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1.1 Overview 

Fruits and vegetables comprise an essential part of the human diet as they are the major 

source of dietary nutrients of great importance. Consumption of fruits has been found to 

counteract many of the chronic diseases, including cancers and cardiovascular diseases. 

Therefore, recommendations for a balanced diet must include the consumption of fresh fruits 

and vegetables. Consumers have become more concerned about the nutritional and sensory 

aspects as well as the safety of the food they eat due to growing health awareness. At the same 

time, consumer demand for convenience products is increasing and so is the demand for 

minimally processed fruits and vegetables. The minimally processed fruit market has expanded 

considerably in recent years. However, the quality and safety of such products are an issue of 

concern as these products can act as vehicles for transmitting infectious diseases. Furthermore, 

owing to the available nutritive surface, fresh-cut produce is more susceptible to spoilage and 

can facilitate the rapid growth of spoilage micro-organisms as well as the micro-organisms of 

public health significance. Monitoring microbial quality is a critical factor in assuring the safety 

and quality of food products in modern supply chains [1]. Conventional plate count techniques 

require 48-72 h to evaluate the microbial quality, which is not suitable for fast deteriorating 

products with a short shelf life. Moreover, this method is cumbersome, time-consuming and 

destructive which makes rapid detection of microbial quality of food extremely difficult [2]. 

Therefore, it is of interest to develop rapid methods to detect microbial spoilage of minimally 

processed fruits.  

1.2 Minimally processed fresh produce 

 International Fresh-Cut Produce Association (IFPA), defines fresh-cut produce as ‘any 

fresh fruit or vegetable or any combination thereof that has been physically altered from its 
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original form, but remains in a fresh state’. The necessity for minimal processing of fresh 

produce has gained its relevance after the catering industry considered purchasing 

vegetables and fruit that are already peeled and possibly also sliced, grated or shredded for 

reasons of expense, labour and hygiene. However, the fresh-cut industry was first 

developed to supply hotels, restaurants, catering services and other institutions. Today, with 

changing market trends, consumers looking for healthier options seek to replace unhealthy 

snack foods with fresh-cut fruit and vegetable products. The availability of fresh-cut fruits 

in vending machines in schools and at workplaces would constitute an excellent strategy to 

improve the nutritional quality of snacks and convenience food at a time when obesity and 

nutrition-related illnesses affect large percentages of the population [3]. Besides, minimal 

processing also offers several advantages such as ease in serving portion of large and 

difficult to peel fruits, reduce cost in packaging and transportation, extend the shelf life of 

the product and offer choice of selection for the consumer. The industry has expanded with 

more recent additions of minimally processed fruits at quick-service restaurants and in 

retail stores. These trends have led the fresh-cut industry to increase investment in research 

and development to address issues regarding raw product supply, packaging technology, 

processing equipment, refrigeration and safety and hygiene aspects about such 

commodities. Minimally processed tropical fruits available in the market today (Figure 1) 

include melons, cantaloupe, watermelon, mangoes, mangosteen, rambutan, jackfruit, 

pummelo, papaya, durian, grapefruit, pineapples and fruit mixes [4].  
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Figure 1: Fresh cut market share (Source Adapted from Perishables Group. 2008. U.S. fresh 

cut produce trends) 

1.3 Quality changes in minimally processed produce 

 Minimally processed fruits are much more susceptible to deterioration than their 

corresponding whole fruits due to wounding during preparation [5, 6]. Quality of minimally 

processed produce can be affected both by internal factors including morphological, 

physiological and biochemical defense mechanisms, type of fruit, genotype, stress-induced 

senescence programs and external factors representing environmental situations such as storage 

temperature, humidity, sharpness of cutting-knife, and chemical treatments [7]. Minimally 

processed produce deteriorates because of physiological ageing, biochemical changes and 

microbial spoilage, which may result in degradation of the colour, texture and flavour of the 

produce [8,9]. During peeling and grating operations, many cells are ruptured and intracellular 

products such as oxidizing enzymes are liberated which leads to browning or lipid oxidation. 

Ethylene production also increases during processing that leads to tissue softening (over 
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ripening). The respiration activity increases by several folds which leads to further enhanced 

product deterioration. The surface of the produce is also exposed to air which leads to microbial 

contamination of bacteria, yeast and moulds. Microbial activities bring about several 

biochemical changes that affects the product quality. 

1.4 Microbial Spoilage in minimally processed fruit 

 Microbial spoilage has been used by quality assurance departments in the fresh-cut 

industry as the objective indicator for quality for more than 50% of fresh-cut vegetable 

commodities and almost 100% of fresh-cut fruit products [1]. Contamination sources of fresh-

cut fruits and vegetables include raw materials and contact with processing equipment. The 

microorganisms that exist on the surfaces of raw, whole produce appear to be the major source 

of microbial contamination and consequent spoilage of fresh-cut fruits and vegetables. During 

the preparatory steps of minimal processing, the natural protection of fruit is generally removed 

and hence, they become highly susceptible to microbial spoilage. In addition, cross-

contamination may occur during cutting and shredding operations because sanitation in whole 

fruit may not have been carried out properly. Leakage of juices and sugars from damaged 

tissues allows the growth and fermentation of some species of yeasts such as Saccharomyces 

cerevisiae and Saccharomyces exiguous [10]. Many types of microorganisms can be found on 

a cut fruit or vegetable, including Gram-negative bacteria, Gram-positive bacteria, and fungi 

(yeasts and moulds). At present, many parameters have been used as useful and effective 

indicators for the microbial quality evaluation of food products such as total viable counts 

(TVC), lactic acid bacteria (LAB), Pseudomonas, Enterobacteriaceae, 

Brochothrixthermosphacta (B. thermosphacta), etc. 
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1.4.1 Total Viable bacterial count (TVC) 

 TVC indicates the total counts of viable individual microorganism and is always recorded as 

colony forming units (CFU) per g (or per ml) of target sample. TVC may include bacteria, 

yeasts and mould species. The mesophilic aerobic bacterial counts ranges from 2 to 5 Log10 

CFU/g fresh weight on finished cut fruits, depending on the commodities, seasons of the year, 

and growing regions [11]. 

1.4.2 Pseudomonas 

The family Pseudomonadaceae consists of the four genera: Pseudomonas, 

Xanthomonas, Zoogloea and Frauteuria [12]. The type genus is Pseudomonas, and members 

are often referred to as pseudomonads. They are Gram-negative rods, occurring singly or in 

pairs, motile with one or more polar flagella, strictly aerobic, catalase positive and oxidase 

positive or negative. Pseudomonads are also characterized by their ability to easily grow in 

food products under simple nutritive conditions. They have been reported to be the 

predominant group of micro-organisms on fresh produce. They are capable of synthesizing 

enzymes, even under refrigeration conditions that facilitate the breakdown of food components 

and cause spoilage [13,14]. Some antagonistic strains of pseudomonads have also been 

identified and isolated from fresh-cut produce which restrict the growth of pathogenic species 

of E. Coli [15].  

1.4.3 Lactic Acid Bacteria (LAB) 

LAB is a family of Gram-positive, non-motile and non-spore-forming bacteria and 

easily causes the quality degradation of food products [16]. The term lactic acid bacteria 

describe a number of genera of Gram-positive bacteria (rods and cocci) that are traditionally 

known as fermentative organisms associated with fermented food products and food spoilage. 

These genera commonly associated with spoilage of foods include Lactobacillus, Leuconostoc 
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and Pediococcus. Based on chemotaxonomic and phylogenetic studies, these three genera are 

closely related, with overlap between them. There are three main groups: Lactobacillus 

delbrueckii group, which includes mainly homofermentative lactobacilli; the Lactobacillus 

casei/Pediococcus group; and the Leuconostoc group, including some obligate 

heterofermentative lactobacilli [17]. Lactic acid bacteria form the primary spoilers under 

modified atmosphere packaging during cold storage. 

1.4.4  Enterobacteriaceae 

Enterobacteriaceae is a large type of Gram-negative and rod-shaped bacteria and 

includes hazardous Salmonella and Escherichia coli (E. coli). This class of organisms are 

present on fresh produce when contaminated water is used for processing. 

1.4.5 Yeast & Moulds (Y&M) 

Yeasts and moulds can be found in a wide variety of environments, such as in plants, 

animal products, soil, water and insects. This broad occurrence can be explained by the fact 

that yeasts and moulds can utilize a variety of substrates such as pectin and other carbohydrates, 

organic acids, proteins and lipids. Moreover, yeasts and moulds are relatively tolerant to low 

pH, low water activity, low temperature and the presence of preservatives. Yeasts are single-

celled eukaryotic organisms of which many genera are associated with the fermentation and 

spoilage of foods. Fermentative species of yeasts such as Kloeckera and Hanseniaspora occur 

naturally on the surfaces of fruits and are capable of causing fermentative spoilage [18]. Other 

fermentative species such as S. cerevisiae and S. exiguus may contaminate fruits during 

processing and cause explosive fermentative spoilage. Yeast populations of 103–104 have been 

reported for processed fruits [19]. Tournas et al. [20] found yeast levels ranging from less than 

2 to 9.72 log CFU/g on a majority of 38 fruit salad samples (cantaloupe, citrus fruits, honeydew, 

pineapple, cut strawberries and mixed fruit salads). The most common yeasts were Pichia sp., 
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Rhodotorula sp., Candida pulcherrima, C. lambica, C. sake, and Debaryomycespolymorphus. 

Yeasts have a slightly higher growth rate than moulds. Moulds are fungi that cover surfaces as 

fluffy mycelia and usually produce masses of asexual, or sometimes sexual, spores. A wide 

range of mold species can be present on fruits. Moulds reported on berries are Botrytis cinerea, 

Rhizopusstolonifer, Mucorpiriformis, Rhizoctoniasolani, and Phytophtoracactorum. Table 1 

provides the TVC and Y&M counts of some fresh cut fruits studied previously. 

Table 1. TVC and Y&M counts of fresh cut fruits 

 

 

 

 

 

Fresh cut Produce Microbial Population (Log10 CFU/g) References 

 Total Viable Count Yeast & Mould count  

Fresh fruit salad 3.0  21 

Kiwi fruit 3.15 2.46 22 

Cantaloupe 1.05 - 23 

Pineapple 4.05 2.90 24 

Honey dew 2.32 

 

 24 

Papaya  4.34 

 

2.84 

 

24 

Cantaloupe 4.14 1.87 24 
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1.5 Factors determining microbial spoilage of minimally processed fruit 

 Microbial spoilage of food quality is largely influenced by intrinsic, extrinsic and 

implicit factors. Intrinsic factors include water activity, acidity, redox potential, available 

nutrients and antimicrobial substances. Extrinsic factors are the environmental factors notably 

temperature, humidity and atmospheric composition where the food is stored. Physical or 

chemical treatments also have impact on the microflora associated with the produce. Implicit 

factors are the result of association of contaminated organisms on the food surface that may 

have synergistic and antagonistic effects.  

1.5.1 pH 

The optimum pH for growth of most microorganisms is near neutrality (pH 7.0). 

However, yeasts and moulds are usually acid tolerant and are therefore associated with the 

spoilage of acidic foods. Yeasts can grow in a pH range of 3–10. Moulds can grow from pH 2 

to 11, but favour an acidic pH. Due to the low pH values of most fruit, the main typical flora 

consists of moulds and yeasts. Botrytis cinerea and Aspergillus niger have been found to be 

important moulds while yeasts such as Candida, Cryptococcus, Fabospora, Kluyveromyces, 

Pichia, Saccharomyces, and Zygosaccharomyces are the most prominent [25]. However, some 

commonly occurring bacteria, such as the lactic acid or acetic acid bacteria, can grow at pH 4.0 

or less. Fungi are much more tolerant to acidic pH than are bacteria and can grow at pH values 

as low as 1.5 [26]. 

1.5.2 Refrigeration 

Storage temperature is one of the most important factors that influences spoilage as well 

as safety of fresh produce. Cold storage can change both the nature of spoilage and the rate at 

which it occurs. There may be qualitative changes in spoilage characteristics as low 

temperature exerts a selective effect, preventing the growth of mesophiles and leading to the 
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microbiota being dominated by pychrotrophs.  With respect to safety of minimally processed 

fruit, they are safer because conditions used with fresh produce are usually unfavourable for 

the growth of most pathogens (refrigeration temperatures, low pH of fruits, short shelf life). 

The spoilage microorganisms in refrigerated produce are usually psychrotrophic and therefore 

have a competitive advantage over most pathogens. Sometimes this competition prevents the 

growth of pathogens [27, 28, 29, 30]. Nevertheless, foodborne disease can and does occur with 

consumption of fruits and vegetables, especially when fresh-cut produce is packaged under 

modified atmosphere, as it increases the shelf life of the products, and pathogens have more 

time to reach infectious numbers before the product is notably spoiled. Pseudomonads are heat 

sensitive, however, they are able to grow at refrigeration temperature (the minimal temperature 

for growth is at 4◦ C) and have been found in a variety of frozen and refrigerated foods, 

including fresh-cut produce and are the primary spoilers in aerobic storage conditions [1]. 

1.5.3 Water activity 

Following temperature, water activity is the second important factor for maintaining 

quality. According to US Food Drug Administration (FDA) the water activity (aw) of a food is 

defined as “the ratio between the vapour pressure of the food itself when in a completely 

undisturbed balance with the surrounding air media, and the vapour pressure of distilled water 

under identical conditions”. Shelf life and value of fruits and vegetables decreases with water 

loss because it causes appearance deterioration, tissue softening, wilting, shrivelling, and 

weight loss. Such changes also affect product suitability for the fresh market and the fresh-cut 

industry. Fresh produce is usually packed with porous materials filled with their own internal 

atmosphere, which has a high relative humidity. They lose water through the skin or abscission 

cuts, because of relative humidity differences between the internal atmosphere and that 

surrounding the product. Therefore, fresh produce should be stored under high relative 

humidity environments, as a complement to optimum storage temperature. The high humidity 
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conditions within a package and the presence of a large area of cut surfaces, which provide a 

rich source of nutrients, create an environment conducive to growth of microorganisms. In 

terms of water requirements for growth, yeasts are intermediate between bacteria and moulds 

[31]. Microbes vary in the minimum water activity necessary for growth and survival. Most 

bacteria require an aw of at least 0.90 to grow and many cannot grow below an aw of 0.95. Most 

yeasts can grow at a minimum aw of 0.87 and most moulds can grow down to aw of only 0.80. 

Some specialized bacteria and fungi can even grow at aw of 0.65. No microbial growth will 

occur below aw of 0.60 [32]. Except for a few specialized species, all microbes will grow better 

at higher water activities. Virtually all fresh fruits and vegetables have aw of 0.95 or greater [1]. 

1.5.4 Atmospheric Composition 

The use of modified or controlled atmospheres for storage of fruits and vegetables has 

become very popular in recent years. The most common way to modify the atmosphere is to 

reduce the O2 while increasing the CO2 concentration [33]. However, there are many changes 

that can be made to the atmosphere that can rightly be considered modified. Modified 

atmosphere includes any process that causes the gaseous environment of the produce to differ 

from that of ambient atmospheric conditions. Microorganisms differ in their sensitivity to gases 

normally used in modified atmospheres. Nitrogen is often used in modified atmospheres but is 

primarily used to displace O2 and has little other direct effects on microorganisms. Gaseous 

composition of the atmosphere surrounding the fresh-cut produce has a profound effect on the 

microbial quality and shelf life. Low oxygen-modified atmospheres may inhibit the growth of 

spoilage micro-organisms and increase the shelf life of packaged produce [34].  
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1.5.5 Packaging 

Packaging is an increasingly important parameter that has several features that make it 

desirable for use with fresh produce. First, it is quite useful from a marketing standpoint 

because it allows processors to provide labelling information but still allows consumers to see 

the product. More importantly, it minimizes dehydration of the product, a major cause of 

deterioration of minimally processed refrigerated produce [35]. In addition, some packaging is 

specifically designed to exploit the use of modified atmospheres. Others can unintentionally 

become modified atmosphere systems as a result of metabolic activity of the product [36]. The 

use of packaging can have substantial impact on the microflora of fresh fruits and vegetables. 

Many of the microbial changes that occur within packaged fresh fruits and vegetables result 

from changes in humidity within the package [36]. Respiration by the plant tissues increases 

relative humidity and thereby also increases the likelihood for mould growth [36]. The 

increased humidity also increases the likelihood for condensation to occur within the package. 

This can allow water droplets to form both on the product and on the inner surface of the 

package, particularly during refrigerated storage. This accumulation of water droplets can itself 

affect the microflora. First, droplets can serve as a transport medium and allow microorganisms 

to be distributed more easily to other parts of the product. In addition, these droplets can 

dissolve usable carbohydrates leaking from plant tissues and serve as a growth medium. 

Packaging is one of the important factors influencing the microbial quality of fresh-cut 

products. Fresh-cut products are mostly packaged under modified atmospheric conditions or 

they develop passive MAPs on storage under refrigeration which gives rise to a favourable 

environment and time for proliferation of spoilage micro-organisms and micro-organisms of 

public health significance [30]. The economic value of fresh-cut products is impaired by micro-

organism proliferation because it may lead to decrease in product shelf life, through spoilage, 

and also pose a risk to public health by causing food-borne illnesses [19, 37].  
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1.6 Shelf life of minimally processed produce under refrigeration conditions 

The product should have a shelf life sufficient to make its distribution feasible to its 

intended consumers. Each food processor is responsible for setting the shelf-life date on 

products put on the market. Regarding fresh-cut fruits and vegetables, this shelf-life date will 

be relatively short, so a “best before” date should be mentioned on each package. The 

microbiological, sensory and nutritional shelf life of minimally processed vegetables or fruit 

should be at least 4-7 days, but preferably even longer, up to 21 d depending on the market. 

Attention has to be given to the selection of the correct parameters that need be followed and 

evaluated during the shelf-life studies. Microbial spoilage is a limiting factor for shelf life of 

fruit pieces stored under controlled atmosphere conditions [24]. In Europe, microbial 

specifications have been established for quality of fresh-cut produce. The Spanish legal limit 

(RD 3484/2000, 2001) for microbial populations on minimally fresh processed fruit for safe 

consumption are 7, 5, and 3 Log10CFU/g for aerobic bacteria, yeasts and moulds, respectively 

given in Table 2. 

Table 2: Permissible microbial limits for fresh cut fruits 

Parameter Fresh samples At best before dateb 

Total aerobic 

psychrotrophic count 

105 107 

Lactic acid bacteriaa 103 107 

Yeast 103 105 

Moulds 102 103 

 

a When the number of lactic acid bacteria on the best before date is greater than 107 CFU/g and 

the food product can be rejected only if found sensorially unacceptable. 
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b Best before date is the end of the shelf life, above these guidelines when notable spoilage will 

occur  

In India, the acceptable regulatory limits of microbial counts on minimally processed fruits for 

safe consumption are 7 and 4 Log CFU/g for Total viable aerobic bacterial count and yeast and 

mould counts, respectively as set by FSSAI [38].  

1.7 Physiological & biochemical changes associated with microbial spoilage 

Microbial spoilage leads to formation of off-flavor (e.g., fermented aroma with cut 

lettuce odour, sour taste with cantaloupe and bell pepper odour) slimy surface (e.g., “baby” 

carrots), wetness and soft rot (e.g., cut bell pepper), discoloration (e.g., apple wedges), and 

visual microbial growth/colonies (such as apple wedges, cantaloupe chunks, and cored 

pineapple). The following have been used as a main or exclusive objective criterion to 

determine shelf life of fresh-cut products [24, 39]. 

1. Soft rots—maceration of the tissue caused by enzymatic degradation of the plant cell wall 

by pectinolytic enzymes [40] 

2. Formation of off-odors and off-flavors—activity of lipolytic and proteolytic enzymes and 

fermentation reactions [24, 41]  

3. Wilting—brought on by vascular infections [42] 

4. Brown discoloration—polyphenol oxidase activity of the microflora may contribute to 

browning [43]  

5. Fermentative spoilage—fermentation of carbohydrates to produce acid, gas or alcohol. 

Yeasts have the ability to ferment simple carbohydrates to produce alcohol, gas and flavour 

components such as esters, acids and higher alcohols, and the ability of some species to grow 

at relatively low temperatures (10–15°C). Less fermentative species, such as P. 
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membranifaciens, Candida krusei and Kluyveromyces, may also spoil fresh-cut products 

through the formation of films or off-odours [44, 45]. Pseudomonads may also contribute to 

the yellowing of vegetable products during storage, through the production of the ripening 

hormone ethylene [46, 47]. LAB leads to fermentation of sugars to produce acid and gas, which 

is undesirable in fresh-cut products. Their fermentative metabolism and ability to grow in 

anaerobic conditions enables lactic acid bacteria to cause spoilage, such as souring of the 

product, gas production and slime formation [48, 49]. 

1.8 Need for rapid assessment of microbial spoilage 

Quality of minimally processed produce is measured in terms of colour, texture and 

microbial quality. Loss of colour and texture can be monitored with analytical instruments or 

sensory analysis. Moreover, microbial quality assessment is an objective indicator of quality 

of fresh produce that also provides a measure of safety of the produce. Conventional methods 

such as microscopy [50], plate count method, biological techniques (e.g. PCR & real time PCR) 

[51, 52] and immunological methods (e.g. ELISA) [53, 54] have been widely used for 

quantitative microbial measurement. They are objective and reliable but time-consuming, 

labour-intensive and destructive, thereby not very suitable for rapid and online measurement. 

Moreover, trained or skilled personnel are needed to operate the equipment. Food safety is one 

of the main objectives of food industry and application of Hazard Analysis and Critical Control 

Point (HACCP) is a prerequisite during handling, processing and distribution. Microbial 

contamination always has a negative impact on the food quality and human health [55, 56, 57]. 

Foods containing none or minimal microbial contamination will reduce food hazard thereby 

building consumer confidence. Therefore, microbial evaluation is an essential step during the 

food processing, in order to guarantee food quality and safety. Novel techniques are therefore 

warranted for improving the detection efficiency and reducing cost. 
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1.9 Detection of microbial spoilage based on biochemical markers 

Quality of fruits during storage is influenced by two major processes. On the one hand, 

fruits are living materials, as they keep respiring after harvesting, resulting in different 

physiological processes [58]. The produce is also prone to microbial contamination with 

different types of micro-organisms during pre-harvest/post-harvest. The composition of the 

microbiological population can vary depending on the handling and processing protocols 

followed. Once fruits are minimally processed, micro-organisms can further influence different 

quality attributes due to metabolite production as a result of microbiological activity [59]. The 

correlation between biochemical changes associated with microbial growth during storage has 

been demonstrated to be a useful quantitative measure to monitor quality of fresh cut produce 

[16].  

Sugars, organic acids, and amino acids significantly contribute to sweetness and aroma of 

fruits. Sweetness and aroma are the two most important quality indicators in fruits. [60, 61]. In 

addition, organic acids are important flavor precursors and energy sources in plant cells [62]. 

Metabolite production or sugar consumption in fruits and vegetables has been reported [56, 

63]. A range of volatile organic compounds produced by yeast on strawberry agar such as 

acetone, ethyl acetate, ethanol, isopropyl acetate, ethyl butyrate, 1-propanol, 2-methyl-1-

propanol, 1-butanol, 2-methyl-1-propanol, 1-hexanol and hexyl acetate were noted [64]. A 

simultaneous decrease in sugar concentration was also observed. Ethyl esters were formed 

when ethanol reached to a high concentration toxic to microbes, thus detoxifying the effects of 

ethanol. Several studies have also been carried out on off-odour production resulting from 

changes in volatile composition as well as the impact on changes in organic acid. [65, 66, 67, 

68]. Lactic acid production was shown to increase with subsequent reduction of malic acid in 

minimally processed cantaloupe under airtight chambers [23]. Total amino acid content also 

decreased rapidly at higher storage temperature. The type of microbial species present at 
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different storage conditions and post processing operation finally influences the qualitative and 

quantitative composition of biochemical indicators. Comprehensive profiling of the metabolic 

changes due to microbial activity is therefore currently being targeted for correlation with 

microbial counts.  

1.10 Instrumental technique for online monitoring of microbial quality 

 Recently some interesting analytical approaches based on the biochemical changes 

occurring in the food have been proposed for rapid and quantitative assessment of microbial 

quality in fresh produce. These include imaging [69], spectroscopic [70, 71], hyperspectral 

imaging [72, 73], & e-nose [74]. Imaging technique gives the morphological information in the 

form of pixels that registers external deformities or structural defects. Spectroscopic techniques 

evaluate the biochemical changes in the form of spectra. E nose provides the volatile changes 

associated with product spoilage in the form of signals. This comprehensive information 

obtained in the form of pixels, spectra or signal is multi- dimensional and requires advanced 

statistical tools to develop correlation with microbial growth. Thus, development of a “robust 

system” that can automatically classify the input into a “diagnostic tool” based on extracted 

variables is necessary before widespread adoption of such an analytical tool. The application 

of multivariate statistical methods and predictive tools (Partial least square regression, artificial 

neural network etc.) can be used for qualitative and quantitative estimation of microbial quality. 

1.10.1 Fourier Transform Infrared Spectroscopy 

Fourier transform infrared spectroscopy (FTIR) is a fast, easy to use, reagent less and 

non-destructive technique for obtaining biochemical information of food samples. Owing to its 

benefits it has attracted considerable interest and several potential applications has been 

explored in food and related sector [75]. Molecular vibrations that are excited by infrared 

radiation are monitored by FTIR. Eventually infrared spectrum represents a “fingerprint” 
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which is the characteristic of the biochemical composition. This technique has been widely 

explored in muscle food for microbial spoilage [70, 76, 77, 78, 79]. 

1.10.2 Headspace Solid Phase Micro-Extraction Gas Chromatography & Mass-

spectrometry (HS-SPME-GC/MS) 

HS-SPME-GC/MS is a rapid solvent free technique that employs SPME for extraction 

of volatiles from the headspace of the foodstuff. Several volatile changes associated during the 

process of food spoilage provide the biochemical information about the status of food. GC-

MS, a hyphenated analytical technique separates the volatiles which are subsequently 

fragmented and further identified based on their mass. Volatilomics, is the field of detection, 

characterization and quantification of volatile metabolites from the biological system. This 

field has recently gained importance in several areas of food science such as food safety, quality 

and food authenticity. Different aspects such as sensory, microbial, biochemical and nutritional 

attributes of several foodstuffs based on food volatiles are exploited using GC-MS because of 

rapid advancement of this analytical technique in recent years, easy sample preparation and 

rapid and on-line techniques for extraction. The processes of washing, peeling and chopping 

cause damage to the fruits. The accompanying reactions allow the formation of volatiles such 

as alcohols, aldehydes, terpenes, esters and acids in fresh cut fruits. Compounds that are 

frequently detected in many fruits are terpenoids such as linalool, geranyl acetate, limonene, 

etc. A common pattern in most fruits as far as maturity is concerned, is presence of C-6 

aldehydes and alcohols in high concentration at the beginning of maturation process. As the 

desired level of maturity is approached, a decreasing trend in the content of aldehydes and an 

increase in esters is observed [80]. Several studies conducted on food matrix have documented 

marker volatile compounds such as 2-methyl butanol, 3-methyl butanol and 2,3-butanediol, 

alcohol, ethyl esters that are linked with vegetables, fruits & meat spoilage. They are the 

common metabolites of many bacteria and yeast under various storage conditions [65, 66, 68]. 
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1.11 Chemometric based intelligent system for quality assessment 

The enormous volume of information generated by the analytical tools demand 

application of various multivariate statistical tools for data analysis. Multivariate analysis also 

coined as chemometrics can be defined as “the simultaneous statistical analysis of a collection 

of random variables” [81]. The process involves extraction of chemically relevant information 

out of the enormous analytical chemical data by mathematical and statistical tools [82]. 

Multivariate analysis is primarily divided into two categories: unsupervised and supervised 

learning. Unsupervised methods “attempt to disclose naturally occurring groups and structures 

within the dataset without previous knowledge of any class assignment” [83]. It principally 

extracts the information such as patterns, trends or clusters and in turn it also facilitates 

performing outlier analysis. The techniques included in unsupervised learning are principal 

component analysis (PCA) and cluster analysis. On the other hand, supervised learning 

algorithms “make use of a priori knowledge of classes to guide the characterisation or 

classification process” [83]. These algorithms generate prediction models for classification, 

regression, pattern recognition or machine learning tasks. Characteristic examples of 

supervised learning involve Partial Least Squares (PLS) and Artificial Neural Networks 

(ANN), among many others. 

1.11.1 Unsupervised learning  

1.11.1.1 Principal Component Analysis 

Datasets with large number of variables will have large dimensionality in data, 

redundancies & correlation among variables. Principal Component Analysis (PCA) is the most 

commonly used technique for dimensionality reduction, data compression and feature 

extraction [84, 85]. The PCA algorithm reduces the initial number of possibly correlated 

variables into a new lower number of uncorrelated variables, known as the Principal 
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Components (PCs). Geometrically, we can imagine the input data as a cloud of points in a high-

dimensional space. As illustrated in Figure 3, this cloud of points is probably longer in a certain 

direction of the pattern space; in this direction the data appear to be most different and PCA 

draws the first axis (PC1). The first PC places all points the farthest apart from each other, 

extracting thus the highest variance. Similarly, a perpendicular to the first PC axis is drawn for 

the second PC (PC2), which accounts for the second highest variance. The process is repeated 

to get multiple orthogonal principal components. Each successive orthogonal axis displays a 

decreasing amount of the total variance. 

 

Figure 3. Extracting the principal components  

1.11. 2 Supervised learning 

1.11.2.1 Partial Least Square Regression 

Partial Least square regression (PLS-R) is a multivariate regression tool utilised for 

prediction of dependent variable (Y) from multivariate independent variables (X). Its goal is to 

predict or analyse a set of dependent variables from a set of independent variables or predictors. 

This prediction is achieved by extracting from the predictors a set of orthogonal factors called 

latent variables (LV) which have the best predictive power. PLS regression searches for a set 

of latent variables that performs a simultaneous decomposition of X and Y with the constraint 
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that these components explain as much as possible the covariance between X and Y. The 

number of LVs selected for model building depends on the data. Building the model on more 

latent variables improves the model fit to the observed data, but extracting too many factors 

can cause over-fitting, that is tailoring the model too much to the current data that leads to the 

detriment of future predictions. The PLS procedure enables you to choose the number of latent 

variables by cross validation, that is, fitting the model to part of the data and minimizing the 

prediction error for the unfitted part. Various methods of cross validation are available, 

including one-at-a-time validation, splitting the data into blocks, and test set validation. PLS-

Regression is a preferred choice when the variables are collinear and number of variables are 

larger than number of observations. 

1.11.2.2 Artificial neural networks 

Artificial neural networks (ANNs) are biologically inspired computational networks. 

ANNs works on similar principles as the human brain with two key similarities between 

biological neural networks and ANNs. First, the building blocks of both networks are simple 

computational devices that are highly interconnected. Second, the connections between 

neurons determine the function of the network. A human brain consists of approximately 

1010neurons, computing elements, which communicate through a connection network 

(approximately 104connections per element). ANNs function as parallel distributed computing 

networks and are analogous to biological neural systems in some basic characteristics [86, 87]. 

Multilayer perceptrons (MLPs) with back propagation learning algorithms, also called 

multilayer feed forward neural networks, are very popular and are used more than other neural 

network types for a wide variety of problems. MLPs are based on a supervised procedure, i.e., 

the network builds a model based on examples in the data with known outputs. An MLP has to 

extract this relation solely from the presented examples, which together are assumed to 
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implicitly contain the necessary information for this relation. An MLP comprises three layers 

(input, hidden, and output) with nonlinear computational elements (also called neurons and 

processing units). The information flows from input layer to output layer through the hidden 

layer connected to neurons in the adjacent layers. These connections are represented as weights 

(connection intensity) in the computational process. The weights play an important role in 

propagation of the signal in the network. They contain the knowledge of the neural network 

about the problem-solution relation. The number of neurons in the input layer depends on the 

number of independent variables in the model, whereas the number of neurons in the output 

layer is equal to the number of dependent variables. The number of output neurons can be 

single or multiple (Figure 3). 

 

Figure 3: Network architecture of ANN 
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In the development of data-driven models, the dataset has to be split into two subsets which 

are respectively used for training and validation/testing. The proportion may be 1:1, 2:1, 3:1, 

etc. for these two sets. However, the training set still has to be large enough to be representative 

of the problem and the test set has to be large enough to facilitate correct validation of the 

network. This procedure of partitioning the data is called k-fold cross validation, sometimes 

also called the hold-out procedure [88, 89, 90].  

1.12 Intelligent packaging system for real time monitoring of spoilage 

Modern-day food packaging provides containment and protection for food produce 

along with being informative, attractive and ease of use. Consumer demands are primarily 

focussed towards food products that are fresh and minimally processed. Online monitoring of 

the quality of the refrigerated perishables have been largely studied using several instrumental 

techniques which offers a rapid method to serve as control points suitable for food processing 

industry. However, the shelf life of these refrigerated fresh cut produce needs to be critically 

displayed for consumer’s safety and informed choice at retail establishment. The quality loss 

of ready to eat fruit is dependent on its microenvironment represented in the terms of shelf life. 

Temperature is deemed to be the most important external factor controlling food spoilage. 

Storage temperature has a direct influence on the kinetics of the chemical and biological 

changes that occur in food products. Usually shelf life information given in the form of ‘best 

before’ or ‘use by’ dates are based on assumptions of either a most probable average 

temperature for the food or a worst case temperature exposure. This may lead to unacceptable 

quality before the stated end of shelf life in temperature abusive condition or may lead to waste 

of perfectly good product. This problem could be solved if a way could be devised to monitor 

the temperature history of the product and to estimate the remaining shelf life. Time 

temperature indicators (TTI) offer a potential solution; these are smart, inexpensive, colour 
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changing labels that can be attached to the food package most suitable for retail establishments 

and consumers to monitor the quality of the package. 

1.12.1 TTI’s for microbial quality assessment 

TTIs rely on modelling and predictive behaviour of microbial growth when temperature 

abuse occurs. Temperature dependence of microbial activity on food is an established fact and 

is a primary cause of spoilage in fresh cut industry [1]. It also serves as operational check point 

for quality and safety assurance in such products. Effective application of TTI requires 

systematic study of parameter governing shelf life by establishing correlation with the primary 

cause of spoilage. Subsequently, the TTI response in the form of visual change should match 

the quality loss of food. This requires thorough kinetic studies of colour development of TTI 

as well as the product spoilage parameter at different storage temperatures. Several TTI’s have 

been previously worked out based on different principles such as polymerization, chemical, 

microbial and enzymatic reaction which has been reviewed extensively in literature [91]. TTI 

has been widely applied in the food industry for fresh milk, frozen fish, meat, sea food and 

frozen vegetables to reflect the time temperature history [92, 93, 94]. However, applications of 

TTI are not explored for minimally processed refrigerated fruits based on the literature data, 

although use of several commercial TTI’s for application to this food commodity has been 

suggested [95]. Thus, the current study attempts to examine the real time application of cheap 

chemical TTI on these commodities never explored before.   

1.13. Selection of minimally processed fruits  

Minimal processing of fruit is important to supply it in a convenient form for its wider 

consumer demands, yet the produce should maintain fresh like attributes without losing its 

nutritional quality and the product should have a shelf life sufficient to make its distribution 

feasible to its intended consumers.  
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1.13.1. Minimally processed jackfruit bulbs 

Jackfruit is a tropical fruit, native to India which is rich in energy, dietary fiber, 

minerals, and vitamins moreover; it lacks saturated fat or cholesterol. India is the second largest 

producer of the fruit in the world and is considered as the motherland of jackfruit (Artocarpus 

heterophyllus). It is grown in an area of 97,536 ha with annual production of 348 million fruits 

and productivity of 3,568 fruits per ha. [96]. The fruit is very bulky ranging from 5 – 70 kgs. 

Their large size makes them cumbersome to process. Recently minimal processing of jackfruit 

has gained importance due to ease in serving portion for large and difficult to peel fruit and 

reduction in cost of packaging and transportation. The jackfruit bulbs are commercially sold in 

supermarkets in India as minimally processed and packed product.  

1.13.2 Minimally processed pomegranate arils 

Pomegranate (Punica granatum) is an exotic fruit bearing deciduous shrub. Aril is the 

specialized outgrowth from the funiculus (attachment point of the seed) that covers or is 

attached to the seed. India ranks first in the world with respect to pomegranate cultivation area 

(0.125 million ha) and production (1.14 million tonnes) [97]. Pomegranate consumption is 

limited, since extracting the pomegranate arils is very difficult and time consuming therefore 

consumption is not widespread. Commercial production of pomegranate arils is now available 

with different technologies available in market [98]. Thus, boosting opportunity in minimal 

processing industries provides desirable options for consumers [99]. However, minimally 

processed pomegranate seed have a greatly reduced post-harvest life compared to whole fruit. 

This commodity is highly prone to microbial contamination because of removal of thick 

protective cuticle.  
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1.13.3 Minimally processed pineapple slices 

Pineapple (Ananas comosus) is one of the tropical fruit which has huge economic 

importance for its excellent flavor and taste. Minimal processing of pineapple requires skill 

and provides convenience to consumer and motivation to consume this health boosting fruit 

with essential minerals, fiber and vitamins. In India, minimally processed pineapple 

consumption has become increasingly popular in urban population living in metropolitan cities. 

Microbial quality assessment of minimally processed pineapple available in Indian market has 

been studied previously [100]. 

1.14 Research Hypothesis 

According to the report submitted by planning commission India, up to 18% of the fruit 

and vegetables produced in the country gets spoiled during its transport from farm to fork. The 

production of fruits and vegetables has increased to 170 % in a decade. With increased 

awareness of health benefits associated with consumption of fruits and vegetables there has 

been an increased consumer demand for these food commodities. However, uncontrolled post-

harvest loss of these perishable foodstuffs during storage and transportation has led to higher 

market price (approx. by 20%) in the last decade. It is therefore crucial to control spoilage of 

these products in order to increase availability and affordability.  

 Minimal processing of fruits is one of the processing approaches that have gained 

increase in consumer demand in food processing sector. The consumption of minimally 

processed food products including ready-to-eat and ready-to-cook has increased worldwide in 

last decade due to their convenience, freshness and improved quality. Total microbial load has 

been used by quality assurance departments in the fresh-cut industry as an objective indicator 

for quality of fresh-cut minimally processed fruit products [1]. However, traditional microbial 

enumeration techniques to determine the microbial load are cumbersome, destructive and time 
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consuming, thus making timely detection of food spoilage very difficult and challenging [2]. 

Therefore, it is of interest to develop rapid methods for microbial quality assessment. Rapid 

evaluation of microbial quality has been previously studied on meat and fish products using 

techniques such as FTIR [101, 102], hyperspectral imaging [73] and electronic nose [103]. 

However very few reports on processed fruits exist in current literature even though they have 

a short shelf life and are highly susceptible to microbial spoilage.  The aim of the study is to 

investigate the possible biochemical changes and explore for possible specific markers 

pertaining to fruit spoilage process. The final goal of the research is to develop a measurement 

system which rapidly predicts the microbial spoilage from biochemical changes as measured 

by instrumental analysis of the minimally processed product. The theory behind the method is 

that the microbial activity brings about several changes in the biochemical metabolite during 

the spoilage process. Thus, monitoring the volatile profile & other non-volatile biochemical 

changes of minimally processed food product may determine the spoilage status. GC-MS and 

FTIR will be exploited to monitor changes in the product which will then be correlated with 

the microbial counts. Finally, sensor-based assessment of the microbial quality of the packed 

minimally processed food will be performed.  It is anticipated that the technology produced 

from this research will give a viable and low-cost solution to help minimize preventable food 

waste from consumers as well as improving food industry process efficiency, especially in the 

field of food supply chain management. 

1.15 Aims & Objective of the work 

The present study aims at evaluating analytical techniques such as GC/MS & FTIR as rapid 

detection methods for microbial quality status of minimally processed food products. A new 

sensor such as time temperature sensor based on colour responses will also be developed for 

rapid monitoring freshness of minimally processed perishables. 
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Objective 

1. To evaluate the microbial quality of minimally processed fruits (jackfruit, pomegranate, 

pineapple) during the storage.  

2.  To evaluate the biochemical changes in minimally processed fruits during storage 

using various techniques such as GC/MS and FTIR.    

3.  To correlate microbial growth with instrumental data obtained, using various 

multivariate statistical techniques such as principal component analysis, partial least 

square regression analysis, artificial neural networks, etc.     

4.  To identify various biochemical changes in minimally processed fruits responsible for 

observed correlations between microbial quality and instrumental data.  

5. Possible development of sensor based on identified biochemical changes for detection  

 
 

Figure 4. Schematics of the work carried out in the thesis 
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2.1 Materials 

2.1.1. Minimal processing and storage of fruit samples  

2.1.1.1 Minimal processing of Jackfruit 

 Jackfruit (Artocarpus heterophyllus) of brownish yellow skin colour at optimum ripening 

stage was procured from local fruit markets of Mumbai, India (Weight – 7 to 15 Kg). The fruits 

were opened by manually cutting along the axis using sharp-edged stainless steel knives and 

the bulbs were removed from rind. The bulbs were light yellow in colour, fibrous and slightly 

juicy. The processed fruits were packed and immediately stored at 4 °C. Segregation of samples 

for storage at different conditions was carried out after final processing and packaging.  

2.1.1.2 Minimal processing of Pomegranate 

 Pomegranate (Punica granatum) at fully ripened stage was procured from local market in 

Mumbai. The healthy fruits uniform in size and appearance were chosen for extraction of 

pomegranate arils. Fruits were washed to remove all adhered dust with running tap water before 

cutting. Husks were cut in a cone shape from the top and carefully sliced till bottom using sharp 

knife and the arils were manually extracted. All the extracted arils were collected in trays and 

maintained at 4 °C until completion of the processing steps. The collected pomegranate arils 

were mixed to ensure random and homogenous packaging. 

2.1.1.3 Minimal processing of Pineapple 

Ripe pineapples (Ananas comosus) were procured from local market in Mumbai. Pineapples 

were peeled and cut into thin slices (thickness, 0.2 cm) and mixed to ensure random and 

homogenous packaging. The slices were shifted to cooled incubators (4 °C) until complete 

processing.  
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2.1.1.4 Packaging and storage 

75 g of sample (jackfruit bulbs, pomegranate arils and pineapple slices) were placed in 

polystyrene trays (9 cm x 9 cm x 2.5 cm), packaged by wrapping with cling film (Flexo film 

wraps ltd. Aurangabad, Maharashtra, India) and then sealed tightly to avoid any leakage. The 

packed samples were stored at 4 °C and 10 °C to replicate the market conditions of storage. 

The number of packages stored and the final storage days of all the three minimally processed 

fruits is given in Table 4 below. Samples were withdrawn until total viable aerobic bacterial 

counts (TVC) reached > 7 log CFU g-1 and no further increase in counts was observed after 

achieving stationary phase. 

Table 4. Total number of samples and the final storage period for all the three fruit samples 

Fruit samples 4 °C 10 °C 

 No. of samples Final storage 

period 

No. of samples Final storage 

period 

Jackfruit 23 19 d 32 6 d 

Pomegranate 21 28 d 72 6 d 

Pineapple 32 22 d 42 6 d 

d- days 

2.1.2 Withdrawal of samples for analysis 

Withdrawal of stored packages kept at 10 °C was carried out every day from day 0 till 

the product spoiled. Samples stored at 4 °C were withdrawn every 3rd day of storage. The 

packed products were stored in high precision (± 0.5 ◦C) incubation chambers (MIR-153, Sanyo 

Electric Co., Osaka, Japan).  For every storage day, samples were withdrawn in triplicate and 

microbial, HS-SPME-GCMS and FTIR analysis was carried out. Samples were initially 
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subjected to microbial quality assessment using standard plate count method followed by 

instrumental analysis. 

2.1.3 Microbial analysis 

The enumeration of microorganisms was made using standard plate count techniques. 

Each packet was opened in a laminar flow cabinet and a 25 g sample was then aseptically 

transferred to stomacher bag (Seward, UK) containing 225 ml of sterile saline. The sample was 

homogenized (230 rpm, 1 min) using a stomacher (Model: 400 circulator, Seward, UK). Serial 

dilutions of these samples were prepared in sterile saline (0.9 %) solution. 1 ml of appropriate 

dilution was then pour plated in plate count agar (PCA) for total viable aerobic bacterial counts 

(TVC) and potato dextrose agar (PDA) for total yeast and mould count (Y&M). PCA plates 

were incubated at 37 ◦C for 48 h, while PDA plates were incubated at 28 ◦C for 4 days. The 

microbial load was determined in the form of colony forming units (CFU). Results were 

expressed as Log10 CFU/g. 

2.1.4 Headspace gas chromatography and mass spectrometric analysis (HS-GCMS) 

Packages of minimally processed jackfruit were incubated at 37 °C for 45 min. Headspace 

volatiles were then extracted by inserting a pre-conditioned SPME (Solid Phase Micro 

Extraction) -PDMS/DVB/CAR (50/30 µm polydimethylsiloxane (PDMS)/ carboxen (CAR)/ 

divinyl benzene (DVB), Supelco, Bellefonte, PA) fibre through a septum pasted on polystyrene 

tray under extraction conditions of 37 °C for 20 min. After extraction, the fibre was exposed 

from SPME assembly injected in GC-MS injection port. In case of pomegranate arils (25 g in 

2.5 ml distilled water) and pineapple slices (30 g in 7 ml distilled water) the samples were 

homogenized in omni mixer (Sorvall, Waterbury, CT) for 3 min at a speed corresponding to 

the mark 2.5 on the instrument. Resultant slurry was strained through muslin cloth and then 

centrifuged at 12,850 g for 10 min at 4 o C. 15 mL of the juice was added in SPME vial 
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containing 4.5 g of NaCl. 3-hexen-1-ol at final concentration of 28 ug/L was used as internal 

standard. Headspace volatile compounds were isolated using a pre-conditioned (250 °C, 5 min) 

SPME fiber as above. Conditions of extraction were: sample equilibration; 40 °C for 10 min 

with magnetic stirring, fibre exposure for absorption of volatiles; 10 min at same conditions, 

desorption; on the injection port kept at 250°C for 2 min. The length of the fibre in the 

headspace was always kept constant. Before each analysis, the fibre was preconditioned to 

remove any volatile contaminant by exposing on the injector port for 10 min. Analysis was 

carried out on GCMS (QP2020, Shimadzu Corporation, Japan) equipped with a Rxi-5ms 

capillary column (length = 10 m, inner diameter = 0.1 mm, film thickness =0.1 µm, Restek 

Corporation, USA). Helium was used as a carrier gas at a constant flow of 0.4 ml/min. The 

injector port was equipped with a liner (0.75 mm ID, supelco) suitable for SPME analysis. 

Injections were conducted in split mode with a split ratio of 5. GC temperature settings were: 

Initial oven temperature was 40 °C with a hold time of 5 min. The oven temperature was then 

increased to 200 ºC with change in rate of 13 ºC per minute and finally to 280 °C at the rate of 

33 ºC per minute. Oven was maintained at final temperature for 3 min. The interface 

temperature was set at 280 ºC. MS parameters were: ionization voltage 70 eV, electron 

multiplier voltage, 1 kV and scan mode from m/z 35 to 500. The peaks were identified by 

comparing the Kovat indices based on a homologous series of n-alkanes (C5-C24, Aldrich 

chemical company, WI, USA) with that of standard compounds as well as from MS data 

available in the Wiley and NIST library (NIST/EPA/NIH, 2014 compilation). Automated mass 

detection and identification (AMDIS) software (v 2.62) was used for identification and 

quantification of target compounds with match factor 90.  The peak areas of the targeted 

volatile compounds were evaluated and quantified based on internal standard to generate a data 

matrix of the identified volatile compounds.  
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2.1.5 Fourier transform infrared (FTIR) spectroscopy analysis 

Thin slices of jackfruit and the juice extracted for pomegranate aril and pineapple slices 

(juice preparation mentioned in section 2.2.3) were used for FTIR analysis. FTIR spectra was 

obtained by placing the sample on a ZnSe 45◦ ATR (Attenuated Total Reflectance) crystal of 

the FTIR spectrometer (Jasco, 4100) equipped with a DLaTGS (deuterated l-alanine doped 

triglycene sulphate) detector with KBr beam splitter. The spectrometer was controlled by Jasco 

spectra manager version 2 software to collect spectra in the range of wave number 4000–650 

cm−1, accumulating 40 scans with a resolution of 4 cm−1. Sample analysis was done in duplicate 

and mean values of measurements was later used. Background scans were obtained from the 

cleaned blank surface of the crystal before each sample analysis to avoid any contaminating 

peaks. After each sampling, the crystal surface was thoroughly cleaned with distilled water and 

dried with lint free tissue.  

2.1.5.1 Data pre-processing of FTIR data 

FTIR spectral data in range of 2000 to 800 cm-1 was used for data analysis of jackfruit 

samples and FTIR data in range of 2000 to 1000 cm-1 was utilized for data analysis of 

pomegranate and pineapple samples. This spectral range was utilized to obtain metabolic 

fingerprint of pomegranate juice during storage. There were hardly any peaks detected in the 

remaining spectral region. Spectra obtained were baseline corrected and smoothed using the 

Savitzky-Golay algorithm of Spectra Manager software (Jasco, Japan). FTIR data was then 

pre-processed in two different ways before correlating with the microbial quality. A) FTIR 

spectral data was exported in ASCII format to Microsoft excel. This processed data is 

henceforth termed as FTIR spectral data. B) First derivative of FTIR spectral data was 

calculated by Savitsky-Golay (SG) procedure using a fourth order polynomial with five points. 

This processed data was then exported in ASCII format to Microsoft excel and henceforth 
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termed as FTIR first derivative spectral data. Data obtained was subsequently mean centered 

and standardized before further statistical analysis.  

2.1.6 Principal component analysis (PCA)  

PCA is an exploratory qualitative method that accomplishes two major tasks, data reduction 

i.e. compression of data without affecting original data structure and thereby also allows 

graphical representation of the data. It displays relationship amongst samples and variables and 

highlights the most informative variable from the large data set. It generates set of few 

uncorrelated variable designated as principal components (PCs) that contains valuable 

information of similarities and differences amongst variables and sample. PCA was applied on 

GCMS and FTIR data (FTIR spectral data & FTIR first derivative data; Section 2.1.5.1) of all 

the three fruits as variables for stored fruit samples to study the effect of storage on samples 

stored at 4 & 10 °C. The PCA type used was Pearson in XLSTAT v 2013.4.05 (Addinsoft Co., 

Paris, France), that standardises the data before PCA operations.                                                                                 

2.1.7 Partial least square regression modelling 

The PLS algorithm built a linear (or polynomial) relationship between X and Y matrices. PLS 

works on the basis of extracting a smaller number of orthogonal latent variables (LVs) that are 

linear combinations of the original (X). For building PLS-R model, dataset was randomly 

partitioned into training and testing subset (80:20). Test data were not employed in any step of 

training the PLS model but they were used exclusively to determine its performance. A series 

of PLS models were created using a number of latent variables ranging from 1 to 8, hence 8 

models were developed in total for each analysis. The performance of PLS models generated 

were evaluated based on standard error of prediction (SEP). Final regression models were 

prepared using that number of latent variables which on further increase resulted in either 

constant or increased SEP.  The performance parameters of the resulting model were then 
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evaluated for the test set. XLSTAT v 2013.4.05 (Addinsoft Co., Paris, France), available as an 

add-in software to MS-Excel, was used to perform PLS analysis. The performance of PLS 

models generated were evaluated based on standard error of prediction (SEP), accuracy factor 

(Af) and Bias factor (Bf). PLS-R models were built for GCMS and FTIR data (FTIR spectral 

data & FTIR first derivative data, Section 2.1.5.1) of all the fruit samples at both the storage 

temperature.  

2.1.8 Artificial neural network modelling 

Nonlinear neural multiple layer perceptron (MLP) network was applied for prediction 

of TVC and Y&M. In the present study, back propagation (BP), which is the most commonly 

used training algorithm for neural networks, was employed. Original GCMS and FTIR data 

due to large number of input variables (volatiles or wave numbers) is not suitable for ANN 

training and secondly, the strong correlation among volatiles and FTIR variables (i.e. wave-

numbers), would seriously deteriorate the modeling procedure. Therefore, uncorrelated 

principal components (PCs) were utilized as input variables. Volatile profile of GCMS data 

and processed FTIR data (FTIR spectral and first derivative data) was first subjected to PCA. 

Principal components (PC) were then used as input variables for ANN modelling. The number 

of PCs extracted as input variables accounted for 95% of cumulative variance observed in the 

experiment. The database was randomly partitioned into a training, validation and test subset 

(70:15:15). Training data was employed for building and training the model while test data was 

not used for training but for determining performance of the model. 

MLP network chosen had one hidden layer with varying number of neurons from 1 to 14. The 

output layer contained two nodes one for prediction of TVC and other for Y&M counts. 

Numbers of input neurons were kept same as number of PC’s chosen in training dataset. The 

training algorithm utilized for ANN was Levenberg-Marquardt. Training for all architectures 
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was carried out for six times after re-initialization of weights for maximum of 1000 generations. 

However, training was stopped if the validation mean square error (MSE) showed no 

improvement for 6 epochs. Transfer functions for hidden and output layer were chosen as 

sigmoidal and hyperbolic tangent, respectively. Best neural network architecture was selected 

network with highest R2 values of training, validation and test data and lowest training, test and 

validation performance errors was selected. The MLP network was developed in MATLAB 

version 7.0 code (Mathworks, Inc., Massachusetts, USA). ANN networks were developed in 

this work with GCMS and FTIR data (FTIR spectral data & FTIR first derivative data, Section 

2.1.5.1) of all the fruit samples at both the storage temperature.  

2.1.9 Performance parameters of the generated model 

To evaluate the performance of the models generated by PLS-R and ANN, various 

statistical parameters such as Standard error of prediction (SEP), accuracy factor, bias factor 

and correlation coefficient (R2) between the observed and predicted counts were calculated. 

The bias (Bf), accuracy (Af) factors and SEP [102] were expressed as follows:  

𝐵𝑓 = 10((∑ log⁡(𝑦𝑖/𝑦)/𝑛)                             (1)   

𝐴𝑓 = 10(∑|𝑙𝑜𝑔(𝑦𝑖/𝑦)|/𝑛)                (2)           

𝑆𝐸𝑃 = (√
∑(𝑦𝑖−𝑦)^2

𝑛
)                                                                                   (3) 

 where yi is the predicted value of the ith observation, y is the measured value of the ith 

observation, and n is the number of observations. 

Af provides a measure of how close predictions are to observations while Bf gives a measure 

of systematic under or over prediction by the model.  
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Figure 5. Flow diagram for instrumental based rapid assessment of all the three fruit samples 

using GCMS & FTIR. 

2.2 Preparation of Time Temperature Indicator and its evaluation for real time 

application 

2.2.1 Chemicals 

Phenol and agarose were procured from Sigma (Steinheim, Germany). Ammonium per 

sulphate (free radical initiator) was purchased from HiMedia (Mumbai, India). Sodium 

carbonate, were purchased from CHEMCO chemicals, Mumbai. 

2.2.2 Preparation of minimally processed fruits samples 

 Pineapple thin slices (0.5cm) were obtained after removing the peel and cutting it into slices, 

pomegranates were manually processed to obtain arils and jackfruit was processed to obtain 

ripe bulbs. Minimally processed fruits (75 g each) were enclosed in polystyrene trays (75g 

each) using cling film (Flexo film wraps ltd. Maharashtra, India). The packaged samples were 

stored at constant temperature (4, 10, 20 and 37 °C) in high precision (± 0.2 °C) temperature 

incubator (Panasonic Incubator, MIR-154-PE).  
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Withdrawal of minimally processed fruit packages stored at different temperature conditions 

was done on regular time interval depending on the shelf life of the product. Triplicate packages 

of all the minimally processed fruit from each storage temperature were sampled at appropriate 

time interval to allow for effective kinetic analysis of microbial growth during microbial 

spoilage either under isothermal or dynamic storage conditions. All the experiments were 

conducted twice. Table 5 provides the final storage period for all the fruit samples. 

Table 5: Final days of storage for minimally processed fruit samples 

Fruit samples 4 °C 10 °C 20 °C 37 °C 

Pineapple 528h (22 d) 168h (7 d) 77h (3.2 d) 23h 

Pomegranate 668h (27 d) 240h (10 d) 96h (4 d) 28h 

Jackfruit 456h (19 d) 264h (11 d) 69h (3d) 28h 

h- hours; d - days 

2.2.3 Microbial analysis of minimally processed fruit samples 

TVC and Y&M counts were evaluated during storage for all the three minimally processed 

fruit samples as detailed in Section 2.1.3. 

2.2.4 Microbial growth rate kinetics in minimally processed fruits  

The growth data of both TVC and Y&M in the stored fruit samples at different constant 

temperatures were modelled as a function of time using Baranyi and Roberts model (1994) 

[104]. For curve fitting, DMFit program of IFR (Institute of Food Research, Reading, UK) 

available in Combase (2020) was applied. Curve fitting allowed the estimation of the kinetic 

parameters like the maximum growth specific rate µmax (h
-1).  

For determination of activation energy (Eα) of microbial spoilage, the temperature dependence 

of the maximum growth rate µmax (h
-1) of TVC and Y&M for all the fruit samples at different 

storage temperature was modelled using Arrhenius equation. The logarithmic function of 
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maximum growth rate was plotted against the reciprocal of temperature to obtain the activation 

energy (Eα) of the microbial reaction.  

𝑙𝑛⁡µ𝑚𝑎𝑥 = 𝑙𝑛⁡𝐴𝑟𝑒𝑓 −
𝐸𝛼

𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)                                                            (4) 

The logarithmic function of µmax was plotted against the reciprocal of storage temperature (T) 

in Kelvin. Data was fitted in linear regression and the activation energy (Eα; kJ/mol) was 

calculated from the slope of the curve.    

2.2.5 Preparation of TTI prototypes 

TTI hydrogel were prepared containing sodium carbonate (Na2CO3), Ammonium per sulfate 

(APS) and phenol using 2 % agarose. Phenol undergoes oxidative browning in presence of free 

radical generator APS under alkaline conditions aided by sodium carbonate with colour 

changing from transparent to dark brown.  Aqueous solution of Na2CO3 of different 

concentrations in the range of 23-59 mM and freshly prepared APS in distilled water (21-43 

mM) were added in the microtiter 96-well plate. Freshly prepared 2 % (wt/vol) phenol in 

distilled water (50µl) was added to the mixture.  Finally, 100 µl of 2 % agarose solution was 

added to the reaction mixture, mixed thoroughly and allowed to solidify at 4 °C for 10 mins. 

Solidified hydrogels of different combinations of TTI (Table 6) were incubated at different 

temperatures (10, 20, 30, 37 and 45°C) to observe the colour change at regular intervals for 

different time period to attain the final chronochromic change. These experiments were 

repeated twice and duplicate samples were kept in microtitre plate.  The absorbance of the 

developed TTI prototypes was recorded at regular intervals at 440 nm using microplate 

spectrophotometer (Thermo ScientificTM, Multiskan Go, Finland).  
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Table 6: Different combination of TTI prototype with varying concentration of sodium 

carbonate and APS. Different concentrations of APS are depicted as A (21 mM); B (32 mM); 

C (43 mM). Concentrations of Na2CO3 are shown as 1 (23 mM), 2 (35.4 mM), 3(47 mM), 4 

(59 mM). 

 

2.2.6 Determination of rate constant and Arrhenius parameter of time temperature 

indicator 

According to the indicator kinetics described by Taoukis and Labuza [105], the color change 

of the TTI can be represented as follows 

X =   -d[A]   = k [A]n    = kA exp(-Ea/RT) [A]n                                                              (5) 

            dt 

Where X is rate of change in colour of TTI, A is the absorbance measured at 440 nm, n is the 

reaction order, and k is the reaction rate constant. The rate constant is an exponential function 

of inverse absolute temperature, T (°K) given by the shown Arrhenius expression, where kA is 

a constant and Ea is the activation energy of the reaction that controls quality loss and R is the 

universal gas constant (8.314 kJ/mol). 

The equation (1) can be transformed as the following one 

Log X = logk +n log [A]                                                                                             (6) 

Log of rate of change in absorbance (Log X) was plotted versus log of absorbance (log [A]). 

Value of k was calculated from intercept of this plot. For every TTI prototype, value of k was 

calculated at each storage temperature.   

 Na2CO3 1 2 3 4 

 
 23 mM 35.4 mM 47mM 59mM 

 APS     

A 21 mM A1 A2 A3 A4 

B 32 mM B1 B2 B3 B4 

C 43 mM C1 C2 C3 C4 
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The temperature dependence of a chemical reaction is given by Arrhenius expression. 

Therefore, the estimation of activation energy of the chemical reaction of TTI can be described 

by the Arrhenius equation expressed in logarithmic terms 

𝑙𝑛𝑘 = 𝑙𝑛⁡𝐴𝑝𝑒𝑓 −
𝐸𝛼

𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)                                                                                        (7) 

Where k is rate constant (h-1), Ea is activation energy (kJ/mol), T is temperature (in K), A pef is 

pre-exponential factor (h-1) and R is universal gas constant.  

The logarithmic function of k was plotted against the 1/T where T is storage temperature in 

Kelvin. Data was fitted in linear regression and the activation energy (Ea; kJ/mol) was 

calculated from the slope of the curve.    

Statistical analysis: A full factorial screening experimental design (Design Expert 8.0, Stat-

Ease Inc., USA) was performed for investigating the effect of individual variable (Sodium 

carbonate and APS) on the color development reaction of TTI as determined in terms of Ea. 

The range of the variable selected was: Na2CO3(24-59mM) and APS (21-43 mM) consisting 

of 12 experiments in triplicate. Experimental data were fitted in third order polynomial 

(quadratic) equations. Equations obtained after fitting were utilized to generated 3D plot to 

elucidate the relationship between response and experimental levels of variable. 

2.3.7 Camera based rapid read out system to determine the microbial counts on a real 

time basis 

In order to check the feasibility of developed TTI’s for their use in market conditions, the 

selected candidate TTI hydrogels were prepared in petri plates and allowed to solidify at 4 °C 

for 10 mins. Later, TTI hydrogels in petriplates were kept on ice pack and cut in circles 

(diameter-1cm), packed in low density polyethene (LDPE) films and placed along with the 

minimally processed pineapple, pomegranate & jackfruit packages. Performance of TTI was 
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evaluated during storage both isothermally at 10 °C for 7 days and under non-isothermal 

conditions (to mimic possible market conditions) with periodic 24 h cycle of 16 h at 10 °C and 

4 h at 15 °C then finally for 4 h at 20 °C in high precision (± 0.5 ◦C) incubation chambers (MIR-

153, Sanyo Electric Co., Osaka, Japan) for 5 days. Different colour intensity of TTI was 

captured in DSLR camera at different period of storage and microbial counts were estimated 

simultaneously as described in microbial analysis section above. The RGB scores were 

estimated by employing image processing packages in R. ∆RGB scores were computed and 

were plotted against log CFU/g counts and their correlation established.  

∆RGB = √⁡(𝑅𝑟𝑒𝑓 − 𝑅𝑖)2 + (𝐺𝑟𝑒𝑓 − 𝐺𝑖)2 + (𝐵𝑟𝑒𝑓 − 𝐵𝑖)2                                               (8) 

Where, reference value of RGB are at 0 hr just after TTI preparation whereas, ith values of RGB 

are at different time points.  

The performance of the TTI based on the ∆RGB for estimating TVC and Y&M were evaluated 

by estimating accuracy factor (Af) between observed and predicted counts expressed as 

equation (2). 
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3.1 Rapid assessment of microbial quality of minimally processed fruits using 

instrumental techniques 

3.1.1 Microbial analysis of minimally processed fruits 

The tropical Indian fruits selected for the study such as jackfruit (Artocarpus heterophyllus), 

pomegranate (Punica granatum) and pineapple (Ananas comosus) are rich in nutritive value. 

They have wide acceptance in Indian market as minimally processed products due to 

cumbersome peeling and cutting techniques involved. Minimally processed packed jackfruit, 

pomegranate and pineapple were processed as described in materials and methods (section 

2.1.1) and stored at 4 and 10 °C for different time intervals to monitor the growth of total viable 

counts (TVC) and yeast &mould counts (Y&M) during storage. 

3.1.1.1 Microbial analysis of jackfruit 

The results for TVC and Y&M on packaged jackfruit samples stored at 4 ºC and 10 ºC 

are shown in Figure 6A and Figure 6B, respectively. Freshly packed samples at 0 day had TVC 

of <4 Log10CFU/g. The TVC on freshly packaged samples indicates level of surface 

contamination resulting from various processing steps such as cutting, washing and packaging. 

A significant (p<0.05) increase in TVC was observed during storage at both the temperatures 

studied. Samples stored at 4 ºC demonstrated an increase in the TVC to 6 Log10CFU/g in 19 

days, while for those stored at 10 ºC the TVC reached 9Log10CFU/g after 6 days. Y&M counts 

were < 2.5 Log10 CFU/g for freshly packed samples. Y&M increased to 4and 6.6 Log10 CFU/g 

for samples kept at 4 and 10 °C, respectively, at the end of storage period. Significantly 

(p<0.05) higher microbial growth was observed for samples stored at 10°C as compared to 

samples kept at 4°C.  
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Figure 6. Total viable count ( ) and Yeast & Mould count ( ) during different storage 

period at 4 °C(A)and 10 °C (B) for minimally processed Jackfruit. Values represented here are 

mean ± SD. 

3.1.1.2 Microbial analysis of pomegranate 

The results for TVC and Y&M on packaged pomegranate samples stored at 4 ºC and 

10ºC are shown in Figure7A and Figure7B, respectively. The initial microbial count (day 0, 

freshly packed samples) was ≤3 LogCFU/g for both TVC and Y&M. A very slow growth for 

both TVC and Y&M was recorded for samples stored at 4 °C.  Microbial counts (TVC and 

Y&M) reached to 5 Log10CFU/g on 28th day of storage at 4°C. However, a rapid increase in 

both TVC and Y&M was observed during storage at 10 °C (Figure7B). After storage period of 

3 and 7 days at 10 °C the TVC increased to 5.8 ± 0.168 and 7.0 ± 0.44 Log10CFU/g, 

respectively. Y&M counts increased to 6 ± 0.38 and 7.1 ± 0.365Log10CFU/g on day 4 and 7, 

respectively at 10 °C. These results indicate that the packaged pomegranate sample have 

undergone a rapid deterioration in quality during storage at 10 °C. Interestingly, higher Y&M 

counts as compared to TVC counts were recorded in minimally processed pomegranate sample 

at all storage conditions (Figure 7). Similar observations were also noted by Caleb et al. [69]. 
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This could be attributed to the fact that the lower pH (3.2) in pomegranate favours the growth 

of Y&M in comparison with aerobic mesophilic bacteria [106, 107].  

 

Figure 7. Total viable count ( ) and Yeast & Mould count ( ) during different storage 

period at 4 °C(A)and 10 °C (B) for minimally processed pomegranate. Values represented here 

are mean ± SD. 

3.1.1.3 Microbial analysis of pineapple 

The initial microbial counts of freshly packed minimally processed pineapple on day 0 

were found to be 3.49 ± 0.31 and 3.56 ± 0.42 Log10 CFU/ g for TVC and Y&M, respectively 

as shown in Figure 8. Samples stored at 4 °C demonstrated a marginal but significant (p<0.05) 

increase in the microbial counts to 4.77 ± 0.21 and 4.89 ± 0.24 Log10 CFU/ g for TVC and 

Y&M, respectively by the end of the storage period at 22 days (Figure 8A). Although, 

microbial counts demonstrated an increase of only 1 Log10CFU/g even after the storage period 

of 22 days, physiological deterioration with browning and water loss was observed in pineapple 

slices stored at 4°C after10 days of storage. On the contrary, samples stored at 10 ⁰C 

demonstrated a rapid increase in TVC and Y&M with counts reaching to 7.92 ± 0.32 and 7.66± 

0.15 Log10 CFU/ g, respectively by the end of the storage period of 7 days (Figure8B).  
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Figure 8. Total viable count ( ) and Yeast & Mould count ( ) during different storage 

period at 4 °C (A)and 10 °C (B) for minimally processed pineapple. Values represented here 

are mean ± SD. 

3.1.1.4  Inference from microbial analysis 

The microbial load (TVC and Y&M) on fresh minimally processed fruit samples were obtained 

in the range of 102 to 104 CFU/g. Total counts on any fresh cut products just after processing 

are reported in the range of 103 to 106 CFU/g [19]. Microbial analysis revealed that temperature 

had significant effect on microbial growth (p˂0.05). Sample stored at 4 °C did not show 

significant increase in microbial growth however the counts increased by 1 Log10 CFU/g even 

after a prolonged storage period of 19, 28 and 22 days for minimally processed jackfruit, 

pomegranate and pineapple, respectively. Similar observations were demonstrated in the 

previous studies wherein it was observed that microbial counts did not increased significantly 

at 4 °C for minimally processed pineapple [24, 108]. Samples stored at 10 °C showed an 

increase in microbial growth. All the three fruit samples exceeded permissible microbial limits 

beyond 3 or 4 days suggesting a short microbiological shelf life. The European standards limits 

maximum TVC not to exceed 107 CFU/g and Y&M counts not greater than 105 CFU/g  during 

the entire storage period for minimally processed produce [109]. Thus, it can be concluded that 
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minimally processed products have short shelf life of few days primarily due to microbial 

growth beyond a storage temperature of 4 °C. Moreover, market samples are stored at 

temperature between 8 to 15 °C, that are additionally subjected to temperature abusive 

conditions during handling, transport and storage which may lead to rapid microbial growth 

and quality deterioration [110]. While minimally processed products are prone to rapid 

microbial spoilage, traditional plate count methods require long time (48-72 h) to assess 

microbial quality and thus may not be applicable for such products. Therefore, there is a need 

for development of rapid methods of assessment for microbial quality of minimally processed 

products. 

3.1.2 Biochemical changes in packed minimally processed fruit samples during storage 

Microbial growth during storage could lead to several biochemical changes in the 

product. These biochemical changes if monitored could possibly provide an indication of extent 

of microbial spoilage in the product. Microbial spoilage leads to generation of volatile organic 

compound (VOC), several of them contributes to off-odours specific to spoilage. In this study, 

VOCs were targeted for monitoring product microbial quality by correlating them with 

microbial counts. Changes in volatile constituents during the product deterioration can be 

rapidly monitored by HS-SPME in combination with GCMS [68]. On the other hand, changes 

in the non-volatile constituents can be monitored by FTIR. It can be used directly on the surface 

of food to produce biochemical interpretable “fingerprints” (metabolic snapshots), thus 

enabling early detection of microbial spoilage [71]. Therefore, in the present work, changes in 

biochemical constituents were monitored both by HS-SPME-GCMS and FTIR. 
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3.1.2.1 Analysing biochemical changes using GCMS  

  The total volatile profile of minimally processed jackfruit, pomegranate and pineapple 

during storage was studied using HS-SPME-GCMS. Qualitative and quantitative distribution 

of different volatiles at the beginning and end of the storage period at 4 and 10 °C is listed in 

Table 6, 7, 8, respectively. Changes in the volatile profile during storage at both the 

temperatures studied are also depicted in Figure 9, 10 and11 for the respective minimally 

processed products. 

3.1.2.1.1 Jackfruit 

A total of 45 volatile compounds were detected in minimally processed jackfruit at day 

zero which is in accordance with that reported in previous studies [111,112]. The profile 

demonstrated predominance of esters followed by alcohol, aldehyde and ketone. However, 

there was complete absence of terpenoids, which was unique to jackfruit [113]. The major 

compounds isolated were methyl isovalerate, butyl acetate, 1-butanol 3-methyl acetate, 1-

butanol 2-methyl acetate, isoamyl isovalerate. The predominance of sweet and fruity aroma is 

reported to be due to dominance of esters imparting jackfruit aroma [114].  
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Significant changes (p˂0.05) in the volatiles profile of jackfruit samples was observed 

during storage at 4 and 10 °C (Figure 9). With respect to alcohols, varying trends were observed 

at different storage temperature. Ethanol, 3-methyl-1-butanol, 2-methyl-1-butanol, 1-butanol 

and 2-ethyl hexanol showed an increase during storage. Their concentrations were significantly 

(p<0.05) higher at 10 °C when compared to 4 °C (Table 6).1-hexanol and 1-nonanol showed a 

decreasing trend at both the storage temperatures, with a greater decrease at 4 °C due to longer 

storage duration up to 19 days. Aldehydes such as 2-butenal, octanal, decanal, 2-decenal, 

dodecanal were either unaffected or showed a slightly decreasing trend during storage. 

However, acetaldehyde and hexanal exhibited a significant increase at both the temperatures 

with greater increase at the higher storage temperature (10 °C). Esters such as methyl acetate 

and ethyl acetate showed an increasing trend at both the storage temperatures. Isoamyl acetate, 

methyl isovalerate, ethyl butyrate, butyl acetate, butanoic acid 3-methyl ethyl ester, 1-butanol 

3-methyl acetate, 2-butanol 3-methyl acetate, propyl isovalerate, ethyl hexanoate, isobutyl 

isovalerate, hexyl acetate, butyl isovalerate, amyl butyrate, iso amyl valerate, iso amyl 

isovalerate, n-amyl isovalerate showed an increased content at both the temperatures studied. 

However, at both the storage temperatures, volatiles such as hexyl acetate, hexyl isovalerate 

showed a decreasing trend. 
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Table 6: Headspace volatile concentrations of minimally processed jackfruit during storage at 

4 and 10 °C 

Sr. 

No 

Compound 

Name 

KI Day 0 Day 19 

(at 4 °C) 

Day 7 

(at 10 °C) 

1 acetaldehyde  412.24 0.285±0.09 

 
110.92±19.1 966.3408± 76.5 

 

2 ethanol  512.83 1.77±0.12 539.8976±71.3 
 

4693.7±517.3 

3 methyl acetate 550.56 17.07±3.40 330±18.65 515.17±67.34 

4 ethyl acetate  616.93 17.07±3.40 703±108.65 5502.17±627.34 

5 2-butenal   652.21 4.01±0.65 7.01±1.55 8.8±3.37 

6 1-butanol  663.21 3.24±1.5 6.81±3.11 7.2±2.50 

7 propyl acetate 714.84 54.09±41.00 135.63±83.48 1032.63±478.15 

8 1-butanol, 3-

methyl-  

732.54 4.24±1.73 3.42±0.56 294.07±53.68 

9 1-butanol, 2-

methyl- 

735.75 2.03±0.78 59.79±20.27 270.23±110.26 

10 2-butenal, 2-

methyl-  

739.0 8.17±2.58 44.91±26.05 4.25±2.68 

11 isoamyl acetate 775.06 95.56±24.26 188.31±20.65 2691.84±732.18 

12 methyl isovalerate 777.96 175.61±20.4

2 

110.94±14.04 1478.22±304.65 

13 hexanal 804.25 12.42±1.30 13.68±3.05 26.01±10.84 

14 ethyl butyrate  806.73 14.15±8.41 24.01±4.76 2.26±0.92 

15 butyl Acetate 820.54 982.35±58.3

2 

812.32±371.82 3326.6±781.53 

16 butanoic acid, 3-

methyl-, ethyl ester 

858.91 22.81±5.81 646.30±52.08 7713.18±593.26 

17 1-hexanol  876.85 29.03±18.23 8.52±4.17 13.61±6.68 

18 1-butanol, 3-

methyl-, acetate  

883.24 659.59±138.

11 

860.92±356.31 5453.79±1028.45 

19 1-butanol, 2-

methyl-, acetate  

885.71 194.93±111.

63 

860.92±314.81 3469.46±1023.24 

20 n-amyl acetate  920.38 21.49±4.10 2.09±0.17 3.10±0.585 

21 propyl isovalerate 954.44 16.03±10.38 60.47±0.42 184.01±76.78 
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Sr. 

No 

Compound Name KI Day 0 Day 19 

(at 4 °C) 

Day 7 

(at 10 °C) 

22 benzaldehyde 962.51 5.88±1.52 16.92±4.24 39.80±5.89 

23 ethyl hexanoate 1004.21 0.29±0.16 6.90±1.92 30.32±12.85 

24 octanal 1006.31 15.59±3.11 12.51±4.64 14.86±2.14 

25 isobutyl 

isovalerate 

1010.18 30.62±11.62 85.68±22.60 794.31±236.11 

26 p-dichlorobenzene 1012.5 35.05±7.48 158.11±21.53 0 

27 hexyl acetate 1017.89 118.76±47.0

8 

8.49±3.19 36.18±11.23 

28 2-ethyl hexanol 1033.72 1.25±0.37 9.10±1.54 5.68±1.23 

29 butyl Isovalerate 1050.11 57.73±6.49 24.33±11.52 129.14±36.24 

30 isoamyl 

isobutyrate 

1059.37 9.58±3.15 2.64±1.16 26.70±14.122 

31 amyl butyrate  1061.69 10.73±4.07 13.38±6.16 41.72±12.23 

32 1-nonanol  1075.51 10.17±6.48 1.05±1.24 4.03±2.33 

33 isoamyl valerate 1107.53 31.47±23.96 22.27±9.13 1862.79±927.17 

34 iso amyl 

isovalerate 

1111.89 79.14±64.85 406.38±133.30 522.75±287.63 

35 n-amyl isovalerate 1145.89 0.16±0.14 0.36±0.08 7.26±3.19 

36 benzenepropanal 1165.17 1.18±0.72 11.44±7.68 5.06±1.35 

37 dodecane 1200 2.61±0.22 16.00±6.62 12.05±2.34 

38 decanal  1207.19 20.19±3.11 39.85±18.57 7.85±4.74 

39 hexyl isovalerate 1243.80 6.3±3.13 2.87±1.36 1.68±0.86 

40 2-decenal 1264.69 0.44±0.30 2.39±0.87 1.68±0.86 

41 tridecane 1300 1.26±0.11 7.95±2.52 8.07±1.05 

42 trans-dodec-5-enal 

 

1383.10 3.07±0.37 3.6±0.75 0.29±0.02 

43 dodecanal 1406 1.29±0.159 23.97±14.66 4.38±2.97 

44 Propanoic acid, 

2,2-dimethyl-, 2-

phenylethyl ester  

 

1492.12 

 

2.56±0.07 

 

12.44±5.12 

 

21.24±4.82 

45 butanoic acid, 3-

methyl-, 3-

phenylpropyl ester   

1609.96 0.82±0.33 6.14±2.36 19.19±4.35 

 KI-kovat index; concentrations of volatiles expressed in µg/kg 
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3.1.2.1.2 Pomegranate 

In total 10 volatiles were identified in GC profile of pomegranate at both the storage 

temperature (Figure 10).  They can be classified as aldehydes: hexenal, 2-hexenal; ketone: 2-

octanone, ester: ethyl acetate, alcohols: ethanol, 1-heptanol, 2-ethyl, 1-hexanol, mono terpene 

alcohol such as terpineol, 4-terpineol, p-cymene-2-ol. Very few changes were observed in the 

volatile profile of pomegranate (Table 7) at both the storage temperature. Hexanal and 1-

hexanol however, showed a significant increase at 10 °C (p˂0.05) but remain unchanged at 4 

°C. Moreover, ethyl acetate showed a low but significant decrease in concentration during 

storage at both the storage temperatures. No other marked trend could be observed in the 

volatile profile for minimally processed pomegranate during storage. 
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Table 7: Headspace volatile concentrations of minimally processed pomegranate during 

storage at 4 and 10 °C. 

Sr. No. Compound 

name 

KI Day 0 Day 22 (at 4 

°C) 

Day 7 (at 10 

°C) 

1 ethanol 515.13 0.37±0.37 1.28±0.73 

 

0.84±0.23 

2 ethyl acetate 616.93 7.97±1.78 4.79±0.78 

 

5.41±1.02 

3 hexanal 801.42 8.29±2.05 

 

1.42±0.66 

 

5.26±0.12 

 

4 1-hexanol 876.85 1.08±0.45 

 

0.825±0.13 

 

4.10±0.98 

 

5 2-heptanol 901.59 0.11±0.04 0.23±0.12 0.48±0.11 

6 2-octanone 989.28 0.23±0.06 0.19±0.04 0.20±0.06 

7 1-hexanol, 2-

ethyl- 

1033.72 1.32±0.34 

 

0.37±0.12 0.98±0.27 

 

8 4-terpineol 1169.77 0.018±0.003 0.099±0.018 0.067±0.013 

9 α-terpineol 1182.55 0.79±0.18 

 

0.75±0.11 

 

0.81±0.24 

 

10 p-cymene-2-ol 1295 0.81±0.32 

 

0.28±0.11 

 

 

0.77±0.34 

 

KI-kovat index; concentrations of volatiles expressed in µg/kg 

 

3.1.2.1.3 Pineapple 

GCMS profile showed presence of 62 volatile compounds in the stored pineapple 

samples with a variation in volatile constituents under different temperature conditions (Figure 

11). Table 8 shows the quantitative distribution of the 40 identified compounds that were 

present at the beginning and end of storage period. The majority of identified compounds were 

alcohol, esters, ketones, terpenes and aldehydes reported previously [115, 116]. 
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Volatile profile demonstrated changes occurring during storage at 4 and 10 °C in the 

stored pineapple samples (Figure 11). Alcohols were found to be stable with no significant 

change (p˃0.05) at 4 °C with the exception of 2-ethyl-1-hexanol that showed a decrease. 

However, a significant increase (p˂0.05) in concentration of alcohols was observed at 10 °C 

(Table 8). Ethanol, 1-hexanol, 1-heptanol, 2-heptanol, 3-methyl-1-butanol, phenyl ethanol and 

2-ethyl-1-hexanol showed no significant change (p˃0.05) at 4 °C and an increase at 10 °C. 

Among the ketones, 2-heptanone and acetophenone showed a decreasing trend at 4 °C and an 

increase at 10 °C. Esters identified can be grouped into methyl esters and their corresponding 

ethyl esters. Methyl esters detected include methyl butanoate, methyl 2-methyl butanoate, 

methyl hexanoate, methyl-3-hexenoate, methyl 3-(methyl thio) propanoate, methyl octanoate. 

The corresponding ethyl esters were ethyl butanoate, ethyl 2-methyl butanoate, ethyl 

hexanoate, ethyl 3-hexenoate, ethyl 3-(methyl thio) propanoate, ethyl octanoate. It was 

observed that methyl esters showed a decrease at both the temperatures with the exceptions of 

methyl 2-methyl butanoate that showed an increase at 10 °C. Contrasting results were observed 

for ethyl esters that remain unchanged at 4 °C while a significant increase (p˂0.05) was 

observed at 10 °C. Methyl, ethyl and propyl acetates showed an increase at both the 

temperatures.  However, 1-butanol, 3-methyl-, acetate and 1-butanol, 2-methyl-, acetate 

showed no change at 4 °C while it increased at 10 °C.  
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Table8: Headspace volatile concentrations of minimally processed Pineapple during storage 

 

Sr. No Compound  KI cal Day 0 Day 22 (For 

4 °C) 

Day 7 (For 10 

°C) 

1 ethanol 512.13 6.96 ± 0.79 6.80 ± 0.81 130 ± 12.57 

2 methyl acetate 545.96 0.00 48.48 ± 2.85 125 ± 11.38 

3 ethyl acetate 616.63 12.59 ± 1.54 106.06 ± 7.01 1636 ± 123.12 

4 n propyl acetate 704.44 0.05 ± 0.01 0.74 ± 0.08 15.45 ± 1.94 

5 methyl butanoate 710.89 6.18 ± 1.07 1.02 ± 0.64 4.61 ± 0.45 

6 3-methyl, 1-butanol 723.70 0.57 ± 0.03 0.64 ± 0.08 9.34 ± 1.75 

7 methyl, 2-methyl 

butanoate  

770.26 11.87 ± 0.82 3.30 ± 0.88 50.51 ± 6.28 

8 hexanal 801.42 1.06 ± 0.02 3.86 ± 0.92 0.50 ± 0.07 

9 ethyl butanoate 803.34 0.00  1.28 ± 0.07 82.39 ± 3.42 

10 isobutyl acetate   828.14 2.16 ± 0.25  0.42 ± 0.06 0.00 

11 ethyl 2-

methylbutanoate  

841.75 2.30 ± 0.36 3.60 ± 1.23 82.39 ± 3.44 

12 1-hexanol 865.61 1.90 ± 0.04 3.56 ± 0.12 3.06 ± 1.60 

13 1-butanol, 3-methyl 

acetate 

871.64 0.17 ± 0.04 0.24 ± 0.03 114.82 ± 24.90 

14 1-butanol, 2-methyl 

acetate 

874.75 3.13 ± 0.77 0.11 ± 0.05 30.59 ± 4.68 

15 2- heptanone 888.29 0.108 ± 0.01 0.207 ± 0.05 18.32 ± 2.04 

16 2-heptanol  901.59 0.00 0.239 ± 0.02  9.59 ± 2.24 

17 α thujene 929.89 11.59 ± 1.49 3.14 ± 0.42 4.94 ± 0.58 

18 methyl hexanoate 934.82 107.96 ± 2.58 3.04 ± 0.58 63.88 ± 4.67 

19 methyl 3-hexenoate 943.53 0.31 ± 0.08 0.58 ± 0.15 2.21 ± 1.08 

20 α sabinene  975.25 97.91 ± 2.04 20.36 ± 0.61 44.29 ± 6.43 

21 1-heptanol 979.95 0.00 2.15 ± 0.67 2.26 ± 0.36 

22 ethyl-3-hexenoate 1009.02 0.19 ± 0.07 0.63 ± 0.05 7.39 ± 2.99 
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Sr. No Compound  KI cal Day 0 Day 22 (For 

4 °C) 

Day 7 (For 10 

°C) 

23 (+)-4-carene 1013.53 6.22 ± 0.67 1.23 ± 0.22 2.16 ± 0.96 

24 o-cymene  1022.55 4.84 ± 1.18 25.20 ± 1.25 7.04 ± 2.20 

25 D- limonene 1026.89 65.41 ± 3.20 25.20 ± 0.66 84.20 ± 8.58 

26 3-(methylthio) 

methyl propanoate  

1029.78 182.98 ± 

17.13 

26.52 ± 3.70 69.45 ± 5.29 

27 2-ethyl-1-hexanol 1033.74 14.17 ± 4.73 15.45 ± 2.61 21.98 ± 3.05 

28 γ terpinene 1057.01 9.26 ± 2.57 2.47 ± 0.86 5.75 ± 1.51 

29 acetophenone 1063.97 0.45 ± 0.07 1.45 ± 0.08 2.57 ± 1.01 

30 dimethyl malonate 1074.83 0.40 ± 0.27 0.79 ± 0.05 6.86 ± 2.88 

31 2,3-

butanediol,diacetate  

1077.70 0.72 ± 0.029 1.81 ± 0.71 16.65 ± 4.9 

32 3-(methylthio) ethyl 

propanoate  

1097.38 57.11 ± 1.01 26.52 ± 1.70 428.04 ± 

169.39 

33 phenyl ethanol 1109.17 0.00 0.07 ± 0.01 41.95 ± 4.44 

34 methyl octanoate 1121.89 107.51 ± 2.32 97.61 ± 0.45 74.37 ± 16.41 

35 Menthol  1166.01 18.51 ± 3.09 10.21 ± 2.43 62.76 ± 30.65 

36 L-4-terpineol  1169.77 55.16 ± 8.02 1.36 ± 0.54 3.65 ± 1.43 

37 L-α-terpineol  1182.55 1.45 ± 0.27 5.47 ± 1.08 20.81 ± 4.89 

38 benzene methanol, 

alpha.-methyl-, 

acetate  

1186.51 1.21 ± 0.07 5.16 ± 0.01 20.79 ± 7.82 

39 ethyl octanoate  1189.43 0.26 ± 0.12  0.55 ±0.06  55.56 ± 12.82 

40  2-phenylethyl 

acetate  

1252.11 0.46 ± 0.60 0.43 ± 3.72 ± 0.85 

 KI-kovat index; concentrations of volatiles expressed in µg/kg 
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3.1.2.1.4 Inference from headspace volatile analysis of fruit samples 

Concentration of volatiles remained more or less unaffected with no significant changes for 

samples stored at 4 °C in case of all the three fruit samples. However, major changes in volatile 

constituents could be noted in all the three fruits for storage temperature of 10 °C.  Major 

changes in the volatile profile were observed for ethanol and ethyl acetate peak for jackfruit 

and pineapple samples, however, pomegranate did not demonstrate similar trend for these 

volatiles. Moreover, several other compounds also demonstrated significant changes at 10 °C. 

The packaging film used in the present study, cling film, does not result in anaerobic 

conditions. Several previous studies on minimally processed products using cling films report 

package headspace atmosphere values close to atmospheric values [117]. 

It was observed that concentration of ethanol increased during storage at 10 °C in case of 

jackfruit and pineapple. Ethanol is produced in fresh cut pineapple by several specific spoilage 

yeast such as C. sakae and C. argentea under oxygen limiting condition [118] Additionally, 

Crab free positive S. cerevisiae is also known to produce alcohol under glucose rich condition 

wherein glucose is converted to pyruvate. This increases the activity of pyruvate decarboxylase 

and alcohol dehydrogenase that in turn produces alcohol to recycle depleted NAD+ [67]. 

Branched chain alcohol such as 2-methyl-1-butanol and 3-methyl-1-butanol showed an 

increase at 10 °C in case of jackfruit and pineapple. It has been reported that production of 

these alcohols can be due to amino acid metabolism of leucine and iso-leucine by the 

microorganisms present, primarily by Pseudomonads that can bring about these metabolic 

changes under aerobic condition [119, 120].   Significant increase in 2-ethyl hexanol was 

observed in case of jackfruit and pineapple while 1-hexanol showed increase in pomegranate. 

Long chain aliphatic alcohols such as 1-hexanol, 1-heptanol and 2-heptanol are formed from 

the corresponding reduction of long chain fatty acid by Enterobacteriaceae family [121]. These 

detected alcohols have also been reported as possible products of lipid oxidation [122, 123]. 
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Ketones probably originate from several fatty acid oxidation reactions chemical auto-oxidation 

and enzymatic α- or β-oxidation [123, 124]. 2-Heptanone showed an increase at 10 °C in 

case of pineapple samples during storage. Some methyl ketones can be derived from a lipolytic 

process as well as from several other pathways, such as alkane degradation by Pseudomonas 

through a unique alpha-oxidation, with no change in the carbon skeleton [125]. Methyl ketones 

are also formed by bacterial dehydrogenation of secondary alcohols, a reaction that appears to 

be part of the alkane oxidation sequence [125]. Hexanal showed an increasing trend in case of 

jackfruit and pomegranate at 10 °C. Saturated aldehydes with more than five carbon atoms can 

be produced from oxidative degradation of fat. It has been reported to be derived from oxidation 

of unsaturated omega-6 fatty acid [126].  Significant increase in ethyl acetate concentration 

was observed in jackfruit and pineapple and several other ethyl ester derivatives also showed 

increase at 10 °C (Table 6&8). Ethyl esters are also known to be formed by pseudomonads at 

increasing temperature under aerobic conditions [120]. Yeasts are reported to produce acetate 

esters and medium chain ethyl esters during fermentation [127]. In conclusion, several 

biochemical changes in volatile constituents could be clearly observed due to microbial growth 

during storage in minimally processed fruit sample.  

3.1.2.2 Analysis of biochemical changes using FTIR 

The biochemical changes associated with minimally processed fruits during storage at 

4 and 10 °C were studied using FTIR. FTIR spectra in the range of 4000 to 650 cm-1was 

obtained for all the three minimally processed fruit samples as depicted in Figure12, 13, and 

14, respectively for jackfruit, pomegranate and pineapple. Since the FTIR spectra in the 

fingerprint region carried maximum information, it was utilised for further analysis. FTIR 

spectra was obtained in the range of 2000 to 800 cm-1 for minimally processed jackfruit samples 

(Figure 15), while for pomegranate and pineapple a range between 2000 to 1000 cm-1was found 
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to be appropriate as shown in Figure 16&17, respectively.

 

Figure 12: FTIR spectra of jackfruit bulbs 

 

Figure 13: FTIR spectra of pomegranate arils 
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Figure 14: FTIR spectra of pineapple slice 

 

Figure 15: FTIR spectra of minimally processed jackfruit bulbs from 800 to 2000 cm-1 
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Figure 16: FTIR spectra of minimally processed pomegranate arils from 1000 to 2000 cm-1. 

 

 

 

Figure 17: FTIR spectra of minimally processed pineapple slices from 1000 to 2000 cm-1. 
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The detailed assignment of each peak in the FTIR spectra is provided in Table 9. A 

major peak that appeared at 1638 cm-1 in all the fruit samples could be attributed to moisture 

(O-H stretch) and C=O acid stretch. Peaks at 1353 could be assigned to CH2 rocking and O-H 

bending of organic acids while 1418 cm-1 could be assigned to O-C-H, C-O-H and C-C-H 

bending in the carbohydrate molecules. Absorption band at 1250.6 cm−1 was attributed to C-O 

acid stretching. O-H deformation of secondary and tertiary alcohols resulted in peaks at 1156 

cm-1.  Spectral peaks at 1105, 1078, 1039and 1062cm−1 are due to presence of C-O and C-H 

stretching of sugars such as glucose and sucrose. Spectral peak at 923 cm-1can be attributed to 

C-C stretching of sugars such as fructose. 

Table 9: Observed FTIR frequencies and possible assignments of the vibration modes 

Frequency (cm-1) Assignment References 

1720-1580 (1638) C=O stretching and H-O-H def [128] 

1433-1460(1443)  -  

1400-1421 (1418) O-C-H, C-C-H, C-O-H bending 

of carbohydrates 

[129] 

1350-1382 

(1353,1364,1372) 

CH2 rocking, O-H bending of 

organic acids 

[128] 

1330-1294 (1314) O-C-H, C-C-H, C-O-H 

deformation of carbohydrates 

[129]  

1239-1270 (1250) -C-O acid stretching [130] 

1142-1187 (1156) C-O stretching of secondary & 

tertiary alcohol 

 

1078 and 1105 C-O & C-H stretch of sugars, C-

O-H bending 

[131, 132] 

1062 C-O & C-H stretch of sugars [133] 

1039 C-O & C-H stretch of sugars [133] 

1018 -  

923 C-C stretch of sugar (fructose) [131, 132] 
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IR absorption spectra depicting the changes occurring during storage of minimally processed 

jackfruit, pomegranate and pineapple at the two temperatures studied are shown in Figure 13,14 

and 15. It was observed that the absorption spectra of all the three fruit samples showed either 

no change or slight enhancement in the intensity of peaks during storage at both the 

temperatures (Fig 13A & C; Fig 14 A & C; Fig 15 A & C). Therefore, the FTIR spectra was 

processed to obtain its first derivative to differentiate overlapping peaks. Enhanced peak 

intensity in the first derivative spectra could also be clearly observed for all samples as depicted 

in Figures 13, 14 and 15 (Fig 13 B&D; 14 B&D; 15 B&D) for jackfruit, pomegranate and 

pineapple respectively. The first derivative shows a maxima were the signal has a maximum 

slope and crosses zero were the signal has a peak [133]. Thus, several biochemical changes 

were clearly observed in the FTIR spectra due to microbial growth during storage.  
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3.1.2.3 Inference from biochemical analysis using GCMS and FTIR 

Several biochemical changes during storage were observed by employing both the techniques. 

These changes can be correlated to microbial quality of products and subsequently used for 

obtaining information regarding microbial quality of products by instrumental analysis. 

However, since the data generated by both the techniques had large number of variables 

(volatile constituents in GCMS and wave number in FTIR) multivariate statistical tools such 

as PCA, PLS-R and ANN was used to generate prediction models.  

3.1.3 Analysis of biochemical changes using principal component analysis 

PCA is a bilinear modelling method that reduces the number of variables by using orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set of 

values of uncorrelated variables called principal components (PCs). The number of principal 

components are less than or equal to the number of original variables. The first principal 

component covers as much of the variation in the data as possible. The second principal 

component is orthogonal to the first and covers as much of the remaining variation as possible, 

and so on. In this study, since the biochemical changes as monitored both by volatile analysis 

using GCMS and FTIR spectra generated huge amount of multivariate variability, it becomes 

cumbersome to study the effect of storage on changes in fruit samples with simple statistical 

tool. PCA was therefore applied to reduce the size of the data set and to investigate differences 

between samples during storage as a result of product deterioration. PCA thus aided in 

visualizing complicated data in an easy interpretable manner. 
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3.1.3.1 Principal component analysis of GCMS data 

 

Figure 21: Principal component analysis of volatile profile of jackfruit (A, B), pomegranate (C, 

D) and pineapple (E, F) at 4 ⁰C (A, C, E) and 10 ⁰C (B, D, F). 
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GC/MS profile of all the three minimally processed fruit samples when individually 

analysed by PCA (Figure 21) demonstrated segregation according to the period of storage. For 

jackfruit samples kept at 4 °C, 79% of the total variation was accounted for by the first two 

principal components. Segregation in three groups was observed for samples stored at 4 °C 

(Figure 21A). First group had samples stored up to day 5 and was located on negative side of 

PC1 and on the positive side of PC2. Samples stored beyond a storage period of 5 days and up 

to 19 days constituted second group located on negative side of PC2 (Figure 21A). For samples 

stored at 10 °C first two principal components cumulatively explained 81 % of total variation. 

Score plot for 10 °C stored samples is demonstrated in Figure21B. The score distribution from 

first two PCs demonstrated two separate groups in the samples analysed. Although two distinct 

groups were observed there were a few outliers in every group. Samples stored from day 1 till 

day 4 constituted the first group and was located on the negative side of PC1 and positive side 

of PC2. Samples stored for day 5 and day 6 constituted second group located on positive side 

of PC1 but negative side on PC2 (Figure 21B). 

In case of pomegranate, the cumulative variance explained by two PCs was 75% for 

samples stored at 4 °C (Figure 21C). It could be observed that samples did not show distinct 

day-wise segregation, however spread in the data due to different days of storage could be 

observed during the storage period of 21 days.  For samples stored at 10 °C, the samples showed 

clear segregation in two groups. The first group consisted of samples stored up to 2 days and 

were located on positive side of PC1 and negative side of PC2. The second group comprised 

of samples stored beyond storage period of day 3 up to storage period of 7 days (Figure 21D). 

In case of pineapple, no segregation was observed in principal component score plots 

(Figure 21E) for samples stored at 4 °C suggesting no significant changes in volatile 

constituents during storage.  Score plot for 10 °C stored samples however, showed segregation 

in three different groups. The cumulative variance explained by the first two PCs was 56.88%. 
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First group had samples stored up to 3 days located on negative side of PC1, while second 

group comprised of samples stored from day 5 to day 7 located on the positive side of PC1 

(Figure 21F). 

3.1.3.2 Principal component analysis of FTIR data  

Principal component analysis of the FTIR data obtained in the form of FTIR spectral data and 

its first derivative termed as FTIR first derivative data (detailed in methodology section) 

revealed difference in the stored samples for all the three fruits (Figure 22, 23 & 24).  

Segregation based on duration of storage at 4 and 10 °C was observed for jackfruit 

samples in the PCA of FTIR data. For jackfruit samples stored at 4 °C, it can be observed from 

PCA plots that there was no distinct day-wise segregation in case of FTIR spectral data 

(Figure22A). FTIR first derivative data could, however, distinguish various stored samples   

with day 2 to day 8 stored samples forming one group located on positive side of PC1 and PC2. 

The second group was located on positive side of PC1 and negative side of PC2 (day 10 to 19). 

For 10 °C stored jackfruit samples, it was observed that both FTIR spectral data and FTIR first 

derivative data showed day-wise spread with samples stored in the initial period (day 0) 

segregating from the stored samples from day 3 to 6 (Figure 22 C&D). Thus, it can be seen that 

FTIR data of jackfruit samples could give distinct day wise segregation for both storage 

temperatures.  
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Figure 22: Principal component analysis of FTIR spectral data of jackfruit (A, C), FTIR first 

derivative data of jackfruit (B, D) at 4 °C (A, B) and 10 °C (C,D). 

Segregation of pomegranate sample based on storage time was observed in the PCA of 

FTIR data. Day wise segregation was observed among the 4 °C stored sample for both FTIR 

spectral data and FTIR first derivative data (Figure 23 A & B). In case of 10 °C stored 

pomegranate samples, segregation of FTIR spectral data into two groups was observed as 

shown in Figure 23C. The first group comprised of sample stored up to 2 days (0 to 2 day) and 

was located on the positive side of PC1 & negative side of PC2. The second group comprised 

of sample stored beyond 3 days and until 7 days and was located on the positive side of PC2. 

Similarly, segregation based on storage period was also observed when PCA was applied to the 

FTIR first derivative spectral data. PC1 & PC2 accounted for 56.32 % of the total variance and 

samples were segregated into four groups (Figure 23D). The first group located on positive 
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side of both PC1 and PC2 consisted of freshly packed samples (Day 0). The second group 

consisted of samples stored from day 1 till day 3 and was located on positive side of PC1 & 

negative side of PC2. Samples stored from day 4 to day 6 constituted the third group located 

on the negative side of both PC1 and day 7 constituted to fourth group located on the negative 

side of both PC1 and PC2.   

 

Figure 23: Principal component analysis of FTIR spectral data of pomegranate (A, C), FTIR 

first derivative data of jackfruit (B, D) at 4 °C (A, B) and 10 °C (C,D). 

In case of pineapple, day-wise segregation was not observed among samples stored at 

4 °C for both FTIR spectral data and FTIR first derivative data. (Figure 24A and B). In case of 

samples stored at 10 °C, PCA analysis of FTIR spectral data revealed no segregation of samples 

based on storage time (Figure 24C). However, application of first derivative function to FTIR 
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spectra resulted in segregation of samples based on storage period. Samples stored up to 4 days 

constituted one group and was located on negative side of PC2 whereas samples from 5 to 7 

days formed another group located on positive side of PC1 and PC2 (Figure 24D). Use of first 

derivative function thus revealed the difference in the stored samples.  

 

Figure 24: Principal component analysis of FTIR spectral data of pineapple (A, C), FTIR first 

derivative data of jackfruit (B, D) at 4 °C (A, B)  and 10 °C (C,D). 
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3.1.3.3 Conclusions from PCA analysis of GCMS and FTIR data  

PCA analysis of volatile profile obtained from GCMS and biochemical changes as 

monitored by FTIR revealed difference amongst stored fruit samples suggesting chemical 

changes occurring during storage. It was also evident that the biochemical changes in the stored 

samples were significantly affected by temperature. PCA analysis (both GCMS and FTIR) 

showed segregation for all the fruit samples according to storage period at 10 °C. However, 

this was not always the case for samples stored at 4 °C. Jackfruit samples showed segregation 

in PCA score plot with GCMS and FTIR data, but pomegranate and pineapple samples did not 

follow this trend at 4 °C. FTIR first derivative data demonstrated better segregation when 

compared to FTIR spectral data. In conclusion, this difference in PCA plots also suggests that 

microbial activity does induce chemical changes in the stored fruit samples. Thus, quantitative 

prediction of microbial counts was performed from the data obtained from GCMS and FTIR 

using machine learning tools such as PLS-R and ANN. 

3.1.4 Quantitative prediction of microbial counts in minimally processed fruits 

Principal component analysis of data obtained from GCMS as well as FTIR revealed 

biochemical differences in all the fruit samples stored for different time periods. Observed 

changes in headspace volatile composition might be due to microbial growth or metabolic 

changes in the product [135, 136, 137]. These results suggested the possibility of using 

supervised chemometric techniques such as partial least square regression (PLS-R) and 

artificial neural network (ANN) for generating regression models to predict microbial quality 

of minimally processed fruits based on biochemical changes. Further, as only a marginal 

increase in microbial counts was observed in pomegranate and pineapple samples stored at 4 

°C, quality assessment using chemometrics tools was not further carried out for these samples. 
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3.1.4.1 Quantitative estimation for predicting microbial quality in minimally processed 

fruit using GCMS data 

The supervised tools, ANN and PLS-R were utilised to built models for TVC and Y&M 

counts using GC volatile data as independent variables and Log10 CFU/ g as dependent 

variable.  

3.1.4.1.1. Supervised ANN for predicting microbial quality in minimally processed fruit 

using GC/MS 

ANN models were built for TVC and Y&M counts using GCMS volatile data as 

independent variables and Log10 CFU/g as dependent variable. A multilayer perceptron (MLP) 

neural network based on back propagation was used to estimate TVC and Y&M. The number 

of uncorrelated PCs that could explain 95% of total variance of data was utilized as input 

variables, while TVC and Y&M were two output neurons in ANN architecture. Among 

fourteen architectures (fourteen networks with hidden neurons varying from 1 to 14) tested, 

network with highest R2 values of training, validation and test data and lowest training, test and 

validation performance errors was selected.  

3.1.4.1.1.1 Jackfruit 

The performance of the MLP networks to predict TVC and Y&M in minimally 

processed jackfruit samples in terms of statistical indices is presented in Table 10. The R2 

obtained for ANN models built for both TVC and Y&M was 0.85 at 4 °C. The SEP (standard 

error of prediction), Af (accuracy factor) and Bf (bias factor) were 0.73, 13% and 0.89. TVC 

counts for test samples (described in Section 2.1.7 & 2.1.8) stored at 4 °C could be predicted 

within 13% average deviation suggesting good accuracy. The SEP, Af and Bf for Y&M were 

1.01, 27% and 0.76, respectively. Prediction of Y&M counts in test samples (4 °C) 

demonstrated significantly higher (p<0.05) deviation of 27% in comparison to TVC counts.  
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Models built for samples stored at 10 °C had a R2 value of 0.89 for both TVC and Y&M. 

The SEP, Af and Bf were 0.89, 17% and 0.99 and 0.85, 15% and 0.97 for TVC and Y&M, 

respectively (Table 10). In test samples, average deviation between actual and predicted counts 

was less than 20% for both TVC and Y&M.   

Thus, ANN could be successfully applied for prediction of TVC and Y&M in test 

samples using GCMS data. Microbial counts could be predicted with average deviation of < 

20% for jackfruit samples stored at both the temperatures (4 and 10 °C) with the exception of 

Y&M counts at 4 °C that had a large error (27%) in predicted values. 

Table 10. Performance indices of models build using ANN for GCMS data for minimally 

processed Jackfruit 

 

 

Observed 

(Log10 

CFU/g) 

Predicted 

(Log10 

CFU/ g) 

 

PC 
Hidden 

neuron Af Bf SEP R2 

 TVC 3.6 3.78 5 1 13% 0.89 0.73 0.85 

4 °C  5.01 3.88       

  6.86 6.55       

 Y&M 2.00 1.35 5 1 27% 0.76 1.01 0.85 

  2.77 1.35       

  3.30 4.11       

 TVC 4.8 3.82 8 3 17% 0.99 0.89 0.89 

  8.63 7.58       

10 °C  5.51 6.96       

 Y&M 4.67 5.61 8 3 15% 0.97 0.85 0.89 

  5.83 4.81       

  6.43 5.88       

PC-principal components; SEP- Standard error of prediction; Af-Accuracy factor; Bf- Bias factor 
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3.1.4.1.1.2 Pomegranate 

Table 11 demonstrated the performance parameters of ANN models built using GCMS data 

for pomegranate samples stored at 10 °C. Models built had R2 of 0.85 for both TVC and Y&M. 

TVC prediction for the test samples was achieved with SEP of 0.71 and 14 %. Similarly, Y&M 

also showed a good prediction with SEP of 0.72 and only 9 % average deviation between actual 

and predicted counts. Thus, these results suggest suitability of ANN in combination with 

GCMS for prediction of microbial counts in minimally processed pomegranate.  

Table 11: Performance indices of models build using ANN for GCMS data for minimally 

processed pomegranate and pineapple stored at 10 °C.  

Statistical 
Pomegranate Pineapple  

TVC Y&M TVC Y&M 

R2 0.86 0.98 

PC 5 8 

SEP 0.71 0.72 0.134 0.423 

Af 14% 9% 2% 6% 

Bf 0.97 0.96 1.01 0.98 

Hidden neuron 4 4 3 3 

PC-principal components; SEP- Standard error of prediction; Af-Accuracy factor; Bf- Bias factor 

3.1.4.1.1.3 Pineapple 

Results of ANN models for pineapple samples stored at 10 °C are shown in Table 11. It can be 

observed from the table that models built using GCMS had R2 of 0.98 for both TVC and Y&M. 

In test samples, TVC counts could be predicted with very low SEP of 0.13. Average deviation 

between actual and predicted values was observed to be only 2%. Y&M counts in test samples 

could be predicted with average deviation of only 6% between actual and predicted counts.  
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3.1.4.1.1.4 Discussion & conclusion of ANN models using GCMS data  

Rapid quantitative estimation of microbial quality could be successfully demonstrated using 

ANN on GCMS data for all the three fruit samples. R2≥0.85 was obtained for all the developed 

models for TVC and Y&M in case of all minimally processed fruit samples. The accuracy 

factor was lower than 20% for all the models except for Y&M counts of jackfruit stored at 4 

°C. Similar performance was observed for TVC and Y&M in individual fruit samples. ANN is 

a less explored tool for microbial quality estimation in food samples [72]. Moreover, ANN has 

not been applied for microbial quality estimation using GCMS data for food samples so 

comparisons of our results with those published in literature was not possible. The current study 

demonstrates that nonlinear relationship could exist between some specific microorganisms 

and volatile profile, which thus led to a successful attempt in applying ANN prediction tool for 

microbial quality assessment using GCMS data. 

3.1.4.1.2 Supervised PLS-R for predicting microbial quality in minimally processed fruit 

using GCMS 

PLS-R models were built to correlate TVC and Y&M with GCMS data. Selection of 

number of latent variables for model building is a critical step in PLS. Very few variables could 

lead to insufficient model while too many variables results in over fitting of data [102]. In the 

present study, before the final model preparation, number of latent variables were finalized 

based on standard error of prediction (SEP) for test data as detailed in materials & methods 

(section 2.1.7). 

3.1.4.1.2.1 Jackfruit 

 The performance of the PLS-R models to predict TVC and Y&M in minimally processed 

jackfruit samples in terms of statistical indices is presented in Table 12. R2 of above 0.9 was 

observed in models built for TVC and Y&M counts for samples stored at both temperatures (4 
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and 10 °C). A close agreement of actual and predicted values was observed. The accuracy 

factor (Af) is a measure of the average deviation between predictions and observations. Based 

on results for Af the lowest average deviation between actual and predicted counts was for TVC 

at 4°C (4.6%) while highest was for Y&M at 4 °C (16.8%). Thus, the models developed for 

jackfruit samples had good performance indices and could be successfully utilised for 

predicting microbial quality. 

Table 12: Predicting microbial loads and performance parameter in packaged jackfruit using 

PLS-R of GCMS data for minimally processed jackfruit at both storage temperatures. 

 

LV- latent variable; SEP- Standard error of prediction; Af-Accuracy factor; Bf- Bias factor 

 

 

  

Observed 

(Log10 

CFU/ g) 

Predicted 

(Log10 

CFU/ g) LV Af Bf SEP R2 

      4 °C TVC 3.6 3.3 4 4.6% 0.96 0.26 0.98 

  5.01 4.7      

  5.86 5.99      

  3.75 3.71      

 Y&M 2 1.6 4 16% 1.05 0.61 0.9 

  2.77 2.4      

  4 4      

  1.6 2.1      

10 ºC  TVC 5.52 6 6 7.6% 0.98 0.67 0.95 

  7.81 6.63      

  8.04 7.72      

  8.94 9.29      

 Y&M 4.67 4.2 3 11% 0.9 0.9 0.95 

  6.43 5.9      

  6.6 6.1      

  8.18 7.6      
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3.1.4.1.2.2 Pomegranate 

In case of pomegranate samples stored at 10 °C, the R2 values for the generated prediction 

models for TVC and Y&M were 0.75 and 0.84, respectively (Table13). The SEP values 

obtained for TVC and Y&M were 0.35 and 0.51 with corresponding high accuracy of 6 and 10 

%, respectively. PLSR models could successfully predict microbial counts in minimally 

processed pomegranate using GCMS.    

3.1.4.1.2.3 Pineapple 

For pineapple samples stored at 10 °C, it can be observed from Table 13 that models built 

using GCMS gave a high R2 of 0.93 and 0.98, respectively for TVC and Y&M. The SEP values 

obtained for TVC (0.39) was lower when compared for Y&M (0.58) with corresponding high 

accuracy of 9 and 13 %, respectively.  

Table 13: Performance indices of PLS-R models generated for TVC and Y&M of minimally 

processed pomegranate and pineapple samples 

 

 

LV- latent variable; SEP- Standard error of prediction; Af-Accuracy factor; Bf- Bias factor 

 

 

 

PLS Prediction 

parameters 

               Pomegranate               Pineapple 

TVC  Y&M TVC Y&M 

R2 0.759 0.84 0.93 0.98 

LV     4     5    7    7 

SEP 0.35 0.51 0.397 0.581 

Af 6% 10% 9 % 13% 

Bf 0.97 1.008 1.009 0.948 
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3.1.4.1.2.4 Discussion & conclusions of PLS-R models using GCMS data  

Argyri et al. [138], reported an overall 9 % and 12 % of Af of TVC and Y&M of minced 

beef sample using GCMS, similar results were obtained in the current study for all the samples. 

GCMS volatile data could be successfully utilised for estimation of TVC and Y&M counts for 

all the three fruit samples with R2≥0.73 with all the developed models. GCMS as an 

instrumental technique has been shown suitable for microbial quality assessment in the current 

study for minimally processed fruits such as jackfruit, pomegranate and pineapple. It was also 

observed that the models developed for jackfruit and pineapple had R2≥0.90 for both TVC and 

Y&M. When the models for TVC and Y&M counts were compared, it was evident that models 

developed for TVC had better performance indices for jackfruit compared to pomegranate and 

pineapple. On the other hand, models build for Y&M had better performance indices in case 

of pomegranate and pineapple. This was in accordance with the microbial growth profiles 

where TVC counts are higher than Y&M at the end of storage period for jackfruit samples, 

while Y&M counts superseded TVC in case of low acidic fruits such as pomegranate and 

pineapple.    

In PLS-R models it is desirable to know the variables that correlate best with the attributes to 

be predicted. Compound showing positive correlation with microbial counts (TVC and Y&M) 

are depicted in Table14. Since, in the present study GC/MS was used for volatile analysis, it 

offered possibility of identifying volatiles that had highest correlation with increasing 

microbial counts. From PLS-R correlation matrices of jackfruit, pomegranate and pineapple, it 

was observed that ethanol demonstrated high correlation (>0.4) with microbial counts (TVC 

and Y&M) as shown in Table 14. Other alcohols that demonstrated high positive correlations 

were 3-methyl-1-butanol and 1-hexanol. Ethanol is a well-known compound associated with 

microbial spoilage. Gram-negative bacteria (e.g. Pseudomonas, Shewanela, Moraxella) have 

been found to specifically produce ethanol, methanol, 2-methyl propanol (precursor valine) 
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and 2-methylbutanol (precursor isoleucine) [139]. Br. thermosphacta, produces different types 

of alcohols according to the storage conditions due to the changes in its metabolism. 

Anaerobically, it produces mainly ethanol (precursor glucose), whereas aerobically, it produces 

ethanol, 3-methylbutanol (precursor leucine) and 2-methylbutanol (precursor isoleucine), from 

Strecker degradation of amino acids during the proteolysis [140, 141]. Correlation matrices of 

GCMS data of jackfruit and pineapple showed that ethyl acetate had the highest correlation 

with TVC and Y&M (˃0.6) (Table14). Several other ethyl esters of organic acid such as 2-

methyl, butanoic acid, hexanoic acid & 3-hexenoic acid showed positive correlation greater 

than 0.5 for TVC and Y&M in case of pineapple. Caleb et al. [68] demonstrated positive 

correlation of ethyl acetate with microbial growth. Ethyl esters such as ethyl acetate, ethyl 

butanoate and ethyl octanoate are reported to be produced as Y&M counts increases to 6-7 

Log10CFU/g and the headspace O2 is rapidly converted to CO2 resulting in fermentative 

conditions [142]. This results in esterification of various alcohols and carboxylic acids. Other 

esters that showed strong positive correlation were n-propyl acetate, 1-butanol, 3-methyl-, 

acetate, 1-butanol, 2-methyl-, acetate and 2-phenyl ethyl acetate. Our results also showed a 

large increase in total esters during storage.  Increase in ester concentration in inoculated 

samples was also demonstrated by Vikram et al., [143]. Thus, biochemical changes reflected 

in the headspace volatile profile of the fruit samples as demonstrated by GCMS were utilised 

for quantitative prediction of TVC and Y&M. 
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Table14: Correlation of volatile compounds with microbial counts for minimally processed 

fruits 

Correlation coefficient (R) 

Compound name Jackfruit Pomegranate Pineapple 

 (TVC) Y&M TVC Y&M TVC Y&M 

Ethanol 

 

0.461 

 

0.488 

 

0.78 0.80 0.452 0.579 

3-methyl 1-

butanol 

0.423 0.447 ND ND 0.520 0.647 

1-hexanol 0.403 0.348 0.342 0.389 0.44 0.525 

phenyl ethyl 

alcohol 

 

ND ND ND ND 0.628 0.764 

Methyl acetate  

 

0.582 0.486 ND ND 0.586 0.703 

Ethyl acetate 0.718 0.637 -0.423 -0.415 0.707 0.881 

1-butanol, 3-

methyl-, acetate 

0.338 0.223 ND ND 0.657 0.823 

1-butanol, 2-

methyl-, acetate 

0.354 0.241 ND ND 0.638 0.793 

butanoic acid, 2-

methyl, ethyl ester 

0.490 0.304 ND ND 0.539 0.694 

hexanoic acid, 

ethyl ester 

ND ND ND ND 0.572 0.780 

3-hexenoic acid, 

ethyl ester 

ND ND ND ND 0.542 0.730 

hexanal 0.505 0.272 0.272 0.393 0.104 -0.014 

2-heptanone ND ND ND ND 0.651 0.741 

2-heptanol ND ND ND ND 0.454 0.546 
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3.1.4.2. Quantitative estimation for predicting microbial quality in minimally processed 

fruits using FTIR data 

The supervised tools, ANN and PLS-R were utilised to build models for TVC and Y&M 

counts using FTIR data as independent variables and Log10 CFU/g as dependent variable. 

3.1.4.2.1. Supervised ANN for predicting microbial quality in minimally processed fruits 

using FTIR data 

 ANN models were also built for TVC and Y&M with FTIR spectral data and FTIR first 

derivative spectral data as independent variable and microbial counts as dependent variable. 

3.1.4.2.1.1 Jackfruit 

Performance indices for models built using both the forms of FTIR data are shown in 

Table 9 for minimally processed jackfruit. Models built for samples stored at 4 °C using FTIR 

spectral data had R2 value of 0.84 & 0.94 for TVC and Y&M, respectively. The SEP, Af and Bf 

were 0.63, 17% and 0.93 and 0.90, 12% and 1.07 for TVC and Y&M, respectively. Comparable 

performance for both TVC and Y&M was observed for samples stored at 4 °C using FTIR 

spectral data with average deviation between actual and predicted counts of < 20%. ANN 

models were built for FTIR first derivative data as well. In case of first derivative data, the R2 

obtained was 0.85 for both TVC and Y&M in samples stored at 4 °C. The SEP, Af and Bf for 

TVC and Y&M counts were 0.47, 13% and 1.13 and 0.71, 35% and 1.35, respectively. 

Although, prediction for TVC counts had low average deviation of 13% between actual and 

predicted counts but Y&M could be predicted with large average deviation of 35%. These 

results suggest that FTIR spectral data provided better performance than FTIR first derivative 

data for prediction of microbial counts in samples stored at 4 °C.  

Models built for samples stored at 10 °C using FTIR spectral data had a good R2 value 

of 0.83 and 0.85 for TVC and Y&M, respectively. The SEP, Af and Bf were 0.63, 10 % and 1.04 
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and 0.90, 20 % and 1.01 for TVC and Y&M, respectively (Table 15). These results suggest 

good accuracy for predictions of microbial counts with average deviations of ≤ 20% employing 

FTIR spectral data for samples stored at 10 °C.  

Building of prediction models using FTIR first derivative data was also attempted for samples 

stored at 10 °C. The R2 obtained for TVC and Y&M were 0.95 and 0.87, respectively. In case 

of FTIR first derivative data as well, acceptable performance for both TVC and Y&M was 

observed with average deviation between actual and predicted counts of ≤ 10%. Thus, ANN 

could be successfully applied for prediction of TVC and Y&M counts for stored jackfruit 

samples at 4 and 10 °C.  

Table 15: Performance indices of models build using ANN for FTIR data for minimally 

processed jackfruit stored at 4 and10 °C. 

 

 

Hidden 

neurons PC  SEP Af Bf R2 

 

FTIR spectral data 

  TVC 0.637 17 % 0.93 0.84 

 2 4 Y&M 0.909 12 % 1.07 0.94 

4 °C FTIR first derivative 

data 

 

1 

 

9 

 

TVC 0.470 13 % 1.13 0.85 

 
Y&M 0.711 35% 1.35 0.85 

 FTIR spectral data           TVC 0.637 10% 1.045 0.93 

  3 3 Y&M 0.909 20% 1.014 0.85 

10 °C FTIR first derivative 

data 
  

TVC 0.470 6% 1.004 0.95 

  9 9 Y&M 0.711 10% 0.989 0.87 

PC-principal components; SEP- Standard error of prediction; Af-Accuracy factor; Bf- Bias factor 
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3.1.4.2.1.2 Pomegranate 

The performance indices of the MLP networks to predict TVC and Y&M in minimally 

processed pomegranate samples stored at 10 °C is presented in Table 16. The network selected 

for FTIR spectral data demonstrated R2 = 0.909 while model built using FTIR first derivative 

gave R2 of 0.619. It is clearly evident that lower deviation with higher Af between actual and 

predicted counts for both TVC and Y&M was obtained for models built with FTIR spectral 

data as compared to models built using FTIR first derivative data (Table 16).  

Table 16: Performance indices of models build using ANN for FTIR data for minimally 

processed pomegranate stored at 10 °C. 

Statistical 

Measurement 

FTIR Spectral Data FTIR First Derivative 

Data 

TVC Y&M TVC Y&M 

R2 0.909 0.619 

PC  8 17 

SEP 0.914 0.784 1.003 1.058 

Af 20% 14% 22% 36% 

Bf 0.944 0.917 0.991 1.197 

Hidden neuron 8 8 

PC-principal components; SEP- Standard error of prediction; Af-Accuracy factor; Bf- Bias factor 

3.1.4.2.1.3 Pineapple 

The performance indices of the MLP networks to predict TVC and Y&M in minimally 

processed pineapple samples are presented in Table 17. For pineapple samples stored at 10 °C, 

the R2 obtained for the model generated using FTIR spectral data was 0.95. The average 

deviation between observed and predicted counts was 8 and 7% with corresponding low SEP 
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values of 0.54 and 0.45 for TVC and Y&M, respectively. ANN models could not be built for 

FTIR first derivative data because 23 PCs could explain 95% total variance. Current sample 

size was insufficient to built the model with 23 PCs as input variable. However, FTIR spectral 

data could be successfully utilised for building ANN model for prediction of TVC and Y&M 

counts. 

Table 17: Performance indices of models build using ANN for FTIR data for minimally 

processed pineapple stored at 10 °C. 

Statistical 

      FTIR spectral data (10 °C) 

TVC Y&M 

R2                    0.95 

PC                       3 

SEP 0.54 0.45 

Af 8% 7% 

Bf 1.02 1.04 

Hidden neuron 10 10 

PC-principal components; SEP- Standard error of prediction; Af-Accuracy factor; Bf- Bias factor 

3.1.4.2.1.4 Discussion and conclusions of ANN models using FTIR data  

Quantitative estimation of microbial spoilage could be successfully demonstrated using 

FTIR for all the three fruit samples. It was also observed that the models developed using FTIR 

data in the form of FTIR spectral data showed better performance indices with R2≥0.84 for 

both TVC and Y&M in case of all the fruit samples. Despite the fact that FTIR first derivative 

data carried more information than FTIR spectral data, it was observed that FTIR spectral data 

gave better performance with ANN models. This could be due to the fact that higher PCs were 

generated in case of FTIR first derivative data to explain 95% variance. Larger number of input 

variables also requires large sample size. Thus, increasing the number of sample size may also 
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increase the performance of ANN models using FTIR derivative data. When the models for 

TVC and Y&M counts were compared, it was evident that models developed for TVC had 

better performance indices for jackfruit. Models build for Y&M however, had better 

performance indices in case of pomegranate and pineapple. This is due to the fact that Y&M 

growth were higher in this acidic fruits thus better correlations could be established. 

A study conducted on TVC prediction for meat samples gave R2 of 0.94 [144]. The application 

of ANN to correlate FTIR data with microbial counts has been previously reported in meat 

products [101, 144]. Similar results are also observed in the present study. This is the first study 

showing use of FTIR for estimation of microbial counts in minimally processed fruits. 

3.1.4.2.2. Supervised PLS-R for predicting microbial quality in minimally processed 

fruits using FTIR data 

 Partial least square regression models were built to correlate TVC and Y&M with FTIR 

spectral data and FTIR first derivative spectral data as independent variable and microbial 

counts as dependent variable.  

3.1.4.2.2.1 Jackfruit 

The performance of the PLS-R models to predict TVC and Y&M in minimally 

processed jackfruit samples in terms of statistical indices is presented in Table 18. In models 

built employing FTIR spectral data for jackfruit samples stored at 4 °C, the R2 were low for 

both TVC (0.37) and Y&M (0.32) counts. This suggests FTIR spectral data might not be 

suitable for prediction of microbial counts in jackfruit samples. However, for models built with 

FTIR first derivative data, better R2 values were obtained for both TVC (0.68) and Y&M (0.66). 

The Af for TVC and Y&M were 12 and 24%, respectively with corresponding SEP value of 

0.76.  
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Table 18: Performance indices and predicted microbial counts of models generated for TVC 

and Y&M using PLS-R for FTIR data in minimally processed Jackfruit at 4 °C. 

4 °C  

Observed 

(Log10 

CFU/g) 

Predicted 

(Log10 

CFU/g) LV Af Bf SEP R2 

FTIR 

spectral 

data 

TVC 4.24 4.15 2 11% 0.89 0.26 0.37 

 5.85 4.76      

 6.01 5.36      

Y&M 4.0 2.89 2 27% 0.78 0.96 0.32 

 4.8 3.59      

  4.24 4.30      

 FTIR first 

derivative 

data 

TVC 4.24 4.30 2 12% 0.89 0.76 0.68 

 5.85 4.68      

 6.01 5.39      

Y&M 2.3 3.09 3 24% 0.98 0.76 0.66 

 4.0 2.97      

 4.83 4.57      

LV- latent variable; SEP- Standard error of prediction; Af-Accuracy factor; Bf- Bias factor 

 

For jackfruit samples stored at 10 °C, the R2 obtained for TVC and Y&M using FTIR 

spectral data was 0.85 and 0.68, respectively as depicted in Table 19. The models built for TVC 

had better performance indices with a low SEP (0.615) and higher Af (9%) when compared to 

Y&M with SEP of 0.88 and Af of 16 %. FTIR first derivative data had higher R2 of 0.90 and 

0.85 for TVC and Y&M models when compared to FTIR spectral data having corresponding 

R2 values of 0.85 and 0.68. Average deviation between predicted and actual counts was found 

to be 11 and 23% for TVC and Y&M, respectively.  
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In general, it was observed TVC prediction performance had better (higher Af, Table 19) values 

for jackfruit samples using both the FTIR data when compared with Y&M prediction.  

Table 19: Performance indices and predicted microbial counts of models generated from FTIR 

data for TVC and Y&M using PLS-R in minimally processed Jackfruit at 10 °C. 

10°C    Observed 

(Log10CFU/ 

g) 

Predicted 

(Log10CFU/ 

g) 

LV Af  Bf SEP R2 

FTIR 

spectral 

data 

  

TVC 

5.25 5.74 4 9 % 1.09 0.615 0.851 

6.03 6.21  

7.08 7.87 

 4.96 5.73 

Y&M 3.23 4.74 4 16 % 1.13 0.881 0.686 

5.69 5.55 

6.83 6.70 

4.36 5.23 

First 

derivative      

TVC 5.25 4.87 4  11 %  1.00 0.78 0.905 

4.96 6.20 

6.03 5.84 

7.08 6.39 

Y&M 3.23 2.42 4  23 % 0.91 0.97 0.857 

4.36 5.58 

5.69 4.79 

6.83 5.91 

LV- latent variable; SEP- Standard error of prediction; Af-Accuracy factor; Bf- Bias factor 
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3.1.4.2.2.2 Pomegranate 

For pomegranate samples stored at 10 °C, the R2 obtained for TVC and Y&M using FTIR 

spectral data was 0.83 and 0.64, respectively as shown in Table 20. The performance indices 

of models built for TVC had SEP and Af of 0.79 and 22 % respectively, while for Y&M, the 

corresponding values were 1.21 and 37 % respectively. Prediction models built using FTIR 

spectral data demonstrated large deviation (>20%) in the predicted counts for both TVC and 

Y&M. In case of FTIR first derivative data R2 of 0.85 and 0.91 for TVC and Y&M models was 

obtained. TVC prediction had SEP of 0.78 and Af of 19 % while corresponding values were 

0.77 and 23% for Y&M. 

Table 20: Performance indices of models generated for TVC and Y&M using PLS-R for FTIR 

data in minimally processed pomegranate at 10 °C. 

 

 

 

 

 

 

 

 

 

 

LV- latent variable; SEP- Standard error of prediction; Af-Accuracy factor; Bf- Bias factor 

 

 

 

 

Statistical 

Measurement 

FTIR spectral data FTIR first derivative 

data 

TVC Y & M TVC Y & M 

R2 0.83 0.643 0.851 0.929 

Bf 0.91 0.97 0.9 1 

Af 22%   37% 19% 23% 

SEP 0.79 1.21 0.78 0.77 

LV 6 5 3 7 
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3.1.4.2.2.3 Pineapple 

For pineapple samples the performance indices of PLS-R models are shown in Table 

21. It was observed that FTIR spectral data had a R2 of 0.71 for TVC and 0.69 for Y&M, with 

a SEP of 1.22 and 0.98, and corresponding Af values of 29 and 24 %. FTIR first derivative data 

gave promising results with R2 of 0.92 and 0.91 for TVC and Y&M, and a lower SEP of 0.76 

and 0.71 with an Af of 11 and 10 %, respectively. Similar results were observed for jackfruit 

and pomegranate sample with FTIR first derivative data performing better when compared to 

FTIR spectral data using PLS-R.  

Table 21: Performance indices of models generated for TVC and Y&M using PLS-R for FTIR 

data in minimally processed pineapple at 10 °C. 

Statistical 

Measurements 

FTIR spectral data  FTIR first derivative data 

TVC Y&M TVC Y&M 

R2 0.715 0.692 0.925 0.938 

Bf 1.101 1.06 0.958 0.987 

Af 29 % 24 % 11% 8% 

SEP 1.22 0.98 0.76 0.53 

LV 4 3 6 7 

LV- latent variable; SEP- Standard error of prediction; Af-Accuracy factor; Bf- Bias factor 
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3.1.4.2.2.4 Discussion & conclusions of PLS-R models using FTIR data  

Quantitative estimation of microbial spoilage could be successfully demonstrated using 

FTIR for all the three fruit samples stored at 10 °C. An R2≥0.68 was obtained for all the 

developed models for both TVC and Y&M counts.  Ammor et al. [145] showed an R2 of 0.73 

for TVC prediction of minced beef sample, while another study conducted on minced pork 

demonstrated R2 of 0.88 and Af of 7.5 % using FTIR spectral data. Our results are thus similar 

to that reported in literature. It was also observed that the models developed using first 

derivative FTIR showed better performance indices with R2≥0.85 for both TVC and Y&M in 

case of all the fruit samples. This could be due to fact that underlying variations in the 

overlapped FTIR spectra are clearly identified using first derivative spectra. Similar results 

were observed by Duarte et al. [146] while employing FTIR spectra for quantification of sugars 

in mango juices. When the models for TVC and Y&M counts were compared, it was evident 

that models developed for TVC had an overall better performance index for jackfruit while 

models build for Y&M had better performance indices in case of pomegranate and pineapple. 

A similar trend was also noted for all the fruit samples studied when PLS-R analysis was 

applied on GCMS data.  

The correlation matrix in PLS-R for the annotated peak showed that few IR absorption 

bands were highly correlated to microbial counts (positively or negatively) and depended on 

storage period (Table 22). Absorption bands 1156 and 1252 cm-1 were found to be positively 

correlated with microbial counts while 1062, 1078, 1105, 1419 and 1453 cm-1 had negative 

correlations with microbial counts. Wave number 1156 cm-1 corresponds mainly to the 

absorption of alcohols while 1419& 1453 cm-1 to that of sugars and 1252 cm-1 corresponding 

to the presence of acids [146-149]. These results suggest the production of alcohols and acids 

with utilization of sugars during storage. Carlin et al. [150] also observed production of 
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different acids (lactic, acetic, malic, succinic, and pyruvic acids) during storage of minimally 

processed carrots. Thus, biochemical changes represented by the metabolic fingerprint in the 

FTIR profiles of the fruit samples were utilised for quantitative prediction of TVC and Y&M. 

Table 22: Correlation analysis of annotated FTIR peaks with TVC and Y&M 

 

Frequency (cm-1) Assignment Fruit Correlation 

analysis 

1720-1580 (1638) C=O stretching and H-O-H def -all-                   + 

1433-1460(1443)   Jack/Pine                   + 

1400-1421 (1419) O-C-H, C-C-H, C-O-H bending of 

carbohydrates 

-all-                    - 

1350-1382 

(1353,1364,1372) 

CH2 rocking, O-H bending of 

organic acids 

-all-                    + 

1330-1294 (1314) O-C-H, C-C-H, C-O-H deformation 

of carbohydrates 

Pom                    - 

1239-1270 (1250) -C-O acid stretching -all-                    + 

1142-1187 (1156) C-O stretching of secondary & 

tertiary alcohol 

Pom/pine                    +  

1078 and 1105 C-O & C-H stretch of sugars, C-O-

H bending 

-all-                     - 

1062 C-O & C-H stretch of sugars -all-                     - 

1032 C-O & C-H stretch of sugars -jack/pom                     - 

1018 - Jack                     - 

923 C-C stretch of sugar (fructose) Jack                     - 

 

3.1.4.1.3.1 Comparison of HS-SPME-GCMS and FTIR  

Biochemical changes monitored using GCMS and FTIR could be successfully 

employed for rapid microbial quality assessment in all the three fruits using PLS-R and ANN. 



100 
 

It can be observed from Table 23 that GCMS models for all the fruit samples gave the best 

performance with low average deviation values between observed and predicted counts well 

within the acceptable range of within 20% error from the observed values [70]. HS-SPME 

GCMS allows rapid, solvent less extraction of volatiles from the food packages. Thus, it offers 

rapid monitoring of headspace volatiles that can monitor biochemical changes associated with 

microbial spoilage [16, 67, 151]. However, GCMS run time in the current study was 30 minutes 

for separation of the volatile constituents. Moreover, peak alignment, identification and 

quantification add up to additional labour and expertise involved.  

Models build using FTIR data could also predict test samples within 20% of deviation 

for all the fruit samples with few exceptions, however the average deviation between observed 

and predicted counts were higher when compared to GCMS models (Table 23). Fourier 

transform infrared spectroscopy (FTIR) is a fast, easy to use, reagent less and non-destructive 

technique for obtaining biochemical information of food samples [110]. Ellis et al. [2] has been 

a pioneer in demonstrating FTIR as a useful tool for early detection and rapid monitoring of 

microbial spoilage. Till date several reports have been published on the application of this 

technique in food products such meat, poultry, milk and fruit juices as detailed in the review 

by [71]. However, there are only few reports that have demonstrated their use for microbial 

quality assessment [152, 153]. The current study therefore investigated the use of FTIR as a 

tool for rapid microbial assessment in minimally processed fruit samples. It takes less than a 

minute for obtaining FTIR spectra. Further, ease of sample preparation and data handling 

makes it suitable for online monitoring in industrial application. Thus, both GCMS and FTIR 

demonstrated their utility for assessment of microbial quality. GCMS offers identification of 

individual spoilage marker volatiles while FTIR provides overall metabolic fingerprint. 
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3.1.4.3.2 Comparison of PLS-R and ANN as supervised prediction tools 

In conclusion, it was observed that both PLS-R and ANN demonstrated good 

performance when applied to two different instrumental techniques. Best performance was 

observed when PLS-R & ANN were applied on GCMS data with very low average deviation 

between observed and predicted counts (Table 23). However, ANN when applied on FTIR 

spectral data also demonstrated high accuracy in all the fruit samples.  

PLS-R can be applied to a set of collinear variables as observed in GCMS and FTIR 

data for microbial counts. PLS-R is popular due to its ease of use, fast computation, good 

predictive performance and easy interpretable representations [71]. This automated tool allows 

ease in performing operations to food scientist with limited mathematical and statistical 

expertise to perform the challenging task of data mining and predictive modelling. However, 

PLS-R cannot be applied on uncorrelated variables thus limiting its use for co-linear dataset.  

ANN was applied to determine non-linear relationships between instrumental data and 

microbial counts. MLP-ANN is adaptive and learns from the data-set by creating the required 

decision function. Therefore, it allows for application on versatile data set [87]. Models build 

using ANN in the current study also showed good performance suggesting non-linear relation 

between spectra and microbial quality. However, ANN suffers from the following 

disadvantages. Firstly, the data set has to be converted into set of un-correlated input variable, 

Secondly, defining the number of neurons in the hidden layer requires many trial runs along 

with several iterations for effective learning. Lastly, new training overwrites the properties of 

the existing network if existing data are not included in the new training process. Application 

of ANN is therefore a cumbersome task demonstrating its lower suitability than PLS-R. 
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Table 23. Overall comparison of different techniques based on average deviation between 

observed and predicted. 

                                  Average deviation between observed Vs Predicted (Af) 

                    PLS-R                   ANN 

      TVC      Y&M      TVC       Y&M 

 

 

Jackfruit 

GCMS 7.6 % 11 % 17% 15% 

FTIR spectra 

data 

9 % 16 % 10% 20% 

FTIR first 

derivative data  

11 % 23 % 6% 10% 

 

 

Pomegranate 

GCMS 6 % 10 % 14% 9% 

FTIR spectra 

data 

22 % 37 % 20% 14% 

FTIR first 

derivative data 

19 % 23 % 22% 36% 

 

 

Pineapple 

GCMS 9 % 13 % 2% 6% 

FTIR spectra 

data 

29 % 24 % 8% 7% 

FTIR first 

derivative data 

11 % 8 % ND ND 
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3.2 Development of Time temperature Indicator for real time quality monitoring of 

minimally processed fruits 

Microbial spoilage is reported to be the primary factor in the deterioration of almost all 

minimally processed fruits [1]. Thus, microbial load in terms of total viable bacterial count 

(TVC) and Yeast & Mould count (Y&M) are considered the major parameters determining the 

quality of minimally processed fruits. Like chemical reactions, growth rate of microbes is 

strongly dependent on temperature. Just as temperature dependence of chemical reaction is 

expressed in terms of activation energy (Ea), microbial spoilage as influenced by temperature 

can also be expressed in terms of Eα. It therefore becomes imperative to tailor the Ea for the 

chemical reaction with that of microbial growth at different temperatures to obtain a correlation 

between the two processes thereby facilitating development of a smart tag for sensing food 

quality status. When rates of microbial growth at various temperatures is kinetically 

synchronised with chronochromic evolution process of TTI an intelligent tag can be designed 

and applied to each package during refrigerated storage. The pack will then individually 

monitor the temperature effects on the product based on colour evolved thereby providing real-

time quality status of the product. 

 3.2.1 Growth rate evaluation of TVC and Y&M 

Microbial growth during storage under aerobic conditions in minimally processed pineapple, 

pomegranate and jackfruit stored at 4, 10, 20 & 37 °C, expressed as total viable counts (TVC) 

and yeast & mould counts (Y&M), is shown in Figure 25. Table 24   provides maximum 

specific growth rate (µmax) at different storage temperature and Eα values for TVC and Y&M 

growth for minimally processed fruits. It can be clearly observed from Fig. 16 that rate of 

microbial growth is more for samples stored at higher temperatures of 20 and 37 °C as 

compared to samples stored at lower temperatures of 4 and 10 °C. This observation is supported 
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by significant (p<0.05) increase in µmax with increasing storage temperature for all the samples 

studied (Table 24). µmax increased by 9.8, 12.7 and 25 times for pineapple, pomegranate and 

jackfruit, respectively when storage temperature was increased from 4 to 37 °C. Thus, increase 

in microbial load could be stimulated by elevated storage temperatures. The corresponding Eα 

value for growth of TVC on pineapple, pomegranate & jackfruit were 46.28, 52.41 and 71.66 

kJ/mol. Additionally, the Eα value for Y&M growth were 41.50, 61.52 and 69.83 kJ/mol for 

pineapple, pomegranate and jackfruit, respectively. The values of Eα obtained were in the range 

of 46.28 to 71.66 kJ/mol, the typical activation energy values (83-251 kJ/mol) reported for 

microbial spoilage [154]. Similar Eα values (42.58 kJ/mol) were reported by Andreas et al. 

[155] for Y&M counts for cut apple cubes under different treatment and packaging conditions. 

The Eα values obtained from Arrhenius relation are indicative of product shelf life due to 

microbial growth. The lower Eα value indicates faster microbial growth leading to rapid 

product deterioration and effective shorter shelf life. In case of cut pineapple slices, Eα for 

Y&M growth was lower than TVC because of the low pH (3.2) value of the fruit which favours 

yeast over bacteria [156, 157]. In contrast, jackfruit has a higher pH of 5.1 which is not 

favourable for Y&M growth (Eα, 69.83 kJ/mol), allowing for a greater competition with TVC 

[158]. In case of pomegranate, however, even though the pH of pomegranate juice is acidic 

(4.2), the intact arils did not contribute to acidic environment thus favouring TVC (Eα, 52.41 

kJ/mol) over Y&M (Eα, 61.52 kJ/mol). 
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Table 24: Kinetic parameters of microbial spoilage of minimally processed jackfruit, 

pomegranate and pineapple 

  TVC Y&M 

 Temp- 

erature 

(°C) 

µmax 

(h-1) 
R2 Ea 

(kJ/mol) 

R2 µmax 

(h-1) 
R2 Ea 

(kJ/mol) 

R2 

 

 

 

 

Pineapple 

4 0.020±0.007 0.90  

 

 

 

46.28 

 

 

 

 

0.95 

 

0.026±0.004 0.96  

 

 

 

41.70 

 

 

 

 

0.78 

10 0.037 ± 

0.003 

 

0.98 0.045 

± 

0.009 

0.84 

20 0.05 ± 0.005 0.93 0.049 ± 

0.004 

0.94 

37 0.196 ± 0.09 0.97 0.224 ± 0.05 0.90 

 

 

 

 

Pomegranate 

4 0.010 ± 

0.001 

0.98  

 

 

 

52.41 

 

 

 

 

 

0.99 

 

0.014 ± 

0.005 

0.99  

 

 

 

61.52 

 

 

 

 

 

0.99 
10 0.029 ± 

0.004 

0.91 0.0266 ± 

0.003  

0.94 

20 0.089 ±  

0.01 

0.96 0.083 ± 0.02 0.92 

37 0.127 ± 

0.005 

0.89 0.282 ± 0.06 0.976 

 

 

 

 

Jackfruit 

4 0.0065 ± 

0.0003 

0.98  

 

 

71.66 

 

 

 

 

0.80 

0.0052 ± 

0.001 

0.90  

 

 

69.8376 

 

 

 

 

0.83 
10 0.020 ± 

0.001 

0.96 0.035 ± 

0.004 

0.98 

20 0.146 

± 0.01 

0.98 0.085 ± 0.01 0.91 

37 0.165 ± 0.01 0.95 0.184 ± 0.03 0.87 

µmax-maximum specific growth rate; R2-co-efficient of determination; Ea-Activation energy 

Further, based on Eα values it can also be concluded that pineapple is more susceptible 

to microbial deterioration as compared to pomegranate and jackfruit. This observation is also 

supported by the fact that in stored pineapples microbial counts increased to > 107CFU/ g for 

TVC in 21 h when compared to 24 and 28 h respectively for pomegranate and jackfruit at 

storage temperature of 37 °C. 
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3.2.2 Phenol oxidation based TTI 

The initial criteria set for TTI development was that the chemical reaction should result in 

complete colour development between 24 to 36 h at 37 °C.  This criterion was set, because it 

was observed that the microbial counts reached ≥ 7 Log10 CFU/g within the period of 21 to 28 

h at 37 °C for all the three fruit samples. Phenol showed a slow transition of colour change and 

could be modulated for its final colour development in the desired period (24-36 h) at 37 °C. 

The concentration of phenol also played a significant role with a change in colour from less 

intense light brown to dark brown. Several different concentrations of phenol were tried (data 

not shown). A final concentration of 0.5 % that gave a distinguishable sharp change in colour 

from colorless to deep brown was chosen. Figure 26 shows the typical curve for colour 

development in terms of optical density with respect to time at 5 different temperature of 

storage for a TTI prototype (0.5% Phenol, 47 mM Na2CO3, 21 mM APS).  

The colour of TTI hydrogel in all cases changed from colourless to dark brown due to oxidation 

of phenol to form quinones resulting in absorption of light to 440 nm [159]. Several 

combinations of TTI prototypes (Table 25) were tried in an array to derive the activation 

energies comparable to the Eα obtained for microbial growth which was found to be in the 

range of 52.96–84.05 kJ/mol. 
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Figure 26: Colour development of Typical TTI in terms of O.D vs time at different temperature 

of storage; ( ) 10, ( ) 20, ( ) 30, ( ) 37 and ( ) 45 °C. 
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Table 25: The activation energy (Ea) values in kJ/mol for different TTI prototype recipe mix. 

 

 

 

 

Data of concentration of various ingredients and corresponding Ea obtained were 

analysed by fitting them in full factorial design followed by ANOVA. Results of ANOVA 

suggest that both sodium carbonate and APS demonstrated significant (p<0.05) effect on Ea. 

The 3D plot shows that as the concentration of both the factors increase there was a 

corresponding decrease in activation energy of TTI. (Figure 27). It was also observed that when 

the concentration of one factor is kept fixed at a central value, changing the concentration of 

other factor decreases activation energy. The effect was more pronounced with sodium 

carbonate. (Figure 28). Thus, it can be concluded that contribution of sodium carbonate was 

higher when compared to APS in decreasing the activation energy. 

 

Na2CO3 23 mM 35.4 mM 47mM 59mM 

APS     

21 mM 84.05±4.87 76.77±2.54 68.83±1.89 66.67±1.01 

32 mM 76.57±3.75 59.77±1.89 60.44±3.37 52.96±2.19 

43 mM 64.68±3.82 60.31±2.06 56.64±1.43 53.59±1.09 
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Figure 27: 3D plot showing effect of sodium carbonate (Na2CO3) and APS concentration on 

activation energy 

 

 

Figure 28. One factor plot when other factor is kept constant at its middle value of 

concentration 
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Kim et al. [160] utilized a laccase enzyme based oxidation reaction of phenolic 

compound guaiacol for development of TTI to obtained Ea in the range of 43.9 to 46.9 kJ/mol. 

Park et al. [161] further tuned the activation energy of laccase based TTI for a broader range 

(48-110 kJ/mol) using sodium azide that falls in the same range as evaluated in the current 

study. However, enzyme based systems has drawbacks such as instability and substrate 

specificity, thus limiting the system for wider applicability. Uddin et al. [162] developed a TTI 

based on non-enzymatic browning of fructose and glycine with activation energy range 

between 58.05 and 95.54 kJ/mol and suggested their usefulness in monitoring food quality. 

However, the study did not demonstrate its real time application with model food system as 

conducted in the present study. 

3.2.2.1 Studies on Kinetic parameters  

  Four candidate TTI with Ea values of 59.77 (TTI I: 35.4 mM Na2CO3, 32 mM APS), 

66.67 (TTI II: 59 mMNa2CO3, 21 mMAPS), 76.73 (TTI III 23 mM Na2CO3; 32 mM APS) & 

84.05 kJ/mol (TTI IV 23 mM Na2CO3; 21 mM APS) were selected to evaluate their suitability 

on minimally processed fruits (Table 26). These candidate TTIs have their Ea values in the 

range of Eα of microbial spoilage of minimally processed fruit selected (46.28 to 71.66 

KJ/mol). Figure 29 shows the Arrhenius plot of the reaction rate constants of these TTIs plotted 

against temperature. Table 26 provides the value of reaction rate constants of the four candidate 

TTIs and the Ea value obtained from the Arrhenius plot. The reaction rates of TTI increased as 

the concentration of APS and Na2CO3 increases, implying that the activation energy decreases 

following the Arrhenius relationship.  
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Figure 29: Arrhenius plot of 4 TTI prototypes with varying range of activation energies 

Table 26. The reaction rate constants (k) of different TTI prototypes with varying 

concentrations  

 Reaction rate constant (h-1) of TTI prototypes 

Temperature 

(⁰C) 

35.4 mM 

Na2CO3; 

32 mM APS 

59 mM Na2CO3; 

21 mM APS 

23 mM 

Na2CO3; 

32 mM APS 

23 mM Na2CO3; 

21 mM APS 

 

10 

 

0.0042±0.0008 
 

 

0.003±0.0007 
 

 

0.0009±0.0003 

 

0.0003±0.0001 
 

 

20 

 

 0.0133±0.002 

 

   0.007±0.001 

     

0.002±0.0009 

0.00087±0.00005 

 

30 

 

 0.0263±0.0041 

 

0.021±0.009 

     

0.0125±0.0067 

 

0.0031±0.0012 

 

37 

 

0.0429±0.0009 

 

0.033±0.012 

     

0.0194±0.0032 

 

0.0061±0.003 

 

45 

 

0.0889±0.004 

 

    0.066±0.021 

     

0.0257±0.0014 

 

 0.015±0.008 

Ea (kJ/mol)     59.77±1.89      66.67±1.01       76.57±3.75    84.054±4.87 

R2    0.9924     0.9964      0.9772     0.9985 

Ea-activation energy 
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3.2.3 Establishing correlations between colour change between TTI and microbial growth 

 Eα for microbial growth in case of pineapple was 46.28 and 41.70 kJ/mol for TVC and 

Y&M, respectively. Values of Eα obtained for TVC and Y&M were 52.41 and 61.52 kJ/mol, 

respectively for pomegranate. Therefore, TTI I having Ea of 59.77 kJ/mol would be considered 

acceptable based on the established criteria that difference in activation energy between TTI 

and the food system should be less than 25 kJ/mol [104].  Similarly, jackfruit demonstrated Eα 

values of 71.66 and 69.83 kJ/mol for TVC and Y&M, respectively. Hence, TTI II (Ea-66.67 

kJ/mol) could be suitable for jackfruit sample. Correlations were established between the 

colour change in TTI and microbial counts to identify the suitable indicator for evaluating the 

microbial spoilage. Table 27 represents the correlations obtained between optical density of 

chosen TTI prototype with the TVC and Y&M counts at three storage temperatures (10, 20 and 

37 °C) for minimally processed fruit. It can be observed from the table that TTI type I (Ea-

59.77 kJ/mol) was found suitable for pineapple with high correlation coefficients (R2 > 0.94) 

for TVC and Y&M (R2> 0.91) at all the three storage temperatures thus ensuring synchronicity 

at varied temperature range [163]. TTI type I was also found to be suitable for minimally 

processed pomegranate with R2> 0.89 for TVC and Y&M (Table 27). Similarly, TTI type II 

(Ea-66.67 kJ/mol) gave high correlations with R2> 0.85 for both TVC and Y&M in jackfruit at 

all the three storage temperatures. These high R2 values demonstrate the feasibility of 

chronochromic evolution of TTI when synchronised with the spoilage kinetics in terms of 

microbial counts. Correlation studies conducted by Smolander et al. [164] between spoilage 

microorganisms of modified atmosphere packed broiler cut and commercial TTI demonstrated 

higher R2 (≥0.85) than metabolic analytes such as volatiles, biogenic amines and organic acid 

for studying loss of food quality. 
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Table 27: Regression equation of selected TT1 with TVC and Y&M counts of minimally 

processed fruits at different storage temperature 

TTI T 

(°C) 

Equations for TVC R2 Equations for Y&M R2 

 

TTI-I 

With pineapple 

10 y = 6.1892x + 1.9634 0.9485 y = 5.445x + 1.7757 0.91 

20 y = 2.8839x + 3.2802 0.9856 y = 2.943x + 3.1873 0.97 

37 y = 4.5642x + 2.8281 

 

0.7897 y = 5.6966x + 1.7883 0.827 

 

TTI-I 

With 

pomegranate  

10 y = 4.7344x + 1.2567 0.9622 y = 4.2281x + 1.4588 0.9425 

20 y = 3.0762x + 2.9403 0.9819 y = 2.5729x + 2.9553 0.955 

37 y = 4.0246x + 3.4751 0.8144 y = 7.1156x + 0.6148 0.9828 

 

TTI II 

with jackfruit 

10 y = 4.9136x + 2.0477 0.9638 y = 6.3537x - 0.031 0.9549 

20 y = 6.7345x + 2.2458 0.9182 y = 5.383x + 1.9843 0.9969 

37 y = 3.6627x + 3.5091 0.9339 y = 3.9798x + 3.1143 0.8573 

 

Correlations were not established for 4 °C stored fruit samples because even after extended 

period of storage, increase of 1 Log10 CFU/g in case of pineapple and pomegranate was 

observed. Jackfruit samples reached to the counts of 6.5 Log10 CFU/g and 4 Log10 CFU/g for 

the storage period of 19 days which are below the regulatory limits of 7 Log10 CFU/g and 5 

Log10 CFU/g for TVC and Y&M, respectively [109]. Physiological changes instead of 

microbial spoilage are the primary reason for deterioration of fruit samples stored below or at 

4 °C [24]. Similar trend was observed for the developed TTI. A very gradual colour change 

was observed at 4 °C extending to 21 days for the prototypes with high Ea (data not shown).   

Further, to establish suitability of developed TTI, data from the three storage 

temperatures was merged to obtain a linear regression equation that provides the information 

of co-evolution of colour with microbial counts.  Independent relationship of colour with 

microbial quality was not affected by time and temperature as shown in Figure 30. The R2 

observed for TTI I in case of TVC and Y&M counts of minimally processed pineapple were 

0.82 and 0.75, respectively. For pomegranate samples better correlations were observed for 

Y&M (R2=0.83) than TVC (R2 = 0.66) using TTI I. For jackfruit samples, R2 of 0.88 and 0.81 
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were obtained for TVC and Y&M, respectively with TTI II. Inference can be drawn that good 

correlation were observed even at broad temperature ranges utilised in the study (10 to 37 °C). 

This range covers the market conditions of storage for minimally processed fruits. The 

synchronicity of TTI with microbial grow at one temperature necessarily does not guarantee 

its performance at other temperatures because there can be slight change in Ea value of the 

system [162]. Thus, synchronicity was demonstrated by studying broad temperature range. 

 

Figure 30. Correlation between O.D vs Log10CFU/g for combined data at different storage 

temperatures. Solid circles- TVC, hollow circles- Y&M; A-pineapple samples; B-pomegranate 

samples; C-jackfruit samples. 

3.2.4. Camera based rapid read out for quality monitoring  

In order to validate the utility of TTI for monitoring the microbial status of minimally processed 

fruit, the fresh packed minimally processed jackfruit, pomegranate, pineapple and the candidate 

TTI’s (Type I & II) were kept together to demonstrate the synchronicity at constant storage 

temperature of 10 °C and abusive storage cycle. The quality loss in terms of microbial load for 

packed produce and colour change of TTI were subsequently monitored simultaneously at 

different storage intervals. Moreover, for commercial suitability and to ensure rapidity of 

system the colour changes were monitored using DSLR camera and obtained in terms of ∆RGB 

scores.     
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Table 28 gives the R2 between ∆RGB and TTI at 10 °C with TVC and Y&M for all the three 

fruit samples. Both the TTIs (I and II) demonstrated good correlations with R2 > 0.7 for all the 

three fruits. The regression equation obtained was therefore utilised for calculations of 

predicted TVC and Y&M counts for samples stored under abusive conditions. The prediction 

performance was judged by evaluating the overall accuracy factor between observed and 

predicted counts (Table 29). 

Table 28: Regression equation between ∆RGB scores of selected TTI with TVC & Y&M at 10 

⁰C for pineapple, pomegranate and jackfruit. 

TTI Equations for TVC R2 Equations for Y&M R2 

TTI-I with 

pineapple 

y = 4.9964x + 2.4389 0.71 y = 5.8245x + 2.4611 

 

0.7371 

TTI-I with 

pomegranate  

y = 3.5319x + 2.9154 0.86 y = 4.4492x + 1.4196 

 

0.722 

TTI II with 

jackfruit 

y = 6.4453x + 2.2399 0.74 y = 5.8192x + 2.8017 

 

0.8187 

 

In case of minimally processed pineapple, TTI I demonstrated R2 of 0.71 and 0.74 with 

TVC and Y&M counts, respectively (Table 28). The overall prediction performance for 

samples stored under abusive condition could be explained by the accuracy factor obtained as 

17.9 and 20.9 % for TVC and Y&M, respectively (Table 29). Plot between observed and 

predicted counts is shown in Figure 31. It can be clearly observed that the deviation between 

observed and predicted counts is ± 1 Log10CFU/g for pineapple samples (Figure 31A). In case 

of minimally processed pomegranate, TTI I gave R2 of 0.74 and 0.81 for TVC and Y&M, 

respectively (Table 28). Prediction for Y&M counts using TTI I data was characterised by low 

prediction error with a higher accuracy factor of 11.7%. However, for TVC counts, accuracy 

factor of 24.09% was observed indicating higher prediction errors. The difference between 

predicted and actual counts was, however, within the range of ± 1 Log10CFU/g (Table 29, 



117 
 

Figure 31B). TTI II (Ea 66.67 kJ/mol) demonstrated R2 value of 0.86 and 0.72 for TVC and 

Y&M, respectively for minimally processed jackfruit (Table 28). The accuracy factor obtained 

was 14 and 26.3 % for TVC and Y&M, respectively and the deviation in the observed vs 

predicted counts were mostly within the range of ± 1 Log10 CFU/g (Table 29, Figure 31C).  

In general, it can be observed from the results that selected TTI resulted in prediction of both 

TVC and Y&M counts in all the three fruits selected within a range of ± 1 Log10CFU/g and 

had an acceptable limit for prediction of microbial spoilage [70].  The selected TTI for all the 

three fruit samples could show good performance even when the samples were stored under 

abusive storage conditions to mimic market conditions. 
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Table 29. Performance of the selected TTI’s for minimally processed pineapple, pomegranate 

and jackfruit. 

Fruit sample Microbial 

counts 

(R2) 

TTI Observed 

(Log10 

CFU/g) 

Predicted 

(Log10 

CFU/g) 

Prediction 

error (%) 

Accuracy 

factor 

(%) 

 

 

 

 

Pineapple 

 

TVC 

(0.73) 

 

I 

3.57 2.46 31.09  

17.9% 5.28 5.92 12.10 

6.90 6.54 5.25 

7.11 6.59 7.32 

 

Y&M 

(0.50) 

I 3.91 2.43 37.91 20.7% 

 5.30 5.39 1.72 

 6.86 5.93 13.54 

 7.21 5.97 17.19 

Pomegranate  

TVC 

(0.74) 

I 3.28 2.23 31.91 24.09% 

 5.58 4.16 25.33 

 6.13 6.07 1.04 

 6.93 6.25 9.83 

 

Y&M 

(0.81) 

I 3.28 2.80 14.65 11.7% 

 5.33 5.13 3.74 

 6.03 6.26 3.65 

 7.13 6.42 9.95 

Jackfruit  

TVC 

(0.86) 

II 3.09 2.91 5.89 14.53% 

 4.02 5.04 25.32 

 6.28 5.37 14.47 

 7.27 6.58 11.00 

 

Y&M 

(0.72) 

II 2 1.41 29.02 26.3% 

3.42 4.38 28.07 

3.90 4.62 18.35 

4.32 5.15 19.08 
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Figure 31: Observed Vs. predicted counts for minimally processed pineapple (A), pomegranate 

(B) and jackfruit (C) at abusive storage conditions. Blue dots (TVC); Red dots (Y&M) 

3.2.5 Advantages of developed TTI for real time application  

In present study, a very simple and cheap phenol based TTI was developed for application on 

minimally processed fruits packages. Microbial spoilage kinetics was evaluated for minimally 

processed pineapple, pomegranate and jackfruit. It was also observed that Ea of TTI can be 

varied based on concentrations of both the radical initiator (APS) and sodium carbonate. The 

chronochromic indicator can be readily tailored to obtain wider range of activation energies 

making TTI quite flexible and adjustable and can be specifically designed and formulated for 

each specific target process. Colour development of selected TTIs demonstrated good 

correlations with microbial growth in wide temperature range of 10-37 C. Regression models 

correlating microbial growth with colour development were also developed using DSLR 

camera. Microbial status of samples stored under temperature abusive conditions was 

successfully evaluated using TTIs by observing colour change employing DSLR camera. The 

developed TTI is self-evolving and can indicate the product quality in a noncontact, non-

destructive manner. When attached to product packages, the TTI can cover the entire 
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manufacturer-to-consumer custody chain of each individual product item with little or even no 

human supervision and give a reliable indication of product quality and residual shelf lives 

regardless of the temperature history. 

 

 

Figure 32: Schematics of TTI. 
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Chapter 4 

 

 Summary and Future Perspective 
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4.1 Summary 

In the present thesis, the rapid methods for microbial quality assessment of minimally 

processed fruits such as jackfruit, pomegranate and pineapple were developed using two 

approaches. In the first approach, the potential of instrumental techniques such as HS-SPME-

GCMS and FTIR that allows rapid, reagent less and non-destructive means to analyse the 

microbial status of stored minimally processed fruit samples were explored. In the second 

approach, a simple, cheap, colour changing time temperature indicator was developed for real 

time microbial quality monitoring in minimally processed fruits   

1. From the current study, it can be concluded that temperature played significant role in 

the microbial spoilage status of minimally processed fruits and is one of the 

deterministic factors for shelf life of these refrigerated perishables. 

2. Both GCMS and FTIR aided in monitoring the metabolic profile during storage of fruit 

samples. It was observed that during storage alcohols such as ethanol, 3-methyl-1-

butanol, 2-methyl-butanol and esters such as methyl acetate, ethyl acetate, 2-methyl-1-

butanol acetate, 3-methyl-1-butanol acetate and other ethyl ester derivatives showed 

correlations with microbial spoilage. Microbial activity also leads to production of 

organic acids from sugars. Thus, both GCMS and FTIR data could be correlated with 

the microbial quality in terms of TVC and Y&M. 

3. Chemometric tools such as Partial Least square regression and Artificial neural 

networks were successfully employed to generate prediction models for microbial 

quality estimation using FTIR and GCMS data. All the developed models had R2 ≥ 0.8 

for all the generated models.   

4.  The results obtained in this study demonstrated that the instrumental techniques can be 

utilised in the industry for online and rapid quality monitoring of minimally processed 



123 
 

fruit, a suitable alternative to cumbersome, destructive and time-consuming 

conventional technique 

5. In present study, a very simple and cheap phenol based Time Temperature Indicator 

was developed for application on minimally processed fruit packages. Colour 

development of selected TTIs for the fruit packages demonstrated good correlations 

with microbial growth in wide temperature range of 10-37 C. Additionally, microbial 

status of samples stored under temperature abusive conditions was successfully 

evaluated using TTIs by observing colour change employing DSLR camera. 

6. The developed TTI can indicate product quality, track the shelf life and promises 

general applicability to each single package of minimally processed fruits and is a 

suitable alternative for ‘best before’ date. 

4.2 Future Perspective 

The current study evaluated potential of instrumental technique and TTI for rapid monitoring 

of microbial quality in minimally processed fruits. Model fruit systems such as jackfruit, 

pomegranate and pineapple were selected in the current study in an attempt to identify 

biochemical markers correlating with microbial counts such as TVC and Y&M, however 

several aspects can be further explored to obtain in-depth insight of the current study. 

1) Different microbial communities that contribute to TVC such as Pseudomonas species, 

LAB and Enterobacteriacea can be studied; Yeast and moulds can be studied separately 

to identify most dominant species contributing to spoilage by obtaining correlation at 

different storage temperature. Further, investigating the key metabolite compounds 

produced by dominant specific spoilage micro-organism will provide useful 

information. 
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2) Different packaging (aerobic, MAP), different storage conditions (temperature, 

humidity), different varieties and season of harvest may affect microbial association 

and hence the biochemical information. Thus, huge data considering all the variations 

should be included to build robust models. Further the efficacy of these models should 

also be tested with unknown market samples, samples kept under abusive temperature 

conditions, sample from different batch belonging to different origin.  

3) Exploring different analytical tools such as HPLC can give qualitative and quantitative 

estimation of organic acids that were found to be affected from FTIR results. Other 

techniques such as Raman spectroscopy, hyperspectral imaging and e-nose can also be 

evaluated for their potentials for estimating microbial quality. 

4) Exploring different machine learning tools such as least square-support vector 

machines and principal component regression to build models with better performance. 

5) Data fusion approaches can be utilised for the complementary techniques that can help 

in building up accurate models with low prediction errors. 

6) Several different fruit samples can be evaluated to undermine biochemical signature 

patterns or compounds that can assist in building models using these signature patterns, 

thus global models instead of sample specific models which will have better potential 

for industrial application. 

7) Several different TTI prototype can be prepared having different days of final colour 

evolution thus broad activation energy can be achieved for TTI. Anti-oxidants such as 

quercetin or different free radical initiators instead of APS can be utilised to enhance 

the tunability of the developed TTI. 

8) Other approaches for development of TTI that are cheap and printable should be 

explored for their applicability in industry. 
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Fresh cut fruits have acquired their permanent places on shelves in food industry. Microbial quality is 

the deterministic factor of the overall quality of such produce having short shelf life. Conventional plate 

count technique takes 48-72h to determine microbial quality. Thus rapid methods for microbial quality 

assessment of minimally processed fruits (jackfruit, pomegranate and pineapple) were exploited using 

two approaches. In the first approach, instrumental techniques such as HS-SPME-GCMS and FTIR that 

allows rapid, reagent less and non-destructive means to analyse the microbial status of stored minimally 

processed fruit samples were explored. Both GCMS and FTIR aided in monitoring the metabolic profile 

during storage of fruit samples. It was observed that during storage, alcohols such as ethanol, 3-methyl-

1-butanol, 2-methyl-butanol and esters such as methyl acetate, ethyl acetate, 2-methyl-1-butanol 

acetate, 3-methyl-1-butanol acetate and other ethyl ester derivatives showed correlations with 

microbial spoilage. Microbial activity also leads to production of organic acids from sugars. Chemometric 

tools such as Partial Least square regression and Artificial neural networks were successfully employed 

to generate prediction models for microbial quality estimation using FTIR and GCMS data. In the second 

approach, cheap phenol based Time Temperature Indicator (TTI) was developed for application on 

minimally processed fruit packages. Colour development of selected TTIs for the fruit packages 

demonstrated good correlations with microbial growth in wide temperature range of 10-37 C. 

Additionally, microbial status of samples stored under temperature abusive conditions was successfully 

evaluated using TTIs by observing colour change employing DSLR camera. In summary, both the 

approaches aided in rapid microbial quality assessment in minimally processed fruit samples. 

 

 

Figure: Schematic of the work carried out in thesis 
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