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INTRODUCTION 

Cancer is the second most common cause of morbidity and mortality in the world today, after 

cardiovascular disorders. Six million people die due to cancer every year. Oral cancer is the 15th 

most common cancer in the world and two-thirds of it occurs in the developing countries. In 

comparison to the U.S. population where it represents only ~3%, in India this cancer accounts for 

>30% of all malignancies [1,2]. India tops in the prevalence of oral cancer in the world and it 

remain the most common cancer amongst males. Oral cancer is the third most common cancer 

amongst women in India, after cervical and breast cancer [3,4]. Tobacco (both smoking and 

chewing) is regarded as the major cause of oral cancer. Alcohol consumption has a strong 

synergistic effect, as evident from increased risk seen in smokers plus drinkers [5,6]. The prognosis 

of patients with oral cancer is largely determined by the stage at which the disease is presented, as 

determined by extent of the tumour, presence of lymph-node metastases and distant metastases. 

Treatment strategies generally consist of surgery combined with postoperative radiotherapy and 

have a favourable prognosis for early lesions. In the past decade, the role of organ-preservation 

protocols, with combined chemo-radiation and surgery for salvage in oral cancer therapy, has 

increased [7-9]. Non-changing low disease free survival rate for oral cancers can be attributed to the 

fact that most of the oral squamous cell carcinoma (OSCC) present at a late stages (III or IV) [10-

13]. 

Clinical examination and biopsies followed by histopathological analysis is considered as 

the gold standard for diagnosis and surveillance of oral cancer. However, the method has several 

limitations such as: inability in screening and detecting early malignancy associated changes; 

difficulty in recognizing subtle clinical changes in precancerous lesions or in a normal mucosa that 
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are indicative of neoplastic transformation; inability in distinguishing premalignant lesions from 

more common benign or inflammatory conditions; clinical or histological risk stratification lacks 

accuracy , reproducibility and requires large experience on part of the clinician [14-22]. Moreover, 

surveillance and biopsy of precancers is a mammoth task especially in populous countries like 

India. For example incidence of leukoplakia itself is up to 1% of general population. Considering 

these facts, it is imperative to develop a new rapid and accurate diagnostic method for early oral 

cancer detection.  

Recent research has demonstrated that optical diagnostic methods can be used as alternative 

or adjunct to existing methods of cancer diagnosis. A variety of optical techniques like 

fluorescence, Fourier-transform infrared and Raman spectroscopy have been explored in cancer 

diagnosis [23-33]. These methods are capable of providing biochemical and morphological 

information in short time, which can be used for online diagnosis. Fluorescence based diagnosis of 

oral cancer began with use of exogenous fluorophores followed by autofluorescence studies [23-

26]. Even though these methods involve simpler instrumentation,limited information and use of 

multiple excitation wavelengths have rendered its applicability for routine clinical usage. Fourier 

transform infrared spectroscopy (FT-IR) is absorption based vibrational spectroscopy method. 

Studies on ex vivo tissues have shown that differences due to loss of triglycerides, alterations in 

protein content and changes in keratin level can be considered as markers of oral malignancy 

[27,28]. However, these methodologies are less suitable for in vivo applications as water, the major 

component of biological tissues, is highly absorptive in the mid-IR range. ATR based 

methodologies could be useful in circumventing this difficulty.  
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Raman effect is based on inelastic scattering of photons. Unlike FT-IR, Raman spectroscopy 

does not suffer from water interference. However, week signals, as only very small fractions of 

photons (1 in 108) are inelastically scattered, is a major drawback associated with this technique 

[29]. Raman spectra of biological tissues are also often swamped by parasitic fluorescence. 

However, latest developments in light sources (lasers) and detectors (CCDs) have made Raman 

spectroscopy of biological samples like tissues and cells feasible. Further, use of near infrared 

excitation photons e.g. 785, 830 or 850 nm make this technique less harmful and also minimize the 

associated fluorescence. Most important attribute of Raman spectroscopy lies in its adaptation for in 

vivo applications. Using optical fibers laser light can be delivered to the desired site and Raman 

photons can also be collected. In view of above attributes Raman spectroscopy is projected as an 

ideal tool in pursuing biomedical applications. Raman spectroscopic differentiation of ex vivo 

normal and pathological conditions of oral, breast, cervix, colon, stomach ovarian and other forms 

of cancers have already been reported in the literature [30-38]. In vivo Raman measurements from 

bladder and prostate, oesophagus, skin, cervix and arteries are also reported [39-46].  

RATIONALE AND OBJECTIVES: 

Earlier studies on ex vivo oral tissues have demonstrated the feasibility of classifying normal, 

malignant, premalignant and inflammatory conditions by Raman spectroscopy [31,33]. The work 

in this thesis aims towards developing and evaluating potential of in vivo laser Raman 

spectroscopy methods for non-invasive and objective diagnosis of oral cancers and precancers 

under clinical setting.  

Following are the specific objectives of the thesis -  
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1. Standardization of data acquisition and analysis methods on ex vivo oral tissues and 

correlation with histopathology and biochemical estimation. 

2. To demonstrate feasibility of acquiring and classifying in vivo Raman spectra from buccal 

mucosa of normal, cancerous and pre-cancerous subjects and correlation with 

histopathology. 

3. Exploring Raman spectral features of oral cancer cells with definite characters related to oral 

cancer. 

Objective 1: Standardization of spectral acquisition and data analysis methods 

Earlier studies on ex vivo tissues using a modular instrument have demonstrated potentials of 

Raman spectroscopic methods in classifying normal, tumor, premalignant and inflammatory 

conditions. Lipid rich spectral features in normal and predominant protein features in tumor 

conditions were observed [31,33]. This objective was taken up to evaluate the reproducibility of 

spectral features with a fiberoptic probe coupled instrument. Spectra from pathologically verified, 

36 pairs of oral biopsies (tumor and cut margin) were acquired. Biopsies were collected in liquid 

nitrogen and stored at -800C until use, from biorepository, ACTREC. 

Instrument details and spectral acquisition 

Spectra were acquired using HE-785 commercial Raman spectrometer (Jobin-Yvon-Horiba, 

France). Briefly, this system consists of a diode laser (Process Instruments) of 785 nm wavelength 

as excitation source, and a HE-785 spectrograph coupled with a CCD (Synapse) as dispersion and 

detection elements. The spectrograph is equipped with a fixed 950 gr/mm grating and spectral 

resolution, as specified by manufacturer, is ~4 cm-1. Commercially available InPhotonics (Inc, 

Downy St. USA) probe consisting of 105 μm excitation fiber and 200 μm collection fiber (NA-
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0.40) was used to couple excitation source and detection system. As per specifications of 

manufacturer of the Inphotonics probe, theoretical spot size and depth of field are 105 μm and 

1mm, respectively. A XYZ precision stage along with a probe holder was assembled to record 

spectra of ex vivo tissues. During spectral acquisition, biopsy samples were placed on CaF2 window 

and mounted on XYZ translational stage. Spectra were recorded with a spacing of ~2 mm in XY 

direction with parameters: laser power-80 mW, integration-10 seconds and 5-accumulations. These 

parameters were kept constant during all measurements.  

Spectral pre-processing and multivariate analysis 

Pre-processing of Raman spectra was performed by a standard protocol which involves correction 

for CCD response with a NIST certified standard reference material-2241 (SRM- 2241) material 

followed by subtraction of background signals from optical elements. To remove interference of the 

slow moving background, first derivatives of spectra (Savitzky-Golay method and window size 3) 

were computed. First derivative and vector normalized spectra in 1200-1800 cm-1 region were used 

for multivariate analysis by employing PC-LDA. Mean spectra were computed by averaging all 

variations on Y-axis keeping X-axis constant. Baseline correction of mean un-derivatized spectra 

was performed by fitting 5th order polynomial function and were used for comparison across 

different groups.  

Feasibility of classification between normal and tumor spectra was explored by multivariate 

supervised Principal Component-Linear Discriminant Analysis (PC-LDA) method using algorithms 

implemented in MATLAB (Mathworks Inc.) based in-house software [50]. PCA is the routinely 

used method for data compression and visualization, while LDA provides data classification based 

on an optimized criterion which is aimed for more class separability. LDA can be used in 
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combination with PCA (PC-LDA) to increase the efficiency of classification. For this, PCA scores 

obtained using a set of few PCs with maximum variance amongst data are used as input data for 

LDA-based classification. The advantage of doing this is to remove or minimize noise from the data 

and concentrate on variables important for classification. In our analysis, PC-LDA models were 

further validated by leave-one-out cross-validation (LOOCV) and independent test data. 

Development of standard model and evaluation with independent test data 
 
Standard models of normal and tumor conditions were developed using 63 and 68 spectra from 8 

pairs of normal and tumor tissues, respectively. LOOCV yielded sensitivity and specificity of 88 

and 79%. Remaining 256 and 296 spectra from 28 pairs of normal and tumor tissues, respectively 

were used as independent test data. Prediction efficiency of 80 and 95% for normal and tumors, 

respectively was observed. Corroborating earlier observations, mean spectrum of normal conditions 

was dominated by lipid bands while proteins were predominant in tumor spectrum [31,33]. Overall 

findings of the study confirmed the reproducibility of spectral features. 

Correlation with band intensity and biochemical estimations 

In the next step, lipid and protein rich spectral profiles of normal and tumor tissues were correlated 

with band intensity and biochemical estimation. Integrated area associated with lipid (1440 cm-1) 

and protein bands (1450 and 1660 cm-1) were calculated using curve-fitting algorithms of 

GRAMS/AI software (Thermo Scientific). Statistically significant (p value <0.0001) difference 

between average intensity of lipid and protein bands for normal (1.42 + 0.25 and 0.51+0.12) and 

tumor tissues (0.43+0.18 and 1.46+0.29) was observed. Intensity plot of another protein band (1660 

cm-1) also yielded similar information i.e. high for tumors (1.12+0.19) and low for normal 

(0.89+0.28). These spectral features were then correlated with biochemical estimation of total lipid, 
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total protein and phopsholipids from same tissues. Total Protein, total lipid and phospholipids were 

estimated with Folin-Lowry, Floch and Rouser method, respectively [47-49]. The statistical 

comparisons were performed by unpaired Student’s t–test and p value <0.05 was considered 

statistically significant. Corroborating spectral features, high protein to lipid and phospholipid ratio 

for tumor tissues (2.15+0.41 and 24.13+2.12) with respect to normal tissues (0.72+0.22 and 

16.12+2.28) was observed. 

Study on origin of spectral features in normal oral tissues 

 Spectral features of normal conditions show an abundance of lipids while tumors are rich in 

proteins. This study was undertaken to understand the origin of spectra in normal tissues and its 

influence on classification with tumor. Raman spectra from superior (epithelium) and inferior 

(connective tissue) surfaces of 10 ex vivo normal intact and incised oral tissues were acquired. 

Spectra obtained from upper and lower surfaces of intact oral tissue showed lipid and protein 

signatures due to histological arrangement of lipid and collagen molecules in the epithelium, lamina 

propria and connective tissue. Spectra from the superior and inferior surfaces of intact biopsy 

showed overlapping cluster after PCA, probably due to spectral contribution from entire length of 

tissue. On the other hand spectra from same surfaces after epithelium separation are different. 

However, spectra of all four groups of normal tissues also gave exclusive clusters when tested 

against tumor spectra. Overall findings of this study demonstrate that spectra recorded from the 

superior or inferior surface of an intact tissue may have contributions from deeper layers and has no 

bearing on classification with tumors. [J Biomed Opt, 16 (11), 2011] 

Objective 2: In vivo Raman spectroscopy for diagnosis of normal, cancer and 

precancerous conditions.  
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The above standardized spectral acquisition and data analysis protocols were used for the in vivo 

studies employing the same instrumental set-up. Uniformity during spectral acquisition across all 

measurements was ensured by recording spectra as per the teeth positions i.e. buccal surfaces 

opposite of canine, first premolar, second premolar, first molar and second molar on both right and 

left side was considered as reference point and spectra were acquired. To avoid any differences 

because of mouth environment, subjects were allowed to wash their mouth with water before 

spectral acquisition. In order to maintain constant focal length during all measurements, a 

detachable, metallic spacer of length 5 mm was added at the tip of the fiberoptic probe. This 

provided flexibility during spectral acquisition, and since it can be disinfected, patient to patient 

contamination was also avoided. Prior to obtaining spectra from any individual, probe was 

disinfected with CIDEX solution (Johnson and Johnson, Mumbai, India). Spectral acquisition 

parameters were: laser power-80mW, integration time-3 seconds and 3-accumulations. In vivo 

Raman spectra from contralateral normal and cancerous lesion of 113 subjects were acquired. 

Spectra from 40 individuals were used for developing standard models and the remaining as test. In 

vivo spectra were also acquired from 50 subjects with only premalignant patches. Of these, spectra 

from 24 subjects were used for developing standard model and remaining as test. Spectra were 

corrected for CCD response followed by subtraction of background signals as per the previously 

described procedure.  

Spectra from contralateral normal were dominated by lipid features indicated by C=O band of 

esters, strong δCH2 bend, two sharp bands in amide III region, and a sharp peak in amide I region. 

Predominant protein bands indicated by broad amide III, broad and shifted δCH2, and broad amide I 

were observed in mean tumor spectra. These findings corroborate earlier reports of ex-vivo and in 
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vivo conditions [31,33,51,52]. Spectra from premalignant patches show features associated with 

tobacco induced hypercellularity and profile similar to tumor spectra in amide III, amide I, and 

δCH2 regions. 

Development of standard models and evaluation with independent test data 

Standard models were developed using 170 spectra from contralateral normal areas (40 subjects), 

192 spectra from tumor sites (40 subjects) and 113 spectra premalignant patches (24 subjects). 

Mean ages of subjects with cancerous and premalignant lesions were 48.66 years and 51.33 years, 

respectively. First derivative and vector normalized spectra in 1200-1800 cm-1 region were used as 

input for PC-LDA. LOOCV yielded efficiency of 86, 91 and 91% for normal, premalignant and 

tumor spectra, respectively. Remaining 274 spectra from contralateral normal areas (73 subjects), 

181 spectra from tumor sites (73 subjects) and 93 spectra from premalignant patches (26 subjects) 

were used as independent test data set and prediction efficiencies of 79, 60 and 86% for 

contralateral normal, premalignant, and tumor, respectively was observed.  

Influence of variability in tumor grade and differentiation status on classification was also explored. 

Findings suggest that it has no influence on classification with normal or precancerous conditions.  

Misclassifications between different groups can be primarily attributed to mucosal heterogeneity. 

Spectra from tumors gave best prediction efficiency (86%) followed by contralateral normal (79%) 

and premalignant (60%). Misclassification of tumor spectra as contralateral normal can be 

explained on the basis of fact that spectra were recorded at different points therefore, possibility of 

acquiring spectra from normal or inflammatory patches in a tumor cannot be completely ruled out. 

Maximum misclassification was observed between contralateral normal and premalignant spectra. 

This is probably due to the fact that premalignant patches in the study were from contralateral side. 
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Further, our probing area is around 100-200 μm, since transformation of a premalignant zone may 

not be uniform, possibility of acquiring data from a normal site cannot be completely ruled out. This 

also explains observed misclassification across premalignant and malignant, as numbers of 

instances in this case are very few as malignant conditions represent higher degree of 

transformation as compare to premalignant.  [J Biomed Opt, 17 (105002), 2012; J Cancer Res Ther,8,2012; 

Proc SPIE 8219,2012] 

Study on classification of different premalignant lesions in oral cavity 

A wide array of precancerous conditions like leukoplakia, erythroplakia, oral lichen planus, oral 

submucous fibrosis (OSMF), erythematosus etc. has been implicated in the development of oral 

cancer. Leukoplakia and OSMF are two of most common pre-cancerous conditions found in Indian 

population. However, clinical manifestations of both conditions are very different. Leukoplakia is 

described as a white patch or plaque that cannot be characterized clinically or pathologically as any 

other disease. OSMF is a chronic progressive condition where fibroelastic changes of oral mucosa 

along with epithelial atrophy leads to stiffness of mucosa resulting in trismus and inability to eat. 

Despite the general accessibility of the oral cavity during physical examination, many malignancies 

are not diagnosed until late stages of disease. In order to explore potentials of Raman spectroscopy 

in classifying these two conditions 62 OSMF spectra from 14 subjects and 53 leukoplakia spectra 

from 12 subjects were analyzed against contralateral normal and tumor spectra. PC-LDA followed 

by LOOCV yielded efficiency of 49 and 57% for leukoplakia and OSMF, respectively. 

Misclassifications can be explained on the basis of varying grade of thickness of a patch and the 

fact that often oral cancer subjects are presented with multiple premalignant conditions.  
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Study on cancer field effects or malignancy associated changes  

Subtle changes in the oral mucosa because of tobacco abuse/unknown etiological factors may serve 

as prognostic markers. These changes also referred as Cancer field effects or Malignancy associated 

changes (CFE / MACs), are shown to be primarily associated with development of secondary 

tumors. In order to explore potential of Raman spectroscopy in detecting these changes, a separate 

study using 722 in vivo Raman spectra from 84 subjects was carried out under following five 

categories-  

 Cancer and Contralateral normal (cancer and tobacco habit) 

 Healthy controls (no tobacco habit, no cancer)  

 Habitués healthy controls (no cancer, tobacco habit)  

 Non-habitués contralateral normal (cancer, no tobacco habits) 

Mean and difference spectra suggested that loss of lipid, and features representing proteins and 

DNA are characteristics of all pathological conditions, with respect to healthy controls. PC-LDA 

results suggest that Raman characteristics of mucosa of healthy controls are exclusive, while that of 

habitués healthy controls are similar to the contralateral normal mucosa, suggesting carcinogen 

induced field changes can be identified. It was also found that cluster of non-habitués contralateral 

normal mucosa is different from habitués healthy controls, indicating malignancy associated 

changes are different from carcinogen induced changes and can be identified with Raman 

spectroscopy. The non-invasiveness and use of harmless excitation wavelength impart several 

advantages to this method, and thus prospectively has potential to become an ideal mass screening 

tool in public health programs. [Analyst 138, 2013] 
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Objective 3: Exploring Raman spectral features of oral cancer cells with definite 

characters related to oral cancer. 

Loss of keratin is shown to be a prospective diagnostic marker for oral cancers. The present 

objective was taken up to explore potential of Raman spectroscopy in identifying spectral markers 

related to loss of keratin in oral cancer-derived cell lines.  

Keratins belong to the intermediate filament (IF) family of proteins and are one of the most widely 

used markers for oral cancers. These are not expressed in normal oral tissues, but are expressed in 

oral cancers. Aberrant expression of keratins 8 and 18 is most common change in human oral 

cancer. Epithelial tissues express different pairs of keratins depending upon the epithelial cell type 

and stage of differentiation (e.g. all stratified squamous epithelia express K5 and K14, whereas K8 

and K18 are seen in simple epithelia) [53-55]. Recently, it has been shown that knockdown of K8 in 

the OSCC-derived cell line AW13516 leads to a substantial reduction in tumorigenicity, cell-

motility, and cell invasion, indicating role of keratin 8/18 in invasion and metastasis as well as in 

promoting malignant transformation [56,57]. We hypothesized that identification of spectral 

contribution from keratin (K8/18) protein in squamous cell carcinoma derived cells could serve as 

additional marker for oral cancer diagnosis.  

Cell line and spectral acquisition 

We have chosen tongue cancer derived AW13516 cell line [56]. Cells expressing keratin 8/18 are 

called as vector-controls and cells with reduced expression are called as knockdown for K8/18 [57]. 

Cells were grown up to 80% confluence and synchronized by growing under serum free conditions. 

Cells were collected using a cell scraper and pelleted after washing with PBS and centrifugation at 

2000 rpm for 10 minutes. Cell pellets of three independent experiments in duplicate were used for 
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recording Raman spectra. A total of 123 and 96 spectra from knockdown clones and vector control, 

respectively, were acquired using already described fiberoptic probe-coupled Raman system. 

Spectral acquisition parameters were laser power-80 mW, integration-8 seconds and 6-

accumulations.  

Multivariate analysis 

Spectral pre-processing was performed by as per the previously described procedure. Pre-processed 

spectra in 1200-1800 cm-1 region were utilized for PC-LDA and LOOCV yielded ~63% 

classification efficiency. In order to identify specific spectral contribution from keratin, spectra 

from purified keratin using same set-up was also acquired. However, no specific Raman bands 

associated with keratin presence or absence was observed. The differences between knockdown and 

vector control cells could be attributed to the morphological changes induced due to loss of keratin 

8/18. Morphological differences among both groups were established using confocal microscopy 

and live cell imaging [57]. It was observed that due to loss of K8, knockdown cells have symmetric 

contracted epithelial appearance as compared to vector controls. [Proc. SPIE 8225,2012] 

Raman micro-spectroscopic studies 

Morphological differences due to keratin loss between both groups were further established by 

Raman imaging. K8 knock-down and vector control cells were grown on a cover slip and mounted 

in water on a glass slide and placed under the microscope. Spectra were acquired using WITec 

Raman alpha300 R (WITec GmbH) imaging system. Briefly, this system consists of a 532nm laser 

as excitation source and spectrograph with 600 gr/mm grating. The laser light is focused on the 

sample using an oil immersion Zeiss 63X objective (NA-0.55) and Raman scattering was detected 

by CCD coupled with the spectrograph. 
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Raman maps for knock-down and vector control cells were generated using K-means clustering 

method. Different clusters corresponding to cell membrane and nucleus were obtained. Features 

from vector control cells suggest protruding prominent actin based microfilaments and elongated 

shape, while knockdown cells show loss of filaments and round epithelial shape. Mean spectra from 

different clusters corresponding to cell membrane, microfilaments, sub cellular components, and 

nucleus were extracted and compared with spectra recorded from purified K8/18 protein. Findings 

suggest that spectra from different cellular compartments (nucleus, cell membrane and cytoplasm) 

can be obtained. Raman signals due to loss of keratin could not be observed; however, 

morphological differences between both groups were established by Raman mapping. 

Summary and conclusions 

Work reported in this thesis supports application of Raman spectroscopy in oral cancer diagnosis. 

Reproducibility of strong lipid features of normal, and protein rich spectral features of tumor tissues 

was established and correlated with band intensity calculations and biochemical estimation. Origin 

of these signals in normal tissues was understood and contribution of deeper layers on spectral 

profile was demonstrated. Potential of Raman spectroscopy in identifying subtle changes induced 

by loss of keratin was explored in tongue cancer cell line and established through Raman mapping. 

To the best of our knowledge, for the first time, we have demonstrated the feasibility of acquiring 

good quality in vivo Raman spectra under clinically implementable time, and classifying normal, 

cancer, and precancerous conditions, in Indian population. Potential of Raman spectroscopy in 

identifying earliest pre-neoplastic changes associated with carcinogen exposure or unknown 

etiological factors in uninvolved normal mucosa were also evaluated. Future studies involving pure 
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premalignant subjects and rigorous evaluation of the standard models may help in realizing 

translation of these technologies for routine clinical usage. 
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1.I  Oral Cancers: An overview 

Cancer is a group of disease characterized by uncontrolled growth, and caused by external (tobacco, 

chemicals, radiation, and infectious organisms) as well as internal factors (inherited mutations, 

hormones, immune conditions etc.) [1,2]. It is one of the most common causes of morbidity and 

mortality today, with more than 10 million new cases and more than 6 million deaths each year 

worldwide. More than 20 million people around the world live with a diagnosis of cancer, and more 

than half of all cancer cases occur in the developing countries. Cancer is responsible for about 20 

and 10 % of all deaths in high and low income countries, respectively. It is projected that by 2020 

there will be 15 million new cancer cases and 10 million cancer deaths each year [3]. As per the 

population based registries in India, the age adjusted incidence rates vary from 44 to 122 per 

100,000 males and 52 to 128 per 100,000 females. The Mumbai cancer registry has reported the 

age-adjusted mortality rate (AAMR) of 62 per 100,000 males and 58 per 100,000 females [4]. 

1.I.1 Epidemiology of oral cancers: Oral cancer is a major cause of cancer morbidity and 

mortality among Indian males. Squamous cell carcinoma of the oral cavity ranks as the 15th most 

common cancer in the world and 10th most frequent in males [1].The Indian subcontinent accounts 

for one-third of the world burden. Compared to U.S. population, where oral cavity cancer represents 

only about 3% of all malignancies, it accounts for over 30% of all cancers in India. The age-

adjusted rates of oral cancer varies from over 20 in India and 10 in United States to less than 2 per 

100,000 in the Middle East [1,5]. India tops in the prevalence of oral cancer in the world and 

remains the most common cancer among males and the third most common cancer after cervical 

and breast cancer amongst females [5,6].  
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1.I.2 Etiology of oral cancers: The major risk factors for oral cancer include tobacco, alcohol 

consumption and viral infections. The association of tobacco chewing and smoking as well as 

alcohol consumption has been very well established. A strong association of cigarette smoking and 

alcohol consumption and oral cancer has been reported in the western countries, whereas smoking 

and chewing tobacco has been associated with oral cancers in South Asia, including India. It is 

estimated that in India, about 65% of men and 33% of women use some form of tobacco [7].  

1.I.2.a Smokeless Tobacco: Smokeless tobacco is consumed in two forms: chewing 

tobacco which is available in the form of loose-leaf-cut or shredded and snuff which is either moist 

or dry. Moist snuff is used for applying, dipping or sucking and may be available as commercial 

packed products. Smokeless tobacco products are used either alone (chewed or snuff) or in various 

combinations with areca nut, betel leaves or lime. High incidence of oral cancer in the Indian sub-

continent has been attributed to heavy tobacco-chewing habits. In India, tobacco is mostly 

consumed with areca nut, lime or in betel quid; practice of using tobacco as dentifrice is also 

prevalent. The estimated risk for developing oral cancer in tobacco chewers is about two to four 

times higher as compared to non-chewers [8,9]. The lesions reported due to frequent use of various 

forms of smokeless tobacco are: leukoplakia, erythroplakia, snuff dippers lesion, tobacco and lime 

dippers lesions, verrucose hyperplasia and submucosal deposits. These lesions are considered to be 

precursors of oral squamous cell carcinoma and are generally seen to develop at the site of product 

application. About 80% cases of oral cancers reported from the Indian subcontinent involve buccal 

mucosa, particularly the lower buccal sulcus or posterior buccal mucosa where tobacco containing 

quid is placed [10]. It is estimated that about 50% of the oral cancer cases in South East Asia are 

attributed to the use of smokeless tobacco resulting in 50,000 new cases from this region; out of 
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which 36,000 are from India alone. The use of smokeless tobacco in the form of ‘nass’ (powdered 

tobacco with lime and oil) is also prevalent in Iran and former Soviet Central Asian Republics [11].   

1.I.2.b Smoking: Smoking is practiced by the use of cigarettes or bidis. The principle 

impact of tobacco smoking is seen in higher incidence of cancers of the lungs, larynx, oesophagus, 

pancreas and bladder. Bidi smoking is associated with cancer of oropharynx as well as larynx. Parts 

of the Indian subcontinent and Latin America have incidence of palate cancer because of reverse 

smoking. It was estimated that habit of smoking is prevalent in 25% of the Indian population out of 

which about 47-51% of males and 52-95% of females were bidi smokers [12,13]. In ten case control 

studies done by Rahman et al. in 2005, it was estimated that about 24.1 to 31.4 % of oral cancers 

can be attributed to the bidi smoking habit [14]. Tobacco-related cancers account for nearly 50% of 

all cancers among men and 25% of all cancers among women. There are predictions that there will 

be 7-fold increase in tobacco-related cancer morbidity by 2025. Further there may be an overall 

increase by 20% of cancer deaths simply related to tobacco use by the year 2020 [4].  

1.I.2.c Alcohol: There is a strong association between high alcohol consumption and oral 

cancer. Epidemiological studies carried out in India and abroad have shown that increased alcohol 

consumption is causally associated with cancers at various sites, mainly oral cavity, pharynx, 

larynx, and oesophagus [4]. Many prospective and case–control studies show a 2–3-fold increased 

risk for cancer of the oral cavity, pharynx, larynx and oesophagus in people who consume 50 g of 

alcohol a day (equal to approximately half a bottle of wine), compared to non-drinkers [15]. These 

effects were dose-dependent and smoking might have a synergistic effect. A carefully designed 

French study demonstrated that alcohol consumption of more than 80 g a day (approximately 0.7 

liter of wine) is associated with a relative risk (RR) of 18 for development of oesophageal 

carcinoma, which translates into an 18-fold higher cancer risk in those exposed to this amount of 
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alcohol when compared to non-drinkers, whereas smoking more than 20 cigarettes a day resulted in 

an increased RR of only five. However, both factors act synergistically, resulting in an increased 

RR of 44 [15]. 

1.I.2.d Viral infection: Oral squamous cell carcinoma has been associated with Epstein 

Bar Virus (EBV) and Human Papilloma Viruses (HPV) although their putative role is controversial. 

EBV has been detected in oral hairy leukoplakia (OHL) in HIV infected immunocompromised as 

well as non immunocompromised patients [16,17]. However, OHL is benign in nature and has been 

rarely observed to progress to malignancy. A study using PCR-Southern analysis by D’Costa et al. 

has shown that 25% of oral squamous cell carcinoma biopsies were positive for EBV as compared 

to the normal mucosa [18]. Several studies done on various ethnic groups have also shown the 

presence of EBV in oral cancer lesions and tumour biopsy samples albeit with varying proportions, 

which might be a reflection of variations associated with differences in clinico-pathology of tumors 

of patients with differing lifestyles [19,20]. High risk HPV-16 has been seen to be predominantly 

present in OSCC, however etiological role of other viruses like HPV cannot be ruled out. The 

differences in the detection rate of HPVs in oral cancers are due to high amount of heterogeneity 

among different studies, attributed to variations in prevalence and multiple detection techniques 

used. The precise role of HPV in oral carcinogenesis is not very well known but oncogenic early 

proteins E5, E6 and E7 of high risk HPV are reported to promote mitotic defects, aneuploidy and 

chromosomal instability by their propensity to integrate in the host DNA at fragile sites [21,22]. 
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1.I.3 Premalignant lesions of the oral cavity:  Oral carcinoma is a multi-step disease and 

it is accepted that most of the oral tumors are often preceded by visible changes in the oral mucosa 

accompanied with certain high risk lesions termed as ‘precancerous lesions’. A precancerous lesion 

is defined as any morphological alteration in a tissue which makes it more susceptible to malignant 

transformation as compared to its adjacent apparently normal tissue [23]. The predominant types of 

oral pre-cancers include: leukoplakia, erythroplakia, submucous fibrosis and lichen planus, Figure 

1.1.  

 

 

 

 

 

 

1.I.3.1 Leukoplakia:  Leukoplakia, first termed by Schwimmer in 1877 is defined as any 

white oral lesion that cannot be characterized clinically or pathologically [24]. Some leukoplakias 

develop from papillary surface and are called verrucous or verruciform leukoplakia, while others 

develop from surface irregularities and are called granular or nodular leukoplakia. Typical 

transformation rate of leukoplakia ranges from 0.16 % to 6% which rises to 14% when dysplasia is 

present [25]. It is estimated that patients with leukoplakia carry five-fold higher risk as compared to 

controls; it is therefore advisable to rule out any suspicion by a conventional biopsy. The clinico-

pathological behavior of leukoplakia varies across geographic and ethnic populations due to 

differences in the dietary intake and tobacco habits. In Western population, leukoplakia occurs 

Figure 1.1: Different premalignant lesions of the oral cavity 
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predominantly on the tongue whereas in India buccal mucosa is the more common site in tobacco 

chewers (26). More often the leukoplakia lesion is seen to develop at the site of placement of 

smokeless tobacco product and the severity of lesion is also seen to correlate with duration and 

amount of tobacco used [10]. Clinically, leukoplakias are treated with anti-inflammatory and 

antimycotic agents along with complete withdrawal of etiological agents for a few weeks. If the 

disease does not subside, then surgical excision, preferably with laser surgery is performed to 

remove the persistent leukoplakia. 

1.I.3.2 Erythroplakia: Erythroplakia is an oral precancerous stage which is defined as a 

red fiery patch that cannot be characterized either clinically or pathologically [27]. This definition 

however excludes inflammation induced red patches in the oral cavity. The sites affected by 

erythroplakia are majorly soft palate, floor of the mouth and buccal mucosa. The potential of 

malignant transformation of erythroplakia is very high varying from 14 to 50%, which is higher 

than other precancerous lesions [28].  Some erythroplakias are smooth whereas others are nodular 

or glanular in nature. Some lesions comprise of interspersed red and white patches which are called 

as erythroleukoplakia. It is estimated to be prevalent in about 0.02 to 0.83% populations of South 

and South East Asia. Tobacco and alcohol are considered to be the major risk factors associated 

with the development of erythroplakia. However, the possible role of Candida albicans and HPV as 

an etiologic cofactor in erythroplakia is currently being investigated. Surgical removal of the lesion 

either with cold knife or laser is the usual recommended treatment modality.   

1.I.3.3 Submucous fibrosis: Oral Submucous Fibrosis (SMF) is a precancerous condition 

characterized by burning sensation, blanching and stiffening of oral mucosa, rigidity of lip, palate 

and tongue leading to difficulty in mastication and phonation [29]. This condition is prevalent 

mostly in the South and South East Asian countries and among the Asian immigrants to UK and 
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Africa. The etiological agents associated with the incidence of SMF are chewing areca nut and betel 

quid, and micronutrient deficiency of iron, zinc and essential vitamins. The rate of malignant 

transformation of submucous fibrosis was found to be 7.6% in a long term study carried out for 17 

years [30].  

1.I.3.4 Oral Lichen Planus: It presents as small white raised lesion or plaques that might 

resemble leukoplakia. The common sites affected by the lesions are buccal mucosa, dorsal tongue, 

gingival, labial mucosa and vermillion of the lip. Studies have shown that the risk of lichen planus 

to undergo malignant transformation varies from 0.4 to 5% over a period of observation from 0.5 to 

20 years. It is caused when autotoxic T cells induce apoptosis of epithelial cells leading to chronic 

inflammation. The treatment mainly comprises of anti-inflammatory agents, usually topical 

corticosteroids [31]. 

1.II Current Screening/Diagnosis methods  

Screening for a disease can be defined as: ‘the application of a test or tests to people who are 

apparently free from the disease in question in order to sort out those who probably have the disease 

from those who probably do not’[32]. Well-known examples of screening methods are Pap test for 

cervical cancer and mammography for breast cancers. In contrast to screening, diagnostic test is 

applied to a patient who has abnormal signs or symptoms in order to establish the presence of a 

disease and subject the patient to treatment. Among the screening tests or diagnostic aids presently 

available for oral cancer, some have been used and studied for many years while others have 

recently become commercially available. These mainly include Conventional Oral Examination 

(COE), oral cytology, staining with toluidine blue or tolonium chloride and light based detection 

system. 
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1.II.1 Conventional Oral Examination (COE): A conventional oral examination 

(COE), using normal (incandescent) light, has long been the standard method for oral cancer 

screening. A numbers of reports have suggested that COE may have limited value as a method for 

detecting pre-cancerous or early cancerous lesions. Conversely, other studies have reported a 

relatively high degree of sensitivity, specificity and positive predictive value of COE. Study carried 

out by Sankaranarayanan et al. over nine years involving over 130,000 individuals for the first time 

reported significant increase in survival rates among males with high-risk habits, such as tobacco 

use [33]. Although no increase in survival was observed for the overall population, this was the first 

clear evidence to support the efficacy of an oral cancer screening program, as measured by reduced 

mortality. It prompted others to call for the broader use of oral screening measures throughout the 

world [34]. Although COE may be effective as a screening test, there are still many problems with 

this approach. First, approximately 5-15% of the general population has oral mucosal abnormalities 

and vast majority of these lesions are benign in nature [35-37]. Second, only a small percentage of 

leukoplakias are progressive or become malignant and COE cannot discriminate between these 

lesions and their non-progressive counterparts. Furthermore, while COE may detect a number of 

clinical lesions and a small percentage of those may exhibit histological features of premalignancy, 

some precancerous lesions may be lurking within mucosa that appears clinically normal, cannot be 

detected by COE alone. Recent report from Thomson et al. has shown that 9/26 consecutive 

patients (36%) with a newly diagnosed HNSCC had histologic evidence of dysplasia or 

microinvasive cancer in a biopsy from clinically normal mucosa from the corresponding, 

contralateral anatomic site [38]. Therefore, while COE may be useful in discoverring some oral 

lesions, it does not identify all potentially premalignant lesions, nor does it accurately detect the 

small proportion of biologically relevant lesions that are likely to progress to cancer.  
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1.II.2 Oral cytology: Oral exfoliative cytology is another commonly used adjunct to oral 

visual inspection. The mechanism of cytology, regardless of its application to cervical, bladder or 

oral mucosal lining, is based upon the fact that dysplastic and cancerous cells tend to have fewer 

and weaker connections to each other and to their neighboring normal cells in the surrounding 

tissue. Dysplastic and cancerous cells therefore, tend to "slough off" or exfoliate preferentially and 

can easily be collected from the surface of the lesion. These abnormalities can be identified under a 

microscope by a trained pathologist. However, high number of false negative results ranging from 

30% for cancerous to 60% for dysplastic lesions has limited applicability of this approach for 

routine usage. The poor results of manual cytology are primarily attributed to the fact that cytology 

instruments do not sample the deepest layers of the oral lesion. This is essential, since unlike 

cervical cancer, the deepest layer of the lesion, the basal cell layer, is often the only layer that 

contains abnormal cells. Furthermore, since the sensitivity of cytology is often dependent on a 

tedious and manual visual search for a potentially rare abnormality on the microscope slide, the 

precancerous or cancerous cells collected on the slide may not be detected by the laboratory 

pathologist.  

To overcome the above mentioned limitations of traditional oral cytology, oral brush biopsy 

was introduced in the year 1999. This method utilizes an improved brush to obtain a complete trans-

epithelial biopsy specimen with cellular representation from each of the three layers (basal, 

intermediate and superficial) of the lesion. The oral brush biopsy does not require topical or local 

anesthetic and causes minimal bleeding (pin-point bleeding) and pain. Examples of well-known 

applications of brush biopsies include fiberoptic bronchoscopy (bronchial), ureteral retrograde 

brush biopsy (renal or ureter tissue), cholangiography (bile duct structure), pancreatic ductal brush 

biopsies and others, including endometrial, nasopharynx, and GI tract applications (rectal, gastric, 
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esophageal, colon). Use of brush biopsy technology for oral cancer diagnosis was introduced in 

2000 under the commercial name OralCDx (CDx Laboratories, Suffren, NY). The improved 

accuracy of the OralCDx brush biopsy is also due to advanced, highly specialized, computer-

assisted neural network-based analysis. Any abnormality in cell morphology, altered cell size, 

degree of keratinization, nuclear staining intensity, and size are characterized and analyzed by the 

software. After verification from a pathologist, specimens are classified as negative (no epithelial 

abnormality), atypical (abnormal epithelial cells, but of uncertain diagnostic significance), and 

positive. A standard incisional/excisional scalpel biopsy is performed on cases with atypical or 

positive cells. The oral brush biopsy has been criticized for adding time and cost to the diagnosis of 

oral lesions without additional benefit to the patient [39-41].  Because the brush biopsy detects only 

cellular atypia, positive oral brush biopsy results must be confirmed with a scalpel biopsy for 

definitive diagnosis.  This results in requirement for two procedures, rather than one to establish a 

diagnosis.  The need to perform two procedures may significantly delay diagnosis. Overall, it is a 

method of identifying unsuspected oral cancers found during a visual examination, at early and 

curable stages.  

1.II.3 Toluidine blue staining: Toluidine blue (TB) also called Tolonium chloride has 

been used for more than 40 years as an aid in detection of mucosal abnormalities of the cervix and 

the oral cavity. TB is a metachromatic, acidophilic dye that binds preferentially to tissues 

undergoing rapid cell division (inflammatory, regenerative and neoplastic tissue) or to sites of DNA 

change. The binding results in the staining of abnormal tissue in contrast to unstained adjacent 

normal mucosa. Over the years, mixed results have been a persistent feature of studies with TB and 

thus several authors have expressed reservations with the technique. A recent report has shown that 

TB staining might be useful in indentifying clinically evident lesions having potential for 
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transformation [42]. Results suggest that TB can preferentially stain lesions with higher degrees of 

dysplasia exhibiting high-risk clinical features. Most importantly it can predict risk and outcome of 

visible oral lesions with little to no microscopic evidence of dysplasia. However, these studies have 

not been extended to determine whether TB screening can help identify and predict the risk of 

progression of lesions that cannot be visualized with COE. Overall, TB appears to be useful in 

detecting carcinomas but is positive in only ~50% of lesions with dysplasia. In addition, it 

frequently stains common, benign conditions such as non-specific ulcers. The high rate of false 

positive stains and the low specificity in staining dysplasia are some of the well known limitations 

of the technique. Additional point of debate is about the intensity of staining and whether or not 

pale blue staining should be regarded as positive result. A recent study suggests that only dark royal 

blue staining should be regarded as positive [43-47]. All carcinomas stained dark royal blue and 

histology showed nuclear staining. Benign lesions had no nuclear staining and were more often pale 

blue in color. These limitations do not however preclude its usefulness as an adjunct to clinical 

examination and case-finding, even in primary care. In the experienced hands, TB staining may be 

useful in the evaluation of oral lesions and as an adjunct in the surveillance of high-risk individuals, 

such as patients at risk for a second primary lesion.  

1.II.4 Comment on the limitations of the current diagnostic methods: Histological 

risk stratification, currently the gold standard of oral cancer diagnosis requires biopsy and 

microscopic examination by a pathologist. However, following are the major limitations of the 

method:  

 Removal of tissue or biopsy is an inherently invasive procedure and carries certain risk of 

complications in some cases when involvement of vital anatomy is encountered. It also 
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limits the amount of tissue available for study. Furthermore, once removed, the tissue can 

undergo biochemical changes which can lead to artifacts.  

 Sampling errors in collecting or interpreting biopsy can be significant. In many diseases, 

tissue involvement is not uniform and diseased tissue is 'invisible' to the physician taking the 

biopsies. In such cases only a tiny fraction of the suspected area is sampled, and the tissue 

obtained may not be a true representative of the diseased area. Additionally, histological 

findings are inherently prone to interpretation bias as expert pathologists evaluating the 

same tissue sample do not always come to the same conclusion  

 Some of the early oral cancers are clinically indistinguishable from benign lesions. It is 

difficult to recognize subtle clinical changes in precancerous lesions or in a normal mucosa 

that are indicative of early neoplastic transformation. Additionally, difficulty in 

discriminating premalignant lesions from more common benign inflammatory conditions 

further limits its applicability.  

Overall, there is no satisfactory mechanism to adequately screen and detect oral premalignant 

changes and early malignancies; clinical risk stratification lacks accuracy, reproducibility and 

requires large experience on part of the clinician. Surveillance and biopsy of pre-cancers is a 

mammoth task especially in populous countries like India. For example incidence of leukoplakia 

itself is up to 1% of general population. As mentioned earlier, oral cancers in the Indian 

subcontinent are majorly associated with tobacco chewing and smoking habits. It is therefore 

conceivable that the primary prevention of the disease would involve activities to avoid the use of 

tobacco and alcohol. Secondary prevention includes activities that are aimed to detect the disease in 

an early stage which would lead to better prognosis and lesser morbidity. In view of all 

aforementioned limitations of the conventional diagnostic methods, need of an alternate method of 
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diagnosis is warranted. Optical spectroscopic methods, due to their ability in providing real-time, 

objective, non-intrusive and online information are being projected as alternative or adjunct method 

of cancer diagnosis.  

1.III Optical spectroscopy in oral cancer diagnosis 

Spectroscopy is the study of interaction of electromagnetic radiation with matter. There are three 

aspects to a spectroscopic measurement: absorption, spontaneous emission and scattering. 

Diagnostic techniques based on spectroscopy have the ability to link the biochemical and 

morphological properties of tissues to individual patient care. If applied successfully, optical 

spectroscopy can represent an important step forward towards improving diagnostic and therapeutic 

medical applications. Studies have demonstrated that optical spectroscopy methods have the 

potential to fulfill the need for improved screening and diagnosis of cancers. Optical measurements 

provide quantitative information that can be analyzed instantaneously for an objective diagnosis 

even in the hands of a non-expert operator. Devices to make these measurements have become 

inexpensive, robust, and portable because of advances in computing, fiber optics, and 

semiconductor technology. Approaches based on reflectance, fluorescence and Fourier-transform 

infrared spectroscopy have shown potential for improved detection of oral cancers. In the following 

sections a brief introduction on these techniques and their potential applications in oral cancer 

diagnosis is presented.  

1.III.1 Tissue Reflectance: Reflectance spectroscopy is a spectroscopic technique which 

measures the difference in reflectance of two beams of light incident on a surface with 

different linear polarizations. The term ‘Reflectance’ generally refers to the fraction of incident 

electromagnetic power reflected at the interface. Diagnosis based on tissue reflectance had been 

used for long time to examine cervix abnormalities. Recently, this technology has been adapted for 
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use in the oral cavity and is being currently marketed under commercial names ViziLite Plus and 

MicroLux DL [48-50]. These products are intended to enhance the identification of oral mucosal 

abnormalities. With both systems, the patient must first rinse with 1% acetic acid solution prior to 

visual examination using a blue-white light source. ViziLite Plus uses a disposable light packet, 

while the MicroLux unit offers a reusable, battery-powered light source. The 1% acetic acid wash 

helps remove surface debris and causes mild dehydration which in turn may increase the visibility 

of epithelial cell nuclei. Under blue-white illumination, normal epithelium appears bluish while 

abnormal epithelium appears distinctly white (aceto-white). ViziLite Plus also provides a tolonium 

chloride solution which is intended to aid in marking of any acetowhite lesion for subsequent 

biopsy, once the light source is removed. Evidences in support of reflective tissue systems as 

adjunct in detecting premalignant lesions are quite sparse and contradictory. Recently a multi-centre 

study by Epstein et al. involving 134 patients has shown that ViziLite examination did not 

significantly improve lesion detection when compared to COE [51]. Another clinical survey by 

Huber et al. on 150 subjects demonstrated that diagnosis based on ViziLite has better prognosis 

than COE [52]. Although one lesion was detected with ViziLite (that was not observed using 

incandescent light alone,) the false positive finding of the benign suggests that while the sensitivity 

of the technique may be relatively high, its specificity and PPV are probably low. In summary, 

published studies to date suffer from numerous experimental design issues, especially the critical 

comparison to the diagnostic gold standard (scalpel biopsy) in all cases. Furthermore, based upon 

the current suggested usage of these devices, it is unclear what added benefit would they provide to 

a practicing clinician. If a clinician is able to clinically identify a lesion, they are obligated to obtain 

a definitive diagnosis in order to direct the treatment of the patient’s lesion [53,54]. Thus, subjective 

improvement of one’s ability to see a lesion would provide minimal diagnostic advantage to the 
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practicing dentist or the patient, unless the test can also discriminate indolent lesions from those that 

are more biologically worrisome. On the other hand, some reports hint that this technique may help 

identify lesions that cannot be seen with incandescent light. Well-controlled clinical trials are 

needed that specifically investigate the ability of these devices to detect precancerous lesions that 

are not identified by COE alone. If such discrimination can be confirmed, it would support the use 

of this technology as a true screening device.  

1.III.2 Fluorescence spectroscopy: Optical spectroscopic methods probes the energy 

levels of a molecule. The energy level of a molecule is defined as its characteristic state, which is 

related to the molecular structure of a molecule and to the energetics and dynamics of any chemical 

processes that the molecule may undergo. The ground state of a molecule is defined as the state of 

lowest energy while the states of higher energy are called excited states (Figure 1.2). When a 

molecule is illuminated at an excitation wavelength lying within the absorption spectrum of that 

molecule, it absorbs the energy and gets activated from its ground state (S0) to an excited singlet 

state (S1), with an electron in the same spin as its ground state. The molecule can then relax back 

from the excited state to the ground state by generating energy either non-radiatively or radiatively, 

depending upon the local environment. In a non-radiative transition, relaxation occurs by thermal 

generation (dashed arrows). In a radiative transition, relaxation occurs via fluorescence at specific 

emission wavelengths (solid arrow). Fluorescence generation occurs in three steps: thermal 

equilibrium is achieved rapidly as the electron makes a non-radiative transition to the lowest 

vibrational level of the first excited state; the electron then makes a radiative transition to a 

vibrational level of the ground state; and finally, a non-radiative transition to the lowest vibrational 

level of the ground state [55]. A fluorescence emission spectrum represents the fluorescence 
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intensity measured over a range of emission wavelengths at a fixed excitation wavelength and can 

provide biochemical information.  

 

 

 

 

 

Application of these methods to oral cancer diagnosis started with the use of exogenous light-

sensitive drugs (‘photo sensitizer’). In this method, first the photo sensitizers are introduced in 

tumors, either through systemic or topical application or by administration of a precursor, such as 

protoporphyrin IX (PpIX). The photo sensitizer produces singlet oxygen upon excitation with light 

of a certain wavelength, which damages vital cell organelles, inducing death of cells in the direct 

environment. Since some of the sensitizers were believed to accumulate in malignant tissues, they 

could possibly serve as markers as well. Some promising results have been obtained in oral cancer 

diagnosis using these methods [56-58]. However, certain limitations in term of specificity of the 

photo sensitizers, time lag between and after application have rendered applicability of this 

approach for use in regular screenings of high-risk patient groups. Furthermore, the application of 

photo sensitizers leaves the patients with a temporary sensitivity to light, which may negatively 

affects his daily life.  

In the late 1970s, oral cancer diagnosis based on auto-fluorescence (also called natural or 

endogenous fluorescence) was started. Naturally occurring fluorophores such as collagen, elastin, 

keratin and NADH after excitation with a suitable wavelength produces auto-fluorescence. The 

Figure 1.2: Energy level diagram illustrating the phenomena of absorption and fluorescence 
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fluorophores can be located in the tissue matrix or in cells. Presence of diseases can lead to changes 

in blood concentration, nuclear size distribution, collagen content or epithelial thickness, which in 

turn can alter the concentration, scattering and absorption efficiencies of the natural fluorophores. 

For example, the epithelial layer shields the strongly fluoresceing collagen layer and therefore the 

recorded fluorescence signal will be lower in case of hyperplasia. Conversely, excessive keratin 

production by lesions may result in an increase in auto-fluorescence intensity. Cell metabolism may 

increase with malignant changes, which changes the balance between the fluorescent NADH 

(increase) and non-fluorescent NAD+ (decrease) [59]. In case of oral cavity, the first report came 

from Harris and Werkhaven et al., when they reported difference in auto-fluorescence based on 

porphyrin band between healthy and tumor mucosa [60]. These findings were established later and 

it was proposed that fluorescence was probably produced by microorganisms living on ulcerating or 

necrotic surfaces [61,62]. In a study with 130 patients, autofluorescence patterns were acquired with 

a similar set-up and 91.1% sensitivity and 84.3% specificity in distinguishing malignant from 

benign lesions was reported [63]. Autofluorescence spectroscopy is the other facet of the same 

technique where, light source, usually in the near-UV to visible wavelength range is used to excite 

the tissue through a fiber and the fluorescence produced is recorded by a spectrograph, while the 

reflected light is filtered out. The recorded spectra can be analyzed by multivariate techniques like 

Principal Components Analysis (PCA), wavelength ratios and artificial neural networks. Studies 

have been carried out to distinguish oral lesions (cancerous, dysplastic or benign) from healthy oral 

mucosa [64,65]. Chen et al. using 300 nm for excitation have reported positive predictive values 

(PPV) of 94% and 93%, for abnormal and normal tissues, respectively [66,67]. Gillenwater et al. 

have recorded in vivo autofluorescence spectra from oral mucosa of 8 healthy volunteers and 15 

patients with premalignant or malignant lesions using 337, 365 and 410 nm excitations. Decreased 
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intensity in the blue spectral regions, and increased fluorescence around 635 nm (porphyrin) was 

observed. Based on the ratio between these values, sensitivity of 82% and a specificity of 100% 

were reported [68]. A very recent study by Shaizu et al. involving habitual tobacco users and 

premalignant lesions have shown that autofluorescence spectroscopy in combination with linear 

discriminant analysis can be used for  identifying oral cavity disorders caused by long-term tobacco 

habits. Their findings suggest that lower collagen level and increased level of redox value can be 

considered as prognostic marker for oral cancer risk [69]. Large scale validations of these findings 

are required before translation for routine usage.  

1.III.3 Fourier-transform infrared spectroscopy: Fourier-transform infrared 

spectroscopy (FTIR) is an absorption based optical spectroscopy technique and is being projected as 

a powerful tool to study the structure and functions of cellular components in tissues. In 1990, Rigas 

et al., had shown spectral differences between normal and malignant tissues with FTIR and 

suggested its potential application to a variety of biological and medical problems [70]. In 1995, 

Jackson et al., presenting infrared spectra of human central nervous tissue and human breast 

carcinoma, discussed implications of the presence of collagen in tissues for diagnosis of the disease 

state, with particular reference to cancer [71]. In a recent review, Bellisola et al. (2012) have 

summarized its biomedical applications with a focus on cancer diagnosis [72]. Both fiber-optic and 

FTIR micro-spectroscopic studies in oral cancers are reported. Wu et al. have shown that on the 

basis of lipid and protein content, normal and tumor oral tissues can be discriminated. The spectra 

of normal tissues were rich in C=O and C-H bands while those of tumor tissues were rich in N-H 

and O-H stretching bands with low C=O band. Authors also suggested that the most common 

difference between normal and tumor sections was C=O band at 1745 cm-1. They validated the 

results by comparing spectral findings with stained histological sections [73]. In another study 
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Fukuyama et al. have shown on 10 normal sub-gingival tissues (NST) and 15 oral squamous cell 

carcinoma (OSCC) tissues that normal spectra is strongly influenced by the presence of collagen. 

Normal and tumor spectra show maximum differences in bands at 1431 1482 cm-1, 1183 and 1274 

cm-1. They also suggested that spectral influence by keratin, which exists in the ectodermal cells 

may be present, indicated by disappearance of 1368 cm-1 band in OSCC [74]. Study by Schultz et 

al. to assess changes in biochemistry of well and poorly differentiated oral/oropharyngeal squamous 

cell carcinoma (SCC) by infrared microspectroscopy has demonstrated that DNA and keratin can 

provide distinct differences between normal and SCC biopsies. Bivariate histogram analysis of cell 

components (e.g. DNA and keratin) indicated that cancer cells produce relatively homogeneous and 

clearly abnormal cell biochemistry, whereas differentiated epithelial cells present a very 

heterogeneous distribution of cellular components. Using these features, tissues containing 

abnormal or cancer cells can easily be distinguished from normal epithelial structures. The 

abnormal distribution of keratin in poorly differentiated SCC and in keratin pearls (present only in 

well-differentiated SCC) can also help in understanding the process of malignant tissue 

transformation [75]. Although there are reports regarding use of FTIR for the analysis of human 

tissues and cells, the application to the field of clinical medicine is still poor. This could be due the 

fact that these methodologies are less suitable for in vivo and in situ studies as water, the major 

component of biological tissues, is highly absorptive in the mid-IR range. This problem can be 

minimized to some extent, by subjecting samples to mild vacuum conditions for dehydration before 

spectral acquisition. Limitations in terms of sample thickness is another hindrance which can affect 

applicability of IR-spectroscopy. Attenuated total reflectance (ATR) based methodologies could be 

useful in circumventing this difficulty. In this approach, the spectra are recorded in reflectance 

mode and with minimum or no sample preparation. Further, with the advent of flexible and 



Chapter 1 

51 

 

inexpensive infrared fibers, few studies have demonstrated the efficacy of fiberoptic evanescent 

wave spectroscopy based infrared spectroscopy (FTIR-FEWS) in diagnosis of skin cancers and 

melanomas [76]. These systems are based on ATR elements, where samples are placed in contact 

IR transmitting prisms or flat waveguides that serve as ATR elements. The evanescent waves that 

escape from ATR elements are absorbed in samples of wavelength that is specific to the sample. 

Therefore by measuring the transmission of an ATR element in contact with a sample, IR 

absorptions can be recorded. The advantage of this method is that sample thickness has no influence 

over spectral measurements and can be used for in vivo or in situ measurements.  

1.IV Raman Spectroscopy: An overview 

 
Raman Effect, named after its discoverer, the Indian physicist Sir C. V. Raman, who first observed 

it in 1928, is based on inelastic scattering of light. Raman won the Nobel Prize in Physics in 1930 

for this discovery, accomplished using filtered sunlight as a monochromatic source of photons, a 

colored filter as a monochromator, and the human eye as detector [77,78]. The Raman effect arises 

when a photon, incident on a molecule, interacts with the electric dipole of the molecule. In 

classical terms, this interaction can be viewed as a perturbation of the molecule’s electric field. 

Most of the photons are elastically scattered i.e. with same energy as the incident photons, the 

phenomenon called ‘Rayleigh scattering’. However, a small fraction of photons (approximately 1 in 

107) are scattered at optical frequencies different from, and usually lower than, the frequency of the 

incident photons. The process leading to this inelastic scatter is termed as Raman Effect. The virtual 

state description of scattering is shown in Figure 1.4. Numerically, energy difference between the 

initial and final vibrational levels, v , or Raman shift in wavenumber (cm-1) can be calculated using 

the following equation.   
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Where, incident and scattered are the wavelengths (in cm) of the incident and Raman scattered 

photons, respectively. In a typical vibrational Raman spectroscopy, the differences in energy 

between the incident photon and the Raman scattered photon is equal to the energy of a vibration of 

the scattering molecule. A plot of intensity of scattered light against energy difference is called as 

Raman spectrum. The vibrational energy is ultimately dissipated as heat. Because of the low 

intensity of Raman scattering, the heat dissipation does not lead to a measurable temperature rise in 

the system. At room temperature, as per the Boltzmann distribution law, the thermal population of 

excited vibrational states is low, although not zero. Therefore, the initial state is the ground state, 

and the scattered photon will have lower energy (longer wavelength) than the exciting photon. This 

is called Stokes scattering and is often measured in Raman spectroscopy, Figure 1.3. However, 

small fractions of the molecules remain in vibrationally excited states. Raman scattering from these 

molecules leaves them in the ground state and scattered photons appear at higher energy (shorter 

wavelength), Figure 1.3. This is called anti-Stokes-shifted Raman spectrum and it is weaker than 

the Stokes-shifted spectrum. The ratio of anti-Stokes to Stokes intensity at any vibrational 

frequency is a measure of temperature. The anti-Stokes spectrum is used when the Stokes spectrum 

is not directly observable, for example because of poor detector response or spectrograph 

efficiency.  
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Although Raman spectroscopy and conventional Infra Red (IR) spectroscopy measure the 

vibrational energies of molecules, these methods involve different photo-physical processes. For a 

vibrational mode to be IR active, dipole moment of the molecule must change. Therefore symmetric 

stretching is normally inactive in IR spectroscopy. In Raman Spectroscopy, a molecule is 

considered as Raman active, if there is a change in polarizability of the molecule. It is a measure of 

the ease with which an electron cloud around the molecule can be disturbed by the external electric 

field. Raman scattering intensity is proportional to the square of the induced dipole moment, i.e., to 

the square of polarizability derivative. Molecules with little or no symmetry modes are likely to be 

active in both infrared and Raman though, in general, bands that appear strong in Raman are weak 

in IR, and vice-versa [79].  

 As mentioned earlier, Raman scattered photon is generated when incident photon cause 

changes in the vibrational state of a molecule. Since this frequency shift is unique to specific 

molecular vibrations of the molecule, qualitative analysis became feasible; either by direct 

comparison of the spectra of known and unknown materials recorded consecutively or by 

comparison of the spectra of unknown compounds with catalogs of reference spectra. Thus 

Figure 1.3: Energy level diagrams for Stokes and Anti-Stokes Raman scattering 
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identification of ‘chemical moieties’ provides ‘molecular fingerprint’ of the sample. One of the 

major drawbacks of Raman spectroscopy is its inherent low sensitivity as only 1 among 10 million 

of incident photons is Raman photon. Hence, this technique demands sophisticated instrumentation 

i.e. powerful excitation source, high throughput spectrograph and sensitive detection systems. The 

advent of compact high power laser excitation sources, high throughput spectrographs and high-

quantum efficiency, low noise CCD detectors resulted in a flurry of research activities in Raman 

spectroscopy. Apart from advances in instrumentation, there have been innovative approaches for 

enhancement of Raman signals - surface enhanced Raman spectroscopy (SERS): Attachment of 

gold or silver colloid lead to thousand to 10 million fold increase in Raman signal intensity, 

enabling single molecule level detection [80-82]. Resonance Raman spectroscopy (RRS): Marked 

enhancement of Raman signal when excitation wavelength matches or is close to transition state 

[83]. Confocal Raman microspectroscopy: Microscope coupled approach with high spatial 

resolution ~1 µm [84-86]. Coherent anti-Stokes Raman scattering (CARS): a pump and probe 

process and orders of magnitude stronger than spontaneous Raman emission [87,88].  

1.IV.1 Instrumentation: A typical Raman system consists of four major components: an 

excitation source, filters, spectrograph and detector. A sample is illuminated with a laser beam in 

the ultraviolet (UV), visible or near-infrared (NIR) region. Scattered light is collected, filtered and 

sent through spectrograph to generate Raman spectrum. Schematic representation of a typical 

Raman instrument is shown in Figure 1.4. A brief introduction about individual components is 

provided in the following sections.  
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1.IV.1.a Excitation Source (LASER): Typically a laser system is made up of lasing 

medium (atom, molecule or ion), a resonant cavity and an excitation source (electrical, radiation or 

others), Figure 1.5. The excitation source takes the atoms or ions of the lasing medium to a higher 

energy state. Transition from this state to a lower state gives the laser radiation, which is amplified 

by stimulated emission due to multiple (or single) passes through the resonant cavity.  

 

 

 

 

 

 

Broadly, lasers can be classified into three categories- solid, liquid and gas lasers. Generally, active 

medium of a solid-state laser consists of a glass or crystalline “host” material to which “dopants” 

are added. The widely used semiconductor lasers are also included in this category. Solid state 

lasing media are typically optically pumped, using either a flash lamp or arc lamp, or by laser 

diodes. Diode-pumped solid-state lasers tend to be much more efficient, and have become much 

more common as the cost of high power semiconductor lasers has decreased. In the present study, 

Figure 1.4: Schematic representation of a typical Raman spectrometer 

Figure 1.5: Schematic diagram of a typical laser system 
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work was carried out using a continuous wave (CW) diode laser of 785 nm. Additional information 

about this laser has been provided in Chapter 2 under the methodology section. Liquid lasers are 

based on strongly absorbing organic dye molecules such as rhodamines or coumarins in an organic 

solvent. The dye is pumped optically by a flash lamp to produce population inversion followed by 

stimulated emission to produce a laser gain. Lasing begins when light is absorbed by a dye, exciting 

it from lowest singlet to high energy level, now the dye falls to slightly lower state within the same 

singlet band which serves as upper lasing level. A typical dye laser can operate over a wavelength 

range 30-40 nm. Gas lasers, on basis of lasing transitions can be categorized as neutral atom and 

ionic. Neutral atom lasers emit throughout UV, visible and IR ranges, while ion lasers emits mostly 

in UV through the near IR region.  

1.IV.1.b Filters: These are used to filter out the intense Rayleigh scatter or background 

signals. The advent of holographic notch filters have eliminated the need for cumbersome, low 

throughput, multistage scanning spectrometers, and enabled rapid spectral data acquisition. 

Holographic notch filters can have a very steep-edged blocking bandwidth at the excitation 

wavelength, with contrast ratios greater than one million, while transmitting 90% of the light with a 

relatively flat baseline above and below the excitation wavelength. Holographic filters used in 

delivery path can block unwanted emission from the laser that would otherwise swamp the Raman 

spectrum, transmitting 85–95% of the excitation line. Various categories of holographic notch 

filters include: 

1.IV.1.b.i Long-pass filters: A long-pass (LP) filter is an optical interference or coloured 

glass filter that attenuates shorter wavelengths and transmits (allows to pass) longer wavelengths 

over the active range of the target spectrum (ultraviolet, visible, or infrared). Longpass filters can 
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have a very sharp slope (referred to as edge filters) and are described by the cut-off wavelength at 

50 percent of peak transmission.  

1.IV.1.b.ii Short-pass filters: A short-pass (SP) filter is an optical interference or coloured 

glass filter that attenuates longer wavelengths and transmits (allows to pass) shorter wavelengths 

over the active range of the target spectrum (usually the ultraviolet and visible region).  

1.IV.1.b.iii  Band-pass filters: Band-pass filters only transmit a range of wavelength band, 

and block others. The width of such a filter is expressed in the wavelength range which it lets 

through and can be anything from less than Angstroms to a few hundred nanometers. Such a filter 

can be made by combining an LP- and an SP filter.  

1.IV.1.c Spectrograph: The main function of the spectrograph is to disperse the light from an 

object into its component wavelengths. There are four essential components of the spectrograph: (1) 

an entrance slit (2) a collimating element which may be a lens or a mirror to obtain parallel rays 

when pass through one point of the entrance slit (3) a dispersing element, usually a grating which 

spreads the light intensity in space as a function of wavelength and (4) a focusing element to form 

an image of the entrance slit at the detector focal plane. As shown in Figure 1.6, once light enters 

from the entrance slit, it is redirected by the first mirror towards the grating. Its function is to 

disperse the incoming parallel light from the entrance slit to its component wavelengths such that 

they are no longer parallel but instead leave the grating at slightly different angles depending on the 

wavelength. The surfaces of these mirrors are polished with aluminum, silver or gold and are 

reflective in the wavelength region of the light involved. A typical grating can be characterized by 

equally spaced grooves, called facets. Classically ruled gratings may be plano or concave and 

possess grooves parallel to each other. Holographic grating grooves may be either parallel or of 

unequal distribution in order that system performance may be optimized. Holographic gratings are 
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generated on plano, spherical, and many other surfaces. When monochromatic light is incident on a 

grating surface, it is diffracted into discrete directions. The light diffracted by each groove combines 

to form set of diffracted wave fronts. The utility of a grating depends on the fact that there exists a 

unique set of discrete angles along which, for a given spacing between grooves, the diffracted light 

from each facet is in phase with the light diffracted from any other facet, leading to constructive 

interference. 

 

 

 

 

 

 

1.IV.1.d Detector: This helps in recording the intensity of the Raman signal at each 

wavelength. A CCD detector can be visualized as a rectangular array of photosensitive elements or 

pixels arranged in horizontal rows and vertical columns, configuration known as a focal plane array 

(FPA). In spectroscopic applications, the spectral or wavelength direction corresponds to the 

horizontal rows and the column pixels are usually summed, i.e. ‘binned’, vertically, providing 

intensity at each wavelength. CCD detectors are fabricated on a monolithic silicon chip. Typical 

dimensions of CCDs of 1024 × 256 pixels, each of which is 25 µm on a side, covering an area of 

about 25 mm × 6 mm. CCD technology has improved to such an extent that quantum efficiencies of 

90% can be achieved from the visible to the near-IR wavelength range. Different types of CCDs, 

front illuminated, thinned back-illuminated and front- or back-illuminated deep depletion, are used 

for different applications. For the near-IR region, deep-depletion CCDs are the best. The depletion 

Figure 1.6: Basic components of a typical spectrograph 
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region penetrates at least 30 µm into the silicon, providing a larger volume to generate 

photoelectrons, which results in increased quantum efficiency. Etaloning effect is a common 

problem for back-thinned CCDs operating in the near-IR region. Due to the larger transparency of 

silicon at these wavelengths, photons arising from the broad background fluorescence of the tissue 

are not fully absorbed in the shortened path length of the thinned silicon wafer. The result is that the 

thinned silicon wafer acts as an etalon for the back-reflected fluorescence, producing sharp peaks in 

the signal from this otherwise featureless background. Since these peaks are of similar line width to 

the tissue Raman features, they are exceedingly difficult to correct. Special surface treatment is used 

that randomizes the silicon wafer thickness on a wavelength scale, is being used by various 

manufacturers to overcome this problem.  

1.V Computational Techniques 

As mentioned earlier histopathological diagnosis is considered as gold standard for oral cancer 

diagnosis. However, this approach suffers from subjectivity, as it involves thorough visual 

inspection of the suspected section of the tissue under the microscope by an experienced 

pathologist. The fatigue factors due to examination of large number of samples and inexperience 

have been reported to exacerbate the error rate in the conventional approach of cancer diagnosis 

[89-91]. These problems can be surmounted in spectroscopic diagnosis. An important aspect of 

optical spectroscopy is objectivity. This is because spectral data are amenable to statistical tools. 

The application of these tools facilitates the computation of mathematical parameters derived from 

spectral data for classification. The distinct feature of this approach is that it is devoid of visual 

decision making and the system (computer) is completely blind to the sample that is being analyzed. 

Analysis of the data generated from a spectroscopy experiment can be performed in two different 

ways: univariate and multivariate. Univariate analysis using optical density values is generally 
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performed in colorimetric estimations of different biomolecules [92]. In this case knowing either of 

dependent and independent variables, a solution for the second variable can be calculated. In 

contrast to univariate approach, multivariate analysis involves observation and analysis of more 

than one statistical variable at a time. In the following section, discussion regarding multivariate 

analysis is presented.  

1.V.1 Multivariate analysis: Data generated from infrared or Raman experiments consist 

of results of observations of multiple variables (wave-numbers) for a number of individuals 

(diseased or healthy). Each variable may be regarded as constituting a different dimension, such that 

if there are ‘n’ variables (IR or Raman bands) each object may be said to reside at a unique position 

in an abstract entity referred to as n-dimensional hyperspace. This hyperspace is necessarily 

difficult to visualize. The underlying theme of multivariate analysis (MVA) is simplification or 

dimensionality reduction. This can occur in one of two ways; either using an unsupervised or a 

supervised learning algorithms. In general, unsupervised methods such as principal component 

analysis (PCA) and hierarchical cluster analysis (HCA) are used to assess the ‘natural’ differences 

and similarities between spectra. These methods are employed to discover structure in the data and 

can be used to ‘cluster’ samples into groups by producing scatter plots (PCA) and dendrograms 

(tree-like figures; HCA). By contrast, supervised methods like linear discriminant analysis (LDA) 

and artificial neural networks (ANNs) are ‘calibrated’ with some known existing parameters about 

the sample. A priori knowledge is used in the construction of the LDA or ANN model followed by 

validation of model with test data or cross validation [92-94]. In following sections, a brief 

description about multivariate data analysis methods employed in the thesis is presented.  
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1.V.1.a Principal Component Analysis (PCA): PCA is one of the most widely used 

unsupervised multivariate methods for data compression and over-viewing. Main function of PCA 

is to identify trends, pattern and outliers in the data set [95, 96]. It decomposes a set of spectra into 

their most common variations (factors) and produces small set of well defined numbers (scores) for 

each sample that represent the amount of variation present in the spectrum. Presumably, these 

"factors" can also be used for reconstructing the spectrum by multiplying each one by a different 

constant scaling factor and adding the results together until the new spectrum closely matches the 

unknown spectrum. The scaling constants used to reconstruct the spectra are generally known as 

scores. A pictorial representation of PCA methodology is shown in Figure 1.7.  

 

 

 

 

 

Spectra from a large number of samples, which belong to a given class, are subjected to an 

eigenvalue-eigenvector analysis. The eigenvectors can be assumed as the spectral equivalents for 

the principal components of these samples, while the scores correspond to the contribution of each 

PC to a given sample spectrum. Each sample spectrum can be regenerated by linear summation of 

the products of each eigenvector with its corresponding scores. The spectra of given set of samples 

may have contribution from a limited number of initial factors and also from the later eigenvectors 

accounting for day to day variations and unwanted noise. Only few initial Eigenvectors represent 

Figure 1.7: Schematic depiction of working principle of PCA, A= Original spectral data; n = number of spectra; 

S = PCA scores, p = number of data points; F = PCA factors (Eigenvectors, Loadings); f = number of principal 

components. 
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the true variations in the given set of samples (often called as primary factors), whereas the 

remaining may be close to zero with no practical contribution to the spectra (secondary factors). 

Typically, the Eigenvalues of the primary factors are much larger than those of the secondary 

factors. The number of significant factors can be decided by a comparative statistical method called 

total percent variance analysis, which is actually a measure of the importance of each factor for 

reconstructing the spectra. Since the PCA factors represent the variations in the data, and the 

Eigenvalues are the relative weights of each of the factors, the Eigenvalues can also be thought of as 

the amount of variance in the data that is represented by that factor [97]. By summing the 

Eigenvalues, an estimate can be made of how much variance is accounted for by the PCA factors. 

Before PCA is applied to a training set, the data is mean centered i.e. the mean spectrum 

(average spectrum) calculated from all of the spectra is subtracted from every calibration spectrum. 

Mean centering has the effect of enhancing the subtle differences between the spectra. Since the 

eigenvectors or principal components represent the changes in the spectral data that are common to 

all the calibration spectra, removing the mean simply removes the first most common variation 

before the data is even processed by the PCA algorithm. By iteratively eliminating each 

independent variation from the calibration spectra in series, it is possible to create a set of 

eigenvectors (principal components) that represent the changes that are common to all. There are 

two different methods used to calculate the Principal Components of a set of data; the NIPALS 

algorithm, and Decomposition of covariance [98]. After data has been fully processed by the PCA 

algorithm, it is reduced to two main matrices: the eigenvectors (spectra) and the scores (the 

eigenvector weighting values for all the calibration spectra). The matrix of the model is expressed 

by equation A = S F + EA (where A is an n by p matrix of spectral absorbances, S is an n by f 

matrix of score values for all of the spectra, and F is an f  by p matrix of eigenvectors. The EA 
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matrix called the matrix of residual spectra is the errors in the model’s ability to predict the 

calibration data and has the same dimensionality as the A matrix. n is the number of samples 

(spectra), p is the number of data points (wavelengths) used for calibration, and f is the number 

PCA eigenvectors) [98]. PCA aims to summarize the overall variability, which includes both the 

divergence between groups, and the variation within groups. However, to assess the relationship 

between the different clusters, an adequate method should focus on between-group variability, 

while neglecting within-group variation.  

1.V.1.b Linear Discriminant Analysis (LDA): LDA is a classification method which 

provides linear transformation of n-dimensional feature vectors (or samples) into an m-dimensional 

space (m < n), so that samples belonging to the same class are close together but samples from 

different classes are far apart from each other [99,100]. It is a supervised classification method, as 

the categories to which objects are to be classified is known before the model is created. The 

objective of LDA is to determine the best fit parameters for classification of samples as well 

prediction of unknown samples [101]. LDA is based on Bayes’ theory where a classification model 

is developed assuming the probability distribution within all groups is known, and that the prior 

probabilities for groups are given, and sum to 100% over all groups. It is based on the normal 

distribution assumption and the hypothesis that the covariance matrices of the two (or more) groups 

are identical. This means that the variability within each group has the same structure. The only 

difference between groups is that they have different centers. This method also allows for a 

probabilistic assignment of individuals to each group, as in Bayesian clustering methods. The 

estimated covariance matrix for LDA is obtained by pooling covariance matrices across groups. 

When the variability of each group does not have the same structure (unequal covariance matrix), 

and the shape of the curve separating the groups is not linear, Quadratic Discriminant Analysis 
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(QDA), another variable of LDA is used. QDA may perform better in situations where the different 

groups being classified have their main variability in different directions, but only when the training 

sets used are large. The Mahalanobis distance is a way of measuring the distance of an observation 

to the centers of the groups, and uses ellipses to define the distances. Discriminant analysis is a type 

of qualitative calibration, where category group variable is used for the classification and not a 

continuous measurement as would be the case for a quantitative calibration [102,103]. LDA will not 

perform well on data sets where the discriminatory information is not in the mean, but is in the 

variance of the data. The results of the LDA classification are the predicted class for each sample, 

presented in the form of Confusion matrix. The confusion matrix is used for visualization of 

classification results from supervised methods. It carries information about the predicted and actual 

classifications of samples, with each row showing the instances in a predicted class, and each 

column representing the instances in an actual class.  

1.V.1.c Principal Component-Linear Discriminant Analysis (PC-LDA): The prime 

difference between LDA and PCA is that former relies more on feature selection while LDA 

provides data classification [104]. In PCA, the shape and location of the original data sets changes 

when transformed to a different space whereas LDA does not change the location but only tries to 

provide better class separability and draw a decision line between the given classes. In recent times 

the use of PCA for data reduction, followed by linear discrimination algorithms (LDA) for 

classification, has become a well established method for spectroscopic data analysis with a number 

of research groups employing the method specifically for discrimination of Raman spectra. This 

technique is actually the cascade application of LDA on the factors resulting from PCA. PC-LDA 

relies on data transformation using PCA a step prior to LDA, which ensures that variables submitted 

to LDA are perfectly uncorrelated, and that their number is less than that of samples under study. 
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An important consideration when applying LDA following PCA is the number of PCs to be 

included; too few may result in lack of enough information, while too many increases the amount of 

noise in the data, and may lead to overfitting [100-105]. 

1.V.1.d  Leave-one-out cross-validation (LOOCV): The ideal method for developing 

and validating efficacy of any diagnostic techniques is to validate results with an independent test 

data set [106-108]. An algorithm or series of algorithms is fit to the data in the training set using the 

empirical or statistical method of choice, and the criteria for classification into specific categories is 

determined. Classification of the spectra in the test set determines the unbiased accuracy of the 

algorithm. However, in cases of small data sets (as is often the case in pilot studies), division of the 

data into training and test sets is not feasible. The leave-one-out cross-validation method is a 

popular alternative to independent test sets. In the leave-one-out method, one spectrum is removed 

from the data set and the algorithm is driven using the remaining spectra. The algorithm is then 

tested using the removed spectrum. This process is repeated for every spectrum in the data set, such 

that an estimate of the potential accuracy of future algorithms developed using the method in 

question can be calculated [108]. 

1.V.1.e  Curve fitting/Spectral deconvolution: The goal of spectral curve fitting is to 

mathematically create individual peaks from a spectrum that when added together, match the 

original data. Using an optimally fitting function, spectra are resolved into individual components 

and peak parameters like location (frequency), height (intensity), FWHM and area under band are 

calculated. By computing scatter intensity plots, the relative contribution of biomolecules associated 

with these bands can be obtained. The Levenberg-Marquardt algorithm is the most commonly used 

non-linear least squares fitting method [109-111]. In this method, variables in each peak are 

iteratively adjusted in an attempt to minimize the x2 value (called as reduced chi-squared). It can be 
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defined as a weighted difference measure between the actual and measured data and calculated by 

following equation. 

x2 = ∑ i=0 (actual i – calculated i / RMS noise)2 / (n-f) 

The actual and calculated values are the measured and calculated data, respectively. The RMS noise 

is the estimated Root Mean Squared noise in the actual data over the fitted region. ‘n’ is the number 

of data points in the fitted region and ‘f’ is the total number of variables from all the peak and 

baseline functions. Thus, n-f is the number of degrees of freedom.  

One of the biggest problems in interpreting spectroscopy results is determining how many peaks 

actually exist in the data. If the peaks were all nicely resolved, it would be easy and the need to use 

Peak Fitting to fit the data would be moot. Usually, non-linear peak fitting methods are applied 

because the peaks of interest are badly overlapped and therefore not directly measurable [98]. There 

are methods that give good approximations of how many peaks exist in a data set. One of these is 

calculating the Second Derivative. A second derivative of a data set indicates how slope of the data 

is changing. Presumably, at the top of a peak (or the bottom of a valley) the slope changes sign 

(usually from positive to negative, going left to right). In the second derivative this will appear as 

minima in the curve. The number of distinct minima and their positions give a good indication of 

number of peaks present in the data and their locations.  

As with the number of peaks, peak shapes that have a real (physical) meaning for the set of data 

being analyzed are also important. Peak functions such as Gaussian, Lorentzian or mixed are used 

to generate an optimum function for fitting and calculations, using the following formulae [98].  

1. Gaussian : f (x)= He-(x-x0/w)2(4ln(2))    [x0 = position; H = height; W = FWHH] 

2. Lorentzian: f (x)= H / 4 (x-x0 / w)2 + l       

3. Mixed (Gauss + Lorz):  f (x) = (1-M) (Gauss) + (M) (Lorentz) [M = mixture (% Lorz)] 
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Choosing a line shape closely modeling the data is imperative to generate a good fit. For example, 

Lorentzian line shapes are as obvious the choice for NMR data, Vogit line shapes are for FT-IR 

data. However in many cases, trial and error is the only method that works.  

1.VI An overview of Biomedical applications of Raman Spectroscopy 

Raman spectroscopy has been extensively applied in diverse fields such as: analytical chemistry for 

process monitoring; detection of pollutants in environmental science; forensics  applications include 

detection of gunpowder residues, blood, semen; identification of hazardous chemicals in security; 

industries like  pharmaceuticals, petrochemical, semiconductor and in research areas -geology, 

nuclear science, material science, art and archaeology [112-117]. In recent years there has been a 

remarkable increase in the application of Raman spectroscopy to the field of medicine. This has 

come out of the awareness that Raman, like IR spectroscopy, is a vibrational spectroscopic 

technique capable of providing details on the chemical composition, molecular structure, and 

molecular interactions in cells and tissues. As a disease leads to changes in the molecular 

composition of affected tissues, these changes should be reflected in the spectra. Furthermore, if the 

spectral changes are specific enough for a particular disease state, they can, in principle, be used as 

phenotypic markers of the disease. The wealth of information provided by Raman spectra provides 

wide applicability, ranging from quantitative determination of the chemical composition of tissues 

or analyte concentrations in blood to real-time in vivo tissue classification [118-123]. In the 

following sections, a short note on applications of ex vivo, in vivo and micro Raman spectroscopy in 

cancer diagnosis is presented.  

1.VI.1 Ex-vivo Raman spectroscopy: Spectral patterns present specific quantitative 

biochemical and morphological information about the examined tissues, depending on the cellular 

metabolic rate, vascularity, intravascular oxygenation and alterations in tissue morphology. Raman 
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spectroscopic studies pertaining to almost every part of human body is reported in literature. Alfano 

et al. in the year 1991 reported the Raman spectrum of breast tissue, using a FT- Raman 

spectrometer. They demonstrated that relative intensity of bands at 1651 and 1445 cm-1 could be 

used as diagnostic marker for differentiating normal and pathological tissues [124]. This was 

supported by studies carried out by Redd et al. (1993), Frank et al. (1994 and 1995), Hanlon et al. 

(2000), Haka et al. (2005), Chowdhary et al. (2006), K. Kumar et al. (2008)  at different excitation 

wavelengths [125-131]. It was found that normal tissue spectra were dominated by Raman bands of 

fatty acids, while the Raman spectra of benign and malignant tissues were dominated by protein 

bands and these conditions can be classified using multivariate analytical tools. Gniadecka et al. in 

the year 2004 has developed a Raman system for acquiring Raman spectra of skin tissues. Findings 

have demonstrated the feasibility of classifying malignant skin lesions from normal skin tissue with 

a sensitivity of 84% and specificity of 97% [132]. Along similar lines, study by Nijssen et al. have 

shown applicability of high-wavenumber region (2800–3125 cm-1) for classification of basal cell 

carcinoma (BCC) and normal skin tissue. In this study over 500 Raman spectra from 28 tissue 

samples of BCC and normal skin tissue were analyzed, and a discriminative accuracy of 100% 

sensitivity and 99% specificity was achieved [133]. Extensive work has been carried out by 

Mahadevan-Jansen et al. towards non-invasive and objective diagnosis of the cervix cancers using 

Raman spectroscopy. Classification using empirical peak intensities and unbiased multivariate 

algorithms based on principal component and linear discriminant analysis provided an average 

sensitivity and specificity of 88% and 92%, respectively [134]. Krishna et al. utilizing 785 nm 

excitation wavelength and PCA based limit test approach have demonstrated that normal and 

pathological cervix tissues can classified with sensitivity and specificity of ~99% [135,136]. 

Differences between both groups can be ascribed to non-collagenous proteins and DNA. 
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Vidyasagar et al. have demonstrated that Raman spectroscopy can also be used for predicting 

radiation response in cervical tumors [137]. Studies of human lung tissues have primarily focussed 

on combination of optical spectroscopy with endoscopic procedures and the discrimination of 

normal bronchial surface from premalignant lesions. Yamazaki et al. have demonstrated Raman 

spectroscopic applications for lung tissue analysis. Over 200 cancerous and noncancerous lung 

tissue samples were analyzed after formalin fixation. Discrimination with 91% sensitivity and 

97%specificity was achieved [138]. Studies carried out by Stone et al. have demonstrated efficacy 

of Raman spectroscopy in classifying normal and abnormal esophageal tissues against normal and 

abnormal epithelial tissues from the larynx, tonsil, stomach, bladder and prostate. Comparison of 

prediction models with pathology provided sensitivities of 73–100% and specificities of 90–100% 

[139-142]. Studies carried out by Koljenovic and Krafft et al. on brain tissues have demonstrated 

potentials of Raman spectroscopy in identifying ex vivo normal and abnormal brain tissues as well 

as intracranial tumors [143,144]. Extensive work carried out by Morris et al. on human and animal 

bone tissues have shown that Raman spectroscopy can be used for identifying osteoporosis, bone 

fractures and deformities [145-149]. In addition to this Studies related to classification of normal 

and pathological tissues in ovary, colon, stomach and prostrate cancers are also reported in literature 

[150-155]. Overall these studies have demonstrated potentials of Raman spectroscopic methods in 

objective diagnosis of normal and pathological conditions.  

1.VI.2 In vivo Raman spectroscopy: Even though Raman based optical diagnosis of 

tissues has shown potential in detection of potentially pre-cancerous tissues and real-time tissue 

evaluation with a high degree of sensitivity and specificity, removal of tissue or biopsy is an 

inherently invasive procedure. In most cases, this procedure has some associated morbidity and in 

some cases poses a high risk when involvement of vital anatomy is encountered. The actual promise 
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of these technologies lies in non-invasive or in vivo diagnosis of cancers. The most important 

advantage of Raman spectroscopy is that spectral acquisition can be carried out under in vivo 

conditions without disruption of native tissue conformation. Following studies have demonstrated 

potentials of in vivo Raman spectroscopy in cancer diagnosis:  

After successful classification of normal, benign and cancer breast tissues, in the year 2006 

in vivo Raman studies were undertaken for intraoperative tumor margin assessment in 9 patients 

undergoing partial mastectomy procedure [156]. Even though data set were small, 100% sensitivity 

and specificity was observed. Interestingly, Raman spectra from one margin correlated to a 

cancerous lesion which was grossly invisible, and upon postoperative pathological findings the 

margin was deemed positive which then required a second operation for excision. These findings 

provided evidence of extreme sensitivity of Raman spectroscopy in identification of pathological 

conditions. Bitar et al. in the year 2010 along similar lines have demonstrated feasibility of 

transcutaneous spectral acquisition from the DMBA-induced tumors and their margins in Sprague-

Dawley rats [157]. Due to the obvious accessibility to skin, in vivo Raman spectroscopic analysis is 

a very practical and rapid, convenient  approach for real-time cancer diagnosis. In the year 2008, 

Lieber et al developed a portable confocal Raman device along with a hand-held probe and 

demonstrated feasibility of in vivo spectra acquisition on 19 patients. Successful discrimination 

between normal, inflamed, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) with 

efficiency of 95% was achieved [158]. Application of Raman spectroscopy in brain cancer 

diagnosis is widely reported and it could provide a means for in vivo evaluation of brain tissue, 

thereby eliminating unnecessary tumor resection during brain tumor surgeries, where preservation 

of uninvolved normal tissue is extremely crucial. In vivo studies on an animal model conducted by 

Kirsch et al in the year 2010, have demonstrated the efficacy of Raman spectroscopy in delineating 
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tumor margins in a cortical and subcortical melanotic tumor model [159]. This was further 

supported by another study by Beljebbar et al. in the same year on in vivo identification of C6 

glioblastoma implanted in rat brains [160]. Prospectively, brain tumor surgeries could greatly 

benefit from Raman spectroscopic methods for histological evaluation in situ and by improvement 

of tumor margin clearance. Huang et al. have developed a rapid-acquisition image-guided Raman 

endoscopy system with 785-nm excitation to acquire in vivo spectra from gastric tissues within 0.5 s 

during clinical gastroscopic examinations. Using this setup, first the feasibility of classifying in vivo 

spectra from normal and neoplastic sites, followed by differentiation between benign and malignant 

ulcers in the stomach with 90 and 94% accuracy, respectively was demonstrated. Additional 

recruitments enabled independent test data evaluation using ant colony-linear discriminant 

technique, and prediction sensitivity of 89.3% and specificity of 97.8% was achieved. In recent 

studies, authors have integrated this Raman endoscopic imaging system with white-light 

reflectance, auto fluorescence imaging and narrow-band imaging modalities to enable both Raman 

spectra and endoscopy to be visualized simultaneously [161-166]. In the year 2011 same authors 

have demonstrated possibility of a fully automated on-line Raman spectral diagnostics framework 

integrated with a multimodal image-guided Raman technique for real-time in vivo cancer detection 

with endoscopy using 305 patients, followed by a study to detect pre-neoplastic stages like 

intestinal metaplasia, dysplasia [167]. This multi-modal image guided Raman endoscopy system 

was also employed for esophageal cancer detection by implementing a highly accurate biomolecular 

modeling algorithm and an accuracy of 96% was achieved [168]. Studies for developing a miniature 

confocal fiber-optic Raman probe useful during endoscopy-guided biopsies for better lesion 

identification have also been undertaken [169]. To enable in vivo applications in lung cancer 

diagnosis several groups are focusing on developing an optimized endoscopic probe for 
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bronchoscopic diagnosis. Recent study by Short et al. have demonstrated that including Raman 

spectroscope as part of available white-light/auto-fluorescence bronchoscopy set-up improves 

sensitivity for detection of preneoplastic lesions. In vivo study involving 26 patients using PC-LDA 

and fitting of combination of biomolecular models yielded 96% sensitivity and 91% specificity 

[170]. Several in vivo studies have been carried out in the last decade with a portable fiber-probe 

based Raman spectroscopic system for diagnosis of cervical abnormalities. Mahadevan-Jansen et al. 

in the year 1998 have demonstrated that cervical pre-cancers can be distinguished from benign 

tissues with in vivo Raman spectroscopy [171]. Same group in the year 2001, 2007 and 2009 

demonstrated the feasibility of  acquiring in vivo Raman spectra of more than 200 cervical cancer 

subjects in less than 5s  acquisition time. Spectral findings were correlated against histopathology, 

methylene blue staining and coloposcopy [172-174]. Classification between normal, cancerous and 

different pathlogical grades has been explored. Kanter et al. in the year 2009 performed another 

study to demonstrate the potential of Raman spectroscopy in detecting subtle variations due to 

hormonal effects caused by menopause and menstruation cycle on both normal and dysplastic 

cervical tissues [175,176]. Duraipandian et al. recently demonstrated that Raman spectroscopy in 

conjunction with biomolecular modeling can be a powerful diagnostic tool for identifying 

hormone/menopause-related variations in the native squamous epithelium of normal cervix, as well 

as for assessing the effect of Vagifem treatment on postmenopausal atrophic cervix in vivo during 

clinical colposcopic inspections [177]. Overall these studies indicate that Raman spectroscopy has 

the potential to become a highly sensitive tool for detecting and accurately classifying normal and 

diseased conditions while greatly reducing the need for biopsies and the associated morbidity.  

1.VI.3 Raman microspectroscopy: The process of spontaneous Raman scattering, 

however, produces a very weak signal, often orders of magnitude weaker than its fluorescence 
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counterpart. In order to address disadvantage of weak Raman signals from biological 

macromolecules, Puppels et al., in 1990, developed novel confocal Raman micro-spectrometer for 

non-resonant Raman spectroscopy. With this instrument, it was possible to study single cells and 

chromosomes with high spatial resolution (1μm3) [178]. Same group, in the year 1991, have 

reported typical spectra of the cell nucleus, chromosome and cytoplasm in human white blood cells 

and different granulocytes [179]. It was followed by exploring possibility of combining 

fluorescence activated cell sorting and Raman microspectroscopy. These techniques were applied to 

investigate the presence and sub-cellular location of carotenoids in cells isolated from human 

peripheral blood of healthy individuals. Carotenoids bands around 1157 cm-1 and 1525 cm-1 were 

high in T-lymphocytes and NK-cells. Findings of the study have provided possibilities of suggested 

protective role of carotenoids against cancer development [180,181]. Hawi et al. in the year 1996 

have demonstrated its efficacy in characterizing normal and malignant human hepatocytes in 

cultured cells and liver tissues. Differences in the intensity of bands at 1040 and 1083 and 1182 cm-

1 were observed in normal, cirrhotic and cancerous liver tissues [182]. Uzunbajakava et al. in 2003 

showed potential of nonresonant confocal Raman imaging in mapping distributions of DNA and 

protein in individual single human cells [183]. Krafft et al. in the same year, utilizing PCA, 

generated single cell map of embryonic lung epithelial fibroblasts, human osteogenic sarcoma cells 

and human astrocytoma cells. Authors concluded that the origin of spectra strongly depends on the 

hydration state and the conformation of the surrounding molecules [184]. The same group, in the 

year 2005, has reported identification of sub-cellular structures by spectral signatures using non-

resonant mapping on single human lung fibroblast cells [185]. Stone et al. in the same year 

demonstrated identification of prostate cancer cells using Raman microspectroscopy in combination 

with multivariate tools [186]. Matthäus et al. in year 2006 have reported Raman and infrared micro-
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spectroscopic images of human cells at different stages of mitosis. They have monitored the 

distribution of condensed nuclear chromatin and other biochemical components during mitosis. 

Findings suggest that spectral intensities depend on the overall chromatin density variation in the 

individual sub-phases of mitosis [187]. Another study by the same group in the year 2007 first time 

reported label-free detection of mitochondria in human cervical cancer cell lines (HeLa). In this 

study, authors have compared results of fluorescence and Raman microscopy to visualize 

mitochondrial distribution. In the Raman maps, location of nuclei, nucleoli as well as sub-cellular 

organelles in the cytoplasm were observed. This study opened the door for non-invasive, in vitro 

studies of biological aspects of cell such as the dynamics of mitochondrial movement, drug uptake, 

apoptosis, and other effects [188]. In the same year Yu et al. used confocal Raman 

microspectroscopy to identify differences among normal and transformed human breast epithelial 

cell lines. Findings suggest that DNA duplication activities in tumorigenic cell nuclei are 

significantly higher than in normal cells [189].  Happ et al. in the year 2007 have analyzed retinoic 

acid induced differentiation of neuroblastoma cells by confocal Raman microscope. Authors were 

able to trace the presence of nor-adrenaline neurotransmitter as a marker for the differentiation 

process [190]. Schulze et al. in the year 2010 reported identification of murine and human 

embryonic stem cells on basis of Raman spectra. Findings suggested that the spectra reflected 

different molecular events connected with stem cell differentiation, including an increase in cell 

size, increase of tissue-specific proteins, a decrease of the proliferative activity and drop of the 

nuclear RNA content [191]. Zoladek et al. in the year 2011 using confocal Raman 

microspectroscopy performed time-course spectral imaging of live breast cancer cells undergoing 

apoptosis. The maps of DNA bands indicated an increase in signal intensity in apoptotic cells, 

which was attributed to chromatin condensation. The Raman maps of lipids indicated a high 



Chapter 1 

75 

 

accumulation of membrane phospholipids and highly unsaturated non-membrane lipids in apoptotic 

cells [192]. 

Nijssen et.al in the year 2002, demonstrated applicability of Raman microspectroscopy in 

distinguishing basal cell carcinoma from surrounding noncancerous tissue with pseudo-color 

Raman images of tissue sections. Efficacy of Raman spectroscopy in identifying biochemical 

changes accompanying malignancy was demonstrated. In this study molecular composition of 

different layers and structure of skin were studied and classification models with 100% sensitivity 

and 93% specificity were developed [193]. Koljenovic et al. in the year 2002 have reported 

discrimination between spectra of vital, tumor and necrotic region in glioblastoma with 100% 

accuracy [194]. Same group in the year 2005 have explored feasibility of understanding infiltration 

of meningioma within dura matter, the known cause of meningioma recurrence. Spectral 

assignment was performed on cluster average spectra of pseudo-color maps after correlation with 

histopathology [195]. Along similar lines, same authors, in the year 2006 have used it for 

characterizing biochemical composition of normal bronchial tissue in order to understand lung 

cancer progression. Raman maps generated at different stages of carcinogenesis suggest DNA rich 

features in basal layers while lipids are predominant in the superficial layers of the epithelium 

[196]. Krafft et al. in the year 2008 demonstrated that biochemical changes associated with gliomas 

and pediatric lung pathologies can be identified with Raman and FTIR imaging. They reported 

different sensitivity for both modalities and supported combined use of Raman and FTIR for in-

depth analysis [197,198]. Beljebbar et al. in the year 2009 have demonstrated efficacy of Raman 

imaging as diagnostic tool for identification of normal and adenocarcinoma colonic tissues. Using 

unsupervised hierarchical cluster analysis (HCA), authors have identified the molecular 

composition and distribution of biomolecules within tissues [199]. In the same year, reports from 
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Tan et al. and Shetty et al. supported its applicability in discrimination of normal, premalignant and 

cancerous cervix and oesophageal tissues [200,201]. Kamemoto et al. in the year 2010 have shown 

differences in the normal and cancerous regions of cervix epithelium on the basis of collagen 

content [202]. Krafft et al., in the year 2011 analyzed Raman and FTIR images of liver tissue using 

different statistical methods e.g. vertex component analysis (VCA), K-means cluster analysis 

(KCA), Fuzzy C-means cluster analysis and PCA. They concluded that VCA maps provides high 

molecular contrast as compared to other cluster analysis methodologies and can be interpreted in a 

similar way like H&E stained sections [203]. Abramczyk et al. recently reported Raman imaging of 

breast tissues from 150 patients. They observed that the composition of carotenoids and lipids in 

cancerous tissue is different from normal tissues. Raman spectra of normal tissue are dominated by 

monounsaturated fatty acid (oleic acid) while that of cancerous tissues are dominated by 

arachidonic acid derived cyclic eisanoids catalyzed by cyclooxygenase [204]. Froukje et al. have 

recently analyzed the spectral contributions of individual histopathological structures in oral 

mucosa. They concluded that origin of pre-dominating lipids bands can be attributed to the presence 

of adipose tissues in normal conditions and spectra have contributions from deeper layers [205].  

1.VII Raman spectroscopy in oral cancers diagnosis 

 Raman spectroscopic applications in oral cancers started with analysis of normal and dysplastic 

tissue in a rat model by Schut et al. in the year 2000. Dysplasia in the palate was induced by topical 

application of the carcinogen 4-nitroquinoline 1-oxide. Raman spectra of normal and dysplastic 

tissues were obtained with 100 s integration time and classification was explored. Sensitivity and 

specificity of 100% in normal, low/high-grade dysplasia and carcinoma in situ were observed [206]. 

This was followed by study on human oral cancers biopsies by Venkatakrishna et al. in the year 

2001. They have recorded 140 spectra of 49 biopsies using 785 nm excitation and SpeX Triax 320 
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spectrometer. Using PCA based multivariate analysis average classification efficiency of 88% was 

observed [207]. In the year 2004, study carried out by Krishna et al. has shown applicability of 

formalin fixed oral tissues for optical pathology. Using micro-Raman spectroscopy they have 

acquired spectra of formalin-fixed normal and cancerous oral tissues. Findings suggest significant 

differences in the epithelial region of normal and malignant samples however, no such differences 

were observed in sub-epithelial regions. Major differences between normal and malignant spectra 

seem to arise from the protein composition, conformational/structural changes, and possible 

increase in protein content in malignant epithelia [208]. In the year 2006, Malini et al. using 785 nm 

excitation and 30 s integration time have demonstrated efficacy of Raman spectroscopic methods in 

discriminating normal, cancerous, precancerous and inflammatory conditions. A total of 50 normal, 

50 malignant, 10 inflammatory, and 5 premalignant biopsy specimens were utilized and 216 spectra 

(79 normal, 90 malignant, 37 inflammatory, and 10 premalignant) were acquired. Lipid rich 

features in normal conditions and predominant protein features were observed in tumors and other 

pathological conditions. Classification between different groups was explored using PCA coupled 

with multiparameter ‘limit test’ and 100% sensitivity and specificity was observed [209]. In the 

same year Oliveira et al. using FT-Raman spectroscopy and 1064-nm Nd:YAG laser line 

demonstrated that DMBA (7,12-dimethybenzanthracene) induced oral cancer in the buccal pouch of 

hamsters can be identified. Major differences between normal and malignant spectra seem to arise 

from the composition, conformational, and structural changes of proteins, and possible increase of 

its content in malignant epithelia. A total of 123 spectra were acquired and analyzed statistically by 

PCA and 91 and 69% sensitivity and specificity, respectively were observed [210]. Hu et al. in the 

year 2008, using confocal Raman microscpectroscopy acquired spectra of 66 human oral mucosa 

tissues (43 normal and 23 malignant). PCA along with calculation of areas under 1004, 1156, 1360 
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1587 and 1660 cm-1 bands were used as a classification method [211]. Recent study by Sunder et al. 

has demonstrated that oral carcinomas of different pathological grades can also be identified with 

Raman spectroscopy. On the basis of protein and lipid conformations authors have noted changes in 

the relative intensities of bands at 1656 cm-1, 1440 cm-1 and 1450 cm-1 [212].  

 In vivo Raman spectroscopic study for identifying site wise variations in the oral cavity was 

reported by Guze et al. in the year 2009. A total of 51 subjects (25 Caucasian and 26 Asian) were 

recruited and in vivo spectra of buccal mucosa, tongue, floor of mouth, lip and hard palate with 1 s 

acquisition time were acquired. Fiberoptic probe of 1.8 mm diameter and 0.75 m length consisting 

of 200 µm excitation fiber surrounded by 27 ultralow 100 µm collection fiber along with filters at 

proximal and distal ends was used to acquire spectra. By analyzing high wavenumber region (2800-

3100 cm-1) authors have concluded that subject ethnicity does not have any influence on spectra; 

however different sites can be discriminated on basis of level of keratinization [213]. Along the 

similar lines Bergholt et al. in the year 2011, have characterized in vivo Raman spectroscopic 

properties of different anatomical regions (inner lip, attached gingiva, floor, dorsal tongue, ventral 

tongue, hard palate, soft palate, and buccal) in the oral cavity in the fingerprint region (800-1800 

cm-1). A total of 402 high-quality in vivo oral Raman spectra were acquired from 20 subjects. 

Fitting of reference biochemicals (hydroxyapatite, keratin, collagen, DNA, and oleic acid) and 

partial least squares-discriminant analysis (PLS-DA) were employed to assess the inter-anatomical 

variability. Findings suggest that histological characteristics of different sites have influence on the 

in vivo Raman spectra. Different sites can be classified with PLS-DA algorithms with overall 

sensitivity and specificity of 85% [214].  
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Aims and Objectives 

These two, proof of principle studies have demonstrated that Raman spectra can be measured in 

vivo from the oral cavity. However, to the best of our knowledge no study is reported on use of in 

vivo Raman spectroscopic methods for discriminating normal and pathological conditions. The 

studies reported in the thesis aims towards developing in vivo Raman spectroscopic method 

for the diagnosis of oral cancers and pre-cancers.  

Towards this end the following Objectives were undertaken: 

1. Standardization of data acquisition and analysis methods on ex vivo oral tissues and 

correlation with histopathology and biochemical estimations. 

2. To demonstrate feasibility of acquiring and classifying in vivo Raman spectra from buccal 

mucosa of normal, cancerous and pre-cancerous subjects and correlation with 

histopathology. 

3. Exploring Raman spectral features of oral cancer cells with definite characters related to oral 

cancer.   

 



Chapter 2 

80 

 

 

 

 

 

 

 

Chapter 2 

Raman spectroscopy of  
ex vivo tissues 

 
 

 

 

 

 

 



Chapter 2 

81 

 

Introduction 

 Five-year disease free survival-rates for oral cancer is around 50%, which is majorly attributed to 

the fact that patients present at late stages of the disease [2-6]. Optical spectroscopic methods are 

being actively pursued as possible alternatives to the existing methods and also as a modality for 

early detection [48-76]. Ex vivo Raman spectroscopic studies for classifying normal and 

pathological conditions of oral cancers are reported in literature [206-212]. Malini et al using a 

diode laser of 785 nm shown that spectra of normal tissues are rich in lipids while protein features 

are predominant in tumors. By utilizing PCA and ‘limit test’ based multivariate approaches they 

achieved 90% sensitivity and specificity in discriminating normal, premalignant, inflammatory and 

tumor conditions [209].  

The present study was undertaken as a standardization step before initiating in vivo studies. 

In the following sections (1) adaptation of the prospective in vivo set-up for ex vivo and microscopic 

applications (2) standardization of spectral acquisition and analysis protocols on ex vivo tissues (3) 

histopathological and biochemical correlation of spectral data and (4) study on origin of spectra in 

normal tissues is presented.  

2.I Adaptation of the Raman spectroscope for ex vivo and microscopic studies 

A fiberoptic probe coupled HE-785 (Jobin-Yvon-Horiba, France) commercial instrumental set-up 

was procured and assembled. This system consists of a diode laser of 785 nm wavelength (PI-ECL-

785-300-FC). The laser has dimensions of 9.25" x 2.5" x 4.25", is thermoelectrically cooled, made 

of AlGaAs, requires FC fitting for fiber connection and maximum output is 300 mW. Spectrograph 

is equipped with a fixed 950 gr/mm grating and CCD based (1024x256-BIDD-SYN) detection 

system. The CCD is thermoelectrically cooled, back illuminated deep-depleted type and consists of 

1024 X 256 pixels of 26 µm X 26 µm size. Optical filtering of unwanted noise including Rayleigh 
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signals is accomplished through ‘Superhead’, the other component of the system. Optical fibers are 

used to couple excitation source and detection system with the ‘Superhead’. Ball probe is the other 

component of the system which can be attached to ‘Superhead’ for remote applications including in 

vivo measurements. The ball probe is made of a hollow aluminum core with a lens at the tip. Since 

all the filtering and collection mechanisms are inside the ‘Superhead’, the ball probe merely 

functions as carrier for laser light delivery and collection of photons.  Figure 2.1 shows the ball 

probe attached to the Raman system.  

 

 

 

 

 

 

 

 

This probe is large in size and has dimensions of 10" x 2.5", which makes it highly inconvenient 

and impractical for in vivo applications. Additionally, spectra acquired using this probe are marred 

by high background and interfering signals from fiber. A typical spectrum acquired using ball probe 

at 52 mW, 10 s acquisition time, over 5 cycles shown in Figure 2.2.   

Figure 2.1: Ball probe attached to the HE-785 Raman spectrometer 
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Because of poor spectral quality, high noise and patient’s discomfort, studies using this probe were 

discontinued. Another commercially available fiberoptic probe (InPhotonics Inc., Downy St, USA) 

was procured and tested. Pictorial comparison of the ball probe and InPhotonics probe is presented 

in Figure 2.3.  

 

 

 

 

                                   Figure 2.3: Comparison of Ball and Inphotonics probe 

Figure 2.3 shows that the InPhotonics probe is much smaller in length (10 cm) and diameter (1.25 

cm) in comparison to the ball probe. In contrast to the ball probe, InPhotonics probe is a coaxial, 

two-fiber probe. One fiber is used for excitation (105 μm, NA-0.40) and another for collection (200 

μm, NA-0.40). The overlap between the two fiber ends is optimized by using a lens to focus the 

laser as well as to collect the scattered radiation. As per specifications of the manufacturer of the 

Inphotonics probe, the theoretical spot size and depth of field are 105 µm and 1 mm, respectively. 

Figure 2.2: Typical in vivo spectrum acquired using ball probe 
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All of the filtering mechanisms are contained in a 0.5" (25.4 mm) diameter stainless-steel jacket 

which makes this probe ideal for remote hand-held applications. The beam path inside the probe is 

shown in the Figure 2.4.  

 

 

 

Figure 2.4:  Focusing and filtering optics inside the Inphotonics Raman probe 

It is to be noted that at the end of the excitation fiber, a lens is used to collimate the laser light. A 

band-pass filter removes the silica Raman bands and transmits only the pure laser light. The 

dichroic filter transmits the laser line to be focused by another lens onto the sample. The same lens 

gathers the light which is scattered at 180o from the laser direction (backscattering geometry). The 

collected signal is then reflected by the dichroic filter through a long-pass filter assembly that 

transmits only the Stokes scattered light. This last filter set attenuates the Rayleigh signals and also 

prevents the silica Raman bands that arises in the collection fiber. Finally, another lens is used to 

focus the Raman scattered light from the sample, onto the outgoing fiber. Small dimensions of this 

probe provide required flexibility to the clinician as well as comfort to the patient while recording in 

vivo spectra. Besides flexibility and comfort this probe also gives better spectra in shorter 

acquisition time. Additional information regarding adaptation of InPhotonics probe for in vivo 

measurements is presented in Chapter 3, under the methodology section.  

In order to utilize InPhotonics probe for ex vivo measurements a probe holder along with XYZ 

sample stage was assembled. This helps in acquiring spectra at different points with fixed spacing 
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which might lead to a better correlation with histopathology. Photographic representation of the set-

up used for acquiring spectra of ex vivo tissues is shown in Figure 2.5.  

 

 

 

 

 

Figure 2.5:  Raman spectroscope employed for ex vivo applications 

The ‘Superhead’ component of the system can also be coupled to a microscopic objective. Raman 

microscopic set-up was assembled by attaching a suitable microscopic objective to the ‘Superhead’. 

This set up has been successfully utilized for recording spectra of cell smears and serum samples. 

Photographic representation of the assembled Raman microprobe set-up is shown in Figure 2.6.  

 

 

 

 

 

 

Figure 2.6: Assembled Raman microprobe set up for microscopic applications 

Ex vivo tissues were used for standardization of spectral acquisition and data analysis protocols. In 

the following section the results obtained and their evaluations are discussed.   
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2.II Raman spectroscopy of ex vivo tissues: Reproducibility of spectral features  

Earlier studies have demonstrated that spectra of normal tissues are rich in lipids while proteins are 

predominant in tumor. This study was undertaken to evaluate the reproducibility of the spectral 

features of normal and tumor tissues. Using fiberoptic probe coupled Raman spectroscope spectra 

of normal and cancer oral biopsies were acquired and correlated with histopathology.  

2.II.1 Methodology 

2.II.1.a Clinical samples: The study was approved by institutional ethics committee, Tata 

Memorial Center (Project No. 605). Pathologically verified 36 pairs of buccal mucosa biopsies 

(tumor and cut-margin) samples were collected in liquid nitrogen and stored at -800C until use. 

Information about clinicopathological parameters such as age, sex, tobacco habit and tumor grade 

were obtained from electronic medical record (EMR) of Tata Memorial Hospital. 

2.II.1.b Spectral acquisition: Spectra were acquired using above described fiberoptic 

probe coupled HE-785 Raman system (Figure 2.5). Tissues were passively thawed and kept on a 

calcium fluoride (CaF2) window. The window was placed under illumination zone of the fiberoptic 

probe on XYZ precision stage. Spectra were acquired at different points with an average spacing of 

~2 mm. Spectral acquisition parameters were: laser power–80 mW, acquisition time–10 seconds 

and averaged over 5 accumulations. Identical conditions were maintained during all measurements.  

2.II.1.c Spectral pre-processing: Spectral pre-processing using Labspec 5.0 software 

(HORIBA Jobin Yvon) was performed as per the already existing standard protocol [104,133]. In 

first step, the wavelength dependency of the detector and the polarization dependence of the optical 

elements were measured using a calibration standard (standard reference material number- 2241; 

NIST, Gaithersburg, MD, USA). The spectrum associated with the instrument response, was 
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divided to the measured Raman spectra. The spectral contribution of optical elements i.e. the 

background signals, were obtained by acquiring spectra of CaF2 window without the sample under 

similar conditions. The response corrected background spectrum was subtracted. In order to remove 

influence of slow moving fluorescence background, first derivative spectrum was computed using 

Savitzky–Golay filter mechanism (window size-3). Correction for spectral differences due to 

relative intensity changes or variation in sample thickness was performed by vector normalization. 

First derivative and vector normalized spectra were interpolated in to desirable spectral regions and 

were used as input for multivariate analysis. Typical ex vivo spectrum at different pre-processing 

steps is shown in Figure 2.7. 

 

 

 

 

 

 

 

 

 

Figure 2.7: Typical ex vivo spectrum at different pre-processing steps A. Raw spectrum B. CCD response 

corrected C. Background corrected D. First Derivative 

2.II.1.d Spectral-comparisons: Average spectra were computed from the background 

subtracted spectra (prior to derivatization) for each class and baseline corrected by fitting a 5th 

order polynomial function. These baseline corrected spectra were used for spectral comparisons 
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across all groups. Difference spectra were computed by subtracting mean normal spectra from 

tumor. In this case all positive bands belong to tumor and negative are from normal tissues. 

2.II.1.e Multivariate analysis: Principal Component-Linear Discriminant Analysis (PC-

LDA) was employed for data analysis. As already described in the Chapter 1 under computational 

techniques section, this method is combination of PCA and LDA. In first step, PCA is performed 

for data reduction and principal components are generated. Of this significant principal components 

(p<0.05) are used as input for LDA based discrimination. This helps in removing or minimizing the 

noise from the data and concentrating on variables important for classification. In order to avoid 

over-fitting of the data, as a thumb rule, total number of factors selected for analysis were less than 

half the number of the spectra in the smallest group. This method of analysis has been utilized by 

various groups [103,151]. PC-LDA models were validated by leave-one-out cross-validation 

(LOOCV) and independent test data. Algorithms for these analyses were implemented in MATLAB 

(Mathworks Inc.) based in-house software [215]. The results of PC-LDA can be depicted as scatter 

plots, generated by plotting various combinations of scores of factors used for discrimination. These 

results can also be presented in form of a confusion matrix, where all diagonal elements are true 

positive predictions and ex-diagonal elements are false positive predictions.  

2.II.2. Results and Discussion  

2.II.2.a Spectral features: Mean spectra along with standard deviation of normal and 

tumor tissues are shown in Figure 2.8. Spectra of normal conditions were dominated by C=O (ester) 

band at 1750 cm-1, strong CH2 bend  at 1450 cm-1 and two sharp features around 1300 cm-1 which 

are attributable to lipids (Figure 2.8A). Predominant protein bands indicated by strong and broad 

amide I (1660 cm-1), broad δCH2 (1450 cm-1) and broad features in the amide III were seen in mean 

tumor spectrum (Figure 2.8B). These features were further confirmed by computing difference 
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spectrum. Mean normal spectrum was subtracted from mean tumor spectrum, thus positive bands 

belongs to tumor while negative bands are from normal. As shown in Figure 2.8C,  strong negative 

ester band (1750 cm-1), δCH2 (1450 cm-1) and two sharp features around 1300 cm-1) indicating 

predominant lipid composition were observed in case of normal. Positive band indicating presence 

of DNA (1340 cm-1), high protein content (amide I and III) were seen in case of tumor.  

Origin of lipid features in normal conditions had been primarily attributed to biochemical 

composition and architectural arrangement of different layers. In case of malignancy, demarcation 

between different layers is lost, leading to mixing of content from different layers, which might give 

rise to protein rich spectrum. Further, fact that cancerous cells secrete large amount of antigen, 

antibodies and receptor proteins could also contribute to origin of protein rich spectrum. Origin of 

negative DNA band observed in case of tumors can be attributed to increase in number of cells due 

to hypercellualrity or inflammation, preliminary events in cancer development. Overall, spectral 

features corroborating with already reported studies were observed for normal and tumor tissues 

and thus reproducibility of spectral features was established. 
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Figure 2.8: Spectral features of normal and tumor tissues A. normal B. tumor C. difference spectra (Tumor - Normal). (Solid line: 

Mean spectrum, Dotted line: Mean + standard deviation, broken line:mean – standard deviation) 
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2.II.2.b Classification of normal and tumor spectra: PC-LDA was performed to 

explore the feasibility of classification between normal and tumor spectra. Standard models for ex 

vivo normal and tumor conditions were developed using 63 and 68 spectra from 8 normal and 8 

tumor tissues, respectively. PC-LDA was performed using 7 factors contributing ~88% correct 

classification efficiency. Scatter plot using score of factor 2 and 3 was generated and shown in 

Figure 2.9. Two independent clusters belonging to normal and tumor spectra respectively were 

obtained.  

 

 

 

 

 

Figure 2.9: PC-LDA of normal and tumor spectra: A. Scree plot B. Scatter plot 

Similar results are presented in form of confusion matrix shown in Table 2.I. Here diagonal 

elements are true positive and ex-diagonal elements are false positive predictions. As can be seen 56 

of 63 normal spectra (89%) and 56 of 68 tumor spectra (82%) were correctly classified (Table 

2.1A). These findings were validated by leave-one-out cross validation (LOOOCV) and results are 

summarized in Table 2.IB. Classification efficiencies of 89 and 79% were observed for normal and 

tumor conditions, respectively. Independent test data set comprising of 256 normal and 296 tumor 

spectra of 28 tissues each was used for estimating prediction efficiencies of the standard models. As 

shown in Table 2.IC, 205 of 256 normal and 284 of 296 tumor spectra were correctly identified. 
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Prediction efficiencies of 80 and 96% were observed for standard models of normal and tumor 

conditions, respectively.  

 

 

 

 

 

 

 

 

Minor misclassification among normal and tumor spectra can be attributed to the sample 

heterogeneity i.e. presence of normal regions in a tumor biopsy or presence of analogous 

inflammatory or hyperplasic patches in a normal specimens. Normal tissues used in the study were 

collected from tumor adjacent areas, therefore possibility of acquiring spectra from an inflammatory 

region cannot be completely ruled out. This is further supported by the fact that majority of oral 

cancer patients have possibilities of developing second primary tumors in normal appearing mucosa 

because of long-term tobacco exposure. Overall, findings of the study demonstrated that spectra of 

normal and tumor biopsies are reproducible and can be objectively classified. 

Influence of sample heterogeneity on prediction efficiency of standard models was further 

explored by correlating spectral predictions of normal and tumor biopsies against their respective 

histopathological reports and the findings are discussed in the following section.  

 

Table 2.I: Summary of classification between normal and tumor spectra A. Standard model; B. LOOCV; C. 

Independent test data (diagonal elements are true positive predictions and ex-diagonal elements are false 

positive predictions) 

A 

B 

C 
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2.III Correlation of the spectral data with histopathology 

Five (5) µm sections of 8 normal and 8 tumor tissues were collected, stained and correlated with 

their corresponding LOOCV spectral predictions. Two of the eight normal tissues show no 

misclassification. A representative true normal section along with its spectral prediction is shown in 

Figure 2.10A. As per the histopathological report this section appears to be completely normal, 

indicated by clearly visible stratification of epithelium into basal, intermediate and superficial 

layers, with prominent evagination of epithelial rete pegs and invaginations of connective tissue 

papilla. The connective tissue is also normal as no inflammatory infiltration was observed. LOOCV 

spectral prediction further corroborates with histopathological findings, as all 7 spectra acquired 

from this tissue were correctly identified (Figure 2.10B).  

 

 

 

 

 

Figure 2.10: A: Histopatholgocial section of a true normal specimen B: LOOCV spectral predictions 

Another representative section along with its spectral prediction of normal tissue is shown in Figure 

2.11. Analysis of histopathological section reveals that there is loss of stratification and presence of 

dysplastic features in the lower 1/3rd of the epithelium (Figure 2.11A). Additionally, there is 

increase in thickness of the intermediate and the superficial layers of the epithelium and para-

keratinization can also be seen. Also some areas in the basal and parabasal layer show abnormality 

indicated by altered staining properties and increased nuclear cytoplasmic ratio (increase in size of 
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the nucleus). LOOCV predictions are shown in Figure 2.11B. Corroborating with histopathological 

report, 3 out of 11 spectra acquired from this tissue were wrongly predicted. This can be attributed 

to above discussed abnormality in the tissues specimen. Overall, misclassifications of normal 

spectra as tumor could be primarily attributed to increased keratotis in stratum superfacialis and 

hyperplasic or inflammatory changes in the epithelium.  

 

 

 

 

 

Figure 2.11: A. Histopathological section of normal specimen B. LOOCV Spectral predictions 

In case of tumors three (3) out of 8 tissues show no misclassification. A representative true tumor 

tissue section is shown in Figure 2.12A. The tissue show moderately differentiated squamous cell 

carcinoma (MDSCC), with complete loss of epithelial stratification and areas of tumor islands with 

neoplastic cells and inflammatory patches. LOOCV spectral predictions were found to be 

corroborating with the histopathological findings, none of the 7 spectra acquired from this tissue 

were misclassified (Figure 2.12B).  

 

 

 

Figure 2.12:  A. Histopathological section of true tumor specimen B. LOOCV Spectral predictions 
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Another representative section of the tumor tissue is shown in Figure 2.13. Histopathological 

analysis of this tissue revealed that the tissue is of well differentiated squamous cell carcinoma type 

(WDSCC), indicated by presence of epithelial islands and keratin pearls (Figure 2.13A). In case of 

WDSCC tumors, level of anaplasia is less therefore cells are more differentiated and closer to the 

tissue of origin i.e. normal. Additionally increased stromal width and inflammatory regions were 

also seen. LOOCV spectral predictions are shown in Figure 2.13B. Corroborating with 

histopathological findings, 4 of the total 11 spectra acquired from this tissue were misclassified as 

normal, which can be primarily attributed to presence of large amount of stroma (normal connective 

tissue).  

 

 

 

 

Figure 2.13: A. Histopathological section of tumor specimen B. LOOCV Spectral predictions 

Most of the tumor tissues used in the study belong to well differentiated category as tissue sections 

show numerous keratin pearls along with adjacent areas of dysplastic or hyperplasic or relatively 

normal mucosal epithelial areas. All these reasons could be attributed to the misclassification of 

tumor spectra as normal.  

Overall findings of the study suggest that Raman spectral profiles are signature of the architectural 

arrangement of different layers in a tissue and misclassifications between normal and tumor spectra 

can be correlated with their respective histopathology.  
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2.IV Raman signals in normal tissues: Study on intact and incised biopsies 

Lipid rich Raman signals in normal tissues had been attributed to membrane lipids. It is believed 

that Raman scattering from upper layers can reach more efficiently to detectors as compared to 

deeper layers owing to losses due to multiple scattering [207-209]. However, in view of recent 

developments in deep tissue Raman spectroscopy, this fact needs revisiting [216]. This study was 

undertaken to explore origin of Raman signals in normal conditions by acquiring spectra from intact 

and incised biopsies and its influence on classification with tumors. 

2. IV.1 Methodology 

 2.IV.1.a Intact and incised biopsy components: Ten scalpel biopsies of approximately 

8 x 6 x 5 mm dimensions from contralateral buccal mucosa of 10 oral cancer patients were 

collected. Tissue samples were collected in phosphate buffer saline (PBS) and transferred to liquid 

nitrogen. Two frozen sections, each of 5μm thickness were obtained longitudinally by orienting 

epithelium and connective tissue in order and used for histopathological examination. In the first 

step, Raman spectra of epithelium (superior surface of biopsy) referred as ‘intact epithelium’ and 

the connective tissue (inferior surface of biopsy) termed as ‘intact connective tissue’, were acquired. 

In the second step, epithelium was separated from connective tissues using surgical blade no.11 

attached to Bard-Parker (BP) handle. The procedure of separation of epithelial and connective tissue 

component was as per the routine technique used in maxillofacial surgery practice. A schematic 

representation of the experimental protocol is shown in Figure 2.14. Raman spectra of the same 

superior and inferior surfaces of incised biopsies were acquired and termed as ‘separated 

epithelium-upper’ and ‘separated connective tissue-lower’.  
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Figure 2.14: A. Schematic presentation of protocol of spectral acquisition: B. Histological Sections of Buccal 

mucosa; Intact and Separated Components 

           2.IV.1.b Spectral acquisition and pre-processing: On an average 5-6 spectra from 

all four surfaces of 10 normal tissues were recorded using previously described fiberoptic probe 

coupled HE-785 commercial Raman spectrometer (Figure 2.5). A total of 234 spectra (68-intact 

epithelium, 53-intact connective tissue, 54-separated epithelium-upper and 59-separated connective 

tissue-lower) were acquired. We have also recorded 128 spectra from 15 histopathologically 

verified tumor biopsies. Spectra were acquired as per the already described protocol (Section 

2.II.1.b) at different points with an average spacing of ~2 mm. Spectral acquisition parameters 

were: laser power–80 mW, acquisition time–10 seconds and averaged over 5 accumulations. 

Spectral pre-processing was performed by as per the previously described protocol (Section: 

2.II.1.c). First derivative and vector normalized spectra in 1200-1800 cm-1 region were used as input 

for multivariate analysis.  

 2.IV.1.c Spectral comparisons: Average spectra were computed from the background 

subtracted spectra (prior to derivatization) for each class and baseline corrected by fitting a 5th order 



Chapter 2 

98 

 

polynomial function. These baseline corrected spectra were used for spectral comparisons across all 

groups.  

 2.IV.1.d Statistical analysis: Both unsupervised PCA and supervised LDA methods were 

used to explore feasibility of classification between different groups using algorithm implemented 

in MATLAB based in-house software [216].  

2.IV.2. Results and Discussion  

2.IV.2.a Spectral features: Mean Raman spectra of ‘intact epithelium’, ‘intact connective 

tissue’, ‘separated epithelium-upper’, ‘separated connective tissue-lower’ and tumors in 1200-1800 

cm-1 region along with standard deviations are shown in Figure 2.15. Spectral features of all four 

groups (Figure 2.15A-D) of normal tissues are suggestive of predominant lipid features indicated by 

ester bands (1745 cm-1), strong δCH2 bend (1450 cm-1), sharp features around amide III region and 

sharp amide I (1660 cm-1). Dominating protein features indicated by broad amide III, broad and 

shifted δCH2 as well as broad amide I can be seen in mean tumor spectrum (Figure 2.15E). Spectra 

of intact and separated connective tissue show strong lipid features in comparison to spectra from 

epithelial surfaces. Likewise, spectra of intact and separated epithelium are similar.  

Biochemically, oral buccal mucosa can be divided in to three parts, epithelium (rich in 

protein), lamina propria (rich in laminin, reticulin proteins and collagenous material) and 

submucosa (rich in lipids) [217]. In the first step when spectra were acquired from superior surface 

of intact biopsies, entire buccal epithelium, lamina propria and portion of submucosal adipose tissue 

could have contributed to the spectrum. It may be the reason for Raman signals of lipids and 

proteins observed in the spectra (Figure 2.15A). Raman spectra obtained from inferior surface, 

Figure 2.15B show strong lipid features along with proteins due to the fact that submucosal adipose 

tissue zone falls within the depth of field of the probe and also Raman cross-section of lipids is 
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larger [129,218]. Origin of protein features in this case could be due to contribution of the epithelial 

surfaces. In contrast to intact biopsies, spectra from superior and inferior surfaces of incised 

biopsies show distinct features. Spectra from ‘separated epithelium-upper’, is rich in protein 

features while spectra of ‘separated connective tissue-lower’ show predominant lipid features 

(Figure 2.15 C,D).  
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Figure 2.15 : Mean and standard deviation spectra: (A) intact epithelium, (B) intact connective tissue, (C) 

separated epithelium-upper, (D) separated connective tissue-lower, and (E) tumor (Solid line: Mean spectra; 

dotted line: Mean + Standard deviation; broken line : Mean - Standard deviation) 

2.IV.2.b Multivariate analysis: In order to understand above mentioned variations and 

similarities across the spectra of different classes and to explore the feasibility of classification, 

multivariate  analysis using both unsupervised (PCA) and supervised (LDA) methods was carried 

out. Loading plots of factors used for PCA are shown in Figure 2.16. In first step, spectra of all four 

groups of normal tissues (‘intact epithelium’,‘intact connective tissue’,‘separated epithelium-upper’ 

and ‘separated connective tissue-lower’) were pooled and PCA was carried out. Best result obtained 

in our analysis is shown in Figure 2.17A, wherein spectra from intact tissues (‘intact epithelium’ 

and ‘intact connective tissue’) gave highly overlapping clusters, while spectra from ‘separated 

epithelium-upper’ and ‘separated connective tissue-lower’ showed a tendency of classification, 

although they overlapped with clusters of intact tissues. In the next step, spectral data from all four 
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groups of normal tissues were subjected to PCA in two stages. First data from intact tissues (‘intact 

epithelium’ and ‘intact connective tissue’) was used for PCA, no classification could be achieved 

(Figure 2.17B). Conversely, PCA of second group i.e. separated sections gave better classification, 

Figure 2.17C. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: Loadings of factor 2 and 3 used for PCA of intact tissues and separated sections [(A) and (B)]; intact 

tissues [(C) and (D); separated sections [(E) and (F)]; PCA along with tumor tissues and intact and incised biopsies 

[(G) and (H)]. 
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Figure 2.17: PCA of spectra acquired from four groups of normal oral tissues: (A) intact and incised biopsies; 

(B) intact tissues; (C) incised tissue 

These results probably suggest that, spectral differences across intact tissues (‘intact 

epithelium’ and ‘intact connective tissue’) are minimal as compared to that of separated sections 

(‘separated epithelium-upper’ and ‘separated connective tissue-lower’). Further influence of 

surface orientation on classification with tumors was explored by analyzing 128 spectra acquired 

from 15 tumor biopsies. As can be seen from Figure 2.19, tumor spectra gave exclusive cluster 

suggesting surface orientation does not have any influence on classification. 

 

 

 

 

 

Figure 2.18: PCA of tumor spectra along with four groups of normal tissues 
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In the next step, supervised analysis using LDA was performed. Forty (40) factors 

accounting up to 95% correct classification were used (Figure 2.20A). As shown in Figure 2.20B, 

four clusters corresponding to ‘intact epithelium’,’ intact connective tissue’, ‘separated epithelium-

upper’ and ‘separated connective tissue-lower’, respectively were obtained. Further analysis of 

scatter plot reveals that clusters corresponding to ‘intact epithelium’ and ‘intact connective tissue’ 

are closer while clusters of ‘separated epithelium-upper’ and ‘separated connective tissue-lower’ 

are placed far apart from each other.  

 

 

 

 

 

 

 

 

Figure 2.19:  LDA of spectra from intact and incised biopsies: A. Scree plot B. Scatter plot 

Summary of classification for all groups is summarized in confusion matrix shown in Table 2.IIA. 

In case of intact tissue, 65 out of 68 spectra of ‘intact epithelium’ and 50 out of 53 spectra of ‘intact 

connective tissue’ were correctly classified. In case of incised biopsies, 52 out of 54 spectra of 

‘separated epithelium-upper’ and 55 out of 59 spectra of ‘separated connective tissue-lower’ were 

correctly classified. Overall, classification efficiency of 94% was observed. These findings were 

validated by LOOCV and results are shown in Table 2.IIB. As can be seen maximum 

misclassifications were observed for intact tissues. Of the 16 misclassifications of ‘intact 
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epithelium’ spectra, 10 are with ‘separated epithelium-upper’ 2 with ‘intact connective tissue’ and 4 

with ‘separated connective tissue-lower’. Among the 21 misclassifications of the ‘intact connective 

tissue’ spectra, 9, 4 and 8 spectra classified as ‘intact epithelium’, ‘separated epithelium-upper’ and 

‘separated connective tissue-lower’, respectively. But the situation is different when the spectra of 

separated sections were considered.  In this case, most of spectra overlap with intact tissues e.g. of 

the 25 misclassifications of ‘separated epithelium-upper’ only 4 are misclassified as ‘separated 

connective tissue-lower’ group. Similarly, only 2 out of 16 spectra of ‘separated connective tissue-

lower’ group were misclassified as ‘separated epithelium-upper’. 21 and 14 misclassifications of 

‘separated epithelium-upper’ and ‘separated connective tissue-lower’ were with ‘intact epithelium’ 

and ‘intact connective tissue’, respectively. This could be attributed to the fact that spectral features 

of intact tissues might have signals from the entire length of the tissue i.e. both the epithelial and 

connective tissue components, supporting the findings of PCA (Figure 2.18).  

  

 

 

 

 

 

 

 

Table 2.II: Summary of classification between intact and incised oral normal buccal mucosa spectra A: LDA, B: 

Leave-one-outcross-validation (diagonal elements are true positive predictions and ex-diagonal elements are false 

positive predictions) 
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Influence of surface orientations on classification with tumors was also evaluated by LDA. Similar 

to earlier observation (Figure 2.19), an exclusive cluster of tumor spectra was obtained (Figure 

2.21). These results are presented in form of a confusion matrix shown in Table 2.III. As can be 

seen only 12 out of 128 (9%) spectra of tumor are wrongly classified, which can be attributed to 

previously described sample heterogeneity. Overall, findings of LDA corroborate with PCA results 

and suggest surface orientation of normal tissues does not have any bearing on classification with 

tumors. 

 

 

 

 

 

 

 

 

Figure 2.20: LDA of tumor spectra along with intact and incised biopsies: A. Scree plot B. Scatter plot 

Table 2.III: Summary of classification of intact and incised oral normal buccal mucosa against tumor spectra 

A:LDA, B:Leave-one-out cross-validation (diagonal elements are true positive predictions and ex-diagonal 

elements are false positive predictions) 
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 Findings of the study suggest that architectural and morphological organization of tissue 

components are the hallmark of spectral signatures. Spectra obtained from upper and lower surface 

of intact oral buccal mucosal biopsy showed lipid and protein signatures due to histological 

arrangement of lipid and collagen molecules in the connective tissue. On the other hand, spectra 

from same surfaces after epithelium separation seem to be different but they overlap with intact 

tissue spectra. Clusters of intact tissues overlap among themselves while clusters from separated 

sections remain exclusive. Therefore, it can be assumed that spectra recorded from either surface 

will have features from entire volume of probing area. This is probably due to collection of signals 

even from deeper layers of tissue. These findings are in tune with existing literature [219,220]. 

However, surface orientations of normal tissue seem to have no bearing on classification with 

tumors.  

2.V Correlation of the spectral data with biochemical composition of the tissue 

This study was undertaken to correlate spectral features of normal and tumor oral tissues with the 

underlying biochemical composition. Spectral parameters derived from curve-deconvolution were 

correlated with biochemical estimations of total protein, total lipid and phospholipids content of the 

same tissues.  

2.V.1 Methodology  

2.V.1.a Clinical samples: Pathologically verified 20 pairs of buccal mucosa biopsies 

(tumor and normal) samples were collected in liquid nitrogen and stored at -800C until use, from 

biorepository, ACTREC.  

2.V.1.b Spectral acquisition: Spectra were acquired using previously described fiberoptic 

probe coupled HE-785 Raman system (Figure 2.5). Tissues were passively thawed and kept on 
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CaF2 window. The window was placed under illumination zone of the fiberoptic probe on a XYZ 

precision stage. Spectra were acquired at different points with an average spacing of ~2 mm. 

Spectra were acquired at 80 mW for 10 seconds and averaged over 5 accumulations. These 

conditions were kept constant during all measurements.  

2.V.1.c Spectral pre-processing: Spectral pre-processing using Labspec 5.0 software was 

performed as per the previously described protocol (Section 2.II.1.c). Briefly, it involves correction 

for CCD response followed by subtraction of background signals and vector-normalization. Spectra 

interpolated in 1200-1800 cm-1 region were baseline corrected by fitting 5th order polynomial 

function. These spectra were used as input for curve- deconvolution studies. 

2.V.1.d Total protein estimation: Total protein content of tissues was estimated as per 

the procedure of Lowry et al.[247]. This method is based on the biuret reaction of aromatic amino 

acid tyrosine and tryptophan in proteins with Folin Ciocalteau’s phenol reagent (FC reagent) 

leading to the formation of a blue color. Tumor and adjacent normal tissues were homogenized in 

appropriate buffer. One hundred (100) µl of either blank/ standard (5-40 µg BSA solution)/ sample 

were taken in test tubes. To this, 1 ml of freshly prepared CTC solution (0.8 N NaOH, 10% sodium 

dodecyl sulphate (SDS) in D/W) was added and the tubes were vortexed. After incubating for 10 

min at room temperature, 500 µl of FC reagent (1:6 dilution) was added, the tubes were vortexed 

and incubated in the dark for 30 minutes at RT. All the samples and standards were run in 

duplicates. Absorbance at 750 nm was measured using a spectrophotometer (U-2001, Hitachi, 

Japan). The concentration of protein (expressed in per mg of tissue weight) in the samples was 

determined from the standard curve.  

 2.V.1.e Total lipid estimation: The total lipid content of the tissues was estimated using 

the protocol of Floch et al. [248]. In this method, firstly the tissue was homogenized in 
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chloroform/methanol (2/1) mixture in a final volume 20 times to the volume of the tissue sample 

(e.g.1g in 20 ml of solvent mixture). After dispersion, the whole mixture was agitated for 15-20 

minutes in an orbital shaker at room temperature. The liquid phase of the homogenate was 

recovered after centrifugation at 1000 rpm for 15 minutes. This was followed by washing with 0.2 

volumes (4 ml for 20 ml) of 0.9% sodium chloride (NaCl) solution. After vortexing the mixture was 

centrifuged at low speed (2000 rpm) to separate the two phases. The upper phase was removed by 

siphoning. The remaining solvent along with the interface was washed with methanol/water (1/1) 

solution without mixing the whole preparation. The lower chloroform phase containing lipids was 

evaporated under a nitrogen stream and lipid content was expressed per mg tissues weight.  

 2.V.1.f Phospholipid estimation: Estimation of phospholipids was performed by the 

method of Rouser et al. [249]. This method is based on the principle of converting the organic 

phosphorus (P) to inorganic phosphorus (P), which on reaction with ammonium molybdate, forms 

phosphomolybdic acid. This in turn, on reduction with ascorbic acid, forms a stable color which can 

be read optically at 800 nm. Dried total lipid samples and standards (1 to 5 µg P/tube) were 

dissolved in 0.65 ml perchloric acid and placed in heated block for about 30 minutes or until the 

yellow color disappears. After cooling, 3.3 ml water, 0.5 ml of molybdate solution and 0.5 ml of 

ascorbic acid solution were added to the tubes and tubes were agitated on a vortex after each 

addition. The tubes were placed in a boiling water bath for 5 minutes and the absorbances of cooled 

samples (including the standards) were read at 800 nm. Amount of phospholipids were calculated 

using standards curve and expressed in per mg of tissue weight.  

2.V.1.g Curve deconvolution: As already mentioned in Chapter 1 under the 

computational technique section, curve deconvolution or peak fitting is a method of computing the 

intensity associated with a band by resolving spectra in to individual components. Nonlinear peak 
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fitting method based on Lavenberg-Marquardt algorithm was employed [109-111]. In this method, 

the sum of the squared differences between observed and computed spectra are minimized to get the 

best fit. Spectra in the 1200 to 1800 cm-1 region were used for analysis. Normal and tumor spectra 

were resolved into 8 and 9 bands, respectively. Each band was characterized by four parameters: 

shape factor, peak position, peak intensity and full width at half maximum (FWHM). Scatter 

intensity plots of lipid (1440 cm-1) and protein bands (1450 and 1660 cm-1) were generated to 

understand the relative contributions of these biomolecules. In our curve analysis, the Gaussian 

band led to a good fit. The fitted spectra (FT), residual (R) depicting differences between the 

original and fitted spectra, and 2nd derivative spectra (2D) depicting exact peak positions were also 

generated.  

2.V.1.h Statistical analysis: The data were expressed as mean + SD and statistical 

comparisons were performed by unpaired student ‘t’ test.  p value less than 0.05 was considered as 

statistically significant.  

2.V.2 Results and Discussion 

Spectra of normal and tumor tissues were interpolated to specific regions and subjected to curve-

deconvolution analysis. Four bands at 1430 cm-1, 1443 cm-1, 1453 cm-1 and 1480 cm-1 in δCH2 

region (1400-1500 cm-1) were observed in case of normal and tumor spectra (Figure 2.21A-D). 

Origin of band at 1440 cm-1 has been attributed to CH2 and CH3 bending modes of lipids. Area 

associated with this band was computed, averaged and subjected to unpaired student ‘t’ test analysis 

to determine the difference between normal and tumor tissues. Statistically significant (p <0.0001) 

difference between the average intensity of the lipid band (1440 cm-1) in normal (1.42 + 0.25) and 

tumor (0.43+0.18) tissues was observed (Figure 2.21E).  
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Origin of band at 1450 cm-1 has been assigned to C-H deformation modes of amino acid side 

chains of the proteins. To correlate protein rich features of tumor tissues, area associated with this 

band was computed, averaged and subjected to unpaired student ‘t’ analysis. Similar to earlier 

observation, significant (p <0.0001) difference between average values of area associated with 1450 

cm-1 band of normal (0.51+0.12) and tumor (1.46+0.29) tissues was observed (Figure 2.21F).  

B 

A 
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Figure 2.21: Curve deconvolution of mean normal (A-B) and tumor (C-D) spectra in δCH2 region (2D- 2nd 

derivative; FT- Fitted spectrum; R- Residual) E-average area under 1440 cm-1 band; F- average area under 1450 

cm-1 band 

In next step, curve-fitting in the amide I region of normal and tumor spectra was performed. Four 

bands at 1620 cm-1, 1656 cm-1, 1680 cm-1 and 1750 cm-1  were fitted in the amide I region (1600-

1800 cm-1) of normal spectrum (Figure 2.22A-B). Five bands at 1540 cm-1, 1590 cm-1, 1628 cm-1, 

1655 cm-1 and 1690 cm-1 were fitted in the mean tumor spectrum in 1500-1800 cm-1 range (Figure 

2.22C-D). Vibrational modes around 1655 cm-1 has been attributed to amide I (C=O stretch) of 

proteins. Intensity associated with this band was calculated, averaged and subjected to unpaired 

student ‘t-test’ analysis. Statistically significant difference (p value <0.0001) was observed between 
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the average intensity associated with 1660 cm-1 bands in normal (0.89+0.28) and tumor (1.12+0.19) 

tissues (Figure 2.22E). 
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Scatter intensity plots were generated to explore the feasibility of classification between normal and 

tumor tissues. Plots of lipid band (1440 cm-1) against protein bands (1450 cm-1&1660 cm-1)  are 

shown in Figure 2.23A,B. Corroborating earlier observations, two separate clusters indicating 

higher intensity of lipid band (1440 cm-1) in normal tissues in comparison to tumors were obtained. 

Similarly, the intensity of the protein band (1450 cm-1 and 1660 cm-1) was high in case of tumors as 

compare to normal tissues.  

 

 

 

 

Figure 2.22: Curve deconvolution of mean normal (A-B) and tumor (C-D) spectra in amide I region (2D-

2nd derivative; FT- Fitted spectrum; R- Residual) E-average area under 1660 cm-1 band 
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Further band intensity of lipid and protein bands were correlated with biochemical composition of 

tissues by estimating amount of total lipid, total protein and phospholipid content from same tissues. 

The protein to lipid and phospholipid ratio was calculated and plotted. As shown in Figure 2.24A, in 

accordance with the spectral features, protein to lipid ratio was high in case of tumors (2.15+0.41) in 

comparison to normal (0.72+0.22). The protein to phospholipid ratio yielded similar results i.e. high in 

tumors (24.13+2.12) and low in normal (16.12+2.28) (Figure 2.24B). The differences with respect to 

protein-lipid and protein-phospholipid ratio between both groups were found to be statistically 

significant (p < 0.05). 

 

 

 

 

 

Figure 2.24: Plot of protein to lipid (A) and phospholipid (B) ratio of normal and tumor tissues 

 

Figure 2.23:  Scatter intensity plots of lipid (1440 cm-1) and protein (1450 cm-1 and 1660 cm-1) bands of normal and 

tumor tissues 
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Lipids are the main constituents of cell membrane which are required for maintaining the cell shape 

and regulation of various cell processes. The alterations in membrane lipids are important aspects of 

malignant transformation. Lipids, particularly polyunsaturated fatty acids, are the major class of 

biomolecules susceptible to oxidative damage by reactive oxygen species generated by tobacco 

exposure. This could be one of the reasons for the decreased amounts of lipids in tumors, as 

suggested by Raman spectra and confirmed by biochemical estimation. A decrease in the 

phospholipid concentration can be attributed to dysfunction of the cell membrane leading to an 

increase in its degradation. The findings of this study indicate that spectral features are hallmark of 

the biochemical composition of a tissue. The presence of tumor in the body produces a number of 

deleterious effects such as anorexia, nausea, impaired digestion and cachexia. Malignant cells are 

known to differ biochemically in many ways from normal cells. Cancer cells show a variety of 

alterations on the cell surface and also display disturbed membrane, as compared to their normal 

counterparts. Spectral features as well as biochemical estimation suggest that the lipid to protein 

ratio is high in normal tissue and low in case of tumors. Overall, findings of curve-deconvolution 

and biochemical estimation correlate very well and corroborate spectral profile noted in earlier 

studies.  

Summary: Studies discussed in this Chapter were carried out as standardization steps before 

initiating the in vivo measurements. Following is the brief summary of the work presented in this 

Chapter: 

1. A fiberoptic probe coupled in vivo Raman spectroscope was procured and assembled. This 

set up was utilized for ex vivo measurements by attaching probe holder and XYZ precision 
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stage. Same instrument was utilized as a Raman microprobe by attaching a microscopic 

objective.  

2. Data acquisition and analysis protocols were standardized by acquiring spectra of ex vivo 

normal and tumor tissues. Reproducibility of spectral features was established. Lipid rich 

features were observed in normal spectra while proteins were predominant in tumor spectra. 

Standard models of normal and tumor conditions with predictions efficiency of 80 and 96 %, 

respectively were developed.  

3. Misclassifications between normal and tumor tissues were analyzed by correlating spectral 

predictions with their histopathology. Findings suggest that misclassification between both 

groups can be primarily attributed to the tissue heterogeneity i.e. presence of normal regions 

in a tumor biopsy and vice-versa.  

4. Raman signals of normal tissues were analyzed by acquiring spectra of intact and incised 

oral biopsies. Findings demonstrated that morphological and architectural arrangements of 

different layers in a tissue contribute to the spectral signatures. Influence of surface 

orientation of normal tissues on classification with tumors was also assessed and it was 

found that orientation does not have any bearing on classification with tumor.  

5. Lipid and protein rich spectral features of normal and tumor tissues were correlated with 

biochemical estimations. Spectral parameters derived from curve-deconvolution analysis 

were found to be highly correlating with biochemical measurements.  

 

 



Chapter 3 

117 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 3 

In vivo Raman spectroscopy 
of oral cancers 

 

 

 
 
 
 
 
 
 

 

 

 

 



Chapter 3 

118 

 

Introduction 

Standardization of data acquisition and analysis methodologies on ex vivo tissues were described in 

Chapter 2. In the present Chapter, findings of in vivo Raman spectroscopic methods in oral cancer 

diagnosis are presented. In the first section, studies pertaining to classification of normal, cancerous 

and premalignant conditions are discussed. This is followed by discrimination of healthy controls 

with and without tobacco habits and classification of oral sub-mucous fibrosis (OSMF) and 

leukoplakia, two of the most common precancerous conditions in Indian population. In the second 

section data on Raman spectroscopic identification of “cancer field effects or malignancy associated 

changes” the earliest event in oral carcinogenesis are presented.  

3.I. Identification of normal, cancer and premalignant conditions 

Visual examination followed by biopsy of the potential cancerous and precancerous lesions is the 

standard diagnosis procedure for oral cancers. However, the invasiveness of the procedure and fact 

that often most of the practitioners and patients are reluctant to perform a confirmatory biopsy 

limits its applicability for diagnosis of early lesions [90]. Non-invasive and objective diagnosis 

using optical spectroscopic techniques is being actively pursued as novel alternative for biopsy. 

This study was undertaken to demonstrate the feasibility of acquiring good quality in vivo Raman 

spectrum under clinically implementable time and to explore classification between normal, 

cancerous and precancerous conditions in the oral buccal mucosa. 

3.I.1 Methodology  

3.I.1.a Clinical samples: The study was approved by Institutional ethics committee, Tata 

Memorial Hospital, Mumbai, India (Project number: 605). Subjects with proper mouth opening and 

referred for surgery at ACTREC were recruited for the study, after obtaining an informed written 
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consent. Clinico-pathological details such as tobacco usage, age, sex and tumor grade of all subjects 

was obtained from electronic medical record (EMR) of Tata Memorial Hospital, Mumbai, India. 

History of all subjects was documented to ensure cause of cancer along with type and duration of 

tobacco habits. Subjects with only tobacco related cancers were recruited in the study. In vivo 

spectra of contralateral normal (opposite side of tumor) and cancerous lesion (tumor) were acquired 

from 113 subjects (101-male, 12-female) with tobacco associated, pathologically verified oral 

squamous cell carcinoma (OSCC). Spectra were also recorded from premalignant patches on the 

contralateral side of the 50 (male) oral cancer subjects. Median age of subjects with cancerous 

lesion and premalignant lesion were 51 and 49 years, respectively. Fifteen (15) age-matched healthy 

controls (13-male, 2-female) without any history of tobacco habit were recruited as negative 

controls. Average age of these subjects was 51 years. Fifteen (15) subjects (14-male, 1-female) with 

similar and long-term tobacco habit were also recruited. Screening criterion of tobacco habit for 

more than 10 years was applied for recruitment of these subjects and average time of tobacco 

consumption was ~14.5 years. Median age of these subjects was 50 years. These details are 

summarized in Table 3.I. The cancerous lesions were diagnosed clinically and verified 

histopathologically by incisional biopsy from the tumor site. Normal mucosa i.e. healthy controls, 

contralateral normal, habitual tobacco users, and premalignant patches were verified by clinical 

assessment conducted by a trained senior oral pathologist. No biopsy was taken from normal 

mucosa owing to ethical limitations.  

 

 

 

 

Table 3.I: Subject accrual details 
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3.I.1.b Instrumentation: In vivo spectra were acquired using the Inphotonics probe 

coupled HE-785 instrument described in Chapter 2 (Section: 2.I). Raman set-up used for acquiring 

in vivo spectrum is shown in Figure 3.1.  

Previously described commercially available Inphotonics fiberoptic probe (Figure 2.4) was adapted 

for in vivo measurements. The working distance of the probe is 5 mm. To maintain a constant focus 

during all measurements a metallic, detachable spacer of length 5 mm was attached at the tip of the 

probe. The photographic representation of the original and modified fiberoptic probe is shown in 

Figure 3.2. The attachment of spacer provided flexibility during in vivo measurements and since it 

can be disinfected, patient to patient contamination was also avoided.  

 

 

 

  

3.I.1.c Spectral acquisition: Previous in vivo studies have demonstrated efficacy of 

Raman spectroscopy in identifying site-wise differences in the oral cavity [213,214]. To exclude 

spectral differences associated with different sites, spectra in the present study were acquired only 

Figure 3.1: Raman spectroscope utilized for in vivo measurements 

Figure 3.2 : Fiberoptic probe used for in vivo measurements (A-original, B-with spacers) 
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from buccal mucosa, both on right and left sides. In order to ensure uniformity, spectra were 

collected as per the teeth positions. Buccal surfaces opposing canine, first premolar, second 

premolar, first molar and second molar both on right and left side were considered as reference 

point and spectra were acquired. Pictorial representation of sites of spectral acquisition is presented 

in Figure 3.3.  

 

 

 

 

 

 

To avoid any differences because of mouth environment, subjects were requested to wash their 

mouth with water before spectral acquisition. To avoid contamination among subjects, spacers were 

disinfected with CIDEX (Johnson and Johnson, Mumbai, India) solution after each acquisition. 

Spectral acquisition parameters were: laser power-80 mW, integration- 3 seconds and averaged over 

3-accumulations. These parameters were kept constant during all measurements. On an average ~8 

spectra (4 from contralateral mucosa and 4 from tumor) from 113 subjects with oral cancer 

corresponding to 444 contralateral normal and 337 tumor spectra were obtained. A total of 206 

spectra from premalignant patches on contralateral side of 50 subjects with OSCC were also 

acquired. For 30 healthy controls (15 with and without tobacco habits each), 10 spectra from right 

and left buccal mucosa corresponding to 150 each from habitual tobacco users and healthy controls 

were acquired. These details are presented in Table 3.I. 

Figure 3.3: Pictorial representation of spectral acquisition sites on buccal mucosa 
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3.I.1.d Spectral pre-processing: Spectral pre-processing was performed as per the 

already described protocol including correction for CCD response followed by subtraction of 

background signals acquired under similar acquisition conditions (Section:2.II.1.c). To minimize 

the influence of slow moving background first derivative of spectra were computed using Savitzky-

Golay method (window size-3). Relative intensity associated differences across different groups 

were corrected by vector normalization. First derivative, vector normalized spectra were used as 

input for multivariate analysis. Typical in vivo spectrum at different pre-processing stages is shown 

in Figure 3.4. 

 

 

 

 

 

 

 

 

 

3.I.1.e Spectral comparisons: Average or mean spectra were computed by averaging 

variations on Y-axis keeping X-axis constant from background subtracted underivatized spectra for 

each class. These spectra were baseline corrected by fitting a 5th order polynomial function and 

were used for computing difference spectrum as well as comparisons across different groups.  

Figure 3.4: Typical in vivo spectrum at different pre-processing steps A. Raw spectrum B. CCD response corrected 

C. Background corrected D. First Derivative 
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3.I.1.f Statistical analysis: PC-LDA method using algorithms implemented in MATLAB 

based in-house software was utilized to explore feasibility of classification among different groups 

[216]. Different spectral regions like full-range, fingerprint and high-wave-number were explored 

for classification. Best classification was achieved in 1200-1800 cm-1 region. Further, this region is 

least influenced by fiber interference. Findings of PC-LDA were evaluated using LOOCV and 

independent test data prediction.  

3.I.2 Results and discussion 

3.I.2.a Spectral features: Mean baseline corrected spectra of contralateral normal, tumor 

and premalignant patches sites along with standard deviations are shown in Figure 3.5 A-C. Spectra 

of contralateral normal show strong lipid features indicated by C=O band of esters (1744 cm-1), 

strong δCH2 bend (1442 cm-1), sharp features in amide III region and sharp peak in amide I region 

(1660 cm-1), Figure 3.5A. Tumor spectra are dominated by protein bands indicated by broad amide 

III, broad and shifted δCH2 and broad amide I and loss of ester band, Figure 3.5B. Spectra of 

premalignant patches show features of both normal and tumor conditions. Minor differences such as 

broadening of amide III, red shifted amide I and δCH2 were observed in comparison to contralateral 

normal. In contrast to tumor spectra, prominent ester (1740 cm-1) and sharp amide I bands were 

observed in spectra of premalignant conditions, Figure 3.5C.  
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Figure 3.5: Mean spectra along with standard deviations A. Contralateral normal B. Tumor C. 

Premalignant. [Solid line: mean spectra, Dotted line: mean+ standard deviation, Broken line: mean –

standard deviation 
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Difference spectra were computed to understand similarities and dissimilarities across normal, 

cancer and premalignant groups. Tumor and premalignant spectra were subtracted from 

contralateral normal. In this case all positive bands belongs to contralateral normal while negative 

bands are from pathological conditions i.e. tumor and premalignant. As shown in Figure 3.6A, 

strong lipid features indicated by positive bands at 1741 cm-1, 1441 cm-1, amide III were observed 

in difference spectrum of contralateral normal. Negative bands around 1340 cm-1 and 1658 cm-1 

which are suggestive of predominant DNA and protein features were observed in tumors. It is a 

well known fact that in pathological conditions there is loss in architectural arrangement of different 

layers therefore; loss of lipid features is expected as contents of different layers are mixed. 

Additionally, pathological conditions cells have large amounts of surface proteins, receptor 

proteins, enzymes, antigens, and anti-bodies which may give rise to a protein-dominated spectrum. 

Difference spectra generated by subtracting premalignant spectra from contralateral normal is 

shown in Figure 3.6B, strong negative DNA band (1340 cm-1) along with minor differences around 

δCH2(1442 cm-1), amide I (1660 cm-1) region were observed. Increase of DNA in pathological 

conditions can be associated with higher hypercellularity or inflammatory index. Spectra of tumor 

was also subtracted from premalignant, in this case positive bands belongs to premalignant while 

negative bands are from tumors, Figure 3.6C. Similar to contralateral normal difference spectra, 

lipid rich features indicated by positive bands around 1740 cm-1, 1305 cm-1 and 1440 cm-1 were 

observed in case of premalignant. Negative band around 1660 cm-1 indicate high protein content in 

tumors as compare to premalignants.  
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All the vibrational modes were assigned based on available literature [221,222]. These findings 

corroborate with earlier reports and are in tune with basic understanding of neoplastic processes 

[213,214]. As it is well known, precancerous and cancerous conditions are fundamentally more 

cellular and hence biochemically have higher level of proteins. In contrast to cancers premalignant 

lesions contain more stromal components, which might explain relatively high lipid content 

observed in premalignant tissues. The observed spectral features can provide vital clues in 

understanding the differences in the biochemical composition of normal, precancerous and 

cancerous oral tissues, which may be used for optical diagnosis. 

3.I.2.b Classification of normal, premalignant and tumors: Above mentioned spectral 

variations were further utilized for classification by employing PC-LDA. Standard models were 

developed using 170 contralateral normal (40 subjects), 192 tumor (40 subjects) and 113 

premalignant spectra (24 subjects). First derivative and vector normalized spectra were used as 

input for multivariate analysis. Fifteen (15) factors accounting up to ~92% correct classification 

Figure 3.6: Comparison of difference spectra across different groups: A. contralateral normal – Tumor; B. 

contralateral normal – Premalignant; C. Premalignant – Tumor.   
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were used for PC-LDA, Figure 3.7A. Scatter plot generated after plotting score of factor 2 and 3 is 

shown in, Figure 3.7B. Three clusters belonging to normal, premalignant and tumor, respectively 

were obtained.  

 

 

 

 

 

 

 

 

 

 

 

These results are summarized in form of a confusion matrix presented in Table 3.IIA. Here diagonal 

elements are true-positive while ex-diagonals indicate false positive predictions. As can be seen that 

151/170 (89%), 106/113 (94%) and 181/192 (94%) spectra of contralateral normal, premalignant 

and tumors, respectively were correctly classified. None of the premalignant spectra misclassified 

with tumor. LOOCV was performed to evaluate efficiency of these models. As shown in Table 

3.IIB, 146 of 170 (86%) spectra from contralateral normal site were correctly classified. Of the 24 

misclassifications 22 were with tumors and remaining 2 with premalignants. In case of tumors, 176 

out of 192 (92%) spectra were correctly classified. Of the 16 misclassifications, 12 were with 

Figure 3.7: PC-LDA of contralateral normal, premalignant and tumor conditions A. Scree plot B. 

Scatter plot 
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contralateral normal and 4 with premalignant. In case of premalignant, 103 out of 113 (91%) 

spectra were correctly classified. Of the 10 misclassifications, 8 were with contralateral normal and 

remaining 2 with tumor.  

 

 

 

 

 

 

 

 

 

Further, test prediction efficiency of the classifier models was evaluated by an independent test data 

set comprising of 274 contralateral normal (73 subjects), 181 tumor (73 subjects) and 93 

premalignant (26 subjects) spectra. As shown in Table 3.IIC, of the 274 test contralateral normal 

spectra, 219 were correctly predicted, and of the 55 wrong predictions, 18 were with premalignant 

and remaining 37 with tumor. Similarly, 156 out of 181 test tumor spectra were correctly identified. 

Among the wrong predictions, 17 were premalignant and 8 were contralateral normal. In case of 

premalignants, 56 out of 93 spectra were correctly predicted. Among the 37 misclassifications, 25 

were contralateral normal and remaining 12 were tumor. Prediction efficiency of 79, 60 and 86% 

for standard models of contralateral normal, premalignant and tumor, respectively was observed.  

Table 3.II: Summary of classification between in vivo Raman spectra of normal, premalignant and tumor 

conditions: A. Standard model, B. LOOCV, C. Independent test data prediction. (diagonal elements are true 

positive predictions and ex-diagonal elements are false positive predictions) 
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Misclassifications between different groups can be primarily attributed to mucosal heterogeneity. 

Highest prediction efficiency was observed in case of tumors (86%) followed by contralateral 

normal (79%) and premalignant (60%). Misclassification of tumor spectra as contralateral normal 

can be explained on the basis of tumor heterogeneity. Spectra in the present study were recorded at 

different points therefore, possibility of acquiring spectra from normal or inflammatory patches in a 

tumor cannot be completely ruled out. Maximum misclassification was observed between 

contralateral normal and premalignant spectra. This is probably due to the fact that premalignant 

patches in the study were from contralateral side. Further, our probing area is around 100-200 μm, 

since transformation of a premalignant zone may not be uniform, possibility of acquiring data from 

a normal site cannot be completely ruled out. This also explains observed misclassification across 

premalignant and malignant, as numbers of instances are very few as malignant conditions represent 

higher degree of transformation as compared to premalignant.  

3.I.2.c Classification of healthy controls with and without tobacco habits: Tobacco 

chewing and smoking are the main etiological factors associated with oral cancer. Long-term 

exposure of tobacco related carcinogens to the mucosa of healthy individual results in 

morphological and biochemical changes leading to the development of premalignant lesions, which 

ultimately transform into cancer. An ideal diagnostic/screening method should be able to 

discriminate between premalignant lesions and closely associated tobacco induced invisible changes 

in the mucosa. Therefore, in the next step, spectra of premalignant patches were analyzed against 

normal contralateral mucosa exposed to tobacco, healthy controls with and without tobacco habits.  

Mean baseline corrected spectra of healthy controls, habitual tobacco users, contralateral 

normal and premalignant patches are shown in Figure 3.8A-D. Spectra of healthy controls suggest 

strong lipid features indicated by ester band (1741 cm-1),sharp amide I (1654 cm-1), δCH2 (1448 cm-
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1), bands around 1272 cm-1 and 1303 cm-1, Figure 3.8A. Almost similar spectral profile indicating 

predominant lipid features was observed for contralateral normal and habitual tobacco users. Minor 

differences such as shift in amide III and δCH2 band and broadening of the amide I region 

suggesting changes in protein secondary structures were observed with respect to healthy controls, 

Figure 3.8B,C.  
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Difference spectra were computed to explore spectral similarities and dissimilarities across all 

groups. Spectra of contralateral normal, habitual tobacco users and premalignant patches were 

subtracted from healthy controls, Figure 3.9A-C. In this case positive bands belong to healthy 

controls and negative are from pathological conditions i.e. premalignant, contralateral normal and 

habitual tobacco users. Negative band around 1340 cm-1 indicating DNA was observed in all 

pathological conditions. Origin of this band can be attributed to long term tobacco associated 

hypercellularity or inflammation induced changes in the mucosa [223]. Intensity of this band was 

highest for premalignants in comparison to other groups, as it represents higher degree of cellularity 

(Figure 3.9A). Almost similar intensity of the DNA band suggesting similar level of 

hypercellularity was seen in contralateral normal and habitual tobacco user difference spectrum, 

Figure 3.9B,C. Positive δCH2 (1440 cm-1) , amide I and ester (1740 cm-1) of healthy control 

suggests strong lipid features in comparison to other groups.  

 

 

Figure 3.8: Mean spectra along with standard deviations A. Healthy controls without tobacco habit, B. Habitual 

tobacco users, C. Contralateral normal, D. Premalignant. (Solid line: mean spectra, Dotted line: mean+ standard 

deviation, Broken line: mean – standard deviation) 
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Mean spectrum of premalignant patches was subtracted from habitual tobacco users. In this case 

positive bands belong to habitual tobacco users and negative bands are from premalignant, Figure 

3.10A. Strong negative band around 1320 cm-1 indicating DNA and δCH2 (1440 cm-1) band 

suggesting higher degree of hypercellularity was observed in case of premalignant. Difference 

spectrum of contralateral normal and habitual tobacco users, shown in Figure 3.10B, suggest almost 

similar spectral profile with minor differences in amide III, amide I and δCH2 bands.  

 

 

 

 

 

 

 

Figure 3.9: Comparison of difference spectra across different groups: A. healthy control – premalignant, B. 

healthy control – contralateral normal, C. healthy control – habitual tobacco users 

Figure 3.10: Comparison of difference spectra across different groups: A. habitual tobacco users– premalignant, B. 

habitual tobacco users – contralateral normal 
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These differences were further explored for classification using PC-LDA followed by LOOCV. A 

total of 583 spectra (150-healthy controls without tobacco habit; 170-contralateral normal under 

tobacco influence; 113-tobacco associated premalignant patches; 150-healthy controls with long-

term tobacco habits) were pooled and analyzed. Seventeen (17) factors contributing up to 86% 

correct classification were used, Figure 3.11A. Scatter plot generated by plotting score of factor 2 

and 3 is shown in, Figure 3.11B. Separate clusters were obtained for spectra of healthy controls 

without tobacco habit and premalignant patches. Spectra of contralateral normal and habitual 

tobacco users show overlap, which can be attributed to similar and long-term tobacco exposure 

associated changes in the oral mucosa.  

 

 

 

 

 

 

 

 

 

Confusion matrix of PC-LDA findings is shown in Table 3.IIIA. All 150 spectra of healthy controls 

without any history of tobacco habits were correctly classified. In case of premalignant, 96/113 

spectra were correctly classified. Among the 17 misclassifications, 15 were with habitual tobacco 

Figure 3.11: PC-LDA of healthy control, contralateral normal, premalignant conditions, habitual tobacco user A. 

Scree plot B. Scatter plot 
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user and 2 with contralateral normal. None of the premalignant spectra misclassified with tumor or 

healthy controls, suggesting exclusive features in these groups. In case of contralateral normal, 

among the 30 misclassifications 27 were with closely related habitual tobacco users and of the 

remaining 3, 2 and 1 were with premalignant and healthy controls, respectively. Similar trend was 

observed in case of habitual tobacco users, in this case of the 25 misclassifications, 20 were with 

contralateral normal.  

 

 

 

 

 

 

 

In the next step, LOOCV was performed to evaluate classification efficiency and results are shown 

in Table 3.IIIB. Maximum misclassification was observed between contralateral normal and 

habitual tobacco users, which can be attributed to similar changes in buccal mucosa due to long-

term tobacco exposure. Among the 37 misclassifications of contralateral normal, 33(89%) were 

with habitual tobacco users, 3(8%) with premalignant and remaining 1(3%) was with healthy 

control. Similarly in case of habitual tobacco users, of the 31 misclassifications, 25(81%) were with 

contralateral normal and remaining 6 (19%) with healthy controls. Twenty-seven (27) spectra from 

premalignant patches were misclassified, of these 21 (78%) were with habitual tobacco users and 6 

Table 3.III: Summary of classification between in vivo Raman spectra of healthy control, contralateral normal, 

premalignant and habitual tobacco user A. Standard model, B. LOOCV. (diagonal elements are true positive 

predictions and ex-diagonal elements are false positive predictions) 
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(12%) were with contralateral normal. Overall classification efficiencies of 98, 78, 76 and 79% 

were observed for healthy controls, contralateral normal, premalignant and habitual tobacco users, 

respectively.   

Highest classification efficiency was observed in case of healthy controls without any tobacco 

habits (98%). In this case very few misclassifications with habitual tobacco users were observed 

which can be explained on the basis of the fact that extent of tobacco related exposure may not be 

uniform across whole mucosa. There is always a possibility that mucosa is still healthy at few 

places. Misclassifications of premalignant spectra with habitual tobacco users are consistent with 

results shown in Table 3.II, i.e. misclassifications of premalignant spectra as contralateral normal. 

Since both the contralateral mucosa of subjects with oral cancer and mucosa of habitual tobacco 

users are exposed to tobacco related carcinogen for longer time, similar changes in comparison to 

healthy controls are expected. This also explains major overlap/misclassifications observed between 

mucosa of contralateral normal and habitual tobacco users. Overall, findings of the study 

demonstrated the feasibility of discriminating healthy controls with and without tobacco habits 

against premalignants.  

3.I.2.d Classification of different premalignant lesions: A wide array of precancerous 

conditions like leukoplakia, erythroplakia, oral lichen planus, oral sub-mucous fibrosis (OSMF), 

erythematosus etc. have been implicated in the development of oral cancer. Leukoplakia and OSMF 

are two of most common precancerous conditions found in Indian population. Clinical 

manifestations of OSMF and leukoplakia are very different. Leukoplakia is described as a white 

patch or plaque that cannot be characterized clinically or pathologically as any other disease. OSMF 

is a chronic progressive condition where fibroelastic changes of oral mucosa along with epithelial 

atrophy leads to stiffness of mucosa resulting in trismus and inability to eat. This study was taken 
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up to evaluate potentials of Raman spectroscopy in discriminating leukoplakia and OSMF, two of 

the most widely occurring premalignant conditions in Indian population.  

Mean baseline corrected spectrum of leukoplakia and OSMF along with standard deviation 

is shown in Figure 3.12. Major differences in the C=O stretching vibrations of the peptide backbone 

were seen between both groups. Broadening of amide I region in case of OSMF can be attributed to 

differences in protein/collagen content of both conditions. In addition to amide I, minor differences 

in amide III and δCH2 region were also seen.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 3.12: Mean spectra along with standard deviations A. Leukoplakia B. OSMF C. Difference spectrum 

(leukoplakia-OSMF) [Solid line: mean spectra, Dotted line: mean+ standard deviation, Broken line: mean – 

standard deviation] 
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Difference spectra obtained by subtracting spectra of OSMF from leukoplakia is shown in Figure 

3.12C. In this case positive bands belong to leukoplakia while negative bands are from OSMF. 

Positive bands around 1558 cm-1and 1571 cm-1 has been assigned to C=C vibrations from porphyrin 

ring and guanine/adenine rings, respectively [221,222]. Presence of these bands in leukoplakia 

spectra can be attributed to bacterial infections associated with poor mouth hygiene and increase in 

cellularity or inflammatory responses associated with the disease. Negative bands in amide III, 

amide I and δCH2 regions of the subtracted OSMF spectra suggests differences in protein or 

collagen content in both conditions.  

These differences were utilized for exploring feasibility of classification between leukoplakia and 

OSMF conditions. A total of 170 and 192 spectra from contralateral normal and tumor sites of 40 

subjects were analyzed against 62 OSMF (14-subjects) and 51 leukoplakia (12-subjects) spectra. 

Twelve (12) factors contributing up to 85% correct classification were used for analysis, Figure 

3.13A. As can be seen from scatter plot shown in Figure 3.13B, two minimally overlapping clusters 

of spectra from OSMF and leukoplakia, respectively were obtained.  

 

 

 

 

 

 

 

 

 

 

Figure 3.13: PC-LDA of leukoplakia, OSMF, contralateral normal and tumor conditions, A. Scree plot 

B. Scatter plot A. Scree plot B. Scatter plot 
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Confusion matrix of PC-LDA and LOOCV analysis is shown in Table 3.IV, as can be seen 147/170 

(86%) contralateral normal and 179/192 (93%) tumor spectra were correctly classified. In case of 

leukoplakia 37/51 (72%) spectra were correctly classified, most of the misclassifications (13 out of 

14) were with OSMF spectra. Only 1 spectrum was wrongly classified as normal. None of the 

leukoplakia spectra were misclassified as tumor. Similar trend was observed for OSMF; in this case 

46/62 (74%) spectra were correctly classified. Of the 16 misclassifications, 13 were with 

leukoplakia, 2 with contralateral normal and 1 with tumor. Findings of PC-LDA were evaluated by 

LOOCV and results are shown in Table 3.IVB. In case of leukoplakia, of the 26 misclassifications 

23 were with OSMF. Similarly in case of OSMF of the 27 misclassifications, 25 were with 

leukoplakia. Similar to earlier observation contralateral normal and tumor spectra were classified 

with an average classification efficiency of ~88%.  

 

 

 

 

 

 

Overall, a tendancy of classification was observed between leukoplakia andOSMF. Very few 

spectra from both groups are wrongly classified as normal or tumor, which further supports already 

described findings regarding objective identification of precancerous conditions. Misclassifications 

among premalignant conditions, leukoplakia and OSMF can be explained on the basis of varying 

Table 3.IV: Summary of classification between in vivo Raman spectra of leukoplakia, OSMF, contralateral 

normal, and tumor A. Standard model, B. LOOCV. (diagonal elements are true positive predictions and ex-

diagonal elements are false positive predictions) 
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grade of thickness of a precancerous patch and the fact that often oral cancer subjects are presented 

with multiple premalignant conditions. Overall, findings of the study support applicability of 

Raman spectroscopic methods in identifying premalignant conditions in oral cavity.  

3.I.2.e Correlation with histopathology: Malignancies arising from the oral cavity are 

epithelial in nature and therefore classified as squamous cell carcinomas (SCC). More than 90% of 

the tumors are of SCC type [224-226]. As per the degree of differentiation it can be divided in to 

three groups (i) well differentiated squamous cell carcinoma (WDSCC)-more than 75% 

keratinization (ii) moderately differentiated squamous cell carcinoma (MDSCC)-approximately 25-

75% keratinization (iii) poorly differentiated squamous cell carcinoma (PDSCC) - less than 25% 

keratinization. The majority of oral cancer cases are MDSCC type [225]. A clear relationship 

between histopathological differentiation and prognosis has not been established, although lack of 

differentiation has been associated with rapid growth and spread of the disease [225,226]. The 

present study was undertaken to assess the influence of variability in tumor pathological grades on 

classification with normal conditions.  

On the basis of tumor grade and differentiation status 86 out of 113 subjects enrolled in the 

study were categorized in to three groups (47-MDSCC, 13-WDSCC and 26-PDSCC). A total of 255 

tumor spectra (130-MDSCC, 48-WDSCC and 77-PDSCC) were obtained from these subjects. 

These spectra were analyzed against 170 contralateral normal spectra of 40 subjects. PC-LDA 

followed by LOOCV was performed to explore the feasibility of classification. Twelve (12) factors 

accounting up to 65% correct classification were used, Figure 3.14A. Scatter plot obtained by 

plotting score of factor 2 and factor 3 is shown in Figure 3.14B. Two separate clusters of 

contralateral normal and tumor spectra were obtained. No clear classification between different 

pathological tumor grades was observed.  
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PC-LDA and LOOCV results are summarized in form of a confusion matrix shown in Table 3.V. 

Contralateral normal spectra were classified with an efficiency of 77%. Major overlap was observed 

in case of tumors of different pathological grades. Only 37% spectra from MDSCC, 29% spectra 

from PDSCC and 50% spectra from WDSCC were correctly classified. Most of the 

misclassifications are among the different pathological grades. This can be attributed to tumor 

Figure 3.14: PC-LDA of contralateral normal, MDSCC, PDSCC and WDSCC tumors A. Scree plot B. Scatter 

plot A. Scree plot B. Scatter plot 

Table 3.V: Summary of classification between contralateral normal, MDSCC, PDSCC and WDSCC tumors A. 

Standard model, B. LOOCV. (diagonal elements are true positive predictions and ex-diagonal elements are 

false positive predictions) 
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heterogeneity i.e. in a tumor there is always a possibility of presences of mixed pathologies. 

Overall, findings of the study suggest that spectra of normal and tumor conditions can be 

objectively classified. However, variability in tumor grade seems to have no bearing on 

classification with normal conditions.  

3.II  Study on cancer field effects or malignancy associated changes 

Appearance of a clinically visibly precancerous lesion or condition in oral cancers is often preceded 

by microarchitectural changes in the oral cavity. Occurrences of these clinically or histologically 

unrecognizable subtle perturbations are attributed to ‘malignancy-associated-changes’ (MACs) or 

cancer-field-effects (CFEs)’, terms often used interchangeably. These effects have been primarily 

associated with the development of second primary tumors (SPTs) in the oral cavity. Subjects 

suffering from SPT pose serious challenges in clinical evaluation, planning of treatment regimen 

and post-treatment quality of patient's life in terms of associated morbidity. Identification of CFEs 

or MACs may serve as a novel screening tool which can reduce the morbidity and mortality 

associated with multiple potentially malignant transforming fields. In the present study, feasibility 

of in vivo Raman spectroscopic identification of changes that are indicative of neoplastic 

transformation has been explored.  

3.II.1 Methodology  

3.II.1.a Clinical samples: Fourteen (14) subjects (8-male,6-female) with buccal mucosa 

SCC lesion and without any history of tobacco usage were included (non-habitués contralateral) in 

addition to the subjects accrued for the earlier study (Section: 3.I.1.a). These details are presented 

in Table 3.V. Briefly, it includes 40 subjects (male) with tobacco associated pathologically verified 

buccal mucosa lesion, 15 subjects (13-male, 2-female) without any history of tobacco habits 
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(healthy controls), 15 subjects (14-male,1-female) with long-term tobacco habit (habitués healthy 

controls). Median age of tumor, habitués healthy control, non-habitués contralateral and healthy 

control subjects were 51, 50, 45 and 51 years, respectively.  

 

 

 

 

 

 

3.II.1.b Instrumentation: In vivo spectra were acquired using previously described 

fiberoptic probe coupled HE-785 instrument (Figure 3.1), as per teeth positions on buccal mucosa 

as shown in Figure 3.3. Subjects were requested to wash their mouth with distilled water before 

spectral acquisitions to avoid any differences because of the mouth environment. 

3.II.1.c Spectral-acquisition: In cancer patients, spectra were acquired from both 

contralateral normal (opposite side of tumor) and tumor site to obtain a total of 170 contralateral 

and 192 tumor spectra. For healthy controls with and without tobacco habits, 10 spectra 

corresponding to a total of 150 spectra were acquired from the left and right buccal mucosa. Sixty 

(60) spectra were acquired from contralateral normal side of 14 non-habitués oral cancer subjects. 

Spectral acquisition parameters were: λex-785 nm, laser power-80 mW, integration- 3 seconds and 

averaged over 3 accumulations. 

3.II.1.d Spectral preprocessing: Spectral preprocessing involving correction for CCD 

response and background signals was performed as per the previously described procedure 

(Section:2.II.1.c). First derivative, vector normalized spectra in 1200-1800 cm-1 region were used 

Table 3.VI: Subject accrual details 
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as input for multivariate analysis for PC-LDA followed by LOOCV. Mean spectrum for each group 

was generated by averaging Y axis keeping X axis constant and baseline corrected by fitting a 5th 

order polynomial function. These were used for spectral comparisons and computing difference 

spectra.  

3.II.2 Results and discussion 

3.II.2.a Spectral features: Average spectra along with standard deviation of (a) healthy 

control, (b) contralateral normal, (c) non-habitués contralateral, (d) habitués healthy controls and (e) 

tumor were computed and are shown in Figure 3.15. Similar to earlier observations, spectral 

features of healthy controls are dominated by strong lipid features indicated by δCH2 bend (1440 

cm-1), two sharp features in amide III region, sharp peak around amide I (1660 cm-1) and ester band 

around 1744 cm-1. Broad features in amide III region, broad and shifted δCH2 and broad amide I in 

mean tumor spectrum indicate protein dominance. Spectra of contralateral normal and habitués 

healthy controls are also dominated by lipid bands but exhibit minor differences, with respect to 

healthy controls, such as minor shift in amide III and δCH2 bend (1440 cm-1) as well as broadening 

of amide I region suggesting changes in protein secondary structures. Mean spectra of non-habitués 

contralateral subjects show spectral profile similar to that of healthy controls with minor differences 

like sharp amide I and additional bands in ester region (1745 cm-1).  
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 Figure 3.15: Mean spectra along with standard deviations A- Healthy controls B- Habitués healthy 

controls C- Contralateral normal D- Nonhabitués contralateral normal E-Tumor (Solid line: mean 

spectra, Dotted line: mean+ standard deviation, Broken line: mean – standard deviation) 
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Spectral similarities and dissimilarities across various groups were further analyzed by computing 

difference spectra. In first step, difference spectra of pathological conditions i.e. tumor (i), 

contralateral normal (ii), non-habitués contralateral normal (iii) and habitués healthy controls (iv) 

were computed by subtracting them from healthy controls. As can be seen from Figure 3.15A-D, all 

positive peaks correspond to healthy controls and negative bands are from various pathological 

conditions. Difference tumor spectrum (Figure 3.16A) exhibit loss of lipids (1440, 1300, 1743 cm-1) 

and presence of DNA (1340, 1480 cm-1) and haemoglobin (~1560 cm-1), which could be attributed 

to increase in number of dividing nuclei and angiogenesis, respectively, which are known hallmarks 

of tumorigenesis. Negative bands suggesting presence of DNA (1340, 1480 cm-1) and loss of lipids 

(1300, 1440, 1743 cm-1) were also seen in difference spectrum of other pathological conditions 

(Figure 3.16B-D). Long term tobacco exposure is known to cause increase in proliferation of 

epithelial cells in the upper aero-digestive tract of tobacco users and can be considered as 

preliminary event for genetic changes culminating in the development of oral SCC.  

 

 

 

 

 

 

 

 

To understand influence of long-term tobacco exposure, spectra of tumor, contralateral normal and 

non-habitués contralateral were subtracted from mean habitués healthy controls spectrum, Figure 

Figure 3.16: Comparison of difference spectra across different groups. A. Healthy Control – Tumor ; B. 

Healthy Control – contralateral normal; C. Healthy Control - Non-habitués contralateral normal; D. 

Healthy Control - Habitués healthy control. 
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3.17A-C. In this case positive bands correspond to habitués healthy controls and negative bands to 

pathological conditions. Once again, tumor spectra show loss of lipids (1300, 1440, 1743 cm-1), 

predominant protein features (broad 1660 cm-1) and prominent DNA bands (1340, 1480 cm-1), 

Figure 3.17A. Positive DNA bands along with loss of lipid features (1300,1440,1650, 1743 cm-1) 

were observed in difference spectrum of non-habitués contralateral, which could be attributed to 

tobacco induced hypercellularity (Figure 3.17C). These features were further corroborated by 

computing difference spectra of contralateral normal as shown in Figure 3.16B. No major 

differences except minor shift in δCH2 band were observed.  

 

 

 

 

 

 

 

 

Difference spectrum of tumor and non-habitués contralateral were computed by subtracting from 

contralateral normal spectra (Figure 3.18A,B). Here, positive peaks corresponds to contralateral 

normal and negative peaks to tumor and non-habitués contralateral normal. Similar to earlier 

observations loss of lipids and predominant protein features suggested by negative amide I (~1658 

cm-1), amide III were seen in difference spectrum of tumors, Figure 3.18A. Difference spectra of 

Figure 3.17:Comparison of difference spectra across different groups. A. Habitués healthy control – Tumor; 

B. Habitués healthy control – Contralateral Normal C. Habitúes healthy control– Non-habitués contralateral 

normal. 
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non-habitués contralateral normal suggest differences in lipid content (negative bands 1440, 1743 

cm-1). In addition positive DNA bands (1340, 1480 cm-1) were also observed which could be 

attributed to tobacco induced hypercellularity, Figure 3.18B.  

 

 

 

 

 

 

 

 

 

Difference tumor spectrum was computed by subtracting from mean non-habitués contralateral 

normal spectrum. Observed spectral features in this case corroborate earlier observations, i.e. loss of 

lipids (1300,1440,1743 cm-1) and presence of DNA bands (1340, 1480 cm-1), as shown in Figure 

3.19. Overall, major spectral variability was observed in bands associated with DNA (1340, 1480 

cm-1), proteins (amide I, III, δCH2) and lipids (δCH2 deformation, twisting and ester). Loss of lipids 

seems to be a common feature for most of the pathological conditions in comparison to healthy 

controls.  

 

 

 

 

Figure 3.18: Comparison of difference spectra across different groups. A. Contralateral Normal –

Tumor; B. Contralateral Normal – Non-Habitúes contralateral normal. 

Figure 3.19: Difference spectrum (Non-habitúes contralateral normal – Tumor) 
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3.II.2.b Classification of healthy controls: In order to utilize above mentioned spectral 

differences for classification PC-LDA followed by LOOCV was performed. In first step, the 

efficacy of Raman spectroscopy in correctly identifying negative controls i.e. healthy controls 

without tobacco habit was demonstrated. Spectral data of healthy controls, contralateral normal and 

tumor sites were subjected to PC-LDA using 5 factors accounting for ~92% correct classification 

(Figure 3.20A). As shown in Figure 3.20B, cluster belonging to healthy control is exclusive, while 

that of contralateral normal and tumor show minimal overlap.  

 

 

 

 

 

 

 

 

 

Similar results are presented in form of a confusion matrix shown in Table 3.VII. In case of healthy 

controls, 148/150 spectra (98%) were correctly classified. Two (2) spectra were wrongly classified 

as contralateral normal. In case of tumors, 180/192 spectra (94%) were correctly classified. In 

accordance with already discussed results, most of the misclassifications were with contralateral 

normal. After LOOCV (Table 3.VIIB) only 2 out of 150 (1%) spectra from healthy control were 

wrongly classified as contralateral normal. Corroborating the earlier findings, 14 tumor spectra were 

Figure 3.20: PC-LDA of healthy controls, contralateral normal and tumors, A.Scree plot B. Scatter plot  
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misclassified as contralateral normal, while 23 contralateral normal spectra were wrongly classified 

as tumor. Overlap among contralateral and tumor could be attributed to the presence of 

transformation zones in visibly normal mucosa and heterogeneous nature of tumors. 

 

 

 

 

 

 

 

3.II.2.c Classification of habitués healthy controls: In order to explore the feasibility 

of identifying changes due to tobacco exposure, spectral data of habitués healthy controls along 

with healthy controls, contralateral normal and tumor sites were analyzed by PC-LDA. In this case, 

8 factors accounting for ~82 % correct classification were used for analysis, Figure 3.21A. Similar 

to earlier observation, an exclusive cluster of healthy controls and two minimally overlapping 

clusters of contralateral normal and tumor sites of habitués oral cancer subjects were obtained 

(Figure 3.21B). Major overlap was observed between contralateral normal mucosa and habitués 

healthy controls.  

 

 

Table 3.VII: Summary of classification between in vivo Raman spectra of Healthy controls, contralateral 

normal and tumor A. Standard model, B. LOOCV (diagonal elements are true positive predictions and ex-

diagonal elements are false positive predictions) 
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Similar results are shown in Table 3.VIIIA, 146/150 spectra (97%) of healthy controls and 168/192 

spectra (87%) of tumor were correctly classified. Major overlap was observed between spectra 

obtained from contralateral normal site of tobacco using oral cancer subjects and habitués healthy 

controls. 46 spectra of habitués healthy controls were misclassified, of these 41 (89%) were with 

closely related contralateral normal and remaining 5 with healthy controls. Similarly 30 of the total 

51 misclassification (59%) of contralateral normal were with habitués healthy controls. The 

findings of LOOCV, shown in Table 3.VIIIB, indicate that only 6 spectra from healthy controls 

were misclassified (4 as contralateral normal and 2 as habitués healthy control) and 52 out of 170 

spectra of contralateral normal were wrongly classified (21 as tumor and 31 as habitués healthy 

controls). In case of habitués healthy controls of 47 misclassifications (42 with contralateral and 5 

with healthy controls) were noted. This could be attributed to tobacco induced cancer field effects 

suggesting that early changes due to carcinogen exposure can be identified. In case of tumor, 26 

spectra (19 as habitués healthy and 7 as contralateral normal) were wrongly classified, which could 

Figure 3.21: PC-LDA of healthy controls, contralateral normal, tumor and habitués healthy controls A. 

Scree plot B. Scatter plot. 
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be due to the presence of analogous regions of inflammation as a result of tobacco exposure within 

tumor (tumor- heterogeneity) and early transformation zones in visibly normal mucosa. 

 

 

 

 

 

 

 

 

 

 

3.II.2.d Classification of non- habitués cancer subjects : Although tobacco is known 

major etiological factor for oral cancers, there is a sizeable occurrence of oral cancers in subjects 

without tobacco habits. To study the transformation in uninvolved mucosa of such cases, analysis 

was carried out on non-habitués contralateral subjects along with habitués contralateral normal, 

habitués and non-habitués healthy controls by PC-LDA using 8 factors, accounting up to ~85% 

correct classification, Figure 3.22A. Similar to earlier observations, an exclusive cluster of healthy 

controls and overlapping clusters of contralateral normal and habitués healthy controls were 

obtained. Contralateral normal side of non-habitués cancer subjects also yielded an exclusive cluster 

(Figure 3.22B).  

 

Table 3.VIII: Summary of classification between in vivo Raman spectra of Healthy controls, contralateral 

normal, tumor and habitués healthy control A. Standard model, B. LOOCV. (diagonal elements are true 

positive predictions and ex-diagonal elements are false positive predictions) 
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PC-LDA and LOOCV results are shown in form of a confusion matrix in Table 3.VIII. As can be 

seen 148/150 spectra of healthy controls and 134/170 spectra of contralateral normal were correctly 

classified (Table 3.IXA). None of the spectra of healthy controls and contralateral normal 

misclassified with non habitués contralateral normal. Corroborating earlier observations, most of 

the misclassifications (97%) of contralateral normal were with habitués healthy controls. Similarly 

in case of habitués healthy controls, 23 of the total 28 misclassifications were with contralateral 

normal. As can be seen from LOOCV results shown in Table 3.IXB, 51 out of 60 spectra of non-

habitués contralateral normal were correctly classified. The minor misclassifications were with 

contralateral (5 spectra) and habitués healthy controls (4 spectra). Overlap between contralateral 

normal and habitués healthy controls were observed. Of the total 37 misclassifications of 

contralateral normal, 36 were with habitués healthy controls and 1 with healthy control. In case of 

habitués healthy controls, of the 29 misclassifications, 24 were with contralateral normal, 4 with 

healthy controls and 1 with non-habitués contralateral. In this case, both contralateral normal 

mucosa and non-habitués contralateral mucosa showed no overlap with healthy controls, suggesting 

Figure 3.22: PC-LDA of healthy controls, contralateral normal, habitués healthy control and nonhabitués 

contralateral normal A. Scree plot B. Scatter plot. 



Chapter 3 

153 

 

occurrence of CFE/MAC. No overlap between contralateral normal mucosa and non-habitués 

contralateral mucosa was also observed which suggest that early transformation changes in both 

groups may be different.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Findings of the study suggest that subtle changes because of tobacco abuse/unknown 

etiological factors, which may be indicative of early neoplastic transformation in clinically normal 

appearing contralateral mucosa i.e. CFE/MAC, may be detected by Raman spectroscopy. The non-

invasiveness and use of harmless excitation wavelength impart this method several advantages, and 

thus prospectively Raman spectroscopy has potential to become an ideal mass screening tool in 

public health programs. 

Table 3.IX: Summary of classification between in vivo Raman spectra of Healthy controls, contralateral 

normal, habitués healthy control and nonhabitués contralateral normal A. Standard model, B. LOOCV 

(diagonal elements are true positive predictions and elements are false positive predictions) 
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Summary: Studies reported in this Chapter were carried out using a fiberoptic probe coupled 

Raman spectroscope. To the best of our knowledge, for the first time, we have demonstrated the 

feasibility of acquiring good quality in vivo Raman spectra under clinically implementable time in 

Indian population. Following is the brief summary of the work presented in this Chapter. 

1. Feasibility of objectively classifying premalignant lesions against contralateral normal and 

tumors was demonstrated. Standard models for all three conditions were developed and 

evaluated with independent test data. 

2. Discrimination of premalignant conditions against closely related habitual tobacco user was 

explored. Findings suggest that premalignant lesions can be objectively discriminated. 

3. Classification of OSMF and leukoplakia, two of the most commonly occurring precancerous 

conditions in Indian population was explored and feasibility of classification between both 

conditions was demonstrated.  

4. Influence of variability in tumor pathological grades on classification with normal tissues 

was assessed. Results suggest that variation in the pathological grade of tumor does not have 

any bearing on classification.  

5. Potential of Raman spectroscopy in identifying invisible changes that are indicative of 

neoplastic transformation was also evaluated. Findings suggest that ‘cancer field effects or 

malignancy associated changes’, earliest events in oral carcinogenesis can be identified and 

supports applicability of Raman spectroscopic methods as a non-invasive mass screening 

tool. 
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Introduction 

Ex vivo and in vivo Raman spectroscopic studies have demonstrated that normal, cancerous and 

precancerous conditions in oral buccal mucosa can be objectively classified. The present study aims 

at evaluating potentials of Raman spectroscopy in identifying minor changes associated with loss of 

‘keratin’ in oral cancer cells. In the first section, a brief introduction about keratin protein and its 

applicability as a marker in oral cancers is presented. It is followed by Raman spectroscopic study 

on cell pellets of keratin expressing and knockdown oral cancer cells is presented. The last section 

of the Chapter deals with Raman microspectroscopic studies of single vector control and 

knockdown oral cancer cells.  

4.I Keratins: An Overview 

The cytoskeleton of all metazoan cells consists of three major filamentous networks namely: 

microfilaments (MFs), microtubules (MTs) and intermediate filaments (IFs). The integrated 

network formed by these filament systems is responsible for the mechanical integrity of the cell and 

is critical for cellular processes like cell division, motility and plasticity [227]. The name 

“intermediate filaments” comes from their size of diameter (10–12 nm) being intermediate between 

that of MTs (20-25 nm) and MFs (4-6 nm). They are mostly involved in the maintenance of cell 

shape, cell organelles, locomotion, intracellular organization, cell division and transport. 

Intermediate filament proteins, based on the amino-acid sequence identity and polymerization 

properties and can be subdivided into 6 subgroups. They are preferentially expressed in a tissue 

specific and differentiation dependent manner. Due to their cell type specific expression, IFs serve 

as cell type markers and are being explored as diagnostic markers. Pattern of IF proteins expression 

in different tissues is shown in the Table 4.I. 
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Cytokeratins or keratins (K) are largest subgroup of intermediate filament (IF) proteins 

preferentially expressed in epithelial tissues. On the basis of molecular weight and isoelectric point 

these can be subdivided into type I acidic (K9-K28) and type II basic (K1-K8 and K71-K74) 

keratins. They are obligatory heteropolymers and are assembled  in 1:1 molar ratio, consisting of 

one type  I  and  one  type  II  keratins  [227-232]. Epithelial  tissues  express  different  pairs  of 

keratins depending on the cell type e.g. all stratified squamous epithelia express K5/14 while K8/18  

are  seen  in  all  simple  epithelia  [233,234]. All keratin  filaments have  a highly conserved central 

coil-coil α-helical ‘rod’ domain that is flanked by a non-a-helical N-terminal ‘head’ and C-terminal 

‘tail’ domains of various lengths [232,235]. In  addition  to  cytoprotective  functions,  they  also  

perform  important regulatory  functions  by  modulating  certain  signaling  pathways  associated  

with  variety of  cellular processes  such  as  protein  synthesis,  cell  growth,  cell  differentiation,  

apoptosis  and osmoregulation  [236-240].  

 In squamous epithelia like oral epithelia, keratins exhibit a complex expression pattern which 

is tightly regulated with differentiation program of the tissue. Keratins 8 and 18 (K8 and K18) are 

predominantly expressed in simple epithelial tissues and perform protective and regulatory 

Table 4.I: Classification of IF proteins based on their tissue specificity and polymerization 

properties. (Adapted from reference: 228) 
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functions like modulation of protein localization, protein targeting/trafficking and protein synthesis. 

K8 and K18 expression is not observed in stratified adult epithelial tissues like oral buccal mucosa. 

However, they are often aberrantly expressed in carcinomas including oral SCC and their 

expression is correlated with invasion and poor prognosis [241,242].  K8/18  along  with vimentin  

has  also  been  associated  with  drug  resistance,  metastatic  and  invasive properties  of  some  

carcinomas  and melanomas  [243].   

 Gene knockdown refers to an experimental technique by which the expression of one or more 

genes is reduced. The reduction can occur either through genetic modification or by treatment with 

a reagent such as a short DNA or RNA oligonucleotide having a complementary sequence to either 

gene or an mRNA transcript of interest. Recently, Alam et al. have generated stable clones of K8 

knockdown cells using short hairpin (shRNA) constructs and shown that depletion of K8 expression 

level leads to decreased tumorigenicity and cell migration accompanied with changes in cell shape 

and actin cytoskeleton in OSCC derived cell line AW13516 [244]. Furthermore, loss of K8 

phosphorylation also resulted in increase in tumorigenic potential of these cells [245].   

 Studies utilizing Raman spectroscopic methods as biosensors for identifying morphological 

changes associated with drug treatment, apoptosis or pathological conditions are reported in 

literature [250-252]. The greatest benefits of this technique are its high sensitivity and capability for 

non-invasive sensing. Unlike conventional biological assays, biochemical analysis of cells and 

tissues with Raman spectroscopy does not require the use of fixatives, markers or stains. The 

present study was undertaken to assess the potentials of Raman spectroscopy in identifying minor 

changes associated with depletion of keratin expression in oral cancer cells. 
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4.II   Raman spectroscopic study on cell pellets 

In the first step cell pellets of vector control and knockdown cells were generated and efficacy of 

Raman spectroscopy in identifying changes associated with differential level of keratin expression 

was evaluated.  

4.II.1 Methodology 

 4.II.1.a Cell line: AW-13516 cells, derived from poorly differentiated SCC of tongue were 

used. Cells have morphology of typical epithelial cells, numerous mitotic features individual cell 

diskeratosis with occasional nuclear and nucleolar abnormalities [246]. The cells were cultured in 

IMDM media (Gibco), supplemented with 10% fetal calf serum (FCS; Hyclone) and 1% antibiotics 

solution (Amphotericin  B -20  µg/ml,  Penicillin -2500  Units/ml,  Streptomycin -800  µg/ml  of 

1XPBS), at 370C and under a 5%  CO2 atmosphere [244-246]. Stable clones of already established 

K8 knockdown AW-13516 cells i.e. with reduced K8 protein expression, were chosen and cultured 

under similar conditions [244]. Cells harboring only the vector were termed as ‘vector control cells’ 

and had normal expression of keratin.  Cells in which the keratin gene was ‘knocked’ down with a 

vector harboring shRNA against Keratin 8 had reduced expression of kerain 8 and were referred to 

as ‘knockdown cells’. 

 4.II.1.b Generation of cell pellets: Approximately 1x106 cells of both vector control and 

knockdown groups were grown up to 80% confluence. In order to bring all the cells in the same 

phase of cell-cycle, they were synchronized by growing under serum-free conditions for 24 hrs.  

Cells were collected by scrapping from plates using a cell scrapper and centrifuged at 2000 rpm for 

10 minutes to obtain pellets followed by washing with PBS buffer (150 mM NaCl, 2 mM KCl, 8 
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mM Na2HPO4 and 1 mM KH2PO4) twice. The experiments were repeated four times with two 

pellets each time.  

 4.II.1.c Fiberoptic Raman spectroscopy: Cell pellets of both knockdown and vector 

control cells were placed on a CaF2 window and spectra were acquired using already described 

fiber-optic probe coupled Raman set up along with a XYZ precision stage (Figure 2.5). A total of 

123 and 96 spectra were recorded from vector controls and knockdown cells, respectively from four 

independent experiments.  

4.II.1.d Preprocessing and Multivariate analysis: Raman spectra obtained from both 

vector control cells and knock down cell pellets were preprocessed as per the already described 

protocol including correction for CCD response followed by subtraction of contaminating fibers 

signals (Section: 2.II.1.c). First derivative and vector normalized spectra in 1200-1800 cm-1 region 

were used as input for multivariate analysis by PC-LDA followed by LOOCV. Average spectra 

were computed from the background subtracted spectra prior to derivatization for each class and 

baseline corrected by fitting a fifth order polynomial function. These baseline corrected, 

smoothened (Savitzky-Golay method, window size-3) and vector normalized spectra were used for 

spectral comparisons and computing difference spectrum.  

4.II.2 Results and Discussion 

4.II.2.a Spectral features: Mean baseline corrected spectra along with standard deviation 

of vector control and k8 knockdown cell pellets are shown in Figure 4.1. Spectra of vector control 

cells (Figure 4.1A) have bands associated with vibrations of glycine backbone and proline side 

chains (1204 cm-1), amide III, C-N asymmetric stretching mode of aromatic amino acids (1307 cm-

1),δCH2 deformation (1440 cm-1) and amide I (1660 cm-1). Spectra of knockdown cells show similar 
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profile to that of vector controls cells along with differences in amide III, δCH2 and amide I regions 

(Figure 4.1B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.1: Mean spectra along with standard deviations of A. vector control cell pellets, B. K8 knockdown 

cell pellets, C. Difference spectrum (K8 knockdown – vector control) 
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Differences in protein content can be primarily attributed to the fact that knockdown and vector 

controls express differential amount of surface proteins. Difference spectra were computed by 

subtracting spectra of vector control cells from knockdown cells. In this case positive bands are of 

knockdown cells and negative bands are of vector controls. Negative bands around amide III, δCH2 

and amide I indicating higher protein content in vector control cells in comparison to knockdown 

cells were observed, Figure 4.1C.  

 4.II.2.b Classification of K8 knock-down and vector control cells: In order to utilize 

above mentioned spectral differences for classification, PC-LDA followed by LOOCV was 

performed using first derivative vector normalized spectra in the 1200-1800 cm-1 region as input. 

Five (5) factors contributing up to 72% correct classification were used, Figure 4.2A. Score of 

factor 2 and 3 were explored for classification. Two minimally overlapping clusters of vector 

control and knockdown cells were obtained, Figure 4.2B.  

 

 

 

 

 

 

 

 

 Figure 4.2: PC-LDA of spectra of K8 knock down and vector control cell pellets spectra: A. Scree plot B. 

Scatter plot 
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Similar results are presented in form of a confusion matrix in Table 4.II. Here all diagonal elements 

are true positive predictions while ex-diagonals indicate false positive predictions. Eighty-seven 

(87) of 123 spectra of vector controls and 70 of 96 spectra of knockdown cells with an efficiency of 

71 and 73% respectively were correctly classified. These findings were validated by LOOCV and 

results are presented in Table 4.IIIB. In this case 79/123 and 56/96 spectra of knockdown and vector 

control cells, respectively with an average classification efficiency of 63% were correctly classified.  

 

Earlier studies have shown that K8 knockdown leads to changes in the cell morphology [244]. 

Contrasting morphological differences between both groups could be the main reason behind 

classification of vector and knockdown cells. Morphological difference between both groups of 

cells was further analyzed by phase contrast microscopy. As shown in Figure 4.3A, vector control 

cells have more actin based filamentous protrusions and they are elongated in shape. In contrast to 

vector controls, knockdown cells show very few actin based protrusions and have symmetric 

contracted epithelial appearance, Figure 4.3B. This pattern was compared with the already reported 

profile of actin in vector control and knockdown cells stained with FITC-conjugated phalloidin, 

followed by analysis with confocal microscopy. A reported image of vector control and knockdown 

Table 4.II: Summary of classification between K8 knockdown and vector control cell pellet spectra. A. 

Standard model B. LOOCV (diagonal elements are true positive predictions and ex-diagonal elements are 

false positive predictions) 
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cells depicting differences in cell morphology and loss of actin filaments, adapted from reference 

244 is presented in Figure 4.4.  

  

 

 

 

 

 

 

 

 

 

 

 

 

  

The high rate of misclassifications between knockdown and vector control cells can be primarily 

attributed to the fact that spectra were acquired from cell pellets rather than single cells. Further, 

knockdown efficiency of the system was around 80-90%, indicates probability of colocalization of 

both vector controls and knockdown cells in one pellet which might lead to spectral contamination 

or overlap. This is further supported by larger spot size of the set up (~105μm), suggesting 

possibility of spectral acquisition from more than one cell.  

Figure 4.3: Photomicrograph depicting cell morphology of vector control (A) and knockdown cells (B) 

(Phase contrast microscope, 40X) 

Figure  4.4: Confocal analysis of filament networks in K8 knockdown and vector control clones. (Adapted 

from Reference 244) 
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4.III Raman microspectroscopic study of single cells  

To overcome the above mentioned limitations and to establish morphological difference between 

knockdown and vector controls cells, Raman mapping studies of single vector control and 

knockdown cells were taken up.  

4.III.1 Methodology 

 
4.III.1.a Preparation of cells for Raman microspectroscoy: K8 knockdown and vector 

control cells were grown on glass cover slips treated with Poly-L-Lysine (0.01% Poly-L-Lysine in 

milli Q water) for 48 hours. Cells were washed with pre-warmed PBS buffer (150 mM NaCl, 2mM 

KCl, 8 mM Na2HPO4 and 1 mM KH2PO4) thrice. After washing, the cover slip was mounted on 

glass slide in PBS and used for acquiring Raman spectra under Raman microscope. 

4.III.1.b Data acquisition: Raman spectra of single vector control and knock-down cells 

were acquired using WITec Raman alpha300R (WITec, GmbH) confocal Raman imaging system. 

Photographic representation of the instrument is shown in Figure 4.5. The microscope is equipped 

with XYZ piezo-scan and a computer controlled sample stage with a maximum scan area of 200 x 

200 x 20 μm, which enables automatic scanning of the specimen. Laser light of wavelength 532nm 

(Nd:YAG) at 8 mW power was used as excitation source. Laser was focused through 60X water 

immersion objective (Zeiss, 0.55 N.A.) on single cell. Raman signal was collected with a 100 μm 

fiber and directed to a 300 mm spectrograph equipped with 600 gr/mm grating and thermo-cooled 

CCD. Raman spectra were acquired over 70 to 3600 cm-1 range. For conducting experiments, a grid 

consisting of 100x100 pixels and covering an area of 75 x 75 μm was selected over the visible light 

image and 10,000 spectra/ map with integration time of 50 ms/spectrum and resolution of 0.75 μm 

were acquired.  
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4.III.1.c Raman mapping: Each data point was first calibrated and corrected for the 

wavelength-dependent signal detection efficiency of the Raman set up. Interfering background 

Raman signals originating in the optical elements in the laser light delivery pathway and the glass 

slide were subtracted from the Raman spectra. The first derivative of the spectra was calculated 

using the Savitzky- Golay method with a window size of three points followed by normalization. In 

this way, the influence of non-informative slowly varying fluorescence or background scatter in the 

spectra was minimized.  

Pseudo color Raman maps were constructed using K-means cluster analysis (KCA). KCA 

works on principle of identifying groups of spectra having resembling spectral characteristics and 

can easily handle the large amounts of data. Algorithms of KCA were implemented in the WITec 

project plus software. In KCA, first N spectra are chosen at random from the dataset. These spectra 

are taken as initial cluster centers. Then the distance of all spectra to these cluster centers is 

calculated, and the spectra are assigned to the nearest cluster center. Then for each cluster, a new 

center is calculated, being the average of all spectra assigned to that cluster. This procedure is 

Figure 4.5: Raman microspectroscopic set up 
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repeated until a stable solution is reached. Spectra that are highly similar and part of one cluster are 

believed to be obtained from areas of very similar molecular/biochemical composition. The cluster-

membership information can be plotted as a pseudocolor map by assigning a color to each cluster. 

This procedure have been used and described in several Raman mapping studies [194-203].  

4.III.2 Results and Discussion 

 4.III.2.a Pseudo color Raman maps of vector control and knockdown cells: In contrast 

to microscopic imaging, spectral imaging can provide both spatial and molecular information, 

which can help in understanding the distribution of different biochemical components. Using KCA, 

four and six cluster maps were generated for vector control and knockdown cells, respectively 

(Figure 4.6 and 4.7). Raman maps of vector control cell depict clear distinction between the 

membranous (Cluster I), nuclear (Cluster III) and cytoplasmic (Cluster IV) compartments of the 

cell. Cytoplasmic and nuclear components are separated by a perinuclear zone (Cluster II), which is 

known to contain extended and dense membrane network (endoplasmic reticulum, golgi apparatus 

etc.). Corroborating with the confocal image (Figure 4.4A) prominent actin based membrane 

protrusions and elongated cell shape features of vector control cells were also observed in Raman 

map. Similarly membranous (Cluster II), cytoplasmic (Cluster III), perinuclear (Cluster IV) and 

nuclear (Cluster V and VI) regions were seen in Raman map of knockdown cell, shown in Figure 

4.7. Correlating with the confocal image (Figure 4.4B) loss of actin protrusions and change in cell 

morphology were observed.  
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4.III.2.b Analysis of cluster averaged Raman spectra: Cluster average spectrum from 

each cluster annotated to a cellular compartment (Figure 4.8 and 4.9) were extracted for spectral 

analysis. Clusters ascribed  to membranous region in both vector and K8 knockdown cells have 

protein rich features indicated by Raman bands around 1246 cm-1 (amide III), 1455 cm-1 (CH2 

bending) and 1667 cm-1 (C=C stretching of proteins and α-helical structure), Figure 4.8A and 

Figure 4.9B. Similarly, clusters ascribed to perinuclear and nuclear compartments of the both cells 

have predominant protein and nucleic acid features indicated by 1321 cm-1 (amide III), 1450 cm-1, 

1667 cm-1, 1340 cm-1, 1373 cm-1 and 1591 cm-1 (C=N and C=C stretching), Figure 4.8B and Figure 

4.9D. Clusters ascribed to the nuclear region show higher intensity of 1340 cm-1 and 1590 cm-1 

bands, which can be attributed to large amount of genetic material inside the nucleus, Figure 4.8C 

and Figure 4.9E, F. Strong protein features indicated by bands at 1320 cm-1 (CH deformations of 

Figure 4.6: A. Photomicrograph of vector control cell B. 4-cluster pseudo color Raman map of vector 

control cell. 

Figure 4.7: A. Photomicrograph of K8 knockdown control cell B. 6-cluster pseudo color Raman map 

of K8 knockdown cell. 
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proteins), 1450 cm-1 (δCH2) and broad 1660 cm-1 (amide I) were seen in spectrum extracted from 

clusters assigned to the cytoplasmic region. Minor bands around 1340 cm-1 and 1591 cm-1 in this 

region suggest possibility of free nucleic acid material inside the cytoplasm, Figure 4.8D and Figure 

4.9C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Cluster average spectrum of vector control cells A. Cluster I, B. Cluster II, C. Cluster III 

and D. Cluster IV. 

Figure 4.9: Cluster average spectrum of K8 knockdown cells A. Cluster I B. Cluster II, C. 

Cluster III, D. Cluster IV E. Cluster V and F. Cluster VI 
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Overall, findings of the study indicate potentials of Raman spectroscopy in identifying minor 

differences associated with loss of one protein. Morphological differences due to loss of ‘keratin’ 

protein were successfully established using Raman maps. Non-invasive phenotyping with Raman 

microspectroscopy could have far-reaching applications, including identification of cancerous cell 

phenotypes to aid in disease detection and cancer research, as a biosensor to monitor cell response 

to drugs for pharmaceutical testing, and as a basic cytology tool to verify cell phenotype in cultures.  

Summary: Studies carried out in this Chapter aims at evaluating potentials of Raman 

spectroscopy in identifying minor changes associated with differential level of ‘keratin’ expression 

in oral cancer cells. Following is the brief summary of the work presented in this Chapter: 

1. Tongue cancer derived AW13516 cells with reduced (knockdown) and normal (vector 

control) expression of keratin protein were used. Spectra were acquired from cell pellets and 

differences in the protein content/secondary structures were observed. PC-LDA followed by 

LOOCV was explored for classification.  

2. Contrasting morphological differences between vector control and knockdown cells could 

be the main reason behind classification. It was observed that vector control cells are 

elongated in shape and have more actin based filamentous protrusions. In contrast to vector 

controls, knockdown cells show very few actin-based protrusions and have symmetric 

contracted epithelial appearance. 

3. Morphological differences between K8 knockdown and vector control cells were further 

established by Raman microspectroscopic study of single cells. Pseudo color Raman maps 

were generated by K-means cluster analysis. Different clusters corresponding to 

membranous, cytoplasmic, perinuclear and nuclear regions of the cell were obtained. Cluster 



Chapter 4 

171 

 

averaged spectra of the perinuclear and nuclear region are dominated by nucleic acid bands 

while that of cytoplasmic regions are rich in proteins. Corroborating earlier observations, K8 

knockdown cells show very few actin based protrusions and have symmetrical contracted 

epithelial appearance in contrast to elongated shape of vector control cells.  
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Oral cancer is a major health problem in India and other South-Asian countries. India tops the 

prevalence of oral cancer list in the world. Although the oral cavity is easily accessible to 

inspection, patients with oral cancer most often present at an advanced stage when treatment is less 

successful there-by leading to high morbidity and mortality. Early detection remains the best way to 

ensure patient survival and quality of life. The current gold standard for clinical diagnosis of oral 

lesions is biopsy and subsequent histopathological confirmation. The process is invasive, time-

consuming and prone to inter-observer variability. An alternate method of diagnosis is therefore 

warranted, that will enable non-invasive diagnosis of oral cavity in individuals with suspicious oral 

lesions. It is now well recognized that techniques based on optical spectroscopy can play a very 

important role towards this end. Raman spectroscopic methods are ideal for in vivo diagnosis 

because, is nondestructive, does not require external dyes, and photons can be delivered / collected 

via fiber-based instrumentation. These methods can provide rapid, in situ, objective and near real-

time evaluation of a disease with high degree of accuracy. The work reported in the thesis aims at 

developing and evaluating potentials of in vivo Raman spectroscopic methods for early and non-

invasive oral cancer diagnosis. The major highlights of the work are as follows: 

1. Raman spectroscopy of ex vivo tissues  

Fiberoptic probe coupled Raman spectroscope for in vivo applications was procured and assembled. 

This set up was adapted for ex vivo measurements by attaching probe holder and XYZ precision 

stage.  

  In order to standardize data acquisition and analysis protocols as well as to assess the 

reproducibility of spectral features, spectra of ex vivo normal and tumor tissues were acquired. A 

total of 683 spectra from 36 pairs of biopsies were obtained. Lipid rich features were observed in 
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normal spectra while tumor showed predominanty protein bands. Classification with PC-LDA was 

explored and findings were validated by LOOCV and independent test data. Reproducibility of 

spectral features was established and objective classification between both groups was obtained. 

Misclassifications between both groups were analyzed by correlating spectral predictions of normal 

and tumor biopsies against their respective histopathology. Findings suggest that misclassification 

between both groups can be primarily attributed to the tissue heterogeneity i.e. presence of normal 

regions in a tumor biopsy and vice-versa.  

 Origin of Raman signals in normal tissues was explored by acquiring spectra of intact and 

incised oral biopsies. Findings demonstrated that morphological and architectural arrangements of 

different layers in a tissue contribute to the spectral signatures. Influence of surface orientation of 

normal tissues on classification with tumors was also assessed and it was found that orientation 

does not have any bearing on classification with tumor. 

Spectral features of normal and tumor tissues were correlated with underlying biochemical 

composition. Area associated with protein (1450 cm-1 and 1660 cm-1) and lipid 1440 cm-1) bands 

were computed by curve fitting / deconvolution methods. These were correlated with biochemical 

composition of the tissue by estimating amount of total lipids, proteins and phospholipids. Spectral 

features as well as biochemical estimation suggest that the lipid to protein ratio is high in normal 

tissues in comparison to tumors. Spectral parameters derived from curve resolved protein and lipid 

Raman bands were found to be highly correlating with biochemical measurements.  

2. In vivo Raman spectroscopy of oral cancers 

To the best of our knowledge, for the first time, we have demonstrated the feasibility of acquiring 

good quality in vivo Raman spectra under clinically implementable time in Indian population. The 

fiberoptic probe was adapted for in vivo measurements by attaching a detachable, metallic spacer of 
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length 5 mm was attached at the tip of the probe to maintain constant focus during all measurements 

and to avoid inter-subject contaminations. In order to ensure similar acquisition sites in all subjects, 

spectra were acquired from buccal mucosa as per the teeth positions. A total of 444 contralateral 

normal, 337 tumor and 206 premalignant spectra from 163 subjects were obtained. In addition to 

this 300 spectra were also acquired from 30 healthy controls (15 with and 15 without tobacco 

habits). Mean and difference spectra suggest predominant lipid features in normal conditions while 

proteins are rich in tumors. Standard models for contralateral, premalignant and tumor conditions 

were developed and evaluated with independent test data. Discrimination of premalignant 

conditions against closely associated habitual tobacco users was also demonstrated. Findings 

suggest that premalignant conditions in the oral cavity can be objectively classified against normal, 

tumor as well as closely associated habitual tobacco users. Classification of OSMF and leukoplakia, 

two of the most commonly occurring precancerous conditions in Indian population was explored 

and feasibility of classification between both conditions was demonstrated.  

Various clinically or histologically unrecognizable micro-architectural changes generally 

precede the development of a clinically visible precancerous lesions and are attributed to 

‘malignancy-associated-changes’ (MACs) or cancer-field-effects (CFEs)’, terms often used 

interchangeably. Identification of CFEs or MACs may serve as a novel screening tool to reduce the 

morbidity and mortality associated with multiple potentially malignant transforming fields. In order 

to evaluate the feasibility of in vivo Raman spectroscopic identification of early changes which may 

be an indicative of neoplastic transformation, 722 spectra of 84 subjects under five categories 

namely healthy control (no tobacco habit, no cancer), contralateral normal (cancer and tobacco 

habit), non-habitués contralateral (cancer and no tobacco habit), habitués healthy controls (no 

cancer, tobacco habit) and tumor (cancer and tobacco habit) were analyzed. Mean and difference 
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spectra are suggestive of changes in protein, lipid content as well as tobacco induced 

hypercellularity. PC-LDA results suggest that Raman characteristics of mucosa of healthy controls 

are exclusive, while that of habitués healthy controls are similar to the contralateral normal mucosa, 

suggesting carcinogen induced field changes can be identified. It was also found that cluster of non-

habitués contralateral normal mucosa is different from habitués healthy controls, indicating 

malignancy associated changes may be different from carcinogen induced changes and can be 

identified with Raman spectroscopy. The non-invasiveness and use of harmless excitation 

wavelength impart several advantages to this method, and thus prospectively has potential to 

become an ideal mass screening tool in public health programs.   

3. Raman microspectroscopy of oral cancer cells 

Keratins are one of the most widely used markers for oral cancers. Keratin 8 and 18 are expressed 

in simple epithelia and perform mechanical and regulatory functions in cell. Their expression is not 

seen in normal oral tissues but is often expressed in oral squamous cell carcinoma. Aberrant 

expression of keratins 8 and 18 is the most common change in human oral cancer. Study on tongue 

cancer derived AW13516 cell-line was taken up to evaluate potentials of Raman spectroscopy in 

identifying minor changes associated with differential level of keratin expression.  Cells with 

reduced expression of keratin 8 protein were termed as ‘K8 knockdown’ and with normal 

expression termed as vector controls. In the first step spectra of K8 knockdown and vector control 

cell pellets were acquired using fiberoptic probe set up. Spectral features of both groups are 

suggestive of differences in the protein content and secondary structures. These differences were 

utilized for classification using PC-LDA followed by LOOCV.  

  Contrasting morphological differences between both groups could be the main reason 

behind classification. Individual cell morphology was analyzed using live cell imaging and confocal 
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microscopy. Findings suggest that vector control cells have more actin based filamentous 

protrusions and they are elongated in shape. In contrast to vector controls, knockdown cells show 

very few actin-based protrusions and have symmetric contracted epithelial appearance. 

  Morphological differences between K8 knockdown and vector control cells were further 

established by generating Raman maps of single cells. Spectra were acquired at 532 nm excitation 

with a Raman microspectrometer and maps were generated by K-means cluster analysis method. 

Different clusters corresponding to membranous, cytoplasmic, perinuclear and nuclear regions of 

the cell were obtained. Spectra of the perinuclear and nuclear region were dominated by nucleic 

acid bands while that of cytoplasmic regions were found to be rich in proteins. Corroborating earlier 

observations, K8 knockdown cells show very few actin based filaments and have symmetric 

contracted epithelial appearance in contrast to elongated appearance along with multiple membrane 

protrusions of vector control cells.  

 

Overall findings of our study demonstrate the efficacy of Raman spectroscopic methods in 

conjunction with multivariate analysis tools for unambiguous and non-invasive identification of 

normal and pathological conditions as well as the early invisible changes which may be an 

indicative of neoplastic transformation in oral cancers.  

Future Directions 

The ultimate goal of optical spectroscopic methods is to provide an objective, real-time 

adjunct/alternative to cancers diagnosis. Studies carried out in the present thesis have successfully 

demonstrated the feasibility of classifying normal and pathological conditions in oral cancers using 

Raman spectroscopy in a laboratory/hospital set up.  In the coming years, large scale clinical trials 
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must be conducted to gain the amount of data necessary for developing adequate size training and 

test set for robust algorithm development and analysis. These models should be tested very 

vigorously, preferable double-blinded, as multicentric studies, before they are contemplated for 

routine use. Incorporating a marking system which could be intrinsic to the probe itself should also 

be investigated. This will help in realizing the surgical boundary demarcation and site-wise 

histopathology applications. Further improvements in data analysis algorithms is also required for 

developing less cumbersome, rapid, unambiguous, objective and user friendly interfaces from the 

point of view of routine clinical use where a clinician or a technician can analyze a given spectrum 

against all available models to diagnose a case.  

The prospective adaptation of Raman spectroscopy for routine clinical diagnosis would decrease the 

number of follow-up clinic visits and patient anxiety as long wait for histopathological diagnosis 

would be minimized to a great extent. The technology poses no known risks to the patients, and 

therefore could be a safe alternative/adjunct to the current diagnostic methods. 
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