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SUMMARY 

  In an attempt to identify the genes involved in conidiation, an SSH (suppression 

subtractive hybridization) library was earlier constructed in our laboratory where cDNA 

ofa non-conidiating mutant strain was subtracted from the cDNA of the conidiating wild 

type strain. Further expression analysis of the genes from the library led to identification 

of three genes that were down-regulated in the mutant. A homology search revealed that 

these three proteins are orthologs of translationally controlled tumour protein (Tcp1), 

Proline-, glycine-, tyrosine-rich protein (Pgy1) and Ecm33. The functions of none of 

these genes are known in Trichoderma, and hence, the present study was undertaken to 

unravel the role of these three genes in Trichoderma biology.   

 For functional characterization of the genes, independent knockout mutants (∆tcp1, 

∆pgy1 and ∆ecm33) were generated by split marker PCR technique using homologous 

recombination approach. The role of these genes in conidiation, mycoparasitism, 

antibiosis, secondary metabolite biosynthesis, cell wall integrity, hydrophobicity and 

stress responses have been studied. All these independent mutants showed slower radial 

growth rate on PDA compared to wild type (WT) but among these mutants, highest 

reduction in radial growth was recorded in ∆tcp1 mutant. ∆tcp1 mutants also showed 

significant decrease in dry weight compared to WT. ∆pgy1 and ∆ecm33 mutants showed 

significant decrease in conidiation in lab made PDA, HiMedia PDA and VMG media 

while these mutants had higher number of chlamydospores in shake culture compared to 

WT and ∆tcp1 mutant.  

 The role of these genes in stress tolerance was elucidated by comparing the change in 

radial growth under stress conditions. The estimated IC50 value of WT strain of T. virens 

was 600 µg/ml for Congo red, 1.25 mM for menadione sodium bisulfite, 2.5% for NaCl 
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and 150 µg/ml for SDS. On the basis of changes in radial growth of mutants, Δtcp1 

mutant was found to be sensitive to salt while highest sensitivity to SDS and Congo red 

was noticed in Δecm33 mutant.  Treatment of mycelia with cell wall lysing enzyme 

cocktail confirmed that the ∆ecm33 and ∆tcp1 mutants had significant alteration in cell 

wall integrity. Δecm33 mutant also showed higher sensitivity towards cell wall 

destabilizing agent Congo red and SDS, compared to WT. TEM images of mycelia of all 

the mutants showed changes in cell wall structure compared to WT.  

 Hydrophobicity test on Δtcp1, Δpgy1 and Δecm33 mutants and WT confirmed that 

Δecm33 mutant lost the hydrophobicity while WT and other mutants retained the 

hydrophobicity. Confrontation assay confirmed that, ∆tcp1, ∆pgy1 and ∆ecm33 mutants 

lost the mycoparasitic activity against the plant pathogens Rhizoctonia solani and 

Sclerotium rolfsii. While ∆pgy1 and ∆ecm33 mutants also lost the mycoparasitic activity 

against the plant pathogen Pythium aphanidermatum but ∆tcp1 mutant retained it. Culture 

filtrate of ∆pgy1 and ∆ecm33 mutants also lost the antibiosis activity against the plant 

pathogen P. aphanidermatum. HPLC analysis of culture filtrate showed reduced viridin 

biosynthesis in Δpgy1 and Δecm33 mutants. In GC-MS analysis, Δtcp1, ∆pgy1 and 

∆ecm33 mutants showed significant changes in volatile compound biosynthesis compared 

to WT. The effect of Trichoderma on maize root growth was assessed in tubes. Maize 

seedlings inoculated with chlamydospores from ∆pgy1 and ∆ecm33 did not show any 

significant change in fresh weight of roots compared to WT but maize seedlings treated 

with ∆tcp1 showed significant reduction in fresh weight of roots compared to WT. 
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6.0 INTRODUCTION: 

 Biocontrol mechanisms of the mycoparasitic fungus Trichoderma consist of 

mycoparasitic activity, antibiosis and induced resistance. Competition for the space and 

nutrition is one of the best strategies to control pathogens. Trichoderma species and 

pathogens compete for the space and nutrition and Trichoderma grow very fast towards the 

pathogens (58). Trichoderma spp. have higher ability to mobilize soil nutrients as compared 

to other fungal pathogens which leads to malnourishment and consequently, death of 

pathogens (22). The sequence of events involved in mycoparasitism includes host 

recognition, penetration and killing using enzymes like β-1,3-glucanase, chitinases and 

proteases, which degrade the fungal cell wall (60, 61). The transcription factor Ste12, seven 

transmembrane protein Sfp2, and methyltransferase Lae1 are involved in mycoparasitic 

activity in T. atroviride (119, 120, 121). Adenylate-cyclase-encoding gene tac1 in T. virens is 

involved in mycoparasitic activity (130). 

 Trichoderma spp. inhibit the growth of the plant pathogenic fungi by producing the 

antimicrobial compounds called antibiotics and the process is called antibiosis. These low 

molecular weight compounds are mainly terpenes, peptaibols, polyketides, alkyl pyrones, 

isonitriles, and sterols (68). O-Methyltranserase gene (omtB) and cytochrome P450 (tri13) are 

involved in demethoxy-viridin and viridin biosynthesis, while NRPS gene (glv21) has key 

role in biosynthesis of gliovirin in T. virens (134, 135).  The induced resistance works at a 

location away from the application site and is effective against bacterial, fungal and even 

viral pathogens (28). Induced resistance in plant hosts is governed by three different 

pathways.  Out of these three pathways, two pathways come into play using the expression 

and assembly of PR proteins, and the third pathway is based on rhizobacteria-induced 

systemic resistance (77). Chromatin remodeling protein, histone deacetylase (Hda-2) of T. 



168 
 

atroviride is involved in plant defense against foliar pathogens Botrytis cinerea and 

Pseudomonas syringae (19). Not only proteins but some secondary metabolites are also 

reported to be involved in induced resistance. The trichovorin-type 18-residue peptaibiotics 

of T. virens are involved in induced resistance in cucumber against a bacterial pathogen (83). 

Mukherjee et al. identified a PKS/NRPS hybrid enzyme which is involved in induced 

resistance in maize (84). 

6.2 Materials and Methods:  

            Confrontation assays (fresh mycelial discs of T. virens strains and the plant pathogen 

P. aphanidermatum were seeded opposite to each other on PDA plate and allowed to grow 

towards each other) of T. virens WT and mutants were performed against plant pathogenic 

fungus R. solani, P. aphanidermatum and S. rolfsii. Viability of pathogens P. 

aphanidermatum and S. rolfsii from confrontation assay plates was observed on PDA 

amended with 10 ppm benomyl fungicide, a selective inhibitor of Trichoderma. Antibiosis 

assay was performed with the culture filtrate extracts of WT and mutants. Three mycelial 

plugs of P. aphanidermatum were seeded towards the periphery and Trichoderma culture 

filtrate extract was applied at the centre of the plate in a well. Quantitation of viridin 

biosynthesis by WT and mutants was done by HPLC and comparison of volatile compounds 

produced by WT and mutants was done by the GC-MS analysis. Maize root growth assay 

was performed with chlamydospores of WT and mutants. 
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6.3 RESULTS:  

6.3.1 Confrontation assay against the plant pathogens:  

 Confrontation assays (a standard method to follow antagonism between fungal 

isolates) were used to test the ability of the mutants to suppress and overgrow on plant 

pathogens.  The pathogen and Trichoderma colonies were placed simultaneously on the same 

culture plate but at opposite ends.  

6.3.1.1 Confrontation assay against the plant pathogen Sclerotium rolfsii: 

To know the role of tcp1, pgy1 and ecm33 genes in mycoparasitic activity against the 

plant pathogen Sclerotium rolfsii, confrontation assays were performed with plant pathogen 

S. rolfsii and T. virens strains. On opposite ends of the PDA plate, one fresh mycelial disc 

from Trichoderma strains (WT, ∆tcp1, ∆pgy1 and ∆ecm33) and one fresh mycelial disc of 

plant pathogen Sclerotium rolfsii was inoculated and allowed to grow towards each other. 

After seven days of inoculation, test pathogen Sclerotium rolfsii grew over the ∆tcp1, ∆pgy1 

and ∆ecm33 mutants while at this time, wild type strain of Trichoderma overgrew and cover 

most of the pathogen (Fig 6.1).  Viability of the test pathogen from the confrontation assay 

plates was checked on PDA plates having 10 ppm benomyl, a selective inhibitor of 

Trichoderma. The pathogen taken from the confrontation assay plate with Trichoderma wild 

type strain was not viable on benomyl plate but the pathogen taken from the confrontation 

assay plates with either of three mutants (∆tcp1, ∆pgy1 and ∆ecm33) grew on benomyl 

amended PDA plates as the pathogen was resistant to benomyl (Fig. 6.2), These results 

indicated that, mutants (∆tcp1, ∆pgy1 and ∆ecm33) lost the mycoparasitic ability against the 

plant pathogen Sclerotium rolfsii. 
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Fig. 6.1 Confrontation assay of T. virens WT and mutants against plant pathogenic 

fungus S. rolfsii. Fresh mycelial discs of T. virens strains and plant pathogen S. rolfsii were 

seeded opposite to each other on PDA plate and allowed to grow towards each other. 

.  

 

Fig. 6.2 Viability of S. rolfsii taken from confrontation assay plate. One 5 mm                           

disc of S. rolfsii from S. rolfsii plate and one each from the dual culture plates                                            

(S. rolfsii  with WT, S. rolfsii with ∆tcp1, S. rolfsii with ∆pgy1 and S. rolfsii with ∆ecm33)                          

were seeded at centres of PDA plates amended with 10 ppm benomyl. 
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6.3.1.2 Confrontation assay against the plant pathogen Pythium aphanidermatum: 

The mycoparasitic activity of mutant strains were also compared with wild type strain 

of T. virens against the plant pathogen Pythium aphanidermatum using confrontation assay. 

After seven days of inoculation of the pathogen and T. virens strains at opposite ends of a 

plate, WT and all the three mutants (∆tcp1, ∆pgy1 and ∆ecm33) grew over the pathogen (Fig. 

6.3). The viability of the pathogen was checked on PDA plate amended with 10 ppm 

benomyl. The pathogen from the confrontation assay with WT or ∆tcp1 mutant was unable to 

grow on benomyl plate but the pathogen from the confrontation assay with ∆pgy1 or ∆ecm33 

grew on benomyl pate (Fig. 6.4). The experiment confirmed that, ∆tcp1 retained the 

mycoparasitic activity against P. aphanidermatum but ∆pgy1 and ∆ecm33 lost their 

mycoparasitic ability. 
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Fig. 6.3 Confrontation assay of T. virens WT and mutants against plant pathogen P. 

aphanidermatum.  Fresh mycelial discs of T. virens strains and plant pathogen P. 

aphanidermatum were seeded opposite to each other on a PDA plate and allowed to grow 

towards each other. 

 

 

 

Fig. 6.4 Viability of P. aphanidermatum taken from confrontation assay plate. One 5 mm 

disc of plant pathogen P. aphanidermatum from only P. aphanidermatum plate and one each 

from the dual culture plates (P. aphanidermatum with WT, P. aphanidermatum with ∆tcp1, P. 

aphanidermatum with ∆pgy1 and P. aphanidermatum with ∆ecm33) were seeded at centres 

of PDA plates amended with 10 ppm benomyl.  
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6.3.1.3 Confrontation assay against the plant pathogen Rhizoctonia solani:  

 The confrontation assay was also performed with the plant pathogen Rhizoctonia 

solani. After 6 days of incubation, Trichoderma wild type strain grew over the pathogen. In 

confrontation assay with pathogen, ∆tcp1 strain inhibited the growth of pathogen. Even after 

10 days, ∆tcp1 and the plant pathogen were not able to over-grow each other. In 

confrontation assay between ∆pgy1 mutant and plant pathogen R. solani, pathogen overgrew 

on the ∆pgy1 mutant strain of T. virens, but ∆ecm33 mutant was growing even till 10 days of 

incubation because of very slow growth over the pathogen (Fig. 6.5).  

 

Fig. 6.5 Confrontation assay of T. virens WT and mutants against plant pathogenic 

fungus R. solani.  Fresh mycelial discs of T. virens strains and plant pathogen R. solani were 

seeded opposite to each other on a PDA plate and allowed to grow towards each other. 
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6.3.2 Antibiosis assay against the plant pathogen P. aphanidermatum and biosynthesis of 

antimicrobial secondary metabolite viridin:  

  Fifty µl culture filtrate extracts from WT (10 times concentrated) were placed in a 

well at the centre of a PDA plate and the plates were inoculated with the test pathogen P. 

aphanidermatum. A distinct zone of inhibition was observed. The zone of inhibition was also 

observed with the culture filtrate of ∆tcp1 knockout mutant.  Filtrates obtained from ∆pgy1 

and ∆ecm33 mutants, in contrast, did not produce any zone of inhibition, indicating 

attenuation of antibiotic properties (Fig. 6.6). Twenty µl of extract was used for high pressure 

liquid chromatography (HPLC) analysis using acetonitrile: aqueous 0.1% phosphoric acid 

(72:28) as running solvent and peaks were detected at 254 nm. HPLC analysis revealed that, 

there was no significant difference between the production of antimicrobial secondary 

metabolite viridin by WT and Δtcp1 mutants, but Δpgy1 (22.28% of WT) and Δecm33 

(11.33% of WT) mutants produced significantly less amount of viridin (Fig. 6.7 A, B).  

 

Fig. 6.6 Antibiosis assay.  Inhibition of Pythium aphanidermatum by culture filtrate extracts                 

of WT, ∆tcp1, ∆pgy1 and ∆ecm33 mutants after 24 hours of incubation. Three mycelial plugs 

were seeded towards the periphery, with Trichoderma filtrate applied at the centre of the plate.  

Note the absence of inhibition by culture filtrates of the ∆pgy1 and ∆ecm33 mutants.  
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 Fig. 6.7 HPLC profiles of culture filtrate extracts of T. virens WT and mutant strains ∆tcp1, 

∆pgy1 and ∆ecm33 (A) and quantification of viridins synthesized by T. virens WT and 

mutant strains ∆tcp1, ∆pgy1 and ∆ecm33 (B) *denotes viridin. **: P< 0.01. 

A 

B 
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6.3.3 Biosynthesis of volatile secondary metabolites: 

 The headspace-solid phase micro-extraction (HS-SPME) and gas chromatography–

mass spectrometry (GC-MS) techniques were used for detection of volatile compounds in 

wild type and mutants. The chromatogram of WT showed 16 peaks for volatile compounds, 

while Δtcp1 mutant had only seven peaks (including one peak representing a volatile 

compound which was not present in WT). ∆tcp1 mutant also showed one big peak in GC-MS 

chromatogram which was neither present in WT nor had similarity with the compounds in 

library. GC-MS analysis of Δpgy1 and ∆ecm33 showed only two peaks but theses peaks were 

uncommon among Δpgy1 and ∆ecm33 mutants (Fig. 6.8, 6.9). The details of the volatile 

compounds are given in Table 6.1. 

 

 

 

 

 

 

 

Fig. 6.8 GC-MS analysis of WT strain of Trichoderma virens  

 

 

Retention time (min) 
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Fig. 6.9 GC-MS analysis of WT and mutant strains (Δtcp1, Δpgy1 and ∆ecm33) of T. virens 

 

Table 6.1 - List of volatile compounds detected in GC-MS analysis of WT and mutant strains 

Δtcp1, Δpgy1 and ∆ecm33 of T. virens  

Retention time (min) 

WT ∆tcp1 ∆ecm33 ∆pgy1 
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6.3.4 Trichoderma-plant interaction: 

6.3.4.1 Effect on fresh weight of maize roots: 

The interaction effect of Trichoderma and maize plants on fresh weight of roots was recorded 

using root growth assay. Seeds were inoculated in potting-mix having chlamydospores of WT 

and mutants, and one set of tubes with potting-mix devoid of chlamydospores were used as a 

control. Maize seedlings grown in soil infested with chlamydospores of ∆tcp1 mutant showed 

significant reduction in fresh weight of roots as compared to fresh weight of roots of maize 

seedlings inoculated with the chlamydospores of WT (Fig. 6.10 and 6.11). Maize seedlings 

grown in soil inoculated with chlamydospores of ∆pgy1 and ∆ecm33 did not show any 

significant changes in fresh weight of roots compared to WT.  
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Fig. 6.10 Root growth assay. To assess the change in fresh weight of maize roots, the 

experiment was performed in glass tubes. Each glass tube was filled with 20 g autoclaved 

white sand (bottom) and 30 g potting-mix. The potting-mix was mixed with chlamydospores 

of WT and mutants at a rate of 1.0 g of chlamydospores per 500 g potting mix.  

 

Fig. 6.11 Quantitative estimation of fresh weight of maize roots. Seeds of maize were 

inoculated with chlamydospores of WT and mutants. Mock was taken as negative control 

with no inoculation of chlamydospores ***: P< 0.001, *: P< 0.05. 
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6.4 DISCUSSION:  

The process of mycoparasitism starts from the recognition and adhesion of 

Trichoderma to host pathogens, which is later followed by hydrolysis of host hyphae using 

lytic enzymes, and concludes with uptake of host cellular contents (367). T. virens has 

mycoparasitic activity against the plant pathogens Sclerotium rolfsii, Pythium 

aphanidermatum and Rhizoctonia solani. To know the roles of tcp1, pgy1 and ecm33 genes in 

mycoparasitic activity against the plant pathogens, confrontation assays were performed with 

wild type and mutant strains of T. virens against the plant pathogens. ∆tcp1, ∆pgy and 

∆ecm33 mutants lost the ability to overgrow the pathogen Sclerotium rolfsii, instead, the 

pathogen grew over the mutant strains of Trichoderma (Fig 6.1) and pathogen from these 

dual culture plates grew on PDA plate amended with 10 ppm benomyl (Fig. 6.2).  

The mycoparasitic activity of mutants was also compared with wild type against the 

plant pathogen Pythium aphanidermatum. WT, ∆tcp1, ∆pgy1 and ∆ecm33 mutants grew over 

the pathogen and fully covered the pathogen (Fig. 6.3).  The pathogen from confrontation 

assays with WT or Δtcp1 did not grow on PDA amended with 10 ppm benomyl. The 

pathogen from confrontation assays with ∆pgy1 or ∆ecm33 grew on PDA amended with 10 

ppm benomyl (Fig. 6.4). The experiment concluded that, ∆tcp1 retained the mycoparasitic 

activity against P. aphanidermatum, but ∆pgy1 and ∆ecm33 mutants lost their ability of 

mycoparasitism against this pathogen.  ∆tcp1, ∆pgy1 and ∆ecm33 mutants lost their 

mycoparasitic activity against the plant pathogen Rhizoctonia solani. In dual culture assay, 

Rhizoctonia solani grew over the ∆pgy1 and ∆ecm33 mutants, but in dual culture with ∆tcp1 

mutant, neither the mutant nor the pathogen grew over each other even after 10 days of 

inoculation at opposite ends of PDA plate (Fig. 6.5).  T. virens synthesized the antimicrobial 

secondary metabolite viridin which has antibiosis activity against the plant pathogen. Culture 
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filtrate of ∆tcp1 mutant retained antibiosis activity but culture filtrates of ∆pgy1 and ∆ecm33 

mutants lost their activity against the phytopathogen P. aphanidermatum (Fig. 6.6). This 

result was further confirmed by quantitation of antimicrobial antibiotic viridin, by HPLC 

analysis. Culture filtrate extracts of ∆pgy1 and ∆ecm33 mutants showed reduced viridin 

biosynthesis but no significant change was observed in culture filtrate extract of ∆tcp1 

mutants as compared to WT (Fig. 6.7 A, B). The mutants also showed changes in the profile 

of volatile compounds as compared to wild type. The gas chromatograms of WT, Δtcp1, 

∆pgy1 and ∆ecm33 mutants showed 16, 7, 2 and 2 volatile compounds corresponding peaks, 

respectively (Fig. 6.8, 6.9, Table 6.1).    

 Many genes are involved directly or indirectly in mycoparasitic activity of 

Trichoderma spp. In Trichoderma harzianum, the overexpression of the nox1 gene showed 

negative effect on its mycoparasitic activity against Pythium ultimum and upregulation of 

synthesis of lytic enzyme (368). Chitinase, glucanase and protease activities are involved in 

host cell wall degradation (24). Integration of multiple copies of cell wall degrading enzymes 

like chitinase, β-glucosidase in Trichoderma genome increased biocontrol activity against the 

pathogen (369). Trichoderma strains overexpressing endochitinase gene (ech42) or protease 

gene (prb1) showed better biocontrol activities against the pathogen than the wild type strain 

of Trichoderma (370, 371). T. atroviride Tal6 effector protein is involved in mycoparasitism 

and plant association (372). Mazrou et al., highlighted the possibility of T. harzianum in 

integrated pest management as an effective biological agent (373). Recent report also 

confirmed that, light also have an important effect on the mycoparasitic activity of T. 

atroviride (374).  

 The Δlae1 mutants abolished sporulation triggered by mechanical injury, increased 

sensitivity to oxidative stress, loss of mycoparasitism and under-expression of several genes 
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that get upregulated during mycoparasitic interaction like proteases, glucanases and 

polyketide synthases (120).  The Δepl1 mutants showed changes in mycoparasitic coiling 

process and expression pattern of plant defense genes compared to the wild type (122). 

 The transcription factor THCTF1 in T. harzianum has important role in biosynthesis 

of volatile secondary metabolite 6-pentyl-pyrone (136). Pachauri et al. confirmed the role of 

glyceraldehyde-3-phosphate dehydrogenase in biosynthesis of volatile sesquiterpenes in T. 

virens (137). In filamentous fungi, the intracellular siderophores have important roles in iron 

homeostasis which control iron related metabolic processes (375). A nonribosomal peptide 

synthase gene, tex10 was predicted to be involved in synthesis of ferricrocin, an intracellular 

siderophore. The ∆tex10 mutants showed enhanced growth rate, reduced conidiation, 

hypersensitivity to oxidative stress, reduced synthesis of gliotoxin, and enhanced ability to 

colonize maize seedling roots as compared to wild type (59). Novel metabolite TM2 from the 

T. atroviride has potential therapeutic activity against prostate cancer (376). ∆tri10 mutants 

showed increase in production of ergosterol and polyketide compound aspinoloids, which is 

due to increase in intracellular levels of farnesyl diphosphate resulting from loss of 

trichothecene production (377).  

  Root system is a critical medium for the interaction between Trichoderma spp. and 

plants. Trichoderma treatments enhance the root biomass production and root hair 

development in plants (378, 379). The treatment of tomato plants with T. harzianum based 

formulations enhanced the shoot weight, root weight, and dry weight of tomato plants even 

when inoculated with plant pathogen Rhizocotnia solani (166). Trichoderma virens treatment 

promoted lateral root growth and enhanced biomass production through an auxin-dependent 

mechanism in Arabidopsis (380). 
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An SSH (suppression subtractive hybridization) library was constructed in our 

laboratory, where a non-conidiating mutant strain (M7) was subtracted from the conidiating 

wild type strain. Three clones, C5, F3 and F6, which were under-expressed in the mutant 

when grown on agar as compared to shaking culture, were selected for detailed study in the 

present thesis. A homology search revealed that C5, F3 and F6 are orthologs of 

translationally controlled tumour protein (Tcp1), proline-, glycine-, tyrosine-rich protein 

(Pgy1) and Ecm33.  These proteins are highly conserved across Trichoderma spp. as well as 

other fungi. The translationally controlled tumour proteins are highly conserved in eukaryotes 

and are involved in varied cellular and disease processes, while Pgy1 is a novel fungal protein 

(270). T. virens Pgy1 protein have XYPPX-like motifs at the N-terminus and a cysteine-rich 

CYSTM-like motif at the C-terminus. PGYRP proteins from organisms other than 

Trichoderma genus either have XYPPX domain at N-terminus or cysteine-rich 

transmembrane domain at C-terminus.  Ecm33 is a glycosylphosphatidyl inositol anchored 

protein (GPI anchored) and is mainly involved in cell wall integrity (305).  

 Independent knockout mutants for tcp1, pgy1 and ecm33 genes were generated using 

split marker PCR through homologous recombination approach. All the knockout mutants 

were purified through single spore method and purity was confirmed by PCR and RT-PCR. 

All the knockout mutants have single copy integration of hygromycin resistance cassette in 

the genome as confirmed by real time PCR. 

 The morphology of the mutants had visible differences compared to WT on all the 

three media used in this study. Mutants of all the three genes showed slow radial growth on 

PDA compared to WT and highest reduction in radial growth was recorded in ∆tcp1 mutant. 

The radial growth of ∆pgy1 and ∆ecm33 mutants was significantly less as compared to WT. 

Significant decrease in dry weight was observed in ∆tcp1 mutant but there were no 

significant differences in dry weight of ∆pgy1 and ∆ecm33 mutants. Significant decrease in 
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conidia count was recorded in 3, 5 and 7-days old cultures of ∆tcp1, ∆pgy1 and ∆ecm33 

knockout mutants on lab made PDA, HiMedia made PDA and VMG media. Microscopic 

analysis of cultures of WT and mutants on lab made PDA confirmed the delayed conidiation 

in ∆pgy1 and ∆ecm33 mutants. Three-days old cultures of WT and mutants showed 

conidiophores however, there were no conidia on the conidiophores of ∆pgy1 and ∆ecm33 

mutants. Conidiation is a tightly regulated developmental process in many fungi, including 

Trichoderma spp., and information about these genes in Trichoderma would be very useful 

for the production of commercial biofungicide formulations. 

 Not only primary metabolites related genes but also the genes involved in secondary 

metabolites synthesis are involved in conidiation in filamentous fungi. Recent reports 

highlighted that histone deacetylase (hda2) and non-ribosomal peptide synthetase (tex10) 

genes are involved in conidiation in T. atroviride and T. virens, respectively (59, 259). 

Transcription factors KpeA and MrSwi6 are involved in conidiation in Aspergillus oryzae 

and Metarhizium rileyi, respectively (344, 345). Transcription factors Ada-6 and Chc regulate 

the conidiation in model fungus N. crassa (346). Effect of gene deletion was also seen on the 

growth and morphology of mutants under nutrient starvation condition imposed by putting 

fresh mycelial disc of WT and mutant cultures on the centre of 1% agar plate. From day three 

onwards, the area around the disc became green due to presence of conidia around the disc in 

WT but no such green growths were present around the disc of ∆tcp1, ∆pgy1 and ∆ecm33 

mutants. Fungi of Trichoderma genus produce abundant conidia under exposure to nutrient 

starvation (381).  At day 7, more aerial hyphae were present in periphery of the ∆ecm33 

mutant as compared to the WT, ∆tcp1 and ∆pgy1 mutants.  

Our findings also confirmed that, ∆ecm33 and ∆pgy1 mutants make higher number of 

chlamydospores in shake culture compared to WT and ∆tcp1 mutant. Velvet protein of T. 
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virens (Vel1) is also involved in chlamydospores formation. T. virens ∆vel1 mutant produced 

higher number of chlamydospores but lacked conidia when these mutants were grown on 

VMS broth and agar, respectively (349). In the present study, ∆ecm33 and ∆pgy1 mutant also 

showed fewer conidiation but higher chlamydospores formation compared to the WT. Tcp 

protein contains a Plk interaction domain and has key role in cell cycle progression in fungus 

in A. nidulans. Tcp deletion mutants (∆tcpA) exhibited abnormal branching during vegetative 

growth in A. nidulans. The tcpA deletion enhanced asexual development via induction of brlA 

expression but inhibited sexual development (271). In Arabidopsis thaliana, Tcp is involved 

in the regulation of duration of the cell cycle (273). Two independent tcp gene deletion 

mutants (M3 and M35) were developed and phenotypically analysed in Magnaporthe oryzae. 

M3 and M35 showed 96.2 and 94.2% reduction in conidia count compared to WT. Conidial 

germination rate of M3 and M35 mutants at 2 hpi (hours post incubation) was 80.6 and 

83.2% respectively, compared to the WT (272).  

There is no study till now about the role of PGY protein in morphology and 

conidiation in any fungus. To the best of our knowledge, this is the first report on the role of 

Pgy1 protein in T. virens morphology and conidiation. The Ecm33 is a family of 

glycosylphosphatidylinositol-anchored (GPI-anchored) proteins and plays an important role 

in maintaining fungal cell wall integrity (310). Ecm33 protein is involved in conidiation in 

Candida albicans, Beuveria bassiana and Metarhizium robertsii (311, 323). Ecm33 deletion 

mutants of A. fumigatus showed defect in conidial separation and an increase in the conidial 

diameter of the mutant (327). 

 To find out the role of these genes in stress tolerance, we estimated the IC50 for 

different stress-causing chemicals on the basis of reduction in radial growth.  The estimated 

IC50 value of WT strain of T. virens was 600 µg/ml for Congo red, 1.25 mM for menadione 
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sodium bisulfite, 2.5% for NaCl and 150 µg/ml for SDS. On the basis of change in radial 

growth of mutants, Δtcp1 mutant was found to be sensitive to salt while highest sensitivity to 

SDS and Congo red was noticed in Δecm33 mutant. RNAi silencing of tcp gene in cabbage 

plants showed reduced vegetative growth and decreased tolerance to cold, high temperature, 

and salt stresses (356). Ecm33 deletion mutants showed higher sensitivity to cell wall 

destabilizing agent, Congo red, in Candia albicans due to abnormal electron-dense outer 

mannoproteins layer and an aberrant surface localization of the adhesion proteins (312, 320).  

Ecm33 protein in Candida albicans is essential for the proper functioning of the classical 

secretion pathway during host interaction (357). These studies suggested the role of ecm33 

gene in cell wall integrity in filamentous fungi. The role of tcp1, pgy1 and ecm33 genes in 

oxidative stress response was assessed by measuring changes in radial growth of WT and 

mutants on PDA plate amended with 1.25 mM menadione sodium bisulfite.  Significant 

reduction was reported in radial growth of all three independent mutants compared to the 

WT.   

 Trichoderma treatment reduces the impact of stresses on plants by alteration in 

synthesis of antioxidant enzymes like peroxidase, polyphenol oxidase, catalase, glutathione 

reductase, phenylalanine ammonia lyase and ascorbate peroxidase (108). Salt stress reduces 

the plant growth and root development and this is due to blocking of auxin signaling (360).  

Trichoderma treatment increased plant tolerance against such stresses due to an improvement 

in plant root growth and nutrient uptake (107). Kelch domain protein of T. harzianum, Thkel1 

conferred tolerance to salt stress when expressed in Arabidopsis plants and overexpressing 

Thkel1 facilitated root colonization which led to increase in plant productivity (85). 

 Trichoderma treated seeds of Theobroma cacao plants have a better adaptation to 

salt, heat and osmotic stress due to an improvement in plant root growth and water holding 
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capacity (100, 101). Limited molecular research has been carried out on stress tolerance 

mechanism in Trichoderma. The histone deacetylase gene (hda2) is involved in oxidative 

stress response in T. atroviride by regulating the expression and acetylation on the promoters 

of ROS-related genes (259). Salt stress response study confirmed that tcp1 gene negatively 

regulates the radial growth under saline condition. Tcp1 deletion mutant also showed 

negative impact on salt stress response and positive impact on oxidative stress (menadione) 

response. Limited information is available about genes involved in saline stress response in 

fungi. AbSte7 negatively regulate salt tolerance and positively regulate oxidative stress 

tolerance in Alternaria brassicicola (362).  

Treatment of mycelia of ∆ecm33 and ∆tcp1 mutants with cell wall lysing enzyme 

cocktail released significantly higher number of protoplast compared to WT. This observation 

confirmed the defect in cell wall integrity of ∆ecm33 and ∆tcp1 mutants. Δecm33 mutant also 

showed higher sensitivity towards cell wall destabilizing agent Congo red and SDS, as 

compared to WT. TEM images of mycelia showed many changes in the cell wall structure of 

mutants as compared to the WT. Ecm33 is a GPI anchored protein and GPI anchor is 

conserved in sequence. GPI anchor proteins have important roles in post-translational 

modification in eukaryotes, by which many cell surface proteins such as cell surface 

enzymes, receptors and adhesion molecules are anchored to the cell membrane (224, 319). 

On the basis of localization, GPI proteins are involved in two functions. GPI proteins that are 

linked to cell wall are involved in filamentation, mating and adhesion to external matrix, 

while GPI proteins linked to plasma membrane have enzymatic activity (224, 320).  

 Hydrophobicity is conferred by the proteins called hydrophobins. These proteins are 

small secreted proteins, produced only by filamentous fungi and characterized by the 

presence of eight conserved cysteine residues. Hydrophobins reduce the surface tension of 
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the medium and are involved in a variety of biological functions in the life cycle of 

filamentous fungi.  Hydrophobins are involve in the formation of a protective layer 

surrounding the sexual structures and hyphae, development of aerial hyphae, sporulation and 

spore dispersal, and fruiting body formation (366). Hydrophobicity test of Δtcp1, Δpgy1 and 

Δecm33 compared to WT confirmed that Δecm33 mutant lost the hydrophobicity as 

compared to the WT, while the mutants of the other two genes retained their hydrophobicity. 

Ecm33 is a GPI anchored protein and GPI anchoring signals are composed of a C-terminal 

hydrophobic domain. The cells lost the hydrophobicity when glycosylphosphatidylinositol 

(GPI) anchor was cleaved by GPI specific phospholipase (365). These results indicate the 

importance of GPI anchored proteins like Ecm33 in maintaining hydrophobicity. The 

expression of hydrophobin genes was reduced in all the mutants as compared to WT but 

major reduction in expression of hydrophobin genes was recorded in Δecm33. 

Trichoderma virens is a mycoparasite on the plant pathogens Sclerotium rolfsii, 

Pythium aphanidermatum and Rhizoctonia solani. Confrontation assay confirmed that ∆tcp1, 

∆pgy1 and ∆ecm33 mutants lost the mycoparasitic activity against the plant pathogens 

Rhizoctonia solani and Sclerotium rolfsii. ∆pgy1 and ∆ecm33 mutants also lost the 

mycoparasitic activity against the plant pathogen Pythium aphanidermatum but ∆tcp1 mutant 

retained it. Culture filtrate of ∆pgy1 and ∆ecm33 mutants also lost the antibiosis activity 

against the plant pathogen P. aphanidermatum. Trichoderma strains overexpressing an 

endochitinase (ech42) or protease gene (prb1) showed better biocontrol activities against the 

pathogen than the wild type (370, 371). Knockout study confirmed the role of 4-

phosphopantetheinyl transferase (ppt1) and tal6 genes in mycoparasitism (372, 382).  

 HPLC analysis confirmed that ∆pgy1 and ∆ecm33 mutants synthesized lesser amount 

of viridin compared to WT but no significant change was observed in viridin quantity in 
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culture filtrate extract of ∆tcp1 mutant. Δtcp1, ∆pgy1 and ∆ecm33 mutants also showed 

significant change in volatile compound biosynthesis as compared to the WT. Only a few 

genes involved in volatile compounds synthesis in T. virens are characterized till now and 

these genes are present in cluster. Terpene cyclase gene (vir4) is responsible for the 

biosynthesis of volatile terpene compounds in Trichoderma virens (335). Recent study of 

Pachauri et al., also confirmed the role of the “vir” cluster associated glyceraldehyde-3-

phosphate dehydrogenase in the biosynthesis of volatile sesquiterpenes in Trichoderma virens 

(137). Our study confirmed the role of tcp1 in biosynthesis of volatile compounds, while 

pgy1 and ecm33 are involved in the biosynthesis of both volatile and non-volatile compounds 

in T. virens.  

The effect of Trichoderma application to maize roots on root growth was assessed. 

Maize seedlings inoculated with chlamydospores of ∆pgy1 and ∆ecm33 mutants did not show 

any significant change in fresh weight of roots as compared to those inoculated with WT. 

However, maize seedlings treated with ∆tcp1 chlamydospores showed significant reduction 

in fresh weight of roots as compared to those inoculated with WT. Root system is a critical 

medium for the interaction between Trichoderma spp. and plants. Trichoderma treatment has 

been reported to enhance root biomass production and root hair development (378, 379). 

Study of Trichoderma-Arabidopsis interaction confirmed that auxin-dependent mechanism is 

involved in lateral root growth and enhanced biomass production (380).  The treatment of 

tomato plants with T. harzianum-based formulation enhanced the shoot weight, root weight 

and dry weight of tomato plants even in the presence of the phytopathogen Rhizoctonia solani 

(166). The mycoparasitism activity of Trichoderma is influenced by many genes, yet there 

are no reports on the role of tcp1, pgy1 and ecm33 genes in mycoparasitism against the plant 

pathogens. Many genes of diverse nature like Ras-GTPase like protein Tbrg-1, hydrophobin 
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Tvhydii1 and cytochrome P450 TvCyt2 are involved in mycoparasitism in T. virens (123, 

125).  

  Phenotypic characterization of these deletion mutants gave the information 

whicwould help us to understand the mechanism behind the conidiation and mycoparasitism 

against plant pathogens. Information about the role of Ecm33 protein in hydrophobicity 

would help us to understand the involvement of GPI anchored protein in hydrophobicity in 

fungs. In continuity of this work, we will analyze the global gene expression in these mutants 

by RNAseq analysis, which would be very useful to identify the genes with significant 

changes in expression in mutants as compared to the WT. Transcriptome data will indicate 

the change in expression pattern of genes influenced by deletion of a particular gene, which 

would help us to understand the gene networks regulating conidiation, mycoparasitism and 

hydrophobicity in Trichoderma.  
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An SSH (suppression subtractive hybridization) library was constructed in our 

laboratory, where a non-conidiating mutant strain (M7) was subtracted from the conidiating 

wild type strain. Three clones, C5, F3 and F6, which were under-expressed in the mutant 

when grown on agar as compared to shaking culture, were selected for detailed study in the 

present thesis. A homology search revealed that C5, F3 and F6 are orthologs of 

translationally controlled tumour protein (Tcp1), proline-, glycine-, tyrosine-rich protein 

(Pgy1) and Ecm33.  These proteins are highly conserved across Trichoderma spp. as well as 

other fungi. The translationally controlled tumour proteins are highly conserved in eukaryotes 

and are involved in varied cellular and disease processes, while Pgy1 is a novel fungal protein 

(270). T. virens Pgy1 protein have XYPPX-like motifs at the N-terminus and a cysteine-rich 

CYSTM-like motif at the C-terminus. PGYRP proteins from organisms other than 

Trichoderma genus either have XYPPX domain at N-terminus or cysteine-rich 

transmembrane domain at C-terminus.  Ecm33 is a glycosylphosphatidyl inositol anchored 

protein (GPI anchored) and is mainly involved in cell wall integrity (305).  

 Independent knockout mutants for tcp1, pgy1 and ecm33 genes were generated using 

split marker PCR through homologous recombination approach. All the knockout mutants 

were purified through single spore method and purity was confirmed by PCR and RT-PCR. 

All the knockout mutants have single copy integration of hygromycin resistance cassette in 

the genome as confirmed by real time PCR. 

 The morphology of the mutants had visible differences compared to WT on all the 

three media used in this study. Mutants of all the three genes showed slow radial growth on 

PDA compared to WT and highest reduction in radial growth was recorded in ∆tcp1 mutant. 

The radial growth of ∆pgy1 and ∆ecm33 mutants was significantly less as compared to WT. 

Significant decrease in dry weight was observed in ∆tcp1 mutant but there were no 

significant differences in dry weight of ∆pgy1 and ∆ecm33 mutants. Significant decrease in 
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conidia count was recorded in 3, 5 and 7-days old cultures of ∆tcp1, ∆pgy1 and ∆ecm33 

knockout mutants on lab made PDA, HiMedia made PDA and VMG media. Microscopic 

analysis of cultures of WT and mutants on lab made PDA confirmed the delayed conidiation 

in ∆pgy1 and ∆ecm33 mutants. Three-days old cultures of WT and mutants showed 

conidiophores however, there were no conidia on the conidiophores of ∆pgy1 and ∆ecm33 

mutants. Conidiation is a tightly regulated developmental process in many fungi, including 

Trichoderma spp., and information about these genes in Trichoderma would be very useful 

for the production of commercial biofungicide formulations. 

 Not only primary metabolites related genes but also the genes involved in secondary 

metabolites synthesis are involved in conidiation in filamentous fungi. Recent reports 

highlighted that histone deacetylase (hda2) and non-ribosomal peptide synthetase (tex10) 

genes are involved in conidiation in T. atroviride and T. virens, respectively (59, 259). 

Transcription factors KpeA and MrSwi6 are involved in conidiation in Aspergillus oryzae 

and Metarhizium rileyi, respectively (344, 345). Transcription factors Ada-6 and Chc regulate 

the conidiation in model fungus N. crassa (346). Effect of gene deletion was also seen on the 

growth and morphology of mutants under nutrient starvation condition imposed by putting 

fresh mycelial disc of WT and mutant cultures on the centre of 1% agar plate. From day three 

onwards, the area around the disc became green due to presence of conidia around the disc in 

WT but no such green growths were present around the disc of ∆tcp1, ∆pgy1 and ∆ecm33 

mutants. Fungi of Trichoderma genus produce abundant conidia under exposure to nutrient 

starvation (381).  At day 7, more aerial hyphae were present in periphery of the ∆ecm33 

mutant as compared to the WT, ∆tcp1 and ∆pgy1 mutants.  

Our findings also confirmed that, ∆ecm33 and ∆pgy1 mutants make higher number of 

chlamydospores in shake culture compared to WT and ∆tcp1 mutant. Velvet protein of T. 
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virens (Vel1) is also involved in chlamydospores formation. T. virens ∆vel1 mutant produced 

higher number of chlamydospores but lacked conidia when these mutants were grown on 

VMS broth and agar, respectively (349). In the present study, ∆ecm33 and ∆pgy1 mutant also 

showed fewer conidiation but higher chlamydospores formation compared to the WT. Tcp 

protein contains a Plk interaction domain and has key role in cell cycle progression in fungus 

in A. nidulans. Tcp deletion mutants (∆tcpA) exhibited abnormal branching during vegetative 

growth in A. nidulans. The tcpA deletion enhanced asexual development via induction of brlA 

expression but inhibited sexual development (271). In Arabidopsis thaliana, Tcp is involved 

in the regulation of duration of the cell cycle (273). Two independent tcp gene deletion 

mutants (M3 and M35) were developed and phenotypically analysed in Magnaporthe oryzae. 

M3 and M35 showed 96.2 and 94.2% reduction in conidia count compared to WT. Conidial 

germination rate of M3 and M35 mutants at 2 hpi (hours post incubation) was 80.6 and 

83.2% respectively, compared to the WT (272).  

There is no study till now about the role of PGY protein in morphology and 

conidiation in any fungus. To the best of our knowledge, this is the first report on the role of 

Pgy1 protein in T. virens morphology and conidiation. The Ecm33 is a family of 

glycosylphosphatidylinositol-anchored (GPI-anchored) proteins and plays an important role 

in maintaining fungal cell wall integrity (310). Ecm33 protein is involved in conidiation in 

Candida albicans, Beuveria bassiana and Metarhizium robertsii (311, 323). Ecm33 deletion 

mutants of A. fumigatus showed defect in conidial separation and an increase in the conidial 

diameter of the mutant (327). 

 To find out the role of these genes in stress tolerance, we estimated the IC50 for 

different stress-causing chemicals on the basis of reduction in radial growth.  The estimated 

IC50 value of WT strain of T. virens was 600 µg/ml for Congo red, 1.25 mM for menadione 
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sodium bisulfite, 2.5% for NaCl and 150 µg/ml for SDS. On the basis of change in radial 

growth of mutants, Δtcp1 mutant was found to be sensitive to salt while highest sensitivity to 

SDS and Congo red was noticed in Δecm33 mutant. RNAi silencing of tcp gene in cabbage 

plants showed reduced vegetative growth and decreased tolerance to cold, high temperature, 

and salt stresses (356). Ecm33 deletion mutants showed higher sensitivity to cell wall 

destabilizing agent, Congo red, in Candia albicans due to abnormal electron-dense outer 

mannoproteins layer and an aberrant surface localization of the adhesion proteins (312, 320).  

Ecm33 protein in Candida albicans is essential for the proper functioning of the classical 

secretion pathway during host interaction (357). These studies suggested the role of ecm33 

gene in cell wall integrity in filamentous fungi. The role of tcp1, pgy1 and ecm33 genes in 

oxidative stress response was assessed by measuring changes in radial growth of WT and 

mutants on PDA plate amended with 1.25 mM menadione sodium bisulfite.  Significant 

reduction was reported in radial growth of all three independent mutants compared to the 

WT.   

 Trichoderma treatment reduces the impact of stresses on plants by alteration in 

synthesis of antioxidant enzymes like peroxidase, polyphenol oxidase, catalase, glutathione 

reductase, phenylalanine ammonia lyase and ascorbate peroxidase (108). Salt stress reduces 

the plant growth and root development and this is due to blocking of auxin signaling (360).  

Trichoderma treatment increased plant tolerance against such stresses due to an improvement 

in plant root growth and nutrient uptake (107). Kelch domain protein of T. harzianum, Thkel1 

conferred tolerance to salt stress when expressed in Arabidopsis plants and overexpressing 

Thkel1 facilitated root colonization which led to increase in plant productivity (85). 

 Trichoderma treated seeds of Theobroma cacao plants have a better adaptation to 

salt, heat and osmotic stress due to an improvement in plant root growth and water holding 
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capacity (100, 101). Limited molecular research has been carried out on stress tolerance 

mechanism in Trichoderma. The histone deacetylase gene (hda2) is involved in oxidative 

stress response in T. atroviride by regulating the expression and acetylation on the promoters 

of ROS-related genes (259). Salt stress response study confirmed that tcp1 gene negatively 

regulates the radial growth under saline condition. Tcp1 deletion mutant also showed 

negative impact on salt stress response and positive impact on oxidative stress (menadione) 

response. Limited information is available about genes involved in saline stress response in 

fungi. AbSte7 negatively regulate salt tolerance and positively regulate oxidative stress 

tolerance in Alternaria brassicicola (362).  

Treatment of mycelia of ∆ecm33 and ∆tcp1 mutants with cell wall lysing enzyme 

cocktail released significantly higher number of protoplast compared to WT. This observation 

confirmed the defect in cell wall integrity of ∆ecm33 and ∆tcp1 mutants. Δecm33 mutant also 

showed higher sensitivity towards cell wall destabilizing agent Congo red and SDS, as 

compared to WT. TEM images of mycelia showed many changes in the cell wall structure of 

mutants as compared to the WT. Ecm33 is a GPI anchored protein and GPI anchor is 

conserved in sequence. GPI anchor proteins have important roles in post-translational 

modification in eukaryotes, by which many cell surface proteins such as cell surface 

enzymes, receptors and adhesion molecules are anchored to the cell membrane (224, 319). 

On the basis of localization, GPI proteins are involved in two functions. GPI proteins that are 

linked to cell wall are involved in filamentation, mating and adhesion to external matrix, 

while GPI proteins linked to plasma membrane have enzymatic activity (224, 320).  

 Hydrophobicity is conferred by the proteins called hydrophobins. These proteins are 

small secreted proteins, produced only by filamentous fungi and characterized by the 

presence of eight conserved cysteine residues. Hydrophobins reduce the surface tension of 
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the medium and are involved in a variety of biological functions in the life cycle of 

filamentous fungi.  Hydrophobins are involve in the formation of a protective layer 

surrounding the sexual structures and hyphae, development of aerial hyphae, sporulation and 

spore dispersal, and fruiting body formation (366). Hydrophobicity test of Δtcp1, Δpgy1 and 

Δecm33 compared to WT confirmed that Δecm33 mutant lost the hydrophobicity as 

compared to the WT, while the mutants of the other two genes retained their hydrophobicity. 

Ecm33 is a GPI anchored protein and GPI anchoring signals are composed of a C-terminal 

hydrophobic domain. The cells lost the hydrophobicity when glycosylphosphatidylinositol 

(GPI) anchor was cleaved by GPI specific phospholipase (365). These results indicate the 

importance of GPI anchored proteins like Ecm33 in maintaining hydrophobicity. The 

expression of hydrophobin genes was reduced in all the mutants as compared to WT but 

major reduction in expression of hydrophobin genes was recorded in Δecm33. 

Trichoderma virens is a mycoparasite on the plant pathogens Sclerotium rolfsii, 

Pythium aphanidermatum and Rhizoctonia solani. Confrontation assay confirmed that ∆tcp1, 

∆pgy1 and ∆ecm33 mutants lost the mycoparasitic activity against the plant pathogens 

Rhizoctonia solani and Sclerotium rolfsii. ∆pgy1 and ∆ecm33 mutants also lost the 

mycoparasitic activity against the plant pathogen Pythium aphanidermatum but ∆tcp1 mutant 

retained it. Culture filtrate of ∆pgy1 and ∆ecm33 mutants also lost the antibiosis activity 

against the plant pathogen P. aphanidermatum. Trichoderma strains overexpressing an 

endochitinase (ech42) or protease gene (prb1) showed better biocontrol activities against the 

pathogen than the wild type (370, 371). Knockout study confirmed the role of 4-

phosphopantetheinyl transferase (ppt1) and tal6 genes in mycoparasitism (372, 382).  

 HPLC analysis confirmed that ∆pgy1 and ∆ecm33 mutants synthesized lesser amount 

of viridin compared to WT but no significant change was observed in viridin quantity in 
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culture filtrate extract of ∆tcp1 mutant. Δtcp1, ∆pgy1 and ∆ecm33 mutants also showed 

significant change in volatile compound biosynthesis as compared to the WT. Only a few 

genes involved in volatile compounds synthesis in T. virens are characterized till now and 

these genes are present in cluster. Terpene cyclase gene (vir4) is responsible for the 

biosynthesis of volatile terpene compounds in Trichoderma virens (335). Recent study of 

Pachauri et al., also confirmed the role of the “vir” cluster associated glyceraldehyde-3-

phosphate dehydrogenase in the biosynthesis of volatile sesquiterpenes in Trichoderma virens 

(137). Our study confirmed the role of tcp1 in biosynthesis of volatile compounds, while 

pgy1 and ecm33 are involved in the biosynthesis of both volatile and non-volatile compounds 

in T. virens.  

The effect of Trichoderma application to maize roots on root growth was assessed. 

Maize seedlings inoculated with chlamydospores of ∆pgy1 and ∆ecm33 mutants did not show 

any significant change in fresh weight of roots as compared to those inoculated with WT. 

However, maize seedlings treated with ∆tcp1 chlamydospores showed significant reduction 

in fresh weight of roots as compared to those inoculated with WT. Root system is a critical 

medium for the interaction between Trichoderma spp. and plants. Trichoderma treatment has 

been reported to enhance root biomass production and root hair development (378, 379). 

Study of Trichoderma-Arabidopsis interaction confirmed that auxin-dependent mechanism is 

involved in lateral root growth and enhanced biomass production (380).  The treatment of 

tomato plants with T. harzianum-based formulation enhanced the shoot weight, root weight 

and dry weight of tomato plants even in the presence of the phytopathogen Rhizoctonia solani 

(166). The mycoparasitism activity of Trichoderma is influenced by many genes, yet there 

are no reports on the role of tcp1, pgy1 and ecm33 genes in mycoparasitism against the plant 

pathogens. Many genes of diverse nature like Ras-GTPase like protein Tbrg-1, hydrophobin 
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Tvhydii1 and cytochrome P450 TvCyt2 are involved in mycoparasitism in T. virens (123, 

125).  

  Phenotypic characterization of these deletion mutants gave the information 

whicwould help us to understand the mechanism behind the conidiation and mycoparasitism 

against plant pathogens. Information about the role of Ecm33 protein in hydrophobicity 

would help us to understand the involvement of GPI anchored protein in hydrophobicity in 

fungs. In continuity of this work, we will analyze the global gene expression in these mutants 

by RNAseq analysis, which would be very useful to identify the genes with significant 

changes in expression in mutants as compared to the WT. Transcriptome data will indicate 

the change in expression pattern of genes influenced by deletion of a particular gene, which 

would help us to understand the gene networks regulating conidiation, mycoparasitism and 

hydrophobicity in Trichoderma.  
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Study of Δecm33 mutant also confirmed the role of ecm33 gene in cell wall integrity and 

hydrophobicity. Confrontation assay confirmed the roles of pgy1 and ecm33 genes in the 

mycoparasitic activity against the plant pathogens Rhizoctonia solani, Sclerotium rolfsii and P. 

aphanidermatum while ∆tcp1 mutants retained the mycoparasitic activity against P. 

aphanidermatum. The pgy1 and ecm33 genes are also involved in viridin biosynthesis while all the 

three genes are involved in volatile compounds biosynthesis. Maize seedlings treated with ∆tcp1 

showed significant reduction in fresh weight of roots compared to WT but no significant change was 

observed with chlamydospores of Δpgy1 and Δecm33 mutants. 

Figure 1. Morphology of WT, Δtcp1, Δpgy1 and 
Δecm33 mutants on PDA after 7 days of incubation.   

For functional characterization of the genes, 

independent knockout mutants (∆tcp1, ∆pgy1 

and ∆ecm33) were generated by split marker 

PCR technique and role of these genes in 

conidiation, mycoparasitism, antibiosis, 

secondary metabolite biosynthesis, cell wall 

integrity, hydrophobicity and stress responses 

have been studied. All these independent 

mutants showed slower radial growth rate on 

PDA compared to wild type (WT) and ∆tcp1 

mutants also showed significant decrease in dry 

weight compared to WT. Stress tolerance 

response analysis of WT and mutants confirmed 

that, Δtcp1 mutant had sensitivity to salt while 

highest sensitivity to SDS and Congo red was 

noticed in Δecm33 mutant. 

 

 

 

 

 

 

 

 

 

 


