFSE stained CD4+ T cells isolated from donor Balb/c mice were 

treated with vehicle or baicalein (25μM, 2h) and 5x10
6
 cells were injected intravenously into syngenic 

lymphopenic recipient Balb/c mice. Lymphopenia was induced in Balb/c mice by exposure to 6Gy dose of 

whole body irradiation. Splenic lymphocytes from lymphopenic host were isolated 48h post injection, 

acquired on a flow cytometer. Frequency of donor cells was calculated by CFSE dye dilution using flowjo 

software (A). Graft versus host disease was induced by transplanting 8x10
6 

splenic lymphocytes isolated 

from C57BL/6 mice into allogenic lymphopenic recipient Balb/c mice. Recipient mice were monitored for 

weight loss, serum cytokine analysis and 30 days survival. (B) Line graph represents percent survival of 

recipient mice when monitored for 30 days. (C) Line graph represents change in body weight of mice. (D) 

Bar graph represents cytokine concentration in serum expressed in pg/ml. *p<0.05, as compared to control 

and #p<0.05, as compared to GVHD. 

% reduction should be line graph.*#??? 
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function, T cells need to be activated, a process that could lead to a variety of responses 

including proliferation, migration, cytokine production and even apoptosis. The “decision” by T 

cells to become activated or not is crucial: an inappropriate or exaggerated response could lead to 

inflammatory diseases while a failure to respond could lead to infection and death [404]. To 

perform such a complex and sensitive task, T cells must respond to environmental cues that 

stimulate a complex signaling cascade. Process of T cell activation involves actin 

polymerization, cytoskeletal rearrangements, integrin expression for increased adhesion and 

activation of transcription factors that are required for T cell proliferation and effector functions 

[405, 406] Fig. 3.14. 

Fig. 3.14 T cell activation cascade adapted from [407] 

 

T cell activation is regulated by two distinct signals, signal 1 emanating from T cell receptor and 

signal 2 coming from the co-stimulatory receptors [408]. Activation of T cells in response to 

non-pathogenic antigens and self-antigens is controlled by feedback mediated inhibition of 

activation signals in the absence of signal 2 by induction of a state of specific non-

responsiveness (anergy) (Alberts B, Johnson A, Lewis J, et al. New York: Garland Science; 

2002). This feedback loop is mediated by a group of E-3 ubiquitin ligases (ITCH, GRAIL and 
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CBL-B) and transcription factors EGR2 and EGR3 [409]. If the feedback loops are not activated 

to limit the aberrant effector response, tolerance will be breached, which would lead to immune 

pathology [410]. To study the effector responses of T cells in vitro, polyclonal mitogens like 

concanavalin A, phytohemagglutinin (PHA), phorbolmyristic acetate (PMA) and ionomycin or a 

combination of CD3 + CD28 antibodies are used for T cell activation [411] [412]. 

Concanavalin A (ConA) is a lectin (carbohydrate-binding protein) originally extracted from the 

jack-bean, Canavalia ensiformis [413]. It is a member of the legume lectin family. It binds 

specifically to certain structures found in various sugars, glycoproteins, and glycolipids, mainly 

internal and non-reducing terminal α-D-mannosyl and α-D-glucosyl groups [413]. Concanavalin 

A (Con A) is an antigen-independent mitogen and functions as signal one inducer, leading T 

cells to polyclonal proliferation. CD28 is known to be one of major co-stimulatory receptors and 

to provide signal two in the Con A-induced T cell proliferation [414]. Con A binds specifically 

α-D-mannosyl and α-D-glucosyl residues in terminal position of ramified structures from [415].  

To study anti-inflammatory properties, effect of compounds on T cell activation and effector 

functions serve as a model system in vitro. Results revealed that baicalein treatment significantly 

suppressed mitogen (Con A as well as anti-CD3/CD28 mAb) induced proliferation, cytokine 

secretion and expression of T cell activation markers in a dose dependent manner. Baicalein 

treatment suppressed expression of surface markers. These results established that baicalein 

interferes with T cell activation signaling and blocks mitogen induced response. However, this 

suppression is not absolute as evinced by surface marker expression analysis. Although, it 

suppressed early (CD69) as well as late (CD25 i.e. IL2Rα) T cell activation markers, this 

inhibition was not complete. Further, baicalein treatment did not suppress expression of ICAM-1 

i.e .CD54 indicating that baicalein has specific targets on T cells. 
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Activation of NF-κB is a crucial step in T cell proliferation and inhibition of NF-κB and its 

dependent gene expression can suppress T cell mediated immune responses. Stimulation with 

Con A leads to increased nuclear translocation and DNA binding of NF-κB. As discussed in 

detail in the introduction section of this chapter, suppressors of NF-κB function as promising 

anti-inflammatory modality. Interestingly, baicalein treatment per se led to increased DNA 

binding of NF-κB and consistent with the literature findings [416], it did not suppress Con A 

induced DNA binding of NF-κB. It was interesting to observe anti-inflammatory effects of 

baicalein without affecting its binding to DNA. These findings revealed that baicalein did not 

interfere with any of the upstream events in NF-κB activation but still suppressed its dependent 

responses.  

Expression of NF-κB dependent genes is regulated at yet another level by controlling 

transactivation events. Transactivation of NF-κB is regulated by phosphorylation or acetylation 

of p65 [417]. Phosphorylation of RelA at serine 276 enhances the recruitment of coactivator 

p300/CBP leading to increased transcriptional activation [418] [419] [420] Serine 536 in the 

RelA transactivation domain is phosphorylated by IKKs [222] [359] or by ribosomal subunit 

kinase 1[421] Fig. 3.15.  

This modification also enhances the transcriptional activity of NF-κB [422] [423]. Apart from 

this, Trx and TrxR are also shown to regulate NF-κB trans-activation potential. This redox 

regulatory circuit provides reducing environment for DNA binding of NF-κB and intra-nuclear 

over-expression of Trx leads to increased NF-κB luciferase activity 
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Fig. 3.15 Phosphorylation, acetylation and co-activators regulate NF-κB trans-activation [424]  

 

Further, inhibition of TrxR could suppress NF-κB trans-activation functions in terms of 

luciferase (reporter gene) activity [358]. Baicalein belongs to class of flavonoid compounds 

which were recently shown to physically interact with TrxR in cell free system and inhibit its 

activity [395]. Based on literature reports indicating that flavonoids inhibit TrxR activity, our 

results showing inhibition of T cell mediated immune responses independent of NF-κB DNA 

binding by baicalein and literature reports showing NF-κB trans-activation as a druggable target,  

it was hypothesized that anti-inflammatory activity of baicalein could be through modulation of 

Trx system.  

Activity of Trx in nuclear compartment after treatment of cells with baicalein was monitored in 

the presence and absence of mitogen. It was observed that baicalein per se had little or no effect 

on nuclear Trx activity. But, it significantly suppressed mitogen induced increase in nuclear Trx 
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activity. This can be explained by the fact that, IC50 of baicalein for inhibition of TrxR is in the 

range of 200μM which is 8 time higher as compared to its anti-inflammatory concentration 

25μM. At this low concentration it may not per se affect nuclear Trx activity, but, after mitogen 

treatment there is an increased nuclear shuttling of Trx1 thereby enhancing probability of 

interaction with baicalein. In light of these results showing that baicalein treatment per se 

activates DNA binding of NF-κB, modulation of Trx seems a possible target for baicalein 

mediated inhibition of NF-κB transactivation. 

Trx is maintained in the reduced state by TrxR which has selenocysteine (Sec) residues in the 

catalytic centers [425]. Selenocysteine is a variant of amino acid cysteine which contains an 

essential trace element Selenium (Se) in place of Sulphur (S) [425]. Treatment of cells with sub-

micromolar concentration of selenium has been shown to activate TrxR [426] [315]. Hence, T 

cells were treated with sodium selenite prior to baicalein treatment followed by mitogenic 

stimulus. Rational behind this experiment was to investigate involvement of Trx system in 

mediating anti-inflammatory effects of baicalein. If the observed effects of baicalein on T cells 

are to be attributed to Trx system, under conditions of enhanced TrxR activity baicalein mediated 

immune-suppression would be abrogated. It was observed that sodium selenite treatment 

partially abolished baicalein mediated suppression in Trx activity after mitogenic stimulus. This 

finding suggested that stimulation of TrxR in part can neutralize anti-inflammatory effects of 

baicalein.  

Next important question to be addressed remained whether baicalein inhibited nuclear transport 

of Trx1 after mitogen stimulation. Baicalein mediated suppression in mitogen induced nuclear 

Trx activity can be attributed to i) interference in nuclear import of Trx1 or ii) inhibition of 

nuclear Trx activity. Results revealed that baicalein did not inhibit nuclear import of Trx 
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suggesting it indeed suppressed activity of Trx inside nucleus. Thus, although Con A stimulated 

increased nuclear accumulation of Trx1, it was not physiologically active in baicalein treated 

group.  

To investigate whether NF-κB dependent gene expression is blocked by baicalein treatment, 

mRNA levels of IL-2 and IL-6 in lymphocytes pre-treated with baicalein and stimulated with 

Con A were monitored. Baicalein treatment almost completely suppressed NF-κB dependent 

gene expression. To investigate role of Trx inhibition in baicalein mediated suppression of NF-

κB transactivation, cells were pre-treated with sodium selenite prior to baicalein treatment. It was 

observed that sodium selenite pre-treatment significantly abolished baicalein mediated 

suppression in expression of IL-2 and IL-6. To obtain proof of principle, EL4 cells were 

transfected with Trx over-expression plasmid. Con A treatment induced IL-2 secretion in culture 

supernatant of EL4 cells. Baicalein treatment suppressed Con A induced IL-2 secretion in EL4 

cells but it could not do so in cells over-expressing Trx. These findings pointed out that baicalein 

mediated inhibition of Trx activity may be the mechanism of its anti-inflammatory activity.  

These results established an association between observed anti-inflammatory activity of baicalein 

and inhibition of Trx system. To further investigate role of Trx in NF-κB trans-activation, 

employed known pharmacological inhibitors of Trx and TrxR were employed. Anti-

inflammatory concentration of Trx inhibitor PX12 and TrxR inhibitor CDNB were determined 

by performing proliferation assay of CFSE stained T lymphocytes stimulated with Con A in the 

presence or absence of these inhibitors. Concentration at which there was complete suppression 

in Con A induced T cell proliferation was chosen for further experiments as it indicated 

suppression of NF-κB dependent responses. Cells were treated with anti-inflammatory 

concentration of either of these inhibitors and nuclear extracts from these cells were probed for 
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NF-κB DNA binding activity. Results revealed inhibition of Trx system did not suppress NF-κB 

DNA binding suggesting that it did not interfere with any of the upstream signaling events in 

NF-κB activation. Despite not suppressing NF-κB DNA binding, it could suppress its dependent 

process of T cell proliferation.  

These results provided a clearer picture that inhibition of Trx system in nuclear compartment 

indeed blocks NF-κB transactivation without interfering with its DNA binding which is the case 

with baicalein. Thus, it could be concluded that baicalein mediated suppression of nuclear Trx is 

responsible for its anti-inflammatory activity.  

It is evident from the above findings that baicalein suppressed activity of dithiol disulfide Trx in 

nucleus which is responsible for its anti-inflammatory activity. Further, treatment with sodium 

selenite, a pharmacological activator of TrxR abrogated suppressive effects of baicalein on Trx 

activity. Since, sodium selenite treatment partially relieved baicalein mediated inhibition of 

nuclear Trx activity it was interesting to observe its effect on mitogen induced T cell responses in 

presence of baicalein. Consistent with our hypothesis, sodium selenite treatment significantly 

abrogated baicalein mediated suppression in Con A as well as anti-CD3/28 mAb induced T cell 

proliferation. Partial abrogation in baicalein mediated suppression of IL-2 and IL-6 secretion in 

case of Con A treatment and IL-2 and IFN-γ in case of anti-CD3/28 mAb stimulation after 

sodium selenite treatment was also observed. These findings focused on the fact that stimulation 

of Trx system by activating TrxR partially abrogated anti-inflammatory effects of baicalein. All 

these results put together indicate that baicalein treatment led to inhibition of Trx system and 

observed anti-inflammatory effects. Fig. 3.16 shows mechanism of action of baicalein. 

It has long been known that mature T cells are regulated at a population level by homeostatic 

mechanisms that maintain the total size of the T cell pool at a near-constant level [427] [428] 
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[429]. Normally, expansion of the T cell pool during an immune response is followed by a 

deletion phase in which most of the newly generated effector cells are eliminated at the end of 

the response, thereby restoring total T cell numbers to normal levels [430] [431]. On the other 

hand, it is also well established that T cells have the capacity to spontaneously undergo extensive 

proliferation after transfer into immunodeficient hosts [432]. Such “homeostatic” proliferation of 

T cells occurs when small numbers of T cells are adoptively transferred into T cell–depleted (T-

depleted) syngeneic nude, SCID, recombination activating gene (RAG)-deficient, or irradiated 

hosts [433] [434]. Homeostatic proliferation of CD4+ and CD8+ cells requires contact with self-

MHC class II and I molecules, respectively [435] [436-438]. Research from several laboratories 

strongly suggest that homeostatic proliferation applies to naive T cells and is driven by low-

affinity interactions with self-MHC molecules loaded with self-peptides [436, 438, 439].  

Exposure of mice to myeloablative doses of IR leads to induction of lymhpopenia. T cells 

attempt to re-establish homeostatic conditions by proliferating in response to lymphopenia. 

Effect of baicalein treatment on homeostasis driven proliferation (HDP) of purified CD4+ T cells 

was monitored in vivo. It was observed that baicalein treatment did not inhibit HDP suggesting it 

selectively suppressed mitogen induced proliferation of T cells and did not disturb their 

homeostatic division.  

Graft-versus-host disease (GvHD) is a common complication following an allogeneic tissue 

transplant [440] [441]. Immune cells in the graft recognize host as antigenically foreign and 

attack them. For GvHD to occur minimum three criteria must be met that include i) graft should 

contain viable and functional immune cells ii) recipient should be histo-incompatible iii) 

recipient should be immune-compromised [442].  
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It can occur during bone marrow transplantation, blood transfusion and organ transplant due to 

MHC mismatch [443]. Graft-versus-host-disease can largely be avoided by performing a T-cell-

depleted bone marrow transplant [444]. But, these types of grafts suffer from disadvantage of 

general immunodeficiency thereby reducing period of disease free survival [445]. The use of 

umbilical cord stem cells have reduced incidence of graft rejection [446]. Pre-treatment of graft 

cells with immunosuppressant drugs is one of the strategies to reduce engraftment failure. 

Currently, methotrexate, cyclosporine and tacrolimus are used to improve chances of successful 

transplant.  

This serves as a useful model to test the immune-suppressive effects of drugs under 

investigation. GvHD can be induced in mice by transplanting CD8
+
 T cells from mismatched 

donor into immune-compromised recipient. Baicalein treated lymphocytes from C57BL/6 mice 

were transferred intravenously into lymphopenic BALB/C mice. Lymphopenia was induced by 

exposure to sub-lethal (6Gy) dose of  IR. Mice receiving vehicle treated lymphocytes developed 

typical symptoms of GvHD including hair loss, body weight loss, and alopecia, hunched posture, 

nausea and vomiting. Mice receiving baicalein treated lymphocytes survived in better health for 

more than 30 days. Baicalein treatment suppressed GvHD associated mortality and morbidity in 

mice and also suppressed levels of pro-inflammatory cytokines in serum. 

3.5. Conclusions 

1. Baicalein suppressed mitogen induced T cell proliferation and cytokine secretion. 

2. Baicalein significantly suppressed Con A induced expression of T cell activation markers 

CD69 and CD25 but did not interfere with expression of ICAM-1. 

3. Baicalein treatment induced DNA binding of NF-κB in murine splenic lymphocytes. 

4. Baicalein did not suppress Con A induced DNA binding of NF-κB. 
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5. Baicalein treatment suppressed Con A induced increase in nuclear Trx activity but did not 

inhibit nuclear import of Trx1. 

6. Pharmacological activator of TrxR, sodium selenite, abrogated baicalein mediated suppression 

in NF-κB dependent gene expression.  

7. Baicalein could not suppress Con A induced IL-2 secretion in EL4 cells over-expressing Trx1. 

8. Inhibitors of thioredoxin system also suppressed mitogen induced T cell proliferation but did 

not inhibit DNA binding of NF-κB.  

9. Pre-treatment of T cells with sodium selenite partially abrogated immune-suppressive effects 

of baicalein. 

10. Baicalein did not inhibit homeostasis driven proliferation of T cells. 

11. Baicalein suppressed GvHD associated mortality and morbidity in mice. 
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Fig. 3.16 Proposed mechanism of anti-inflammatory action of baicalein 

 

Novelty 

This study for the first time demonstrates that an agent that can per se activates NF-κB and still 

exhibit anti-inflammatory property. The study highlights a novel strategy for development of 

anti-inflammatory agents. 

Future Directions 

This study provides platform for designing novel anti-inflammatory molecules that can 

specifically target trans-activation of NF-κB.  
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4.1. Introduction 
 

Radiation therapy is an integral component of treatment of different types of solid cancers. 

Tumor cells possess inherent and / or exhibit acquired resistance to radiation induced 

cytotoxicity. Inherent radioresistance refers to constitutively active oncogenic, proliferative 

and/or anti-apoptotic signals, whereas acquired radioresistance refers to induction of pro-survival 

genes/proteins [447]. Exposure to clinically relevant doses of IR induces multilayered signaling 

response in cancer cells by activating both cytoplasmic and nuclear signaling. Improved 

understanding of the causes for constitutive and induced radioresistance in tumor cells may pave 

the way for designing effective treatment modality.  

4.1.1 Cancer cells and oxidative stress 

Cancer cells being metabolically active live in a highly oxidative stress environment [448, 449]. 

However, development of radioresistance in cancer cells would suggest that they have acquired 

the ability to eliminate the ROS and maintain a steady state level. Effective elimination of ROS 

depends on how efficiently they are neutralized by antioxidants inside cells so that IR induced 

damage is not permanently fixed. Previous studies from our laboratory have demonstrated that 

intrinsic radioresistance of lymphoma cells vis-à-vis normal lymphocytes may be due to lower 

basal and inducible ROS levels [450]. Further, in the same study it is also shown that GSH levels 

and antioxidant enzyme activities were higher in lymphoma cells as compared to normal 

lymphocytes. 

Generation and persistence of ROS in the mitochondria / nucleus after exposure of cells to IR 

make them vulnerable to DNA damage, mitochondrial dysfunction and genomic instability [451, 

452]. DNA damage induced per cell per Gy post low LET IR exposure is chemically identical to 

those formed by ROS [453]. Thus, type and severity of DNA damage induced in tumor tissue 
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depends upon redox status of the cell. A strong and effective antioxidant response against 

oxidative stress challenge can eliminate ROS which are potential threats to genomic integrity 

[454]. 

IR induced oxidative stress in tumor cells is effectively managed by constitutive and inducible 

antioxidant defense systems. Considering the nature and type of IR mediated damage responsible 

for tumor cell killing, role of ROS in influencing the outcome of radiotherapy cannot be 

overlooked. In fact, hyperactive antioxidant machinery is one of the strategies employed by 

tumor cells to overcome ROS-mediated DNA damage to evade IR-induced cell killing [455, 

456]. 

4.1.2 Antioxidant network in cancer cells 

The levels of intracellular antioxidants and antioxidant enzymes are regulated by nuclear factor 

erythroid-2 related factor-2 (Nrf-2) [455]. Under oxidative stress, Nrf-2 is released from Keap1 

and translocates to nucleus where it binds to antioxidant response element (ARE) in DNA and 

thereby induces transcription of a myriad antioxidant enzymes viz. catalase, Mn-superoxide 

dismutase, glutathione peroxidase (GPX), glutathione-s-transferase (GST), hemoxygenase I etc. 

[457].  

Cellular defense against oxidative stress and maintenance of redox homeostasis also depends on 

the regulation of thiol-disulfide exchange [458, 459]. Formation of reversible protein disulfides 

or protein-SSG mixed sulfides (PSSG) (glutathionylation) act as regulatory switches in response 

to alteration in cellular redox [460]. 

Cells harbor two major independent systems of redox buffers in the form of monothiol tripeptide 

“GSH” and dithiol protein “thioredoxin”. First system contains glutathione (GSH) as reducing 

agent, which primarily functions in neutralizing ROS either directly or through GPx-catalyzed 
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reactions and protecting protein-SH groups [457, 461]. Second system comprises of dithiol 

protein of low molecular mass namely, Trx which is a protein disulfide oxido-reductase and 

TrxR that reduces Trx [462]. Trx is one of the major determinants of cell fate as it regulates pro-

apoptotic protein ASK1 [463, 464]. Besides, it has an important role in regulating several redox 

reactions vital for cell survival under normal as well as stress conditions [465, 466].  

4.1.3 Cellular targets for tumor radio-sensitization 

It is important to identify potential targets to sensitize tumors to radiotherapy without significant 

collateral damage to normal tissues. Thus it is required to identify molecular targets that are 

differentially expressed between normal and tumor cells.  

ERK and Nrf-2 

Recent reports indicate that IR activates Nrf-2 pathway and targeting this pathway may impact 

outcome of radiation therapy [467, 468]. Further, it was reported that upregulation of Nrf-2 in 

lymphocytes augmented their radioresistance in vitro and also prevented radiation induced 

morbidity and mortality in mice [120]. Fig. 4.1 shows role of Nrf-2 in cancer. Based on these 

reports, it can be hypothesized that activated ERK and Nrf-2-ARE pathway [310] may contribute 

to the constitutive and inducible radioresistance in tumor cells vis-à-vis normal cells. 

GSH and thioredoxin system 

Considering oxidative metabolism in tumor cells cellular GSH content plays a vital role in 

regulating oxidative stress. Further, cancer cells are over-dependent on Trx  
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system for constant supply of precursors of DNA and management of oxidative burden. 

Inhibition of TrxR is already being employed as a strategy for development of novel and 

effective anti-tumor agents [469, 470]. Considering the role Trx system plays in regulation of 

tumor growth, its inhibition may prove as a beneficial strategy for sensitizing tumors to radiation. 

Based on the present literature, it could be perceived that strategies targeting simultaneous 

disruption of glutathione and Trx metabolism in tumor cells may improve the outcome of 

radiotherapy treatment. 

Effect of radioprotector on tumor cells 

One of the most important attributes of a radioprotector is that it should not offer any survival 

advantage to tumor cells under conditions of radiation exposure. Baicalein is a 5, 6, 7 trihydroxy 

flavone and its anti-tumor effects are widely reported in the literature. Flavonoids constitute 
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components of functional food and possess diverse biological properties such as antioxidant, 

anti-proliferative, anti-inflammatory or antibiotic activity which may contribute to their chemo-

preventive action [471, 472]. Recent research finding has identified potential of different 

flavonoids to inhibit TrxR in cell free system [395]. Several literature reports have described 

anti-inflammatory and anti-tumor effects of baicalein and various mechanisms have been 

proposed for this effect [473-477]. In light of the ability of baicalein to protect murine splenic 

lymphocytes against IR induced damage, it is imperative to investigate its effect on the murine T 

cell lymphoma EL4 cells which are their tumor counterpart.  

Scope of the study 

I) To probe the molecular mechanism of differential radiosensitivity between tumor and normal 

cells i.e. murine splenic lymphocytes from C57BL/6 mice and syngenic murine T cell lymphoma 

cells (EL-4). The aim of this study is to determine the contribution of ERK/Nrf-2-ARE pathway 

in tumor radioresistance. 

II) In order to appreciate the role of GSH and Trx antioxidant network in determining the 

intrinsic radio-resistance of tumor cells, experiments were carried out to study the radiation 

induced spatio-temporal changes in different cellular redox parameters. Further, role of either of 

these antioxidants in determining tumor radio-sensitivity was evaluated. 

III) In order to understand the effect of baicalein on murine T cell lymphoma, study was 

undertaken to investigate the possible correlation between inhibition of Trx system and its 

implication on anti-tumor activity by baicalein. 
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4.2. Materials and Methods 
 

4.2.1 Chemicals 

Baicalein, Propidium Iodide (PI), insulin, NADPH and 1,4-dithiobisnitrobenzoic acid (DTNB), 

HEPES, EDTA, EGTA, PMSF, leupeptin, aprotinin, benzamidine, dithiothreitol (DTT), NP40, 

propidium Iodide (PI), dimethyl sulfoxide (DMSO), histopaque, 

dihydrodichlorofluoresceindiacetate (DCFDA), dihydroethidium (DHE) and dihydrorhodamine 

123 (DHR123) were  purchased from Sigma Chemical Co. (MO, USA). JC-1 and 

pharmacological inhibitors of Nrf-2, MEK, P38, JNK, TrxR, hemoxygenase I were purchased 

from Calbiochem (Darmstadt, Germany). Inhibitory peptide for NF-κB was purchased from 

IMGENEX (San Diego, CA). Plasmid miniprep kit, lipofectamine 2000, mitosox red and 

alexafluor 633 C5 maleimide were purchased from Invitrogen(Grand Island, NY). shRNA 

plasmids for TrxR1, Trx1, Trx2, ERK, Nrf-2 and over-expression plasmid for Trx1 were 

purchased from Origene (Rockville MD USA). Polynucleotide kinase, kinase buffer for EMSA 

were purchased from New England Biolabs (Ipswich, MA). Oligonucleotide probe for Nrf-2 was 

purchased from Santacruz Biotechnology (Dallas, Texas, USA). Trx1 and TrxR1 ELISA sets and 

total thiol detection kit was purchased from Cayman Chemicals (Michigan, USA). RPMI 1640, 

fetal bovine serum (FBS) was obtained from HiMedia (Mumbai, India). Hoechst 33342 was 

procured from Molecular Probes (NY, USA). Monoclonal antibodies against CD3 & CD28 and 

fluorochrome labeled antibodies against HO-1 and annexin V PE-AAD kit were procured from 

BD Pharmingen (CA, USA). HiPure RNA isolation kit, cDNA synthesis kit, TUNEL-FITC kit 

and Light Cycler SYBR green RT-PCR kit was purchased from Roche (Basel, Switzerland). 

Antibody against pASK1 was procured from Cell Signaling Technologies (CA, USA). All other 
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chemicals used in this study were obtained from reputed manufacturers and were of analytical 

grade.  

4.2.2 Cell culture and isolation of human peripheral blood mononuclear cells (PBMCs) 

EL-4 (Murine T cell lymphoma) and Jurkat (Human T cell lymphoma) cells were obtained from 

Health Protection Agency Culture Collections and cultured in RPMI 1640 supplemented with 

10% FBS, 100 U/ml penicillin and 100µg/ml streptomycin. Cells were incubated at 37°C in a 5% 

CO2 humidified atmosphere in a CO2 incubator. Cultures were maintained in exponentially 

growing conditions with doubling time little less than 24h and sub-cultured thrice in a week. 

Human venous blood from healthy volunteers was collected in heparinized tubes. PBMCs were 

separated using Ficoll histopaque by density gradient centrifugation. For performing experiments 

using human blood samples permission was obtained from BARC Hospital Medical Ethics 

Committee (BHMEC) under the project no. BHMEC/DNB/15/10. 

4.2.3 Animal maintenance 

Eight to ten weeks old C57BL/6 male mice weighing approximately 20-25g, reared in the animal 

house of the Bhabha Atomic Research Centre were used. Guidelines issued by the Institutional 

Animal Ethics Committee of Bhabha Atomic Research Centre, Government of India, regarding 

maintenance and dissection of animals were strictly followed. 

4.2.4 Exposure to IR 

Cells (EL4/Jurkat/Splenic lymphocytes) were suspended in medium and exposed to IR using a 

60
Co γ-irradiator at a dose rate of 1.319Gy/min (Blood Irradiator 2000, BRIT, Mumbai). Dose 

rates and doses delivered were calculated on a regular basis by Radiation Safety & Systems 

Division (RSSD) of BARC using Fricke dosimetry.  
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4.2.5 Estimation of apoptosis (Propidium iodide staining and DNA ladder assay) 

EL4 cells (1 x 10
6
) were treated with different concentrations of baicalein for indicated time 

intervals at 37
0
C in RPMI1640 medium supplemented with 10% FBS and incubated for 48h. 

EL4/Jurkat/Splenic lymphocytes (1 x 10
6
) were exposed to IR 4Gy and incubated for 24h or 48h. 

Vehicle treated cells served as control. These cells were then harvested, stained with PI and 

acquired in Partec Cyflow flowcytometer [295]. Analysis was performed using FlowJo software 

and percent cell death was calculated from pre-G1 population. DNA ladder assay was performed 

to confirm apoptosis. EL-4 cells (5 x 10
5
) were exposed to 4Gy IR and cultured for 24h/48h in 

RPMI 1640 medium supplemented with 10% FBS in a 5% CO2 atmosphere. Unirradiated cells 

served as control. The cells were washed with PBS and processed for DNA fragmentation. 

Briefly, EL4 cells were lysed in mammalian cell lysis buffer (10mM Tris-Cl, 100mM EDTA, 

0.5% SDS & 100µg/ml RNase A). The lysate was centrifuged at 12000g/4˚C/20 min, 

supernatants were transferred to new tube and incubated with RNase A followed by proteinase 

K. Phenol/ chloroform/ isoamyl alcohol extraction was performed. The aqueous phase was 

collected after centrifugation in a new tube. Two volumes of 100% chilled ethanol and 1/10
th 

volume of 3M sodium acetate (pH 5.2) were added and DNA was allowed to precipitate. After 

centrifugation the pellet was washed with 70% ethanol, air dried and dissolved in de-ionized 

DNase free water. Samples were run on 1.2% agarose gel at 60V for 2h and DNA ladder was 

visualized using Gel Documentation System (DNR Biosystem). 

4.2.6 Intracellular ROS measurement  

To detect intracellular ROS, EL-4, Jurkat and murine splenic  lymphocytes were incubated with 

20μM oxidation-sensitive dichlorofluoresceindiacetate (DCF-DA) [303] or 5µM 

dihydroethidium or 5µM dihydrorhodamine 123 or mitosox red for 25min at 37°C [450] before 
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exposure to 4Gy IR. Increase in fluorescence resulting from oxidation of H2DCF to 

DCF(485/535nm) or DHE to hydroethidium (480/610nm) or DHR to rhodamine (500/536nm) or 

mitosox red (480/610) was measured using a spectrofluorimeter. 

4.2.7 Intracellular GSH assay 

GSH/GSSG ratio in Jurkat/EL4 cells (1X10
6
/ml) after IR exposure was measured by 

conventional enzyme cycling method [478].  

4.2.8 Transfection 

Two separate shRNA plasmids were tested for knocking down of either ERK or Nrf-2. Effective 

plasmid (Cat. No. TF515053 for Nrf-2 and TF502598 for ERK Origene) was used in subsequent 

experiments. The cells (4x10
5
) were seeded in 800ul medium free of antibiotic and FBS in a 6 

well plate. For each transfection, DNA (1μg): lipofectamine 2000 (10μg) complex was prepared 

separately and incubated for 45-60 min at RT and added to cells. Cells were further cultured for 

48 hrs for transgene expression. Jurkat cells (2 x 10
6
/ml) were incubated in R buffer (Invitrogen) 

containing 5µg shRNA plasmid DNA for TrxR1/Trx1/Trx2/scrambled sequence at RT for 

10min. Cells were electroporated using Neon Electroporator (Invitrogen) at pulse voltage of 

1325 volts, pulse width 10ms, pulse number 3 at a cell density of 2 x1 0
7
cells/ml. Cells were 

cultured for 48h and observed under fluorescence microscope for transfection. Knockdown of 

TrxR1 was confirmed by ELISA, whereas knockdown of Trx1/Trx2 was confirmed by RT-PCR. 

Trx1 over-expression (OE) plasmid (cat no. TF515053, Origene) was used for over-expressing 

Trx1 in EL-4 cells. Transfection was performed using Neon® Transfection System 

(ThermoFisher Scientific, Waltham, Massachusetts, USA) following manufacturer`s protocol. 

Briefly, 2 million cells were electroporated (pulse voltage 1680V and pulse width 20ms) using 
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1μg of Trx OE plasmid in antibiotic free medium.  Cells were further cultured for 24h for 

transgene expression. Overexpression was confirmed by RT-PCR for Trx1. 

4.2.9 Measurement of change in MMP 

EL-4 cells (1 x 10
6
) were treated with different concentrations of baicalein for indicated time 

intervals. Mitochondrial membrane potential (MMP) was assessed using the mitochondrial-

specific cationic fluorescent probe JC-1 (5μM) by spectro-flourimetric method as described 

previously [479].   

4.2.10 Surface and intracellular antibody staining  

Analysis of surface markers on EL-4 cells was carried out by surface staining with PE or FITC 

labelled mAbs as described earlier [302]. EL-4 cells (2 x 10
6
) were stained with annexin V-PE 

antibody. Cells were acquired using Partec Cyflow Space flowcytometer and analyzed using 

FlowJo software (TreestarInc, Ashland, USA). For intracellular antibody staining, EL-4 cells (2 

x 10
6
) were treated with baicalein 100µM for indicated time intervals and staining was 

performed using pASK1 antibody followed by PE conjugated secondary antibody. For TUNEL-

FITC staining EL4 cells (2x10
6
) treated with baicalein 100µM for indicated time intervals were 

harvested and stained with FITC labelled dUTPs as per manufacturer‟s protocol. Vehicle treated 

cells served as loading control. Changes in intracellular protein levels were measured using a 

flow cytometer (Partec CyFlow) and analysed using FlowJo software. 

4.2.11 RNA isolation, cDNA synthesis and quantitative real time PCR 

mRNA levels in the samples were quantified by quantitative real-time polymerase chain reaction 

(qPCR) as described previously [295]. EL4 (1 x 10
6
) cells given indicated treatments were 

processed for RNA isolation by homogenizing in trizol reagent and vortexed after adding 

chloroform. Cells were incubated for 5min at RT and then centrifuged at 14000 rpm for 15min at 
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4
0
C. Supernatant was collected in new tube and was allowed to precipitate by adding equal 

volume of isopropanol at RT for 20min. Cells were spun down at 14000 rpm for 15min at 4
0
C, 

supernatant was discarded and pellet was washed by chilled 70% ethanol, air dried and dissolved 

in RNase free water. Purity and quantity of RNA was estimated in a 96-well quartz plate using 

Synergy H1 Hybrid reader (Biotek) at 260 and 280nm. 1µg RNA was used to prepare cDNA 

using cDNA synthesis kit (Sigma) as per manufacturer‟s instructions. Different dilutions of 

cDNA were made to calculate the efficiency of real time PCR. Real time PCR for was performed 

using respective forward and reverse primers (Table 1 & 2) and 2X SYBR mix from Sigma. 

Melting Temperature was set at 95
0
C, cycling conditions were 95

0
C-20 sec, 58

0
C-20 sec, 72

0
C-

30 sec (40 cycles) and extension was carried out at72
0
C-5min.The expressions of genes were 

normalized against that of a housekeeping gene β-actin, and plotted as relative change in the 

expression with respect to control. In another experiment Table 4.1 shows primer sequences of 

Trx1, Trx2 and β actin for human and Trx1 and β actin for mouse. 

                                          Table 4.1 Primer sequence 

Gene Sequence 

Trx1(h) Forward:5‟GTGAAGCAGATCGAGAGCAAG3‟     

Reverse: 5‟CGTGGCTGAGAAGTCAACTACTA 3‟ 

Trx2(h) Forward: 5‟CTGGTGGCCTGACTGTAACAC 3‟ 

Reverse: 5‟TTGTCAAGGAGATCCTCGTGG3‟ 

β-actin(h) Forward: 5‟CATGTACGTTGCTATCCAGGC3‟ 

Reverse: 5‟CTCCTTAATGTCACGCACGAT3‟ 

Trx1(m) Forward: 5‟CATGCCGACCTTCCAGTTTTA3‟ 

Reverse: 5‟TTTCCTTGTTAGCACCGGAGA3‟ 

β-actin(m) Forward: 5‟GTGACGTTGACATCCGTAAAGA3‟ 

Reverse: 5‟GCCGGACTCATCGTACTCC3‟ 
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4.2.12 Estimation of enzyme activities 

Trx and TrxR activity was determined by the micromethod of insulin reduction as described 

elsewhere [480]. All assay tubes contained 0.26M HEPES, pH 7.6, 10mM EDTA, 2mM 

NADPH, 1mM insulin and 100nM purified E. coli TrxR and cell extract in final volume of 

100μl. After incubating at 37
0
C for 20min reaction was stopped by adding 500µl stopping 

solution containing 0.2M Tris-HCl, 6M guanidine-HCl, 1mM DTNB and absorbance was 

measured at 412nm against reagent blank. TrxR activity was also determined by same method 

except purified human Trx was included in the assay mixture to catalyze insulin reduction. 

Reagent blanks were included to determine the background content of SH groups in samples.  

4.2.13 ELISA  

EL4 cells (1 x 10
6
/ml) treated with baicalein (100μM, 24h) were harvested and whole cell 

extracts were probed for levels of Trx1 or TrxR1 by ELISA using antibody coated wells 

provided by Cayman Chemicals as per manufacturer‟s protocol.  

4.2.14 Electrophoretic mobility-shift assay (EMSA) 

Jurkat or EL4 cells (2 x 10
6
/ml) exposed to IR 4Gy were harvested at different time intervals and 

nuclear extracts were probed for EMSA [264] by incubating with 
32

P-end-labeled (5‟-

TGGGGAACCTGTGCTGATCACTGGAG-3‟) Nrf-2 oligonucleotide as described earlier [481]. 

EMSA was performed by incubating 8 μg of nuclear protein with 16 fmol of 
32

P-end-labeled, 

Nrf-2 oligonucleotide in the presence of 2 μg of poly(2′-deoxyinosinic–2′-deoxycytidylic acid) 

in binding buffer (20mM Hepes, pH 7.9, 0.4mM EDTA, 0.4mM DTT and  5% glycerol) for 30 

min at 37°C. The DNA–protein complex formed was separated from free oligonucleotide on 

7.6% native polyacrylamide gels using buffer containing 50mM Tris, 400mM glycine, and 2mM 

EDTA, pH 8.5. The gel was dried and exposed on a PhosphorImager screen and the bands were 
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visualized using a phosphorImage scanner (Amersham). Cold oligonucleotide of same sequence 

in excess and labeled mutant oligonucleotide alone or in combination with wild type labeled 

oligonucleotide were used to confirm the specificity of Nrf-2 band. The dried gel was exposed to 

phosphorimage plate and the radioactive bands were visualized using a PhosphorImage plate 

scanner (Amersham Biosciences, USA). 

4.2.15 Statistical analysis Data are presented as mean ± SEM from three replicates in each 

experiment. For each parameter three independent experiments were carried out. The statistical 

analysis was done using performing ANOVA using Microcal Origin 6.0 software. *refers to 

p<0.05, as compared to control and # refers to p<0.05, as compared to irradiated cells.  

4.3. Results 
 

4.3.1 EL-4 cells are more resistant to IR induced cell death as compared to normal as well 

as activated murine splenic lymphocytes 

 Fig. 4.2 shows IR induced apoptosis in mouse T lymphoma cell line EL-4 vs. resting and 

activated mouse splenic lymphocytes (Fig. 4.2A and B). IR induced apoptosis in about 60% of 

murine splenic lymphocytes. EL-4 lymphoma cells showed significantly lower radiation induced 

apoptosis (~10%) as compared to murine lymphocytes. Normal lymphocytes are non-

proliferating. Hence antibody stimulated lymphocytes were used as additional control. Anti 

CD3/CD28 stimulated lymphocytes exhibited significantly higher cell death as compared to EL-

4 cells in response to radiation (Fig. 4.2C-E). 
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4.3.2 Murine T cell lymphoma cells have active redox circuits 

 Basal and IR induced levels of GSH were estimated in normal lymphocytes and lymphoma cells 

by conventional enzyme cycling method. There was a significant decrease in GSH/GSSG ratio 

post-irradiation in normal as well as tumor cells at all the time points (Fig. 4.3A). EL-4 cells 

showed increase in Trx activity from 2 to 12 h after exposure to 4Gy radiation which correlated 

with their higher radioresistance (Fig. 4.3B). Basal levels of cellular ROS (hydroxyl, superoxide 

and H2O2) were significantly lower in tumor cells as compared to their normal counterpart (Fig. 

4.3C). 

4.3.3 Inhibition of ERK or Nrf-2 increased radio-sensitivity of EL4 cells 

EL-4 cells were incubated with pharmacological inhibitors of ERK(U0126) or JNK(JNKi) or 

P38 (P38i)or Nrf-2(ATRA)or HO-1(SnPP) or TrxR(auranofin) or NF-κB inhibitory peptide prior 

to exposure to 4Gy and cultured for 48h. Inhibitors of ERK, Nrf-2, HO-1 and TrxR significantly 

E 

Fig. 4.2.  EL-4 cells are more resistant to ionizing radiation induced cell death as compared to normal murine 

lymphocytes (A) Flow cytometric profile of propidium iodide stained normal murine splenic lymphocytes cultured 

for 24h post 4Gy irradiation. Pre-G1 peak (gate RN1) represents apoptotic population. (B) Bar graph represents 

percent apoptotic cells. (C-E) 1x10
6
 splenic lymphocytes were stimulated with anti-CD3/anti-CD28 antibodies for 

72h in 24-well plate or EL-4 cells were exposed to IR (4Gy) and cultured for 24h. Cells were stained with 

propidium iodide and acquired on flowcytometer.*p<0.05, as compared to activated and irradiated lymphocytes. 
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enhanced radiation induced cell death in EL-4 cells suggesting their potential role in cellular 

radioresistance (Fig. 4.4A). EL-4 cells were transfected with ERK shRNA or Nrf-2 shRNA or 

(ERK+Nrf-2) shRNA plasmids and cultured for 48h. Then cells were washed with medium and 

exposed to 4Gy IR. Cells transfected with scrambled shRNA plasmids or vector alone and 

exposed to radiation served as control. Cell death was measured by PI staining followed by flow 

cytometry or DNA ladder assay. ERK or Nrf-2 single knockdown cells showed higher radiation 

induced apoptosis as compared to wild type cells. There was a significant increase in radiation 

induced apoptosis in ERK and Nrf-2 double knockdown cells as compared to wild type cells or 

single knock down cells (Fig. 4.4B). DNA fragmentation which is a hallmark of apoptosis was 

assessed in wild type and knockdown cells post-radiation exposure. These results also confirm 

that ERK and Nrf-2 are essential for tumor cell survival under normal conditions (Fig. 4.4C).
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Fig. 4.3 Murine T cell lymphoma have active redox circuit (A) Intracellular GSH levels were measured at 2, 6, 12 

or 24 h post irradiation (4Gy) in normal lymphocytes and EL-4 lymphoma cells. Bar graph represents GSH/GSSG 

ratio in normal murine splenic lymphocytes and EL-4 cells. (B) Thioredoxin activity in wild type EL-4 cells at 2, 6, 

12 & 24 h post IR4Gy was measured. Bar graph shows thioredoxin activity in EL-4 cells. (C) ROS levels in normal 

splenic lymphocytes and EL-4 cells were estimated by staining with DCF-DA (20µM), DHE or DHR123 (5µM 

each) 30min at 37°C followed by fluorescence emission measured at their respective wavelength. Bar graph shows 

relative fluorescence units indicating ROS levels. *p<0.05, as compared to control.  
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Fig. 4.4 ERK and Nrf-2 inhibitor increased radiosensitivity of EL4 cells (A) EL-4 cells were incubated with different 

concentration of pharmacological inhibitors of ERK (10µM for 2h) or JNK (10µM for 2h) or P38 (10µM for 2h) or 

NF-kB inhibitory peptide (10µM for 2h) or ATRA (5µM for 2h) or SnPP (5µM for 2h) or auranofin (25nM for 2h) or 

Ras (10µM FTA for 2 h) and were cultured for 48h in 5% CO2 at 37
0
C with or without exposure to IR 4Gy. Cell death 
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was analyzed by propidium iodide staining and flow cytometry. Bar graph represents radiation induced apoptosis in 

EL-4 cells incubated in the presence of different inhibitors. (B) EL-4 cells transfected with scrambled shRNA or ERK 

or Nrf-2 shRNA plasmidwere exposed to IR 4Gy and cultured for 48h. Apoptosis was estimated by propidium iodide 

staining and flow cytometry. The frequency of apoptotic cells (gate RN1) is shown in the bar graph. (C) Genomic 

DNA from wild type and knock down EL-4 cells cultured for 48h post radiation exposure or alone was resolved on 

agarose gel and stained with ethidium bromide. DNA ladder indicates cells undergoing apoptosis. *p<0.05, as 

compared to control and # p<0.05, as compared to IR 4Gy. 

 4.3.4 Jurkat Cells but not human PBMC displayed resistance to IR induced apoptosis 

Jurkat cells exposed to 4Gy IR were cultured for different time periods (16h, 24h, 36h & 48h) 

and analyzed for cell death by flow cytometry. It was observed that IR exposure led to 30% 

increase in cell death over control at 48h (Fig. 4.5A & B), whereas at 16h, cells were arrested in 

S+G2/M phase. To compare the effect of similar dose of IR on corresponding normal cells, 

human PBMC were exposed to IR 4Gy and cultured for 24h. Exposure to IR led to ~70% cell 

death over control in human PBMC at 24h. On the contrary, only ~5% cells underwent cell death 

at 24h in Jurkat cells (Fig. 4.5C & D).  

4.3.5 IR induced Nrf-2 in Jurkat cells 

A significant increase in DNA binding of Nrf-2 at 6h post IR exposure (Fig. 4.6A) was observed. 

Band of Nrf-2 was confirmed with the use of cold and mutant oligonucleotides (Fig. 4.6B).  
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Fig. 4.5 Jurkat cells but not human PBMC are resistant to IR induced apoptosis (A&B) Jurkat cells (4X10
5
) or  

(C&D) human PBMC (1X10
6
) were exposed to IR4Gy and cells were harvested at indicated time points. Cells were 

stained with PI (50μg/ml) and acquired on Partec, Cyflow flowcytometer. Cell cycle and Pre-G1 peak analysis was 

carried out using FlowJo Software. Representative flow cytometric histograms are shown. Bar graph represents percent 

cell death.*p<0.05, as compared to control.  
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Fig. 4.6 Ionizing radiation induced Nrf-2 in Jurkat cells: (A & B) Jurkat cells (2x10
6
) exposed to IR 4Gy were 

harvested at indicated time points. Nuclear extracts were prepared and probed for Nrf-2. Gel shift assay was 

performed with Nrf-2 wild type and mutant consensus sequences. Representative image is shown. 
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Fig. 4.7 GSH and thioredoxin system is involved in determining radioresistance in Jurkat cells (A) Nuclear extracts 

from Jurkat cells exposed to IR 4Gy were probed to detect levels of Trx1 by ELISA. Bar graph represents pg/ml Trx1. 

(B) Trx activity was determined in the nuclear extracts of Jurkat cells exposed to IR 4Gy. Bar graph represents Trx 

activity expressed as nmol/mg protein. (C) Jurkat cells (1x10
6
) were electroporated using shRNA plasmids of 

TrxR1/scrambled sequence and cultured for 48h or treated with BSO for 24h. Cells were subsequently exposed to 4Gy 

IR and cultured for 48h. Cells were harvested, stained with PI and acquired on flow cytometer for Pre-G1 peak 

analysis. Bar graph represents percent cell death. (D) Jurkat cells (1x10
6
) were electroporated using shRNA plasmids 

of Trx1/Trx2/scrambled sequence and cultured for 48h. Cells were exposed to IR 4Gy and analyzed for Pre-G1 

population by PI staining followed by flow cytometry. Bar graph represents percent cell death.* p<0.05, as compared 

to control and # p<0.05, as compared to IR 4Gy. 

 

4.3.6 GSH and thioredoxin system is involved in determining radioresistance in Jurkat 

cells 

Binding of transcription factors to DNA is a Trx dependent process [482] [388] [357]. It was 

observed that, IR exposure significantly increased levels (Fig. 4.7A) and activity of Trx1 (Fig. 

4.7B) in nucleus at 6h which may be responsible for the DNA binding of Nrf-2. These results 

revealed that time point at which there was enhanced DNA binding of Nrf-2, coincided with 

C D 
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increased activity of Trx in the nuclear extracts. This indicated the association of Trx system in 

assisting activation of oxidative stress induced DNA binding of Nrf-2. Glutathione synthesis was 

inhibited using BSO, an inhibitor of glutamate cysteine ligase catalytic subunit (GCLC), which is 

an enzyme catalyzing the rate limiting step in GSH synthesis. TrxR was inhibited using 

pharmacological inhibitor, auranofin. Depletion of GSH or inhibition of TrxR led to significant 

increase in ROS levels in the absence of radiation which was further enhanced after radiation 

exposure (Fig. 4.7C). When cells were exposed to IR, there was a significant increase in cell 

death as compared to IR alone (Fig. 4.7C). When GSH synthesis was blocked along with 

knockdown of TrxR1, it displayed a synergistic effect in cell death. Interestingly, when Trx1/2 

knockdown cells were exposed to IR they also displayed increased cell killing. Especially, when 

Trx2 knockdown cells were exposed to IR, cells displayed significant increase in cell death as 

compared to Trx1 (Fig. 4.7D). 

4.3.7 Baicalein induced cell death in EL4 cells 

To investigate the effect of baicalein treatment on tumor counterpart of normal murine splenic 

lymphocytes i.e. murine T cell lymphoma EL4 cells were used. Baicalein induced apoptosis in 

EL4 cells in a dose dependent manner as assessed by propidium iodide staining followed flow 

cytometry and Pre-G1 peak analysis (Fig. 4.8A). Baicalein treatment lead to significant loss of 

mitochondrial membrane potential (Fig. 4.8B), time dependent increase in TUNEL positive cells 

(Fig. 4.8C & D) and progressive increase in annexin V positive cells (Fig. 4.8E & F) at indicated 

time points.  
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Fig. 4.8 Baicalein induced cell death in EL4 cells (A) EL4 cells were treated with baicalein (5, 10, 25, 50 & 100μM) 

and cultured for 48h at 37
0
C. Cells were harvested, stained with propidium iodide and acquired on a flow cytometer. 

Percent cell death was calculated by sub-G1 peak analysis. Bar graph represents percent cell death. (B) EL4 cells 

treated with baicalein for indicated time points were harvested, stained with JC-1 dye, incubated at 37
0
C for 30 min 

and fluorescence was measured using spectrofluorimeter. Bar graph represents ratio of red/green fluorescence. EL4 

cells were treated with baicalein (100μM) for indicated time points. Cells were harvested, stained with TUNEL-FITC 

and acquired on flow cytometer. Flow cytometric histograms are shown (C). Bar graph represents percent TUNEL-

FITC positive cells (D).EL4 cells treated with baicalein for indicated time points were harvested, stained with Annexin 

V-PE and acquired on flow cytometer. Flow cytometric histograms are shown (E). Bar graph represents percent 

annexin V positive cells (F).* p<0.05, as compared to control. 

4.3.8 Baicalein induced cell death is via inhibition of Trx system  

The effect of baicalein on the levels and activity of the components of Trx system namely Trx 

and TrxR was examined. Baicalein treatment led to inhibition of TrxR activity in cell free system 

(Fig. 4.9A). Incubation of EL4 cells with baicalein lead to inhibition of TrxR activity (Fig. 4.9B 

& C) and suppressed their levels (Fig. 4.9D). It is known that inhibition of Trx leads to increase 

in levels of pro-apoptotic protein ASK1. Hence the levels of pASK1 in baicalein treated EL4 

cells were investigated. Baicalein treatment significantly increased phosphorylation of ASK1at 

48h (Fig. 4.9E). Over expression of Trx1 abolished anti-tumor effects of baicalein (Fig. 4.9F).  

 

4.4. Discussion 
 

Differential radio-sensitivity of normal and tumor cells depend on the inherent capacity to 

prevent or repair DNA damage [483, 484]. Since, ROS are the principal mediators of IR induced 

DNA damage, prevention of this damage and manifestation of radio-resistance depends on 

efficiency of antioxidant defense mechanism inside the cell. 
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Fig. 4.9 Baicalein induced cell death is via inhibition of Trx system TrxR was incubated with different 

concentrations of baicalein (0.1, 0.2 & 0.5mM) for 30 min at 37
0
C. Bar graph represents fold change in TrxR activity 

(A). EL4 cells treated with baicalein (100μM, 16h) were harvested, extracts were probed for estimation of 

thioredoxin and thioredoxin reductase activity. Bar graph represents thioredoxin reductase activity expressed in 

mUnit/mg protein (B) and thioredoxin activity expressed in nmol/min/mg protein (C).Baicalein treated EL4 cells 

were harvested and extracts were probed for detection of levels of Trx1 or TrxR1 by ELISA. Bar graph represents 

Trx1 or TrxR1 levels expressed in pg/ml (D). *p<0.05, as compared to control. 
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Fig. 4.9 Baicalein induced cell death is via inhibition of Trx system EL4 cells were treated with baicalein (100μM) 

for indicated time points. Cells were harvested, stained with pASK1 antibody and acquired on flow cytometer. Bar 

graph represents percent pASK1 positive cells (E). EL4 cells were transfected with Trx over-expression plasmidand 

were treated with baicalein (100μM, 48h), harvested at the end of the incubation, stained with propidium iodide and 

acquired on a flow cytometer. Percent cell death was calculated by sub-G1 peak analysis using FlowJo software. Bar 

graph represents percent cell death in EL4 cells (F). *p<0.05, as compared to control, #p<0.05, as compared to 

baicalein treated group. 

 

Survival of cells exposed to IR depends on how efficiently cellular redox imbalance is restored 

to homeostatic conditions. Restoration of redox homeostasis depends on efficiency of 

constitutive antioxidant defense systems and their interplay with inducible oxidative metabolism 

[389] [485]. Shankar et al., has shown that decreased generation of radiation induced ROS in 

mouse lymphoma cells was associated with reduced extent of radiation induced apoptosis 

compared to that in normal lymphocytes [450]. In the present study role of cellular redox 

signaling in murine lymphocytes and EL-4 lymphoma cells after exposure to IR was further 

investigated. 

Further, the ratio of GSH to GSSG was significantly higher in EL-4 lymphoma cells as compared 

to normal lymphocytes under basal conditions. However, there was a significant decrease in 

Fig. 4.6 
E F 
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GSH/GSSG ratio in both lymphocytes and EL-4 cells after exposure to IR suggesting their 

involvement in restoration of cellular reduction potential. On the contrary, activity of Trx 

increased significantly in EL-4 cells harvested up to 12 h after exposure to radiation. Increased 

Trx activity may restore cellular redox equilibrium in EL-4 cells and thus contribute to 

radioresistance. 

Cellular redox balance is sensitive to disruption of intracellular thiol systems. These are sensitive 

to two electron oxidants and are controlled by the Trx and GSH. Cellular redox state can 

influence the pro-survival/pro-apoptotic signaling targets and thereby decide the fate of a cell 

[486]. Oxidative stress activates pro-survival signaling molecules such as MAPKs, NF-kB, and 

Nrf-2 etc. [487]. Pharmacological inhibitors of MAPK, Nrf-2, HO-1 and TrxR significantly 

enhanced radiosensitivity of EL-4 cells. It was observed that knockdown of ERK or Nrf-2 

enhanced radiation induced apoptosis. Further, the double knock down cells were more sensitive 

to IR induced cell death as compared to single knockdown or wild type cells. Fig. 4.10 

summarizes these findings. 

Similarly, Jurkat cells exhibited resistance to IR induced apoptotic death. Nrf-2 constitutes a 

unique “redox switch” that can be turned on in response to redox imbalance caused by oxidative 

and electrophilic stresses [456, 488] [458]. However, such adaptive response to external stress is 

normally transient and prone to be readily saturated [488]. 
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                   Fig. 4.10. Moleular players regulating radioresistance of EL4 cells 

The dysregulation of Nrf-2 in cancer has been suggested to protect and offer growth advantages 

to various cancers and may offer resistance to chemotherapy [452]. Jurkat cells post radiation 

exposure showed significant increase in DNA binding of Nrf-2.  

Nuclear accumulation and DNA binding of Nrf-2 requires phosphorylation at Ser-40 residue. 

DNA binding of Nrf-2 is a Trx dependent process. It was observed that, levels and activity of 

components of Trx system increased significantly post IR exposure at the time point when there 

was enhanced DNA binding of Nrf-2. These results and literature reports suggest that, Trx 

system might have provided assistance in DNA binding of Nrf-2 after IR exposure in Jurkat 

cells. Nrf-2 executes transcription of a myriad genes involved in mediating antioxidant response 

against oxidative stress. 

Glutathione and Trx systems are the two major constitutive antioxidant regulatory systems inside 

cells that compensate and complement with each other in maintenance of redox homeostasis 

[489] [490]. The Trx/TrxR system regulates protein thiol content in cell [491]. Oxidative 
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modification of protein thiols and subsequent loss of function is one of the contributing factors 

for cell death after exposure to IR. Trx1 is associated with ASK1, once it is oxidized ASK1 is 

released from it and downstream signaling for apoptosis gets activated [482]. Trx is involved in 

reduction of protein disulfides of proteins critical for cell survival that involve regulating DNA 

synthesis (ribonucleotide reductase) [492] and repair, antioxidant defense (peroxiredoxin), cell 

proliferation (PTEN), transcription factors (Nrf-2, NF-κB, AP1, P53, Hif1αetc.) [493] [390]. Trx 

provides reducing conditions inside nucleus for transcription factors to bind to DNA after 

oxidative stress [466]. Knockdown of TrxR1 along with blocking GSH synthesis significantly 

enhanced radiosensitivity of Jurkat cells. Similar results were observed when either Trx1 or Trx2 

were knock down. Fig. 4.11 summarizes these findings.  

Further, kinetics of tumor growth and progression has direct correlation with activity of Trx 

system [489]. Many tumors exhibit elevated Trx and TrxR activity. Thus, Trx inhibition provides 

promise to limit tumor growth. Therefore, the anti-tumor activity of baicalein was also studied 

using lymphoma EL4 cells. Murine T cell lymphoma (EL4) cells are tumor counterpart of 

normal T lymphocytes.  
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Fig. 4.11. Radioresistance in Jurkat cells 
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Baicalein induced cell death in EL4 cells in a dose dependent manner at 48h. This was confirmed 

by increase in percentage of TUNEL and annexin V positive cells and loss of mitochondrial 

membrane potential. Although, numerous reports describing anti-tumor activity of baicalein 

using different tumor cell types are present, studies pertaining to implication of inhibition of Trx 

activity for the observed anti-tumor effects of baicalein have not yet been reported in EL4 cells. 

Baicalein suppressed activity of Trx system without reducing their levels in EL4 cells which lead 

to increase in phosphorylation of pro-apoptotic protein ASK1at 48h. Further, EL4 cells 

transiently over-expressing Trx were refractive to baicalein mediated cell killing. Mechanism of 

anti-tumor action of baicalein is shown in Fig. 4.12. 

Conclusions 

1. Murine as well as human T cell lymphoma cells were resistant to IR 4Gy induced 

apoptosis as compared to their normal counterpart murine splenic lymphocytes or human 

PBMC respectively.  

2. Both EL4 and Jurkat cells showed hyperactive anti-oxidant machinery in terms of GSH / 

GSSG ratio, nuclear levels of Nrf-2 and Trx activity.  

3. Inhibition of Nrf-2 enhanced radiosensitivity of EL4 cells whereas blocking GSH and Trx 

resulted in significant cell death in Jurkat cells. 

4. Radioprotective concentration of baicalein induced cell death in EL4 cells. 

5. Baicalein mediated cell death in EL4 cells is via inhibition of Trx system. 
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Summary and conclusions 

This study was undertaken to evaluate radioprotective potential of a plant derived flavonoid 

baicalein using murine splenic lymphocytes as a model system. It was further evaluated for its 

radioprotective ability in vivo using mouse model (Swiss and C57BL/6). Since exposure to 

ionizing radiation is known to induce systemic inflammation and IR induced inflammation has 

been implicated in several post IR exposure pathological conditions, anti-inflammatory property 

of this compound was also evaluated in vitro as well as in vivo. Further, to assess clinical 

relevance, its effect on tumor cells was also investigated as it is expected that a radioprotector 

should not benefit tumor cells by offering survival advantage.   

Past efforts investigating the radio-modulatory potential of phytochemicals have yielded limited 

success. Primary cause of this failure lies in lack of holistic understanding of effects of radio-

modulator in the biological system under consideration. Improved understanding about tumor 

response towards these agents would substantially enhance probability of their clinical 

feasibility. Hence, it was planned to investigate molecular players regulating tumor 

radioresistance and effect of baicalein on them in the present study.  

Findings from chapter 2 have specifically identified radioprotective potential of baicalein. 

Results from these findings revealed that although baicalein is an anti-oxidant, ROS scavenging 

is not the primary mechanism responsible for radioprotection. Rather baicalein influenced 

multiple pro-survival signaling molecules ERK/NF-κB/Nrf-2/HO-1 at cellular level amplifying 

the stress tolerance capacity of cells when exposed to IR. Baicalein administration to mice 

enhanced abundance of stem cells in hematopoietic compartment thereby preparing animals to 

recover from IR induced hematopoietic injury. Apart from this, similar pro-survival signaling 

proteins were up-regulated by baicalein administration in cells of hematopoietic compartment 
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(ERK, HO-1 and NF-B in total BM-MNC whereas pNrf-2 in lineage negative BM-MNC). 

Thus, baicalein administration augmented cellular as well as systemic defense mechanisms and 

offered protection against IR induced injury to cells of the hematopoietic system in vitro and in 

vivo.  

Administration of baicalein increased DNA binding of redox sensitive pro-survival transcription 

factor NF-κB in BM-MNC. Treatment of murine splenic lymphocytes with baicalein also 

increased DNA binding of NF-κB in vitro.NF-κB is a pro-inflammatory transcription factor that 

regulate inflammatory and immune responses. Mitogen induced proliferation and cytokine 

secretion from T cells is dependent on activation and DNA binding of NF-κB. However, 

administration of baicalein suppressed mitogen induced T cell proliferation and cytokine 

secretion. This was an interesting observation that despite activating NF-κB in vitro as well as in 

vivo, it could suppress mitogen induced T cell responses in vivo. Hence, study was undertaken to 

investigate the effect of baicalein on T cell responses. It was observed that although baicalein did 

not inhibit Con A induced DNA binding of this pro-inflammatory transcription factor, it 

suppressed Con A as well as anti-CD3/ anti-CD28 mAb induced activation, proliferation and 

cytokine secretion in T cells. Many anti-inflammatory compounds discovered till date act by 

inhibiting upstream or downstream events in NF-κBsignaling. Subsequent to DNA binding of 

NF-κB its dependent gene expression is regulated by NF-κB transactivation. NF-κB 

transactivation is a multi-step process and it is controlled by phosphorylation and acetylation of 

p65. Recent literature reports have implicated involvement of thioredoxin reductase as well as 

thioredoxin in regulation of NF-κB transactivation. Although, precise molecular mechanisms are 

not known it is observed that inhibition of either component of this system leads to suppression 

of NF-κB luciferase activity whereas nuclear overexpression of thioredoxin leads to increased 
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NF-κB luciferase activity. Mammalian thioredoxin reductase has been shown to be inhibited by 

flavonoids in cell free system. Hence, possibility of thioredoxin system suppression as 

mechanism of anti-inflammatory action was explored. It was observed that baicalein suppressed 

NF-κB trans-activation by inhibiting thioredoxin activity and thereby suppressed NF-κB 

dependent gene expression. Interestingly, baicalein did not inhibit homeostasis driven 

proliferation but suppressed induction of graft-versus-host disease in mice. This study identified 

yet another molecular target of baicalein inside cells in terms of thioredoxin. Thus it could be 

perceived from above discussion that baicalein has pleiotropic effects and it influences multiple 

cell survival pathways inside cells.  

From the results of chapter 2, it was revealed that inhibition of ERK and Nrf-2 abrogated 

radioprotection offered by baicalein in murine splenic lymphocytes. Exposure to IR 4Gy induced 

apoptosis in ~80% lymphocytes whereas only ~5% EL4 cells underwent cell death in 24h. IR 

induced apoptosis in normal lymphocytes was almost completely prevented after baicalein 

treatment which activated ERK and Nrf-2 in these cells. Thus activation of these two key pro-

survival signaling molecules can account for the difference in the radiosensitivity of lymphocytes 

treated with vehicle or baicalein. Further, murine T cell lymphoma which is a tumor counterpart 

of T lymphocytes was resistant to IR 4Gy induced apoptosis. This suggested that these two 

molecules may play a key role in determining radio-resistance of EL4 cells. Previous study from 

our laboratory have shown that EL4 cells have active antioxidant machinery and decreased basal 

ROS levels as compared to their normal counterpart T cells. Hence, study was undertaken to 

investigate the molecular mechanism responsible for the differential radiosensitivity between 

normal (murine splenic lymphocytes) and tumor cells (EL4 cells). Results from these study 

revealed that indeed basal and IR induced antioxidant machinery in EL4 cells was active as 
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compared to lymphocytes measured in terms of ROS, GSH/GSSG ratio and thioredoxin activity. 

Further, in agreement with our proposed hypothesis, inhibition of ERK or Nrf-2 by the use of 

pharmacological inhibitors or shRNA knockdown approach resulted in enhanced radiosensitivity 

of EL4 cells. These findings further highlighted the role of these crucial proteins in determining 

radio-resistance of both normal as well as tumor cells. It was observed that similar to murine T 

cell lymphoma (EL4), Jurkat cells were more resistant to IR induced cell death as compared to 

human PBMC. Exposure to IR 4Gy induced Nrf-2 and increased thioredoxin activity in nuclear 

compartment of Jurkat cells. Blocking of GSH synthesis or thioredoxin antioxidant networks 

enhanced sensitivity of Jurkat cells to radiation induced apoptosis. Tumor cells are highly 

proliferating and need constant supply of precursors of DNA. Efficient management of oxidative 

burden in tumor cells and maintenance of redox homeostasis depends on thioredoxin system. 

Interestingly baicalein could induce cell death in EL4 cells and present study unraveled a novel 

mechanism for anti-tumor action of baicalein by inhibition of thioredoxin system. Results of this 

study identified thioredoxin system as an attractive target for developing drugs with anti-tumor 

or radio-sensitizing potential.  

This study demonstrated radioprotective, anti-inflammatory and anti-tumor potential of baicalein 

in in vitro and in vivo model systems.  
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