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Living organisms are exposed to various genotoxic agents such as insecticides, 

herbicides, pesticides, viruses, toxigenic microbes including fungi and radiation 

(ultraviolet and X-rays) sources leading to permanent inheritable alteration in DNA 

nucleotide sequence, i.e., mutation [1]. This may cause chronic diseases such as 

atherosclerosis, cardiovascular diseases (CVD), neoplastic inductions, cancer, 

mortality and other degenerative diseases [2]. Dietary intervention has been postulated 

to minimize the onset of such diseases mostly due to the occurrence of natural 

antimutagens [3]. Many foods especially green vegetables and certain herbals are rich 

source of naphthoquinones such as phylloquinone, lapachol, plumbagin, juglone and 

alkanin [4]. Besides, certain fungi, lichens, and sea urchins also produce 

naphthoquinones [5]. It has two different isomers, 1,4-naphthoquinone and 1,2-

naphthoquinone. Several 1,4-naphthoquinone derivatives have been reported from 

different plants. These are produced by higher plants as secondary metabolites through 

various pathways which include acetate, malonate, shikimate, succinyl CoA and 

mevalonate [6]. These compounds have been reported for health protective potential 

such as antioxidant, antitumor, antimicrobial, anti-inflammatory and anti-

atherosclerosis [7, 8, 9]. However, compared to other phytochemicals such as 
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phenolics, flavonoids and anthocyanins, naphthoquinones are less explored in terms of 

bioactivity. Therefore, in the present work, it was intended to study the health 

protective functional properties such as antimutagenic activities of naphthoquinone 

rich vegetables such as spinach, lettuce, iceberg lettuce, cabbage, broccoli, and French 

bean. Naphthoquinone from most potent vegetable was selected for characterization of 

bioactive compound. Further study on underlying mechanism was addressed using 

purified and identified bioactive compound.  

 

OBJECTIVES: 

 

• Extraction of naphthoquinones from its rich dietary sources including 

vegetables. 

• Analysis of health protective functional properties (antimutagenic and 

antioxidant) of the naphthoquinones. 

• Purification, identification and characterization of bioactive naphthoquinone 

showing highest antimutagenicity from the most potent source.  

• Understanding the molecular mechanism contributing to antimutagenicity by 

the bioactive naphthoquinone.  

 

ORGANIZATION OF THESIS: 

  

The thesis is divided into five chapters which include introduction and review 

of literature (Chapter 1), materials and methods (Chapter 2), results (Chapter 3 with 

two sub-chapters 3.1 and 3.2) followed by discussion in Chapter 4. At the end 

summary and conclusions followed by references placed in the order of citation in the 

text. 

 

Chapter 1: Introduction and review of literature  

  

This chapter provided overview with some details on relevant information on the 

thesis title. The topics covered are: functional relevance of food, type of 

phytochemicals, naphthoquinones (occurrence, structure, biosynthesis, and 
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bioactivities), sources of dietary antimutagens with emphasis on naphthoquinone, 

mutations and their role in human diseases, and reported mechanism of 

antimutagenicity. The scope of the thesis was concluded at the end of this chapter. 

 

Chapter 2: Materials and methods 

 

In this chapter details of experimental procedures and techniques are provided. 

Naphthoquinone rich vegetables spinach (Spinacia oleracea var. semisavoy), lettuce 

(Lactuca sativa), iceberg lettuce (Lactuca sativa var. Iceberg), cabbage (Brassica 

oleracea var. capitata), broccoli (Brassica oleracea var. italica) and French bean 

(Phaseolus vulgaris) were selected for the study. Quinones and phenolics extraction 

procedure from naphthoquinone rich vegetables is discussed. Antimutagenic potential 

is assessed by rpoB based rifampicin sensitive (RifS) to resistance (RifR) assay in wild 

type E. coli (MG1655) and thymidine kinase base tk+/- to tk-/- assay in human 

lymphoblast cell line (TK) upon induced mutagenicity through known mutagens 

[ethyl methanesulfonate (EMS) and 5-azacytidine (5-AZ)]. From quinone extract of 

the most potent vegetable, antimutagenic compound was characterized by 

spectrophtometric, thin layer chromatography (TLC) using fluorescent plate (λEx: 254 

nm), high performance liquid chromatography (HPLC), fourier transform infrared 

(FTIR) spectroscopy, biochemical tests (-OH substitution; and analysis of 2, 3 

position for presence or absence of functional group), nuclear magnetic resonance 

(NMR) spectroscopy (1H and 13C), and matrix-assisted laser desorption/ionization-

time of flight mass spectrometry (MALDI-TOF MS). Mechanism of antimutagenicity 

of bioactive has been addressed by analyzing antimutagenicity in various experimental 

conditions: a) bioactive compound simultaneously added with mutagen to the culture; 

b) bioactive compound co-incubated with mutagen for 4 h and then added to the 

culture; and c) bioactive compound added after 4 h of mutagen treatment. Further 

studies were conducted on assessment of direct interaction of mutagen and 

antimutagen, interaction of antimutagen with DNA [spectrophotometric analysis, 

circular dichroism (CD) spectroscopy, dye binding assays [methyl green, ethidium 

bromide, and 4′,6-diamidino-2-phenylindole (DAPI)], protein expression studies using 

two dimensional (2-D) gel electrophoresis, MALDI TOF MS/MS and gene knockout 
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studies. To assess the role of antioxidant capacity in observed antimutagenicity 

different radical scavenging assays using TSP and quinone extracts, TLC purified 

compounds and standard naphthoquinones were performed. Besides, DCFDA staining 

of EMS treated cells was also performed to assess the induction of oxidative stress in 

the cells.  

 

Chapter 3: Results  

 

3.1. Screening of various selected foods rich in naphthoquinone for 

antimutagenicity and characterization of bioactive from the most potent food  

The dry matter content (w/w) in selected vegetables ranged between 5.6% (lettuce) to 

11.5% (broccoli). Yield of naphthoquinone rich extract ranged between 1.5 (mg/g) 

(cabbage) to 3.4 (mg/g) (broccoli)on dry weight basis. Yield of phenolic rich extract 

ranged between 0.5 (mg/g) in iceberg lettuce to 5 (mg/g) in broccoli on dry weight 

basis. Naphthoquinone rich extract of spinach displayed highest (72±6%) 

antimutagenic activity against ethyl methanesulfonate (EMS) in rpoB (β-subunit of 

RNA polymerase) based rifampicin resistance (RifS   RifR) assay in E. coli. 

Antimutagenicity of naphthoquinone from other vegetables ranged between 2±1 

(lettuce) to 21±3% (iceberg lettuce).Such variation in antimutagenicity was not 

observed in case of phenoic rich extracts where most of the vegetables displayed high 

level of antimutagenicity, i.e., 63±6% in French bean to 78±4%in lettuce, however, in 

spinach its contribution to antimutagenicity was comparatively at lower level, i.e., 

35±4%. In vitro antioxidant activities measured in terms of radical scavenging 

(DPPH.and ABTS.+) assays of phenolics and quinones extracts of these vegetables 

indicated that quinones have lesser antioxidant capacity compared to phenolics even at 

1000 fold higher concentrations. Therefore, observed antimutagenic activity of 

quinones does not seem to be primarily due to radical scavenging but possibly due to 

involvement of other mechanism(s). The quinones extract from spinach displaying 

high antimutagenicity was resolved by thin-layer chromatography (TLC). It got 

resolved into 4 bands of quinones named as C1, C2, C3, and C4. Amongst these C1 

matched the standard phylloquinone when detected on TLC at 254 nm. Its yield was 

found to be 64±7 μg/g dry weight. C4 compound fluoresced on TLC plate at 366 nm 
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and its yield on dry weight basis was found to be 396±14 μg/g. This compound 

displayed highest antimutagenicity. The Rf value of C4 did not match with any of the 

naphthoquinone standards analyzed. The purity of compound (C4) was confirmed by 

HPLC analysis using different wavelength of absorbtion. C4 compound was 

characterized by biochemical and spectroscopic analyses as ethoxy-substituted 

phylloquinone (ESP), i.e., 2-ethoxy-3-(3,7,11,15-tetramethyl hexadec-2-ethyl) 

naphthaquinone-1,4-dione. 

 

3.2. Comparative bioactivity evaluation of ESP with other naphthoquinones and 

understanding the underlying mechanism 

 

The simultaneous treatment or co-incubation of ESP (from spinach) and EMS resulted 

in similar level of antimutagenicity (56±6%). This indicated that the compound ESP 

does not directly inactivate the mutagen (EMS) through any type of complex 

formation or modification. In the post-treatment condition too, ESP displayed 

significant reduction (44±4%) in mutagenicity. Similar, findings were observed in 

thymidine kinase based tk+/- to tk-/- assay in human lymphoblast cell line. To further 

investigate the direct interaction between ESP and EMS, they were co-incubated at 

equimolar concentration (8 mM) for 2 h and analyzed using TLC. At 366 nm, Rf or 

fluorescence intensity upon co-incubation of ESP and EMS was not found to be 

affected andat 254 nm, no compound was detected at same or different Rf on 

fluorescent plate. This indicated absence of any modification or complex formation of 

ESP. DCFDA staining was carried out to study the antioxidant capacity of the ESP. 

The EMS did not show any significant induction of the oxidative stressin human 

lymphoblast (TK 6) cell line. However, low level of oxidative stress was observed in 

E. coli due to EMS treatment which was not found to be suppressed in the presence of 

ESP. In E. coli cells treated with H2O2 (positive control) oxidative stress was quite 

high. Untreated cells served as negative control. As ESP does not possess significant 

antioxidant capacity, observed antimutagenicity cannot be attributed through 

antioxidant mechanism. Interaction of ESP with DNA was also studied. During 

spectrophotometric analysis, a concentration dependent increase in absorbance at 260 

nm was observed which indicated that ESP interacted with calf thymus DNA. The 
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absorbance of ESP per se was found to be quite low at this wavelength. In circular 

dichroism spectroscopy, there was a significant change in elipcity (millideg) at both 

the negative 245 and positive 275 nm wavelengths with the increase in ESP 

concentration. This too indicated physical interaction of ESP with DNA. In methyl 

green and ethidium bromide (EtBr) binding assays, increase in ESP concentration was 

not found to change the absorbance or fluorescence intensity. This indicated that ESP 

was not a major groove binder or DNA intercalating agent. However, in DAPI binding 

assay, a significant reduction in the fluorescence intensity observed which indicated 

that the ESP binds to the minor groove.  

To understand the underlying molecular mechanism, 2-dimentional protein gel 

electrophoresis was performed using untreated and treated E. coli cells. Among these, 

proteins showing prominent difference in expression were further selected for 

identification using MALDI-TOF MS/MS. Some of the up-regulated proteins 

included tnaA (tryptophanase; synthesizes indole from L-tryptophan), dgcP 

(diguanylate cyclase; synthesis of c-di-GMP), selA (L‐seryl‐tRNA 

(Sec) selenium transferase) and rpoH (RNA polymerase sigma factor H). Gene 

knockout studies confirmed role of tnaA and dgcP genes in observed antimutagenicity 

of ESP. Other naphthoquinones like plumbagin and juglone also displayed 

antimutagenicity but this activity was quite less in menadione or phylloquinone. 

Quinones displayed quite low antioxidant capacity and oxidative stress was not 

induced significantly in EMS treated cells.  

 

Chapter 4: Discussion 

 

Among the naphthoquinone rich foods, spinach naphthoquinone extract 

displayed highest antimutagenicity. The yield was found to have weak correlation 

with antimutagenicity indicated the significance of phytoconstituent in this activity. 

From the quinone extract of spinach antimutagenic compound was characterized as an 

ethoxy-substituted phylloquinone (ESP). This novel compound possessed -OCH2CH3 

instead of -CH3 in case of phylloquinone at the 2nd position. During mechanistic study, 

ESP was found to bind to the minor groove of DNA which could be one of the 

mechanisms for its antimutagenicity as minor groove is often recognized by 
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transcription factors and such interaction may lead to change in gene expression 

profile. The proteomic analysis and knockout studies indicated role of tnaA and dgcP 

in observed antimutagenicity. The gene tnaA encodes for tryptophanase which is 

involved in biosynthesis of indole. This is known to inhibit cell division in E. coliby 

reducing electrochemical potential (ECP) across the cytoplasmic membrane leading to 

inhibition of FtsZ ring which is a prerequisite for the division. The dgcP gene is 

involved in c-di-GMP formation which can bind with another diguanylate cyclase 

(YfiN) and exposes binding sites for FtsZ and ZipA and thus retains the Z ring at 

themidcell and prevents cell division. The up-regulation of these genes may retard the 

cell growth and provide additional time period for proof reading leading to DNA 

repair. High antimutagenicity in ESP, plumbagin and juglone, but comparatively less 

in phylloquinone and menadione indicated that -OH / -OCH2CH3 substitutions 

contribute to the antimutagenicity of naphthoquinones. In general, quinones displayed 

poor antioxidant activity but high antimutagenicity indicating the lack of correlation 

between these activities.  

 
 

 

 

Mutagenesis 

Inhibition of 
mutagenesis 

Alkylation 
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Chapter 5: Summary and conclusions 

 

Naphthoquinone extract from spinach displayed high antimutagenic activity as 

compared to other naphthoquinone rich vegetables. Naphthoquinone extract was 

resolved to four different compounds in TLC.A fluorescent compound (C4) displayed 

highest antimutagenicity and found to have high purity level when analyzed using 

HPLC. The compound was characterized as an 2-ethoxy-3-(3,7,11,15-tetramethyl 

hexadec-2-ethyl) naphthaquinone-1,4-dione or in short ethoxy-substituted 

phylloquinone (ESP). ESP was not found to interact directly to the mutagen. Induction 

of oxidative stress or its reduction was not found to be the major contributing factor to 

the observed antimutagenicity. A strong DNA binding activity was observed at minor 

groove. The 2-D proteomics profile, mass spectrometry and gene knockout studies 

confirmed the role of tnaA and dgcP genes reported to inhibit cell division in observed 

antimutagenicity of ESP. Besides, other naphthoquinones like plumbagin and juglone 

also displayed antimutagenicity. This indicated that functional groups like -

OCH2CH3/ -OH are important for antimutagenicity of naphthoquinones. Findings of 

this study provided fundamental information pertaining to functional and nutraceutical 

potential of dietary ingredients. 
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1.1. Food and their functional relevance 

Hippocrates, often referred as the ‘Father of Medicine’, emphasized on “Let food be 

your medicine and medicine be your food". Besides serving the calorific needs, 

foods have often been investigated for its nutraceutical potential and pharmaceutical 

relevance [1, 2, 3]. Most foodsbelieved to be of health promoting nature, possess 

various bioactive phytochemicals. Its primary validation is based upon studies 

involving in vitro cell-culture systems, animal models, and finally human beings [4]. 

Among foods, vegetables and fruits are primarily considered to be rich in 

nutraceuticals due to phytoingredients such as phenolics, flavonoids, and 

naphthoquinones. Many of these have been reported to help in preventing or curing 

different chronic diseases [5, 6].  

1.2. Phytochemicals: importance and their types 

The term ‘Phytochemicals’ has evolved from the Greek word ‘phyto’, meaning plant. 

These are biologically active, naturally occurring compounds in plants and classified 

as primary or secondary constituents, depending on their role in plant metabolism [7]. 

Primary constituents include the common sugars, amino acids, proteins, purines and 

pyrimidines, whereas, the secondary constituents are simple phenols, phenolic acids, 

flavonoids (anthocyanins, flavones, flavanones, isoflavones, and flavanols), 

coumarins, stilbenes as well as hydrolysable and condensed tannins, lignans, and 

lignins (Table 1). Secondary constituents have been reported to be involved during 

response to conditions such as infection, wounding, and exposure to UV radiation in 

plants [8]. Among secondary metabolites, phenolics share common structural feature: 

an aromatic ring with at least one hydroxyl substituent [9, 10]. Phenolics have been 

reported for numerous health protective such as antioxidant, antitumor, antimicrobial, 



Thesis of Sanjeev Kumar 
                                                                                                                   Page 21 
 

anti-inflammatory, antirheumatic, analgesic, estrogenic and antimutagenic properties 

as well as astringent and styptic uses [11]. The basic flavonoid is 15 carbon flavan 

nucleus atoms arranged in three rings (C6-C3-C6), which are labeled A, C, and B 

(Table 1). Flavonoids have been shown to have antioxidant activity, coronary heart 

disease (CHD) prevention, hepatoprotective, anti-inflammatory, anticancer and 

antiviral activities [12]. Anthocyanins are flavonoids with positive charge at C-ring 

(Table 1). It have also been reported for anti-inflammatory, prevention of capillary 

fragility, antitumor, hepatoprotective, antimutagenic, antioxidant bioactivities as well 

as inhibiting lipoprotein oxidation and platelet aggregation [13]. Another secondary 

metabolite naphthoquinones are two ring (C6 and C4) structures with quinone group 

at 1st and 4th positions (Table 1).  
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Table 1. Class of phytochemicals based upon chemical structure. 

Class Basic 
skeleton 

Common example 

Simple phenols 
Benzoquinones 

C6 

 
Hydroxybenzene 

 

 
Benzoquinone 

Phenolic acids C6- C1 

 
Hydroxybenzoic acid 

 
Gallic acid 

Acetophenones 
Tyrosine 
derivatives 

C6-C2 

 
Acetophenones 

Hydroxycinnamic 
acid 
Coumarins 

C6-C3 

 
Hydroxycinnamic 

acid 

 
Coumarin 

Xanthones C6- C1-C6 

 
Xanthones 
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Stilbenes C6- C2-C6 

 
(E)-Stilbene 

Flavonoids: 
Flavanol / 
Anthocyanins 

C6- C3-C6 

 
Catechin  

Cyanidin 
Lignans (C6- C3)2 

 
Condensed tannins 
(proanthocyanidins) 

(C6-C3-
C6)n 

Linear (4→
8 bounds) 
Branched 
(4→6 
bounds) 

 
Carotenoids 
(xanthophylls/ 
carotenes) 

Isoprene 
derivative 
[CH2=C(C
H3)CH=CH
2] 

 
 

Naphthoquinones C6-C4  
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1,4-naphthoquinone 
 

Note: Structures taken from Google images (https://en.wikipedia.org; 

https://socratic.org; http://www.chm.bris.ac.uk; https://commons.wikimedia.org; 

https://www.glentham.com; https://pubs.rsc.org). These are required for the 

basic understanding of the problem addressed in the current study. 
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1.3. Naphthoquinones and their functional role 

Naphthoquinones are one of the groups of secondary metabolites. It has two different 

isomers, 1,4-naphthoquinone and 1,2-naphthoquinone in which the former occurs 

naturally. Several 1,4-naphthoquinone derivatives have been reported from different 

plants and herbals such as phylloquinone (vit. K), ubiquinone, plastoquinone, 

plumbagin, juglone, lapachol, alkanin etc [14]. Phylloquinone (vit. K), ubiquinone, 

and plastoquinoneare prevalent in green vegetables [15]. In plants, they may occur in 

dimeric, trimeric, reduced and glycosidic forms. Most of them are coloured 

compounds and their colours usually vary between yellow, orange and brown. 

1.3.1. Occurrence 

Naphthoquinones are widespread in nature and produced by certain fungi (e.g. 

Fusarium spp., Marasmius spp., Verticillium spp.), Actinomycetes (Streptomyces), 

lichens, sea urchins, algae and higher plants [15]. Many foods especially green 

vegetables and certain herbals are rich source of naphthoquinones. Botanical families 

such as Avicenniaceae, Bignoniaceae, Boraginaceae, Droseraceae, Ebenaceae, 

Juglandaceae, Nepenthaceae and Plumbagnaceae include plants rich in 

naphthoquinones.  

1.3.2. Structure 

1,4-naphthoquinone is the backbone structure for various naturally occurring or 

synthetic naphthoquinones. Figure 1 depict naturally occurring naphthoquinone where 

1,4-naphthoquinone and menadione are synthetic naphthoquinones [14]. Vitamin K1 

or Phylloquinone is 1,4-naphthoquinone, with 2-methyl and 3-phytyl (isoprenoid side 

chain) substituent. Plumbagin possesses 5-hydroxyl and 2-methyl functional groups 

on the 1,4-naphthoquinone nucleus, whereas juglone has only the 5-hydroxyl  and  
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menadione  only  the  2-methyl  group.  Lapachol is 1,4-naphtho-quinone with 2-

hydroxy and 3-(3-methyl-2-butenyl) groups.  

1.3.3. Biosynthesis 

Naphthoquinones are biosynthesized via a variety of pathways which includes acetate, 

malonate, shikimate, succinyl CoA and mevalonate [16]. In plants, phylloquinone (2-

methyl-3-phytyl-1,4-naphthoquinone or vitamin K 1) is a vital redox co-factor 

required for electron transfer in photosystem I. A closely related form called 

menaquinone [2-methyl-3-(all-trans-polyprenyl)-1,4-naphthoquinone or vitamin K2] 

is synthesized by red algae, diatoms, and bacterial species [17]. In vertebrates, vitamin 

K is required for blood coagulation, vascular and bone metabolism [18]. The 

biosynthetic pathway of phylloquinone is shown in Figure 2. The immediate precursor 

of the redox active naphthoquinone ring of phylloquinone is chorismate. It is first 

isomerized to serve as a substrate for an atypical multi-functional enzyme, termed 

PHYLLO that catalyzes addition, elimination and aromatization. The product from 

PHYLLO, o-succinylbenzoate, is activated by ligation with CoA and cyclized, 

yielding the 1,4-dihydroxy-2-naphthoate (DHNA) CoA thioester. DHNA-CoA is 

subsequently hydrolyzed, and DHNA is prenylated and methylated [19].  
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Figure 1. Structure of various 1,4-naphthoquinone derivatives. 

Note: Structures taken from Google images (https://en.wikipedia.org; 

https://www.researchgate.net; http://www.fao.org). These are required for the 

basic understanding of the problem addressed in the current study. 

1,4-Naphthoquinone Plumbagin Juglone 

Menadione 
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Figure 2. Pathway of phylloquinone (vitamin K) biosynthesis. 

Note: Structures taken from Google images (https://edoc.ub.uni-muenchen.de). 

These are required for the basic understanding of the problem addressed in the 

current study. 
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1.3.4. Bioactivities 

Recently, interest of many investigators in naphthoquinone compounds is due to their 

broad-range of biological activities such as antibacterial, fungicidal, antiparasitic, 

insecticidal, antitumor, antimutagenic, antioxidant, allelopathic anti-inflammatory, 

and anti-atherosclerosis [15, 20, 21, 22, 23, 24]. Because of these properties many 

naphthoquinone rich plants are used in folk medicines by natives in Asia. Especially 

Chinese and South Americans have been using aerial as well as subterranean parts of 

these plants for medicinal uses since more than 100 years. Table 2 depicts the 

bioactivities of some common natural and synthetic naphthoquinones. 

1.4. Mutations and their role in human disease  

Mutations cause permanent inheritable alteration in DNA nucleotide sequence leads to 

alteration the code in a gene. This is due to change, removal or insertion of one or 

more bases in a gene resulting in an altered or inactive gene product [25]. Living 

organisms are exposed to various genotoxic agents such as insecticides, herbicides, 

pesticides, viruses, toxigenic microbes including fungi and radiation (ultraviolet and 

X-rays) sources [26]. Dietary heterocyclic aromatic amines have also been reported 

from protein rich foods such as meat and fish which can induce damage to mammalian 

cells [27]. Besides, mutations can also occur spontaneously due to errors in DNA 

replication, repair, and recombination [28]. In general, mutations are detrimental 

because in most cases they cause defects in cellular functions. 
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Table 2. Functional properties of (a) natural (b) synthetic naphthoquinones. 

(a) Naturally occurring naphthoquinones 

Name Source Functional application 

Phylloquinone (vit. K
1
) Green plants Blood coagulation, calcium homeostasis 

[29] 

Plumbagin Chitrak Antitumor, antimicrobial, anti-

inflammatory, anti-atherosclerosis [20, 23] 

Juglone Black walnut Antimicrobial, insecticidal, anthelmintic, 

antitumor [20] 

Lapachol Lapaco tree Antitumor [22] 

Alkannin Alkanna tinctoria Antioxidant, antitumor, antimicrobial, 

antithrombotic [30] 

Lawsone Rose balsam  Antimicrobial, antiviral, antitumor, 

antiparasitic [14] 

Tetra-, Penta-, Hexa-

hydroxylated 

naphthoquinone 

Sea urchins Antioxidant [15, 24] 

 

 

(b) Synthetic naphthoquinones 

Name Functional application 

Menadione (vit. K
3
) Treatment of hypoprothrombinemia [31] 

Naphthazarine Anticancerous [32] 
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Some mutation related diseases are inherited from the parents and present in 

individual at birth, whereas others are related to acquired mutation caused by gene(s) 

that occur either randomly or due to some environmental exposure. Such mutations 

are not inherited from a parent. However, this may result in innate metabolic defects 

in cellular systems, triggering morbidity that possibly are translated and manifested in 

chronic diseases such as atherosclerosis, cardiovascular diseases (CVD), neoplastic 

inductions, cancer, mortality andother degenerative diseases [25, 33]. Many of these 

diseases involve mutation in single gene or multiple genes. However, recently rare 

genetic variants of TREM2 gene with increased risk of Alzheimer's disease, fronto-

temporal dementia, amyotrophic lateral sclerosis, Parkinson's disease and Nasu-hakola 

disease has been reported [34].  

Mutagens work through different mechanism such as alkylation [e.g. N-methyl-N’-

nitro-N-nitrosoguanidine (MNNG), ethyl methanesulfonate (EMS), and methyl 

methanesulfonate (MMS)], substitution by base analogs [e.g. 5-bromouracil (5-BrU), 

2-amino-purine (2-AP) and 5-azacytidine (5-AZ)], and intercalation [e.g. acridines 

(proflavine and quinacrine), and ethidium bromide (EtBr)] (Table 3). 

As a consequence of mutagenic exposure base substitution or frame shift mutation 

may occur in the genome [35]. Base substitutions are those mutations in which one 

base pair is replaced by another. Base substitutions can be divided into transitions and 

transversions. A transition is the replacement of a purine base by purine (A to G or G 

to A) as shown in Figure 3or pyrimidine by pyrimidine (C to T or T to C). In 

transversion replacement is of pyrimidine by purine (C to A, C to G, T to A, T to G) 

or purine by pyrimidine (A to C, A to T, G to C, G to T).  Base-pair additions or 

deletions or intercalation of mutagen causes frame shift mutations.   
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Figure 3: Mechanism of ethyl methanesulfonate (EMS) mutagenesis 

Note: Drawings taken from Google images (https://www.slideshare.net). These 

are required for the basic understanding of the problem addressed in the current 

study. 

Table 3. General mutagens and possible mode of action [36]. 

Mutagens Mode of action 

Methyl methanesulfonate Alkylation leading to mispairing 

Ethyl methanesulfonate Alkylation leading to mispairing; may 

induce DNA strand and lesions 

N-methyl-N’-nitro-N-nitrosoguanidine Alkylation leading to mispairing 

9-aminoacridine Intercalation and frameshift mutation 

Acridine Intercalation and frameshift mutation 

Ethidium bromide Intercalation and frameshift mutation 

Quinacrine Intercalation and frameshift mutation 

4-nitro-o-phenylenediamine Frameshift mutations 

2-amino-purine Base substitution 

5-bromouracil Base substitution 

5-azacytidine Base substitution 

4-nitroquinoline-N-oxide Base substitution 

 

 

 



Thesis of Sanjeev Kumar 
                                                                                                                   Page 34 
 

1.5. Dietary sources of antimutagens 

As per the World Health Organization (WHO), cancer prevention is closely linked to 

diet, and around one-third of all cancer deaths are preventable [37]. Dietary 

intervention has been postulated to minimize the onset of such diseases mostly due to 

the occurrence of natural antimutagens [38]. There are continued efforts all over the 

world to explore the rich biodiversity of edible and medicinal plants as well as other 

edible non-toxic plants in pursuit of the most effective phytoantimutagens. Several 

studies have been carried out in last four decades in order to identify compounds that 

might protect humans against DNA damage and its consequences as phytochemicals 

that reduce mutagenesis may offer preventive potential.  

1.5.1. Fruits 

Among fruits, Aronia melanocczrpa (Black chokeberry), Java plum (Syzygium 

cumini), apple (Malus domestica) cv. ‘Granny Smith’, chloroform extracts of guava 

(Psidium guajava), hexane fraction of Randia echinocarpa, ethanolic extract of 

Eugenia stipitata, and aqueous fruit extracts /juice of copaiba (Copaifera langsdorfi),  

pomegranate, murici (Byrsonima crassifolia), noni (Morinda citrifolia), mangaba 

(Hancornia speciosa), jackfruit (Artocarpus heterophyllus), grape (Vitis vinifera), date 

palm (Phoenix dactylifera), and elephant apple (Dillenia indica) have been reported to 

display high antimutagenicity [25].  

1.5.2. Vegetables 

Among vegetables such as beets, chives, horse radish, rhubarb, onions, spinach 

including cruciferous vegetables displayed strong antimutagenic activity whereas, 

moderate antimutagenicity was found with tomatoes and green beans. Some 

vegetables such as Asparagus, carrots, fennel leaves, parsley, radish and green pepper 
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were not found to display any antimutagenicity [39]. In another study, most 

antimutagenic vegetables were cauliflower, cabbage, pepper (bell-red, hot-red 

Jalapino, and hot Arbol), eggplant (Tis, small-violet and green-yellow-striped), garlic, 

onion (red), Bean (lima, clustered and yardlong), Zucchini, squash, gourd (bottle), 

cucumber (Madras), pea (green), drumstick, and Indian gooseberry against ultraviolet 

induced mutagenesis [40]. Antimutagenicity has reported to be affected by several 

factors such as variety, cultivation mode, and solvent used for bioactive extraction.  

1.5.3. Bioactives from fruits and vegetables 

Tomato, carrot and green pepper non-polar compounds such as carotenoids, 

xanthophylls or carotenol esters have been reported as possible antimutagen [41, 42]. 

Several mid polar compounds have also reported been reported for antimutagenicity. 

Thirteen flavonoids and related compounds were reported from spinach where only 

5,6,3’,4’-tetrahydroxy-7-methoxyfavonol 3-O-disaccharide was reported as potent 

antimutagen. Besides, polyphenolic from French bean was reported for 

antimutagenicity against 1-NP, B[a]P and aflatoxin B1 [43, 44].  Anthocyanin-rich 

water fraction (polar) and ethyl acetate (mid polar) fraction from Andean purple corn 

were analyzed against Trp-P-1 in Ames test where quercetin derivative containing 

ethyl acetate fraction was found to be more potent [45]. Anthocyanins of Black 

chokeberry, procyanidin B1 of apple cv. ‘Granny Smith’, anthocyanin (petunidin-3, 5-

diglucoside) of Java plum and anthocyanin (peonidin-3 glucoside) of red rose petal 

have been reported as antimutagens in various foods [25, 46, 47, 48].  

1.6. Diets as antioxidant 

Increased levels of ROS such as superoxide anion radical (O2
-.), singlet oxygen (1O2), 

hydrogen peroxide (H2O2), and hydroxyl radical (.OH) and decreased ROS 
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scavengers and antioxidant enzymes are associated with DNA damage leading to 

mutations and human diseases including cancers [49]. Antioxidants are compounds 

capable to either delay or inhibit the oxidation processes by direct scavenging of free 

radicals such as reactive oxygen species (ROS) or enhancing antioxidant enzyme at 

cellular level [50]. Plant-based diet such as fruits, vegetables, spices and herbals may 

reduce the risk of oxidative stress-related diseases [51]. They contain phytochemicals 

such as phenols, flavonoids, anthocyanins, carotenoids, and vitamin C which have 

antioxidant activity [52]. Most spices, herbs and their formulations have been reported 

as antioxidant rich products [50]. Besides, fruits (e.g. Indian gooseberry, bilberries, 

zereshk, strawberry, artichoke, pomegranate, and black olives), nuts (e.g. walnuts, 

pecans, Chestnuts, peanuts, and pistachios), vegetables (e.g. curly kale, and chilly) and 

chocolate constitute common foods with high antioxidant values [53]. 

1.7. Possible mechanism of antimutagenicity 

Several mechanisms have been proposed for antimutagenicity of extract/ compound 

which is also depicted in figure 4. 

1.7.1. Inactivate the mutagen directly by modification or complex formation 

This is based upon direct chemical interaction between an antimutagenic compound 

and a mutagen before it induces DNA damage. Example: cysteine interaction with 3-

chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone and gallic acid interaction with 

electrophilic mutagens [54, 55]. 

1.7.2. Antimutagenicity through radical scavenging 

Mutagens may act through generation of reactive oxygen species (ROS) and in these 

cases scavenging of the ROS could be the principal mechanism of antimutagenicity as 

reported in case of lipoic acid against mitomycin C [56, 57]. 
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1.7.3. Blocking of mutagen and DNA interaction 

Antimutagens (e.g. β-amino ketones) work by blocking the mutagen binding to DNA 

and thus may prevent MNNG and 9-aminoacridine (9-AA) induced mutation [58].  

1.7.4. Modulation of replication or DNA repair enzymes activities 

Repression of replication and cell division can provide additional period for DNA 

repair and consequently may lead to reduced SOS induced error prone pathway for 

translesion synthesis and subsequent reduced mutagenesis [59]. Increase in 

biosynthesis or activity of DNA repair enzymes or suppression of error prone repair 

pathway(s) could be another mechanism for antimutagenicity as reported in case of 

vegetables and honey against UV and EMS exposure [47, 60]. 

1.7.5. Prevention of mutagenic transformation 

Antimutagens may interference with the cytochrome P450-mediated metabolism of 

mutagens and prevent transformation to active mutagenic metabolites as reported in 

case of quercetin against pro-mutagens [55, 61]. 

 

Figure 4. Possible mechanism of antimutagenicity 
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1.8. Statement of the problem 

Naphthoquinones are known to have high nutraceutical potential but somehow less 

explored in terms of antimutagenicity compared to other group of phytochemicals. 

Thus natural source of naphthoquinones (which is widely available and consumed) 

needs to be explored for this bioactivity.  

1.9. Aims and Objectives 

1.9.1. Extraction of naphthoquinones from its rich dietary sources including 

vegetables 

A. Selection of naphthoquinone rich vegetables (spinach, lettuce, iceberg lettuce, 

cabbage, broccoli and French bean). 

B. Extraction of naphthoquinones and total soluble phenolics from these vegetables 

for comparative evaluation of bioactivity. 

1.9.2. Analysis of health protective functional properties (antimutagenic and 

antioxidant) of the naphthoquinones 

A. Determination of animutagenicity and antioxidant capacity using these extracts. 

B. Selection of naphthoquinone (instead of phenolic) extract of vegetable showing 

highest antimutagenicity for further bioactive characterization. 

1.9.3. Purification, identification and characterization of bioactive 

naphthoquinone showing highest antimutagenicity from the most potent source  

A. Performing chromatographic and spectroscopic techniques, and biochemical tests 

for purification, identification and characterization of naphthoquinone bioactive from 

the most potent source. 
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B. Elucidating structure of bioactive naphthoquinone.   

1.9.4. Understanding the molecular mechanism contributing to antimutagenicity 

by the bioactive naphthoquinone 

A. To understand the molecular mechanism, assessment of antimutagenicity under 

various conditions, and evaluation of  possibility of direct interaction with mutagen, 

interaction with DNA, protein profiling using 2-D and MALDI TOF MS/MS analysis, 

and antioxidant capacity. 

B. Development of model based upon current findings to explain the possible 

mechanism of antimutagenicity of bioactive compound. 
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2.1. Selection of foods (vegetables) for the proposed study 

Most commonly grown fresh green vegetables such as spinach (Spinacia oleracea var. 

Semisavoy), lettuce (Lactuca sativa), iceberg lettuce (Lactuca sativa var. Iceberg), 

cabbage (Brassica oleracea), broccoli (Brassica oleracea var. italica) and French 

bean (Phaseolus vulgaris) are reported to have high naphthoquinone content were 

selected for the proposed study. These vegetables were procured from the agricultural 

field of Nashik, Maharashtra, India. The plant material was thoroughly washed 3 

times with tap water to remove any debris/dust and then washed with distilled water. 

The cleaned material was dried in shed to remove residual water and weighed using a 

fine balance before and after lyophilization (Alpha 2-4 freeze-dryer, Martin Christ, 

Osterode, Germany) to determine their dry weights (g%). 

2.2. Solvent extraction for the proposed bioactivity analysis 

Various solvent extracts were freshly prepared and used for the bioactivity analysis.  

2.2.1. Aqueous and methanolic extraction 

This was performed by the method described earlier [46]. One gram of the lyophilized 

spinach powder was homogenized in Milli-Q water or methanol (20 mL) using a 

Polytron homogenizer (Kinematica, Lucerne, Switzerland). The suspension was 

filtered through Whatman no. 42 filter paper. The suspension was centrifuged (10000 

xg) for 20 min, and supernatant was vacuum dried (Concentrator 5301, Eppendorf, 

Hamburg, Germany) at ambient temperature (26 ± 2°C). The dried residue was 

dissolved in Milli-Q water and filtered through a 0.45 μm (Millex-HV, Millipore, 

Ireland) filter. 
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2.2.2. Total soluble phenolic (TSP) extraction 

This was performed by the method described earlier [46]. TSP were extracted in 

acidified water [0.01% (v/v) hydrochloric acid (HCl)] followed by solid-phase 

extraction (SPE) using a C-18 Sep-Pak cartridge (Waters Corp., Milford, MA, USA) 

at the ambient temperature. The cartridge was preconditioned with methanol (24 mL) 

and later with the same volume of acidified Milli-Q water (0.01% HCl). The acidified 

extract (6 mL) was applied on this column and then washed with acidified water (24 

mL; 0.01% HCl) to remove sugars, acids, and other water-soluble compounds. TSP 

were subsequently eluted with ethyl acetate (24 mL) and vacuum-dried at ambient 

temperature. Later, this was dissolved in Milli-Q water and filtered through a 0.45 μm 

filter. Quantification of TSP was performed using the Folin-Ciocalteu colorimetric 

method and expressed as gallic acid equivalents (mg GAE/g). 

2.2.3. Quinone extraction 

This was performed by the method described earlier [62, 63]. The lyophilized samples 

were ground to a fine powder with a mortar and pestle, and 0.5 g was transferred to a 

centrifuge tube. A 2-propanol/hexane (15 mL; 3:2 v/v) and H2O (32 mL) were added, 

followed by sonication (30 s), mixing using vortex (10 min), and centrifugation (5000 

xg; 5 min; 4°C). The upper layer containing phylloquinone and other quinones was 

dried under vacuum (Concentrator 5301, Eppendorf) at ambient temperature. Hexane 

(10 mL) was added to dissolve the residue. Later, the hexane extract was processed by 

SPE using silica gel columns (Waters Corp.). The SPE column was preconditioned 

with hexane/diethyl ether (8 mL; 93:3 v/v) followed by the same volume of 100% 

hexane. The extract (2 mL) was applied directly on the reconditioned column, 

followed by washing with 100% hexane (8 mL). The quinone-containing fraction was 
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eluted from the SPE columns with hexane/diethyl ether (8 mL; 93:3 v/v). The eluent 

was treated with charcoal for overnight at 4°C to remove residual chlorophyll and 

centrifuged twice (10000 xg; 10 min; 4°C). The supernatant was collected and 

evaporated to dryness at ambient temperature. The qunonic nature of extract was 

tested by dissolving in methanol and addition of equal volume of concentrated 

sulphuric acid leading to formation of red colour [64].    

2.3. Antimutagenicity analysis  

Extracts from vegetables were screened for antimutagenicity against ethyl 

methanesulfonate (EMS) and 5-Azacytidine (5-AZ) induced mutagenicity using 

various assays as detailed below [46, 65].  

2.3.1. Rifampicin resistance (RifR) assay 

Escherichia coli MG1655 strain (genotype: F− λ− ilvG-rfb-50rph-1) was gifted by Dr. 

M. Z. Humayun, University of Medicine and Dentistry of New Jersey (UMDNJ), 

USA. It is a rod-shaped, Gram-negative and facultative anaerobic bacterium that is 

commonly found in the lower intestine of warm-blooded animals. 

Principle: Rifampicin resistance (RifR) assay is based on acquisition of rifampicin 

resistance by E. coli MG1655 cells upon mutagen exposure (Figure 5). The rpoB gene 

encodes the β-subunit of RNA polymerase (subunits: α2, β, β’, and ω) which has 

many hot spots for mutations (Figure 5A) [46, 66]. Around 69 hot spots are located 

within I-III and N-terminal cluster (N) clusters. Mutation(s) in this gene reduces its 

binding to rifampicin resulting in acquisition of rifampicin resistance by E. coli 

mutants (Figure 5B) [46, 66].  
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Figure 5. E. coli based rifampicin resistance (RifR) assay. A) β subunit of RNA 

polymerase having 4 clusters containing hot spots for mutations 

(http://fire.biol.wwu.edu); B)  Mechanism of mutagen induced rifampicin 

resistance phenotype. 
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The presence of antimutagen(s) prevents mutagen induced mutation and thus, there is 

reduction in rifampicin resistant E. coli mutants on rifampicin selective plate. This 

assay is advantageous due to its simplicity in deployment, the ability to provide a wide 

spectrum of forward mutations and low level of spontaneous mutations 

(approximately 1/108 cells).  

Method: For determining antimutagenicity against EMS, Escherichia coli MG1655 

cells were grown overnight at 37°C in Luria-Bertani (50 mL; LB) medium on a rotary 

shaker (150 rpm). One milliliter of this culture was inoculated in LB (50 mL) and 

grown for approx. 3 h in similar condition till the OD600 nm reached to 0.5. This culture 

aliquot (10 mL) was taken in sterile polypropylene tubes and centrifuged (7500 xg; 10 

min). The pellet was resuspended in LB (5 mL) and placed on ice for 10 min. One 

milliliter of cell suspension was transferred in a fresh microfuge tube and mixed with 

extract or purified compound and 14 μL of EMS (133 mM) and incubated for 45 min 

on a rotary shaker (75 rpm) at 37°C. The cells were centrifuged (7500 xg; 10 min), 

washed twice with LB, and resuspended (1 mL) of LB. An aliquot (250 μL) of this 

was further inoculated in LB (4.75 mL) and incubated on a rotary shaker (150 rpm) at 

37°C for 16 h. Later, theserially diluted culture was spread plated on LA-rifampicin 

(100 μg/mL) plates for scoring RifR mutants and LA plates for enumerating viable 

cells.  

For determining antimutagenicity against 5-AZ, E. coli MG1655 cells were grown 

overnight at 37°C in LB (50 mL) medium on a rotary shaker (150 rpm) and serially 

diluted to ~1000 cfu/mL in saline (0.85%). Furthermore, 100 μL of this cell 

suspension was inoculated in LB broth (2.5 mL), which contained 5-AZ (0.4 mM) and 
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extract or purified compound, and incubated on a rotary shaker (150 rpm) at 37°C for 

16 h. Later, the serially diluted culture was spread plated on LA-rifampicin (100 

μg/mL) plates for scoring rifampicin resistant (RifR) mutants and on LA plates for 

enumerating viable cells.  

Mutation frequency was calculated as the ratio of total number of RifR mutants per mL 

to the total number of viable cells in the same culture volume. Spontaneous mutation 

frequency was determined by incubating the cell suspension in the absence of 

mutagen.  

2.3.2. Human lymphoblast gene (tk+/−) mutation assay 

Principle: The autosomal and heterozygous nature of the thymidine kinase gene in the 

TK6 lymphoblast cell line allows the detection of cells deficient in thymidine kinase 

enzyme following mutation from tk+/− → tk−/− upon mutagen exposure [65]. The basis 

of this antimutagenic assay is shown below (Figure 6). The culture was cleansed of 

pre-existing mutants using aminopterin to eliminate the TK-deficient cells, where 

aminopterin inhibits the endogenous de novo biosynthesis of nucleotides. 

Method: In brief, CHAT, i.e., cytidine (0.01 mM), hypoxanthine (0.2 mM), 

aminopterin (0.2 μM), and thymidine (0.0175 mM) were added to TK6 culture to 

ensure optimal growth of TK-proficient (tk+/−) cells. After 2 days, the cells were 

centrifuged, resuspended in CHT (without aminopterin), grown for 1 day, and diluted 

with Roswell Park Memorial Institute (RPMI; 10%) medium for further growth. The 

exponentially growing cells (tk+/−) having a density of ~2 × 105 cells/mL were treated 

with mutagen EMS (0.5 mM) or 5-AZ (0.3 μM)with or without extract or compound 

(0.5 or 1 mg/mL) for 4 h at 37°C in a humidified (5% CO2) incubator.  
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Figure 6. Human lymphoblast TK 6 gene (tk+/-) mutation assay [Schematic 

representation: de novo and salvage pathway of pyrimidine and purine 

biosynthesis (https://www.sciencedirect.com)]. 
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After the treatment, cells were washed twice with phosphate buffer saline (PBS; 10 

mM; pH ~7.4) and counted. The cultures were adjusted at a density of ~2 × 

105 cells/mL and grown for 2 days in non-selective conditions to allow expression of 

the tk−/− phenotype. After that, ~2 × 105 cells from each treatment were grown in 

selective medium containing trifluorothymidine (TFT; 5 μg/mL) for 3 days, and cell 

counting was performed as described below. The mutant tk−/− cells lack the thymidine 

kinase and thus survived the cytotoxic effect of trifluorothymidine (a pyrimidine 

analogue) (Figure 6) and formed aggregates of viable cells in the suspension cultures 

which was visualized under an inverted microscope, equipped with a charge-coupled 

device (CCD camera) (Axiovert 40 CFL, Carl Zeiss, Oberkochen, Germany). These 

cells were detected by trypan blue exclusion test, where trypan blue stains the dead 

cells only, and live cells remain unstained due to their intact cell membrane. The live 

cells were enumerated using a hemocytometer, where the number of cells counted per 

cubic millimeter (mm) was multiplied by the dilution factor to get the number of cells 

per millilitre (mL). The result was expressed as the relative number of mutant 

(tk−/−phenotype) cells per ~105 seeded cells as 

       number of mutants in test  
      ___________________________    

   number of spontaneous mutants 
 
The cytotoxicity of the compound against TK6 cells was also evaluated by trypan blue 

staining, where the cells were treated with the purified compounds (1 mg/mL) for 4 h 

and further grown for 2 days. Later, live cells were enumerated using a 

hemocytometer. 

 

 

Relative number of mutants = 
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2.3.3. Ames test  

Principle: The Ames test uses genetically engineered strains of S. typhimurium 

having mutation(s) in genes involved in histidine biosynthesis [67]. These strains are 

auxotrophic mutants and require histidine for growth. The method tests capability of 

the test compound to prevent mutagen induced reversion to a prototrophic state, i.e., 

cells can grow on a histidine-free medium.  

Method: The Ames test was performed using Salmonella typhimurium TA102 

(genotype: hisΔ (G)8476galE503rfa1027/pAQ1/pKM101) and TA100 (genotype: 

hisG46galbio  ch1005rfa1004 uvrBpKM101) strains against EMS and 5-AZ induced 

mutagenesis for bioactive compound as described earlier [67]. The cultures were 

grown overnight in nutrient broth (50 mL; NB) on a rotary shaker (150 rpm) at 37°C, 

centrifuged (8000 xg; 10 min) and resuspended in fresh NB (50 mL). Cell suspension 

(1 mL) was transferred to microfuge tubes, mixed with test compounds, and incubated 

for 10 min. Later, mutagen like EMS (66.5 mM) or 5-AZ (0.4 mM) was added and 

incubated for 20 min, respectively. Treated cell suspensions were added to top agar (2 

mL) containing histidine (0.05 mM) and biotin (0.05 mM), mixed by vortex, poured 

on minimal glucose plates (0.5% glucose and 1× VB salt), incubated (37°C; 48 h), and 

examined for revertant colonies. The antimutagenic potential (AP) was determined as 

AP = 100 − [(T/M) × 100], where T and M are the numbers of revertant colonies/plate 

in the presence of mutagen and test compound and in the presence of mutagen alone, 

respectively. 

2.4. Isolation, purification and characterization of bioactive compound from 

most potent vegetable  

2.4.1. Thin Layer Chromatography (TLC) for separation of quinones  
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Principle: TLC is a chromatography technique used to separate non-volatile analytes. 

It is performed on sheet of aluminium, glass, or plastic coated with a thin layer of 

adsorbent material such as cellulose, silica gel, or aluminium oxide (alumina) known 

as the stationary phase. In this technique, sample has to be applied on the plate, a 

solvent or solvent mixture (mobile phase) is drawn up via capillary action, analytes 

ascend the TLC plate at different rates and separation is achieved. The distance 

travelled by the substance being considered is divided by the total distance travelled 

by the mobile phase. This ratio is called the retention factor or Rf. 

Method: Quinone extract and naphthoquinone standards were spotted on 0.25 mm 

thick TLC silica gel plates (gel 60, Fluorescent F254; Merck, Darmstadt, Germany), 

developed using an optimized solvent system comprising petroleum ether, chloroform, 

and acetone (5:1:0.106) and visualized under ultraviolet (UV; 254 and 366 nm) ray 

(CAMAG, Muttenz, Switzerland). Each resolved spot was quantified by TLC-

densitometry on a dual-wavelength Flying spot scanning densitometer (Shimadzu CS-

9310PC, Kyoto, Japan). Preparative TLC was also carried out similarly on 0.5 mm 

thick silica plates using the same solvent system. The TLC bands were scraped and 

suspended in solvent consisting of n-hexane and diethyl ether (93:3). The suspension 

was centrifuged (15000 xg; 40 min) to remove the silica particles and vacuum-dried.  

2.4.2. Antimutagenicity analysis of TLC resolved bands 

Antimutagenicity of TLC separated compounds was performed using various assays 

as detailed above (2.3). 

2.4.3. Characterization of potent bioactive quinone 

2.4.3.1. Spectrophotometric analysis  
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Principle: The basic principle of spectrophotometry is absorbance or transmittance of 

light by each compound over a certain wavelength range. The intensity of light that 

passes through a sample solution is measured. As per Beer-Lambert law, absorption of 

light (A) is proportional to both concentration of absorber (c) and path length or 

thickness (l).  

A = ελ l c where ελ is a molar absorbance coefficient 

T (transmittance) = I/Io where, Io is the intensity of incident radiation and I is the 

incidence of transmitted radiation. Intensity is number of photons interacting in unit 

time (seconds). 

A = log (1/T) = log (Io/I) 

This measurement can also be used to measure the concentration of a known chemical 

substance. 

Method: Spectrophotometric analysis of TLC-purified bioactive compound and some 

naphthoquinone (lapachol and phylloquinone) standards was performed using an UV-

vis spectrophotometer (JASCO V-530, Japan). The compounds were scanned for 

spectrum from 200-600 nm.  

2.4.3.2. Spectrofluorometeric analysis 

Principle: A fluorometer or fluorimeter is a device used to measure fluorescence, i.e., 

intensity and wavelength distribution of emission spectrum post excitation by a certain 

spectrum of light. The wavelength of absorbed radiation must be lower (higher 

energy) than the emitted (fluoresced) wavelength. The difference between these two 

wavelengths is known as the Stokes shift. These parameters are used to identify the 
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presence of specific molecules in a medium. Fluorescence spectra provide information 

about events that occur in less than 10-8 s. Modern fluorometers are capable of 

detecting fluorescent molecule concentrations as low as 1 part per trillion. 

The intensity of fluorescence (If) is related to the intensity of the incident radiation 

(Io): If = 2.3Io ελclQ,  

where c is the concentration of the fluorescing solution (molar), l is the light path in 

fluorescing solution (cm), and ελ is the molar extinction coefficient for the absorbing 

material at wavelength λ (dm3mol-1cm-1). Q (quantum efficiency) = quanta 

fluoresced/quanta absorbed.  

However, quenching phenomenon occurs in certain cases when energy emitted as 

fluorescence is lost to other molecule due to collisional interaction. 

Method: Fluorometric analysis of bioactive compound which was fluorescent in 

nature performed using a spectrofluorometer, and emission wavelength was 

determined at optimal excitation wavelength (JASCO FP 6500, Japan).  

2.4.3.3. High Performance Liquid Chromatography (HPLC) 

Principle: High performance liquid chromatography was formerly referred to as high-

pressure liquid chromatography. It is a technique used to separate, identify, and 

quantify each analyte in a mixture. It relies on pumps to pass a pressurized liquid 

solvent containing the sample mixture through a column filled with a solid stationary 

phase. The component(s) in the sample interacts slightly differently with the 

stationary phase material, resulting in different retention time (tR) and leading to the 

separation of these components as they flow out the column. Adsorption, partition, 

ion-exchange, exclusion and affinity chromatography development has resulted in 
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faster and better resolution in HPLC. Various detectors are in common use, such as 

UV/Vis, photodiode array (PDA) or fluorescence detectors.  

Method: The TLC-eluted bioactive fraction was further subjected to HPLC analysis 

(Waters) using a reverse-phase C-18 analytical column (250 × 4.6 mm; pore size = 10 

μm) having a photodiode array (PDA) detector. An isocratic solvent system of 

methanol/aqueous acetic acid (5%) (80:20, v/v) with a flow rate 0.8 mL/min was used 

[68]. The chromatogram was recorded and analyzed using Empower software. Peaks 

were monitored at various wavelengths to confirm the purity of the bioactive 

compound.  

2.4.3.4. Fourier Transform Infrared Spectroscopy (FTIR) 

Principle: FTIR is a vibrational spectroscopic technique used to obtain an infrared 

spectrum of asymmetrical molecule. The infrared region has insufficient energy to 

effect nuclear or electronic transitions but involve the phenomena such as chemical 

bond vibration as well as bending deformations due to change in dipole moment or 

charge displacement. The scattered radiation has a frequency different from the 

incident radiation and constitutes spectra. 

Method: The bioactive compound and some quinone standards were analyzed by 

FTIR scanning in the wavenumber range of 4000-400 cm-1 using a FTIR spectrometer 

(model FTIR-660 plus, JASCO, Japan). The compound was pressed directly to the 

attenuated reflectance crystal KBr supplied with the FTIR instrument. The analysis 

was performed to assess the functional groups of bioactive. 
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2.4.3.5. Biochemical test (for -OH substitution) 

Principle: The -OH substitution test is based on the formation of coloured complex 

with Fe (III) with hydroxylated compounds (Figure 7) [69].  

Method: TLC-purified bioactive compound was analyzed for hydroxyl substitution 

by spraying anhydrous ferric chloride in methanol (1 g/100 mL) on a TLC plate and 

heated at 110ºC for 10 min as per the method described earlier [70]. Some 

naphthoquinone standards (1,4-naphthoquinone, juglone, menadione, plumbagin, 

lapacol and phylloquinone) were included in this test as control. 

2.4.3.6. Biochemical test (analysis of 2, 3 positions for presence or absence of 

functional group) 

Principle: 2, 3 substitutions test was conducted by the method described earlier 

whereby 1,3-dimethylbarbituric acid (DMB) reacts with the second or third position 

of the quinone moiety to produce a pink adduct (Figure 8) [71].  

Method: One mL of known standard naphthoquinones (1,4-naphthoquinone, juglone, 

menadione, plumbagin, lapacol and phylloquinone) and the bioactive compound (2.5 

mM) dissolved in methanol were mixed with freshly prepared DMB (1 mL; 0.05 M) 

in methanol. Later, Milli-Q water (4 mL) was added to attain 50% (v/v) concentration. 

The mixture was diluted to 10 mL with methanol/water (50%, v/v) and heated at 50°C 

for 1 h. After cooling, the absorption was measured at the specific wavelength of each 

naphthoquinone using a spectrophotometer (Hitachi High-Technologies Corp., Tokyo, 

Japan). Naphthoquinones without DMB served as corresponding blank.  



Thesis of Sanjeev Kumar 
                                                                                                                   Page 55 
 

 

Figure 7. Biochemical test for structure determination (-OH substitution) of C4 

compound (Reaction of hydroxylated compound with ferric chloride produces 

coloured complex). 

 

 

Figure 8. Biochemical test for structure determination (analysis of 2, 3 positions 

for presence or absence of functional group) of C4 compound (Reaction of 1,4- 

naphthoquinone with 1, 3 dimethylbarbituric acid produces pink adduct). 

 

Note: Structures taken from Google images (http://1chemistry.blogspot.com; 

https://www.sciencedirect.com). These are required for the basic understanding 

of the problem addressed in the current study. 
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2.4.3.7. Nuclear Magnetic Resonance (NMR) analysis 

Principle: NMR is a phenomenon in which nuclei absorb and re-emit electromagnetic 

radiation in a magnetic field. This energy is at a specific resonance frequency 

depending on the strength of the magnetic field and the magnetic properties of the 

isotope of the atoms. The resonance condition in NMR is satisfied in an external 

magnetic field of several hundred millitesla, with absorbance occurring in the region 

of radiowave (40-1000 MHz). Electrons, similar to the nucleus, are charged and rotate 

with a spin to produce a magnetic field opposite to the magnetic field produced by the 

nucleus. Thus, this electronic shielding reduces the magnetic field at the nucleus. As a 

result, the energy gap is reduced, and the frequency required to achieve resonance too 

get reduced. This shift in the NMR frequency due to the electronic molecular orbital 

coupling to the external magnetic field is called chemical shift. Thus, NMR is able to 

probe the chemical structure of molecules, which depends on the electron density 

distribution in the corresponding molecular orbitals. In general, the chemical shift 

reference standard for 1H and 13C is tetramethylsilane (TMS), whose chemical shift is 

considered to be 0.0 ppm. All isotopes that contain an odd number of protons and/or 

neutrons have an intrinsic magnetic moment and angular momentum, in other words a 

non-zero spin, while all nuclides with even numbers of both have a total spin of zero. 

The most commonly studied nuclei are 1H and 13C. In 13C NMR, only the 13C isotope 

of carbon is detected, whose natural abundance is only 1.1%. The main carbon 

isotope, 12C, is not detectable by NMR since it has zero net spin. 

Method: The proton (1H) and carbon (13C) NMR spectra were recorded with a Bruker 

AC-500 MHz Fourier transform (FT)-NMR spectrometer using CDCl3; TMS was 
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used as an internal standard (Bruker, Fallanden, Switzerland). The usual abbreviations 

employed are d, doublet; dd, double doublet; t, triplet; q, quartet; m, multiplet; J, 

coupling constant (in hertz); and δ, chemical shift in parts per million. 

2.4.3.8. Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass 

Spectrometry (MALDI-TOF MS) 

Principle: Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass is 

spectrometric technique where samples for MALDI are mixed with a suitable matrix 

material and applied to a metal plate. The matrix absorbs a pulsed laser and converts it 

to heat energy. A small part of the matrix heats rapidly and is vaporized, together with 

the sample and triggers ablation and desorption of the sample and matrix material. 

Charged ions of various sizes are generated on the sample slide. A potential difference 

V0 between the sample slide and ground attracts the ions. The velocity of the attracted 

ions v is determined by the law of conservation of energy. As the potential difference 

V0 is constant with respect to all ions, thus ions with smaller m/z value (lighter ions) 

and more highly charged ions move faster through the drift space till they reach the 

detector. Consequently, the time of ion flight differs according to the mass-to-charge 

ratio (m/z) value of the ion. Mass spectrometry that exploits this phenomenon is called 

Time of Flight Mass Spectrometry. 

Method: MALDI-TOF MS analysis was performed for bioactive compound and 

phylloqinone standard. These compounds were mixed with α-Cyano-4-

hydroxycinnamic acid (HCCA) (5 mg/mL) matrix, 0.1% trifluoroacetic acid (TFA) 

and 50% acetonitrile (CAN) (1:1) in 1:2 ratio and the resulting 2 μL was spotted onto 

the MALDI plate and allowed for air drying. Later, the Ultraflex II system (Bruker 
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Daltonics, Bremen, Germany) equipped with a solid state YAG laser at 337 nm and 

200 Hz were employed. Flex analysis 3.0 (Bruker Daltonik) software was used for 

data analysis.  

2.4.4. Stability of bioactive compound 

The bioactive compound was purified from raw as well as boiled (90ºC for 15 min) 

spinach using preparative TLC as discussed earlier (2.4.1). The compound was found 

to be stable and no significant reduction in quantity based upon TLC analysis and in 

terms of bioactivity was observed. Besides, bioactive stored at -20ºC in dried 

condition up to 4 months was also found to be stable. Thus, this was dissolved in 

DMSO and added just before conducting the experiments.  

2.5. Comparative in vitro antioxidant activity evaluation of various extracts and 

characterized bioactive compound  

Antioxidant activity of compound was performed by 1,1-Diphenyl-2-picrylhydrazyl 

(DPPH.) radical scavenging activity and 2,2′-Azino-bis(3-ethylbenzthiazoline-6-

sulfonic acid) (ABTS.+) radical scavenging activity [50]. These assays were performed 

with different extracts from spinach such as total soluble phenolic (TSP) extract, 

quinone extract, TLC purified quinones, and standards such as phylloquinone, 

plumbagin, juglone and menadione.  

2.5.1. DPPH. radical scavenging activity 

Principle: In principle, DPPH. is a stable free radical and converts to 1,1-diphenyl-2-

picryl-hydrazine (reduced form) in the presence of hydrogen-donating substance 

(Figure 9). The DPPH. solution is violet in colour that turns to yellow when the odd 
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electron of DPPH. radical becomes paired with hydrogen from a free radical 

scavenging antioxidant to form the reduced DPPH-H. 

Method: The DPPH.  solution (0.25 mM) was prepared in absolute ethanol. Samples 

dissolved in methanol were added at above concentrations and volume made up to 500 

µL using methanol. Further, DPPH. solution (500 µL) was mixed thoroughly and 

allowed to stand for 30 min at ambient temperature. The absorbance was measured at 

517 nm. DPPH. radical scavenging was determined using following equation: 

DPPH. radical scavenging (%) = [1 – {(T1 - B2) / B1}] × 100 

where T1, B1 and B2 are the absorbance of the sample, sample blank and DPPH.  

blank, respectively.  

2.5.2. ABTS.+ radical scavenging activity 

ABTS.+ (purple coloured) is a cationic radical. Antioxidant transfers electron and 

convert it to a colourless reduced form (Figure 10).  

Method: For ABTS.+ stock preparation, 10 tablets (total 10 mg ABTS) was dissolved 

in 13 mL water. A 10 mL of this solution was mixed with 10 mL of freshly prepared 

ammonium persulphate (APS; 1.12 mg/mL) solution and incubated in dark for 

overnight. The ABTS.+ stock solution (700 µL) was diluted (~70 fold) for preparing 

working solution using Milli-Q water to achieve absorbance in the range of 0.75-0.85 

at 734 nm. Samples at the different concentrations were added to ABTS.+ (850 µL) 

working solution and volume made up to 1 mL using methanol. Later, it was allowed 

to stand for 15 min and absorbance was measured at 734 nm. 
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Figure 9. Mechanism of DPPH. radical scavenging by antioxidants 

 

 

 

Figure 10. Mechanism of ABTS.+ radical generation and scavenging by 

antioxidants 

Note: Structures taken from Google images (https://en.wikipedia.org; 

https://pubs.rsc.org). These are required for the basic understanding of the 

problem addressed in the current study. 
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2.6. Antimutagenicity of spinach bioactive vs. other standards 

The antimutagenic activity of bioactive was compared to standard naphthoquinones 

such as phylloquinone, plumbagin, juglone, and menadione using rpoB based rifR 

assay at 0.1- 1 mM concentrations as per the protocol discussed above (2.3). 

2.7. Mechanism of antimutagenicity  

2.7.1. Antimutagenicity at different treatment conditions  

Antimutagenicity of bioactive was determined at various conditions as detailed below 

using rpoB based RifR assay in E. coli MG1655 and TK 6 gene mutation assay in 

human lymphoblast cells against EMS induced mutagenesis. The EMS concentration 

was optimized for these assays (133 and 0.5 mM, respectively). A 0.5 mM 

concentration of the bioactive compound was used for both these assay.  

a) EMS and bioactive compound added simultaneously in the cell system 

b) EMS and bioactive compound added in the cell system after incubating for 4h 

outside  

c) Bioactive compound added after EMS treatment for 40 min and 4 h in RifR and TK 

6 gene mutation assay 

Untreated and EMS treated cells served as controls.   

2.7.2. Analysis of direct interaction of bioactive and mutagen 

The TLC detectable concentration of bioactive compound (8 mM) was mixed with 

EMS at the same concentration (i.e., 8 mM) in absolute methanol and incubated for 2 
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h. Bioactive compound alone kept under similar condition served as control. These 

samples were subjected to TLC analysis, visualized under UV (at two wavelengths 

254 and 366 nm), and quantified as detailed earlier. 

2.7.3. Role of antioxidant activity of spinach bioactive for its antimutagenicity  

Principle: The cell permeant reagent 2’,7’ dichlorofluorescin diacetate (DCFDA or 

H2DCFDA), is a fluorogenic dye that measures reactive oxygen species (ROS) within 

the cell. After diffusion in to the cell, DCFDA / H2DCFDA is deacetylated by cellular 

esterases to a non-fluorescent compound, later this is oxidized by ROS into 

fluorescent compound 2’, 7’ dichlorofluorescein (DCF) (Figure 11).  

Method: Human lymphoblast TK6 cells were treated with 0.5 mM concentration of 

EMS, stained using DCFDA (20 µM) and analyzed under a fluorescent microscope. 

Similarly, E. coli MG1655 cells were also treated with EMS (133 mM) alone, and 

EMS (133 mM) and bioactive (0.5 mM) followed by DCFDA (20 µM) staining and 

visualization under microscope. Cells treated with H2O2 (25 and 50 mM) and 

bioactive (0.5 and 1 mM), separately, served as controls. The level of oxidants in these 

treatment conditions were analyzed using fluorometer where excitation and emission 

wavelengths were 488 and 525 nm, respectively. 
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Figure 11.   2’, 7’ dichlorofluorescin diacetate (DCFDA) assay for in vivo ROS 

quantification  

Note: Structures taken from Google images (https://www.cellbiolabs.com). These 

are required for the basic understanding of the problem addressed in the current 

study. 
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2.7.4. Analysis for interaction of bioactive with DNA 

2.7.4.1. Spectrophotometric analysis  

Calf thymus DNA (CT DNA; optimized concentration 120 μM) was treated with 

bioactive compound (10 - 60 µM) and absorbance spectrum (230 - 450 nm) was 

recorded using a spectrophotometer. CT DNA (120 µM) and bioactive compound (60 

µM) alone served as controls.   

2.7.4.2. Circular dichroism  

Principle: The asymmetry in the chiral molecule or centres interacts differently with 

circularly polarized light (right and left handed). The resultant beam after having 

passed through the sample is recombination of right (R) and left (L) components to 

give an emergent beam of elliptically polarized light. 

θ = 2.303ΔA = 33 ΔA degree  

where ΔA is the difference in the absorption between R and L components. 

Method: CD measurements were performed using a JASCO-810 automatic recording 

spectropolarimeter at 25°C. The CT DNA (50 µM) solution in phosphate buffer (pH 

7.4) was titrated with bioactive compound (40 and 60 µM), and CD spectra were 

recorded (230 to 320 nm) under nitrogen atmosphere (1-mm cuvette, scan rate 100 nm 

⁄ min, response time 1s). Each spectrum was recorded thrice, and the results were 

expressed as average ellipticity in millidegrees (mdeg). CT DNA (50 µM) and 

bioactive compound (60 µM) alone served as controls.   
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2.7.4.3. DAPI (4’, 6-Diamidino-2-phenylindole dihydrochloride) binding assay 

DAPI binding assay were performed where CT DNA (120 µM in 10 mM phosphate 

buffer, pH 7.4) was incubated in presence of bioactive compound (10-40 µM) for 15 

min followed by incubation with DAPI (15 mM) for the same period and recording 

the spectrum (λEx: 338 nm; λEm: 450 nm) using a fluorometer [72]. This assay was 

conducted to determine the possibility of the bioactive compound to bind the minor 

groove as DAPI is a minor groove binder of DNA. Buffer, DAPI, bioactive compound 

and CT DNA alone served as controls. This assay was also performed by addition of 

DAPI 15 min prior to the bioactive compound (40 µM) to confirm the result. 

2.7.4.4. Methyl green binding assay 

CT DNA (120 µM in 10 mM phosphate buffer, pH 7.4) was incubated in presence of 

bioactive compound (40 and 60 µM) for 15 min followed by addition of methyl green 

(20 µM) for the same period. Later, spectrum (230-700 nm) was determined using a 

spectrophotometer. This assay was performed to determine the possibility of the 

bioactive to bind the major groove by blocking methyl green, a known major groove 

binder of DNA. Buffer, methyl green, bioactive and CT DNA alone served as 

controls. 

2.7.4.5. Ethidium bromide (EtBr) binding assay 

This was performed by incubating the CT DNA (120 µM in 10 mM phosphate buffer, 

pH 7.4) in presence of bioactive (10-40 µM) for 15 min followed by incubation with 

EtBr (10 mM) for the same period and recording the spectrum (λEx: 480 nm; λEm: 610 

nm) using a fluorometer [73]. This assay was performed to determine the possibility 
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of the bioactive to intercalate with the DNA by blocking EtBr. Buffer, EtBr, bioactive 

compound and CT DNA alone served as controls. 

2.7.5. Two dimensional (2-D) gel electrophoresis 

To understand the mechanism of antimutagenicity by the bioactive compound, gene 

expression profile was studied using two dimensional (2-D) gel electrophoresis. 

Principle: This technique combines isoelectric focusing (IEF) and sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The first dimension (IEF) 

is carried out in polyacrylamide gels containing ampholytes in narrow tubes (~1-2 mm 

diameter) where denatured proteins resolve according to isoelectric points and later 

the extruded gel is placed along the stacking gel, and subjected to electrophoresis. In 

SDS-PAGE, proteins are separated based upon difference in molecular weight. As it is 

unlikely that two proteins will be similar in both these properties, i.e., isoelectric point 

and molecular weight, thus molecules are more effectively separated in 2-D 

electrophoresis. 

Method: 

2.7.5.1. Protein extraction 

The overnight grown E. coli culture (2 mL) control as well as treated (EMS alone and, 

EMS and bioactive compound) was centrifuged at 7500 xg for 7 min and washed with 

chilled PBS (phosphate buffered saline, 10 mM, pH 7.4). To this 500 µL of trizol was 

mixed to lyse the cells. Later, chloroform (200 µL) was added, vigorously mixed for 5 

s, and allowed to stand for 5 min (25°C). This was centrifuged at 12000 xg at 4°C for 

15 min. Aqueous supernatant was discarded, and ethanol (300 µL) was added to the 

reddish brown pellet and centrifuged at 5000 xg at 4° C for 5 min. Further, 
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isopropanol (1.5 mL) was added to the supernatant, allowed to stand for 20 min at 

25°C and centrifuged at 12000 xg at 4°C. Pellet was washed with 95% ethanol, air 

dried and rehydration buffer (200 μL) was added to dissolve the protein (as provided 

by the manufacturer, Bio-Rad Laboratories, USA). Protein was estimated by 

Bradford’s method, using a protein estimation kit (Bangalore Genei, Bangalore, 

India), and bovine serum albumin (BSA) as a standard [50].  

2.7.5.2. Rehydration of protein 

The protein sample (90 µg) was loaded from each of the treatment conditions on the 

IPG strip (7 cm; pH gradient: 4-7) and allowed to be absorbed for 30 min. Later 1 mL 

of mineral oil was added and left for 12-16 h at ambient temperature. 

2.7.5.3. Isoelectric Focusing  

Isoelectric focusing was performed using an IEF tray of same as the size of 

rehydration tray. Using forceps the paper wicks were placed on both the ends of the 

channel covering the wire electrodes. An 8 μL of nano pure water was added to wet 

the wick. The IPG strip (7 cm) was hold for 7 to 8 s to allow the mineral oil to drain, 

and then transferred to the corresponding channel in the focusing tray (gel side down). 

IPG strip was covered with the fresh mineral oil and lid was placed onto the tray.  The 

protocol was programmed to attain 8000 V-h (pH gradient 4-7) and electrophoresis 

was initiated. After completion, the IPG strip was removed and transferred (gel side 

up) into a new clean and dry rehydration tray. Before the second dimension run, the 

IPG strip was stored at -70°C overnight  

2.7.5.4. SDS-PAGE 

The equipment was assembled and sealed using 1.5 % agar. Resolving gel (12%) was 

added and covered with butanol (70%) to increase the rate of polymerization. Butanol 
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was removed and washed off. Stacking gel (5%) was added and again layered with 

butanol (70%). Again, the butanol was removed and washed off. The strip was kept at 

room temperature for some time to thaw properly and later equilibrated using 

equilibration buffer 1 for 10 min on a shaker (as provided by the manufacturer, Bio-

Rad Laboratories, USA). Buffer 1 was drained, buffer 2 was added and the strip was 

kept on a shaker for 10 min. The IPG strip was rinsed with 1X tris glycine buffer. The 

strip was put on the SDS-PAGE gel and a layer of agarose with a trace of tracking dye 

(bromophenol blue) was overlaid and run at 200 V. 

2.7.5.5. Silver staining 

After the completion of the run, the gel was incubated with fixative solution for 1 h in 

shaking condition and was washed with Milli-Q water for 3 times (15 min each). 

Freshly prepared pre-treating solution (20 mg/100 mL Na2S2O3) was added for 1.5 

min. The gel was later washed with water for 4 times (30 s each). Cold impregnating 

solution (200 mg/100 mL AgNO3; 100 μl/100 mL formaldehyde) was added and kept 

on shaker incubator for 20 min. The gel was rinsed with excess Milli-Q water for 4 

times (30 s each). Developing solution (6 g/100 mL Na2CO3; 100 μL/100 mL 

formaldehyde; and 0.4 mg Na2S2O3) was added till the spots were developed 

followed by washing of the gel. The gel was immediately transferred to the stopping 

solution and the spots on the gel were documented and compared (PDQuest, Bio-Rad 

Laboratories, USA). 

2.7.6. In-gel digestion and Matrix-Assisted Laser Desorption/Ionization-Time-of-

Flight Mass Spectrometry (MALDI-TOF MS) 

The differentially expressed proteins were excised from gel and transferred in 

microfuge tube. A 30 μL of freshly prepared K3[Fe(CN)6] and Na2S2O3 (1:1; v/v) in 
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water was added and incubated for 30 min at ambient temperature (26±2°C) for 

destaining. The gel was washed with water and 50 mM NH4HCO3 /acetonitrile (1:1; 

v/v) for 15 min. The liquid was removed and acetonitrile was added to cover the gel. 

After that, acetonitrile was removed and gel was dried using vacuum centrifuge.  The 

gel was swelled in 10 mM dithiotreitol / 50 mM NH4HCO3 by incubating for 45 min 

at 56°C.  Then the temperature was brought back to ambient, the liquid was removed 

and freshly prepared 55 mM iodoacetamide (in 50 mM NH4CO3) was added.  This 

was incubated for 30 min in dark at ambient temperature (26 ± 2°C). Later liquid was 

removed and washed twice with 50 mM NH4CO3 and acetonitrile (1:1; v/v) for 15 

min each. Acetonitrile was added to cover the gel and once the gel shrunk it was 

removed. This was vacuum centrifuged for drying. For in-gel digestion, 4.5 μL of 

trypsin reaction buffer (25 mM NH4CO3 and 9% acetonitrile) was added to the gel. A 

7 μL of the trypsin enzyme stock [20 μg trypsin / 120 μL NH4CO3 (25 mM)] was 

diluted with 63 μL of NH4CO3 (25 mM) and 5.5 μL of that was added to the gel. This 

was incubated over night at 37°C for digestion. The resulting peptide was extracted 

using 100 μL of 0.1% TFA, 0.1% TFA in 50% acetonitrile, and acetonitrile, 

sequentially, pooled and vacuum dried.  

MALDI-TOF MS analysis was performed by mixing these peptides with (A) α-cyano-

4-hydroxycinnamic acid (HCCA) (5 mg/mL), and (B) 0.1% TFA and 50% acetonitrile 

(1:1), in 1:2 ratio. The 2 μL aliquot was spotted onto the MALDI plate [(MTP 384 

ground steel (Bruker Daltonics, Germany)] and allowed for air drying. Later, MALDI 

TOF/TOF was performed using ULTRAFLEX III instrument (Bruker Daltonics, 

Bremen, Germany) equipped with smart laser beam (100 μJ at 337 nm) operating at 

200 Hz. External calibration was performed with standard peptide (PEPMIX Mixture) 
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of masses ranging from 1046 to 3147 Da (supplied by Bruker, Germany).FLEX 

ANALYSIS SOFTWARE (Version 3.3) in reflectron ion mode with an average of 

500 laser shots was used for analysis (mass detection range between 500 to 5000 m/z). 

The masses obtained were submitted for Mascot search in “CONCERNED” database 

for identification of the protein.  

2.7.7. Knockout studies using relevant E. coli strains 

Keio collection includes single-gene deletions in Escherichia coli K-12 where open-

reading frame coding regions were replaced with a kanamycin cassette. Such mutants 

were obtained for 3985 genes. These mutants provide a resource for analyses of 

unknown gene functions and gene regulatory networks [74]. Thus, the study using 

relevant E. coli knockout strains (Keio collection, Japan) was conducted to determine 

the role of certain up-regulated proteins(s) (due to the presence of bioactive 

compound) in observed antimutagenicity. This helped in developing the possible 

hypothesis explaining the underlying mechanism of observed antimutagenicity by the 

spinach bioactive napthoquinone. 

2.7.8. Statistical analysis 
Experiments pertaining to antimutagenicity were performed twice with ten replicates, 

whereas all other experiments were conducted twice with three replicates. One-way 

ANOVA was used to determine the variation due to treatments and the results were 

expressed in terms of mean and standard deviations (SD). The analyses were 

performed using BioStat 2009 Professional 5.8.0.0 software (AnalystSof Inc., 

Vancouver, BC, Canada) at p≤0.05. 
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Chapter 3 

Results  

 

3.1. Screening of various selected foods rich in 

naphthoquinone for antimutagenicity and characterization 

of bioactive from the most potent food 
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3.1.1. Quinone extract from spinach displayed maximum antimutagenicity 

Naphthoquinone rich foods (vegetables) such as spinach, lettuce, iceberg lettuce, 

cabbage, broccoli and French bean were analyzed for antimutagenicity against ethyl 

methanesulfonate (EMS) induced mutagenesis using rifampicin resistance (RifR) 

assay in E. coli MG1655. The various extracts such as aqueous, methanolic, total 

soluble phenolic and quinonic extracts were used in this assay. Aqueous (at the 

optimized concentration of 2 mg/ml) extract displayed antimutagenicity in the range 

of 58% (in broccoli) to 73% (in French bean) whereas, in methanolic extracts, 

antimutagenicity varied between 41% (in cabbage) to 88% (in French bean). In most 

of these vegetables except spinach, phenolics were found to be primarily responsible 

for the observed antimutagenic activity (i.e., in the range of 63-78%) (Table 4). In 

case of spinach, quinone rich extract displayed significantly higher antimutagenicity 

(72%) than the phenolic rich extract (35%) (Table 4). Thus, data indicated major role 

of quinone(s) in the observed antimutagenicity of spinach (Table 4).  

Among vegetables selected, spinach quinone extract displayed highest 

antimutagenicity in RifR assay (Table 4). This was also evaluated in TK6 gene 

mutation assay against EMS and 5-azacytidine (5-AZ) induced mutagenesis. The 

induced mutation in human lymphoblast cell line at gene (tk+/−) loci was found to be 

negligible in control cells, whereas in the case of EMS and 5-AZ treated cells the 

relative number of mutants increased by ~21and 24-fold, respectively (Figure 12 A). 

At 0.5 mg/mL concentration aqueous, methanolic, total soluble phenolic, and quinone 

extracts reduced the mutagenic effect of EMS by 27, 16, 13, and 42%, respectively 

(Figure 12A). Similarly, these extracts reduced the mutagenic effect of 5-AZ by 26, 

30, 11, and 45%, respectively (Figure 12B).  
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The yield of phenolics ranged between 0.5 mg/g (in iceberg lettuce) to 5 mg/g dry wt 

(in broccoli). In case of quinone, yield varied between 1.5 mg/g (in lettuce) to 3.4 

mg/g dry wt (in broccoli). Correlation coefficient (R2) of antimutagenicity vs. 

phenolics yield was found to be (-) 0.15 and that of quinone was 0.23. The lower 

correlation value between yield and activity indicated that antimutagenic activity of 

vegetables could be depending upon the structural types of phenolics or quinones 

present instead of their yield.   

3.1.2. Spinach quinones resolved in 4 major bands in TLC  

The quinone extract of spinach which displayed highest antimutagenicity was resolved 

using TLC. Various combinations of solvents were tested for the better resolution of 

quinones. Finally, optimized developing solvent consisting of petroleum ether, 

chloroform, and acetone (5:1:0.106) was found to resolve most of the naphthoquinone 

standards at 254 nm such as 1,4-naphthoquinone (Rf, 0.337), juglone (Rf, 0.358), 

menadione (Rf, 0.379), plumbagin (Rf, 0.453), lepachol (Rf, 0.347), and 

phylloquinone (Rf, 0.789), as well as one of the spinach quinones (C1; Rf, 0.789) 

(Figure 13A). However, the Rf of other spinach quinones (C2; 0.758 and C3; 0.495 at 

254 nm) and (C4; 0.315at 366 nm) was not found to match with any standard 

naphthoquinones (Figure 13A and B). The content of quinone band (C1) was found to 

be 64 ± 7 μg/g (dry weight), which was quite close to the reported phylloquinone 

content from frozen whole leaf of spinach (i.e., ~3.7 μg/g of fresh weight) [75]. 

Among all these spinach quinones, the C4 displayed fluorescence at 366 nm, and its 

yield was found to be 396± 14 μg/g of dry weight. 
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Table 4. Antimutagenicity (%) of solvent extracts from naphthoquinone rich vegetables and yield of total soluble phenolics and 

quinones. 

Vegetables Plant part 

Antimutagenicity (%) using RifR assay*  Yield (mg/g dry weight) 

Aqueous 
extract 

Methanol 
extract 

Extract rich in 
total soluble 

phenolics 

Extract rich 
in quinones 

 Extract rich in 
total soluble 

phenolics 
Extract rich in 

quinones 

Spinach Leaf 66±3a,x  61±6a,x 35±4b,x 72±6c,x 
 

3.0±1.1a,x 2.5 ±0.6a,x 

Lettuce Leaf 63±3a,x 65±5a,x 78±4b,y 2±1c,y 
 

1.5±0.9
a,x

 2.4±0.9b,x 
Iceberg 
lettuce Leaf 62±4a,x 48±3b,y 65±3a,z 21±3c,z 

 
0.5±0.2a,y 2.6±0.8b,x 

Cabbage Leaf 61±3a,x 41±4b,y 68±5a,z 5±3c,y 
 

2.0±0.7a,x 1.5±0.5a,y 

Broccoli Inflorescence 58±5a,x 78±5b,z 70±4b,z 11±3c,w 
 

5.0±0.8a,z 3.4±1.0b,x 

French bean Fruit 73±6a,y 88±6b,w 63±6c,z 1±1d,y 
 

1.0±0.4a,y 1.8±0.7a,x 

  * Extracts concentration: 2 mg/ml; Spontaneous RifR mutation frequency = 1/108; EMS (133 mM) induced mutation frequency = 

2700/108 cells. 

Note: Different letters in columns (w-z) and in rows (a-c) indicate significant differences among means (p≤0.05).
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(A) 

 
(B) 

Figure 12. Antimutagenicity of spinach extracts by human lymphoblast TK6 

gene (tk+/-) mutation assay against (A) EMS and (B) 5-AZ.  
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(A) 

 

 

(B) 

Figure 13. TLC profile of standard naphthoquinones and spinach quinone 

extract (A) 254 nm and (B) 366 nm. 
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3.1.3. TLC band (Rf: 0.315; termed as C4) displayed maximum antimutagenicity 

The antimutagenicity of these TLC eluted spinach quinones was also analyzed in 

various assay systems. In the RifR assay, C4 compound (at the optimized 

concentration of 0.5 mg/mL= 500 µg/mL) exhibited the highest reduction of mutation 

frequency, i.e., by 72 and 83% against EMS and 5-AZ induced mutagenicity, 

respectively. However, reduction in mutation frequency was just 13 and17% by C1, 

21 and 26% by C2, and 16 and 19% by C3, against EMS and 5-AZ, respectively 

(Figure 14A and B). 

The EMS induced mutation in human lymphoblast cell line at gene loci (tk+/−) was 

found to be reduced to 28, 47, 30, and 56% by C1, C2, C3, and C4 compounds (each 

at 0.5 mg/mL concentration), respectively (Figure 15A). Similarly, 5-AZ induced 

mutation was reduced by 23, 34, 32, and 58%, respectively (Figure 15B). At further 

higher concentration (1 mg/mL) the C4 compound reduced the mutagenic effect 

ofEMS and 5-AZ both by ~75% (Figure 15 A and B). This was also reflected in 

reduced cellular aggregation in (tk−/−) cells exposed to mutagens (EMS or 5-AZ) in 

presence of C4 in comparison to those exposed to these mutagens alone (Figure 15C). 

The C4 compound was not found to display any cytotoxicity in TK6 cells at the 

concentration used (1 mg/mL). 

The Ames test measures reversion of auxotrophic his- mutants of S. typhimurium [67]. 

The C4 compound (0.5 mg/mL) was also found to reduce EMS and 5-AZ induced his-

reversion in S. typhimurium TA100 and TA102 (Figure 16). When treated with EMS, 

the number of revertant/plate of TA100 and TA102 was found to be 1110 and 540, 

respectively (Figure 16). The C4 compound inhibited these reversions by 50 and 43%, 

respectively (Figure 16).  
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(A) 

 
(B) 

Figure 14. Antimuatagenicity of TLC purified compound by RifR assay against 

(A) EMS and (B) 5-AZ. Different letters (a-d) on the top of the bars show 

significant differences among means (p≤0.05). 
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(C) 
 

Figure 15. Antimuatagenicity of TLC purified compound by human lymphoblast 

TK6 gene (tk+/-) mutation assay against (A) EMS, (B) 5-AZ and (C) Mutant 

(TK−/−) cell aggregate in control and treated samples. Different letters (a-f) on the 

top of the bars show significant differences (in Fig. A and B) among means 

(p≤0.05). 
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Figure 16. Ames test in S. typhimurium TA100 and TA102 strains against EMS 

(66.5 mM) and 5-AZ (0.4 mM) in presence of highly antimutageinic C4 

compound (500 µg/mL). Different letters (a-d) on the top of the bars show 

significant differences among means (p≤0.05). 
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5-AZ treatment of TA100 and TA102 strains resulted in ~700 revertants/plate (Figure 

16). Here too C4 significantly inhibited this reversion by 61 and 56%, respectively, in 

these two strains (Figure 16).  

3.1.4. Quinone extract from spinach displayed least antioxidant capacity in 

comparison to total soluble phenolics (TSP) 

Antioxidant activity of quinones extract as well as TLC purified quinones (C1-C4) 

atthe optimized concentration of 150 µg/ml was found to vary in the range of 16-48% 

whereas that of total soluble phenolics extract was quite high. Even at much diluted 

(1: 1000) optimized concentration of 150 ng/ml, phenolics displayed antioxidant 

activity in the range of 59-78% (Table 5).  Thus, in other words quinones possessed 

very less antioxidant activity compared to phenolics (Table 5). Antioxidant activity of 

quinones in terms of DPPH.  and ABTS.+ radical scavenging was equivalent to 11 and 

18 µM ascorbic acid, respectively (Table 5).   
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Table 5. Antioxidant capacity of total soluble phenolics, quionones and TLC 

purified quinones. 

Samples ABTS.+radical 

scavenging activity (%)  

DPPH.  radical scavenging 

activity (%) 

Phenolics (150 ng/ml) 78±8x 59±7x 

Quinone (150 µg/ml) 24±3y 18±3y 

C1 (150 µg/ml) 23±4y 16±7y 

C2 (150 µg/ml) 28±3y 39±6z 

C3 (150 µg/ml) 28±4y 48±8x 

C4 (150 µg/ml) 36±4z 30±7z 

Ascorbic acid equivalent 33±3 (at 11 μM) 38±4 (at 18 μM) 

 

Note: Different letters in columns (x-z) indicate significant differences among 

means (p ≤ 0.05). 
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3.1.5. C4 Compound characterized as ethoxy-substituted phylloquinone (ESP) 

through biochemical, chromatographic and spectral analysis 

3.1.5.1. Spectrophotometric analysis  

Spectrophtometric analysis of the C4 compound displayed peaks at 234, 256, and 274 

nm, which indicated the presence of a benzene nucleus and a quinonoid ring [76, 77]. 

The peaks at 234 and 274 nm were found to be prominent. The spectrum of C4 was 

found to be similar to that of lapachol, indicating the presence of related structure at 

the second position (Figure 17A and B). The alkyl side chain lengths at the third 

position have been reported for low effects on absorbance spectra (Figure17B and C) 

[76]. The spectrofluorometric analysis of the C4compound showed excitation and 

emission wavelengths at 290 and 334 nm, respectively (Figure 17D). 

3.1.5.2. HPLC analysis 

HPLC analysis of the C4 compound showed only one major peak at retention time 

(tR) of 15.2 min when analysed at two wavelengths (234 and 274 nm) (Figure 18A 

and B). Similarly, only one major peak of same tR was detected even at 280 nm, the 

wavelength that is primarily used to detect phenolics (Figure 18C). Furthermore, at 

335 nm (wavelength used to detect flavonoid), no peak was observed (Figure 18D). 

Thus, the HPLC profile at various wavelengths confirmed the high purity level of the 

C4 compound. The standard phylloquinone peak was observed at tR of 14.6 min at 

267 nm, which matched with the C1 band (Figure 18E). 
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(i) 

 

(ii) 
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(iii) 

 

(B) 

Figure 17. (A) Spectrophotomeric analysis: (i) C4 compound; (ii & iii) standard 

naphthoquinones: (ii) lapachol  and  (iii) phylloquinone; and (B) 

Spectrofluorometric analysis of C4 compound. 
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(A) 

 

(B) 

 

(C) 
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(D) 

 

(E) 

Figure 18. HPLC analysis of the C4 compound at various wavelengths and 

comparison with standard phylloquinone. 
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3.1.5.3. FTIR Analysis  

FTIR peaks of the C4 compound observed at 2954, 2923, and 2851 cm−1 as well as 

1376 cm−1 indicated the presence of an alkyl chain similar to phylloquinone (Figure 

19A and B). A broad hydroxyl peak at 3073 cm−1 was present in juglone but not in C4, 

indicating the lack of this group (Figure 19A and C). The bioactive compound (C4) 

displayed quinonic peaks in the range of 1610-1705 cm−1 as observed in the case of 

both standard naphthoquinones (Figure 19). FTIR spectroscopic study performed 

earlier with various quinones also corroborated these results [78]. 
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                                           (C) 

Figure 19. FTIR analysis of (A) C4 compound; (B) phylloquinone and (C) 

juglone.  
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3.1.5.4. Analysis of the hydroxyl group substitution 

In the ferric chloride test, spinach quinone C4 was not found to develop any colour, 

similar to 1,4-naphthoquinone, phylloquinone, and menadione standards devoid of 

hydroxyl group (Figure 20). However, the hydroxyl group containing quinones such 

as juglone, plumbagin, and lapachol showed colour development (Figure 20). Thus, 

the ferric chloride spray on the TLC plate led to the development of a purple colour 

spot on the uniform background only in the case of hydroxylated quinones [70]. This 

result also confirmed the finding of FTIR, where no hydroxyl group in C4 was 

indicated. 

3.1.5.5. Analysis of 2, 3 position for presence or absence of functional group 

The assay provided information for the presence or absence of functional group at 

second or third position of quinone compounds. It was found that an increase in 

substitution at the second or third position of quinone reduced its reaction with 1,3-

dimethylbarbituric acid (DMB), probably due to decreased positive charge on these 

positions of the quinone moiety (Figure 21) [71]. In the C4 compound the reaction 

was almost negligible, similar to phylloquinone and lapachol standards where both the 

second and third positions are substituted, indicating substitutions at both of these 

positions in the C4 compound (Figure 21). 
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Figure 20. Analysis for the hydroxyl group in C4 compound along with standard 

naphthoquinones using ferric chloride test.  
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Figure 21. Test for 2, 3 position for presence or absence of functional group of C4 

compound using the 1, 3-dimethylbarbituric acid (DMB) assay. Different letters 

(a-d) on the top of the bars show significant differences among means (p≤0.05). 
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3.1.5.6. NMR analysis  

1H and 13C NMR spectra of C4 and its possible structure are shown in Table 6. The 

NMR data having four aromatic proton signals (two δH 7.70, dd, J = 6.0, 2.21 and two 

δH 7.54, multiplet) indicated a disubstituted benzene ring, and two carbon signals (δC 

182.9 and 175.5) confirmed the presence of naphthoquinone moiety as reported earlier 

[79]. Four methyl groups at 3′,7′,11′, and 15′ positions were ascertained by both 1H 

and 13C NMR spectra [79]. The 13C NMR spectrum of the compound showed 32 

signals. The presence of the ethoxy group at the C-2 position was also indicated by the 

spectral data (Table 6). Thus, the NMR result suggested the C4 compound to be a 

naphthoquinone (phylloquinone derivative) (Table 6) (Figure 22) and assigned as: 
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Figure 22. Structure of C4 compound based upon NMR analysis 

2-Ethoxy-3-(3,7,11,15-tetramethylhexadec-2-ethyl)naphthaquinone-1,4-dione 

(in short, Ethoxy-Substituted Phylloquinone, ESP) 
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Carbon 
Position 

Chemical 
Shift (δC) Proton Position Chemical Shift 

(δH) 
No. of protons Peak 

Multiplicity 

1 182.9 5 7.70 1 dd (J=6.0,2,1) 

2 121.9 6 7.54 1 m 

3 158.6 7 7.54 1 m 

4 175.5 8 7.70 1 dd (J=6.0,2,1) 

5,8 129.6 1′ 2.23 2 m 

6,7 124.4. 2′ 5.22 1 t                      

9,10 134.8 3′-methyl  1.68 3 s                      

1′ 22.5 4′ 2.05 2 t 

2′ 124.2 5′ 1.33 2 m 

3′ 140.1 6′, 8′, 10′, 12′, 14′ 1.29 2 protons each  m 

3′-methyl 17.6 7′ 1.69 1 m 

4′ 39.5 9′ 1.31 2 m 

5′ 25.9 11′ 1.59 1 m 

6′ 38.8 13′ 1.30 2 m                      

7′ 34.7 7′ and 11′ methyl 1.05 3 protons each both d (J= 6.6) 

7′-methyl 21.6 15′ 1.92 1 m  

8′ 38.1 16′ 0.90 3 d (J =6.6 )    

9′ 25.5 15′- methyl 0.90 3 d 

10′ 38.5 1′′ 4.00 2 q 

11′ 33.1 2′′ 1.21 3 t 

11′-methyl 22.0     

12′ 38.4     

  

    

Table 6. 13C and 1H NMR data of the most antimutagenic C4 compound.  
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13′ 25.2     

14′ 39.4     

15′ 29.8     

15′-methyl 23.7     

16′ 23.7     

1′′ 68.3     

2′′ 19.8     
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3.1.5.7. MALDI-TOF MS analysis  

The protonated molecular ion of C4 compound (ESP) was detected at m/z 483 (Figure 

22A) (Table 7). Its MS/MS fragmentation, m/z 439 resulted from the loss of 

[CH3CH2O-] moiety (45 amu), m/z 379 from the loss of [CH3CH2O-] (45 amu) and [-

CH2CH(CH3)2] (57 amu), m/z 212 from the loss of [CH3CH2O-] (45 amu) and[-

CH2CH2CH2CH(CH3)]3CH3] (225 amu), and m/z 172from the loss of [CH3CH2O-] 

(45 amu) and –C=C(CH3)[CH2CH2CH2CH(CH3)]3CH3] (264 amu) (Figure 22) 

(Table 7). Thus, the fragmentation pattern validated the above proposed structure of 

C4 compound (ESP). 

The phylloquinone standard protonated molecular ion was detected at m/z 451 (Figure 

22B) (Table 7) [80]. Its MS/MS fragmentation, m/z 225 resulted from the loss of [-

CH2CH2CH2CH-(CH3)]3CH3] (225 amu) (Figure 22B) (Table 7) [80]. Other 

fragments such as 379, 212, and 172 were produced due to the loss of [CH3-] and ions 

indicated above other than[CH3CH2O-] (Figure 22A and B) (Table 7).  
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(A) 

 
(B) 

Figure 23. MALDI-TOF MS analysis of (A) C4 compound (ESP) and (B) 

phylloquinone. 
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Table 7. The fragmented masses produced during MALDI-TOF MS analysis and 

confirmation of ESP structure. 

C4 Phylloquinone 

m/z Fragmentation (m/z) Fragmentation 

483 Molecular mass 451 Molecular mass 

439 Loss of [CH3CH2O-] (45 amu) 225  Loss of [-CH2CH2CH2CH 

(CH3)]3CH3] (225 amu) 

379 Loss of [CH3CH2O-] (45 amu)  

[CH2CH(CH3)2] (57 amu) 

379 Loss of CH3- (15 amu)  

[CH2CH(CH3)2] (57 amu) 

212 Loss of [CH3CH2O-] (45 amu)  

[-CH2CH2CH2CH(CH3)]3CH3] (225 

amu) 

212 Loss of CH3- (15 amu)  

[-CH2CH2CH2CH(CH3)]3CH3] 

(225 amu) 

172 Loss of [CH3CH2O-] (45 amu)  

-C=C(CH3)[CH2CH2CH2CH 

(CH3)]3CH3] (264 amu) 

172 Loss of CH3- (15 amu)  

-C= (CH3)[CH2CH2CH2CH 

(CH3)]3CH3] (264 amu) 
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3.2. Comparative bioactivity evaluation of ESP with other 

naphthoquinones and understanding the underlying 

mechanism 
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3.2.1. Comparative antimutagenicity  

Antimutagenicity of different naphthoquinones was compared in E. coli MG1655 

based RifR assay. Phylloquinone displayed significantly less antimutagenicity (~12%) 

as compared to the ethoxy-substituted phylloquinone (ESP), which displayed ~75% 

antimutagenic activity, at the same concentration (1 mM) (Figure 23). Based upon 

current findings it seems that the functional groups at the C-2 position might be 

playing the important role in higher antimutagenicity of ESP with respect to 

phylloquinone.  

Structure-function relationship with respect to antimutagenicity was also observed in 

other naphthoquinones, plumbagin, juglone, and menadione at equimolar 

concentration (0.1 mM) (Figure 23). At higher concentration these naphthoquinones 

were found to affect the viability of E. coli cells. Antimutagenicity displayed by 

plumbagin (which contains -OH and -CH3 groups at C-5 and C-2, respectively) and 

juglone (that contains only -OH group at C-5) was 69 and 64%, respectively, indicated 

importance of hydroxyl (-OH) group in the backbone structure. On the other hand less 

(~24%) antimutagenicity displayed by menadione (which contain only -CH3 group at 

C-5) indicated limited role of -CH3 group to the antimugenicity (Figure 23). These 

results have also indicated that the presence of substitution such as (-OCH2CH3 / -

OH) with naphthoquinone backbone structure enhances its antimutagenic potential.  
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Figure 24. Antimutagenicity of spinach bioactive ESP as compared to standard 

naphthoquinones in RifR assay. Different letters (a-c) on the top of the bars show 

significant differences among means (p≤0.05). 

Note: At higher (0.2 mM) concentrations, plumbagin, juglone and menadione 

affected the viability of E. coli. 
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3.2.2. Comparative antioxidant capacity 

Naphthoquinones such as ESP, phylloquinone, plumbagin, juglone, and 

menadione displayed variable antioxidant capacity in terms of DPPH. and 

ABTS.+ radical scavenging activities when assayed at optimized equimolar 

concentration of 300 µM concentration. DPPH.  and ABTS.+ radical 

scavengingactivities ranged between 5-25 and 6-34%, respectively (Table 8). The 

correlation of antioxidant activity with the antimutagenicity was quite low (R2 = 

0.19), which ruled out the major role of radical scavenging in the observed 

antimutagenicity.  
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Table 8. Antioxidant capacity of ESP and standard naphthoquinones. 

Compounds  ABTS.+radical 

scavenging activity (%)  

DPPH. radical scavenging 

activity (%) 

ESP (300 µM) 34±6x 25±5x 

Phylloquinone(300 µM) 16±4y 12±4y 

Plumbagin(300 µM) 7±4z 5±3z 

Juglone(300 µM) 6±2z 5±3z 

Menadione(300 µM) 9±5z 7±2z 

Ascorbic acid equivalent 33±3 (11 μM) 38±4 (18 μM) 

 

Note: Different letters in columns (x-z) indicate significant differences among 

means (p ≤ 0.05). 
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3.2.3. Possible mechanism of antimutagenicity of ESP 

3.2.3.1. Antimutagenicity of ESP against EMS under different conditions  

Mutation frequency in presence of EMS in E. coli MG1655 was observed to be 

2750/108 cells. In RifR assay, when EMS (the optimized concentration of 133 mM) 

and ESP (the optimized concentration of 0.5 mM) were added simultaneously, 

reduction in mutation frequency (antimutagenicity) was found to be ~46% (Figure 

24A). No significant change in antimutagenicity was observed when EMS and ESP 

were co-incubated for 2h prior to the adding in the culture (Figure 24A). This 

indicated no direct interaction between EMS and ESP. Interestingly, when cells were 

treated with EMS followed by ESP, ~38% antimutagenicity was observed which 

could be related to induction of general protective mechanism due to ESP treatment 

(Figure 24A). Similar results were obtained with TK6 human lymphoblast cell line at 

the optimized concentration of 0.5 mM for both EMS and ESP where, 

antimutagenicity in above conditions, i.e., simultaneous, co-incubated and post 

treatment was ~56, 61, and 58%, respectively (Figure 24B). 

3.2.3.2. Assessment of direct physical interaction between EMS and ESP 

EMS (8 mM) and ESP (8 mM) was co-incubated and analyzed by TLC, no change in 

fluorescence or Rf was observed at 366 nm (Figure 25A). Besides, no other spot(s) 

were observed at 366 as well as 254 nm (Figure 25A and B). This result corroborated 

the above observations concluding no direct interaction between mutagen and ESP 

compound which otherwise would have led to modification or complex formation.  
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(A) 

 
(B) 

Figure 25. Antimutagenicity of ESP: (A) RifR  and (B) TK6 gene (tk+/-) mutation 

assays under various treatment conditions, i.e., EMS+ESP: simultaneously added 

to the cells; EMS+ESP (co-incubated): added to the cells after 4 h co-incubation 

outside; ESP treatment post EMS: cells treated with EMS for 4h and then ESP 

added. Different letters (a-c) on the top of the bars show significant differences 

among means (p≤0.05). 
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366 nm 

(A) 

 

254 nm 

(B) 

Figure 26. TLC analysis of ESP at (A) 366 and (B) 254 nm; L1: after incubation 

in the solvent, and L2: after co-incubation with EMS.   
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3.2.3.3. Role of antioxidant activity in antimutagenicity of ESP 

EMS treatment was not found to induce any oxidative stress in TK6 cells at the 

optimized concentration (0.5 mM) used for antimutagenic study (Figure 26A). 

However, in case of E. coli, EMS (133 mM) treatment used for antimutagenic study 

was found to induce ~2 fold oxidative stress as compared to untreated control cells 

which was not reduced significantly in the presence of ESP (Figure 26B and C). In 

hydrogen peroxide treated cells significant (~23 fold) oxidative stress was induced as 

compared to the control cells (Figure 26B and C). The findings thus indicated that 

whatever antioxidant activity is possessed by ESP that does not contribute to its 

antimutagenicity against EMS.  

3.2.3.4. Interaction of ESP with DNA  

3.2.3.4.1. Spectrophotometric analysis 

As expected CT DNA absorbance maxima (λmax) was observed at 260 nm (Figure 27). 

Increase in ESP (10-60 µM) concentration enhanced the absorbance value of CT DNA 

(Figure 27). Such hyperchromic effect is a spectral feature that depicts non-covalent 

interaction, particularly in groove binding between compounds and CT DNA which 

leads to change in its secondary structure [81]. Intercalation of small molecules into 

the DNA helix results in bathochromic (red) shift as well as hypochromic effect [82]. 

Absorbance of ESP alone was found to be negligible even at the highest concentration 

used.  
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           a    b   c 

(A) 

 
         a         b                 c                       d 

(B) 

 
(C) 

Figure 27. Microscopic analysis of DCFDA stained (A) TK 6 cells: a) Control, b) 

EMS (0.5 mM) treated, c) H2O2 (50 µM) treated; (B) E. coli MG1655 cells: a) 

Control, b) EMS (133 mM) treated, c) ESP (0.5 mM) + EMS (133 mM) treated, 

d) H2O2 (50 µM) treated; (C) Histogram depicting level of ROS in E. coli cells 

measured through fluorometric analysis (λEx: 488 and λEm: 525 nm). Different 

letters (a-d) on the top of the bars show significant differences among means 

(p≤0.05). 
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Figure 28. Spectrophotometric analysis of Calf Thymus (CT) DNA treated with 

ESP at different concentrations: a) ESP (60 μM), b) CT DNA (120 μM), c) CT 

DNA (120 μM) + ESP (10 μM), d) CT DNA (120 μM) + ESP (20 μM), e) CT DNA 

(120 μM) + ESP (40 μM), f) CT DNA (120 μM) + ESP (60 μM). 
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3.2.3.4.2. Circular dichroism (CD) spectropolarimetry 

The CD pattern observed for CT DNA provides further and definitive confirmation of 

the probable mode of CT DNA binding with ESP. The  CD  spectrum  of  CT  DNA  

consists  of  a  positive  band  at 275 nm  due  to  base  stacking  and  a  negative  band 

at 245 nm due to helicity and it is also characteristic of DNA in a right-handed B form 

[83]. These CD signals of DNA are considered to be highly sensitive toward 

interaction of small molecules with DNA and corresponding changes in its structure 

[84]. The CT DNA displayed typical spectrum of B-form with no induction of new 

band and the increase in concentration of ESP was not found to affect this feature 

(Figure 28) [85]. However, there was decrease in the elipticity at 245 and 275 nm at 

enhanced concentrations of compound in groove binding (Figure 28) [72, 86].  

3.2.3.4.3. DAPI (4’, 6-Diamidino-2-phenylindole dihydrochloride) binding assay 

Similarly, DAPI fluorescence increases significantly upon its binding to minor groove 

of DNA at 450 nm (λEx 338 nm) (Figure 29). A significant decrease in this 

fluorescence was observed with the increase in the concentration (10-40 µM) of ESP 

(Figure 29). This suggested that ESP possibly bind to the minor groove of the DNA 

(Figure 29).  



Thesis of Sanjeev Kumar 
                                                                                                                   Page 113 
 

 

Figure 29. Circular dichroism spectropolarimetric analysis of CT DNA treated 

with ESP at different concentrations: a) ESP (60 μM), b) CT DNA (50 μM), c) 

CT DNA (50 μM) + ESP (40 μM), d) CT DNA (50 μM) + ESP (60 μM). 
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Figure 30. DAPI binding assay (CT DNA treated with ESP at different 

concentrations): A) Phosphate buffer, B) CT DNA (120 μM), C) DAPI (15 µM), 

D) ESP (40 µM), E) CT DNA (120 μM) + DAPI (15 μM), F) CT DNA (120 μM) + 

DAPI (15 μM) + ESP (40 μM), G) CT DNA (120 μM) + ESP (10 μM) + DAPI (15 

μM), H) CT DNA (120 μM) + ESP (20 μM) + DAPI (15 μM), I) CT DNA (120 

μM) + ESP (40 μM) + DAPI (15 μM). Different letters (a-h) on the top of the bars 

show significant differences among means (p≤0.05). 
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3.2.3.4.4. Ethidium bromide (EtBr) binding assay 

EtBr is an intercalator to the DNA. Binding to DNA increases its fluorescence 

drastically at 610 nm (λEx 480 nm) (Figure 30). Presence of ESP was not found to 

affect this fluorescence of EtBr at (10-40 µM) concentrations (Figure 30). This 

indicated that ESP was not intercalating to the CT DNA.  

3.2.3.4.5. Methyl green (MG) binding assay 

MG is major groove binder of DNA. Its absorbencies are at 254, 310, 420, and 630 

nm, however among these its absorbance is highest and specific at 630 nm and most 

appropriate for DNA interaction study [87, 88]. MG absorbance was highest in the 

buffer under free condition (Figure 31). Its binding to CT DNA reduced the 

absorbance value (Figure 31). The presence of ESP (10-40 µM) was not found to 

significantly affect the absorbance value (Figure 31). This indicated that ESP does not 

bind the major groove of CT DNA and therefore ESP which binds minor groove can 

not interfere with the binding of MG to the CT DNA major groove.  
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Figure 31. Ethidium bromide (EtBr) binding assay (CT DNA treated with ESP at 

different concentrations): A) Phosphate buffer, B) CT DNA (120 μM), C) EtBr 

(10 µM), D) ESP (40 µM), E) CT DNA (120 μM) + EtBr (10 μM), F) CT DNA 

(120 μM) + ESP (10 μM) + EtBr (10 μM), G) CT DNA (120 μM) + ESP (20 μM) + 

EtBr (10 μM), H) CT DNA (120 μM) + ESP (40 μM) + EtBr (10 μM). Different 

letters (a-d) on the top of the bars show significant differences among means 

(p≤0.05). 
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Figure 32. Methyl green (MG) binding assay (CT DNA treated with ESP at 

different concentrations): a) ESP (40 μM), b) CT DNA (120 μM), c) CT DNA 

(120 μM) + MG (20 μM), d) CT DNA (120 μM) + ESP (20 μM) + MG (20 μM), e) 

CT DNA (120 μM) + ESP (40 μM) + MG (20 μM), f) MG (20 μM). 

 

 



Thesis of Sanjeev Kumar 
                                                                                                                   Page 118 
 

3.2.3.5. 2-D analysis, MALDI-TOF MS/MS and antimutagenicity analysis in E. 

coli gene knockout strains 

Around 20 proteins were prominently up-regulated in ESP and EMS treated E. coli 

cells as compared to EMS alone treated cells (Figure 32, Table 9). Besides, around 32 

proteins were also found to be prominently down-regulated in ESP and EMS treated 

cells as compared to EMS alone treated cells (Figure 33, Table 9). Differentially 

expressed proteins those showing more than 4 fold change (increase/ decrease) and 

some proteins which prominently expressed only in the presence of EMS+ESP treated 

cells, were selected for identification using MALDI-TOF MS/MS (Table 10). The 

expression profile of these proteins in EMS and ESP+EMS were also compared with 

control (untreated) cells (Figure 34) (Table10). 

Among the up-regulated proteins, based upon their reported functionality and the fold 

change in ESP+EMS treated cells as compared to EMS, proteins like TnaA (16.3 

fold), DgcP (7.3 fold), SelA (prominently expressed only in the presence of 

EMS+ESP) and RpoH (8.5 fold) could be among the important proteins contributing 

to the observed antimutagenicity due to ESP (Table 10). Interestingly these genes 

were also found to be significantly up-regulated in ESP+EMS treated cells compared 

to control cells (Table 10).  

Thus, to confirm the role of these up-regulated proteins in antimutagenicity, their 

knockout strains were used for antimutagenicity analysis. Interestingly, mutation 

frequency of these selected knock out strains were found to be higher (~2970-

3250/108 cells) than the wild type strain (2700/108 cells) indicated their importance in 

preventing mutation (Figure 35). Antimutagenicity of ESP was ~74% in E. coli 
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MG1655 (wild type) strain whereas in E. coli MG1655 ΔdgcP (F-, Δ(araD-araB)567, 

ΔlacZ4787(::rrnB-3), λ-, ΔyeaP790::kan, rph-1, Δ(rhaD-rhaB)568, hsdR514), E. coli 

MG1655 ΔtnaA (genotype: F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-, rph-1, 

ΔtnaA739::kan, Δ(rhaD-rhaB)568, hsdR514), and E. coli MG1655 ΔselA (genotype: 

F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-, ΔselA775::kan, rph-1, Δ(rhaD-

rhaB)568, hsdR514) this activity was found to be ~48, 27, and 69%, respectively 

(Figure 35). Thus, it seems that tnaA and dgcP gene functions were found to be the 

much more required for the antimutagenicity of ESP. The tnaA gene encodes for 

tryptophanase enzyme which convert L-tryptophan to indole. The indole is known to 

inhibit the cell division of E. coli [89]. The dgcP gene encodes for diguanylate cyclase 

which synthesizes cyclic-di-GMP (c-di-GMP) via condensation of 2 GTP molecules. 

The c-di-GMP is a messenger molecule and can prevent cell division by septal 

invagination [90]. The rpoH being essential gene, its knockout study could not be 

performed.  

Some important down-regulated proteins were found to be dps (DNA protection 

during starvation protein), iptE (LPS-assembly lipoprotein) and rpsQ (30S ribosomal 

protein S17) in ESP+EMS treated cells as compared to EMS alone treated cells (Table 

10). 
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   C       D 

    

                                     (E) 

Figure 33. Two dimensional gel protein 

profiles showing: up-regulated protein in (B) 

ESP+EMS treated cells as compared to (A) 

EMS alone treated cells; down-regulated 

proteins in (D) ESP+EMS treated cells as 

compared to (C) EMS alone treated cells; (E) 

untreated control.    
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Table 9. Fold change in expression of prominent proteins in 2-D gel upon 

ESP+EMS treatment as compared to EMS. 

Fold change  Proteins up-
regulated 

Protein down-
regulated 

≤ 2.5 7 16 

2.6 – 4 0 6 

4.1 – 9 6 1 

> 9 3 5 

Exclusive protein (observed only in 
ESP + EMS treated cells) 

4 4  
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Table 10. Fold change (> 4) in expression of proteins in 2-D gel upon ESP+EMS 

treatment as compared to EMS and their identity based on MALDI-TOF- 

MS/MS. 
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Figure 34. Antimutagenicity (RifR assay) of ESP in wild type (E. coli MG1655) 

and knockout strains upon EMS treatment. Different letters (a-f) on the top of 

the bars show significant differences among means (p≤0.05). 
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Mutations are one of the prime causes for many chronic diseases including cancer 

[46]. The mutagenic agents such as chemicals directly or post activation, damages the 

DNA (Figure 35) [25]. Besides, radiation and oxidants too damages the DNA leading 

to mutations [49] (Figure 35).  

In the current study, naphthoquinone rich foods, spinach, lettuce, iceberg lettuce, 

cabbage, broccoli and French bean were analyzed for antimutagenicity using aqueous, 

methanolic, total soluble phenolic and quinonic extracts.Variations were observed in 

antimutagenicity of extracts as also reported earlier in the cultivar of rose and apple 

[46, 48]. This could be due the presence of bioactive(s) in different concentration due 

to their differential hydrophilicity/ hydrophobicity [52]. The yield was found to have 

weak correlation with antimutagenicity again indicated the significance of 

phytoconstituent in this activity. Among the naphthoquinone rich foods, only spinach 

quinone extract displayed highest antimutagenicity as compared to its phenolic 

extract. Thus, from the quinone extract of spinach antimutagenic fluorescent 

compound was characterized as an ethoxy-substituted phylloquinone (ESP). Another 

naphthoquinone derivative (2-methyl-1,4,4a,8a-tetrahydro-endo-1,4-

methanonaphthalene-5,8-dione) has been reported earlier from nutmeg (Myristica 

fragrance) to be fluorescent [91]. 

This novel compound possessed -OCH2CH3 instead of -CH3 in case of phylloquinone 

at the 2nd position. Ethoxy-substituted anthocyanin, i.e., peonidin was reported earlier 

to contribute to higher antimutagenicity [46]. In other study, 13 flavonoids and related 

compounds were reported from spinach, which displayed antimutagenicity against 

dietary carcinogen 2-amino-3-methylimidazo [4,5-f ]-quinoline in S. typhimurium 

TA98 [92]. However, only 5,6,3′,4′-tetrahydroxy-7-methoxyflavonol 3-O-disaccharide 
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was reported as a potent antimutagen. In the current study, too, among different TLC 

purified quinones, ESP displayed maximum antimutagenicity.  

Antimutagenicity of ESP was compared with standard naphthoquinones. High 

antimutagenicity in ESP, plumbagin and juglone, but comparatively less in 

phylloquinone and menadione indicated that -OH / -OCH2CH3 substitutions 

contributed to the antimutagenicity of naphthoquinones. In another study, K vitamins 

such as phylloquinone (K1), menadione (K3), and 1,4-diacetoxy-2-methylnaphthalene 

(K4) were analyzed for antimutagenicity against mutagens such as heterocyclic amine 

(HCA) where phylloquinone was found to be the least antimutagenic [93]. Naturally 

occurring quinones such as biflorin and plumbagin have been reported earlier for 

antimutagenicity against various mutagens such as hydrogen peroxide, 2-

nitrofluorene, 3-nitrofluoranthene and l-nitropyrene [94, 95]. In general, most 

quinones displayed poor antioxidant activity but high antimutagenicity indicating the 

lack of correlation between these two important bioactivities. 

The mutagen induced DNA damages are controlled by antimutagens especially from 

diet by various mechanisms such as mutagen inactivation/ transformation, antioxidant 

activity, regulatory responses and DNA repair (Figure 35) [36].  Antimutagens can be 

classified as desmutagens, which inhibits interaction between mutagen and DNA; and 

bio-antimutagens, which prevent mutagenesis after DNA damage by the mutagen 

mostly through induction of DNA repair [96]. The characterized bioactive compound 

ESP was also analyzed for the mechanism of antimutagenicity against ethyl 

methanesulfonate (EMS). The simultaneous treatment or co-incubation of ESP and 

EMS resulted in similar level of antimutagenicity. This indicated that the compound 

ESP does not directly inactivate the mutagen (EMS) through either complex formation 
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or modification. TLC analysis of co-incubated ESP and EMS reconfirmed this 

finding. Several compounds have been reported which directly inactivate mutagen. 

Co-incubation of phenolic extract from Fresh bean and aflatoxin B1 was reported to 

significantly reduce the mutagenicity which indicated possibility of chemical complex 

formation [44]. Similarly, gallic acid displayed antimutagenicity possibly by 

scavenging electrophilic mutagens [97]. In the post-treatment condition too, ESP 

displayed significant reduction in mutagenicity which indicated this compound is 

acting as bio-antimutagen. The antimutagenicity of ESP is very significant in 

preventive and treatment models such as human lymphoblast cell line. 

Role ESP in reducing the oxidative stress was also ruled out. Also, induction of 

oxidative stress by EMS was quite low. Similarly, in other studies too, different 

cultivars of apple, honey, and various vegetables, the extract or purified bioactives did 

not display good correlation between the antioxidant and antimutagenic activities (40, 

47, 48]. Besides, antioxidant related enzymes like sodC (superoxide dismutase), xthA 

(oxidative repair) etc were up-regulated in menadione which did not display 

significant antimutagenicity [98]. However, certain compounds like thiols (captopril, 

cysteine, and glutathione) and plumbagin have both antioxidant and antimutagenic 

activities but mechanism of antimutagenicity was not found to be primarily due to 

antioxidant enzymes [98, 99].     
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Figure 35. Possible mechanism of mutagenesis and antimutagenesis. 
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During mechanistic study, ESP was found to bind to the minor groove of DNA which 

could be one of the mechanisms for its antimutagenicity as minor groove is often 

recognized by transcription factors or other cellular DNA targeted proteins and such 

interaction may lead to change in gene expression profile [100, 101, 102, 103]. The 

minor groove binding is preferred over intercalative binding for therapeutics such as 

cancer due its lower toxicity and non-mutagenic effects to normal cells [104]. 

However, some intercalators such as quercetin and troxerutin have also been reported 

to be non- toxic to normal cells [73, 105]. 

During proteomic analysis, genes like tnaA, dgcP, selA, and rpoH were up-regulated 

in ESP and EMS co-treated cells as compared to EMS alone treated cells. However, 

TnaA protein was down regulated but up-regulation in DgcP and RpoH proteins (< 4 

fold) was observed in EMS treated cells as compared to control cells. Alkylation 

damage to DNA has been reported to change the expression of genes related to 

replication, repair, and product that block cell division as an adaptive response [106].  

Further, antimutagenicity analysis in E. coli gene knockouts indicated role of tnaA and 

dgcP in observed antimutagenicity. The gene tnaA encodes for tryptophanase which is 

involved in biosynthesis of indole. It is considered important for inhibiting division by 

an ionophore-based mechanism and allowing repair and maintenance of cells during 

the period of starvation [107]. Indole is a proton ionophore that make the cytoplasmic 

membrane permeable to hydrogen ions leading to the reduction in electrochemical 

potential (ECP) across the cytoplasmic membrane.This is known to inhibit cell 

division in E. coli by preventing MinCD oscillation as well as formation of the FtsZ 

ring which is a prerequisite for division [89, 108] (Figure 36). Indole has been also 
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reported to increase the survival of cells under stress conditions like antibiotic, high 

temperature etc [109].  

The dgcP gene is involved in c-di-GMP formation which is a messenger molecule 

which can bind with another diguanylate cyclase (YfiN) under stress and exposes its 

binding sites for FtsZ and ZipA and thus retains the Z ring at the mid cell but stalls 

cell division by preventing initiation of septal invagination (Figure 36) [90, 110]. FtsZ 

assembly is the major target of cell division checkpoints during stresses, including 

DNA damage, defective cell wall synthesis and nutrient starvation [111].  

The up-regulation of these genes may retard the cell growth and provide additional 

time period for proof reading leading to DNA repair. Cell cycle arrest in response to 

DNA damage is common in eukaryotic and prokaryotic cells [112, 113]. Thus, the 

proposed mechanism of antimutagenicity may hold true for other mutagens with 

different mechanism. However, the extent of repair and thus antimutagenicity may 

vary based upon mutagen. The inhibitors of tryptophanase enzyme like S-

phenylbenzoquinone-L-tryptophan, alpha-amino-2-(9,10-anthraquinone)-propanoic 

acid, L-tryptophane-ethylester, and N-acetyl-L-tryptophan may act as inhibitors of 

antimutagenicity of ESP [114]. Similarly, inhibitors of diguanylate cyclase such as N-

(4-anilinophenyl) benzamide and N-{[(2-phenylethyl) amino] carbonothioyl} 

benzamide may act as inhibitors of antimutagenicity of ESP [115].  

The rpoH gene encodes for RNA polymerase sigma factor that initiate the 

transcription of heat shock genes [116]. Interestingly, this gene has been shown to be 

link to cell division events [117]. However, its role in antimutagenecity could not be 

ascertained due to non-existence of its knockout strain.  
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Due to cell division inhibition, genes like dps (protect DNA during starvation), iptE 

(assembly of lipopolysaccharide at the surface of the outer membrane) and rpsQ (30S 

ribosomal protein S17) have been found to be down-regulated in ESP and EMS co-

treated E. coli cells as compared to EMS alone treated cell. Mechanisms of 

antimutagenicity differ based upon structure of compound. In our other study, 

naphthoquinones, plumbagin and juglone were reported to display antimutagenicity 

by up-regulation of genes like speE (spermidine synthase) and ybaK (tRNA  editing) 

genes known to be involved in preventing mistranslation (Kumar et al 2013).   

Thus, overall expression profile indicated inhibition of cell division as major 

mechanism of antimutagenicity by ESP. The possible mechanism of antimutagenicity 

by ESP has been displayed by a model (Figure 37). 
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    A      B 

Figure 36. Role in cell division inhibition of A) TnaA and B) DgcP proteins in 

bacteria.  

Note: Structures taken from Google images (https://mbio.asm.org; 

http://www.pnas.org). These are required for the basic understanding of the 

problem addressed in the current study. 
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Figure 37. Model explaining mechanism of antimutagenicity by ESP. ESP 

interacts with minor groove of DNA leading to up-regulation of genes like tnaA 

and dgcP which plays important role in cell division inhibition. Retardation of 

cell division provides additional time for the repair of DNA damage and 

mutagenesis. 
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Chapter 5: 

Summary and Conclusions 
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Naphthoquinone rich vegetables such as spinach, lettuce, iceberg lettuce, cabbage, 

broccoli and French bean were analyzed for antimutagenicity using solvent extracts. 

Naphthoquinone extract from spinach displayed high antimutagenic activity as 

compared to other naphthoquinone rich vegetables. The extract was resolved to four 

different compounds in TLC. A fluorescent compound (C4) displayed highest 

antimutagenicity and found to have high purity level when analyzed using HPLC. The 

compound was characterized using biochemical, chromatography and spectral 

analysis as an 2-ethoxy-3-(3,7,11,15-tetramethyl hexadec-2-ethyl) naphthaquinone-

1,4-dione or in short ethoxy-substituted phylloquinone (ESP).  

ESP was not found to interact directly to the mutagen. Induction of oxidative stress or 

its reduction was not found to be the major contributing factor to the observed 

antimutagenicity. A strong DNA binding activity was observed at minor groove which 

could be one of the mechanisms for its antimutagenicity as it is often recognized by 

transcription factors or other cellular DNA targeted proteins and such interaction may 

lead to change in gene expression profile. The 2-D proteomics profile, mass 

spectrometry and E. coli gene knockout studies confirmed the role of tnaA and dgcP 

genes reported to inhibit cell division in observed antimutagenicity of ESP. 

Retardation of cell division provides additional time for the repair of DNA damage 

and mutagenesis.  

ESP displayed significantly high antimutagenicity as compared to phylloquinone. 

Here, ethoxy (-OCH2CH3) was found to be important for antimutagenicity. In case of 

other structural analogues of naphthoquinones (plumbagin, menadione and Juglone), 

plumbagin and juglone (having -OH group in their structure) displayed 

antimutagenicity. This thus indicated that functional groups like -OCH2CH3/ -OH are 
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important for antimutagenicity of naphthoquinones. In general, antioxidant capacity of 

naphthoquinones was found to be quite low. Findings of this study provided 

fundamental information pertaining to functional and nutraceutical potential of dietary 

ingredients. 
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